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Abstract

Exact solutions are unattainable for important problems. The calculations are limited

by the memory of our computers and the length of time that we can wait for a

solution. The field of approximation algorithms has grown to address this problem;

it is practically important and theoretically fascinating. We address three questions

along these lines. What are the limits of streaming computation? Can we efficiently

compute the likelihood of a given network of relationships? How robust are the

solutions to combinatorial optimization problems?

High speed network monitoring and rapid acquisition of scientific data require

the development of space efficient algorithms. In these settings it is impractical or

impossible to store all of the data, nonetheless the need for analyzing it persists.

Typically, the goal is to compute some simple statistics on the input using sublin-

ear, or even polylogarithmic, space. Our main contributions here are the complete

classification of the space necessary for several types of statistics. Our sharpest re-

sults characterize the complexity in terms of the domain size and stream length.

Furthermore, our algorithms are universal for their respective classes of statistics.
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ABSTRACT

A network of relationships, for example friendships or species-habitat pair-

ings, can often be represented as a binary contingency table, which is {0, 1}-matrix

with given row and column sums. A natural null model for hypothesis testing here

is the uniform distribution on the set of binary contingency tables with the same

line sums as the observation. However, exact calculation, asymptotic approximation,

and even Monte-Carlo approximation of p-values are so-far practically unattainable

for many interesting examples. This thesis presents two new algorithms for sampling

contingency tables. One is a hybrid algorithm that combines elements of two previ-

ously known algorithms. It is intended to exploit certain properties of the margins

that are observed in some data sets. Our other algorithm samples from a larger set

of tables, but it has the advantage of being fast.

The robustness of a system can be assessed from optimal attack strategies.

Interdiction problems ask about the worst-case impact of a limited change to an

underlying optimization problem. Most interdiction problems are NP-hard, and fur-

thermore, even designing efficient approximation algorithms that allow for estimating

the order of magnitude of a worst-case impact has turned out to be very difficult.

We suggest a general method to obtain pseudoapproximations for many interdiction

problems.

Primary Reader: Rico Zenklusen

Secondary Reader: Vladimir Braverman
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Chapter 1

Introduction

Resources are limited but problems are not. The central challenge to theoretical computer scientists

for 50 years has been efficient and accurate resource-limited computation.

Disregarding resources, it is often easy to describe an algorithm to solve a particular prob-

lem. For example, one can count the number of satisfying assignments to a Boolean formula with

n variables simply by trying each of the 2n possibilities. But for many problems, like sat, it is not

known whether there is any algorithm whose worst-case running time is not prohibitively large, or

more precisely, bounded by a polynomial in the size of the input. What’s worse is that it is generally

believed that no such algorithm exists.

If we cannot solve a problem exactly with the time or storage that we have, what can we

do? Often a “close” solution is good enough. Can we find one? This question is central to the study

of approximation algorithms. Approximation is a formalization of heuristics. Our goal is to develop

efficient algorithms for which we can prove that the approximate solutions they generate are close

to the true solutions in the sense of some objective. We propose to address three problems with

approximation algorithms.

First, large scale distributed computing and rapid data generation require us to re-evaluate
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CHAPTER 1. INTRODUCTION

the definition of efficient computation. Data access times may be prohibitively large as data sets

grow well beyond the memory capacity of any computer and even become geographically diverse.

The streaming model of computation captures these challenges, and we study the approximatibility

of so-called frequency functions in this model.

Second, the table of the Normal distribution in the back of a freshman statistics textbook

does not cut it anymore with the advent of large-scale graphical data. New algorithmic and prob-

abilistic tools are needed for statistical hypothesis testing on graphs and contingency tables, but

in some respects they have been slow to develop. We propose a new algorithm for estimation in a

commonly used null model: random bipartite graphs with a given degree sequence, or equivalently,

random binary contingency tables. The model has been studied extensively, but current methods

have either unacceptable running times or do not guarantee the accuracy of the results. Such a

guarantee is crucial. Without one, who knows what null hypothesis is being tested!

Third, one way to understand the robustness of a system is to evaluate attack strategies.

By studying interdiction, one might locate the most vulnerable edges in a transportation or com-

munication network, find cost-effective strategies to prevent the spread of infection in a hospital [6],

or determine how to inhibit the distribution of illegal drugs [96]. We address interdiction for a large

class of structured combinatorial optimization problems. This class includes problems related to

connectivity, matching, scheduling, network flows, and more.

1.1 Stream Sketches

Twitter has recorded 143,199 Tweets in one second [74]. On average last year, the world’s largest

public DNS was handling 1.5 million queries per second [50]. Sensors in the Large Hadron Collider

record data 40 million times per second [27, p. 45]. The rate at which we generate new data is

increasing so quickly that we cannot keep up if we want to store everything and process it exactly.

Even problems that are traditionally considered easy by computer scientists, like finding the most

2



CHAPTER 1. INTRODUCTION

frequent item in a list, become essentially intractable for streaming data [3].

Distributed computing and rapid data acquisition drive the need for flexible statistics to

stand in place of the data. They must require much less space to store and less time to query. The

ultimate questions for us are: what statistics about a data stream can we compute if we are only

capable of storing a tiny fraction of the stream? and what statistics can we not compute?

Theorists created the streaming model of computation to address these challenges. A

stream S is a sequence of m integers (s1, s2, . . . , sm) from the set [n] = {1, 2, . . . , n}. Each stream

has an associated frequency vector f ∈ Nn where the ith coordinate is the number of is that appear

in the stream, formally fi = #{j ∈ [m] : sj = i}. In the streaming model, the processor receives

the elements of the stream once in an arbitrary order and the goal is to compute some function of

the frequencies. The function depends on the application. For example, Lakhina et al. [76] propose

using the entropy, −
∑
i
fi
m log(fi/m), of an observed stream of IP packets as a statistic for anomaly

detection in networks. Given a particular function g, we would like a randomized algorithm that,

for any ε > 0, can produce a (1± ε)-approximation to
∑
i g(fi), simply denoted g(f), and that the

space used by the algorithm is as small as possible. The problem is trivial with the memory to store

f entirely. The question is: when can we get by with much less?

Space-optimal algorithms are known for approximating the frequency moments Fk =
∑n
i=1 f

k
i ,

for k ≥ 0 (we use the convention that 00 = 0) [23, 68, 69, 77]. A surprising result is that there is a

polylogarithmic space (1± ε)-approximation algorithm for Fk when k ≤ 2 [3, 56], but approximating

Fk when k > 2 requires polynomial, more precisely Ω(n1− 2
k ), space [30]. Sublinear space approxi-

mation algorithms are also known for the entropy [28] of the stream −
∑
i pi log pi, where pi = fi/m,

for quantiles [38], and several functions.

The two main workhorses of these algorithms are linear sketching and heavy elements

algorithms. To create a linear sketch, one selects a random d× n matrix A from a carefully chosen

probability distribution and stores Af , often called the sketch. Since the transformation is linear,

Af can be computed in one pass over the stream with d logm space. Finally, one uses a specialized

3



CHAPTER 1. INTRODUCTION

algorithm to extract an approximation to g(f) from Af . It is an open problem to characterize the

limits of linear sketching. Often, the specialized extraction algorithm takes from the sketch a list

of heavy elements. A heavy element is an item i ∈ [n] whose frequency fi makes a large impact on

g(f), maybe it contributes 1% of the total value. In many scenarios, if one can find all of the heavy

elements in a stream then one can approximate g(f).

This thesis develops a new technique to derive nearly optimal universal sketching algorithms

for decreasing g and two-pass heavy elements algorithms for increasing g. First, we take two known

reductions used prove storage lower bounds and add a third. Next, we parameterize the reductions

in terms of the frequency vector f . Consider the set of all streams with domain size at most n and

length m, and let F be their frequency vectors. For each vector in F , we have get a lower bound

from the parameterized reduction. Obviously if b(f) is the value of the lower bound derived from the

frequency vector f , the best lower bound we can achieve with this reduction is max{b(f) : f ∈ F}.

The result is that we get a lower bound for the streaming space complexity of approximating g(f)

that is expressed as the solution to a nonlinear optimization problem over the feasible set F .

The optimality of the maximized lower bound plays a crucial role when we prove the cor-

rectness of our algorithms. What we use is the fact that which-ever is the stream that we receive

as input we know that its frequency vector f has b(f) ≤ max{b(f ′) : f ′ ∈ F}. Surprisingly, this

information is all that we need in order to design a nearly space optimal sketching algorithm for de-

creasing functions and a heavy-elements algorithm for increasing functions. In fact an even stronger

conclusion applies, the algorithms are universal. Indeed, suppose g1 and g2 are two functions with

lower bound values v1 ≤ v2, respectively. Then, as we will show, the sketch we use to approximate

g2 is also a correct sketching g1. In fact, this implies even that the function we wish to approximate

need not be chosen until after the sketch has been constructed, so long as we know the value of the

optimal lower bound.

From a practical standpoint it may seem like our algorithms are limited by the tractability

of the nonlinear optimization problem max{b(f) : f ∈ F}, but that is not the case. We show that

4



CHAPTER 1. INTRODUCTION

maximum can be approximated to within a small, constant factor using only polylogarithmically

many evaluations of g, and the approximate value is enough for nearly space-optimal algorithms.

1.2 Sampling

Relationships are data. Users of a social networks are related by their interactions. Species are

related to their habitats. Neurons are related to the muscles they control. Genetic diseases are

related to the cellular processes they disrupt. Though different in composition, one statistical model

is natural for all of these settings.

A network of relationships can often be represented as a binary contingency table, which is

{0, 1}-matrix with given row and column sums. Binary contingency tables play an important role in

the statistical analysis of relationships. Ecologists, for example, represent species-habitat relations

as binary contingency tables. When they observe variation among species the question is: Does the

variation occur by chance or natural selection? A natural null model for hypothesis testing here

is the uniform distribution on the set of binary contingency tables with the same row and column

sums as the observation. Manly [78] cites the observed abundance of some species over others and

the fact that some locations may be naturally better suited to a diverse ecosystem in support of this

null model, as these factors do not reflect competitive pressure among the species. However, exact

calculation and asymptotic approximation of p-values, even Monte-Carlo approximation, and even

for very simple test statistics, are so-far practically unattainable for many interesting examples. One

reason for this is that sampling contingency tables with given row and column sums has so far proved

difficult. However, if one can sample from this distribution, then by averaging one can accurately

estimate probabilities.

It turns out that the problems of sampling and of approximately counting are equiva-

lent [62]. Formally, given two sequences r = {ri}mi=1 and c = {ci}ni=1, let Σr,c denote the set of

m× n binary matrices that have row sums r and column sums c. To answer the hypothesis testing

5



CHAPTER 1. INTRODUCTION

question it is sufficient to be able to answer: how large is |Σr,c|? or how can we sample a matrix at

random from Σr,c?

The problem is not so easy, and two generalizations illustrate the point. If we fix the values

of some table entries or allow entries to take any non-negative integer values, instead of just 0/1,

then the new counting problem is among the hardest counting problems known; more precisely it

is #P-complete1 [94, 42]. With this perspective it is, perhaps, surprising that the complexity of

computing |Σr,c| is unknown.

Several approaches have been tried for sampling from Σr,c. The most successful algorithm

from a theoretical point of view is due to Bezáková, Bhatnagar, and Vigoda [17]. It is a simulated

annealing algorithm that can sample in polynomial time given any feasible set of margins. However,

the running time bound for their sampling algorithm is O((nm)2D3dmax log4 nm), where D =
∑
i ri

and dmax = max{maxi ri,maxi ci}. For dense matrices with m = θ(n), we can simplify the bound

to O(n11 log4 n). The algorithm is impractical even for small instances, and completely unusable for

anything larger.

Other approaches that have been tried include a Markov chain [40, 70] (there has been

limited success bounding the mixing time), dynamic programming [82] (the running time is typically

exponential in the largest column margin), and Sequential Importance Sampling [33, 52] (which does

not give an accuracy guarantee).

Our first new algorithm does not sample from Σr,c; rather, it samples from the larger set

of binary tables with row margins r and any column margins. But, it has some desirable properties.

First, the distribution of its samples is not the uniform distribution on this larger set. Rather, if C

are the (random) margins of a table sampled with this algorithm then EC = c, the column margins

are correct in expectation. Furthermore, conditionally given that C = c′, for any c′, the sampling

distribution is the uniform distribution on Σr,c′ . Second, after an initialization step it produces

1This is the same complexity as counting the number of satisfying assignments for a given Boolean formula (i.e.
SAT instance).
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CHAPTER 1. INTRODUCTION

samples in O(mn) time2, which is clearly optimal. The initialization step requires nonlinear root-

finding, but we prove that under a natural necessary condition there exists a unique root. We

present an algorithm that approximates the root; in practice, one could use one of the many stable

root-finding software packages that is freely available.

Our second algorithm is a hybrid algorithm that combines elements of two previously known

samplers, Miller and Harrison’s dynamic programming algorithm [82] and the Configuration Model

rejection sampler [98]. The Configuration Model is a simple probability distribution on integer-

valued contingency tables that is easy to sample. The samples always have the correct margins, but

may not be binary. However, conditionally given that the sample is binary its distribution is the

uniform distribution on Σr,c. To run the algorithm, begin with the m× n zero matrix and initialize

each row and column by creating ri tokens for row i and cj tokens for column j. Next, repeatedly

choose a row and column token at random and add a 1 to the corresponding matrix entry. If the

matrix has only 0/1 entries when the tokens are exhausted, then it is a uniform sample from Σr,c.

Otherwise, reject and start over. The rejection sampler does not work well when some of the margins

are large because there is a very high probability of getting values greater than 1 in those rows and

columns.

The strategy of our hybrid algorithm is to modify the Configuration Model so that rows

with large margins are always assigned 0/1 elements. The idea is to use dynamic programming to

sample rows with high margins and then switch to the Configuration Model to sample the rest of the

rows, when it becomes advantageous. The switch must be done in a way that preserves uniformity

and employs the strengths of each algorithm. We accomplish this by modifying Miller and Harrison’s

algorithm [82] once to account for the token process, and a second time to reduce the running time

from exponential time to polynomial time at the expense of an extra rejection step.

It works as follows. A user chooses two parameters p ≤ m and d ≤ maxj cj . A dynamic

programming phase runs to sample the p rows with the largest margins according to the same

2This bound hides some assumptions about the complexity of arithmetic, without them the bound only increases
to O(mn2).
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distribution as the token process conditioned to have all 0/1 entries. Next the token process is

used to sample the entries in the remaining m − p rows. The modifications that we make limit

the time complexity of the dynamic programming phase to about O(pnd+2m2 + p2n2d+4 log2m) for

initialization, which must be performed only once, and O(mn + p2n2lognlog2m) for each sample.

The sampling distribution is exactly uniform, and we can choose d so that the algorithm runs within

the time that we are willing to wait. The trade-off is that a smaller d makes for a higher rejection

probability in the extra rejection step.

1.3 Sabotage

Imagine a business that owns many machines, perhaps of several different types, and leases them

to customers. Each customer requires a particular number of machines and may have restrictions,

for example on the number of machines of a particular type or on the city where the machines are

located. The business owns extra machines in case of failures, but what is the worst case? More

precisely, what is the least number of machines to fail that impacts the business’s ability to meet its

customers’ demands? Alternatively, what is the worst impact that a particular number of failures

could have on the business’s ability to serve its customers?

Such a problem is a combinatorial interdiction problem. One purpose of interdiction is to

evaluate the robustness of a system. Typically, one begins with an optimization problem over a

discrete set of feasible solutions (e.g. maximizing the number of machines currently in use) and some

rules for modifying the feasible set (e.g. machines may fail and be removed from the available pool).

The goal is to have as great an impact on the objective function as possible, subject to a budget

constraint (e.g. at most, B machines may fail). The problem may be hard even though the original

optimization problem is not.

Interdiction versions of several specific combinatorial optimization problems have received

attention [41, 88, 96, 99]. We propose an approximation algorithm for a large class of structured

8



CHAPTER 1. INTRODUCTION

interdiction problems. The class of problems that we consider includes interdicting optimization

problems related to connectivity, matching, scheduling, and network flows.

We propose a polynomial-time algorithm that finds two interdiction sets, R1 and R2, such

that R1 is over-budget and R2 is under-budget. Furthermore, either R1 is better than the optimum

and uses less than twice the budget or R2 satisfies the budget and is at least half as good as

the optimum. To find R1 and R2, we begin with the min-max integer program in (1.1). The r

variables in a solution will be the incidence vector of the optimal set of elements to interdict, i.e.

R = {m ∈M : rm = 1} will be a worst case set of machine failures.

min
r

max
x

∑
m∈M (1− rm)xm,

Ax ≤ b,

cT r ≤ B,

r, x ∈ {0, 1}M .

(1.1)

Here is a description of the problem formulation. The constraints Ax ≤ b restrict x to be

the incidence vector of a feasible set of leased machines. The objective function for this problem is

modified by r. It counts the number of machines that are leased and have not failed. The second

constraint expresses a general interdiction budget, e.g. to consider the case where at most B machines

fail we would set cm = 1, for all m ∈M .

Solving this integer program directly is NP-hard [64]. Instead, we pursue the approach

taken by Burch et al. [26] for network flow interdiction. We dualize and relax the integrality con-

straint we arrive at max{D(λ) : λ ≥ 0} where D(λ) is defined as

D(λ) := min
y,r

b · y − λ(B − c · r)

AT y + r ≥ 1,

y, r ≥ 0,

(1.2)
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The sets R1 and R2, described earlier, can be found by interpreting its optimal solution.

It turns out that this technique works for a large class of interdiction problems with {0, 1}-

valued objective functions. If we specialize a bit to interdicting maximum independent sets in

matroids, then our results even apply to objective functions with N-valued coefficients and sub-

modular interdiction cost functions. Submodular costs express a “buy in bulk” discount, and arise

naturally in interdiction settings as they reflect cascading failures and collateral damage.

There is more structure left in (1.2) for us to exploit. The two solutions R1 and R2

correspond to adjacent vertices on the polytope {y : AT y + r ≤ 1; y, r ≥ 0}. If the polytope is

well-structured then it can be exploited to improve the guarantee. With this in mind, we apply our

earlier results to the problem of b-stable set interdiction, which is NP-hard. The LP corresponding

to (1.2) in this setting is particularly nice, and we exploit its adjacency structure to develop a PTAS

for b-stable set interdiction.
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Chapter 2

Monotone streaming sums

A stream is the input for computational problem, presented sequentially and in an arbitrary order.

Streams describe computing scenarios where incremental updates arrive at a server or processor and

the complete data are too large for the processor to store. Each update is a small change to a high

dimensional vector f known as the frequency vector. A processor reads the updates one-at-a-time,

without control of their order, and is tasked to compute a function on the frequency vector. For

example, the function might be a norm or other summary statistic. The difficulty comes because

the processor has too little memory to store the entire vector f . Algorithms using sublinear space,

or even logarithmic space, in the length of f are needed.

Interest in streaming has exploded over the past twenty years. Streaming algorithms found

early applications in database monitoring and IP traffic analysis—backbone internet routers see very

high-throughput but have limited memory [84]. Another driver is rapid acquisition of scientific data.

For example, the ATLAS sensor in the Large Hadron Collider at CERN generates about 70 petabytes

of collision information per second [7]. It is impossible to save all of that with current technology,

so some processing must occur on-the-fly without the data ever being stored. Finally, almost all

known streaming algorithms are based on additive data structures that make streaming algorithms
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very easy to implement for distributed computation. That makes streaming algorithms appealing

for processing distributed data sets, including in-situ processing for distributed sensor networks. See

references [8] and [84] for details on these applications and others.

This chapter addresses techniques for developing lower bounds and universal algorithms

for streaming computation that can be applied to a wide range of functions. Specifically we study

functions of the form g(f) :=
∑n
i=1 g(|fi|) where g : N→ R is monotone.1 Precise definitions of the

classes of functions that we study are given in Section 2.1.

The class of functions that we consider encompasses nearly all functions that have been

studied before, including the frequency moments g(x) = xk and the entropy norm g(x) = x log x.

Most previous work is limited to the analysis of a lower bound and algorithm for a specific function

g, whereas these results apply to large classes of functions. We characterize the space necessary to

produce a (1 ± ε)-approximation to g(f) in terms of the accuracy ε, the dimension n, and ‖f‖1,

which is also the stream length in the insertion only model. We are the first to consider the

precise dependence of the space complexity of streaming computations on ‖f‖1. The attention

is warranted, we will show that if g is nonnegative and decreasing then the space complexity for any

function approximating g may depend delicately on the relationship between n and ‖f‖1. Section 2.2

presents more detail about past work and our results.

Here is a rough outline of the rest of this chapter. Sections 2.1 and 2.2 formally define the

problem, explore previous results, and explains our contribution in more detail. Section 2.3 describes

an “archetypal sketch” that transforms the streaming approximation problem into the problem of

randomly sampling the frequency vector. Included is a detailed description of an algorithm that

samples from the (unknown) support of the frequency vector with storage at most O(log n) times

that needed just to store the sample itself.

Next comes additional background on the heavy elements problem in Section 2.4, a further

transformation of the sampling problem to that of finding individual elements, and reductions from

1This overloaded notation with g will persist throughout the chapter.
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communication complexity for streaming lower bounds in Section 2.5.

Our main contributions are presented in Sections 2.6, 2.7, and 2.8. For the case where g

is increasing or decreasing, we parameterize the lower bound reductions in terms of the coordinates

of the frequency vector. This has the effect of giving us a huge collection of lower bounds, one for

each frequency vector. Next, we find the best lower bound by maximizing the bound over the set of

frequency vectors. The result is a storage lower bound that is parameterized by the dimension of f

and its L1 length and the bound is expressed as the solution to a nonlinear optimization problem.

Usually, one would next derive an algorithm, prove an upper bound on the storage that it

requires, and then examine the gap between this value and the lower bound. In our case, the upper

and lower bounds have a closer connection. It turns out that the optimality of the lower bound, the

one we maximized over the set of available frequency vectors, is crucially important to prove the

correctness of our approximation and heavy elements algorithms.

In fact, the algorithm only depends on the value of the lower bound and not on any other

specifics of the function g. The consequence is that the approximation algorithm or heavy elements

algorithm for a function g is also correct for every function in the same class (decreasing functions

or increasing functions) that has the same or smaller space complexity as g. This property is

called universality of the algorithm. Describing the lower bound as the solution to an optimization

problem is the key to precisely understanding the dependence on ‖f‖1 and proving universality of

the algorithm.

2.1 Preliminaries and assumptions

A stream is a sequence S = ((d1, δ1), (d2, δ2), . . . , (dM , δM )), where di ∈ [n] are called the items or

elements in the stream and δi = ±1 is an insertion or deletion of i. The frequency of d ∈ [n] after

k ≤M updates is

f
(k)
d =

∑
{δj |j ≤ k, dj = d},

13
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and the vector f = f(S) = f (M) is commonly referred to as the frequency vector of the stream S.

We use f ∈ Nn to denote |f |, the absolute value of f , with the coordinates reordered in decreasing

order. We call the set supp(f) = {d ∈ [n] : fd 6= 0} is the support of the stream.

This model is commonly known as the turnstile streaming model, as opposed to the

insertion-only model which has δi = 1, for all i. The strict-turnstile model allows deletions, i.e.

δi = −1, but comes with the promise that f (k) ≥ 0, for all k.

Let F = {f ∈ Nn :
∑
fd ≤ m} and let S denote the set of streams S with |f(S)| ∈ F

and at most M updates. The set F is the set of all nonnegative frequency vectors with L1 norm

at most m. Clearly, F is the image under coordinate-wise absolute value of the set of all frequency

vectors with L1 norm at most m. The set S should be taken to consist of all the turnstile streams

unless otherwise stated. We assume n ≤ m.

This chapter addresses the question: Given a function g : N → R, how much storage is

necessary for a streaming algorithm that approximates

g(f) =
n∑
d=1

g(|fd|)

for the frequency vector f of any stream S ∈ S?

A randomized algorithm A is a streaming g-sum (1± ε)-approximation algorithm for S if

P ((1− ε)g(f) ≤ A(S) ≤ (1 + ε)g(f)) ≥ 2

3

holds for every stream S ∈ S. For brevity, we just call such algorithms “approximation algorithms”

when g, ε, and S are clear from the context. We consider the maximum number of bits of storage

used by the algorithm A over streams in S with worst case randomness.

All functions will be assumed to be nonnegative, unless it is explicitly stated otherwise.

As we show in Section 2.6.1, sublinear space streaming sum approximation algorithms necessitate

nonnegativity or nonpositivity, and if g has zeros, then it must be periodic. We will also assume
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that g(0) = 0. We can extend g to a symmetric function with domain Z by defining g(−x) = g(x),

for x > 0, thus
∑
g(fi) =

∑
g(|fi|). We will use this convention to avoid carrying around the | · |

notation. The two main classes of functions that we study are

• “decreasing” functions D, by which we mean nonnegative functions that are 0 at the origin

and nonincreasing on the interval [1,∞) and

• “increasing” functions I, which are 0 at the origin and nondecreasing on the interval [0,∞).

The assumption that g(0) = 0 is a natural one (indeed it is satisfied by virtually all of

the previous work) since otherwise g(f) depends on the specification of the domain. That is, for a

fixed stream S the value of g(f(S)) will differ depending on how we choose n, even as the stream

itself remains unchanged. That may be the desired behavior, but we will not address it here other

than to say that our results do not apply and allowing g(0) 6= 0 makes a big difference, in general.

Although it is restrictive to assume that g is symmetric, it is present in previous work on streaming

sums including the frequency moments, and previous work on entropies assumes the strict turnstile

model [53] or insertion only model [29, 28], which are even more restrictive than our symmetry

assumption. It would be interesting to generalize our results to remove this assumption.

Summary data structures often used in streaming algorithms are called sketches. A sketch

is a compressed, and possibly randomized, representation of the stream. The compression is not

lossless, and sketches are designed with a specific application in mind. All of our algorithms are

derived from sketches of the frequency vector f . In fact, our algorithms are based on linear sketches,

which means that they take the form Af for a (short and fat) matrix A. Two prominent examples

of linear sketches are CountSketch [32], which we discuss later, and the Johnson-Lindenstrauss

transform [63].

Our algorithms assume a priori knowledge of m and n, where m ≥ ‖f‖1 and n ≥ | supp(f)|.

We assume that our algorithm has access to an oracle that computes g on any valid input. In

particular, the final step of our algorithms is to submit a list of inputs (a sketch) for g. We do not
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count the storage required to evaluate g or to store its value. It will sometimes be expedient to assume

g(1) = 1, which is not restrictive because all of our results apply to multiplicative approximations.

2.2 Background and our results

Much of the effort dedicated to understanding streaming computation, so far, has been directed at

the frequency moments Fp =
∑
|fi|p, for 0 < p <∞, as well as F0 and F∞, the number of distinct

elements and the maximum frequency respectively. In the turnstile model, F0 is distinguished from

L0 = | supp(f)|, the number of elements with a nonzero frequency.

The interest in the frequency moments began with the seminal paper of Alon, Matias, and

Szegedy [3]. They present the first storage lower bound for any algorithm that approximates the

frequency moments and a sublinear-space algorithm for approximating any moment. Their lower

bound is Ω(n1−5/p) and it is based on the multiparty disjointness problem, which we describe in

Section 2.5.1. Their algorithm is simple to describe and it achieves O(n1−1/p), bits for p > 2. Given

an insertion only stream of length m, they first choose an update i ∈ [m] uniformly at random

at then count the number of times that item appears in the remainder of the stream. If R is the

count then X = m(Rp − (R − 1)p) is an unbiased estimator of Fp. The final estimate comes by

repeating the previous procedure, averaging to reduce the variance, and then taking a median of

the averages to provide the accuracy guarantee. Alon, Matias, and Szegedy go on to describe a

second algorithm that approximates F2 in O(ε−2 log n) bits. Two papers from Kane, Nelson, and

Woodruff exactly characterize the space necessary to approximate Fp for 0 < p ≤ 2 and p = 0 as

θ(ε−2 log(M)+log log n) [68] and θ(ε−2 +log n) [69], respectively. It turns out that the F2 algorithm

of Alon, Matias, and Szegedy is optimal.

For the case p > 2, the first improvements over the AMS algorithm, due to Coppersmith

and Kumar [37] and Ganguly [46], pushed the storage needed down to Õ(n1−1/(p−1)). Both of those

papers take a similar approach to AMS wherein they define an unbiased estimator for Fp and use a
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median-of-averages to drop the variance and provide the approximation guarantee.

A major shift in the design of streaming algorithms began the following year with the algo-

rithm of Indyk and Woodruff [59] that solves the frequency moments problem with n1−2/p( 1
ε log n)O(1)

bits. Their paper introduced a now popular recursive subsampling technique. The subsampling is

done recursively by randomly discarding elements of [n] at each step. The algorithm finds any so-

called heavy elements in each of the sampled streams and produces its estimate from these heavy

elements. A heavy element is a d ∈ [n] that makes a significant contribution to Fp. Suppose that

the frequency of d contributes at least 0 < α < 1 fraction of the total, i.e. |fd|p ≥ α
∑
i |fi|p. Then

Hölder’s Inequality implies that

f2
d ≥ αp/2

1

n1−2/p

∑
i

f2
i ,

which means that d is also a heavy element for F2, albeit with the smaller heaviness parame-

ter αp/2/n1−2/p. From here, the Indyk and Woodruff employ the CountSketch data structure of

Charikar, Chen, and Farach-Colton [32] to identify the heavy elements in Õ(ε−2n1−2/p) space (this

data structure is discussed in more depth in Section 2.4.1). The overhead for the subsampling is a

multiplicative factor of (1
ε log n)O(1) on top of the storage for the CountSketch, so the total algo-

rithm runs in n1−2/p( 1
ε log n)O(1) bits of storage. The main drawback to the recursive subsampling

approach is that analyzing the algorithms is typically difficult.

Most of the algorithms to come after Indyk and Woodruff’s paper use some variant of the

recursive subsampling technique. Bhuvanagiri, Ganguly, Kesh, and Saha [19] reduced storage to

O(ε−2−4/pn1−2/p log3m) bits and then Braverman and Ostrovsky [24] and Andoni, Krauthgamer,

and Onak[4] further reduced the polylogarithmic factors and dependence on ε. The best algorithms

currently known are those of Ganguly [47], at O(ε−2n1−2/p log n) bits in the turnstile model, and

Braverman, Katzman, Seidell, and Vorsanger [23], at O(n1−2/p) bits in the insertion-only model

with ε = Ω(1).

Improvements to the AMS lower bound for algorithms approximating Fp, when p > 2, pri-
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marily came by improving the communication lower bound on the multi-party disjointness function.

Its complexity was settled for one-way protocols, which implies a bound only on one-pass streaming

streaming algorithms, by Chakrabarti, Khot, and Sun [30] giving a Ω(n1−2/p) bits lower bound for

estimating Fp in the insertion only model. Of course, the lower bound also applies in the turnstile

model because every insertion-only stream is also a turnstile stream. The communication complex-

ity of multi-party disjointness was later settled for unrestricted protocols by Gronemeier [49], which

implies the same bound on multi-pass streaming algorithms. Improvements by Li and Woodruff [77],

using the communication complexity of a different function, and Andoni et al. [5], for linear sketches,

bumped the frequency moments lower bound up to Ω(ε−2n1−2/k log n) for turnstile model algorithms.

Thus the best algorithms known, those of [47] for the turnstile model and Braverman et al. [23] for

the insertion-only model, match the lower bounds up to a constant factor (for some choices of ε).

Indyk and Woodruff’s algorithm is also the main inspiration for our own heavy elements

algorithm when |x|p is replaced by an increasing function g ∈ I. More precisely, given the function

g we derive a lower bound, call its value b, using the multi-party disjointness problem on the storage

necessary for any streaming algorithm that approximates g(f). Next, we show that if g(f1) ≥

ε
∑
i g(fi) then

f
2

1 ≥
1

Õ(b)

∑
i

f2
i ,

which is to say that the largest frequency in the stream is Ω̃(1/b)-heavy for F2 if it is heavy for g,

of course Hölder’s Inequality no longer serves to prove the implication as it did for Fp. Thus, we

can identify the heavy element d in Õ(b) bits of space using a CountSketch. The details are in

Section 2.8.

For a general function g not much is known about the space-complexity. Most research

has focused on specific functions. Chakrabarti, Do Ba, and Muthukrishnan [29] and Chakrabarti,

Cormode, and Muthukrishnan [28] sketch the Shannon Entropy, g(x) = x log x, when m is sufficiently

large compared to n. Both papers use an estimator like the AMS estimator for Fp, p > 2, and
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take a median-of-averages approach. Harvey, Nelson, and Onak [53] approximate three entropies

in polylogarithmic space: the Renyi log(‖f‖αα)/(1 − α), Tsallis (1 − ‖x‖αα)/(α − 1), and Shannon

entropies. They use interpolation theory to derive their estimates from approximations to the pth

frequency moment, 0 < p ≤ 2.

Subsequently, Braverman and Ostrovsky [25] characterized nondecreasing functions that

have polylogarithmic-space approximation algorithms, assuming m = poly(n). This is the largest

class of functions that has been characterized to date, and it represents the most progress on the

general streaming sum problem thus far. They define a set of nondecreasing functions T and they

show that g /∈ T requires super-polylogarithmic space. The proof is again by a reduction from the

multiparty disjointness problem. For functions in T they demonstrate an approximation algorithm

based on the Indyk-Woodruff heavy elements technique.

Given two streams with frequency vectors e, f ∈ Nn such that ‖e‖1 = ‖f‖1, Guha, Indyk,

McGregor [51] study the problem of sketching common information divergences between the streams,

i.e. statistical distances between the probability distributions with p.m.f.s e/‖e‖1 and f/‖f‖1. A

simplified version of their main result applies to “decomposable” distances, which have the form∑
i φ(ei, fi), where φ : N×N→ R≥0 has φ(x, x) = 0, for all x. In particular, they show that if there

exist a, b, c ∈ N such that

φ(a, a+ c)

φ(b, b+ c)
>

1

(1− ε)2
,

then any (1 ± ε)-approximation algorithm for
∑
φ(ei, fi) requires Ω(n) space. In their words [51],

this “suggests that unless φ(ei, fi) is some function of ei − fi then the distance is not sketchable.”

Their proof relies on a reduction from the communication complexity of disjointness. When φ(ei, fi)

is a decreasing function of ei − fi we almost exactly characterize the space complexity and when

it is an increasing function of ei − fi we describe a nearly optimal heavy elements algorithm and

corresponding lower bound.

Another line of research that is relevant to this chapter relates to randomly sampling from
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streams. It turns out that one can approximate g(f) by sampling elements d ∈ [n] with probability

roughly pd = g(fd)/εg(f) and then averaging and scaling appropriately (see the next section for more

details). Our algorithms for nonmonotonic functions in Section 2.6 and for decreasing functions in

Section 2.7 use this scheme. The same sampling problem has been considered before. It was first

formalized by Monemizadeh and Woodruff [83] who then go on to focus on Lp sampling, which

is sampling d proportionally to |fd|p for some p ∈ [0, 2]. In follow-up work, Jowhari, Săglam,

and Tardos offer Lp sampling algorithms with better space complexity [65]. Monemizadeh and

Woodruff’s algorithm uses a recursive subsampling scheme, much like the Fp estimation algorithm

of Indyk and Woodruff. They afford their algorithm small multiplicative and additive error to the

sampling probabilities, and this allows it to operate in polylogarithmic space. For our applications

it is sufficient to bound only one side of the error, in particular we only require that the sampling

probability of d is no less than g(fd)/g(f).

Another development along these lines is the “Precision Sampling” algorithm of Andoni,

Krauthgamer, and Onak [4]. This algorithm has the advantage of being much simpler than most

other Fp estimation algorithms because it avoids the recursive subsampling while still using nearly

optimal space. The random sampling is done by randomly weighting the items in the stream and

then finding heavy elements with a single CountSketch data structure.

There are also lower bounds for sampling algorithms, see especially the Ph.D. thesis of Bar-

Yossef [10], although these algorithms are of a different sort than the ones we have just mentioned,

in that they are only allowed to sample an elements of domain and learn their frequencies—they

cannot, for example, use a CountSketch. Nonetheless, Bar-Yossef [10, p. 108] proves that the

number of samples needed to estimate the frequency moment Fp is θ(n1−1/p) (specifically that is

the complexity to achieve constant relative error with constant probability).

We should point out that although there are many online algorithms that address sampling

an element d ∈ [n] proportionally to a given set of nonnegative weights ad ≥ 0, for d ∈ [n], they may

not carry over easily to the streaming model. The reason is that in order to know the weight of an
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item, in our case ad = g(fd), we need to know its frequency, which is distributed over the stream.

Deletions from the stream pose a further problem.

The problems we address have been open for some time despite on-going interest. Our

results give partial answers to questions posed by Alon, Matias, and Szegedy [3] – which functions

can be sketched effectively?, and Nelson [57] – which families of functions admit universal sketches?

Our goal is optimal universal sketches. We develop lower bounds on approximation al-

gorithms for decreasing and increasing functions, a nearly optimal universal sketch for decreasing

functions, and a universal heavy elements algorithm for increasing functions. In doing so we greatly

expand the class of functions for which nearly optimal approximation or heavy elements algorithms

and lower bounds are known. We parameterize the space complexity by ε, n, and m. As far as we

know, this is the first characterization of a streaming sum space complexity that explicitly includes

dependence on m. Indeed, as we argue at the end of the present section, dependence on m must

be considered for generic streaming sums. Moreover, the space complexity can depend delicately on

m, as it does for some of the functions we consider. In order to develop the algorithms with nearly

matching bounds, we develop a new technique that directly links the upper and lower bounds. In

particular, our main lower bounds are expressed as solutions to nonlinear optimization problems

where the feasible set is a subset of F . The optimality of the solution plays crucially into the cor-

rectness proofs of our algorithms. The values of the lower bounds are needed in order to implement

our algorithms, so we also present efficiently computable constant factor approximation algorithms

to the optimal solutions of the nonlinear problems.

Our main contribution is the classification of the space necessary, up to small factors, for

approximating any decreasing function and of the space necessary for finding heavy elements for any

increasing function. It is the first improvement on the complexity of general streaming frequency

sums since 2010 [25]. Furthermore, each sketch is universal for the functions in its respective class

with the same space complexity, and the sketches are linear. One consequence is that we extend

the work of Guha, Indyk, and McGregor [51] mentioned at the end of the previous section by
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characterizing the space necessary for sketching decomposable distances when φ(ei, fi) is a decreasing

function of ei − fi.

Our storage bounds are parameterized in terms of the dimension n, L1 length m, and

approximation error ε. It is somewhat uncommon within the streaming literature to include depen-

dence on m, but it is important for generic streaming sums. It is obvious that the space complexity

is entirely independent of the value of g(x) for x > m. Of course, those values can affect the space

complexity if the frequency vectors are allowed to have length m′ > m. This effect turns out not

to impact the complexity of the frequency moments, as can be shown by adapting the multiparty

disjointness lower-bound—the algorithms are already independent of the stream length.

It may be possible to apply our methods in order to parameterize according to length other

than L1, for example L∞, or in terms of more general constraints on the set of feasible streams.

The L1 length has a practical advantage that it can be computed exactly for insertion-only and

strict-turnstile streams by a one pass algorithm with at most O(logM) bits of memory, and a

(1± ε)-approximation requires only O(ε−2 logM) bits in the turnstile model [68].

2.3 An archetypal sketch

A random sample of the frequencies immediately comes to mind as a plausible sketch for streaming

frequency sums. One would then compute the mean value of g among the sampled frequencies and

scale the result to get an unbiased estimate to g(f). Lets test this sketch with a thought experiment.

Suppose that we put each element of supp(f) in our sample independently with the same

probability p (Section 2.3.1 describes one way to accomplish this efficiently), so that our sketch is a list

of about p| supp(f)| items and their frequencies. How large must p for g(f) to be well approximated?

Consider g(x) = x2 and two streams S and S′ with frequency vectors f = (1, 1, . . . , 1) ∈ Rn

and f ′ = (
√
n, 1, 1, . . . , 1) ∈ Rn, respectively. One can check with Chebyshev’s Inequality that

p = O(1/ε2n) is sufficient for a (1 ± ε)-approximation to g(f), with constant probability. That
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means a sample of size O(ε−2) thus a total of O(ε−2 logM) bits to store the frequencies that we

sample.

For S′, however, this almost certainly will not work when ε is moderate (say ε = 0.01) and

n is large. The problem is that we really need to know about that
√
n. If we are to have a decent

chance of sampling it then we must have p = Ω(1)—and a quick variance calculation shows that it

cannot be smaller—but that makes for a much larger sketch! If we could find that
√
n by another

method and sample the rest of the frequencies as before, then we would be in business.

Still, the random sample is not far off, and we will see later that it works well for some types

of functions. Let us get started with an “Archetypal Sketch” for generic, nonnegative streaming

sums. Given any nonnegative function g, Proposition 1 loosely describes a sampling model that

yields a sample of size O(ε−2). The important change is to sample each frequency proportionally to

its contribution to the sum. Accomplishing the sampling with a streaming algorithm is a subject

for the rest of the chapter.

Proposition 1. (Archetypal Sketch) Let Xd ∼ Bernoulli(pd) be pairwise independent random vari-

ables with pd ≥ min
{

1, 8g(fd)
ε2g(f)

}
, for all d ∈ [n]. Let Ĝ =

∑n
d=1 p

−1
d Xdg(fd), then

P (|Ĝ− g(f)| ≤ εg(f)) ≥ 7

8
.

Proof. We have EĜ = g(f) and, by pairwise independence,

V ar(Ĝ) ≤
∑
d

p−2
d g(fd)

2V ar(Xd) ≤
∑
d

p−1
d g(fd)

2 =
∑
d

1

8
ε2g(f)g(fd) =

1

8
(εg(f))2.

The result follows by Chebyshev’s inequality.

The main point of Proposition 1 is to reduce the streaming approximation problem to a

streaming sampling problem. As we mentioned in the previous section, Monemizadeh and Woodruff [83]

have already posed the problem of sampling pd ≈ g(fd)/g(f). Although, for our applications it is
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enough that pd ≥ g(fd)/g(f).

By the way, the success probability of Proposition 1 can improved to any 1− δ by taking

independently repeating the computation O(log δ−1) times and taking the median value.

What can we do with the simple random sample sketch discussed above? What follows is a

brief preview of what is to come in Theorem 14 and Corollary 15. Consider a stream with frequency

vector f . We can trivially bound g(f) ≥ | supp(f)|minx∈[m] g(x). Thus, if we let pd, for all d ∈ [n],

be the minimum of 1 and

p =
maxx∈[m] g(x)

ε2| supp(f)|minx∈[m] g(x)
,

then sampling each element with this probability gives a good estimate by Proposition 1. The next

section will describe how to do this without knowing | supp(f)| ahead of time. Recognize that the

sketch is universal for approximating a streaming sum on any nonnegative function g′ with

maxx∈[m] g
′(x)

minx∈[m] g′(x)
≤

maxx∈[m] g(x)

minx∈[m] g(x)
.

Generally, this sketch is far from optimal, but the point here is to get some algorithm that

always works and is sublinear for some choices of g. It does work pretty well for bounded functions

with bounded reciprocals, i.e. when there exists c > 0 such that c−1 ≤ g(x) ≤ c for all x ≥ 1. As we

will see later, it also works when g is periodic with period min{x > 0 : g(x) = 0}.

The next section details data structures that implement the simple random sampling in

the streaming setting with small space.

2.3.1 Sampling with small space

Motivated by the Archetypal Sketch, suppose we want to sample each item’s frequency with prob-

ability approximately s/| supp(f)|. There are two problems to overcome. First, we do not know

| supp(f)|, and thus the sampling probability, ahead of time. Second, the support may be much

larger at some intermediate stage than in the end, and we do not know which are the elements of
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supp(f) ahead of time. How can we accomplish the sampling with only Õ(s) space?

The answer comes in Algorithm 3, it is not a new technique. Let us begin assuming that

we know p = s/| supp(f)| and tackle the second problem, the algorithm will guess p, approximately.

Select pairwise independent Bernoulli(p) random variables Xd, for d ∈ [n], and disregard all elements

with Xd = 0. Because {Xd}d∈[n] are pairwise independent, we only need O(log n) = O(log n) bits

to store them.

Still, the number of elements with Xd = 1 may be too large to store a counter for each, but

we know that at the end of the stream many of their frequencies will be zero. Though, that may

not be true at an intermediate stage in the stream. However, there is a well established technique

used in the CountSketch of Charikar, Chen, and Farach-Colton [32] and the CountMinSketch

of Cormode and Muthukrishnan [38] that does the job. The main ideas are

1. if we add many items to a bin and all but one of their final frequencies are 0, the total frequency

of the bin is the single nonzero frequency, and

2. the identity of a random sample can be stored in small space if the sampling is done with

limited independence.

Algorithm 1 TurnstileSketch data structure for counters.

procedure TurnstileSketch(S ∈ S, s ∈ N, r ∈ N)
Independently sample r pairwise independent collections random variables Xi,d ∈ [s], for

d ∈ [n], and i ∈ [r]
c, c′ ← 0 ∈ Rr×s
for (d, δ) ∈ S do

ci,Xi,d ← ci,Xi,d + δ
c′i,Xi,d ← c′i,Xi,d + dδ

end for
return c, c′, (Xi,d)i∈[r],j∈[n]

end procedure

The sketch is described in Algorithm 1, we label it the TurnstileSketch just to emphasize

that it uses a different choice of parameters than the earlier works. The associated GetCounts,

Algorithm 2, describes extraction of the nonzero frequencies from the data structure. GetCounts
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differs from the extraction method of CountSketch, which uses a priority queue to continuously

maintain a list of the elements, that would work here as well.

Algorithm 2 Extracting the counts from a TurnstileSketch.

procedure GetCounts(S ∈ S, s ∈ N, δ > 0)
r ← d24 log (n/δ)e
c, c′, (Xi,d)i∈[r],d∈[n] ← TurnstileSketch(S, 4s, r)
nd ← #{i : i ∈ [r], ci,Xi,d 6= 0}, for all d ∈ [n]
U ← {c′i,j/ci,j : i ∈ [4s], j ∈ [r]} ∩ Z
if |U | > s then

return ∅
else

Fd ← mode(ci,Xi,d)i∈[r], for d ∈ U
return {(d, Fd) : d ∈ U}

end if
end procedure

Lemma 2. Let S ∈ S be a stream with M updates and | supp(S)| ≤ s. If r ≥ 24 log (n/δ) then

GetCounts(S, s, δ) correctly returns supp(S) with probability at least 1 − δ. The algorithm uses

O(rs logM) bits of space.

Proof. We first show that for every d ∈ [n] the value of mode(ci,xi,d)ri=1 is the frequency of d with

sufficiently large probability. For d with nonzero frequency, it happens for most cells counting d

because it is the only nonzero frequency in the cell. Thus, correctness for the counts also implies

correctness for the labels.

Let f = f(S) denote the true frequency vector of S, let W = {d : fd 6= 0}. By construction,

P (Xi,d = Xi,w) ≤ 1/4s for every d ∈ [n] and w ∈ W with d 6= w. If Xi,d 6= Xi,w, for all w ∈ W

then ci,Xi,d correctly contains fd. This happens with probability at least 3/4, for each i, because

| supp(S)| ≤ s. Finally, Chernoff’s bound implies

P (fd 6= f ′d) ≤ P
(
|{i : ci,Xi,d = fd}| ≤ (1− 1/3) 3r/4

)
≤ exp

{
−(1/3)2(3r/4)

2

}
≤ δ

n
.

Hence, with probability at least (1 − δ) the algorithm correctly determines the frequency of every

element in [n].
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At most O(r log n) = O(r log n) bits are need to store the random variables and O(sr logM)

bits are required to maintain both arrays of counters. At most O(s(logM + log n)) bits are required

for U and F , so the space complexity is O(sr logM).

The update time for the TurnstileSketch data structured build by Algorithm 1 isO(r) =

O(log (n/δ)), assuming random access to the array. Extracting the counts with Algorithm 2 requires

O(sr) operations, but is only performed once.

Algorithm 3 Identically distributed sampling from supp(f).

procedure SimpleSketch(Stream S, s > 0)
`← dlg(n/s)e
for 0 ≤ i ≤ ` do

Sample pairwise independent r.v.s Xi,d ∼ Bernoulli(2−i), for d ∈ [n]
Let S(i) be the substream of S with items {d : Xi,d = 1}
U (i) ← GetCounts(S(i), 96s, 1/48)

end for
L← L̂0(S(i), 1/8, 1/12) (Using the L0 estimator of [69])
i∗ ← max

{
0,
⌈
lg L

18s

⌉}
return U (i∗)

end procedure

Returning to the problem of sampling from the support of the stream, now we can remove

the assumption that | supp(f)| is known ahead of time and present the full sampling algorithm. The

technique we use, including the improvement for insertion only streams, has been used before, for

example by [69] for the distinct elements and L0 estimation problems. The main idea is to run

GetCounts O(log n) times, once for each guess of | supp(f)| = 2, 4, 8, . . . , n, and figure out from

the results which was the correct guess. When the guess is too large the sampling probability is too

small and nearly all of the counters will be 0. On the other hand, if the guess is too small then the

sampling probability is to large and nearly none of the counters will be 0. In between the extremes

is the Goldilocks point where the sampling probability is correct. We know when we have hit it

because there are neither too many nor too few 0s among the counters.

Theorem 3. With probability at least 3/4, Algorithm 3 samples each item in supp(f) with probability

p ≥ s/| supp(f)| and the resulting sample of size O(s). The algorithm can be implemented with
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O(s log(M) log2(n)) bits of space.

Proof. Let

k =

⌊
lg
| supp(S)|

16s

⌋
.

If i∗ ∈ {k − 1, k}, streams S(k−1) and S(k) both have small enough support, and the two out-

puts U (k−1) and U (k) of GetCounts are correct, then the output is correct. We show that the

intersection of these events occurs with probability at least 3/4.

First, with probability at least 11/12 L is (1± 1/8)-approximation to | supp(S)|. A direct

calculations then shows that i∗ ∈ {k − 1, k}.

The following two inequalities arise from the definition of k

64s

| supp(S)|
≥ 2−(k−1) ≥ 2−k ≥ 16s

| supp(S)|
. (2.1)

The first inequality implies that the expected support sizes of S(k−1) and S(k) and their variances

are all at most 64s. Chebyshev’s inequality implies that each of these values exceeds 96s with

probability no larger than 64/322 = 1/16. So long as they don’t, both streams are valid inputs to

GetCounts. The last inequality of (2.1), with Lemma 2, implies that the sampling probability is

correct.

Putting it together, the total probability of failure is no larger than

1

12
+

2

16
+

2

48
≤ 1

4
, (2.2)

where the terms come from the | supp(S)| estimation, the support sizes of substreams k − 1 and k,

and GetCounts.

The space bound for turnstile streams follows from Lemma 2 and ` = O(log n) = O(log n)

by assumption. Approximating the support size of the stream with L̂0 can accomplished with

O(log n log logm) bits using the algorithm of Kane, Nelson, and Woodruff [69].
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Because of deletions in the turnstile model, we need to wait until the end of the stream to

rule out any of the guesses of | supp(f)|. This is not the case in the insertion only model. As soon

as the number of nonzero counters grows too large we can infer that the sampling probability is too

large and discard the sample. It turns out that doing so is enough to cut a logn factor from the space

complexity of the SimpleSketch. A further logn factor can be saved because TurnstileSketch

is not needed in the insertion model.

Corollary 4. SimpleSketch can be implemented with O(s logM + log2 n) bits of storage for

insertion-only streams.

Proof. Define ` independent collections of pairwise independent random variables Yi,d ∼ Bernoulli(1/2),

for d ∈ [n], and choose the random variables in the algorithm to be

Xi,d =
i∏

j=1

Yi,d.

One easily checks that each collection {Xi,d}d∈[n] is pairwise independent and that P (Xi,d = 1) =

2−i, for all i and d. Storing the seeds for the collection Yi,d requires O(log2 n) bits.

We can first save a log n factor by bypassing GetCounts and instead simply storing

counters for each element that appears in each of the ` substreams. The counters should be stored

in a hash table or other data structure with no space overhead and a small look-up time. Let us label

the maximum number of counters to be stored for each substream as t. We choose t = max{96s, `}.

If the set of counters for each substream is discarded as soon as the number of nonzero counters

exceeds the limit of O(t), then the total storage cannot grow to large.

According to Lemma 5, the algorithm uses more than 12t counters with probability at most

1/6`, at any given instant.

For each 0 ≤ i ≤ ` let T (i) be the longest prefix of stream S(i) such that | supp(T (i))| ≤ s

and let k(i) denote the number of updates in T (i). Now, notice that the number of counters stored

locally maximum at each k(i) and increasing for updates between k(i) and k(i+1). Thus, it is sufficient

29



CHAPTER 2. MONOTONE STREAMING SUMS

to bound the storage used by the algorithm at these points.

By a union bound, the probability that the number of counters used by the algorithm

at any point k(1), k(2), . . . , k(`) is more than 12t is at most ` · 1/6` = 1/6. Finally, adapting the

final union bound of (2.2) in the previous proof we have that the probability of error is at most

(1/12) + (1/6) = 1/4.

Lemma 5. Let v ∈ {0, 1}n, define ` independent collections of pairwise independent random vari-

ables Yi,d ∼ Bernoulli(1/2), for s ∈ [n] and i ∈ [`], and set

Xi,d =
i∏

j=1

Yi,d.

For a given s ∈ N, set k = 0 if
∑
d vd ≤ s or k = max{i : vTXi > s} otherwise, where Xi =

(Xi,1, Xi,2, . . . , Xi,n) ∈ {0, 1}n. Then

P (
∑̀
i=k+1

vTXi > 4s) ≤ 1

2s
.

Proof. The sum is clearly monotonically increasing, so without loss of generality assume ` = ∞.

Notice that if k > 0, the sum is unchanged (i.e. it remains the same random variable) upon

replacing v with the coordinate-wise product of v and Xk. Thus we may also assume that k = 0,

i.e. | supp(v)| ≤ s.

For each d ∈ supp(v), let Zd = sup{i : Xi,d = 1}. Notice that {Zd}d∈supp(v) is a pairwise

independent collection of Geometric(1/2) random variables and let Z =
∑
d∈supp(v) Zd. We have

that

Z =
∞∑
i=0

vTXi,

because Xi,d = 0 implies Xj,d = 0 for all j > i.

Pairwise independence implies EZ = V ar(Z) = 2| supp(v)| ≤ 2s, and by Chebyshev’s
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inequality

P (|Z − 2s| > 2s) ≤ V ar(Z)

4s2
≤ 1

2s
.

Lets take stock of what we covered in this section. We began with the Archetypal Sketch,

a rough outline for an approximation algorithm that essentially turned the streaming problem into

a sampling problem. The Archetypal Sketch is “ready made” for universal algorithms because the

sketch itself is just a (random) collection of the frequencies in the stream. Specifically, we do not

apply the function until after reading the entire stream. If we have sampling probabilities pd, for

d ∈ [n] and a class of functions G that each satisfy the hypothesis for Proposition 1 then the sketch

is universal for G—it provides the approximation guarantee for each function in the class.

The simplest choice for sampling probabilities is uniform with pairwise independence. We

have shown how to implement uniform sampling in a streaming algorithm with low overhead on

top of the size of the stored sample. Uniform sampling is typically not optimal, but there are cases

where it works well. Some of these are discussed in Sections 2.6 and 2.7.

The next two sections present more background material. Section 2.4 discusses heavy

elements algorithms, which are the foundation of the recursive subsampling scheme introduced by

Indyk and Woodruff [59]. The idea formalizes a problem we ran into during our though experiment

at the beginning of Section 2.3, namely, find an element that makes up a significant portion of g(f)

(if such an element exists).

Section 2.5 briefly introduces the font of lower bounds known as Communication Com-

plexity. The only new material in this section is the disj+ind function and a lower bound on its

communication complexity.

These disparate seeming parts come together in Sections 2.6 through 2.8. The section begins

with some streaming algorithm space lower bounds by reduction from communication complexity.

The lower bounds describe some aberrant behaviors leading to linear lower bounds. That is followed
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by a general application of SimpleSketch and a specific example: approximating the geometric

mean.

2.4 Heavy elements

A heavy elements algorithm finds the set of items the stream that contribute the most to the value

of g(S). Given a function g and a frequency vector f ∈ Zn we call i ∈ [n] an α-heavy element for g

if

g(fi) ≥ αg(f),

the value fi is a α-heavy frequency. The set Hg(α, f) ⊆ [n] is the set of all α-heavy elements for g

in f , and we simply write H(α, f) when the function g is clear from the context.

Two highly influential algorithms, CountSketch by Charikar, Chen, and Farach-Colton [32]

and CountMinSketch by Cormode and Muthukrishnan [38], popularized the heavy elements prob-

lem. They find heavy elements for g(x) = x2 and g(x) = x, respectively. What is more relevant to

our problem is that first optimal (to within polylogarithmic factors) streaming approximation algo-

rithm for the frequency moments Fp, when p ≥ 3, uses CountSketch to find heavy elements for

Fp. That algorithm is due to Indyk and Woodruff [59]. Subsequently, a similar approach is used by

Braverman and Ostrovsky [25] in order to approximate g(f) for functions owning polylogarithmic-

space approximation algorithms.

Definition 6. A (α, ε)-heavy elements algorithm for g is an algorithm H(S, α, ε, δ) that for any

stream in S returns a set of pairs H = {(ij , wj)}. With probability at least 1− δ the set H satisfies

1. (1− ε)g(fij ) ≤ wj ≤ (1 + ε)g(fij ), for all j, and

2. if i is α-heavy then i = ij , for some j.

The algorithmic approaches of [59] and [25] is along the lines of the Archetypal Sketch.

Let g(x) = xk and recall that the Archetypal Sketch calls for sampling each item d with probability
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pd = min{1, 8g(fd)
ε2g(f)}. To implement the sketch, one must find 8

ε2 -heavy elements with probability 1.

Now, if g(fd) = 2−i ε
2

8 g(f), for i > 0, then the Proposition 1 calls for sampling d with probability

2−i. It turns out that this can be accomplished by randomly sampling a substream where each item

appears with probability roughly 2−i and then finding heavy elements in the substream. Indeed,

this approach is used by Braverman and Ostrovsky [24] for the frequency moments. Their algorithm

finds α-heavy elements, for α = ε2/ log3 n, in recursively subsampled streams. The strategy is to

find all α-heavy elements, then randomly discard half of the elements in the stream and recurse2.

The first application of this method, by Indyk and Woodruff [59], uses recursive subsam-

pling and heavy elements in a slightly different manner. Their algorithm estimates

#{d ∈ [n] : γk ≤ g(fd) ≤ γk−1},

for γ = 1 + θ(ε) and k = 0, 1, 2, . . . , O(log n). The algorithm combines the estimates to approximate

g(f) =
∑
d |fd|k.

The next section describes how CountSketch can be applied to find heavy elements for

F2. When we get to Section 2.8 we will reduce the problem of finding heavy elements for g, when g

is increasing, to that of finding heavy elements for F2 and then use CountSketch as a subroutine,

mirroring the approach of Indyk and Woodruff.

2.4.1 CountSketch for F2 heavy elements

The workhorse for previous streaming algorithms based on heavy elements is CountSketch for

finding heavy elements. We will use it as well, so we quickly describe how to choose the parameters

to get a (α, ε)-heavy elements algorithm for F2.

CountSketch was introduced by Charikar, Chen, and Farach-Colton [32] to solve the

problem FindApproxTop(`, ε). Recall that f ` is the magnitude of the `th largest frequency in f .

The algorithm returns a set Ĥ of ` elements that approximates the set of items with the ` largest

2Of course, this simplified description omits many important details and technical legwork!
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frequencies in the following way: with probability at least 2/3

• {s ∈ [n] : |fs| ≥ (1 + ε)f `} ⊆ Ĥ and

• {s ∈ [n] : |fs| < (1− ε)f `} ∩ Ĥ = ∅.

One can also extract from the sketch an additive ±εf ` approximation to any coordinate of f , and

thus one also gets a (1± ε)-approximation to the frequency of s when |fs| ≥ f `.

The sketch is a r × b array of counters with r = O(log n) and

b = O

max{`, (εf `)−2
∑
j>`

f
2

j}

 .

The absolute value of each counter is bounded by m, so the total space required by the algorithm is

O(br logm).

Let us now show that the sketch can also be used as a (α, ε)-heavy elements algorithm

requiring O(α−1ε−2 log n logm) bits of space. A priori, we do not know how many α-heavy elements

a stream contains, but we can still determine the appropriate value of b. Suppose ` is the number

of α-heavy elements in the stream. Then f
2

` ≥ αF2, hence

1

f
2

`

∑
j>`

f
2

j ≤
1

αF2

∑
j>`

f
2

j ≤
1

α
. (2.3)

It also happens that ` ≤ 1/α, so comparing with the definition of b we get b = O(ε−2α−1). It’s easy

to see that (2.3) can be sharp, so bound for b cannot be improved upon (using the analysis of [32]).

Replacing α with (1− ε)α shifts the CountSketch guarantee so that

• H≥α ⊆ Ĥ and

• H≤(1−ε)2α ∩ Ĥ = ∅.

The sketch also yields a

±

√√√√1

b

n∑
d=`+1

f
2

d
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additive approximation to each frequency.

2.5 Communication Complexity

Reductions from communication problems are a central method for establishing lower bounds on

the space complexity of streaming algorithms. The first such reductions were used by Alon, Matias,

and Szegedy in their seminal paper addressing the frequency moments [3]. Since then, researchers

have discovered optimal and nearly optimal lower bounds on the space complexity of many streaming

problems with reductions from communication problems. The sequence of bounds [11, 30, 49] for the

multi-party disjointness problem is perhaps the most relevant to this chapter, but there are many

others. This section introduces some basic definitions that we will need in order to prove space

complexity lower bounds on streaming algorithms. See the book by Kushilevitz and Nisan [75] for

more background on communication complexity.

A communication problem is formulated as follows. There are t ≥ 2 players that each have

unlimited computational power. The players share a blackboard to communicate. Every player can

read all of the bits written to the blackboard. There is a Boolean function c : X → {0, 1}, where

X = X1 × X2 × · · · × Xt for some sets X1, . . . ,Xt, and player i is given an element xi ∈ Xi but has

no information about the other players’ elements. The players can communicate with each other by

writing bits to a shared blackboard and their goal is to compute c(x1, x2, . . . , xt). The method of

their communication is called a protocol. Formally, a protocol is a rooted binary tree where each leaf

is labelled 0 or 1 and each non-leaf vertex v has two edges to its children labelled 0 and 1 and itself is

labelled with a pair (iv, bv), where iv ∈ [t] is the name of the next player to write to the blackboard

and bv : Xiv → {0, 1} tells the bit that she will write. Each instance x = (x1, x2, . . . , xt) ∈ X

identifies a path from the root to a leaf of the protocol by beginning with the root and recursively

traversing from a vertex with label (iv, bv) to its bv(xiv ) child. We use P(x) to denote the label on

the leaf identified by x. We say that P is a (correct) protocol for c if P(x) = c(x), for all x ∈ X .
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Given such a path v1, v2, . . . , v` starting at the root v1 and ending at a leaf v`, the sequence of bits

bv1(xiv1 ), bv2(xiv2 ), . . . , bv`(xiv` ) is called the transcript of the protocol P on the input x. We denote

it TP(x).

The cost of the protocol P is the height of the tree

|P| := max
x∈X
|TP(x)|,

and the deterministic communication complexity of c is

D(c) := min
P
|P|,

where the minimum is taken over all correct protocols for c.

We need to allow for randomness in the protocols to get lower bounds on randomized

streaming algorithms. In a randomized protocol, each player i is given a random string ri, independent

of the other players’ strings, and each function bv is computed on the players input and random string.

A randomized protocol can be viewed as a probability distribution over deterministic protocols. A

randomized protocol Π is correct for c if for all x ∈ X

PP∼Π(P(x) = c(x)) ≥ 2/3.

The cost of a randomized protocol Π is

|Π| := max
P∈supp(Π)

|P|,

and the randomized communication complexity of c is

R(c) := min
Π
|Π|,
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where the minimum is taken over all correct randomized protocols for c.

Two additional definitions will also be important. The first is a restriction to one-way

protocols. A one-way protocol is one in which each player has only one opportunity to write to

the shared blackboard and the players write in order, player 1 first, then player 2, etc., with player

t last. The one-way communication complexity of c is the minimum cost of a one-way protocol

for c. D1−way(c) and R1−way(c) denote the deterministic and randomized one-way communication

complexities of c, respectively.

The second is a promise problem. Any communication problem can become a promise

problem by selecting a subset L ⊆ X and “promising” that the input is a member of that subset.

The only modification our earlier discussion is a weaker condition for the correctness of protocols.

Specifically, any protocol for a promise problem must be correct for inputs from L, but it can behave

arbitrarily on inputs from X \ L.

Now we describe three functions that are used in storage lower bounds for streaming algo-

rithms.

2.5.1 Functions

indexs

index was one of the first functions used for streaming lower bounds. Alon, Matias, and Szegedy [3]

reduce from index to prove a Ω(n) lower bound on the space complexity of any algorithm that

approximates the maximum frequency in a stream with at most n distinct items. In indexs, there

are two players Alice, who is given a subset A ( [s], and Bob, who is given an index b ∈ [s], or

formally X1 = 2[s], X2 = [s], and indexs(A, b) = 1 if and only if b ∈ A. The one-way randomized

communication complexity of this function is Ω(s), i.e. R1−way(indexs) = θ(s) [75, p. 49].
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disjs,t

The t-party disjointess problem disjs,t was introduced by Alon, Matias, and Szegedy [3] for lower

bounds on the complexity of approximating the frequency moments. The multiparty disjointness

problem disjs,t is a promise problem for t ≥ 2 players. Each player i = 1, 2, . . . , t is given a set

Ai ⊆ [s] such that either

1. Ai ∩Aj = ∅, for all i 6= j, or

2. there is a unique d ∈ [s] such that Ai ∩Aj = {d}, for all i 6= j.

The problem is for final player to determine whether the present instance satisfies 1 or 2. It is known

that R(disjs,t) = Ω(s/t) [30, 49].

disj+inds,t

We introduce the problem disj+ind in order to prove lower bounds on one pass g-sum algorithms

when g is nondecreasing. An instance of the problem appears as an instance of disjs,t+1 with the

additional promise that the set given to the final player, player t + 1, is a singleton. As the name

suggests, the problem has features of disj and index. The idea of adding an extra “index” player

was introduced by Li and Woodruff [77] in their Augmented L∞ Promise Problem for a strengthened

lower bound on the space complexity of approximating the frequency moments.

Theorem 7. R1−way(disj+inds,t) = Ω(s/t log s).

Proof. We give a reduction from disjs,t+1. Let P be any randomized protocol for disj+inds,t.

Run in parallel ` = d96 log se independent copies of P through the first t players. This produces `

transcripts. Player t+ 1 now takes the each of the transcripts and computes the final value of each

once for every element he holds, as if it was the only element he held. No communication is need

for this part because P is a one-way protocol and t+ 1 is the final player.

Player t + 1 then takes the majority vote among the independent copies of P for each

element. If any vote signals an intersection then he reports intersection; otherwise he reports disjoint.
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If every one of the |At+1| ≤ s majorities is correct then the final player’s report is correct.

Let Xi, for i ∈ At+1, be the number among the ` copies of P with the correct outcome when the

final player completes protocol using i ∈ At+1. Then Xi is Binomially distributed from ` trials with

success probability at least 2/3. Using a Chernoff Bound we find

P (Xi ≤ `/2) = P

(
Xi ≤ (1− 1

4
)
2

3
`

)
≤ exp

{
−1

32
µ

}
≤ exp

{
−1

32
· 2

3
`

}
≤ 1

s2
.

Thus, with probability at least 1 − 1
s every majority vote is correct, hence our disjs,t protocol is

correct for s ≥ 3.

Let T1, T2, . . . , T` be the transcripts. The total cost of this disj protocol is
∑`
i=1 |Ti|.

Since disjs,t+1 requires Ω(s/t) bits of communication, at least one of the protocols has length

Ω(s/t`) = Ω(s/t log s), hence |P| = Ω(s/t log s) bits of communication.

Remark 8. The reduction above leaves a gap between the upper and lower bounds for the communi-

cation complexity of disj+ind. Which is correct? If t = 1 then the upper bound is correct, Ω(s/t)

communication is required because this is index.

The rest of this chapter contains the bulk of our results. In the next three sections we

apply the material that we have reviewed up to now to streaming sum problems in three regimes.

Section 2.6 discusses general functions g. It demonstrates a few abberant behaviors and uses the

SimpleSketch to approximate a few types of functions. These approximations are likely not

optimal. We end the section with the example of approximating the geometric mean of the positive

values of |f |.

Sections 2.7 and 2.8 discuss monotone functions. There our algorithms and lower bounds

are nearly optimal; they characterize the complexity in terms of n, ε, and m; and the algorithms are

universal.
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2.6 Arbitrary functions

This section explores two questions. First, what properties of g are necessary in order that g admits

a sublinear space approximation algorithm? We will show that in order for there to be any hope of

finding a sublinear space (1 ± ε)-approximation algorithm for a fixed function g it must be that g

is nonnegative (or nonpositive) and if g has zeros other than at the origin then it must be periodic.

Our results for these cases apply when g is fixed, i.e. it does not depend on n.

The next question is: what can be done to approximate an arbitrary function g that has

the necessary properties? We describe a simple, but generally not optimal, algorithm for (1 ± ε)-

approximations when g is an arbitrary function based on pairwise independent, uniform sampling.

Given access to g, we calculate a sketch size sg such that g(f) can be approximated by

sampling each frequency pairwise independently with probability sg/| supp(f)|, leading to a sketch

of size Õ(sg) bits. Aside from simplicity, a sketch of this form has at least one desirable attribute –

it follows from Proposition 1 that it is universal for all functions g′ with sg′ ≤ sg.

2.6.1 Lower bounds

Intuitively, g(f) ought to be difficult to approximate when small changes in the frequencies can

result in large changes in its value. This is the case when g takes both positive and negative values

because g(f) can be near 0 even when m is large. It is also the case when g(x) = 0, for some x > 0.

The next two theorems establish linear lower bounds on any the storage complexity of these types

of functions. It is important to note that in this section (though, not in Sections 2.7 and 2.8) the

constants in the asymptotic expressions bounding the space complexity can depend on g. Thus,

these theorems do not apply if g varies with the size of the stream.

Theorem 9. If there exist integers x, y ∈ N such that g(x) > 0 > g(y), then for sufficiently small,

though constant, ε the space complexity for a (1±ε)-approximation algorithm is Ω(n). The unspecified

constant and ε depend only on g.
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Proof. Let x, y ∈ N be any integers such that g(x) > 0 > g(y). By Lemma 10 there exists z ∈ N

such that g(x + z) − g(x) 6= g(z) or g(y + z) − g(y) 6= g(z). There is no loss in generality to

assume that g(x + z) − g(x) 6= g(z), because otherwise we can replace g with −g as any (1 ± ε)-

approximation algorithm for g can be used for a (1± ε)-approximation for −g. Let A be a one-pass

(1± ε)-approximation algorithm. We prove that A uses Ω(n) space by reduction from index.

Let

n′ = min

 n− z
x+ y g(x)

−g(y)

,
n

1 + g(x)
−g(y)

 = Ω(n).

Alice receives a set A ( [n′] and Bob receives an index b ∈ [n′]. Let nB = b|A| g(x)
−g(y)c, then

C = |A|g(x) + nBg(y) satisfies 0 ≤ C ≤ −g(y). Alice and Bob jointly create a stream and apply A

to approximate g(f). For each i ∈ Ai, Alice adds (i, 1) to the stream x times. Next, Alice runs A

on the stream and transmits the contents of its memory and the value n2 to Bob. Bob adds (i, 1) to

the stream y times for each of each of i = n′ + 1, n′ + 2, . . . , n′ + nB and adds (b, 1) to the stream z

times and finishes the computation. By our choice of n′, the domain of the stream is [n′+nB ] ⊆ [n]

and its length is x|A|+ ynb + z ≤ n.

There are two possible outcomes: if b /∈ A then

g(f) = |A|g(x) + nBg(y) + g(z) = C + g(z),

and otherwise

g(f) = C − g(x) + g(x+ z).

For sufficiently small ε, the algorithm A will distinguish between these two cases because g(x+ z)−

g(x) 6= g(z). Thus, A inherits the Ω(n′) = Ω(n) lower bound of indexn′ .

Lemma 10. Let g : N → R. If there exist x, y ∈ N such that g(y) < 0 = g(0) < g(x), then there

exists z ∈ N such that g(x+ z) 6= g(x) + g(z) or g(y + z) 6= g(y) + g(z).

Proof. Suppose, for contradiction that g(x + z) = g(x) + g(z) and g(y + z) = g(y) + g(z) for all
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z ∈ N. Then g(xy) = yg(x) > 0 and g(xy) = xg(y) < 0, which is a contradiction.

Remark 11. Strictly speaking, Theorem 9 does not rule out sublinear approximations for the case

g(x) > 0 > g(y), for x > 0 > y in the turnstile model (when g is not symmetric). However, the same

argument works with the result that any such function with a sublinear approximation algorithm in

the turnstile model is linear.

Henceforth we assume g ≥ 0. Of course, if g(x) = 0 for x 6= 0 then g(f) can be still

be 0 for arbitrarily large streams. Theorem 12 shows that such a function must be periodic with

period min{x ∈ N>0 : g(x) = 0} or else any (1± ε)-approximation algorithm requires linear storage.

Lemma 13 contains the main part of the reduction.

Theorem 12. If g(x) = 0 for x > 0, then for sufficiently small ε and (1±ε)-approximation algorithm

requires Ω(n) bits, unless g is periodic with period min{z > 0 : g(z) = 0}. The unspecified constant

and ε depend only on g.

Proof. Let p = min{z ≥ 1|g(z) = 0}. If g is not periodic with period p then there is some x such

that g(x) 6= g(x + p), choose ε < |g(x) − g(x + p)|/(g(x) + g(x + p)). When n ≥ 2(x + p) we have

m ≥ n ≥ x+ pn/2p, so that the hypothesis for Lemma 13 is satisfied with s = n/2p.

Lemma 13. Let g : N→ R, and let Z ⊆ N, Z 6= ∅ be the zeros of g. Let z ∈ Z, x ∈ N, and s ≤ n.

If m ≥ zs+ x and |g(x)− g(x+ z)| > 2ε(g(x) + g(x+ z)), then any (1± ε)-approximation algorithm

requires Ω(s).

Proof. The proof is again by reduction from indexs. Alice adds z copies of each element in her set

A ⊆ [s] to the stream and Bob adds x copies of his index b ∈ [s]. Alice and Bob use the approximation

algorithm to jointly compute Ĝ, a (1 ± ε)-approximation to g(f). The true value is either g(x), if

b /∈ A, or g(x + z), otherwise. If g(x) > g(x + z) then Bob can correctly determine whether b ∈ A

if (1 − ε)g(x) − (1 + ε)g(x + z) > 0, which is true by assumption. The case g(x) < g(x + z) is the

same. Thus, the algorithm inherits an Ω(s) space lower bound from indexs.
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2.6.2 Sketching

Suppose a function g exhibits none of the pathologies described in Section 2.6.1, can we approximate

g(f) with sublinear space? Maybe, the next theorem shows that the space complexity for any positive

function cannot be more than the maximum ratio of its values at two points in the range 1 to m.

Thus, if a function does not vary greatly we can approximate it in sublinear space.

Theorem 14. Let g be a positive function and let

s =
maxx∈[m] g(x)

minx∈[m] g(x)
.

There is a turnstile streaming algorithm that uses O(ε−2s log2 n logM) and outputs a (1 ± ε)-

approximation to g(f) with probability at least 5/8. The algorithm can be implemented in the inser-

tion only model with O(ε−2s logM + log2 n) bits of memory.

Proof. Let f ∈ F be the frequency vector of the stream and let d ∈ [n]. By definition

s

ε2| supp(f)|
≥ g(fd)

ε2g(f)
,

so we can apply Proposition 1 implemented with the SimpleSketch. Along with Theorem 3, a

union bound on the error probability of two implies that the sketch is correct and the result is a

(1± ε)-approximation with probability at least 1− (1/4)− (1/8) = 5/8.

The linear lower bound for functions with zeros, Theorem 12, does not apply to periodic

functions for a good reason – they can be approximated in very small space! Indeed following the

previous theorem, all that needs to be established is a method from sampling from the support of f

mod p, which are the only frequencies that contribute to g(f). SimpleSketch works here as well

provided we perform the updates modulo the period.
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Corollary 15. Bounded positive functions and periodic functions with period min{x ≥ 1 : g(x) = 0}

can be approximated in O(ε−2 log2(n) log(M)) space. The constant depends on the function g.

Proof. Using Theorem 14, it is sufficient to show how to sample from supp(f mod p). This is easily

accomplished with SimpleSketch by performing all arithmetic modulo p.

Corollary 15 generalizes the earlier work of McGregor, Rudra, and Uurtamo [80] and In-

dyk [55]. They describe an algorithm for approximating the number of frequencies not divisible by

p, which is the same as g-sum approximation when g is the indicator set of those frequencies. Their

algorithm uses O(ε−2 log n) bits of space.

2.6.3 Heavy elements

For completeness, we include a heavy elements algorithm for arbitrary functions. It is akin to

SimpleSketch.

Theorem 16. Let g be a positive function and let

s =
maxx∈[m] g(x)

minx∈[m] g(x)
. (2.4)

There is a turnstile ε-heavy elements algorithm for g that uses O(ε−1s log n logM) with probability

at last 2/3. The algorithm can be implemented with O(ε−1s logM + log2 n) bits of memory in

insertion-only model.

Proof. The algorithm is to use GetCounts to store ε−1s frequencies or determine that | supp(S)| >

ε−1s. It is sufficient to prove that any stream S with an ε-heavy element has | supp(S)| ≤ ε−1s. If i

is an ε-heavy element, then

max
x∈[m]

g(x) ≥ g(fi) ≥ εg(f) ≥ ε| supp(f)| min
x∈[m]

g(x).

The bound follows.
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Corollary 17. Let g be a nonnegative function with zeros pZ and let

s ≥ max{g(x) : x ∈ [m] \ pZ}
εmin{g(x) : x ∈ [m] \ pZ}

.

There is a turnstile ε-heavy elements algorithm that uses O(ε−1s log n logM).

2.6.4 The geometric mean

We conclude Section 2.6 with an example. Consider approximating the geometric mean of the

positive absolute frequencies, M0(S) =
∏
|fi|1/L0 . A priori, this does not fall into our framework,

so the approach is to take a logarithm, find a suitably good approximation to that sum, and then

exponentiate. We have lgM0(x) = 1
L0

∑
fi>0 lg fi. We find a sufficiently good approximation X to

lgM0(x) so that eX is a (1± ε)-approximation to M0(x).

The upshot of this section is that it is possible to (1± ε)-approximate M0(S) within poly-

logarithmic space. First, a roadblock and a short detour, lg(1) = 0, so Lemma 12 implies a Ω(n)

lower bound on the space used by any algorithm that outputs a (1± ε)-approximation to lg(f). For-

tunately, we can accept additive error in the approximation to lgM0(S). The strategy is to perturb

the function at x = 1, so that the lower bound no longer applies and then find an approximation to

the perturbed function with a suitably accurate, multiplicative approximation ratio.

Now for the perturbation, we have

lg(x+ δ)− lg(x) ≤ lg(1 + δ) ≤ δ

and lg(1 + δ) > δ/2 for x ≥ 1 and δ ≤ 1. Let δ = Ω̃(1) and let g(x) = log(x+ δ)/ log(1 + δ) = Õ(1).

The function g satisfies the hypotheses of Theorem 14 with s = 2 lg(m)/δ.

We request (1 ± ε′/3)-approximations Ĝ to g(f) and L̂0 to L0, where ε′ = lg(1+ε)
2 lgm and

δ = lg(1+ε)
2(1+ε′) . With these choices for the parameters 2log(1+δ)Ĝ/F̂0 is a (1 ± ε) approximation to
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M0(S). Indeed, we have the following upper and lower bounds on the error.

exp

{
log(2)

1 + ε′/3

(1− ε′/3)L0

∑
i

g(fi) log(1 + δ)

}
≤ 2(1+ε′)δ+(1+ε′) logM0(S)

≤ 2(1+ε′)δ+logM0(S)+ε′ logm

= (1 + ε)M0(S)

and

exp

{
log(2)

(1− ε′/3)

(1 + ε′/3)L0

∑
i

g(fi) log(1 + δ)

}
≥ 2(1−2ε′/3−O((ε′)2)) logM0(S)

≥ 2(logM0(S)−ε′ logm

≥M0(S)
1√

1 + ε

≥ (1− ε)M0(S).

Putting it together, we have the following theorem.

Theorem 18. There is a streaming algorithm that outputs a (1±ε)-approximation to the Geometric

Mean in one pass with O(ε−3 log2 n log4m logM) bits of storage. The algorithm can be implemented

with O(ε−3 log2m logM) bits of storage in the insertion only model.

Proof. From Theorem 14, computing Ĝ can be done in

O(s log2 n logM/δ(ε′)2) = O(ε3 log n2 log3m logM)

bits of storage, which dominates the approximation of L0.

This may not lead to a space optimal approximation, but it does pretty well in terms of

quality-for-effort.
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2.7 Decreasing functions

Now we will tackle decreasing functions. We begin with lower bounds on the space complexities of

approximating g(f). The lower bound is essentially the maximum value | supp(f)| over the vectors

f ∈ F that have a ε-heavy element. By construction this implies that the algorithm that stores each

nonzero frequency exactly is a nearly optimal algorithm for finding ε-heavy elements.

Surprisingly, a pairwise independent sample of the roughly same size suffices as a sketch for

g(f), so the space complexity of approximating g(f) is completely characterized, except for a small

gap. The dependence on F , in particular the relationship of n and m, has a significant impact on

the complexity of the problem, which depends delicately on how m scales with n. To our knowledge,

this type of close dependence of approximation complexity on ‖f‖1 has not been observed before.

2.7.1 Lower bounds

Supposing that g(x) decreases to 0 as x → ∞, a Ω(n) lower bound on the space complexity of

approximating g(f) is always available with a reduction to index. That fact is a consequence of

Theorem 19. However, very long streams may be needed for the reduction. Given only the streams

in S, those with n or fewer distinct items and L1-length m or less, we must weaken the lower bound.

Our strategy is to parameterize the lower bound reduction in terms of the frequencies f . Optimizing

the parameterized bound over f ∈ F gives the best possible bound from this reduction—it leaves

only a small gap to the space complexity of our algorithms. This section primarily establishes the

next theorem, which is our main lower bound theorem for decreasing functions.

Theorem 19. Let g be a decreasing function and let

σ = σ(ε, g,F) = max{| supp(f)| : f ∈ F , g(f) ≤ ε−1g(1)}. (2.5)

Then any p-pass streaming g-sum (1± ε)-approximation algorithm requires Ω(σ/p) bits of space.
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The value σ is essentially the maximum number of distinct items in a stream that contains

a ε-heavy element for g. The idea is to take a frequency vector f ∈ F with g(f) ≤ ε−1g(1) and

create a stream with the frequency vector similar to f . A reduction from disj| supp(f)|,2 then gives

us a Ω(| supp(f)|) lower bound, and (2.5) just chooses the best among those lower bounds.

Lets switch and think about algorithms for a moment, suppose a stream has a frequency

vector f with a ε-heavy element i. Then g(1) ≥ g(fi) ≥ εg(f) which implies, by the definition of σ,

that

| supp(f)| ≤ σ. (2.6)

Of course, we compute g(f) in O(σ logM) bits, slightly worse in the turnstile model, by storing a

counter for each element of supp(f), which is optimal for this instance. Section 2.7.3 gives a uniform

approach for handling all frequency vectors, not just those with ε-heavy elements.

The proof of Theorem 19 is broken up with a two lemmas. The first one is helpful (although

it can be avoided) in the reduction from disjs,2. It will show up again later when we discuss a fast

scheme for computing σ for general functions.

Lemma 20. Let yi ∈ R≥0, for i ∈ [s], and let v : R → R≥0. If
∑
yi ≤ Y and

∑
v(yi) ≤ V , then

there exists i such that s
2yi ≤ Y and s

2v(yi) ≤ V .

Proof. Without loss of generality y1 ≤ y2 ≤ · · · ≤ yσ. Let ij , j ∈ [σ], order the sequence such

that v(yi1) ≤ v(yi2) ≤ · · · ≤ v(yis) and let I = {ij |j ≤ bs/2c + 1}. By the Pigeon Hole

Principle, there exists i ∈ I such that i ≤ bs/2c + 1. Thus s
2yi ≤

∑s
j=bs/2c+1 yij ≤ Y and

s
2v(yi) ≤

∑s
j=bs/2c+1 v(yj) ≤ V .

With Lemma 20 in mind, we could alter the definition of (2.5) to restrict the maximization

to streams that have all frequencies equal and still get the same order lower bound. That does

appreciably affect computing the lower bound (indeed, this is one of the steps in our algorithm to

approximate σ), but it makes reasoning about σ messier. For example, in the discussion above we

can no longer conclude as (2.6) does that | supp(f)| ≤ σ, rather we must again invoke Lemma 20.
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Invoking Lemma 20 to change the definition of σ means that we also have to invoke it when comparing

|f | with σ, which is need for our later proofs. The definition of σ is left as-is to avoid this rigmarole.

Now for the main reduction of this section. We use disj rather than index to get lower

bounds on multiple pass algorithms.

Lemma 21. Let g be decreasing and ε > 0. Suppose that f = (1, y, y, . . . , y, 0, . . . , 0) ∈ F and 1 is an

ε-heavy frequency, then any streaming g-sum (1±ε)-approximation algorithm requires Ω(| supp(f)|/p)

bits of storage.

Proof. Let s = b| supp(f)|/2c and let A be an approximation algorithm. The reduction is from

disj(s, 2) where Alice receives A ⊆ [s] and Bob receives B ⊆ [s] with the promise that |A ∩B| ≤ 1.

For each i ∈ A, Alice puts (i, 1) in the stream once. She then runs A on her portion of the stream

and sends the contents its memory to Bob. For each i /∈ B, Bob adds y copies of (i, 1) to the stream.

Bob runs A on his portion of the stream and sends the memory back to Alice. She recreates her

portion of the stream, advances A, sends the memory to Bob, etc., until each player has acted p

times. In addition to the algorithm’s memory, on each pass Alice sends at most dp−1 lg |A|e binary

digits of |A| so that Bob knows |A| at the end of the protocol.

The stream is a member of S by construction; let f ′ be its frequency vector. At the end,

Bob finishes computing A(f ′). All of the frequencies are y, y + 1, or 1. If

A(f ′) > (1 + ε)[|A|g(y + 1) + (s− |B| − |A|)g(y)],

then Bob declares b ∈ A and otherwise b /∈ A.

The exact value of g(f ′) is either

V1 = g(1) + (|A| − 1)g(y + 1) + (s− |B| − |A|+ 1)g(y),
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if |A ∩B| = 1, or

V0 = |A|g(y + 1) + (s− |B| − |A|)g(y),

if the intersection is empty. Indeed, we find

V1 − V0 ≥ g(1) ≥ ε(g(1) + 2sg(y)) ≥ ε(g(1) + 2V0)

Hence, if A(f ′) is a (1± ε)-approximation to g(f ′), then Bob’s decision is correct. The protocol with

solves disj(s, 2) which requires, in the worst case, Ω(s) bits of communication including O(p−1 lg s)

bits to send |A| and Ω(s) = Ω(| supp(f)|) bits for (2p− 1) transmissions of the memory of A. Thus,

in the worst case, at least one transmission has size Ω(| supp(f)|/p).

Proof of Theorem 19. Let f ∈ F be a maximizer and apply Lemma 20 to the positive elements of

f . From this we find that there exists y such that

ys′ + 1 ≤ ‖f‖1 and g(1) ≥ ε(s′g(y) + g(1)),

for s′ = (σ − 1)/2. Therefore, f ′ = (1, y, y, . . . , y, 0, . . . , 0) ∈ F with bs′c coordinates equal to y.

Applying Lemma 21 to f ′ implies the desired bound.

Immediately from the proof of Theorem 19 we get a lower bound on any (α, ε)-heavy

elements algorithm.

Corollary 22. Let g be a decreasing function. Any p-pass streaming (α, ε)-heavy elements algorithm

for g requires Ω( 1
pσ(α, g,F)) bits of space.

Theorem 24 in Section 2.7.3 shows that the bound in Theorem 19 is tight up to poly-

logarithmic factors. In concert with the algorithm in the next section, this shows that the space

complexity of approximating decreasing functions depends delicately on the length of the stream.

That is in contrast with the situation for Fp, p ≥ 2, where the θ̃(n1−2/p) space complexity is correct
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for all streams with m = poly(n). This is also a better bound than Theorem 14.

First, we describe how the value of σ can be computed approximately with only O(logm)

evaluations of g.

2.7.2 Computing σ(ε, g,F)

The value σ turns out to be approximately the streaming space complexity of g, and it is a parameter

that will be needed for our algorithm. That means we need a way to compute it for an arbitrary

function. One can get by with just evaluating g at O(logm) points, as we will now show.

Because g is decreasing, the maximum of (2.5) will be achieved by a vector f of length m.

Lemma 20 says that we might as well take all of the other frequencies to be equal, so we can find a

near maximizer by enumerating. Specifically, let

s(y) = min

{
m

y
,

(1− ε)g(1)

εg(y)

}

be the maximum bound we can achieve using y as the single frequency. The value of the maximizer

is at most twice max{s(y) : (m/n) ≤ y ≤ m}.

But we do not need to check every y = 1, 2, . . . ,m to get a pretty good maximizer. It

suffices to check only values where y is a power of two. Indeed, suppose that y∗ maximizes s(y) and

let y∗ ≤ y′ ≤ 2y∗. We will show that s(y′) ≥ s(y∗)/2, and since there is a power of two between y∗

and 2y∗ this implies that its s value is at least s(y∗)/2 ≥ σ/4.

Since y∗ is a maximizer we have s(y′) ≤ s(y∗), and because y′ ≥ y∗ and g is decreasing we

have g(y′) ≤ g(y∗). This gives us

(1− ε)g(1)/g(y′) ≥ (1− ε)g(1)/g(y∗) ≥ s(y∗).
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We also have

m

y′
≥ m

2y∗
≥ 1

2
s(y∗).

Combining these two we have s(y′) ≥ s(y∗)/2.

Thus, one can get by with enumerating at most lgm values to compute the bound in

Theorem 19. Take the large of the lgm values tried and quadruple it to get an upper bound on σ.

2.7.3 Approximation and heavy elements

This section presents the approximation algorithm and the proof that it is correct. The algorithm

is random sampling with SimpleSketch. The main theorem is Theorem 24; it gives an upper

bound on the storage complexity of any function that approximates g(f). Because the algorithm is

SimpleSketch, it is universal for all decreasing functions with the same or smaller space complexity.

The gap versus the lower bounds in Theorem 19 is O(ε−1 log2 n logM) in the turnstile model and

O(ε−1 logM) in the insertion only model.

We need one lemma. It gives us some control on σ(ε, g,F) as ε varies. For brevity, we use

σε = σ(ε, g,F) when g and F are clear from the context.

Lemma 23. If α < ε, then ε(1 + σ(ε, g,F)) ≥ ασ(α, g,F).

Proof. Let σε = σ(ε, g,F) and define σα similarly. Let f ∈ F such that σα = | supp(f)| and g(f) ≤

α−1g(1), without loss of generality the coordinates are ordered such that f1 ≥ f2 ≥ · · · ≥ fσα > 0.

Let s′ = α
ε σα, and let f ′ be the vector that takes the first bs′c coordinates from f and is 0 thereafter.

The choice is made so that f ′ ∈ F and

g(f ′) ≤ α

ε
g(f) ≤ ε−1g(1).
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Then, by definition of σε, we have

σε ≥ | supp(f ′)| =
⌊α
ε
σα

⌋
≥ α

ε
σα − 1.

Theorem 24. There is a turnstile streaming algorithm that outputs a (1 ± ε)-approximation to

g(f) with probability at least 5/8 and that uses O(ε−1σ log2(n) log(M)) bits of space. It can be

implemented in the insertion model with O(ε−1σ log(M) + log2 n) bits of space.

Proof. We claim that using the SimpleSketch of Algorithm 3 to sample with probability pro-

portionally to min{1, 8ε−1(σ + 1)/| supp(S)|} gives the desired approximation factor. Indeed, let

f = f(S) and α = g(1)/g(f). If α ≥ ε then | supp(f)| ≤ σα ≤ σε, so the algorithm stores every

nonzero frequency and computes g(f) exactly.

Suppose that α < ε. For all d ∈ [n], we have

g(fd)

g(f)
≤ g(1)

g(f)
≤ α ≤ ε(1 + σε)

σα
≤ ε(1 + σε)

| supp(f)|
,

where the second inequality comes from Lemma 23 and the third from the definition of σα as a

maximum. In particular, this implies that

8ε−1(σ + 1)

| supp(f)|
≥ 8g(fd)

ε2g(f)
,

so the Archetypal Sketch, by Proposition 1, gives the desired approximation ratio. The claim now

follows from the correctness of SimpleSketch proved in Theorem 3, Corollary 4, and a union bound

over their failure probabilities.

This solves the online (1 ± ε)-approximation problem when the stream’s frequency vector

f is promised to obey | supp(f)| ≤ n and ‖f‖1 ≤ m at every update. Theorem 24, in fact, provides
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a stronger guarantee. Namely, the (1± ε)-approximation guarantee holds at any point in the stream

where the promise is kept, even if the promise has been previously broken and restored.

The important consequence of Theorem 19 is that if there is a heavy element in f , then we

know that | supp(f)| ≤ σ. In this case, it is within a logarithmic factor of optimal to store a counter

for each element in supp(f). The only trouble is to do this is to find the values in supp(f) in a

turnstile stream or determine that it is larger than σ. Fortunately, established techniques handle

this problem quite easily.

Theorem 25. There is an ε-heavy hitters algorithm for g that uses O(σ log(n) log(M)) bits of space.

Proof. The algorithm is simply to store a counter for each nonzero frequency, up to σ counters,

using GetCounts, Algorithm 2. If i is an ε-heavy element in f , then g(1) ≥ g(fi) ≥ εg(f) hence

| supp(f)| ≤ σ, by the definition of σ. Thus, the algorithm is correct because it records exactly the

frequency of every element.

2.7.4 Generalized means

We are now in a position to deploy the (nearly) matching upper and lower bounds on an example.

It will nicely illustrate the trade-off between the length of the stream and the space complexity of

the approximation.

The harmonic mean of a sequence of positive real numbers (xi)
n
i=1 is

M−1(x) =
(
n−1

∑
x−1
i

)−1

.

More generally, let

Mp(x) =
(
n−1

∑
xpi

)1/p

,

for p 6= 0, and M0(x) =
∏
x

1/n
i , the geometric mean. Mp is called the pth generalized mean of the

sequence (xi)
n
i=1.
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Now, suppose we have a stream S ∈ S with frequency vector f , how much space is required

in order to approximate the pth generalized mean of the positive values of |f |?

If p > 0, this is the well-studied frequency moments problem. Indeed, using results of [69]

and [3, 59] one can approximate L0 = k and
∑
|fi|p using O(ε−2n1−2/p log(M)) space, for p > 2, or

O(ε−2 log(M)) space, for p ≤ 2.

For p < 0, the problem boils down to approximating g(f) for the decreasing function

g(x) = xp. It is straightforward to turn such an approximation into an approximation for Mp(S).

For this example it is convenient to treat the frequencies and | supp(f)| as a continuously

variable quantity. Doing so will not change the results. The function xp is convex, so for fixed

s = | supp(f)|, g(f) is minimized when all nonzero elements of f are equal. They should also be as

large as possible subject to the constraint that ‖f‖1 ≤ m, hence the frequencies are each m/s.

From the definition, we have

σ = max
{
s ≤ n : s

(m
s

)p
≤ ε−1

}
.

So, quite easily, we arrive at

σ =

(
m−p

ε

)1/(1−p)

or σ = n, if that is smaller. This gives us the following theorem.

Theorem 26. Let p < 0. Any streaming algorithm that determines a (1 ± ε)-approximation to

Mp(f), for f ∈ F , requires Ω(min{n,m−p/(1−p)ε−1/(1−p)}) bits of space. Such an approximation

can be found with O(m−p/(1−p)ε−(2−p)/(1−p) log2 n logM + ε−2 logM) bits in a turnstile stream and

O(m−p/(1−p)ε−(2−p)/(1−p) logM + ε−2) bits in an insertion only stream.

Proof. The lower bound comes from Theorem 19. For the upper bound, apply Theorem 24 with

σ as given above except for ε replaced by ε/3 to get a (1 ± ε/3)-approximation Ĝ to g(f) where

g(x) = xp. Also use an algorithm of Kane, Nelson, and Woodruff [68] for a (1± ε/3)-approximation
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L̂ to | supp(f)|. The desired approximation is L̂/Ĝ.

In particular, for the harmonic mean and polynomialm = nc we have σ = min{n, ε−1/2nc/2},

and it is apparent that the complexity depends delicately on m.

2.8 Increasing functions

Finally, we discuss g ∈ I, the increasing functions. This section presents two lower bounds for p-pass

streaming g-sum approximation algorithms and a 2-pass heavy elements algorithm that matches the

lower bound to within a O(log2 n logM) factor. The algorithm uses CountSketch to identify the

heavy elements on the first pass and then determines their frequencies exactly on the second pass.

The first lower bound is derived by a reduction from disj and applies to all p ≥ 1. The second lower

bound is derived by a reduction from disj+ind and applies only to p = 1 pass, naturally it is a

stronger bound than the first.

The development of the bounds and the 2-pass heavy elements algorithm follows the same

strategy as for decreasing functions. The strategy has three main steps:

1. prove a per-stream lower bound with a reduction from a communication problem,

2. optimize the bound over the set of possible streams, and

3. use the optimality to prove correctness for an algorithm.

This has the effect of expressing the storage lower bound as the solution to a nonlinear optimization

problem, just as with decreasing functions. Fortunately, it is again easy to approximate the optimal

objective function value (i.e. the lower bound) to within a constant factor, and this is enough

information to implement the heavy elements algorithm. Although, as before the algorithm requires

a priori upper bounds on the dimension of f and ‖f‖1.
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2.8.1 Lower bounds

Our lower bounds come are inspired by the first lower bound for the frequency moments as proved

by Alon, Matias, and Szegedy [3]. The p-pass bound is based on a reduction from multiparty

disjointness. For one pass algorithms, the bound may be improved by reducing from disj+ind,

instead. The first lemma in this section presents the parameterized lower reduction. Subsequently,

we state the optimized lower bound.

Lemma 27. Let x > z ≥ y be positive integers and let f = (x, z, y, y . . . , y, 0, 0, 0) ∈ F . Let

s = | supp(f)|, t = x/y, u = max{1, (x − z)/y}, and p ≥ 1. If g(x) − dteg(y) ≥ εg(f), then any

p-pass streaming (1± ε)-approximation algorithm for g(S) requires at least Ω( s
t2p )−dp−1 lg se space.

If g(x)− g(z)−dueg(y) ≥ εg(f), then any 1-pass algorithm requires at least Ω( s
u2 lg s )−dlg se space.

Proof. Let s′ = b(s − 2)/3c. We prove the two bounds, respectively, with reductions from disjs,dte

with blackboard communication and disj+inds,due with one-way communication.

Let A1, A2, . . . , At be the sets given to the players and suppose A is a p-pass (1 ± ε)-

approximation algorithm for g(S). The players jointly create a stream where each player i adds

y copies of j to the stream, for each j ∈ Ai. The players repeat the following p times. In order

1, 2, . . . , dte each player reads the current memory of A from the blackboard, advances the computa-

tion of A on his portion of the stream, and writes the updated memory of A back to the blackboard.

The memory of A is written to the blackboard a total of tp − 1 times at different stages of the

computation. Additionally, every player i announces dp−1 lg se bits of |Ai| to the blackboard on

each pass, so |Ai|, for each i ∈ [t], is known by every player at the end of the computation.

Let S denote the stream created by the players, let a =
∑
i |Ai|, and let Ĝ denote the

approximation to g(S) returned by A. The final player declares declares that there is an intersection

if A(S) > (1 + ε)ag(y). Otherwise, he declares no intersection.

By construction S is a valid input for A. The true value of g(S) is either ag(y), if there is
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no intersection, or

(a− dte)g(y) + g(dtey)

if there is an intersection.

We next show that the final player’s declaration is correct provided that A returns a (1±ε)

to g(S). Indeed

(1− ε)[(a− dte)g(y) + g(ydte)]− (1 + ε)ag(y) ≥ (1− ε)g(x)− dteg(y)− 2εag(y)

≥ ε(s− 2a)g(y)

≥ εsg(y)/3

> 0,

where the second inequality follows from

g(x)− dteg(y) ≥ εg(f) ≥ ε(g(x) + sg(y))

and the third inequality from a ≤ s/3. Thus, the protocol we have described is correct for t-player

disjs′,dte.

By Section 2.5.1, the total number of bits exchanged is Ω(s/t). Each transmission includes

the memory of A and p−1 lg s bits of |Ai| and there are a total of pt− 1 transmissions. Thus on at

least one occasion, transmitting the memory of A requires at least Ω(s/t2p)− dp−1 lg se bits.

The reduction for the one-pass bound from disj+inds′,due. All of the players behave the

same except that the final (i.e. (due + 1)th) player adds z copies of his element in the stream, and

each player i transmits
∑
j≤i |Aj | rather than |Ai|.

The final player declares that there is an intersection if A(S) > (1 + ε)(ag(y) + g(z)).

To show the correctness we must only check that the declaration is correct if A has returned a
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(1± ε)-approximation. Indeed, notice that u ≤ t hence

(1− ε)(g(duey + z) + (a− due)g(y))− (1 + ε)(ag(y) + g(z)) ≥ (1− ε)g(x)− dueg(y)− (1 + ε)g(z)− 2εag(y)

≥ ε(s− 2a)g(y)

≥ εsg(y)/3

> 0,

where the second inequality follows from the assumption that

g(x)− g(z)− dueg(y) ≥ εg(f) = ε(g(x) + g(z) + sg(y)).

By Theorem 7, the total communication is Ω(s/u log s). The communication for this protocol uses

due transmissions and each transmission includes the current memory of A and no more than lg s bits

for
∑
j≤i |Aj |. Thus, A uses Ω(s/u2 log s)− dlg se bits of memory on at least one transmission.

The next lemma provides an alternative to the statement of Lemma 27. In particular,

when ε is not too small we can simplify the heaviness hypothesis on x. Proposition 29 shows that

the assumption on ε results in no loss of generality.

Lemma 28. In the notation of Lemma 27, if ε > 1/
√
s but the weaker inequalities g(x) ≥ εg(f)

and g(x)− g(z) ≥ εg(f) hold, then up to a constant the same lower bounds hold as in Lemma 27.

Proof. If 2dte > εs ≥
√
s then the bound is trivial, so we may take

2due ≤ 2dte ≤ εs.

We replace the vector f by a similar vector f ′ = (x, z, y, y, . . . , y, 0, . . . , 0) that has only bs/2c
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frequencies equal to y. Then

g(x)− dteg(y) ≥ εg(f)− dteg(y)

≥ ε(g(x) + g(z) +
s

2
g(y))

≥ εg(f ′),

and similarly for g(x)− dueg(y). Since | supp(f ′)| ≥ | supp(f)|/3, applying Lemma 27 with f ′ gives

the same order lower bound.

We can also bound the ε dependence directly from existing bounds.

Proposition 29. If g is increasing and ε > 1/
√
n, then any p-pass algorithm that outputs a (1± ε)-

approximation to g(f) requires Ω(ε−2/p) bits of storage.

Proof. The claim follows from Woodruff’s proof [97] for the frequency moments, which is a reduc-

tion from the communication complexity of Gap-Hamming Distance, and Chakrabarti and Regev’s

newer multi-round communication lower bound on the same [31]. Woodruff proved that the space

complexity of approximating the frequency moments, g′(x) = |x|k for any k ≥ 0, is Ω(ε−2) by re-

duction to a Gap-Hamming instance of dimension O(ε−2). The proof uses a stream where the only

frequencies are 0, 1, and 2, so the only relevant values of g′ are g′(0) = 0, g′(1) = 1, and g′(2) = 2k.

We have already assumed that g(0) = 0, and we can further assume that g(1) = 1 by scaling

the function. Suppose that g(2) > g(1) = 1. We choose k = lg g(2) then we have g(x) = g′(x) for

x ∈ {1, 2, 3} and the claim follows directly from Woodruff’s and the newer multi-pass. If g(2) = g(1)

then let x ∈ N be the maximum value such that g(x) = 1 (if no such x exists then the function

is constant equal to 1, the lower bound was proved by Indyk and Woodruff [58]). We can alter

Woodruff’s proof so the frequencies are 0, x, and 2x and the same result holds.

We have completed the first step of the strategy, and we have a per-stream lower bound.

The next step is to optimize the bound over the set of available frequency vectors.
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For each f ∈ F and s ≤ | supp(f)| let t(s, f) = f1/fs. Let

(σ, fσ) ∈ arg max
s,f

{
s

t(s, f)2
: f ∈ F , g(f1) ≥ εg(f)

}
, (2.7)

and denote τ = t(σ, fσ). We note that the set above is always nonempty when n ≥ 2. When the

value of ε may not be clear from the context we write σε and τε. One can assume, without loss

of generality, that fσ has only two distinct frequencies and | supp(fσ)| = σ. As with decreasing

functions, we stick to the broader statement above because it simplifies the correctness proofs to

come.

For one pass algorithms and s ≤ | supp(f)| we define

v(s, f) = max

{
1,
f1 − f2

fs

}
.

Now let

(υ, fυ) ∈ arg max
s,f

{
s

v(s, f)2
: f ∈ F , g(f1)− g(f2) ≥ εg(f)

}

and ϕ = v(σ, fυ). The feasible set in this case could be empty. In that case we set the bound to 1.

Without loss of generality, it can be assumed that fυ has only three distinct frequencies. Theorem 30

describes our main increasing functions lower bound.

Theorem 30. If ε ≥ 1/
√
n then any (1 ± ε)-approximation algorithm for g(f) taking p-passes

requires at least Ω(ε−2 +σ/pτ2)−dp−1 lg σe bits of space. For p = 1, any such an algorithm requires

at least Ω(ε−2 + υ/ϕ2 lg υ)− lg υ bits.

Proof. The ε−2 dependence comes directly from Proposition 29. Let x be the largest frequency in

fσ and let y be the σth largest. Now form the vector f = (x, y, . . . , y, 0, . . . , 0) ∈ F with σ nonzero

elements and apply Lemma 28 to get the p-pass lower bound. The 1-pass bound is established in

the same way from fυ.
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2.8.2 Approximating σ/τ 2 and υ/ϕ2

Our 2-pass heavy elements algorithm requires the value σ/τ2 as a parameter, so we need a way

to compute it or at least approximate it. We can approximate σ/τ2 to within a factor of 16 by

enumerating O(log2m log n) values. It requires evaluating g at only lgm different points. By design,

there is a maximizer of (2.7) from a vector fσ = (x, y, y, . . . , y, 0, . . . , 0) such that σ = | supp(fσ)|.

Thus, there are only three important parameters x, y, and | supp(fσ)|. As was the case with

decreasing functions, we will find near optimal values for all of these parameters by enumerating

powers of 2. First, if x ≥ σy/2 then 2 ≥ σ/τ ≥ σ/τ2, then the bound is trivial and 1 is a sufficiently

good approximation. Henceforth suppose that x < σy/2.

Suppose x ≤ x′ < 2x, y/2 < y′ < y, and σ
4 < s ≤ σ

2 , and let f ′ = (x′, y′, y′, . . . , y′, 0, . . . , 0)

with | supp(f ′)| = s. We will show that knowing f ′ is enough as the bound it generates is within

the claimed factor of 16 from the best bound. Then x′ + sy′ ≤ x+ σy ≤ m, hence f ′ ∈ F , and

(1− ε)g(x′) ≥ (1− ε)g(x) ≥ σy ≥ sy′,

so x is ε-heavy. Therefore σ/τ2 ≥ s/t(s, f ′)2 because it is a maximizer. On the other hand,

t(σ, fσ) =
x

y
≤ x′

y′
= t(s, f ′) ≤ 4

x

y
,

thus s/t(s, f ′)2 ≥ σ/16τ2.

The consequence is that we can choose x′, y′, and s as powers of 2. There are at most lgm

such values for x′ and y′ and lg n for s. Thus we can enumerate all (lg2m)(lg n) possible triples for

these values and check whether each corresponding vector f ′ is a member of F and has g(x′) ≥ εg(f).

Among those that do, we take the largest value of s/t(s, f ′)2. It is no more than 16 times smaller

than the true maximum. This scheme requires evaluating g only blgmc times.

Now we turn to approximating υ/ϕ2 by enumeration. The above observations still apply
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in that we can, without loss of generally, take f = (x, z, y, y, . . . , y, 0, . . . , 0) and 2-approximations

to y, | supp(f)|, and x − z are sufficient. Unfortunately, we are not able to avoid testing many

values of x because the optimal interval [z, x] may be very small. In particular, the optimal interval

[z, x] captures important, but local, information about g. The result is that we can again achieve

a 16-approximation to the optimal bound by testing O(m log2m log n) different frequency vectors.

One vector is evaluated for every combination of x = 1, 2, . . . ,m, (x − z), y = 1, 2, 4, . . . , 2lgm, and

s = 1, 2, 4, . . . , 2lgn.

2.8.3 Heavy elements in two passes

In this section we describe a 2-pass heavy elements algorithm that matches the lower bound given

in the last section, up to polylogarithmic factors. The algorithm uses CountSketch to identify

the heavy elements on the first pass and the computes their frequencies exactly on the second pass.

Here is the idea. Consider the frequency vector f = (x, y, y, . . . , y, 0, 0, . . . , 0) used in the

proof of the lower bound, in particular in Lemma 27. The 2-pass lower bound that we achieve this

frequency vector is roughly | supp(f)|/(x/y)2 ≤ σ/τ2. Just rearranging that inequality yields

x2 ≥ τ2

σ
| supp(f)|y2,

in other words, x is τ2/2σ-heavy for F2! We have already discussed finding heavy elements for F2

with CountSketch, although the analysis this time requires a bit more care than in Section 2.4.1.

Theorem 35 has the details.

The main part of the work is show that (almost) the same heaviness relationship holds for

ε-heavy elements in a general vector f . To do so, we first focus on an individual stream S with a

ε-heavy element. Let f = f(S) be its frequency vector and suppose f has some ε-heavy frequency. In

particular, g(f1) ≥ εg(f) because g is increasing. Our current goal is to prove the following lemma.
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Lemma 31. Let f ∈ F and s ∈ arg maxs′{s′/t(s′, f)2}. Then

s

t(s, f)2
f

2

1 ≥
1

8 lg n

n∑
d=2

f
2

d.

We can assume, without loss of generality, that f = f . In particular, f is nonnegative and

the frequencies are in decreasing order of magnitude.

Lemma 31 is the main advancement that allows us to find heavy elements for g(f) in nearly

optimal space because it reduces the problem of finding heavy elements for g to that of finding heavy

elements for F2, which can be done with CountSketch. Indeed, suppose that f has an ε-heavy

element, then 1 is a heavy element and g(f1) ≥ εg(f). Hence, f is a feasible point in the optimization

problem of (2.7). This means that s/t(s, f)2 ≤ σ/τ2, so Lemma 31 implies that

f2
1 ≥

τ2

8σ log n

n∑
i=2

f2
i .

In other words, the heavy element is Õ( τ
2

σ )-heavy for F2 and so we can use CountSketch to

identify it with Õ(σ/τ2) space, which is optimal, up to polylogarithmic factors, for any algorithm

that identifies ε-heavy elements for g. This is phase three of the strategy presented at the beginning

of Section 2.8—use the optimality of the lower bound (i.e. as the solution to an optimization problem)

to prove correctness. The main expression of the optimality is in Proposition 32.

The proof of the bound in Lemma 31 comes in several stages that are presented next. The

goal is to bound
∑
d f

2
d in terms of sfs = s

t2 f
2
1 . The next proposition is the simplest thing that one

can do, but it is very useful for bounding
∑
d f

2
d in terms of fs.

Proposition 32. For any s′ ∈ N we have

s′f2
s′ ≤ sf2

s . (2.8)
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Proof. Let t′ = f1/fs′ . From the definition of s as a maximizer we have s′/(t′)2 ≤ s/t2 and thus

s′
(
fs′

f1

)2

≤ s
(
fs
f1

)2

.

The purpose of Proposition 32 is to control the other frequencies in terms of fs. First, we

bound the contribution from the frequencies smaller than fs.

Lemma 33. If a > 0 then

∑
i≥s+1

fai ≤


lg(n)sf

max{a,2}
s , a > 0,

1
1−21−a/2 sf

a
s , a > 2.

Proof. If s = | supp(f)| then the sum is 0 and the statements are trivial, so suppose s < | supp(f)|.

According to Proposition 32 we have fs2i ≤ fs2−i/2, for i ≥ 0. Now,

∑
i≥s+1

fai =

lgn∑
i=0

s2i+1∑
j=s2i+1

faj ≤
lgn∑
i=0

s2ifas2i ≤
lgn∑
i=0

s2i(1−a/2)fas .

It follows that for any a > 0

∑
i≥s+1

fai ≤
∑
i≥s+1

f
max{a,2}
i ≤ lg(n)sfmax{a,2}

s ,

and for a > 2 ∑
i≥s+1

fai ≤
sfas

1− 21−a/2 .

Now, we bound the contribution from frequencies smaller than f1 but larger than fs.
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Lemma 34. For a > 0 we have

s∑
i=2

fai ≤ 4sfas ·



2
1−2a−2 , a < 2,

lg t, a ≤ 2,

lg(t)ta−2, a ≥ 2,

2a−2

2a−2−1 t
a−2, a > 2.

Proof. Let Nα = #{j : fs2
α−1 < fj ≤ fs2α}, and notice that Nα ≤ sα where

sα = max{j : fj > fs2
α−1}.

Obviously, fsα > fs2
α−1, so by applying Proposition 32 we find that sα ≤ s2−2α+2.

Let λ = lg f1
fs

= lg t, we have

s∑
j=1

faj ≤
λ∑
i=0

Nλ−i(fs2
λ−i)a

≤
λ∑
i=0

sλ−i(fs2
λ−i)a

≤ 4
λ∑
i=0

sfas 2(λ−i)(a−2).

The four inequalities in the claim follow easily.

Lemma 31 follows easily from these lemmas.

Proof of Lemma 31. Apply Lemmas 33 and 34 to find

2
s

t2
f2

1 = 2sf2
s ≥

1

4 lg n

s∑
i=2

f2
i +

1

lg n

n∑
i=s+1

f2
i ≥

1

4 lg n

n∑
i=2

f2
i .

It may come as a surprise that Lemma 31 does not explicitly include ε. The heaviness
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parameter ε is baked into the definition of s and t. Indeed, as ε decreases the collection of streaming

with an ε-heavy element increases, thus giving a larger feasible set for the optimization problem

defining s and t (as in Equation 2.7).

Finally, we present the main theorem of this section. It describes our 2-pass heavy elements

algorithm.

Theorem 35. There is a two pass (ε, 0)-heavy elements algorithm that uses O(ε−1 logm+ σ
τ2 log2 n logm)

bits of storage.

Proof. The algorithm uses CountSketch on the first pass to identify the set of heavy elements.

On the second pass it records their frequencies exactly.

Let k = dε−1e+32σ log(n)/τ2. On the first pass, construct a CountSketch with accuracy

ε = 1/2, error probability δ = 1/4, and array width b = 256k in order to approximate the top k

elements. Let f be the frequency vector of the stream, let H be the set of k items returned by the

CountSketch, and let ` be the number of ε-heavy elements for g, we claim that H contains all

ε-heavy elements for g. Indeed, with probability at least 1 − δ = 3/4 the CountSketch gives an

additive

γ = 8

√
1

b

∑
d≥k+1

f
2

d ≤
1

4

√√√√ τ2

8σ2 log n

∑
d≥k+1

f
2

d.

approximation to the frequency of every item. Let f̂d, for d ∈ [n], denote the approximate frequency

of d. The CountSketch returns the set of k elements with the highest |f̂ | values.

Suppose that i is an ε-heavy element for g. If |f̂i| − |f̂d| > 0 for every element d with

|fd| ≤ fk+1 ≤ |fi| then i ∈ H. For this, first notice that

|f̂i| − |f̂d| ≥ |fi| − |fd| − 2γ ≥ f ` − fk+1 − 2γ.
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Furthermore, because of the ordering of f we have

fk+1 <

√√√√ 1

k − dε−1e
∑
d>1/ε

f
2

d ≤
1

2

√
τ2

8σ log n

∑
d>`

f
2

d,

where the first inequality follows from an averaging argument over the n− ε−1 smallest frequencies

and the second by recognizing that ` < 1/ε by virtue of the `th frequency being ε-heavy. Hence by

Lemma 31 we have

f ` − fk+1 >
1

2

√
τ2

8σ log n

∑
d>`

f
2

d ≥ 2γ.

Thus i ∈ H and every ε-heavy element is identified. The storage required for this sketch is

O(b log n logm) = O( psτ2 log2 n logm).

On the second pass, the algorithm exactly determines the frequency for each item in H

and then returns the ε−1 items with the largest frequencies. Since g is increasing, this set contains

all of the ε-heavy elements for g. The space required for the second pass is an additional

O(k logm) = O(ε−1 logm+
σ

τ2
log n logm).

Thus the total storage required by the algorithm is O(ε−1 logm+ σ
τ2 log2 n logm).

In order to implement the algorithm described in Theorem 35, one only needs to know

σ/τ2. In fact, it suffices to get an upper bound for σ/τ2. An enumeration-based scheme for that

approximation was described in Section 2.8.2. This observation has an important consequence.

Because of the way that the algorithm depends on the particular function g, only through the value

of the lower bound, it is also correct for any other increasing function g′ with the same or smaller

space complexity. Indeed, it is a universal heavy elements algorithm for the class of increasing

functions with the same or better space complexity.
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2.9 Conclusion

The basic strategy that led us to develop nearly space-optimal algorithms is to use the frequency

vector to parameterize a lower bound reduction, optimize the bound over all of the frequency vectors

in F , and then use the optimality to prove correctness of an approximation or heavy elements

algorithm. We first applied the strategy to decreasing functions, parameterizing the two player disj

reduction. The end result is a simple, universal sketching algorithm with space complexity separated

from the lower bound by a reasonably small gap of O(ε−1 log n logM). We suspect that both the

lower and upper bounds can be improved. To see why, consider L0 in turnstile model, which is the

function g(x) = 1, for x 6= 0, and g(0) = 0. L0 is known to have space complexity θ(ε−2 log n) [68],

whereas the lower bound that we present is only Ω(ε−1) and our upper bound O(ε−2 log n logM).

Neither of our bounds is tight in this case.

As for increasing functions, there is more to do. Using our strategy we present a lower bound

for p pass algorithms, with an improvement when p = 1, and a nearly optimal 2-pass heavy elements

algorithm. It remains to extend the heavy elements algorithm to an approximation algorithm and

to develop 1-pass heavy elements and approximation algorithms. This type of extension has been

developed by several authors working on related problems [59, 24].

Finally, in Section 2.6 we made some easy observations regarding arbitrary functions. How-

ever, finding space-optimal approximation algorithms for such functions is still an open problem. It is

plausible that the strategy we have developed for decreasing and increasing functions—parameterize

a lower bound reduction with the frequency vector and optimize over class of frequency vectors—will

work for arbitrary functions as well, although it is unclear which communication complexity problem

should be the basis of the bound.

69



Chapter 3

Sampling contingency tables

3.1 Introduction

Given integer sequences r = (ri)
m
i=1 and c = (cj)

n
j=1, our task is to sample at random, a binary

matrix A ∈ {0, 1}m×n with
∑
j Aij = ri and

∑
iAij = cj . These matrices are known as binary

contingency tables to statisticians and co-occurrence matrices to ecologists. The sequences r and

c are known as the row and column margins of the matrices. We use Σr,c to denote the set of

binary contingency tables with row margins r and column margins c. With a moment’s thought

one will recognize that the problem is equivalent to randomly sampling simple bipartite graph with

left degrees c and right degrees r. The bi-adjacency matrix of such a graph is a binary contingency

table.

The matrices Σr,c play an important role in the statistical analysis of multivariate categori-

cal data. Often, it is natural to check whether a given matrix M ∈ Σr,c is a significant outlier—with

respect to a well-chosen statistic—compared to a uniform element of Σr,c. This approach was already

used in several settings (see [33] and references therein). The problem is that efficiently computing

the null distribution of that well-chosen statistic, in particular computing a p-value, is impossible at
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present. That is true even for very simple statistics, there is presently no efficient algorithm known

that can compute the marginal distribution of a single entry for any set of row and column margins!

So, for now we are content with Monte-Carlo estimation of p-values. Unfortunately, there

is no fast uniform, or even approximately uniform1, sampling procedure known to sample from Σr,c,

which limits the applicability of this approach, too. Our goal is to create samplers that exploit

properties of the given degree sequences r and c, to obtain efficient sampling procedures for large

and interesting sub-classes of contingency tables.

After some historical overview of the problem, the next sections describe two rejection

samplers with fast proposal algorithms and a dynamic programming algorithm that takes time and

space that is exponential in the maximum column margin. Our second algorithm, the Columns-In-

Expectation sampler of Section 3.5 generates samples from a distribution that may be of independent

interest as a replacement for the uniform model.

The remainder of this chapter describes two new “hybrid” contingency table sampling

algorithms. Each algorithm runs in two phases, first a dynamic programming algorithm is used to

sample part of the table and then a rejection sampler proposes a completion completion of the table.

3.1.1 Three examples

Our initial motivation to study this problem came from a question by Carey Priebe:

How do users interact on online forums?

Observing an internet forum, we can form a matrix A with one row for each user of the

forum and one column for each thread. The value Aut is set to 1 if user u posts to thread t or 0

otherwise.

The data come from an online cancer discussion forums. There are several instances; Figure

3.1 has plots of the row and column margins taken from the interactions on a breast cancer forum.

For this instance, there are m = 1775 users who have posted to one or more of the n = 3015 threads

1There are fast heuristic algorithms, but none offers a provable guarantee.
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Figure 3.1: The degree sequences c and r for the largest forum instance. There are 3015 threads in
a forum with 1775 users.

in the forum. The most active user has posted to maxi ri = 79 threads and the longest thread has

comments from maxj cj = 214 unique users. However, there are only
∑
ri =

∑
cj = 6872 total

thread-user pairs, so the resulting graph is very sparse. In fact, the feature that makes this a difficult

instance is the few high degree vertices. In the approaches that we present we will find that sparsity

and small degrees are helpful features. Although, this instance is still out of reach for our samplers.

The second and third examples come from Jeff Lichtman at Harvard University. Dr. Licht-

man is a biologist studying synaptic connectivity in mice. He has experimentally determined the

connections between neurons and muscles in several mice, and has the hypothesis that the structure

of the connections can be explained within a low-dimensional space. In our setting, we identify

a set X containing m neurons and a set Y containing n muscles. In a typical instance, which is

the connectivity graph in a single mouse, we have m = 6, n = 133, and the degree sequences are

r = (45, 37, 35, 34, 31, 31) and c = (3(7), 2(66), 1(60)), where i(j) represents j copies of the integer i.

In this instance, the graph is relatively dense, but the maximum degree for a vertex in Y is only 3.

In another experiment, Lichtman has identified a group of 1017 axons and a group of 547

dendritic spines and determined that 7651 of the axon-spine pairs are close enough to form a synapse.
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Among those, only 1031 actually do form a synapse. Let T denote the 547 × 1017 binary “touch”

matrix where Tij = 1 if spine i and axon j are close enough to synapse and Tij = 0, otherwise. The

touch matrix has maximum row and column margins of 52 and 10, respectively. Similarly, let S

be the 547 × 1017 binary “synapse” matrix that identifies which pairs do synapse. S has row and

column margins

r = (1(292), 2(135), 3(61), 4(32), 5(12), 6(11), 7(2), 8, 10)

and c = (1(1003), 2(14)), respectively. The goal is to perform a hypothesis test about the matrix S.

As before we will fix the margins, but the matrix T also imposes structure on synapses. Indeed, the

desired distribution in this case is uniform on {A ∈ Σr,c : A ≤ T}.

3.2 Preliminaries

We are given as input vector r ∈ Nm and c ∈ Nn and our task to sample uniformly at random a

binary m× n matrix with row margins r and column margins c. Let Γr,c ⊆ Nn×m be the set of all

nonnegative integer matrices with row margins r and column margins c and let Σr ⊆ {0, 1}m×n and

Γr ∈ Nm×n be the corresponding sets of matrices with row sums r and any column sums.

In light of the third example above, we define the bounded contingency table sampling

problem. In the bounded contingency table sampling problem, we are given a matrix B ∈ Nm×n

of cell bounds in addition to the row and column margins. Let ΓBr,c denote the set of all m × n

nonnegative integral matrices A with row margins r, column margins c, and satisfying A ≤ B

element-wise We define ΓBr analogously. The task now is to sample a matrix uniformly from ΓBr,c.

Clearly, if every entry of B is 1 then Σr,c = ΓBr,c, and otherwise the sets may differ. We assume

without loss of generality that for all i, j the cell bounds satisfy Bij ≤ min{ri, cj}.

First, it is important to understand when ΓBr,c is non-empty. This problem can be solved

efficiently with a network flow computation or a linear program. Here is a network model for the

existence problem. Define a bipartite network with vertices s, t, u1, u2, . . . , um, v1, . . . , vn and edges
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sui for all i, uivj for all i, j, and vjt for all j. The capacity of each edge is given in Table 3.1.

Edge type Capacity
sui ri
uivj Bij
vjt cj

Table 3.1: Edges and capacities to determine whether ΓBr,c = ∅ or not.

The maximum flow in this network is
∑
i ri if and only if ΓBr,c is not empty. An integral

maximum flow always exists because the data are integral. Given an integral maximum flow f with

value
∑
i ri, the matrix A ∈ Nm×n with Aij = f(uivj) is a member of ΓBr,c. With the best available

max-flow algorithm testing feasibility this way requires O(|V ||E|) = O(nm2 + n2m) time [72, 85].

For non-emptiness of Σr,c there is a simpler criterion discovered by Gale [45] and Ryser [90].

Let us reorder the row margins so that r1 ≥ r2 ≥ · · · ≥ rm, and let c∗k = #{j : cj ≥ k} for

k = 1, 2, . . . ,m.

For Σr,c to be nonempty it is obviously necessary that c∗1 ≥ r1. A bit of additional

investigation reveals that it is also necessary that

k∑
j=1

c∗j ≥
k∑
j=1

rj ,

for k = 1, 2, . . . ,m, with equality when k = m. What Gale and Ryser each proved is that these m

inequalities are sufficient as well.

Treating c as a partition of the integer
∑
j cj , for a moment, the vector c∗ is its dual

partition in the sense that the Ferrer’s Diagram of c∗ is the transpose of the Ferrer’s Diagram of

c. When c∗ and r are related in this way one says that c∗ majorizes r. Majorization is a well

studied concept in mathematics and has important ramifications in linear algebra and the theory

of inequalities [79]. The Gale-Ryser criterion can be stated succinctly as: the Ferrer’s dual of the

column margins majorizes the row margins.

If we could calculate |ΓBr,c| for any choice of r, c, and B then we could calculate the necessary
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marginal distributions in order to sample a table one element at a time. However, if B is a square,

binary matrix and r = c = 1 then |ΓBr,c| is equal to the permanent of B, which was famously shown

to be #P-complete2 by Valiant [94]. And the difficulty does not just come from the bounds as Dyer,

Kannan, and Mount have shown that computing |Γr,c| is also #P-complete [42]—even when m = 2.

Perhaps surprisingly, the complexity of counting the matrices in Σr,c is unknown.

Some notation will simplify the exposition. The following will be used throughout this

chapter. Let u, v ∈ Nn be integral vectors of the same dimension n, we write v! =
∏n
i=1 vi!,

uv =
∏n
i=1 u

vi
i , and

(
u
v

)
=
∏n
i=1

(
ui
vi

)
.

3.3 Samplers galore

One might, näıvely, try a rejection algorithm that assigns the outcomes of mn independent Bernoulli

random variables to the entries of the table and accepts the resulting matrix if the margins are correct.

If the Bernoulli random variables are identically distributed then it is obvious that this algorithm

gives perfectly uniform samples. The problem with this approach is, of course, that the potential

samples are drawn from a set of size 2mn, which is typically exponentially larger than |Σr,c|.

There are two typical routes to such an algorithm. The first is to refine the set on which the

rejections take place. The second is to allow the samples to be drawn from a slightly non-uniform

distribution.

All existing methods have serious drawbacks. They generally fall into two categories.

Either the algorithms are too slow to practically sample from even moderately sized instances or

actual sampling distribution is unknown. However, there are important classes of margins for which

satisfactory solutions exist, most notably when the column margins are bounded by a small constant

and when the margins are all equal.

Jerrum and Sinclair [61] were able to reduce the problem of sampling from Σr,c to that of

2This means that if there is a polynomial time algorithm for computing the permanent then there is a polynomial
time algorithm that counts the number of satisfying assignments to a Boolean formula, one consequence of which
would be P=NP.
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sampling a random perfect matching in a bipartite graph. A perfect matching in an n vertex bipartite

graph can be sampled approximately uniformly with a Markov chain that mixes in O(n6) steps [60],

but the reduction involved increases the size of the problem quadratically, which is unappealing in

light of the already slow sampling time. Bezáková, Bhatnagar, and Vigoda [17] describe a Markov

chain that mixes in O(n8) steps (for a n × n matrix), which is faster but still impractical for even

moderate instances like those described earlier.

Diaconis and Gangolli [39] introduced a symmetric Markov chain on ΓBr,c. The transition

rule is to choose a random 2×2 submatrix and attempt a random “swap” on that submatrix. A swap

is either (1) add 1 to each diagonal and subtract one from each off-diagonal or (2) do the reverse,

each with probability 1/2. If the new matrix is a member of ΓBr,c then the swap is completed, or if

not then the chain holds. Diaconis and Gangolli prove that the chain is irreducible over Γr,c and it

is known to be rapidly mixing for Γr,c in many instances [40, 34].

When the bounds are included, the picture is less clear. Unfortunately, the chain is known to

have exponential mixing when B is a general binary matrix [16] (even when the chain is irreducible).

On the other hand, Kannan, Tetali, and Vempala [70] show that it is rapidly mixing for instances

describing regular graphs. The mixing time for B = 1, i.e. when the state space is Σr,c, is an open

problem.

Chen, Diaconis, and Holmes [33] introduced a popular sequential importance sampler that

is available as a package for the R statistical computing environment [1]. The algorithm samples one

column at a time from a simple proposal distribution. Although the algorithm is fast to produce

matrices there is no guarantee on their quality. In fact, the sampling distribution is known to be

highly non-uniform in some instances [18].

Harrison and Miller [52] modify the proposal distribution of the Chen-Diaconis-Holmes

importance sampler. The new proposal sampling algorithm incorporates some dynamic programming

to better approximate the true marginal distribution of the to-be-proposed column. Their algorithm

also runs quickly but provides no guarantee on the sampling distribution.
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Still more algorithms are known for sampling from ΓBr,c, they typically apply to a particular

range of the parameters. In the upcoming sections we discuss two additional samplers from the

literature and some new samplers. Those from the literature are the well-studied Configuration

Model (Section 3.4) and a dynamic programming algorithm (Section 3.6).

3.4 The Configuration Model

We find it simpler to describe this sampler in terms of bipartite graphs (and their bi-adjacency

matrices) rather than contingency tables. The Configuration Model is a probability distribution on

bipartite multigraphs with given degrees, or equivalently on Γr,c. We will soon see that sampling

from the Configuration Model is simple and the time required to generate one sample is linear in

the number of edges. Furthermore, conditionally given that a randomly sampled graph is simple its

distribution is the uniform distribution on Σr,c. This makes the Configuration Model a promising

candidate for a rejection sampling algorithm. The downside is that the acceptance probability is

very small unless the resulting graphs are very sparse. However, sparsity was a feature of our first

example—the one with its margins shown in Figure 3.1. Experimentally, the Configuration Model

rejection sampler does not succeed on this instance, but it does work for another one of the cancer

forum instances.

The Configuration Model was introduced by Bollobás as a theoretical tool for counting

labelled regular graphs [21]. Wormald was the first to suggest it as an algorithmic tool for sampling

graphs [98].

3.4.1 Sampling

Algorithm 4 samples a contingency table from the Configuration Model. It is simple to describe in

terms of bipartite graphs. The vertices will be X = {ui}mi=1 and Y = {vj}nj=1. First, we assign ri

distinct “handles” to each vertex ui ∈ X and cj distinct handles to each vertex vj ∈ Y . Next while
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Algorithm 4 Sample a contingency table from the Configuration Model

procedure ConfigurationModelSampler(r, c)
Aij ← 0, for i ∈ [m] and j ∈ [n]
c′ ← c
for i = 1, 2, . . . ,m do

for ` = 1, 2, . . . , ri do
Sample j ∈ [n] proportionally to c′j
Aij ← Xij + 1
c′j ← c′j − 1

end for
end for
return A

end procedure

any X handle remains, we choose a X handle and then choose a Y handle uniformly at random (and

independently of the other choices), add an edge between the corresponding vertices to the graph,

and remove the handles. The resulting multigraph is a sample from the Configuration Model. One

easily finds that an equivalent description of the model is to choose a random bijection between the

handles of X and Y .

To sample from Σr,c we add a rejection step as well. If the resulting graph is simple then

we accept the sample. Otherwise, we reject and perform another, independent trial. Effectively,

the algorithm just samples a random matching between the X and Y handles and simplifies the

matching to a multigraph. Any other method for doing so will work as well.

It is easy to see that the preceding rejection algorithm always returns a bipartite graph

with the correct degree sequence (presuming that one exists) and that it can generate any such

graph. To prove that the sampling distribution is uniform is not much harder.

Theorem 36. Let X be drawn from the Configuration Model with Algorithm 4. Then X ∈ Γr,c and

for all A ∈ Γr,c we have

P (X = A) =
r!c!

(
∑
i ri)!

∏
ij

1

Aij !
.

In particular, the distribution of X conditionally given that it is binary is the uniform distribution

on Σr,c.
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Proof. Let A ∈ Γr,c and let G be the corresponding bipartite multigraph. We give each edge of G

two labels. First, we label the edges of G as 1, 2, . . . , N =
∑
ri arbitrarily.

Let G be the multigraph returned by choosing a random bijection between the handles

on the left and the handles on the right. The graph G has the same distribution as the output

of Algorithm 4, thus it suffices to prove the theorem for G. On the other hand, we are free to

define the process generating the random bijection. To choose the bijection we repeatedly select one

unmatched handle in each set and match them with an edge, and as we proceed, we label the edges

of G as 1, 2, . . . , N in the order that they are added to G.

The probability that G = G and both of the labellings match is

(
∏m
i=1 ri!)

(∏n
j=1 cj !

)
N !N !

.

The probability that G = G is the sum of the probabilities over all distinct labellings of G. There

are N !
∏
ij

1
Aij !

distinct labellings of G because permuting the labels among the edges joining any

single pair of vertices does not change the labelling. Thus,

P (G = G) =

(
N !∏
ij Aij !

)
r!c!

N !N !
=

r!c!

N !
∏
ij Aij !

, (3.1)

as desired. Notice that (3.1) does not depend on the organization of A, but only on the multiset

of distinct values in A. In particular, the probability is the same for all A ∈ Σr,c and equal to

r!c!/N !.

Unfortunately, this rejection sampler is typically not efficient. For example, the following

theorem shows that just two vertices of relatively high degree is enough to ruin it. This is reason

why it doesn’t work for the breast cancer forum instance in Figure 3.1.

Theorem 37. Consider a sequence of margin pairs (r(N), c(N)) ∈ Nm(N) × Nn(N) with
∑
r

(N)
i =
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∑
c
(N)
j = N . Let d

(N)
r := maxi ri, d

(N)
c := maxj cj. If

λ = λ(N) :=
d

(N)
r d

(N)
c

N
= ω(logN),

then the expected running time of the handle sampling algorithm is super-polynomial in N .

Proof. Let u ∈ X and v ∈ Y be vertices of degree dr and dc, respectively, and let Z be the number

of times the edge {u, v} appears in the candidate graph. We have

P (Z = 0) =
(N − dc)!/(N − dc − dr)!

N !/(N − dr)!
≤
(

1− dc
N

)dr
=

(
1− λ

dr

)dr
≤ e−λ

and

P (Z = 1) =
drdc(N − dc)dr−1

(N)dr
≤ λNP (Z = 0).

Hence,

P (Z ≤ 1) ≤ (1 + λN)e−λ,

which is super-polynomial in N since λ = ω(logN). Of course, the event {Z ≤ 1} contains the event

that the candidate graph is simple, this establishes the super-polynomial expected running time.

A much stronger result has been proved by Blanchet and Stauffer. It includes the following

necessary condition.

Theorem 38 (Blanchet & Stauffer [20]). Let X(N) be a sample from the Configuration Model with

margins r(N) and c(N). If P (X(N) ∈ Σr(N),c(N)) = Ω(1) as N =
∑
ri =

∑
cj →∞ then

∑
i,j

r
(N)
i (r

(N)
i − 1)c

(N)
j (c

(N)
j − 1) = O(N2).
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3.4.2 Sampling proportionally to a weight function

It will be helpful to conceptualize the Configuration Model sampler as an algorithm that iteratively

samples edges proportionally to a changing weight function. The weights to which we refer are the

number of unused handles at each vertex.

Consider organizing Algorithm 4 to sample one entire row at time, each with the correct

marginal distribution conditionally given what has already been fixed. One finds from Theorem 36

that we should sample the first row A1 ∈ Nn with probability proportional to
∏n
j=1

1
A1j !

(cj)A1j .

Then update the column sums as cj ← cj−A1, and repeat with the next row. In general, we sample

the ith row Ai ∈ Nn with probability proportional to

n∏
j=1

1

Aij !

(
cj −

i−1∑
`=1

A`j

)
Aij

The total probability to sample a given matrix A is proportional to

n∏
j=1

cj !∏m
i=1Aij !

.

In fact, we have just proved a slightly stronger statement of Theorem 36. Given any

multiset V of mn integers let Γr,c|V ⊆ Γr,c be the set of contingency tables that have as entries the

values V . The Configuration Model is uniform over Γr,c|V , as long as the latter is nonempty.

3.5 The Columns-In-Expectation Sampler

This section presents a new cell-bounded contingency table sampling algorithm that produces ran-

dom tables obeying the bounds and with the correct row sums, but the tables only match the column

sums in expectation. It comes in two parts. The first component, algorithmically, computes a set

of weights w ∈ Rn>0. The weights are used in a row-by-row procedure that samples each row inde-
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pendently and are chosen so that the sampler gives the correct column sums in expectation. The

second component is the sampling procedure that samples from matrices from ΓBr with independent

rows. This is the only one of the samplers presented in this chapter that incorporates cell bounds.

It is always efficient at sampling binary tables, but tables typically do not have the correct column

margins.

Let w ∈ Rn+ be a set of positive weights and let B ∈ Nm×n. We will sample a matrix

A ∈ ΓBr proportionally to

w(A) :=
n∏
j=1

w
∑
i Aij

j ,

for a well chosen set of weights. We denote the corresponding probability distribution on Nm×n as

CiE(w).

The next section describes the sampling procedure and Section 3.5.2 describes the initial-

ization of the weights.

3.5.1 Sampling

The sampling is accomplished one row at at time, so it suffices to begin with the case m = 1. Given

a, b ∈ Nn let w(a) =
∏n
i=1 w

ai
i we have

Γbr = {a ∈ Nn : ‖a‖1 = r and a ≤ b}.

Given 1 ≤ r ≤ n− 1 our goal is to sample a vector a ∈ Γbr proportionally to w(a). This problem is

easily solved with a dynamic program.

We define a table T ∈ R(r+1)×(n+1) where

Ti,j =
∑{

w(a) : a ∈ Nj , ‖a‖1 = i, ak ≤ bk for k ≤ j
}
, (3.2)
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for i = 0, 1, . . . , r and j = 0, 1, . . . , n. In particular T0,0 = 1 and

Tr,n =
∑
a∈Γbr

w(a).

For convenience, we define Ti,j = 0 when i or j is negative.

Once T is known, the sampling can be accomplished with Algorithm 5.

Algorithm 5 Sample one row of a matrix subject proportional to a set of weights

procedure SampleRow(T , r)

Select U1, U2, . . . , Un
iid∼Uniform(0, 1)

i← r
for j = n, n− 1, . . . , 1 do

Xj ← min{` : UjTi,j ≤
∑`
k=0 w

kTi−k,j−1}
i← i−Xj

end for
return X

end procedure

It remains to show how the table can be computed efficiently and to prove that the sampling

distribution is the desired one. First, initialize T0,0 = 1 and Ti,0 = 0, for 1 ≤ i ≤ r. Every integral

vector a of length j and ‖a‖1 = i can be broken into its last coordinate aj ∈ {0, 1, . . . , bj} and a

length j − 1 vector that sums to i− aj . This yields the recursion

Ti,j =

bj∑
k=0

wkj Ti−k,j−1, (3.3)

for 1 ≤ j ≤ n and 0 ≤ i ≤ r. The time required to compute the table with the recursion (3.3) is

O(r
∑
bi).

The next proposition shows that the sampling distribution is correct for one row.

Proposition 39. Let a ∈ Γbr and let X be the random vector returned by Algorithm 5. We have

P (X = a) =
w(a)∑

a′∈Γbr
w(a′)

.
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Proof. Let si =
∑n
j=i ai. A quick application of Equation (3.3) yields

P (X = a) =
wann Tr−sn,n−1

Tr,n
·
w
an−1

n−1 Tr−sn−1,n−2

Tr−sn,n−1
· · · w

a1
1 T0,0

Tr−s2,2
=
w(a)

Tr,n

Now for a matrix with more than one row. Given bounds B ∈ Nm×n = (b1, b2, . . . , bm),

we can sample a table with row sums r1, r2, . . . , rm as follows. First, initialize by computing a table

T (i) for each row i of the final matrix. Second, sample each row independently using Algorithm 5.

Notice that if the bounds matrix B has all identical rows, then one only needs to compute the table

T for the maximum row margin. Then the table for any other row i is simply the rows zero through

ri of T .

Algorithm 5 guarantees that row i has margin ri for every 1 ≤ i ≤ m. However, the column

sums are random.

Given an m× n matrix A and weights w ∈ Rn+ let w(A) =
∏
i,j w

Ai,j
j . If c is the vector of

column margins of A then w(A) = w(c).

Theorem 40. Let a matrix X be chosen randomly by sampling each row independently with Algo-

rithm 5 and let A ∈ ΓBr . Then

P (X = A) =
w(A)∑
y∈ΓBr

w(y)
.

In particular, the distribution of X conditionally given that its column sums are c ∈ Nn is uniform

on ΓBr,c.

Proof. Let c be the column sums of A and let A1, A2, . . . , Am be the rows of A. According to

Proposition 39,

P (X = A) =
m∏
i=1

w(Ai)

T
(i)
ri,n

=
w(c)∏
i T

(i)
ri,n

,

which proves both claims.
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3.5.2 Existence and uniqueness of the weights and initialization

The goal of this section is to give necessary and sufficient conditions on r, c, and B such that there

exists unique weights w ∈ Rn>0 so that a matrix drawn from CiE(w) has column margins c in

expectation.

A necessary condition and some assumptions

We begin with some assumptions on r, c, and B. We will assume that ΓBr,c 6= ∅, i.e. there is some

nonnegative integral matrix satisfying the bounds with the correct row and column margins. Next,

without loss of generality, we may assume that r, c > 0, ri <
∑
j Bij , for all i ∈ [m], and cj <

∑
iBij ,

for all i ∈ [n]. Otherwise we may reduce the size of instance by removing the (fixed) row or column.

Given the cell bounds B we define a graph GB as follows. The vertices of GB are the

column indices [n] and there is an edge j ∼ k if and only if there exists a row i so that Bij > 0

and Bik > 0. Thus, we could rearrange B to be block diagonal so that each block corresponds to a

component of GB . Clearly, the problem of finding weights to satisfy the expectation criterion can

be solved independently on each connected component of GB . Henceforth, we assume that GB has

only one component.

Theorem 41. Assume that ri <
∑
j Bij, for all i ∈ [m], and that GB has a single component. Let

w be a set of positive weights and let C1, C2, . . . , Cn be the (random) column sums of a matrix drawn

from CiE(w). If ECj = cj, for all j ∈ [n], then we have

∑
j∈S

cj <
n∑
i=1

min{ri,
∑
j∈S

Bij}, for every ∅ 6= S ( [n]. (3.4)

Proof. Fix a set S ⊆ [n] and notice that

max
A∈ΓBr

n∑
i=1

∑
j∈S

Aij =
n∑
i=1

min{ri,
∑
j∈S

Bij},
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where “≤” holds for every A ∈ ΓBr and “≥” holds by making a greedy allocation in to columns of

S in each row of A. Recall that the support of CiE(w) is all of ΓBr . Thus, in order to demonstrate

(3.4) is suffices to prove the existence of a matrix A∗ with

n∑
i=1

∑
j∈S

A∗ij ≤ max
A∈ΓBr

n∑
i=1

∑
j∈S

Aij .

Let A be a maximizer of the right side above. We will find i ∈ [m], j ∈ S, and j′ ∈ [n] \ S

that allow us to transform A by moving one unit from the ij entry to the ij′ entry and still satisfy

the bounds everywhere. The connectedness of GB implies that there a row i such that R = {j ∈ [n] :

Bij > 0} has nonempty intersection with S and with [n]\S. Let j ∈ R∩S be a column with Aij ≥ 1.

At least one such column exists because ri,
∑
j∈S Bij > 0. Let j′ ∈ R ∩ ([n] \ S) be a column with

Aij′ < Bij′ . Such a column exists, for if min{ri,
∑
j∈S Bij} = ri then any element of R ∩ ([n] \ S)

will do, and if the bounds are the minimizer then ri <
∑n
j=1Bij implies its existence. The new

matrix A∗ is a copy of A, except the following two entries: A∗ij = Aij − 1 and A∗ij′ = Aij′ + 1. By

construction A∗ ∈ ΓBr , which completes the proof.

Before we proceed with the weights, let us handle the case

∑
j∈S

cj =
∑
i

min{ri,
∑
j∈S

Bij}, for some ∅ 6= S ( [n]. (3.5)

Our assumption that ΓBr,c 6= ∅ implies that (3.4) holds with the “less than” replaced by a “less than

or equal to”, so we do not need to worry about “greater than”. It turns out that we can test whether

(3.5) holds, and if it does then the problem can be reduced.

If (3.5) holds then for every row i

∑
j∈S

Aij = min{ri,
∑
j∈S

Bij}, for all A ∈ ΓBr,c.

Furthermore, for some row i∗ it must be that min{ri∗ ,
∑
j∈S Bi∗j} =

∑
j∈S Bi∗j , otherwise

∑
i ri =
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∑
j∈S cj which implies that cj = 0, for all j /∈ S. Obviously, columns with zero margins can be

removed. Since the sum is a minimizer, it means that problem becomes infeasible if any of the

bounds Bi∗j , j ∈ S, is reduced. This least to a simple algorithm for testing whether the necessary

condition holds. We just one-at-a-time reduce each nonzero bound by 1 unit and test feasibility with

the flow problem described in Section 3.2. If we ever find the problem infeasible then we reduce the

corresponding row and column margins by Bij and set Bij to 0. The updated problem is equivalent

to the original one, and making such an update at one location in the table does not affect the

others. Thus, it suffices to check the feasibility once for each pair i, j with Bij > 0. This can be

done in O(n2m3 + n3m2) with the best available max-flow algorithm. Henceforth, we assume that

(3.4) holds, which also implies that GB is connected.

The right weights

The marginal probability that the entry in row i and column j of a random matrix generated with

the procedure above is equal to k is

pijk =

 ∑
a∈Γ

Bi
ri

aj=k

w(a)


/ ∑

a∈Γ
Bi
ri

w(a)

 ,

for 0 ≤ k ≤ Bi,j , where Bi denotes the ith row of B. Thus, the expected column margins of such

a random matrix A are E
∑
iAi,j =

∑
i,k kpijk and can be computed efficiently with a recursion

similar to (3.3).

Our goal is to choose the weights so that
∑
i,k kpijk = cj , for all 1 ≤ j ≤ n. This is a

nonlinear root finding problem and under some mild assumptions it turns out that there exists a

unique positive set of weights that gives the desired columns margins in expectation.

Clearly, scaling all of the weights equally does not change the distribution. So we can pick

a particular column and assume without loss of generality that the weight for that column is 1.

Next we will assume that cj <
∑
iBij , for all j. This is also without loss of generality. Indeed, if
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cj >
∑
iBij then there is no distribution on matrices cell-bounded by B that has jth column mean

cj (in particular ΓBr,c = ∅). If cj =
∑
iBij then the problem can be reduced by one column since the

jth column of any matrix with entries bounded by B must be the same jth column as B. Similarly,

we will assume that for every pair i ∈ [m] and j ∈ [n] there exists A ∈ ΓBr with Aij = 0, which is

equivalent to
∑
j Bij − ri ≥ maxj Bij , for all i ∈ [m]. If this does not hold then we can reduce the

instance by subtracting minA∈ΓBr
Aij from ri, cj , and Bij , and then proceeding with the reduced

instance only to add the value back to the final matrix.

We prove existence by describing a convergent sequence of weights where the correspond-

ing column expectations converge to c, which is sufficient because the column expectations are a

continuous function of the weights. Truncating the sequence once the column expectations are close

to the desired values yields an Algorithm 6, which is one way to approximately compute the weights

in practice. A root-finding algorithm, like Newton’s Method, could be used as well.

The existence and uniqueness of the desired weights is proved in Theorem 46. We need

several lemmas for the proof.

Algorithm 6 Compute sampling weights for the Columns-In-Expectation sampler.

procedure SetWeights(r,c,ε)
w ← 1
while There exists j such that |EwCj − cj | > ε do

Select j ∈ arg max{cj − EwCj}
Increase wj until EwCj = cj

end while
return w

end procedure

Lemma 42. Suppose that EwCj < cj <
∑
iBij. Then there exists α ∈ (wj ,∞) such that Ew′Cj =

cj, where w′ is the weight vector that has wj replaced by α.

Proof. Let A ∼ CiE(w′). It is sufficient to show that limα→∞ Pw′(Aij = Bij) = 1, for all 1 ≤ i ≤ m,

since this implies that Ew′Cj →
∑
iBij > cj , which implies the claim because Ew′Cj is a continuous

function of α. Indeed, the convergence is trivial if Bij = 0, so suppose Bij > 0. By assumption

88



CHAPTER 3. SAMPLING CONTINGENCY TABLES

Bij ≤ ri, hence there exists a ∈ ΓBiri with aj = Bij . It follows from direct computation that

P (Aij = Bij) =

 ∑
a∈Γ

Bi
ri

aj=Bij

αBij
∏
i6=j

waii


/ ∑

a∈Γ
Bi
ri

aj=Bij

αBij
∏
i6=j

waii +
∑
a∈Γ

Bi
ri

aj<Bij

αaj
∏
i6=j

waii

→ 1, (3.6)

as α→∞.

Lemma 43. Let Ak = {j ∈ [n] : EwCj ≤ cj} be the set of indices with lower than desired expected

margins after k iterations of Algorithm 6. The sequence of sets Ak is nondecreasing.

Proof. Let j ∈ Ak−1. If j is selected for increase in step j, then trivially j ∈ Ak. Suppose that the

column i 6= j is selected for increase. A short calculation shows that

∂

∂wi
EwCj = ECj

Ci
wi
− ECjE

Ci
wi

=
1

wi
Cov(Cj , Ci) ≤ 0,

hence j ∈ Ak.

Lemma 44. Let w be a set of nonnegative weights and EwCj < cj, for some j. Let u be the

corresponding weights where the jth coordinate has been increased so that EuCj = cj, but the other

coordinates are unchanged. Then

uj ≥ wj
(

2− EwCj
cj

)1/N

,

where N = maxj
∑
iBij.
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Proof. We calculate

cj − EwCj = EuCj − EwCj

=

∑
a aju

aj
j

∏
i6=j w

ai
i∑

a u
aj
j

∏
i6=j w

ai
i

−
∑
a ajw

aj
j

∏
i6=j w

ai
i∑

a w
aj
j

∏
i6=j w

ai
i

≤
∑
a aj(u

aj
j − w

aj
j )
∏
i6=j w

ai
i∑

a w
aj
j

∏
i6=j w

ai
i

=
∑
a

[(
uj
wj

)aj
− 1

]
aj

w(a)∑
a′ w(a′)

≤

[(
uj
wj

)N
− 1

]∑
a

aj
w(a)∑
a′ w(a′)

≤ cj

[(
uj
wj

)N
− 1

]
,

where the first two inequalities follow because uj ≥ wj . The lemma follows by rearranging.

Lemma 45. Suppose that (3.4) holds. Let w,w′ > 0 be weight vectors such that there exists a

nonempty set S ( [n] for which wj > w′j, for all j ∈ S, and wj = w′j, for all j /∈ S. Then

EwCS > Ew′CS.

Proof. Let A be a randomly sampled matrix and denote by AiS the sum of the S entries in the

ith row. If P (AiS = min{ri,
∑
j∈S Bij}) < 1 and there exist j ∈ S and j′ /∈ S such that Bij > 0

and Bij′ > 0 then direct calculation shows EwAiS > Ew′AiS ; if there are no such j and j′ then

EwAiS = Ew′AiS . Hence EwAiS ≥ Ew′AiS . The inequality is strict for at least one row i because

of the assumption (3.4). Finally, the lemma follows by noting CS =
∑
iAiS .

Theorem 46. Suppose that (3.4) holds. There exists a unique set of weights w ≥ 1 such with at

least one weight equal to 1 and EwCj = cj for all j.

Proof. For existence, consider Algorithm 6, but remove the termination criterion.

Recall Ak = {j ∈ [n] : Ew(k)Cj ≤ cj}, where w(k) is the set of weights held by the algorithm

at the start of the kth iteration. If Ak = [n], for some k, then Ew(k)Cj = cj , for all j ∈ [n], because∑
j Cj =

∑
j cj . Thus, a set of weights providing the desired expectations exists.
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Now suppose that Ak ( [n], for every iteration k. We will first prove that the weights

w(k) are bounded above. By Lemma 43 there exists a column j∗ such that cj∗ < Ew(k)Cj∗ , for

every iteration k, hence w
(k)
j∗ = 1 always. Suppose for contradiction that some subset S ⊆ [n] of the

columns have unbounded weights. Because wj∗ stays at 1 we know S 6= [n]. A calculation like (3.6)

now shows that

P

∑
j∈S

Cj =
∑
i

min{ri,
∑
j∈S

Bij}

→ 1.

On the other hand, Lemma 43 implies that S ⊆ Ak for all sufficiently large k. In particular, by (3.4)

∑
j∈S

Cj ≤
∑
j∈S

cj <
∑
i

min{ri,
∑
j∈S

Bij},

a contradiction. Thus, the sequence of weights is bounded.

Next we show that for any ε > 0, there is kε such that |cj − Ew(k)Cj | ≤ ε for all k ≥ kε.

Let k such that |cj − Ew(k)Cj | > ε. Because
∑
j Cj =

∑
j cj and there are only n columns, it must

be that cj − Ew(k)Cj ≥ ε/n for some j and any maximizer of that expression, in particular. Let j

be the column that the algorithm chooses for a weight increase. Lemma 44 implies that

w
(k+1)
j ≥ w(k)

j

(
2− Ew(k)Cj

cj

)1/N

≥ w(k)
j

(
1 +

ε

n

)1/N

.

Thus, w
(k+1)
j ≥ w(k)

j (1 + ε′) for some ε′ > 0 that depends only on ε. Since the weights are bounded,

this increase can only happen a finite number of times, and for all iterations k′ thereafter maxj |cj −

E
w

(k′)
j

Cj | < ε. This completes the proof of existence.

Now for uniqueness. Suppose, for contradiction, that there are two weights w 6= w′ such

that EwCj = Ew′Cj = cj , for all j. Let S = {j : wj > w′j} and CS =
∑
j∈S Cj . Without loss of

generality, S 6= ∅. Two applications of Lemma 45 yield the following contradiction

∑
j∈S

cj = EwCS > Ew′′CS > Ew′CS =
∑
j∈S

cj ,
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where w′′ is the coordinate-wise maximum of w and w′.

The correctness of Algorithm 6 follows as a corollary.

Corollary 47. If cj <
∑
iBij for every 1 ≤ j ≤ n, then Algorithm 6 terminates and the final

weights satisfy |cj − EwCj | ≤ ε, for all j.

Remark 48. In practice, there are at least two options to find the weights. One can use Algorithm 6,

but then we recommend modifying the weight increase step so that the new expected column margin

exceeds the old one by exactly ε. This will quicken the progress, without the risk of overshooting

the correct weight by more than the tolerance.

Second, one can use a root-finding algorithm like Newton’s Method. This may be preferable

since robust root-finding libraries are freely available.

3.5.3 Nonequivalence with Barvinok’s maximum entropy sampler

Barvinok [12] has studied the maximum entropy distribution on {0, 1}m×n with independent coordi-

nates, expected row margins r, and expected column margins c. The maximum entropy distribution

shares some characteristics with the Columns-In-Expectation distribution, which we now discuss.

In addition to the expectations guarantee, the maximum entropy distribution conditioned that the

outcome is binary is the uniform distribution on Σr,c. The Bernoulli parameters can be found in

polynomial time by solving a convex optimization problem, so one could use the maximum entropy

model as a surrogate for uniform sampling from Σr,c.

Barvinok uses the distribution for bounds on |Σr,c| and |ΓBr,c|, when B is binary, and he

proves that when the entries in 1
nr and 1

mc are bounded away from 0 and 1 the sum of any sufficiently

large set of entries in a uniformly random matrix from Σr,c concentrates near the expectation of the

same sum in the maximum entropy model.

The maximum entropy distribution is characterized by a m × n matrix of Bernoulli pa-

rameters pij . The marginal distribution of the ijth coordinate in a random matrix from this model
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is Bernoulli(pij) and all of the coordinates are independent. The parameters maximize the en-

tropy −
∑
ij pij log pij subject to the constraints

∑
i pij = cj and

∑
j pij = ri.

One can ask whether the maximum entropy distribution conditioned so that the row sums

are correct also gives the columns-in-expectation guarantee. The answer is no, conditioning changes

the column means.

The coordinates of the maximum entropy distribution are independent, so conditioning on

the row sums is the same as sampling one row at a time with Algorithm 5. It can be shown that

the weights we should use for the ith row are wij = pij/(1 − pij), for j = 1, 2, . . . , n. Generally,

these weights do not guarantee the columns of a randomly chosen matrix have the correct margins

in expectation. This is true even if the weights are the same for every row, as in the Columns-In-

Expectation sampler.

Here is a concrete example. Take column margins c = (2, 1) and the row margins r =

(1, 1, 1). First, we compute the maximum entropy matrix and then we show that the conditioned

column expectations are not c. Given the matrix of parameters p = (pij), the entropy is the sum

of the entropies of its columns. Dropping the row constraints and independently maximizing the

entropy of each column gives an upper bound on the maximum attainable entropy. For each column,

the maximum is uniquely attained by the constant vector with values cj/3. Thus, every choice for

the parameters p gives an entropy no larger than does the matrix

p =
1

3


2 1

2 1

2 1

 .

But, this matrix also satisfies the row constraints, so it defines the (in this case unique) maximum

entropy distribution.

Now consider the model that samples each entry independently with its corresponding

probability p but conditioned so that each row sum is 1. One can easily calculate that the marginal
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probabilities for this distribution are

p′ =
1

5


4 1

4 1

4 1

 ,

thus the expected column sums are 1
5 (12, 3) 6= (2, 1).

3.6 Dynamic programming

Another procedure for uniform sampling from Σr,c was devised recently by Miller and Harrison [82].

The algorithm counts the elements of Σr,c by assigning one row and recursing. The recursion tree is

enough information to sample uniformly from Σr,c by iteratively computing the marginal distribution

of the next row conditionally given the outcome of the rows above it.

A pair of observations explains how Miller and Harrison’s algorithm is much more efficient

than a näıve recursive enumeration. Given a `× n submatrix A, one of the values in the recursion

tree is the number of matrices in Σr,c with A as the initial ` rows. Let us, temporarily, denote this

value W (A). The important point is that W (A) is independent of the particular arrangement of

1s and 0s in A and depends only on the “unused” portion of the column margins. That is, if we

set r′ = (r`+1, r`+2, . . . , rm) and c′ = c −
∑`
i=1Ai then the number of completions of A is |Σr′,c′ |,

so it is sufficient to have a table entry for each possible vector c′ rather than each possible matrix

A. The first observation is that although there are many possible choices for A there are usually

markedly fewer for c′. The second observation is that the number of entries can be further reduced

by exploiting the fact that |Σr′,c′ | does not depend on the order of the values in c′. The algorithm

captures this efficiency by choosing a canonical order for the vectors c′. Let D = maxj cj . When D

is small the second observation provides a lot of traction because the total number of possibilities

for c′ is no more than nd+1 after accounting for different orderings of the same vector (there are n
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columns and each has margin 0, 1,. . . , or d). That reduces the table size to no more than mnD+1.

The time complexity of Miller and Harrison’s algorithm is given by the following theorem.

The values manipulated by the dynamic program may become very large, so their analysis includes

the time required to add or multiply two integers.

Theorem 49 (Miller and Harrison [82]). There is an algorithm that requires O(mn2D−1 log3 n)

operations to compute |Σr,c| exactly when D is bounded. After this counting step, the algorithm

requires O(mN log3N) time for each sample.

The key part of this result is that D is bounded so their algorithm runs in polynomial time.

This is the case for the second example described in Section 3.1.1. There the column margins are

necessarily bounded because m = 6, although the maximum column margin is only 3.

Let V (c) ∈ ND be the vector with V (c)i = #{j ∈ [n] : cj = i}, for i = 1, . . . , D. Given

such a vector v ∈ ND let C(v) = (0(n−
∑
vi), 1(v1), . . . , D(vD)), where x(k) denotes k repetitions of

the integer x. Let r|i = (ri+1, ri+2, . . . , rn), for i = 0, 1, . . . , n, and A|i denote the matrix consisting

of rows i+ 1, i+ 2, . . . ,m of A. Given v, a ∈ ND we write

v \ a = (v1 − a1 + a2, v2 − a2 + a3, . . . , vD−1 − aD−1 + aD, vD − aD).

The vector v \ a arises in the following way. Consider an instance with row margins r, column

margins c = C(v), and a matrix A ∈ Σr,c. If the first row of A has a1 1s in columns with margin 1,

a2 1s in columns with margin 2, etc., then, the column margins of the A|2 are C(v \ a), neglecting

their order.

3.6.1 Sampling

Miller and Harrison’s algorithm computes the table

W (i, v) = |Σr|i,C(v)|,

95



CHAPTER 3. SAMPLING CONTINGENCY TABLES

for v ∈ ND and 1 ≤ i ≤ m, with the convention that W (m, (0, . . . , 0)) = 1.

The following recursion arises when we assign one row of the matrix

W (i, v) =
∑
a∈ND

(
v

a

)
W (i+ 1, v \ a), (3.7)

for any i = 0, 1, . . . ,m − 1 and v ∈ ND such that W (i, v) > 0. Indeed, suppose that Σr|i,C(v) 6= ∅,

hence W (i, v) > 0, we are given a ∈ ND, and consider building a matrix in Σr|i,C(v). We begin with

the first row by choosing to place ai 1s in columns with margin vi, for each i = 1, 2, . . . , D. Each of

these choices can be made in
(
vi
ai

)
ways. After assigning the first row, the column margins for the

remainder of the matrix are described by v \ a, i.e. the margins are some permutation of C(v \ a).

The number of ways to configure the remaining m− i− 1 rows is W (i+ 1, v \ a). Thus, the vector

a has led us to
(
v
a

)
W (i+ 1, v \ a) matrices. Each choice of a leads us to entirely different matrices,

owing to a difference in the first row, thus
∑
a∈ND

(
v
a

)
W (i+ 1, v \ a) is the number if matrices with

row margins r|i and column margins C(v). To be thorough, (3.7) is not true when W (i, v) = 0, but

we can test whether this holds by checking feasibility of the margins r|i, C(v).

As in the previous section, the recursion (3.7) implicitly defines the marginal distributions

that we need in order to sample a matrix from Σr,c. Given the table W , the sampling is simple. It

is enough to know how to sample a single row. Suppose we have already the first 0 ≤ i < m rows

completed and we want to add the (i+ 1)th row. Let c′ ∈ Nn be the column margins needed for the

remaining m− i rows in order that the completed matrix is a member of Σr,c. We sample a vector

a ∈ ND with probability (
V (c′)
a

)
W (i+ 1, V (c′) \ a)

W (i, V (c′))
.

To complete the description of the row i+ 1 it remains to place the 1s in the row. There are
(
V (c′)
a

)
ways to do so, each is equally likely if the sampling distribution is to be uniform. Therefore we choose,

for each k = 1, 2, . . . , D, a random subset of ak out of the vk columns in {j ∈ [n] : c′j = k} and assign

a 1 to those columns on row (i + 1). The remaining entries on the row are set to 0. Algorithm 7
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Algorithm 7 Sample a matrix uniformly with Miller and Harrison’s algorithm [82].

procedure MHSample(r,c,W )
X ← 0 ∈ Rm×n
for i = 0, 1, 2, . . . ,m do

Select a ∈ ND with probability
(
V (c)
a

)
W (i+ 1, V (c) \ a)/W (i, V (c))

for k = 1, 2, . . . , D do
Select a ak-element subset S ⊆ {j : cj = k} at random
Xij ← 1, for j ∈ S
cj ← cj − 1, for j ∈ S

end for
end for
return X

end procedure

formalizes the procedure. In order to achieve the sampling time claimed by Theorem 49 one must

make a judicious choice of data structure. Namely, one must preprocess the table and for each i, v

one creates a binary tree containing the positive terms on the right hand side of (3.7). That allows

for one to sample each row with only O(log nD+1) = O(D log n) operations.

3.6.2 Initialization

Computing the tableW is straightforward with the recursion (3.7). Running time isO(mn2D−1 log3 n)

time, O(mnD log3 n) if both r, c bounded, for initialization,

In order to generate the set of possible column margins v \ a one can simply test the Gale-

Ryser criteria [90] for every vector in [n]D. This can be inefficient if the actual number of feasible

vectors is small, but it doesn’t affect the running time bound.

Alternatively, we can generate the set more efficiently using a recursive algorithm. The set

we want is exactly the set of (unordered) vectors c′ so that r|∗i majorizes c′. We can generate V (c′)

for each c′ in this set, one element at a time from right to left. Here we describe the first step of the

recursion.

We begin by determining the maximum and minimum values for V (c′). Suppose D ≥ 2,

the case D = 1 being trivial. Let x represent the Dth coordinate in a vector V (c′). The Gale-Ryser
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majorization criteria implies that Dx ≤
∑x
k=1 r

∗
k so

` = max

{
x : Dx ≤

x∑
k=1

r∗k

}

is an upper bound on x (recall that r∗k decreases with k, so Dx ≤
∑x
k=1 r

∗
k for all x ≤ `). It is easy

to check that x = ` is possible by adjusting the value of the first coordinate.

Now a lower bound on x. After assigning x as the Dth coordinate, there are n−x columns

left to assign. In total, the sum of their margins will be N −Dx and each margin is at most D− 1.

Hence (n− x)(D− 1) ≥ N −Dx, so by rearranging we get that k = N − n(D− 1) is a lower bound

on x. Indeed, x = k can be achieved as well as any value in the interval (k, `).

Now that the range of the Dth coordinate is established, for each value x ∈ {k, k+1, . . . , `}

we concatenate x at the end of every vector generated recursively with the replaced values: n← n−x,

N ← N − Dx, r∗ ← r∗|x, and D ← D − 1. The time required for this recursion is D times the

length of the set it generates.

Algorithm 8 The dynamic programming algorithm of Miller and Harrison [82].

procedure MHInitialize(r,c)
W (m, (0, 0, . . . , 0))← 1
for i = m− 1,m− 2, . . . , 0 do

for v ∈ ND such that Σr|i,C(v) 6= do
W (i, v)← 0
for a ∈ ND such that W (i+ 1, v \ a) > 0 do

W (i, v)←W (i, v) +
(
v
a

)
W (i+ 1, v \ a)

end for
end for

end for
return W

end procedure

3.7 A hybrid algorithm

Our last algorithm for sampling uniformly from Σr,c combines elements of Miller and Harrison’s

dynamic programming sampler and the Configuration Model rejection sampler. The goal is an
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algorithm that extends the range of both of those procedures. In particular, the algorithm is targeted

for the case when the matrix is sparse with some large row and column margins. The the large

margins mean that the Configuration Model rejection sampler fails due to the presence of non-

binary entries in the proposals, c.f. Theorem 37, and the initialization time for Miller and Harrison’s

algorithm is impractically large. The algorithm will make a binary assignment to the top p rows of

the table with dynamic programming and then fill in the remaining m− p rows with a sample from

the Configuration Model. When the entire resulting table is binary, it will be a uniformly random

sample from Σr,c.

The algorithm relies on the interpretation, in Section 3.4.2, of the Configuration Model as

a weighted sampler. The first step is to use a dynamic program to sample the first p rows of the

table A proportionally to

u(A) =
c!

(c−
∑p
i=1Ai)!

=
n∏
j=1

cj !

(cj −
∑p
i=1Aij)!

. (3.8)

For the remaining m − p rows, we are left with random column margins that are the result of the

initial sampling procedure. We next draw a proposal from the Configuration Model for this random

(m − p) × n instance. If the proposal is binary it turns out that the combined m × n table is a

uniformly random sample from Σr,c. The effect is that the algorithm samples from the Configuration

Model conditionally given that the top p rows have only binary entries.

We think of the weight function u as follows. The first 1 in column j of A contributes cj

to the product u(A). The second 1 in that column contributes (cj − 1) to the product, and so on,

so that the `th one contributes a factor of (cj − ` + 1) to the product u(A). Applying this to the

entire matrix, the row i ≤ p of A contributes

∏
j:Aij=1

(
cj −

i−1∑
`=1

A`j

)
=

n∏
j=1

(
cj −

i−1∑
`=1

A`j

)Aij
(3.9)

towards u(A), where we take the convention 00 = 1.

99



CHAPTER 3. SAMPLING CONTINGENCY TABLES

Unfortunately, it proves too computationally taxing to maintain the dynamic program as

p becomes large. Compare (3.9) with the one row of the Columns-in-Expectation sampler where

the ith row contributes
∏n
j=1 w

Aij
j . The problem with (3.9) is that the contribution to u(A) of

any row of A depends on the rows above it. To combat this we propose an approximate dynamic

programming routine that trades an extra rejection step for efficient initialization and per-proposal

sampling.

The change we make is to approximate the weight function u. A parameter d ∈ N controls

the approximation; we choose new weights

w(A) =

 ∏
j:cj≤d

cj
(cj −

∑p
i=1Aij)

 ∏
j:cj>d

c
∑p
i=1 Aij

j

 .

We can find an efficient dynamic program for sampling proportionally to w because the dependence

that we discussed in the previous paragraph is limited to only columns with small margins. The effi-

ciency gain is akin to that of Miller and Harrison’s dynamic program when maxj cj ≤ d. Generating

one proposal with our algorithm takes O(mn+p2n2 log n log2m) time and initialization, which must

be done only once, takes O(pnd+1(m2n + mn2) + pn2d+3 logm) time. See Theorems 53 and 54 for

details.

We begin by introducing the algorithm with a simple example in the next section. It is fol-

lowed by a detailed description of the sampling algorithm and proof of its correctness in Section 3.7.2

and the two ensuing sections. Section 3.7.5 describes the initialization procedure.

3.7.1 A motivating example

We first illustrate the idea with an example. Suppose that n = m = 1001 and r = c = (500, 1(1000)).

The Configuration Model rejection sampler will reject nearly every proposal on this instance because

of multiple edges between the two large degree vertices. The dynamic programming algorithm of
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Miller and Harrison is not practical because the maximum margin is very large.3 Finally, Bezáková,

Sinclair, Stefanovic, and Vigoda [18] have shown that the Chen, Diaconis, and Holmes sequential

importance sampling algorithm [33] misestimates |Σr,c| by an exponential factor for margins like

these. But, this is an easy instance!

We will be sampling rows of the table proportionally to the weights described in the alterna-

tive interpretation of the Configuration Model, Section 3.4.2, conditioned that every entry is 0 or 1,

which is just a fancy way of saying that we sample uniformly from Σr,c. This is accomplished for the

first row with Algorithm 5, the single row sampling algorithm used by the Columns-In-Expectation

sampler. The sampling weights are just the margins c. For the remaining rows, we use a sample

from the Configuration Model.

One easily computes that there are
(

1000
500

)
ways that the first row of the matrix can be

assigned with A11 = 0, and each has weight 1500 = 1. There are
(

1000
499

)
ways that the first row can

be assigned so that A11 = 1, and each has weight 500 · 1499 = 500. That is enough information to

sample the first row. Let X denote the random matrix. We set X11 = 1 with probability

P (X11 = 1) =
500
(

1000
499

)
500
(

1000
499

)
+
(

1000
500

) ,
and then select 500 −X11 distinct indices j1, j2, . . . ≥ 2 uniformly at random and set X1j` = 1 for

each of them.

It remains to assign the other 1000 rows of X. Those rows form a 1000× 1001 submatrix

with every row margin 1 and (random) column margins (c1 − X11, c2 − X12, . . . , cn − X1n). The

column margins are some ordering of either (500, 1(500), 0(500)) or (499, 1(501), 0(499)), depending on

the outcome of the first row of X. Whichever it is, we will sample the remaining submatrix with

the Configuration Model sampler. Because every row margin is 1, the algorithm will always accept,

and the completed table is always a member of Σr,c.

3However, one can modify their algorithm to to sample in polynomial time when there is a constant value d such
that there are at most d vertices of degree larger than d. After this introductory example, we will allow more vertices
of large degree.
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Let A ∈ Σr,c and let us compute the probability of the event X = A. If A11 = 1 then from

the previous paragraph and Equation 3.1 we find

P (X = A) =
500
(

1000
499

)
500
(

1000
499

)
+
(

1000
500

) · 1(
1000
499

) · 499!(1!)501(1!)1000

1000!
,

and if A11 = 0 then

P (X = A) =

(
1000
500

)
500
(

1000
499

)
+
(

1000
500

) · 1(
1000
500

) · 500!(1!)500(1!)1000

1000!
.

Cancellations reveal that these are the same and independent of A, so X is a uniformly random

sample.

We can do the same far any set of margins r and c. The first row is sampled with the

dynamic programming algorithm, where the weights are c. Next we attempt to complete the matrix

with one proposal from the Configuration Model sampler. If the result is binary, then it is a uniform

sample from Σr,c. If it is not binary, then we begin again by resampling the first row.

The reason this approach works is that there is a seamless transition between the dynamic

programming with weights and the Configuration Model. The sampling distributions of the two

models are synchronized. It happens because of the way the weights are chosen. For a particular

matrix A ∈ Σr,c, the probability that the first row of a random matrix from this hybrid model is the

same as the first row of A is proportional to
∏
j c
A1j

j and, using Equation 3.1, the probability that

the remaining (m− 1)×n submatrix is the same as the lower (m− 1)×n submatrix of A is exactly

(
∏m
i=2 ri!)

(∏
j(cj −A1j)!

)
(
∑m
i=2 ri)!

.

Hence, the binary matrix A is chosen with probability proportional to

∏
j

c
A1j

j (cj −A1j)! =
∏
j

cj !,
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that is uniformly.

The next sections present our full algorithm. It improves over the present example in

two ways. The first improvement is that the algorithm samples p ≥ 1 binary rows with dynamic

programming before transitioning to the Configuration Model. The natural generalization is that

these rows should be sampled proportionally to u(A) so that the hybrid model samples a matrix

A ∈ Σr,c proportionally to

u(A)

(
c−

p∑
i=1

Ai

)
! = c!,

which is uniform.

The running time of the dynamic programming algorithm that samples the first p rows

grows exponentially in p. That is a problem. Our second improvement is to introduce an ap-

proximation to the table weights so that the dynamic program can be computed efficiently. The

approximation controls the initialization and per-proposal time complexity at the cost of an addi-

tional rejection step that is required to preserve the uniformity of the sampling distribution.

3.7.2 Sampling overview

This section provides an overview of the Hybrid sampler. The Hybrid sampler works in two stages:

sampling first the top p rows of the table with dynamic programming and then the remaining

m − p rows with the Configuration Model sampler. The next two sections describe the dynamic

programming procedure that accomplishes the first stage sampling, and Section 3.7.5 describes the

initialization of that procedure.

Recall r|i = (ri+1, . . . , rm), r|i = (r1, r2, . . . , ri), and A|i the matrix consisting of the top i

rows of the matrix A. We will generate a sample for which every entry in the first p rows is binary;

of course, the row margins can be rearranged so that any p rows are first. Let D = maxj cj . Let

Fi =
{
A|i : A ∈ Σr,c

}
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be the set of i×n binary matrices that are feasible to be completed to a matrix in Σr,c by appending

m− i binary rows. F0 contains a single “empty” matrix and Fm = Σr,c.

Recall the vector V (c) ∈ ND with V (c)` = #{j ∈ [n] : cj = `}, for ` = 1, 2, . . . , D. For a

matrix A we define the vector L(A) ∈ ND where

L(A)` = V (c−
∑
i

Ai)` = #{j : cj −
∑
i

Aij = `}.

L is defined so that if A ∈ Σr,c then L(A|i) = V (
∑m
k=i+1Ak). If we choose the first i rows of a

matrix to be A ∈ Fi then L(A) describes the column margins that must be satisfied by the submatrix

consisting of the remaining m− i rows. For i = 0, 1, . . . , p, let

Li = {L(A) : A ∈ Fi} .

In particular, v ∈ Li if and only if Σr|i,c′ 6= ∅ for c′ = (1(v1), 2(v2), . . . , D(vD)). In the case i = 0

notice that L0 = {V (c)}. We can test the membership of a matrix in Fi or a vector in Li with the

Gale-Ryser criteria described in Section 3.2.

For each matrix A ∈ Fi we define the weight

u(A) =
c!

(c−
∑i
k=1Ak)!

.

We choose to sample proportionally to u in order to synchronize the two sampling stages.

Our algorithm begins by sampling a random binary matrix X ′ ∈ Fp. X ′ is distributed so

that for each A′ ∈ Fp

P (X ′ = A′) ∝ u(A).

Let Cj = cj−
∑
iX
′
ij , and notice that Cj ≥ 0 because of the definition of u and

∑n
j=1 Cj =

∑m
i=p+1 ri

because A ∈ Fp. Thus, the vectors r|p and C are a valid instance for the Configuration Model

104



CHAPTER 3. SAMPLING CONTINGENCY TABLES

sampler. The next step is to sample a random matrix X ′′ ∈ Γr|p,C using the Configuration Model

sampler. X ′′ is conditionally independent of X ′ given its column sums. If X ′′ is binary, then we

accept the sample

X =

 X ′

X ′′

 ∈ Σr,c.

Theorem 50. The distribution of the random matrix X is uniform with support Σr,c.

Proof. We get X ∈ Σr,c as the row margins of X|p are correct because X|p ∈ Fp and the margins

for the columns and remaining rows are correct because X|p is drawn from the Configuration Model

with row and column margins r|p and (c −
∑p
i=1Xi), respectively. Given any matrix A ∈ Σr,c

partitioned as above into A′ and A′′, let c′′j =
∑
iA
′′
ij = cj −

∑
iA
′
ij . We have

P (X = A) = P (X ′ = A′)P (X ′′ = A′′|X ′ = A′)

=
u(A′)∑

M∈Fp u(M)
P (X ′′ = A′′|X ′ = A′)

=
c!

(c− c′)!
∑
M∈Fp u(M)

· (r|p)!c′′!(∑m
i=p+1 ri

)
!

=
c!(r|p)!(∑

M∈Fp u(M)
)(∑m

i=p+1 ri

)
!
,

where we have used the formula 3.1 for P (X ′′ = A′′|X ′ = A′). This probability is independent of

A; thus, X is uniformly distributed on Σr,c.

The next section describes an inefficient algorithm for sampling X ′, though it includes

almost all of the technology needed for our final algorithm. Section 3.7.4 completes the description

of the hybrid sampling algorithm. It is followed by a description of the algorithm’s initialization

procedure.
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3.7.3 Inefficient but exact

We begin by describing a straightforward but inefficient extension of Miller and Harrison’s dynamic

programming algorithm to sample X ′ one row at a time. Recall that the running time for Miller

and Harrison’s algorithm is exponential in maximum column margin. This algorithm has a similar

time complexity, typically exponential in p, so it is not practical when p is large. In the next section

we will reduce its time complexity to polynomial by allowing the algorithm to approximate some

parts of the computation.

The algorithm iteratively samples one row at a time. It is similar to the Miller and Harri-

son’s algorithm, described in Section 3.6, but there are two main differences. This algorithm only

samples p ≤ m rows of the table and it incorporates weights to the coordinates of the table.

For each vector v ∈ Li and 1 ≤ i ≤ p we define

Ui,v =
∑
A∈Fi
L(A)=v

u(A),

with the convention that U0,V (c) = 1. For convenience we let Ui,v = 0 if i /∈ {0, 1, . . . , p} or v /∈ Li.

In particular, U0,v = 0 if v 6= V (c) because L0 = {V (c)}.

We will find a recursion for U and use it to calculate the needed marginal probabilities.

First, a quick fact. For any two vectors u, v ∈ ND of the same dimension there is exactly one solution

x to the equation u \ x = v. Indeed, vD = uD − xD hence xD = uD − vD. If 1 ≤ k ≤ D− 1 we have

vk = uk − xk + xk+1 hence xk = xk+1 + uk − vk, so the fact follows by induction.

For x ∈ RD let δ(x) =
∏D
k=1 k

xk .

Lemma 51. For i ≥ 1 and v ∈ Li if Ui,v > 0 then

Ui,v =
∑

y∈Li−1

x:v=y\x

Ui−1,y

(
y

x

)
δ(x). (3.10)
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Proof. Replacing U by its definition, (3.10) is equivalent to

∑
A∈Fi
L(A)=v

u(A) =
∑

y∈Li−1

x:v=y\x

∑
A′∈Fi−1

L(A′)=y

u(A′)

(
y

x

)
δ(x).

We first establish an equivalence relation on the terms of the left side. The lemma is proved by

showing that each term on the right side is the sum of the terms in some equivalence class from the

left and every class is represented exactly once. The proof is technical, but the main idea is not.

Every matrix A ∈ Fi is a matrix A′ ∈ Fi−1 and one additional row.

The equivalence relation is defined from a function

f : {A ∈ Fi : L(A) = v} → Fi−1 × ND

that maps A 7→ (A′, x) as follows. The matrix A′ = A|i−1 is the first i− 1 rows of the i-row matrix

A and the vector x has coordinates xk = |Xk| where

Xk = {j ∈ [n] : cj −
i−1∑
`=1

A′`j = k and Aij = 1}, for k = 1, 2, . . . , D.

The vector x describes the ith, i.e. final, row of A. In particular, xk counts the number of 1s of the

row Ai that lie in columns where A′ = A|i−1 still needs k additional units to meet its margin.

Let A ∈ Fi and (A′, x) = f(A), we claim that

1. 0 ≤ x ≤ L(A′) coordinate-wise,

2. u(A) = u(A′)δ(x), and

3. L(A) = L(A′) \ x.
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Indeed, x ≥ 0 is obvious and x ≤ L(A′) follows because

Xk = {j ∈ [n] : cj −
i−1∑
`=1

A′i = k and Aij = 1} ⊆ {j ∈ [n] : cj −
i−1∑
`=1

A′i = k}

and the latter set has cardinality L(A′)k. For the second part of the claim, notice that

(
cj −

i∑
k=1

Akj

)
!

(
cj −

i−1∑
k=1

Akj

)Aij
=

(
cj −

i−1∑
k=1

Akj

)
!,

with the convention that 00 = 1. Hence, it follows that

u(A) =
n∏
j=1

cj !

(cj −
∑i
k=1Akj)!

=

 n∏
j=1

cj !(cj −
∑i−1
k=1Akj)

Aij

(cj −
∑i−1
k=1Akj)!


= u(A′)

n∏
j=1

(cj −
i−1∑
k=1

Akj)
Aij

= u(A′)

D∏
k=1

k|Xk|

= u(A′)δ(x).

Finally, for the third part of the claim. We have for 1 ≤ ` < D

L(A)` = #{j : cj −
i∑

k=1

Akj = `}

= #{j : cj −
i−1∑
k=1

Akj = `, Aij = 0}+ #{j : cj −
i−1∑
k=1

Akj = `+ 1, Aij = 1}

= #

(
{j : cj −

i−1∑
k=1

Akj = `} \X`

)
+ |X`+1|

= L(A′)` − x` + x`+1

= (L(A′) \ x)`.

108



CHAPTER 3. SAMPLING CONTINGENCY TABLES

The case ` = D follows similarly, hence L(A) = L(A′) \ x.

The function f induces an equivalence relation on Fi where A ∼ M if and only if f(A) =

f(M). If A ∼ M then u(A) = u(M) = u(A′)δ(x). The equivalence class containing A 7→ (A′, x)

has cardinality
(
L(A′)
x

)
, hence its total weight is u(A)

(
L(A′)
x

)
= u(A′)

(
L(A′)
x

)
δ(x). Summing over the

equivalence classes gives

Ui,v ≤
∑

y∈Li−1

x:v=y\x

∑
A′∈Fi−1

L(A′)=y

u(A′)

(
y

x

)
δ(x) =

∑
y∈Li−1

x:v=y\x

Ui−1,y

(
y

x

)
δ(x),

because all of the terms are nonnegative.

It remains to show that every positive term A′, x in the center expression above is the

image under f of some A ∈ Fi, as this implies the reverse inequality above. Indeed,
(
y
x

)
6= 0 implies

0 ≤ x ≤ y coordinate-wise. We can create an ith row for A′ by taking the left-most xk columns

among the yk columns with cj −
∑i−1
`=1A

′
`j = k and assigning them 1s, for each k, and assigning 0s

elsewhere. Call the resulting matrix A. By definition L(A) = L(A′) \ x = v, hence A ∈ Fi, and we

have defined A so that f(A) = (A′, x).

Now we describe how to use the table U to sample from Fp proportionally to u. Sampling

from Fp is done in two steps. Let X denote the p × n matrix under construction. First, we

determine the vectors L(X|i) for i = p, p−1, p−2, . . . , 1. Second, we determine the rows Xi in order

i = 1, 2, . . . , p.

L(X) is sampled from the distribution

P (L(X) = v) =
Up,v∑

v′∈Fp Up,v′
.

Let v(p) = L(X) denote the outcome. Next we sample L(X|i) for i = p − 1, p − 2, . . . , 1 with

probability

P (L(X|i) = y) =
Ui,y

Ui,v(i+1)

(
y

x

)
δ(x), (3.11)
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where x is the (unique) solution to v(i+1) = y \ x and v(i) is the outcome of L(X|i). Let v(0) = V (c)

and let x(i) be the solution to v(i) = v(i−1)\x, for i = 1, 2, . . . , p. To sample the ith row (starting with

i = 1) we choose at random one of the
(
v(i−1)

x(i)

)
possible ways to assign Xi that leaves L(X|i) = v(i).

After we check the distribution of X, we are ready to get at the problematic efficiency of this

method for sampling. Let A ∈ Fp; our aim is to show that P (X = A) ∝ u(A). For i = 1, 2, . . . , p,

let a(i) ∈ ND be the vector with

a
(i)
` = #

{
j ∈ [n] : cj −

i−1∑
k=1

Akj = ` and Aij = 1

}

so that L(A|i) = L(A|i−1) \ a(i), for i ∈ [p]. What we have is that {X = A} is the event that, for

each row i, L(X|i) = L(A|i) and the random assignment of the coordinates of row i coincide with

Ai. In other words,

P (X = A) = P
(
L(X|i) = L(A|i), for i ∈ [p]

)
· P
(
Xi = Ai, i ∈ [p]|L(X|i) = L(A|i), for i ∈ [p]

)
.

(3.12)

For the first term, it follows from (3.11) that for k > i+1 the vector L(X|i) is conditionally

independent of L(X|k) given L(X|i+1). Thus, by conditioning we get

P
(
L(X|i) = L(A|i), for i ∈ [p]

)
=P (L(X|p) = L(A|p))

p−1∏
i=1

P
(
L(X|i) = L(A|i)|L(X|i+1) = L(A|i+1)

)

=
Up,L(A)∑
v Up,v

p−1∏
i=1

Ui,L(A|i)
(L(A|i)
a(i+1)

)
δ(a(i+1))

Ui+1,L(A|i+1)

=
U1,V (c)∑
v Up,v

p−1∏
i=1

(
L(A|i)
a(i+1)

)
δ(a(i+1))

=
1∑
v Up,v

p−1∏
i=0

(
L(A|i)
a(i+1)

)
δ(a(i+1)),

where the last equality follows because L(A|0) = V (c) and U1,v =
(
V (c)
x

)
δ(x) for v = V (c) \ x.
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For the second term from (3.12), we have

P
(
Xi = Ai, i ∈ [p]|L(X|i) = L(A|i), for i ∈ [p]

)
=

p∏
i=1

P
(
Xi = Ai|X|i−1 = A|i−1, L(X|i) = L(A|i)

)

=

p∏
i=1

1(L(A|i−1)
a(i)

)
Combining the two terms, we get

P (X = A) =

∏p
i=1 δ(a

(i))∑
v Up,v

=
u(A)∑
v Up,v

,

from the definition of δ and a(i). That is exactly the distribution that we wanted, X is sampled

from Fp proportionally to the weight u.

Now for the catch, the problem with this approach is that there may be exponentially many

vectors in Li, and thus exponentially many terms on the right-hand side of (3.10). There is no clear

way to organize the computation that avoids the exponential sized sum. The algorithm captures the

same efficiency gains as Miller and Harrison’s algorithm [82] in that the table only depends on the

unordered remaining margins L(X|i). However, initialization time is exponential in p, and although

p ≤ maxj cj , we do not want to be restricted to only choosing a very small value for p.

3.7.4 Efficient but approximate

We now describe a rejection sampler for sampling X from Fp proportionally to u. The first step

is to choose a value for d, the parameter we first mentioned at the beginning of Section 3.7. The

running time of the algorithm will be exponential in d and increasing d will decrease the rejection

probability.

Let D = {j : cj ≤ d} and D = [n] \ D. Given a binary matrix A let

w(A) =

∏
j∈D

cj !

(cj −
∑
iAij)!

∏
j /∈D

c
∑
i Aij

j

 .
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We define L̃(A) ∈ Nd to be the vector with coordinates L̃(A)k = #{j ∈ D : cj−
∑
iAij = k}. Along

the lines of the earlier (inefficient) algorithm, we define L̃i = {L̃(A) : A ∈ Fi}.

Initially we will sample a p× n matrix from the larger class of matrices F̃p where

F̃i = {A ∈ Σr|i : L̃(A) ∈ L̃i}.

F̃i is the set of i× n binary matrices with row margins r1, r2, . . . , ri where the (unordered) column

margins for columns in D are the same as for some matrix in Fi. In general Fi ( F̃i. An easy

example to see that the inclusion is strict is to take i = m. We have Fm = Σr,c, all column sums

are as desired, whereas

F̃m = {A ∈ Σr :
∑
i

Aij = cj for all j ∈ D},

i.e. only columns in D must have the correct sum.

Before we go into more details, here is an overview of the algorithm. The first step is to

sample a matrix X ′ from F̃p so that P (X ′ = A) is proportional to w(A). Quite simply, we get

u(A) = w(A)
∏
j /∈D

cj !

c
∑
i Aij

j (cj −
∑
iAij)!

= w(A)
∏
j /∈D

(
cj
cj
· cj − 1

cj
· · ·

cj −
∑
iAij

cj

)
.

The second step is the extra accept/reject step. We accept X ′ with probability

u(X ′)

w(X ′)
=
∏
j /∈D

(
cj
cj
· cj − 1

cj
· · ·

cj −
∑
iX
′
ij

cj

)
.

Conditionally given acceptance, X ′ is a sample from F̃p with distribution P (X ′ = A) ∝ u(A). Now,

we sample a matrix X ′′ from the Configuration Model with row margins r|p and column margins

c −
∑
iX
′
i. If X ′′ is binary then we accept the sample X =

(
X′

X′′

)
∈ Σr,c. It should be clear that if

we condition on X ′ ∈ Fp then X is uniformly distributed on Σr,c as a consequence of Theorem 50.

If instead X ′ ∈ F̃p \Fp then there is no matrix in Σr,c with X ′ as the first p rows. That means that
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P (X ′′ is binary) = 0. Hence, the distribution of X is uniform on Σr,c without conditioning.

Our next step is to sort out a recursion that we can use to sample proportionally to the

weights w. For i ∈ {0, 1, . . . , p} and v ∈ L̃i let

Wi,v =
∑
A∈F̃i
L̃(A)=v

w(A).

In particular, W0,v = 1 if vk = #{j ∈ D : cj = k} and W0,v = 0 otherwise. Let

T` =
∑

a∈{0,1}D∑
ak=`

∏
j /∈D

c
aj
j

be the total weight, when the weights are c, of all binary vectors in ND with ` 1s. A dynamic

program for computing T was one of the first items in our discussion of the Columns-in-Expectation

sampler of Section 3.5, specifically Equation 3.2.

Notice that |L̃i| ≤ nd. This solves the efficiency problem for sampling algorithm, because

we get to choose d. When we choose d to be a constant we can generate proposals in polynomial

time.

Lemma 52. For 1 ≤ i ≤ p and v ∈ L̃i if Wi,v > 0 then

Wi,v =
∑

y∈L̃i−1

x:v=y\x

Wi−1,y

(
y

x

)
yx

∑
a∈{0,1}D∑
ak=ri−

∑
k xk

∏
j /∈D

c
aj
j

=
∑

y∈L̃i−1

x:v=y\x

Wi−1,y

(
y

x

)
δ(x)Tri−

∑
k xk

. (3.13)

Proof. As in the proof of Lemma 51 we use a function to define an equivalence relation on

{A ∈ F̃i : L̃(A) = v}.
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The relation has the property that each equivalence class is represented by a positive term of (3.13)

and vice versa.

The function is

g : {A ∈ F̃i : L̃(A) = v} → F̃i−1 × Nd × {0, 1}D

that maps a matrix A to (A′, x, a) where A′ = A|i−1 is the first i − 1 rows (out of i total) of A,

x is the vector that solves L̃(A) = L̃(A′) \ x, and a is the restriction of Ai to the columns D. As

with f in the proof of Lemma 51, g induces an equivalence relation on F̃i where two matrices are

equivalent if g maps them to the same triple. Within the equivalence class containing A there are(
L(A′)
x

)
matrices and each has equal weight

w(A′)δ(x)
∏
j /∈D

c
aj
j = w(A).

The claim now follows by summing over all equivalence classes so that L̃(A) = v.

Sampling a matrix X ∈ Σr,c is done in four steps.

1. Determine the partial margins L̃(X|i), for i = p, p− 1, . . . , 1.

2. Determine the row Xi, for i = 1, 2, . . . , p.

3. Accept with probability u(X|p)/w(X|p) or reject and start over.

4. Sample X|p with the Configuration Model, if X|p is not binary then reject and start over.

If the third step is accept, rather than reject, and the final matrix is binary then we accept it as

a uniform sample from Σr,c. Algorithm 9 describes the entire procedure. The analysis presumes

that O(log `) time required to generate a random integer in the range [`]. Furthermore, the stated

time complexity is a count of bit operations, rather than arithmetic operations. This is for two

reasons. First, Miller and Harrison’s analysis is also based on bit operations so these time bounds
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are directly comparable to theirs. Second, the numbers involved can grow very large, so that

performing arithmetic operations is expensive. Indeed, we use the easy bound of

∑
v

Wi,v ≤ 2pnmpn

to bound the total weight of all of the tables. The time required to add two integers is linear in

the number of bits and the time to multiply them is quadratic (with the algorithm taught in grade

school). Hence, just multiplying two large values may take on the order of (pn logm)2 time.

Theorem 53. Conditionally given that Algorithm 9 does not reject, the matrix that it outputs is

uniformly distributed on Σr,c. When d is constant, the time to generate one proposal or abort is

O(mn+ p2n2 log n log2m), presuming that each entry in W can be accessed in O(1) time.

Proof. First, we prove that the algorithm is well defined. It has already been observed that the

acceptance probability 0 ≤ u(A)/w(A) ≤ 1, so we only need to show that the sampling instance

given to the Configuration Model sampler, let us call the margins r′, c′, is well defined. That is

the case when r′, c′ ≥ 0 and
∑
i r
′ =

∑
j c
′. It is fine if Σr′,c′ = ∅; in this case, the Configuration

Model is well defined but obviously any sample from it will not be binary, so the algorithm will

abort at the end. Let X ′ ∈ F̃p be the initial proposed matrix. It follows from the definition of u

that P (E1|X ′) = u(X ′)/w(X ′) is positive if and only if c′ = c −
∑p
i=1Xi ≥ 0. By construction∑

j Xij = ri, for i ≤ p, i.e. X|p has the correct row margins, so

∑
j

c′j =
∑
j

(
cj −

p∑
i=1

Xij

)
=
∑
j

cj −
p∑
i=1

ri =
m∑

i=p+1

ri =
∑
i

r′i.

Thus, r′, c′ ≥ 0 and
∑
i r
′
i =

∑
j c
′
j , so the algorithm is well defined.

In order to prove that the sampling distribution is correct it is enough to prove that any

output matrix is in Σr,c and every matrix in Σr,c is output with equal probability. Let E be the

event that the algorithm outputs a matrix. Define a matrix-valued random variable X to be equal
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to the output when E occurs, and 0 otherwise. Let E1 be the event that algorithm accepts on the

first rejection step.

We claim that E implies X ∈ Σr,c. Indeed, from the definition of the Configuration Model

and because the algorithm is well defined we get that X has row margins r and column margins c.

Furthermore, E implies X|p is binary and X|p is always binary. Thus, {X ∈ Σr,c} ⊆ E.

Next, we claim that every matrix in Σr,c is output with the same probability. Some basic

probability reveals

P (X = A|E1) = P
(
X|p = A|p|E1

)
· P
(
X|p = A|p|X|p = A|p, E1

)
=
P (X|p = A|p)

P (E1)
· P
(
E1|X|p = A|p

)
· P
(
X|p = A|p|X|p = A|p, E1

)
.

The numerator of the first term is the sampling distribution defined by the table W , the second

term is the probability of acceptance, and the third term is the probability that the Configuration

Model produces A|p. Substituting in for these values and using the definition of u we get

P (X = A|E1) =
w(A|p)

P (E1)
∑
v∈F̃pWp,v

· u(A|p)
w(A|p)

·
(r|p)!(c−

∑p
i=1Ai)!(∑n

i=p+1 ri

)
!

=

c!
(c−

∑p
i=1 Ai)!

(r|p)!(c−
∑p
i=1Ai)!

P (E1)
(∑

v∈F̃pWp,v

)(∑n
i=p+1 ri

)
!

=
c!(r|p)!

P (E1)
(∑

v∈F̃pWp,v

)(∑n
i=p+1 ri

)
!
,

which does not depend on A. This proves that the sampling is uniform.

Finally, we bound the running time. We begin with the time required to perform individual

arithmetic operations and perform the needed random sampling. Trivially, w(A) ≤ min, for all

A ∈ F̃i, hence Wi,v ≤
∑
vWi,v ≤ 2inmin. Hence, the dynamic programming implementation

requires O(pn logm) operations to perform any addition related to the table and O(p2n2 log2m)

operations for any multiplication, using the grade school algorithms. The values of
(
yk
xk

)
, kxk , and
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T in each term of (3.13) can be precomputed. Thus, computing a single term of (3.13) from its

components requires only 2d+ 1 = O(1) multiplications.

Random sampling is done with the following algorithm. Suppose we are given nonnegative

integers a1, a2, . . . , aN and a =
∑
ai, and we wish to sample i ∈ [N ] with probability ai/a. We

first draw a random integer Z ∈ [a] and then check
∑j
i=1 ai < Z for each j = 1, 2, . . . , N until the

first time, call it j∗, that the inequality fails. Then the sample is j∗. The sampling can be with

only O(logN) integer comparisons as follows. We precompute, i.e. during initialization, a binary

tree where the leaves are a1, a2, . . . , aN and each node stores the sum of all of the leaves descended

from it. This changes the initialization time and space required by the algorithm only by a constant

factor. With the tree it is simple to sample with O(logN) integer comparisons, thus the Each integer

comparison requires O(log a) bit comparisons thus this sampling requires requires O(N log a) time.

Lets bound the time to sample the ith row. We have |L̃i| ≤ nd+1 since there are at most n

vertices of any degree 0, 1, 2, . . . , d. Because each term of (3.13) can be computed in O(p2n2 log2m)

time, it requires

O(log nd+1(p2n2 log2m)) = O(p2n2 log n log2m)

time to sample L(X|p) and it takes no longer for L(X|i), when i ≤ p. Completing each of the first

p rows requires O(n) time and performing the rejection step requires O(pn logm) time, both are

negligible. Finally, completing the matrix with the Configuration Model requires O(mn) time to

sample a random permutation and the same to fill in the matrix. Thus, the total sampling time is

O(mn+ p2n2 log n log2m).

3.7.5 Initialization

As with the initialization of Miller and Harrison’s dynamic programming algorithm in Section 3.6.2,

the table W is computed using the recursion in Lemma 52. One aspect of that computation is to

(efficiently) generate the feasible margins, i.e. the set L̃i. Since |L̃i| ≤ nd+1 it is enough to be able
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Algorithm 9 The hybrid algorithm for uniform sampling.

procedure HybridSample(r, c, p, d)
Sample L(X|p) according to P (L(X|p) = v) = Wp,v/

∑
vWp,v.

for i = p− 1, p− 2, . . . , 1 do
Sample L(X|i) as P (L(X|i = v) = Wi,v

(
v
x

)
δ(x)Tri−

∑
k xk

/Wi+1,L(X|i+1), where v \ x =

L(X|i+1)
end for
for i = 1, 2, . . . , p do

Let x solve L(X|i−1) \ x = L(X|i).
Sample the values Xij , for j ∈ D, among the

(
L(X|i−1

x

)
possibilities

Sample the values Xij , for j /∈ D, using T so that
∑
j Xij = ri.

end for
Reject with probability u(X|p)/w(X|p)
if Reject then

Abort
end if
Sample X|p from the Configuration Model to guarantee row margins r and column margins c
if X is binary then

return X
else

Abort
end if

end procedure

to test for a given vector v whether v ∈ L̃i or not.

The main challenge with testing v ∈ L̃i is that v does not tell us the correspondence to the

overall margins. For example, suppose there exists A ∈ Σr,c with L(A|p) = v. Then we know that

A|p has exactly v1 column margins, among columns in D, that are equal to 1, but we do not know

which columns they are. Indeed, there can be many workable correspondences but we cannot test

every possibility in order to find one.

We will first suppose that the correspondence is known and proceed to demonstrate an

algorithm for checking v ∈ L̃i or not. That is, we devise a test to determine for c′ ∈ ND whether

there exists A ∈ F̃i such that cj −
∑i
k=1Aij = c′j for j ∈ D. After that we will show that it is

sufficient to test the membership with a canonical correspondence.

Let c′j , for j ∈ D, be the partial margins. We will test whether there exists A ∈ Σr,c

such that
∑m
i=p+1Aij = c′j , for all j ∈ D, using a max-flow computation. Create a graph with

m+ n+ |D|+ 2 vertices xi, for i ∈ [m]; yj , for j ∈ ([n] \ D); zkj , for k = 1, 2 and j ∈ D; and source
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s and sink t. Add directed edges with capacities as shown in Table 3.2.

Edge Capacity
(s, xi), for i ∈ [m] ri

(xi, z1j), for i ≤ p, j ∈ D 1
(xi, z2j), for i > p, j ∈ D 1
(xi, yj), for i ∈ [m], j ∈ ([n] \ D) 1
(z1j , t), for j ∈ D cj − c′j
(z2j , t), for j ∈ D c′j
(yj , t), for j ∈ ([n] \ D) cj

Table 3.2: Edges and capacities to determine whether there exists a table in Σr,c with intermediate
margins c′j , for j ∈ D.

An integral maximum s-t flow in this network can be found in O(|V ||E|) = O(m2n+mn2)

time with the algorithm of King, Rao, and Tarjan [72]. If any s-t flow with value
∑
i ri =

∑
j cj

exists then let Aij be the flow value on edge (xi, z1j), (xi, z2j), or (xi, yj), whichever edge exists in

the graph (exactly one of them exists in the graph). We find that A ∈ Σr,c and
∑m
i=p+1Aij is the

total flow into vertex z2j which must be c′j . The reverse argument shows that if any such matrix

exists then the value of a maximum flow is
∑
i ri =

∑
j cj . Thus, if we know the correspondence

with the column margins then we can test in O(m2n + mn2) time whether there is any satisfying

matrix.

Now for the canonical correspondence. Without loss of generality, let D = {1, 2, . . . , k} and

c1 ≥ c2 ≥ · · · ≥ ck. Let c′1 = c′2 = . . . = c′vd = d, then c′vd+1 = · · · = c′vd+vd−1
= d − 1, until c′k.

The correspondence is ci with c′i. One can think of matching each column in D in decreasing order

of their margins with the intermediate margins in decreasing order of their margins. We claim that

if there exists a matrix A ∈ Σr,c with L(A|p) = v then there is a matrix with the correspondence

given.

Indeed, among all matrices A ∈ Σr,c with L(A|p) = v choose one with corresponding

column margins c′′j =
∑m
i=p+1Aij , for j ∈ [k] = D, that has the minimum number of pairs j < k

such that cj > ck and c′′j < c′′k . Let A denote this matrix. If the number of such pairs is 0 then

c′′ = c′ and we are done as A has the correspondence c′. Instead, suppose that there is at least one

119



CHAPTER 3. SAMPLING CONTINGENCY TABLES

such pair j < k. We will demonstrate a matrix with fewer such pairs than A. That is a contradiction,

hence c′′ = c′.

Let x and y be the jth and kth columns of A. The setting is
∑m
i=p+1 xi = c′′j ,

∑m
i=p+1 yi =

c′′k , c′′j < c′′k , and cj > ck. Thus there exist at least c′′k − c′′j rows i > p such that xi = 0 and yi = 1.

There also exist

(cj − c′′j )− (ck − c′′k) ≥ (ck − c′′j )− (ck − c′′k) = c′′k − c′′j

rows i ≤ p such that xi = 1 and yi = 0. Thus we can form a new matrix by moving c′′k − c′′j 1s from

x to y among rows 1, 2, . . . , p and c′′k − c′′j 1s from y to x among rows p + 1, . . . ,m. The resulting

matrix is obviously binary and the row and column margins are unchanged. However, it has at least

one fewer inverted pair.

Theorem 54. For constant d, the table W can be computed in O(pnd+1(m2n+mn2)+p2n2d+4 log2m)

time, assuming O(1) time access to its entries.

Proof. We determine the set L̃i, for i = 1, . . . , p, as a preprocessing step. It takes O(m2n + mn2)

operations to test whether v ∈ L̃i. There are O(pnd+1) pairs to be tested, hence the total time to

determine the sets L̃i is O(pnd+1(m2n+mn2)).

The table T can be computed in O(mn) time as a preprocessing step. Computing each

term on the right hand side of the recursion (3.13) requires O(1) multiplications, so the total time

O(p2n2 log2m). The sum has O(nd+1) terms, so it takes O(p2nd+3 log2m) operations to compute

Wi,v once Wi−1,v′ is known for all v′ ∈ L̃i−1. The entire table includes O(pnd+1) values, hence the

total time to compute W once L̃i is known for i ∈ [p] is O(p3n2d+4 log2m). Thus the total time to

compute the table is O(pnd+1(m2n+mn2) + p2n2d+4 log2m).

3.7.6 Review

There have been lots of technical details, so lets review the basic ideas. We started by separating

the matrices into two parts, the top p rows and the bottom m − p rows. By sampling the top p
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rows according to a carefully chosen probability distribution we are able to complete the matrix

by sampling the bottom m − p rows from the Configuration Model. Conditionally given that the

outcome is a binary matrix we are left with a sample from Σr,c. If the matrix is not binary, then we

must start over with a fresh attempt at sampling.

To make the first stage of the sampling run efficiently we created an approximate dynamic

programming algorithm. It allowed us to decrease the time complexity of the sampling and initial-

ization procedures (by choosing d to be smaller) at the cost of increasing the rejection probability.

The extra rejection step was necessary to correct the sampling distribution for the approximation.

In comparison to Miller and Harrison’s dynamic programming, the run time is fixed by the user’s

choice of d, rather than exponential in the maximum column sum. Versus the configuration model,

we expect a lower rejection probability over all. However, this is not entirely clear because of the

impact of the added rejection step. Against the polynomial time approximately uniform simulated

annealing sampler of Bezáková, Bhatnagar, and Vigoda [17] the asymptotic order of our running

time is only faster for d ≤ 3. On the other hand, samples from this hybrid algorithm are perfectly

uniform rather than approximately so.
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Chapter 4

Combinatorial interdiction

4.1 Introduction

One way to understand the robustness of a system is to evaluate attack strategies. This naturally

leads to interdiction problems; broadly, one is given a set of feasible solutions, along with some

rules and a budget for modifying the set, with the goal of inhibiting the solution to an underlying

nominal optimization problem. A prominent example that nicely highlights the nature of interdiction

problems is maximum flow interdiction. Here, the nominal problem is a maximum s-t flow problem.

Given is a directed graph G = (V,A) with arc capacities u : A → Z>0, a source s ∈ V and sink

t ∈ V \ {s}. Furthermore, each arc has an interdiction cost c : A → Z>0, and there is a global

interdiction budget B ∈ Z>0. The goal is to find a subset of arcs R ⊆ A whose cost does not exceed

the interdiction budget, i.e., c(R) :=
∑
a∈R c(a) ≤ B, such that the value of a maximum s-t flow

in the graph (V,A \ R) obtained from G by removing R is as small as possible. In particular, if

the value of a maximum s-t flow in G = (V,E) is denoted by ν((V,E)), then we can formalize the
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problem as follows

min
R⊆A:c(R)≤B

ν((V,E \R)).

A set R ⊆ A with c(R) ≤ B is often called an interdiction or removal set. Similarly, one can define

interdiction problems for almost any underlying nominal optimization problem.

Interdiction is of practical interest for evaluating robustness and developing attack strate-

gies. Indeed, even the discovery of the famous Max-Flow/Min-Cut Theorem was motivated by a

Cold War plan to interdict the Soviet rail network in Eastern Europe [92]. Interdiction has also

been studied to find cost-effective strategies to prevent the spread of infection in a hospital [6], to

determine how to inhibit the distribution of illegal drugs [96], to prevent nuclear arms smuggling [86],

and for infrastructure protection [91, 35], just to name a few applications.

A significant effort has been dedicated to understanding interdiction problems. The list

of optimization problems for which interdiction variants have been studied includes maximum

flow [95, 96, 88, 100], minimum spanning tree [43], shortest path [9, 71], connectivity of a graph [101],

matching [99, 87], matroid rank [64, 66], stable set [13], several variants of facility location [35, 14],

and more.

Although one can generate new interdiction problems mechanically from existing optimiza-

tion problems, there are few general techniques for their solution. The lack of strong exact algorithms

for interdiction problems in not surprising in light of the fact that almost all known interdiction

problems are NP-hard. However, it is intriguing how little is known about the approximability

of interdiction problems. In the context of interdiction problems, the design of approximation al-

gorithms is of particular interest since it often allows accurate estimation of at least the order of

magnitude of a potential worst-case impact, which turns out to be a nontrivial task in this context.

Polynomial-time approximation schemes (PTASs) are primarily known only when assuming partic-

ular graph structures or other special cases. In particular, for planar graphs PTASs have been found

for network flow interdiction [88, 100] and matching interdiction [87]. Furthermore, PTASs based
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on pseudopolynomial algorithms have been obtained for some interdiction problems on graphs with

bounded treewidth [99, 13]. Connectivity interdiction is a rare exception where a PTAS is known

without any further restrictions on the graph structure [101]. Furthermore, O(1)-approximations are

known for interdicting matchings and more generally for some packing interdiction problems [99, 41].

However, for almost all classical polynomial-time solvable combinatorial optimization problems, like

minimum spanning tree, shortest path, maximum flows and maximum matchings, there is a con-

siderable gap between the approximation quality of the best known interdiction algorithm and the

currently strongest hardness result. In particular, among the above-mentioned problems, only the

interdiction of shortest s-t paths is known to be APX-hard, and matching interdiction is the only

one among these problems for which an O(1)-approximation is known. The best known algorithm

for minimum spanning tree interdiction is a O(log n)-approximation [43], where n is the number

of vertices in the graph. For network flow interdiction, no approximation results are known, even

though only strong NP-hardness is known from a complexity point of view.

Burch et al. [26] decided to go for a different approach to attack the network flow interdiction

problem, leading to the currently best known solution guarantee obtainable in polynomial time.

Their algorithm solves a linear programming (LP) relaxation to find a fractional interdiction set

that lies on an edge of an integral polytope. It is guaranteed that, for any α > 0, one of the vertices

on that edge is either a budget feasible (1 + α)-approximate solution or a super-optimal solution

that overruns the budget by at most a factor of 1 + 1/α. However, one cannot predetermine which

objective is approximated and the choice of α biases the outcome. For simplicity we call such an

algorithm a 2-pseudoapproximation since, in particular, by choosing α = 1 one either gets a 2-

approximation or a super-optimal solution using at most twice the budget. In this context, it is

also common to use the notion of a (σ, τ)-approximate solution, for σ, τ ≥ 1. This is a solution that

violates the budged constraint by a factor of at most τ , and has a value that is at most a factor of

σ larger than the value of an optimal solution, which is not allowed to violate the budget. Hence, a

2-pseudoapproximation is an algorithm that, for any α > 0, either returns a (1 + α, 1)-approximate
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solution or a (1, 1 + 1/α)-approximate solution.

The main result of this chapter is a general technique to get 2-pseudoapproximations for a

wide set of interdiction problems. To apply our technique we need three conditions on the nomial

problem we want to interdict. First, we need to have an LP description of the nomial problem that

has a well-structured dual. In particular box-total dual integrality (box-TDI) is sufficient. The pre-

cise conditions are described in Section 4.2. Second, the LP description of the nomial problem is a

maximization problem whose objective vector only has {0, 1}-coefficients. Third, the LP description

of the nomial problem fulfills a down-closedness property, which we call w-down-closedness. This

third condition is fulfilled by all independence systems, i.e., problems where a subset of a feasible

solution is also feasible, like forests, and further problems like maximum s-t flows. Again, a precise

description is given in Section 4.2. In particular, our framework leads to 2-pseudoapproximations

for the interdiction of any problem that asks to find a maximum cardinality set in an independence

system for which a box-TDI description exists. This includes maximum cardinality independent set

in a matroid, maximum cardinality common independent set in two matroids, b-stable sets in bi-

partite graphs, and more. Furthermore, our conditions also include the maximum s-t flow problem,

thus implying the result of Burch et al. [26], even though s-t flows do not form an independence

system. Apart from its generality, our approach has further advantages. When interdicting inde-

pendent sets of a matroid, we can even handle general nonnegative objective functions, instead of

only {0, 1}-objectives. This is obtained by a reformulation of the weighted problem to a {0, 1}-

objective problem over a polymatroid. Also, we can get a 2-pseudoapproximation for interdicting

maximum weight independent sets in a matroid with submodular interdiction costs. Submodular

interdiction costs allow for modeling economies of scale when interdicting. More precisely, the cost

of interdicting an additional element is the smaller the more elements will be interdicted. Addi-

tionally, our approach can sometimes be refined by exploiting additional structural properties of the

underlying optimization problem to obtain stronger results. We demonstrate this by presenting a

PTAS for interdicting b-stable sets in bipartite graphs, which is an NP-hard problem. We complete
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the discussion of b-stable set interdiction in bipartite graphs by showing that interdicting classical

stable sets in bipartite graphs, which are 1-stable sets, can be done efficiently by a reduction to

matroid intersection. This generalizes a result by Bazgan, Toubaline and Tuza [13] who showed that

interdiction of stable sets in a bipartite graph is easy if all interdiction costs are one.

Organization of the chapter

In Section 4.2, we formally describe the class of interdiction problems we consider, together with

the technical assumptions required by our approach, to obtain a 2-pseudoapproximation. Further-

more, Section 4.2 also contains a formal description of our results. Our general approach to obtain

2-pseudoapproximations for a large set of interdiction problems is described in Section 4.3. In Sec-

tion 4.4 we show how, in the context of interdicting independent sets in a matroid, our approach

allows for getting a 2-approximation for general nonnegative weights and submodular interdiction

costs. Section 4.5 shows how our approach can be refined for the interdiction of b-stable set inter-

diction in bipartite graphs to obtain a PTAS. Furthermore, we also present an efficient algorithm

for stable set interdiction in bipartite graphs in Section 4.5.

4.2 Problem setting and results

We assume that feasible solutions to the nominal problem, like matchings or s-t flows, can be

described as follows. There is a finite set N , and the feasible solutions can be described by a

bounded and nonempty set X ⊆ RN≥0 such that conv(X ) is an integral polytope1. For example, for

matchings we can choose N to be the edges of the given graph G = (V,E), and X ⊆ {0, 1}E are all

characteristic vectors of matchings M ⊆ E in G. Similarly, consider the maximum s-t flow problem

on a directed graph G = (V,A), with edge capacities u : A→ Z>0. Here, we can choose N = A and

X ⊆ RN≥0 contains all vectors f ∈ RN≥0 that correspond to s-t flows.

1The discussion that follows also works for feasible sets X such that conv(X ) is not integral. However, integrality
of X simplifies parts of our discussion and is used to show that our 2-pseudoapproximation is efficient. Furthermore,
all problems we consider naturally have the property that conv(X ) is integral.
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Furthermore, the nominal problem should be possible to solve by maximizing a linear

function w over X . For the case of maximum cardinality matchings one can maximize the linear

function with all coefficients being equal to 1. Finally, we assume that we interdict elements of the

ground set N , and the interdiction problem can be described by the following min-max mathematical

optimization problem:

min
R⊆N :
c(R)≤B

max wTx

x ∈ X

x(e) = 0 ∀e ∈ R,

(4.1)

where c : N → Z>0 are interdiction costs on N , and B ∈ Z>0 is the interdiction budget. It is

instructive to consider matching interdiction where one can choose N to be all edges and X ⊆ {0, 1}N

the characteristic vectors of matchings. Imposing x(e) = 0 then enforces that one has to choose a

matching that does not contain the edge e which, as desired, corresponds to interdicting e.

Notice that the above way of describing interdiction problems is very general. In particular,

it contains a large set of classical combinatorial interdiction problems, like interdicting maximum s-t

flows, maximum matchings, maximum cardinality stable sets of a graph, maximum weight forest, and

more generally, maximum weight independent set in a matroid or the intersection of two matroids.

Our framework for designing 2-pseudoapproximations for interdiction problems of type (4.1)

requires the following three properties, on which we will expand in the following:

1. The objective vector w is a {0, 1}-vector, i.e., w ∈ {0, 1}N ,

2. the feasible set X is w-down-closed, which is a weaker form of down-closedness that we intro-

duce below, and

3. there is a linear description of the convex hull conv(X ) of X which is box-w-DI solvable. This is

a weaker form of being box-TDI equipped with an oracle that returns an integral dual solution

to box-constrained linear programs over the description of conv(X ).

In the following we formally define the second and third condition, by giving precise def-
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initions of w-down-closedness and box-w-DI solvability. In particular, condition (3), i.e., box-w-DI

solvability, describes how we can access the nominal problem.

4.2.1 w-down-closedness

The notion of w-down-closedness is a weaker form of down-closedness. We recall that a set X ⊆ RN≥0

is down-closed if for any x ∈ X and y ∈ RN≥0 with y ≤ x (componentwise), we have y ∈ X . Contrary

to the usual notion of down-closedness, w-down-closedness depends on the {0, 1}-objective vector w.

Definition 55 (w-down-closedness). Let w ∈ {0, 1}N . X ⊆ RN≥0 is w-down-closed if for every x ∈ X

and e ∈ N with x(e) > 0, there exists x′ ≤ x such that the following conditions hold:

1. x′ ∈ X ;

2. x′(e) = 0;

3. wTx′ ≥ wTx− x(e).

Notice that if X ⊆ RN≥0 is down-closed, then it is w-down-closed for any w ∈ {0, 1}N ,

since one can define x′ ∈ X in the above definition by x′(f) = x(f) for f ∈ N \ {e} and x′(e) = 0.

Similarly, w-down-closedness also includes all independence systems. We recall that an independence

system over a ground set N is a family F ⊆ 2N of subsets of N such that for any I ∈ F and J ⊆ I,

we have J ∈ F . In other words, it is closed under taking subsets. Typical examples of independence

systems include matchings, forests and stable sets. Naturally, an independence system F ⊆ 2N can

be represented in RN≥0 by its characteristic vectors, i.e., X = {χI | I ∈ F}, where χI ∈ {0, 1}N

denotes the characteristic vector of I. Clearly, for the same reasons as for down-closed sets, the set

X of characteristic vectors of any independence system is w-down-closed for any w ∈ {0, 1}N .

Hence, many natural combinatorial optimization problems are w-down-closed for any w ∈

{0, 1}N , including matchings, stable sets, independent sets in a matroid or the intersection of two

matroids. Furthermore, w-down-closedness also captures the maximum s-t flow problem.

Example 56 (w-down-closedness of s-t flow polytope). Let G = (V,A) be a directed graph with
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two distinct vertices s, t ∈ V and arc capacities u : A → Z>0. Furthermore, we assume that there

are no arcs entering the source s, since such arcs can be deleted when seeking maximum s-t flows.

The s-t flow polytope X ⊆ RA≥0 can then be described as follows (see, e.g., [73]):

X =
{
x ∈ RA≥0 | x(δ+(v))− x(δ−(v)) = 0 ∀v ∈ V \ {s, t}

}
,

where δ+(v), δ−(v) denote the set of arcs going out of v and entering v, respectively; furthermore,

x(U) :=
∑
a∈U x(a) for U ⊆ A. A maximum s-t flow can be found by maximizing the linear function

wTx over X , where w = χδ
+(s), i.e., w ∈ {0, 1}A has a 1-entry for each arc a ∈ δ+(s), and 0-entries

for all other arcs. This maximizes the total outflow of s. Notice that the value of a flow x ∈ X is

equal to x(δ+(s))− x(δ−(s)) = x(δ+(s)), since there are no arcs entering s; this is indeed the total

outflow of s.

To see that X is w-down-closed, let x ∈ X and e ∈ A, and we construct x′ ∈ X satisfying the

conditions of Definition 55 as follows. We compute a path-decomposition of x with few terms. This

is a family of s-t paths P1, . . . , Pk ⊆ A with k ≤ |A| together with positive coefficients λ1, . . . , λk > 0

such that x =
∑k
i=1 λiχ

Pi (see [2] for more details). Let I = {i ∈ [k] | e ∈ Pi}, where [k] :=

{1, . . . , k}, and we set x′ =
∑
i∈[k]\I λiχ

Pi . The flow x′ ∈ X indeed satisfies the conditions of

Definition 55. This follows from the fact that x(e) =
∑
i∈I λi, and each path Pi contains precisely

one arc of δ+(s), hence, x′(δ+(s)) = x(δ+(s))−
∑
i∈I λi.

Furthermore, notice that a non-empty w-down-closed system X always contains the zero

vector, independent of w ∈ {0, 1}N . By w-down-closedness we can go through all elements e ∈ N

one-by-one, and replace x by a vector x′ ∈ X with x′(e) = 0, thus proving that the zero vector is in

X .
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4.2.2 box-w-DI solvability

To obtain 2-pseudoapproximations for interdiction problems of type (4.1), we additionally need to

have a good description of the convex hull conv(X ) of X . The type of description we need is a

weaker form of box-TDI-ness together with an efficient optimization oracle for the dual that returns

integral solutions, which we call box-w-DI solvability, where “DI” stands for ‘dual integral”.

Definition 57 (box-w-DI solvability). A description {x ∈ RN | Ax ≤ b, x ≥ 0} of a nonempty

polytope P is box-w-DI solvable for some vector w ∈ {0, 1}N if the following conditions hold:

1. For any vector u ∈ RN≥0, the following linear program has an integral dual solution if it is

feasible:

max wTx

Ax ≤ b

x ≤ u

x ≥ 0

(4.2)

Notice that the dual of the above LP is the following LP:

min bT y + uT r

AT y + r ≥ w

y ≥ 0

r ≥ 0

(4.3)

2. For any u ∈ RN≥0, one can decide in polynomial time whether (4.2) is feasible. Furthermore,

if (4.2) is feasible, one can efficiently compute its objective value and an integral vector r ∈ ZN≥0

that corresponds to an optimal integral solution to (4.3), i.e., there exists an integral vector y

such that y, r is an integral optimal solution to (4.3).

We emphasize that box-w-DI solvability does not assume that the full system Ax ≤ b, x ≥ 0

is given as input. In particular, this is useful when dealing with combinatorial problems whose
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feasible set X ⊆ RN≥0 is such that the polytope conv(X ) has an exponential number of facets, and a

description of conv(X ) therefore needs an exponential number of constraints2. Since the only access

to X that we need is an oracle returning an optimal integral dual solution to (4.3), we can typically

deal with such cases if we have an implicit description of the system Ax ≤ b, x ≥ 0 over which we

can separate with a separation oracle.

Furthermore, notice that condition (1) of box-w-DI solvability is a weaker form of box-

TDIness due to two reasons. First, our objective vector w ∈ {0, 1}N is fixed, whereas in box-

TDIness, dual integrality has to hold for any integral objective vector. Second, when dealing with

box-TDIness, one can additionally add lower bounds x ≥ ` on x in (4.2), still getting a linear

program with an optimal integral dual solution.

For all problems we discuss here, we even have box-TDI descriptions. The only additional

property needed for a box-TDI system to be box-w-DI solvable, is that one can efficiently find an

optimal integral dual solution. However, such procedures are known for essentially all classical box-

TDI systems. In particular, this applies to the classical polyhedral descriptions of the independent

sets of a matroid or the intersection of two matroids, stable sets in bipartite graphs, s-t flows, and any

problem whose constraint matrix can be chosen to be totally unimodular (TU) and of polynomial

size.

Since our only access to the feasible set is via the oracle guaranteed by box-w-DI solvability,

we have to be clear about what we consider to be the input size when talking about polynomial

time algorithms. In addition to the binary encodings of B, c, we also assume that the binary

encodings of the optimal value of (4.3) and the integral optimal vector r ∈ ZN≥0 returned by the

box-w-DI oracle are part of the input size. This implies that in particular, the binary encoding of

ν∗ = max{wTx | Ax ≤ b, x ≥ 0} is part of the input size.

2In some cases one can get around this problem by using an extended formulation. This is a lifting of a polytope
in a higher dimension with the goal to obtain a lifted polytope with an inequality description of only polynomial size
(see [67, 36]).
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4.2.3 Our results

The following theorem summarizes our main result for obtaining 2-pseudoapproximations.

Theorem 58. There is an efficient 2-pseudoapproximation for any interdiction problem of type (4.1)

if the following conditions are satisfied:

1. The objective function w is a {0, 1}-vector, i.e., w ∈ {0, 1}N ,

2. the description of the feasible set X ⊆ RN is w-down-closed, and

3. there is a box-w-DI solvable description of conv(X ).

Using well-known box-TDI description of classical combinatorial optimization problems (see [93]),

Theorem 58 leads to 2-pseudoapproximations for the interdiction of many combinatorial optimization

problems.

Corollary 59. There is a 2-pseudoapproximation for interdicting maximum cardinality independent

sets of a matroid or the intersection of two matroids, and maximum s-t flows. Furthermore, there

is a 2-pseudoapproximation for all problems where a maximum cardinality set has to be found with

respect to down-closed constraints captured by a TU matrix. For example, this includes maximum

b-stable sets in bipartite graphs.

We recall that for the maximum s-t flow problem, a 2-pseudoapproximation was already

known due to Burch et al. [26].

Furthermore, for interdicting independent sets of a matroid we obtain stronger results by

leveraging the strong combinatorial structure of matroids to adapt our approach. Consider a matroid

M = (N, I) on ground set N with independent sets I ⊆ 2N . We recall the definition of a matroid,

which requires I to be a nonempty set such that: (i) I is an independence system, i.e., I ∈ I and

J ⊆ I implies J ∈ I, and (ii) for any I, J ∈ I with |I| < |J |, there exists e ∈ J \ I such that

I ∪ {e} ∈ I. We typically assume that a matroid is given by an independence oracle, which is an
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oracle that, for any I ⊆ N , returns whether I ∈ I or not. See [93, Volume B] for more information

on matroids.

For matroids, we can get a 2-pseudoapproximation even for arbitrary nonnegative weight

functions w, i.e., for interdicting the maximum weight independent set of a matroid. Furthermore,

we can also handle monotone nonnegative submodular interdiction costs c. A submodular function

c defined on a ground set N , is a function c : 2N → R≥0 that assigns a nonnegative value c(S) to

each set S ⊆ N and fulfills the following property of economies of scale:

c(A ∪ {e})− c(A) ≥ c(B ∪ {e})− c(B) A ⊆ B ⊆ N, e ∈ N \B.

In words, the marginal cost of interdicting an element is lower when more elements will be interdicted.

Economies of scale can often be a natural property in interdiction problems. It allows for modeling

dependencies that are sometimes called cascading failures or chain-reactions, depending on the

context. More precisely, it may be that the interdiction of a set of elements S ⊆ N will render

another element e ∈ N unusable. This can be described by a submodular interdiction cost c which

assigns a marginal cost of 0 to the element e, once all elements of S have been removed. Still,

removing only e may have a strictly positive interdiction cost. Such effects cannot be captured with

linear interdiction costs. A submodular function c : 2N → R≥0 is called monotone if c(A) ≤ c(B)

for A ⊆ B ⊆ N . We typically assume that a submodular function f is given through a value oracle,

which is an oracle that, for any set S ⊆ N , returns f(S).

Theorem 60. There is an efficient 2-pseudoapproximation to interdict the problem of finding a

maximum weight independent set in a matroid, with monotone nonnegative submodular interdiction

costs. The following is a formal description of this interdiction problem:

min
R
{max

I
{w(I) | I ∈ I, I ∩R = ∅} | R ⊆ N, c(R) ≤ B},
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where c : 2N → R≥0 is a monotone nonegative submodular function, and w ∈ ZN≥0
3. The matroid

is given through an independence oracle and the submodular cost function c through a value oracle.

Finally, we show that our approach can sometimes be refined to obtain stronger approxima-

tion guarantees. We illustrate this on the interdiction version of the b-stable set problem in bipartite

graphs. Here, a bipartite graph G = (V,E) with bipartition V = I ∪ J , and a vector b ∈ ZE>0 is

given. A b-stable set in G is a vector x ∈ ZV≥0 such that x(i) +x(j) ≤ b({i, j}) for {i, j} ∈ E. Hence,

by choosing b to be the all-ones vector, we obtain the classical stable set problem. Because it can be

formulated as a linear program with TU constraints, finding a maximum cardinality b-stable set in a

bipartite graph is efficiently solvable. However, its interdiction version is easily seen to be NP-hard,

by a reduction from the knapsack problem. Exploiting the adjacency properties of a polytope that

is crucial in our analysis we can even get a true approximation algorithm, which does not violate

the budget. More precisely, we obtain a polynomial-time approximation scheme (PTAS), which is

an algorithm that, for any ε > 0, computes efficiently an interdiction set leading to a value of at

most 1− ε times the optimal value.

Theorem 61. There is a PTAS for the interdiction of b-stable sets in bipartite graphs.

We complete this discussion of interdicting b-stable sets in bipartite graphs by showing

that the special case of interdicting stable sets in bipartite graph, i.e., b = 1, is efficiently solvable.

This is done through a reduction to a polynomial number of efficiently solvable matroid intersection

problems.

Theorem 62. The problem of interdicting the maximum cardinality stable set in a bipartite graph

can be solved efficiently.

The above theorem generalizes a result by Bazgan, Toubaline and Tuza [13] who showed

that interdiction of stable sets in bipartite graphs can be done efficiently when all interdiction costs

are one. Our result applies to arbitrary interdiction costs.

3Notice that the integrality requirement for w is not restrictive. Any w ∈ QN
≥0 can be scaled up to an integral

weight vector without changing the problem.
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4.3 General approach to obtain 2-pseudoapproximations

Consider an interdiction problem that fulfills the conditions of Theorem 58. As usual, let N be the

ground set of our problem, w ∈ {0, 1}N be the objective vector, and we denote by X ⊆ RN≥0 the set

of feasible solutions. Furthermore, let {x ∈ RN | Ax ≤ b, x ≥ 0} = conv(X ) be a box-w-DI solvable

description of conv(X ). We denote by m the number of rows of A.

One key ingredient in our approach is to model interdiction as a modification of the objective

instead of a restriction of sets that can be chosen. This is possible due to w-down-closedness. More

precisely, we replace the description of the interdiction problem given by (4.1) with the following

min-max problem.

min
r

max
x

(w − r)Tx

Ax ≤ b

x ≥ 0

cT r ≤ B

r ∈ {0, 1}N

(4.4)

We start by showing that (4.1) and (4.4) are equivalent in the following sense. For any

interdiction set R ⊆ N , let

φ(R) : = max{wTx | x ∈ conv(X ), x(e) = 0 ∀e ∈ R}

= max{wTx | Ax ≤ b, x ≥ 0, x(e) = 0 ∀e ∈ R}.

Hence, φ(R) is the value of the problem (4.1) for a fixed set R. Similarly, we define for any charac-
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teristic vector r ∈ {0, 1}N of an interdiction set

ψ(r) : = max{(w − r)Tx | x ∈ conv(X )}

= max{(w − r)Tx | Ax ≤ b, x ≥ 0}.

Thus, ψ(r) is the value of (4.4) for a fixed vector r ∈ {0, 1}N .

Lemma 63. For every interdiction set R ⊆ N , we have φ(R) = ψ(χR). In particular, this implies

that (4.1) and (4.4) have the same optimal value, and optimal interdiction sets R to (4.1) correspond

to optimal characteristic vectors χR to (4.4) and vice versa.

We show Lemma 63 based on another lemma stated below that highlights an important

consequence of w-down-closedness, which we will use later again.

Lemma 64. Let r ∈ RN≥0 and U = {e ∈ N | r(e) ≥ 1}. Then there exists x ∈ RN≥0 with x(e) =

0 ∀e ∈ U , such that x is an optimal solution to the following linear program.

max
x

(w − r)Tx

Ax ≤ b

x ≥ 0

(4.5)

Proof. Among all optimal solutions to the above linear program, let x∗ be one that minimizes x∗(U).

Notice that x∗ can be chosen to be a vertex of conv(X ) = {x ∈ RN | Ax ≤ b, x ≥ 0}, since x∗ can

be obtained by minimizing the objective χU over the face of all optimal solutions to the above LP.

We have to show x∗(U) = 0. Assume for the sake of contradiction that there is an element e ∈ U

such that x∗(e) > 0. Since x∗ is a vertex of conv(X ), we have x∗ ∈ X . By w-down-closedness of X ,
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there is a vector x′ ∈ X with x′ ≤ x∗, x′(e) = 0, and wTx′ ≥ wTx∗ − x∗(e). We thus obtain

(w − r)Tx′ ≥ wTx∗ − x∗(e)− rTx′

≥ wTx∗ − x∗(e)− (rTx∗ − x∗(e))

= (w − r)Tx∗,

where in the second inequality we used rTx′ ≤ rTx∗ − x∗(e), which follows from x′ ≤ x∗ together

with x′(e) = 0 and r(e) ≥ 1. Hence, x′ is an optimal solution to the LP with x′(U) < x∗(U), which

violates the definition of x∗ and thus finishes the proof.

Proof of Lemma 63. Let R ⊆ N be an interdiction set, and r = χR its characteristic vector. Let

x ∈ X be an optimal solution to the maximization problem defining φ(R), i.e., wTx = φ(R) and

x(e) = 0 ∀e ∈ R. We have

ψ(r) ≥ (w − r)Tx = wTx = φ(R),

where the first equality follows from x(e) = 0 for e ∈ R. Hence, ψ(r) ≥ φ(R).

Conversely, let x ∈ conv(X ) be an optimal solution to the maximization problem defining

ψ(r), i.e., ψ(r) = (w − r)Tx. By Lemma 64, x can be chosen such that rTx = x(R) = 0. Hence,

ψ(r) = (w − r)Tx = wTx ≤ φ(R),

and thus φ(R) = ψ(r).

Hence, (4.4) is an alternative description of the interdiction problem (4.1) in which we are
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interested. In a next step we relax the integrality of r to obtain the following mathematical program.

min
r∈Rn

max
x∈Rn

(w − r)Tx

Ax ≤ b

x ≥ 0

cT r ≤ B

1 ≥ r ≥ 0

(4.6)

As we will show next, the constraint 1 ≥ r can be dropped due to w-down-closedness without

changing the objective. This leads to the following problem.

min
r∈Rn

max
x∈Rn

(w − r)Tx

Ax ≤ b

x ≥ 0

cT r ≤ B

r ≥ 0

(4.7)

The following lemma not only highlights that the objective values of (4.6) and (4.7) match, but also

that any optimal interdiction vector r of (4.7) can easily be transformed to an optimal interdiction

vector of (4.6). Thus, we can restrict ourselves to (4.7). We recall that ψ(r) corresponds to the

inner maximization problem of both (4.6) and (4.7) for a fixed vector r.

Lemma 65. We have

ψ(r) = ψ(r ∧ 1) ∀r ∈ RN≥0,

where r∧ 1 is the component-wise minimum between r and the all-ones vector 1 ∈ RN . This implies

that (4.6) and (4.7) have the same optimal value, and if r is optimal for (4.7) then r ∧ 1 is optimal

for (4.6).

Proof. Let r ∈ RN≥0 and consider the maximization problem that defines ψ(r), which is the same as

138



CHAPTER 4. COMBINATORIAL INTERDICTION

the linear program desribed by (4.5). Furthermore, let r′ = r ∧ 1, and let U = {e ∈ N | r(e) ≥ 1}.

In particular, r and r′ are identical on N \ U . We clearly have ψ(r′) ≥ ψ(r) by monotonicity of ψ.

Therefore only ψ(r′) ≤ ψ(r) has to be shown.

By Lemma 64, there exists an optimal vector x to the maximization problem defining ψ(r′)

that satisfies x(e) = 0 ∀e ∈ U . Furthermore, by using that r and r′ are identical on N \U we obtain

ψ(r′) = (w − r′)Tx

= wTx−
∑

e∈N\U

r′(e)x(e)−
∑
e∈U

r′(e)x(e)

= wTx−
∑

e∈N\U

r(e)x(e)−
∑
e∈U

r′(e)x(e) (r and r′ are identical on N \ U)

= wTx−
∑

e∈N\U

r(e)x(e)−
∑
e∈U

r(e)x(e) (x(e) = 0 for e ∈ U)

= (w − r)Tx

≤ ψ(r),

as desired.

Interestingly, problem (4.7) has already been studied in a different context. It can be

interpreted as the problem to inhibit a linear optimization problem by a continuous and limited

change of the objective vector w. In particular, Frederickson and Solis-Oba [43, 44] presented efficient

algorithms to solve this problem when the underlying combinatorial problem is the maximum weight

independent set problem in a matroid. Jüttner [66] presents efficient procedures for polymatroid

intersection and minimum cost circulation problem. Also, Jüttner provides an excellent discussion

how such problems can be solved efficiently using parametric search techniques.

However, our final goal is quite different from their setting since, eventually, we need to find

a {0, 1}-vector r. This difference is underlined by the fact that without integrality, problem (4.7)

can often be solved efficiently, whereas the interdiction problems we consider are NP-hard.
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Still, we continue to further simplify (4.7) in a similar way as it was done by Jüttner [66].

For a fixed r, the inner maximization problem in (4.7) is a linear program with a finite optimum, since

X is bounded and nonempty by assumption, and therefore also conv(X ) = {x ∈ RN | Ax ≤ b, x ≥ 0}

is bounded and nonempty. Hence, we can leverage strong duality to dualize the inner maximization

into a minimization problem. We thus end up with a problem where we first minimize over r and

then over the dual variables, which we can rewrite as a single minimization, thus obtaining the

following LP.

min bT y

AT y + r ≥ w

y ≥ 0

cT r ≤ B

r ≥ 0

(4.8)

Hence, by strong duality, the optimal value of (4.8) is the same as the optimal value of (4.7). This

reduction also shows why problem (4.7), which has no integrality constraints on r, can often be

solved efficiently; This can often be achieved by obtaining an optimal vector r ∈ RN≥0 by solving the

LP (4.8) with standard linear programming techniques.

What we will do in the following is to show that there is an optimal solution (r, y) for (4.7)

which can be written as a convex combination of two integral solutions (r1, y1) and (r2, y2) that

may violate the budget constraint. Similar to a reasoning used in Burch et al. [26] this then implies

than one of r1 and r2 is a 2-pseudoapproximation.

To compute r1 and r2, we move the constraint cT r ≤ B in (4.8) into the objective via

Lagrangian duality, by introducing a multiplier λ ≥ 0 (see [22] for more details). We do this in two

steps to highlight that the resulting Lagrangian dual problem can be solved via the oracle guaranteed

by box-w-DI solvability. First, we dualize (4.8) to the obtain the following linear program, which is

nicely structured in the sense that for any fixed λ ≥ 0, it corresponds to optimizing a linear function
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over conv(X ) with upper box constraints.

max wT z − λB

Az ≤ b

z − λc ≤ 0

z ≥ 0

λ ≥ 0

(4.9)

Consider the above LP as a problem parameterized by λ ≥ 0. Since {x ∈ RN | Ax ≤ b, x ≥

0} is box-w-DI solvable, the LP obtained from (4.9) by fixing λ ≥ 0 has an optimal integral dual

solution. Furthermore, such an optimal integral dual solution can be found efficiently by box-w-DI

solvability. The dual problem of (4.9) for a fixed λ ≥ 0 is the problem LP(λ) below with optimal

objective value L(λ).

L(λ) = min bT y − λ(B − cT r)

AT y + r ≥ w

y ≥ 0

r ≥ 0

(LP(λ))

Notice that LP(λ) is indeed the problem obtained from (4.8) by moving the constraint cT r ≤ B into

the objective using λ as Lagrangian multiplier.

The following lemma summarizes the relationships between the different problems we in-

troduced.

Lemma 66. The optimal values of (4.6), (4.7), (4.8), (4.9) are all the same and equal to maxλ≥0 L(λ).

Furthermore, the common optimal value of the above-mentioned problems are a lower bound

to OPT, the optimal value of the considered interdiction problem (4.1).

Proof. Problem (4.6) and (4.7) have identical optimal values due to Lemma 65. The LP (4.8) was

obtained from (4.7) by dualizing the inner maximization problem. Both problems have the same

optimal value due to strong duality, which holds since conv(X ) = {x ∈ RN | Ax ≤ b, x ≥ 0} is a
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nonempty polytope and thus, the inner maximization problem of (4.7) has a finite optimum value

for any r ∈ Rn. This also shows that the optimum value of (4.7), and hence also of (4.8) and

(4.6), is finite. Problems (4.9) and (4.8) are a primal-dual pair of linear programs. For this pair

of LPs, strong duality holds because (4.8), and therefore also (4.9), has a finite optimum value.

Finally max≥0 L(λ) is the same as the optimum value of (4.8) by Lagrangian duality.

It remains to observe that the optimal value of the above problems is a lower bound to

OPT. We recall that by Lemma 63, problem (4.4) is a rephrasing of the original interdiction

problem (4.1), and thus also has optimal value OPT. Finally, (4.6) is obtained from (4.4) by

relaxation the integrality condition on r. Thus, the optimum value of (4.6)—which is also the

optimum value of (4.7), (4.8), (4.9) and maxλ≥0 L(λ)—is less or equal to OPT, as claimed.

The following theorem shows that we can efficiently compute an optimal dual multiplier

λ∗ together with two integral vectors r1, r2 that are optimal solutions to LP (λ∗), one of which will

turn out to be a 2-pseudoapproximation to the considered interdiction problem (4.1).

Theorem 67. There is an efficient algorithm to compute a maximizer λ∗ of maxλ≥0 L(λ), and two

vectors r1, r2 ∈ ZN≥0 such that:

1. ∃ integral y1, y2 ∈ Zm such that both (r1, y1) and (r2, y2) are optimal solutions to LP (λ∗).

2. cT r1 ≥ B ≥ cT r2.

Before proving Theorem 67, we show that it implies our main result, Theorem 58.

Theorem 68. Let λ∗ be a maximizer of maxλ≥0 L(λ), let (r1, y1), (r2, y2) be two optimal solutions

to LP (λ∗) with cT r1 ≥ B ≥ cT r2, and let α > 0. Then at least one of the following two conditions

holds:

1. cT r1 ≤ (1 + 1
α )B, or

2. bT y2 ≤ (1 + α)L(λ∗).
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Furthermore, if (1) holds, then r1 ∧ 1 is the characteristic vector of a (1, 1 + 1
α )-approximation

to (4.1). If (2) holds, then r2 ∧ 1 is the characteristic vector of a (1 + α, 1)-approximation to (4.1).

Proof. Before showing that either (1) or (2) holds, we show the second part of the theorem.

Assume first that (1) holds. We recall that problem (4.1) and (4.4) are equivalent due to

Lemma 63. Thus, the objective value of the interdiction problem (4.1) that corresponds to r1 ∧ 1

is given by ψ(r1 ∧ 1) which, by Lemma 65, is equal to ψ(r1). Hence, to show that r1 ∧ 1 is a

(1, 1 + 1
α )-approximation, it suffices to prove ψ(r1) ≤ L(λ∗), because L(λ∗) ≤ OPT by Lemma 66.

Indeed, ψ(r1) ≤ L(λ∗) holds due to:

L(λ∗) = bT y1 − λ∗(B − cT r1) ((r1, y1) is a maximizer of LP (λ∗))

≥ bT y1 (B ≤ cT r1 and λ∗ ≥ 0)

≥ ψ(r1) (y1 is a feasible solution to the dual of the LP defining ψ(r1)).

Similarly, if (2) holds then the objective value corresponding to r2 ∧ 1 is

ψ(r2) ≤ bT y2 (y2 is a feasible solution to the dual of the LP defining ψ(r2))

≤ (1 + α)L(λ∗) (by (2))

≤ (1 + α) OPT (by Lemma 66).

Since r2 satisfies cT r2 ≤ B, the characteristic vector r2 ∧ 1 is therefore indeed a (1 + α, 1)-

approximation to (4.1).

Hence, it remains to show that at least one of (1) and (2) holds. Assume for the sake of

contradiction that both do not hold. Because both (r1, y1) and (r2, y2) are maximizers of LP (λ∗),

also any convex combination of these solutions is a maximizer. In particular let µ = α
1+α and

consider the maximizer (rµ, yµ) of LP (λ∗), where rµ = µr1 + (1 − µ)r2 and yµ = µy1 + (1 − µ)y2.
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We obtain

L(λ∗) = bT yµ − λ∗(B − cT rµ)

≥ (1− µ)bT y2 − λ∗(B − µcT r1) (ignoring µbT y1 and (1− µ)λ∗cT r2, which are both ≥ 0)

=
1

1 + α
bT y2 − λ∗

(
B − α

1 + α
cT r1

)
(using µ =

α

1 + α
)

> L(λ∗) (using that both (1) and (2) do not hold),

thus leading to a contradiction and proving the theorem.

Theorem 67 together with Theorem 68 imply our main result, Theorem 58, due to the

following. Theorem 67 guarantees that we can compute efficiently λ∗, r1, r2 as needed in Theorem 68.

Then, depending whether condition (1) or (2) holds, we either return r1 ∧ 1 or r2 ∧ 1 as our 2-

pseudoapproximation. Notice that to check whether 2 holds, we have to compute L(λ∗). This

can be done efficiently due to the fact that our description of conv(X ) is box-w-DI solvable. More

precisely, as already discussed, LP (λ∗) is the dual of (4.9) for λ = λ∗ whose optimal value can be

computed by box-w-DI solvability. Hence, it remains to prove Theorem 67.

4.3.1 Proof of Theorem 67

First we discuss some basic properties of L(λ). We start by observing that L(λ) is finite for any

λ > 0. This follows by the fact that L(λ) is the optimal value of (4.9) when λ is considered fixed.

More precisely, for any fixed λ ≥ 0, the problem (4.9) is feasible and bounded. It is feasible because

z = 0 is feasible since b ≥ 0. Furthermore, it is bounded since by assumption conv(X ) = {z ∈ RN |

Az ≤ b, z ≥ 0} is a polytope. Additionally, L(λ) has the following properties, which are true for any

Lagrangian dual of a finite LP (see [22] for more details):

• L(λ) is piecewise linear.
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• Let [λ1, λ2] be one of the linear segments of L(λ), let t ∈ (λ1, λ2), and (rt, yt) be an optimal

solution to L(t). Then, (rt, yt) is an optimal solution for the whole segment, i.e., for any LP (λ)

with λ ∈ [λ1, λ2]. As a consequence, the slope of the segment is cT rt −B.

Also, we recall that L(λ) can be evaluated efficiently for any λ ≥ 0; since (4.9) is box-w-DI solvable,

it can be solved for any fixed λ ≥ 0.

We will find an optimal multiplier λ∗ ≥ 0 using bisection. For this, we start by showing

two key properties of L(λ). First, we show that any optimal multiplier λ∗ to L(λ) is not larger than

some upper bound with polynomial input length. Second, we show that each linear segment of L(λ)

has some minimal width, which makes it possible to reach it with a polynomial number of iterations

using bisection.

We recall that

ν∗ = max{wTx | Ax ≤ b, x ≥ 0} = min{bT y | AT y ≥ w, y ≥ 0}

is the optimal value of the nominal problem without interdiction, and that log(ν∗) is part of the

input size.

Lemma 69. If λ∗ is a maximizer of L(λ), then λ∗ ≤ ν∗. Furthermore, for every λ ≥ ν∗, r = 0 is

an optimal solution to LP (λ).

Proof. Let r = 0 ∈ ZN , and y∗ be a minimizer of min{bT y | AT y ≥ w, y ≥ 0}. Hence, in particular,

bT y∗ = ν∗. We first show that for any λ ≥ ν∗, the pair (r, y∗) is a minimizer of LP (λ). Assume for

the sake of contradiction that there is some λ ≥ ν∗ such that (r, y∗) is not a minimizer of LP (λ).

Let (r′, y′) be a minimizer of LP (λ) which, because the dual of LP (λ) is box-w-DI, can be assumed

to be integral. Clearly, we must have r′ 6= 0 = r, since for r = 0, the vector y∗ attains by definition
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the smallest value in LP (λ). Hence, we obtain

bT y∗ − λB > bT y′ − λB + λcT r′ ((r′, y′) attains a smaller value than (r, y∗) in LP (λ))

≥ −λB + λcT r′ (bT y′ ≥ 0 since b ≥ 0 and y′ ≥ 0),

which implies

ν∗ > λcT r′.

However, this is a contradiction since λ ≥ ν∗, and cT r′ ≥ 1 because c ∈ ZN>0 and r′ ∈ ZN≥0 is nonzero.

Thus, (r, y∗) is indeed a minimizer of LP (λ) for any λ ≥ ν∗. However, since B > 0, this implies

L(ν∗) = bT y − ν∗B > bT y − λB = L(λ) ∀λ > ν∗,

thus implying the lemma.

Hence, Lemma 69 implies that to find a maximizer λ∗ of L(λ), we only have to search

within the interval [0, ν∗].

Lemma 70. Each segment of the piecewise linear function L(λ) has width at least 1
(c(N))2 .

Proof. We start by deriving a property of the kinks of L(λ), namely that they correspond to a

rational value λ whose denominator is at most 1
c(N) . Later we will derive from this property that

the distance between any two kinks is at least 1
(c(N))2 .

Let λ > 0 be the value of a kink of L(λ), i.e., there is one segment of the piecewise linear

function L(λ) that ends at λ and one that starts at λ. We call the segment ending at λ the left

segment, and the one starting at λ the right segment. Let (r1, y1) be an optimal solution for all

LP (λ) where λ is within the left segment. Similarly, let (r2, y2) be an optimal solution for the right

segment. By box-w-DI solvability, we can choose (ri, yi) for i ∈ {1, 2} to be integral. We start by
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showing that r1 and r2 are {0, 1}-vectors, i.e, r1, r2 ∈ {0, 1}N . We can rewrite L(λ) as follows:

L(λ) = min{bT y − λ(B − cT r) | AT y + r ≥ w, y ≥ 0, r ≥ 0}

= min
r≥0

(
−λB + cT r + max{(w − r)Tx | Ax ≤ b, x ≥ 0}

)
= min

r≥0

(
−λB + cT r + ψ(r)

)
,

(4.10)

where the second equality follows by dualizing the LP of the first line for a fixed r ≥ 0, and the

third equality follows by the definition of ψ. By Lemma 65, we have ψ(r) = ψ(r ∧ 1), and since

c ∈ Z>0, this implies that a minimizing r is such that r = r ∧ 1. Thus an integral minimizing r

satisfies r ∈ {0, 1}N , as desired.

The slope of the left segment is β1 = −B + cT r1 and the slope of the right segment is

β2 = −B + cT r2. Let α1 = bT y1 and α2 = bT y2. Again using (4.10) we have αi = ψ(ri) for

i ∈ {1, 2}. This implies that αi for i ∈ {1, 2} is integral because ψ(ri) is defined as the optimum of

an LP with integral objective vector over an integral polytope {x ∈ RN | Ax ≤ b, x ≥ 0}.

Because L(λ) is concave, the slope decreases strictly at each kink, i.e., β1 > β2. Further-

more, since the left and right segment touch at λ, we have

α1 + λβ1 = α2 + λβ2.

Because β1 > β2 and λ > 0, this implies α1 < α2, and λ can be written as

λ =
α2 − α1

β1 − β2
.

Notice that

β1 − β2 = cT (r1 − r2) ≤ ‖c‖1 = c(N),

where we use the fact that r1, r2 ∈ {0, 1}N for the inequality. In summary, any kink λ is a rational
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number p
q with p, q ∈ Z>0 and q ≤ c(N). In particular, this implies that the first segment, which

goes from λ = 0 to the first kink, has width at least 1
c(N) ≥

1
(c(N))2 . The last segment clearly has

infinite width. Any other segment is bordered by two kinks λ1 = p1
q1

and λ2 = p2
q2

with λ1 < λ2 and

has therefore a width of

λ1 − λ2 =
p1q2 − p2q1

q1q2

≥ 1

q1q2
(since λ1 − λ2 > 0)

≥ 1

(c(N))2
(since q1, q2 ≤ c(N)).

We use the bisection procedure Algorithm 10 to compute λ∗, r1, and r2 as claimed by

Theorem 67. Notice that L(λ1) and L(λ2), as needed by Algorithm 10 to determine λ∗, can be

computed due to box-w-DI solvability. Algorithm 10 is clearly efficient; it remains to show its

correctness.

Algorithm 10 Computing λ∗, r1 and r2 as claimed by Theorem 67

Initialize: λ1 = 0, λ2 = ν∗, r1 = χN , r2 = 0
for i = 1, . . . , 1 + blog2(ν∗(c(N))2)c do

λ = 1
2 (λ1 + λ2)

Use box-w-DI solvability oracle to compute integral r ∈ Z≥0 satisfying that there is a y such
that (r, y) is an optimal solution to LP (λ)

if −B + cT r ≥ 0 then
λ1 = λ
r1 = r

else
λ2 = λ
r2 = r

end if
end for
Compute λ∗ as the intersection of the two segments at λ1 and λ2:

λ∗ =
L(λ2)− L(λ1)− λ2(−B + cT r2) + λ1(−B + cT r1)

cT (r1 − r2)
.

return λ∗, r1, r2.
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Lemma 71. λ∗, r1 and r2 as returned by Algorithm 10 fulfill the properties required by Theorem 67.

Proof. Notice that throughout the algorithm, the following invariant is maintained: ri is an optimal

solution to LP (λi) for i ∈ {1, 2}. Furthermore, −B + cT r1 ≥ 0 and −B + cT r2 < 0. We highlight

that after initialization, these two invariants are maintained because −B + cTχN = −B + c(N) > 0

because we assumed B < c(N) to avoid the trivial special case when everything is interdicted.

Additionally, −B + cT 0 = −B < 0. Also note that r2 = 0 is an optimal solution to LP (ν∗) by

Lemma 69.

Due to this invariant and the fact that L(λ) is concave, we know that there is a maximizer

λ∗ of L(λ) within [λ1, λ2).

Observe that the distance λ2 − λ1 halves at every iteration of the for loop. Consider now

λ1 and λ2 after the for loop. Their distance is bounded by

λ2 − λ1 = ν∗
(

1

2

)1+blog2(ν∗(c(N))2)c

< ν∗
(

1

2

)log2(ν∗(c(N))2)

=
1

(c(N))2
.

Hence, the distance between λ2 and λ1 is less then the width of any segment of the piecewise

linear function L(λ), due to Lemma 70. This leaves the following options. Either one of λ1 or λ2

is a maximizer of L(λ), and the other one is in the interior of the segment to the left or right,

respectively. Or, neither λ1 nor λ2 is a maximizer of L(λ). In this case λ1 and λ2 are in the interior

of the segment to the left and right, respectively, of the unique maximizer λ∗. In all of these cases,

the solutions r1 and r2 are both optimal with respect to some maximizer λ∗ of L(λ), since they are

on two segments that meet on an optimal multiplier λ∗.

It remains to prove that the returned λ∗ is correct. Since both r1 and r2 are optimal

solutions to L(λ∗) for some maximizer λ∗, we have

L(λ∗) = bT y1 − λ∗(B − cT r1) = bT y2 − λ∗(B − cT r2). (4.11)
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Furthermore,

L(λ1) = bT y1 − λ1(B − cT r1), and

L(λ2) = bT y2 − λ2(B − cT r2).

By replacing bT yi = L(λi) + λi(B − cT ri) for i ∈ {1, 2} in (4.11) and solving for λ∗, we obtain

λ∗ =
L(λ2)− L(λ1)− λ2(−B + cT r2) + λ1(−B + cT r1)

cT (r1 − r2)
,

thus showing that the returned λ∗ is indeed optimal.

Hence, even the somewhat limited access through box-w-DI solvability that we assume to

our optimization problem is enough to obtain an efficient 2-pseudoapproximation for the interdiction

problem, due to the efficiency of the bisection method described in Algorithm 10. However, in many

concrete settings, more efficient methods can be employed to get an optimal multiplier λ∗ and

optimal integral dual solutions r1, r2. In particular, often one can even obtain strongly polynomial

procedure by employing Megiddo’s parametric search technique [81]. We refer the interested reader

to [66] for a technical details of how this can be done in a very similar context.

4.4 Matroids: weighted case and submodular costs

In this section we consider the problem of interdicting a feasible set X ⊆ {0, 1}N that corresponds to

the independent sets of a matroid. It turns out that we can exploit structural properties of matroids

to solve natural generalization of the interdiction problem considered in Theorem 58. In particular,

even for arbitrary nonnegative weight functions w ∈ ZN≥0, we can obtain a 2-pseudoapproximation

for the corresponding interdiction problem. What’s more is that we can achieve this when the

interdiction costs are submodular, rather than just linear.

For clarity, we first discuss in Section 4.4.1 a technique to reduce arbitrary nonnegative

150



CHAPTER 4. COMBINATORIAL INTERDICTION

weights to the case of {0, 1}-objectives that was mentioned previously. In Section 4.4.2, we then

build up and extend this technique to also deal with submodular interdiction costs.

4.4.1 Weighted case

Let M = (N, I) be a matroid, and let w : N → Z≥0. The canonical problem we want to interdict is

the problem of finding a maximum weight independent set, i.e., max{w(I) | I ∈ I}. Let rw : 2N →

Z≥0 be the weighted rank function, i.e.,

rw(S) = max{w(I) | I ⊆ S, I ∈ I}.

In words, rw(S) is the weight of a heaviest independent set that is contained in S. We recall a basic

fact on weighted rank functions [93, Section 44.1a].

One key observation we exploit is that the maximum weight independent set can be

rephrased as maximizing an all-ones objective function over the following polymatroid:

Pw = {x ∈ RN≥0 | x(S) ≤ rw(S) ∀S ⊆ N}. (4.12)

Even more importantly, we do not only have max{x(N) | x ∈ Pw} = max{w(I) | I ∈ I}, but

we also have that the problem of interdicting the maximum weight independent set problem of a

matroid maps to the problem of interdicting the corresponding all-ones maximization problem on

the polymatroid. This is formalized through the lemma below.

Lemma 72. For any R ⊆ N , we have

max{x(N) | x ∈ Pw, x(R) = 0} = max{w(I) | I ∈ I, I ⊆ N \R}.

Proof. Observe that the right-hand side of the above equality is, by definition, equal to rw(N \R).
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lhs ≤ rhs: Let x∗ be a maximizer of max{x(N) | x ∈ Pw, x(R) = 0}. We have

x∗(N) = x∗(N \R) (x∗(R) = 0)

≤ rw(N \R) (since x∗ ∈ Pw),

thus showing the desired inequality.

lhs ≥ rhs: Conversely, let I∗ be a maximizer of max{w(I) | I ∈ I, I ⊆ N \ R}. Hence,

w(I∗) = rw(N \R). Define y ∈ RN≥0 by

y(e) =


w(e) if e ∈ I∗

0 if e ∈ N \ I∗.

Clearly, y(N) = w(I∗) = rw(N \R). Thus, to show that the left-hand side of the equality

of Lemma 72 is at least as large as the right-hand side, it suffices to show that y is feasible to the

maximization problem on the left-hand side, i.e., y(R) = 0 and y ∈ Pw. We have y(R) = 0 since

I∗ ⊆ N \R. Furthermore,

y(S) = w(S ∩ I∗) ≤ rw(S) ∀S ⊆ N,

where the inequality follows from S∩I∗ ∈ I. Hence, this implies y ∈ Pw and completes the proof.

We therefore can focus on the problem max{x(N) | x ∈ Pw, x(R) = 0} to which we can

now apply Theorem 58. For this it remains to observe that Pw is 1-down-closed because it is down-

closed. Furthermore, the description of Pw given by (4.12) is box-1-DI solvable since it is well-known

to be even box-TDI, a property that holds for all polymatroids [93, Section 44.3]. Furthermore, one

can efficiently find an optimal integral dual solution to the problem of finding a maximum size point

over (4.12) with upper box constraints. In fact, this problem can be interpreted as a maximum

152



CHAPTER 4. COMBINATORIAL INTERDICTION

cardinality polymatroid intersection problem, one polymatroid being Pw and the other one being

defined by the upper box constraints. An optimal integral dual solution to the maximum cardinality

polymatroid intersection problem can be found in strongly polynomial time by standard techniques

(for clarity we provide some more details about this in Section 4.4.2). In summary, our technique

presented in Section 4.3 to obtain 2-pseudoapproximations therefore indeed applies to this setting.

4.4.2 Submodular costs

In this section, we show how to obtain a 2-pseudoapproximation for the interdiction of the maximum

weight independent set of a matroid with submodular interdiction costs. When dealing with sub-

modular interdiction costs, we assume that the interdiction costs κ are a nonnegative and monotone

submodular function κ : 2N → R≥0. As before, a removal set R ⊆ N has to satisfy the budget

constraint, i.e., κ(R) ≤ B. We assume that the submodular function κ is given by a value oracle.

To design a 2-pseudoapproximation, we will describe a way to formulate the problem such

that it can be attacked with essentially the same techniques as described in Section 4.3. For simplicity

of presentation, and to avoid replicating reasonings introduced in Section 4.3, we focus on the key

differences in this section, and refer to Section 4.3 for proofs that are essentially identical.

We extend the model for the weighted case. A variable q(S) is introduced for each set

S ⊆ N . In the non-relaxed mathematical program, we have q ∈ {0, 1}2N , and only one variable

q(S) is equal to one, which indicates the set S of elements we interdict. Below is a mathematical

description of a relaxation, where we allow the variables q(S) to take real values. If instead of

allowing q(S) ∈ R≥0, we set q(S) ∈ {0, 1}, then the mathematical program below would be an exact
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description of the interdiction problem with submodular interdiction costs.

min
q∈R2N

max
x∈Rn

(1−
∑
S⊆N χ

S · q(S))Tx

x(S) ≤ rw(S) ∀S ⊆ N

x ≥ 0∑
S⊆N κ(S) · q(S) ≤ B∑

S⊆N q(S) ≤ 1

q(S) ≥ 0 ∀S ⊆ N

(4.13)

We start by dropping the constraint
∑
S⊆N q(S) ≤ 1. As we will see later, this does

not change the objective value. This step is similar to dropping the constraint r ≤ 1 when going

from (4.6) to (4.7) in the standard setting of our framework without submodular interdiction costs.

We thus obtain the following mathematical program.

min
q∈R2N

max
x∈Rn

(1−
∑
S⊆N χ

S · q(S))Tx

x(S) ≤ rw(S) ∀S ⊆ N

x ≥ 0∑
S⊆N κ(S) · q(S) ≤ B

q(S) ≥ 0 ∀S ⊆ N

(4.14)

Now, by dualizing the inner problem we get the following LP.

min
∑
S⊆N rw(S)y(S)(∑

S⊆N :e∈S y(S)
)

+
(∑

S⊆N :e∈S q(S)
)
≥ 1 ∀e ∈ N

y(S) ≥ 0 ∀S ⊆ N

q(S) ≥ 0 ∀S ⊆ N∑
S⊆N κ(S) · q(S) ≤ B

(4.15)

As in the case with linear interdiction costs, we dualize the budget constraint with a

154



CHAPTER 4. COMBINATORIAL INTERDICTION

Lagrangian multiplier λ to obtain the following family of LPs, parameterized by λ:

L(λ) = min
∑
S⊆N rw(S)y(S) + λ

(∑
S⊆N κ(S) · q(S)

)
− λB(∑

S⊆N :e∈S y(S)
)

+
(∑

S⊆N :e∈S q(S)
)
≥ 1 ∀e ∈ N

y(S) ≥ 0 ∀S ⊆ N

q(S) ≥ 0 ∀S ⊆ N

(LP(λ))

It remains to observe that for any λ ≥ 0, LP(λ) is the dual of a maximum cardinality

polymatroid intersection problem—when forgetting about the constant term −λB—where the two

polymatroids are defined by the submodular functions rw and λ · κ, respectively. A key result in

this context is that there is a set A ⊆ N such that the optimal primal value, which is equal to the

optimal dual value by strong duality, is equal to λκ(A) + rw(N \ A) (see [93, Section 46.2]). This

implies that defining q(A) = 1, y(N \ A) = 1, and setting all other entries of q and y to zero is

an optimal solution to (LP(λ)). Furthermore, such a set A can be found in strongly polynomial

time [93, Section 47.1]. Note that this fact also implies that dropping the constraint
∑
S⊆N q(S) ≤ 1

when going from (4.13) to (4.14) did not change the objective value of the mathematical program.

Furthermore, we can evaluate L(λ) efficiently for any λ ≥ 0.

From this point on, the approach is identical to the one presented in Section 4.3 for linear

interdiction costs. More precisely, we determine the optimal dual multiplier λ∗ and two optimal

dual solutions (q1, y1), (q2, y2) to LP (λ∗) such that

1. The dual solutions have the above-mentioned property that all four vectors y1, q1, y2, q2 only

have 0-entries with the exception of a single 1-entry. Let R1, R2 ⊆ N be the sets such that

q1(R1) = q2(R2) = 1.

2. One solution has interdiction cost that is upper bounded by the budget and one has an inter-

diction cost that is lower bounded by the budget, i.e., κ(A1) ≤ B ≤ κ(A2).
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The value λ∗ and vectors q1, y1, q2, y2 can either be found by bisection, as described in

Section 4.3, or they can be obtained in strongly polynomial time via Megiddo’s parametric search

technique (see [66] for details). An identical reasoning as used in Theorem 68 shows that one of R1

or R2 is a 2-pseudoapproximation.

4.5 Refinements for bipartite b-stable set interdiction

This section specializes our approach to the interdiction of b-stable sets in a bipartite graph. We recall

that given is a bipartite graph G = (V,E) with bipartition V = I ∪ J and edge capacities b ∈ ZE≥0.

A b-stable set is a vector x ∈ ZN≥0 such that x(i) + x(j) ≤ b({i, j}) for each {i, j} ∈ E. The value of

a b-stable set x is given by x(V ). The maximum b-stable set problem asks to find a b-stable set of

maximum value. Furthermore, we are given an interdiction cost c : V → Z>0 for each vertex, and

an interdiction budget B ∈ Z>0. As usual, the task is to remove a subset R ⊆ V with c(R) ≤ B

such that value of a maximum b-stable set in the graph obtained from G by removing R is as small

as possible.

In Section 4.5.1 we show how our approach can be adapted to get a PTAS for b-stable set

interdiction, thus proving Theorem 61. In Section 4.5.2 we complete the discussion on b-stable set

interdiction by presenting an exact algorithm to solve the interdiction problem of the classical stable

set problem in bipartite graphs, which corresponds to the case when b is the all-ones vector.

Before presenting these results, we remark that b-stable set problem has also a well-known

vertex-capacitated variant. In this case an additional vector u ∈ ZV≥0 is given and constraints x ≤ u

are imposed. The vertex-capacitated problem can easily be reduced to the uncapacitated problem

by adding two additional vertices vI , vJ , where vI is added to I and vJ to J , and connecting vI

to all vertices in J and vJ to all vertices in I. Finally, by choosing b({vI , j}) = u(j) for j ∈ J

and b({vJ , i}) = u(i) for i ∈ I, one obtains a b-stable set problem that is equivalent to the vertex-

capacitated version. Furthermore, a vertex interdiction strategy for minimizing the maximum b-
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independent set problem in this auxiliary graph carries over exactly to the vertex-capacitated variant.

Thus, the approach we present can also deal with vertex capacities.

4.5.1 PTAS by exploiting adjacency structure

As in our general approach, we start with the relaxation (4.6). Below, we adapt the description of

the relaxation to this specialized setting highlight some structural aspects of the problem.

min
r∈RV

max
x∈RV

(1− r)Tx

Ax ≤ b

x ≥ 0

cT r ≤ B

0 ≤ r ≥ 1

(4.16)

Notice that the matrix A ∈ {0, 1}E×V is the incidence matrix of the bipartite graph G, i.e., A(e, v) =

1 if and only if v ∈ V is one of the endpoints of e ∈ E. This matrix is well known to be totally

unimodular (TU) [73]. Similar to our general approach, we could now drop the constraint r ≤

1. However, since this does not lead to a further simplification in this setting, we will keep this

constraint. Following our general approach, we dualize the inner maximization problem to obtain

the following linear program.

min bT y

AT y + r ≥ 1

y ≥ 0

cT r ≤ B

0 ≤ r ≤ 1

(4.17)

Observe that {0, 1}-solutions to (4.17) have a nice combinatorial interpretation. More

precisely, they correspond to a subset R ⊆ V of the vertices (where χR = r) with c(R) ≤ B and

an edge set F ⊆ E (where χF = y) such that F is an edge cover in the graph obtained from G by
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removing the vertices R.

Not surprisingly, apart from the budget constraint cT r ≤ B, the feasible region of the

above LP closely resembles the bipartite edge cover polytope. We will make this link more explicit

in the following with the goal to exploit well-known adjacency properties of the bipartite edge cover

polytope. First, notice that for any feasible solution (y, r) to (4.8), the vector (y∧1, r) is also feasible

with equal or lower objective value. This follows from the fact that A is a {0, 1}-matrix. Hence, we

can add the constraint y ≤ 1 without changing the problem to obtain the following LP.

min bT y

AT y + r ≥ 1

cT r ≤ B

0 ≤ y ≤ 1

0 ≤ r ≤ 1

(4.18)

The feasible region of the above LP is given by intersection the polyope

P =


y
r

 ∈ R|E|+|V |

∣∣∣∣∣∣∣∣ A
T y + r ≥ 1, 0 ≤ y ≤ 1, 0 ≤ r ≤ 1


with the half-space {(y, r) ∈ R|E|+|V | | cT r ≤ B}. Notice that P is integral because the matrix A is

TU. The key property we exploit is that P has very well-structured adjacency properties, because it

can be interpreted as a face of a bipartite edge cover polytope, a polytope whose adjacency structure

is well known. More precisely, it turns out that any two adjacent vertices of P represent solutions

that do not differ much in terms of cost and objective function. Hence, similar to our general

approach, we compute two vertex solutions of P , one over budget but with a good objective value

and the other one under budget, with the additional property that they are adjacent on P . We

then return the one solution that is budget-feasible. This procedure as stated does not yet lead to a

PTAS, but it can be transformed into one by a classical preprocessing technique that we will briefly
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mention at the end.

We start by introducing a bipartite edge cover polytope P ′ such that P is a face of P ′. To

simplify the exposition, we do a slight change to the above sketch of the algorithm. More precisely,

we will restate (4.18) in terms of a problem on P ′ and then work on the polytope P ′ instead of P .

We will define P ′ with a system of linear constraints. It has two new rows and one new variable rIJ

in addition to the constraints AT y + r ≥ 1 of P . The rows correspond to two new vertices in the

graph, one in I and one in J , and the new variable is for an edge between the two new vertices. The

updated constraints are 
AT I 0

0 (χJ)T 1

0 (χI)T 1


︸ ︷︷ ︸

D:=


y

r

rIJ

 ≥ 1, (4.19)

where χI , χJ ∈ {0, 1}V are the characteristic vectors of I ⊆ V and J ⊆ V , respectively. Let D be

the {0, 1}-matrix on the left-hand side of the constraint (4.19). Notice that D is the vertex-edge

incidence matrix of a bipartite graph G′ = (V ′, E′), where G′ is obtained from G as follows: add

one new vertex wI to I and one new vertex wJ to J ; then connect wI to all vertices in J ∪ {wJ}

and wJ to all vertices in I. Hence, I ′ = I ∪ {wI} and J ′ = J ∪ {wJ} is a bipartition of V ′. Since

D is an incidence matrix of a bipartite graph, it is TU. For easier reference to the different types of

edges in G′ we partition E′ into the edge E, the edge set

ER = {{wI , j} | j ∈ J} ∪ {{i, wJ} | i ∈ I},

and the single edge f = {wI , wJ}, i.e., E′ = E ∪ ER ∪ {f}.
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Now consider the edge cover polytope that corresponds to D:

P ′ =




y

r

rIJ

 ∈ R|E|+|V |+1)

∣∣∣∣∣∣∣∣∣∣∣∣
D ·


y

r

rIJ

 ≥ 1, 0 ≤ y, r, rIJ ≤ 1


.

Notice that P is obtained from P ′ by considering the face of P ′ defined by rIJ = 1, and projecting

out the variable rIJ . Every vertex y, r, rIJ of P ′ is a characteristic vector of an edge cover in G′,

where y represents the characteristic vector of the edges in E, the vector r is the characteristic vector

of the edges in ER, and rIJ = 1 indicates that f is part of the edge cover.

We can now restate (4.18) as follows in terms of P ′:

min


bT y

∣∣∣∣∣∣∣∣∣∣∣∣


y

r

rIJ

 ∈ P
′, cT r ≤ B


. (4.20)

Indeed, one can always choose for free rIJ = 1 in the above LP, since rIJ does not appear in the

objective. Furthermore, when setting rIJ = 1, the LP (4.20) has the same feasible vectors (y, r)

as (4.18). We can thus focus on (4.20) instead of (4.18).

One can interpret an edge cover F in G′ as an interdiction strategy of the original problem

as follows. Every vertex v ∈ V that is incident with either wI or wJ through an edge of F will be

interdicted. To obtain a better combinatorial interpretation of 4.20, we extend the vectors b and c

to all edges E′. More precisely, b is only defined for edges in E. We set b(e) = 0 for e ∈ E′ \ E.

Furthermore, the vector c can be interpreted as a vector on the edges ER, where c({wI , j}) := c(j)

and c({i, wJ}) := c(i) for i ∈ I and j ∈ J . For e ∈ E′ ∪ {f} we set c(e) = 0. Using this notation,

the best {0, 1}-solution to (4.20) can be interpreted as an edge cover F of G′ that minimizes b(F )

under the constraint c(F ) ≤ B. One can observe that the best {0, 1}-solution to (4.20) corresponds

to an optimal interdiction set for the original non-relaxed interdiction problem.
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Also, we want to highlight that problems of this type, where a combinatorial optimization

problem has to be solved under an additional linear packing constraint with nonnegative coefficients

are also known as budgeted optimization problems or restricted optimization problems and have been

studied for various problem settings, like spanning trees, matchings, and shortest paths (see [48]

and references therein for more details). The way we adapt our procedure to exploit adjacency

properties of the edge cover polytope is inspired by procedures to find budgeted matchings and

spanning trees [89, 15, 48].

We compute an optimal vertex solution p∗ = (y∗, r∗, r∗IJ = 1) to (4.20) via standard

linear programming techniques. If r∗ is integral, i.e., r∗ ∈ {0, 1}V , then r∗ corresponds to an

optimal interdiction set since it is optimal for the relaxation and integral. Hence, assume r∗ not

to be integral from now on. This implies that p∗ is in the interior of an edge of P ′, since it is a

vertex of the polytope obtained by intersecting P ′ with a single additional constraint. This edge

of the polytope P ′ is described by looking at the constraints of P ′ that are tight with respect to

the optimal vertex solution. From this description of the edge, we can efficiently compute its two

endpoints y1, r1, r1
IJ = 1 and y2, r2, r2

IJ = 1, which are vertices of P ′ and therefore integral. These

two solutions correspond to edge covers F 1, F 2 ⊆ E′ in G′ with f ∈ F 1 ∩ F 2. For simplicity, we

continue to work with these edge covers F 1 and F 2. One of these edge covers will violate the budget

constraint and be superoptimal, say the first one, i.e., c(F 1) > B and b(F 1) < bT y∗, and the other

one strictly satisfies the budget constraint and is suboptimal, i.e., c(F 2) < B and b(F 2) > bT y∗.

Hence, this is just a particular way to obtain two solutions as required by our general approach,

with the additional property that they are adjacent on the polytope P ′.

The key observation is that F 2 is not just budget-feasible, but almost optimal. We prove

this by exploiting the following adjacency property of edge cover polytopes shown by Hurkens.

Lemma 73 (Hurkens [54]). Two edge covers U1 and U2 of a bipartite graph are adjacent if and

only if U1∆U2 is an alternating cycle or an alternating path with endpoints in V (U1 ∩ U2), where

V (U1 ∩ U2) denotes all endpoints of the edges in U1 ∩ U2.
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Lemma 74. b(F 2) ≤ bT y∗ + 2bmax, where bmax = maxe∈E b(e).

Proof. We will prove the statement by constructing a new edge cover Z ⊆ E′ of G′ with the following

two properties:

1. c(Z) ≤ c(F 2), and

2. b(Z) ≤ b(F 1) + 2bmax.

We claim that this implies the result due to the following. First observe that there can be no edge

cover W of G′ such that c(W ) ≤ c(F2) and b(W ) < b(F2). If such an edge cover existed, then p∗

would not be an optimal solution to (4.20), because p∗ is a convex combination of χF
1

and χF
2

, and

by replacing F 2 by W one would obtain a new budget-feasible solution with lower objective value.

Hence, if (1) then b(Z) ≥ b(F 2), which in turn implies

b(F 2) ≤ b(Z)
(2)

≤ b(F 1) + 2bmax ≤ bT y∗ + 2bmax.

Hence, it remains to prove the existence of an edge cover Z ⊆ E′ satisfying (1) and (2).

By Lemma 73, U = F 1∆F 2 is either an alternating path or cycle. In both cases, U contains

at most 4 edges of ER, at most 2 in ER∩F 1 and at most 2 in ER∩F 2. Let E1
R = ER∩U ∩F 1 be the

up to two edges of U in ER∩F 1. Consider X = F 1 \E1
R. X is not necessarily an edge cover because

we removed up to two edges of ER. Hence, there may be up to 4 vertices not covered by X. However,

the up to two edges of ER that we removed to obtain X from F 1 are both incident with one of the

two vertices wI and wJ . Since f ∈ X because f ∈ F 1, the two vertices wI , wJ remain covered by

X. Hence, there are at most two vertices i, j ∈ V that are not covered by X. These two vertices are

covered by the edge cover F 2. Thus, there are up to two edges g, h ∈ F 2\F 1 that touch i and j. Now

consider the edge cover Z = X∪{g, h}. Observe that Z∩ER = (F1∩F2∩ER). Hence, c(Z) ≤ c(F2)

and condition (1) holds. Furthermore, X ⊆ F 1, and thus b(Z) ≤ b(F 1)+b(g)+b(h) ≤ b(F 1)+2bmax,

implying (2) and finishing the proof.
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Hence, F 2 corresponds to an interdiction strategy that is optimal up to 2bmax. From here,

it is not hard to obtain a PTAS. Let ε > 0. If 2bmax ≤ εbT y∗, then F 2 corresponds to an interdiction

strategy that is an (1 − ε)-approximation. Otherwise, we use the following well-known guessing

technique (see [89, 48]). Consider an optimal integral solution y, r, rIJ of (4.20). The vector r of

such a solution is the characteristic vector of an optimal interdiction set, and OPT = bT y is the

optimal value of our interdiction problem. We guess the d 2
ε e heaviest edges W of {e ∈ E | y(e) = 1},

i.e., the ones with highest b-values. This can be done by going through all subsets of E of size d 2
ε e,

which is a polynomial number of subsets for a fixed ε > 0. For each such guess we consider the

resulting residual version of problem (4.20), where we set y(e) = 1 for each guessed edge and remove

all edges of strictly higher b-values than the lowest b-value of the guessed edges. Hence, we end up

with a residual problem where bmax is less than or equal to the b-value of any guessed edge. For the

right guess W , we have b(W ) ≤ OPT and thus get

bmax ≤
ε

2
b(W ) ≤ ε

2
OPT,

implying that the set F 2 for the right guess is indeed a (1− ε)-approximation.

Notice that if bmax is sufficiently small with respect to bT y∗, i.e., 2bmax ≤ εbT y∗, then the

expensive guessing step can be skipped.

4.5.2 Efficient algorithm for stable set interdiction in bipartite graphs

We complete the discussion on bipartite b-stable set interdiction by showing that the problem of

interdicting stable sets, which are the same as 1-stable sets, in a bipartite graph can be solved in

polynomial time.

We reuse the notation of the previous section. Hence, G = (V,E) is a bipartite graph with

bipartition V = I ∪ J , c : E → Z>0 are the interdiction costs, and B ∈ Z>0 is the interdiction

budget. Furthermore, we denote by α(G) the size of a maximum cardinality stable set in G and by
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ν(G) the size of a maximum cardinality matching. It is well-known from König’s Theorem that for

any bipartite graph G = (V,E),

α(G) = |V | − ν(G).

Hence, the objective value of some interdiction set R ⊆ V with c(R) ≤ B is equal to

α(G[V \R]) = |V | − |R| − ν(G[V \R]),

where G[W ] for any W ⊆ V is the induced subgraph of G over the vertices W , i.e., the graph

obtained from G by removing V \W .

We start by discussing some structural properties that can be assumed to hold for at least

one optimal solution. Let R∗ be an optimal solution to the interdiction problem, and let M∗ ⊆ E be

a maximum cardinality matching in G[V \R]. By the above discussion, the value of the interdiction

set R∗ is

α(G[V \R∗]) = |V | − |R∗| − |M∗|. (4.21)

In the following, we will focus on finding an optimal matching M∗, and then derive R∗

from this matching. We start with a lemma that shows how R∗ can be obtained from M∗. For

this we need some additional notation. We number the vertices V = {v1, . . . , vn} such that c(v1) ≤

c(v2) ≤ · · · ≤ c(vn). For ` ∈ {0, . . . , n} let V` = {v1, . . . , v`} with V0 = ∅. Furthermore, for any

subset of edges U , we denote by V (U) the set ∪e∈Ue of all endpoints of edges in U .

Lemma 75. Let R be an optimal interdiction set and let M∗ be a maximum cardinality matching in

the graph G[V \R]. Then the set R∗ ⊆ V defined below is also an optimal solution to the interdiction

problem.

R∗ = V` \ V (M∗),

where ` ∈ {0, . . . , n} is the largest value such that c(V` \ V (M∗)) ≤ B.
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Proof. The interdiction setR∗ is budget feasible by assumption, andR,R∗ ⊆ V \V (M∗) so |R| ≤ |R∗|

by the construction of R∗. Let M ′ be a maximum cardinality matching in the graph G[V \R∗]. Since

M∗ is a matching in G[V \ R∗] it holds that |M ′| ≥ |M∗|. Thus R∗ is also an optimal interdiction

set because

α(G[V \R∗]) = |V | − |R∗| − |M ′| ≤ |V | − |R| − |M∗| = α(G[V \R]).

One of our key observations is that we can find an optimal matching M∗ of Lemma 75

efficiently by matroid intersection techniques if we know the following four quantities that depend

on M∗:

1. The maximum value ` ∈ {0, . . . , n} such that R∗ = V` \ V (M∗) satisfies c(R∗) ≤ B;

2. βI = |V` ∩ V (M∗) ∩ I|;

3. βJ = |V` ∩ V (M∗) ∩ J |;

4. γ = |M∗|.

There may be different quadruples (`, βI , βJ , γ) that correspond to different optimal match-

ingsM∗. However, we need any such set of values that corresponds to an optimalM∗. Before showing

how an optimal quadruple (`, βI , βJ , γ) can be used to find M∗ by matroid intersection, we highlight

that there is only a polynomial number of possible quadruples. This follows since ` ∈ {0, . . . , n} can

only take n + 1 different values, βI and βJ only take at most |I| + 1 and |J | + 1 different values,

respectively, and the cardinality of M∗ is between 0 and ν(G) ≤ min{|I|, |J |}. Hence, each possible

quadruple (`, βI , βJ , γ) is element of the set

Q = {0, . . . , n} × {0, . . . , |I|+ 1} × {0, . . . , |J |+ 1} × {0, . . . , ν(G)}.

We will go through all quadruples in Q and try to construct a corresponding mathcing M∗ by the
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matroid intersection technique that we introduce below. Thus, we will consider at least once an

optimal quadruple, for which we will obtain an optimal M∗, which will then lead to an optimal

R∗ through Lemma 75. Hence, our task reduces to find a matching that “corresponds” to a given

quadruple in Q. We define formally what this means in the following.

Definition 76. We say that a matching M in G corresponds to (`, βI , βJ , γ) ∈ Q if the following

conditions are fulfilled:

1. c(V` \ V (M)) ≤ B,

2. βI = |V` ∩ V (M) ∩ I|,

3. βJ = |V` ∩ V (M) ∩ J |,

4. γ = |M |.

We call a quadruple in Q feasible if there exists a matching that corresponds to it. Furthermore, a

quadruple is called optimal if there is a matching M∗ corresponding to it such that R∗ = V` \V (M∗)

is an optimal interdiction set.

Notice that our definition of a matching M corresponding to a quadruple (`, βI , βJ , γ) ∈ Q

does not require that ` is the maximum value such that c(V` \M) ≤ B since we obtain the properties

we need without requiring this condition in our correspondence, as shown by the next lemma.

Lemma 77. Let (`, βI , βJ , γ) ∈ Q be a feasible quadruple with M corresponding to it. Then the set

R = V` \ V (M) is an interdiction set of objective value

α(G[V \R]) ≤ |V | − |R| − |M | = |V | − γ − `+ βI + βJ . (4.22)

Furthermore, if (`, βI , βJ , γ) ∈ Q is an optimal quadruple, then

α(G[V \R]) = |V | − γ − `+ βI + βJ .
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Proof. The inequality in (4.22) follows immediately from (4.21) since

α(G[V \R]) = |V | − |R| − ν(G[V \R]) (by (4.21))

≤ |V | − |R| − |M | (since M is a matching in G[V \R]),

with equality if and only if M is a maximum cardinality matching in G[V \R]. To obtain the equality

in (4.22), we observe that |M | = γ. Furthermore,

|R| = |V` \ V (M)| = |V`| − |V` ∩ V (M) ∩ I| − |V` ∩ V (M) ∩ J | = `− βI − βJ ,

which implies the desired equality.

The main consequence of Lemma 77 is that the value of an optimal solution is determined

entirely by its quadruple. Thus one can find an optimal quadruple by testing the feasibility of every

quadruple in Q and choosing one that minimizes the right hand side of (4.22). We conclude the

following.

Corollary 78. Let (`, βI , βJ , γ) ∈ Q be a feasible quadruple that minimizes |V | − γ − `+ βI + βJ ,

and let M∗ be a matching that corresponds to it. Then R∗ = V` \ V (M∗) is an optimal interdiction

set to bipartite stable set interdiction problem.

Hence, all that remains to be done to obtain an efficient algorithm is to design a procedure

that, for a quadruple (`, βI , βJ , γ) ∈ Q decides whether it is feasible, and if so, finds a correspond-

ing matching M . Using this procedure we check all quadruples to determine a feasible quadruple

(`, βI , βJ , γ) that minimizes |V | − γ − `− βI − βJ , and then return R∗ = V` \ V (M∗), where M∗ is

a matching corresponding to such a quadruple.

Hence, let q = (`, βI , βJ , γ) ∈ Q and we show how to check feasibility of q and find a

corresponding matching M if q is feasible. Let c′ : E → Z≥0 be an auxiliary cost function defined
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by

c′(vk) =


c(vk) if k ≤ `,

0 if k > `.

Based on c′ we define weights w : E → Z≥0, where

w({i, j}) = c′(i) + c′(j) ∀{i, j} ∈ E.

Our goal is to determine a maximum weight matching M in G such that |V` ∩ V (M) ∩ I| = βI ,

|V`∩V (M)∩J | = βJ , and γ = |M |. Notice that maximizing w corresponds to maximizing c(V (M)∩

V`). Hence, a maximizer M will be a matching in G that satisfies conditions (2)-(4) of Definition 76

and subject to fulfilling these three conditions, it maximizes c(V (M) ∩ V`), which is the same as

minimizing c(V` \ V (M)). Hence, if c(V` \ V (M)) ≤ B, then the quadruple (`, βI , βJ , γ) is feasible

and M corresponds to it, otherwise, the quadruple is not feasible. It remains to show how to find

efficiently a maximum weight matching M in G such that |V`∩V (M)∩I| = βI , |V`∩V (M)∩J | = βJ ,

and γ = |M |.

This optimization problem corresponds to maximizing w over a face of a matroid inter-

section polytope. Indeed, define one laminar matroid M1 = (E,F1) such that a set U ⊆ E is

independent in M1, i.e., U ∈ F1, if U contains at most one edge incident with i ∈ I for each v ∈ I,

at most βI edges incident with vertices in V` ∩ I and at most γ edges in total. Similarly, define

M2 = (E,F2) such that U ∈ I2 if U contains am most one edge incident with any vertex j ∈ J , at

most βJ edges incident with V` ∩ J and at most γ edges in total. The problem we want to solve

is to find a set M ∈ F1 ∩ F2 such that the constraints |M ∩ V` ∩ I| ≤ βI , |M ∩ V` ∩ J | ≤ βJ

and |M | ≤ γ are fulfilled with equality. Hence, this is indeed the problem of maximizing w over

a particular face of the matroid intersection polytope corresponding to M1 and M2. This problem

can be solved in strongly polynomial time by matroid intersection algorithms. Alternatively, one

can also find a vertex solution to the following polynolmial-sized LP, which describes this face of the
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matroid intersection polytope, and is therefore integral when feasible.

max wTx

x(δ(v)) ≤ 1 ∀v ∈ V

x(δ(V` ∩ I)) = βI

x(δ(V` ∩ J)) = βJ

x(E) = γ

For more details on optimization over the matroid intersection polytope, we refer the interested

reader to [93, Chapter 41].

4.6 Conclusions

We presented a framework to obtain 2-pseudoapproximations for a wide set of combinatorial inter-

diction problems, including maximum cardinality independent set in a matroid or the intersection of

two matroids, maximum s-t flows, and packing problems defined by a constraint matrix that is TU.

Our approach is inspired by a technique of Burch et al. [26], who presented a 2-pseudoapproximation

for maximum s-t flows. Furthermore, we show that our framework can also be adapted to more gen-

eral settings involving matroid optimization. More precisely, we also get a 2-pseudpapproximation

for interdicting the maximum weight independent set problem in a matroid with submodular inter-

diction costs. Submodularity is a natural property for interdiction costs since it models economies

of scale. Our framework for 2-pseudoapproximations is polyhedral and sometimes we can exploit

polyhedral properties of well-structured interdiction problems to obtain stronger results. We demon-

strate this on the problem of interdicting b-stable sets in bipartite graphs. For this setting we obtain

a PTAS, by employing ideas from multi-budgeted optimization. Furthermore, we show that the spe-

cial case of stable set interdiction in bipartite graphs can be solved efficiently by matroid intersection

techniques.
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Many interesting open questions remain in the field of interdicting combinatorial opti-

mization problems. It particular, it remains open whether stronger pseudoapproximations can be

obtained for the considered problems. Also in terms of “true” approximation algorithms, relatively

little is known. Two of the most prominent open problems are whether there are constant-factor

approximations for interdicting maximum s-t flows and minimum spanning trees.
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