
 
 

 

 

 

COMBINATION EPIGENETIC THERAPY CAN SENSITIZE 
OVARIAN CANCER TO IMMUNE CHECKPOINT THERAPY 

by 
Meredith Stone 

 

 

 

A dissertation submitted to Johns Hopkins University in conformity with the requirements 
for the degree of Doctor of Philosophy 

 

 

Baltimore, Maryland 

March, 2017 

 

 

 

 
© 2016 Meredith Stone 

All Rights Reserved 

 

 

  



ii 
 

Abstract 

While immune checkpoint blockade is approved for other solid tumors, such as 

non-small cell lung cancer, melanoma, kidney cancer, and bladder cancer, it has not yet 

been successfully used in ovarian cancer.  Ovarian cancer is the leading cause of death 

from gynecological malignancies in the United States, and new therapies are needed.  

To study the relationship between the tumor, immune system, and immunotherapy, it is 

necessary to use an immunocompetent model of ovarian cancer.  Therefore, we 

characterized four related syngeneic epithelial ovarian cell lines, MOSEC, Roby-ID8-

luc2, Roby-ID8-nonluc, and ID8-VEGF-defensin, that can form tumors in C57Bl/6 mice 

and optimized the methods of measuring tumor burden in order to determine drug 

efficacy.  Using the ID8-VEGF-defensin cell line, which grew the most quickly in mice, 

we have shown that combination epigenetic therapy improves tumor response to 

immune checkpoint blockade, including decreasing tumor burden and extending the 

survival of the mice.  One epigenetic drug used, the demethylating agent 5-azacytidine 

(AZA), triggers immune gene upregulation, apoptosis, and cell cycle arrest in the tumor 

cells.  AZA pre-treatment of tumor cells that are then injected into mice increases the 

number of immune cells in the tumor microenvironment and decreases tumor burden.  In 

contrast, a combination of AZA and a histone deacetylase inhibitor is only effective when 

the tumor and an intact immune system are treated together, indicating that the 

combination has specific effects on immune cells.  These include an increase in the 

percentage of activated T and NK cells, and a decrease in the number of macrophages 

in the tumor microenvironment.  Furthermore, the combination therapy of AZA and the 

HDACi Givinostat sensitizes the tumors to immune checkpoint blockade (α-PD-1). 

Finally, the type I interferon signaling that is triggered in the tumor cells by AZA is 

important in the immune and tumor responses, because when the interferon-α receptor 

is blocked in vivo, the effects of AZA on tumor burden, survival, and some of the immune 

cells are rescued.  In conclusion, combination epigenetic therapy affects both the tumor 

cells and the immune cells in the tumor microenvironment to sensitize ovarian cancer 

tumors to α-PD-1.   
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Epigenetics in Cancer 

 Epigenetics is the study of heritable changes to gene expression that are not 

caused by changes in the DNA sequence itself (1-4).  Types of epigenetic modifications 

include DNA methylation and histone modifications such as methylation and acetylation 

(1).  DNA methylation is found on the cytosine in a CpG dinucleotide, and in normal cells 

is found primarily in noncoding regions of the genome (3). This is in contrast to the 

promoter regions of certain genes that contain a density of CpG dinucleotides, or CpG 

islands, which are usually unmethylated (3). However, transcriptionally silenced genes 

on the inactivated X chromosome of females are associated with highly methylated CpG 

islands (3,5).  DNA methylation can also occur in gene bodies, where it is associated 

with gene expression (6).  DNA is methylated by one of three DNA methyltransferases: 

DNMT1, DNMT3a, and DNMT3b (7).  DNMT1 is the principal methyltransferase 

responsible for the maintenance of methylation in replication, during which it targets 

hemi-methylated DNA at replication foci via interactions with the protein UHRF1 (8,9).  

While DNMT1 can add de novo methylation in cancer cells (10), DNMT3a and 3b are 

thought to be primarily responsible for de novo methylation in normal cells (7,11),  and 

are perhaps influenced by sequences adjacent to the target CpG sites (12).  

Histone modifications change the packaging of the DNA, which can be in 

euchromatin, where nucleosomes are less tightly packaged, or in the more condensed 

heterochromatin, altering its accessibility to transcription factors and therefore gene 

expression (13,14).  Histone modifications are added by histone acetyl transferases 

(HATs) and histone methyltransferases, while they are removed by histone deacetylases 

(HDACs) and histone demethylases (15).  There are 18 identified HDACs that are 

classified by cellular localization and cofactor requirements (16). Class I HDACs are 

located in the nucleus, and include HDAC1, 2, 3, and 8.  HDAC1 and 2 are especially 

critical in terms of histone deacetylation and in repressive complexes, discussed further 
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below (16,17).  Class IIa HDACs (4, 5, 7, and 9) can be either nuclear or cytoplasmic, 

while Class IIb HDACs (6 and 10) are found in the cytoplasm, along with the single 

Class III HDAC, HDAC11.   Acetyl groups on histones neutralize the charge on the 

protein, removing steric hindrance and allowing transcription factor localization (15). 

Therefore, histone hypoacetylation at the promoter region of genes caused by HDACs is 

associated with tighter chromatin structure and the silencing of genes (18,19). 

 In cancer, epigenetic modifications can be deregulated and aberrantly changed.  

For example, promoter hypermethylation is one of the most well-studied epigenetic 

abnormalities in cancer (3,20).  In cancer cells, increased methylation at promoters, 

where DNA transcription begins, is associated with the silencing of genes, which can 

include tumor suppressor genes such as BRCA1/2, TP53, and CDKN2A (p16) (21).  In 

contrast, gene body methylation is generally decreased in cancer (22). Changes in 

histone acetylation are also associated with cancer, namely, decreases in the active 

mark of histone acetylation at gene promoter regions where the DNA has been 

hypermethylated (23).  Furthermore, histone deacetylases are often overexpressed in 

cancers (18). 

 

Epigenetic Inhibitors 

 Because of the epigenetic changes that occur in cancer cells, both DNA 

methyltransferases and histone deacetylases have been targeted for cancer therapy.  

Demethylating agents, such as 5-azacytidine or decitabine, re-express aberrantly 

silenced genes in cancer cells by incorporating into the DNA as cytidine analogs, leading 

to the degradation of DNA methyltransferases and a decrease in DNA methylation (24).  

Specifically, 5-azacytidine (AZA) is transported into cells and converted to decitabine by 

ribonucleotide reductase (25).  Decitabine is incorporated into DNA, as is 10-20% of 

AZA, while the remaining intracellular AZA is incorporated into RNA (26).  There, it has 



4 
 

effects on ribosome biogenesis and protein synthesis (27).  Because both agents are 

incorporated into replicating DNA, cells need to be in S phase for effective demethylation 

(28).  Once incorporated as a cytosine, the decitabine binds covalently to the DNMTs, 

which leads to their degradation (29,30).  Because of the subsequent lack of DNMTs, 

methylation is passively lost as the cell divides.  Both AZA and decitabine have been 

FDA approved for treatment of myelodysplastic syndromes and chronic myelomonocytic 

leukemia (31).  A newer demethylating agent, guadecitabine or SGI-110, is a novel 

dinucleotide consisting of decitabine and deoxyguanosine, which renders the molecule 

less susceptible to degradation by cytidine deaminase.  This can improve the stability 

and half life of the drug (16,32). 

Histone deacetylase inhibitors (HDACi) increase gene expression by inducing 

histone hyperacetylation and chromatin remodeling (33).  They function by chelating zinc 

away from the active site of the deacetylase (34).  Different types of HDACi, including 

benzamides, hydroxamic acids, cyclic peptides and aliphatic fatty acids, target individual 

HDACs with different specificities (16,34).  Entinostat, a benzamide, selectively inhibits 

certain Class I HDACs, with nanomolar level Ki values for nuclear HDACs 1 and 3 (34).  

In a phase II trial of ER+ breast cancer, the addition of entinostat to exemestane 

significantly increased progression free survival and overall survival (35), and it was 

combined with AZA in a Phase I/II trial in patients with non small cell lung cancer, with 

objective responses observed in individual patients (discussed below) (36).  A less well 

known HDACi is Givinostat, a hydroxamic acid that targets class I HDACs 1, 2 and 3 as 

well as the cytoplasmic Class IIb HDAC 6.  Givinostat has been tested in a phase II 

clinical trial with patients with multiple myeloma (37), where it was tolerable and provided 

modest benefit, but not yet in solid tumors.  Other HDACIs are already FDA approved for 

heme malignancies, including the hydroaxamic acids panobinostat, belinostat, and 

vorinostat, and the cyclic peptide romidepsin (16). 
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Combination Epigenetic Therapy  

DNA methylation and histone deacetylation are linked events in their control of 

gene expression. Each DNMT has been shown to bind HDAC1 and 2 (38-42).  

Furthermore, DNA methylation can attract methylcytosine-binding proteins MBD1, 

MBD2, MBD4, MeCP1, and MeCP2 (43,44), which mediate transcriptional repression 

and heterochromatin formation via recruitment of a corepressive complex that includes 

HDAC1 and HDAC2 (43,45,46).  Specifically, MBD2 or 3 interacts with this nucleosome 

remodeling and deacetylase complex (NuRD) (47).  HDACs 1 and 2 are a dimer in the 

NuRD complex and facilitate its deacetylase activities (17)  Furthermore, they interact in 

the NuRD complex with CHD4, an ATPase in the SWI/SNF family that compacts 

nucleosome structure (48).  Therefore, there is a direct link between DNA methylation, 

HDACs, and chromatin remodeling through the NuRD complex.  Another repressive 

complex is the nuclear receptor corepressor (NCoR) and silencing mediator for retinoid 

and thyroid receptor (SMRT) complex (49).  This complex, which includes HDACs 3, 4, 

5, and 7, is linked to DNA methylation through the interaction with MeCP2, a methyl-

cytosine binding protein, which is required for the transcriptional repressive activity of the 

complex (46).  Because DNA methylation and histone deacetylation are linked by 

repressive complexes that reconfigure chromatin, targeting both DNMTs and HDACs is 

a promising strategy for cancer therapy. 

 Because of the interactions of the epigenetic changes that occur in tumor cells, 

progress has been made in the therapeutic strategy of targeting multiple epigenetic 

mechanisms (23,50).  In preclinical work in cell culture and animal studies, low doses of 

both a demethylating agent (DNMTi) and a histone deacetylase inhibitor (HDACi) have 

been shown to synergistically re-express silenced genes and lead to greater anti-

tumorigenic effects (16).  For example, in colorectal cancer cells, demethylating agents 

given prior to HDACIs worked synergistically to re-express hypermethylated genes (51), 
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likely because hypermethylation is associated with deacetylated histones (52,53).  

Similar results were found in human lung cancer cells, where cell death was induced by 

the combination of an HDACi and the demethylating agent decitabine, perhaps by 

allowing increased transcription of pro-apoptotic genes (54). 

 As in cell culture, many animal model studies have shown that the combination of 

a demethylating agent with an HDACi can increase the re-expression of silenced genes 

and reduce tumor burden more than either single epigenetic drug.  In one such study, 

the combination of the HDACi belinostat and decitabine increased the sensitivity of 

xenografts ovarian tumors to cisplatin, along with increasing the in vivo expression of 

genes implicated in cisplatin sensitivity (55).  In another xenograft model of ovarian 

cancer, the combination of decitabine and the HDACi vorinostat decreased the growth of 

the cancer cell line in vitro and in vivo, while inducing apoptosis, G2-M arrest, 

autophagy, and the expression of tumor suppressor genes (56). Synergy in tumor 

reduction was also seen in a hepatocellular carcinoma xenograft model treated with 

decitabine and vorinostat (57) and in the Calu-6 lung cancer line treated with 5-

azacytidine and entinostat (58) or guadecitabine and entinostat (59).  With AZA and 

entinostat, pro-apoptotic genes were found to be upregulated in the lung cancer model 

by the combination therapy (58).  Finally, in a genetically engineered mouse model of 

medulloblastoma and rhabdomyosarcoma, the combination of decitabine and the HDACi 

valproic acid prevented tumor incidence, while reducing DNMT1 activity and inducing 

hyper acetylation.  This therapy was not effective in later stage tumors in this model (60).  

There are several clinical trials that have tested combination epigenetic therapy 

in patients.  Specifically, the combination of a demethylating agent and a histone 

deacetylase inhibitor has been shown to be effective in individual patients with non-small 

cell lung cancer (36).  Stable disease was observed in patients with mixed tumors 

treated with 5-azacytidine and valproic acid given concurrently (61) and with decitabine 
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and vorinostat given sequentially (62), and in patients with non small cell lung cancer 

who were treated with decitabine and valproic acid sequentially (63). Trials are ongoing 

with AZA and entinostat in advanced HER2 negative breast cancer and colorectal 

cancer (16,23). 

In patients that received the combination epigenetic therapy in the NSCLC trial 

(36), 6 patients had progressive disease and continued on to a trial using α-PD-1 and 

PD-L1 checkpoint blockade.  Of those six patients, five received clinical benefit from the 

immunotherapy, which was greater than the rate of response in the general patient 

population (64).  This suggested that there may be a sensitization effect of combination 

epigenetic therapy for immune checkpoint blockade. 

 

Immune Checkpoint Blockade 

Immune checkpoint blockade is therapy that involves targeting receptors on T 

cells or their ligands that regulate the activation of the immune cells (65).  One of the 

most well studied immune checkpoints is the inhibitory PD-1/PD-L1 interaction (66-69). 

PD-1 is induced on T cells after they have been activated (70), and PD-L1 upregulation 

by tumor cells is a mechanism of tumor immune evasion (69).  In situations where T 

cells are chronically exposed to an antigen, like in the case of cancer, PD-1 can be 

highly expressed in antigen specific T cells, which can lead to an exhausted or anergic 

state that can be relieved by inhibiting PD-1 (71).  While PD-1 is mostly studied on T 

cells, it can also be found on natural killer cells and B cells (72,73). Another well studied 

immune checkpoint is the CD28/CTLA-4 interaction, as the CTLA-4 molecule blocks the 

co-stimulatory action of CD28 on T cells by binding to its ligands CD80 and CD86 (74). 

Finally, there are several more novel checkpoints, including LAG-3, natural killer 

inhibitory receptors, B7-H3, and TIM-3, all of which may be targeted, perhaps in 

combination with other checkpoint inhibitors (75). 
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In patients, targeting of the inhibitory PD-1/PD-L1 interaction has been 

accomplished with α-PD-1 or α-PD-L1 antibodies, and has been successful in treating 

advanced, metastatic cancers, especially melanoma, renal cell carcinoma, and non-

small cell lung cancer (75-81).  There may be a link between the tumor expression of 

PD-L1 and the rate of response to α-PD-1 or α-PD-L1 therapy (75).  Anti-PD-1 therapy 

has been FDA approved in melanoma and non-small cell lung cancer (75), and one 

exciting aspect of the success of immunotherapy is that it can produce durable 

responses (82).   

While there are exciting advances and successes with immune checkpoint 

blockade, a majority of patients still do not respond (75,83).  Recently, combination 

therapy has been used to improve outcomes of immune checkpoint blockade.  In 

melanoma, combining α-PD-1 with another checkpoint inhibitor, α-CTLA-4, has been 

successful (84,85). There have also been studies of combination with conventional 

therapies; for example, in renal cell carcinoma, the addition of a multi-receptor tyrosine 

kinase inhibitor, sunitinib or pazopanib, to α-PD-1 therapy improved the response rate to 

40-50% (83).  Conventional therapy can have immunologic effects that make it a 

potentially good combination with immune therapy; for instance, in melanoma, the BRAF 

inhibitor vemurafenib increases the expression of tumor antigens and antigen 

presentation molecules (86).   

 

Combining Epigenetic and Immune Therapies  

After making the previous observation that a small number of patients who 

received immune checkpoint blockade therapy after combination epigenetic therapy had 

robust and durable tumor responses (64), our lab and others studied how epigenetic 

therapy may prime tumors for immune therapy.  In vitro studies have shown that 

epigenetic agents can have immunogenic effects.  For example, cytotoxic cell killing can 
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release tumor antigens (83).  In a more specific way, epigenetic therapy can cause the 

upregulation of immune genes in tumor cells (87).  One well established form of this is 

the upregulation of cancer testis antigens, which are genes that are expressed in 

development, but normally methylated and silenced in somatic cells, although they can 

lose the methylation and be expressed in cancer cells (88-90).  Cancer testis antigens 

that can be re-expressed with DNA demethylating agents include MAGE-A1 and NY-

ESO-1 (90).  In ovarian cancer, cancer testis antigen expression was associated with 

promoter DNA hypomethylation (91), and NY-ESO-1 and MAGE-A were shown to be 

able to be re-expressed in ovarian cancer xenografts by SGI-110, a DNMTi, which then 

made the xenografts more sensitive to NY-ESO-1 specific CD8+ T cells (92). This 

preclinical data culminated in a successful phase 1 clinical trial combining decitabine, an 

NY-ESO-1 vaccine and doxorubicin chemotherapy in patients with epithelial ovarian 

cancer where there was stable disease or partial clinical response in 6/10 patients (93).  

Our lab also found that CTAs were significantly upregulated by AZA in a majority of 77 

breast, colorectal, and ovarian cancer cell lines (87). 

In addition to cancer testis antigens, other forms of tumor antigens can be re-

expressed by epigenetic therapy.  For example, in a mesothelioma xenograft model, 

combination treatment with DAC and valproic acid attracted tumor antigen specific CD8+ 

T cells to the tumor and decreased tumor growth (94).  The re-expression of the death 

receptor Fas in tumor cells after decitabine and vorinostat is another example of how 

epigenetic gene re-expression helped sensitize tumors to immune therapy, as those 

tumors were more sensitive to tumor specific cytotoxic lymphocyte adoptive 

immunotherapy and metastatic burden was reduced (95).  Other types of immune genes 

upregulated by epigenetic therapy in the published literature include antigen processing 

and presentation pathway genes, interferon signaling, and chemokines and cytokines 

(87).  This set of pathways included genes encoding proteins involved in the proteasome 
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as well as MHC class proteins, and was concordant with observations made previously 

in cancer cells treated with decitabine (90).  In ovarian cancer, an upregulation of 

chemokines was observed by other groups also using decitabine (96,97).  Because not 

all of these genes are classically regulated by methylation, the upregulation of these 

immune pathways may be downstream of another mechanism. 

Interferons are a type of cytokine that have anti-viral, anti-proliferative, and 

immunomodulatory downstream effects (98).  The name interferon comes from their 

ability to “interfere” with viral infections.  There are two main classes of interferon 

signaling, Type I includes IFN-α, IFN-β, IFN-ε, IFN-κ and IFN-ω, while Type II is only 

IFN-gamma (99,100).  Both signal through interferons receptors made up of 2 subunits:  

IFNAR1 and 2 for type I interferons, and IFNGR1 and 2 for the type II interferon 

signaling (98).  Both then signal through the classical JAK/STAT pathway (101,102) and 

induce the expression of hundreds of genes, with some of those being differentially 

regulated by the distinct interferons (103).  Type I interferon signaling has numerous 

downstream effects that can contribute to anti-tumor immunity, including stimulating 

dendritic cells to present antigen to cytotoxic lymphocytes (104-106), providing the “third 

signal” needed for the expansion of activated CD8+ T cells (107-109), and increasing the 

viability of the activated T cells (110).  Likewise, interferon gamma binding to its receptor 

culminates in immune cell activation (111), and signaling in tumor cells can directly 

inhibit tumor growth (111-113).  However, exposure of tumor cells to interferon gamma 

can induce the adaptive resistance mechanism of expressing PD-L1 (114,115). 

Interferon signaling in tumors was first shown to be upregulated by demethylating 

agents by Karpf et al (116) in colon cancer cells.  There, decitabine treatment increased 

STAT1, 2, and 3 signaling and activation through interferon-α and sensitized the cells to 

interferon-α treatment.  In ovarian cancer patients, it was observed that cytokines and 

JAK/STAT pathway genes were upregulated in patients treated with decitabine and 
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carboplatin (117).  In our work, interferon signaling was found to be enriched by AZA 

treatment of 77 different epithelial cancer cell lines (87).  Together with other enriched 

immune related genes, like the CTAs, chemokines, cytokines and antigen presentation 

and processing genes described above, a 314 gene panel was derived to categorize 

tumors as “high” or “low” for the AZA induced immune genes, or AIM (87).   

Recently, the interferon pathway was shown to be upregulated in tumor cells by 

the demethylation and re-expression of endogenous retroviruses by AZA treatment 

(118,119).  Endogenous retroviruses make up about 8% of the human genome (120), 

and are usually silenced by methylation (121), though they can be demethylated and 

expressed in some tumors (122).  DNA methyltransferase inhibitor (DNMTi) treatment of 

ovarian cancer cells upregulates ERVS, leading to dsRNA which triggers the cytosolic 

RNA sensors TLR3 and MDA5 and creates a downstream signaling pathway through 

type I interferon and JAK/STAT (118).  Similar results were shown in colon cancer cells, 

with the addition of showing that the interferon response was necessary for the inhibition 

of colon cancer stem cells by DNMTIs (119).  The downstream effects of interferon 

signaling in the tumor cells are apoptosis and the induction of other interferon stimulated 

genes such as those involved in cytokine production, as well as antigen processing and 

presentation.  One gene that is crucial to the interferon response, IRF7, is in fact 

controlled by methylation of its promoter, and its knockdown significantly reduces the 

interferon response induced by DNMTi in ovarian and colon cancer cells (118,119).  A 

subgroup of interferon stimulated genes that were upregulated by AZA in cancer cell 

lines, the viral defense signature, was able to sort ovarian carcinomas into baseline high 

and low ISG expression, which correlated with ERV expression.  Excitingly, AZA 

treatment sensitized the B16 murine melanoma cells to α-CTLA-4 in vivo (118), with the 

combination therapy significantly reducing the tumor burden compared to either therapy 
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alone.  This synergy could be extremely relevant to patients, as responses to anti-CTLA-

4 in melanoma patients correlated with high baseline levels of viral defense genes (118). 

The interferon response in tumor cells has been shown to be important for the 

tumor response to therapy.  The downregulation of the interferon alpha receptor 1 

(IFNAR1) in colon cancer cells has been shown to enable an immune privileged niche 

which promotes the growth of colorectal carcinoma cells, while the stabilization of 

IFNAR1 improved cytotoxic lymphocyte survival and the efficacy of α-PD-1 therapy 

(123).  This supports the rational that upregulating IFNAR1 is beneficial to cancer 

therapies (123).  Likewise, the loss of interferon gamma pathway genes in tumor cells 

can be a mechanism for resistance to α-CTLA-4 (124).  Because α-CTLA-4 therapy 

stimulates interferon-γ production by T cells, one downstream effect is the binding of 

interferon gamma to its receptor on tumor cells, which can lead to the inhibition of tumor 

cell growth through JAK1 and 2 and STAT1 signaling (124).  On the other hand, 

prolonged tumor interferon signaling itself has been shown to induce resistance to 

immune checkpoint blockade over time (125).  Specifically, interferon signaling can 

upregulate interferon stimulated genes which include ligands for multiple T cell inhibitory 

receptors (125).  This will be an important subject for future studies, and the timing and 

duration of an immune response in tumor cells may be of critical importance.  

 In addition to affecting the immunogenicity of tumor cells, epigenetic therapy is 

known to affect host immune cells as well.  The HDACIs vorinostat and panobinostat 

were found to require an intact immune system for anti-tumor efficacy in syngeneic 

models of colon cancer and lymphoma (126).  Interestingly, interferon- γ receptor 

signaling in the tumor cells was important for the anti-tumorigenic effect.  The authors 

found that in this case, B cells, but not natural killer or CD8+ cells were important for the 

response, and concluded that combinations of HDACi with immunotherapy could be 

appropriate because of their immunostimulatory effects (126).  HDACIs were found to 
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also affect T cells by enhancing effector T cell survival and decreasing Tregs in the B16 

mouse melanoma model, and by increasing the stimulatory molecules OX-40 and CD25 

on T cells (127).  HDACIs have also been shown to reduce myeloid derived suppressor 

cells in the tumor microenvironment (128,129).  Finally, low doses of decitabine have 

been shown to enhance NK cell killing of AML cells (130).  

 

Epigenetic and Immunotherapy in Ovarian Cancer  

 Based on the background of evidence that epigenetic agents could enhance the 

immune response to tumors, we decided to look into the effect of combination epigenetic 

therapy in ovarian cancer.  The upregulation of immune gene sets by AZA was highest 

in human ovarian cancer cell lines compared to breast, colon, or lung cancer cell lines 

(87).  Furthermore, anti-tumorigenic effects have been observed with different epigenetic 

therapies and immune therapies in other mouse models of ovarian cancer.  Decitabine 

was able to increase the activation of CD8+ and natural killer (NK) cells in the ascites 

fluid of tumor bearing mice, and it also sensitized ovarian tumors to α-CTLA-4 therapy 

(96).  Combining an inhibitor of another epigenetic repressive enzyme, the histone 

methyltransferase EZH2, with decitabine increased the expression of chemokines in the 

tumor, and sensitized the tumor to α-PD-L1 (97).  Because of the ability of HDACi to 

enhance the effects of a demethylating agent and its potential to influence the immune 

microenvironment of the tumor, as described above, we hypothesized that combining the 

demethylating agent 5-azacytidine with and HDACi could sensitize tumors to immune 

checkpoint blockade.  

 In this study, we used syngeneic as well as immunodeficient mouse models to 

identify the actions of the epigenetic agents, alone or in combination, on the tumor cells 

themselves, and then determined whether an immune system is required for their 

effects.  First, we have characterized the tumorigenicity and response to AZA of four 
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related syngeneic ovarian cancer cell lines, and determined the best methods for 

measuring their tumor burden, as described in Chapter 2.  Next, in Chapter 3, using the 

cell line that formed tumors in mice the most consistently and quickly, we have shown 

that AZA treatment also decreases tumor burden, extends survival, and increases the 

activation of tumor killing immune cell subsets, in part through type I interferon signaling. 

When both AZA and an HDACi are administered, combination therapy is significantly 

better than either drug alone in terms of tumor burden, survival, and immune cell 

activation.  Furthermore, the benefit in terms of tumor reduction is absent when the cells 

are injected into NSG mice instead of the immunocompetent model, suggesting that the 

immune system is important for the effect of the AZA and HDACi combination treatment.  

Most importantly, the combination of AZA and an HDACi sensitized these murine 

ovarian tumors to α-PD-1 therapy, which may indicate that combination epigenetic 

therapy could benefit patients who may not respond to immune checkpoint blockade. 
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Chapter 2: The Characterization of Murine Ovarian Cancer Cell Lines and 

Development of a Mouse Model of Ovarian Cancer to Evaluate Tumor Response 
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Summary 

In order to study tumor development in the context of a complete immune 

system, it is necessary to have a functional syngeneic model, meaning that the tumors 

are derived from the same genetic background of the host.  In 2000, K. Roby developed 

a series of mouse ovarian surface epithelial cell lines and cultured them in vitro until they 

spontaneously immortalized (131).  These cell lines were then transplanted into mice to 

form tumors and have formed the foundation for numerous mouse models of ovarian 

cancer.  Particularly, the ID8 clone has advanced studies of tumor immunosuppression.  

Since their development, the cell lines have been engineered to express GFP, 

luciferase, and VEGF and defensin, in order to better monitor tumor burden, accelerate 

tumor growth, and to study the effects of those molecules on ovarian cancer (132-134).  

Here, we describe the phenotypic differences between cell lines from the original Roby 

paper (Roby-ID8-nonluc), one with luciferase added (Roby-ID8-luc2), one derived from a 

tumor formed by Roby cells (MOSEC) and one expressing GFP, luciferase, VEGF, and 

defensin (ID8-VEGF-defensin).  These cell lines have varying abilities to form tumors in 

mice.  In the case of the Roby-ID8-nonluc cells, passaging the cells in vivo increased the 

consistency of ascites formation and accelerated development time.  All three cell lines 

responded to the demethylating agent 5-azacytidine as expected, with a decrease in cell 

numbers compared to untreated cells and a decrease in DNA methyltransferase 1 

levels.  Finally, we assessed which parameters would be best used to determine the 

tumor burden of the mice.  Luciferase activity was increased in AZA treated cells, and 

did not correlate well with survival, ascites or weight gain.  On the other hand, ascites did 

correlate significantly with weight gain, and decreased ascites burden correlated with 

longer survival.  Therefore, we have established the tumorigenicity of a syngeneic 

ovarian cancer model, characterized its response to AZA in vitro, and subsequently 

determined the best ways of measuring the tumor burden of the mice.  
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Introduction 

Ovarian cancer is the most lethal gynecological malignancy in the United States 

(135), and there is a need for new therapies; therefore, having models to study ovarian 

cancer is of critical importance.  Thus far, the absence of reliable mouse models has 

been a hindrance to ovarian cancer research (136).  One reason for this is that the 

understanding of the origin of ovarian cancer has recently advanced with the discovery 

that high grade serous ovarian carcinoma may arise from the fallopian tube (137,138).  

However, there is also recent data that the ovary itself plays an important role in the 

pathogenesis of ovarian cancer in mouse models (139,140) and in patients (141).  There 

are transgenic models that mimic the development of cancer in the fallopian tube 

(142,143).  However, the ID8 model (described in detail below) is the only transplantable 

syngeneic murine model of ovarian cancer routinely available, and it has been used in 

over 100 publications (144).  In our study, we treated the tumor cells both in vitro and in 

vivo, so it was necessary to have a model that could be manipulated outside of the 

mouse.  Also, in testing multiple drugs in combination, the size of the experiments could 

have been prohibitively large using a transgenic model, because often the cohorts of 

mice that develop tumor at the same time are smaller.  

Besides syngeneic and transgenic models, xenograft models have been used in 

ovarian cancer research (145).  However, those were ruled out for our study because we 

wanted to research how ovarian tumors interact with the immune system and how this 

affects the tumor response to therapy.  Immune evasion is an important step in the 

development of most cancers (146). In ovarian cancer patients, it is known that the 

presence of intratumoral T cells and immune signaling in the tumor correlate with a 

better prognosis and improved overall survival (147).  Furthermore, immune signaling 

was found to be enriched at baseline in a subset of patients with longer progression free 

survival in a phase II clinical trial (117).  Because of the importance of the immune 
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system in the progression of ovarian cancer and in determining the response to 

therapies, it was critical to use a model of ovarian cancer in which the tumor develops in 

the presence of an intact immune system.  

In order to address the need for immunocompetent models of ovarian cancer, 

cell lines were developed from the ovarian surface epithelium of C57Bl/6 mice (131).  

After cells were trypsinized from the ovaries, they transformed after passaging in vitro.  

Later passage mouse ovarian surface epithelial cells (MOSECs) form small tumor 

nodules and cause hemorrhagic ascites fluid when injected intraperitoneally into immune 

competent C57Bl/6 mice.  Ten clones were obtained from late passage MOSECs, which 

caused the accumulation of ascites fluid between 22-48 days after the injection of 5x106 

cells (131).  One specific clone, ID8, has been used extensively by ovarian cancer 

researchers.  We have received two versions of the ID8 clone from Katherine Roby, one 

expressing luciferase and one the non-luciferase control cell line.  We have referred to 

those lines as Roby-ID8-luc2 and Roby-ID8-nonluc (Figure 2.1A).  Our lab was also 

gifted MOSECs without a specified clone number that were derived from a tumor by 

Chien-Fu Hung of Johns Hopkins University Department of Pathology (Figure 2.1A).  

The ID8 line has been changed substantially, as outlined in Figure 2.1A, to generate a 

more aggressive line that is more representative of ovarian cancer, and the last cell line 

that we use in this study is a derivative of that line referred to as the ID8-VEGF-Defensin 

cells, which also express GFP and luciferase.  These cells were developed over several 

years and labs.  First, in order to study the effects of VEGF on tumorigenesis, ID8 cells 

were generated that expressed vascular endothelial growth factor (the murine VEGF164 

isoform) and green fluorescent protein (GFP) (132). This decreased the time to tumor 

formation considerably (132,148).  Furthermore, beta-defensin-29 was transduced into 

the cells (133), which increased tumor growth and vascularization, followed by luciferase 
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(134).  In these models, ascites development is often a measure of tumor load (133,148-

154), as well as luciferase activity as detected by bioluminescence imaging (134,149).   

In our study, we have characterized four of the cell lines derived from the mouse 

ovarian surface epithelial cell lines first established by Roby et al.  The lines are Roby-

ID8-luc2, Roby-ID8-nonluc, MOSEC, and ID8-VEGF-defensin (Figure 2.1A).  For each 

line, we have determined its tumorigenicity in mice, and in the case of the Roby-ID8-

nonluc the tumorigenicity has been improved with repeated passages.  The cell lines 

responded to the demethylating agent 5-azacytidine as expected, with a loss of cell 

viability and a decrease in the protein levels of DNMT1.  We have shown that measuring 

the weight gain and ascites burden of the mice, and not the luminescence of the tumor, 

is the best way to measure the tumor burden in this model, as the ascites volume most 

closely correlates with the survival of the mice, and the luciferase activity in the cells is 

increased as the viral promoter driving the expression can be demethylated following 

treatment with AZA.  In conclusion, we have successfully determined which of several 

models of ovarian cancer that can be transplanted into immune competent mice would 

be best to use to study tumor response to therapy as well as the interaction with the 

immune system in the tumor microenvironment. 

 

Methods 

Cell lines and treatment 

MOSE ID8-Defb29/Vegf-a (ID8-VEGF-Defensin) cells and Mouse ovarian surface 

epithelial cells (MOSECs) were kindly provided by Dr. Chien-Fu Hung, Johns Hopkins 

Pathology.  Roby-ID8-luc2 and Roby ID8-nonluc were kindly provided by Dr. Katherine 

Roby.  All four cells lines were grown in RPMI medium, with 10% FBS and gentamicin 

(5mg/mL), split every 3-4 days, and treated with AZA (500nM).  The AZA (Sigma) 
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treatment schedule consisted of the media being changed and refreshed with 500nM 

AZA on days 1, 2, 3, 6, 7, 8, and 9. Cells were split on days 3 and 6.   

Mouse Experiments 

Cells (0.5, 2.5 or 5 million) were injected intraperitoneally in 6-8 week old C57Bl/6 mice. 

Tumor burden was assessed via measurement of body weight and amount of ascites 

drained from the mice at the point when they gained 20-30% of their body weight.  Mice 

were cared for in accordance with the policies of the JHU ACUC. 

Ascites Serial Transplantation 

Ascites were drained from individual mice and incubated in ACK buffer (Thermo Fisher) 

to lyse red blood cells for 10 minutes, then washed. Tumor cells were counted using a 

hemacytometer, and injected i.p. back into non-tumor bearing secondary or tertiary mice.   

Cell proliferation assays 

Cells were plated in triplicate, then treated with AZA the following day for up to 10 days 

of treatment.  Cells were trypsinized and counted at days 3 and 7 and 10, and the same 

number of Mock or AZA treated cells were replated.  Trypan blue was used to determine 

viability.   

Western Blots 

Protein extracts were quantified and immunoblotted using the 4%–20% Mini-PROTEAN 

TGX gel system (Bio-Rad) and PVDF membranes (Millipore).  β-actin or GAPDH was 

used as a loading control. Antibodies used were as follows: polyclonal rabbit anti-

DNMT1 (Sigma , 1:1000), mouse anti-β-Actin (Sigma, 1:10,000), and polyclonal rabbit 

anti-GAPDH (Trevigen, 1:10,000).  

Luminescence Assay 

Luminesence was measured using the Dual Luciferase Reporter Assay System 

(Promega, E1910).  Cells were plated and treated with an A3 or A10 schedule, then 
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trypsinized.  An equal total number of treated or untreated cells were aliquoted for the 

assay. 

Measuring tumor bioluminescence 

D-luciferin (Perkin Elmer, 150mg/kg) was injected into mice bearing luciferase 

expressing tumor cells.  Eight to twenty minutes after D-luciferin injection, mice were 

anesthetized with isoflurane, and the bioluminescence was imaged using the IVIS 

Spectrum In Vivo Imager. 

Statistical analysis 

Data was graphed in GraphPad PRISM 5.0, and significance was determined by a 

Mann-Whitney t-test, where *= p<0.05 ; **=p<0.01; ***<p<0.001.  Linear regression 

analysis in GraphPad PRISM was used to determine the correlation of the parameters of 

tumor burden.   

 

Results 

Characterization of the tumor forming capability of murine ovarian cancer cell lines 

In order to be able to use the murine ovarian cancer cell lines to assess tumor 

response to therapy, it was necessary to determine if and how quickly the different cell 

lines developed tumors in immunocompetent mice.  Weight gain was measured weekly 

as a way to quantify the ascites development.  The ID8-VEGF-defensin cells grew the 

most quickly in mice, with an injection of 500,000 cells causing 30% weight gain from 

baseline in just 3.5 weeks (Figure 2.1B).  The MOSEC line grew more slowly:  2.5 million 

or 5 million cells injected caused 20-30% weight gain in 4 or 5.5 weeks, respectively; 

doubling the number of cells injected decreased the time to ascites development by 1.5 

weeks (Figure 2.1B).  Both the ID8-VEGF-defensin and the MOSEC cells produced 

hemorrhagic ascites which correlated with the amount of weight gained (Figure 2.1C).  In 

contrast to the other two cells lines, the Roby-ID8-luc2 cell line did not develop ascites. 
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While the mice did gain weight over 18 weeks (Figure 2.1B), there was no swelling of the 

abdomen, and when the mice were euthanized and dissected, there was no ascites fluid 

or visible tumor nodules (data not shown).  

 Because it would be beneficial to have Roby-ID8 cells that could form tumors in 

immunocompetent mice, we grew the Roby-ID8-luc2 cells that previously did not form 

tumors for 43 passages in culture.  Furthermore, hypothesizing that the luciferase could 

be having an immunogenic effect that caused the tumor to be rejected by the host 

immune system, we also tested early and late passages of the Roby-ID8 cell line that 

does not express luciferase (Roby-ID8-nonluc).  The results, found in Table 3.1, showed 

that the Roby-ID8-luc2 cells that had been passaged still did not develop any ascites, 

and the mice were euthanized at 11.5 weeks.  However, 1/3 of the Roby-ID8-nonluc 

early passage, and 2/3 of the Roby-ID8-nonluc late passage cell lines did develop 

ascites, at 11 or 12 weeks.  This ascites fluid was transplanted into secondary non-tumor 

bearing mice, and 2/3 of those mice developed ascites at a faster rate than the primary 

mice (4 weeks).  When cells from these ascites were transplanted into tertiary mice, 2/2 

mice developed ascites.  In conclusion, we were able to develop Roby-ID8-nonluc cells 

that could develop ascites more quickly and consistently than the Roby-ID8-luc2 cell 

line. 

Characterization of the in vitro sensitivity of the cell lines to AZA 

 The demethylating agent 5-azacytidine (AZA) is known to have antitumor effects 

on cells in vitro, such as the induction of apoptosis and cell cycle arrest (118,155-157).  

Therefore, we tested the sensitivity of these cell lines to AZA, with doses from 50 to 

500nM.  AZA was given in a 10 day regimen (Figure 2.2A).  At day 3 in the ID8-VEGF-

defensin cells, there is a significant dose dependent decrease in DNMT1, with the 

significant decrease at 500nM being sustained at day 10 of treatment (Figure 2.2B, C).  

In the MOSEC and Roby-ID8-luc2 cell lines, a reduction in DNMT1 was observed at Day 
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1, especially with 500nM AZA.  At days 3 and 10, the dose dependent decrease is still 

observed (Figure 2.2D, E, F, G).  In addition to the expected decrease in DNMT1 protein 

levels, the number of live cells decreased with AZA.  After only 2 or 3 days of 500nM 

AZA, there was a decrease in the number of ID8-VEGF-Defensin, MOSEC, and Roby-

ID8-luc2 cells, which was sustained over the 10 day treatment window (Figure 2.2H-J).  

In summary, these cell lines respond as expected to AZA in terms of the degradation of 

DNMT1, and they are all sensitive to the relatively low doses of the drug. 

 Because we will be measuring the effect of AZA on the cells in mice in order to 

understand how the tumors respond to the drug in the presence of an immune system, it 

was important to determine what the best method is for measuring tumor burden in vivo.  

Unlike a xenograft model, these cells are injected i.p. and do not form a measurable 

flank tumor.  Two of the cell lines, ID8-VEGF-Defensin and Roby-ID8-luc2 express 

luciferase, which can be utilized to measure tumor burden by giving the mice an injection 

of luciferin and then measuring the resulting bioluminescence.  However, in our 

treatment system, we found that either 3 or 10 days of AZA treatment actually 

significantly increased the luminescence of cells in vitro, compared to the same number 

of untreated cells (Figure 2.3A).  This suggested that luminescence may not be the best 

way to measure the difference in tumor burden between Mock and epigenetically treated 

groups.  Furthermore, the luminescence of cells (Mock as well as AZA treated) that were 

then injected into mice, did not correlate well with the amount of weight gained or the 

volume of ascites fluid (Figure 2.3B, C), which are both established measures of tumor 

burden in similar ascites producing ovarian cancer models (133,148-154).  Most 

importantly, luminescence did not correspond to survival of the mice (Figure 2.3D).  On 

the other hand, ascites and weight did correlate with each other, as expected, and lower 

ascites volume correlated with increased survival of the mice (Figure 2.3E, F, G).  In 

conclusion, when measuring the effect of treatment on tumor burden and response in 
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vivo, weight gain and ascites fluid are the best measures in this model, while 

luminescence does not accurately reflect tumor burden in response to AZA treatment. 

 

Discussion 

 Out of the first three murine models of ovarian cancer tested for tumorigenicity in 

C57Bl/6 mice, two (MOSEC and ID8-VEGF-defensin) caused tumor formation and 

ascites development in mice.  The third, Roby ID8-luc2, did not induce ascites 

production in 18 weeks after cell injection i.p.; however, the non-luciferase expressing 

versions of this cell line did produce ascites in immune competent mice.  One hypothesis 

for why this is the case is that transgenes, especially those foreign to mouse cells, can 

be immunogenic and cause rejection of tumor cells by the host (158).  Furthermore, of 

the Roby-ID8-nonluc cells that did produce ascites, the later passage of the cells caused 

ascites more frequently.  This is similar to the earlier observation that the original 

MOSEC cells only became tumorigenic in mice after ~20 passages in vitro (131).  As 

cells grow in culture, they can acquire mutations that provide a growth benefit. 

Therefore, it was not surprising that we were able to improve tumorigenicity of the Roby 

ID8 cells by using the non-luciferase expressing, later passage cell line.  However, these 

cells still grew too slowly and the tumor latency was so long that they were impractical to 

work with and did not represent aggressive late stage ovarian cancer. 

 In determining the best method of measuring the tumor burden of these models, 

we established that 5-azacytidine treatment actually increased the activity of luciferase 

compared to Mock cells.  One hypothesis explaining this phenomenon is that AZA could 

be increasing the expression of the luciferase gene, which is under the control of the 

viral promoter element in the pMIG-Thy1.1 vector (134).  It is possible that a 

demethylating agent could induce the expression of retrovirally transduced genes 

(159,160).  Therefore, luciferase activity is not the best way to determine the effect of 
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AZA on the tumor growth of these cell lines that have been retrovirally transduced with 

luciferase.  Because the ascites production of the mice correlated most closely with 

survival, ascites became the parameter used to determine the tumor burden of the mice, 

and others use this parameter as well (133,148-154). 

 While these cell lines are not a perfect model of ovarian cancer in patients, they 

are a useful model for studying both the tumor and the immune microenvironment.  

There has been progress made in the understanding that ovarian tumors can arise from 

the epithelial cells of the fallopian tube, rather than the ovary itself (161), but the MOSEC 

and ID8 cells are derived from the ovarian surface epithelium.  This model also lacks 

hallmarks of high grade serous ovarian cancer, like the loss of wildtype p53 or 

dysfunctional homologous repair (144).  Recently, cell lines have been derived from the 

ID8 clone that have been manipulated with CRISPR/Cas9 technology to knock out Trp53 

and Brca2 (144), and these clones may prove to be extremely beneficial for the field 

because they may provide this useful model with more relevance to patients. However, 

the models used in this study do have relevance to human disease and benefits for 

research.  Like in the ID8-VEGF-defensin cell line, VEGF can be overexpressed in 

tumors from ovarian cancer patients, and the cells express the gene at relevant levels 

(132).    Furthermore, the cells are extraordinarily useful in that they can be manipulated 

outside of the mouse, and then injected into immunocompetent mice and are able to 

form tumors.  The ascites fluid that develops is a critical resource that allows the 

examination of cells in the tumor microenvironment without sacrificing the mice.  In 

conclusion, these cells provide a clinically relevant model that allows the study of the 

interactions of the tumor and immune system in a syngeneic setting.   
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Table 2.1. Increase in the tumorigenicity of the Roby-ID8 cell lines. 

  
 

Primary mice:  
5,000,000 cells injected 

Secondary mice:  
5,000,000 cells 
transplanted 

Tertiary mice:  
5,000,000 cells 
transplanted 

Cell line Mouse  Time to ascites Time to ascites Time to ascites 

Roby ID8 
non luc early 
(p20) 

1  none- sac'd at 16 weeks     

2  none- sac'd at 16 weeks     

3  11 weeks 4 weeks 9 weeks 

Roby ID8 
non luc late 
(p38) 

1  none- sac'd at 16 weeks     

2  11 weeks 4 weeks 6.5 weeks 

3  12 weeks none-sac'd at 24 weeks   

Roby ID8 
luc2 late 
(p43) 

1  none- sac'd at 11.5 weeks     

2  none- sac'd at 11.5 weeks     

3  none- sac'd at 11.5 weeks     

 

The Roby-ID8-luc2 and the control cell line lacking luciferase (Roby-ID8-nonluc) were 

grown in culture for about 40 passages to attempt to increase their capacity to form 

tumors in mice.  5x106 cells of the late passage as well as the Roby-ID8-nonluc early 

passage were injected i.p. into mice. If ascites developed, tumor cells in the ascites were 

counted by hemacytometer, and transplanted into secondary mice.  The same was done 

if the secondary mice developed ascites. The time to ascites development was recorded.  
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Figure 2.1 Related cell lines derived from mouse ovarian surface epithelial cells have 

different tumorigenicity in mice.  

 

A) A summary of MOSE cell lines that were developed.  The bolded cell lines indicate 

ones used in this manuscript.  B) The cumulative percentage of weight gained over time.  

The last point of each line is when ascites was drained.  n=4 or 5 mice per group, with 

one biological replicate.   C) The amount of ascites drained from the mice. 
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Figure 2.2 AZA treatment decreases DNMT1 levels and cell number in a dose 

dependent manner in the ID8-VEGF-defensin, MOSEC, and Roby-ID8-luc2 cells 

 

A) Schematic of AZA in vitro treatment.  Media was changed and replaced with fresh 

500nM AZA on the days indicated with arrows. B and C) Western blots of DNMT1 levels  

at day 3 and 10in ID8-VEGF-defensin cells and the quantification (n=3). D and E) 

Western blots of DNMT1 levels in MOSEC cells and the quantification (n=2). F and G) 

Western blots of DNMT1 levels in Roby-ID8-luc2 cells and the quantification (n=2). H-J) 

Number of live cells counted relative to Mock, for AZA treated ID8-VEGF-defensin (n=1), 

MOSEC (n=2), or Roby-ID8-luc2 (n=2) cell lines. 
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Figure 2.3:  Ascites and weight gain, not luminescence, are the best methods to 

measure tumor burden in this model.   

 

A) Luciferase activity in mock or AZA treated cells.  B-D) The correlations of different 

measurements of tumor burden at week 4.5 post tumor cell injection.  The luminescence 

is measured by an IVIS bioluminescence imager, the weight is the number of grams the 

mice gained in 4.5 weeks, and the ascites burden is the amount of ascites drained by 

week 4.5.  E) The r2 and p values determining the significance of the associations by 

linear regression.   

 

 

 

 



30 
 

 

 

 

 

 

 

 

 

 

Chapter 3: Combination epigenetic therapy regulates tumor cells and the immune 

microenvironment to sensitize ovarian cancer to immune checkpoint therapy. 
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Summary 

Ovarian cancer (OC) is the most lethal of all gynecological cancers and there is 

an unmet need to develop new therapies. The latest immune therapy approaches to 

cancer are promising but response of ovarian cancer to these has thus far been 

disappointing. We now find, in a mouse model of epithelial OC, that clinically relevant 

doses of DNA methyltransferase (DNMTi) and histone deacetylase (HDACi) inhibitors, 

improve response to checkpoint inhibitor therapy. The DNMTi, 5-azacytidine, in part via 

type I interferon signaling, increases numbers of CD45+ immune cells, the percentage of 

active CD8+ T and NK cells, and reduces the percentage of macrophages and myeloid 

derived suppressor cells in the tumor microenvironment.  This is accompanied by a 

reduction in tumor burden by inhibiting proliferation and enhancing apoptosis. Addition of 

the HDACi to AZA seems to mostly affect immune cells in the tumor microenvironment, 

specifically increasing T and natural killer cell activation over AZA treatment alone and 

reducing macrophages.  A triple combination of the DNMTi/HDACi plus the immune 

checkpoint inhibitor, α-PD-1, provides the best anti-tumor effect and prolongs survival.  
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Introduction 

Epithelial ovarian carcinoma is the leading cause of death from gynecological 

malignancies in the United States (135).  Increasing clinical evidence suggests that 

some ovarian tumors are immunogenic (162,163), yet patient responses to 

immunotherapy have been disappointing (164). In particular, the response of ovarian 

cancer to the immune checkpoint inhibitors α-PD-1 or α-PD-L1 has thus far been modest 

in comparison to the robust responses observed for melanoma, non-small cell lung 

cancer, and renal cell cancers (76). New treatment strategies are needed to improve the 

response of ovarian cancers to immune checkpoint inhibitors. 

Studies by our group and others have shown that DNA methyltransferase 

inhibitors (DNMTIs) can upregulate immune signaling in ovarian cancer cells 

(87,96,97,117,118). This observation led us to question the potential role of epigenetic 

therapy in the response of ovarian cancer to immunotherapy. The effect of additional 

epigenetic inhibitors, such as histone deacetylase inhibitors (HDACIs), on the regulation 

of this tumor cell immune response is not well understood (33).  It is known, however, 

that the use of DNMTIs and HDACIs in combination can often lead to additive or 

synergistic reactivation of aberrantly silenced genes and cause reductions in tumor 

burden that are more effective than either epigenetic drug alone (1,16,51,165). 

Epigenetic therapy using DNMTIs and HDACIs has shown clinical benefit in individual 

patients with solid tumors (36,166). Important unanswered clinical questions include 

whether both DNMTIs and HDACIs are needed for an effective epigenetic response, and 

how the inhibitors act individually and in combination to target the tumor cell and/or the 

immune microenvironment. Clinical responses have led us to hypothesize that 

epigenetic therapy can enhance tumor immunogenicity.  A small number of clinical trial 

patients with advanced non-small cell lung cancer who initially received AZA and the 

HDACi Entinostat (MS275) and later moved on to α-PD-1 therapy had durable 
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responses compared to those who received α-PD-1 alone, suggesting that epigenetic 

therapy may somehow sensitize tumors to immune checkpoint inhibitors (64).  

We support this hypothesis by finding, in a mouse model of ovarian cancer, that 

DNMTIs and HDACIs improve response to immune checkpoint inhibitors, through 

actions on both tumor and immune cells to reduce tumor burden and extend overall 

survival. This may stem, in part, from an AZA induced, interferon mediated, upregulation 

of an immune gene signature in both cell types, including genes involved in viral 

defense, chemokines, cytokines, interferon signaling, and cancer testis antigens 

(87,118). We show that inhibiting Type I interferon signaling by blocking the interferon α, 

β receptor 1 (IFNAR1) prevents the AZA mediated reduction in tumor associated ascites 

and eliminates the survival benefit for mice treated with AZA.  Moreover, AZA treatment 

facilitates an increase in the number of CD45+ immune cells in the tumor 

microenvironment and leads to activation of CD8+ T cells and natural killer (NK) cells, 

which is reduced with IFNAR1 antibody blockade. While HDACIs are not effective as 

single agents, when combined with AZA in vivo, these drugs act on the immune 

compartment to improve the activation of CD8+ T cells, natural killer (NK) cells, and to 

decrease myeloid cells to create a less immunosuppressed tumor microenvironment. 

Together, the actions of these drugs on tumor cells and the tumor microenvironment 

indicate that epigenetic therapy may offer an approach to optimize immune checkpoint 

therapy for patients with ovarian cancer, and that the combination of AZA, the HDACi 

Givinostat (ITF2357, ITF), and α-PD-1 may hold the most promise. 

Methods 

Cell culture treatments 

MOSE ID8-Defb29/Vegf-a (ID8-VEGF-Defensin) cells, kindly provided by Dr. Chien-Fu 

Hung, Johns Hopkins Pathology, which tested negative for mycoplasm in December 

2016, were grown in RPMI medium, and treated with AZA (500nM).  The A3 treatment 
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paradigm had AZA in the media on days 0, 1 and 2, while the A10 paradigm was also 

treated with AZA on days 3, 6, 7, 8 and 9.  Cells were split on days 3 and 6, and 

harvested on Day 10 (A3 and A10).   

Entinostat (MS275) treatment followed the AZA paradigms above, but with 100nM 

MS275 for 3 days, or 30nM MS275 for 3 or 10 days (HDACi3 or 10).  

For the sequential combination of AZA and HDACi treatment, cells were treated with the 

A10 paradigm described above, followed by 3 doses of 100nM MS275 or ITF.  The cells 

were collected on day 17 (AZA17, HDACi17, and AZA+HDACi17, Figure 3.1A).  AZA 

(Sigma) was suspended in 0.9% saline.  Entinostat (Syndax Pharmaceuticals) and 

Givinostat (SelleckChem) were both suspended in DMSO and diluted 1:1000 in media, 

so that the percentage of DMSO did not exceed 0.1% 

 

Gene Expression Analysis 

RNA extraction, RNA quality analysis, hybridization to Agilent 4x44k Human Gene 

Expression v2 arrays (Agilent Technologies) and analysis of the arrays were done as 

previously described (87).  In some cases, tumor cells were isolated from ascites fluid by 

FACS and RNA was isolated using the Qiagen RNeasy Micro Kit (cat. no. 74004). After 

total cellular RNA was extracted using the Trizol method (Life Technologies, Carlsbad, 

California), RNA concentration was determined using the Nanodrop machine and 

software (Thermo Fisher Scientific, Rockville, Maryland). 1 μg total RNA was used to 

generate cDNA with the QuantiTect Reverse Transcription Kit (Qiagen, Venlo, The 

Netherlands). Quantitative reverse transcription PCR (q-RT-PCR) of ISG15, IFIT1, and 

ICAM1 mRNA was performed using TaqMan assays or Custom Taqman Gene 

Expression Array Cards (Life Technologies, Carlsbad, California) and the Applied 

Biosystems 7500 Fast real-time PCR system and software. TBP and was used as a 

reference gene. The ΔΔCT method was used to calculate relative expression levels. 
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Reverse transcriptase negative cDNA synthesis reactions were performed for at least 

one sample per plate. 

 

Mouse endogenous retrovirus and SINE qPCR   

Cells with A10 treatment were collected on days 3, 4, 7, and 10. RNAs were DNAseI 

treated and cDNA synthesis was performed (High-Capacity cDNA Reverse Transcription 

Kit, ThermoFisher).  Expression of 9 mERVs genes (two IAP gag genes, an IAP-LTR, 

Mtv 7/8/9 sequences specific for C57Bl/6 mouse strains, and placental mERVs including 

syncytin-A, mErv-3, Peg11 and Mart8) and the B1 SINE gene was quantified by qPCR 

(ABI 7300) (see Supplemental Table 3.1 for primer sequences and q-PCR 

methodology). Mouse housekeeping genes:18S rRNA, β-actin and GAPDH were used 

for normalization (Supplemental Table 3.1). Ascites tumor cells were sorted using FACS 

at week 4.5 following in vivo AZA treatment (Supplemental Figure 3.6A).  We examined 

gene expression for all 9 mERVs and B1 SINE gene expression in sorted ascites tumor 

cells.  The full qPCR protocol was previously described(167),(168). 

 

All mouse experiments 

Tumor burden was assessed via measurement of body weight and amount of ascites 

drained from the mice at the point where they had gained 20-30% of their body weight.  

Statistical outliers were removed using Pierce’s criterion.  Mice were cared for in 

accordance with the policies of the JHU ACUC.  n=10 mice for all treatment groups.  

 

Mouse experiments with ex vivo epigenetic treatment of cancer cells. 

Single agent therapy:  2.5x105 cells (A10) or 5x105 cells (HDACi3, HDACi10, and A3) 

were injected i.p. into 8-10 (A10) or 6-8 (HDACi3, HDACi10, and A3) week old female 
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C57Bl/6 mice.  Immune cells were isolated from the ascites fluid via a Percoll gradient, 

and stained for FACS. 

Combination therapy:  2.5x105 cells treated with A17, HDACi17, or A+HDACi17 

schedules were injected i.p. into 8-10 week old female C57Bl/6 mice.  All cells from the 

ascites fluid were filtered and stained for FACS.   

 

Mouse experiments with in vivo treatment 

2.5x105 ID8-VEGF-Defensin cells were injected i.p. into 8-10 week old female 

C57BL/6NHsd (C57Bl/6) mice or NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice 3 days 

after injection. 0.5mg/kg AZA or saline was given i.p., for 5 days a week.  The following 

week, 2mg/kg Givinostat or Entinostat or 1% DMSO in saline was injected i.p. for 5 days.  

For the rest of the experiment, the treatment alternated AZA/HDACi every other week.  

α-PD-1 (200ug/mouse) was given on days 17, 20, 24, and 27 after injection in the 

C57Bl/6 mouse experiment.  α-PD-1 (1mg/mL in saline) was kindly provided by Dr. 

Michael Lim of the SKCCC, Johns Hopkins University.  Blocking of IFNAR1 was 

achieved with the anti-mouse IFNAR1 antibody (clone MAR1-5A3), injected every 3 

days (0.5mg/mouse)(169).  Anti-IFNAR1 and the mouse IgG isotype control were 

purchased from Leinco Technologies and diluted in PBS.   

 

Flow cytometry 

Ascites were drained or spleens were collected from 5-10 mice per group and incubated 

in ACK buffer (Thermo Fisher) to lyse red blood cells for 10 minutes, then washed. 

Ascites from each mouse was individually lysed and prepared for flow cytometry. 

Mononuclear cells collected were cultured for 4 hours in RPMI with 5% Fetal Bovine 

Serum and in the presence of Cell Stimulation Cocktail (plus protein transport inhibitors; 

eBioscience). Cells were then washed and stained for cell surface markers including 
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Live/Dead (eBioscience), CD45 (BD Biosciences), CD3 (BD Biosciences), CD4 (BD 

Biosciences), CD8 (BD Biosciences), PD-1 (eBioscience), NK1.1 (BD Biosciences), 

F4/80 (Biolegend), MHC II (Biolegend, Isotype Control #400627), GR1 (Biolegend, 

Isotype Control #400635), and CD11b (Biolegend). After incubation, the cells were 

permeabilized (FoxP3 staining buffers, eBioscience). Intracellular staining was 

performed for FoxP3 (eBioscience, Isotype Control #12-4321) and IFNγ (BD 

Biosciences, Isotype Control #554686). Flow cytometry acquisition was performed on an 

LSRII cytometer (BD Biosciences) and data were analyzed using FlowJo software 

version 10.2.  

 

Chemokine and Cytokine Array 

Cultured cells were treated with an A10 treatment schedule and media was collected at 

day 10. Ascites from mice treated with AZA as described above was collected at week 4 

after injection of cells. Cells were removed from ascites and supernatant collected.  

Media and ascites samples were analyzed with the Proteome Profile Array, Mouse 

Cytokine Panel A (R&D Systems) according to manufacturer instructions.   

 

Cell Cycle and Apoptotic Analysis 

Cells were treated with an A10 treatment schedule and collected on Days 3 and 10.   For 

cell cycle analysis, BrdU (10uM, Sigma) was incubated with cells for 2 hours.  Cells were 

fixed, treated with DNase (300ug/mL), and stained with anti-BrdU (Biolegend) and 7-

AAD (Life Technologies).  For apoptosis analysis, cells were stained for FACS and were 

measured as apoptotic based on positive Annexin V (eBioscience) and 7-AAD (Life 

Technologies) staining. Flow cytometry was performed on a FACS Calibur cytometer 

(BD Biosciences) and data were analyzed with FlowJo V10 software. 

 



38 
 

Western Blots 

Protein extracts were quantified and immunoblotted using the 4%–20% Mini-PROTEAN 

TGX gel system (Bio-Rad) and PVDF membranes (Millipore).  β-actin or GAPDH was 

used as a loading control. Antibodies used were as follows: polyclonal rabbit anti-mouse 

cleaved PARP (Cell Signaling, 1:1000), polyclonal rabbit anti-DNMT1 (Sigma, 1:1000), 

mouse anti-β-Actin (Sigma, 1:10,000), and polyclonal rabbit anti-GAPDH (Trevigen, 

1:10,000). Band intensities were quantified using the program Adobe Photoshop 

Elements 6.0. 

 

RNA extraction and sequencing library generation for immune cells 

CD8+ and CD4+ T cells and CD11b+ myeloid cells were sorted using a FACS Aria II  from 

ascites derived from mock and AZA treated mice.  Approximately 10,000 cells were 

collected for each sorted population, based on viability, size- and lineage-exclusion. 

Cells were pelleted at 300 x g for 10 mins. The supernatant was carefully removed and 

100 µL of Arcturus PicoPure extraction buffer (ThermoFisher Scientific) was added. 

Total RNA was extracted using Arcturus PicoPure RNA isolation kit according to the 

manufacturer’s protocol. Low-input RNA sequencing libraries were generated from 200 

pg of total RNA using SMART-seq v4 Ultra Low Input RNA kit (Clontech). All samples 

were subjected to 13 PCR amplification cycles to minimize PCR biases. Amplified cDNA 

libraries were later fragmented through sonication to obtain 200 – 500 bp fragments. 

Standard Illumina sequencing libraries were prepared using Rubicon ThruPLEX DNA-

seq kit (Rubicon Genomics) according to manufacturer’s protocol. Sample barcoded 

libraries were sequenced on Illumina’s NextSeq 500 instrumentation using NextSeq 300 

Cycle Kit, High Output, V1 reagents (Illumina) and data analysis workflow, bcl2fastq -

v2.17.1.14, to obtain 150 bp paired-end reads. 
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   Paired-end RNA sequencing reads were trimmed to remove Illumina’s adapter 

sequences. Sequencing reads were further processed to remove poor quality reads 

and/or reads mapping to mouse rRNA and tRNA sequences using ArrayStudio package 

(www.omicsoft.com/array-studio). Following criteria was used to remove poor quality 

reads: Trim reads with base quality score (Sanger Quality Score) <10; Filter out reads if 

trim length is < 25 bp; Filter out reads if maximal base quality score is < 15, Filter out 

reads if average quality score is < 10; Filter out reads if poly AGCT rate is >= 80%; Filter 

out the pair if either read fails the filtering criteria.  Sequencing reads were aligned to the 

mouse reference genome (Build38) using OSA version 4 (PMID: 22592379). To obtain 

transcript counts data, RSEM package (PMID: 21816040) and NCBI mouse RefSeq 

gene model (release July 2015) annotations were used. Transcripts with zero counts in 

more than two third of the samples were discarded from downstream analysis to reduce 

noise in the expression data. Filtered counts data was later normalized using quantile 

normalization and differentially expressed transcripts were identified using Limma Voom 

(PMID: 24485249). A p-value cutoff of 0.05 was used to classify transcripts as 

differentially expressed in treatment condition. Upstream regulator and pathway 

analyses on differentially expressed transcripts were performed using QIAGEN’s 

Ingenuity Pathway Analysis (www.qiagen.com/ingenuity).    

 

Statistical Analysis 

Data was graphed in GraphPad PRISM 5.0, and significance was determined by a 

Mann-Whitney t-test or by multiple pairwise comparisons using the one-way ANOVA test 

with Bonferroni Correction.  Significances in survival data were determined by Mantel-

cox (log rank) test.  Differences were deemed significant with a p-value of less than 0.05.  

Outliers were removed from ascites volume data sets and ascites immune cell data sets 

http://www.qiagen.com/ingenuity


40 
 

using the Peirce’s Criterion (170) Significances are shown with p<0.05 (*); p<0.01 (**) or 

p<0.001 (***). 

 

Results 

Pre-treatment of tumor epithelial cells ex vivo 

To study how DNMTIs and HDACIs directly affect tumor epithelial cells to 

regulate response and immune cell interactions, we pre-treated cultured, syngeneic 

mouse ovarian surface epithelial cancer cells, ID8-VEGF-Defensin (131-134), with 

epigenetic agents, injected the cells into untreated mice, and analyzed ascites volume 

as a measure of tumor burden (152).  Ten or 17 (A10, A17), but not 3 (A3-10), days of 

AZA pre-treatment of tumor cells led to significantly less ascites (Figure 3.1B), reflected 

as a reduction in weight gain (Supplemental Figure 3.1A), and increased mouse survival 

compared to vehicle (Mock) or HDACi pre-treated tumor cells (Figure 3.1A-D, 

Supplemental Figure 3.1A, B).  Combination pre-treatment of AZA and Entinostat 

(A+MS17) or AZA and Givinostat (A+ITF17) decreased ascites compared to mock, but 

did not decrease ascites (Figure 3.1C) or improve survival (Figure 3.1D) over AZA 

treatment alone. Overall, the decrease in ascites volume and increase in survival with 

AZA or AZA+HDACi pre-treatment appears to be driven by an AZA mediated effect on 

tumor cells.  

AZA pre-treatment of tumor epithelial cells in these ex vivo treatment studies led 

to changes in the immune microenvironment with increased numbers of immune cells 

(CD45+) in the ascites of A10 pre-treated tumor cells (Figure 3.2A, B). Neither the 

addition of Givinostat (A+ITF17), nor Entinostat (A+MS17), to AZA increased the number 

of CD45+ cells above AZA alone (Figure 3.2C). Pre-treatment with AZA (A17) also 

changed the percentages of immune cell subsets, including increasing the percentage of 

NK cells, activated NK cells, and dendritic cells, and decreasing the percentage of 
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macrophages (Figure 3.2D-H).  HDACi pre-treatment alone or in combination with AZA 

did not generally cause or increase the aforementioned changes (Figure 3.2C-K).  The 

effects of AZA pre-treatment are still observed 4-5 weeks after treatment, suggesting a 

long-lasting AZA mediated effect on the tumor cells, which may then signal to untreated 

host immune cells. 

 

AZA induced immune signaling in tumor cells 

 Treatment with AZA at doses that degrade its molecular target, DNA 

methyltransferase 1 in ID8-VEGF-Defension cells (Supplemental Figure 3.1C, D, E) 

caused an upregulation of an immune related viral defense signature in these murine 

cells, as was previously described for human ovarian cancer cells (118), (Supplemental 

Figure 3.2A). This expression, also seen in cancer testis antigens (CTAs), was 

especially robust with prolonged treatment (Supplemental Figure 3.2A, B). HDACIs have 

been shown to synergize with DNMT inhibitors to re-express silenced genes in cancer 

(16,51), but Entinostat (MS275) or Givinostat (ITF) treatment (HDACi17) alone or in 

combination with AZA caused only small or moderate changes in the expression of the 

antiviral and CTA genes in these mouse ovarian cancer cells (Supplemental Figure 

3.2C, D). 

We previously demonstrated that AZA treatment of human ovarian carcinoma 

cell lines induced the expression of RNA from endogenous retroviruses (ERV), which led 

to increased interferon signaling and viral defense gene expression (118,119). We now 

demonstrate in mouse ovarian ID8-VEGF-defensin cells that AZA significantly increased 

several mERVs in both cultured tumor cells (Supplemental Figure 3.2E) and tumor cells 

sorted from ascites from treated C57Bl/6 mice (Supplemental Figures 3.2F, 3.6A, 

Supplemental Table 3.1). 
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Lastly, AZA treatment in vitro (A10) and in vivo (Supplemental Figure 3.6A) 

increased the secreted protein levels of chemokines and cytokines. Of the 9 increased in 

cultured cells, only CXCL10, CXCL1, and CCL2 were also increased in the ascites fluid 

(Supplemental Figure 3.2G, H). 

 

Treatment of mice with AZA, HDACi, and α-PD-1  

Having shown that pre-treatment of ovarian tumor cells led to increased immune 

cells in the tumor microenvironment and improved survival of the mice, we next asked 

whether the addition of α-PD-1 would provide added benefit.  Mice bearing ovarian 

tumors treated intraperitoneally with AZA, an HDACi, and α-PD-1 had improved overall 

survival, decreased tumor burden, and alterations of immune cell populations that would 

promote immune cell killing of tumor cells (Figure 3.3, 3.4). AZA as a single agent or in 

combination with either HDACi or α-PD-1 significantly reduced ascites volume (Figure 

3.3B, expansion), while HDACIs or HDACIs+α-PD-1 were ineffective (Figure 3.3B).  

Mirroring these ascites data, α-PD-1, HDACIs alone, or HDACIs plus α-PD-1 did not 

affect survival (Supplemental Figure 3.3B), while the combination of AZA with either 

HDACi significantly improved this key parameter over AZA treatment alone (Figure 

3.3C). This is in contrast to the ex vivo treatment model, where the addition of HDACi to 

AZA did not affect the tumor burden or overall survival.  The improved survival with in 

vivo treatment may reflect the effects of the epigenetic drugs on the host immune cells.  

Adding α-PD-1 to AZA+ITF further significantly increased survival over AZA+ITF or 

AZA+MS+α-PD-1 (Figure 3.3D-F.  In summary, the triple combination of AZA+ITF+α-

PD-1 was the most effective at decreasing ascites volume and increasing overall 

survival (Figure 3.3F).  
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Immune cell populations in the ascites fluid of tumor bearing mice were changed 

by epigenetic therapy and α-PD-1, but immune cells in non-malignant tissues, such as 

the spleen, were not affected (Supplemental Figure 3.6B). AZA treatment moderately but 

significantly increased the percentage of activated CD4+ and CD8+ T cells and NK cells 

in the tumor microenvironment, and, when combined with ITF or either HDACi and α-PD-

1, this activation was markedly enhanced (Figure 3.4A, B, C).  All treatments containing 

AZA led to an increase in the percentage of T cells (Figure 3.4D), though this effect was 

less consistently observed in replicate experiments than the increases in activation of 

CD8+ T and NK cells.  None of the treatment groups altered the percentages of T 

regulatory, CD4+, CD8+, CD4+PD-1+, or CD8+PD-1+cells, or the CD4/CD8 ratio 

(Supplemental Figure 3.4),  The addition of Givinostat or either HDACi+α-PD-1 to AZA 

therapy increased the activation of key tumor-killing subsets of immune cells. 

Myeloid derived suppressor cells, which aid in tumor immune evasion (171), 

were significantly decreased by almost all therapies, with the exception of ITF and 

ITF+α-PD-1; however, this exception may be due to limitations in sample number and 

high variability (Figure 3.4E).  All treatments containing AZA decreased the percentage 

of macrophages, which can influence tumor growth (172) (Figure 3.4F). Compared to 

AZA alone, the addition of an HDACi significantly decreased the percentage of 

macrophages further.  Overall, increased numbers of CD45+ immune cells, increased 

activation of CD8+ T cells and NK cells and decreases in macrophages and MDSCs 

were the most consistent, significant changes resulting from epigenetic therapy. 

In support of the fact that in vivo epigenetic treatment alters host immune cell 

populations in the tumor microenvironment, we find that AZA treatment increases 

expression of viral defense genes in CD8+ and CD4+ T cells and in CD11b+ myeloid cells 

in the ascites fluid of treated, tumor bearing mice (Supplemental Figure 3.5 A,B). 

Ingenuity analysis also identified interferon associated genes as top upstream regulators 
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of the transcriptional program in these in vivo AZA treated cells (Supplemental Table 

3.2).  These results suggest that the AZA induced increase in gene expression of 

interferon associated genes in both tumor and host immune cells may be an integral 

component of the improved outcome of mice treated with epigenetic therapy and 

immune checkpoint inhibitors.  

In summary, the combinations of epigenetic agents, as well as the addition of α-

PD-1 to AZA+HDACi, increase the numbers and activation of key tumor killing immune 

cells to the tumor microenvironment and decrease numbers of MDSCs and 

macrophages (Figure 3.4). We hypothesize that these effects contribute to the reduction 

in tumor burden and survival when treating with AZA, its combination with HDACIs, and 

importantly these agents combined with α-PD-1.   

 

Blockade of IFNAR1 inhibits the actions of AZA 

Our expression data show that AZA treatment leads to increased interferon 

signaling and viral defense gene expression in ID8-VEGF-Defensin cells (Supplemental 

Figure 3.2A,C). We therefore questioned the role and importance that interferon 

signaling plays in the AZA induced decrease in tumor burden and alterations in immune 

cells observed in Figures 3.3 and 3.4. To test this hypothesis, we injected α-IFNAR1 

(i.p., 0.5mg/kg) every 3 days into mice harboring ID8-VEGF-Defensin tumor cells, 

simultaneously treated with AZA or vehicle control (Mock) (Figure 3.5A).  The AZA 

mediated reduction in ascites volume routinely observed in our experiments was 

inhibited by treatment with anti-IFNAR1 (Figure 3.5B) and total numbers of CD45+ cells 

in the ascites were not increased as with the AZA treatment, but remained near mock 

values (Figure 3.5C).  Likewise, activation of CD8+ T effector cells and natural killer (NK) 

cells in response to AZA treatment was also completely blocked and rescued by anti-

IFNAR1 (Figure 3.5D, E) and there was no survival benefit for mice treated with AZA 
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and anti-IFNAR1 (Figure 3.5F).  As expected, antibody blockade of IFNAR1 in vitro 

prevented the AZA induced increase in expression normally observed for anti-viral 

genes, such as ISG15, IFIT1 and ICAM1 (Figure 3.5G, H, I).  Previous in vitro studies 

have demonstrated that upregulation of a dsRNA sensing pathway by AZA  triggers the 

activation of an intact Type I interferon signaling pathway requiring the interferon alpha 

and beta receptor subunit 1 (118,119).  Our α-IFNAR1 data are the first to indicate that 

the type I interferon response is, indeed, required for effective in vivo anti-tumorigenic 

actions of 5-Azacytidine, including reduced tumor burden, extended survival, and 

increased numbers and activation of immune cells.  . 

AZA+HDACi efficacy requires a treated immune system  

To assess the role of the immune cells in the anti-tumorigenic response, we 

compared the response to epigenetic agents in treated immune-deficient NSG mice that 

lack functional B, T and NK cells (173) (Figure 3.6A) to the response in the treated 

immunocompetent mice (Figure 3.3).  In the NSG immunodeficient mice, AZA treatment 

reduced ascites volume and increased survival as in the C57Bl/6 mice, and HDACi 

treatment alone did not significantly affect ascites volume or survival in either mouse 

model. Combination treatment was more effective than AZA as a single agent in the 

treated immune competent C57Bl/6 mice (Figure 3.6B, C), and not in the 

immunodeficient mice or in the pretreatment model (Figure 3.1), suggesting that when 

combined with AZA, HDACIs may act on the immune microenvironment to reduce tumor 

burden.  Taken together, these data imply that AZA can act on both tumor and immune 

cells, while the added benefit of the combination with the HDACi may rely on the 

treatment and presence of an intact host immune microenvironment.  Specifically, the 

activation of T and NK cells and decreases in macrophages were all significantly 

enhanced by the HDACi addition to AZA and may be responsible for the reduction in 

tumor burden in the treated mice in an immune intact setting (Figure 3.4B, C, D, F). 
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AZA has direct anti-tumorigenic effects  

In the absence of tumor killing immune cells in the NSG model, it was intriguing 

that we noted increased numbers of dead cells in the CD45- (non-immune cell) 

population with AZA and AZA+ITF treatment, the two groups with the longest median 

survival (Figure 3.6D). This could be explained by the fact that the anti-tumor effects of 

AZA can be mediated through mechanisms that are not immune related, such as 

apoptosis and disruption of the cell cycle (118,155-157). Indeed, three or 10 days of in 

vitro treatment of the tumor cells (A3-3, A10) with 500nM AZA caused a significant 

decrease in cultured cell numbers (Figure 3.7A, B) associated with signs of apoptosis 

reflected by increased cleaved-PARP protein levels and percentage of cells positive for 

Annexin V and 7-AAD (Figure 3.7C, D, E, F).  These data confirm that nanomolar doses 

of AZA induce a low level of apoptosis in cancer cells, as we have previously described 

(118,155), which appears to be too small to account for the large decrease in tumor cells 

observed in culture (Figure 3.7B).  A more important factor in the decrease in tumor cell 

number could be that A3 and A10 treatment in vitro decreased the percentage of tumor 

cells in S phase and increased those in G2-M arrest (Figure 3.6G, H),  as has been 

observed in other models (156,157).  In summary, AZA directly affects intrinsic, anti-

tumorigenic mechanisms in the tumor cells, leading to increased apoptosis and cell cycle 

arrest. 

Overall, our data demonstrate that AZA reduces tumor burden and increases the 

number of immune cells in the tumor microenvironment, in part through effects on the 

tumor cells themselves. AZA treatment upregulates immune gene expression in tumor 

cells and in immune cells, and type 1 interferon signaling is required for some anti-

tumorigenic effects of in vivo AZA, such as decreased ascites burden, extended survival, 

and activation of immune cells. When tumor bearing mice are treated in vivo, the 
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addition of an HDACi to AZA further reduces tumor burden and increases survival, 

perhaps due to an increase in activated T and NK cells and a decrease in macrophages.  

Finally, the combination of AZA, Givinostat, and α-PD-1 was the most effective in 

improving overall survival. 

 

Discussion 

The use of different treatment models in this study has enabled us to understand 

how 5-azacytidine (AZA) and HDACIs act individually and in combination on ovarian 

tumor epithelial cells and immune cells in the microenvironment to establish anti-tumor 

responses and to enhance immune checkpoint therapy. Low doses of AZA, but not 

HDACIs, directly induce multiple anti-tumorigenic mechanisms in tumor cells, most 

notably increased immune signaling, increased apoptosis, and disruptions of the cell 

cycle. However, when an HDACi, especially Givinostat, is combined with AZA in vivo so 

that both tumor and cells in the immune microenvironment are exposed to the drugs, 

these agents can enhance the activation of specific immune subsets such as T and NK 

cells.  Our data now show that that the addition of an HDACi to a DNMTi may be optimal 

to achieve a maximal sensitization to checkpoint inhibitors. The addition of Givinostat, 

but not Entinostat, to AZA was able to sensitize the tumors to α-PD-1 therapy.  The 

reasons why Givinostat outperforms Entinostat in overall survival when combined with 

AZA and α-PD-1 are currently under investigation.  Other studies have shown that 

HDAC inhibition can affect tumor associated immune cells, with one finding that B cells 

as well as interferon-γ receptor signaling in the tumor cells were important for the anti-

tumorigenic effect of the HDACIs vorinostat and panobinostat in syngeneic models of 

colon cancer and lymphoma (126).   

In our study, blockade of type 1 interferon signaling through an antibody against 

IFNAR1 impairs the anti-tumorigenic effects of AZA.  Although it had been observed that 
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AZA treatment could stimulate interferon pathway induction by the viral defense pathway 

signaling, it was not known what in vivo consequences would be linked to this pathway 

upregulation.  Importantly, our data now demonstrate that many of the anti-tumorigenic 

actions of AZA in ovarian cancer are mediated via the interferon α, β receptor subunit 1, 

including decreased tumor burden, increased CD45+ immune cells in the tumor 

microenvironment, and increased activation of CD8+ T and NK cells.  

In addition to the effects on immune cells described above, we hypothesize that 

AZA mediated apoptosis and cell cycle disruptions in ID8-VEGF-Defensin cells may also 

be dependent on IFNAR1 signaling.  In vitro, AZA has been shown to lead to increases 

in apoptosis and decreases in self renewal that can be rescued by inhibiting the 

interferon response (118,119).  In response to anti-IFNAR1 in vivo, ascites volume in 

AZA treated mice remained similar to mock values (Figure 3.5B), and did not show the 

decrease in ascites volume that was observed with AZA treatment in the NSG mice 

(Figure 3.6), suggesting that anti-IFNAR1 inhibition of interferon signaling may also 

prevent apoptosis and blocks in cell cycle.  

Others have tested whether the interferon response can play a role in 

sensitization to immune checkpoint blockade, as stabilization of IFNAR1 improves 

efficacy of anti-PD-1 therapy (123), and the loss of interferon gamma pathway genes is a 

mechanism of resistance to anti-CTLA-4 (124).  On the other hand, prolonged tumor 

interferon signaling has been shown to induce resistance to immune checkpoint 

blockade over time (125), implying that perhaps the timing and duration of the response 

is important.  Our study provides a greater understanding of how interferon signaling 

may sensitize tumors to immune checkpoint blockade. 

The AZA induced increases in immune signaling observed in ID8-VEGF-defensin 

mouse ovarian cancer cells are consistent with our results for AZA treated human 

ovarian cancer cells (87,118). Thus, in both the human and murine tumor cells, AZA 
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treatment leads to an increase in the expression of endogenous retroviral transcripts 

(ERVs), viral defense genes, cancer testis antigens and chemokines/cytokines 

(87,118,119). Chemokines CXCL10, CXCL1, and CCL2 were detected in both the cell 

culture media of AZA treated murine cells and the ascites fluid of AZA treated mice. 

CXCL1 and CCL2 have been identified in patient ascites (174) and CXCL10 in 

humanized models of ovarian cancer (97), validating the relevance of the ID8-VEGF-

defensin mouse model of ovarian cancer to human disease, and suggesting that these 

chemokines/cytokines may play a role in the AZA induced recruitment of immune cells to 

the tumor associated ascites(175-177).  

Our studies now provide mechanistic insight for previous studies showing that 

epigenetic agents may alter the tumor associated microenvironment to potentially 

sensitize tumors to immunotherapy (94,95,97,118,129). In a previous study, treatment 

with the DNA demethylating agent decitabine increased the percentage of activated NK 

and CD8+ T cells in the ascites fluid with associated improvement of the efficacy of anti-

CTLA-4 immunotherapy and longer survival of the mice (96). In another ovarian cancer 

study, inhibition of DNMT1 and the epigenetic repressor EZH2 increased tumor 

expression of T helper 1 (TH1)-type chemokines CXCL9 and CXCL10.  This change in 

immune signaling from the tumor led to increased tumor infiltrating T Effector cells, 

inhibited tumor growth, and increased the sensitivity of the tumor to adaptive T cell 

transfusion therapy or PD-L1 blockade (97). Our study now defines the cellular targets of 

AZA and HDACIs using a more comprehensive panel of immune cells and proving a 

requirement for Type I interferon signaling in the AZA-induced immune response.  We 

have shown that the addition of an HDACi to AZA can increase the activation of immune 

subsets, using doses of epigenetic therapy that are clinically relevant and can be 

immediately applied in clinical trials.  The preclinical data in this manuscript helped to 

initiate a Celgene sponsored, Phase II Randomized Study of Pembrolizumab With or 
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Without Epigenetic Modulation With CC-486 (Oral AZA) in Patients With Platinum-

resistant Epithelial Ovarian, Fallopian Tube or Primary Peritoneal Cancer (178).  This 

trial started enrollment December 2016 and will hopefully reveal that addition of a DNMTi 

to checkpoint inhibitor therapy provides benefit beyond that of immunotherapy alone.  

The addition of an HDACi to the DNMTi in future trials may provide more benefit, and 

our data suggest that this combination will provide optimal sensitization to immune 

checkpoint blockade.    
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Figure 3.1:  Pretreatment of tumor epithelial cells with AZA and transplantation 

into untreated C57Bl/6 mice leads to decreased tumor associated ascites and 

increased overall survival.  

 
A) Treatment schematic for in vitro treatment of cultured ID8-VEGF-Defensin cells.  B-C) 

Ascites volume drained from mice 4-5 weeks after pre-treated tumor injection. 

Mean+SEM is shown. A10, MS3, MS10: n=3; A3-10: n=2; MS17, ITF17, A17, A+MS17, 

and A+ITF17 n=1. Statistical outliers were removed using Pierce’s criterion, and 

significance was determined by a Mann-Whitney t-test. D) Survival of mice in days, with 

median survival shown. Significance was determined using a log rank (Mantel-Cox) test.  
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Figure 3.2:  Pretreatment of tumor epithelial cells with AZA and HDACi lead to 

alterations in the numbers and activation of immune cell populations in tumor 

associated ascites.   

 

ID8-Vegf-Defensin cells were pretreated and injected into mice. Cells were analyzed 

from the ascites fluid drained (Figure 3.1A-C).  A) Immune cells/mL isolated via Percoll 

gradient (n=2). B) CD45+cells/mL identified via Percoll gradient and FACS (n=2).  

Mean+SEM is shown in A-B, and significances are determined by Mann-Whitney t-test. 

(C-K).  All cells from ascites were analyzed via FACS (n=1). C) CD45+ cells/mL of 

ascites.  Mean+SEM is shown and significances are determined by one-way ANOVA.   

D-K) Median, 25th and 75th percentiles, and range are plotted and significances are 

determined by one-way ANOVA.  D) %T cells (CD3+) of CD45+cells. E)%Natural killer 

cells (NK1.1+) of CD45+ cells. F) % Activated natural killer cells (NK1.1+, IFNγ+) of NK1.1+ 

cells. G) %Dendritic cells (CD11c+MHCII+) of CD45+ cells. H) %Macrophages (CD11b+, 

F4/80+) of CD45+ cells. I) %T effector cells (CD8+IFNγ+) of T cells  J) %T helper cells 

(CD4+IFNγ+) of T cells. K) %Myeloid derived suppressor cells (GR-1+, CD11b+, F4/80-, 

MHCII-) of CD45+ cells.   
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Figure 3.3: The addition of immune checkpoint inhibition to epigenetic therapy in 

an intact mouse model decreases tumor burden and increases survival.   

 

A) In vivo treatment schematic of AZA (A), Entinostat (MS), Givinostat (ITF) and α-PD-1. 

B) Volume of ascites fluid drained at week 6. Mean+SEM is shown and significances are 

determined by one-way ANOVA. All significances are compared to Mock, *=p<0.05, 

**=p<0.01, ***=p<0.001. C-F) Survival of the mice in days, with median survival shown.  

Significances are determined by log rank (Mantel Cox) test. 

  



54 
 

Figure 3.4: Epigenetic therapy and α-PD-1 increases the number and activation of 

immune cells in the tumor microenvironment.  

 

 
Mice were treated as described in Figure 3.3A. Cells from ascites fluid drained at week 

6.5 were analyzed via FACS. Median, 25th and 75th percentiles, and range are plotted for 

each experimental arm and significances are determined by Mann Whitney T test. 

Significances compared to Mock are marked with *, and significances compared to AZA 

are marked with #. */#-p<0.05, **/##-p<0.01, ***/###-p<0.001.  A)  %CD3+ T cells of 

CD45+ cells. B) %T effector cells (CD8+IFNγ+) of T cells. C) %T helper cells (CD4+IFNγ+) 

of T cells.  D) % activated NK cells (NK1.1+, IFNγ+) of NK1.1+ cells;  E) %Myeloid derived 

suppressor cells (GR-1+, CD11b+, F4/80-, MHCII-) of CD45+ cells;  F) %Macrophages 

(CD11b+, F4/80+) of CD45+ cells. 
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Figure 3.5: Blockade of IFNAR1 inhibits the actions of AZA.   

 

A) Treatment schematic for the mice.  Mice were treated with AZA or saline as described 

in Figure 3.3.  Anti-IFNAR1 was injected i.p. (0.5 mg/mouse) every three days, beginning 

one day before the AZA regimen.  B) Volume of ascites drained from the mice at week 

4.5. Mean+SEM is shown and significances are determined by Mann-Whitney T-test.  C) 

Survival of the mice in days, with median survival shown.  Significances are determined 

by log rank (Mantel Cox) test. D-F) Median, 25th and 75th percentiles, and range are 

plotted, and significances are determined by Mann-Whitney T-test.  D) CD45+ cells/mL 

of ascites. E) %T effector cells (CD8+IFNγ+) of CD3+ T cells. F) % activated NK cells 

(NK1.1+, IFNγ+) of NK1.1+ cells. G-I) Relative expression of interferon stimulated genes 

in cells treated with AZA and anti-IFNAR1 in vitro.  AZA was given in an A3 treatment 

schedule, and one dose of anti-IFNAR1(10ug/mL) was given at day 0.  Cells were 

collected at day 3 for expression analysis via qRT-PCR. 
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Figure 3.6:  AZA+HDACi combination therapy is less effective at reducing tumor 

burden and increasing survival in an immunodeficient mouse model.  

 

A) Treatment schematic for in vivo treatment of NSG mice with AZA (A) and HDACIs 

Entinostat (MS) or Givinostat (ITF).  B) Fold change in ascites volume drained at week 

5.5 (NSG) or 6 (C57Bl/6). The C57Bl/6 data from Figure 3.3A is shown here for direct 

comparison. C) NSG mice survival in days, with median survival shown.  Significances 

are determined by a log rank (Mantel Cox) test.  D) % dead, CD45- , non-immune 

ascites cells (Live/dead stain+, CD45-) from the NSG ascites fluid.  B, D) Mean+SEM is 

shown and significances are determined by a Mann-Whitney t-test.  
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Figure 3.7:  Ex vivo treatment of ID8-VEGF-Defensin cells with low dose AZA 

decreases viable cell number, increases apoptosis, and disrupts the cell cycle.   

 

A) 3 or 10 day in vitro treatment with 500nM AZA . B) Total number of cells relative to 

mock. n=3.   C) Quantification of c-PARP levels in AZA treated cells relative to Mock.  

n=3. D) A representative western blot of c-PARP levels.  E-F) Percentage of annexin V+ 

and 7-AAD+ apoptotic cells.  Representative flow cytometry data is shown (E) along with 

quantification (F). n=3.  G-H) Cell cycle analysis, determined by BrdU incorporation and 

7-AAD staining of DNA content. n=3.  Mean+SEM is shown, and significances are 

determined by Mann-Whitney t-tests. 
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Supplemental Table 3.1: Top Upstream transcriptional regulators in murine 

immune cells sorted from ascites of mice treated with AZA. 

 

Mouse E16.5 placenta was used as a positive internal control: *= semi-qPCR, all other 

genes were done with full qPCR according to Henke et al. 2013 Differentiation and 

Henke et al. 2015, Retrovirology. 
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Supplemental Table 3.2: Top upstream transcriptional regulators in murine immune 

cells sorted from ascites of mice treated with AZA (Supplemental Figure 4.5A).  

 
Ingenuity pathway analysis identified type I interferon pathway associated genes as 

top upstream regulators of the transcriptional program in AZA treated CD4+, CD8+, 

and CD11b+cells. 

  



60 
 

Supplemental Figure 3.1:  

 
A, B) Percent weight gained by the mice in Figure 3.1B, C. C)Treatment schematic for 

collection of cells treated with 500nM AZA (A) at day 3 (A3) or day 10 (A10). D) 

Representative Western blot of DNMT1 levels at day 3 or 10. E) Quantification of 

DNMT1 western blots. n=3. 
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Supplemental Figure 3.2: 

 
 

A-D)ID8-Vegf-Defensincells were treated withA3-10, A10, A17, HDACi17, 

A+HDACi17as shown in Figure 3.1A. Expression of viral defense genes (A,C), and 

expression of cancer testis antigen genes (B,D) are shown. The horizontal line at log2 

fold change=1 indicate a 2 fold increase in expression. E-F) Mean fold increase of 

mERVand B1 gene expression levels compared to Mock treated; (qPCR) at days 3, 4, 7, 

and 10 of an A10 treatment schedule (n=3); mean +/-sem; *=P<0.05. G-H) Protein levels 

of chemokinesand cytokines assessed using the Proteome Profiles Mouse Cytokine 

Array Kit from R&D systems (n=1). G) Cells were treated with schedule A10, and media 

was collected. H)Ascites from Mock or AZA treated mice were collected at week 4.5 

after injection of tumor cells (Supplemental Figure 3.6). 
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Supplemental Figure 3.3: 

 
 

Mice were treated as described in Figure 3.3 (n=1). A) Percentage weight gained by the 

mice in Figure 3.3 at week 5 mimics ascites volume. B) Survival data for all 12 arms of 

the experiment.  
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Supplemental Figure 3.4 

 

Ascites fluid was drained from the mice in Figure 3.3 at week 6.5, and cells were 

analyzed via FACS. A) % NK cells (NK1.1+) of CD45+cells; B) CD4+/CD8+cell ratio; C) 

%CD4+of all T cells; D) %CD8+of all T cells; E) %CD4+PD1+T cells of CD4+ T cells; F) 

%CD8+PD1+T cells of CD8+ T cells; G)%T regulatory cells (CD4+, FoxP3+) of all 

CD3+T cells. n=1.  
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Supplemental Figure 3.5:  

 
 

A) Treatment schematic. B) Viral defense gene expression.   
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Supplemental Figure 3.6: 

 
A) Treatment schematic for mice treated only with Mock or AZA.2.5x106cells were 

injected i.p. into 8-10 week old female C57Bl/6 mice and treated on the days indicated 

with an arrow in the schematic (the same schedule as Figure 3.3).B) Spleens were 

collected from Mock or AZA treated tumor bearing mice at week 5.5. Spleens were 

filtered and washed to a single cell suspension, and the cells were analyzed via FACS. 

n=1.  
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Conclusions and Future Directions 

 In this study, we have used a syngeneic mouse model of ovarian cancer to show 

that combination epigenetic therapy can sensitize ovarian tumors to immune checkpoint 

blockade (α-PD-1).  The demethylating agent, AZA, has direct effects on the tumor cells 

themselves that include induction of immune gene signaling, apoptosis, and cell cycle 

arrest.  Perhaps because of these changes, when AZA treated tumor cells are injected 

into mice, there is an increase in the number of CD45+ cells in the tumor 

microenvironment, a decrease in tumor burden and an increase in survival of the mice.  

Interestingly, when a histone deacetylase inhibitor is used as a single agent to treat the 

tumor cells, the above parameters do not change significantly, and when an HDACi is 

added to AZA in the pretreatment model or in an immunodeficient mouse, it does not 

enhance the effect of AZA for the most part.  This is in contrast to when the tumor and 

intact immune system are both treated in vivo with AZA and an HDACi.  In that case, the 

combination therapy significantly extends survival in the mice over that of AZA alone, 

and decreases tumor burden compared to the single agents.  Unsurprisingly, treatment 

in vivo causes more changes in the immune microenvironment than pretreatment of the 

tumor cells.  AZA in vivo treatment causes small but significant increases in the 

activation of CD8+ and CD4+ T cells and NK cells, as well as a decrease in the 

percentage of macrophages.  The addition of an HDACi significantly enhances these 

effects, and importantly, the combination of AZA and the HDACi Givinostat improved the 

response of the tumor to anti-PD-1 therapy.  The induction of the type I interferon 

response by AZA may be responsible for many of these effects.  When the interferon-α,β 

receptor 1 (IFNAR1) is blocked in vivo, the AZA driven decrease in ascites burden and 

increase in survival are both lost.  Furthermore, α-IFNAR1 blocks the increase in the 

number of CD45+ cells per mL, and the increase in the percentage of activated CD8+ T 

cells and NK cells.   
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 For this study, we used a model of ovarian cancer derived from ovarian surface 

epithelial cells (131-134).  In some potentially important ways, these cells have key 

differences from human serous ovarian cancer.  For example, a recent paper revealed 

that the ID8 model does not have functional mutations in genes that are characteristic of 

high grade serous ovarian carcinoma, including Trp53, Brca1, Brca2, Nf1, or Rb1 (144).  

Also, homologous recombination remained intact in the cells, while there are 

homologous recombination defects in 50% of high grade serous carcinomas (144). In 

this study, the authors used CRISPR/Cas9 technology to generate either Trp53-/- or 

Trp53-/-Brca-/- ID8 cells, and the loss of p53 triggered an increase in suppressive myeloid 

populations in the tumor microenvironment.  Our lab acquired these cells, and it will be 

especially important to determine if p53 status affects their response to epigenetic 

therapy, especially in terms of the immune microenvironment.  In a model with more 

immune suppressive myeloid cells at baseline, we will need to establish whether the 

AZA effect of decreasing macrophages and MDSCs in the ascites fluid is maintained.  If 

so, it is possible that AZA could be even more effective in a model that is more 

immunosuppressed at baseline, by relieving that suppression, or AZA may not lower the 

myeloid cells enough to have an effect on tumor burden, or perhaps decreases in 

myeloid cells are not the sole factor in regulating the response. In the second case, 

combination epigenetic therapy could be more effective and essential.   It will be 

important to answer these questions in a model that is more relevant to human disease. 

In our current ID8 model, we have already established that AZA can induce the 

expression of immune related genes in vitro, including CTAs, chemokines, cytokines, 

and viral defense gene, in a similar manner to the effect we observed in human ovarian 

cancer cell lines.  Furthermore, we have shown that AZA also can cause the 

upregulation of endogenous retroviruses and chemokines and cytokines both in vitro and 

in vivo.  In the future, we plan to use cells sorted from the ascites fluid of treated mice to 
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establish that AZA also upregulates other interferon stimulated genes in vivo. Because 

of the established induction of ERV transcripts in vivo, it is likely that immune genes are 

also upregulated.  Furthermore, additional studies could be done on establishing the 

effects of epigenetic agents administered in vivo on the gene expression in immune 

cells.  We have shown that interferon related genes are upregulated by AZA in CD8+ and 

CD4+ T cells, as well as CD11b+ myeloid cells.  However, some of the most striking 

changes in immune cell activation are with the combination of AZA and an HDACi, or the 

triple combination with α-PD-1.  Therefore, it would be useful to study the effects of 

combination therapy on the gene expression profiles of the immune cells, in addition to 

the tumor cells.  Because immune gene signaling in the tumor is not significantly 

enhanced by the addition of an HDACi to AZA, but there are significant increases in the 

activation of CD8+, CD4+ and NK cells, there may be interesting differences in the gene 

expression changes in the immune cells.  If so, taken with the fact that the combination 

is not more effective than AZA alone in tumor pretreatment or NSG models, this would 

suggest that changes induced in the immune cells are an important factor in the effects 

of the combination epigenetic therapy.  

In addition to collecting more data on the gene expression changes caused by 

the epigenetic drugs, there are several experiments that can further elucidate which 

components of the model are critical for the reduction in tumor burden.  First, pre-

treatment of the tumor cells and then injecting them into NSG mice could help answer 

the question of whether the changes in the pre-treated tumor cells that lead to tumor 

reduction in the C57Bl/6 mice are tumor intrinsic or immune related.  In the pre-treatment 

experiments conducted with C57Bl/6 mice, the effects on the tumor cells after a 10 day 

treatment in culture that lead to tumor reduction could be mediated through mechanisms 

of apoptosis and cell cycle arrest, or through the recruitment of immune cells and tumor 

cell killing through immune mechanisms.  There is an AZA anti-tumorigenic effect in vivo 
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in NSG mice, suggesting that with longer term treatment the apoptosis and cell cycle 

effects are more dominant than the effects from immune cell tumor killing.  However, 

with a 10 day pretreatment followed by no treatment in vivo, it may be that the 

upregulation of immune gene pathways is more important, and we may not see an AZA 

effect with pretreated tumor cells in the NSG mice. 

A second way to elucidate which, if any, immune mechanisms are important for 

the reduction of tumor burden with AZA would be use antibodies to deplete CD8+ T cells 

and/or NK cells.  By blocking IFNAR1, we have shown that inhibiting the interferon 

response rescued the increase in activated NK cells and CD8+ T cells in AZA treated 

immunocompetent mice, and also rescued the decrease in ascites burden.  However, it 

is possible that the main reason that ascites burden was rescued was because of the 

blockage of interferon induced apoptosis of the tumor cells.  One way to prove that the 

reduction of activated CD8+ and NK cells caused the rescue of the ascites burden would 

be to use antibodies blocking the activity of those cells, but not the entire interferon 

response.  If blocking only the activated immune cells rescues the decrease in tumor 

burden, then the interferon response-related recruitment and activation of those cells is 

most likely responsible for the antitumorigenic effect.  However, if the blockage of those 

cells does not rescue the ascites burden decrease, then it is most likely an interferon 

induced apoptotic effect that causes the decrease in tumor burden.   

Finally, to be thorough, we should perform the α-IFNAR1 blocking experiment in 

the NSG mice to establish that the AZA antitumorigenic effect is also rescued without a 

complete immune system present.  If the interferon induced apoptosis is being rescued, 

we would expect to see a rescue of the ascites burden in the NSG mice, as well as the 

C57Bl/6.  Because we saw a complete rescue of the response in the C57Bl/6 mice, it 

would imply that both apoptotic and immune mechanisms of reducing tumor burden are 

being rescued.  Therefore, it is likely that the α-IFNAR1 would also rescue the AZA 
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response in the NSG mice.  Antibody depletion experiments targeting tumor cell killing 

immune cells would be more revealing, because the immune response (which would be 

blocked) would be isolated from the apoptotic effects of the interferon response (which 

would still be present in the immunocompetent mice), and therefore is more informative 

about which downstream parts of the interferon response are important to the AZA 

antitumorigenic effect.   

In addition to further elucidating which components of the interferon response are 

responsible for the anti-tumorigenic effect of AZA, it will be important to determine if α-

IFNAR1 rescues the effects of the combination epigenetic therapy- specifically the 

enhanced activation of immune cells and the sensitization to α-PD-1. Because the 

HDACi did not increase the expression of the anti-viral genes in tumor cells in vitro when 

added to AZA, it may seem like the interferon response in the tumor cells is not the 

driving force of the combination effects.  However, the combination did increase the 

percentage of activated immune cells, and decrease the percentage of macrophages.   

This may be due to effects on the immune cells themselves, since the combination 

therapy did not provide a benefit in the NSG mice.  Notably, these HDACi effects 

required AZA, as the HDACi as single agents did not affect tumor burden or most of the 

immune parameters in any of the models. Therefore, the implication is that AZA in vivo 

treatment is required before the HDACi can have an effect on the immune cells.  It may 

well be that when the AZA induced interferon signaling is blocked, the HDACi 

combination is not effective at further reducing tumor burden or activating immune cells. 

Potentially, the recruitment and low level activation of the immune cells by AZA, which is 

dependent on the interferon response, is necessary for the additional benefits of the 

combination therapy.  Additional information is needed, such as the baseline induction of 

interferon stimulated genes in immune cells by combination therapy, discussed above, 

and whether any potential induction of those genes by the combination is rescued by α-
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IFNAR1.  Blocking anti-IFNAR1 in the combination treated immunocompetent mice 

would be informative, as we would first learn whether the efficacy of the combination 

therapy and its sensitization effect are interferon related at all, and also would learn if 

interferon mediated gene expression changes are taking place in the tumor or the 

immune cells.   

Understanding the mechanism by which combination therapy can sensitize 

tumors to immune checkpoint blockade is a crucial step to improving clinical trial design 

and outcomes for patients.  Melanoma patients have already been shown to have an 

improved response to immune checkpoint blockade (α-CTLA-4) with a higher viral 

defense signature (118).  If it is shown that the interferon response is necessary for 

epigenetic combination therapy and sensitization, this could indicate that patients with 

low interferon signaling could benefit from not just AZA, but also combination epigenetic 

therapy before receiving immune checkpoint blockade.  As interferon gene upregulation 

was observed in lung cancer patients (64) and in decitabine treated ovarian cancer 

patients (117), it may be possible to learn from the upcoming ovarian cancer trial (178) if 

the AZA driven upregulation of the interferon genes in ovarian cancer patients correlates 

with an improvement in response to α-PD-1.  Proof that combination epigenetic therapy 

in patients also functions through the interferon pathway to sensitize tumors could help 

inform the design of clinical trials so that they include an HDACi with a DNMTi to 

improve the response to immune checkpoint blockade.  
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