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Abstract 

 
Directed cell migration is a ubiquitous phenomenon with implications in development, 

wound healing, immunity, and metastasis. The ability of cells to orient their migration is 

dependent on the presence of external cues, the components to detect them and the 

intracellular networks to process them. This dissertation explores how the regulation of 

core intracellular components can shape directional migration responses and the 

mechanisms in which cells decode single and multiple external guidance cues. Given the 

complexity and redundancy in migratory signaling pathways, we develop a new 

technique to generate an intracellular gradient of protein activity without receptor 

activation. We demonstrate the utility of this technique by imposing gradients of different 

values of the active form of one of the core mediators of directed migration, a Rho 

GTPase, Rac. We find that shallow gradients of Rac alone are sufficient to direct the 

polarity and movement of cells, recapitulating phenotypes of chemoattractant induced 

migration and demonstrating synthetic chemotaxis in mammalian cells. These results 

reveal that cell polarity can be defined starting from a downstream node, Rac. 

Furthermore, we present a new refined mathematical model of cell chemotaxis and 

suggest a novel role for an upstream kinase, PI3K, in sensitizing cells to Rac activation. 

Next, we explore how cells process multiple guidance inputs, chemotaxis and contact 

inhibition of locomotion (CIL), and the resulting implications for directed cell migration. 

We find that chemotaxis and CIL do not act independently, as the resulting migration 

phenotypes when both cues are presented in conjunction are altered when they are 

presented individually. The balance between these cues is dynamic; modulating the 

strength of the cues through external inputs or molecular interventions can influence the 
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resulting directed migration outcomes. We further investigate the mechanistic basis of 

this dependency by enumerating the molecular mediators of these cues and finding where 

they might crosstalk. In this study, we develop several new techniques at the interface 

between engineering and the life sciences and present their applications. We anticipate 

that similar multidisciplinary approaches will help unravel mysteries in directed cell 

migration and in general biology. 
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Chapter 1. Introduction and Background 
 

 
 

1.1 Directed migration in the developing and adult human 
 

 

 Directed cell migration is the ability of cells to sense, interpret and move towards 

or away from external stimuli. It is responsible for the proper function of a rich diversity 

of processes, including development
1
, axon guidance

2
, immunity

3
, wound healing

4
 and 

metastasis
5
, among many others. Therapeutic interests in this field lie in juxtaposition; 

methods to augment or reduce directed motility are both being sought after. For example, 

the enhancement or correction of directed migration is ideal for wound healing 

applications
6
 or an unresponsive immune system

7
. On the other hand, the abatement or 

blockage of directed migration is ideal for stopping the metastasis of cancer cells from 

primary tumor sites
8
 or in treating inflammatory disorders

9
. Thus a fine balance exists 

between the sensitivity and selectivity of cell migration toward attracting or repulsing 

stimuli. A common approach to understanding directed cell migration has been to identify 

and characterize the roles of signaling proteins involved in migration. Over the past two 

decades, the individual functions and localizations of many components regulating cell 

migration have been identified
10, 11

. A core circuit of proteins has been outlined with each 

protein having a respective role. However, recent work has shown that the roles of some 

canonical proteins may not be clear cut and may be context dependent
12-14

.  Additionally, 

alternative circuits have been discovered
15, 16

 indicating redundancy in the process and 

adding new layers of complexity to understanding directed migration. A given migratory 
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cue binding to receptors on the cell surface can activate multiple pathways that converge 

onto similar downstream outputs.  Thus the molecular basis of directed migration remains 

actively investigated.  In the subsequent sections, we will provide a general background 

into the field of directed migration, with a particular emphasis on single cell studies and 

techniques, as these areas are the primary focus of this dissertation. 

 

1.2  Environmental cues regulating directed cell migration 

 

 Given the abundance of processes which involve directed migration, it is not 

surprising that there are a plethora of cues which induce directional migration. Cues 

which induce directional migration are collectively referred to as “taxes”, which is plural 

for the word “taxis”, derived from the Greek word for arrangement
17

. The nomenclature 

of individual cues is acquired from the nature of the stimulus. For example, chemotaxis 

refers to directional migration in response to soluble chemicals while phototaxis refers to 

directional migration in response to light. Other directional migration cues include but are 

not limited to electric fields (electrotaxis)
18

, adhesion (haptotaxis)
19

, stiffness 

(durotaxis)
20

, temperature (thermotaxis)
21

, and topography (topotaxis)
22

. The most well 

studied taxis is chemotaxis, which is a focus of this thesis. However, as biological assays 

and observation techniques have advanced, other cues have begun to be recognized as 

prominent players in directed migration.  It is important to note that these stimuli impart 

cellular guidance by being present in gradients, where concentrations or intensities vary 

across defined distances. Cellular guidance is achieved by detection of these gradations. 

Remarkably, single cells have the capacity to sense minute differences in cues across 
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their length and can subsequently migrate quite accurately
23

. This has lead to much 

fascination and speculation as to how this is achieved and has motivated the development 

of several model single cell systems.  

 

1.3  Directed migration in single cells- model systems 

 

 In the subsections below, we will detail several popular single cell model systems 

used to study directed cell migration. These single cell model systems can be grouped 

into categories based on speed- fast moving (dictyostelium, neutrophils) vs. slow moving 

(fibroblasts, cancer cells) and morphology- amoeboid (dictyostelium, neutrophils, some 

cancer cells) vs. mesenchymal (fibroblasts, some cancer cells). Further subdivisions can 

be made by distinguishing the mode of motility, for example, generation of propulsion 

via f-actin rich protrusions or actin devoid blebbing driven by actin-myosin contractions. 

It is important to note that these distinctions may not always be clear cut, as some cancer 

cells and fibroblasts have been shown to change their morphology and mode of motility 

depending upon their local environment
24, 25

. The above dichotomy, particularly 

migration speed, has necessitated the development of different assays to study directed 

migration to match the time scales of motility and/or physiological environments. Details 

of these assays and their relative merits will be discussed in the later sections. 

   

1.3.1  Dictyostelium discoideum 
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 Dictyostelium discoideum (Dd) are soil residing social amoebas which migrate 

towards folic acid or other nutrients while vegetative. Upon starvation, complex 

morphogenesis takes place, where single amoeba aggregate through attraction to 

paracrine secretions of cyclic adenosine monophosphate (cAMP), forming converging 

cellular streams leading to the development of multi-cellular slugs and eventually, 

fruiting bodies
26

. These innate behaviors make Dd an ideal system for studying 

chemotaxis, as each phase of the dyctostelium life cycle relies on the ability to home 

towards soluble chemicals. Dd can be maintained in laboratory culture with controlled 

medium supplementation and defined developmental stages. Experimentally, Dd are 

genetically tractable with phenotypes which are relatively simple to evaluate and 

manipulate
27

. Many of the chemotaxis signaling pathways delineated in dictyostelium are 

preserved in higher order eukaryotes
27

, thus making them suitable proxies for studying 

signal transduction. There are, however, notable differences between dictyostelium and 

mammalian cells, which must be kept in perspective when extrapolating results and 

conclusions. 

 

1.3.2  Neutrophils 

 

 Neutrophils are members of the innate immune system which home to sites of 

bacterial infection and inflammation. Their primary function is to eliminate pathogens 

through phagocytosis and subsequent treatment with reactive oxygen species or 

antibacterial proteins
28

. Proper neutrophil behavior is essential for homeostasis
7
, while 

improper behavior results in a host of autoimmune disorders
9
, such as rheumatoid 
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arthritis. A large subset of their physiological behavior relies on their ability to migrate 

rapidly and accurately to specific tissues, thus necessitating robust cue detection and 

cytoskeletal arrangement systems. Neutrophils migrate directionally towards a variety of 

chemoattractants, ranging from bacterial peptides to inflammatory chemokines
28

. Primary 

neutrophils can be isolated through various methods for biological studies, including 

centrifugation from peripheral blood and peritoneal fluid
29

. Alternatively, given that 

neutrophils are short lived
30

, an immortalized promyelocytic leukemia cell line, named 

HL-60, can be differentiated to become neutrophil like
31

 with similar migratory 

properties and propensities
30

.  

  

1.3.3  Fibroblasts 

 

 Fibroblasts are mesenchymal cells critical to the wound healing process. After a 

post injury clot has formed from platelet aggregation, fibroblasts invade the wound clot, 

remodel the local matrix, and subsequently induce contractions which aid in 

reepithelialization
32

. Fibroblasts are normally quiescent, but are induced to proliferate and 

migrate directionally by mitogenic factors, with the most prominent factor being platelet 

derived growth factor (PDGF)
33

. Fibroblasts have also been shown to migrate towards 

extracellular matrix (ECM) components, such as collagen and fibronectin
33

. Many 

researchers have used primary mouse embryonic fibroblasts (MEFs) for 

experimentation
34

, while others have used the immortalized NIH 3T3 cell line
35

. As 

mentioned above, fibroblast migration is quite slow when compared to neutrophils or Dd, 

differing by about an order of magnitude (10 m/min for dictyostelium, 20 m/min for 
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neutrophils, and .5~1 m/min for fibroblasts
36

). Therefore, although many molecular 

players may be conserved among cell types, it is not surprising that fibroblasts have a 

distinct spatial detection mechanism and motility paradigm
36

. The above differences 

highlight the need to explore directed migration pathways in various cell types, as 

molecular interventions in one cell type may be ineffective in others. 

 

1.3.4 Cancer cells 

  

 The textbook image of cancer is a mass of cells at a primary tumor site. This cell 

aggregation is induced by the acquisition of cellular mutations which enhance 

proliferation and survival beyond normal homeostatic levels. When cancer cells remain 

localized to the primary tumor site, prognosis remains relatively high, as extraction of the 

tumor via surgical or other therapeutic means is effective. However, when cancer cells 

metastasize, that is, disseminate from the primary tumor site to secondary sites in the 

body, mortality dramatically increases
37

. Directed migration is an essential step in 

metastasis
38

, as it is involved in biasing cancer cell migration away from primary sites 

towards blood vessels, whereby subsequent intravasation into the blood stream promotes 

dissemination. Many cancer cells can migrate towards a variety of soluble factors, 

including chemokines and growth factors such as epidermal growth factor (EGF)
38

. The 

toolkit for studying directed migration in cancer cells revolves around the use of cancer 

cell lines for specific cancers. In this thesis, we will utilize a well characterized metastatic 

rat adenocarcinoma breast cancer cell line named MTLn3
39

, which migrate towards 

gradients of soluble EGF
40

.  As noted above for fibroblasts, MTLn3 cells and other 
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cancer cells contain distinct migration mechanisms, thus necessitating the elucidation of 

directed migration mechanisms in specific cell types of interest. 

 

1.4  Collective migration  

 

 In single cell directed migration described above, cell to cell contacts and 

interactions are transient or non-existent. These ephemeral interactions allow cells to 

remain autonomous, as is seen in fibroblasts and neutrophils in vivo and permit 

characteristic single file cell streams as observed in vivo for some metastasizing 

cancers
38

. However, collective cell migration, where cell contacts are maintained, is also 

quite prominent in directed migration. For example, in metastasizing cancer, multicellular 

strands are frequently observed invading the local tumor stroma
41

. Collective migration 

also plays prominent roles in development, for example, in gastrulation, and in 

reepithelialization during wound healing
42

. There are several model systems used to study 

collective migration in vivo, these include border cell migration in Drosophila embryos
43

, 

the zebrafish lateral line
44

, and the neural crest in xenopus
45

. An important aspect of the 

above model systems is the ability to observe cells in the native in vivo environment. 

Other models of directed collective migration include culturing mouse mammary 

organoids
46

 and primary carcinoma explants in 3D gels
47

.  
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1.5  Intercellular cues regulating directed cell migration- Contact 

inhibition of locomotion (CIL) 

 

 The transition from single cell to collective cell directed migration highlights the 

importance of how cell to cell adhesion and coupling can transform single cell behavior 

to a concerted response. This suggests that in studying single cell directed migration, 

transient cell to cell interactions should not be disregarded, as they may modify and 

enhance locomotion. An important intercellular cue which influences directed cell 

migration is contact inhibition of locomotion (CIL). CIL was first observed roughly 50 

years ago by Abercrombie and Heasyman
48

, and can be defined as “the stopping of the 

continued locomotion of a cell in the direction that has produced a collision with another 

cell”
49

. Several cancer cells exhibit homotypic CIL, where collisions between two cancer 

cells will result in redirection of both cells
50

.  Conversely, when many cancer cells 

contact nonmalignant cells during heterotypic collisions, migration remains unimpeded
51

 

and can be up-regulated
52

. This suggests that CIL may mediate the dispersal of malignant 

cells away from the primary tumor by preferentially orienting protrusions, while the lack 

of CIL with other cell types may enhance the dissemination of these cells into the stromal 

environment. In this thesis we will explore the relationship between CIL and chemotaxis 

during directed cell migration. 
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1.6  Processes in chemotaxis 

 

 In the section below, we will outline the canonical steps involved in chemotaxis, a 

form of directed cell migration, as it is a focus of this dissertation. Chemotaxis can be 

broken down into several separable steps which are essential for an accurate response. 

With the exception of adhesion, these steps are indispensable for directed migration. The 

first step involves sensing a cue which is accomplished via extracellular receptors. Next, 

cellular machinery is localized to occupied receptors which induces signaling and 

cytoskeletal polarity. Finally, cell propulsion is mediated by protrusions initiated by f-

actin polymerization or blebbing driven by actomyosin contraction. In mesenchymal cells 

such as fibroblasts, adhesion is generated at the protrusion which generates a traction 

force necessary to pull the cell body forward. In the subsections below, we will describe 

several prominent molecules involved in directed cell migration. 

 

1.6.1  Gradient sensing  

 

         Gradient sensing is achieved by receptors which uniformly decorate the cell 

membrane. In Dd and neutrophils, these receptors are G protein coupled receptors 

(GPCRs), while in fibroblasts and many cancer cells these receptors are receptor tyrosine 

kinases (RTKs). Regardless of receptor class, this uniform distribution of receptors 

allows cells to effectively sample their local environment and determine concentration 

differences across their diameter. Interestingly, various groups have demonstrated that in 

various cell types, receptor distributions remain uniform even in the presence of a 
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gradient of chemical ligands
53-55

. These experiments were carried out by introducing 

fluorescently tagged chemotactic receptors into the respective cell types and observing 

their distribution pre and post stimulation. An active cytoskeleton is not required for 

gradient sensing
56

, indicating that these processes are separable. Overall, the above 

findings suggest that intracellular molecules mediate the subsequent polarized cell 

responses. 

 

1.6.2  Polarization 

 

 Gradients of extracellular ligands induce differences in receptor occupancy across 

a given cell. These activated receptors, in turn, induce the local recruitment of several 

canonical polarity factors.  One of the chief polarity factors is phosphoinositide 3-kinase 

(PI3K) which phosphorylates phosphatidylinositol (4,5)-bisphosphate (PIP2) to create  

phosphatidylinositol (3,4,5)-triphosphate (PIP3)
42

. Directionally migrating cells have 

PIP3 confined at the leading edge, where the directionality of migration is enforced. This 

localized recruitment of PIP3 has been observed in Dd
56

, neutrophils
57

, and fibroblasts
35

 

through the use of fluorescently tagged pleckstrin homology (PH) domains, which bind 

PIP3. The internal gradient of PIP3 is amplified with respect to the external ligand 

gradient in Dd
56

 and neutrophils
57

, but is not in fibroblasts
35

. Confinement of PIP3 at the 

leading edge is also mediated by the lipid phosphatase, phosphatase and tensin homolog 

(PTEN), which dephosphorylates PIP3 to PIP2. PTEN is localized to the lateral and rear 

membrane of migrating cells and is absent from the leading edge
58

. Although PI3K is a 
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crucial player in migration, cells can still undergo chemotaxis without it
12

, suggesting that 

alternative pathways are also available for directing cells
15

.  

  PIP3 localizes several pleckstrin homology (PH) domain containing proteins to 

the plasma membrane, notably, activators for small Rho GTPases known as guanine 

exchange factors (GEFs). The most well studied group of small Rho GTPases involved in 

cell migration are Rac, Cdc42, and RhoA
42

, which predominantly reside at the plasma 

membrane. These small Rho GTPases cycle between an “on” GTP bound phase and an 

“off” GDP bound phase and contain intrinsic GTPase activity. GEFs catalyze the 

exchange of GDP to GTP, thus turning “on” small Rho GTPases. Conversely, GTPase-

activating proteins (GAPS) accelerate intrinsic GTPase activity and turn “off” Rho 

GTPases. Another layer of regulation is instilled by the presence of GDP dissociation 

inhibitors (GDIs), which bind GDP bound Rho GTPases and sequester them from the 

plasma membrane.  

 Rac, Cdc42, and RhoA are central hubs in transducing upstream receptor level 

signaling to the cytoskeleton. The canonical studies from Alan Hall’s lab using 

microinjected constitutively active forms of Rac, Cdc42, and RhoA in Swiss 3T3 cells 

demonstrated that disregulation of their protein activity could produce dramatic effects on 

the cytoskeleton
59-62

. In particular, constitutively active Rac produced broad protrusions 

called lamellipodia, with a characteristic dendritic network of F-actin filaments
61

, while a 

constitutively active Cdc42 produced several spike like projections from the plasma 

membrane termed filopodia
62

. Contrary to Rac and Cdc42, constitutively active RhoA 

induced cellular contraction, characterized by the appearance of stress fibers
60

.  
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 Given these complex cytoskeletal phenotypes, the next logical question is where 

are the activities of these Rho GTPases localized in directionally migrating cells. This 

question was answered with the development of fluorescence resonance energy transfer 

(FRET)-based probes for Rac
63

, RhoA
64

, and a sensor for Cdc42
65

. These studies 

revealed that the activity of Rac and Cdc42 is localized to the leading edge
63, 65

, while 

RhoA activity can be observed adjacent to the leading edge and at the rear of cells
64, 66

. In 

this thesis, we will explore how the spatial distribution of active Rac controls directed 

cell migration. We will also look at the activities of Rac and RhoA in migrating MTLn3 

cells. 

 

1.6.3  Protrusion 

 

 Cell propulsion is mediated by protrusions generated off of the cell body. In some 

cases these protrusions may be produced autonomously in the absence of stimuli
67

, while 

in other cell types, they are produced in a stimulus dependent manner
68

. There are two 

main classes of protrusions, the first being f-actin mediated protrusions and other being 

actomyosin driven blebbing. F-actin mediated protrusions are driven by the force of 

polymerizing actin networks pushing against the plasma membrane. Blebbing is 

produced in an f-actin independent manner by hydrostatic pressure driven by local 

actomyosin contraction, leading to the rupture of cortical actin at the plasma membrane 

and outward movement of the membrane
69

. Recently a third class of protrusion termed 

lobodopodia was also shown to exist
25

. It is likely that these protrusive phenotypes are 

interchangeable and are variations of a general migration mode. Regardless, the diversity 
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of protrusions highlight the need to derive mechanistic insight into protrusive processes, 

as therapeutic molecule interventions may only be functional on a subset of cells. 

Activation of protrusive machinery is mediated through downstream effectors of the 

small Rho GTPases. Downstream of Rac and Cdc42 are the Wiskott-Aldrich syndrome 

protein (WASP) family proteins which can be categorized based on structure into WASPs 

and WAVEs
70

 and other effectors such as the insulin receptor substrate protein (IRSp53) 

and p21 activated kinases (PAKs). Active Cdc42 can directly interact with IRSp53 to 

mediate the formation of filopodia
71

, while active Rac can interact with WAVE 

complexes, which in turn, activate actin related proteins (Arp2/3), leading to increased 

actin branching and protrusion formation
70

.  As opposed to Cdc42 and Rac, the function 

RhoA has traditionally been associated with contraction and retraction through its 

downstream effector, Rho-associated kinase (ROCK), which functions directly upstream 

of contractile machinery such as myosin II
72

. Blebbing is thought to be driven by the 

activity of RhoA. An alternative effector of RhoA is a formin, diaphanous-related formin-

1, (mDia1), which can produce straight actin filaments leading to membrane protrusion
73

. 

These contrasting functions suggest that spatial activity of RhoA must be exquisitely 

regulated in migrating cells.  

 

1.6.4  Adhesion 

 

 The formation of a protrusion is typically followed by the establishment of local 

adhesive sites. The maturation of these adhesive sites provides a traction force for 

translocation of the cell body. A cyclic process ensures proper cell migration: adhesions 
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are formed at cell protrusions while they are disassembled at the rear of cells
74

. Adhesion 

is mediated primarily by cell surface receptors called integrins, which can bind ECM 

components such as laminin, fibronectin, and collagen
75

. Bound integrins can recruit 

several signaling species, such as focal adhesion kinase (FAK) and src family kinases 

(SFKs) as well as cytoskeletal elements
75

. Although adhesion is critical to mesenchymal 

motility, it is dispensable for amoeboid migration or migration in 3D matrices, suggesting 

that adhesion is context dependent
76

.     

 

 

1.7 Assays to study chemotaxis 

 

 Progress in the field of chemotaxis has been spurned by the development of 

assays which have allowed a mechanistic understanding of how it occurs and to which 

factors. Each assay has its own set of advantages and drawbacks. For example, assays 

which allow live cell imaging can be coupled to fluorescent biosensors, which have been 

invaluable in the phenotypic evaluation of which sets of proteins appear at the “front” and 

“back” of migrating cells. On the other hand, end point assays allow a high throughput 

analysis of what factors may induce chemotaxis. In the sections below, we describe a few 

prominent assays used to study chemotaxis. Excellent protocols on how these assays may 

be executed and evaluated can be found here
77

. We will conclude with a brief description 

of how microfluidics has been used to study chemotaxis. A more detailed look will be 

given in the subsequent chapter.  
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1.7.1  Micropipette assay 

 

 The micropipette assay is a straightforward method to assess chemotaxis in a 

variety of cell types such as neutrophils
57

, Dd
78

, fibroblasts
35

, and cancer cells
79

. In this 

assay, a fine tip micropipette is filled with a chemoattractant of interest and is lowered by 

micromanipulators to a set distance away from a group of cells. The chemoattractant is 

then ejected from the micropipette by pneumatic pressure, which allows the control of the 

ejection volume and frequency of ejection
80

. Exponential gradients are produced from the 

tip of the micropipette and decay sharply with distance. The advantages of the 

micropipette assay are that it is relatively easy to execute, fluorescent reporters can be 

used in cells of interest, and kinetics of responses can be measured. The disadvantages of 

this assay lie in the reproducibility of the size of the tip, which may alter the shape of the 

gradient, and in throughput, as only a few cells may be imaged in a given area around the 

micropipette. Disadvantages in throughput can be magnified when studying slower 

moving cells, such as fibroblasts and cancer cells, where responses may take on the order 

of tens of minutes and gradients may need to be maintained on the timescale of hours. 

 

1.7.2  Boyden Chambers 

 

 The boyden chamber was developed by Stephen Boyden over 50 years ago as a 

simple population level assay used to assess chemotaxis
81

. The boyden chamber assay 

involves the use of a well with an upper and lower compartment separated by a porous 

membrane insert. Chemoattractants of interest are placed in the lower compartment and 
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will form a sharp gradient through the pores via diffusion. Cells seeded on the top of the 

insert will perceive the gradient and will migrate through the pores to the other side. At 

the end of the assay, cells are fixed and counted on the bottom of the insert using a 

microscope. The obvious advantage of using boyden chambers is in the high throughput 

data which can be collected, as this is an end point assay. The disadvantages of this assay 

lie in the inability to gain mechanistic insight into the chemotaxis process. For example, 

some factors may increase overall cell speed or increase cell proliferation but will not 

induce guidance. Such factors would be inaccurately assessed as chemotactic in this 

assay.  

  

1.7.3  Zigmond, Dunn, and Insall Chambers 

  

 To increase the throughput and reproducibility of chemotaxis assays, a variety of 

chambers have been developed based on diffusive gradient development between a 

source chemoattractant and a sink. These chambers are named after their creators, Sally 

Zigmond
23

, Graham Dunn
82

, and Robert Insall
83

. In this set of assays, thin ridges are 

connected to a source and sink, thus generating a gradient across the ridges. The assay is 

initiated when a coverslip with adherent cells is inverted onto the viewing chamber, thus 

initiating a fluid connection between the source and sink. These viewing chambers allow 

the direct observation of chemotactic processes and allow the reproducible formation of 

gradients.  The disadvantages of these assays lie in the stability of their gradient profiles, 

which evolve as the sink is saturated with chemoattractant over time, in the inability to 
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observe early events of chemotaxis, and in the planar geometry of the assay which fails to 

represent the typical 3D environment in which cells reside.   

 

1.7.4  Hydrogel assays 

 

 Among the assays described above, hydrogel assays best represent the in vivo 

cellular environment. Hydrogels can be created based on native ECM molecules, such as 

collagen
47

, or with agarose
84

. In these assays, groups of cells can either be placed in a 

preformed cavity in the hydrogel or the hydrogel itself can be polymerized around them. 

A chemoattractant is placed in a nearby preformed cavity and forms a gradient by 

diffusion from the cavity into the surrounding hydrogel, thus attracting cells to migrate 

towards it. As mentioned above, the advantage of such assays is the ability to recreate in 

vivo like environments. The disadvantages of this method lie in imaging cells through the 

hydrogel, which may cause optical distortion, and in the reproducibility of the gradient, 

as cavities are manually produced.    

 

1.7.5  Microfluidic assays 

 

 Microfluidic assays allow the manipulation of fluids at the micro and nano-scale 

using custom tailored devices fabricated out of biocompatible polymers. The length scale 

of these manipulations matches the length scales of cells, thus making them well suited 

for controlling cellular microenvironments, and in particular, assaying chemotaxis. 

Mehmet Toner’s group was the first to use microfluidics to create gradients of a 
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chemoattractant to study chemotaxis in 2002
85

. They studied neutrophil responses to 

linear and complex gradients of interleukin-8 generated by an upstream “Christmas” tree 

like network. Microfluidic assays have several distinct advantages which we will outline 

in the subsequent chapter. The chief drawbacks to using microfluidics are the specialized 

setups needed to run the assays and lack of commercial availability of most devices.  

  

 

1.8. Aims and significance of this research 

 

 Progress in the field of directed migration is driven largely by the advancement of 

techniques which allow the observation of new phenomena or can ask an entirely new set 

of questions.  A prime example of this was the development of fluorescent biosensors, 

which revolutionized our understanding of how cells could sense an external gradient and 

proved a means to systematically look at the spatial and temporal behavior of 

intracellular components involved in directed migration. The general aim of this thesis is 

to explore the molecular underpinnings of directed migration through the development of 

new technologies. We seek to answer the following questions- 1) Is the graded activity of 

a core component sufficient in itself to induce directed migration? 2) How are multiple 

cues integrated during directed migration?  A specific set of aims are enumerated below. 

 

Specific Aim 1- Develop microfluidic platforms for studying directed migration 

mechanisms and phenomena in cancer cells (Chapter 2). 
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 We will begin with a review of microfluidics and will enumerate several of the 

principles of why it is an effective tool for studying cell biology. We will also provide 

several examples of how microfluidics has been used to control cell positioning and for 

the manipulation the spatial and temporal environment around cells. Finally, we will 

describe how we developed a new set of devices to study the mechanisms of directed cell 

migration in cancer cells, which will be utilized in chapters 3 and 4. Protocols for device 

fabrication are also found in this section. 

 

Specific Aim 2-  Directly recapitulate  a native, active protein distribution of a 

known regulator of cell migration in living cells and assess its affects on directed 

migration. (Chapter 3)    

 We use our first set of tools developed in aim 1 to create a platform for directly 

inducing graded activation of Rac, an important regulator of cell migration. We further 

delve into how these perturbations provide new intuition into the function of pathways 

converging on Rac activation. 

 

Specific Aim 3- Dissect how multiple cues are integrated during directed cell 

migration (Chapter 4)  

 In this aim, we use our second set of tools developed in aim 1 to understand the 

interplay between chemotaxis and CIL in controlling directed cell migration. We provide 

further insight into how this is mediated at the molecular level and the implications for 

the overall cell population. 
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  The research presented here makes significant contributions to the scientific 

community from both technical and mechanistic standpoints. We develop new 

technological platforms which enable sensitive control over cellular microenvironments 

and enable us to address fundamental questions in directed cell migration. We utilize 

these tools to derive new insight into the signaling mechanisms regulating directional 

migration by specifically perturbing the spatial-temporal activity of intracellular 

components. Furthermore, we present tools to study how multiple cues interact during 

directing migration in cancer cells, addressing one of the current challenges in the 

directed cell migration community. We suggest that the maturation of these tools will 

help reveal how directed cell migration is achieved. 
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Chapter 2.  Development of microfluidic 

platforms for studying directed migration  

 

2.1  Microfluidic technologies for studying cell biology 

 

2.1.1  Introduction 

 

The term “microfluidics” denotes an extensive set of techniques and tools developed 

largely over the last decade for manipulation of fluids at the micro- and nano-liter scale 

using fabricated networks of precisely manufactured channels, chambers, and valves. 

There are several advantages to working at this small scale, including predictable fluid 

flows (only laminar flow is expected under most circumstances), small reagent 

consumption, and reduced spatial device footprints. At its inception, microfluidics was 

geared toward reducing the cost and increasing the throughput of traditional biochemical 

assays, such as capillary electrophoresis
86

, PCR
87

, chromatograpy
88

, and FACS
89

. More 

recent advances have expanded the breadth of microfluidics to biological applications, 

including live cell assays with real time monitoring of biochemical processes using 

diverse imaging techniques, particularly fluorescent microscopy. Microfluidic devices are 

capable of assaying multiple inputs of various magnitudes by manipulating the soluble 
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and surface immobilized cell milieu with concomitant detection of dynamic output 

signals with high spatio-temporal resolution (Fig. 2.1).  

 

 

 

 

These assays take advantage of a highly developed technological capacity to translate 

manipulation of liquid flows into control of the extracellular environment in a well 

defined spatial-temporal manner and the emergence of ever expanding molecular 

reporters used with highly developed microscopy systems. In what follows, we will 

Fig 2.1: Microfluidic devices are platforms allowing precise spatial and temporal 

control over inputs as well as patterning of cells and their adhesion substrates. 
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briefly introduce microfluidic devices and their beneficial properties for studying 

biological problems. We will also highlight techniques used in microfluidics devices 

falling into two general categories; positioning of cells and their adhesion substrata and 

controlling dynamically and spatially variable environments. 

 

 

2.1.2  Biocompatibility of microfluidics 

 
 

Presently, a vast majority of microfluidic devices are fabricated from 

polydimethylsiloxane (PDMS) using a process known as soft lithography. These devices 

are created via replica molding off silicon masters, where user-defined patterns deposited 

on the masters are embossed into the final device. The resulting networks of various pre-

designed features, including channels and chambers, are sealed to a surface compatible 

with imaging and, if desired, cell adhesion, such as glass, and are coupled to a flow 

input/output control system. Excellent reviews on fabrications processes can be found in 

a number of recent references
90, 91

.  Overall, the design and fabrication of PDMS devices 

can occur on the time scale of a few days, allowing rapid prototyping and general ease of 

use. 

PDMS has several advantages for use in biological assays; it is optically 

transparent, permeable to atmospheric gases, chemically inert, mechanically flexible and 

electrically insulating
92

. The optical transparency allows the use of transmitted light and 

fluorescent signals for imaging cell activity. Permeability to non-polar gases, particularly 

oxygen and carbon dioxide, is beneficial for culturing cells within devices over extended 
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periods of time. Microfluidic cell culture arrays have been developed which allow 

continuous cell culture for weeks
93

. Furthermore, electrical insulation provided by PDMS 

permits additional use of electric fields to precisely control flow and cell properties.  

In addition to the many physical and chemical benefits provided by PDMS as a 

fabrication material, there are several advantages gained from the physics of working at 

the microscopic length scale of microfluidic devices. Arguably the most important benefit 

is non-chaotic, laminar liquid flow due to a low Reynolds number, the number that 

characterizes fluid behavior in a given system. In this regime fluids mix purely by 

diffusion. For example, two parallel streams containing different molecular solutes will 

mix in a gradual manner defined by diffusion at their interface. Researchers have utilized 

this property to create concentration gradients through serial dilution of input solutions 

navigating through series of merging and splitting channels. This technique will be 

discussed in more detail below. Other benefits of working at this spatial scale include 

reduced sample volumes, opportunities for parallelization, and functional chambers at the 

length scale of cells. More details of the physics underlying microfluidics can be found 

here
94

. 

 

2.1.3  Control of positioning of cells and their adhesion substrata 
 

 

Well established techniques exist for controlling cell positioning within 

microfluidic devices, including segregating cell populations into several discrete 

chambers, patterning multiple cell types, and isolating single cells (Fig. 2.1). Microfluidic 

devices achieve this through electrical, magnetic, mechanical and chemical cell 



25 
 

manipulation. We will describe mechanical and chemical techniques using soft 

lithography which have become standard for multiple labs. 

 

2.1.4  Patterning of cell populations  
 

 

Two of the earliest modalities for patterning populations are a) PDMS stencils to 

physically block select regions and b) using microfluidic channels to restrict the 

deposition of extracellular matrix (ECM) as the substratum for cell adhesion and to 

control cell deposition onto the substratum from cell suspensions. Folch et al. used 

PDMS stencils to restrict the attachment of primary rat hepatocytes to square zones 

across various substrates
95

, while Stine et al. used a similar system to create a co-culture 

of melanoma and human umbilical vein endothelial cells (HUVEC)
96

. Utilizing an 

alternative technique, Folch and Toner used microchannels as templates to deposit ECM 

on different biocompatible substrates
97

. After washing and removal of the elastomeric 

device, co-culture of different cell types could be achieved by adding distinct cell types 

after the initial patterning. Another method to control ECM patterning is by interfacing 

multiple laminar flow streams in microfluidic devices (Fig. 2.2a). As mentioned above, 

merging streams in microfluidic devices normally mix purely by diffusion at their  
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interface. If the flow rates are fast enough, this mixing becomes negligible over the time 

course the flows are interfaced in the device and precise boundaries between deposits 

used for patterning can be achieved. Takayama et al. used up to 5 merging microchannels 

to selectively deposit erythrocytes and E.coli in parallel lines
98

. Controlled perturbation 

of subpopulations is also possible in this configuration, as evidenced by selective 

trypsinization and labeling of bovine capillary endothelial cells
98

. On the other extreme of 

Fig 2.2: Microfluidic technologies for precise positioning of cell populations. 

 

(a) Three laminar flow streams can be used in a microfluidic device to selectively deposit 

cells in a given position. (b) A microfluidic device can be used for high throughput 

screening of cytokine responses in cell populations seeded into separate chambers. Each 

chamber can encompass an individual treatment condition and enable screening of cell 

responses. (c) Sample chambers within a microfluidic device can be used to isolate single 

E. coli cells by pressurizing surrounding valves. 
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device design complexity is the ability to use channels of simple geometric cross-sections 

(particularly triangular) for depositing smooth gradients of ECM
99

.  

Cell populations can also be distributed into separate chambers within 

microfluidic devices. When coupled to on chip valves these chambers are addressable 

individually or in groups, thus allowing screening of different inputs across large 

samples. Valves will be described in more detail below. Based on this principle, Cheong 

et al. developed a high-throughput microfluidic device to study cytokine or growth factor 

responses in cell populations across multiple concentrations and stimulation durations
100-

103
 (Fig. 2.2b). Other groups have developed similar designs

93, 104
 which have been used 

to study inflammatory processes
105

. Taylor et al. significantly expanded the throughput of 

this technology by creating a highly parallel device with 2048 assayable chambers with 

the ability to use different cell types and stimulus patterns
106

. 

Another subset of devices are designed to serve as chemostats, where cell 

populations are monitored over extended time periods with continuously renewed culture 

conditions. Balaban et al. used PDMS channels separated from a fluid network by a 

membrane to analyze the growth of single and multiple bacteria cells over time
107

. 

Medium in the fluidic channels continuously renewed nutrients via diffusion through the 

membrane to the bacteria cells underneath. Groisman et al. used a multi height single 

layer PDMS device to isolate bacteria cells in chambers adjacent to medium supplying 

channels
108

. Connections between the chambers and supply channels were approximately 

0.6 m, thinner than an E.coli cell diameter, but increasing the overall in-device pressure 

could reversibly enlarge the connections (similar to the effect of an inflating balloon), 

thus allowing cell seeding to the chambers. Continuous perfusion of media supplied 
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nutrients via diffusion from the perfusion channels through the thin connections, also 

allowing concomitant removal of waste from the chambers. Cho et al. used a similar 

device with arrays of chambers with different sizes and shapes to explore the relationship 

between confinement geometry and cellular self-organization in a model of biofilm 

initiation
109

. 

 

2.1.5  Positioning of single cells 
 

 

 Separation of autocrine from paracrine signaling is often desirable to study 

autonomous signaling at the single cell level. To remove paracrine signaling, cells need 

to be isolated individually. Single cell isolation is difficult to achieve using traditional 

laboratory techniques but a variety of microfluidic tools have been developed to address 

this issue. One of the earliest methods to isolate single cells, known as micropatterning 

utilizes PDMS as a stamp by absorbing ligands from solution and depositing them in user 

defined patterns onto substrata based the shape and area of contact with the stamp. Chen 

and colleagues used micropatterning to create different sized ‘islands’ of fibronectin to 

decouple the effects of cell spreading vs. adhesive signaling in controlling programmed 

cell death
110

. Increases in the size of islands reduced cell death but the results were 

confounded by a concomitant increase in adhesive signaling. To separate the effects, 

smaller fibronectin microspots in the 3-5 m range were created with unadhesive 

compounds between them. Cells extended across spots and a decrease in apoptosis was 

seen with increased cell spreading while having comparable integrin signaling levels, 

thus supporting a role for spreading in controlling apoptosis. 
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Geometric traps have also been successfully used to isolate single cells from 

suspension. These designs generally rely on hydrodynamic trapping, where flow is 

allowed to pass through arrays of crevices smaller than a cell diameter and are 

subsequently blocked once a cell arrives. The Lee group designed an array of U-shaped 

structures utilizing hydrodynamic trapping to isolate single cells
111

. An array of 100 cells 

was successfully captured with 85% retention after 24 hours of continuous perfusion. 

Using a similar design, the Voldman group fabricated arrays of capture cups to 

investigate cell paring and fusion
112

. Up to 70% pairing efficiencies were obtained 

between multiple cell types using a multi-step loading protocol. The device also allowed 

coupling to traditional chemical and electric fusion stimuli.  Other trapping designs 

include ‘ jails’
113

, hook-shaped traps
114

, and ‘docks’ at T junctions
115

.  

Another technique to isolate single cells relies on the use of elastomeric valves 

fabricated by stacking multiple layers of PDMS. This technology was pioneered by the 

Quake group and demonstrated a simple and robust method to control fluid flow
116

. A 

typical setup includes two layers of PDMS, where one layer contains the fluidic network 

and a separate valve layer is bonded on top. Channels in the top, valve layer, can be 

pressurized and subsequently deflect the PDMS membrane separating the valve from the 

fluidic network which suppresses flow. Cai et al. used on chip valves to isolate single E. 

coli in  microfluidic channels  to study protein expression using enzymatic amplification 

of secreted protein products
117

 (Fig. 2.2c). The valving technique allowed the seclusion 

of very small volumes of solution, about 100 pl, thus giving the authors the ability to 

detect single molecules.   
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Lastly, Yin et al. used dielectrophoretic (DEP) forces to induce heterotypic and 

homotypic single cell paired interactions in a microfluidic device
118

. Generation of 

polarized electric fields across cells in a device can lead to electrical polarization of the 

cells themselves. This polarization is sufficient to pull cells towards sources of maximum 

or minimum DEP depending upon intrinsic cell properties and the surrounding medium. 

The researchers were able to precisely pair together different cell types, a549 human lung 

cancer cells with human umbilical vein cells (HUVEC), or cells of the same cell types.    

 

2.1.6  Input control 

 

 

 
Beyond patterning of cell positions, microfluidic devices have the capability of 

controlling cell stimuli in space, magnitude and time (Fig. 2.1). Possible perturbations of 

the cell microenvironment include a) generation of spatial gradients of input signals 

through progressive serial dilution of two or more input streams into a series of streams 

spanning several orders of magnitude in concentration; b) diffusion based gradient 

formation, and c) creation of complex, temporally variable stimuli defined over a variety 

of time scales, including oscillatory inputs. These complex input distributions are made 

possible through the predictable mixing behavior of fluids in microfluidic channels. They 

have been utilized to study fundamental cellular behaviors, such as chemotaxis, axon 

guidance, inflammatory responses, differentiation, as well as activation of mutiple 

signaling pathways. Below we provide several illustrative examples of how microfluidic 

generation of diverse spatial and temporal stimuli can be used to address important 

questions in cell and tissue biology.  
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2.1.7  Temporal control of inputs 

 

 
 

 Valves in microfluidic devices, whether external or internal, have enabled the 

creation of dynamically changing input signals, as complex as e.g., pulsatile or ramp 

stimuli, which can be adjusted in frequency, amplitude, and shape
119

. As opposed to the 

step inputs, typically applied by addition of a stimulus to a dish, oscillatory stimuli can 

reduce noise, reveal the bandwidth of a pathway, and help understand adaptation 

mechanisms
120, 121

. Microfluidic devices designed to produce waveforms typically have 

multiple input streams gated by valves. Actuation of valves controls which stream enters 

the cell microenvironment, thus allowing the formation of square waves by rapidly 

switching between streams of different concentrations (Fig. 2.3a). More complex 

waveforms can be achieved by allowing the input streams to mix in different proportions 

by controlling their relative flow rates.  

In one of the first studies to utilize microfluidic generated waveforms, Mettetal et 

al. used a valve driven flow system to generate square waves of different osmolyte 

concentrations to study the osmo-adaptation pathway in yeast
122

. A biosensor for high-

osmolarity glycerol (HOG) was used to quantify signaling responses to the induced 

stresses. The effects of two previously known negative feedbacks in the HOG pathway, 

through fast and slow mechanisms, were decoupled by comparing the frequency 

responses of wild type yeast with a mutant harboring decreased HOG1 activity. Similarly, 

Hersen et al. used microfluidic driven pulsatile stimuli, created by varying the flow rates  
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Fig 2.3: Microfluidic technologies for controlling cellular environments. 

 

(a) Schematic of a simple microfluidic device used to generate square waves of input by 

switching between two input solutions containing different concentrations of inputs. (b) A 

microfluidic gradient generating network with three inputs. When solutions containing 

different concentrations of fluorescein are connected to the different inlets, various 

gradient profiles can be obtained. (c) A microfluidic device used to generate gradients 

across test chambers of various sizes by diffusion. Two flow-through channels are 

connected by the test chambers. Stimulants are introduced into one flow-through channel 

and form a linear gradient across the test channels by diffusing towards the other flow-

through channel. (d) A three inlet microfluidic device, similar to that shown in Fig. 2.2a 

is used to selectively stimulate a portion of a cell seeded into the chamber. 
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of the inputs and thus their interface across a channel, to investigate the bandwidth of the 

HOG pathway
123

.  Microfluidic waveform devices have also been used to study 

metabolic regulation
124

 as well as chemotactic signaling
119

.  

 

 

2.1.8  Spatial control of inputs 

 
 

The methodology of generating soluble and surface bound gradients of 

biologically active molecules was first demonstrated by the Whitesides group
125, 126

 (Fig. 

2.3b). Analogies between electric and fluidic circuits were used to predict the serial 

dilution of input streams via multiple junctions, splitters, and fluidic resistors. The 

resulting output streams, spanning the concentration range defined by the input 

concentrations, can be merged in an outlet channel to generate the final concentration 

gradient. One of the first studies utilizing microfluidic gradient generation was carried 

out by Jeon et al. to study the chemotaxis of neutrophils in gradients of a chemokine, 

interleukin-8
127

. Gradients in this analysis could be generated within seconds and 

maintained stably pending available reagents. This device allowed concurrent time-lapse 

imaging of initial neutrophil responses as well as quantitative characterization of motility 

vs. several applied gradients. Complex gradient shapes could be created in addition to 

linear gradients, including parabolic and “sawtooth” shaped gradients profiles. Others 

have applied similar designs to create exponential gradients
128

, fast switching 

gradients
129

, multiple opposing gradients
130

, and other complex shapes
131

.  



34 
 

Gradient generating networks can be slightly adjusted to create several discrete 

dosages rather than a smooth gradient. Instead of merging separate streams of different 

concentrations, the streams can be fed into separate channels, thus exposing each channel 

to a well predicted, discrete concentration spanning the range of the inputs. Thompson et 

al. utilized such a device with an upstream dilution module and downstream cell 

chambers to look at the dynamics of NF-B activity in cells across multiple densities and 

concentrations of TNF-
132

. The advantage of such parallel exposure designs is the rich 

variety of data obtained in a single experiment with the simple preparation of two input 

solutions. We will utilize a similar design to study the EGF dose dependence of CIL in 

MTLn3 cells in chapter 4. 

The techniques discussed above can be lumped together as flow-based techniques, 

in which continuous flow is needed to maintain the gradient. For non-adhesive or less 

robust cell types, milder gradient generating techniques have been developed which rely 

on passive solute diffusion between a source and sink.  A source and sink can be linked 

together by one or more channels and a linear gradient can be generated between these 

channels via diffusion. If the source and sink are continuously renewed due to liquid 

perfusion, the established gradient can persist indefinitely. Modulation of the steepness of 

gradients can be achieved by varying channel lengths, while variation of widths can 

modulate cell numbers. Paliwal et al. developed and used a microfluidic device based on 

this principle to study the mating response of yeast in gradients of pheromone
133

 (Fig. 

2.3c). A variety of mating phenotypes could be observed at different concentrations of 

pheromone, with cells also displaying different chemo-sensing accuracies. Similar 

devices have been used to explore cell differentiation
134

 and chemotaxis
135, 136

. The 
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devices utilized in chapter 3 and 4 are based on the principles of passive gradient 

generation. 

 Sub-cellular patterning of stimuli is also achievable through microfluidics. The 

well-defined interface between multiple streams in a microfluidic device can be 

positioned over single cells to induce spatially heterogeneous stimulation. Takayama et 

al. used a microfluidic device to label select populations of mitochondria within a single 

cell and also induced local disruption of actin filaments
137

 (Fig. 2.3d). Similarly, Sawano 

et al. locally exposed Cos-7 cells to epidermal growth factor (EGF) to determine the 

extent of lateral propagation of downstream signaling
138

. Interestingly, the lateral 

propagation increased with overexpression of EGF receptors, thus elucidating a new 

mechanism enabled by microfluidic technology. 

 

2.2  Development of a microfluidic platform for inducing subcellular 

gradients 

  

 In this subsection, we will outline the development and rationale behind the 

microfluidic device used in chapter 3. We will enumerate a set of device requirements we 

satisfied in order to achieve a functioning device. We will follow this with a discussion 

on how our design met those requirements. Finally, we will provide a protocol of how we 

produced our devices. 

 

2.2.1  Device requirements 
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 The primary requirements of our device were as follows- 1) generate gradients of 

a soluble chemical in a reproducible fashion, 2) generate these gradients across single 

cancer cells, and 3) do this in a high throughput manner. We also had two other 

secondary criteria. The first was to minimize shear stress across cells. Shear stress has 

been shown to induce directed migration responses, alter cell signaling, and reduce cell 

viability
139

, and thus could obfuscate responses to soluble chemicals. The second was to 

have all cells receive the stimulus at a time scale which would be negligible compared to 

the time scale of cell responses. For example, if cell responses occurred on the order of 

tens of minutes, then a time window of a few minutes would be reasonable for all cells to 

receive the stimulus. This would, in turn, allow us to accurately assess the cell response 

kinetics across the population.   

 

2.2.2  Device design 

 

 Our design (Fig 3.1, Fig. 3.2) was inspired by studies carried out by our lab to 

study gradient sensing in yeast
133

 and by the Toner group for studying neutrophil 

chemotaxis
140

. Gradient generation is achieved by diffusion between a source and sink, 

similar to the principles of the various chambers described in the introduction
23, 82, 83

. 

However, in our device, the source and sink are continually replenished by flow 

originating from an upstream network, thus maintaining a very reproducible gradient at 

steady state indefinitely, as long as the volumes of the respective sources are maintained. 

This fulfilled one of our primary requirements of having a well controlled gradient. We 

connected our source and sink by 250 individual microchannels with widths (18 m) 
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matching the diameters of single HeLa cells. This gave us 250 potential opportunities to 

assay single cells, thus allowing us to have high throughput yield of single cell data and 

fulfilling our two other primary requirements. To reduce the potential shear stresses in 

our system, we introduced two modifications. First, we optimized the ratio of the height 

of the microchannels to those of adjacent source and sink to minimize cross flow between 

them. The resistance in a given rectangular channel with a high aspect ratio can be 

approximated with the following equation- 

 

  
    

   
 

where R = resistance, the viscosity of the fluid, L = the channel length, w = the 

channel width, and h = the channel height
94

.  As the height term dominates the resistance 

equation, we found an optimal ratio to be ~1:16 with the height of the microchannels 

being 6 m and the source and sink having a height of 100 m, thus providing a ~25 fold 

increase in resistance and drop in flow rate in the microchannels. Second, we used the 

flow balancing scheme from the Toner group
140

, where the source and sink input streams 

meet and split off before entering the main interrogation chamber. This provides an 

opportunity for any flow imbalances in the input streams to balance out. Thus with these 

two modifications we fulfilled the first of our two secondary criteria in minimizing shear 

stress across cells. Finally, we found that the response kinetics in our experiments 

(Chapter 3) were on the order of tens of minutes. We optimized the flow rate in our 

devices to have all cells experience the gradient in less than 5 minutes, therefore fulfilling 

the last of our secondary criteria.  
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2.2.3 Device fabrication protocol 

 

 We provide a general protocol here for fabricating microfluidic devices used in 

chapter 3. This protocol necessitates the use of a clean room, as dust or other air 

pollutants can cause significant defects. We create our device designs in Freehand 

(Macromedia); however, any computer assisted design (CAD) software can be used to 

create devices. These designs can then be printed on a high resolution mylar transparency 

from a printing company. For low resolution designs (smallest feature > 20 m), we 

recommend In Tandem design (Towson, MD), while for high resolution designs, we 

recommend CAD art services (Bandon, Oregon).  Care must be taken to ensure the 

resolution is high enough to match the smallest feature size.   

 

Microchannel layer 

1) Clean a 3 inch Silicon wafer using spray bottles positioned over an appropriate waste 

container in the following order- 1) Acetone, 2) Isopropanol, and 3) DI water. 

2)  Dry wafers using nitrogen air stream and place on hotplate >100 
◦
C for at least 5 

minutes to ensure all water has evaporated. 

3) Spincoat SU-8 3005 (Microchem) at 3000 rpm for 30 seconds. 

4) Soft bake the wafer on a hotplate at 95
◦
C for at least 10 minutes. 

5) Expose the wafer using a mask aligner using a constant energy of 1000 mJ/cm^2.  

 (We utilize a long pass UV quartz filter (Omega Filters) which provides straighter 

channels but require more exposure energy.)  
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6) Post exposure bake for 1 hour at 95
◦
C. 

7) Develop in SU-8 developer (Microchem). 

8) Hard bake for at least 1 hour at 200
◦
C. 

   

 

Fluidic layer 

1)  Use the microchannel layer wafer created above and repeat steps 1 and 2 above. 

2)  Spincoat SPR-220-7 (Megposit) at 730 rpm for 30 second on the silicon wafer. 

 (note- silane coating may improve the adhesion of  SPR-220-7) 

3) Soft bake for 8 minutes at 115
◦
C. 

4) Allow the SPR-220-7 coated wafer to rehydrate at room temperature for at least 1 

hour. Care must be taken to align the fluidic layer to alignment marks put into the 

microchannel layer. 

5) Expose the wafer using a mask aligner using a constant energy of 600 mJ/cm^2. 

6) Develop using a 1:4 dilution of AZ400K developer (Clariant). 

7) Round channels by baking at 125
◦
C for 15 minutes. 

 

 

Control valve layer 

1) Use a new silicon wafer and follow steps 1 and 2 as outlined for the microchannel 

layer. 

2) Spincoat SU-8 2025 at 1500 rpm for 1 minute. 

3) Soft bake the wafer at 95
◦
C for 2 hours. 
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4) Expose the wafer using a mask aligner using a constant energy of 2000 mJ/cm^2. 

5) Post exposure bake for 1 hour at 95
◦
C. 

7) Develop in SU-8 developer (Microchem). 

8) Hard bake for at least 1 hour at 200
◦
C. 

 

PDMS device fabrication 

1) Prepare a 8:1 and 20:1 mixture of component A to component B of RTV615 

(Momentive) and mix in weight boats for at least 5 minutes. 

2)  Remove air bubbles with a vacuum chamber. 

3) Treat the microchannel + fluidic layer wafer and the control layer wafer with 

chlorotrimethylsilane (TMCS) by placing wafers into a vacuum dessicator and placing a 

few drops of TMCS into a bottle cap. Evacuate the chamber and let sit for at least 20 

minutes. 

4)  Spincoat the 20:1 mixture onto the microchannel + fluidic layer wafer at 1600 rpm for 

60 seconds.  

5) Place the control layer wafer into a heat resistant container and pour the 8:1 mixture on 

top.  

6) Place the spincoated microchannel + fluidic layer wafer and the coated control wafer 

into an oven for 30 minutes at 85
◦
C. 

7) Carefully remove peel the solidified PDMS off of the control wafer. 

8) Cut out individual devices using a razor blade and punch inlets. 

9) Align devices onto spincoated microchannel + fluidic layer wafers and place in the 

oven for at least 1.5 hours at 85
◦
C. 
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10) Cut out completed devices using a razor blade by tracing the boundaries.  

11) Punch inlets of the fluidic layer. 

12) Carefully remove the PDMS layer between the fluidic layer and the control layer by 

using a pair of sharp tweezers. 

 

 

Device bonding 

1) Clean devices with an alconox solution and rinse thoroughly with DI water.  

2) Rinse with 70% Ethanol and dry using a filtered air stream. 

3) Clean a 22 x 40 mm glass coverslip (Fisher) using 70% Ethanol and dry using a 

filtered air stream. 

4) Place cleaned device on glass coverslip and make sure no air bubbles are present. 

5) Place the device in an oven set at 85
◦
C overnight to induce a strong, reversible bond. 

 

 

2.3  Development of a microfluidic device for studying directed 

migration phenomena in cancer cells  

 

 In this subsection, we will outline the development and rationale behind the 

microfluidic device used in chapter 4 (Fig 4.1, Fig. 4.2). We will again enumerate a set of 

device requirements we satisfied in order to achieve a functioning device. We will end 

with a discussion of the design principles we incorporated to meet these requirements. 
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2.3.1 Device requirements 

 

 Many of the primary requirements of this device were similar to those described 

for the device used in section 2.2. These requirements were generating reproducible 

gradients of soluble chemicals across cancer cells in a high throughput manner. The 

secondary requirement of low shear stress across cells also applied. However, matching 

the time scales of cell responses in this assay presented new challenges. The goal of this 

device was to study the mechanisms of chemotaxis in MTLn3 cells to gradients of EGF. 

The response kinetics of MTLn3 cells to EGF is on the order seconds to minutes
54

, an 

order of magnitude faster than the response kinetics of HeLa cells to rapamycin seen in 

the previous device
141

. Therefore, a similar gradient introduction scheme would not work 

in this system, as early cell responses could be missed across the cell population.  We will 

outline the changes we made to the device design to accommodate these kinetics in the 

next section. 

 

 

2.3.2  Device design    

 

 
 To ensure that all cells received the stimulus at the same time scale, we 

introduced top down elastomeric valves between the microchannels and the source and 

sink (Fig 4.2). These valves allowed us to functionally isolate the microchannels while 

pre-establishing the source and sink. Once the source and sink were at steady state, 
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opening the valves enabled the simultaneous formation of the gradient by diffusive flux 

across all channels. Thus, all cells receive the stimulant at the same time which enables 

an accurate comparison of the response kinetics. 

 We also modified the upstream flow balancing scheme to reduce the potential 

contamination of the sink by the source stream due to upstream diffusion. We placed a 

shunt at the junction of the source and sink which connects directly to the outlet (Fig 4.2). 

By carefully optimizing fluidic resistances in our design, any pressure imbalances 

between the source and sink input streams are transmitted to the shunt and do not 

influence downstream gradient. Moreover, any contamination between the source and 

sink streams is transported through the shunt and is not propagated downstream.  

 

 
2.3.3 Device fabrication protocol 

 

 The device fabrication protocol of this device is quite similar to that in section 

2.2.3, however, we made several modifications to incorporate valves between the 

microchannels and the source and sink.  

 

 

Microchannel layer 

1) Clean a 3 inch Silicon wafer using spray bottles positioned over an appropriate waste 

container in the following order- 1) Acetone, 2) Isopropanol, and 3) DI water. 
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2)  Dry wafers using nitrogen air stream and place on hotplate >100 
◦
C for at least 5 

minutes to ensure all water has evaporated. 

3) Spincoat SU-8 3005 (Microchem) at 3000 rpm for 30 seconds. 

4) Soft bake the wafer on a hotplate at 95
◦
C for at least 10 minutes. 

5) Expose the wafer using a mask aligner using a constant energy of 1000 mJ/cm^2.  

 (We utilize a long pass UV quartz filter (Omega Filters) which provides straighter 

channels but require more exposure energy.)  

6) Post exposure bake for 1 hour at 95
◦
C. 

7) Develop in SU-8 developer (Microchem). 

8) Hard bake for at least 1 hour at 200
◦
C. 

   

 

Fluidic layer 

1)  Use the microchannel layer wafer created above and repeat steps 1 and 2 above. 

2)  Spincoat SPR-220-7 (Megposit) at 730 rpm for 30 second on the silicon wafer. 

 (note- silane coating may improve the adhesion of  SPR-220-7) 

3) Soft bake for 8 minutes at 115
◦
C. 

4) Allow the SPR-220-7 coated wafer to rehydrate at room temperature for at least 1 

hour.  

5) Expose the wafer using a mask aligner using a constant energy of 600 mJ/cm^2. Care 

must be taken to align the fluidic layer to alignment marks put into the microchannel 

layer. 

6) Develop using a 1:4 dilution of AZ400K developer (Clariant). 
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7) Round and hard bake channels by baking at 200
◦
C for 5 hours using a slow ramp 

(180
◦
C/hr) 

 

Source and Sink layer 

1) Use the microchannel + fluidic layer wafer created above and repeat steps 1 and 2 

from the microchannel layer protocol for cleaning. 

3) Spincoat SU-8 3050 (Microchem) at 1000 rpm for 30 seconds. 

4) Soft bake the wafer on a hotplate at 95
◦
C for 2 hours. 

5) Expose the wafer using a mask aligner using a constant energy of 3000 mJ/cm^2. Be 

sure to align the source and sink layer with the previous two layers using a third set of 

alignment marks. 

 (We utilize a long pass UV quartz filter (Omega Filters) which provides straighter 

channels but require more exposure energy.)  

6) Post exposure bake for 1 hour at 95
◦
C. 

7) Develop in SU-8 developer (Microchem). 

8) Hard bake for at least 1 hour at 200
◦
C. 

 

PDMS device fabrication 

1) Prepare a 8:1 and 20:1 mixture of component A to component B of RTV615 

(Momentive) and mix in weight boats for at least 5 minutes. 

2)  Remove air bubbles with a vacuum chamber. 

3) Treat the microchannel + fluidic layer wafer and the control layer wafer with 

chlorotrimethylsilane (TMCS) by placing wafers into a vacuum dessicator and placing a 
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few drops of TMCS into a bottle cap. Evacuate the chamber and let sit for at least 20 

minutes. 

4)  Spincoat the 20:1 mixture onto the microchannel + fluidic layer wafer at 390 rpm for 

60 seconds.  

5) Place the control layer wafer into a heat resistant container and pour the 8:1 mixture on 

top.  

6) Place the spincoated microchannel + fluidic layer wafer and the coated control wafer 

into an oven for 30 minutes at 85
◦
C. 

7) Carefully remove peel the solidified PDMS off of the control wafer. 

8) Cut out individual devices using a razor blade and punch inlets. 

9) Align devices onto spincoated microchannel + fluidic + source and sink layer wafer 

and place in the oven for at least 1.5 hours at 85
◦
C. 

10) Cut out completed devices using a razor blade by tracing the boundaries.  

11) Punch inlets of the fluidic layer. 

 

 

Device bonding 

1) Clean devices with an alconox solution and rinse thoroughly with DI water.  

2) Rinse with 70% Ethanol and dry using a filtered air stream. 

3) Clean a 22 x 40 mm glass coverslip (Fisher) using 70% Ethanol and dry using a 

filtered air stream. 

4) Place cleaned device on glass coverslip and make sure no air bubbles are present. 

5) Place the device in an oven set at 85
◦
C overnight to induce a strong, reversible bond. 
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2.4  Discussion 

 

 The microfluidic devices described in section 2.2 and 2.3 (Illustrated in Fig 3.2 

and Fig 4.2, respectively) will be utilized in Chapters 3 and 4, respectively. These 

microfluidic device designs enable the investigation of a new set of questions in the 

mechanisms of directed migration by allowing sensitive control of cellular 

microenvironments. We suggest that they will be applicable to a variety of cell types and 

will allow the general exploration of graded processes in cell signaling.   
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Chapter 3. Synthetic spatially graded Rac 

activation drives cell polarization and movement 

 

 
3.1  Introduction 

 

 
 Directional motility is an intrinsic ability of many eukaryotic cells to migrate to 

predetermined locations in an efficient manner. Migration bias is tuned by the detection 

of various guidance cues that often form spatial gradients. The extracellular gradients of 

diffusing or surface bound ligands can lead to spatially graded occupancy of extracellular 

receptor
10

. The spatial asymmetry in receptor occupancy is subsequently translated into 

an intracellular gradient of polarity effectors which can modify cytoskeleton and lead to 

the development of an asymmetric cell morphology with functionally distinct front and 

rear ‘compartments’. Remarkably, many cell types can accurately detect less than a 5% 

difference between ligand concentration at the cell front and back
10, 23, 142

. This exquisite 

sensitivity suggests that intracellular amplification of extracellular cues may be 

necessary. Indeed, various groups have demonstrated the existence of local positive 

feedback loops
143-146 

as well as mutual inhibition between different regulators
147, 148

 as 

likely candidates for response amplification.  However, recent studies have also shown 

that directional motility can still be achieved, albeit less efficiently, when once thought 

indispensable molecules involved in putative amplification mechanisms are removed
12, 13

. 

Thus the various functions of signaling components associated with directed migration 

still need to be elucidated.  
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 An attractive method for resolving the roles of signaling network components in 

both spatial cue sensing and directed cell motility is direct activation of these components 

in a spatially constrained and rapid manner, independent from initiation of upstream, 

receptor-level signaling. Utilizing this principle, a variety of studies have used optical 

activation to identify the small Rho GTPase Rac
148-153

 , cofilin
154 155

, and 

calcium
156 

as key components which are sufficient to direct cellular motility. However, an 

important caveat to these studies has been the reliance upon highly localized activation 

that can create artificial regional amplification of  target protein activity. In contrast, in 

more physiological settings, a cell processes a shallow gradient of an external cue into a 

graded intracellular response, as reflected in polarized effectors
11

, including those of the 

small Rho GTPase family
63-65

. Thus it remains unclear if an induced shallow gradient of 

an active motility signaling component is capable of reconstituting cell polarization and 

motility. In particular, it is unknown if such perturbations are sufficient to override or 

enhance endogenous intracellular signaling of the same component.  Finally, localized 

activation of signaling processes presents considerable challenges to quantitative analysis 

and coupling to detailed computational models developed to describe more natural, 

spatially distributed signaling events.  

 

 To address these questions, we created microfluidic devices permitting generation 

of precise gradients of extracellular cues
133

 and interfaced them with a rapamycin induced 

dimerization system
157

. In this system, the addition of rapamycin leads to dimerization of 

two intracellularly transduced molecular components, FK506 binding protein (FKBP) 
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and the rapamycin binding domain of FKBP-rapamycin-binding protein (FRB)
158

. 

Localization and signaling motifs can be linked to either domain, allowing spatial-

temporal control of protein function. We used our combined system to study the effects 

of a rapidly induced intracellular gradient of activated Rac, an important regulator of cell 

polarity
59

 and previously shown to induce migration when locally activated
148-153

.  

 

3.2  Results 

 

3.2.1  System design 

 

 To directly activate endogenous Rac, we introduced two constructs into HeLa 

cells, a cytoplasm localized effector unit consisting of YFP tagged TIAM1, a Rac GEF, 

conjugated to FKBP (YF-TIAM1) and an anchor unit at the cell membrane, Lyn11-FRB 

(LDR). The introduction of rapamycin dimerizes these modified molecular components, 

thereby bringing TIAM1 in close proximity to the cell membrane where it activates 

endogenous Rac
157

 (Fig. 3.1a). Due to the chemical nature of the activation, this system 

is amenable to generation of a gradient of Rac activity through microfluidic production of 

rapamycin gradients.  Microfluidic tools have recently been used for the control of 

complex gradients of extracellular cues
85, 128, 133

,  cellular localizations
159, 160

 and shaping 

cell morphologies
140, 161

.   
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Fig 3.1: Graded activation of Rac directs cellular polarity. 
 

 (a) A schematic of the mechanism of Rac activation by rapamycin induced 

heterodimerization.  (b) The microfluidic device used to generate linear gradients of 

rapamycin with a sample image of the microchannels seeded with individual HeLa cells 

and the corresponding gradient visualized with Alexa 594 dye. Ports are labeled 

according to function. The red layer of the device is the fluid flow layer, while the green 

layer is the control valve layer. Alexa 594 dye is used to visualize the gradient (red) in all 

subsequent images. A sample image of a cell transfected with the Rac activator, YF-

TIAM1 experiencing a gradient of rapamycin is shown below. (c-f)  Four polarity states 

observed after the attachment period with respect to the direction of the imposed 

rapamycin gradient and associated polarization responses to the gradient of rapamycin. 

Images are rotated by 90
◦
 to aid in visualization. Cartoons illustrate the polarity of the 

associated state and the direction of the gradient. The green color indicates expression of 

YF-TIAM1. Yellow arrows denote the initial direction of polarity. The rapamycin 

gradient is shown in the 5 minute image and removed in subsequent images for clarity. 

Red dotted lines highlight evolving changes in cell morphology. Times are in minutes. 

Scale bars, 10 m. (g-j) Kymographs taken across cell centers (specified in 

accompanying image) illustrating the morphological changes of the corresponding cells in 

c-f over the experimental period. Blue lines trace initially polarized faces while red lines 

trace initially unpolarized faces. Yellow arrows denote the initial response time and their 

location indicate which cell face was the first to change in the gradient. White arrows 

indicate the late polarization time. Times are in minutes.  
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We applied a previously developed strategy for imposing diffusion based linear gradients 

onto cells housed within narrow channels
133, 140

. Specifically, the devices contained a 

series of 6 m tall microchannels for cell experimentation, flanked by 130 m tall main 

flow-through channels (Fig. 3.2a). Actuation of flow led to the development of a linear 

gradient across the shallow channels due to uneven stimulus concentration in the flow-

through channels (Fig. 3.1b).  The microchannels were designed to be on the order of a 

cell diameter to relegate cells to a uniaxial phenotype (Fig. 3.1b). HeLa cells introduced 

into the microchannels settled into random locations and after a 3-4 hour attachment 

period were categorized into different polarity states according to the existence of a 

lamellipodium (State I- no lamellipodium) and its direction (State II- lamellopodium 

towards the high side of the gradient, State III- lamellipodium towards the low side of the 

gradient, State IV- lamellopodia towards both sides)   (Fig. 3.1c-f). The overall 

distribution of phenotypes was skewed towards cells with single leading edge 

lamellipodium, indicating an intrinsic preference for directed motility (Fig. 3.2b).  

 

3.2.2  Direct generation of active Rac gradients 

 

 To evaluate HeLa cell responses to synthetic generation of an intracellular 

gradient of active Rac, we exposed cells to a linear gradient of rapamycin (0 - 2 nM 

across the channel or 0.01 nM/m; yielding front/back concentration differences ranging 

from ~15-92% across varied cell lengths) visualized by Alexa 594, a fluorescent dye with 

a similar molecular weight (Fig. 3.1b and Fig. 3.2c). We chose this concentration range 

to avoid saturating the FKBP-FRB system with rapamycin (KD = 12 nM
162

). One  
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Fig 3.2: Characterization of the microfluidic device and motility controls. 
 

(a) The schematic of the microfluidic device used in experiments. The layer labeled in 

blue is the control layer containing fluidically actuated valves used to control the separate 

fluidic layer below, labeled in red. The green layer indicates the region where the 

microchannels are housed and where cells are seeded. (b) Quantification of the fractions 

of HeLa cell polarity phenotypes observed after a four hour attachment period. Data are 

presented as the mean from n = 8 experiments, with error bars representing the standard 

error of the mean (SEM). (c) Quantification of the gradients of Alexa 594 dye in the 

microchannels generated to visualize the distribution of rapamycin, with colored lines 

quantifying fluorescence intensity to demonstrate the linearity of the gradient profiles and 

consistency of the gradients in multiple adjacent channels. (d) Images of HeLa cells on 

fibronectin coated glass before and after the addition of indicated chemicals. Times are in 

minutes. Scales bars, 50 µm. (e) Average velocities of HeLa cells in various treatment 

conditions. There is no significant difference between conditions. Number of samples are 

indicated. (f-g)  Representative examples of untransfected HeLa cells experiencing a 

gradient of the dye as in (c), with added rapamycin (e) and without added rapamycin (f). 

The cells show limited morphological changes through a four hour period. Time values 

are in minutes. Scale bars, 10 µm. 
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consequence of using these concentration values was a slow-down of the response times 

as compared to  previously reported values for saturating uniform rapamycin inputs
157

. 

However, the slower response times allowed a better resolution of the effects of gradually 

accumulating Rac activity and were far below those reported to affect the function of the 

mammalian target of rapamycin (mTOR)
163

. As a control, we compared basal cell 

motility with and without rapamycin and found that the addition of rapamycin had 

negligible effects (Fig. 3.2d-e). We tracked both the initial state and subsequent cell 

responses by imaging over a four hour time period. 

 

  Strikingly, we found that the shallow linear gradient of rapamycin could trigger 

and direct motility of cells in all initial polarity states in the direction up the gradient 

(Fig. 3.1c-f). Unpolarized (state I) and bipolar cells (state IV) demonstrated symmetry 

breaking with either the establishment of a leading edge or the enhancement of one 

lamellipodium and retraction of the other, respectively (Fig. 3.1c, f). Cells already 

polarized in the direction of the gradient (state II), exhibited widening and extension of 

the leading lamellipodium and movement up the gradient (Fig. 3.1d). Interestingly, cells 

initially oriented in the direction opposite of the gradient (state III) repolarized (Fig. 

3.1e). In all states, the initiation of migration was followed by a pronounced enhancement 

of cell polarity (Fig. 3.1g-j).  The directed cell polarization and migration responses were 

not observed in untransfected cells (Fig. 3.2f), or if the rapamycin gradient was not 

imposed (Fig. 3.2g). For validation of our system, we applied linear gradients of 

rapamycin to similarly transfected MTLn3 cells, a rat mammary adenocarcinoma line 

used to assay chemotaxis to epidermal growth factor (EGF) in vitro
79

 and in vivo
164

 (Fig. 
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3.3). MTLn3 cells exhibited initial polarity states similar to those seen in Hela cells and 

polarized towards gradients of rapamycin (Fig. 3.3). Our data suggests that our system is 

applicable across multiple cell types and can be used to study signaling pathways 

regulating chemotaxis.  

 

 

 

  

 

 

 

 

 To verify that the externally imposed rapamycin gradient was translating into a 

graded change in active Rac across cells, we carried out two control experiments. First, 

we sought to confirm that the Rac activator, YF-TIAM1, translocated to the membrane in 

a graded fashion over time. Our results above indicated that translocation of YF-TIAM1 

results in the formation of ruffling and substantial changes in cell morphology which 

Fig 3.3: MTLn3 cell responses to rapamycin gradients. 
 

(a-d) MTLn3 cells in various initial polarity states, similar to those seen in HeLa 

cells, become polarized towards gradients of rapamycin. The green color indicates 

expression of YF-TIAM1, while the red color indicates the rapamycin gradient. 

Yellow arrows indicate initial protrusions. Times are in minutes. Scale bars, 10 m. 
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obscure translocation, therefore we used an YFP tagged FKBP (YF) without TIAM1 to 

assess translocation. YF was previously shown to translocate with similar kinetics to YF-

TIAM1
165

 and therefore could serve as a suitable proxy. We tracked the membrane to 

cytoplasm ratio of fluorescence intensities across the length of cells in a gradient of 

rapamycin over time and found that membrane translocation of YF was increasing in a 

graded manner, with higher translocation towards the high side of the gradient (Fig. 3.4a-

f). We did not observe a similar response when DMSO was substituted for rapamycin 

(Fig. 3.4g-h). In both conditions we did not observe any significant morphological 

changes, indicating that translocation of FKBP constructs without effectors does not 

perturb morphology. Having verified that the rapamycin gradient induced graded 

membrane translocation of FKBP constructs, we used a Raichu Rac FRET sensor
166

 to 

monitor the resulting changes in Rac activity. In these experiments, we used an mCherry 

tagged FKBP-TIAM1 (MCHF-TIAM1) to activate Rac.  At a basal level before 

stimulation, state I cells did not show polarized Rac activity (Fig. 3.5a) while state II and 

state III cells exhibited higher levels of Rac at lamellipodia (Fig. 3.5b,c). Upon 

introduction of the rapamycin gradient, we observed increases in Rac activity in the 

direction of the gradient in all cells, while state III cells exhibited an additional decrease 

in Rac activity in the original lamellipodium (Fig. 3.5a-c). We quantified the average Rac 

activity across cells over time and found that there was a gradual and spatially graded 

increase in Rac activity in all cell states (Fig. 3.5d-f). State III cells in particular exhibited 

a sharp increase in Rac activity in the newly formed protrusion and decrease in the initial 

opposite facing protrusion (Fig. 3.5f).  As a control, we quantified Rac activity across 

cells which did not express the Rac activator, MCHF-TIAM1 but had expression of the  
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Rac FRET sensor. Under these conditions, we did not observe any significant changes in 

Rac activity over time in gradients of rapamycin (Fig. 3.5g,h). Overall our results  

Fig. 3.4: Quantification of graded membrane translocation of FKBP 

constructs.  

 

 
(a-c) HeLa cells in states I-III transfected with YFP-FKBP exposed to a gradient of 

rapamycin from top to bottom. Time 0 is chosen as 30 minutes before translocation. Cell 

length plot indicates axis of quantification in plots (d-f). Yellow arrows indicate initial 

protrusions. Times are in minutes. Scale bars, 10 m. (d-f) Quantification of the average 

membrane to cytoplasm intensity ratio across state I-III cells over time. Ratios after time 0 

are normalized to the membrane to cytoplasm fluorescence intensity ratio at time = 0 

(shown in black). Thinner colored lines indicate S.E.M of corresponding ratio profiles. 

Numbers of samples are indicted. (g) Control cells exposed to a gradient of DMSO instead 

of rapamycin do not show translocation. Cell length plot indicates axis of quantification in 

(h). Times are in minutes. Scales bars, 10 m. (h) Quantification of the membrane to 

cytoplasm intensity ratio across control cells over time. The ratio fluctuates around the 

basal level over time. Numbers of samples are indicated. 
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Fig. 3.5: Quantification of graded Rac activity  

 

 
(a-c) HeLa cells in state I-III transfected with a Raichu-Rac FRET probe and an mCherry 

tagged FKBP-TIAM1 (MCHF-TIAM1) experiencing a gradient of rapamycin from top to 

bottom over time. Time 0 is chosen as 30 minutes before morphological changes in 

MCHF-TIAM1 images. Cell length plot indicates axis of quantification in plots (d-f). 

Yellow arrows indicate initial protrusions. Times are in minutes. Scales bars, 10 m. (d-f) 

Quantification of average FRET activity across state I-III cells over time in gradients of 

rapamycin. FRET profiles after time 0 are normalized to the initial profile at time 0 (shown 

in black). Thinner colored lines indicate S.E.M of corresponding average profile. Numbers 

of samples are indicated. (g) Control cells that do not express the Rac activator (MCHF-

TIAM1) exposed to gradients of rapamycin. Only slight fluctations in Rac activity were 

detected. Cell length plot indicates axis of quantification in (h). Times are in minutes. 

Scale bars, 10 m. (h) Quantification of the average FRET profile across control cells over 

time. FRET activity fluctuates around the basal level at time 0. Numbers of samples are 

indicated. 
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suggested that an exogenously applied linear gradient of rapamycin could result in a 

graded increase in Rac activity which was sufficient to direct motility and polarization of 

cells from a variety of pre-existing polarity phenotypes.   

 For further validation of our system, we compared cellular responses to graded 

rapamycin with responses to uniform rapamycin stimulation.  Cells given a uniform 

stimulus for the entire experimental period displayed extensive uniform flattening with 

little net motility (Fig. 3.6a). This result was in agreement with previous experiments 

showing that differentiated HL-60 cells exposed to spatially uniform stimulation of Rac 

displayed membrane ruffling around the entire cell periphery
145

.  For a more detailed 

comparison of the effects of graded and uniform Rac activation, we exposed state II cells 

to a rapamycin gradient for 2 hours, subsequently followed by uniform stimulation (2 

nm) for 3 hours thereafter. As expected, cells polarized and moved in a biased fashion 

during gradient stimulation; however upon the switch to uniform stimulation, cells started 

forming protrusions at the rear and showed a decrease in the length of the front (Fig. 

3.6a-d). This effect indicated the importance of persistent gradient input but might also 

reflect a gradual saturation of rapamycin binding sites after prolonged treatment. We 

explored the latter possibility by running the converse experiment, exposing cells to 

spatially uniform rapamycin (2 nm) for 2 hours followed by a rapamycin gradient for 3 

hours (Fig. 3.6e). Protrusions developed on both sides of cells during uniform 

stimulation, and subsequently could not be biased by the gradient (Fig. 3.6e). However, 

cells exposed to a lower uniform stimulation (1 nm) were able to polarize towards the 

ensuing rapamycin gradient  (Fig. 3.6f). In combination, these results indicate that cells 

can be guided by rapamycin gradients as long as the average rapamycin concentration  
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Fig. 3.6: Comparison between graded and uniform rapamycin stimulation. 
 

(a) Cells exposed to a uniform concentration of rapamycin (2 nM) flatten and do not show 

any directed polarity. (b) Cells observed for one hour without stimulation and 

subsequently exposed to a gradient of rapamycin for a two hour period, followed by a 

switch to a uniform stimulation (2 nM) for three hours. The gradient directs cell motility 

and amplifies the existing lamellipodium. The switch to a uniform stimulation leads to a 

protrusion formation in the rear of the cell and retraction of the previously amplified 

lamellipodium. Times in minutes. Scale bars, 10 µm. (c) A kymograph taken from the cell 

center (specified in accompanying image) depicting the morphological changes of the cell 

shown in panel (b) over various treatment periods. The blue line traces the front of the 

polarized cell, whereas the red line traces the unpolarized face. (d) Quantification of the 

length changes in cell front and back during the rapamycin gradient exposure and after the 

switch to uniform rapamycin stimulation. Numbers indicate total number of cells. Error 

bars are SEM. (e-f) Cells observed for one hour, exposed to uniform 2 nM rapamycin (e) 

or uniform 1 nM rapamycin (f) for two hours, and a gradient for three hours. Cells given a 

2 nM uniform dose exhibit protrusions on both sides, while cells given a 1nM uniform 

dose can still be guided by the gradient. Yellow arrows indicate initial and final enhanced 

protrusions. Times are in minutes. Scale bars, 10m. 
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does not exceed a saturating level. Below, we explore the effects of the rapamycin dose 

and exposure time on cell responses in greater detail. Our results suggest that the spatial 

restriction of Rac activity within a cell is important for maintaining polarization.  

 

3.2.3  Mathematical modeling of graded Rac inputs 

 

 To better address the simplified, yet non-intuitive, nature of our imposed graded 

Rac signaling, we developed a mathematical model of cell polarity. The model is based 

on a simple scheme of Rac-RhoA-Cdc42 small GTPase and Phospoinositide  interactions, 

expanding on earlier modeling studies
167, 168

 (Modeling details found in Supporting 

Information). The model made three important qualitative predictions: a) a spatially 

graded activation input can trigger initial polarization of Rac activity (Fig. 3.7a), b) the 

timing of that initial Rac polarization is strongly dependent on the input gradient  and 

weakly dependent on the average input (Fig. 3.7b), and c) antagonism between the 

activities of Rac and Rho small GTPases can trigger a phase transition-like  change to a 

substantially more asymmetric polarization, which can be stably maintained as long as 

the activity of Rac remains high enough (Fig. 3.7a). This transition will be addressed in 

more detail below. See Supporting information for model details. These predictions could 

be directly examined in our experimental setup.  
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Fig. 3.7: Analysis of the initial response time. 
 

(a) Sample kymograph of the mathematical model simulation under graded Rac 

stimulation. (b) Model response time vs. normalized gradient (s1) for two different values 

of so (input). (c-e) Kymographs chronicling typical changes in cell morphology seen 

during early time periods. The first image before each kymograph depicts the gradient 

(red) that the cell is experiencing as visualized with Alexa 594 dye. The gradient is not 

shown in resulting images to promote clarity of morphological changes. The green color 

indicates expression of YF-TIAM1. Red dotted lines highlight evolving cell boundaries. 

Yellow arrows indicate initial polarities. Times are in minutes. Scale bars, 10 m. (f) The 

dependence of initial response times on gradient values. States are color coded; state I 

(green) n = 29, state II (blue) n = 37, and state III (red) n = 27. In each plot, the colored 

dots highlight the dependence of that particular state while the grey dots illustrate where 

the response times of the other states fall. Data is fitted based on simulation results. 

Spearman correlation coefficient, State I = -.679, State II = -0.655, State III = -0.583. The 

asterisk indicates a statistically significant difference (State II vs. State I, p < 1e-4, State II 

vs. State III, p < 1e-3) between the state II curve vs. the other states. There is no statistical 

difference between state I and state III (p = 0.54). Both tests were carried out using an F 

test.  
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3.2.4  Analysis of Rac gradient steepness on timing of cellular responses 

 

 To validate the model predictions, we next examined the correlates of the 

initiation of directed cell migration and their dependencies on the local gradient and 

average value of rapamycin input. HeLa cell responses were characterized by either the 

retraction of a leading lamellipodium in cells polarized in the direction opposite that of 

the gradient (state III), or extension of a pre-existing (state II) or new (state I) 

lamellipodium in the direction of the gradient (Fig. 3.7c-e). To quantitatively evaluate 

these effects, we examined the width and length of the front and rear sides of cells in all 

states through the entire stimulation period, along with the respective concentrations 

experienced at each side (Fig. 3.8). Cells that exhibited bipolar phenotypes (state IV) 

were relatively rare (Fig. 3.1f and Fig. 3.2b) and therefore were excluded from 

subsequent analysis. Our analysis revealed that these initial directed migration response 

times, in agreement with the model predictions, were indeed inversely dependent on the 

steepness of the rapamycin gradient across each cell (Fig. 3.7f). This trend was seen 

across all polarity states (Spearman correlation coefficients; -0.679, -0.655, and -0.583 

for state I, II, and III, respectively). Similar dependencies were also observed in MTLn3 

cells (Fig. 3.9a-c).  The initial response times of state I cells also showed a discernible 

but much weaker dependency on the average rapamycin concentration, consistent with 

the model predictions. Cells in states II and III had relatively weaker dependencies 

(Fig.3.10a-c, Spearman correlation coefficients; -0.582, -0.478, and -0.377 for state I, II,  
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and III, respectively). State II cells had consistently shorter initial response times for any 

given gradient steepness when compared to those in state I and state III (Fig. 3.7f and 

Fig. 3.11) (F test- State II vs. State I, p < 0.0001, State II vs. State III, p < 0.001), while 

state I and III cells behaved similarly (State I vs. State III, p = 0.54). For example, when 

comparing the average initial response times at a gradient of .01nm/m +/- .001, state II 

cells had an average initial response time of 51 minutes, while state I had an average of 

98 minutes and state III had an average of 71 minutes.  These results suggest that cells are  

Fig. 3.8: Tracking changes in cell morphology to assay the initial response time.  

 
The plots correspond to the cells in different states, as seen in Figure 2. Various morphology 

metrics are illustrated in the schematic accompanying the graphs. Fractional values of the 

metrics are shown, with values normalized to those at the beginning of the analysis. (a-c) 

Tracking of changes in the lengths of the cell front and back over time during gradient 

stimulation. (d-f) Tracking of changes in widths of the cell front and back. The time to 

reach 20% of the maximum magnitude of the first morphological response to gradient 

exposure was taken as the initial response time. The drop line indicates the initial response 

time, while the circle indicates the intercept between the dropline and the corresponding 

metric value. 
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able to rapidly make migration decisions in the presence of Rac activity gradients 

overlapping with their initial polarization state. Together, our data demonstrates that the 

magnitude of active Rac gradients can influence the timing of the onset of directed cell 

motility. 

 

 Besides the initiation of biased cell migration, the spatially graded activation of 

Rac eventually triggered a striking enhancement in cell polarization, with a substantial 

enlargement of the directed leading lamellipodium (Fig. 3.12a). This morphological  

Fig. 3.9: Initial response and late polarization times of MTLn3 cells. 

 
The plots correspond to the cells in different states, as seen in Figure 2. Various morphology 

metrics are illustrated in the schematic accompanying the graphs. Fractional values of the 

metrics are shown, with values normalized to those at the beginning of the analysis. (a-c) 

Tracking of changes in the lengths of the cell front and back over time during gradient 

stimulation. (d-f) Tracking of changes in widths of the cell front and back. The time to 

reach 20% of the maximum magnitude of the first morphological response to gradient 

exposure was taken as the initial response time. The drop line indicates the initial response 

time, while the circle indicates the intercept between the dropline and the corresponding 

metric value. 
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change was unexpected, but was consistent with the model prediction that crossing a 

threshold of Rac activity triggers a rapid, strong and stable polarization, akin to a phase 

transition. According to the model, a gradual variation of the Rac GEF level caused an 

abrupt transition from a moderately polarized to a highly polarized state, expressed 

mathematically as a bifurcation in the model response (Fig. 3.12b).  We hypothesized 

that our use of low rapamycin concentrations allowed us to observe the effect of a 

gradual titration of intracellular Rac GEF and Rac activity levels leading to this strong 

Fig. 3.10: Additional information on dependence of the initial response time and 

late polarization time on rapamycin gradient and local concentration values.  

 

(a-c) The relationship between initial response time and mean rapamycin concentration for 

all states. Spearmann correlation coefficient values for each curve were determined as 

follows, state I: -0.582 (a), state II: -0.478 (b), state III: -0.377 (c).   (d-f) Late polarization 

times determined for different gradient values for cells in all states. Pearson correlation 

coefficient values for each curve were determined as follows , state I: 0.103 (d), state II: -

0.511 (e), state III: -0.228 (f). Within each plot, the data is binned into three mean 

concentration levels. State I (green) n = 27, state II (blue) n = 37, and state III (red) n = 29. 
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polarization. This gradual Rac GEF build-up was expected to follow the simple 

 

 

 

 

 

 

 

 

mathematical representation of accumulation of Rac GEF concentration over the duration 

t of exposure to rapamycin is  

 

∆[Rac GEF] = k[Rapamycin]t,       (1) 

 

 

 

Fig. 3.11: State II cells undergo the initial response faster than cells in other states.  

 

(a-c) Examples of the morphological changes in cells in different states experiencing the 

same gradient of rapamycin (0.01 nM/µm +/- 0.001). Cells were exposed to the gradient for 

the entire experimental period but only the 5 minute image showing both cells and the 

gradient visualization is shown for each state to add clarity. Yellow arrows indicate initial 

protrusions. Times are in minutes. Scale bars, 10 µm. (d-f) Quantification of the 

morphological changes seen in the examples shown in (a-c). The dropline indicates the 

initial response time. The circle indicates the metric used to determine it, with the color of 

the circle corresponding to the metric. 
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Fig. 3.12: Analysis of the late response time. 

 
(a) Kymograph depicting the change in the lamellipodium directed by the gradient and 

dimming seen in the cell body during the late polarization time. The image preceding the 

kymograph illustrates the gradient (red), visualized with Alexa 594, received by the cell. 

The green color visualizes expression of YF-TIAM1. Red dotted lines indicate where the 

fluorescent values in c are taken from. Times are in minutes. Scale bar, 10 m. (b) 

Simulations showing response strength vs. input (so) for two gradient levels (s1); note 

bifurcations at distinct so values. Response strength is defined as the ratio of Rac activity at 

the front vs. the back in the model cell.  (c) The intensity of the cell body normalized to the 

initial time point. Intensity values are taken as the mean of the fluorescence intensity of the 

area enclosed by the red trace in a. The drop line indicates the late polarization time, with a 

circle highlighting the inversion of response used to define this time. (d) 3D reconstruction 

of confocal slices of the same cell taken pre- and post- rapamycin addition. The “post-“ cell 

image was taken 240 min after treatment. Scale bar, 10 m. (e) Cell body volume before 

and after rapamycin addition. The data shows the mean of n = 9 cells and error bars show 

SEM. The asterisk denotes a statistically significant difference, p = 0.019, using a two sided 

student’s t-test (f) The late response time as a function of mean concentration. State I 

(green) n = 29, state II (blue) n = 37, and state III (red) n = 27. The response times of other 

states are superimposed on each plot in grey. The pink drop line in the state III plot 

demarcates the separation point between unresponsive cells and responsive cells. Pearson 

correlation coefficient of linear regressions- State I = -0.608, State II = -0.783, State III = -

0.698). The red asterisk denotes a statistically significant difference (state II vs. state I, p < 

1e-4, state II vs. state III, p < 1e-4) between the y intercept of the linear regression for state 

II vs. the y intercepts of the regression data from other states. There is no significant 

difference between the y intercept of state I vs. state III (p = 0.13). Both statistical tests were 

carried out using an ANCOVA test. 
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where k is the constant defining tripartite rapamycin-FKBP-FRB complex formation. 

This expression allowed us to test the hypothesis of the existence of a Rac activity 

threshold mediating enhanced polarization.  

 

 One of the immediate consequences of the expansion of the lamellipodium in the 

direction of the rapamycin gradient was an apparent dimming of the YFP fluorescence 

signal from the cell body when observed with a wide-field epi-fluroescence microscope 

(Fig. 3.12a,c). The dimming of the fluorescence intensity was likely due to a 

redistribution of cytoplasmic volume from the cell body to the expanding lamellipodium 

and an increase in the translocation of YF-TIAM1 complexes to the membrane (Fig. 

3.12d-e). We thus used the fluorescence intensity of the cell body as a metric for the 

timing of late polarization.   Our analysis indicated that the late polarization time 

exhibited a linear dependency on the average local rapamycin concentration (Fig. 3.12f) 

(Pearson correlation coefficients; -0.608, -0.783, and -0.698 for state I, II, and III, 

respectively), in agreement with model predictions. MTLn3 cells also showed similar 

dependencies on mean rapamycin concentrations (Fig. 3.9d-f).  A weaker dependence on 

the sharpness of the rapamycin gradient, consistent with the model, was also detected in 

these experiments (Fig. 3.10d-f) (Pearson correlation coefficients; 0.103, -0.511, and -

0.228 for state I, II, and III, respectively).  As with observations of early cell responses, 

state II cells reached the late polarization phase significantly faster than cells in other 

states for a given rapamycin concentration (Fig. 3.12f and Fig. 3.13) (ANCOVA test of y 

intercept, State II vs. State I, p <0.0001, State II vs. State III, p<0.0001) while the 

difference between the other two states was negligible (State I vs. State III, p=0.13). We  
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also found that a sub-population of state III cells exposed to lower concentrations of 

rapamycin completely failed to reach late polarization (Fig. 3.12f). In combination, these 

results suggested the existence of a threshold for late polarization, variable across 

individual cells and dependent on the initial polarity state. 

 

3.2.5  Transient graded Rac activation 

 

 Equation (1) suggests that the duration of rapamycin exposure is as critical as the 

Fig. 3.13: State II cells undergo the late polarization response faster than cells in 

other states.  

 

(a-c) The late polarization response of cells in all three states experiencing the same 

concentration gradient and the same local concentration of rapamycin. Yellow arrowheads 

indicate the direction of initial cell polarity. (d-f) Quantification of the average fluorescence 

intensity in cell bodies of the cells shown in (a-c) (see the schematic for the cell body 

definition). Drop lines indicate the late polarization times for each example. Note that the 

cell in state II reaches the late polarization phase faster than the cells in the other two states. 

Times are in minutes. Scale bars, 10 µm. 
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local rapamycin concentration in exceeding the polarization threshold.  Based on in vitro 

estimates of rapamycin-FKBP-FRB complex formation, the characteristic binding time 

estimated for 1 nM rapamycin is in the range of tens of minutes
162

. To test this prediction, 

we varied the time interval of rapamycin stimulation, taking into account the earliest 

polarization time observed for the rapamycin concentrations tested, i.e., 30 min and the 

estimated equilibration time above.  We exposed cells to transient rapamycin gradients of 

0.01 nM/m for 30 min or 1 hr, followed by perfusion of the devices with rapamycin-free 

media for the rest of the experiment. We found no cells undergoing late polarization after 

a 30 minute rapamycin gradient exposure (Fig. 3.14a-c), however, after a 1 hr 

stimulation, we found subsets of cells in all polarity states able to undergo late 

polarization, provided that they were exposed to sufficiently high concentrations of 

rapamycin (Fig. 3.14d-f). The polarization responses were morphologically similar to 

those seen earlier during continuous stimulation (Fig 3.14d,e), with the timing to late 

polarization indistinguishable from those observed for continuous stimulation (Fig. 

3.14f). Responding cells continued to polarize even after the stimulus was withdrawn, 

suggesting fixation of the induced polarity and migration states (Fig. 3.14d-e), in contrast 

to their loss during the transition to spatially homogeneous Rac activation (Fig. 3.6).This 

behavior was in agreement with model predictions of a stable polarization beyond a Rac 

activity threshold which enables cells to maintain a strongly polarized state whose 

direction is based on but not continuously informed by the input gradient. Using a 

classification algorithm to separate responding and non-responding cells, we found that 

the minimum concentrations needed to elicit a response varied across the polarity states 

(Fig. 3.14f). In agreement with the earlier observation of distinct responses in state II  
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cells, cells in this state possessed the lowest response threshold (Fig. 3.14f) (State I= 1.5 

nM, State II = 1.1 nM, State III = 1.4 nM). These data further support the existence of a 

Fig. 3.14: Overcoming a Rac activity threshold determines the late polarization 

time. 

 

(a,d) Time series of representative cells stimulated with a gradient of rapamycin for 30 

minutes and 60 minutes respectively. Yellow arrows indicate the initial direction of cell 

polarity. Times are in minutes. Scale bars, 10 m. (b,e) Kymographs taken from the center 

of cells (specified in accompanying image) illustrating morphological changes seen in a,d 

respectively. Blue lines track the initially polarized cell face while red lines track the 

opposite face. Below the kymograph is the experimental scheme used to stimulate the cell. 

(c,f) Late polarization time for a 30 minute and 60 minute stimulation period for all three 

states, respectively. For 30 minutes- State I (green) n = 17, state II (blue) n = 13, and state 

III (red) n = 31. For 60 minutes- State I (green) n = 32, state II (blue) n = 37, and state III 

(red) n = 32. Diamonds indicate cells that did not respond within the experimental time 

frame (240 minutes), while circles indicate responsive cells. Grey dots in each plot represent 

the late polarization times for cells in each state from Fig. 3f. The drop lines demarcate a 

threshold between responding and non-responding cells.  
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well-defined, initial polarity-dependent, Rac activation threshold essential for the rapid 

and profound induced changes in polarized cell morphology. 

 

3.2.6  Inhibition of upstream activators 

 

 Direct activation of Rac allows bypassing of many signaling species commonly 

thought to be either upstream of Rac or involved in a regulatory feedback with this 

molecule. A well studied example of such a molecule is phosphatidylinositol 3,4,5-

triphosphate (PIP3)
145, 169, 170

. In chemoattractant gradients, phosphatidylinositol 3-kinase 

(PI3K), is recruited to the plasma membrane and phosphorylates the abundant 

phosphatidylinositol 4,5-bisphosphate (PIP2) to yield PIP3 (2, 43). Due to spatial 

regulation of PI3K recruitment, PIP3 is often enriched at the front areas of migrating 

cells
78

, displaying an intracellular gradient that is sharper than the gradient of the 

extracellular chemoattractant
142, 171

. It is thought that PI3K can influence cell guidance 

through its interaction with small GTPases and actin, but the mechanism of these 

interactions and the resultant role of PI3K in regulating chemotaxis are still under 

investigation
12, 13

. If, as sometimes assumed, PI3K is upstream of Rac activation in 

chemotactic signaling systems, its perturbations are not expected to lead to alteration of 

cell response to rapamycin-based Rac GEF stimulation. If, on the other hand, PI3K forms 

a feedback loop with Rac
143, 145, 150

, or otherwise enables Rac-mediated outputs, cell 

responses might be affected by its inhibition, with the change in cell behavior potentially 

suggesting the mechanism of PI3K regulatory involvement. We used a pharmacological 

inhibitor of PI3K, LY294002, to inhibit PI3K activity during gradient stimulation with 
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rapamycin. As a control, we first observed the effects of LY294002 with and without 

rapamycin on basal cell motility and found no significant effects (Fig. 3.2d,e). After 

induction of the gradient, in contrast to the responses of cells in which PI3K was not 

perturbed, we observed large subsets of cells exhibiting no response, both in terms of the 

initial and late polarization, for all three initial polarity states across various gradients and 

concentrations (Fig. 3.15a, Fig. 3.16). Interestingly, the cells that did undergo the initial  

 

 

 

 

 

 

 

 

Fig. 3.15: PI3K modulates Rac mediated polarization. 

 

(a) Late polarization time dependence against mean concentration with LY294002 

treatment. State I (green) n = 21, state II (blue) n = 31, and state III (red) n = 27. Diamonds 

represent non-responder cells while circles represent responding cells. Grey dots on each 

plot illustrate the late polarization times seen in Fig. 3f. The grey drop line in the state III 

cell response plot represents the previous response threshold between non-responding and 

responding untreated cells, while the colored line represents the shifted threshold following 

LY294002 treatment.  (b) Model schematic as in Model Figure 1 with red ‘X’ indicating 

that feedback from PIP3 (f1) is decreased during the subsequent simulations. (c) Simulations 

of response strength vs. signal strength for different feedback levels (In all previous 

simulations, f1 = 1). (d) The response threshold for state III cells. 
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migration and late polarization responses did so with the same kinetics as observed in the 

absence of PI3K perturbation (Fig. 3.15a).  This was consistent with the model prediction 

that a decrease in simulated strength of the PI3K-mediated feedback to Rac could lead to 

an increased threshold for cell responsiveness, requiring a sharper effective internal Rac 

activity gradient for cells to respond (Fig. 3.15b-c). As a consequence, the stochastic 

differences in internal states of the cells, defining cell sensitivity to the graded signaling 

input, can lead to a greater degree of cell population separation into responding and non-

responding cells, without affecting the timing of responses in responding cells. 

   

 

 

 

 

 

Fig. 3.16: Suppression of polarization responses with LY294002 treatment. 

 

(a-c) Time lapse imaging of sample cells selected from subpopulations in different states 

during LY294002 addition.  LY294002 was included at a concentration of 10 µM and was 

included in both cell medium solutions used to generate the rapamycin gradient. In all 

examples shown, cells fail to respond within the experimental time frame across all states. 

Yellow arrows indicate the direction of the initial cell polarity. Times are in minutes. Scale 

bars, 10 µm. (d) Initial response time vs. rapamycin gradient values in cells responding in 

the presence of LY294002. State I (green) n = 21, state II (blue) n = 31, and state III (red) n 

= 27. Diamonds represent non-responder cells while circles represent responding cells. Grey 

dots on each plot illustrate the initial response times seen for cells not exposed to LY294002 

(Fig. 3.7f). 
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The results in Fig. 3.12f suggested the existence of a relatively high (re-)polarization 

threshold for state III cells. Thus we explored whether there would be synergy between 

this threshold and the increase in polarization threshold caused by inhibition of PI3K. We 

found that this threshold was indeed shifted in the presence of PI3K inhibition to a higher 

rapamycin concentration level (Fig. 5d) (1.0 nM for untreated state III vs. 1.4 nM for 

LY294002 treated state III). These results thus support the notion that PI3K can serve to 

sensitize cells to spatially graded Rac activation, allowing them to more readily exceed 

polarization and re-polarization thresholds.  

 

3.3 Discussion 

 

 The results presented in this report argue that directly induced, spatially graded 

membrane translocation of a Rac activator, TIAM1, can trigger unambiguous polarization 

and directed movement of cells aligned with the direction of the stimulation gradient. 

TIAM1 is a specific Rac GEF
172

 and another key regulator of polarity, CDC42, is 

considered upstream of Rac
62

, therefore we attribute our observed phenotypes to be 

originating from direct Rac activation. The gradients of the inducer of Rac activation, the 

exogenously added rapamycin, can be effective with values as low as 15% across the cell 

length, with the rates of cellular responses to the stimulation being defined by the 

gradient steepness. The results suggest that even mild initial Rac GEF gradients can 

trigger strongly polarized cell responses, potentially providing insights into the levels at 

which graded inputs can be amplified in the signaling network. However, the response 
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kinetics can be enhanced with sharper input gradients (Fig. 3.7f) or if these gradients are 

amplified upstream of Rac activation.  

  We propose that rapamycin induced graded Rac activation can induce 

qualitatively similar polarization responses to those seen in chemoattractant gradients. 

For example, state I cells exhibit an initially low, mostly homogeneous Rac activity 

followed by the induction of high Rac activity at a newly formed front when a gradient of 

rapamycin is applied. This pattern of Rac activity is similar to that seen in neutrophils 

polarizing to a gradient of fMLP
173

. Additionally, state III cells repolarize when given 

sufficiently high gradients of rapamycin by forming a new front at the rear and retracting 

the previous front. This behavior is seen when chemoattractant gradients are presented at 

the rear of polarized cells through microfluidics or micropipette. Chemoattractant 

induced repolarization can be seen in neutrophils
174

, social amoebae 
175

, and breast cancer 

cells
79

. Given that rapamycin induced graded Rac activation can mimic polarization 

behaviors seen with chemoattractant gradients, we believe that polarization can be 

defined at the level of Rac or at least starting from the level of Rac.  

 The research platform described here enabled the screening of the effects of a 

slow variation in the total cellular Rac activity. Both a simple model describing a 

feedback-based interplay between small GTPases in a cell and the corresponding 

experimental observations support the novel finding that a rapid and pronounced 

transition to a much stronger degree of polarization can occur if Rac activity exceeds a 

threshold level. This threshold was found to be strongly affected by the initial 

polarization status of the responding cell. Cells initially polarized in the direction of the 

applied gradient on average have lower response thresholds than cells that are 
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unpolarized or polarized in the opposite direction. Moreover, only a fraction of cells 

initially polarized away from the gradient responded to the gradient of Rac activator.  

These results are consistent with the following view supported by the model: an existing 

endogenous gradient of Rac activity in state II cells would lead to a smaller difference 

between the maximum local initial Rac activity within a cell and the polarization 

threshold value.  

  Our results further suggest that signal processing upstream of Rac activation in 

the context of chemoattractant stimulation may limit the degree of total Rac activation 

and thus the ability of the cell to reach the threshold controlling transition into the 

strongly polarized state. Thus, a single ligand may not induce such a transition. However, 

the threshold might potentially be reached and exceeded given multiple inputs 

converging on Rac activation, which may be affected by cell type-specific peculiarities of 

the signaling apparatus, such as basal levels of Rac activation and the expression of the 

signaling proteins.  

 The rapamycin stimulation system described here also allows a more detailed 

study of the interplay between Rac activation and activity of other signaling species, 

including those that might be involved in various feedback interactions. This analysis is 

akin to the more common epistasis assays, but with subtler phenotypes related more 

closely to gradient sensing responses. In particular, our analysis suggested that PI3K 

interplay with Rac activation, while consistent with the recently proposed formation of an 

AND gate in terms of the response
145

 where both inputs are necessary to induce directed 

migration, acts more specifically by controlling the threshold of cell responsiveness to 

Rac activity gradients. Whereas PI3K inhibition does not prevent the ability of the cells 
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to undergo directed cell polarization or migration responses, it can strongly reduce the 

fraction of cells capable of these responses within the same set of experimental 

conditions.  

 The analysis here represents a more general framework extensible to other 

rapamycin-activatable signaling molecules
157, 176, 177

, as well as other cell types and 

multicellular systems. Furthermore, the effects of gradients of other proteins engineered 

to be sensitive to small, membrane permeable molecules, such as ATP-analogues
178

 and 

imidazole
179

, could also be analyzed to refine our understanding of the mechanisms of 

cell responses to graded intracellular signaling activity. As also demonstrated in this 

report, such efforts could help develop qualitatively and quantitatively improved 

mathematical and computational models of gradient sensing and chemotaxis phenomena, 

extending common approaches to these processes. We suggest that, as the repertoire of 

methods for direct control of cellular events increases, microfluidics-based tools will play 

an important role in exploitation of these methods in cell navigation research.  

 

3.4 Materials and Methods 

 

3.4.1  Modeling 

 

 We have developed a simple model based primarily on the antagonistic 

relationship between the two small Rho family GTPases involved in polarized cell 

migration, Rac and Rho, modulated by Cdc42, based on sequential model selection. The 

model was implemented as a system of partial differential equations (PDEs) for Rho 
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GTPases in 1 space dimension and explored numerically using Matlab® (MathWorks).   

(See 3.4.14 for details). 

 

 

3.4.2  Device fabrication 

 

 Microfluidic chips were created using a two layer soft lithography process
116

.  

PDMS (GE RTV) was used to create molds for the devices as described previously
180

. To 

increase the height of the flow through channels, the membrane between the control layer 

and flow layer was removed. Before an experiment, each device was treated with HCL, 

cleaned with 70% ethanol, and was allowed to bond to a clean 22x40 mm coverslip 

(Fisher).  

 

3.4.3  Cell culture and transfection 

 

 HeLa cells were maintained in Dulbecco’s modified Eagle’s medium with 10% 

FBS and 1% Penicillin Streptomycin (Gibco). MTLn3 cells were cultured in Alpha 

minimum essential medium supplemented with 5% FBS and 1% Penicillin Streptomycin 

(Gibco). Both cell lines were kept in a 37°C and 5% CO2 environment during culture and 

in experiment. MTLn3 cells were kindly provided by the Segall lab. The constructs, YF-

TIAM1, YF, and Lyn11-FRB were transfected into cells using Fugene HD (Roche) per 

manufacturer’s recommendations. The Raichu-Rac FRET probe was kindly provided by 

the Matsuda lab and was transfected in a similar manner. During FRET experiments, MF-
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TIAM1 was used in place of YF-TIAM1. MF-Tiam1 has a mCherry fluorophore in place 

of YFP and was used to avoid spectral overlap with the FRET probe.  

 

3.4.4  Imaging 

 

 Microfluidic experimental imaging was performed using an inverted Zeiss 

Axiovert 200M epifluorescence microscope under 37°C and 5% CO2, coupled to a 

Cascade II:1024 EMCCD camera (Photometrics) using a 40x, 1.3 numerical aperture oil 

immersion objective (Zeiss). The microscope was driven by Slidebook software 

(Intelligent Imaging Innovations). Images were taken every 5 minutes in the YFP channel 

using a 494 nm excitation filter and 530 emission filter set (Semrock) and Alexa 594 dye 

was imaged using a 572 nm excitation filter and 628 emission filter (Semrock) over a 

four hour period.  A spectral 2D template autofocus algorithm was employed between 

images to account for any focus fluctuations. To correct for uneven illumination, all 

images were normalized with the following correction C = (I-D/F-D)*M where C = 

corrected image, I = initial image, D = darkfield image, F = flatfield image, and M = 

mean of difference between flatfield and darkfield images. The flatfield and darkfield 

images were taken as averages of multiple images. FRET images were taken using using 

a CFP excitation filter (Semrock), an appropriate dichroic (Semrock), and a YFP/CFP 

emission filters (Semrock).Volume analysis was performed on an inverted Zeiss Axiovert 

200 spinning disk confocal microscope, coupled to a CCD camera (Hamamatsu) using a 

40× objective (Zeiss). The microscope was driven by Metamorph 7.5 imaging software 

(Molecular Devices).  YFP excitation was trigged with an argon laser (CVI-Melles Griot) 

http://www.biocompare.com/natureproducts/go.asp?id=nmeth.1428_p_p6


82 
 

which was fiber-coupled (OZ optics) to the spinning disk confocal unit (CSU10; 

Yokogawa) mounted with a YFP dichroic mirror (Semrock) and an appropriate YFP filter 

(Chroma Technology). 

 

3.4.5  Analysis of gradient and mean values of rapamycin 

 

 All analysis was performed using custom written codes in Matlab 2007b 

(Mathworks). Cell-based data (Cell length, centroid, etc.) was obtained from the YFP 

images while gradient based data was obtained from the Alexa 594 dye images. Cells 

were segmented from the YFP channel based on intensity. The signal to noise ratio was 

sufficiently high to preclude the use of more sophisticated segmentation techniques. Once 

cell boundaries were determined from the segmentation, concentration lines spanning the 

width of the channel were generated from the front and back of the cell to obtain local 

concentration data. The concentration lines were restricted to the width and length of an 

individual channel by manually selecting the boundaries of the channel from the Alexa 

594 dye image. For any cell that extended out of the channel, the concentration lines were 

restricted to the respective ends of the channel to avoid spurious measurements associated 

with the height difference between the arms of the flow channels and the cross channels. 

Dye intensities were extrapolated to the intensities at the respective ends of the channel to 

determine concentration. 

 

3.4.6  Cell tracking 

 

http://www.biocompare.com/natureproducts/go.asp?id=nmeth.1428_p_p7
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 Cell velocity was tracked by obtaining the coordinates of cell nuclei using a semi-

automated script written in Matlab.  

 

3.4.7  Quantification of the membrane distribution of YFP-FKBP 

 

 The translocation of YFP-FKBP to the membrane was quantified by taking the 

ratio of intensities at the cell periphery to the intensity in the cytoplasm. First, the 

cytoplasm and membrane were segmented by intensity thresholding from cell images and 

a subsequent morphological erosion was used to obtain each component separately. To 

obtain the membrane intensity across the cell length, the max value of each row of pixels 

in the membrane segmentation was taken.  The cytoplasm intensity was obtained by 

taking the mean value of each row of pixels from the cytoplasm segmentation. Ratio 

values across the length of the cell were normalized between 0 and 1 and smoothed with 

a 10 point moving average. To aggregate data from multiple cells, time 0 was chosen as 

30 minutes before visible translocation and subsequent profiles were normalized to 

values at time 0. For control cells, time 0 was chosen at times comparable to cells 

positioned in similar locations during rapamycin experiments.  

 

3.4.8  FRET analysis 

 

 FRET analysis was done according to a previously described protocol
181

. Briefly, 

FRET images were analyzed by first subtracting background from each individual CFP 

and YFP FRET image (CFP excitation, YFP emission). Images were thresholded and  
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subsequently aligned with a dft registration algorithm
182

. The FRET ratio was calculated 

by dividing the YFP FRET image by the registered CFP image. Final images were 

Gaussian filtered to remove noise. To obtain the distribution of FRET activity across the 

cell length, the mean value of each row of pixels composing the ratio image was taken 

and final values were normalized between 0 and 1 for the cell length and smoothed with a 

10 point moving average. To aggregate data from multiple cells, time 0 was chosen as 30 

minutes before the appearance of morphological changes in accompanying MCHF-

TIAM1 images. FRET profile data in later time points were normalized to time 0. For 

control cells, time 0 was chosen based on comparably located stimulated cells.  

 

3.4.9  Volume analysis 

 

 Cell heights were generated by first taking calibrated Z slices of cells before and 

after rapamycin treatment. Afterwards, each slice was segmented and the summation of 

slices was used to generate the final image. The cell volume was determined by taking a 

region of interest (ROI) in the cell body from 3D reconstructions carried out using 

Matlab. The number of p -

calibration of the slice height.  

 

3.4.10  Measurement of the initial response time and late polarization 

time 
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 All measurements were performed using Matlab. To determine the length of a 

cell’s front and back, the cell nucleus was tracked by manually fitting an ellipse to the 

nucleus image and taking the centroid of the fitted ellipse as the position of the nucleus. 

Nuclei were clearly distinguishable in all YFP images analyzed due to exclusion of the 

construct. Cell front and back lengths were calculated by taking the coordinates of the 

front and rear of cells from segmented images and calculating the distance to the nucleus 

position (SI Appendix (Fig. S6)). To assay the width of the front and rear of each cell, the 

distance between the rightmost and leftmost coordinates of the cell front (top 10% of 

pixels) and rear (bottom 10% of pixels) were calculated (SI Appendix (Fig. S6)). The 

initial response time was taken as the time to reach 20% of the total magnitude of the first 

morphological change towards the gradient (SI Appendix (Fig. S9)). The initial response 

time was taken at the 50% level for MTLn3 cells due to the faster kinetics associated with 

their responses. To find the late polarization time, the decrease in fluorescence of the cell 

body was measured as a function of time. The fluorescence intensity was determined in 

ROIs, chosen automatically based on the end coordinates of the cell (front and back) (SI 

Appendix (Fig. S10)). The ROIs were then further eroded by several pixels to avoid any 

effects from the cell membrane. The late polarization time was taken as the time to reach 

50% of the full fluorescence intensity drop in the ROI from the peak intensity value.  

 

 

3.4.11  Population separation 
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 Thresholds between non-responding cells and responding cells were determined 

using quadratic discriminant analysis (‘classify’ function) in Matlab. The two populations 

along with their corresponding concentrations were input into the function as training 

data and a separation point was generated from a given vector of concentrations.  

 

3.4.12  Statistical analysis 

 

 Statistical analysis was carried out with Sigmaplot software (Systat) and 

Graphpad Prism (Graphpad). Experimental results were expressed as means with error 

bars equal to standard error of the mean (SEM). Comparisons between two groups were 

carried out with a two sided student t-test when assumptions of normality were fulfilled. 

For comparisons which did not satisfy the assumption of normality, a Mann-Whitney 

Rank Sum test was used. Comparisons were deemed to be significant if p values were < 

0.05. The comparison between the y-axis intercepts of the linear regressions of the 

relevant data points was carried out using an analysis of covariance test (ANCOVA). 

First, the difference between slopes was compared; if the difference was insignificant, a 

comparison between the y-axis intercepts was performed. To compare fitted curves, an F-

test was conducted, using the standard procedure.  

 

3.4.13  Model methods 

 

 As described in our previous computational article
183

, our model (shown in Fig. 

3.17) is related to previous work
167, 184

. It was assembled in several stages, with 
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modifications and geometric considerations relevant to the specific experimental system 

described in the main text of this paper. Here, we provide a brief description of the 

ultimate model and how it was analyzed. 

 We consider the three GTPases implicated in polarized cell morphology, control, 

and chemotaxis, Cdc42, Rac and Rho (While in principle similar results are obtained 

without Cdc42, this master signaling component was included for completeness). For 

each GTPase, we track the levels of active and inactive forms bound to the membrane, G, 

G
mi

, as well as an inactive (GDI- bound) cytosolic form G
c
 , (where G = C, R,  represent 

Cdc42, Rac and Rho concentrations). Each variable is a function of time t and position x 

in a given cell. See below for details of the cell geometry. We assume that an inactive 

GTPase can (un)bind from the membrane, cycling between G
c
 and G

mi
 and that 

GEF/GAP activity interconverts the membrane bound species G
mi

, G. We integrate over 

the depth direction (see below). Every point in the resulting domain is considered to have 

both cytosolic and membrane components. Crosstalk shown in the figure is directed at 

GEFs, with enhanced/reduced GEF activity depicted by arrows/inhibitory connections. 

Linear GAP activity is used in all cases. For phosphoinositides, we track PIP, PIP2, and 

PIP3 (whose levels are denoted P1 , P2 , P3 ), Their interconversions, mediated by kinases 

and phosphatases) are assumed to be enhanced by Rac or Rho as indicated in the 

schematic (Fig. 3.17). The feedback from the PIP layer to the GTPase layer is governed 

by a tunable parameter f1.  
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1.2. Small GTPase module. Equations for each of the active (membrane bound) and  

 

 

inactive (cytosolic) GTPases are as follows, for a total of 9 partial differential equations 

(PDEs).  
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where Dm, Dc are membrane and cytosolic rates of diffusion, G is GAP-mediated 

inactivation rate, koff is the membrane disassociation rate constant, and kon the membrane 

association rate constant. The term IG is GEF-mediated rate of activation that depends on 

the availability of inactive GTPase, and on crosstalk from other active species. Rates of 

diffusion in membrane and cytosol are estimated as Dm = 0.1 µm/s
2
 and Dc = 100 µm/s

2
 

Fig. 3.17: Diagram of the Rho-GTPase/Phosphoinositide signaling network used in 

the one dimensional spatial cell model. 

 

Activation is denoted by () and inhibition by (). The signal is S(x,t)=so + s1 x / L, where 

so and s1 are the basal and gradient input components, and L is cell length.   
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as used previously
184, 185

. These equations, supplemented with no-flux boundary 

conditions conserve the total amount of each GTPase. 

  

Geometry and simplification. Cells are narrowly confined in microfluidic channels, so 

that their width is constrained and time independent. In view of this fact, it is reasonable 

to approximate cell shape as a 3D box of length L, width w, and depth d satisfying d < w 

<< L. Due to controlled signal and the physical constraints of the experimental apparatus, 

it is reasonable to neglect gradients in all but the length direction. Define a 1D projection 

of the variable G
c
 as 
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w d

cpc

    

 

Here we have approximated G
c
 as nearly uniform across the width and depth directions. 

It follows directly that 
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Over the timescale considered, the volume of the cell V ≈ w · d · L is roughly constant. 

Channel diameter determines width w, so the observed lengthening of the cell must be 

accompanied by depth change. We take the initial values of d0 = 0.2 µm, L0 = 20 µm for 

a pre-stimulated cell.    As L (but not d) is directly observable experimentally, we use wd 

= V /L to eliminate the less easily measurable cell depth. 

  

A composite inactive form. We consider the cycling of the inactive GTPase between 

membrane and cytosol to be in quasi steady state, as before
167

. We find the fraction of the 
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inactive forms on the membrane and in the cytosol to be be (L) := kon / (kon + [V/L] koff )  

and  

(1-(L)), respectively. A composite inactive form, G
i
  , is defined as 

   

(1.6)   ipcimipcmii GLGGLGGGG ))(1(,)(,   . 

 

This accounts for the fact that only the membrane bound fraction of this composite is 

available for GEF activation. We also define an “effective diffusion constant”  
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This weights the diffusion constant of the composite form according to the proportion of 

time spent on the membrane and the cytosol. A full parameter set is determined by 

assuming Dmc (L0 ) = 50, consistent with previous work(2-4) and kon = 1s
-1

 . koff   is then 

determined by 
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completing the parameter set associated with membrane cycling.  

 

Reduced GTPase model. The system is now reduced to a set of three GTPases, each 

described by a single composite inactive form G
i
 (x) and an active form G(x), the total of 

which are conserved over the (1D) domain on the experimental timescale. We use the 

cross-talk depicted in Fig. 3.17 to formulate a system of 6 PDEs. Linear inactivation by 

GAP’s is assumed for each GTPase and up/down regulation of GEF activation pathways 

are assumed to take generic functional forms leading to 

 



91 
 

(1.9)

   

  

 

with G = C, R,  and GEF activation rate functions 
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A more complete discussion of the forms of these kinetic terms was given earlier
184

. Note 

that n ≥ 2 is required for this system to exhibit appropriate (``wave-pinning”
186

) 

polarization behavior. Normalization by (L0) makes for convenient parameterization. 

Here f1 represents PI feedback strength to the GTPase module via Rac. 

 

Phosphoinositide module. A PI feedback module
168

, modified from earlier work
167

 is 

based on the following equations: 
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Terms in round braces are feedback from Rac and Rho. For parameter values see Table 

3.1. 
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Simulation Method. Simulations of the model equations (1.9), (1.10), (1.11) are 

performed with an implicit diffusion, explicit reaction scheme. Initial GTPase profiles are 

spatially uniform. The system is allowed to settle to a (parameter dependent) 

homogeneous steady state by integrating for 50 time units. At t = 50, the signal S(x, t) is 

applied to Rac GEF as shown in Eqn (1.10) and the model is integrated to t = 500. We 

observe that a new polarized steady state emerges on a typical time scale of 100- 300 

time units. In all simulations, the rest state was stable to small amplitude noise. The 

results of a sample simulation are shown in the kymograph of Figure 2a. GTPase 

asymmetry/polarization strength (Figs. 3.12b and 3.15c) is measured as the absolute 

difference between the highest and lowest active Cdc42 (C) levels at the final time. (R or 

 can also be used to quantify polarization with similar results.) Response times, shown 

in Fig. 3.7b, are based on a generic inverse relationship between cytoskeletal 

Table 3.1: Parameter set used for model simulations 
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reorganization rate and GTPase polarization strength, i.e., response time = 1/response 

strength.  

 

Predictions. Here we provide a brief overview of the model, referring the interested 

reader to our companion paper
183

, where a detailed development and analysis has been 

provided. 

 

The model described here, has at its core a polarization mechanism based on a wave of 

activity that sweeps across a cell and freezes to produce a static profile with large 

differences between cell poles. This stalling wave behavior has been termed "wave-

pinning"(5). A key feature of this mechanism is that a threshold stimulus (either localized 

or distributed as gradient or noise) is needed to initiate a response. This feature stems 

from a combination of several factors: (a) active and inactive GTPases diffuse very 

differently due to their membrane (cytosol) residence. (b) The GTPase circuit shown in 

Model Fig. 1 contains an effective positive feedback.  This causes the active GTPase to 

promote nearby activation. (c) Cycling between these forms preserves a constant total 

amount, leading to depletion effects as more and more activity is turned on. This 

ultimately freezes the wave in its tracks. Thus, if a stimulus provokes local activity 

exceeding a threshold, it self-amplifies and spreads, but only so long as inactive GTPase 

is available to be activated. It has been shown that this leads to a plateau of high (low) 

activity at the cell poles, but the details of the mathematical analysis are technical and 

beyond our scope. 
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In contrast to the above, many commonly used models for cell polarization (reviewed in 

187
) have no threshold for patterning, and a response is triggered by arbitrarily small 

amplitude noise, here denoted by the informal term “ultrasensitive”. Such pattern 

formation is commonly termed Turing-type. Absence of a stable rest state, makes this 

type of polarization mechanism unsuitable for the HeLa cell system described in this 

article.  Further discussion of various polarization models and their properties appears in 

187
. 

 

To analyze the behavior of models with slow and fast rates of diffusion, we extended a 

recently developed technique termed "Local Perturbation Analysis" in 
183

. This technique 

approximates the reaction-diffusion PDEs with simpler ordinary differential equations 

(ODEs) for the local (slow diffusing) and global (fast diffusing) components of the 

system. The analysis of the resulting LPA system of ODE’s allowed us to (a) find 

interesting parameter ranges and classify the dynamics as wave-type or Turing-type 

behavior, (b) easily explore how changes in model assumptions affect such behavior, and 

(c) understand how inhibition or upregulation influences the behavior of the system. 

 

We used LPA to identify the wave-pinning parameter regime for the model. To 

investigate the experimentally modulated Rac GEF activity levels, we tested the model 

against manipulations of terms corresponding to Rac GEF activity levels. To do so, we 

defined a stimulus, S(x,t)=so + s1 x / L, affecting the Rac GEF term IR, with so the 

background level and s1 the stimulus gradient steepness. (see expression for IR in Eqs. 

(1.10) and S(x,t) in Fig. 3.17)  
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We ran several tests with various values of so and s1 and studied how the model responds 

to increases in one of these parameters at various values of the other. We found that so 

modulates the wave pinning response threshold in the PDE model, (Fig. 3.12b). For fixed 

s1, sufficiently large so provokes a response, as expected in the presence of a threshold.  

Further, the higher the background GEF activity level so, the lower the threshold to be 

breached for a response.  Essentially, s0 sets the response threshold, and s1 produces 

spatial heterogeneity in the system.  If s1 is large enough that the solution breaches that 

threshold, a response similar to a phase transition results. The significance of this finding 

is that basal GEF activity levels, which can be modulated either internally by the cell or 

externally by the environment, aids in controlling the sensitivity of a cell to a directed 

stimulus.  

 
 

3.4.14  Microfluidic setup 

 

 First, control valves (marked blue in Fig. 3.2a) were primed by connecting 

syringes filled with deionized water and pressurized to 20 psi. Experimental solutions 

were made using DMEM F-12 (Gibco) as a base medium. In a typical experiment, two 

solutions were injected into the device, one containing rapamycin and the other without. 

Rapamycin concentrations in microfluidic chips were titrated to uniform stimulation 

experiments in open chambers by comparing temporal responses. The rapamycin solution 

was injected into inlet “1” (Marked red in Fig. 3.2a). Once the solution reached the 

intersection of the channel and valve “1”, the valve was pressurized to keep the solution 
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pinned at this location. In the corresponding ‘0’ inlet, the rapamycin-free solution was 

injected and allowed to flush through inlets marked ‘wash’ to wash away any rapamycin 

which may have entered into the channel. After the wash period, plugs were placed into 

the “wash” inlets. For experiments utilizing LY294002, a 10 M concentration of the 

drug was introduced into both experimental solutions. In all experiments, a 10 g ml
-1

 

fibronectin solution was injected into the ‘cell’ inlet prior to cell introduction. Actuation 

of valve marked “5” forced the fibronectin solution through the cross channels into the 

right flow through chamber and out of the outlet labeled ‘out’. Fibronectin coating was 

performed for 50 min at 37°C. After the coating period, another rapamycin-free solution 

was placed into the outlet and the fibronectin solution was removed from the ‘cell’ inlet. 

A HeLa cell suspension, at a concentration of 1 x 10
6 

cells ml
-1

, was injected into the 

‘cell’ inlet with a loading pipette. The outlet pressure was lowered below the atmospheric 

one, causing flow of the cell suspension and subsequent seeding of cells into the cross 

channels via the same principle used above for the fibronectin coating. Excess cells in the 

main flow arms were washed out. In experiments utilizing LY294002, a rapamycin and 

LY294002 free solution was injected into one of the ‘wash” inlets to flush away excess 

cells to prevent prior exposure of cells to the inhibitor. HeLa cells were allowed to attach 

for 4 h at 37°C and 5% CO2.  
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Chapter 4. Interplay between chemotaxis and 

contact inhibition of locomotion (CIL) during 

directed migration 

 
 

 
4.1  Introduction 

 
 Directed cell migration is the ability of cells to bias their migration towards or 

away from external cues. It is fundamental to a diverse set of processes, including 

developmental patterning, cancer metastasis, immunity, and wound healing. During 

directed cell migration, several attractant or repulsive cues may act on a given cell 

simultaneously. These cues can arise from the environment or from the surface of similar 

or disparate cell types. For example, during topographic mapping, retinal growth cones 

can be directed by cell contact from a series of cell surface expressed ligands on other 

cell types along with soluble guidance molecules
188

. Alternatively, the directed collective 

migration of neural crest cells is driven by soluble guidance cues and cell repulsion 

between neural crest cells
189, 190

. However, it still remains poorly understood how the 

integration of multiple cues occurs and whether these cues act independently.    

 Another context in which multiple cues may play a prominent role in modulating 

directed cell migration is in the dissemination of cancer cells during metastasis. 

Chemotaxis, directed migration towards soluble chemoattractants, is an important cue in 

mediating cancer cell migration towards the vasculature
38

.  The involvement of 

chemotaxis in metastasis is particularly well described for breast cancer, where intravital 

imaging has revealed that cells migrate along collagen fibers towards the vasculature in 
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response to gradients of epidermal growth factor (EGF)
164, 191, 192

. A second influential 

migration cue is contact inhibition of locomotion (CIL), discovered approximately 60 

years ago by Abercrombie and Heaysman in fibroblasts
193

. This phenomenon is described 

as the suppression of locomotion upon cell to cell contact and a subsequent redirection of 

motility. Interestingly, many malignant cells lack CIL with other cell types (heterotypic) 

but retain CIL with each other (homotypic)
51, 52, 194, 195

. These tendencies have been 

suggested to increase the invasiveness of cancer by preferentially directing cancer cells 

away from the primary tumor and into the stromal environment
52, 189, 194, 195

. The 

molecular basis of this preferential CIL response has recently been explored in prostate 

cancer cells
52

. Although chemotaxis and CIL have been recognized individually as 

important regulators of directed cell migration during metastasis, the interactions between 

these cues are still poorly understood. 

 Here we investigate the interplay between CIL and chemotaxis through the use of 

MTLn3 rat breast adenocarcinoma cells overexpressing the epidermal growth factor 

receptor (EGFR), referred to as MTLn3-B1
196

. These cells are highly metastatic
196

, 

exhibiting enhanced chemotaxis to EGF in vitro and in vivo and also display CIL
197

, as 

cell collisions redirect cells away from their original migration trajectories. To investigate 

the relationship between chemotaxis and CIL, we developed a series of new microfluidic 

devices allowing a controlled, direct comparison of these cues at the single cell level. We 

explore the molecular mediators of these cues in MTLn3 cells and find that chemotaxis 

and CIL do not act independently of each other. Modulation of the strength of chemotaxis 

signaling can alter the directed migration outcomes when both cues are present. We 
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suggest that this interplay enhances overall directed migration and may be applicable to 

many other systems. 

 

4.2  Results 

 

4.2.1  Development of a microfluidic device to explore CIL and 

chemotaxis 

  

 We developed a new microfluidic device to study the combined effects of CIL 

and chemotaxis on the directed migration of MTLn3-B1 cells in a high throughput 

manner. The device consists of a continually replenished source and sink connected by a 

parallel array of microchannels
133, 141

 (Fig. 4.1a, Fig. 4.2a-c). Gradients of EGF form 

across the microchannels via passive diffusion between the source and sink.  To ensure 

that gradients of EGF develop across all microchannels simultaneously, thus allowing an 

equal comparison of cell response kinetics, we surrounded the microchannels with an 

intermediate rounded zone, accessible to built in elastomeric valves from above (Fig. 

4.2c). Pressurizing the valves causes the rounded zones to collapse, effectively isolating 

the microchannels from the source and sink. In this manner, the source and sink can be 

pre-established at steady state around the microchannels without any transient 

stimulation, thus ensuring all microchannels receive the gradient coincidently when the 

valves are released (Fig. 4.2b-c). Gradients reach steady state in ~10 minutes and can be 

maintained for > 8 hours (Fig. 4.2b). We used device simulations to calculate the effect 

of including the rounded zone on gradient production and found that the effective  
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Fig. 4.1: MTln3-B1 chemotaxis in different EGF gradients and influences from CIL.  
 
(a) Schematic of the microfluidic device used to produce defined gradients of EGF across 

microchannels housing MTLn3-B1 cells. (b) Representative images of MTLn3-B1 cells 

undergoing chemotaxis in different EGF gradients. Green color visualizes expression of 

GFP. The gradient is visualized with a Dextran dye here and in subsequent images. Red 

asterisks track cell positions from time = 0.Times are in minutes. Scale bars, 20 m. (c-d) 

Quantification of velocity and chemotaxis index of MTLn3-B1 cells under control (0 ng/ml) 

and indicated EGF gradients from (b). Data is the mean from the number of indicated cells 

from n >= 3 independent experiments with error bars showing SEM. (e) An MTLn3-B1 cell 

displaying oscillations in migration in 65-85 ng/ml EGF gradients. (g-h) MTLn3-B1 cells 

undergoing CIL during chemotaxis. Colored asterisks track different cells. Yellow arrows 

highlight CIL events. Times are in minutes. Scale bars, 10 m. 
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gradient across the microchannels was 30% on the low side and 70% on the high side, in 

relation to the source value (Fig. 4.2d-e).  MTLn3-B1 cells within the microchannels  

 

 

 

 

 

 

 

 

 

migrate in a single file, as the dimensions of the microchannels (14 m by 6 m, width 

by height) constrain cell migration to a single dimension. This fixation of one 

Fig. 4.2: Characterization of the microfluidic device used to study chemotaxis and 

CIL. 

 
(a) Schematic of the microfluidic device. Different colors represent different functional 

layers. The green fluidic layer is 130 m, the red rounded fluid layer is 30 m, and the 

yellow microchannel layer is 6 m. The blue layer is a valve layer (40 m) that controls 

fluid flow in the underlying red layer. (b) Enlarged view of the functional gradient 

generation area and quantification of gradient formation kinetics in the first 

microchannelchannel and last microchannel channel. Gradient formation begins 

simultaneously across all channels, becomes stables in ~10 minutes, and is stable over the 8 

hour experimental time period. (c) A side view illustrating the gradient formation strategy. 

(d-e) 3D computational fluid dynamics simulations of gradient generation in the 

microfluidic device. Quantification of the green line shown in the enlarged region is shown 

in (e). The concentration difference across the microchannels is 30-70%. 
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dimensional motility serves three purposes: 1) it optimizes the opportunities for CIL to 

occur, 2) it provides an unambiguous readout of cell collision outcomes based on the 

resulting direction of cell migration, and 3) it matches the motility of MTLn3-B1 cells in 

MTLn3-B1 derived primary tumors in vivo, where individual cells migrate along collagen 

fibers in the tumor stroma
196

.  

 

4.2.2  Characterization of MTLn3-B1 chemotaxis 

 

 We first assessed how freely migrating MTLn3-B1 cells would respond to 

different gradients of EGF with a constant concentration difference (20 ng/ml) and varied 

mean concentrations (25 ng/ml, 50 ng/ml, and 75 ng/ml) (Fig. 4.1b). Upon introduction 

of EGF gradients, we observed the striking formation of large cell protrusions towards 

the source of EGF and rapid cell motility up the gradient (Fig. 4.1b). MTLn3-B1 cells 

displayed the highest velocity and greatest accuracy in 15-35 ng/ml EGF gradients, rarely 

changing directions and maintaining constant velocities (Fig. 4.1c-d). In contrast, 

MTLn3-B1 cells remained relatively stationary without a preferential direction in 

medium without EGF (Figure. 4.1c-d, Fig. 4.3a). Cell velocity and accuracy decreased 

with increasing mean concentration, but still retained a net preference up the gradient as 

compared to controls (Fig. 4.1b-d). In gradients with a high mean concentration of EGF 

(65- 85 ng/ml), many MTLn3-B1 cells displayed elongated cell morphologies and 

oscillatory migration patterns characterized by a frequent collapse of protrusions, 

suggesting a loss of directionality (Fig. 4.1e). Increases in gradient steepness (40 ng/ml  
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concentration difference across channels, 30-70 ng/ml EGF) did not enhance chemotactic 

behavior beyond the optimal gradient found above (15-35 ng/ml EGF) (Fig. 4.3b-d ).  

 EGFR overexpression in MTLn3 cells has been previously associated with 

increased motility and chemotaxis in vitro and in vivo, along with enhanced metastatic 

potential
196

. Therefore, to validate our assay, we next investigated EGF chemotaxis in 

MTLn3 cells without EGFR overexpression (Fig. 4.3e, Fig. 4.4). MTLn3-B1 cells  

Fig. 4.3: MTLn3-B1 cells in control conditions and sharper EGF gradients.   

 
(a) MTLn3-B1 cells in microchannels without EGF. (b) MTLn3-B1 cells in 30-70 ng/ml 

EGF gradients. In a-b, green color denotes GFP expression, the blue color visualizes the 

gradient of EGF using dextran dye as a proxy, and red asterisks track cell positions. Times 

are in minutes. Scale bars, 20 m. (c-d) Quantification of the chemotaxis index (c) and 

velocity (d) of MTLn3-B1 cells in 30-70 ng/ml EGF gradients as compared to 15-35 ng/ml 

EGF gradients. 15-35 ng/ml EGFis reproduced from Fig. 4.1d-e.  Data represents the mean 

from the number of cells indicated from n = 3 independent experiments with error bars 

showing SEM. (e) Relative expression of EGFR mRNA in MTLn3-B1 cells vs. MTLn3 

cells. Data is the mean from n = 3 biological replicates and errors bars are S.D.          
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expressed approximately 1.5 fold more EGFR transcripts than MTLn3 cells (Fig. 4.3e). 

Similar to MTLn3-B1 cells, MTLn3 cells displayed little motility and had unbiased 

Fig. 4.4: Characterization of chemotaxis and CIL in MTLn3 cells.  

 

(a) MTLn3 cells directionally migrating towards a 15-35 ng/ml gradient of EGF. (b) 

MTLn3 cells in microchannels without EGF. (c) MTLn3 cells chemotaxing to a 30-70 

ng/ml EGF gradient. In a-c, green color denotes GFP expression, the blue color visualizes 

the gradient of EGF using dextran dye as a proxy, and red asterisks track cell positions. 

Times are in minutes. Scale bars, 20 m. (d-e) Quantification of the chemotaxis index and 

velocity of MTLn3 cells in control and different EGF gradients. , data represents the mean 

from the number of cells indicated from n = 3 independent experiments with error bars 

showing SEM. (f-g) HH (f) and HT(g) collision outcomes in MTLn3 cells in uniform vs. a 

gradient of EGF at the indicated concentrations. Statistical comparisons are made between 

the same outcome in uniform vs. gradient. The asterisk denotes a statistically significant 

difference, p = .025, using a two sided student’s t-test. In (h-i), number of total cells are 

indicated and data represents the mean from n =3 independent experiments with error bars 

indicating SEM. * = p < .05.          
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migration in the absence of EGF (Fig. 4.4a). MTLn3 cells exhibited chemotaxis in 15-35 

ng/ml gradients of EGF, but had decreased velocities and accuracies as compared to 

MTLn3-B1 cells (Fig. 4.1c-d, Fig. 4.4b,d-e), in agreement with previous results
196

. In 

sharper EGF gradients (40 ng/ml concentration difference), MTLn3 cell accuracy did not 

improve but cell velocity increased (Fig. 4.4c-e).  Taken together, our results indicate that 

our device can efficiently assay chemotaxis in MTLn3 cells and can distinguish between 

MTLn3 cells with different metastatic potential.     

 

4.2.3  CIL alters chemotactic responses 

 

 Next, we focused on how CIL might affect the directional migration of MTLn3-

B1 cells during chemotaxis to chemical gradients of EGF. We found that CIL could 

dramatically influence chemotactic behavior by redirecting MTLn3-B1 cells either 

towards or away from the chemical gradient. This was especially prominent in groups of 

cells in single channels migrating at different velocities. For example, often times a “ping 

pong” pattern would emerge where a trailing cell would catch up to a leading cell and be 

redirected away, but would be subsequently reoriented back up the gradient by a second 

chemotaxing cell (Fig. 4.1g). Conversely, in some cases, CIL could abrogate chemotaxis. 

This is illustrated in Fig. 4.1h, where a cell is redirected back down the gradient and 

subsequently redirects another entering cell down the gradient, leading to the entire cell 

group moving away from the gradient (Fig. 4.1h). The phenotypes at the interface 
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between CIL and chemotaxis interactions (Fig. 4.1g-h) bring up several questions.  

Can one directed migration cue supersede the other? If so, under what circumstances does 

this occur? Are CIL and chemotaxis independent from each other? To answer these 

questions, we first sought to characterize the typical results of CIL without chemical 

gradients and to see how these results might shift in the presence of gradients.      

 

4.2.4  CIL in uniform concentrations of EGF 

 

 To decouple CIL from EGF chemotaxis, we stimulated MTLn3-B1 cells within 

microchannels with different uniform concentrations of EGF (25 ng/ml, 50 ng/ml, 75 

ng/ml), matching the mean concentrations of the previously imposed gradients. MTLn3-

B1 cells in the presence of uniform EGF displayed rapid changes in direction and 

frequent CIL events (Fig. 4.5a).  Cell to cell collisions could be categorized into two 

main groups (Fig. 4.5b), head to head collisions and head to tail collisions. In head to 

head (HH) collisions, two cells migrate towards each other, leading to the collapse of 

both protrusions upon contact (Fig. 4.5c). This collapse is subsequently followed by three 

different outcomes (Fig. 4.5c), both cells either migrate upwards (Outcome 1), in 

opposite directions (Outcome 2), or downwards (Outcome 3). In head to tail (HT) 

collisions (Fig. 4.5d), one cell (trailing) catches up to another cell (leading) migrating in 

the same direction.  Upon contact with the rear of the leading cell, two outcomes occur; 

the trailing cell either continues in the same direction (Outcome 1) or is repelled and 

migrates in the opposite direction (Outcome 2). In all cases, the leading cell remained 

unaffected by the cell collision, suggesting that cell contact specifically suppresses cell  
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protrusions. We found that regardless of the concentration of EGF, HH collisions 

typically lead to the repulsion of both cells in opposite directions (Outcome 2), 

Fig. 4.5: Characterizaton of CIL in uniform concentrations of EGF 

 

(a) MTLn3-B1 cells displaying random motility and undergoing multiple CIL events in a 

uniform concentration of EGF (50 ng/ml). (b) Schematic of the two categories of cell 

collisions leading to CIL. (c-d) Examples of the outcomes of head to head and head to tail 

collisions in MTLn3-B1 cells with corresponding illustrations. Collisions occur at time t = 

0. The blue asterisk tracks the top cell, while the red asterisk tracks the bottom cell. Yellow 

arrows indicate collisions. Times are in minutes. Scale bars, 10 m. (e-f)) Probability of 

head to head and head to tail collision outcomes in the indicated uniform concentrations of 

EGF. The total number of cells are indicated per condition. Data represesents the mean from 

n =3 independent experiments per condition and error bars show SEM. 



108 
 

suggesting a dose independent effect (Fig. 4.5e). Similarly, HT collisions primarily 

resulted in the repulsion of the follower cell (Outcome 2) in an EGF dose independent 

manner (Fig. 4.5f). MTLn3 cells also displayed similar propensities (Fig. 4.4f-g).  

 As CIL is traditionally studied in 2D formats, we also investigated whether 

MTLn3-B1 cells display CIL in 2D environments in various doses of EGF using a second 

microfluidic device with traditional CIL metrics (Fig. 4.6).  MTLn3-B1 cells exhibited 

CIL in 2D regardless of the dose of EGF (Fig. 4.6e), in agreement with our results above 

(Fig. 4.5e-f). We also observed that cell collisions selectively affected protrusions (Fig. 

4.6d). Our results suggest that CIL functions independent of the levels of uniform EGF 

signaling in 2D and 1D and specifically affects cell protrusions. To summarize, in 

uniform doses of EGF, HH collisions tend to result in the repulsion of both cells in 

opposite directions, while HT collisions repulse the follower cell. 

 

4.2.5  Chemotaxis biases CIL outcomes  

 

 Having characterized the outcomes of CIL in uniform doses of EGF, we next 

revisited how CIL outcomes were influenced by the presence of various gradients of EGF 

(Fig. 4.7a-c). Upon closer inspection, we found several HH collisions where the 

accurately migrating cell (bottom cell) did not lose its protrusion upon contact, as 

opposed to the inaccurately migrating cell, whose protrusion collapsed and reformed up 

the gradient (Fig. 4.7d). This result suggests that chemical gradients do not simply 

polarize cells after their protrusions collapse after contact. In 15-35 ng/ml EGF gradients, 

the optimal MTLn3-B1 chemotactic gradient found earlier (Fig. 4.1b-d), we found a  
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Fig. 4.6: CIL occurs in an EGF dose independent manner in 2D.  

 

(a) The schematic of the microfluidic device used to produce multiple doses of EGF in a 

single experiment. The green gradient generation and cell chamber layer is 100 m and the 

red rounded fluid layer is 30 m. The blue layer (40 m) is a control valve layer modulating 

flow in the red layer. (b) Sample image of different doses of EGF produced in the numbered 

cell chambers visualized with a dextran dye. (c) Quantification of mean fluorescence 

intensity in the labeled cell chambers in (b), showing the different doses produced. (d) 

MTLn3-B1 cells undergoing head to head (HH) (top panel) or head to tail (HT) (middle 

panel) collisions as opposed to free movement (F) (bottom panel). Corresponding metrics 

used to analyze them are shown on the side. The vector, Cx, represents the change in 

acceleration due to either a collision or random migration. Cx is normalized to account for 

differences in velocity. Green color indicates GFP expression. Colored asterisks track 

individual cells. Times are in minutes. Scale bars, 20 m. (e) Quantification of Cx in HH 

and HT collisions vs. free moving cells (F) in different doses of EGF. . n > = 15 cells from 3 

independent experiments per condition. ** = p <1e-3 from a student’s t-test. 
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significant shift in HH collisions towards outcome 1 (migration of both cells up the 

gradient) as compared to a uniform 25ng/ml EGF dose (Fig. 4.7e), clearly suggesting that  

 

 

 

 

 

 

 

 

 

 

Fig. 4.7: Chemotaxis biases CIL towards gradients  

 

(a) Schematic of how chemotaxis and CIL cues conflict during different cell collisions. (b-

c) Examples of the outcomes of head to head (b) and head to tail (c) collisions in MTLn3-

B1 cells in gradients of EGF with corresponding illustrations. Collisions occur at time t = 0. 

Green color indicates expression of GFP. The gradient of EGF is visualized with Dextran 

dye here and in all subsequent images. Colored asterisks track different cells. Yellow arrows 

indicate collisions.  (d) A head to head collision between MTLn3-B1 cells where the bottom 

cell maintains its protrusion. Yelllow arrow indicates the collision. (e-g) Probabilities of 

head to head collision outcomes in gradients of EGF vs. uniform concentrations. Uniform 

concentrations are taken from Fig 4.5e. Number of collisions analyzed is indicated. Data 

shown is the mean of n = 3 independent experiments with error bars representing SEM. 

Statistical comparisons are made between the same outcome in uniform vs. gradient using a 

student’s t-test.  (h) A group of MTLn3-B1 cells streaming up a gradient of EGF. Red 

asterisks track cell positions. (i-k) Probabilities of head to tail collision outcomes in 

gradients of EGF vs. uniform concentrations. Uniform concentrations are taken from Fig. 

4.5f. Total colllisions analyzed per condition are displayed. Data is the mean of n = 3 

independent experiments per condition. Error bars are SEM. Statistical comparisons are 

made between the same outcome in uniform vs. gradient using a student’s t-test.  Times are 

in minutes. Scale bars, 10 m. * = p < 1e-3. 
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chemotaxis can influence CIL behavior.  This shift was diminished but still significant in 

40-60 ng/ml EGF gradients as compared to a uniform 50 ng/ml EGF dose (Fig. 4.7f), but 

was completely lost in the 65-85 ng/ml EGF gradient (Fig. 4.7f), where the collision 

outcomes mirrored those of the uniform 75 ng/ml EGF dose (Fig. 4.7f). HH collisions in 

MTLn3 cells chemotaxing in 15-35 ng/ml EGF gradients also became biased towards 

outcome 1 (Fig. 4.6f), albeit with a smaller shift than MTLn3-B1 cells (Fig. 4.7e), 

suggesting that EGFR overexpression increases the influence of chemotaxis over CIL. 

Overall, our results suggest that modulating the strength of chemotactic behavior, either 

by altering external gradient inputs or changing receptor expression, can dynamically 

alter the balance between chemotaxis and CIL cues.    

 Next, we tracked the outcomes of MTLn3-B1 HT collisions in gradients of EGF 

(Fig. 4.7b). We found many MTLn3-B1 cells streaming together in close apposition (Fig. 

4.7h), as has been observed in MTLn3 derived tumors in vivo
196

. This suggested that HT 

collision induced CIL may be reduced in optimal EGF gradients.  In 15-35 ng/ml EGF 

gradients, we indeed found a significant shift in HT collisions towards outcome 1 

(Trailing cell maintains its protrusion and continues migrating up the gradient) as 

compared to the 25 ng/ml uniform EGF control (Fig. 4.7i), providing further evidence 

that chemotaxis influences CIL. As seen in HH collisions, we saw a similar but 

diminished shift in 40-60 ng/ml EGF gradients as compared to the 50 ng/ml uniform EGF 

controls (Fig. 4.7j), and total loss of the shift in 65-85 ng/ml EGF gradients, where the 

outcomes effectively mimicked those of the 75 ng/ml uniform EGF control (Fig. 4.7k). 

The outcomes of HT collisions in MTLn3 cells migrating in 15-35 ng/ml EGF gradients 

were slightly shifted from uniform 25 ng/ml EGF controls (Fig. 4.6g). 
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 Thus far we have shown that chemotaxis and CIL are both cues which can 

substantially influence directed migration in MTLn3 cells. Furthermore, we have shown 

that they are not independent from each other when both are present, suggesting that the 

chemotaxis and CIL signaling pathways dynamically regulate each other. The molecular 

components which mediate CIL and chemotaxis in MTLn3 cells are still poorly 

understood. It is also unknown where crosstalk might occur between these two pathways. 

Therefore we next set out to identify molecular components of the chemotaxis and CIL 

pathways in MTLn3 cells. 

 

4.2.6    PI3K and Rac activity during chemotaxis and CIL 

  

 First, we investigated molecules activated during MTLn3-B1 chemotaxis. 

Phosphatidylinositol 3-kinase (PI3K) and Rac are well known regulators of directed 

migration and have been shown to be at active the leading edge of several chemotaxing 

cells, such as dictyostelium
78, 198

, neutrophils
57, 173

, and fibroblasts
35, 199

. Their roles in 

EGF stimulated protrusion formation have been investigated in MTLn3 cells
200, 201

, but 

their localization and activity in living MTLn3 cells during chemotaxis are unknown. 

Therefore, we transfected MTLn3-B1 cells with PI3K and Rac biosensors and observed 

their responses during EGF chemotaxis in our microfluidic device. To observe PI3K 

activity, we used the ph domain of Akt (Akt-ph) tagged with a mCherry fluorophore 

(mCH-Akt-ph) (Fig. 4.8a) and took its ratio to a cytosolic GFP to remove volume effects, 

as has been done previously
150

. PI3k activity in MTLn3-B1 cells became locally enriched 

at the cell front in EGF gradients (Fig. 4.8a), with a peak of activity at 6 minutes  
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Fig. 4.8: PI3K, Rac, and F-actin are active at the leading edge during chemotaxis and 

are inhibited by CIL 

 

 (a) Representative images of PI3K activity during MTLn3-B1 chemotaxis to EGF (15-35 

ng/ml). The pseudcolor images in the top panel represent the ratio between Mch-Akt-ph and 

GFP. Green color in the middle panel visualize GFP expression. Red color in the bottom panel 

displays Mch-Akt-ph. (b) Quantification of the polarity ratio in chemotaxing mCh-Akt-ph 

expressing MTLn3-B1 cells vs. control mCh expressing cells. Data represents the mean of n >= 

20 cells per condition from n = 3 independent experiments. Error bars are SEM. (c) 

Representative images of Rac activity during MTLn3-B1 chemotaxis to EGF (15-35 ng/ml). 

Pseudocolor images show the FRET ratio (YFP FRET/CFP) from the Raichu-Rac construct. (d) 

Quantification of the FRET polarity ratio in MTLn3-B1 cells with and without a gradient of 

EGF. Data represesents the mean from n >= 12 cells from n = 3 independent experiments. Error 

bars show SEM. (e) Representative images of the localization of F-actin during MTLn3-B1 

chemotaxis to EGF (15-35ng/ml). Green color in the top panel indicates expression of GFP. 

Red color in the bottom panel displays Lifeact-RFP. Yellow arrows highlight localized 

enrichment of F-actin. Cont-  
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 (Fig. 4.8b). Conversely, a control mCherry construct without a ph domain did not show 

any polarization (Fig. 4.8b, Fig. 4.9a).  Next, we used a Raichu-Rac FRET sensor to  

 

 

 

 

 

 

 

Cont- (f-g) Visualization of (f) PI3K activity and (g) Rac activity during CIL.. Collisions 

occur at time t = 0. The top series of images illustrate colliding cells while the bottom series 

illustrates free moving cells. The first image in each of the top series of images visualizes the 

collision, showing the tracked cell outlined in red and the cell it is colliding with in blue. 

These outlines are reproduced in the ratio image at time = 0. Pseudocolor images represent 

the ratio between Mch-Akt-ph and GFP in (f) and the FRET ratio (YFP FRET/CFP) in (g). 

(h-i) Quantification of the polarity ratio in colliding cells and free moving cells for (h) PI3K 

and (i) Rac. Free moving cells retain a constant polarity while colliding cells exhibit a 

decrease after the collision. Data represents the mean  from n >= 11 cells per condition from 

3 independent experiments with error bars representing SEM. Times are in minutes. Scale 

bars, 10 m. 

Fig. 4.9: PI3K and Rac activity controls.  

 

(a) A representative time series of a MTLn3-B1 cell expressing  GFP and Mcherry 

chemotaxing to a gradient of EGF (15-35 ng/ml). The pseudocolor in the top series of images 

represents the ratio between Mcherry and GFP. Green color denotes GFP expression, red color 

denotes Mch expression, and the blue color visualizes the EGF gradient via a dextran dye. 

Quantification of control data is found in Fig. 3b. (b) Representative time series of a MTLn3-

B1 cell expressing a Raichu-Rac FRET sensor in a microchannel without EGF. Cells do not 

polarize and remain stationary. The pseudocolor represents the FRET ratio (YFP FRET/CFP). 

Quantification of control data is found in Fig. 3d. Times are in minutes. Scales bars, 10 m. 
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observe Rac activity during MTLn3-B1 EGF chemotaxis (Fig. 4.8c). Similar to PI3K, 

Rac also became locally activated at the cell front in EGF gradients (Fig. 4.8c), but with 

slower kinetics (Fig. 4.8d). Without EGF, Rac FRET activity remained unpolarized (Fig 

4.8d, Fig. 4.9b).  We also looked at the localization of F-actin during MTLn3-B1 

chemotaxis, as Cofillin, an actin severing protein, has been shown to be important for 

directional migration in MTLn3 cells
202

.  Using a mCherry tagged Lifeact sensor to detect 

F-actin, we observed F-actin spikes localized to the front of chemotaxing MTLn3-B1 

cells (Fig. 4.8e), suggesting that in our assay, chemotaxing MTLn3-b1 cells migrate with 

F-actin mediated protrusions. Overall, our results indicate that the activity PI3K, Rac, and 

F-actin are polarized towards the front of MTLn3-B1 cells during EGF chemotaxis. 

 We next assessed if PI3K and Rac were regulated by CIL by tracking their 

activity during cell collisions (Fig. 4.8f-g). As a control, we compared their activity 

during collisions to freely chemotaxing MTln3-B1 cells (Fig. 4.8f-g). Freely 

chemotaxing MTLn3-b1 cells maintain constant PI3K and Rac activity at the cell front 

(Fig. 4.8f-i). Conversely, cell collisions induce a local downregulation of both PI3K and 

Rac at the leading edge of MTLn3-B1 cells as protrusions collapse (Fig. 4.8f-i). When 

contacting MTLn3-B1 cells repolarize and migrate in the opposite direction, PI3K and 

Rac relocalize to the new protrusion, leading to a decrease in the polarity ratio (Fig. 4.8h-

i). Taken together, these results suggest that PI3K and Rac may be targets of regulation 

by CIL.     

 

4.2.7  Activation of Eph B signaling is sufficient to induce CIL     



116 
 

 

 Next, we sought to identify the molecular components which induce CIL in 

MTLn3-B1 cells. As the upstream mediators of CIL in MTLn3-B1 cells are unknown, we 

set up a series of obstacles to assess their ability to induce CIL during chemotaxis to EGF 

(Fig. 4.10a).  We first investigated two mechanical barriers by seeding either 3T3 

fibroblasts or 5 m diameter protein A coated silica beads directly into microchannels 

and inducing MTLn3-B1 chemotaxis towards them (Fig. 4.10a). Although 3T3 cells 

encompassed most of the microchannel, we surprising found that the majority of 

chemotaxing MTLn3-b1 cells could migrate around and actively displace them (9/10 

collisions result in migration past 3T3 cells) (Fig. 4.10b). This result suggests two ideas- 

first, that signaling plays a prominent role in inducing CIL, as the mechanical properties 

of 3T3s should be roughly similar to those of MTLn3-B1 cells, and second, that MTLn3-

B1 display reduced heterotypic CIL, which has been noted in other cancer cells
52, 203

 and 

is thought to increase malignancy. Next, we studied collisions between chemotaxing 

MTLn3-B1 cells and protein A coated silica beads. Single protein A coated silica beads 

only took up roughly 1/3 of the width of a microchannel, nonetheless, the resulting 

MTLn3-B1 bead collisions did induce some repulsion events (Fig. 4.10c-d), indicating 

that there may be some mechanical contributions to MTLn3-B1 CIL.   The majority of 

collisions, however, did not affect chemotaxing MTLn3-B1 cells (Fig. 4.10d), suggesting 

again that signaling predominantly mediates CIL in MTLn3-B1 cells.   

 Protein A coated silica beads can be functionalized with fc tagged proteins and 

can be used to screen for proteins which induce CIL. We therefore screened a set of fc 

tagged proteins known to mediate CIL in other cell systems and assessed their ability to 

induce CIL in chemotaxing MTLn3-B1 cells (Fig. 4.10a). As a control, we first studied  
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Fig. 4.10: Eph B signaling is sufficient to induce CIL in MTLn3-B1 cells 

 

 (a) Schematic of the different obstacles assessed for their ability to induce CIL in chemotaxing 

cells (15-35 ng/ml EGF gradients). (b) Selected images of a MTLn3-B1 cell colliding and 

migrating around a 3T3 cell during chemotaxis. Green color indicates expression of GFP and 

identifies the MTLn3-B1 cell.  (c) Representative images of cells undergoing repulsion (top 

panel) or being unaffected (bottom banel) by protein A coated silica beads during chemotaxis. 

Red dashed lines highlight the boundaries of cells shown in green. Blue dashed lines outline 

silica beads. Times are in minutes. Scale bars, 10 m. (d) Quantification of the results of 

MTLn3-B1 bead collision events during chemotaxis with different silica bead coatings. 

Number to total collisions analyzed per condition is indicated from n >= 2 independent 

experiments. (e) Visualization of the binding of ephrin-b1-fc or fc to cells by immunostaining 

against the fc domain (shown in green). Nuclei are denoted in blue with A summary table is 

shown on the right for all tested ephrin-fc ligands. Scale bars, 50 mm. (f) Relative expression of 

ephrin b ligand and Eph B receptors  in MTLn3-B1 cells from real time RT-PCR. Data 

represents the mean from n = 3 biological replicates. Error bars are SD. (g) Selected images of 

MTLn3-B1 cells stimulated with EGF and then treated with either clustered ephrin b1-fc (Top 

panel) or fc (Bottom panel). Green color indicates expression of GFP. Times are in minutes. 

Scale bars, 20 m. (h) Cell area after indicated treatments in g. Data is the mean from n >= 90 

cells per condition from n = 3 independent experiments. Error bars are SEM. 
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the ability of the fc domain itself to induce CIL.  Fc domain coated beads induced cell 

repulsion with an equal probability to that of uncoated protein A beads, indicating that 

the fc domain itself did not provide any signaling (Fig. 4.10d). Next, we tested E-

cadherin, as cadherins have been shown to mediate CIL in xenopus neural crest cells
189

 

and myoblasts
204

. E-cadherin is known to be upregulated in metastatic MTLn3 cells as 

compared to nonmetastatic variant MTC cells
191

 and could be detected with 

immunostaining (Fig. 4.11a). Our results indicated that E-cadherin-fc coated silica beads 

did not significantly increase the chance of repulsion of chemotaxing MTLn3-B1 cells 

(Fig. 4.10d). Therefore, we next looked to the Eph receptor systems, which are 

responsible for CIL in a variety of systems, such as axon guidance
188, 205

,  prostate cancer 

cells
52

, and endothelial cells
206

.  

 The Eph receptors are the largest family of receptor tyrosine kinases
207

 (RTKs) 

and can be split into A and B families based on their affinity for 

glycosylphospatidylinositol (GPI) linked ephrin a  or transmembrane ephrin b ligands
208

. 

To test the ability of Eph receptor and ephrin ligand interactions to induce CIL in 

chemotaxing MTLn3-B1 cells, we functionalized beads with either ephrin b1-fc or ephrin 

a1-fc, which can promiscuously bind Eph B and Eph A receptors
209

, respectively. Ephrin 

b1-fc, but not ephrin a1-fc, coated beads increased the probability of contact repulsion 

with MTLn3-B1 cells, suggesting that activation of Eph B receptors via ephrin ligands is 

sufficient to induce CIL in these cells (Fig. 4.10d). We verified the presence of Eph B 

receptors on MTLn3-B1 cells by incubating live MTLn3-B1 cells with various 

unclustered soluble ephrin b-fc ligands and immunostaining without permeabilization 

against the fc domain at 4
◦
C to prevent internalization (Fig. 4.10e, Fig. 4.11b).  
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Incubation with the fc domain itself did not produce any signal, indicating that the 

binding of the ephrin b ligands was specific to their substrates, the Eph B receptors (Fig. 

4.10e). We also verified that MTLn3-B1 cells express Eph A receptors by incubation and 

subsequent immunostaining with various ephrin a-fc ligands (Fig. 4.11c). Ephrin-fc 

ligand binding results are summarized in Fig. 4.10e.  Finally, we performed real time RT-

PCR in MTLn3-B1 cells to verify the expression of various ephrin b and Eph B 

transcripts (Fig. 4.10f). Ephrin b2 was the predominant ephrin b isoform, however, it 

Fig. 4.11: Immunostaining of E-cadherin 

and the binding of various ephrins.  

 

(a) Representative images of E-cadherin 

immunostaining shown in red with and 

without a blocking peptide in MTLn3-B1 

cells. Hoechst 33342 staining shown in blue 

denotes nuclei. (b-c) Representative images 

of the binding of the indicated ephrin 

proteins to MTLn3-B1 cells shown in green 

by immunostaining against the fc domain. 

Hoechst 33342 staining in blue denotes 

nuclei. Scale bars, 50 m. 
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retained similar cell surface binding to ephrin b1 (Fig. 4.10e, Fig. 4.11b), suggesting that 

both ephrin b ligands bind Eph B receptors on MTLn3-B1 cells with similar affinity.   

Overall, our results demonstrate that MTLn3-B1 cells express both ephrin b ligands and 

Eph B receptors and thus possess the necessary components to induce homotypic CIL.  

 To clarify the functional effects of Eph B signaling, we tested whether soluble, 

clustered ephrin-b1 fc could produce functional retraction in EGF stimulated MTLn3-B1 

cells. We performed live cell imaging experiments where we first added EGF to MTLn3-

B1 cells to induce protrusion formation and then subsequently added either clustered 

ephrin b1-fc or clustered fc (Fig. 4.10g). Clustered ephrin-b1-fc induced significant cell 

retraction while fc treatment had no effect (Fig. 4.10h), suggesting that Eph B signaling 

is functionally sufficient to suppress protrusions in EGF stimulated MTLn3-B1 cells. 

 

4.2.8  Crosstalk between chemotaxis and CIL occurs above PI3K 

 

 After identifying Eph B signaling as an upstream mediator of CIL in MTLn3-B1 

cells, we next sought to identify what components downstream of Eph B interact with the 

chemotaxis pathway. One molecule likely to be downstream of Eph B is RhoA, a 

member of the small Rho GTPases previously shown to be a mediator of contact 

repulsion in growth cones, neural crest cells, and prostate cancer cells. RhoA is also 

known to have an antagonistic relationship with Rac, and therefore could potentially 

inhibit chemotaxis through Rac. To observe RhoA activity during either EGF or clustered 

ephrin b1-fc treatment, we used a Dora-Rho FRET construct (Fig. 4.12). Surprisingly, we 

found that RhoA activity increased upon the addition of EGF, but not ephrin-b1 fc  
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(Fig. 4.12a-d). A point mutated, control Dora RhoA construct did not show an increase 

with EGF stimulation (Fig. 4.12b). These results suggest that RhoA is not downstream of 

Eph B receptors in MTLn3-B1 cells. The addition of EGF lead to protrusion formation 

and similar increases in cell area in MTLn3-B1 cells endowed with either FRET 

construct (Fig. 4.12e). However, application of ephrin b1-fc did not induce cell retraction 

(Fig. 4.12e). This was in stark contrast to the MTLn3-B1 cell retraction observed after 

Fig. 4.12: RhoA is not activated by Eph B signaling.  

 

(a-b) Representative images of RhoA activity from Dora-RhoA FRET(a) or control Dora-Rhoa 

FRET(b) constructs in MTLn3-B1 cells during EGF stimulation. (c) Representative images of 

RhoA activity from a Dora-Rhoa FRET construct in MTLn3-B1 cells during ephrin b1-fc 

stimulation. Times are in minutes. Scale bars, 20 m. (d-e) Quantification of the FRET ratio (d) 

and cell area (e) in the conditions specified above. Data indicates the mean from n >= 26 cells 

per condition from n = 3 independent experiments with error bars representing SEM. 
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the addition ephrin b1-fc in the context of EGF stimulation (Fig. 4.10g-h), suggesting 

that Eph B signaling in MTLn3-B1 cells may function by suppressing components 

activated by EGF signaling without actively signaling to contractile machinery.  To test 

this idea, we pretreated MTLn3-B1 cells with clustered ephrin b1-fc before adding EGF 

(Fig. 4.13a). We hypothesized that if Eph B signaling mobilizes inhibitory machinery, 

then EGF mediated cell spreading would be diminished. Indeed, we found that 

pretreatment with ephrin b1-fc attenuated EGF induced cell spreading (Fig. 4.13a-b), 

suggesting that Eph B signaling induces CIL by suppressing EGFR signaling.    

 We next sought to identify which components downstream of EGFR were 

inhibited by Eph B signaling. Earlier, we showed that PI3K was activated in gradients of 

EGF and was inhibited by cell contact. Therefore, PI3K could potentially be inhibited by 

Eph B signaling. To assess the possible regulation of PI3K by Eph B signaling, we used 

chemically induced heterodimerization (CID) technologies to directly activate  PI3K by 

translocating its activator to the plasma membrane after ephrin b1-fc pretreatment 

(Supplementary Fig. S8c-d). We did not find any significant differences in cell spreading 

after direct activation of PI3K with and without ephrin b1-fc pretreatment 

(Supplementary Fig. S8c-d), suggesting that Eph B mediated inhibition of EGFR 

signaling occurs between PI3K and EGFR. To confirm this, we performed similar 

experiments for Rac (Supplementary Fig. 8e-f), generally agreed to be downstream of 

PI3K, and found that ephrin-b1 pretreatment did not affect Rac mediated cell spreading. 

Taken together, these results suggest that Eph B signaling inhibits EGFR signaling 

upstream of PI3K.    
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Fig. 4.13: Eph B inhibition of EGFR signaling occurs upstream of PI3K.  

 

In all conditions, MTLn3-B1 cells are pretreated with either clustered ephrin b1-fc or fc for 45 

minutes before the addition of either EGF or rapamycin. (a) Representative images of MTLn3-

B1 cells responding to EGF with either ephrin b1-fc or fc pretreatment. Red outlines trace cell 

boundaries. Times are in minutes. Scale bars, 20 m. (b) Quantification of cell area after EGF 

stimulation from (a). Data is the mean from n >= 80 cells per conditions from n = 3 

independent experiments with error bars being SEM. (c,e) Representative images of direct (c) 

PI3K or (e) Rac activation after the addtion of 100 nm rapamycin with either ephrin b1-fc or fc 

pretreatment. Red outlines trace cell area.  Times are in minutes. Scale bars, 20 m. (d,f) 

Quantification of cell area after activation of PI3K(d) or Rac (f) with 100 nm rapamycin after 

indicated pretreatments. Data indicates the mean from n >= 40 cells per condition from n = 3 

independent experiments with error bars representing SEM. 
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4.3  Discussion 

 

 We have developed a new set of devices to individually and collectively address 

chemotaxis and CIL in single breast cancer cells in a high throughput and well controlled 

manner. These devices allow the real time observation of MTLn3 chemotaxis in different 

gradients of EGF and how CIL affects these processes. We compare CIL in uniform vs. 

gradients of EGF and make the striking observation that chemotaxis and CIL do not act 

independently when both cues are present. This is demonstrated by our findings that 

tuning the strength of chemotaxis signaling can alter the balance between these two cues 

(Fig. 4.14a). Overexpression of EGFR and optimal EGF gradients increase the influence 

of chemotaxis over CIL, as evidenced by the shift in collision outcomes towards the 

gradient. Conversely, suboptimal EGF gradients, which elicit weaker chemotactic 

responses, do not produce any shifts.     

 We further identify molecular components involved in chemotaxis and CIL in 

MTLn3 cells and identify where these respective pathways might crosstalk.  During 

chemotaxis, MTLn3 cells respond to gradients of EGF by activating PI3K, Rac, and F-

actin at the leading edge (Fig. 4.14a). PI3K and Rac retain persistent activity at the 

leading protrusion in freely chemotaxing MTLn3 cells and are inhibited by CIL. We find 

that CIL in MTLn3 can be mediated through Eph B signaling (Fig. 4.14a), as evidenced 

by the increased probability of cell repulsion with ephrin b1 coated beads and cell 

retraction induced by the addition of exogenous ephrin b1 ligands. Crosstalk between 

chemotaxis and CIL occurs below EGFRs and above PI3K (Fig. 4.14a).   
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 Where might EphB signaling inhibit EGF signaling between EGFR and PI3K to 

induce the collapse of protrusions? We found that one of the likely candidates, RhoA, 

Fig. 4.14: Interplay between CIL and chemotaxis optimizes cell dispersion.  

 

(a) CIL presents an efficient search strategy by preferentially directing cells away from cell 

clusters to explore new space. This cell dispersal enhances the probability of finding chemical 

gradients to initiate chemotaxis. Chemotaxis is an efficient mechansism to direct cell motility to 

specific locations. (b) The interplay between CIL and chemotaxis is mediated in MTLn3 cells 

by regulation of EGF (chemotaxis) and EphB/ephrin b (CIL) signaling. Various conditions can 

shift the balance from one pathway to the other, resulting in the preferential redirection of 

collding cells.            
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was not activated in MTLn3 cells in response to EphB signaling (Fig. 4.12). Moreover, 

we found that induction of EphB signaling without prior EGF signaling did not induce 

cell retraction, suggesting a mechanism of regulation where contractile machinery is not 

activated by Eph B. We propose, instead, that in MTln3 cells, Eph B signaling induces 

the collapse of cellular protrusions by directly inhibiting EGF signaling or other factors 

which induce migration. Therefore, we suggest two possibilities based on the current 

understanding of Eph signaling. One possible mechanism is through R-Ras, a member of 

the Ras family of small GTPases
210

.  R-Ras can activate PI3k
210, 211

 and has been shown 

to be inactivated by Eph receptors
209

.  Another possible mechanism is through 

endocytosis of EGFR receptors. Previous groups have shown that in cells which 

demonstrate CIL through Eph B signaling, EphB receptors and ephrin b ligands are trans-

endocytosed when cells collide
212, 213

, serving as a mechanism for downregulation of Eph 

receptor signaling. Co-endocytosis of EGFR during these trans-endocytosis events may 

mediate inhibition of EGF signaling.       

  A prominent system where the contributions of chemotaxis and CIL during 

directional migration have been investigated are in neural crest cells
190

. Neural crest cells 

migrate as a cell cluster with transient cellular interactions. CIL between neural crest cells 

is mediated through N-cadherin which activates RhoA, which then antagonizes Rac, 

leading to the collapse of cellular protrusions
214

. During collective neural crest migration, 

CIL directs protrusions away from the cell cluster and gradients of SDF-1 in turn serve to 

stabilize these protrusions to generate productive directed migration
190

. The gradients of 

SDF-1 themselves are not sufficient to induce a directed response without CIL, as 

mutations of N-cadherin or a reduction in cell density abrogate directional migration
190

. 



127 
 

Conversely, we show here that in MTLn3 cells, where directional migration occurs 

primarily on a single cell basis along collagen fibers
196

, chemotaxis to EGF serves as the 

main driving for inducing directed migration. In some aspects, CIL is a secondary factor, 

as directed migration can still occur efficiently in the absence of CIL. We also find that 

CIL mediated inhibition of cell protrusions does not occur through RhoA, but through 

inhibition of upstream EGFR signaling.  

 In the context of metastasis, we suggest that being responsive to both CIL and 

chemotaxis is an optimized strategy for cell dispersion, as each cue imparts its own 

distinct advantages (Fig. 4.14b). Acquisition of homotypic CIL is an effective search 

strategy which directs cells away from the cell population, maximizes the exploration 

space, and can occur in the absence of an external stimulus (Fig. 4.14b). For example, 

CIL is sufficient to spread out initially clustered cell populations and drive the uniform 

distributions of Cajal-Retzius cells
215

 and haemocytes
216

. This in turn increases the 

probability of finding sources of chemical gradients from exit targets, such as blood 

vessels or lymph nodes (Fig. 4.14b). Once these chemical gradients are detected, 

chemotaxis serves as a potent cue in eliciting a strong directional migration response. 

 However, being responsive to both CIL and chemotaxis could have potential 

drawbacks. For example, cells collisions between chemotaxing cells could redirect cells 

away from their intended targets and reduce overall chemotactic efficiency. Our results 

demonstrate that CIL outcomes shift in the presence of chemical gradients and thus 

provide a mechanism to mitigate these drawbacks. In optimal chemical gradients, HH 

collisions outcomes are biased towards both cells moving up the gradient. This switch in 

behavior allows inaccurate cells to be repolarized back up the chemical gradient by 
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trailing cells, thus preserving the fidelity of the original intended direction. Furthermore, 

we find that in optimal chemical gradients, HT collision induced CIL is suppressed. 

Therefore, collision induced repulsion between streaming cell populations during 

chemotaxis would be repressed.   

 Overall, we show here how multiple guidance cues can be interpreted at a single 

cell level and how the resulting interactions can produce beneficial phenotypes. We 

suggest that multiple guidance cues act in a dependent manner, that is dynamic and 

context dependent.           

 

4.4  Materials and Methods 

 

4.4.1  Cell culture and reagents 

 

 MTLn3 GFP, MTLn3-B1 GFP, and MTLn3-B1 cells were a gift from J. Segall 

(Albert Einstein, NY).  MTLn3 GFP, MTLn3-B1 GFP, and MTLn-B1 cells were 

maintained in Cellgro) with 5% FBS (Gibco) and 1% penicillin/streptomycin 

(Sigma). 3T3 cells were cultured in DMEM (Cellgro) with 10% FBS (Gibco) and 1% 

penicillin/streptomycin. All cell lines were cultured in a humidified 37 
◦
C and 5% CO2 

incubator.  EGF and Rat tail collagen 1 were obtained from Invitrogen. Ephrin-fc ligands 

were obtained from R&D systems. Rapamycin used in CID experiments was from LC 

laboratories.  
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 The following primary antibody was used- monoclonal Rabbit anti-E-Cadherin 

(Cell Signaling). The following secondary antibodies were used- Goat anti human IgG Fc 

(Jackson Labs), FITC conjugated Goat anti human IgG Fc (Millipore), and Alexa Fluor 

594 Goat anti rabbit IgG (Invitrogen).   

 Transfections were carried out using Fugene HD (Promega) according to 

manufacturers recommendation. MTLn3-B1 cells without GFP expression were used for 

all FRET experiments. The Raichu-Rac FRET construct was a gift from M. Matsuda 

(Tokyo University, Japan), while the Dora-RhoA FRET constructs were a gift from Y. 

Wu (UCHC, CT). 

 

4.4.2  Device fabrication  

 

 Microfluidic devices were fabricated using a traditional two layer soft lithography 

process
116

 out of polydimethylsiloxane (PDMS) from Momentive by replica molding off 

of silicon wafer masters. Silicon masters were created using standard photolithography 

techniques
90

. Device designs were created in Freehand MX (Macromedia) and AutoCAD 

(Autodesk). 

 

4.4.3  Device protocol 

 

 Microfluidic devices were prepared by cleaning with 70% ethanol and an alconox 

solution. Devices were then bonded to 22 x 40 mm #1 coverglass (Fisher) and incubated 
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in an oven set at 80
◦
C overnight. Before experiments, devices control valves were first 

filled with DI water by pressurizing with 10 PSI using solenoid valves (The Lee 

company). Subsequently, valves “5” and “7” (Shown in blue, Supplementary Fig. S1a) 

were pressurized to restrict fluid flow to the gradient generation region and a 40 g/ml 

collagen 1 solution was introduced into one of the two “c” ports (Shown in green, 

Supplementary Fig. S1a) in order to fill the source, sink, and microchannel region. 

Devices were coated with collagen for 1 hour before the collagen solution was exchanged 

for cell medium.   Cells were seeded as follows- Cells were trypsinized and resuspended 

in normal cell culture medium at a concentration of 10 million cells/ml. The cell 

suspension was then pipetted onto one of the “c” ports and induced in to the 

microchannel region by gravity flow. To terminate cell seeding, the valve opposite to 

where cells were introduced  was pressurized (either valve “6” or valve “8”) and the 

pressure in valve “5” was released to allow extraneous cells to be removed from the 

source and sink channels via flow from the inlet labeled “w” (shown in red, 

Supplementary figure S1a). Cells were allowed to adhere for 4 hours before 

experimentation. Typical experiments were run with cell medium solution in the sink side 

of the device and an EGF containing solution in the source side. Input solutions were 

introduced from the inlet network labeled “1-4” (Shown in green, Supplementary Fig. 

S1a). During the establishment of the source and sink, cells in the microchannel region 

were isolated by pressurizing valves “8” and “6” (Supplementary Fig. S1c). Finally, 

experiments were initiated when these valves were released and gradients of EGF were 

allowed to form across the microchannels via diffusion between the pre-established 

source and sink (Supplementary Fig. S1c). 
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4.4.4  Imaging 

 

 Live cell imaging experiments were performed on a Zeiss Axiovert 200M 

epifluorescence microscope with a motorized stage (Prior) in an environmental chamber 

set at 37 
◦
C and 5% CO2  with a 40x, 1.3 numerical aperture oil immersion objective 

(Zeiss) coupled to a Cascade II:1024 EMCCD camera (Photometrics). Slidebook 

software (Intelligent Imaging Innovations) was used for automated control of the 

microscope system.  

 Immunostained samples were imaged on a confocal Zeiss LSM510-Meta using a 

63x Planapo oil objective driven by Zen software (Zeiss).  

 

4.4.5  Live cell imaging experiments      

 

 MTLn3 cells were seeded onto 25 mm glass coverslips (Fisher) coated with 40 

g/ml Rat Tail Collagen 1 (Invitrogen) for 1 hour at room temperature. Cells were 

allowed to attach overnight and then were subsequently starved for 3 hours in L15 

medium with .35% BSA (Invitrogen). The glass coverslip was then transferred to 

Attofluor live cell imaging chambers (Invitrogen), mounted onto the microscope, and 

stimulated with 100 ng/ml EGF (Invitrogen) or1 g/ml preclustered ephrin b1-fc (R&D 

systems). Ephrin b1-fc was preclustered at at 1:10 ratio with Goat anti-human Fc  for 1 
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hour at 37 
◦
C. In some experiments, EGF treatment was followed by the addition of 1 

g/ml preclustered ephrin b1-fc or 1 g/ml preclustered fc. For chemically induced 

heterodimerization experiments, 100 nM of rapamycin was added. 

 

4.4.6  Image Analysis and metrics 

 

 Image analysis was carried out using custom scripts written in Matlab 2007b 

(Mathworks). All images were first flatfield and darkfield corrected using the following 

routine- C = (I-D/F-D)*M where C = corrected image, I = initial image, D = darkfield 

image, F = flatfield image, and M = mean of difference between flatfield and darkfield 

images. Flatfield and darkfield images were obtained by averaging multiple images. 

Images were then Gaussian filtered to remove noise.  

 To analyze cell velocity and the chemotaxis index (CI), cells were semi-

automatically segmented by thresholding from GFP images and position data was 

generated by obtaining the centroid of segmented cells. Only cells which did not come 

into contact with other cells were used in this analysis. The chemotaxis index is defined 

as the distance moved up the gradient divided by the total distance traveled. Positive 

values were given to migration up the gradient, while negative values were given to 

migration in the opposite direction.  

 To analyze mCherry-Akt-ph biosensor data, cell images were background 

subtracted and then segmented by thresholding from GFP images to create a binary mask. 

This mask was then multiplied into both the original mCherry image and the GFP image 
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to isolate the fluorescence data of a single cell. The single cell mCherry image was then 

divided by the single cell GFP image to obtain the ratio.  

 To analyze FRET data (Raichu-Rac, Dora-RhoA), we followed a previously 

described protocol
181

. Brielfy, CFP and YFP FRET images (CFP excitation, YFP 

emission) were background subtracted, thresholded based on intensity, and aligned with a 

dft registration algorithm. The final ratio images were obtained by dividing the YFP 

FRET image by the registered CFP image. Final ratio images were Gaussian filtered.   

FRET data from Dora-Rhoa was obtained by taking a whole cell average from the ratio 

image. 

 The polarization ratio in microfluidic experiments was obtained by segmenting 

ratio images into binary images. Rows of the resulting binary images were then used to 

define the cell length. The polarization ratio was then obtained by taking the ratio 

between the mean value of the front 20% of the cell length and the rear 20% of the cell 

length from the original ratio images. We define front as where a protrusion is generated. 

  CIL outcomes in microfluidic experiments were analyzed by observing GFP time 

series and assessing the direction of migration within 60 minutes post collision. In HT 

collisions, we considered cells which did not repolarize in 60 minutes as outcome 1.  CIL 

in 2D was analyzed using a previously described metric
51, 52

 by tracking cell positions 60 

minutes before and after.  

 Cell areas under EGF stimulation were analyzed by manually segmenting cells 

from Phase images. Only cells which did not contact other cells were used in this 

analysis. 
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4.4.7  Immunostaining 

 

 For live cell immunostaining, MTLn3-b1 cells were seeded onto collagen coated 

glass coverslips and allowed to attach overnight. Cells were subsequently starved for 3 

hours and incubated with either 1 g/ml unclustered ephrin fc or fc for 5 minutes at 37 

◦
C. Next, cells were washed thrice with cold starvation medium and then incubated with a 

FITC conugated Goat anti human IgG fc antibody on ice for 1 hour. Finally, cells were 

washed thrice in starvation medium, fixed for 15 minutes in 1% paraformaldehyde 

(Sigma) with Hoechst 33342 (Sigma), washed twice in PBS, and mounted onto slides 

(Fisher) with ProLong (Invitrogen).    

 All other immunostaining was carried out as follows- MTLn3-b1 cells were 

seeded onto collagen coated glass coverslips and allowed to attach overnight. Cells were 

subsequently starved for 3 hours and fixed for 25 minutes in 4% PFA, permeabilized in 

.1% Triton for 7 minutes, blocked with 10% Goat serum in PBS for 1 hour, incubated 

with primary antibodies for 1 hour, incubated with secondary antibodies with Hoechst 

33342 for 1 hour, and then mounted onto glass coverslides with ProLong. PBS washes 

were carried out in between steps.  

 

4.4.8  Bead preparation 

  

 5 m protein A coated silica beads were obtained from G. Kisher. To coat beads, 

either 50 g/ml fc or ephrin-fc were incubated with 1 l of beads for 1 hour at room 
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temperature under agitation. After coating, beads were centrifuged and washed thrice 

with PBS + 1% BSA to remove weakly bound ligands and left in 4 
◦
C under gentle 

agitation overnight. The protein concentration in the solutions containing ephrin-fc or fc, 

were measured using a nanodrop (Thermo Scientific) before and after the addition of 

beads to confirm that beads were coated.   

 

4.4.9  Real time RT-PCR 

 

 MTLn3 cells were harvested from cell culture dishes using RNA protect (Qiagen). 

An RNeasy Plus kit (Qiagen) was then used to extract RNA from MTLn3-b1 cells. 

cDNA was created using a Quantitect Reverse transcription kit (Qiagen). Real time RT-

PCR assays were carried out on a Quantstudio system (Applied Biosystems) using 

Taqman gene expression assays with a Taqman gene expression mastermix (Invitrogen). 

The following Taqman primers were used and obtained from Invitrogen- EGFR, ephrin-

b1, ephrin-b2, Eph-B1, Eph-B2, Eph-B3, Eph-B4, Eph-B6. All results were normalized 

to Beta Actin from the same well. Each experiment was carried out in quadruplicate in 

three independent biological replicates. EGFR was used as an endogenous control 

between MTLn3-B1 cells and MTLn3 cells.     
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Chapter 5. Conclusions  

 
 

5.1 Summary of results 

 

 
This dissertation has investigated the molecular mechanisms underlying directed cell 

migration and provides new insights into the intracellular signaling enabling it. Our 

approach capitalized on principles from engineering and the life sciences. Specifically, 

we developed several new microdevices which enabled intimate control of the cellular 

microenvironment through physical confinement and the presentation of chemical 

gradients. These devices were tailored to answer specific questions in directed cell 

migration- 1) Is the graded activity of a core component sufficient in itself to induce 

directed migration? 2) How are multiple cues integrated during directed migration? We 

anticipate that the technological advances made here will be useful, as they allow the 

perturbation and characterization of new cellular behavior and can be applied to other 

fields.  

 In chapter 2, we detailed the development and rationale of two new microfluidic 

devices utilized in chapter 3 and 4. We provided new design solutions to many of the 

current issues with available chemotaxis assays. The devices are high throughput, 

function without shear stress on cells, capable of accounting for unbalanced inputs, and 

can study early gradient sensing events due to the incorporation of valves which allow 

precise temporal control of inputs across all experimental regions.  The devices increased 

in sophistication from chapter 3 to chapter 4, owing to the more stringent design 

constraints imposed by the biological questions.  
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 In chapter 3, we developed a new technique to directly establish an intracellular 

gradient of protein activity without receptor activation. We utilized this technique to address 

a fundamental question in the field of directed cell migration- Are intracellular gradients of 

small Rho GTPase activity themselves sufficient to induce direction migration? This 

technique relies on two components, a microfluidic device to generate spatial gradients of 

soluble chemicals and chemically induced dimerization (CID) technologies. We 

demonstrated the utility of this technique by imposing gradients of different steepness of the 

active form of a Rho GTPase, Rac, across living cells. We found that shallow gradients of 

Rac alone were sufficient to direct the polarity and movement of cells and could recapitulate 

phenotypes of chemoattractant induced migration, suggesting that cell polarity can be defined 

starting from a downstream node, Rac. Based on analysis of gradient steepness and cellular 

response times, we developed a refined mathematical model of cell chemotaxis and found 

that Rac activity needed to exceed a threshold in order for cells to polarize. Finally, we 

suggested a novel role for an upstream kinase, PI3K, in sensitizing cells to Rac activation.  

 In chapter 4, we explored how cells integrate multiple directional migration cues 

and how this integration might be beneficial for cell dispersion. Specifically, we looked 

at how the interactions between chemotaxis and CIL could shape directional migration 

responses. Using MTLn3-B1 cells as a model cell line exhibiting chemotaxis and CIL, 

we first characterized chemotactic responses in different EGF gradients. Subsequently, 

we found that CIL could disrupt chemotaxis, leading us to characterize CIL with and 

without external gradients of EGF. We found that EGF gradients could bias CIL 

outcomes, suggesting that these cues do not function independent of each other. The 

balance between the guidance imposed by chemotaxis and CIL could be shifted by 

augmenting or diminishing chemotactic signaling through changing external EGF inputs 
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or overexpression of EGFR, indicating that the cross regulation of these cues is dynamic. 

We next characterized some of the intracellular components involved in chemotaxis and 

found that PI3K and Rac were activated at the leading edge of MTLn3 cells. These same 

molecules were subject to downregulation upon the initiation of CIL, suggesting that they 

might be targets of regulation from CIL. As the molecular mediators of CIL in MTln3 

cells are unknown, we developed a cell collision assay where chemotaxing MTLn3 

encountered beads coated with various proteins previously shown to mediate CIL in other 

systems. We found that Eph B signaling, initiated during contact with ephrin b ligand 

coated beads, was sufficient to induce CIL and demonstrated that MTLn3 cells express 

both the ligand, ephrin b and receptors, Eph B.  Application of the exogenous ephrin b 

ligand was sufficient to induce cellular retraction, further suggesting that Eph B signaling 

was the primary mediator of CIL in MTLn3 cells. Surprisingly, we found that Eph B did 

not active RhoA, one of the downstream effectors of CIL in many systems, suggesting 

that Eph B may induce CIL by inhibiting EGF signaling. Finally, we used CID to suggest 

that the crosstalk between Eph B and EGF signaling occurs above PI3K.      

 

5.2 Future outlook and directions 

 

 We anticipate that the techniques developed in this dissertation should be 

applicable to other questions in directed cell migration and other areas of cell biology 

dependent on graded inputs.  We will enumerate several possibilities below. 
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5.2.1  Graded Signaling 

 

The technological platform developed in Chapter 3 should be applicable to studying other 

signaling species involved in directed migration as long as the limitations of the 

technique are kept in mind. One of the main limitations is the lack of reversibility, as 

rapamycin binds to both FRB and FKBP with very high affinity. This means that the 

graded signaling across a cell will inevitably saturate and become uniform across a cell 

with continuous stimulation. However, if this saturation period is delayed, for example, 

by using lower concentrations of rapamycin, there will be a time window where graded 

signaling will be maintained. Alternatively, we showed that using a pulse of graded 

rapamycin was sufficient to induce a response. This pulse should be sufficient to induce a 

graded distribution of activators and the removal of external rapamycin should 

theoretically ensure that this distribution does not change. However, these distributions 

may evolve due to lateral diffusion of FKBP-FRB-rapamycin complexes. We suggest 

another alternative technique is to simultaneously add a gradient of a second dimerizer 

during stimulation with graded rapamycin. Our lab recently demonstrated that the 

addition of an orthogonal dimerizer could turn off rapamycin dimerization induced 

signaling
217

. A careful titration between the concentrations of both dimerizers should 

allow the maintenance of graded signaling. A second limitation of this technique is that it 

is only currently applicable to proteins activated at cell membranes. However, given that 

the vast majority of signaling in directed migration occurs at the cell membrane, we do 

not anticipate this to be a major roadblock. There is a vast and ever-expanding library of 

rapamycin activatable molecular species, including activators of other canonical 
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migration components, such as Cdc42, RhoA, Ras, PI3K etc. We suggest that graded 

activation of these components should reveal interesting signaling hierarchies and allow 

the testing of positive or negative feedbacks through the addition of pharmacological 

compounds. Molecules which can directly induce curvature, such as Bin–Amphiphysin–

Rvs (BAR) represent another interesting research area. It will be fascinating to test 

whether localized, graded curvature will be sufficient to induce cell migration. Finally, 

our technique could be used to explore how cell polarization is regulated, for example, by 

locally recruiting PAR complexes.  

 

5.2.2 Chemotaxis in Cancer 

 

We anticipate that the microdevices utilized in this dissertation will allow a more in depth 

look at the gradient sensitivity of different cancer cells and other slower migrating cells in 

general. Most current chemotaxis studies are carried out in neutrophils and dictyostelium, 

which migrate about an order of magnitude faster than their slower counterparts (cancer 

cells, fibroblasts)
36

. This faster migration allows the use of simpler chemotaxis assays, 

such as the micropipette assay. Although micropipettes have been utilized to study 

chemotaxis in cancer cells
196

 and fibroblasts
35

, these assays are relatively short lived and 

are low throughput. Another compounding issue is that substantial chemotaxis in these 

cell types occurs on the time scale of hours. We showed in Chapter 4, that we could assay 

chemotaxis in hundreds of MTLn3 breast cancer cells in a single experiment for over 8 

hours. This allowed us to map out the EGF gradient sensitivity of MTLn3 cells. We 
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anticipate that similar studies will be possible in other breast cancers cell lines and other 

migratory cancer cells.  

 Generally speaking, mechanistic insights into cancer cell chemotaxis are 

relatively sparse when compared to neutrophils, dictyostelium, and even fibroblasts. For 

example, it is unknown whether intracellular gradient amplification occurs or whether 

cancer cells adapt to external chemoattractants.  We believe that research in this area will 

be aided by the tools developed in this dissertation.   Many of the seminal studies carried 

out in neutrophils, dictyostelium, and fibroblasts have been carried out through the use of 

fluorescently tagged biosensors. We show in chapter 4 that our device is compatible with 

such sensors, by visualizing the activity of canonical chemotaxis mediating proteins, 

PI3K and Rac.  It will be interesting to compare chemotaxis paradigms between different 

cell types and to speculate on why these differences might occur. 

 Our microdevices currently assay chemotaxis in 1D, where cells migrate along a 

collagen coated glass coverslip. In reality, chemotaxis in vivo occurs in 3D, where a 

given cell may receive input from the ECM around the entire cell diameter. It will be of 

interest to implement gels into the microchannels of our current devices and to assess 

chemotaxis through them. A recent paper from the Sixt group recently correlated in vivo 

chemokine deposited gradients with in vivo dendritic cell guidance
218

, suggesting a 

mechanism in which long term guidance could be achieved. We propose that a similar 

assay could be carried out in vitro with MTLn3 cells by pre-depositing EGF gradients 

across collagen gel filled microchannels. Alternatively, macrophages, shown to be 

sources of EGF for cancer cells
219

, could be patterned on one side of a gel with MTLn3 

on the other. Such assays may more faithfully recreate the in vivo guidance scenarios. An 
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additional benefit to studying directed migration through collagen gels in our system 

could be the simplification of imaging. The pseudo one dimensional environment 

narrows the plane in which a chemotaxing cell could reside and thus may allow faster 

imaging. Imaging multiple Z planes is typically a rate limiting step in 4D imaging. 

 

5.2.3  Perspective on microfluidics 

 

A current trend in microfluidics is to simplify device setup and implementation in order 

to increase their use among the general scientific community. For example, in the cell 

migration community, there are a variety of companies which offer simple microfluidic 

devices for population level assays.  However, I would argue that the future of 

microfluidics should branch not only towards simplification, but also towards increased 

complexity. Adding complexity is justified in applications which require sensitive 

control, such as those presented here. More complex assays should also be possible with 

the refinement of new modules within microfluidic devices. For example, the 

development of microfluidic valves from the Quake group
116

,  greatly expanded the 

applications of microfluidics.  

 Another current trend is to use microdevices as proxies for physiological or 

pathological processes, such as in the Organ on a chip project. This necessitates a bridge 

in scale between the hundreds of cells typically used in microdevices to the level of 

tissues. We suggest that 3D printing technologies will become more and more prominent 

in this area, as the typical Z restrictions found in photolithography are absent. This 
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freedom in the Z dimension should allow the fabrication of shapes which are currently 

impossible with current microfluidic techniques.     

 

5.3  Final thoughts 

 

This dissertation represents a multi-faceted approach to studying cell biology, where 

techniques from engineering and concepts from the life sciences were integrated to allow 

the exploration of new questions in directed cell migration. We believe that similar multi-

disciplinary, tailored approaches will continue to become more frequent in the scientific 

community. 
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