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Abstract 

Thousands of distinct viruses have been discovered and have had their genomes sequenced. Despite, or 

perhaps because of this, the concept of “viruses” remains fluid. No gene or gene family is conserved 

between viruses, making them “polyphyletic.” What makes a genetic element a virus? How many kinds 

of viruses exist? When a new genetic element is discovered, how can one determine if it is a virus? 

These questions are complicated, and further experimentation to explore the "virus sequence space" 

will be required. Both genetic interpretation and modeling of important virus genes as well as isolation 

and analysis of virus particles can lead us through the vast diversity of the virus sequence space, and 

maybe allow us to "touch the walls" at the extremes of this space. Ultimately, these considerations will 

aid us in answering more practical questions. For example, how do the multitudes of viruses living in and 

on us affect our well-being? This dissertation presents original research that pushes the field of virology 

forward by striking out into the unexplored reaches of the virus sequence space, expanding our 

knowledge of virus genome sequences, i.e. the virome. Orthogonal techniques are developed and 

implemented to latch on to and explore distinctive virus-like signals, including protection of virus 

genomes from nucleases, circular DNA molecules, and three-dimensional structure conservation of 

capsids and other virion proteins. Additionally,  the development and public release of a bioinformatic 

tool, Cenote-Taker2, addresses the persistent problems of finding familiar and divergent virus sequences 

of "known types" in complex datasets and accurately annotating these sequences for distribution to the 

scientific public. This should accelerate research across the field of virology. Finally, in the last chapter,  

sequencing data from thousands of human metagenomes is interrogated to pull out high-quality 

sequences from over 80,000 virus taxa, and strong associations are defined between over a thousand of 

these virus taxa and a variety of human chronic disease states. 
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1  Introduction 

The concept of “viruses” represents a hodgepodge of biological entities that were mysterious 

and ill-defined when first discovered in the 1890s and, despite many important advances, 

remain mysterious and ill-defined today. Members of the non-scientific public might tell you 

that viruses are tiny germs that can make you sick and can't be killed with antibiotics, and many 

scientists would struggle to tell you much more than that. One thing that scientists are 

discovering is that humans have a complex relationship with viruses. On the one hand, a small 

number of pathogenic viruses have caused incalculable death and destruction throughout 

human history, and some continue to do so today. On the other hand, each of us is covered in 

viruses from head to toe, often without any ill effects. In this dissertation, I aim to explore and 

expand the concept of viruses by studying previously unrecognizable virus genome sequences, 

i.e. viral dark matter, and investigate the role of viruses in human health outside the traditional 

scope of acute infection. 

 Viruses have likely been around since the beginning of life on Earth, and every species of 

cellular life probably has at least one species of virus that infects it1. Humans, for example, are 

infected by hundreds of distinct virus species2. It has been estimated there are more virus 

particles on Earth than there are stars in the universe3 (~10^31 particles), and the genetic 

diversity of viruses dwarfs that of the diversity of all cellular organisms (bacteria, archaea, and 

eukaryotes) combined4. This comparison may not go far enough, however, because all cellular 

life shares a common ancestor and all cellular genomes share a set of conserved genes. Viruses, 
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meanwhile, are “polyphyletic.” New viral entities have arisen multiple times over the course of 

life on this planet and many groups of viruses share no common genes with other groups1. 

 The term “virus” is a historically anchored umbrella term for a variety of disparate 

elements. In the 1890s, bacteria had been discovered and the germ theory of disease was 

widely accepted. Two scientists, Dmitri Ivanovsky and Martinus Willem Bejierinck, worked 

independently to demonstrate that an infectious replicating agent responsible for a disease in 

tobacco plants was distinct from bacteria, which other scientists had previously described as 

plant disease agents. This new agent's main peculiarity was that it was small enough to pass 

through a "bacteria-proof" filter. In contrast to previously studied bacteria, it was unable to 

replicate independent of its plant host. This "filterable infectious agent" was ultimately found 

to be tobacco mosaic virus, the first virus ever discovered5.  

 This functional method of defining viruses has continued to this day and likely is 

responsible for the grouping of disparate elements into the category “viruses.” A working 

definition of a virus might be: A genetic element (i.e. DNA or RNA genome) that replicates 

within a host cell and is packaged into a metabolically inert, self-encoded proteinaceous 

capsid shell capable of infecting new hosts. Therefore, there is no specific genetic sequence 

requirement or threshold to include or exclude elements as viruses. This is important to 

consider when thinking about the field of virus discovery. 

 Since the 1890s, thousands of viruses have been discovered and, starting in 19766, 

sequenced7. These sequences have expanded our understanding of what has come to be 

known as the “virome”, i.e. the sum total of all virus sequences in a given environment, 

affirming that viruses are staggeringly diverse and have no single common ancestor. In the pre-
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metagenomics era (the first virus metagenomics paper was published in 20028), the vast 

majority of sequenced viruses were discovered from one of two sources: 1) multicellular 

organisms suffering from disease or 2) virus "plaques" of lysed bacteria on bacterial growth 

plates9. New viruses discovered by these methods provide observable virus particles, nucleic 

acids to sequence, and an associated host phenotype caused by the virus.  They have also 

provided a baseline of reference sequences for the metagenomic era of virus discovery. A 

disadvantage of these approaches is that they do not capture all types of viruses. Specifically 

excluded from these assays are: animal and plant viruses that don't cause acute disease, viruses 

that cause acute disease in unstudied plants and animals, bacterial viruses that only infect 

difficult/impossible to culture bacteria, and bacterial viruses that are not capable of generating 

plaques. 

 The metagenomic era of virus discovery has been based on massively parallel 

sequencing of environmental and host-associated samples. Often, samples are enriched for 

virus particles10, but enrichment is not strictly necessary11. From the sequences of these 

samples, viruses are identified based on their similarity to the sequences of known viruses. This 

has allowed the expansion of the virome at a remarkable rate. However, with a few 

exceptions12, these methods have only expanded our knowledge of viruses of known types, 

while ignoring sequences with little or no resemblance to previously catalogued sequences, i.e. 

viral "dark matter"12-14. This phenomenon of ignoring unfamiliar sequences has contributed to a 

type of tunnel vision or streetlight effect in the field.   

 One of the reasons that viral dark matter is ignored is that it can be difficult or 

impossible, even from virus-enriched samples, to discriminate between a true virus sequence 
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and contamination from a bacterial sequence or a sequence from another type of mobile 

genetic element, such as a plasmid15.   

 In this dissertation, Chapters 2 and 3 cover work overcoming the limitations of 

sequence-similarity-based methods of virus discovery. Specifically, unconventional strategies to 

detect highly divergent capsid genes or capsid genes of a previously unrecognized type are 

employed. Because, by definition, virus genomes must encode capsid gene(s)1,16, the detection 

of a capsid gene is strong evidence that an unrecognized genetic element is a viral sequence.  

 Two homologous genes, such as capsid genes, can evolve to the point where nucleotide 

sequence similarity or even amino acid sequence similarity becomes undetectable. However, 

protein fold and three-dimensional protein structure are conserved to a greater degree than 

linear sequence in homologous genes17. Predicted folds can be inferred from a sequence and 

compared to a database of known protein structures in order to detect homology and 

structural conservation between highly divergent sequences where sequence alignment 

algorithms fail17. This strategy was employed to identify dozens of capsid genes from a set of 

dark matter sequences.  

 Capsid genes appear to have arisen de novo at least several times from various cellular 

sources1,16,18. It is unlikely that examples of all categories of viral capsids have been cataloged. 

One strategy to identify previously unrecognized capsid types uses artificial neural networks 

trained to identify important sequence features of capsid genes across virus families 

independent of alignment of long stretches of amino acid sequence12. In this dissertation, 

potential capsids identified with these neural networks were validated with wet bench 
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experiments showing formation of capsids from exogenously expressed potential capsid genes 

(Chapters 2 & 3), or in vivo virion formation in a natural host (Chapter 3). 

  

 An impressive body of literature has shown that communities of bacteria that live in and 

on us, i.e. the bacterial microbiome, play important roles in keeping us healthy19,20, but can also 

cause or contribute to chronic diseases and health conditions21,22. It is likely that all of our 

resident bacteria become infected by viruses and that these bacterial viruses have indirect 

effects on human physiology. For example, bacterial viruses can regulate the abundance of 

their host bacteria23, potentially ablating the effects of either “good” or “bad” bacteria. 

Bacteriophages can also render relatively harmless bacterial species pathogenic by transducing 

toxin genes24. Many of the genetic differences between benign and pathogenic bacterial strains 

are due to presence or absence of integrated or episomal mobile genetic elements, such as 

viruses24,25. 

 Some studies have tried to unravel the role of the human virome in health and disease, 

occasionally with promising results26-28.  However, almost without exception, reviews of the 

topic lament the fact that no comprehensive virus sequence database exists13,29. Experts 

conservatively estimate that hundreds of millions of virus species exist on Earth4. However, 

GenBank, the largest and most accessed public sequence database, has only 30,000 - 40,000 

virus species represented, some without a complete genome sequence available. 

 To move human virome research forward, work for this dissertation has overcome 

several obstacles. As previously discussed, detecting highly divergent viruses and discriminating 

them from non-viral sequences is challenging. Furthermore, annotation of genes and other 
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features of new virus genomes is particularly challenging. The goal of the work was to 

overcome these challenges by developing tools to detect familiar as well as highly divergent 

virus sequences, annotate the genomes, and facilitate GenBank deposition. This tool, Cenote-

Taker2, is documented in Chapter 4. 

 In Chapter 5, Cenote-Taker2 was used to mine thousands of publicly available sequence 

libraries from human metagenomes (gut, skin, oral, vaginal). The search detected 80,000 

unique viruses, the vast majority of which are bacterial viruses. Cenote-Taker2 was applied to a 

dozen case-control studies that used massively parallel sequencing on stool and/or saliva from 

patients and control subjects. Significant associations between specific viruses and most of 

these disease states were found, and these virus associations were often stronger than the 

associations found for bacteria in these samples. 
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2  Discovery of several thousand highly diverse circular DNA viruses 

 

Adapted from: eLife publication, 10.7554/eLife.51971 

 

Abstract 

Although millions of distinct viral species likely exist, only approximately 9,000 are catalogued 

in GenBank's RefSeq database. We selectively enriched for the genomes of circular DNA viruses 

in over 70 animal samples, ranging from nematodes to human tissue specimens. A 

bioinformatics pipeline, Cenote-Taker, was developed to automatically annotate over 2,500 

complete genomes in a GenBank-compliant format. The new genomes belong to dozens of 

established and emerging viral families.  Some appear to be the result of previously 

undescribed recombination events between ssDNA and ssRNA viruses. In addition, hundreds of 

circular DNA elements that do not encode any discernable similarities to previously 

characterized sequences were identified. To characterize these "dark matter" sequences, we 

used an artificial neural network to identify candidate viral capsid proteins, several of which 

formed virus-like particles when expressed in culture. These data further the understanding of 

viral sequence diversity and allow for high throughput documentation of the virosphere. 

  

Keywords 

Viral metagenomics, virome, virus discovery, microbial genomics, evolution 
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Introduction 

There has been a rush to utilize the massive parallel sequencing approaches to better 

understand the complex microbial communities associated with humans and other animals. 

Although the bacterial populations in these surveys have become increasingly recognizable 30, a 

substantial fraction of the reads and de novo assembled contigs in many metagenomics efforts 

are binned as genetic "dark matter," with no recognizable similarity to characterized sequences 

31,32. Some of this dark matter undoubtedly consists of viral sequences, which have remained 

poorly characterized due to their enormous diversity 7,33,34. Recent efforts have shown that our 

understanding of viral diversity, even of viruses known to directly infect humans, has been 

incomplete 35-37. To increase the power of future studies seeking to more comprehensively 

catalog the virome and find additional associations between viruses and disease, reference 

genomes for all clades of the virosphere need be identified, annotated, and made publicly 

accessible. 

 Virus discovery has typically proven to be more difficult than discovery of cellular 

organisms. Whereas all known cellular organisms encode conserved sequences (such as 

ribosomal RNA genes) that can readily be identified through sequence analysis, viruses, as a 

whole, do not have any universally conserved sequence components 38-41.  Nevertheless, some 

success has been achieved in RNA virus discovery by probing for the conserved sequences of 

their distinctive RNA-dependent RNA polymerase or reverse transcriptase genes in 

metatranscriptomic data 42. Also, many bacteriophages of the order Caudovirales, such as the 

families Siphoviridae, Podoviridae, and Myoviridae, have been reported in high numbers due to 
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their and their hosts' culturability and their detectability using viral plaque assays 43-45. The 

relatively abundant representation of these families in databases has allowed new variants to 

be recognized by high-throughput virus classification  tools like VirSorter 46-48.  In contrast, many 

small DNA viruses are not easily cultured 49, use diverse genome replication strategies, and 

typically lack DNA polymerase genes such as those in large DNA viruses 50.  An additional 

challenge is that small DNA viruses with segmented genomes may have segments that do not 

encode recognizable homologs of known viral genes. Therefore, small DNA viruses are more 

sparsely represented in reference databases. However, some groups have been successful in 

discovery of small DNA genomes in a wide range of viromes 10,35,51-55. 

Despite the apparent challenges in detecting small DNA viruses, many have physical 

properties that can be leveraged to facilitate their discovery. In contrast to the nuclear 

genomes of animals, many DNA virus genomes have circular topology, which allows selective 

enrichment through rolling circle amplification (RCA) methods 56. Further, the unique ability of 

viral capsids to protect nucleic acids from nuclease digestion and to mediate the migration of 

the viral genome through ultracentrifugation gradients or size exclusion columns allows 

physical isolation of viral genomes.  

The current study grew out of an effort to find papillomaviruses (small circular DNA 

viruses) in humans and economically important or evolutionarily informative animals 35,57. The 

sampling included several types of animals that might serve as laboratory models (e.g., mice, 

fruit flies, soil nematodes). A number of papillomaviruses were detected among a vastly larger 

set of circular DNA sequences that were not easily identifiable in standard BLASTN searches. 

The goal of the present study is to catalog and annotate the circular DNA virome from these 
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animal tissues to understand the diversity and evolution of viral sequences. We developed a 

comprehensive bioinformatics pipeline, Cenote-Taker, to classify and annotate over 2,500 

candidate viral genomes and generate GenBank-compliant output files. Cenote-Taker is 

available for free public use with a graphical user interface at 

http://www.cyverse.org/discovery-environment. 

  

Results  

Virion enrichment, genome sequencing, and annotation 

We have previously developed methods for discovery of new polyomavirus and papillomavirus 

species in skin swabs and complex tissue specimens 57. Nuclease-resistant DNA from purified 

virions was amplified by random-primed rolling circle amplification (RCA) and subjected to 

deep-sequencing. Reads were de novo assembled into contigs and analyzed with a 

bioinformatics pipeline, Cenote-Taker (a portmanteau of cenote, a naturally occurring circular 

water pool, and note-taker), to identify and annotate de novo assembled contigs with terminal 

direct repeats consistent with circular DNA molecules (Figure 2.1). In this pipeline, putative 

closed circular sequences of greater than 1000 nucleotides (nt) were queried against GenBank’s 

nucleotide database using BLASTN to remove circles with extensive nucleotide identity (>90% 

across any 500 nt window) to known sequences. Sequences with >90% identity to previously 

reported viral sequences represented less than 1.5% of circular contigs and are not included in 

further analysis. Approximate taxonomy was determined by BLASTX to a protein database 

derived from RefSeq virus proteins and GenBank plasmid proteins (only hits better than 1×10-5 

were considered). Open reading frames (ORFs) from remaining unidentified circular DNA 

http://www.cyverse.org/discovery-environment
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sequences >240 nucleotides (nt) in length were translated and used for RPS-BLAST queries of 

GenBank’s Conserved Domain Database (CDD). ORFs that did not yield E values better than 

1×10-4 in RPS-BLAST were subjected to BLASTP searches of viral sequences in GenBank’s nr 

database 58-60. For ORFs that were not confidently identified in BLAST searches, HHBlits 61 was 

used to search the CDD, Pfam 62, Uniprot 63, Scop 64, and PDB 65 databases. The results were 

used to annotate and name each sequence in a human-readable genome map as well as a 

format suitable for submission to GenBank. After checking the Cenote-Taker output of each 

genome, minor revisions were made, as needed, and files were submitted to GenBank 

(BioProject Accessions PRJNA393166 and PRJNA396064). All annotations meet or exceed 

recently proposed standards for uncultivated virus genomes 66. Plasmid sequences were 

frequently detected and were discarded. Circular sequences were considered to be plasmid-like 

if they: 1) had a best BLASTX hit to a plasmid and 2) had no detectable virion structural genes. 

 Viral enrichment of the analyzed samples (based on ViromeQC 67, with alignment to 

prokaryotic single-copy housekeeping genes) was typically high (Supplementary File 1). 

However, even in the samples where enrichment was low, quality viral genomes could still be 

identified based on the bioinformatic analyses. 
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Figure 2.1: Virus Discovery Overview 
Pictorial representation of virus discovery methods 
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Discovery of 2514 DNA viruses in animal metagenomes 

Of the novel circular sequences detected in the survey, 1844 encode genes with similarity to 

proteins of ssDNA viruses and 55 encode genes with similarity to dsDNA viral proteins (Figure 

2.2A).  The large majority of genomes from this study are highly divergent from RefSeq entries 

(Figure 2.3). We discovered 868 genomes that had similarity to unclassified eukaryotic viruses 

known as circular replication associated protein (Rep)-encoding single-stranded DNA (CRESS) 

viruses. The group is defined by the presence of a characteristic rolling circle 

endonuclease/superfamily 3 helicase gene (Rep) 18,68, but has not been assigned to families by 

the ICTV or RefSeq. We estimate that 199 non-redundant unclassified CRESS virus genomes had 

been previously deposited in GenBank, and 85 are curated in RefSeq (Figure 2.2B). Also 

abundant was the viral family Microviridae, a class of small bacteriophages, with 670 complete 

genomes. This represents a substantial expansion beyond the 459 non-redundant microvirus 

genomes previously listed in GenBank (of which 44 were curated in the RefSeq database).  

Other genomes that were uncovered represent Anelloviridae (n=170), Inoviridae (n=70), 

Genomoviridae (n=58), Siphoviridae (n=18), unclassified phage (n=14), Podoviridae (n=10), 

Myoviridae (n=7) unclassified virus (n=6), Papillomaviridae (n=4), Circoviridae (n=3), unclassified 

Caudovirales (n=3), Bacilladnaviridae (n=2), Smacoviridae (n=2), and CrAssphage-like (n=2) 

(Figure 2.2B). A table of samples, metadata, and viruses can be accessed at 

(https://elifesciences.org/articles/51971/figures#supp2). Viral families were found in 

association with 23 different animal species (Figure 2.2C). It was not surprising to find bacterial 

viruses as all animals are presumed to have microbial communities, and our sampling often 

target tissues where these communities reside. 

https://elifesciences.org/articles/51971/figures#supp2
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 It is difficult to assign a host to most of the viruses from this study due to their 

divergence from known viral sequences. However, we searched the CRISPR database at 

(https://crispr.i2bc.paris-saclay.fr/crispr/BLAST/CRISPRsBlast.php), and three viruses had exact 

matches to CRISPR spacers in bacterial genomes (Siphoviridae sp. ctcj11:Shewanella sp. W3-18-

1, Inoviridae sp. ctce6:Shewanella baltica OS195, Microviridae sp. ctbe523:Paludibacter 

propionicigenes WB4) and one virus had an exact match to the CRISPR spacer of an archaeon 

(Caudovirales sp. cthg227:Methanobrevibacter sp. AbM4), implying that these organisms are 

infected by these viruses. Further, the 142 anelloviruses found in human blood samples are 

almost certain to be bona fide human viruses based on their relatedness to known human 

anelloviruses. 

 In addition to circular genomes with recognizable similarity to known viruses, 609 

circular contigs appeared to represent elements that lacked discernable similarity to known 

viruses (Figure 2.2A, C). 

 The vast majority of the de novo assembled circular genomes were <10 kb in length 

(Figure 2.3). This is largely due to the fact that large genomes are typically more difficult to de 

novo assemble from short reads. Despite these technical obstacles, our detection of a new 

tailed bacteriophage with a 419kb genome (Myoviridae sp. isolate ctbc_4, GenBank Accession: 

MH622943), along with 45 other >10 kb circular sequences (Figure 2.3), indicates that the 

methods used for the current work can detect large viral genomes.   

  

https://crispr.i2bc.paris-saclay.fr/crispr/BLAST/CRISPRsBlast.php
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Figure 2.2: Novel viruses associated with animal samples 
Gross characterization of viruses discovered in this project compared to NCBI RefSeq virus 
database entries.  (A) Pie chart representing the number of viral genomes in broad categories. 
(B) Bar graph showing the number of new representatives of known viral families or 
unclassified groups. (C) Heatmap reporting number of genomes found associated with each 
animal species. Number of samples per species in brackets. Y axis = virus family/bin. Blue icon = 
ssDNA, purple icon = dsDNA, yellow icon = unknown strandedness. 
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A      B 

  
C 

 
Figure 2.3 Characterization of discovered sequences 
(A) BLASTX summary of each circular DNA molecule recovered from virus enriched samples. 
Sequences were queried against a database of viral and plasmid sequences. Only hits with E 
values < 10-5 were plotted. Here, BLASTX only reports the most significant stretch of amino acid 
sequence from each circular contig, and, therefore, other regions of each contig can be 
assumed to be equally or less conserved. (B) Size distribution of circular DNA sequences from 
this study. (C) Mapping reads to complete viral genome references. Quality-trimmed reads 
were aligned with Bowtie2 to reference genomes from RefSeq and this study. Genomes were 
masked for low-complexity regions.  
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 There has been a recent renewal of interest in the hypothesis that viruses may be 

etiologically associated with degenerative brain diseases, such as Alzheimer's disease 69,70. 

Conflicting literature suggests the possible presence of papillomaviruses in human brain tissue 

71,72. Samples of brain tissue from individuals who died of Alzheimer’s disease (n=6) and other 

forms of dementia (n=6) were subjected to virion enrichment and deep sequencing. Although 

complete or partial genomes of known papillomaviruses, Merkel cell polyomavirus, and/or 

anelloviruses were observed in some samples, no novel complete viral genomes were 

recovered. No viral sequences were detected in a follow-up RNA deep sequencing analysis of 

the brain samples. It is difficult to know how to interpret these negative data. It is conceivable 

that the known viral DNA sequences observed in the Optiprep-RCA samples represent virions 

from blood vessels or environmental sources. 

 It has recently become apparent that certain nucleic acid extraction reagents are 

contaminated with viral nucleic acids 73. To ensure we were not merely reporting the sequences 

of the "reagent virome," we performed our wet bench and bioinformatic pipeline on three 

independent replicates of reagent-only samples. We found no evidence of sequences of any 

viruses reported here or elsewhere. Further, cross-sample comparison of contigs showed that 

almost no sequences were found in different animal samples, aside from technical replicates. In 

total, six viral genomes were observed in multiple unrelated samples from at least two 

sequencing runs. It is unclear whether this small minority of genomes (0.24% of the genomes 

reported in the current study) represent reagent contamination, lab contamination, or actual 

presence of the sequences in different types of samples. 



  18 

 Given the stringent requirements for sequences to be considered as belonging to a 

complete viral genome, as well as the largely unexplored nucleotide space of the virome, it is 

unsurprising that, in most samples, most reads did not align to the genomes reported in this 

study or virus genomes from RefSeq (Figure 2.3C). 

 

Assignment of hallmark genes to networks shows expansion of virus sequence space 

Single stranded DNA viruses, in general, have vital genes encoding proteins that mediate 

genome replication, provide virion structure, and, in some cases, facilitate packaging of viral 

nucleic acid into the virion. Being structurally conserved, these genes also tend to be important 

for evolutionary comparisons and can serve as important "hallmark genes" for virus discovery 

and characterization. However, even structurally conserved proteins sometimes do not have 

enough sequence conservation as to be amenable to high confidence BLASTP searches.  We 

therefore set out to catalog hallmark ssDNA virus genes based using protein structural 

prediction.  Structures of hallmark genes of exemplar isolates from most established ssDNA 

virus families have been solved and deposited in publicly available databases such as PDB 

(Protein Data Bank) 65. Using bioinformatic tools, such as HHpred, one can assign structural 

matches for a given gene based on the predicted potential folds of a given amino acid 

sequence. HHpred has been extensively tested and validated for computational structural 

modelling by the structural biology community 74,75. The method proves especially useful for 

protein sequences from highly divergent viral genomes that have little similarity to annotated 

sequences in current databases.   
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 We extracted protein sequences from our dataset and compiled nonredundant proteins 

from circular ssDNA viruses in GenBank and used them as queries in HHpred searches against 

the PDB, PFam, and CDD databases. We then grouped structurally identifiable sequences into 

hallmark gene categories and aligned them pairwise (each sequence was compared to all other 

sequences) using EFI-EST 76. The resulting sequence similarity networks (SSNs) were visualized 

with Cytoscape 77, with each node representing an predicted protein sequence (Figures 2.4, 2.5, 

2.7). Nodes (sequences) with significant amino acid similarity are connected with lines 

representing BLAST similarity scores better than a threshold E value. Sequence similarity 

network analyses, it has been proposed 78, represent relationships between viral sequences 

better than phylogenetic trees.  Further, SSNs have previously been used for viral protein and 

genome cluster comparison 18,79-81, and can be used to display related groups of viral genes in 

two dimensions 82. These clusters were also used to guide the construction of meaningful 

phylogenetic trees (Figure 2.4A-B, 2.6). 
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Figure 2.4: Sequence similarity network analysis of CRESS virus capsid proteins 
EFI-EST was used to conduct pairwise alignments of amino acid sequences from this study and 
GenBank with predicted structural similarity to CRESS virus capsid proteins. The E value cutoff 
for the analysis was 10-5. (A) Cluster consisting of proteins with predicted structural similarity to 
geminivirus-like capsids and/or STNV-like capsids. The phylogenetic tree was made from all 
sequences in this cluster. (B) A cluster consisting of sequences with predicted structural 
similarity to Circovirus capsid proteins. The phylogenetic tree was made from all sequences in 
this cluster. (C) Assorted clusters and singletons from unclassified CRESS virus proteins that 
were modelled to be capsids. (D) Nanovirus capsids. (E) Gyrovirus capsids. 
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Figure 2.5: Network Analysis of additional viral hallmark genes 
Depiction of additional viral hallmark genes from this study and GenBank as sequence similarity 
networks.  E value cutoff = 10-5. See Figure 2.3 and Methods. 
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Figure 2.6: Phylogenetic trees of viral hallmark genes 
Sequences were aligned with PROMALS3D using structure guidance when possible. Trees were 
drawn using IQ-Tree with automatic determination of substitution model. See methods. 
Branches are labeled with bootstrap percent support after 1000 ultrafast bootstrapping events. 
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(A) Microviridae major capsid protein. (B) Inoviridae zonular occludens toxin. (C) CRESS virus 
Rep. (D) Anelloviridae ORF1 (E) Microviridae/Inoviridae Replication-associated protein I. (F) 
Microviridae/Inoviridae Replication-associated protein II. (G) Microviridae/Inoviridae 
Replication-associated protein III.  
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Figure 2.7: Network analysis of CRESS virus Rep proteins 
EFI-EST was used to conduct pairwise alignments of amino acid sequences from this study and 
GenBank that were structurally modelled to be a rolling-circle replicase (Rep). The analysis used 
an E value cutoff of 10-60 to divide the data into family-level clusters. 
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 In Figure 2.4, sequences that showed a structural match to a known eukaryotic circular 

ssDNA virus capsid protein are displayed as a network. This general capsid type features a single 

beta-jellyroll fold and assembles into T=1 virions of 20-30 nm in diameter. The network shows 

that sequences from this study expand and link smaller disconnected clusters of sequences 

found in GenBank entries (Figure 2.4A-C). Perhaps more importantly a number of previously 

unknown clusters were identified, providing insight into highly divergent hallmark sequences 

and making this capsid sequence space amenable to BLAST searches in GenBank (Figure 2.4C). 

Although the satellite tobacco necrosis virus (STNV) capsid protein encapsidates an RNA 

molecule, it has previously been noted that its structure is highly similar to the capsid proteins 

of geminiviruses and other ssDNA viruses 50,83-87 and was included as a model for populating this 

network.  

 A similar pattern can be seen in sequence similarity networks for the Rep genes of 

CRESS viruses (Figure 2.7). Rep genes have been the primary sequences used for taxonomy of 

CRESS viruses 68. In this case, it was determined that a network with alignment cutoffs with E 

values of 1×10-60 could split the data neatly into “family-level” clusters 88,89, precisely mirroring 

ICTV taxonomy of CRESS viruses. Many additional family-level clusters can be discerned from 

unclassified CRESS viruses. Other eukaryotic and prokaryotic ssDNA virus hallmark gene 

networks are shown in Figure 2.5. Phylogenetic trees of networks are displayed in Figure 2.6. 

Cytoscape files of sequence similarity networks and phylogenetic trees can be found at 

https://ccrod.cancer.gov/confluence/display/LCOTF/DarkMatter. 

 

https://ccrod.cancer.gov/confluence/display/LCOTF/DarkMatter
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New classes of large CRESS viruses feature unconventional structural genes 

Although no single family of viruses accounts for the majority of genomes in this study, these 

results expand the knowledge of the vast diversity of CRESS viruses, which appear to be 

ubiquitous among eukaryotes 90-93 and are likely to also infect archaea 18,94. Characterized CRESS 

viruses have small icosahedral virions (20-30 nm in diameter) with a simple T=1 geometry 95.  

This capsid architecture likely limits genome size, as nearly all previously reported CRESS virus 

genomes and genome segments are under 3.5 kb. Exceptions to this size rule are 

bacilladnaviruses, which have 4.5 - 6 kb genomes 96 and cruciviruses, which have 3.5 - 5.5 kb 

genomes 97.  Interestingly, the genomes of these larger CRESS viruses encode capsid genes that 

appear to have been acquired horizontally from RNA viruses 98. In our dataset, eight CRESS-like 

circular genomes exceed 6 kb in length (Figure 2.9).  Further, this study's large CRESS genomes 

are apparently attributable to several independent acquisitions of capsid genes from other taxa 

and/or capsid gene duplication events.  

 Notably, a large CRESS genome (CRESS virus isolate ctdh33, associated with rhabditid 

nematodes that were serially cultured from a soil sample) encoded three separate genes with 

structural homology (HHpred probability scores 97-99%) to STNV capsid (Figure 2.9G). The 

three predicted STNV capsid homologs in the nematode virus are highly divergent from one 

another, with only 28-30% amino acid similarity, but also highly divergent from other amino 

acid sequences in GenBank. A possible explanation for this observation is that the capsid gene 

array is the result of gene duplication events.  

 CRESS genomes ctba10, ctcc19, ctbj26, ctcd34, and ctbd1037 (ranging from 3.5 - 6.2 kb 

in length) also each encode two divergent capsid gene homologs (Figure 2.9A,B,C,E,H). Single 
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genomes encoding multiple capsid genes with related but distinct amino acid sequences have 

been observed in RNA viruses 99 and giant dsDNA viruses 100, but we believe that this is the first 

time it has been reported in ssDNA viruses. 

  



  28 

 

 

 

Figure 2.8: RNA virus capsid-like proteins 
Sequence similarity network generated with EFI-EST (E value cutoff of 10-5) showing capsid 
protein sequences of select ssRNA viruses (Nodaviridae, Tombusviridae, tombus-like viruses) 
and ssDNA viruses (Bacilladnaviridae and crucivirus) together with protein sequences from DNA 
virus genomes observed in the present study with predicted structural similarity to an RNA 
virus capsid protein domain (PDB: 2IZW). Predicted capsid proteins for CRESS virus ctca5 and 
CRESS virus ctgh4 have no detectible similarity to any known DNA virus sequences. On the left, 
a phylogenetic tree representing the large cluster is displayed. Collapsed branches consist of 
Tombusviridae, tombus-like viruses, and Nodaviridae capsid genes. 
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Figure 2.9: Genome maps of large CRESS virus genomes 
Predicted CRESS Rep-like genes are displayed in orange, virion structural genes shown in green, 
other identifiable viral genes shown in pink, other genes in grey. GenBank accession numbers 
are displayed above the virus name. 
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Figure 2.10: Validation of proteins with predicted similarity to RNA virus capsid proteins 
(A) First order neighbors for Crucian-associated CRESS virus ctgh4 capsid protein were extracted 
from the network shown in Figure 2.8 and aligned using Muscle. (B) The same approach was 
applied to CRESS virus ctbd466 capsid protein. (C) A visualization (Integrative Genomics Viewer) 
of a read alignment to CRESS virus isolate ctca5. The visualization shows no evidence of 
artifactual chimerization in the contig assembly process. 
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 Two related large CRESS viruses (ctdb796 and ctce741) encode capsid proteins similar to 

those of bacilladnaviruses (Figure 2.9K,M). Interestingly, the Rep genes of the two viruses do 

not show close similarity to known bacilladnavirus Reps and are instead similar to the Reps of 

certain unclassified CRESS viruses, suggesting that CRESS ctdb796 and CRESS ctce741 are 

representatives of a new hybrid CRESS virus family.  

 Two other CRESS virus genomes (isolates ctca5 and ctgh4) encode capsid genes that 

show amino acid similarity to distinct groups of icosahedral T=3 ssRNA virus capsids 101 

(tombus- and tombus-like viruses), but not to cruciviruses or bacilladnaviruses (Figure 2.8, 

Figure 2.9D,J, Figure 2.10A). Further, a 6.6 kb CRESS virus (isolate ctbd466) (Figure 2.9L) was 

found to encode a gene with some similarity to the capsid region of the polyprotein of two 

newly described ssRNA viruses (ciliovirus and brinovirus (Figure 2.10B) 101,102. Protein fold 

predictor Phyre2 103 showed a top hit (58% confidence) for the capsid protein of a norovirus 

(ssRNA virus with T=3 icosahedral capsid) for isolate ctbd466 (see GenBank: AXH73946). 

 Two CRESS genomes (ctbe30 and ctbc27) from separate Rhesus macaque stool samples 

combine Rep genes specific to CRESS viruses with several genes specific to inoviruses, including 

inovirus-like capsid genes, which encode proteins that form a filamentous virion (Figure 2.9F,N). 

The bacteriophage families Inoviridae and Microviridae are ssDNA viruses that replicate via the 

rolling circle mechanism, but they are not considered conventional CRESS viruses because they 

exclusively infect prokaryotes and do not encode Rep genes with CRESS-like sequences.  Other 

inovirus-like genes encoded in the ctbe30 and ctbc27 genomes include homologs of zonular 

occludens toxin (ZOT, a packaging ATPase) and RstB (a DNA-binding protein required for host 

genome integration) 104 (Figure 2.9F,N).  TBLASTX searches using ctbe30 and ctbc27 sequences 
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yielded large segments of similarity to various bacterial chromosomes (e.g., GenBank accession 

numbers AP012044 and AP018536), presumably representing integrated prophages. This 

suggests that ctbb30 and ctbc27 represent a previously undescribed bacteria-tropic branch of 

the CRESS virus supergroup. 

 Viral genomes discussed in this section were validated by aligning individual reads back 

to the contigs followed by visual inspection. No disjunctions were detected, indicating that 

illegitimate recombinations are not evident (see Figure 2.10C for an example). 

 

Network analysis of genetic “dark matter” demonstrates conservation of gene sequence and 

genome structure 

We defined potential viral “dark matter” in the survey as circular contigs with no hits with E 

values <1×10-5 in BLASTX searches of a database of viral and plasmid proteins. We posited that 

leveraging sequence similarity networks would be useful both for analyzing groups of gene 

homologs and for discerning which gene combinations tended to be present on related circular 

genomes. To categorize the 609 dark matter elements based on their predicted proteins, we 

used pairwise comparison with EFI-EST. A majority of translated gene sequences could be 

categorized into dark matter protein clusters (DMPCs) containing four or more members 

(Figure 2.11A). Further, groups of related dark matter elements (i.e. dark matter genome 

groups (DMGGs)), much like viral families, could be delineated by the presence of a conserved, 

group-specific marker gene. For example, DMPC1 can be thought of as the marker gene for 

DMGG1. Certain DMPCs tend to co-occur on the same DMGG. For instance, DMPC7 and 

DMPC17 ORFs are always observed in genomes with a DMPC1 ORF (i.e., DMGG1) (Figure 
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2.11B). This pro tempore categorization method is useful for visualizing the data, but we stress 

that is not necessarily taxonomically definitive. 
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Figure 2.11: Dark matter analysis 
(A) Sequence similarity network analysis for genes from dark matter circular sequences 
(minimum cluster size = 4). Clusters are colored based on assigned dark matter genome group 
(DMGG). Structural predictions from HHpred are indicated (>85% probability). Rep = rolling 
circle replicases typical of CRESS viruses or ssDNA plasmids. Capsid = single-jellyroll capsid 
protein. Attachment = cell attachment proteins typical of inoviruses. DNA-Binding = DNA-
binding domain. PLA2 = phospholipase A2. FtsL = FtsL-like cell division protein. Clusters that 
contain a representative protein that was successfully expressed as a virus-like particle are 
outlined by a dashed rectangle (See Figure 2.14). (B) Maps of three examples of DMGG1 with 
DMPCs labeled (linearized for display). (C) DMGG1 iVireons “structure” score summary by 
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protein cluster. Scores range from -1 (unlikely to be a virion structural protein) to 1 (likely to be 
a virion structural protein). Additional iVireons score summaries can be found in Figure 2.13.  
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Figure 2.12: Sample characterization by iterative BLAST Searches 
Contigs of over 1000 nts from each sample were subject to iterative BLAST searches. First, 
BLASTN was performed against the RefSeq database. Contigs without hits were then queried by 
BLASTX against all of GenBank ‘nr’ database. Contigs without hits were then queried by BLASTX 
against a database of proteins from genomes reported in this study. The proportion of total 
reads mapping to each contig was calculated and used for this plot. Individual inspection of 
contigs shows that most hits in the “Translated AA alignment to GenBank nr ‘Bacteria’” were 
likely plasmid or prophage proteins. The proportions of hits in each category are sensitive to 
stringency settings and to which databases are chosen for the analysis. The key aims of the 
figure are to display the proportion of reads the current survey rendered classifiable and the 
fraction of remaining dark matter reads in various samples. 
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 Figure 2.13: iVireons scores of DMGGs with candidate viral structural gene(s) 
Box-and-whisker plots of iVireons “Structural” scores for individual DMPCs (numbers on x-axes) 
grouped by DMGG. Scores (y-axes) range from -1 (unlikely to be a virion structural protein) to 1 
(likely to be a virion structural protein). DMGG2 and DMGG3 have been combined due to 
inferred chimerism. 
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HHpred, was again employed to make structural predictions for these data 17. Instead of 

querying individual sequences, alignments were prepared using MAFFT 105 for each major 

DMPC to identify conserved residues and increase sensitivity. Then, each alignment was used 

for an HHpred query. The results indicate that ten DMPCs are likely viral capsid proteins and 11 

are rolling circle replicases (Figure 2.11A).  

While most of the circular dark matter in the survey could be characterized using these 

methods, dark matter contigs represent a small remaining fraction in some samples (Figure 

2.12). 

 

Cell culture expression of candidate "dark matter" capsids yields particles 

In contrast to viral genes such as Rep, with conserved enzymatic functions, sequences of 

the capsid genes are often poorly conserved, even within a given viral family 106. Moreover, it 

appears that capsid proteins have arisen repeatedly through capture and modification of 

different host cell proteins 16. This makes it challenging to detect highly divergent capsid 

proteins using alignment-based approaches or even structural modelling. We therefore turned 

to an alignment-independent approach known as iVireons, an artificial neural network trained 

by comparing alignment-independent variables between a large set of known viral structural 

proteins and known non-structural proteins 12 (https://vdm.sdsu.edu/ivireons/).  

 Of the 17 DMGGs for which HHPRED did not identify capsid genes, iVireons predicted 

that ten contain at least one DMPC predicted to encode some type of virion structural protein 

(median score of cluster >0.70).  This allowed us to generate the testable hypothesis that some 

https://vdm.sdsu.edu/ivireons/
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of these predicted structural proteins would form virus-like particles (VLPs) if expressed in cell 

culture. 

 A subset of predicted capsid proteins were expressed in human-derived 293TT cells 

and/or in E. coli and subjected to size exclusion chromatography. Electron microscopic analysis 

showed that several of the predicted capsid proteins formed roughly spherical particles, 

whereas a negative control protein did not form particles (Figure 2.14). Although the particles 

were highly irregular, the DMGC11 isolate ctgh70 preparation was found to contain nuclease-

resistant nucleic acids, consistent with nonspecific encapsidation.  The results suggest that, in 

multiple cases, we were able to experimentally confirm that iVireons correctly predicted the 

identity of viral capsid proteins.  
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Figure 2.14: Expression of putative capsid proteins 
Images taken by negative stain electron microscopy. Genome maps are linearized for display 
purposes. Expressed genes are colored green. iVireons scores are listed in parentheses.  (A-C) 
Images represent virus-like particles from iVireons-predicted viral structural genes. (D) Merkel 
cell polyomavirus small T antigen (a viral non-structural protein) is shown as a negative control. 
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Discussion 

Massive parallel DNA sequencing surveys characterizing microbial communities typically yield a 

significant fraction of reads that cannot be mapped to known genes. The present study sought 

to provide the research community with an expanded catalog of viruses with circular DNA 

genomes associated with humans and animals, as well as a means to characterize future 

datasets. We hope that the availability of this expanded viral sequence catalog will facilitate 

future investigation into associations between viral communities and disease states. Our 

annotation pipeline, Cenote-Taker, can be accessed via http://www.cyverse.org/discovery-

environment. The CyVerse version of Cenote-Taker can readily annotate circular or linear DNA 

viruses. RNA viruses with polyproteins or frameshifts will require post hoc manual editing. 

Efforts could be made, for example, to apply the pipeline to previously published viromes to 

uncover additional viral genomes missed by other methods. 

 At the present time, GenBank’s RefSeq database includes complete sequences for 

approximately 9,000 viral genomes, most of which fit into 131 families recognized by the 

International Committee on Taxonomy of Viruses (ICTV) 107. Similarly, the IMG/VR database 

contains over 14,000 circular virus genomes from hundreds of studies, though some of these 

appear to be redundant with each other and are not comprehensively annotated 108. The 

current study, which focused on circular DNA viruses with detergent-resistant capsids, found 

2,514 new complete circular genomes. The availability of these comprehensively annotated 

genomes in GenBank contributes new information and understanding to a broad range of 

established, emerging, and previously unknown taxa. Figure 2.7 shows dozens of potential 

http://www.cyverse.org/discovery-environment
http://www.cyverse.org/discovery-environment
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family-level groupings within the unclassified CRESS virus supergroup. Sequences from this 

study contribute to 40 of such groupings and constitute the only members of seven groups. 

There are also 192 singleton CRESS sequences that could establish many additional family-level 

groups. 

Although small ssDNA viruses are ubiquitous, they are often overlooked in studies that 

only characterize sequences that are closely related to reference genomes. In addition, ssDNA 

is not detected by some current DNA sequencing technologies unless second-strand synthesis 

(such as the RCA approach used in the current study) is conducted.  

 While many of the viruses discovered in this study appear to be derived from 

prokaryotic commensals, it is important to note that bacteriophages can contribute to human 

and animal diseases by transducing toxins, antimicrobial resistance proteins, or genes that alter 

the physiology of their bacterial hosts 109. Furthermore, interaction between animal immune 

systems and bacteriophages appears to be extensive 110.  

Over 100 distinct human anellovirus sequences were found in human blood. 

Anelloviruses have yet to be causally associated with any human disease, but this study 

indicates that we are likely still just scratching the surface of the sequence diversity of human 

anelloviruses. It will be important to fully catalog this family of viruses to address the field’s 

general assumption that they are harmless. 

Several of the CRESS viruses detected in this study are larger than any other CRESS virus 

genomes that have been described previously. In some cases, the larger size of these genomes 

may have been enabled by a process involving capsid gene duplication events. Further, CRESS 

virus acquisition of T=3 capsids from ssRNA Nodaviridae and Tombusviridae families has been 
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previously suggested as the origin of bacilladnaviruses 98 and cruciviruses 52,111-113, respectively. 

We present evidence of additional independent recombination events between CRESS viruses 

and ssRNA viruses and ssDNA bacteriophages.  In light of these findings, it should be reiterated 

that only DNA (not RNA) was sequenced in our approach, so DNA/RNA in silico false 

recombination does not seem plausible. These data suggest that CRESS viruses are at the center 

of a tangled evolutionary history of viruses in which genomes change not just via gradual point 

mutations but also through larger scale recombination and hybridization events. 

 It is likely that some dark matter sequences detected in this study share a common 

ancestor with known viruses but are too divergent to retain discernable sequence similarity. In 

some cases, the dark matter circles may represent a more divergent segment of a virus with a 

multipartite genome. Alternatively, some of these sequences likely represent entirely new viral 

lineages that have not previously been recognized.  

 

Methods 

 

Key Resources Table 

Reagent type 

(species) or 

resource 

Designatio

n 

Source or 

reference 

Identifiers Additional 

information 
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strain, strain 

background 

(Escherichia 

coli) 

T7 Express 

lysY/Iq E. 

coli 

NEB Cat#: C3013I 
 

cell line 

(Homo-

sapiens) 

293TT cells https://dtp.ca

ncer.gov/repo

sitories/ 

NCI-293TT Deposition to 

ATCC in 

progress 

recombinant 

DNA reagent 

Dark 

matter 

capsid 

expression 

plasmids 

Generated 

here 

Lead contact 
 

commercial 

assay or kit 

TempliPhi

™ 100 

Amplificati

on Kit 

Sigma Cat#: GE25-

6400-10 

  

chemical 

compound, 

drug 

Optiprep 

Density 

Medium 

Sigma Cat#: D1556-

250ML 
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chemical 

compound, 

drug 

Sepharose 

4B beads 

Sigma Cat#: 4B200-

100ML 

  

software, 

algorithm 

Cenote-

Taker 

http://www.c

yverse.org/dis

covery-

environment 

Cenote-Taker 

1.0.0 

 github: 

https://github.c

om/mtisza1/Ce

note-Taker 

software, 

algorithm 

EFI-EST https://efi.igb

.illinois.edu/ef

i-est/ 

EFI-EST  

software, 

algorithm 

NCBI 

BLAST 

NCBI RRID:SCR_004

870 

 

software, 

algorithm 

SPAdes 

assembler 

http://cab.sp

bu.ru/softwar

e/spades/ 

RRID:SCR_000

131 

 

software, 

algorithm 

A Perfect 

Circle 

(APC) 

https://github

.com/mtisza1

/Cenote-

Taker/blob/m

APC  
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aster/apc_ct1

.pl 

software, 

algorithm 

EMBOSS 

suite 

(getorf) 

http://embos

s.sourceforge.

net/ 

RRID:SCR_008

493 

 

software, 

algorithm 

Circlator http://sanger-

pathogens.git

hub.io/circlat

or/ 

RRID:SCR_016

058 

 

software, 

algorithm 

HHSuite https://direct

ory.fsf.org/wi

ki/Hhsuite 

RRID:SCR_016

133 

 

software, 

algorithm 

tbl2asn https://www.

ncbi.nlm.nih.g

ov/genbank/t

bl2asn2/ 

RRID:SCR_016

636 

 

software, 

algorithm 

MacVector http://macvec

tor.com 

RRID:SCR_015

700 
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software, 

algorithm 

Bandage https://rrwick

.github.io/Ban

dage/ 

Bandage  

 

LEAD CONTACT AND MATERIALS AVAILABILITY 

 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Chris Buck (buckc@mail.nih.gov) 

 

 

METHOD DETAILS 

 

Sample collection and sequencing 

 

De-identified human swabs and tissue specimens were collected under the approval of various 

Institutional Review Boards (Supplemental File 2). Animal tissue samples were collected under 

the guidance of various Animal Care and Use Committees.  

 

Nematodes were cultured out of soil samples collected in Bethesda, Maryland, USA on OP50-

Seeded NGM-lite plates (C. elegans kit, Carolina Biological Supply). 
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Viral particles were concentrated by subjecting nuclease-digested detergent-treated lysate to 

ultracentrifugation over an Optiprep step gradient, as previously described 

https://ccrod.cancer.gov/confluence/display/LCOTF/Virome 57.  Specifically, for each sample, 

no more than 0.5 g of solid tissue was minced finely with a razorblade. Alternatively, no more 

than 500 µl of liquid sample was vortexed for several seconds. Samples were transferred to 

1.5ml siliconized tubes. The samples were resuspended in 500 µl Dulbecco's PBS and Triton X-

100 (Sigma) detergent was added to a final concentration of 1% w/v. 1 µl of Benzonase (Sigma) 

was added. Samples were vortexed for several seconds. Samples were incubated in a 37°C 

water bath for 30 minutes, with brief homogenizing using a vortex every 10 minutes. After 

incubation, NaCl was added to the samples to a final concentration of 0.85M. Tubes were spun 

for 5 minutes at 5000g. Resulting supernatants were transferred to a clean siliconized tube. 

Supernatant-containing tubes were spun for an additional 5 minutes at 5000g. Resulting 

supernatants were added to iodixanol/Optiprep (Sigma) step gradients in ultracentrifuge tubes 

(Beckman: 326819) (equal volumes 27%, 33%, 39% iodixanol with 0.8M NaCl; total tube 

volume, including sample, ~5.1ml). Ultracentrifuge tubes were spun at 55,000rpm for 3.5 hours 

(Beckman: Optima L-90K Ultracentrifuge). After spin, tubes were suspended over 1.5ml 

siliconized collection tubes and pierced at the bottom with 25G needle. Six fractions of equal 

volume were collected drop-wise from each ultracentrifuge tube.  

From each fraction, 200 µl was pipette to a clean siliconized tube for virus particle lysis and DNA 

precipitation. To disrupt virus particles, 50 µl of a 5X master mix of Tris pH 8 (Invitrogen, final 

conc. 50mM), EDTA (Invitrogen, final conc. 25mM), SDS (Invitrogen, final conc. 0.5%), 

Proteinase K (Invitrogen, final conc. 0.5%), DTT (Invitrogen, final conc. 10mM) was added and 

https://ccrod.cancer.gov/confluence/display/LCOTF/Virome
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mixed by pipetting up and down. Samples were heated at 50°C for 15 minutes. Then, 

proteinase K was inactivated for 10 minutes at 72°C. To the 250 µl of sample, 125 µl of 7.5M 

ammonium acetate was added and mixed by vortexing. Then, 975 µl of 95% ethanol was added 

and mixed by pipetting. This was incubated at room temperature for 1 hour. Then, the samples 

were transferred to a 4°C fridge overnight. 

 Samples were then restored to ambient temperature. Then, samples were spun for 1 

hour at 20,000g in a temperature-controlled tabletop centrifuge set to 21°C. Supernatant was 

aspirated, and 500 µl ethanol was added to each pellet. Pellets were resuspended by flicking. 

Then, samples were spun for 30 minutes at 20,000g in a temperature-controlled tabletop 

centrifuge set to 21°C. Supernatant was aspirated, and samples were spun once more at 

20,000g for 3 minutes. Remaining liquid was carefully removed with a 10 µl micropipette. Tubes 

were left open and air dried for at least 10 minutes. 

DNA from individually collected fractions of the gradient was amplified by RCA using phi29 

polymerase (TempliPhi, Sigma) per manufacturer’s instructions.  While we expected most viral 

particles to travel to the middle of the gradient based on previous experiments, RCA was 

conducted on individual fractions spanning the gradient, in an attempt to detect viruses with 

different biophysical properties 114.   Pooled, amplified fractions were prepared for Illumina 

sequencing with Nextera XT kits. Then libraries were sequenced with Illumina technology on 

either MiSeq or NextSeq500 sequencers. Contigs were assembled using SPAdes with the 

“plasmid” setting. Circularity was confirmed by assessing assembly graphs using Bandage 115.  

 

Analysis of brain samples 
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Brain samples were initially analyzed by Optiprep gradient purification, RCA amplification, and 

deep sequencing, as described above. JC polyomavirus, which has previously been reported in 

brain samples 116, can display high buoyancy in Optiprep gradients 117. Fractions from near the 

top of the Optiprep gradient were subjected to an alternative method of virion enrichment 

using microcentrifuge columns (Pierce) packed with 2 ml of Sepharose 4B Bead suspension 

(Sigma) exchanged into PBS. Fractions were clarified at 5000 x g for 1 minute, and 200 µl of 

clarified extract was loaded onto the gel bed. The column was spun at 735 x g and the eluate 

was digested with proteinase K, ethanol-precipitated, and subjected to RCA. No additional viral 

sequences were detected by this method. 

 

The brain samples were also subjected to confirmatory analysis by RNA sequencing. RNA was 

extracted from brain tissues with Qiagen Lipid Tissue RNeasy Mini Kit and subjected to human 

ribosomal RNA depletion with Thermo RiboMinus. The library was prepared with NEBNext 

Ultra™ II Directional RNA Library Prep Kit for Illumina and subjected to massive parallel 

sequencing on the Illumina HiSeq platform (see BioProject PRJNA513058). 

 

Cenote-Taker, Virus Discovery and Annotation Pipeline 

Cenote-Taker, a bioinformatics pipeline written for this project and fully publicly available on 

CyVerse, was used for collection and detailed annotation of each circular sequence.  The flow of 

the program can be described as follows: 

(1) Identifies and collects contigs (assembled with SPAdes) larger than 1000 nts 

(2) Predicts which contigs are circular based on overlapping ends 
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(3) Determines whether circular contig has any ORFs of 80 AA or larger or else discards 

sequence 

(4) Uses BLASTN against GenBank “nt” database to disregard any circular sequences that are 

>90% identical to known sequences across a >500 bp window 

(5) Uses Circlator 118 to rotate circular contigs so that a non-intragenic start codon of one of the 

ORFs will be the wrap point 

(6) Uses BLASTX against a custom virus + plasmid database (derived from GenBank “nr” and 

RefSeq) to attempt to assign the circular sequence to a known family 

(7) Translates each ORF of 80 AA or larger 

(8) Uses RPS-BLAST to predict function of each ORF by aligning to known NCBI Conserved 

Domains 

(9) Generates a tbl file of RPS-BLAST results 

(10) Takes ORFs without RPS-BLAST hits and queries the GenBank “nr viral” database with 

BLASTP 

(11) Generates a tbl file of BLASTP results 

(12) Takes ORFs without any BLASTP hits and queries HHblits (databases: uniprot20, pdb70, 

scop70, pfam_31, NCBI_CD) 

(13) Generates a tbl file of HHblits results 

(14) Complies with a GenBank request to remove annotations for ORFs-within-ORFs that do not 

contain conserved sequences 

(15) Combines all tbl files into a master tbl file 

(16) Generates a unique name for each virus based on taxonomic results 
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(17) Generates properly formatted fsa and tbl files in a separate directory 

(18) Uses tbl2asn to make gbf (for viewing genome maps) and sqn files (for submission to 

GenBank)  

 

The source code can be found at: https://github.com/mtisza1/Cenote-Taker 

 

This work utilized the computational resources of the NIH HPC Biowulf cluster. 

(http://hpc.nih.gov).  

 

Genome maps were drawn, and multiple sequence alignments were computed and visualized 

using MacVector 16. 

 

Anelloviruses 

Analysis of linear contigs in the survey found many instances of recognizable viral sequences. 

One noteworthy example were anelloviruses, where many contigs terminated near the GC-rich 

stem-loop structure that is thought to serve as the origin of replication. This segment of the 

anellovirus genome is presumably incompatible with the short read deep sequencing 

technologies used in this study. Nearly complete anellovirus genomes, defined as having a 

complete ORF1 gene and at least 10-fold depth of coverage, were also deposited in GenBank 

(Supplementary File 2). 

 

GenBank Sequences 

https://github.com/mtisza1/Cenote-Taker
http://hpc.nih.gov/
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Amino Acid sequences from ssDNA viruses were downloaded in June 2018 based on categories 

in the NCBI taxonomy browser. As many sequences in GenBank are from identical/closely 

related isolates, all sequences were clustered at 95% AA ID using CD-HIT 119. 

 

Sequence Similarity Networks 

Amino acid sequences from GenBank (see above) and this study were used as queries for 

HHsearch (the command-line iteration of HHpred) against PDB, PFam, and CDD. Sequences that 

had hits in these databases of 80% probability or greater were kept for further analyses. Note 

that capsid protein models for some known CRESS virus families have little, if any, similarity to 

other capsid sequences and have not been determined (e.g. Genomoviridae and Smacoviridae) 

and were therefore not displayed in networks. Models used: (CRESS virus capsids 

network:5MJF_V, 3R0R_A, 5MJF_Ba, 4V4M_R, 4BCU_A, PF04162.11, 5J37_A, 5J09_C, 3JCI_A, 

cd00259, PF04660.11, PF03898.12, PF02443.14, pfam00844); (CRESS virus Rep 

network:4PP4_A,  4ZO0_A, 1M55_A, 1UUT_A, 1U0J_A, 1S9H_A, 4R94_A, 4KW3_B, 2HWT_A, 

1L2M_A, 2HW0_A, PF08724.9, PF17530.1, PF00799.19, PF02407.15, pfam08283, PF12475.7, 

PF08283.10, PF01057.16, pfam00799); (Microviridae/Inoviridae replication-associated protein: 

4CIJ_B, 4CIJ_C, PF05155.14, PF01446.16, PF11726.7, PF02486.18, PF05144.13, PF05840.12); 

(Microviridae capsid: 1M06_F, 1KVP_A, PF02305.16); (Anelloviridae ORF1: PF02956.13); 

(Inoviridae ZOT: 2R2A_A, PF05707.11). 

 

 

Phylogenetic Trees 
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Sequences from this study and GenBank were grouped by structural prediction using HHpred. 

Then, sequences were compared by EFI-EST to generate clusters with a cut-off of 1x10-5. 

Sequences from these clusters were then extracted and aligned with PROMALS3D 120 using 

structure guidance, when possible. Structures used: (Microviridae MCP: 1KVP); (CRESS virus 

capsid STNV-like: 4V4M); (CRESS virus capsid circo-like: 3JCI); (Inoviridae ZOT: 2R2A); (CRESS 

virus Rep: 2HW0) (CRESS virus/RNA virus S Domain capsid: 2IZW). The resulting alignments 

were used to build trees with IQ-Tree with automatic determination of the substitution model 

and 1000 ultrafast bootstraps 121. Models used: (Microviridae MCP: Blosum62+F+G4); 

(Microviridae Rep I: Blosum62+I+G4); (Microviridae Rep II: LG+I+G4); (Microviridae Rep III: 

VT+I+G4); (CRESS virus/RNA virus S Domain capsid: Blosum62+F+G4); (Circoviridae capsid: 

VT+F+G4); (CRESS virus capsid STNV-like: VT+F+G4); (Inoviridae ZOT: VT+I+G4); (Anelloviridae 

ORF1: VT+F+G4). Trees were visualized with FigTree (http://tree.bio.ed.ac.uk/software/figtree/) 

and iTOL 122. 

 

Expressing Potential Viral Structural Proteins in human 293TT cells 

293TT cells were transfected with potential viral structural protein expression constructs for 

roughly 48 hours.  Cells were lysed in a small volume of PBS with 0.5% Triton X-100 or Brij-58 

and Benzonase (Sigma). After several hours of maturation at neutral pH, the lysate was clarified 

at 5000 x g for 10 min. The clarified lysate was loaded onto a 27-33-39% Optiprep gradient in 

PBS with 0.8 M NaCl. Gradient fractions were collected by bottom puncture of the tube and 

screened by PicoGreen nucleic acid stain (Invitrogen), BCA, and SDS-PAGE analysis. Electron 

microscopic analysis was then performed. Expression in 293TT cells of some "dark matter" virus 

http://tree.bio.ed.ac.uk/software/figtree/
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capsids was attempted but not successful in any case. 293TT cells were generated in-house for 

the previous paper 123, and passages from original stocks were used. Authentication testing has 

not been conducted. Mycoplasma testing is conducted annually using MycoScope PCR 

Mycoplasma Detection Kit (Genlantis). 

 

Expressing Potential Viral Structural Proteins in E. coli 

Several genes that were identified by iVireons as being potential viral structural proteins were 

cloned into plasmids with a T7 polymerase-responsive promoter. Plasmids were transfected 

into T7 Express lysY/Iq E. coli, which express T7 polymerase under the induction of IPTG. 

Bacteria were grown at 37°C in LB broth until OD600 = 0.5. Flasks were cooled to room 

temperature, IPTG was added to 1 mM, and cultures were shaken at room temperature for 

approximately 16 hours. Cells were then pelleted for immediate processing. 

Total protein was extracted with a BPER (Pierce) and nuclease solution. Then, virion-sized 

particles were enriched from the clarified lysate using size exclusion chromatography with 2% 

agarose beads https://ccrod.cancer.gov/confluence/display/LCOTF/GelFiltration. Fractions 

were analyzed using Coomassie-stained SDS-PAGE gels for presence of a unique band 

corresponding to the expressed protein. Fractions of interest were analyzed using negative 

stain electron microscopy. 

 

Electron Microscopy 

Five µl samples were adsorbed onto a carbon-deposited copper grid for one minute. Sample 

was then washed 5 times on water droplets then stained with 0.5% uranyl acetate for 1 second. 

https://ccrod.cancer.gov/confluence/display/LCOTF/GelFiltration


  56 

The negatively stained samples were examined on a FEI Tecnai T12 transmission electron 

microscope. 

 

ViromeQC 

ViromeQC was run on reads from each sample corresponding to an SRA run. The “human” 

setting was used, and the diamond alignment to “31 prokaryotic single-copy markers” was 

reported. 

 

Mapping reads to reference genomes 

Viral genomes from RefSeq were downloaded from NCBI. On RefSeq and “This study” genomes, 

RepeatMasker was used with “-noint” and “-hmmer” settings to mask low-complexity regions 

to prevent nonspecific mapping. However, this likely led to some degree of under-mapping. 

Reads were trimmed with fastp and aligned with Bowtie2 using default settings. 

 

Sequencing 

Illumina sequencing was conducted at the CCR Genomics Core at the National Cancer 

Institute, NIH, Bethesda, MD 20892. 

 

DATA AND CODE AVAILABILITY 

 

All reads and annotated genomes associated with this manuscript can be found on NCBI 

BioProject Accessions PRJNA393166 and PRJNA396064. 
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Cenote-Taker, the viral genome annotation pipeline, can be used by interested parties on the 

Cyverse infrastructure: http://www.cyverse.org/discovery-environment. 

 

ADDITIONAL RESOURCES 

 

Relevant protocols on lab website: https://ccrod.cancer.gov/confluence/display/LCOTF/Virome 
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3  Bibiviruses are a New, Unusual Virus Family Common in the Human 

Gut 

Abstract 

Humans are covered in a complex network of microbial life, including bacteria, eukaryotes, and 

viruses. Uncovering these lifeforms and discerning which are important for health and disease 

has been the topic of much research, especially since metagenomic sequencing has enabled 

detection of organisms without having to propagate them in culture. Viruses still remain largely 

mysterious, however, and virus-enriched samples typically contain an abundance of 

unrecognizable sequences. Some of these unknown sequences are likely to be viruses of 

previously unrecognized types. In this report we show that one group of previously 

unrecognizable sequences are an unusual class of viruses infecting Bacteroidetes bacteria. 

Computational and experimental evidence suggests that the emerging “bibiviruses” encode a 

major capsid protein completely different from any known virion structural protein. Bibiviruses 

are among the most abundant virus taxa in human gut samples. 

Introduction 

The network of complex microbial life residing in and on humans is known as the microbiome36. 

It is estimated that each person contains at least as many bacterial cells as human cells124. 

Many human cells have active or latent viral infections, and each bacterial species likely hosts 

multiple viral species4. Because of this, there may be more viral genome copies within humans 

than all the cellular genome copies combined125.  
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 The effects of the bacterial component of the human microbiota on human health and 

disease has been under intense study. It is clear that bacteria can have a variety of positive 

effects on us21,124 and, at the same time, associations between specific bacteria and a variety of 

diseases have been established126-131. However, just as infection with certain viruses can have 

drastic effects on humans, bacterial viruses (phages) can also have drastic effects on their host. 

The predator/prey relationship that defines many phage/bacterium dynamics can alter the 

population density of certain bacteria23, effectively regulating the “dose” of that bacterium. On 

the other hand, many phages will be retained as an integrated or episomal prophage within the 

host bacterium, rarely lysing their host cells132. These temperate phages often contain genes 

that can dramatically alter the phenotype of the bacteria, such as toxins133, virulence factors24, 

antibiotic resistance genes134, photosystem components135, other auxiliary metabolic genes136, 

and CRISPR-Cas systems137, along with countless genes of unknown function. To understand 

how humans achieve a successful or unsuccessful balance as a “holobiont”138, the effects and 

mechanisms of phages on their bacterial hosts and, in turn, on us will have to be understood. 

 In general, the phage knowledge base, including genome sequences and structure of 

virion proteins, stems from phages that cause dramatic plaques of lysed bacteria on lawns of 

easily culturable bacterial species9. Although this has been a powerful approach for identifying 

and describing a diverse range of phages, it remains unclear how many additional phage classes 

have been missed with the classic methods.  

 In many individuals, bacteria from the order Bacteroidales are the most abundant taxon 

in the gut. Bacteroidales are also the source of much interpersonal variation30. These bacteria, 

like many other anaerobes, are challenging to grow in culture, often precluding them from 
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biochemical interrogation or use in cell culture studies. Despite this, recent advances have 

demonstrated roles for specific members of this order in immune regulation139, 

cardiomyopathy140, and alleviation of obesity141. The phage diversity of Bacteroidales is largely 

unaccounted for. For example, only in 2014 was the Bacteroidales phage crAssphage 

discovered, and determined to be by far the most abundant known phage in the human gut14. 

The discovery relied entirely on computational assessment of metagenomic data and, while it is 

a tailed dsDNA phage like other caudoviruses, it was so divergent from any previously 

characterized virus sequence that it was proposed to represent a new viral family. It took 

several years before a related "crAss-like" phage was able to be cultured142 and the initially 

discovered crAssphage has still not been cultured. 

 The problem of a limited assay being the basis for almost all phage knowledge is 

apparent when looking at metagenomic sequences from "viromic" samples enriched for 

nuclease-resistant sequences associated with virion-sized particles. Typically, 50-70% of 

sequences from massively parallel sequencing of viromes are not discernably similar to known 

virus types67. Some of these unknown sequences may be mobile genetic elements that 

parasitize viruses by packaging themselves into viral capsids (for example, phage-inducible 

chromosomal islands (PICIs))143. Other unrecognizable sequences may be viruses that are too 

divergent from known virus types to be detected by current bioinformatic methods. A 

theoretical third category of unrecognizable elements could be viruses that have no shared 

ancestry with known virus families. 

 In this study, we describe bibviruses, a new type of virus infecting Bacteroidales 

bacteria. Bibiviruses encode a major capsid protein that is not recognizably similar to previously 
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identified capsid proteins. Virome analysis reveals that at hundreds of unique bibiviruses exist 

and are present in human gut samples from around the world, comprising up to 36% percent of 

reads in viromic datasets. A strain of Parabacteroides distasonis with an integrated bibivirus 

(prophage) was cultured, and bibivirus particles were isolated. 

Results 

Identification of a common unknown element in stool 

As part of the Global Enteric Multi-center Study144, i.e. "GEMS", Viromic preps of filtered stool 

from 78 children, some with diarrheal disease, living in The Gambia were sequenced and 

analyzed (see Methods). Unlike many analyses in which reads or contigs are only considered if 

they fall into recognizable bins based on similarity to known viruses, the most prevalent 

sequences across all samples were determined by creating an occurrence profile for each 

unique gene14. As expected, sequences corresponding to adenovirus, rotavirus, and crAssphage 

were all detected, alongside human mitochondrial DNA (Fig. 3.1A). The most common non-

human sequences (present in about half of patients) corresponded to an unknown element of 

just over 16kb. This element encodes a superfamily 2 DNA helicase gene (replicase), a Xer-like 

tyrosine recombinase (integrase), and a lysozyme gene distantly related to those of dsDNA 

phages and other transposable mobile genetic elements. The elements were not found to 

encode detectable virion structural genes based on BLAST and HHpred searches. This unknown 

viromic element, shown graphically in Fig 3.1B, shows high nucleotide similarity over half its 

length to a chromosomal region from Alistipes megaguti (GenBank LR027382), a bacterium in 

the order Bacteroidales, as well as translated nucleotide TBLASTX  similarity across ~60% of its 

length to a handful of Bacteroides and Parabacteroides chromosomes. 
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Figure 3.1 Identification of an unknown element in virome samples of children in Gambia 
(A) Heatmap of highly abundant genes from viromic preps of fecal samples from Gambian 
children. The top bar indicates subject age (purple=1 year, orange=2 years, yellow=3-4 years, 
black=unavailable). Second row of bars indicate diarrheal status (green=healthy, red=diarrheal, 
black=unavailable). (B) The genome map for the unknown viromic element. 
 

* Figure 3.1A Courtesy of Mathieu Almeida and Laura Tanase (U. Maryland) 
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Analysis and expression of a novel putative major capsid protein 

 In order to detect potential virion structural genes encoded by this element that lacked 

discernable homology known sequences and structures, an alignment-independent prediction 

strategy, iVireons, was used to analyze all genes12. To reduce noise from the signal of iVireons, 

homologues of each gene were recruited via BLASTP of GenBank nr and fed together into 

iVireons using the major capsid protein (MCP) model. One conserved ORF gave uniformly high 

iVireons MCP scores (Fig 3.2A) while other predicted proteins generally showed low or non-

uniform iVireons scores (data not shown). 

 Computational analyses of the candidate MCP predicted that the secondary structure 

consists of several alpha-helical domains and a disordered C-terminus (Fig 3.2C). This structure 

is conserved in all homologues (data not shown). Overall, it is likely that this protein encodes 

multiple coil-coil domains (Fig 3.2B). MCPs of dsDNA phage that form icosahedral virions 

typically fold into beta jellyroll structures, but the lack of beta sheets in the unknown viromic 

element likely precludes that possibility. Some MCPs, such as those from Hepadnaviruses are 

composed primarily of alpha helices with a C-terminal disordered domain, but these share no 

amino acid similarity to the Gambia virome element protein. 

 A codon-optimized version of the candidate MCP was synthesized and expressed in E. 

coli. The expressed proteins assembled into roughly spherical ~100 nm particles similar to 

immature capsid particles (Fig 3.2E). 
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Figure 3.2 Analysis and Expression of prospective capsid protein from unknown viromic element 
(A) iVireons scores of different gene families from 1 (likely a capsid protein) to -1 (unlikely a 
capsid protein). (B) Coil-coil probability plot along the length of an example of the candidate 
MCP. (C) Secondary structure analysis. (D) Structural homology prediction and illustration of the 
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coil-coil domain of nuclear pore complex nup155 protein. (E) Negative stain electron 
microscopy image of the unknown viromic element putative capsid protein structures from 
exogenous expression and virus-like particle enrichment in E. coli. 
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Induction of virion production with bile salts 

 To establish whether the novel element represents a class of bona fide viruses, 

sequences of bacteria from order Bacteroidales were scanned for genes with similarity to the 

candidate virion protein (Fig 3.2) with the goal of finding a culturable isolate carrying an intact 

prophage. An in-house Parabacteroides isolate, P. distasonis APC 919/143, from a healthy 

volunteer was found to have an element integrated into the main chromosome with a gene 

with ~30% amino acid identity to the candidate MCP of the unknown viromic element. 

 Traditional prophage induction methods were used to try to induce prophage from this 

isolate, including Mitomycin C, UV light and H2O2. These methods were successful at inducing a 

caudovirus prophage but did not induce the unknown element (data not shown). However, 

when bile salts were added to the growth media of mid-log growth bacteria, replication of the 

unknown element was induced at appreciable levels. Filtrate of the bacteria supernatant was 

collected, and nucleases were added to remove non-encapsidated DNA. Then, the supernatant 

was spun down an Optiprep buoyant density gradient to enrich for virus like particles. 

Individual Optiprep fractions were sequenced, and reads were aligned back to the P. distasonis 

APC 919/143 reference genome. The analysis showed a discrete  ~22kb element with a peak 

abundance at the ~27% Optiprep fraction (fraction 3) (Fig. 3.3A). Negative stain microscopy 

images of peak fractions show spherical particles of 100 - 120nm each (Fig. 3.3B). We thus 

suggest it is appropriate to refer to this class of elements as viruses and suggest the name 

“bibiviruses,” a portmanteau representing bile-inducible Bacteroidales-infecting viruses. 

Note to committee: Mass Spec of particles is delayed by COVID-19 lab shutdown 
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Figure 3.3: Induction and Isolation of a Bibivirus from Parabacteroides distasonis 
(A) Top: Genome map of P. distasonis APC 919/143 bibivirus (accession number ###). Bottom: 
read alignment to scaffold from P. distasonis APC 919/143 reference genome. Sequences were 
derived from an optiprep gradient fractionation and scaled to Fraction 3. Unenriched genomic 
DNA shown for comparison. (B) Putative Bibivirus particles from Fraction 3 in (A). 
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Bibiviruses can be found in viromics datasets from people around the globe 

 To investigate the diversity and general prevalence of bibiviruses, de novo assembly was 

conducted on 389 publicly available virome deep sequencing samples from several labs. 

Predicted open reading frames from contigs over 2000 nt were compared to a Hidden Markov 

Model composed of a sequence alignment of 30 bibivirus MCPs145. This identified 530 bibivirus 

contigs representing 290 unique virus taxa with a cutoff of 95% average nucleotide identity. A 

phylogenetic tree was drawn based on the putative virion protein (Fig. 3.4). CRISPR spacers 

were found for 35 bibiviruses, almost entirely from genomes of bacteria from genera 

Parabacteroides and Prevotella. This is a relatively frequent spacer acquisition considering 

many contigs in the bibivirus dataset appear to be partial viral genomes, and the same analysis 

on a comparable dataset of crAss-like phage contigs (also mostly incomplete) found spacers for 

7 of 220 contigs, with 6 of 7 spacer sets derived from bacteroidales bacteria. Some virome 

contigs with CRISPR spacer matches to Parabacteroides (Fig 3.4) (e.g., 

SAMN10290196_a1_ct2444 and others) showed genome organization similar to the bibivirus 

isolated from P. distasonis APC 919/143, while others showed very different gene content and 

arrangement. 
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Figure 3.4: Overview of bibivirus phylogeny and host association 
Phylogenetic tree from putative capsid proteins and CRISPR-determined host abbreviated in 
bold. Prev=Prevotella, Para=Parabacteroides. 
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 Reads from several publicly available gut virome sequencing projects were mapped to 

the 290 unique bibivirus contigs (Figure 3.5). In a majority of samples, 1-36% of reads mapped 

to bibivirus contigs. The analysis gives a general impression that bibiviruses may be more 

abundant in fecal samples from African and South American individuals than European 

individuals (Figure 3.5), but it is impossible to compare between studies that use somewhat 

different methods for virus-like particle enrichment and library preparation. 
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Figure 3.5: Overview of bibivirus prevalence in different regions 
Heatmap colors are scaled the same across plots. Cameroon samples derive from 
PRJNA491626. Amerindian samples derive from PRJNA418044. European samples derive from 
PRJNA407341, PRJNA385126, and PRJEB29491.  
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Discussion 

Many studies have generated and analyzed metagenomic data to discover new viruses. Most of 

these studies only consider genes with recognizable sequence similarity to known virus 

hallmark genes. This is understandable, as it allows high-throughput analysis and confident 

determination of viral sequences. A few studies have taken alternative approaches to 

discovering highly divergent virus groups. Notably, Seguritan et al.12 used artificial neural 

networks to uncover sequences resembling virion structural genes that were not detectable 

with primary sequence alignment. Obbard et al.146 looked at insect anti-viral defense systems, 

which acquire and synthesize small RNA molecules from viral invaders as an RNAi system, to 

discover a family of segmented RNA viruses with a highly divergent RNA-dependent RNA 

polymerase gene and a still-unidentifiable capsid gene. Dutilh et al.14 used occurrence profiles 

to find a sequence represented in twelve out of twelve virus-like particle preparations from 

human stool before identifying virus-like features within the sequence.  

 Similarly, this study used an occurrence profile on viromic preps of fecal samples from 

children in The Gambia to detect a high-prevalence group of elements that were initially 

unrecognizable. The elements, which we named bibiviruses, encode a protein that was 

predicted by artificial neural network analyses to be a potential MCP. Expression of the 

candidate MCP in E. coli led to assembly of roughly spherical ~100 nm particles. Further, an 

endogenous bibivirus of Parabacteroides distasonis was induced with bile salts (but not with 

more traditional prophage-induction methods, such as mitomycin C). Virions recovered from 

bile salt-treated cultures were slightly over 100 nm in size and were patterned with low knobby 

protrusions. The appearance of the particles is reminiscent outer membrane vesicles147. It is 
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conceivable that bibivirus particles have been routinely seen in electron microscopy images of 

virus-like particle preparations and have been incorrectly discounted as membrane vesicles.  

 Based on CRISPR spacer analysis, it appears that bibiviruses primarily infect bacteria 

within the order Bacteroidales,  which is often the most abundant taxon in the human gut. 

Some Bacteroidales, such as certain strains of Bacteroides fragilis, can be pathogenic to 

humans148. As bibiviruses often encode outer membrane proteins and other accessory genes, it 

will be interesting to see if bacteria with endogenous bibivirus prophage have different 

virulence profiles than those without. 

 

Methods 

Identification of an unknown element in virome of GEMS cohort 

Stool samples were previously collected from Gambian children, aged from several days to 59 

months, by the Global Enteric Multicenter Study initiative (GEMS) in 2008144. Hospital staff at 

specified sites in the Gambia collected case samples from children with moderate to severe 

diarrhea and who exhibited symptoms including inelastic skin, bloody stool, or the need for IV 

fluids, whereas caretakers collected control samples from healthy children according to the 

methods in the paper by Kotloff et al144. The participants’ guardians gave permission for the 

participants’ involvement in the study, as the participants themselves were underage. GEMS 

passed the Institutional Review Boards (IRB) from each country where sample collection 

occurred. 

 Via GEMS, stool samples were refrigerated and tested within 24 hours of collection. 

Viral-like particles (VLP) were separated and collected from the sample by centrifugation at 
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16,000 g for 1 minute. Iterations of sample washing and centrifugation were performed to 

enrich virus particles in the supernatant. Reverse transcription was performed so RNA ( in the 

form of cDNA) and DNA from the virus-enriched prep were available for sequencing. DNA was 

extracted with a Qiagen QIamp stool extraction kit and sequenced using Roche 454 Sanger 

sequencing. 

 Roche 454 sample reads were subjected to de novo assembly using Newbler 2.9. To 

create the gene catalog (Fig. 3.1A), 454 reads were assembled into contigs using Newbler 2.9. 

Prodigal 2.6 was used to predict genes on the contigs, which were then passed through cd-hit 

4.6.1 to create a non-redundant gene catalog. The gene nucleotide sequences were clustered 

with CD-HIT using a minimum overlap of 80% and an identity of 95%. Only the genes contained 

in clusters of 4 genes or more were kept for further analysis. Using the genes as a reference, 

reads were aligned using BLASTn with the same parameters used for virus detection. Genes 

were clustered using the pheatmap and Euclidean distance method. 

Computational analysis of candidate major capsid protein 

The iVireons Major Capsid Protein model was accessed via https://vdm.sdsu.edu/ivireons/. 

Positive and negative control proteins for iVireons comparison were identified by key word 

search using GenBank. 

 Secondary structure, DeepCoil, and structural homology prediction were conducted the 

with MPI bioinformatics toolkit17: https://toolkit.tuebingen.mpg.de/. 

Major capsid protein expression in E. coli 

Predicted MCP sequences were codon optimized with IDT optimization tool and cloned into 

plasmids with a T7 polymerase-responsive promoter. Plasmids were transfected into T7 Express 
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lysY/Iq E. coli. Bacteria were grown at 37°C in LB broth until OD600 = 0.5. Flasks were cooled to 

room temperature, IPTG was added to 1 mM, and cultures were shaken at room temperature 

for approximately 16 hours. Cells were then pelleted for immediate processing. 

 Total protein was extracted with a BPER (Pierce) and nuclease solution. Then, virion-

sized particles were enriched from the clarified lysate using Optiprep gradient 

ultracentrifugation. Fractions were analyzed using Coomassie-stained SDS-PAGE gels for 

presence of a unique band corresponding to the expected size of the candidate MCP. Fractions 

of interest were analyzed using negative stain electron microscopy. 

Induction and enrichment of bibivirus from Parabacteroides distasonis APC 919/143 

Parabacteroides distasonis APC 919/143 was isolated from the stool of a healthy volunteer, and 

the genome was sequenced in-house. The strain was grown in Cooked Meat Medium from 

Hardy (Cat#: K19) under anaerobic conditions. All inductions, including bile salt (Sigma: B8756-

10G), were done by growing the bacteria to mid-log phase in liquid broth. Then, the candidate 

induction agent was added directly to the broth and cultures were incubated overnight for 

approximately 18 hours. Then, cultures were put on ice for 10 minutes and spun twice at 5000 x 

g for 10 minutes, with the supernatant being collected for further processing. Benzonase and 

MgCl2 to 2mM were added to the clarified supernatant and tubes were incubated at 37°C for 30 

minutes to digest unencapsidated DNA. The nuclease-digested supernatant was then subjected 

to filtration through 0.45 µm filters twice to remove large particulate material. Finally, the 

filtrates were overlayed onto Optiprep step gradients of 21%/27%/33%/39% w/v and spun at 

50,000rpm for 3.5 hours in an ultracentrifuge (Beckman: Optima L-90K Ultracentrifuge). Six 
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equal-volume fractions were drip extracted from the ultracentrifuge tubes by piercing the 

bottom with a 25-gauge needle.  

 To disrupt virus particles, 50 µl of a 5x master mix of Tris pH 8 (Invitrogen, final conc. 50 

mM), EDTA (Invitrogen, final conc. 25 mM), SDS (Invitrogen, final conc. 0.5%), Proteinase K 

(Invitrogen, final conc. 0.5%), DTT (Invitrogen, final conc. 10 mM) was added to 200 µl of each 

fraction and mixed by trituration. Samples were heated at 50°C for 15 minutes. Then, 

proteinase K was inactivated for 10 minutes at 72°C. 

 DNA was extracted with NEB Monarch DNA Gel Extraction Kit. Sequencing was 

conducted using Illumina MiSeq instrumentation at the NCI sequencing core. 

 Reads were trimmed and quality controlled with fastp and reads were aligned to the 

Parabacteroides distasonis APC 919/143 genome with Bowtie2 and alignment plots were 

visualized with Integrative Genome Viewer. 
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4  Cenote-Taker2 Democratizes Virus Discovery and Sequence 

Annotation 

Abstract 

Viruses, despite their great abundance and significance in biological systems, remain largely 

mysterious. Indeed, the vast majority of the perhaps hundreds of millions of viral species on the 

planet remain undiscovered. Many viruses deposited in central databases like GenBank and 

RefSeq are littered with genes annotated as “hypothetical protein” or the equivalent. Cenote-

Taker2, a virus discovery and annotation tool available on command line and with a graphical 

user interface with free high-performance computation access, utilizes highly sensitive models 

of hallmark virus genes to discover familiar or divergent viral sequences from user-input 

contigs. Additionally, Cenote-Taker2 uses a flexible set of modules to automatically annotate 

the sequence features of contigs, providing more gene information than comparable tools. The 

outputs include readable and interactive genome maps, run summary tables, and files that can 

be directly submitted to GenBank. We expect Cenote-Taker2 to facilitate virus discovery, 

annotation, and expansion of the known virome. 

 

 

Introduction 

 Virus hunters have a challenging signal-to-noise problem to consider. For example, 

animals and bacteria share homologous genes with more amino acid identity than even the 
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most-conserved genes in some virus families (for example, GenBank sequences: polyomavirus 

Large T antigen [NP_043127.1 vs. YP_009110677.1] and 60S ribosomal protein L23 

[CUU95522.1 vs. NP_000969.1]). Further, there are no universal genes found in all viral 

genomes that could be used to probe complex datasets for viruses in the same way cellular life 

can be detected through PCR targeting ribosomal sequences. Finally, at least hundreds of 

millions of virus species are likely to exist on earth4, but sequences for only tens of thousands of 

virus species are deposited in the central GenBank virus database. Fewer than 10,000 virus 

species exist in the authoritative RefSeq database. Several tools have been developed to detect 

virus sequences in complex datasets. Strategies include detection of hallmark genes conserved 

within known virus families46, detection of short nucleotide sequences believed to be enriched 

in viruses (deepvirsorter, arXiv:1806.07810), or the ratio of genes common to virus genomes to 

genes common to non-viral sequences149. However, each of these tools has pitfalls that can 

lead to false positives or false negatives and some tools are limited by minimum sequence 

length or are only geared to detect a limited range of virus families. 

 Beyond discovery and detection, de novo annotation of contigs representing viruses 

presents a number of challenges. To list a few, determination of genome topology, accurate 

calling of open reading frames, determining the virus-chromosome junction in integrated 

proviruses, resolution of taxonomy, and, especially, accurate annotation of highly divergent 

homologs of known genes all present technical hurdles. An even deeper problem is the 

misannotation of genes in GenBank entries, including the authoritative RefSeq virus database. 

 This manuscript presents version 2.0 of our Cenote-Taker pipeline, which was originally 

geared toward annotation of viruses with circular DNA genomes150. This flexible tool enables 
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the discovery and annotation of all virus classes and is available for use on Linux terminal and as 

a graphical user interface (GUI) with free compute cluster usage on CyVerse. Cenote-Taker 2 

outpaces comparable tools in gene annotation by providing information for a higher percentage 

of genes with a higher degree of accuracy, especially for virus hallmark genes. Additionally, 

Cenote-Taker 2 performs better in discovery of viral sequences in complex datasets, with lower 

false positive and false negative rates than other available tools. 

 

Results  

Cenote-Taker2 process overview 

 A basic run of Cenote-Taker2 requires only a file of contigs and a file with metadata that 

enables easy submission of annotated sequences to GenBank. A number of optional settings 

allow users to customize the pipeline. In-depth discussion of the options can be found at the 

Cenote-Taker2 GitHub repo and wiki.  Figure 4.1 provides a visual of Cenote-Taker2 workflow. 

First, Cenote-Taker2 analyzes contigs above a user-determined length and attempts to detect 

two possible hallmarks of some types of virus genomes - circularity or the presence of inverted 

terminal repeats (ITRs). Circles are rotated to a position where no open reading frames (ORFs) 

overlap the wrap-point. An optional step calculates the read depth of each contig. All input 

contigs are then scanned for the presence of a curated set of hallmark genes specific to known 

virus families. For users who wish to use Cenote-Taker2 to discover novel viruses in complex 

datasets, only contigs containing the minimum user-determined number of virus hallmark 

genes are kept for further analysis. For users who have indicated that their input contigs are 

pre-filtered to only contain viral contigs, all contigs are kept and annotated.  

https://de.cyverse.org/de/
https://github.com/mtisza1/Cenote-Taker2
https://github.com/mtisza1/Cenote-Taker2/wiki
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 Many viral genomes are integrated into bacterial chromosomes. In datasets likely to 

contain cellular chromosomes, a single contig might thus contain a virus sequence flanked on 

one or both sides by a cellular sequence. Users can choose to let Cenote-Taker2 prune flanking 

cellular sequences and generate a genome map for the viral portion of the contig. Another 

optional module conducted at this step queries a nucleotide database, such as GenBank nt, 

with BLASTN58, and sorts contigs with at least 90% average nucleotide identity to an entry in the 

database. 

 Next, candidate tRNA genes are detected and annotated151. A tentative taxonomy of 

each contig is then guessed using BLASTX against a custom database containing Refseq virus 

and plasmid sequences from GenBank. This taxonomy is used to determine the best ORF-caller 

(PHANOTATE for putative bacteriophage152, Prodigal for other viruses153). ORFs are then 

functionally annotated based on validated datasets using tools for detection of remote 

homologs (i.e. hmmscan145, RPS-BLAST154, HHblits/HHsearch74). In these steps, only carefully 

curated databases (CDD, PFam, PDB, Cenote-Taker2 hallmark database) are queried to avoid 

propagation of mis-annotated sequences in databases such as GenBank nr. All annotation, 

taxonomy information, and metadata are combined to generate several outputs. Each contig is 

represented as an interactive genome map file (.gbf), a gene feature file (.gtf), and a file that 

can be used for GenBank submission (.sqn). Finally, key information on all annotated contigs is 

provided in a single summary table (.tsv). 
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Figure 4.1: Schematic of Cenote-Taker2 Processes 
Visual representation of Cenote-Taker2 virome analysis. Boxes with hashed lines represent 
optional inputs or processes. 
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Cross-comparison of Virus Annotation Modules 

VirSorter and VIGA (https://github.com/EGTortuero/viga ) are virus genome annotation tools 

comparable to Cenote Taker 2. A comparison of features is shown in Table 1.  Two arbitrarily 

chosen “challenging” viral genomes were chosen as initial case studies for comparing the three 

pipelines (Fig. 4.2). For the newly described Yaravirus (doi: 10.1101/2020.01.28.923185), only 

Cenote-Taker2 could discern an annotation for any genes, with the major capsid protein (MCP), 

packaging ATPase, and replicative helicase all being annotated. For a previously undiscovered 

crAss-like phage, Cenote-Taker2 again annotates more genes than the other tools. VirSorter 

maps are not shown as they VirSorter didn't improve upon annotation of any gene as compared 

to VIGA or Cenote-Taker2. 
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Figure 4.2: Comparison of genome maps from VIGA and Cenote-Taker 
Annotation pipelines were run with optimal options. (A) Yaravirus is a newly reported 
megavirus-like virus. (B) crAss-Like virus sp. XX is a tailed phage discovered in a human gut 
metagenome (SRR6128032). 
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Generation of Virus Hallmark Gene Hidden Markov Models 

Proteins from various public databases, including virus RefSeq and assemblies of virus-enriched 

datasets, were clustered using EFI-EST76 (pairwise E value cutoff < 1e-10). Clusters were 

visualized in Cytoscape77, and multi-lobed clusters were manually divided or discarded. Each 

cluster of three or more proteins was aligned using MAFFT105. The resulting multiple sequence 

alignments (MSAs) were used as queries for HHsearch structural prediction and distant 

homology detection searches against PDB, CDD, and Pfam. MSAs without confident alignment 

to any models in this search were again used as queries for HHblits against UniProt. Each MSA 

with a hit in either search was used to generate a Hidden Markov Model (HMM) using Hmmer. 

All HMMs were kept for further consideration if the name corresponded to a possible viral 

hallmark gene (e.g. major capsid protein). All Putative Hallmark HMMs were tested for 

specificity with a two-step validation by first querying against a negative control database, 

namely, human proteins from RefSeq, using Hmmer. Second, protein sequences from a variety 

of human and environmental metagenome-derived contigs were queried against the database 

of the remaining HMMs using Hmmer and any proteins with "hits" to the database were then 

cross-queried using HHsearch against PDB, CDD, and Pfam. If these "hit" proteins had similarity 

to models in these databases that were qualitatively different from the identity of the putative 

Hallmark HMM, the Hallmark HMM was discarded. Some replication-related Hallmark HMMs 

were later removed because they were similar to genes typically found on plasmids or 

conjugative transposons. Finally, HMMs from pVOGs (http://dmk-brain.ecn.uiowa.edu/pVOGs/) 

and PFAM were considered and validated in the same manner. 
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Comparison of Virus Discovery Module 

Cenote-Taker2 was compared to three leading virus discovery tools, each with its own method 

for detecting viral sequences. Like Cenote-Taker2, VirSorter uses a virus hallmark gene 

detection approach. One limitation is that it is only designed to detect bacteriophages.  

DeepVirFinder uses a machine learning approach to find short nucleotide motifs common in 

viral sequences. An additional pipeline, Non-Targeted, compares predicted protein sequences 

encoded by a contig to a curated set of known viral proteins. A limitation of Non-Targeted is 

that it only considers contigs greater than 5 kb, while the other tools have no minimum length. 

The main types of datasets that might be searched are contigs derived from DNA samples 

enriched for viral sequences (DNA virome), RNA  samples enriched for viral sequences (RNA 

virome), DNA from unenriched samples (genomes and metagenomes), RNA from unenriched 

samples (transcriptomes and metatranscriptomes). An additional parameter that can aid 

detection of ssDNA viruses is use of a second strand synthesis step, often from multiple 

displacement amplification. Five datasets, one of each type, were assembled, and contigs 

greater than 1000 nucleotides were analyzed. Cenote-Taker outperformed all other discovery 

tools for finding contigs with viral structural or replication genes for each type of dataset (Fig. 

4.3, Fig. 4.4, Fig. 4.5, Fig. 4.6, Fig. 4.7). In particular, Cenote-Taker2 had the highest number of 

total hits from a dataset consisting primarily of ssDNA viruses (Fig. 4.4) RNA virome dataset (Fig. 

4.6).  Although DeepVirFinder produced more hits for some datasets, it is unclear whether the 

unique DeepVirFinder hits are really viral. 
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 Figure 4.3: Comparison of virus discovery tools for DNA virome from human stool 
A dataset for human stool enriched for nuclease-resistant DNA in virus-sized particles 
(SRR6128021) was assembled into contigs. Contigs > 1000 nucleotides were then analyzed 
using four virus detection/discovery pipelines. (A) Comparison of the overlap of contigs the 
various pipelines designated as viral. Maps of representative examples of contigs the indicated 
pipeline uniquely called as viral are shown on the right side of the panel.  (B) Contig attribute 
chart showing only contigs called uniquely by Cenote-Taker2, DeepVirFinder, and VirSorter. 
Each contig is displayed as a horizontal line with the line length corresponding to the sequence 
length (x-axis). 
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Figure 4.4: Comparison of virus discovery tools for ssDNA virome from wastewater plant 
This dataset (SRR3580070) consists of contigs greater than 1000 nucleotides from wastewater 
enriched for virus-like particles followed by rolling circle amplification with DNA sequencing. (A) 
Comparison of the overlap of four different virus discovery/detection tools.  (B) Contig attribute 
chart showing only contigs called uniquely by Cenote-Taker2, DeepVirFinder, and VirSorter. 
Each contig is displayed as a horizontal line with the line length corresponding to the sequence 
length. 
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Figure 4.5 : Comparison of virus discovery tools for DNA metagenome from Amazon River water 
This dataset (ERR2338392) consists of contigs greater than 1000 nucleotides from water from 
the Amazon River with DNA sequencing. (A) Comparison of the overlap of four different virus 
discovery/detection tools.  (B) Contig attribute chart showing only contigs called uniquely by 
Cenote-Taker2, DeepVirFinder, and VirSorter. Each contig is displayed as a horizontal line with 
the line length corresponding to the sequence length. 
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Figure 4.6: Comparison of virus discovery tools for RNA virome from sewage 
This dataset (ERR3201762) consists of contigs greater than 1000 nucleotides from sewage 
enriched for virus-like particles with RNA sequencing. (A) Comparison of the overlap of four 
different virus discovery/detection tools.  (B) Contig attribute chart showing only contigs called 
uniquely by Cenote-Taker2, DeepVirFinder, and VirSorter. Each contig is displayed as a 
horizontal line with the line length corresponding to the sequence length. 
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Figure 4.7: Comparison of virus discovery tools for RNA metatranscriptome from Tasmanian 
devil stool 
This dataset (SRR8048121) consists of contigs greater than 1000 nucleotides from Sarcophilus 
harrisii stool with RNA sequencing. (A) Comparison of the overlap of four different virus 
discovery/detection tools.  (B) Contig attribute chart showing only contigs called uniquely by 
Cenote-Taker2, DeepVirFinder, and VirSorter. Each contig is displayed as a horizontal line with 
the line length corresponding to the sequence length. 



  95 

Prophage Pruning Module 

When this option is selected, linear contigs will get ORF calls via Prodigal, then ORFs will be 

iteratively searched with 1) HMMSCAN of the custom virus hallmark gene database, 2) 

HMMSCAN of the custom common virus gene database, and 3) RPS-BLAST of CDD. Each gene is 

then considered to be 1) a virus hallmark gene, 2) a common viral gene (hit in the custom 

common virus gene database or hit in CDD of a domain found in 10 or more RefSeq 

Caudovirales genomes or hit in CDD with “PHA0” prefix), 3) a common chromosomal gene (all 

other CDD hits), or 4) an unknown gene (no hits in any of these databases). Then, based on the 

coordinates of the ORFs and their categorization, each nucleotide position in the contig is 

scored. Bases within virus hallmark or common viral genes are scored as 10. Bases within 

unknown genes are scored as 5 (bacteriophage are enriched for these genes). Bases in 

intergenic regions are scored as 0. Finally, bases within known bacterial genes are scored as -3. 

The sum of 5 kb windows tiled every 50 bases is calculated then scores are smoothed based on 

the scores of adjacent windows. Contig segments of 1 or more consecutive windows with a 

positive score are resolved, and segments containing virus hallmark genes are designated as 

viruses or virus fragments. Example prophage calls and virus genome maps from a Bacteroides 

xylanisolvens genome (GenBank: ASM654696v1) are shown in Figure 4.8. 
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Figure 4.8: Cenote-Taker2 analysis of Bacteroides xylansolvens genome (ASM654696v1) 
The circular map represents the B. xylansolvens genome annotated with coordinates of the 
prophage called with Cenote-Taker2. A map of each prophage is shown.  
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Discussion 

 We expect Cenote-Taker2 will prove useful to all microbiologists interested in analyzing 

viruses in their sequencing data. Both the ability to easily discover viruses as well as the ability 

to confirm putative viruses by visualizing genome maps, should allow scientists to confidently 

move from largely unintelligible contig .fasta sequences to meaningful analysis of their data. 

Furthermore, because Cenote-Taker2 eases submission of annotated genomes to GenBank, 

even those who don't use Cenote-Taker2 will indirectly benefit by having a larger, better-

annotated, central sequence database. 

 Two annotation challenges of viral coding regions that are not resolved with Cenote-

Taker2 are frame-shifting, which is documented in some RNA viruses and dsDNA bacteriophage, 

and intron-containing genes, which occur in many eukaryotic viruses. The authors are not 

aware of a way to automate resolution of these features. 

 Cenote-Taker2 outperforms other virus discovery pipelines for a variety of reasons. 

While both VirSorter and Non-Targeted employ hidden Markov models of viral genes to some 

extent, it's likely that the models developed for Cenote-Taker2 represent more of the diversity 

of viral hallmark genes. Further, since contigs are penalized by Non-Targeted if they contain 

common chromosomal genes, contigs representing a virus sequence flanked by a chromosomal 

sequence might be discarded instead of pruned. DeepVirFinder uses a fundamentally different 

approach, looking for nucleotide k-mers of different lengths to determine if a contig is a virus. 

Two reasons why this approach can fall short are: (1) nucleotide sequence space may be unable 



  98 

to adequately capture the vast diversity of virus genomes (2) DeepVirFinder was trained on 

"virome" assemblies. Physical enrichment of virus-like particles is notoriously difficult, so some 

training datasets may have been contaminated with cellular chromosomes. Moreover, it is 

known that some sequences, even in very clean virus-like particle preparations, are not viruses 

but mobile genetic elements that parasitize viral capsid machinery143. 

 While there are likely new "types" of yet-to-be discovered viruses encoding novel capsid 

and replication genes, Cenote-Taker2 can readily be updated to include new hallmark gene 

models. For example, a new model was made for the replication gene of the proposed new 

family Quenyaviruses146. 

 

Methods 

Cenote-Taker2 Code 

Cenote-Taker2 was written in Bash, Perl and Python. All scripts can be accessed on GitHub. In-

depth discussion of use-cases and considerations can be found on the Wiki . Installation uses 

Conda to manage packages155. BLAST and Hmmer databases developed for this tool can be 

found on Zenodo.  

 

Annotations of Challenging Viral Genomes 

Cenote-Taker2 was fed these genomes with default settings except “ --hhsuite_tool hhsearch” 

was used. VIGA default settings are particularly stringent, therefore a several custom options 

were used to improve annotation: “ --diamondevalue 1e-04 --diamondidthr 30 --hmmeridthr 

30.”  Genome maps in all figures were visualized with MacVector 16. 

https://github.com/mtisza1/Cenote-Taker2
https://github.com/mtisza1/Cenote-Taker2/wiki
https://zenodo.org/record/3759823
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Virus Discovery Comparison 

Reads from each sequencing run were trimmed with Fastp, assembled with Megahit, and 

scaffolded with SOAPdenovo2. Cenote-Taker2 hallmark gene Hmmer database (updated April 

21st, 2020) was used with viral hits having one or more detected hallmark gene. The Cenote-

Taker2 script requires 1-e08 p value as a minimum threshold for structural genes and 1e-15 for 

replication genes. VirSorter was used with "virome" settings and categories 1,2,4, and 5 were 

kept. DeepVirFinder was used with the default training set and p value threshold of 0.005. Non-

Targeted Pipeline was used with default settings. 

Hallmark Gene Calls 

Putative viral contigs from all sources were annotated with Cenote-Taker, using RPS-BLAST with 

the CDD database and HHsearch with CDD, PFam, and PDB. All annotated genes were scanned 

for names of viral replication or structural genes and domains.  
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5  The Human Virome: Over Eighty Thousand Distinct Viruses and 

Specific Associations with Chronic Diseases 

Abstract 

While scientists have made remarkable strides in microbiome research, the viral component of 

the microbiome has generally presented a more challenging target than the bacteriome. This is 

despite the fact that thousands of shotgun sequencing runs from human metagenomic samples 

exist in public databases, and all of them encompass large amounts of viral sequences. The lack 

of a definitive database for human-associated viruses and insufficient methods to confidently 

identify divergent viruses in metagenomic data has stymied efforts to characterize virus 

sequences in a comprehensive way. In this study, a high specificity and sensitivity bioinformatic 

tool, Cenote-Taker2, was applied to thousands of human metagenome datasets, uncovering 

over 80,000 unique complete or high quality viral sequences. Publicly available case-control 

studies were reanalyzed, and strong disease associations were found for over a thousand 

specific viruses. 

Introduction 

The human virome is the collection of viruses that live in and on people and their genomes. This 

includes viruses that directly infect human cells35, but mostly consists of viruses infecting 

resident bacteria, i.e. phages29. While the large majority of microbiome studies have focused on 

the bacteriome, revealing numerous important functions for bacteria in human physiology124, 
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information about the human virome has lagged. However, a number of important studies have 

made inroads into characterizing the virome27,156-159.  

 Just as human-tropic viruses can have dramatic effects of us, phages are able to 

dramatically alter bacterial physiology and regulate host population size. A variety of 

evolutionary dynamics can be at play in the phage/bacterium arena, including Red Queen125, 

arms-race160, and Piggy-back the Winner161 relationships, to name just a few. In the gut, many 

phages enter a lysogenic or latent state and are retained as integrated or episomal prophages 

within the host bacterium. In some instances, the prophage can buttress host fitness (at least 

temporarily) rather than destroy the host cell. Prophages often contain genes that can 

dramatically alter the phenotype of the bacteria, such as toxins133, virulence factors24, antibiotic 

resistance genes134, photosystem components135, other auxiliary metabolic genes136, and 

CRISPR-Cas systems137, along with countless genes of unknown function. 

 There have been a few documented cases where phages have been shown to be 

mechanistically involved in increased bacterial virulence133 or resistance to antibiotics162, 

demonstrating the complex roles phage can play in human health. In addition, several studies 

have conducted massively parallel sequencing on virus-like particles derived from human stool 

samples, finding differential abundance of some phages in disease conditions26-28,163. A major 

issue encountered by these studies is that there is not a concise database of annotated virus 

genome sequences and de novo prediction of virus sequences from metagenomic assemblies is 

a daunting challenge29. Therefore, most of the sequence data from these studies remains 

unevaluated. For example, one study of twelve individuals was able to recruit over 80% of virus-
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like-particle-derived reads to potential viral contigs, but most of these contigs were unclassified 

and a large majority were incomplete125. 

 The current study sought to overcome the traditional challenges of sparse viral 

databases and detection of highly divergent viral sequences by using Cenote-Taker2, a virus 

discovery and annotation tool. The pipeline was applied to sequencing data from nearly 6000 

human-associated metagenome samples. Strict criteria identified over 180,000 viral contigs 

representing 83,681 unique viral taxa. This curated database allowed read-alignment-based 

abundance profiling of the virome in human metagenomic datasets, and several case-control 

studies were reanalyzed to find significant associations between chronic diseases and the 

presence or absence of specific virus species. 

Results 

Characteristics of the Human Virome 

Read data was downloaded from NCBI's Sequence Read Archive (SRA), from the Human 

Microbiome Project30, and from several other bioprojects involving deep sequencing of human 

metagenomic samples. A subset of the projects performed enrichment for viral sequences. 

Almost all of the projects pursued DNA sequencing, but a small number of metatranscriptomic 

RNAseq samples were analyzed for RNA viruses164. Read data were binned and assembled by 

biosample rather than by individual run to combine read sets from the same individual. A total 

of 5996 samples were analyzed.  Assemblies were conducted using Megahit165.  

 This study aimed to keep only high-quality long viral contigs or complete viral genomes. 

Cenote-Taker2 (Chapter 4) was used to check contigs of >1500 nt for two common end-features 

of complete viral genomes: circularity or inverted terminal repeats (ITRs). Circular sequences 
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>1500 nt with at least one viral hallmark gene, ITR-containing contigs >4000nt with at least one 

viral hallmark gene, and linear (no discernable end features) contigs >12,000 nt with two or 

more viral hallmark genes were kept as putative viruses. Since phages are sometimes 

integrated into bacterial chromosomes, each linear contig was pruned with the Cenote-Taker2 

prophage pruning module to remove flanking chromosomal sequences.   This analysis resulted 

in over 180,000 high-quality putative viral sequences. Redundant sequences were clustered at 

>95% average nucleotide identity over 80% of the shorter contig length. A final library of 83,681 

nonredundant sequences was generated (Fig 5.1). 13,173 viruses were complete circular or ITR-

flanked sequences and an additional 4858 viruses were deemed complete because they were 

flanked on both sides by chromosomal sequences. Lack of circularity or flanking chromosomal 

regions does not necessarily mean that a given contig is incomplete, and it can be difficult to 

detect many kinds of viral genome ends using short read assemblies. Although it is also 

challenging to obtain single contigs for very large viruses, 194 phages over 200 kb were 

detected in the survey, with the largest being Siphoviridae species ctpHQ1, at 501 kb. Only 

about half of the >200 kb phage contigs were bounded by direct repeats, suggesting a complete 

circular genome. Thirty-eight family- or order-level taxa were observed, and 3474 viral 

sequences were “dark matter” that could not be classified. However, as viral taxonomy, 

especially taxonomy of dsDNA phage, is in flux to increase resolution of diverse viruses4, these 

numbers will likely change in the future. The vast majority of observed sequences represent 

dsDNA phages in the order Caudovirales. Relatively small amounts of human-tropic viruses 

were uncovered, including adenoviruses, anelloviruses, circoviruses, herpesviruses, norovirus 
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(caliciviridae), papillomaviruses, and polyomaviruses. Each of the human-tropic viruses mapped 

to previously reported virus species. 

   Figure 5.1 presents a summary of observed virus taxa. One taxon, designated "Phyco-

like" viruses, encompasses 123 contigs. This is an interesting group of sequences defined by 

Cenote-Taker2 as phycodnaviridae due to similarity of the terminase/packaging gene of these 

viruses to the packaging gene of phycodnaviruses (~30% AA similarity). However, most of the 

virion structural gene models that are pinged by phyco-like viruses are from crAss-like phage, so 

the sequences probably represent phages, not eukaryotic viruses. This and the fact that most of 

the 3474 "Unclassified" viral sequences have hallmark genes corresponding to dsDNA phage 

models, supports the idea that much phage diversity is still unclassified and undescribed. 
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Figure 5.1: Summary of virus contig taxonomy and length 
Contigs were split based on Cenote-Taker2 taxonomy calls. Each contig is represented as dot 
with the X-axis value representing contig length. Contigs smaller than the arbitrary 12 kb cutoff 
are either circular, bounded by ITRs, or the result of trimming of bacterial chromosomal 
sequences.  
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CRISPR spacer analysis reveals host for most phages 

 Bacteria encode CRISPR-Cas systems, which contain CRISPR spacer arrays of short (~32 

nt) sequences copied from and used against invading mobile genetic elements, especially 

phages. Matching bacterial CRISPR spacers to phage genomes is one way to determine if a 

bacterium has previously been exposed to a particular phage. Advances in cataloging of CRISPR 

spacers from bacterial genomes and optimization of phage/host matching pipelines allowed the 

association of most of the phages discovered in this project to bacterial hosts 

(http://crispr.genome.ulaval.ca/). Specifically, 61,886 of the 83,681 virus sequences had at least 

one CRISPR spacer match from a known bacterium or multiple bacteria, with 675,750 total 

spacers matched to the database of viruses (Fig 5.2). Organized by bacterial genus, interesting 

trends regarding CRISPR spacer acquisition become apparent. For example, genera 

Bifidobacterium and, to a lesser extent, Neisseria often encode dozens of spacers specific to 

individual phages while Clostridium, Porphyromonas, and Leptotrichia typically encode one or 

only a handful of spacers per phage. 

 crAss-like phages seem to be the target of relatively few spacers per genome, despite 

the fact that many collected sequences are >100kb circular genomes. In contrast, ssDNA phages 

of family Microviridae, despite their small size, seem to be frequently targeted by many spacers 

in Bacteroides and Parabacteroides CRISPR systems but not CRISPR systems in other bacteria. 
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Figure 5.2: Summary of CRISPR spacer matches to bacterial taxa 
Each plot is data from a different bacterial genus (or higher taxonomy when genus not defined) 
with CRISPR spacer matches to 200 or more viruses, each dot is a virus taxon. Y-axis values 
represent number of bacterial CRISPR spacer hits each virus had from the host bacterium. Only 
viruses with one or more spacer matches are displayed. Myo = Myoviridae, Sipho = 
Siphoviridae, crAss = crAss-like viruses, Caudo = Other Caudovirales, Micro = Microviridae, Ino = 
Inoviridae, Unclass = Unclassified Viruses 
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The most abundant viruses on several body sites 

 With this library of viruses and the large sampling effort from the Human Microbiome 

Project, the question of "which viruses are the most common" for multiple body sites can be 

answered more confidently than previously possible. It should be noted that the Human 

Microbiome Project data is from healthy Americans between 18 and 40 years of age, and the 

conclusions here may not be generalizable to other populations. Data was downloaded from 

SRA and analyzed for hundreds of patients at six body sites (anterior nares, buccal mucosa, 

posterior fornix, tongue dorsum, supragingival plaque, and stool) (Fig 5.3, 5.4, 5.5), and viral 

abundance was sorted by median reads per kilobase pre million (RPKM). Each body site had a 

different set of common viruses, in line with the observation that microbial populations are 

discriminated by body geography. Mostly, the most common viruses were phages from 

prevalent bacteria, such as the genus Bacteroides. In one noteworthy exception, anterior nares 

(nasal cavity) samples contained human papillomavirus type 38 in high abundance and 

prevalence. 

 The first described crAssphage has been considered the most abundant virus in the 

human gut for several years14,166,167, but the data in the current report show 23 other phages 

are more abundant in human gut samples (Fig 5.5)(the original crAssphage is labeled CrAss-

like_virus__sp._ctBhb420 in this figure). This is a testament to the lack of a comprehensive virus 

catalog for human metagenomes rather than the paucity of crAssphage in these datasets, as 

this phage class is still seen in most datasets at lower abundance.  
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Figure 5.3: Most Common Viruses, Anterior Nares and Buccal Mucosa 
The top thirty virus taxa for each body site are quantified. Genome maps are shown for the top 
three taxa with virion/packaging genes in blue, replication genes in yellow, and CRISPR spacer 
matches as orange dots (underneath).  
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Figure 5.4: Most Common Viruses, Posterior Fornix and Tongue Dorsum 
The top thirty virus taxa for each body site are quantified. Genome maps are shown for the top 
three taxa with virion/packaging genes in blue, replication genes in yellow, and CRISPR spacer 
matches as orange dots (underneath). 
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Figure 5.5: Most Common Viruses, Supragingival Plaque and Stool 
The top thirty virus taxa for each body site are quantified. Genome maps are shown for the top 
three taxa with virion/packaging genes in blue, replication genes in yellow, and CRISPR spacer 
matches as orange dots (underneath). 
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Specific virus taxa are associated with human disease 
 
 Other studies have looked for associations between the virome and human 

diseases26,28,163. However, these studies were limited by a lack of a thorough virus reference 

database, and almost every study only examined sequences from viral particles168. Viral 

particles may not be the best reflection of the total viral population, especially in human 

digestive tracts, where most phage are believed to exist in lysogenic (non-lytic) states169. 

Furthermore, it is possible that the most important phages for human physiology are those that 

are integrated and expressing accessory genes, not those that are actively lysing their bacterial 

hosts. Thus it may be ideal to examine total DNA sequencing of samples that are not enriched 

for viruses. Further, viral particle preparations are notoriously difficult, with user error effects 

being higher than from whole genome shotgun (WGS) preparations170. 

 This study looked at publicly available sequencing data from large case-control studies 

with stool and/or saliva WGS samples127,130,171-177. By comparing the abundance of each virus 

taxon between case and control cohorts, strong associations were seen. RPKM was used to 

measure abundance, and 100 bootstraps were conducted for each virus test to estimate the p-

value (Fig 5.6A "Virome"). Confidence intervals for each p-value were calculated, but the table 

is too large to attach to this document. The analysis was compared to bacterial species-level 

single-copy marker gene abundance from the same data using IGGsearch22 (Fig 5.6A 

"Bacteriome").  More statistically significant taxa were found for the virome than the 

bacteriome, even after multiple test correction. However, since more tests were performed for 

the virome, this is not entirely unexpected. Swarm plots of data from individual virus taxa (top 

twenty most-significant p values) are shown for reference (Fig. 5.6B).  
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 The importance of considering effect size when reporting microbiome associations has 

become apparent in recent years178. Effect size (Cohen's d absolute value) for the virome and 

bacteriome are shown in Figure 5.6C, with values 0.2 - 0.5 implying a small effect size, values of 

0.5 - 0.8 implying a medium effect size, and values of > 0.8 implying a large effect size179. While 

changes in the virome are expected to reflect changes of bacteriome to some extent, it is 

interesting that the effect sizes for virus taxa are generally larger. Furthermore, the predicted 

hosts for significant viruses are generally similar to the list of significant bacterial taxa (Fig. 

5.6D). Since phages can infect multiple species within a bacterial genus, and sometimes in 

multiple genera, it is not clear how to correlate each virus with a specific host or hosts. 
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Figure 5.6 Association of the Gut Virome and Bacteriome with Liver Cirrhosis 
Read data from PRJEB6337. (A) Differential abundance of viral (left) and bacterial (right) taxa in 
stool between cirrhosis patients (n=169) and healthy controls (n=145). Each taxon is 
represented as a dot along the X-axis, with the Y-axis being -log10 of the p-value. The size of 
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each dot corresponds to the median abundance of the taxon in the disease cohort and solid 
dots meaning increased abundance in the diseased state and hollow dots meaning decreased 
abundance in the diseased sate. The grey dotted line represents the Bonferroni-corrected 
significance threshold.  (B) Swarm plots with Cohen's d effect sizes of the top 20 most 
significant taxa. (C) Plots of Cohen's d effect size (absolute value, black dots are positive and red 
dots are negative) from all taxa exceeding the Bonferroni-corrected significance threshold. 
Small effect size = 0.2 - 0.5 ; Medium effect size = 0.5 - 0.8 ; Large effect size = > 0.8. (D) Most 
common putative host of significant viruses is based on CRISPR spacers.  
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 This same analysis was repeated for nine other case-control studies (Fig 5.7, 5.8, 5.9 

[just virome shown]), and, in most cases, strong associations were found between the 

abundance of specific virus taxa and the disease state. While many more case-control studies 

comparing patient microbiomes exists, virtually all others use bacterial 16s amplicon 

sequencing, which is not suitable for virome analysis.  
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Figure 5.7 Association of the Gut Virome and Bacteriome with Parkinson's Disease 
Read data from PRJEB17784. See Figure 5.6 
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Figure 5.8 Association of the Gut Virome and Bacteriome with Ankylosing Spondylitis 
Read data from PRJNA375935. See Figure 5.6 
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Figure 5.9 Association of the Virome with Other Diseases 
Atherosclerosis reads from PRJEB21528. Hypertension reads from PRJEB13870. Type 1 diabetes 
reads from PRJNA289586. Fatty liver disease reads from PRJNA373901. Obesity reads from 
PRJEB4336.   
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Discussion 

This study has demonstrated that, by leveraging virus-specific hallmark genes, it is possible to 

mine human metagenomic data at a large scale to create a comprehensive database that 

includes previously unknown viral genomes. This advance in turn allowed associations to be 

discovered between a variety of chronic disease states and specific virus taxa. It should be 

stressed that association is not the same as causation, and a variety of associative relationships 

between viruses and a given disease state are possible. To name a few: virus abundance might 

simply be an epiphenomenon reflecting bacterial host abundance, the human genetics that 

predispose people to a disease might also provide a more favorable environment for the virus, 

the external causes of a disease may create a more favorable environment for the virus, or the 

virus may contribute to the disease presentation in some way but ultimately does not cause the 

disease in isolation from other factors. Of course, verifying any association with independent 

studies of the same disease will be key to understanding how much of these findings are 

generalizable. 

 A limitation of the case-control studies that were analyzed was that they generally only 

had data for a single timepoint for each subject.  Viromes can be "noisy", and longitudinal data 

on individual patients can be much more effective at discerning stable viral populations125. This 

may have been partly offset by use of large cohort sizes (mostly over 150 total patients). 

Another consideration is that the case-control data were all DNA WGS sequencing, whereas 

RNA sequencing of metatranscriptomes would provide more functional data on expression of 

specific genes, potentially leading to more hypotheses on possible mechanisms of action. 
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 Even with relatively inclusive criteria used by Cenote-Taker2 (discernable amino acid 

similarity of a viral hallmark gene to a protein the RefSeq virus database), thousands of viruses 

that live on humans from this dataset could not be classified, suggesting that additional families 

of as-yet-uncultured viruses await formal discovery. 

 

Methods 

Identification of viral contigs in assemblies 

Studies with human metagenome sequences were chosen somewhat arbitrarily, though the 

Human Microbiome Project data and many studies referenced in the metastudy from Nayfach 

et al22 were used. For each bioproject, run tables were downloaded from SRA and unique 

biosamples were delineated. All runs from a given biosample were downloaded concurrently, 

trimmed with Fastp180, and co-assembled with Megahit165 using default settings. Subsequent 

contigs were fed to Cenote-Taker2, with settings to consider circular contigs of at least 1500 nt, 

ITR-containing contigs of at least 4 kb, and linear contigs of at least 12 kb. These contigs were 

scanned for genes matching viral hallmark models, and circular and ITR-containing contigs with  

one or more viral hallmark genes were kept as well as linear contigs with two or more viral 

hallmark genes. Cenote-Taker2 hallmark gene database was the April 21, 2020 version. While 

Cenote-Taker2 does take steps to remove plasmids and conjugative transposons, extra 

precautions were taken by removing ~4000 putative viral sequences from the non-redundant 

database that contained replication-associated but not virion or packaging viral hallmark genes. 

Clustering similar contigs 
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RedRed (https://github.com/kseniaarkhipova/RedRed), a circularity-aware algorithm, was used 

to cluster all circular contigs (95% ANI, 80% length), and these non-redundant circles were then 

clustered with linear contigs using cd-hit (95% ANI, 80% length). 

CRISPR spacer analysis 

CrisprOpenDB was used (commit 04e4ffcc55d65cf8e13afe55e081b14773a6bb70) to assign 

phages to hosts based on CRISPR spacer match. Three mismatches were allowed for hits. For 

hits to bacteria without a currently assigned genus, family-level or order-level taxonomical 

information was pulled from the output table. 

Determining abundance of individual virus contigs/genomes 

The final database of viral sequences was processed by RepeatMasker to remove low-

complexity regions that recruit reads non-specifically181. Additionally, linear contigs were 

pruned by 3 kb on the 5' and 3' ends, as even a short sequence from flanking chromosome 

could dampen the true viral signal. Finally, a representative genome from all 410 viruses 

reported to infect humans was downloaded from NCBI, and processed by RepeatMasker, and 

added to the final database for read alignment. Bowtie2 was used to align reads to the 

database, and samtools idxstats was used to calculate read coverage for each contig. 

Comparing virus abundance in case-control studies 

Wilcoxon rank-sum test was computed with 100 bootstraps using Python, NumPy and SciPy for 

each virus in a given study where at least one sample had an RPKM of 1. Cohen's d effect size 

was calculated using DaBest Python package with 5000 bootstraps. 
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6  Conclusions and Future Directions 

This dissertation has presented work that has advanced the field of virology, specifically 

showing innovation in virus discovery and the role of the virome in human health. 

 Chapter 2, Discovery of several thousand circular DNA viruses, showed the power of 

virus particle enrichment strategies paired with bioinformatics, and over 2500 new complete 

circular DNA virus genomes from humans and other animals were discovered and analyzed in 

detail. The vast majority of the circular sequences were quite different from previously 

described viruses. However, most of these sequences also had genes that were detectably 

similar to known sequences at some level. It will be interesting to see whether, as in this study, 

the ~20% of circular sequences in other viromics datasets likewise have no discernable 

similarity to known viruses. Additionally, one could look at similar datasets generated by other 

scientists to see what percentage of circular contigs have similarity to any of the "dark matter 

genome groups" documented in this thesis. Potential cellular hosts of some of these elements 

could be deciphered with more thorough searching of public datasets, especially RNA 

sequencing experiments of cultured cells or model organisms. If transcripts of a viral gene are 

expressed in a given host it is likely that the virus is tropic for that host. 

 Chapter 3, Bibiviruses are a New, Unusual Virus Family Common in the Human Gut, 

continued on the theme of identifying unknown sequences in viromic datasets. This chapter 

shows how orthogonal computational and wet-bench methods can synergize to yield 

interesting discoveries. Although bibivirus sequences can be found in many human fecal 
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viromics datasets, they appear to have been ignored, just like the many other sequences 

(typically 50%-70%)67 that are unidentifiable with conventional methods.  

 A direction of future research inspired by this project would be to take a panel of 

bacteria isolated from human samples and use a variety of prophage induction methods on 

each one. Nuclease-resistant nucleic acids could then be collected and sequenced. Mapping 

reads from these preparations back to the host bacterium genome would be an effective 

method to identify novel viruses as well as other mobile genetic elements capable of packaging 

themselves into viral capsids in a way that doesn't have many of the same biases as the 

traditional plaque assays or sequence similarity-based approaches. Further, once identified, 

novel elements would have a readily available culture system for further experimentation. 

 In Chapter 4, Cenote-Taker2 Democratizes Virus Discovery and Sequence Annotation, the 

nuts and bolts of Cenote-Taker2 were presented. This pipeline, already being used by many labs 

worldwide, utilizes a clear and precise method to find familiar and divergent viruses in any type 

of shotgun sequencing data or genome assembly. Using highly sensitive models that represent 

structurally or experimentally defined virus hallmark genes utilizes the power of computation 

without divorcing a discovered sequence from human understanding. For example, if a 

sequence has a gene that Cenote-Taker2 determines is a virus tail tube protein, a user can 

easily confirm this with a quick CDD search or HHpred search of that protein.  My own back-

and-forth with the computer on these types of puzzles has led to a highly refined database of 

Hidden Markov Models of virus hallmark genes for virus discovery. On the other hand, virion 

structural and replication genes might sometimes be co-opted by other mobile genetic 

elements, and this can lead to occasional false positive virus calls. For example, some bacterial 
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conjugative transposons have genes with similarity to phage tail proteins182, and bacterial gene 

transfer agents have major capsid protein-like genes183. Moreover, the hallmark gene strategy, 

while effective, is certainly not the only viable strategy, as laid out in Chapters 2 and 3. 

 Chapter 5, The Human Virome: Over Eighty Thousand Distinct Viruses and Specific 

Associations with Chronic Diseases, brings the lessons learned from other the virus discovery 

projects into human relevance. Completion of the Cenote-Taker2 pipeline empowered me to 

mine 6000 deep sequencing datasets. Although the large number of virus taxa (83,681) 

discovered in this work might seem impressive, it is probably still far from a complete catalog. 

For example, researchers have confidently assembled draft genomes for over 24,000 species of 

bacteria from human metagenomes22, and each bacterial species likely hosts many distinct 

viruses, some of which may belong to virus families that have not yet been recognized. 

 As discussed in Chapter 5, a single "snapshot" of a microbial community using DNA 

sequencing is not necessarily the best method of finding important taxa. Longitudinal studies 

would likely increase resolution, as well as RNA sequencing. It would also certainly be ideal to 

have prospective studies that periodically collected samples from a large group of individuals 

without a disease, then compared how microbial communities change for those who acquired 

the disease. Invoking the infamous “hit-and-run” phenomenon, a particular virus could infect 

and decimate a bacterial population early in a disease, leading to some of the changes 

responsible for a disease. However, after killing all of its potential hosts would not be available 

for detection in an advanced disease state. 

 Even when strong associations are found, substantial additional work will be required to 

determine whether any particular virus or viruses contribute to a disease. Mice have been used 
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to research the effects of microbial communities on various health outcomes, but, like any 

model system, there are a variety of ways that mice do not recapitulate human physiology, and 

microbial communities implanted into mice undergo a variety of changes once implanted184. 

That said, particularly attractive phage candidates would have predicted metabolic genes that 

were known to be upregulated in a particular disease state. This would allow an experimentalist 

to focus on a single gene and one or a few metabolites that could be more tractably studied 

both in cell culture and in a mouse model. 
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