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Abstract 
 
Approximately 30% of myocarditis patients progress to develop dilated cardiomyopathy, 

which is a major cause of sudden death in children and young adults. Ly6Chi inflammatory 

monocytes are thought to play a detrimental role in a mouse model of experimental 

autoimmune myocarditis (EAM). Their recruitment in large numbers to the heart has been 

linked to cardiac fibrosis and ventricular dysfunction. However, the mechanism underlying 

the pathogenic role of Ly6Chi monocytes has been overlooked, and the protective role of 

Ly6Clo monocytes was largely presumed based on extrapolation from other disease 

models. We therefore studied the fates and functions of these two types of monocytes to 

better understand their roles in the injured myocardium. We demonstrated in vitro that 

cardiac fibroblasts mediate monocyte-to-macrophage differentiation through direct 

contact with Ly6Chi and Ly6Clo monocytes. IL-17A is significantly elevated during acute 

myocarditis. It signals through cardiac fibroblasts to abolish Ly6Clo monocyte-to-

macrophage differentiation as well as to hamper phagocytic function in Ly6Chi monocyte-

derived macrophages. Phagocytosis of apoptotic/necrotic myocardial cells by 

macrophages plays a crucial role in minimizing myocardial damage and subsequent 

dysfunction. Strikingly, cardiac IL-17A in heart failure patients is inversely correlated with 

phagocytic receptor expression in the myeloid compartment. This highlights the clinical 

relevance of our finding and can lead to the development of diagnostic biomarkers or 

novel treatment approaches. IL-17A signaling wanes during inflammation resolution, 

allowing Ly6Clo monocyte-to-macrophage differentiation to resume. These macrophages 

display antigen presentation properties which coincide with cardiac protection in IL-17Ra–

/– mice in vivo. In conclusion, we described how the inflammatory environment modulates 
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the phenotype and functions of infiltrating monocytes with potential implications for other 

autoimmune and inflammatory diseases.  
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Chapter 1 
 

Introduction 
 
 
 
A. Myocarditis definition, diagnosis and etiology 

Myocarditis is responsible for a significant number of chronic and acute heart failure cases 

involving children and young adults [1]. Although the majority of affected patients recover, 

myocarditis contributes to the global cardiovascular disease burden mainly through the 

development of dilated cardiomyopathy and ultimately to sudden heart failure [2]. It is 

often challenging to diagnose myocarditis due to the its broad range of clinical 

presentations and heterogenous disease manifestation [3-5]. Currently the diagnostic 

gold standard of myocarditis is endomyocardial biopsy (EMB) and is based on histological, 

immunological and immunohistochemical criteria [5]. Established in 1986, the Dallas 

criteria provides a histopathological definition for myocarditis that require the presence of 

inflammatory infiltrates in the myocardium accompanied by cardiomyocyte deterioration 

and necrosis not characteristic of an ischemic event [6, 7]. In 2013 the European Society 

of Cardiology Working Group on Myocardial and Pericardial Diseases published a 

statement emphasizing the importance of histological and immunohistochemical 

characterization to provide evidence for myocardial inflammation. The 

immunohistochemical criteria describing abnormal cardiac immune cell infiltrates was 

stated as “≥ 14 leucocytes/mm2 including up to 4 monocytes/mm2 with the presence of 

CD3 positive T-lymphocytes ≥ 7 cells/mm2” [8-10]. Therefore, EMB made it possible to 
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help distinguish unique subtypes of myocarditis with variable prognoses. It also allows for 

identification of the presence of viral genomes using molecular techniques such as 

reverse transcriptase-PCR with significant prognostic and therapeutic consequences [8, 

9, 11-16]. However, the limitations for EMB are its low sensitivity, high sampling error and 

potential for complications. The fact that it is an invasive procedure makes it less desirable 

for routine use and follow up [17]. Moreover, clinical presentations for myocarditis range 

widely from moderate chest pain with transient palpitations detectable by ECG to sudden 

cardiac death [3, 18-20]. As a result, other diagnostic methods such as cardiovascular 

magnetic resonance imaging (CMR) are increasingly being utilized in the initial diagnostic 

workup of suspected myocarditis patients (Table 1) [15, 21-23].  

 

Table 1. Current myocarditis and cardiomyopathy diagnostic methods 

 
Diagnostic method 

 

 
Specificity and sensitivity for myocarditis 

Electrocardiogram Can be considered as part of the initial testing. However, myocarditis patients can show 
normal or nonspecific abnormalities or patterns similar to that of acute isolated pericarditis or 
acute myocardial infarction.  

 
ELISA 

 
 
 
 

Chest radiograph 
 
 

Cardiac catheterization 
 

2D or 3D Echocardiography 
 

 
 

Cardiovascular magnetic 
resonance (CMR) 

 
 
 

F-18 fluorodeoxyglucose (FDG) 
positron emission tomography 
(PET) 
  

 
Elevated serum cardiac troponin levels are tested as an indicator for myocardial necrosis; 
elevated serum B-type natriuretic peptide (BNP) and N-terminal pro b-type natriuretic peptide 
(NT-proBNP) levels reflect diminished cardiac capacity. However, findings can be non-
specific. 
 
Of limited sensitivity, but used to view cardiac enlargement in the absence of pulmonary 
congestion. 
 
Optional test for evaluation of coronary status. 
 
Key method used to detect abnormal ventricular function even at the subclinical stage. Can 
detect abnormal ejection fraction and changes in ventricular geometry. Doppler 
echocardiography can be useful to assess blood flow, avoiding invasive measurements such 
as cardiac catheterization. This method has replaced Radionuclide ventriculography. 
 
CMR can be used as a powerful predictor of adverse cardiovascular outcomes. Specifically, it 
can distinguish myocarditis from ischemic cardiomyopathy, and allows the visualization of 
myocyte necrosis, fibrosis, changes in ventricular size and geometry. A combined imaging 
method termed “Lake Louise criteria†”. This method has largely replaced Gallium scanning, 
which detects severe myocardial infiltration. 
 
Relatively new imaging technology. Limited reports have shown high sensitivity and specificity 
when used in conjunction with CMR. Not routinely used, with the exception of suspected 
cardiac sarcoidosis. 
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This table is based on [24-39]. †Lake Louise criteria (proposed diagnostic CMR criteria) for myocarditis diagnosis means that in 
clinically suspected myocarditis cases at least two of the three following criteria need to be satisfied: 1) Myocardial signal intensity 
increases in T2-weighted images regionally or globally; 2) Myocardial early gadolinium enhancement ratio is increased globally 
between myocardium and skeletal muscle in T1-weighted images; 3) At least one non-ischemic focal lesion in inverse-recovery late 
gadolinium-enhancement T1-weighted images [40].  
 
 

Unfortunately, no single test can reliably confirm the diagnosis of many cases, which 

makes myocarditis diagnosis a challenging task and ultimately contributes to the 

underestimation of global myocarditis prevalence [3-5].  

Myocarditis can be caused by both infectious and non-infectious agents (Table 2). 

However, evidence suggests that viral infections such as coxsackie B3, parvovirus B19 

and adenoviruses are the most common causes of myocarditis in developed nations [3-

5, 7, 12, 14, 41-45]. Regardless of myocarditis etiology, clinical presentation of the acute 

phase can range from mild and transient to fulminant.  
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Table 2. Etiology of myocarditis and inflammatory dilated cardiomyopathy 

Genetic  
GENES AND 
SYNDROMES  

> 60 known genes including most prevalent TTN, LMNA, MYH7, and the rarest TTNT2, Duchenne 
muscular dystrophy, Barth syndrome. 

 
Microorganisms   
BACTERIA Staphylococcus, Clostridium, Diphtheria, Chlamydia psittaci, Streptococcus, Pneumococcus, 

Meningococcus, Gonococcus, Salmonella, Corynebacterium diphtheriae, Haemophilus influenzae, 
Mycobacterium tuberculosis, Mycoplasma pneumoniae, Brucella Spirochaetal, Borrelia, Leptospira, 
Coxiella burnetiid, Rickettsia rickettsia, Syphilis 

 
RNA VIRUSES Coxsackie, Echoviruses, Poliomyelitis, Influenza, Respiratory syncytial virus, Mumps, Measles virus, 

Rubella virus, Hepatitis C virus, Dengue virus, Yellow fever virus, HIV-1, Chikungunya virus, Junin virus, 
Lassa fever virus, Rabies virus  

 
DNA VIRUSES Adenoviruses, Parvovirus B19, Cytomegalovirus, Epstein-Barr virus, Varicella-zoster virus, Herpes 

simplex virus, Variola virus, Vaccinia virus 
 

FUNGI Aspergillus, Actinomyces, Blastomyces, Candida, Coccidioides, Cryptococcus, Histoplasma, 
Mucormycoses, Nocardia, Sporothrix 

 
PROTOZOANS Trypanosoma brucei gambiense, Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Toxoplasma 

gondii, Taenia solium, Entamoeba histolytica, Leishmania, Strongyloides, Ancylostoma duodenale, 
Necator americanus,  
  

HELMINTHS Echinococcus granulosus, Trichinella spiralis 
 
Toxins  
DRUGS Phenothiazines, Amphetamines, Anthracyclines, Cyclophosphamide, Cocaine, Cyclophosphamide, 5-

Fluorouracil, Lithium, Catecholamines, Hemetine, Interleukin, Trastuzumab, Clozapine, Tricyclic 
antidepressants, Dobutamine, Epinephrine, Dopamine, Norepinephrine, Phenylpropanolamine, Ferrous 
sulfate, Immune checkpoint inhibitors, Cholorquine, Zidovudine 

 
VENOMS Insect stings, Snake bites 

 
ENDOCRINES Hypo- or hyper-thyroidism, Diabetes mellitus, Cushing’s syndrome, Phaeochromocytoma, Growth 

hormones imbalance, Preganacy 
 

OTHERS Alcohol, Carbon monoxide, Phosphorus, Arsenic, Sodium azide, Heavy metal  
 
Hypersensitivity  
DRUGS Penicillin, Cefaclor, Colchicine, Furosemide, Isoniazid, Lidocaine, Tetracycline, Sulfonamides, 

Phenytoin, Phenylbutazone, Methyldopa, Thiazide diuretics, Amitriptyline, Tetanus toxoid 
 
Physical assault  
PROCEDURES Radiation, Electric shock, Heart transplantation rejection 

 
Systemic  
AUTOIMMUNE  Celiac disease, Hypereosinophilia, Systemic lupus erythematosus, Rheumatoid arthritis, Churg-Strauss 

syndrome, Kawasaki’s disease, Inflammatory bowel disease, Scleroderma, Polymyositis, Myasthenia 
gravis, Insulin-dependent diabetes mellitus, Thyrotoxicosis, Sarcoidosis, Wegener’s granulomatosis, 
Rheumatic heart disease, Dermatomyositis  

 
This table is based on [18, 46-55]. 
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B. Selected forms of myocarditis 

 

EMB also permits immunopathological examination of the infiltrating leukocyte profile in 

the myocardium, which helps to further classify myocarditis into several forms. 

1. Lymphocytic myocarditis is the most common form of myocarditis, primarily defined 

by diffuse focal aggregates of cardiac T lymphocyte infiltrates, typically as a result of a 

viral respiratory tract infection. The severity of myocardial fibrosis is used to define the 

progression of lymphocytic myocarditis from acute to chronic phase [18]. Clinical 

presentation of lymphocytic myocarditis can vary widely from flu-like symptoms to 

fulminant left ventricular failure. Since a significant number of patients can also be 

asymptomatic, disease prevalence in the general population can be underestimated [52, 

56]. Approximately 50% of the patients were reported to survive without cardiac 

transplantation at five years from symptom onset [57]. Immunosuppressive drugs can 

significantly alleviate the worsening of ejection fraction in affected individuals if circulating 

autoantibodies against cardiac antigens are detected, whereas immunosuppressive 

treatments are ineffective in patients with detectable viral genomes in the heart [58, 59]. 

A murine CVB3-induced myocarditis model was developed to draw a parallel between 

human lymphocytic myocarditis (see experiment vial myocarditis model below) [60, 61].  

2. Eosinophilic myocarditis is a relatively rare form of myocarditis characterized by 

eosinophilic infiltrates in the myocardium and is often associated with peripheral 

eosinophilia [62]. Although the underlying etiology for eosinophilic myocarditis remains 

largely unknown, case reports have shown correlation of eosinophilic myocarditis patients 

with drug hypersensitivity and parasitic infections, and most commonly with the idiopathic 

hypereosinophilic syndrome [63-65]. Necrotizing eosinophilic myocarditis is the most 
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severe form, frequently presenting with acute onset, rapid progression and severe 

necrosis [56]. Immunosuppressive treatment doesn’t significantly improve long term 

prognosis, and disease outcomes are dire for the majority of patients [18, 56, 66]. A 

murine model has been developed to better understand the pathogenesis of eosinophilic 

myocarditis in humans [67]. 

3. Giant cell myocarditis is the rarest but most fulminant form of myocarditis with poor 

prognosis. It is characterized by the presence of multinucleated giant cells among 

numerous other cardiac infiltrates [56]. Histologically the predominant infiltrates consist 

of CD68+ macrophage lineage with the presence of T lymphocyte and frequently with 

eosinophils [68]. In contrast to the heterogeneous clinical features of lymphocytic 

myocarditis, giant cell myocarditis manifestation typically results in fulminant left 

ventricular systolic dysfunction and heart failure, with some patients developing 

ventricular arrhythmias and heart block [69]. The rapidly progressive nature of giant cell 

myocarditis results in poor survival with only about 11% of patients surviving over 4 years 

without a need of cardiac transplantation. Treatment with the appropriate 

immunosuppressive combination therapies can improve prognosis and increase survival 

rates, yet options are highly limited [69, 70]. Giant cell myocarditis is thought to be 

autoimmune in nature as 17 – 19% of patients typically suffer from other non-cardiac 

related autoimmune diseases [68, 69, 71]. A murine model termed experimental 

autoimmune myocarditis (EAM) closely resembles the phenotype of this disease [56]. 

4. Sarcoidosis, or idiopathic granulomatous myocarditis, is a heterogeneous disease of 

unknown etiology characterized by non-caseating granulomas in various organs, 

including the heart. The clinical presentation of sarcoidosis ranges from nonspecific 
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symptoms to sudden death caused by atrioventricular block and congestive heart failure 

despite having a relatively indolent clinical course [72, 73]. Sarcoidosis is associated with 

even higher rates of ventricular arrhythmias and heart block when compared to giant cell 

myocarditis [74]. Heart transplantation is often the treatment of last resort for end stage 

disease management. However, recurrence of sarcoidosis cannot be prevented with this 

approach [75].  

Regardless of etiology, acute myocarditis in susceptible populations can progress to 

subacute and chronic phase, and ultimately proceed to dilated cardiomyopathy (DCM). 

Myocarditis is responsible for approximately 9 – 16% of newly diagnosed DCM cases [76-

78]. DCM is the most common cardiomyopathy worldwide, and the major cause of heart 

failure in patients under the age of 40 [79]. According to the WHO/ISFC criteria, patients 

with DCM develop dilatation and systolic dysfunction (abnormality of contraction) of the 

left or both ventricles in the absence of abnormal loading conditions or coronary artery 

disease. DCM can be further categorized into several subtypes including idiopathic, 

familial/genetic, pathogen, autoimmune and environmental toxin [3, 5, 18, 42]. Although 

DCM is associated with fulminant congestive heart failure, patients may or may not 

experience overt heart failure. Both etiology and diagnosis of DCM largely overlaps with 

that of myocarditis (Table 1 and Table 2). Unfortunately, a clear mechanism of 

progression from myocarditis to dilated cardiomyopathy has not been elucidated.   

C. Experimental autoimmune myocarditis - murine model 

 

To improve current treatment regimens and to understand the mechanism of how 

myocarditis progress to heart failure, it was important to create a mouse model of 
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autoimmune myocarditis. The two main murine models of myocarditis are coxsackievirus 

B3 (CVB3) myocarditis and experimental autoimmune myocarditis (EAM). 

In humans, CVB is one of the most frequent cause of myocarditis in males. The murine 

CVB3 myocarditis model has a wide spectrum of disease severity, successfully 

recapitulating human viral myocarditis [80]. The presence of heart specific autoantibodies 

and myocyte-reactive T cells indicates the autoimmune nature of the disease [81, 82]. 

The initial hypothesis was that virus-mediated myocyte damage enables cardiac myosin 

to be exposed, which becomes readily accessible to the immune system. This hypothesis 

had led to the development of the EAM model, where genetically predisposed mice 

(typically BALB/c or A/J mice) are immunized with mouse cardiac myosin or peptides 

derived from heavy chain α emulsified in complete Freund’s adjuvant (CFA) 

supplemented with heat-killed Mycobacterium tuberculosis [80, 83] (Figure 1). On day 0, 

mice receive peptide emulsion subcutaneously together with an intraperitoneal injection 

of 500 ng of pertussis toxin. On day 7, mice receive a booster shot of peptide emulsion 

without pertussis [83]. It has been indicated that pertussis toxin can promote T cell 

proliferation and cytokine production as well as break T cell tolerance in an EAE model, 

though the precise mechanism underlying the role of pertussis toxin in EAM induction is 

not well understood [84]. In addition, substituting CFA for either incomplete Freund’s 

incomplete adjuvant or alum as the adjuvant on either day will not induce EAM, 

highlighting that a breakdown of immune tolerance is central for EAM induction [85].  

We used exclusively BALB/c male mice in our studies. They tend to develop myocarditis 

of moderate severity and progress to DCM. The induction phase of myocarditis is 

established by day 10, during which an adaptive immune response to cardiac myosin 
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develops. The acute phase of myocarditis begins between day 10-12, when immune cells 

start to infiltrate the myocardium. During this time autoantibodies emerge in the serum 

and autoreactive T cells can be detected in the heart. On day 21 post-immunization, the 

intensity of the immune infiltrate reaches its peak. The cell  number starts to decline 

thereafter, marking the beginning of myocarditis resolution phase. Occasionally chronic 

inflammation does not subside even after day 60 post-immunization. As cardiac immune 

cell infiltrates diminish, there is an increase in cardiac fibrosis and a decrease of 

ventricular functions that can be observed via histology and detected by 

echocardiography, respectively [56].  

 

Figure 1. Model of experimental autoimmune myocarditis in BALB/c mice experimental 

viral myocarditis 

 

D. Experimental viral myocarditis murine model 

CVB3 is an enterovirus that belongs to the Picornaviridae family [60]. CVB3 is implicated 

as one of the primary pathogens responsible for acute and fulminant viral myocarditis in 
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humans [86]. One of the most commonly used myocarditis mouse models is via CVB3 

infection to recapitulate viral myocarditis in humans [60]. Heart-passaged CVB3 virus 

(Nancy strain) are inoculated intraperitoneally into susceptible strains of mice. Acute 

myocarditis develops from day 7 to day 14 post-infection and progresses to DCM around 

day 35 post-infection [60]. A male gender bias in this model also replicates the human 

disease [87]. A recent study showed that sex hormones such as estrogen play a beneficial 

role in myocarditis progression [88]. 
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Chapter 2: 

Monocytes and macrophages 

 

Monocytes and macrophages are highly conserved populations found in all vertebrates 

and play crucial roles in tissue homeostasis and protective immunity. Additionally, their 

roles in pathological processes such as myocarditis make them attractive therapeutic 

targets. However, the minimization of their pathogenic roles and maximization of their 

reparative functions during tissue injury requires an in-depth understanding of their origins, 

functions and interactions with the tissue microenvironments.   

 

A. Origins of tissue-resident macrophages 

Elie Metchnikoff was credited in 1882 for his seminal work describing phagocytosis, a 

process of phagocytes engulfing pathogens [89]. Macrophages are professional 

phagocytes that exist in all organs of the body as well as across diverse species. With the 

readily available techniques such as genetic fate mapping and lineage tracing our 

knowledge of macrophage role during disease and homeostasis has rapidly evolved over 

the past decade. We have gained an appreciation for the versatile roles and 

trophic/regulatory functions of macrophage in organogenesis, tissue homeostasis, 

immune surveillance, and post-injury tissue restoration [90]. During fetal organogenesis, 
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macrophages orchestrate long-distance communication between pigment cells in zebra 

fish skin to establish striped patterns [91]. They participate in synaptogenesis, synaptic 

pruning, neurogenesis and assembly of murine brain circuits [92-104]. In murine testes 

they contribute to testis morphogenesis, spermatogenesis, and production of male 

hormone during puberty [105-107]. They are indispensable in adult salamander limb 

regeneration [108].   

Before the term “mononuclear phagocyte system” (MPS) was coined in 1969 to describe 

the functions and morphology of monocytes, macrophages, dendritic cells, and their 

precursors from the bone marrow an older term, “reticuloendothelial system”, or RES, 

was used to describe these phagocytes and their antecedents. RES was based on the 

observation that sinus-lining intravascular phagocytes frequently form reticular networks. 

However, we now know that macrophages and endothelial cells are separate entities [109, 

110]. Macrophage phagocytosis is a process important for debris clearance and tissue 

remodeling. For instance, synaptic pruning by microglia eliminates defective and 

immature neuronal synapses during brain development [111]. While macrophage 

phenotypes are determined by tissue origin, an anti-inflammatory signature of high 

CD206 and low IL-1𝛽 expression can be unanimously elicited by phagocytic activity [112]. 

Additionally, macrophages are major cytokine producers that participate in innate and 

adaptive immune responses [113, 114].  

A growing body of literature has shown that adult murine tissue resident macrophages 

are mostly embryonically-derived, contradicting the long-held belief that macrophages are 

derived from circulating monocytes released from the bone marrow and spleen [115-119]. 

Surprisingly, discoveries made decades ago already acknowledged that yolk sac and fetal 
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liver of early embryos contained macrophage precursors [120, 121]. We now understand 

that during embryogenesis macrophages colonize developing organs in several 

overlapping waves [115-117] (Figure 2).  

The first wave of macrophage tissue colonization occurs at embryonic day 7 (E7), before 

the establishment of embryonic circulation [120, 122, 123]. Csf1r+c-Kit+CD45lowAA4.1+ 

Erythro-myeloid progenitors (EMPs) are released from yolk sac blood islands and 

capillary endothelia [124]. EMPs readily acquire macrophage transcriptional signatures 

and differentiate into pre-macrophages (pMacs) prior to seeding the tissue as resident 

macrophages (MØ) [116, 125, 126].  

From E8.5, a second wave commence as yolk sac hemogenic endothelia release another 

set of EMPs. The development of these EMPs relies on a master transcriptional regulator 

called c-Myb, whereas the EMPs from the first wave were c-Myb-independent [117, 127-

129]. At this stage of the embryonic development, the newly formed vasculature allows 

yolk sac macrophages to enter both brain and liver, as well as permit the EMPs derived 

from the second wave to seed the liver [122, 125, 130, 131]. EMPs expand rapidly in the 

fetal liver where they also differentiation into monocytic intermediates or pMacs at E11.5 

[117, 125, 131]. Both monocytic intermediates and pMacs then exit the fetal liver and 

seed all embryonic tissues with the exception of the brain [132]. These yolk sac-derived 

and fetal liver-derived tissue-resident macrophages persist into adulthood. Their renewal 

relies mostly on proliferation and minimally depends on replenishment by blood 

monocyte-derived macrophages [116, 118]. Skin and gut macrophages are exceptions in 

that they entirely depend on monocyte-derived macrophage replenishment to sustain the 

local macrophage pool [133, 134]. Lastly, the third wave of macrophage tissue 
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colonization occurs at E10.5, when hematopoietic stem cells (HSCs) derived from 

hemogenic endothelium in the dorsal aorta enter the fetal liver [115, 135, 136]. Upon entry, 

HSCs expand and differentiate into monocytic intermediates which then colonize the 

tissue to become resident macrophages [115, 137, 138]. HSCs also seed the bone 

marrow and spleen during embryogenesis to produce a constant supply of circulating 

monocytes postnatally to replenish macrophage pool in specialized organs under steady 

state or inflammation [119, 139]. A type of early pro-B cell that expresses both myeloid 

and lymphoid markers has recently been discovered as a progenitor for both tissue 

resident or monocyte-derived macrophages during both inflammation and homeostasis 

[140].  
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Figure 2. Macrophages colonize developing organs in several overlapping waves during 

embryogenesis.  

Figure drawn by X. Hou. 
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B. Heterogeneity of tissue macrophages 

A robust steady-state condition is required to ensure proper tissue function and maintain 

homeostasis of an organism. However, organ homeostasis varies considerably owning 

to differences in tissue metabolic and mechanical activities, physical barriers, the levels 

of exposure to commensals and nutrients, as well as maturation status. Most of the 

macrophages that populate tissues during organogenesis persist into adulthood as 

resident, self-maintaining populations in steady state [118, 141]. Tissue-resident 

macrophages hone their phenotypes in response to local microenvironmental signals and 

turnover in a tissue-specific manner (Figure 3). Central nervous system, epidermis and 

lung macrophages are exclusively yolk-sac and/or fetal liver derived. They have robust 

self-renewal potential and persist into adulthood under steady-state [142, 143]. These 

relatively ontogenically homogeneous populations can even cope with experimental 

depletion [144]. A small portion of liver Kupffer cells are derived from BM monocytes 

immediately after birth. They self-renew in adulthood without further contributions from 

monocytes [117, 145-147]. This is similar to arterial macrophages [148]. Cardiac resident 

macrophages consist of yolk-sac and fetal liver derived macrophages before birth [119, 

149]. Embryonically derived CCR2- macrophages are positioned near coronary 

vasculature, whereas fetal monocyte-derived macrophages tend to cluster near 

endocardial trabeculae [150]. This uneven distribution suggests their role in cardiac 

development. These yolk-sac-derived and fetal liver-derived macrophages are gradually 

replaced by monocyte-derived macrophages with age [149]. It has been demonstrated 

that at birth, almost all cardiac macrophages are CCR2-MHCII- (major histocompatibility 

complex class II). This relatively homogenous population diversifies into 4 subpopulations 
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with the increase of both CCR2 and MHCII expression [149]. Intestinal macrophages 

have a relatively short half-life (4 – 6 weeks). Both yolk sac-derived and fetal liver-derived 

macrophages begin to wane after birth in the lamina propria, and they require constant 

replenishment from BM-derived monocytes. This drastic replacement of embryo-derived 

macrophages by monocyte-derived cells coincides with commensal bacteria colonization 

and is highly depended on CCL2/CCR2 axis [139]. Similar to intestinal macrophage 

maintenance, dermal macrophages also rely on monocyte replenishment. They are 

thought to be highly phagocytic but are less sufficient in eliciting T cell activation [133]. 

The above evidence highlights the role of the tissue microenvironment in controlling 

macrophage origin and fate, as well as in determining monocyte recruitment and 

differentiation during steady-state. This remains an active area of research. Macrophages 

are highly adaptive. Their close association with the local habitat allows them to evolve 

and develop tissue-specific features defined by particular transcription factors and 

epigenetic marks [151-153]. Not surprisingly, when tissue macrophages are isolated to 

culture they rapidly lose tissue-specific phenotypes [152]. An example of how 

transcription factor influences tissue macrophage phenotype is Spi-C. Spi-C is crucial for 

maintenance of both splenic red-pulp macrophages and liver-resident Kupffer cells. 

These cells are positioned to engulf aging CD47- erythrocytes, which induce Spi-C to 

assist in heme-metabolizing processes [154]. Another example could be GATA-6 

expression in peritoneal macrophages of embryonic origin [155-157]. These cells are 

characterized as large F4/80hiMHCIIlo [158]. However, both retinoic acid and omental 

tissue-derived signals are needed for GATA-6 expression [156].  
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Macrophage functions vary widely depending on changes that occurring in its residing 

tissue niche including metabolites [152, 153, 159], intracellular metabolism [160], and 

genetic and intrinsic epigenetic factors [113, 161-163]. One of the most exciting advances 

in the field is the understanding of the epigenetic changes that characterize different 

population of tissue-resident macrophages. Although all immune cells share the identical 

genome, chromatin modification enables them to acquire distinct roles [164-168]. 

Particularly, comparison of the promoter and enhancer regions reveals that few 

macrophages are identical across different tissue microenvironments [153]. This 

demonstrates that local microenvironments imprint macrophages and creates 

heterogeneity within this population. Reciprocally, tissue macrophage expresses a variety 

of sensors located on the surface and inside the vacuoles and cytosol to provide contact 

and control to its residing environment. Since macrophages are prominent participants in 

disease pathologies, including heart failure, rheumatoid arthritis, multiple sclerosis and 

cancer, the study of chromatin landscape can identify targets for genetic manipulations 

of macrophage that could serve as a potential treatment strategy.  
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Figure 3. Steady state macrophage origins in multiple adult tissues.  

Figure drawn by X. Hou. 
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C. Monocytes 

Monocytes comprise approximately 4% and 10% of all circulating leukocytes in mice and 

in humans, respectively. There are two main monocyte subsets in mice, the “classical” 

Ly6ChiCCR2+CD62L+CX3CR1- inflammatory monocytes and the “alternative/non-

classical” Ly6CloCCR2-CX3CR1+ patrolling monocytes [169, 170]. The former is known to 

extravasate into tissue after an insult and release pro-inflammatory cytokines such as 

interleukin-1𝛽, tumor necrosis factor-𝛼, and reactive oxygen species. Ly6Chi monocytes 

also have a high tendency to differentiate and replace the diminishing tissue macrophage 

pool [169-173]. Ly6Clo monocytes are known to patrol the lumen of the vessels, 

scavenging for dead cells, oxidized lipids and pathogens [174]. Their differentiation into 

reparative macrophages has been reported in skeletal muscles and in soft tissue [175-

177]. In terms of phenotypes, function and gene expression profiles, human CD14hiCD16- 

and CD14+CD16+ monocytes account for about 90% of all circulating monocytes and 

resemble proinflammatory Ly6ChiCCR2+ monocytes in mice. Human CD14-CD16hi 

monocytes account for about 10% of the peripheral monocyte population and resemble 

patrolling Ly6CloCCR2- monocytes in mice [178-183]. 

 

D. Monocyte development 

The homeostatic production of monocytes requires defined developmental stages and 

commitment in the bone marrow (Figure 2, Table 3). Monocytes are heterogenous 

populations that originate from HSCs, and can also arise from fetal liver during 

embryogenesis (Figure 2). It has been demonstrated that the spleen harbors monocytic 
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precursors that can also contribute to monocytopoiesis during inflammation, a process 

termed “extramedullary hematopoiesis” [184]. HSCs, which represent about 0.05% of the 

adult mouse bone marrow population, are cells that possess multipotency and can self-

renew [185-189]. It has been shown that HSCs can give rise to long-term HSC (LT-HSC), 

short-term HSC (ST-HSC) and Multi-Potent Progenitors (MPP) (Figure 4). The latter two 

can no longer self-renew [190]. Lineage-restricted differentiation happens when MPP are 

produced. These MPPs then give rise to both common myeloid progenitors (CMP) and 

common lymphoid progenitors (CLP), which are both oligopotent progenitors (possessing 

relatively finite differentiation capacity) [191-194]. CMPs subsequently give rise to 

granulocyte and macrophage progenitors (GMP) and megakaryocyte/erythrocyte 

progenitors (MEP) [195, 196].  GMPs can further give rise to macrophage and DC 

precursors (MDP) [197], which are dedicated clonotypic precursors to common monocyte 

progenitor (cMoP) and common dendritic cells precursors (CDP) [198]. Common 

monocyte progenitors strictly generate monocytes, but not plasmacytoid DCs or cDCs 

[198]. Isolated cMoP can differentially give rise to both Ly6Chi and Ly6Clo monocytes [198]. 

On a molecular level, monocyte development is precisely controlled by lineage-defining 

transcription factors during each stage of development [199] (Figure 4). PU.1 or Sfpi1 

(also known as Spleen focus forming virus proviral integration oncogene) is critical in early 

steps of monocyte development, especially during the stage of CMP, GMP and MDP 

differentiations [200-202]. PU.1 knockout mice have an embryonic lethal phenotype or 

they die shortly after birth [203]. PU.1 binds to GATA-1 and inhibit CMP differentiation 

into MEP [204].   
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Figure 4. Monocyte development from the bone marrow.  

Figure drawn by X. Hou. 
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Another family of transcription factors known as C/EBP belongs to the basic leucine 

zipper family that recognizes and binds to DNA motif (5’-T(T/G)NNGNAA(T/G)-3’) [205, 

206]. While Cebpb is important for the development and maintenance of monocytes, 

Cebpa is important for monopoiesis [207-210]. Interestingly, Cebpa expression allows T 

and B lymphocytes to transdifferentiate into macrophages [211, 212]. IRF8 (interferon 

consensus sequence-binding protein) is another critical transcription factor required for 

monocyte development in the bone marrow. It is specifically induced in CMP and GMP 

[213]. IRF8 interacts with PU.1 to form heterodimers to regulate functions of both 

monocytes and macrophages [214]. IRF8 promotes monocyte differentiation and persists 

in differentiated monocytes and macrophages, whereas IRF8 subsides in granulocyte and 

inhibits their production [215]. IRF8 downstream directly regulates KLF4 (Kruppel-like 

factor 4), a key transcription factor for myelopoeisis [216]. KLF4 is indispensable for 

Ly6Chi monocyte development [217].  NR4A1 (Nuclear Receptor Subfamily 4, Group A, 

Member 1) is a master transcription factor required for Ly6Clo monocyte development, 

survival, and myelopoiesis [176, 218, 219].  

Finally, there are also a few negative regulators of monocyte production. The lack of either 

GATA-2, Fli-1 (Friend leukemia integration 1) or RUNX1 (RUNT-related transcription 

factor 1) leads to upregulation of monocyte production and release [220-226]. Other 

factors also play a role in monocyte development. Colony-stimulating factor 1 (M-CSF) is 

indispensable for monocytes survival and development in mice. Animals deficient in M-

CSF or M-CSF receptors (CD115 or M-CSFR) such as op/op mice suffer from severe 

monocytopenia [227-229]. M-CSF is also involved in tissue-resident macrophage 
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proliferation and survival by apoptosis reduction [155, 230, 231]. CX3CR1 is also 

important to promoting long term survival in monocytes [232]. 

During steady state, monocytes are released from the BM with a regular circadian rhythm 

associated with regulatory genes such as Bmal1, Nrld1 and Dbp. Blood monocytes’ 

diurnal rhythm peaks at Zeitgeber times (ZT) 4 and reaches nadir at ZT 16 [233]. The 

fluctuation of blood monocytes is also important in determining mortality and morbidity 

after myocardial infarction (MI), which will be discussed at a later chapter [234]. 

 

 

Table 3. Markers defining myeloid progenitor populations 

 
Myeloid 
progenitors 
 

 
Markers in mice 

 
Markers in human 

HSC Lin-cKit+Sca1+Flk2-CD34-Slamf1+ Lin-CD38-CD90+CD45RA-CD34+ 

 
MPP 
 
 
 
CMP 
 
 
CLP 
 
GMP 
 
 
MEP 
 
MDP 
 
CDP 
 
cMoP 
  

 
Lin-cKit+Sca1+Flk2-CD34-Slamf1+ 

Lin-cKit+Sca1+Flk2-CD34-Slamf1- 

Lin-cKit+Sca1+Flk2+CD34-Slamf1- 

 

Lin-cKit+Sca1lo/-IL7Ra-CD34+FcgRlo 

 

 
Lin-Flk2t+IL7Ra+CD27+ 

 
Lin-cKit+IL7Ra-Sca1-CD34+FcgR+ 

 
 
Lin-cKit+Sca1-CD34-FcgR- 

 
Lin-cKit+IL7Ra-Sca1-Flt3+CD115+FcgR- 

 

Lin-cKitintSca1-Flt3+CD115+CD11b- 

 
Lin-cKit+IL7Ra-Sca1-CD115+FcgR- 

 

 
Lin-CD38-CD90-CD45RA-CD34+ 

 

 

 
Lin-CD38+IL3RaloCD45RA-CD34+CD123lo 
CD10-Flt3+ 

 
Lin-CD38+CD10+CD34+CD45RA+CD45+ 

 
Lin-CD38+IL3Ra+CD45RA+CD34+CD123lo 
CD10-CLEC12AhiCD64intFlt3+ 

 
Lin-CD38+IL3Ra-CD45RA-CD34+ 

 
Lin-CD38+CD115+CD45RA+CD34+CD123int 

 
Lin-CD38+CD115-CD45RA+CD34+CD123hi 

 
Lin-CD38+CD115-CD45RA+CD34+CD123lo 
CD10-CLEC12AhiCD64hiFlt3+ 

 
This table is based on [235-239].   
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Chapter 3: 

Monocytes and macrophages in cardiovascular disease 

 
 
A. Monocytes and macrophages in Heart Failure (HF) 

 
An estimated 26 million people are affected by HF worldwide and its prevalence is 

projected to continue to increase [240]. HF adversely affects quality of life and reduces 

the overall lifespan [241]. The pathological signs of HF are progressive impairment of 

cardiac function with many patients developing atrial fibrillation [242]. Globally, rheumatic 

heart disease remains a major cause for HF. Cardiac inflammation from rheumatic 

disease results in scarring of the heart valves, primarily the mitral valve, with consequent 

valvular malfunction and HF [243]. In developed nations myocardial infarction (MI) is the 

leading cause of HF [244]. MI is typically the result of atherosclerotic plaque rupture and 

coronary occlusion [242]. Murine models have helped to demonstrate that both 

monocytes and monocyte-derived macrophages play a pivotal role in the pathogenesis 

of MI. It is thought that monocyte subsets are designated to perform distinct but complex 

roles that may be beneficial or detrimental [245-247]. Although studies are limited in 

human subjects, it has been shown that there is a post-infarction increase in the total 

number of blood monocytes and this correlates with an increased left ventricular end-

diastolic volume and a decreased ejection fraction [248].  

Under steady state, resident cardiac macrophages in healthy adult mice represent less 

than 10% of the total non-cardiomyocyte population [249]. However, cardiac ischemia 
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from MI drives hematopoiesis that mobilizes immune cells, including pro-inflammatory 

monocytes, to enter the infarct zone and differentiate into macrophages [171, 250]. When 

diurnal monocyte fluctuation is disrupted, myocardial remodeling and function worsen in 

post-infarct mice [234]. The observation of diurnal variation extends to human subjects 

with MI who manifest increased ST-segment elevations that correlate with peaking of their 

infarct size at 1:00 in the morning [251]. Furthermore, it is thought that sequential 

recruitment of Ly6Chi and Ly6Clo monocytes to the infarct zone regulates the inflammatory 

and reparative response post-infarct, respectively [245]. However, the exact function of 

Ly6Clo monocytes is unknown. It has been shown that the orphan nuclear receptor 

NR4A1 controls BM differentiation and survival of the Ly6Clo monocytes, since Ly6Clo 

monocytes are absent from Nr4a1–/– mice [218]. Nr4a1 was proposed to be an important 

factor required for Ly6Chi monocytes to differentiate into reparative macrophages [171].  

B cells in post-infarct myocardium are thought to also play a role in monocyte recruitment. 

They are thought to predominantly produce CCL7, a ligand for CCR2. B cell depletion, 

therefore, results in reduced monocyte trafficking and improved ventricular function [252]. 

Neutrophils, on the other hand, produce gelatinase-associated lipocalin to promote a 

reparative phenotype in macrophages which is beneficial in infarct healing [253]. 

Monocyte and macrophage activation potentiates the cardiac inflammatory response by 

exerting a wide range of functions. They are thought to promote myofibroblast 

accumulation, collagen and extracellular matrix deposition, phagocytosis and 

angiogenesis, all of which promote myocardium remodeling post infarct [254].  

CCR2+ macrophages, in particular, have the capacity to produce large amounts of pro-

inflammatory cytokines [119]. CCR2 blockade or deficiency reduces inflammation and 
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cardiac fibrosis without changing hypertrophy outcomes in a model of pressure overload 

[255]. Ischemic injury results in rapid accumulation of dying myocytes [256]. Paradoxically, 

phagocytosis of dead cell and matrix debris triggers an anti-inflammatory profile in 

macrophage subsets [257]. As a result, macrophage depletion during infarct healing 

jeopardizes proper repair and increases mortality [258, 259]. Therefore, monocytes and 

macrophages are also indispensable in tissue remodeling post-infarct [250, 260, 261]. It 

was demonstrated that a significant macrophage expansion occurs between 4 to 8 weeks 

post MI in the remote non-infarcted myocardium [262, 263]. Fate mapping studies showed 

that this macrophage expansion results from both CCL2 (C-C chemokine receptor type 

2) dependent monocyte recruitment and local macrophage proliferation [262]. The 

inhibition of monocyte infiltration at late time-points in non-infarct areas significantly 

reduced adverse remodeling, indicating that monocyte-derived macrophages in the non-

infarct myocardium play a role in aggravating post-infarct heart failure [262]. It has been 

proposed that higher diastolic pressure in the left ventricle creates a cytokine environment 

that drives similar macrophage expansion in humans as well [262]. 

Heart failure with preserved ejection fraction (HFpEF) accounts for approximately half of 

the patients suffering from HF [264]. HFpEF has been increasing in prevalence due to 

increasing extracardiac comorbidities such as hypertension, diabetes and obesity [265, 

266]. Although the high mortality and morbidity for HFpEF make it a significant clinical 

problem, there is no treatment currently available [265, 267]. Despite significant 

cardiomyocyte death, HFpEF has a relatively normal systolic contraction. The 

pathophysiology of HFpEF includes diastolic impairment and chronotropic incompetence 

[268]. Chronotropic incompetence is the inability of the heart to increase its rate to 
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compensate for strenuous activities [269]. A recent study showed that mice receiving salty 

drinking water, unilateral nephrectomy, and chronic exposure to aldosterone (SAUNA) 

developed hypertension and HFpEF similar to human patients [270]. An expansion of the 

macrophage population was found in both mice and humans when compared to healthy 

controls. These murine MHCIIhi macrophages produce IL-10 as an autocrine factor. 

Macrophage specific depletion of IL-10 ameliorates fibrosis and diastolic function [270]. 

IL-10 producing macrophages are also active during the reparative phase post-MI to 

promote scar formation through myofibroblast activation and proliferation [271].  

Because exacerbated monocytosis in the damaged heart impairs the post-infarct healing 

process, there are several proposed methods to curb monocyte recruitment. First would 

be the reduction of HSC egress from the BM. It was shown that 𝛽3-adrenoreceptor 

blockade in ApoE–/– mice post-infarct reduced monocytosis [272]. Second would be the 

reduction of extramedullary monocytosis from the spleen. Disruption of angiotensin II-

angiotensin 1 receptor signaling can potentially inhibit monocytes’ release from spleen 

[273, 274]. Lastly, would be the reduction of monocyte recruitment to the infarct. CCR2 

knockdown decreased proinflammatory monocytes trafficking that improved proper 

infarct healing [275, 276]. And the treatment of Irf5 siRNA nanoparticle delivery to the 

heart has been proposed to reduce myelotropic chemokine production and overall 

inflammation in mice post-infarct [277, 278].  

Notably, it has been recently proposed that macrophage immunometabolism could be a 

promising HF therapeutic target. Changes in metabolic states dictate macrophage pro- 

and anti-inflammatory functions [279-281]. Engulfed apoptotic cells generate metabolites 

that downstream promote a reparative phenotype in macrophages [281].  
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B. Monocytes and macrophages in Atherosclerosis 

Atherosclerosis is one of the leading causes of death in Western society and is associated 

with a number of risk factors such as obesity, insulin resistance, smoking and physical 

inactivity [282, 283].  Atherosclerosis is a chronic arterial inflammatory disease, triggered 

by apolipoprotein-B-containing lipoproteins (apoB-LPs) retained inside the subendothelial 

space called the intima [284]. ApoB-LPs consist of a neutral lipid core, composed 

predominantly of cholesteryl fatty acyl esters and triglycerides, enclosed by a monolayer 

phospholipids and proteins. There are two types of apoB-LPs: hepatic and intestinal. 

Hepatic apoB-LPs are circulating low-density lipoprotein (LD) and the intestinal apoB-LPs 

are remnant lipoproteins; both are highly atherogenic [283]. Retention of apoB-LPs 

predominantly occurs at arterial branch points and bifurcations that leads to disturbed 

laminar flow [285, 286]. Although normally this retention is benign due to preservation of 

the arterial lumen, a vulnerable plaque containing a necrotic core can lead to major 

problems. A local occlusive luminal thrombosis can form in patients with ruptured or 

eroded large arterial atherosclerotic plaques, which are likely to result in acute MI, stroke 

or sudden cardiac death [287, 288] (Figure 5). The extent of apoB LP retention is 

determined by multiple factors, including peripheral apoB LP concentration, age and 

genetic background of the individual [289]. Additional risk factors such as hypertension, 

diabetes, obesity, rheumatoid arthritis and psoriasis can also accelerate atherosclerosis 

progression [287].  

While a good deal of the information that we have on the pathogenesis of atherosclerotic 

lesions has been derived from murine models, it is important to note that the 
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atherosclerotic mouse models only partially recapitulate human disease. There are 

currently two widely used murine models: high fat, Western diet fed Ldlr–/– mice and chow 

fed or Western diet fed Apoe–/– mice [290]. Although neither model sufficiently replicates 

human plaque rupture and acute luminal thrombosis, the preponderance of evidence 

provided by mouse models indicated that monocyte and macrophages play a decisive 

role in atherosclerosis development in both humans and mice [291].  

The number of circulating inflammatory monocytes (CD14+ in human and Ly6Chi in mice) 

is positively correlated with atherosclerosis [292, 293]. It has been shown that these 

circulating inflammatory monocytes are tethered to activated endothelial cells and migrate 

to the intima and differentiate into inflammatory macrophages [294, 295]. However, one 

study has shown that Ly6Chi monocytes can also contribute to anti-inflammation 

macrophages during plaque regression [296]. It is unclear whether Ly6Clo monocytes are 

capable in becoming macrophages [297]. Nevertheless, when blood monocyte 

recruitment to the plaque is inhibited, lesion formation is markedly decreased [298]. Tacke 

and colleagues have shown that maximal suppression of atherogenesis can only be 

achieved by blockade of both Ly6Chi and Ly6Clo monocytes trafficking to the 

atherosclerotic plaques [299].  

It has been reported that monocyte-derived macrophages together with local proliferating 

resident macrophages are the most predominant populations within the plaque [300, 301]. 

Macrophages contribute to plaque growth and apoB-LP retention by either engulfing 

oxidized low-density lipoprotein particles (oxLDL) to become foam cells, or secreting 

proteoglycans that bind to apoB-LP [286]. Notably, the two most important changes 

mediated by pro-inflammatory monocytes/macrophages are plaque necrosis and 
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weakening of the protective fibrous cap, which ultimately leads to lesion rupture (Figure 

5). It has been demonstrated that a combination of macrophage apoptosis and defective 

macrophage efferocytosis functions contribute to plaque necrosis in advanced 

atherosclerosis [302, 303]. Several mechanisms that lead to inefficient efferocytosis were 

proposed including oxidative stress as a result of defective cholesterol efflux or proteolytic 

cleavage of MerTK efferocytosis receptor [304, 305]. Moreover, macrophage-derived 

matrix metalloproteinases (MMPs) have been shown to contribute to fibrous cap thinning, 

particularly MMP2, MMP9, MMP13 and MMP14 [306-308]. A separate pathway has been 

described that macrophages can trigger the apoptosis pathway of the smooth muscle 

cells through Fas and Fas ligand interactions as well as TNF𝛼 and nitric oxide production, 

which also increase plaque vulnerability [309]. Conversely, anti-inflammatory 

macrophages are crucial in stabilizing plaque by engulfing debris to prevent plaque 

necrosis and producing collagen to strengthen the fibrous cap [289, 310]. Both pro- and 

anti-inflammatory macrophages are present in human atherosclerotic lesions [311]. In 

addition, increased sympathetic nervous system activity was found to worsen 

atherogenesis post-infarct by promoting hematopoietic stem and progenitor cells (HSPCs) 

to egress from the BM [272]. These HSPCs seed the spleen and contribute to the increase 

in blood Ly6Chi monocytes number through extramedullary hematopoiesis [184].  

Monocyte-derived macrophages produce significant levels of IL-1β in the failing heart. 

Antibody or targeted gene therapies used to prevent monocyte entry into atherosclerosis 

lesions ameliorate disease progression in mice [283, 295]. In clinical settings, neutralizing 

immune cell functions using anti-IL-1β has resulted in improving atherosclerosis 

outcomes despite some adverse effects in the Canakinumab (a human anti-IL-1β 
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monoclonal antibody) anti-inflammatory thrombosis outcomes study (CANTOS) [312]. 

The study concluded that anti-IL-1β not only reduces monocyte entry into lesions but also 

promotes macrophage egress from lesions without altering apoB-LP levels in blood [313, 

314].  

 

 

 

 

Figure 5. Manifestations of atherosclerosis arise when fibrous cap thins and plaques 

undergo rupture.  

Figure drawn by X. Hou. 
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Chapter 4: 

Monocytes and macrophages in autoimmune disease 

 

 

Autoimmunity reflects dysregulation of host tolerance. Dysfunction in central tolerance 

predisposes autoimmunity and faulty peripheral tolerance unleashes autoimmune 

disease pathology. Otherwise speaking, a defective immune system that cannot 

discriminate self from non-self is the basis for autoimmune diseases [315]. In order to 

maintain tolerance, self-reactive lymphocytes must be eliminated, sequestered, or 

silenced in a timely manner. The presence of autoantibodies is an important serological 

feature of autoimmune diseases and signals the breakdown of immune tolerance. Central 

tolerance, peripheral anergy, and secretion of regulatory cytokines/chemokines by T 

regulatory and key innate cells are essential components needed to maintain immune 

tolerance [316]. Autoimmune diseases encompass nearly 100 types of disorders and 

affect about 5% of the population in the Western hemisphere [315, 316]. Despite recent 

advances in the diagnosis and the treatment of the symptoms of autoimmune diseases, 

both mortality and morbidity in affected populations remain high. Monocytes and 

macrophages have been implicated in the pathogenesis of several autoimmune diseases 

including myocarditis, DCM, systemic lupus erythematosus (SLE), multiple sclerosis (MS), 

inflammatory bowel disease (IBD) and rheumatoid arthritis (RA). 

Macrophages function as phagocytes that recognize and sequester foreign agents and 

apoptotic debris [317]. They are also capable in secreting cytokines and chemokines as 
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paracrine factors that modulate activities of other cells [317]. Macrophages can act as 

potent antigen presenting cells that instigate adaptive immune responses [317]. 

Additionally, macrophages are known to promote angiogenesis and fibrosis during tissue 

injury [318]. Macrophage subsets are highly diverse with regard to their ontogenies, 

phenotypes and functions (see above). It has therefore been challenging to decipher their 

role during autoimmune pathogenesis. However, current advances in lineage tracing and 

fate mapping allow us to distinguish monocyte-derived from embryo-derived 

macrophages in different tissues and organs.  

 

A. Monocytes and macrophages in multiple sclerosis (MS) 

Multiple sclerosis (MS) is a neurodegenerative autoimmune disorder affecting 

approximately 2.5 million young adults worldwide [319, 320]. It is characterized by axonal 

and neuronal loss as a result of chronic inflammation and demyelination in the central 

nervous system (CNS). Macrophages and resident microglia comprise the predominant 

pathogenic leukocytes present in the CNS during disease development, followed by CD4+ 

T cells, likely as a result of breakdown of the blood-brain barrier [321-324]. Like many 

other autoimmune diseases, MS is the result of a combination of genetic predisposition 

and environmental influences. Genome-wide association studies (GWASs) have 

identified more than 230 genetic variants that increase disease susceptibility for MS [325-

327]. A significant expansion of peripheral blood nonclassical CD16+CD14- monocytes 

was observed in patients with MS compared to healthy controls [328]. This observation 

coincides with similar nonclassical monocyte expansion in psoriasis, rheumatoid arthritis 

and other autoimmune disorders [329, 330]. Experimental autoimmune encephalomyelitis 
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(EAE) is one of the most well characterized animal models of MS disease [331]. EAE can 

be induced by either immunization with myelin peptide emulsified in CFA or adoptive 

transfer of encephlitogenic T cells [332, 333]. The former model requires pertussis toxin 

injection to induce EAE in susceptible strains of mice [333]. Although EAE is associated 

with encephalitogenic lymphocyte mediated demyelination, monocyte infiltration into the 

CNS is correlated with EAE initiation and the progression of paralysis [334-337]. It has 

been shown that monocyte-derived macrophages mediate myelin destruction, whereas 

microglia-derived macrophages are required for debris clearance [338]. Recently it has 

been shown that the receptor for tumor necrosis factor, TNFR2, plays a dichotomous role 

in the regulation of EAE pathophysiology. Specifically, TNFR2 promotes microglia 

activation and proliferation, which in turn provides anti-inflammatory signals to suppress 

neuroinflammation, whereas TNFR2 signaling in monocytes and monocyte-derived 

macrophages is detrimental, driving immune activation and EAE initiation [339].  

 

B. Monocytes and macrophages in rheumatoid arthritis (RA) 

Rheumatoid arthritis (RA) is a chronic autoimmune joint disease. Inflammatory 

pathology is localized in the synovium of multiple joints. Cartilage and bone damage 

results when RA is left untreated [340]. Macrophages are known to play a crucial role 

in the pathogenesis of rheumatoid arthritis (RA) by augmenting and orchestrating a 

pro-inflammatory environment. An increased number of synovial macrophages 

correlates with the cartilage and bone destruction that results in joint erosion [341]. 

Depletion of Synovial macrophages has offered tremendous therapeutic benefit in 

animal models of RA [341, 342]. An early hallmark of active rheumatic disease is an 
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increase number of HLA-DR+ macrophages in both the lining and sub-lining synovial 

membranes [341]. Synovial lining consists of tissue-resident macrophages and 

fibroblasts, whereas the synovial sub-lining (beneath synovial lining and facing synovial 

fluid) consists of infiltrating monocyte-derived macrophages, fibroblasts, scattered 

blood vessels and fat cells [341, 343]. An early hypothesis stated that macrophages 

initiate RA through antigen presentation to infiltrating T cells, similar to disease 

mechanism proposed for Graves’ disease and type 1 diabetes mellitus [344]. The 

development of anti-TNF treatment for RA and other diseases represents a major 

clinical effort to downregulate HLA expression and inhibit excessive TNF production by 

macrophages [345, 346]. So far the origin of resident synovial macrophages is not well 

understood. Phenotypic differences between synovial lining macrophages and 

cartilage junction macrophages were reported in patients with RA [347]. However, there 

is no obvious evidence indicating macrophage polarization in the inflamed joints, 

although higher TNF and IL-1 and lower IL-10 suggest enhanced M1 activities in 

patients with RA [348]. 

The K/B x N serum-transfer mouse model of sterile inflammatory arthritis is used to 

mimic the effector phase of human RA [349]. This model allowed researches to 

conclude that Ly6C lo monocytes are able to differentiate into MHCII+ macrophages 

during effector stage after recruitment to drive disease pathology [350]. This is distinctly 

different from MHCII- tissue-resident synovial macrophages, which were thought to limit 

arthritis development [350]. 

An antigen-induced arthritis (AIA) model has been developed to recapitulate both the 

induction and effector phase of human RA [349]. CFA induces systemic inflammation, 
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which promotes predominantly Ly6Chi monocytes to infiltrate the knee and differentiation 

into macrophages [351].  

The model that most closely resembles human RA is collagen-induced arthritis (CIA). The 

breakdown of immune tolerance, release of autoantibodies, and excessive pro-

inflammatory cytokine release are all indispensable components in this model [349]. 

Multiple studies have concluded that Ly6Chi monocyte are pathogenic in this model [352-

354]. CD14+CD16+ intermediate human blood monocytes were more elevated in RA 

patients than in healthy controls [355]. These monocytes are thought to possess a potent 

ability to secrete inflammatory cytokines [356]. Therefore, we must be extremely cautious 

when proposing macrophage targeted treatment for RA patients since as yet there is no 

consensus regarding which exact populations are important in RA pathology. In addition 

to many proposed cytokine inhibitory treatments, nanoparticle delivery of Irf5 siRNA has 

been proposed [277]. IRF5 is a transcription factor important for monocyte differentiation 

into MHCII+ macrophages, as well as GM-CSF and CXCL1 release [351, 357].  

 

C. Monocytes and macrophages in inflammatory bowel disease (IBD) 

Inflammatory bowel diseases (IBDs) are chronic relapsing disorders of the 

gastrointestinal (GI) track due to environmental perturbation and genetic predisposition. 

More specifically, it is due to the failure of the immune system in the GI track to maintain 

its balance between keeping harmful pathogens at bay while retaining tolerance to the 

commensal microbiota [358]. There are two main forms of IBDs, Crohn’s disease (CD) 

and ulcerative colitis (UC) [359]. 
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Monocyte-derived Ly6CloCX3CR1hiMHCIIhi intestinal resident macrophages make up 

the largest tissue-associated macrophage population in the body. They are essential in 

protecting the host against opportunistic pathogens as well as maintaining GI 

homeostasis [358, 360, 361]. In mice, the half-life for intestinal resident macrophages 

is approximately 3 to 5 weeks [362]. Therefore, Ly6ChiCX3CR1loMHCIIlo monocytes are 

thought to be the precursors that continuously replenish the intestinal macrophage pool 

after birth [358]. The majority of intestinal macrophages are strategically positioned in 

the lamina propria beneath of the epithelium surface as sentinels [360]. Because these 

intestinal tissue macrophages express high levels of MHCII, they are thought to play a 

role in Foxp3+ T regulatory cell maintenance in the lamina propria [363]. Similarly, these 

macrophages support generation of commensal-specific Th17 cells, which are key 

immune cells that support barrier integrity [364, 365]. Apart from performing phagocytic 

housekeeping functions, intestinal resident macrophages also produce prostaglandin 

E2 to support epithelial integrity [366-368]. Furthermore, they are known to support 

peristalsis by interacting with enteric neurons [369]. The intestinal mucosa induces 

intestinal macrophages to constitutively produce anti-inflammatory cytokines such as 

IL-10 which act as an autocrine factor that dampens macrophages’ pro-inflammatory 

responses and excessive activation [368, 370-375]. Chronic inflammation such as IBD 

has a profound impact on tissue macrophage compartments. There are two subsets of 

macrophages in the inflamed gastrointestinal track that exhibit vastly different functions, 

CX3CR1hi resident and CX3CR1int inflammation-elicited intestinal macrophages [134, 

370]. CX3CR1int macrophages exhibit a pro-inflammatory signature and are thought to 

be pathogenic in the colitis mouse model [134, 376]. The current hypothesis is that the 
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local microenvironment, which is critical for instructing Ly6Chi monocytes to become 

anti-inflammatory CX3CR1hi macrophages, is instead arresting the monocyte 

differentiation pathway [134, 370]. As a result, during the resolution of inflammation, 

CX3CR1int macrophages are removed from the microenvironment, possibly due to 

apoptosis or through differentiation into resident macrophages [134, 366, 377]. The 

present knowledge about intestinal macrophages is predominantly generated through 

murine models; studies in human subjects are sparse. While CD results from impaired 

bacterial clearance by macrophages, UC results from heightened response against 

bacteria [378, 379]. Overall, intestinal CD14hi mononuclear phagocytes are markedly 

increased in IBD patients [380, 381]. These pro-inflammatory CD14hi cells produce high 

levels of IL-6, IL-23, TNF-𝛼 and IL-1𝛽 but not IL-10 [382, 383]. Although the overall 

macrophage numbers are similar between CD and UC patients, it is thought that the 

composition and function of intestinal macrophages differ greatly [384]. For example, 

CD patients develop more fibrosis in the GI track than UC patients [385-387]. Tissue 

fibrosis has been shown to be closely associated with macrophage-mediated excessive 

wound healing. MMP-2 produced by macrophages to breakdown extracellular matrix 

has been shown to increase in CD patients’ mucosa relative to healthy controls [388, 

389]. Taken together, the involvement of macrophage subsets in the pathogenesis of 

UC and CD needs to be further elucidated to establish clinical relevance. 

 

 

D. Monocytes and macrophages in systemic lupus erythematosus (SLE) 
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In patients with Systemic lupus erythematosus (SLE), the continuous production of a wide 

array of autoantibodies ensures chronic inflammation and tissue damage in multiple 

organs [390]. It is increasingly recognized that aberrations of monocytes and 

macrophages are the basis of the pathogenesis of SLE in both mice and humans [391, 

392]. Uptake of apoptotic and necrotic debris by macrophages through phagocytic 

processes is essential in maintaining homeostasis. Ineffective phagocytosis enables 

exposure of autoantigens that triggers autoimmune responses [391]. It has been 

documented that patients with SLE have defective macrophages that are incapable of 

apoptotic cell clearance compared to the control patients [393, 394]. More recent studies 

have demonstrated that sera from SLE patients possess apoptosis-inducing-properties 

and SLE patients’ lymph nodes have increased accumulation of apoptotic cells and 

decreased presence of phagocytic macrophages [395, 396]. Phagocytic defect is then 

compounded by chronic inflammation, which further drives SLE pathology [397]. However, 

it is currently unknown whether such a phagocytic defect is inherent or modulated by the 

environment.  

Due to the highly heterogeneous nature of human SLE, no mouse model can completely 

recapitulate the broad spectrum of disease presentations in human subjects [398, 399]. 

Although the mouse models of SLE (Table 4) have contributed significantly to a better 

understanding of disease development and treatment, most studies have focused on 

lymphocytic involvements in lupus rather than that of myeloid cells [400, 401]. To improve 

the effectiveness of murine models, the latest technologies for genetic studies will include 

use of the CRISPR/Cas9 system, which allows for rapid assessment of the genetic impact 
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on lupus development [402]. Furthermore, humanized mice are being developed to bridge 

the gap between mouse model and human disease [403, 404].  

Monocytes and macrophages are key components involved in the regulation of numerous 

diseases that are inflammatory or autoimmune in nature. The roles of these cells in the 

pathogenesis of myocarditis and DCM is still unclear. We hypothesize that the functions 

of monocytes and macrophages are driven both by endogenous and by exogenous 

factors in the heart during myocarditis development. We speculate that the fates and 

functions of the myocardial infiltrating cells determine the outcomes of DCM. In chapter 

5, we will discuss the background of our work, our core findings, and discussing the 

broader implications of our results.   
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Table 4. Murine models of SLE 

 
Category 

 
Name 
 

 
Phenotype 

 
 
 
 
 
 
 
 

Spontaneous 
SLE model 

NZB/NZWF1 (BW)  
[405] 

Produce autoantibodies (predominantly ANA and anti-
dsDNA) and develop immune complex glomerulonephritis 
and mild vasculitis. This model does not recapitulate the full 
spectrum of SLE manifestation in human and disease 
development is slow [406].  
 

NZM2410 [407] Produce autoantibodies and develop immune complex 
glomerulonephritis only. Used extensively to define genetics 
of lupus [407, 408]. 
 

NZM2328 [409] Produce autoantibodies and develop acute 
glomerulonephritis followed by chronic nephritis [410, 411]. 
 

MRL/lpr [412] Develop a full spectrum of autoantibodies (anti-Sm, anti-Ro, 
anti-La, ANA and anti-dsDNA), as well as involves multiple 
organs including arthritis, skin rash and cerebritis [413, 414].  
 

BXSB [415, 416] SLE only occur in male mice. Produce autoantibodies and 
develop immune complex glomerulonephritis only [415, 416]. 
 

SNF1 [417] Produce autoantibodies and develop immune complex 
glomerulonephritis only [417]. 

 
 
 
 

Induced SLE 
model 

Pristane-induced 
[418] 

Induce over-production of type I IFNs, similar to human SLE 
[419]. Produce many types of autoantibodies and develop 
immune complex glomerulonephritis as well as mild erosive 
arthritis [420]. 
 

Resiquimod cream-
induced [421, 422] 

Induce over-production of type I IFNs in only BALB/c strain. 
Produce autoantibodies, develop immune complex 
glomerulonephritis as well as enlarged spleen [422]. 
 

Graft-versus-host 
induction [423] 

Depend on the strain used, autoantibodies and immune 
complex nephritis can be induced [423]. 
 

Antibody induced The injection of anti-glomerular basement membrane 
antibodies can induce rapid onset immune complex 
glomerulonephritis in mice [424, 425].  
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Chapter 5 

 

The roles of monocyte and macrophage in myocarditis 

 
 
 
 

This chapter is currently under review at Cell Report, entitled:  

The cardiac microenvironment instructs divergent monocyte fates and functions in 

myocarditis. 

 

Xuezhou Hou, Guobao Chen, William Bracamonte-Baran, Hee Sun Choi, Nicola L. Diny, 

Jungeun Sung, Taejoon Won, Megan Key Wood, David Hughes, Monica V. Talor, David 

Joel Hackam, Karin Klingel, Giovanni E. Davogustto, Heinrich Taegtmeyer, Isabelle 

Coppens, Jobert G. Barin, Daniela Čiháková.  
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Summary  

 

Two types of monocytes, Ly6Chi and Ly6Clo, infiltrate the heart in murine experimental 

autoimmune myocarditis (EAM). We discovered a previously unappreciated role for 

cardiac fibroblasts in facilitating monocyte-to-macrophage differentiation of both Ly6Chi 

and Ly6Clo cells, allowing these macrophages to perform divergent functions in 

myocarditis progression. During the acute phase of EAM, IL-17A is highly abundant. It 

signals through cardiac fibroblasts to attenuate efferocytosis of Ly6Chi monocyte-derived 

macrophages (MDMs) and simultaneously prevents Ly6Clo monocyte-to-macrophage 

differentiation. We demonstrated an inverse clinical correlation between heart IL-17A 

levels and efferocytic receptor expressions in humans with heart failure. In the absence 

of IL-17A signaling, Ly6Chi MDMs act as robust phagocytes and are less pro-

inflammatory, whereas, Ly6Clo monocytes resume their differentiation into MHCII+ 

macrophages. We propose that MHCII+ Ly6Clo MDMs are associated with the reduction 

of cardiac fibrosis and prevention of the myocarditis sequalae.  

 

Keywords 

 monocytes, macrophages, heart, myocarditis, Ly6C, MerTK 
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Introduction 

 

Myocarditis remains a leading cause of heart failure in children and young adults [426, 

427]. A recent global estimate of myocarditis incidence is approximately 1.5 million cases 

annually [428]. However, the actual myocarditis incidence could be significantly 

underestimated due to the heterogeneous clinical manifestations and a wide spectrum of 

disease presentations [429]. Between 9-16% of patients with myocarditis develop dilated 

cardiomyopathy (DCM). Yet no biomarkers are currently available to identify myocarditis 

patients at risk of developing DCM [57, 430, 431]. To date, treatment of myocarditis and 

prevention of its sequelae, DCM, remain vital goals in the quest to reduce morbidity and 

mortality in patients.  

 

In the experimental autoimmune myocarditis (EAM) model as well as human clinical 

studies, we and others have reported that monocytes and macrophages comprise 

approximately three quarters of the infiltrating cells in the injured myocardium [432, 433]. 

Cardiac tissue-resident macrophages originate from precursors that develop in the 

embryonic yolk sac and fetal liver and maintain locally as self-renewing populations to 

perform tissue-specific functions. After birth, a proportion of embryonically-derived 

cardiac resident macrophages are progressively replaced by monocyte-derived 

macrophages (MDMs) that originate in the bone marrow (BM) [116, 118, 119, 147, 149, 

434]. BM-derived circulating monocytes in mice consist of two subsets: the ‘classical’ 

inflammatory Ly6Chi monocytes and the ‘non-classical’ patrolling Ly6Clo monocytes. The 
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former resemble human CD14hiCD16– and/or CD14+CD16+ monocytes, while the latter 

has similar characteristics to human CD14–CD16hi monocytes [169, 170, 176, 317, 435-

438]. Cardiac injury triggers massive Ly6Chi monocytes mobilization, trafficking and 

extravasation into the heart where they promote inflammation associated with tissue 

repair and remodeling [119, 171, 184, 272, 439-441].  

 

It is challenging to distinguish tissue-resident macrophages from recruited MDMs when 

they co-exist in the same inflammatory niche. It is known that Ly6Chi monocytes are 

precursors to cardiac macrophages during cardiac injury [119, 245]. However, whether 

patrolling Ly6Clo monocytes also contribute to the macrophage pool is controversial. 

Ablation of Ly6Clo monocytes in a mouse model of myocardial infarction (MI) resulted in 

depletion of other monocyte and macrophage populations [245]. Moreover, it is unclear 

whether the phenotype and function of either Ly6Chi or Ly6Clo MDMs differ from one 

another. The mechanism through which extrinsic stimuli influence monocytes survival, 

proliferation, differentiation and function in the context of cardiac damage and 

inflammation is not understood. 

  

We previously identified an important role of IL-17A in driving myocarditis progression to 

DCM [442]. IL-17A-deficient or IL-17 receptor alpha (IL17Ra)-deficient mice developed 

myocarditis with similar severity as WT animals. Remarkably, they have preserved 

cardiac functions and were protected from myocardial fibrosis and DCM [442]. We also 

reported that anti-IL-17A treatment during EAM onset can prevent DCM development in 

WT mice [442]. IL-17A signaling to cardiac fibroblasts results in the induction of 
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granulocyte-macrophage colony-stimulating factor (GM-CSF) and CCL2, which drives 

Ly6Chi monocyte chemotaxis and accumulation in the heart, worsening DCM outcomes 

[247, 442]. The pathogenic role of IL-17A in the development of cardiac fibrosis and heart 

failure has also been confirmed in MI (Chen et al, 2018).  

 

In order to better understand the underlying mechanisms of how recruited monocytes 

drive DCM, we fate-mapped the accumulating monocyte subsets in the heart during 

myocardial inflammation. We found that IL-17A-activated cardiac fibroblasts significantly 

arrested Ly6Clo monocyte-to-macrophage differentiation and proliferation. We also 

discovered that IL-17A signaling through cardiac fibroblasts can downregulate 

efferocytosis receptors expressed by Ly6Chi MDMs, negatively affecting their phagocytic 

function during inflammation resolution. Furthermore, both intrinsic and extrinsic factors 

modulate distinct transcriptomic profiles of Ly6Chi and Ly6Clo MDMs, signifying their 

potential functional differences in the context of myocarditis. Our work provides evidence 

that cardiac fibroblasts play a decisive role in MDM ontogeny and function during cardiac 

injury. Our findings provide new insights into monocyte and macrophage biology and their 

roles in the context of chronic cardiac inflammation. 

 

 

Results  

 

Infiltrating monocytes contribute to three subsets of macrophages during myocarditis 
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We created parabiotic mice to elucidate the contribution of infiltrating monocytes to 

cardiac macrophage populations under the influences of an inflammatory 

microenvironment during myocarditis development. The circulations of CD45.1 and 

CD45.2 mice were surgically joined, EAM was induced in CD45.1 mice 2 days prior to 

parabiosis (Figure 6A). On day 21 of EAM, we confirmed by histology that only CD45.1 

parabionts developed severe myocardium infiltration (Figure 6B). Flow cytometric 

analysis at day 21 showed a significantly elevated total number of infiltrating non-

neutrophilic myeloid cells in the CD45.1 EAM hearts compared to their CD45.2 parabiotic 

partners (Figure 6C). We also observed that CD45.1 EAM hearts had more total 

F4/80hiCD64+ macrophages compared to non-EAM CD45.2 hearts, indicating cardiac 

macrophage expansion in response to inflammation (Figure 6D). We found a higher 

frequency of CD45.2+ MDMs in the CD45.1 EAM mice, compared to CD45.1+ MDMs in 

the CD45.2 non-EAM mice (Figure 6E, F; see gating strategy in Figure 7A). However, a 

higher frequency of CD45.2+ MDMs in the CD45.1 EAM mice did not reflect a higher 

frequency of total CD45.2+ infiltrating monocytes (Figure 6E). In addition, Ly6Chi to Ly6Clo 

monocyte ratio in the hearts between parabionts did not differ significantly (Figure 6G). 

Resident tissue macrophages can be further divided into three subsets, based on their 

expression of CCR2 and MHCII [119]. We found that infiltrating CD45.2+ monocytes 

predominantly differentiated into CCR2+MHCII+ macrophages, though they possess the 

capacity to replenished all three macrophage subsets in the EAM hearts (Figure 6E, H). 

However, the heart infiltrating CD45.1+ monocytes in the non-EAM CD45.2 mice can only 

differentiate into MHCII+ macrophages (Figure 6E, H). Taken together, our data supports 

the idea that during cardiac inflammation, infiltrating monocytes readily differentiate into 
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macrophages and these monocyte-derived cells can replenish all three macrophage 

subpopulations.  

During cardiac inflammation, mature Ly6Chi monocytes arise from common monocyte 

progenitors (cMoPs) in the BM before trafficking to the heart [198]. We examined the 

mature monocyte population in the BM in response to cardiac inflammation (see gating 

strategy in Figure 7B). We found a substantial presence of CD45.1+ grafted cells in the 

CD45.2 parabiont BM, whereas CD45.2+ monocytes were relatively rare in the CD45.1 

EAM parabiont BM (Figure 7C, D). We speculated that this could be due to 

undifferentiated CD45.1+ Ly6Chi monocytes homing back to the CD45.1 BM in the 

absence of inflammation [170]. Alternatively, a systemic response to adjuvants used for 

EAM induction in CD45.1+ parabionts could increase monocyte infiltration into non-EAM 

parabiont BM. Another possible explanation is that EAM BM is saturated with 

inflammatory cells which prevented CD45.2+ monocytes from infiltrating CD45.1 BM. 

Nevertheless, the ratio of Ly6Chi to Ly6Clo monocytes was highly comparable between 

parabionts in the BM (Figure 7E). Collectively, the similarity of monocyte ratios in the BM 

between EAM and naïve mice suggests the local cardiac inflammatory milieu is 

instrumental in monocyte to macrophage differentiation in the heart.      
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Figure 6. Monocyte dynamics during myocarditis 

(A) Schematics of parabiosis mice. (B) Representative images of H&E-stained heart 

sections of the median animal from day 21 EAM induced CD45.1 mice and CD45.2 non-

EAM pairs. Bars: 100 µm. (C) Comparison of total grafted CD11b+Ly6G–myeloid cell 
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counts between parabionts. (D) Comparison of total count of cardiac macrophages 

between parabionts. (E) Flow cytometry plots showing (Top left) Percentage of 

CD45.2+CD11b+Ly6G–Lineage (CD3e, B220, NKp46, CD90.2 and Ter119)– grafted cells 

infiltrating the CD45.1 EAM hearts; (Top middle) Percentage of grafted cells in the hearts 

that differentiated into macrophages or remained as monocytes; (Top right) Percentage 

of grafted cell derived macrophage subsets each defined by CCR2 and MHCII 

expressions. (Bottom left) Percentage of CD45.1+CD11b+Ly6G–Lineage– grafted cells 

infiltrating the CD45.2 non-EAM hearts; (Bottom middle) Percentage of grafted cells in 

the hearts that differentiated into macrophages or remained as monocytes; (Bottom right) 

Percentage of grafted cell derived macrophage subsets each defined by CCR2 and 

MHCII expressions. (F) Percentages of grafted monocyte-derive macrophages out of total 

grafted CD11b+Ly6G–Lineage– myeloid cells. (G) Percentages of grafted Ly6Chi and 

Ly6Clo cells out of total grafted F4/80–CD64+ monocytes. (H) Comparison of grafted MDM 

subsets defined by CCR2 and MHCII expressions between parabiotic mice. Data are 

representative of two independent experiments with biological triplicates. All data are 

presented as mean ± SD; n = 3. (C, D, F, G) Groups were compared using Student’s t 

test. *, P < 0.05. See also Figure 7. 
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Figure 7. Characterization of monocytes and/or macrophages in murine hearts and bone 

marrows during EAM development 

(A) Representative gating strategy showing identification of CD11b+Ly6G–Lin– myeloid 

cells in the hearts. (B) Representative gating strategy showing identification of mature 

Lin–CD11b+Ly6G–c-kit–Flt3– monocytes in the BM. (C) Flow cytometry plots showing 

grafted Lin–CD11b+Ly6G–c-kit–Flt3– monocytes that consist of both Ly6ChiCCR2+ and 

Ly6CloCCR2– populations in the bone marrow (BM). (D) Percentages of grafted Lin–

CD11b+Ly6G–c-kit–Flt3– monocytes in the BM. (E) Percentages of grafted Ly6Chi and 

Ly6Clo monocytes out of total grafted monocytes in the BM. (A) (B) Lineage includes 

CD3e, B220, NKp46, CD90.2 and Ter119. Data are representative of two independent 

experiments with biological triplicates. All data are presented as mean ± SD. Groups 

were compared using Student’s t test. ***, P < 0.001.  
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Cardiac fibroblasts facilitate Ly6Chi and Ly6Clo monocyte-to-macrophage differentiation  

The results from the parabiosis experiments suggested that MDMs in an inflamed cardiac 

environment are a highly heterogenous population. Whether macrophage heterogeneity 

is instigated by monocyte intrinsic differences and/or extrinsic environmental factors is 

not yet known. We and others have recently reported that cardiac fibroblasts play a key 

sentinel role in the myocardium. Cardiac fibroblasts produce myelotropic chemokines and 

cytokines such as GM-CSF and CCL2 in response to cardiac injury in myocarditis [247, 

442]. This immune modulatory property of cardiac fibroblasts was also confirmed in MI 

and Kawasaki disease [443, 444]. To examine whether Ly6Chi and Ly6Clo monocytes 

have the capacity to differentiate into macrophages and whether cardiac fibroblasts 

facilitate this differentiation process, we established an in vitro co-culture system. We 

harvested primary cardiac fibroblasts from naïve WT mice and co-cultured them with 

FACS-sorted IL-17Ra–/– EAM splenic Ly6Chi or Ly6Clo monocytes for up to 160 hours 

(Figure 8A; see gating strategy in Figure 9A). Due to the relative paucity of monocytes in 

blood, we used spleen as a surrogate source of monocytes. Using flow cytometry, we 

found that approximately 80% of the Ly6Chi monocytes quickly differentiated to become 

macrophages, while almost all Ly6Clo monocytes remained undifferentiated over the first 

40 hours of culture (Figure 8B, C). However, when we assessed their phenotypic changes 

at 160 hours, approximately 30% of the Ly6Clo monocytes had become macrophages 

(Figure 8D, E). Neither Ly6Chi nor Ly6Clo monocytes were able to survival long-term nor 

differentiate into macrophages in the absence of cardiac fibroblasts (Figure 8D, E). Ly6Chi 

and Ly6Clo MDMs were morphologically similar and resembled macrophages after 160 

hours of co-culture with cardiac fibroblasts (Figure 8F). To better understand how 
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monocytes and cardiac fibroblasts interact in vitro, we used live-cell time-lapsed imaging 

to track CFSE-labeled (CFSE+) Ly6Chi and Ly6Clo monocytes co-cultured with CFSE– 

cardiac fibroblasts. We found that CFSE+Ly6Chi monocytes started to cluster around 

cardiac fibroblasts as early as 9 hours into co-culture. They adhered strongly to the 

cardiac fibroblasts and became static when adhesions formed (Figure 8G). In contrast, 

CFSE+Ly6Clo monocytes were motile and they formed transient clusters around cardiac 

fibroblasts. Ly6Clo monocytes also lose CFSE at a higher rate, indicating faster 

proliferation when compared to Ly6Chi monocytes (Figure 8H). Flow cytometric analysis 

confirmed that Ly6Clo monocytes indeed proliferate faster than Ly6Chi monocytes (Figure 

9B, C). Next, we used transmission electron microscopy (EM) to examine whether MDMs 

and cardiac fibroblasts establish cell-to-cell connections, which would suggest the 

presence of molecular adhesion structures. We observed that the cytoplasm of both 

Ly6Chi and Ly6Clo MDMs contained a large number of electron-lucent vesicles (Figure 8I, 

J). Each subset of MDMs formed close cell-to-cell contact with cardiac fibroblasts (Figure 

8K, L). Interestingly, these close cell-to-cell interactions are important for driving 

monocyte to macrophage differentiation. We demonstrated a significant reduction in 

monocyte-to-macrophage differentiation when monocyte-fibroblast contacts are inhibited 

by a transwell barrier (Figure 9D, E). We also showed that Ly6Chi monocytes induced 

cardiac fibroblasts to significantly upregulate Ccl2 mRNA levels compared to Ly6Clo 

monocytes, ensuring a feed-forward loop for a continuous supply of pro-inflammatory 

monocytes to accumulate in an inflamed microenvironment (Figure 9F). Taken together, 

Ly6Chi and Ly6Clo monocytes establish close physical contact with cardiac fibroblasts and 
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these cell-to-cell interactions play a role in facilitating Ly6Chi and Ly6Clo monocytes 

survival and differentiation into macrophages.  
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Figure 8. Direct contact with cardiac fibroblasts facilitate Ly6Chi and Ly6Clo monocyte-to-

macrophage differentiation 

(A) Schematics of the monocytes and cardiac fibroblasts co-culture system. Cardiac 

fibroblasts were harvested from WT naïve mice, whereas monocytes were sorted from 

EAM IL-17Ra–/– mice. (B) Flow cytometric analysis showing differentiation of viable Ly6Chi 

and Ly6Clo monocytes to become F4/80hiCD64+ cells at 40 hours via flow cytometry. (C) 

Quantification of the frequency of macrophage differentiation at 40 hours. (D) 

Differentiation of viable Ly6Chi and Ly6Clo monocyte derived cells were assayed at 160 

hours via flow cytometry. (E) Quantification of the frequency of macrophage differentiation 

at 160 hours. (F) Giemsa staining of monocytes morphologies before culture and after 

160 hours co-culture with cardiac fibroblasts. Bars: (black) 8 µm (G) IncuCyte Imaging 

showing CFSE+Ly6Chi and (H) CFSE+Ly6Clo monocytes are in close contact when 

interacting with cardiac fibroblasts. Bars: (white) 50 µm. Representative images of EM 

images showing (I) Ly6Chi and (J) Ly6Clo MDMs, and (K) Ly6Chi and (L) Ly6Clo MDMs 

are in close contacts with cardiac fibroblasts. Images taken at 160 hours of co-culture. 

Bars: (white) 2 µm; (black) 2 µm. (A – F) Data are representative of five independent 

experiments with technical triplicates. (C, E) Data are presented as mean ± SD; n = 3. 

Groups were compared using one-way ANOVA followed by Tukey test. ****, P < 0.0001. 

See also Figure 9. 
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Figure 9. In vitro co-culture of splenic Ly6Chi or Ly6Clo monocytes with cardiac fibroblasts  

(A) Representative gating strategies of FACS sorted Ly6Chi and Ly6Clo monocytes from 

WT (or IL-17Ra–/–) EAM spleens. These monocytes were used for all adoptive transfers 

and in vitro co-culture experiments. Cells were gated stringently to obtain pure 
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populations. Lineage marks include CD3e, CD19, NKp46, CD49b. (B) Histograms of MFI 

showing CFSE staining of viable Ly6Chi and Ly6Clo monocytes at 40 hours and (C) at 160 

hours. (D) A transwell co-culture was established with cardiac fibroblasts in the lower 

chamber and either Ly6Chi or Ly6Clo monocytes on the upper chamber. Cells were 

separated with a 0.4-micron pore size membrane. We examined Ly6Chi and (E) Ly6Clo 

monocyte-to-macrophage differentiation at 40 hours and 160 hours respectively. (F) 

Separately, cardiac fibroblasts were harvested in 40 hours and Ccl2 mRNA levels were 

assessed. (D – F) Data are presented as mean ± SD. Data are representative of two 

independent experiments with technical triplicates. (C, D) Groups were compared using 

Student’s t test. **, P < 0.01. (E) Groups were compared using one-way ANOVA followed 

by Tukey test. ****, P < 0.0001.  
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Inflammatory monocytes are the main precursors for monocyte-derived macrophages 

during myocarditis in both mice and humans  

Given that cardiac fibroblasts facilitate the differentiation of both Ly6Chi and Ly6Clo 

monocytes into macrophages, we next sought to investigate whether both Ly6Chi and 

Ly6Clo monocytes could differentiate in vivo during EAM development. We FACS-sorted 

splenic CD45.2+ Ly6Chi or Ly6Clo monocytes from WT mice on day 14 of EAM, and 

intracardially injected them into CD45.1 WT recipients at the peak of EAM (Figure 10A). 

Both Ly6Chi and Ly6Clo monocytes and monocyte-derived cells of donor origin persisted 

in the myocardium 40 hours after the injection (Figure 10B, C). Approximately 50% of the 

injected Ly6Chi monocytes had differentiated into F4/80hiCD64+ macrophages (Figure 

10D, C), whereas less than 1% of the Ly6Clo monocytes differentiated into macrophages 

(Figure 10D, F). We employed Barnes-Hut Stochastic Neighbor Embedding (bh-SNE) 

analysis to visualize monocyte to macrophage differentiation [445, 446]. We confirmed 

that CD45.2+ Ly6Clo monocytes were mostly unable to differentiate into F4/80hiCD64+ 

macrophages, while CD45.2+ Ly6Chi monocytes contributed significantly to the cardiac 

macrophage pool during EAM (Figure 10G, H). We also examined Ly6Chi and Ly6Clo 

monocytes differentiation at 160 hours in vivo, and found that very few injected monocytes 

were present in the myocardium, indicating a high local turn-over rate. Notably, we did 

not find evidence suggesting Ly6Clo monocyte-to-macrophage differentiation (data not 

shown). Upon immunofluorescence examination of endomyocardial biopsy samples from 

a patient with giant cell myocarditis, we found the expression of CD68, a pan macrophage 

marker, coincided with CD14 but not CD16. This suggest that the inflammatory 

CD14+CD16–/+ but not the patrolling CD14–CD16+ monocyte populations are the likely 
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source of macrophages in giant cell myocarditis (Figure 11A, B). In parallel, we examined 

endomyocardial biopsies from three patients who had left ventricular assist devices 

implanted as a result of heart failure with various etiologies (Table 5). Flow cytometric 

analysis from all three patients indicated that CD14+CD68+, but not CD16+CD68+ 

macrophages are present in the heart (Figure 11C). Further supporting the hypothesis 

that CD14+CD16- monocytes are the main source of cardiac macrophages in human 

myocarditis. In conclusion, human CD14+ and mouse Ly6Chi monocyte subsets are the 

major contributors to the cardiac macrophage population during myocarditis development.  

 

 

Figure 10. Inflammatory monocytes are the main precursors for monocyte-derived 

macrophages during myocarditis in both mice and humans  
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(A) Schematics of intracardiac injection of Ly6Chi or Ly6Clo CD45.2+ splenic monocytes 

into the heart of a CD45.1 day 21 EAM WT recipient mice. (B) Gating of concatenated 

Ly6Chi and (C) Ly6Clo donor cells from total viable CD115+CD11b+ population. (D) 

Quantification of the percentages of injected Ly6Chi or Ly6Clo monocytes differentiated 

into macrophages. (E) Flow cytometric analysis of the frequencies of Ly6Chi MDMs and 

(F) Ly6Clo MDMs out of viable CD45.2+CD115+CD11b+ population. F4/80 and CD64 

expression intensities of (G) Ly6Chi MDMs and (H) Ly6Clo MDMs using bh-SNE 

dimensional reduction algorithm. (D) Data are presented as mean ± SD; n = 3 – 4. 

Groups were compared using Student’s t test. **, P <0.01. Data are representative of 

three independent experiments. See also Figure 11, Table 5. 
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Figure 11. Examination of human macrophage ontogeny 

(A) Immunofluorescent (IF) staining of CD14 (red) and CD68 (green) in a human giant 

cell myocarditis biopsy sample showing numerous CD14+CD68+ double positive cells 

(blue arrows) and some CD14+CD68– single positive cells (yellow arrows). (B) 

Immunofluorescent (IF) staining of CD16 (red) and CD68 (green) in a human giant cell 

myocarditis biopsy sample showing numerous CD16–CD68+ single positive cells (green 
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arrows) and few CD16+CD68– single positive cells (red arrows). (C) Gating of CD16+ or 

CD14+ and CD68+ from viable CD45+CD11b+ myeloid cells in the hearts of three patients 

with ventricular assist device explant. 
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Sample Myocarditis patient 1 
Ischemic 
cardiomyopathy 
patient 2 

Ischemic 
cardiomyopathy 
patient 3 

Age 32 61 57 
Race/Ethnicity Caucasian Caucasian Caucasian 
Gender Male Male Male 

Etiology Viral myocarditis Ischemic Ischemic 

Type of VAD HM II 10600 3000 rpm 8000 rpm 
Diabetes No No Yes 
Height 175 cm 170 cm 180 cm 
Weight 86.63 Kg 86.63 Kg 100.69 Kg 
LVIDd 3.9 cm 6.6 cm 6.5 cm 
LVPWd 1.3 cm 0.9 cm 1.0 cm 
IVSd 1.6 cm 1.1 cm 1.0 cm 
EF       
Troponin level   <0.15   
Days on VAD 1167 270 432 
Explant reason OHT OHT OHT 
Dead No No No 
BNP   185 376 
CKMB   1.7 0.5 

Tissue Amount (mg) 307.5 (LV) 294.1 (LV) 339.6 (LV) 

Path explant   

cardiomegaly, 
concentric LVH, 
posterior wall fibrosis, 
fatty infiltration of IVS, 
mild fibrous epicarditis 
CAD 

cardiomegaly with 
concentric 
biventricular 
hypertrophy, CAD, 
fibrosis  
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Table 5. Patient information part I. 

Patient information from individuals presenting with end stage heart failure who 

underwent implantation of a Left Ventricular Assist Device at the Texas Heart Institute. 

Tissues were collected for flow cytometry assessments. Gray Fill: Data Not available; 

OHT: Orthotopic Heart Transplant. 
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IL-17A signaling through cardiac fibroblasts inhibits Ly6Clo monocyte-to-macrophage 

differentiation and Ly6Clo proliferation  

Given the differentiation capacity of Ly6Clo monocytes shown above in vitro, we next 

sought to understand what factors limit their differentiation in vivo. EAM is a Th17 driven 

disease and IL-17A induces production of myelotropic cytokines and chemokines by 

cardiac stroma cells [247]. We speculated that IL-17A might play a role in determining 

monocyte fate during EAM. Since monocytes require cardiac fibroblasts to differentiate 

into macrophages, we co-cultured FACS-sorted IL-17Ra–/– EAM Ly6Chi and Ly6Clo 

splenic monocytes with either cardiac fibroblasts alone or IL-17A stimulated cardiac 

fibroblasts for 160 hours. We found that IL-17A stimulated cardiac fibroblasts significantly 

inhibited Ly6Clo monocyte-to-macrophage differentiation, while its effect on Ly6Chi 

monocyte differentiation was minimal (Figure 12A). Using CFSE labeling, we found that 

proliferation of Ly6Clo monocytes was almost completely inhibited by cardiac fibroblasts 

stimulated with IL-17A, whereas proliferation of Ly6Chi monocytes was minimally affected 

(Figure 12B). We described previously that cardiac fibroblasts are potent producers of 

granulocyte-macrophage colony-stimulating factor (GM-CSF) upon IL-17A stimulation 

[247]. We found that while treatment with recombinant GM-CSF only marginally 

suppressed Ly6Chi monocyte-to-macrophage differentiation (Figure 12C), it completely 

recapitulated the inhibitory effect of IL-17A through cardiac fibroblasts on Ly6Clo 

monocyte-to-macrophage differentiation (Figure 12D). IL-17A-induced inhibition of Ly6Clo 

monocyte-to-macrophage differentiation could be reversed with anti-GM-CSF treatment 

(Figure 12D). Similarly, GM-CSF did not change proliferation of Ly6Chi monocytes and 

MDMs, while completely inhibiting proliferation of undifferentiated Ly6C lo monocytes 

(Figure 12E, F). Treatment of anti-GM-CSF to IL-17A-stimulated cardiac fibroblasts 
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restored proliferation of Ly6Clo monocytes (Figure 12F). We further validated all of our 

major in vitro findings using splenic monocytes from WT animals and showed that 

monocytes responded to environmental cues similarly regardless of their sources (Error! 

Reference source not found.). To summarize, GM-CSF acts as a downstream mediator 

of IL-17A signaling through cardiac fibroblasts that exhibits minor inhibitory effects on 

Ly6Chi monocyte differentiation and proliferation, but substantially inhibits Ly6C lo 

monocyte differentiation and proliferation in vitro. 
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Figure 12. IL-17A signaling through cardiac fibroblasts inhibits Ly6Clo monocyte-to-

macrophage differentiation and Ly6Clo monocyte proliferation 
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All co-cultured cells were assessed using flow cytometry at 160 hours. (A) Gating of 

concatenated Ly6Chi and Ly6Clo monocyte-derived macrophages out of viable 

CD45+CD11b+. (B) Histograms of mean fluorescent intensity (MFI) showing CFSE 

staining of the viable Ly6Chi cells and Ly6Clo cells after co-culturing with either cardiac 

fibroblasts or IL-17A treated cardiac fibroblasts. (C) Percentages of macrophages derived 

from Ly6Chi monocytes (D) and Ly6Clo monocytes with cardiac fibroblasts only, IL-17A 

stimulated cardiac fibroblasts, recombinant GM-CSF supplemented cardiac fibroblasts 

and IL-17A stimulated cardiac fibroblasts treated with anti-GM-CSF, respectively. (E) 

Histograms of MFI showing CFSE staining of the viable Ly6Chi monocyte-derived 

macrophages and (F) Ly6Clo monocytes with cardiac fibroblasts only, IL-17A stimulated 

cardiac fibroblasts, recombinant GM-CSF supplemented cardiac fibroblasts and IL-17A 

stimulated cardiac fibroblasts treated with anti-GM-CSF, respectively. (C, D) Data are 

presented as mean ± SD. Data are representative of three independent experiments with 

technical triplicates. (C – D) Groups were compared using one-way ANOVA followed by 

Dunnett test. *, P < 0.05 ****, P < 0.0001. See also Figure 13. 
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Figure 13. Validation of WT monocyte differentiation in vitro  

Cardiac fibroblasts were harvested from WT naïve mice, whereas monocytes were sorted 

from either EAM WT or EAM IL-17Ra–/– mice. (A) Flow cytometry plots showing 

differentiation status of splenic Ly6Chi monocyte from either WT or IL-17Ra–/– mice. (B) 

Quantification of the percentages of macrophages derived from Ly6Chi monocytes in 

culture. (C) Flow cytometry plots showing differentiation status of splenic Ly6Clo monocyte 

from either WT or IL-17Ra–/– mice. (D) Quantification of the percentages of macrophages 

derived from Ly6Clo monocytes in culture. (E) Flow cytometry plots showing the inhibitory 

effects of IL-17A and GM-CSF on Ly6Clo monocyte-to-macrophage differentiation, 

regardless of monocyte source. Cardiac fibroblasts supernatant alone cannot promote 

WT and IL-17Ra–/–Ly6Clo monocyte-to-macrophage differentiation. (F) Quantification of 

the percentages of macrophages derived from Ly6Clo monocytes in culture. 

  



 74 

The absence of IL-17A signaling enables Ly6Clo monocyte-to-macrophage differentiation 

in vivo 

We next aimed to test in vivo whether eliminating IL-17A signaling during EAM would 

enable Ly6Clo monocytes to undergo differentiation. To begin, we intracardially injected 

either FACS-sorted CD45.2+Ly6Chi or Ly6Clo monocytes into CD45.1 IL17Ra–/– recipients 

during the peak of EAM (Figure 14A). Both monocyte subsets were present in the 

myocardium after 40 hours post injection (Figure 14B, C). Strikingly, while most of the 

Ly6Chi monocytes differentiated into F4/80hiCD64+ macrophages, approximately 30% of 

the Ly6Clo monocytes also differentiated into macrophages (Figure 14D – F). The bh-

SNE algorithm further confirmed that while Ly6Chi monocytes contributed in substantial 

numbers to the cardiac macrophage pool, a non-negligible proportion of Ly6Clo 

monocytes had also differentiated into F4/80hiCD64+ macrophages (Figure 14G, H). In 

addition, we examined whether the Ly6Clo monocytes are able to traffic through blood 

and differentiate in the myocardium. We retro-orbitally injected FACS sorted 

CD45.1+Ly6Clo monocytes into either CD45.2 WT or IL17Ra–/– recipients during the peak 

of EAM (Figure 14I).  CD45.1+Ly6Clo monocytes could be found in the myocardium after 

40 hours post injection (Figure 14J, K). Consistent to our finding, approximately 30% of 

the Ly6Clo monocytes had differentiated into F4/80hiCD64+ macrophages in IL17Ra–/– 

recipients but not in WT (Figure 14L – N). Therefore, our results indicate that the absence 

of IL-17A signaling enables Ly6Clo monocyte-to-macrophage differentiation. Again, 

underlining the inhibitory role of IL-17A on Ly6Clo monocyte-to-macrophage differentiation.  
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Figure 14. Ly6Clo monocyte-to-macrophage differentiation can be initiated in vivo in the 

absence of IL-17A signaling through cardiac fibroblasts 

(A) Schematics of intracardiac injection of Ly6Chi or Ly6Clo CD45.2 monocytes into 

CD45.1 day 21 EAM IL-17Ra–/– recipient mice. (B) Gating of concatenated Ly6Chi and (C) 

Ly6Clo donor cells from total viable CD115+CD11b+ population. (D) Percentages of 

injected Ly6Chi or Ly6Clo monocytes differentiated into macrophages. (E) Frequencies of 

Ly6Chi monocyte-derived macrophages and (F) Ly6Clo monocyte-derived macrophages 

out of viable CD45.2+CD115+CD11b+ population. F4/80 and CD64 expression intensities 

of (G) Ly6Chi monocyte-derived and (H) Ly6Clo monocyte-derived macrophages using bh-

SNE dimensional reduction algorithm. (D) Groups were compared using Student’s t test. 

**, P < 0.01. Data are representative of two independent experiments with biological 

triplicates.  
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Distinct gene expression profiles in Ly6Chi and Ly6Clo monocyte-derived macrophage 

subsets in vitro 

To explore the molecular differences between these MDM subpopulations, we next 

characterized the changes in gene expression that occurred during Ly6C lo and Ly6Chi 

monocyte-to-macrophage differentiation after being co-cultured with cardiac fibroblasts 

(condition 1 and 2). In addition, we also examined the effect of IL-17A stimulated cardiac 

fibroblasts on Ly6Chi MDMs (condition 3). Since there were very few Ly6Clo MDMs in the 

co-culture with IL-17A stimulated cardiac fibroblasts, this condition was not included for 

this analysis. We performed microarray-based transcriptomic profiling of RNA isolated 

from FACS sorted macrophages derived from the three conditions in triplicate (see gating 

strategy in Figure 15A). Gene expression profiles of the three MDM subsets were 

evaluated by principal component analysis (PCA) and hierarchical clustering analysis 

(Figure 16A, B). Both analyses demonstrated distinct gene expression profiles for the 

three MDM subsets, suggesting that both the microenvironment and monocyte intrinsic 

properties are determining factors. Differential gene expression analysis showed that 

consistent with both PCA and hierarchical clustering analysis, Ly6C lo MDMs versus 

Ly6Chi MDMs from IL-17A treated cardiac fibroblast culture had the greatest number of 

differentially expressed genes (n = 1057). Whereas Ly6Clo MDMs versus Ly6Chi MDMs 

from non-treated cardiac fibroblasts culture had the lowest number of differentially 

expressed genes (n = 644) (Figure 15B). We found that IL-17A signaling through cardiac 

fibroblasts significantly up-regulated genes encoding inflammatory chemokines, 

cytokines, growth factors, Il6/Stat3 and the NFB pathway in Ly6Chi MDMs (Figure 16C 

– E). Moreover, IL-17A trans-signaling through cardiac fibroblasts up-regulated genes in 

Ly6Chi MDMs known to promote tissue fibrosis such as Osm, as well as genes related to 
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extracellular matrix degradation including Mmp9 and Timp1 (Figure 16F). In contrast, 

Ly6Clo MDMs uniquely upregulated genes associated with class II antigen processing, 

including Cd74, H2-Ab1 (Figure 16D). Flow cytometric analysis showed that in vitro 

Ly6Clo MDMs indeed express MHCII, strongly suggesting their antigen presenting 

capabilities (Figure 16G). Ly6Clo MDMs also express significantly more MHCII than 

Ly6Chi MDMs when injected intracardially into EAM IL17Ra–/– recipients (Figure 15C). 

Furthermore, MHCII+Ly6Clo MDMs contribute to the increased proportion of MHCII+ 

macrophage in IL17Ra–/– mice during the resolution phase of EAM at day 28 (Figure 16H). 

We also validated that Ly6Clo MDMs do not carry a dendritic cell signature (Figure 15D). 

IL-17A signaling through cardiac fibroblasts significantly up-regulated many genes 

encoding both M1 and M2 markers in the Ly6Chi MDMs, highlighting that the classic 

M1/M2 paradigm cannot simply characterize macrophages activation complexity during 

disease states (Figure 15E) [447, 448]. We conclude that IL-17A trans-signaling through 

cardiac fibroblasts promotes pro-inflammatory and pro-tissue remodeling characteristics 

in Ly6Chi MDMs. Interestingly, Ly6Clo MDMs upregulate genes associated with antigen 

presentation and have elevated surface expression of MHCII both in vitro and in vivo. Our 

findings suggest that Ly6Chi and Ly6Clo MDMs represent distinct subsets that have 

unique roles and functions in the inflamed heart.  
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Figure 15. Validating the identities of in vitro derived macrophage subsets  

(A) Representative gating strategy used to FACS sort CD45+CD11b+CD64+F4/80hi 

macrophages from the heart for in vitro monocyte-fibroblast co-culture. F4/80 isotype 

control RatIgG2a was included. (B) Bar graph displaying the number of differentially 

regulated genes, using a threshold of 2  fold change and p value<0.05. (C) Frequencies 
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of MHCII+ subset out of total intracardially injected MDMs in IL-17Ra–/– recipient mice 

were assessed by flow cytometry. (D) Heat maps showing relative fold changes in genes 

associated with dendritic cells and (E) M1/M2 dichotomy of macrophages. (C) Data are 

presented as mean ±  SD, and representative of two independent experiments with 

biological triplicates. Groups were compared using Student’s t test. *, P < 0.05. (D) * 

Represent selected genes displayed on the heat maps have a one-way ANOVA p 

value<0.05 among groups compared. 
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Figure 16. Distinct gene expression profiles in Ly6Chi and Ly6Clo monocyte-derived 

macrophage subsets differentiated in vitro in the presence of untreated or IL-17A-treated 

cardiac fibroblasts 

(A) PCA analysis of microarray experiments. The principal components and their fraction 

of overall variability of the data (%) are shown on the x-axis, the y-axis and the z-axis. (B) 

Supervised hierarchical clustering highlighting differential gene expression profiles 

among three groups of in vitro MDMs, using a threshold of 2-fold change and p-value < 

0.05. Sample number scheme is identical to the legend in all heat maps below. (C) Heat 

maps showing relative fold changes in genes associated with cytokines and growth 

factors, (D) NFB pathway and antigen presentation, (E) chemokines and immune 

modulating activities and (F) collagen production and matrix remodeling. (G) Gating of 

MHCII+CD64+ macrophages derived from monocyte-fibroblast co-culture. Frequencies of 

MHCII+ subset out of total in vitro co-culture derived macrophages were assessed by flow 

cytometry. (H) Hearts from day 28 EAM mice. Frequencies of MHCII+ out of F4/80hiCD64+ 

macrophages were assessed by flow cytometry. (B – F) All genes displayed on the heat 

maps have one-way ANOVA p value < 0.05 among groups compared. (G) Data are 

presented as mean ± SD; n = 3. (H) Data are presented as mean ± SD; n = 8 – 9. (G) 

Data are representative of three independent experiments with technical triplicates. 

Groups were compared using one-way ANOVA followed by Dunnett test. **, P < 0.01. (H) 

Groups were compared using Student’s t test. **, P < 0.01. See also Figure 15. 
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IL-17A trans-signaling through cardiac fibroblasts down-regulates MerTK expression on 

monocytes and monocyte-derived macrophages  

The clearance of apoptotic cells during inflammation resolution is critical for proper wound 

repair and tissue remodeling. The myeloid-epithelial-reproductive receptor tyrosine 

kinase (MerTK) is a major apoptotic cell receptor on macrophages, known to play a role 

in the clearance of dying cells, a process called efferocytosis [449, 450]. Efferocytosis is 

also known to induce an anti-inflammatory phenotype in macrophages and diminish 

proinflammatory cytokine release [451-453]. EM results showed engulfed apoptotic cells 

or large cell debris inside Ly6Chi MDMs (Figure 17A, B). Their phagocytic index was 

significantly elevated compared to the Ly6Clo MDMs derived from the co-culture (Figure 

17C). This indicates that Ly6Chi MDMs are professional phagocytes. Consistent with our 

finding that IL-17A modulates the replenishment of the tissue macrophage pool with 

circulating monocytes, we observed an increase in the percentage of F4/80hiCD64+ 

macrophages in IL-17Ra–/– EAM hearts compared to WT EAM hearts (Figure 17D; see 

gating strategy in Figure 18A). In general, macrophages express considerably higher 

levels of MerTK than monocytes in the hearts (Figure 18B). We found higher MerTK 

expression levels in both the macrophage and monocyte compartments from IL17Ra–/– 

hearts compared to WT (Figure 17E, F). This suggests that IL-17A plays a role in down-

regulating MerTK expression on monocytes and macrophages. Furthermore, we found 

significantly less soluble Mer (sMer) present in IL17Ra–/– mice sera than WT animals, 

indicating that IL-17A might influence the rate at which MerTK is proteolytically cleaved 

from the surface of the cell (Figure 17G). In order to confirm that IL-17A signaling through 

cardiac fibroblasts was responsible for modulation of MerTK, we assessed MerTK 
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expression in vitro. We confirmed that in vitro MerTK was predominantly expressed by 

Ly6Chi but not Ly6Clo monocytes and MDMs (Figure 17H). Moreover, IL-17A signaling 

through cardiac fibroblasts resulted in a significant down-regulation of MerTK expression 

on Ly6Chi monocytes and MDMs (Figure 17H). In addition, we observed that sMer was 

significantly elevated in the co-culture supernatants when IL-17A signaling was present 

(Figure 17I). Our findings suggest that IL-17A stimulated cardiac fibroblasts can suppress 

macrophages’ phagocytic function by promoting MerTK cleavage resulting in reduced 

surface MerTK expression. Our results also suggest that Ly6Chi MDMs in WT EAM hearts 

have compromised phagocytic activities during heart inflammation. We retro-orbitally 

injected FITC conjugated latex beads in both IL17Ra–/– and WT EAM mice. We found 

significantly more FITC+ macrophages in the hearts of IL17Ra–/– compared to WT, 

indicating enhanced phagocytic activity in an IL-17A signaling deficient environment 

(Figure 17J, K). Human myocarditis patients were reported to have high serum IL-17A, 

as well as an abundant presence of Th17 cells in their hearts and blood [454]. Indeed, we 

found higher frequencies of IL-17A expressing infiltrating leukocytes in the hearts of 

myocarditis patients compared to patients with ischemic cardiomyopathy (Figure 18C, D; 

Table 6 and Table 7). We therefore hypothesized that myocarditis patients could have 

lower MerTK expression in their cardiac myeloid population. In a cohort of heart failure 

patients, we found a significant reduction in myeloid MerTK expression in patients with 

myocarditis as compared to those with ischemic heart failure, similar to our finding in 

murine model (Figure 17L; Table 6 and Table 7). In conclusion, IL-17A signals through 

cardiac fibroblasts to promote MerTK cleavage on Ly6Chi MDMs, thus compromising the 

processes of efferocytosis. With reduced phagocytic ability as a result of surface MerTK 
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modulation, we predict that macrophages are less efficient in clearing apoptotic cells 

efficiently and more likely to exhibit a proinflammatory phenotype, which in turn could 

promote irreversible cardiac remodeling and fibrosis.  
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Figure 17. IL-17A signaling through cardiac fibroblasts downregulates MerTK expression 

on monocytes and monocyte-derived macrophages 
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(A) Representative images of EM showing apoptotic cells or apoptotic cellular debris 

internalized by Ly6Chi MDMs (arrowheads) and (B) engulfed cellular debris were largely 

absent in Ly6Clo MDMs. Bars: (black) 2 µm. (C) Macrophage phagocytic index was 

calculated using the following formula: (Number of engulfed apoptotic cells/Total number 

of macrophages)  (Number of macrophages with engulfed apoptotic cells/Total number 

of macrophages)  100. (D – G) Hearts from day 21 EAM mice. (D) Frequencies of 

F4/80hiCD64+ macrophages out of viable CD45+Ly6G–CD11b+ cells were assessed by 

flow cytometry. (E) MerTK MFI of F4/80hiCD64+ macrophages in the hearts. (F) MerTK 

MFI of F4/80–CD64+ monocytes in the hearts. (G) Concentration of soluble Mer (sMer) 

detected in WT and IL-17Ra–/– EAM mice sera using an ELISA. (H – I) Cardiac fibroblasts 

were harvested from WT naïve mice, whereas monocytes were sorted from EAM IL-

17Ra–/– mice. (H) MFI of MerTK expression of Ly6Chi or Ly6Clo monocytes and MDMs in 

vitro after 160 hours post-co-culture with cardiac fibroblasts stimulated with or without IL-

17A. (I) sMer detected in supernatants of the monocyte-fibroblast co-culture by ELISA. 

(J) Flow cytometric analysis of the frequencies of FITC+F4/80hiCD64+ macrophages in the 

myocardium of WT, IL-17Ra–/– and non-treated controls. (K) Quantification of the 

percentages of FITC+F4/80hiCD64+ macrophages out of viable CD45+Ly6G–CD11b+ cells. 

(L) MerTK MFI in patients with either myocarditis or ischemic cardiomyopathy. (D – G) 

Data are representative of five independent experiments. Results are presented as mean 

± SD; n = 8 – 9. (H – I) Data are representative of three independent experiments with 

technical triplicates. Results are presented as mean ±  SD; n = 3. (J, K) Data are 

representative of two independent experiments. Results are presented as mean ± SD; n 

= 3. (C – G, I, K, L) Groups were compared using Student’s t test. *, P < 0.05 **, P < 0.01. 
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(H) Groups were compared using one-way ANOVA followed by Dunnett test. **, P < 0.01 

****, P < 0.0001. See also Figure 18, Table 6 and 7. 

 

Figure 18. Murine MerTK expression levels by monocytes and macrophages and IL-17A 

levels in human endomyocardial biopsies 
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(A) Flow cytometry gating of concatenated CD45+Ly6G–CD11b+F4/80hiCD64+ 

macrophages and CD45+Ly6G–CD11b+F4/80–CD64+ monocytes in the hearts. 

Appropriate F4/80 isotype control was shown. (B) Macrophages and monocytes’ MerTK 

expression level as compared to isotype control for MerTK. (C) Representative 

immunohistochemistry staining for human IL-17A in heart tissue implant samples of 

selected two myocarditis patients and (D) two ischemic cardiomyopathy patients. 
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Sample Myocarditis 
patient I 

Myocarditis 
patient II 

Myocarditis 
patient III 

Myocarditis 
patient IV 

Age 43 25 15 63 
Race/Ethnicity  Hispanic African American Caucasian 
Gender Male Male Male Male 

Etiology Viral Viral Viral Viral 

Type of VAD HM XVE HM II HM II Jarvik 2 
Diabetes No No No Yes 
Height 188 cm 172 cm 185 cm 183 cm 
Weight 100.01 Kg 100.69 Kg 113.39 Kg 87.54 Kg 
LVIDd  7.0 cm 7.2 cm 6.7 cm 
LVPWd  1.1 cm 0.8 cm 0.7 cm 
IVSd  1.1 cm 0.9 cm 0.7 cm 
EF 10 – 15% <20% <15% <15% 
Troponin level  <0.15     
Days on VAD 50 502 1121 600 

Explant reason OHT OHT To Jarvik, died 
2d after  OHT 

Dead Yes No Yes No 
BNP  423 1163   
CKMB  0.2   2.2 
Tissue Amount 
(mg) 44 130 231.4 245.5 

Path Implant  
focal interstitial 
edema, minimal 
hypertrophy 

myocyte 
hypertrophy 

myocyte 
hypertrophy and 
lysis 

 

Table 6. Patient information part II 

Viral myocarditis patient information from individuals presenting with end stage heart 

failure who underwent Left Ventricular Assist Device explant and orthotopic heart 
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transplant at the Texas Heart Institute. Tissues were collected for IHC and flow cytometry 

assessments. Gray Fill: Data Not available; OHT: Orthotopic Heart Transplant. 

  



 92 

Sample 
Ischemic 
cardiomyopat
hy patient I 

Ischemic 
cardiomyopat
hy patient II 

Ischemic 
cardiomyopat
hy patient III 

Ischemic 
cardiomyopat
hy patient IV 

Ischemic 
cardiomyopat
hy patient V 

Age 61 59 64 56 72 
Race/Ethnici
ty Caucasian Caucasian Hispanic Caucasian Caucasian 

Gender Male Male Male Male Male 

Etiology Ischemic Ischemic Ischemic Ischemic Ischemic 

Type of VAD HM II HW HM II HM II HW 
Diabetes No No Yes Yes Yes 
Height 170 cm 170 cm 170 cm 180 cm 178 cm 
Weight 77.11 Kg 73.48 Kg 90.71 Kg 97.97 Kg 69.39 Kg 
LVIDd 6.92 cm 7.2 cm 7.0 cm 8.0 cm 6.9 cm 
LVPWd 1.1 cm 1.1 cm 1.0 cm 1.1 cm 1.0 cm 
IVSd 0.63 cm 0.9 cm 1.1 cm 1.0 cm 1.1 cm 
EF 20% 30% <15% 20% <20% 
Troponin 
level 0.06 <0.15 <0.15   <0.15 

Days on 
VAD 270 452 363 432 182 

Explant 
reason OHT OHT OHT OHT OHT 

Dead No No yes No No 
BNP 2983 222 1130 283 240 
CKMB 1.6 1.2 5.9   0.2 
Tissue 
Amount (mg) 273 251 240.6 271.9 218 

Path Implant myocyte 
hypertrophy 

Myocyte 
hypertrophy, 
interstitial and 
replacement-
type 
myocardial 
fibrosis 

severe 
myocyte 
hypertrophy 
with extensive 
fibrosis 

myocyte 
hypertrophy, 
patchy 
interstitial 
fibrosis 

Replacement 
type 
myocardial 
fibrosis 
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Table 7. Patient information part III 

Ischemic cardiomyopathy patient information from individuals presenting with end stage 

heart failure who underwent Left Ventricular Assist Device explant and orthotopic heart 

transplant at the Texas Heart Institute. Tissues were collected for IHC and flow cytometry 

assessments. OHT: Orthotopic Heart Transplant. 
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Discussion 

 

Monocytes and macrophages are key effector cells in the injured myocardium during 

human myocarditis and EAM [432, 433]. Although both Ly6Chi and Ly6Clo monocytes 

infiltrate the myocardium during EAM, we found that an excessive accumulation of Ly6Chi 

rather than Ly6Clo monocytes in the heart leads to adverse cardiac remodeling and the 

development of DCM [247]. However, it was unknown whether both infiltrating Ly6Chi and 

Ly6Clo monocytes contribute to the adverse cardiac tissue remodeling during 

development of EAM. Moreover, the role of the local pro-inflammatory cardiac 

microenvironment in influencing Ly6Chi and Ly6Clo monocyte fate and function was not 

well understood. We used three fate-mapping strategies to evaluate the phenotypic and 

functional changes of monocytes in the heart during myocarditis: parabiosis, adoptive 

transfer of monocytes, and an in vitro co-culture system.  

 

Under steady-state, adult cardiac tissue macrophages in mice are of mixed embryonic 

and hematopoietic origins [115-119]. In cases of aging or perturbed homeostasis, a 

greater proportion of embryonic derived macrophages are replaced by infiltrating 

monocytes, changing the landscape of macrophage dynamics in the heart. [119, 149, 

441]. Our parabiosis fate-mapping results reveal that monocytes extravasate into hearts 

during EAM and readily differentiate into macrophages, which contributes to the increase 

in cardiac macrophage number during EAM. It was previously reported that cardiac 

CCR2– macrophages including MHCII+ and MHCII– populations are largely embryonically-

derived, whereas cardiac CCR2+ macrophages represent a haematopoietically derived 
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lineage at steady-state [119, 455]. Embryonically derived macrophages are shown to 

have regenerative and reparative properties [455, 456], whereas CCR2+ macrophages 

are thought to initiate inflammation and contribute to adverse cardiac remodeling [457, 

458]. We report here that infiltrating monocytes predominantly contribute to the 

CCR2+MHCII+ macrophage compartment. Albeit to a lesser extent, they are also able to 

differentiate into CCR2–MHCII+ macrophages, with very few becoming CCR2–MHCII– 

macrophages in the chronically inflamed heart.  

 

Ly6Chi monocytes are known to replenish the macrophage pool during cardiac injury; 

however, the contribution of Ly6Clo monocytes to the cardiac macrophage pool has not 

been previously described [119, 171, 184, 245, 272, 439-441]. Here we show that both 

Ly6Chi and Ly6Clo monocytes have the capability to differentiate into macrophages, a 

process driven by direct contact with cardiac fibroblasts. Previously, we demonstrated 

that IL-17A can stimulate cardiac fibroblasts to produce significant amounts of GM-CSF 

[247]. Evidence from EAM, Kawasaki syndrome, and the mouse model of MI show that 

cardiac fibroblasts are potent producers of GM-CSF [247, 444, 459, 460]. An 

accumulating body of literature indicates that GM-CSF plays a key role in signaling 

myelopoiesis in response to tissue injury. GM-CSF also induces a pathogenic 

transcriptional signature in pro-inflammatory monocytes propelling the inflammatory 

cascade resulting in further tissue damage [247, 459, 461]. Here, we are the first to show 

a profound inhibitory role of IL-17A as it works in trans through cardiac fibroblast-derived 

GM-CSF on Ly6Clo monocyte-to-macrophage differentiation in vitro. We also confirmed 

in vivo the inhibitory effect of IL-17A signaling on Ly6Clo monocyte-to-macrophage 
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differentiation. We hypothesize that these Ly6Clo MDMs have distinct functions in 

myocarditis compared to Ly6Chi MDMs.  

 

Gene expression profiling results substantiate that Ly6Chi and Ly6Clo MDMs represent 

distinct cell types, possibly driven partly by intrinsic properties. Recent studies have 

demonstrated that Ly6Chi and Ly6Clo monocytes are phenotypically heterogenous 

populations. Intrinsic properties such as transcription factors regulate Ly6Chi and Ly6Clo 

monocyte fate and function during steady state or tissue injury [462-466]. However, we 

found that IL-17A signaling through cardiac fibroblasts accentuates a proinflammatory 

and pro-tissue remodeling gene profile in Ly6Chi MDMs. These macrophages up-regulate 

genes such as Il6, Mmp9, Timp1 and Osm, all of which have been implicated in cardiac 

dysfunction and maladaptive cardiac remodeling [467-472]. Unexpectedly, we found that 

Ly6Clo MDMs are enriched with genes associated with class II antigen processing. We 

confirm that Ly6Clo MDMs express higher levels of MHCII than their Ly6Chi counterparts 

in vitro. IL17Ra–/– mice develop EAM similar to their WT counterparts, but are protected 

from DCM, cardiac fibrosis and dysfunction [442]. In vivo, IL17Ra–/– EAM hearts contain 

more MHCII expressing macrophages than WT EAM controls during disease resolution, 

coinciding with DCM protection in IL17Ra–/– mice. The anti-inflammatory and 

proangiogenic properties of Ly6Clo monocytes were previously investigated, and their 

roles in the resolution of cardiac inflammation were frequently highlighted [171, 245, 247]. 

This suggests that MHCII+Ly6Clo MDMs might be beneficial in disease resolution and 

contribute to the protection of IL17Ra–/– mice from DCM and heart failure. The functions 

of Ly6Clo MDMs was placed under scrutiny recently. It has been implicated that they are 
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the precursors for wound healing macrophages in a soft tissue injury model [177]. 

Paradoxically, they were also shown to give rise to inflammatory macrophages in an 

autoimmune arthritis model [350]. We offer clues that Ly6Clo MDMs are a non-

inflammatory and non-tissue-remodeling population. The increased presence of these 

macrophages and an increased Ly6Clo to Ly6Chi ratio in EAM myocardium correlate with 

DCM protection in IL17Ra–/– mice [247]. Although phagocytic activity of Ly6Clo MDMs is 

unremarkable, their potential antigen presentation capability predicts their immune 

regulatory role in the heart. Whether MHCII+ Ly6Clo MDMs play a role in effector/memory 

T cell or regulatory T cell activation in the heart require further examination. Recent 

evidence indicated that MHCII+ macrophages loaded with cardiac myosin peptide are not 

effective in stimulating proliferation of autoreactive CD4+ T cell [473]. However, the 

beneficial effects of macrophages and regulatory T cells interactions during inflammation 

resolution and tissue regeneration have been reported [474, 475]. Currently, it remains 

unfeasible to selectively deplete Ly6Clo monocytes in mice. However, further experiments 

utilizing Nr4a1–/–, CX3CR1–/– or S1PR5–/– mice with reduced Ly6Clo monocytes can help 

to better assess specific functional role of Ly6Clo monocytes-derived macrophage in the 

context of myocarditis [218, 232, 476]. 

 

Macrophage function can be shaped by both progenitor origin and tissue 

microenvironment [113, 455]. We tested the hypothesis that upon IL-17A stimulation, 

cardiac fibroblasts play a role in modulating macrophage function. Recent data directly 

links the level of efferocytosis receptors on monocytes and macrophages to 

phagocytosis-dependent wound healing and restoration of organ function [477-480]. 
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Uncontrolled cellular necrosis and apoptosis during cardiac injury are integral 

components that contribute to adverse tissue healing and remodeling. Inefficient 

phagocytic clearance can also lead to exposure of self-antigens, which contribute further 

to autoimmune reactivity [481]. One of these efferocytosis receptors, MerTK, has been 

shown to be up-regulated on phagocytic cells during inflammation and plays an essential 

role in apoptotic cell recognition and clearance [449, 482-484]. Moreover, efferocytosis 

triggers a shift in macrophage activation making them phenotypically less 

proinflammatory [452, 453, 485]. Notably, our in vivo and in vitro results suggest that IL-

17A signaling through cardiac fibroblasts lead to MerTK shedding and the release of 

soluble Mer, which significantly reduces surface MerTK expression on Ly6Chi monocytes 

and MDMs. Cardiomyocytes have been shown to induce shedding of macrophage MerTK 

to suppress phagocytosis [486]. This highlights another mechanism by which IL-17A 

through cardiac fibroblasts can induce MerTK shedding, and in turn contributes to cardiac 

pathology in autoimmune myocarditis. Moreover, we showed that myeloid MerTK was 

significantly lower in human myocarditis patients when compared to ischemic patients. 

These findings warrant future studies to determine whether sMer can be used as a 

biomarker in clinical settings to differentiate patients with myocarditis from those with 

other types of cardiac diseases. 

 

Taken together, we underscore the fates of Ly6Chi and Ly6Clo monocyte subsets as a 

result of changes in the cardiac microenvironment. We demonstrate how the local cardiac 

milieu instructs cardiac fibroblasts to facilitate monocyte differentiation and proliferation 

as well as regulate the phenotype and function of monocytes and MDMs. Monocytes are 
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versatile immune cells playing a multi-faceted role in a wide range of inflammatory 

disorders [175, 177, 245, 296, 487, 488]. Our findings have broader implications for 

inflammatory diseases in the heart and other organs. We recently reported that IL-17A 

signaling to cardiac fibroblasts is associated with severe fibrosis and post-infarct death 

[444], which demonstrates a potential parallel concept that warrants future investigation. 

Ultimately, we anticipate that further studies of macrophage-cardiac fibroblast interactions 

will provide new insights into the development of targeted therapies that prevent 

deleterious inflammatory responses.   

 

Material and Methods 

Patients 

Endomyocardial biopsies from the apex of the left ventricle were obtained from patients 

with end stage heart failure (AHA stage D) of various etiologies. Biopsies were from 

patients who were undergoing either an implantation of Left Ventricular Assist Device 

(LVAD), or an orthotopic heart transplant after LVAD explant at the Texas Heart Institute. 

Details including patients’ age and gender are summarized in Table S1 – 3. Informed 

consent was obtained from human subjects and the study protocol was approved by the 

Committee for the Protection of Human Subjects (University of Texas Health Science 

Center at Houston. IRB #HSC-MS-05-0074). Samples were properly preserved in 

cryovials embedded in liquid nitrogen (-190oC) and then kept at -80oC in the tissue bank 

at the Texas Heart Institute, Houston, TX as previously described [489]. Aliquots of the 

samples were shipped frozen and processed in house. Reported diagnoses 

corresponded to clinical charts, based on standard histology (H&E), clinical presentation, 
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hemodynamic parameters, and routine clinical biochemical and serology parameters. 

Patient’s information of all samples was processed with random non-linked code 

relabeling in a database at the time of preservation. Furthermore, for each sample, a 

separate random non-linked code was assigned for the analyses process. Separately, 

one paraffin embedded, virus negative, acute giant cell myocarditis left ventricle 

transmural endomyocardial biopsy sample in Figure S3A and S3B were provided by Dr. 

Karin Klingel. The sample was taken for routine diagnostic purposes to identify infectious 

agents in the myocardium as described before [490]. Informed consent was obtained from 

human subjects and the study was approved by local ethic committee (Project-

No.253/2009BO2). Diagnosis of giant cell myocarditis was based on established criteria 

[18].  

Mice 

IL-17Ra–/– mice on BALB/c background were provided by Amgen Inc. (Thousand Oaks, 

CA) and Dr. J. Kolls (Children’s Hospital, University of Pittsburgh Medical Center, 

Pittsburgh, PA) [247, 491]. CByJ.SJL(B6)-Ptprca/J (CD45.1) mice (006584) and WT 

BALB/cJ (000651) mice were purchased from The Jackson Laboratory. IL-17Ra–/– mice 

were crossed to CByJ.SJL(B6)-Ptprca/J (CD45.1) mice and bred to homozygosity at both 

loci.  All mice were housed and maintained in the Johns Hopkins University School of 

Medicine specific pathogen-free vivarium. 6–10 weeks old healthy naïve male mice were 

randomly selected as the subjects of all of our studies. All experiments involving animals 

were in compliance with the Animal Welfare Act and strictly followed the Guide for the 

Care and Use of Laboratory Animals. The Animal Care and Use Committee of The Johns 

Hopkins University has approved all procedures and protocols used in this study.  
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Primary adult cardiac fibroblasts isolation and culture 

50U heparin was injected i.p. into 6 – 10-week-old male BALB/cJ naïve mice prior to 

sacrifice. Hearts were cannulated through the aorta and perfused for 3 minutes with 37°C 

perfusion buffer at 4 mL/minute: 7.03g/L NaCl, 1.1 g/L KCl, 0.082 g/L KH2PO4, 0.085 g/L 

Na2HPO4, 0.144 g/L MgSO4, 2.38 g/L HEPES, 0.39 g/L NaHCO3, 1 g/L glucose, 3.74 g/L 

Taurine, 1 g/L 2,3-Butanedione monoxime (all Sigma), and for 8 min with Collagenase II 

and Protease XIV (Worthington) and 0.03M CaCl2. Hearts were cut into small pieces and 

cells separated by gently pipetting for 3 minutes or until no large tissue pieces were 

observed. Cells were filtered through a 100 μm filter and washed in DMEM (Gibco). Cells 

were plated in DMEM with 20% FBS (GE Healthcare Life Sciences), nonessential amino 

acids (Sigma), Penicillin/Streptomycin, 2 mM L-Glutamine, and 25mM HEPES (all Quality 

Biological). Cells were incubated in a humidified 5% CO2 incubator at 37°C from here on. 

Non-adherent cells were washed away after 1 hour. Fibroblasts from second passage 

were used in experiments. The purity of cardiac fibroblast cultures was confirmed by 

qPCR and flow cytometry. Cells and supernatants were harvested at the indicated time 

points after addition of recombinant mouse cytokine IL-17A at 50 ng/mL or recombinant 

mouse GM-CSF at 50ng/mL (Peprotech). LEAFTM Purified anti-GM-CSF at 50µg/mL was 

used (MP1-22E9, BioLegend). Monocytes and fibroblasts separation in the co-culture 

was achieved by 0.4 µM transwell inserts (Corning). 

Parabiosis surgery 

Pairs of mice were anesthetized with inhaled isoflurane, 4.0–5.0% v/v induction (Baxter). 

Fur was removed thoroughly from the entire flank region using clippers. Anesthesia in 

surgical pairs was maintained with intramuscular injections of ketamine (80 mg/kg) and 
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xylazine (16 mg/kg). The mice were laid supine and the site was disinfected with 

betadine followed by 70% EtOH. We administered buprenorphine (0.1 mg/kg) 

intraperitoneally for initial analgesia, and at 12 hours postoperatively. Longitudinal 

incisions were made through the skin starting from the elbow joint and extended down 

to the knee joint. Non-absorbable 4-0 interrupted sutures were placed around the knee 

and elbow joints. Pairs where attached from the elbow joints first. To increase skin 

anastomosis, we used a continuous 5-0 absorbable vicryl sutures through the muscular 

layer and connect the pairs further, before attaching the knee joints. Surgical stapler 

was used to connect the skins of the pairs. Baytril was used upon completion of the 

procedure. Animals were provided with moistened chow and gel food diet supplement 

every other day until sacrifice at 19 to 20 days after parabiosis.  

EAM induction 

To induce EAM, we injected mice with 125 µg myosin heavy chain α peptide MyHCα614-

629 (Ac-SLKLMATLFSTYASAD; Genscript) [492] emulsified in CFA (Sigma-Aldrich) 

supplemented with 5mg/mL heat-killed Mycobacterium tuberculosis strain H37Ra (Difco) 

on days 0 and 7. On the first day of immunization, mice also received a dose of 500 ng 

pertussis toxins intraperitoneally (List Biologicals) [83].  

EAM histopathology assessments 

Myocarditis severity was evaluated by histology on days 21. Heart tissues were fixed in 

SafeFix solution (Thermo Fisher Scientific), embedded and cut into 5 µm serial sections. 

Sections were stained with H&E and ventricular inflammation was scored via a 

microscope by two independent blinded investigators and averaged using the following 

criteria for hematopoietic infiltrates: grade 0, no inflammation; grade 1, <10% of the heart 
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section is involved; grade 2, 10–30%; grade 3, 30–50%; grade 4, 50–90%; grade 5, >90% 

[83].   

Isolation of Splenic Ly6Chi and Ly6Clo monocytes 

Spleens from WT or IL-17Ra–/– BALB/c mice on day 14 of EAM were dissected and 

mechanically disrupted. Cells were filtered through 40 µm cell strainers and washed. 

Histopaque 1119 and 1077 (Sigma) were used to isolate mononuclear cells. Anti-Ly6G 

MicroBead kit (Miltenyi Biotech) was used to deplete Ly6G+ cells, and CD11b MicroBead 

kit (Miltenyi Biotech) was used to positively enrich CD11b+ cells. Single-cell suspensions 

were stained with LIVE/DEAD stain (ThermoFisher), washed, FcγRII/III blocked with a-

CD16/CD32, and stained with fluorochrome-conjugated antibodies (eBioscience, 

BioLegend, BD Pharmingen). Cells were sorted on an AriaIIu cell sorter. Sorted cells from 

IL-17Ra–/– BALB/c mice spleens were used for in vitro co-culture with primary cardiac 

fibroblasts, major outcomes were validated with sorted cells from WT BALB/c mice 

spleens co-cultured with cardiac fibroblasts. Sorted cells from WT BALB/c mice spleens 

were used in intracardiac transfer experiments (see below).  

Cell staining and light microscopy 

Modified Giemsa staining was achieved by using Differential Quik Stain Kit, following the 

manufacturer's instructions (Polysciences). Cell staining images were acquired on 

Olympus BX43 microscope with a camera (DP72) using CellSens Standard software 

(version 1.4.1; Olympus). 

IncuCyte ZOOM imaging  

Once the monocyte-fibroblast co-cultures were established, the plates were placed into 

the IncuCyte ZOOMTM (Essen Bioscience) apparatus and images of cells were recorded 
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with 20× magnification undisturbed every 1 hour for a total duration of 160 hours. Cardiac 

fibroblasts alone were used as controls and triplicated wells were included in all data 

acquisitions. 

Transmission electron microscopy 

Co-cultured cells were washed with PBS and fixed in 2.5% glutaraldehyde dissolved in 

0.1 M Na cacodylate. Samples were then processed by the Johns Hopkins Microscope 

Facility [493] before examination using the Philips CM120 transmission electron 

microscope. Images were captured using Advanced Microscopy Techniques V602 

software. The phagocytic index was calculated according to the following formula: 

phagocytic index = (total number of engulfed cells/total number of counted macrophages) 

× (number of macrophages containing engulfed cells/total number of counted 

macrophages) × 100. Approximately 60 total macrophages derived from each monocyte 

subset were counted, numbers were acquired from two separate assessments. 

Immunofluorescence microscopy 

Human paraffin-embedded giant cell myocarditis biopsy sample slides were processed 

using xylene and rehydrated with decreasing concentration of ethyl alcohol and rinsed 

with distilled water. After blocking with 1% BSA and 0.1% tween-20 in 1× PBS, tissues 

were incubated with anti-CD14-biotin sheep antibodies (R & D systems) and anti-CD68 

mouse antibodies (Abcam). We then used NL-637 Streptavidin and donkey NL-557 anti-

mouse IgG (R & D systems) as secondary antibodies diluted in 0.05% Evans Blue for 

counterstaining. DAPI was used for staining nuclei. Finally, Sudan Black was used to 

suppress auto-fluorescence as a result of tissue fixation and paraffin treatment. Images 

were acquired using Zeiss Axio Imager.A2. microscope with AxioCam MRm at 20× 
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magnification. We used AxioVision Rel. 4.8 software to acquire images and Adobe 

Photoshop version 12.0 to process images.   

Intracardiac injection 

WT or IL-17Ra–/– BALB/c mice on day 21 of EAM were depilated and anesthetized with 

3.5% isoflurane (Baxter). The mice were subsequently endotracheally intubated, 100% 

oxygen and 2% isoflurane were provided to the animals throughout the operation by 

mechanical ventilation (Model 845, Harvard Apparatus). Pre-operational analgesics (0.05 

mg/kg Buprenorphine, Reckitt Benckiser) and paralytics (1 mg/kg Succinylcholine, Henry 

Schein) were administered prior to operation. Mice were subjected to a thoracotomy, 

typically around the 4th or 5th intercostal space to expose the heart ventricles. Roughly 

1.5 – 2 x 105 cells were injected with a 29G ½ insulin syringe (BD) into 2 – 3 ventricular 

locations. Mice were placed under the heat lamp to recover post-surgery, post-operational 

analgesics (0.05 mg/kg Buprenorphine, Reckitt Benckiser) were administered. Mice were 

sacrifice at 40 hours and 160 hours post-surgery to assess cell transfer outcomes. 

Retro-orbital injection of monocytes 

WT or IL-17Ra–/– BALB/c mice on day 21 of EAM were depilated and anesthetized with 

100% oxygen and 3.5% isoflurane (Baxter). Mice were subjected to an injection into the 

ophthalmic venous sinus. Roughly 4 – 5 x 105 FACS sorted monocytes were injected with 

a 29G ½ insulin syringe (BD).  

Retro-orbital injection of liposomes and latex beads 

We administered a single treatment of 10 µl Clodrosome® (clodronate loaded liposomes; 

Encapsula Nano Sciences) per gram of animal weight seventeen hours prior to latex 

microsphere labeling to better visualize FITC+ macrophages in vivo. 0.5-µm FITC-
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conjugated (yellow gold) plain microspheres (2.5% solids [wt/vol]; Polysciences, Inc.) 

were diluted 1:25 in 1XPBS. We administered 250 µl of the diluted latex beads to examine 

macrophage phagocytic activity in vivo. Hearts were harvested 24 hours post bead 

administration. 

Quantitative reverse transcription PCR 

Cell mRNAs were extracted in TRIzol (Invitrogen), and reverse transcribed using High-

Capacity cDNA Reverse Transcription Kit (Applied Biosystems). Target cDNAs were 

amplified with Power SYBR Green PCR Master Mix (Bio-Rad) and real time cycle 

thresholds were detected via MyiQ2 themocycler running on an iQ5 software (Bio-Rad). 

Target genes fold induction were calculated using the 2−ΔΔCt method by normalizing cycle 

thresholds to the Hprt housekeeping gene and medium controls [494]. Verified Ccl2 

primer sequences were acquired from the PrimerBank (Harvard Medical School, 

Massachusetts General Hospital and The Center for Computational and Integrative 

Biology), and commercially synthesized (Integrated DNA Technologies). Ccl2 forward 

primer sequence (5’ to 3’): TTAAAAACCTGGATCGGAACCAA, and reverse primer 

sequence (5’ to 3’): GCATTAGCTTCAGATTTACGGGT. 

Flow cytometry analysis and Barnes-Hut Stochastic Neighbor Embedding analysis 

Hearts of naïve or EAM mice were perfused through the ventricles with PBS for 3 minutes. 

GentleMACS C Tubes were used to mechanically disassociate the tissue according to 

manufacturer's instructions (Miltenyi Biotech). Single cell suspensions were achieved 

using enzymatic digestion by 3000 U Collagenase II and 300 U DNase I (Worthington) 

dissolved in 5mL HBSS. Splenocytes, blood, and BM cells (femurs and tibias) were 

isolated by mechanical disruption, followed by red blood cell lysis using ACK buffer 
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(ThermoFisher). Heart samples were filtered through 40 µm filters, whereas the other 

tissues were filtered through 70 μm filters. Cells were then stained with LIVE/DEAD 

(ThermoFisher), FcγRII/III blocked with α-CD16/CD32, and stained with fluorochrome-

conjugated antibodies (eBioscience, BioLegend and BD Pharmingen). Alternatively, we 

used APC Annexin V Apoptosis Detection Kit with 7-AAD (BioLegend) instead of 

LIVE/DEAD. CellTraceTM CFSE Kit was used to track cell proliferation both in vivo and in 

vitro (ThermoFisher). Samples were acquired on a BD LSRII or LSRFortessa 4-laser 

cytometers running FACSDiva 6.0 (BD Immunocytometry) and analyzed using FlowJo 

10.4 software. We ran an interactive visualization tool called cyt in Matlab to analyze high-

dimensional flow cytometry data [445, 446]. bh-SNE is an unsupervised non-linear 

dimensionality reduction embedding technique [445].  

Microarray 

Ly6Chi and Ly6Clo in vitro co-culture derived macrophages in triplicate were FACS sorted 

and cells were lysed using RLT buffer (Qiagen). RNA was extracted using RNeasy micro 

kit. RNA samples were labeled using Thermal Fisher 3’ IVT Pico Reagent kit (Affymetrix) 

according to manufacturer’s guidelines and probed using the Affymetrix Mouse Clariom 

S Array. RNA concentration and integrity were determined with Agilent Bioanalyzer Pico 

Chip. 

Statistical analysis 

GraphPad Prism 7 software was used for statistical analysis. Statistical analysis details 

are described in the figure legends. To determine if datasets show a normal distribution, 

either the D'Agostino-Pearson or the Shapiro-Wilk normality test was used. P values were 

considered statistically significant at P<0.05. 
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Microarray gene expression analysis 

Raw data generated from Clariom S Arrays were processed using Affymetrix Expression 

Console Software. CEL files containing feature intensity values were converted into 

summarized expression values by Partek Genomic Suite Software including background 

adjustment, quantile normalization and summarization across all chips. All samples 

passed QC thresholds for hybridization, labeling and the expression of spiked in controls. 

The variances, both between and within groups, in log2 transformed expression values 

were analyzed by one-way ANOVA. PCA graph was generated using Partek Genomic 

Suite Software, heat maps were generated using TIBCO Spotfire Software. The complete 

normalized data set is available on GEO under Series accession number GSE118861. 
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Chapter 6 

Conclusions and future directions 

 
In addition to myocardium, valves and an electrical conduction system, the heart depends 

on a complex network of cells, including cardiomyocytes, cardiac fibroblasts that produce 

extracellular matrix, endothelial cells and tissue macrophages, to provide the structure 

and function that allows the heart to pump oxygen and nutrients throughout the body [495]. 

As we begin to understand this complex network there has been an increasing interest in 

the roles played by the cardiac tissue macrophages in maintaining cardiac function [117, 

118, 147, 152, 153, 496]. Resident cardiac macrophages remove senescent and dying 

cells under steady-state and actively participate in the cardiac conduction system that 

maintains cardiac rhythm [497, 498]. Currently many attempts have been made to create 

immunotherapies that target macrophages. Unfortunately, global suppression or 

depletion of macrophage has been shown to have an adverse effect by contributing to 

heart failure [495]. Thus, it is imperative to dissect the functions of macrophage subsets 

to develop more specific treatments. Many new exciting technologies such as 

CRISPR/Cas9 gene editing, single cell sequencing, mass cytometry and intravital 

microscopy are available to transform our research and provide the opportunity to develop 

new therapies and biomarkers.  

My current work has demonstrated that, through direct contact, cardiac fibroblasts play a 

kely role in the monocyte-to-macrophage differentiation of both Ly6Chi and Ly6Clo cells 

recruited to the heart. Ly6Chi monocyte-derived macrophages differentiate to primaryilgy 
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phagocytic cells, whereas Ly6Clo monocyte-derived macrophages transform to cells that 

predominantly express MHCII and show the potential for antigen presentation. 

Furthermore, a cardiac milieu rich in IL-17A can induce GM-CSF production from cardiac 

fibroblasts which inhibits Ly6Clo monocyte-to-macrophages differentiation downstream. 

IL-17A signaling through cardiac fibroblasts also enhances MerTK proteolytic cleavage, 

which dampens phagocytic capabilities of Ly6Chi monocyte-derived macrophages. IL-17A 

is the most dominant cytokine produced in the myocardium of both mice and humans with 

myocarditis. It has been shown previously that IL-17A is essential for EAM progression 

into DCM [442]. Therefore, we hypothesize that reduced macrophage phagocytic activity 

as a result of IL-17A signaling contributes to myocarditis pathogenesis. We found that 

MHCII is highly and most predominantly expressed by Ly6Clo monocyte-derived 

macrophages, coinciding with higher MHCII expression in the macrophage compartment 

in IL-17Ra–/– EAM mice when compared to WT controls. However, we were unable to 

elucidate the exact role of Ly6Clo monocyte-derived macrophages during myocarditis at 

this time.  

Several questions remain unanswered. Are these Ly6Clo monocyte-derived macrophages 

presenting antigens to T effector cells or to T regulatory cells? Do Ly6Clo monocyte-

derived macrophages travel to the draining lymph nodes or remain static in the 

myocardium during antigen presentation? Do Ly6Clo monocyte-derived macrophages 

contribute to steady state cardiac macrophage pool? We plan to use latex bead labeling 

to track blood Ly6Clo monocytes establishment in the myocardium during EAM [177, 299, 

499]. However, several caveats exist for this technique. First, labeling kinetics declines 

steadily over time and less than 5% of the blood Ly6Clo monocytes are still labeled by day 
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7 [499]. EAM is a chronic disease that requires 7 days to induce and 14 more days to fully 

develop (Figure 1). Therefore, Ly6Clo monocytes should ideally be labeled between the 

initiation and the peak of cardiac infiltration (day 12 to day 21) to fully capture the change 

of Ly6Clo monocytes during EAM. Unfortunately, it has been shown that latex beads label 

similar percentages of Ly6Chi and Ly6Clo monocytes in vivo during the first few hours 

[499]. This means that labeled Ly6Chi monocytes can established themselves as 

macrophages in the myocardium, which could severely confound the result and its 

interpretation. Alternatively, we can utilize IL-17Ra–/–Nr4a1–/– EAM mice to determine if 

these IL-17Ra deficient mice will continue to develop DCM when Ly6Clo monocytes are 

absent.  

Previously we uncovered a protective role for IL-13 in EAM development. IL-13–/– EAM 

mice were shown to have a decreased number of anti-inflammatory macrophages present 

in the myocardium [500]. Recently I have shown that the IL-13 receptor IL-13Ra1 is highly 

expressed by macrophages in the naïve heart (Figure 19A). Heart ILCs are the most 

predominant IL-13 producers in naïve hearts (Figure 19B). The percentage of ILCs wanes 

as EAM progresses, which surprisingly coincides with IL-13Ra1 down-regulation on 

macrophages as well (data not shown). We are currently investigating whether 

macrophage phenotypes are altered in ILC deficient Rag2–/–𝛾c–/– mice. 

In summary, our findings demonstrate that monocyte and macrophage fates and 

functions are fine-tuned by both intrinsic and environmental factors. Macrophages 

constitute a double-edged sword in cardiac injury and inflammation. It is still largely 

unknown whether macrophage heterogeneity and remarkable versatility is a 

consequence of changes at a single cell level (genetic and epigenetic alteration) or at a 
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population level (proliferation, cell death, recruitment or egress). Technologies are 

currently still limited that would allow us to readily and precisely distinguish tissue-resident 

macrophages from monocyte-derived macrophages upon establishment of tissue 

residency. Therefore, it is essential to develop more advanced methods to answer these 

questions.  
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Figure 19. IL-13Ra1 expressing cells and IL-13 producing cells during EAM development 

(A) Percentages of IL-13Ra1 expressing cells out of total live cells in naïve mice 

myocardium. (B) Percentages of IL-13 producing cells out of overall lymphocytic 

population during EAM development. 
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The ongoing debates about the role of cardiac fibroblasts 

Since cardiac fibroblasts play a role in facilitating monocyte-to-macrophage differentiation, 

we will discuss here what is currently known about cardiac fibroblasts.  

It is estimated that about 10% of the total cells in adult mouse myocardium are fibroblasts 

[249]. We are beginning to understand the ontogeny and fundamental role of cardiac 

tissue-resident fibroblasts in disease and health. There are two opposing theories 

describing the origin of resident fibroblasts. One states that cardiac fibroblasts originate 

from a variety of cell types (including endothelial cells [501, 502], pericytes and leukocytes 

[503-505]) that requires further trans-differentiation to become activated. The other states 

that adult cardiac resident fibroblasts originate from the epicardium during embryogenesis 

and contribute to activated fibroblasts or myofibroblasts during injury [506]. A recent 

genetic lineage tracing study that supports the latter theory showed that cardiac resident 

fibroblasts are the primary source of activated fibroblasts after MI and pressure overload 

[507].  

It is now clear that cardiac fibroblasts are potent producers of pro-inflammatory cytokines, 

chemokines and extracellular matrix during cardiac inflammation and heart failure [247, 

508]. Specifically, GM-CSF production by fibroblasts has been implicated in the 

pathogenesis of EAM, MI and Kawasaki disease [247, 460, 509]. Cardiac fibroblasts are 

highly plastic and heterogenous. We have recently demonstrated that cardiac 

inflammation triggers the expansion of CD45–CD31–CD29+mEFSK4+PDGFα+Sca-

1+periostin+ fibroblast population in mice, which is a major producer of GM-CSF as well 

as CCL2 [508]. Fibroblasts co-expressing GM-CSF and CCL2 could also be found in 

human myocardial biopsy samples in both myocarditis and ischemic heart failure patients 
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[508]. Ablation of GM-CSF production in fibroblasts or fibroblast subsets that produce 

GM-CSF protects mice from heart failure [508, 510]. We therefore speculate that 

fibroblast-specific ablation of GM-CSF production permits Ly6Clo monocytes to become 

reparative macrophages in the heart to promote adequate cardiac remodeling and 

inflammation resolution. 

Before we propose that cardiac fibroblasts can be used as potential therapeutic targets, 

it is important to address whether macrophages can also influence cardiac fibroblast 

activation status. Interaction between macrophages and fibroblasts via both soluble 

factors and direct cell-cell contact is most likely not a one-way street. Therefore, a better 

understanding of the roles and functions of cardiac fibroblasts will be useful to target 

maladaptive fibrosis in human cardiovascular diseases. 

Pericardial and peritoneal macrophages – two facets of a kind? 

The heart is enclosed in the pericardium, a cavity filled with protective serosal fluid. 

Macrophages are found residing in human serosal fluid [511]. Recently, Kubes and 

colleagues demonstrated that F4/80+GATA-6+ murine peritoneal macrophages are 

rapidly mobilized to promote tissue repair after acute sterile liver injury [512]. Thus, the 

concept that peritoneum serves as a reparative macrophage reservoir during acute injury 

can be potentially extended to other serosal populations, including pericardial cavities. It 

is unclear whether pericardial macrophages can actively infiltrate the myocardium during 

cardiac injury. Also, it will be interesting to know their specific function during heart 

inflammation.  
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We obtained pericardial effusion samples from 5 patients with chronic ischemic heart 

diseases who underwent coronary artery bypass grafting. Control blood samples were 

collected from a healthy donor, whose peripheral blood mononuclear cells (PBMCs) were 

isolated for comparison purposes. All patients in the study provided informed consent. 

Our preliminary data suggested that while CD14+CD16- monocytes accounted for the 

most predominant population in blood [183, 513], pericardial effusion samples consisted 

almost entirely of CD14+CD16+CD68+CD64+ macrophage population (Figure 20). 

Additionally, the monocyte/macrophage population in pericardial effusion express high 

levels of CD206, HLA-DR and CD116 when compared to blood monocytes (Figure 20). 

Next, we compared peritoneal, pericardial and myocardial F4/80hiCD64+ macrophages in 

naïve mice. We found that peritoneal and pericardial macrophages express high levels of 

glycoprotein CD44 and GATA-6 ( 
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Figure 21). These GATA-6+ macrophages can infiltrate the myocardium post MI (data not 

shown). 

Although the origin of pericardial macrophages is unknown, similarity between peritoneal 

and pericardial macrophages suggests that pericardial macrophages may also carry 

reparative features. Together with embryonic macrophages and Ly6Clo monocyte-derived 

macrophages, they could play protective roles during cardiac injury. Our initial findings 

warrant rigorous future studies to elucidate the ontogeny and function of these pericardial 

macrophages, as well as their identities distinct from myocardial macrophages, which 

may shed light on their roles in health and disease.  

Our knowledge of tissue macrophages has evolved significantly over the past decade. 

We have gained an appreciation that macrophage activation is multifaceted in the context 

of tissue injury. Future therapeutic manipulation to improve disease outcomes require 
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careful examination of macrophage subsets and functions. Our work studying the role of 

macrophages in myocarditis will advance our understanding of pathogenesis, diagnosis 

and treatment of chronic heart failure.    

Figure 20. Pericardial macrophage phenotype 

(A) Top panel shows flow cytometry gating of CD14 and CD16 from a healthy donor’s 

total live CD45+Lin– (lineage including CD3e, CD19, CD56 and CD66b) peripheral blood 

mononuclear cells (PBMCs). Lower panel shows CD64+CD68+ macrophages out of total 

live CD45+Lin–CD62L– PBMC. (B) Top panel shows representative gating of CD14 and 

CD16 cells from total live CD45+Lin– cells present in the pericardial effusion fluid of 

patients with chronic ischemic heart diseases. Lower panel shows these patient’s 

CD64+CD68+ macrophages out of total live CD45+Lin–CD62L– cells in the pericardial 

effusion.  (C) Histograms of MFI showing different markers’ expression of cells in healthy 

donor’s PBMC versus pericardial effusion fluid of patients with chronic ischemic heart 

diseases.  
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Figure 21. Pericardial macrophages are similar to peritoneal macrophages in CD44 and 

GATA-6 co-expression 

(A) Histograms of CD44 MFI and (B) GATA-6 MFI showing murine (red) peritoneal 

macrophages, (purple) pericardial macrophages, and (grey) myocardial macrophages. 

All compared to (blue) fluorescent minus one (FMO) control.  
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Final remarks 

Our work in the past has demonstrated that the recruitment of Ly6Chi monocytes in large 

numbers to the myocardium contributes to a greater Ly6Chi to Ly6Clo 

monocyte/macrophage ratio in the heart which promotes EAM to DCM development 

(Figure 22A). Current results highlight that Ly6Chi monocytes contribute to a macrophage 

population that is highly pro-inflammatory, pro-tissue remodeling and is deficient in 

phagocytic activities in an IL-17A rich cardiac environment. This supports our main 

hypothesis on which our work is based. However, we also found that IL-17A plays a 

suppressive role through signaling to cardiac fibroblasts by inhibiting Ly6Clo monocytes 

to become MHCII+ macrophages (Figure 22B). While the role of Ly6Clo monocyte-derived 

MHCII+ macrophages warrants future in-depth examination, we hypothesize that they are 

associated with DCM protection in IL-17A deficient animals. In summary, our finding has 

filled significant gaps in the knowledge describing the pathogenesis of myocarditis and 

DCM. 

  



 121 

 



 122 

 
 

Figure 22. Past and current models explaining the disease pathogenesis of EAM and 

DCM  

(A) Past model suggesting that the Ly6Chi to Ly6Clo ratio is associated with EAM to DCM 

progression. (B) Current model detailing the fates and functions of monocytes in EAM to 

DCM progression. 
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