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Abstract

Traditional intensity-based 2D/3D registration requires near-perfect initializa-

tion in order for image similarity metrics to yield meaningful gradient updates

of X-ray pose. They depend on image appearance rather than content, and

therefore, fail in revealing large pose offsets that substantially alter the appear-

ance of the same structure. We complement traditional similarity metrics with

a convolutional neural network-based (CNN-based) similarity function that

captures large-range pose relations by extracting both local and contextual in-

formation, and proposes meaningful X-ray pose updates without the need for

accurate initialization. Our CNN accepts a target X-ray image and a digitally

reconstructed radiograph at the current pose estimate as input and iteratively

outputs pose updates on the Riemannian Manifold. It integrates seamlessly

with conventional image-based registration frameworks. Long-range rela-

tions are captured primarily by our CNN-based method while short-range

offsets can be recovered accurately with an image similarity-based method.

On both synthetic and real X-ray images of the pelvis, we demonstrate that the

proposed method can successfully recover large rotational and translational

offsets, irrespective of initialization.
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Chapter 1

Introduction

Intra-operative localization of patient anatomy is an integral part of navigation

for computer-assisted surgical interventions. Traditional navigation systems

use specialized optical or electromagnetic (EM) sensors and fiducial objects

to recover the pose of patient anatomy (Yaniv, 2016). These systems often

require large and invasive incisions to fixate rigid body objects to a patient’s

bones (Liu et al., 2014; Troelsen, Elmengaard, and Søballe, 2008). Furthermore,

optical sensors are sensitive to occlusion, EM sensors are unreliable in the

presence of metallic surgical tools, and both are not standard equipment in

most operating rooms. Fluoroscopic imaging provides an alternative method

for navigation. It is already widely used during surgery and is not sensitive to

the limitations of optical and EM trackers.

A 2D/3D registration between the intra-operative 2D C-arm X-ray imaging

system and a 3D CT volume may be used to perform navigation (Markelj

et al., 2012). Example orthopedic applications involving hip surgery include

control of a hip-replacement robot (Yao et al., 2000), guided cement injection

into the femoral head (Otake et al., 2012), and localization of osteotomy bone
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fragments (Grupp et al., 2019). Other applications include reduction of trau-

matic bone fractures (Gong, Stewart, and Abolmaesumi, 2011), spine surgery

(Ketcha et al., 2017), and kinematic analysis of the wrist (Chen et al., 2013). The

two main variants of 2D/3D registration are split between intensity-based and

feature-based approaches. Feature-based approaches require manual or auto-

mated segmentation or feature extraction in both of the imaging modalities

and optimized in point-to-point, curve-to-curve or surface to curve fashion.

While feature extraction significantly reduce the amount of data making this

method fast, its accuracy directly relies on the accuracy of feature extraction

or segmentation. Intensity-based approaches directly use the information con-

tained in pixels of 2D images and voxels of 3D volumes. The most commonly

used method in literatures is iteratively optimizing the similarity measure

of the simulated intra-operative X-ray images, digitally reconstructed radio-

graphs (DRRs), with the real X-ray image. The optimization problem solved

by registering a single object from a single view is described by (1.1).

min
θ∈SE(3)

S (I,P (θ; V)) +R (θ) (1.1)

I defines the 2D fluoroscopic image, V the preoperative 3D model, θ the pose

of the volume with respect to the projective coordinate frame, P the projection

operator used to create DRRs, S the similarity metric used to compare DRRs

and I, and R is a regularization over plausible poses. To be robust against

the presence of surgical tools, the similarity may also be computed over

local neighborhood patches and combined (Markelj et al., 2012). At the cost

of increased computational complexity, state-of-the-art evolutionary search
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strategies are adept at avoiding local minima of (1.1). Additionally, GPUs

allow many objective functions to be evaluated simultaneously and thus, be

used intraoperatively (Otake et al., 2012).

Despite advanced search strategies, a reasonable initial pose estimate is

required for any intensity-based registration to find the true pose. A common

technique used for initialization is to annotate corresponding anatomical land-

marks in the 2D and 3D images and solve the PnP problem (Markelj et al.,

2012; Bier et al., 2018). Another technique requires a user to manually adjust

an object’s pose and visually compare the estimated DRR to the intraoperative

2D image. These methods are time consuming and challenging for inexperi-

enced users, making them impractical during surgery . Alternatively, some

restrictions may be imposed on plausible poses to significantly reduce, or

eliminate, the number of landmarks required for initialization (Markelj et al.,

2012). In (Grupp et al., 2019), a single-landmark was used to initialize the

registration of a 2D anterior-posterior (AP) view of the pelvis, and further

views were initialized by restricting any additional C-Arm movement to or-

bital rotations. However, for certain applications, such as the chiseling of bone

at near-lateral views, it is not feasible to impose such restrictions on the initial

view or C-Arm movements.

We propose a convolutional neural network (CNN) approach that is ca-

pable of learning large scale pose updates when far away from ground truth,

and finer pose updates when closer to the actual pose. The proposed network

regresses a geodesic loss function over SE(3) and was trained on simulated

X-ray images from CT using an open-source tool (Unberath et al., 2018). For
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large offsets, the network effectively learns the manual pose adjustment pro-

cess that a human could conduct to initialize an intensity-based optimization.

When close to the ground truth pose, updates will be dominated by a classic

intensity-based method to make fine adjustments.
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Chapter 2

Methods

In this work, we present a large-range pose-estimation approach for estimating

the spatial relation between a 2D X-ray image and corresponding 3D CT

volume. To retrieve the relative pose, we employ an iterative strategy. In each

iteration, a DRR is rendered from CT using the current pose estimate and

compared with the input X-ray image with the trained network (Fig. 2.1). The

network is trained to predict a relative pose transformation between two input

images using an untangled representation of 3D location and 3D orientation.

The iterative pose estimation pipeline still requires an initial guess for the

starting pose. The AP view of the CT image is chosen, since it represents a

view that is commonly used in clinical practice; however, any arbitrary view

can, in principle, be used, since the CNN-based similarity metric trained with

geodesic-based loss is globally convex (Sec. 2.1).
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Figure 2.1: Schematic workflow of context-based registration in an iterative scheme.

2.1 Geodesic gradient loss

We would like to express 2D/3D registration in terms of the relative pose

between the viewpoints. At the core of the proposed method is the question

on how to properly model the similarity between two images. For 2D/3D

registration purposes (and assuming that images will always show the same

object), it would be appealing if we were able to express 2D image similarity

in terms of the relative pose between the respective viewpoints.

A rigid-body pose is an element of SE(3), the Special Euclidean group in

3D, which can be defined as:

{(R, t)|RTR = I, det R = 1, t ∈ R3}

where R is the rotation matrix and t represents the translational part of the

pose.

This distance between two rigid-body poses T = exp (ξ̂) ∈ SE(3) and

T′ = exp (ξ̂ ′) ∈ SE(3) can be defined as the gradient of the geodesic distance
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on the Riemannian manifold as (Hou et al., 2018):

∇dist(ξ, ξ ′) = −2 logξ ′(ξ), (2.1)

where logξ ′(.) denotes the Riemannian Logarithm at ξ ′; ξ̂ and ξ̂ ′ are the el-

ements of the Lie algebra se(3); se(3) is the tangent space to the Lie group

SE(3); (ξ, ξ ′) ∈ R6 are the twist coordinates.

These geodesic gradients indicate the direction of update from one pose

estimate to the other, considering the structure of SE(3). It is the generalization

of straight lines of Euclidean geometry in Riemannian manifolds. Detailed

implementation is shown in (Miolane et al., 2018). While this metric cannot be

computed analytically from two images, i. e. a target X-ray image and a DRR,

it can be approximated with a CNN trained on a large structured dataset.

2.2 Datasets

To generate 2D simulated fluoroscopy images with ground truth viewpoint

label for training, the open source tool, DeepDRR (Unberath et al., 2018), is

used for dataset generation. DeepDRR takes into consideration the spectrum

of X-ray imaging and uses neural network to simulate scattering effect and

perform volume segmentation of different materials. It is shown in (Bier et al.,

2018) and (Bier et al., 2019) that DeepDRR is able to generate more realistic

simulated fluoroscopy that can generalize well onto real X-ray images in

landmark detection.

Each simulated image is labeled with the position and orientation of the

X-ray source with respect to the CT volume space that is used to generate
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Figure 2.2: Overview of DenseNet structure (Huang et al., 2017)

the image. Two images generated from the same CT volume are randomly

selected each time from all simulated images as the input image pair to the

network. The output label of these two images are calculated by the open

source tool geomstats package (Miolane et al., 2018) using the ground truth

positions and orientations of the viewpoints of two input images. Each images

are log-corrected and normalized into the range of [−1, 1].

2.3 Network structure

The neural network architecture we design accepts two input images of the

same size as shown in Fig. 2.3 and predicts the gradient of the geodesic

distance on the Riemannian manifold between them, as per Sec. 2.1. The

images first pass through the convolutional part of a DenseNet-161 (Huang

et al., 2017) that was pre-trained on ImageNet dataset (Deng et al., 2009). The

structure of DenseNet is shown in Fig. 2.2. While other popular pre-trained
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Figure 2.3: High-level overview of the proposed network architecture.

networks on ImageNet including VGG (Simonyan and Zisserman, 2015) and

ResNet (He et al., 2016) are also tested in this architecture, DenseNet is able

to produce the best result according to our experiment. This may be due to

the fact that the design of densely connected blocks in DenseNet is able to

most effectively reduce the gradient vanishing problem so that weights in

the first few layers are still able to be updated properly. This architecture,

shown in blue blocks in Fig. 2.3, is used to extract robust features from the

two input images. Features from different depth are then fed into our custom

architecture described in the remainder of this section. Note that the weights

in pre-trained parts in the blue blocks are not updated in our training. Besides,

as the DenseNet is designed to take three-channel RGB images as input, the

weights of the first layer is averaged over the three channel so that it is able to

fit the one channel intensity images.
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Figure 2.4: Detailed structure of each ConvNet.

While feature maps of deeper layers contain higher-level semantic informa-

tion, most information on spatial configuration and local image appearance

is lost; yet, such features are likely informative for predicting pose updates

as relative image poses get closer. Assuming that feature maps from differ-

ent depths of the pre-trained network represent different levels of semantic

information, it is not guaranteed that those from deeper layers could al-

ways produce better result. Therefore, we 1) extract feature maps of both

images at three different depths of DenseNet, 2) concatenate them, and 3) pass

them through an additional CNN with fully connected layers to individually

regress the geodesic gradient. Skip connection design is introduced in the

additional CNN so that each CNN can get direct access to the lower level

feature maps and the problem of gradient vanishing can be reduced. Average

pooling layer is added to the skip connection to make the size of feature map
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consistent. Since it is unclear which of these three estimates will be most

appropriate at any given scenario, we delegate this decision to the CNN itself.

This is realized by simultaneously regressing a weight corresponding to the

geodesic gradient prediction at the respective depth. The weighted result,

∆pweighted = ∑3
i=1 wi · ∆pi, is the final output and is trained end-to-end with

all the other three predictions.

While rotational pose changes were captured quite well in our experiments

using this approach, purely translational displacements could not be predicted

accurately. Following (Liu et al., 2018), we replace all convolution layers after

feature extraction from DenseNet by CoordConv layers (Liu et al., 2018),

which gives convolution filters access to the input image coordinate. As is

suggested in the paper, all image coordinates are normalized into range [-1,1].

2.4 Reference coordinate system for regressing

The network was trained to regress the pose of X-ray source with respect to

the CT volume in our initial experiments. However, regressing the camera

pose is not able to produce stable results when the network is used to do

registration because the target anatomy would easily move beyond the field

of view in intermediate DRR images. The illustration of why target object

always moves beyond the field of view is shown in Fig 2.5. Although the deep

network is able to predict the rough direction that X-ray source should be

moved to in the next step, the accuracy of each prediction is not guaranteed.

The numerical error of a single prediction of the network is shown in Sec. 3.2.

Small error in the prediction of X-ray source pose update may lead to large

11



Figure 2.5: Comparison between "Ideal" X-ray source pose update and actual X-ray
source pose update suggested by network

offset of the anatomical structure in the next simulated X-ray image. If the

anatomical structure is mostly out of the field of view of detector in one of

the intermediate DRRs, there is no way that the registration can proceed. To

solve this problem, the reference coordinate frame is changed to the center of

the target anatomy (in our test, the center of pelvis) and the X-ray source is

assumed to be fixed. The network is then trained to regress the pose of CT

volume relative to the new reference coordinate frame. As the network now

predicts the pose update of CT volume relative to its own center, the target

anatomy will not easily go out of the field of view if proper step size is applied

(0.15 of geodesic gradient in our experiment).

12



Chapter 3

Experiments and Results

3.1 Experiment setup

We select five high-resolution CT volumes from the NIH Cancer Imaging

Archive as the basis for our synthetic dataset and split data on the CT level (3

volumes for training, 1 for validation, 1 for testing). For each CT volume, a

total of 4311 X-ray images were generated from different positions (randomly

sampling poses with rotations ϕ ∈ [−40◦, 40◦], θ ∈ [−20, 20], and translations

of ±75 mm in all directions). Training was run on a single Nvidia Quadro

P6000. Batch size used for training is 16; the learning rate starts from 1e-6, and

decrease to 30% after every 30,000 iterations.

3.2 Network prediction accuracy

After training the network with simulated X-ray images which are generated

from three different CT volumes, the performance of the network is tested on

simulated X-ray images generated from the test CT volume. Fig. 3.1 shows

the accuracy of 40 randomly sample simulated X-ray image pairs which are

13



Figure 3.1: The rotational and translational accuracy of a single prediction by the
network of 40 randomly sampled simulated X-ray image pairs from test CT volume.
#0-2 indicates three individual predictions of three depths of network from shallow
to deep. #3 is the weighted prediction.

generated from the test CT volume. Of the four results shown in the figure,

#0-2 are predictions from three depths of network (the output 1-3 shown in

Fig. 2.3), and the #3 is the final weighted prediction. It can be seen from the

diagram that the weighted output is able to, in most cases, give the best result

among all predictions. This result justifies the introduction of weights as a

way to increase the capability of the network to make prediction on images

with both large and small offset.

3.3 Registration results on simulated images

An exemplary case with intermediate DRRs is shown in Fig. 3.2 and Fig. 3.3.

14



a) b)

Figure 3.2: Synthetic data example: (a) DRRs as the network converges to the final
pose. (b) The X-ray source pose correspond to the DRR on the left.
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Figure 3.3: Synthetic data example (cont.): In (c-e) we show a DRR in AP view at
initialization, the final DRR view, and the target image, respectively.

3.4 Registration results on real X-ray images

In Fig. 3.4 and Fig. 3.5, the network is used to predict the 2D/3D registration

pose on a CT and two X-ray images from a cadaveric specimen. The X-

ray images were acquired from a Siemens CIOS Fusion C-arm. The X-ray

image was cropped for the registration because of the collimator trace on the

boundaries of the image. Median filter is applied to the real X-ray images

before they are used for prediction. While the registration result in Fig. 3.4

seems to be acceptable, that in Fig. 3.5 is rather off from the target. The

results of both cases are compromised compared with simulated images. This

indicates the fact that the simulated X-ray images is not in the same "domain"

as real X-ray images. Directly training this network with simulated images

without any pre-processing cannot generalize the model very well to real data.

It is somehow counterintuitive because one of the advantage of neural network

which researchers generally believe is that neural network is able to find out

the most suitable kernel during training without the need of hand-crafting

16



features by human. Any kinds of pre-processing, if needed, should already be

considered in the first few layers in ConvNet. This behavior, however, may

only be true when there is enough variation in training dataset that will lead

the network to form convolution kernel for that purpose. In our experiment,

all training images are generated using the same model (DeepDRR). This, to

certain extent can explain the compromised effect when applying the model

on real X-ray images.

Initialization Result Target

a)

b) c) d)

Figure 3.4: Real data example: DRRs are rendered from the CT every iteration (a).
We also show a DRR in AP view at the first iteration, the final DRR view, and the real
target image in ((b-d)), respectively.
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Initialization Result Target

a)

b) c) d)

Figure 3.5: Failed real data example: DRRs are rendered from the CT every iteration
(a). We also show a DRR in AP view at the first iteration, the final DRR view, and the
real target image in ((b-d)), respectively.

3.5 Registration results compared with intensity-
based registration on simulated images

In Fig. 3.6 we present the rotational and translational misalignment errors

for ten synthetic test cases where ground truth pose is perfectly known. We

compare the final pose of our contextual registration to intensity-based reg-

istration using covariance matrix adaptation evolution strategy (CMA-ES);

both initialized at AP. The numeric comparison between the two approaches

is presented in Table 3.1. Since the target image in our testing mostly has large

offset from AP view (initialization), image-based registration method fails in

all tests and results are trapped at local minimum close to initialization.

18



Error in Rotation Error in Translation

Figure 3.6: Violin plots showing the error distribution for rotational and translational
misalignment. The plots compare the outcomes of contextual registration with classic
intensity-based registration.

Table 3.1: Comparison of the proposed contextual registration with standard image-
based registration, both initialized at AP view.

Contextual Registration Image-based Registration
Rotation Translation Rotation Translation

Mean 1.68 22.8 18.6 264
Standard deviation 1.08 17.3 7.16 81.8
Median 1.53 20.1 19.6 249
Minimum 0.33 4.41 10.6 111
Maximum 3.54 58.0 28.5 391
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Chapter 4

Discussion and Conclusion

4.1 Discussion and outlook

On synthetic and real X-ray images of the pelvis, we demonstrate that re-

gressing geodesic gradients between target and current X-ray pose from the

respective images enables the recovery of large pose differences in 2D/3D

registration. These learned updates focus on context and content to overcome

accurate initialization, a major challenge in intensity-based 2D/3D registra-

tion. While our results are promising, we have identified several limitations

and directions for future work.

Currently, our contextual registration pipeline combines pose update pro-

posals obtained from three learning-based sub-networks. Upon convergence,

the recovered poses are reasonably close to the desired target pose, however,

state of the art intensity-based registration methods (Grupp et al., 2019) can

achieve even better performance if the parameters are well tuned. However,

it may not be necessary to train a network that is able to produce similar level

of prediction accuracy as intensity-based image registration when two images
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are close enough. Our learning-based architecture is, in principle, capable

of integrating pose updates provided by an intensity-based registration al-

gorithm, the corresponding weight of which could be learned end-to-end.

However, since such algorithm cannot provide an estimate of the geodesic

gradient, careful design of the overall loss function is necessary.

When we try to use the trained model on real X-ray images, the results are

quite compromising as is mentioned in Sec. 3.4. While texture information

seems to be a nice feature in simulated-to-simulated image registration, it

may not help as much in real-to-simulated image registration because it is

not easy to normalize both input images in such a way that the intensity

value at corresponding anatomical features are close to each other in similar

viewpoint as it is in simulated-to-simulated registration. On the other hand,

geometric information is a more robust feature than texture. One possible

strategy would be pre-processing the X-ray images to emphasize more on

geometric information and less on image texture before prediction. Possible

pre-processing methods include applying Sobel filter and Gaussian filter

to highlight the geometric contours and blur texture information. Using

transfer-learning to stylized the raw image as a way of data augmentation is

also an alternative to eliminate the effect of texture (Geirhos et al., 2018). A

prospective cadaver study would allow implantation of radiopaque fiducial

markers that can provide accurate ground truth, enabling these investigations

and retraining of our CNN on real data.
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4.2 Conclusion

In this work, we have shown that CNN is capable of learning large scale

pose updates even when two images are far away from each other since the

CNN-based similarity metric is globally convex. The proposed network re-

gresses a geodesic loss function over SE(3) and the results tested on simulated

X-ray images are promising. However, compromised performance is observed

when applying the method to real data that may further deteriorate as tools

and implants are introduced during surgery. As a clear next step, we plan

on quantifying the performance of our method on clinical data. Evaluating

this behavior, however, is not trivial since ground truth poses for clinically

acquired X-ray images are difficult to obtain, and strategies to improve general-

ization ability of CNNs are highly sought after. Some possible pre-processing

methods mentioned in Sec. 4.1 can be applied to simulated images before

used for training to improve the performance and generalization ability of the

network on real data.
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