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Abstract: 
 
Background: Orofacial clefts (OFCs) – cleft lip with/without cleft palate (CL/P) and cleft 

palate (CP) – are the most common craniofacial malformations among newborns. Both CL/P 

and CP show strong familial aggregation resulting in high estimated heritability. Previously 

identified genetic risk factors account for about a quarter of the estimated total heritability of 

risk to OFCs, indicating additional genetic risk loci remain to be identified. The aim of this 

thesis is to update imputed genotypes generated from a genome-wide marker panel and use 

both observed and imputed genetic variants to identify the genetic risk factors for OFCs in a 

case-parent trio study of OFC. 

 

Methods: We imputed genotypes on case-parent trios from the Genes and Environment 

Association (GENEVA) consortium using the Michigan Imputation Server, and then 

conducted genome-wide association analysis to identify genetic variants associated with risk 

of CL/P and CP separately. For each cleft subtype, we performed genotypic transmission 

disequilibrium test (gTDT) using the trio R package on common single nucleotide 

polymorphic (SNP) markers (i.e. those with a minor allele frequency [MAF] ≥ 5%) in all the 

trios together, and then stratified by ethnicity (Asian and European sub-groups). 

 

Results: We identified two genes not previously reported as associated with risk to CL/P - 

18q12 (TTR) and 4q22 (GRID2). The most significant SNP in the region of TTR (rs1375445) 

reached genome-wide significance in the combined set of all trios (p = 4.33 x 10-8) with 

RR=1.35 [95%CI: (1.21, 1.51)], despite not achieving this level of significance in either the 

European sub-group (p = 2.94 x 10-5) or Asian sub-group (p = 5.52 x 10-5) separately. 

However, the most significant SNP of GRID2 (rs1471079) reached genome-wide 

significance only in the Asian sub-group (p = 1.82 x 10-7) with estimated RR = 0.70 [95%CI: 
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(0.60, 0.80)]. Both of these imputed SNPs have high imputation accuracy (rs1375445 R2 = 

0.96; rs1471079 R2 = 0.97). Additionally, for CL/P, we replicated significant association of 8 

regions identified in previous studies of these case-parent trios, including 8q24 (recognized as 

a gene desert), 1q32 (IRF6), 20q12 (MAFB), 17p13 (NTN1) and 1p22 (ABCA4). The most 

significant SNPs in six of these regions were imputed. The most significant SNP 

(rs17242358) in the 8q24 region showed genome-wide significance (p = 1.75 x 10-16) in the 

combined set of all trios. This imputed SNP showed over-transmission of A allele (over G 

allele) with estimated RR = 2.09 [95%CI: (1.76, 2.49)]. This imputed SNP achieved quite 

different levels of significance in the European (p = 7.11 x 10-14) and Asian sub-groups (p = 

7.3 x 10-4) primarily because the MAF differed across the two sub-groups (MAF = 23% in 

Europeans and 2% in Asians). We did not detect any genome-wide significant locus for the 

OFC subtype CP.  

 

Conclusions: Our findings confirm the complex genetic architecture and the heterogeneity of 

genes influencing risk to OFCs. We replicated most previously reported genetic risk factors 

for these GENEVA case-parent trios. We also identified two new genetic risk factors for 

CL/P that require further investigation. Stratification by racial groups helped detect OFC risk 

loci specific to certain groups. In addition, imputation helped improve the statistical power to 

detect genetic risk factors for OFC.  
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Background 

Background on orofacial clefts 

Orofacial clefts (OFCs) are the most common craniofacial malformations among newborns 

and include three anatomically distinct malformations: cleft lip (CL), cleft lip with cleft 

palate (CLP) and cleft palate (CP). OFCs can occur as an isolated malformation, with another 

structural malformation (i.e. the infant has 2 or more congenital anomalies) or as part of a 

recognized malformation syndrome, some of which are Mendelian syndromes directly 

attributable to mutations in a single gene [1]. Cleft lip with/without cleft palate (CL/P) and 

CP are distinct with respect to their different embryologic origins, where the outer face 

develops before the inner palate closes [2]. CL/P results from the lack of fusion of lateral 

nasal, median nasal and maxillary mesodermal processes, whereas CP occurs due to a failure 

of the palatal shelves to fuse about week 12 of embryologic development [2].  Previous 

studies suggest 70 percent of CL/P cases and 50 percent of CP cases occur as isolated, non-

syndromic malformations [3]. 

 

The genetic etiology, recurrence risks and surgical treatments also vary between CL/P and 

CP. Genes controlling cell patterning, cell proliferation and differentiation of the midface are 

all good candidate genes for OFC malformations [4]. Non-syndromic OFCs are regarded as 

genetically complex and heterogeneous, influenced by multiple genes, recognized 

environmental risk factors (e.g. maternal smoking and alcohol consumption) plus the 

potential for both gene-gene [5] and gene-environment [6] interactions. Over two dozen 

candidate genes have been identified as contributing to risk of OFC by genome-wide 

association studies, but these recognized genes can only explain about a quarter of the 

observed heritability of OFC [7].  
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Children with OFCs usually require extensive multidisciplinary care, which includes feeding 

assistance, plastic surgery, otolaryngology care, developmental follow-up, and speech 

therapy throughout childhood. OFC patients have increased mortality due to difficulties in 

breastfeeding [8] and usually suffer from social discrimination during their lifetime [9]. Due 

to the high prevalence and huge financial and psychological burden of OFCs, understanding 

the etiology of OFCs and improving the health of newborns are important public health goals.  

 

Prevalence and Epidemiology 

As reported by the National Birth Defects Prevention Network (NBDPN) for 2007 to 2011, 

the estimated birth prevalence of all OFCs (i.e. CL/P and CP combined, including isolated 

and syndromic cases) for 29 states in the US was 14.5/10,000 live births: the birth prevalence 

for CL/P was 8.7/10,000 live births, whereas CP occurred in 5.9/10,000 live births. Among 

all newborns with CL/P, approximately one-third presented with CL alone and two thirds 

presented with CLP [10].  

 

Worldwide, the birth prevalence of OFC varies considerably by race and ethnicity, with 

lowest rates of CL/P in populations of African ancestry (10.2/10,000 live births), highest in 

American Indians (20.5/10,000 live births), and intermediate in other racial groups (e.g. Non-

Hispanic White 15.4/10,000 live births, Asian 13.2/10,000 live births) [10]. However, these 

differences in birth prevalence worldwide represent true differences and differences in case 

ascertainment and surveillance methods [11]. For example, the prevalence of CL/P among 

newborns in Japan (20.0/10,000 live births) is almost twice the birth prevalence reported in 

the United States and Canada [12]. Differences in birth prevalence of CP also have been 

reported  but are complicated by the difficulty in diagnosing CP during the newborn period 
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[10]. Moreover, CL/P tends to affect more males than females, whereas CP affects more 

females than males [13].  

 

Environmental risk factors 

Several medications have been reported as teratogens for midfacial development. Antiseizure 

agents such as phenytoin and topiramate are commonly administrated drugs recognized to 

increase risk of OFC [14]. Additionally, folate is an essential component in the process of 

DNA methylation, and maternal folate levels can influence risk to OFC. Deficiency in folate, 

which may result from the folic acid antagonist methotrexate, contributes to risk of multiple 

birth defects including OFCs [15]. Several previous studies have shown maternal smoking 

[16] and passive smoke exposure [17] increases the risk of CL/P significantly. Whenever 

there is an effect of an environmental risk factor, it is worth exploring the potential for gene-

environment interaction (GxE interaction), where the joint risk of exposure (e.g. smoking) 

and a genetic risk factor may be more important than the predicted marginal effects of either 

genes or exposures.  While it is difficult to prove the existence of GxE interaction, there are 

some examples of possible interactions relevance to OFC.  For example, the combined effects 

of a rare allele at TGF-alpha locus was greater than simple combinations of the marginal 

effects of either smoking or gene effects, suggesting GxE interaction [18, 19]. In addition, a 

large case/control study found women who had weekly binge drinking are at higher risk of 

giving birth to a child with CL/P or CP [20].  

 

Genetic risk factors 

OFCs show strong familial aggregation, which indicates a strong genetic component for this 

malformation. A twin study [21] from Denmark showed monozygotic (MZ) twins had higher 

proband-wise concordance rates for CL/P than dizygotic (DZ) twins (47% MZ twins vs. 8% 
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DZ twins, respectively). A similar pattern was noticed for CP. Another population-based 

cohort study shows higher recurrence risks with the increasingly distant degree of relatives 

[13].  These observations from population based twin registries suggest a high heritability for 

both CL/P and CP.  

 

Linkage analysis and association analysis are two important statistical approaches to map 

genes for complex and heterogeneous disorders like OFC. Linkage analysis relies on 

multiplex families and tests for co-segregation of genetic markers (typically single nucleotide 

polymorphism (SNP)) and any potential gene controlling the phenotype of interest (here, 

CL/P or CP). Evidence of linkage to six different chromosome regions have been identified 

in previous linkage studies using multiplex OFC families (on chromosome 1q32, 2p13, 3q27-

28, 9q21, 12p11, 14q21-24 and 16q24) [22, 23]. Particularly, SNP markers near the IRF6 

gene on chromosome 1q32 showed significant evidence of linkage for CL families and SNPs 

near the FOXE1 gene on chromosome 9q21 showed significant evidence of linkage in CLP 

families [23].  

 

Compared to linkage analysis, genome-wide association studies (GWAS) allow the study of 

millions of SNPs and consequently the identification of multiple regions throughout the 

genome that influence risk to OFCs (Table 1). Typically, two types of study designs are used 

for OFCs: the traditional case-control design and the family-based case-parent trio (triad) 

design. Compared to traditional case-control design, the triad design has an advantage of 

circumventing possible confounding due to population substructure. Whenever marker allele 

frequencies and baseline risk of disease vary across sub-sets of the sample (i.e. when cases 

and controls are drawn from genetically different sub-populations), confounding can create a 

biased test for association between pooled samples of cases and controls. In the triad design, 



 
 

    5 

the affected children inherit alleles from their two parents and the alleles transmitted to the 

observed case are compared to the non-transmitted alleles in a matched case - “pseudo-

control” approach.  This design obviously requires the genotypes of the parents be observed, 

but the matched analysis means the problem of confounding is minimized because the case’s 

alleles/genotypes are compared to alleles/genotypes in pseudo-controls possible for the given 

parental mating type.  A transmission disequilibrium test (TDT) for alleles or for genotypes 

of a marker can be used to test the composite null hypothesis that there is no linkage or no 

linkage disequilibrium (LD) between the marker and the unobserved causal locus.  This triad 

design may not work well for late-onset diseases since biological material from parents are 

needed. However, it is commonly used for childhood diseases. Studies supported by the 

Genes and Environment Association (GENEVA) consortium [24] represent an example of 

this triad design.  

 

Until now, there have been eight GWAS for CL/P [25-32], two genome-wide meta-analysis 

of CL/P GWAS [7, 33] and two CP GWAS [34, 35] (Table 1). These studies have shown a 

high degree of genetic heterogeneity underlying risk to OFC. More than two dozen different 

genetic loci have been identified as influencing risk to CL/P, while only one locus has been 

clearly identified for CP and this association signal was limited to cases and controls of 

European ancestry [35]. Of these recognized genome-wide significant loci, four regions 

(IRF6 on 1q32-41, and the gene desert regions on 8q24, 17q22 and 10q25.3) appear to 

explain 20-25% of the estimated heritability risk to CL/P [9]. However, generally for both 

CL/P and CP combined, all identified genetic risk regions only account for a modest 

proportion of the heritability of OFCs, suggesting additional genetic risk loci remain to be 

identified.  
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Table 1. A summary of genetic variants that may contribute to risk to OFC reported 
by previous studies.  
Adapted and updated from Table 2 in Leslie and Marazita [1] and Table 1 in Beaty [9]. 
Locus Candidate gene Analysis method Reference 

1p22 ARHGAP29 CL/P [25, 33, 36] 
1p36 PAX7 CL/P [25, 33, 37] 
1p36 MTHFR CL/P [38] 

10q23 RBP4 CL/P [38] 
1q32 IRF6 CL/P [25, 26, 29, 30, 33, 39] 
2q21 THADA CL/P [33] 
2p24 FAM49A CL/P [29] 
3p11 EPHA3 CL/P [33] 
3q12 COL8A1/FILIPIL CL/P [37] 
3q28 TP63 CL/P [7] 
8q21 DCAF4L2 CL/P [29, 33, 37] 

8q22 RAD54B CLP [40] 
8q24 Gene desert CL/P [25, 26, 29, 30, 39] 
9q22 FOXE1 CL/P, all OFCs [7, 23, 37] 
10q25 VAX1 CL/P [25, 29, 30] 
12q13 KRT18 CLP [40] 
12q21 TMEM19 CLP [40] 
13q31 SPRY2 CL/P [33] 
15q22 TPM1 CL/P [33] 
15q24 ARID3B CL/P [29] 
16p13 CREBBP CL/P [31] 
17p12 NTN1 CL/P [29, 37, 41] 
17q21 WNT9B CLP [40] 
17q22 NOG CL/P [29, 30, 41] 
17q23 TANC2 CL/P [29] 
18q12 CDH2 CL/P [42] 
19q13 RHPN2 CL/P [29] 
20q12 MAFB CL/P [25, 29] 
1p36 GRHL3 CP [35, 43] 
Gene x Environment 

4q22 GRID2 CL/P x smoking [37] 

9p21 ELAVL2  CL/P x smoking [37] 
8q22 BAALC CP x multivitamins [34] 
9q31 SMC2 CP x alcohol [34] 
12q14 TBK1 CP x smoking [34] 
4p16 SLC2A9 CP x smoking [44] 
4p16 WDR1 CP x smoking [44] 
Note: findings from previous GENEVA studies are in bold-face.  
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GENEVA OFC Study 

The GENEVA Oral Clefts project is aimed to investigate the genetic architecture of OFCs 

using case-parent trios collected from an international consortium.  Case-parent trios were 

recruited by multiple investigators from Europe (Norway and Denmark), the United States 

(Iowa, Maryland, and Pennsylvania) and Asia (People’s Republic of China, Taiwan, South 

Korea, Singapore, and the Philippines) [7]. Since this case-parent trio study design is robust 

to confounding due to population substructure, it is most appropriate to combine the trios 

from diverse populations into a single GWAS.  

Samples were genotyped on the llumina Human610 Quadv1_B array for 589,945 SNPs, 

phased using SHAPEIT [45] and originally imputed with IMPUTE2 [46] software. The 

original genotype dataset was updated to build 37 (GRCh37) to be compatible with 1000 

Genomes Phase I release (June 2011) reference panel. The original genotype data from the 

GENEVA case-parent trios had identified risk regions near MAFB and ABCA4, and 

confirmed previously identified regions such as IRF6 and chr. 8q24 as harboring genes 

influencing risk for CL/P [25]. Although no genome-wide significant SNP was identified as 

influencing risk to CP when considered alone, there was suggestive evidence for GxE 

interaction controlling risk to CP [34]. For example, the study found markers in MLLT3 

increased risk of CP when the mother consumed alcohol during pregnancy [34]. A meta-

analysis combining two studies, Pittsburgh Orofacial Cleft (POFC) study – which included 

both case-parent trios and case-control samples of OFC – and the GENEVA case-parent trio 

study, showed several additional risk loci including COL8A1 (on chr. 3q12.1) may influence 

risk to CL/P [7].  

Recently, more efficient tools have been developed for genotype imputation. The Michigan 

Imputation Server, which utilizes the minimac3 and the MapReduce programming model 
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[47], has been shown to achieve more accurate imputation while reducing computation time 

[47]. With increased panel size and memory requirements, it outperforms alternatives such as 

minimac2 [48] and IMPUTE2 [46]. Therefore, we performed genotype imputation of our 

GENEVA trios using the Michigan Imputation Server, and conducted a GWAS to identify 

the genetic risk factors for CL/P and CP.   

Thesis aims 

The aim of this research thesis is to identify genetic risk factors for OFCs and compare the 

roles of observed markers and imputed markers on identifying risk to OFCs.  

 

Part I. Introduction to GENEVA Oral clefts database 

The samples were ascertained through the GENEVA consortium which pooled case-parent 

trios from multiple populations into a GWAS of non-syndromic oral clefts. The aim of this 

consortium was to investigate the genetic variants influencing risk to OFCs, while testing for 

interaction between genetic markers and common environmental factors. As required by 

NIH, genome-wide marker data was shared through a monitored access program provided by 

the database for genotypes and phenotypes (dbGaP: https://www.ncbi.nlm.nih.gov/gap) to 

make these data broadly available to the scientific community. The GENEVA oral clefts 

study began in 2003 and was an international multi-center, case-parent trio design study. It 

consisted of case-parent trios collected from Europe (Norway and Denmark), the United 

States and Asia (People’s Republic of China, Taiwan, South Korea, Singapore, and the 

Philippines) [7], included 1,591 CL/P complete case-parent trios (along with 318 CL/P 

incomplete trios) and 466 CP complete (84 CP incomplete) trios (updated by Dec, 2018). 

Among these trios, 668 CL/P complete (157 CL/P incomplete) trios and 215 CP complete (54 

CP incomplete) trios were of European ancestry, while 895 CL/P complete (138 CL/P 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwjq0Mm8s87hAhWJq1kKHckcDSYQFjAAegQIBhAC&url=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fgap&usg=AOvVaw2WC4YYwPrYKx_GLuevgUsm
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incomplete) trios and 237 CP complete (22 CP incomplete) trios were of Asian ancestry 

(combining East Asian, Filipino and Malaysian) (Table 2). As mentioned above, DNA was 

genotyped on the llumina Human610 Quadv1_B array, phenotypes (e.g. type of cleft), sex, 

race as well as three common environmental risk factors (e.g. maternal smoking, vitamin 

supplementation and alcohol consumption during pregnancy) reported through direct 

maternal interview were used to test for GxE interaction in previous studies (Table 1). The 

research protocol was approved by the Institutional Review Boards (IRB) at Johns Hopkins 

Bloomberg School of Public Health and at each additional recruitment site. Written informed 

consent was obtained from both parents and assent from the case child wherever possible.  

 

 

Part II. Imputation on the Michigan Imputation Server 

Introduction  

Genotype imputation is an integral part of conducting analyses for GWAS these days. After 

genotyping study samples on an array usually consisting of 200,000 – 2,500,000 SNPs, 

imputation can expand the number of useful genetic variants by using sequencing data from a 

reference population (e.g. 1000 Genomes Project [49]) to identify haplotype segments shared 

between the observed samples and the reference panel. Genotype imputation allows efficient 

Table 2. Number of case-parent trios in the GENEVA dataset by type of OFC in the case (affected 
child) and ancestry of parents 

 CP CL CLP Total 

 
Complete 

trios 
Incomplete 

trios 
Complete 

trios 
Incomplete 

trios 
Complete 

trios 
Incomplete 

trios 
Complete 

trios 
Incomplete 

trios 

European 215 54 235 53 433 104 883 211 

African 1 6 0 3 3 6 4 15 
Asian 231 22 214 32 675 104 1120 158 

Hispanic 0 1 0 0 5 11 5 12 
Native 

American 0 0 0 0 1 0 1 0 

Malaysian 6 0 1 0 5 2 12 2 
Other 13 1 7 2 12 1 32 4 

All 466 84 457 90 1134 228 2057 402 
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inference of unobserved genotypes on a large scale [50]. It tremendously improves genome 

coverage by increasing SNP density, facilitates the comparison of studies originally 

genotyped on different SNP arrays, facilitates meta-analysis and improves the statistical 

power to detect associations between genetic variants and phenotypes [51]. During the past 

decade, imputation accuracy has been greatly improved for both common and rare alleles due 

to the emergence of large reference panels (e.g Haplotype Reference Consortium (HRC) [52] 

and 1000 Genomes Project [49]). However, this also raises concerns about computational 

efficiency for previous imputation tools (e.g. IMPUTE2 [46] , Beagle 4.1 [53], minimac2 

[48]). For example, it would take almost one week to impute 1,000 samples using the HRC 

reference panel on a 100-core cluster using minimac2 [47]. To promote the computational 

efficiency with comparable imputation accuracy, minimac3 and minimac4 have been 

modified with the ‘state space reduction’ approach, which has yielded great improvements in 

imputation accuracy, run time and memory required to impute genotypes compared to 

previous imputation tools [47].  

 

The Michigan Imputation Server is a cloud-based imputation server that incorporates 

minimac 3 [47] with a user-friendly interface. This server divides the genetic dataset into 

overlapping chunks and runs parallel analyses across all chunks. It performs auto-check 

automatically (e.g. strand orientation, file integrity, missingness and minor allele frequency 

distribution). If no major errors occur during the quality control process, the phased sample is 

imputed using one of four reference panels: HRC Version r1.1 2016 (32,470 samples and 

39,635,008 sites), or Version r1 2015 (32,488 samples and 39,741,659 sites); 1000 Genomes 

project phase 1 (1,092 samples and 28,975,367 sites) or phase 3 (2,504 samples and 

49,143,605 sites); Hapmap 2 (60 samples and 2,542,916 sites); or CAAPA-African American 

panel (883 samples and 31,163,897 sites), as selected by the user (submitter). This imputation 
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tool allows more efficient computation and yields comparable accuracy to IMPUTE2 and 

minimac2 when used with these large reference panels [47].  

 

Additionally, another strategy called “pre-phasing” has been developed to ease the 

computational burden of imputation [54]. Pre-phasing utilizes the haplotype information 

specified by the family structure and transmission patterns and has been proven to yield 

higher efficiency when imputing a phased haplotype on two reference panels than to impute 

two unphased genotypes to a pair of reference haplotypes [54]. Imputation accuracy can be 

increased by pre-phasing with haplotyping engines such as SHAPEIT [45]. 

 

To summarize, the updated large reference panels which incorporate newly sequenced 

individuals and diverse variant types should increase imputation accuracy for genome-wide 

marker panels. This improvement is reflected in the accuracy of both imputed common and 

low frequency SNPs, and can facilitate analysis of rare variants. To take full advantage of 

these imputed marker panels with expanded genotype information, efficient imputation 

methods and pre-phasing are fundamental strategies to reduce computational cost and 

enhance studies of genetically complex diseases.  

 

Methods 

Preparing files for imputation on Michigan Imputation Server 

The original genotype files were modified to pre-phase with the SHAPEIT software and then 

processed for imputation via the Michigan Imputation Server. The flowcharts for preparing 

the VCF files for imputation and individual/SNP-level filtering are summarized in Figures 1 

and 2. Below is a detailed description of each step. 
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Figure 1: Flow chart for preparing files for imputation and individual level 
filtering. Subjects without DNA information, with SNPs missing rate >0.1 and 
siblings in one family were removed, resulting in 7047 individuals who were 
phased with SHAPEIT* and imputed on Michigan Imputation Server. 

*SHAPEIT requires individuals’ missing rates < 10% and Michigan Imputation 
Server requires all individuals have marker data for each chromosome. 

Figure 2: Flow chart for preparing the files for imputation and variant level 
filtering. The SNPs with high missing rates,  low minor allele frequency, no 
coordinates on hg19 or duplicated positions were removed from this 
study. In addition, mismatched alleles were excluded by the Michigan 
Imputation Server, resulting in 481,496 SNPs being used for imputation on 
the Michigan Imputation Server. 
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Step 0. Prepare file format: 

Using the original genotyped PLINK files [55] (named as “oralcleftgwas.bed”, 

“oralcleftgwas.bim” and “oralcleftgwas.fam” under directory “jhpce01 

/dcl01/beaty/data/oc_gwas/imputation_michigan/preimpute_phasing/data”) from the Illumina 

610Quad genotyping (which contained 569,244 SNPs on chromosomes 1-22 in 7,491 

people), we obtained PLINK files in .map and .bed format for Step 1.   

 

Step 1. Primary quality control: 

The primary quality control steps were performed with PLINK 1.9 (https://www.cog-

genomics.org/plink2/) [55].  

Individual level QC: 

Step 1.1. Remove subjects with no genotype information due to no DNA or very low 

quality of DNA (e.g. contamination of DNA during DNA extraction process). This step 

excluded 403 individuals, leaving 7,088 individuals.  

Step 1.2. Remove extra siblings in each family. A total of 25 individuals were 

excluded, leaving 7,063 individuals.  

Step 1.3. Remove a particular sibling 21116_03. Only 1 individual was excluded in 

this step, leaving 7062 individuals. (Note: in the “august_peds.xlsx” file, extra siblings were 

indicated as “4 or 5 or 6”; this sibling was indicated as “3”, which is an exception.) During 

the original quality control procedure, individual 21116_03 was genetically found to be the 

sibling of 21116_01. 

 

SNP level QC:  

            Step 1.4. Drop all SNPs previously flagged by original quality control (SNP 

missingness > 5%, Mendelian error rate > 5%, HWE< 10-4 and MAF < 1%).  This step 

https://www.cog-genomics.org/plink2/
https://www.cog-genomics.org/plink2/
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resulted in rare or monomorphic SNPs being dropped from the Asian sub-group. A total of 

84,650 SNPs were excluded at this step, leaving 484,594 SNPs. 

Step 1.5. Drop SNPs with missing rate > 5% and minor allele frequency < 1% over all 

sub-groups. Only 1 SNP was excluded at this step, leaving 484,593 SNPs. 

 

Step 2. Lift-over from hg18 to hg19 (http://github.com/sritchie73/liftOverPlink): 

Original genotyped SNPs on build hg18 were “lifted over” to hg19 before imputation 

(currently, the Michigan Imputation Server requires hg19 coordinates). A total of 111 

variants with no coordinates on hg19 were excluded, leaving 484,482 SNPs. 

 

Step 3. Correct the information of the variant: 

Correct chr4 rs100333966 minor allele to be T instead of C in the bim file. (Otherwise it 

would be halted on the Michigan Imputation Server.) 

 

Step 4. Split by chromosome and flag individuals with any SNP showing a missing rate > 

10%: 

To phase data with SHAPEIT, individuals’ missing rate for all markers must be less than or 

equal to 10%. Specifically, to phase the variants on chromosome 22 only, SHAPEIT required 

that the individual missing rate of all SNPs, which is calculated by the number of missing 

SNPs divided by the number of total SNPs on that chromosome for each individual, be no 

larger than 10%. Additionally, to impute all the chromosomes on the Michigan Imputation 

Server simultaneously, it is required that individuals have marker data for all chromosomes. 

Table 3 summarizes the list of individuals with a missing rate > 10% for each chromosome 

and these individuals were excluded from further analyses. 
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Step 5. Flip from positive strand to 

forward strand:  

The variants were flipped to the 

forward strand to make them 

compatible with the Michigan 

Imputation Server. Two SNPs were 

excluded because they had duplicated 

positions, leaving 484,480 SNPs. The 

VCF files were converted into PLINK 

files with family structure information 

preserved. 

 

Step 6. Remove individuals with SNPs missing rate > 10%: 

We excluded 15 individuals who had SNPs missing rate > 10%, leaving 7,047 individuals. 

 

Step 7. Phasing with SHAPEIT software: 

All variant information on chromosomes 1-22 were pre-phased simultaneously using the 

SHAPEIT software (shapeit.v2.904.2.6.32-696.18.7.el6.x86_64) 

(mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html) [45]. The output files were 

in .haps and .sample format. 

 

Step 8. Convert the file format to VCF files and make additional modifications:  

The .haps and .sample format files generated by SHAPEIT were converted into the .vcf 

format. Additional modifications to these files were made as required by the Michigan  

Table 3. List of individuals with SNP missingness rate > 
0.1 on individual chromosomes. 

Family ID Individual ID 
Chrs with missingness 
rate > 10% 

23042 23042_02 1, 4-9, 11, 13-20, 22 
17008 17008_01 2 
15096 15096_01 10-11, 16, 17, 19, 20, 22 
14069 14069_02 11 
23053 23053_01 16-17, 19, 22 
14118 14118_01 17, 19, 22 
14186 14186_01 17, 19, 22 
15037 15037_01 17, 19, 21, 22 
12306 12306_03 19, 22 
23024 23024_02 19, 21-22 
23042 23042_01 19, 21-22 
23049 23049_01 19, 22 
12046 12046_03 22 
14114 14114_01 22 
23041 23041_01 22 
Note: To interpret the table, for example. individual 
23042_01 had missing variant information of more than 
10%  on chromosomes 19, 21, and 22. Such individuals 
were excluded from pre-phasing and imputation. 
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Imputation Server, including deleting the header 

character “chr” in the “chr” column (e.g. “chr22” 

became “22”). 

 

Step 9. Check VCF files: 

Check VCF files to make sure they could be imputed 

successfully on the Michigan Imputation Server by 

using script “checkVCF.py”, as recommend on the 

Michigan Imputation Server website. 

 

Step 10. Sort, zip and index the files:  

The files were then sorted, zipped and indexed using 

vcf-sort, bgzip and tabix software as required by the 

Michigan Imputation Server. 

 

Step 11. Submit the prepared VCF files from step 10 to 

the Michigan Imputation Server: 

The prepared files for chromosome 1-22 (7,047 people 

and 484,480 SNPs) (Table 4, Figure1, Figure 2) were 

imputed simultaneously on the Michigan Imputation 

Server. The reference panel was “1000G phase 3 v5”. 

Although we had trio-aware pre-phased data from 

SHAPEIT, Michigan Imputation Server requires choosing an option for the phasing. We 

chose the option “ShapeIT v2.r790” , however, it is to be noted that the server does not re-

Table 4. Comparison of the number 
of SNPs in the original genotyped 
files and the prepared files for 
imputation (after pre-imputation 
SNP filtering) for each chromosome 
 
 
Chr 

# of original 
genotyped 
SNPs  

# of filtered 
genotyped 
SNPs for 
imputation 

1 44,549 37,699 

2 47,203 40,026 
3 39,277 33,578 

4 35,114 29,937 
5 35,535 30,371 

6 39,821 33,439 

7 31,744 27,042 

8 32,283 27,410 
9 27,421 23,603 

10 30,359 25,647 
11 28,277 24,091 

12 28,154 23,862 
13 21,834 18,517 

14 19,022 16,224 
15 17,307 14,852 

16 17,327 14,838 
17 15,092 12,936 

18 17,181 14,630 
19 10,102 8,864 

20 14,472 12,278 
21 8,434 7,314 

22 8,736 7,322 
Total  569,244 484,480 

Note: The total number of SNPs was 
reduced from 569,244 to 484,480 after 
the steps of pre-imputation SNP 
filtering. The number of SNPs 
remaining on each chromosome is 
indicated in the table above. Files 
containing these SNPs information 
were uploaded to the Michigan 
Imputation Server. 
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phase phased data. We chose the option “European” for Population (needed for internal QC 

purposes only) . Finally, genotype imputation was implemented by minimac3.  

 

Quality control after imputation 

The files generated from Michigan Imputation Server include .dose.vcf.gz and .info.gz for 

each chromosome. The flow charts for post-imputation individual and SNP-level filtering are 

summarized in Figures 3 and 4. Below is the description of each step. 

 

Step 1. Explore the data and set the 

cut-off points for R2: 

All imputed SNPs were filtered based 

on R2 ≥ 0.3 with bcftools-1.9 

(https://samtools.github.io/bcftools). 

There were 21,992,878 SNPs 

excluded by this cut-off value, leaving 

25,108,104 SNPs.  (Further 

exploration of different R2 cut-off 

values is described in the Results 

section.) (Table 5) 

 

Step 2. Make the ‘hard’ genotype call 

in PLINK software: 

The VCF format was changed into 

PLINK format and ‘hard’ genotype 

calls were made by setting threshold 

Table 5. Comparison of the numbers of SNPs generated 
from imputation, filtered by R2 and as ‘hard’ genotype 
calls. 
Chr # of SNPs  

post-
imputation 

# of SNPs  
after 
filtering R2 

# of SNPs  
after filtering R2 
and ‘hard’ call 0.1  

1 3738278 1910308 1910308 
2 4057648 2195643 2195643 

3 3355974 1867956 1867956 
4 3338298 1827487 1827487 

5 3033119 1684425 1684425 
6 2954483 1710246 1710246 

7 2753568 1444954 1444954 
8 2651635 1463683 1463683 

9 2063122 1105471 1105471 
10 2334121 1277810 1277810 

11 2333274 1254083 1254083 
12 2242777 1206916 1206916 

13 1661713 951726 951726 
14 1525694 824510 824510 

15 1404183 704418 704418 
16 1549341 724282 724282 

17 1345848 607045 607045 
18 1319664 722217 722217 

19 1084557 453904 453904 
20 1047637 544673 544673 

21 653809 321435 321435 
22 652239 304912 304912 

Total 47100982 25108104 25108104 
Note: There were substantial SNPs excluded by setting R2 
threshold at 0.3. No SNPs excluded by hard call threshold of 
0.1. 
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0.1 within the PLINK 2 (https://www.cog-genomics.org/plink/2.0/) software. If the calls have 

uncertainty greater than 0.1 (genotype likelihoods smaller than 0.9), they were treated as 

missing; and the rest were regarded as hard calls [55]. No additional SNPs were excluded 

from this step, therefore leaving 25,108,104 SNPs for analysis. (Table 5, Figure 3) 

 

Step 3. Modify the format in the resulting 

PLINK files to retain the family structure: 

Family information is lost when PLINK files are 

converted into VCF files.  To convert VCF files 

back to PLINK files, the family, individual, 

maternal and paternal IDs were modified with 

reference to the original genotyped 

"oralcleftgwas.fam" file to retain family information needed for downstream analysis.  

 

Step 4. Quality control exploration (Results shown in the Results section): 

Step 4.1. Check for individual missingness rates and SNP missingness rates on the 

entire cohort. 

Step 4.2. Split by ethnicity (East Asian+Malaysian+Filippino vs. European) 

            Step 4.2.1. Check for SNP missingness rate 

Step 4.2.2. Check for MAF and HWE only in founders 

 

Step 5. Remove individuals duplicated in the POFC dataset:  

A total of 393 individuals were removed due to overlap with POFC dataset, leaving 6,654 

individuals. This step was implemented so that GENEVA study may be meta-analyzed with 

POFC study in subsequent GWAS analyses. 

Figure 3: Flow chart for post-imputation variant level 
filtering. The imputed SNPs were further filtered by R2 and 
‘hard’ genotype call. 
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Step 6. Keep only complete trios: 

Eight hundred and seven individuals were removed due to the incomplete trio status as 

indicated in the “august_peds.xlsx” list, leaving 5,847 individuals in 1,949 complete trios. 

 

Step 7. Remove any incomplete trio created by pre-imputation “Step 6. Remove individuals 

with SNPs missing rate > 10%” : 

A total of 21 individuals were removed due to the incomplete trios produced by excluding 

individuals with SNPs missing rate > 10%, leaving 5,826 individuals in 1,942 trios. 

 

Step 8. Double check to make sure the duplicated siblings had been removed and check for 

Mendelian errors. 

 

Step 9. Split individuals by OFC phenotype in the affected child (CL/P & CP) and by 

ethnicity (Asian & European): 

After splitting the population by OFC phenotype and racial group, there were 235 Asian 

complete CP trios (705 individuals), 891 Asian complete CL/P trios (2,673 individuals), 203 

complete European CP trios (609 individuals) and 575 complete European CL/P trios (1,725 

individuals) (Figure 4). 
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Figure 4: Flow chart for post-imputation individual level filtering. Individuals duplicated across the Geneva and POFC 
datasets, and incomplete trios were removed from the study. The number of individuals split by phenotype and racial 
group are summarized. 

 
 
 Results 

1. Explore the R2 to determine the cutoff value: 

R2 is the estimated correlation between the imputed and true 

genotyped variants, and can be regarded as an indicator of 

imputation accuracy. As indicated from Table 6, a 

substantial number of SNPs had a R2 of either below 0.1 or 

above 0.9. R2 below 0.1 suggests very poor imputation 

quality. The occurrence of poor imputation often correlates 

with the SNP’s minor allele frequency. From Figure 5, we 

can see rare variants with MAF < 1% are more likely to 

have poor imputation quality. With reference to the previous GWAS study, which used a 

Table 6. SNPs remaining by R2 
cutoff  
R2 cutoff  SNPs remaining 
0.0 47,099,551 
0.1 32,517,090 
0.2 28,571,598 

0.3 25,108,104 
0.4 21,828,637 
0.5 18,731,933 
0.6 15,818,178 
0.7 13,059,060 
0.8 10,400,849 
0.9 7,601,183 
1.0 15,465 



 
 

    21 

cutoff of 0.5 [7] and the observed distribution of R2 in our GENEVA data, we decided to 

choose a cut-off point of 0.3, which left 25,108,104 SNPs available for analysis.  

 

 

2. Explore the MAF distribution for all SNPs on chromosome 22 in Asian and European 

groups separately after filtering by R2: 

Considering the large amount of data and computational burden, we explored the MAF 

distribution among Asian and European ancestry groups separately on chromosome 22 after 

filtering all imputed SNPs by R2. Among the 304,912 SNPs on chromosome 22, there were 

196,464 rare variants with MAF < 1% and 24,660 variants with MAF between 1-5%, 83,788 

common variants with MAF ≥5% in the Asian sub-group, while there were 177,733 rare 

variants with MAF < 1% and 33,450 variants with MAF between 1-5%, and 93,729 common 

variants with MAF ≥ 5% in the European sub-group. The MAF distribution in these two 

racial groups (Asian and European) were generally similar (Figure 6). 

 

Figure 5: The association between imputation accuracy (R2) and minor allele frequency (MAF) for all SNPs on 
chromosome 22. The SNPs with lower R2 values tended to be rare variants (MAF ≤ 0.05). 
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Figure 6: The distribution of minor allele frequency in the Asian (A) and European (B) subgroups. Similar distributions of 
MAF was noticed between the two sub-groups. 

 

3.  Exploring deviation from HWE for all SNPs on 

chromosome 22 in Asian and European parents 

separately: 

Either 100 or 55 SNPs would have been excluded 

from the 304,912 imputed SNPs on chromosome 22 

by setting the cut-off point for deviation from HWE 

10−4 or 10−5, respectively, in the Asian sub-group. 

There were no SNPs violating HWE at a p-value point of 10−6 in the Asian sub-group. In 

comparison with the European sub-group, 44 or 15 SNPs would have been excluded from the 

304,912 SNPs on chromosome 22 by setting the cut-off point of HWE 10−4 or 10−5 in the 

Table 7. Number of SNPs remaining by p-value of 
Hardy-Weinberg equilibrium cutoff values. 

 Asian European 
P-value of test 
for HWE # of SNPs # of SNPs 
≥10−2 302,582 302,744 
≥10−3 304,475 304,614 
≥10−4 304,812 304,868 
≥10−5 304,857 304,897 
≥10−6 304,912 304,909 
≥10−7 304,912 304,912 
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European sub-group, respectively. There were no SNPs violating HWE at cut-off point of 

10−7 in the European group (Table 7). We set the HWE threshold at 5 x 10-7 (i.e., SNPs with 

HWE p-value < 5 x 10-7 are excluded). 

 
4. Explore the missingness and Mendelian error rate after all the pre-imputation and post-

imputation quality control steps.  

Both the missingness rate and Mendelian errors decreased to 0 after pre-phasing with 

SHAPEIT. This may be due to the fact that SHAPEIT detects Mendelian errors and set these 

genotype values to missing during phasing, yielding zero Mendelian errors. Due to pre-

phasing with family structure information with SHAPEIT, all Mendelian errors were set to 

missing.  Missingness remained low (missingness for both SNPs and individuals are 0) as 

SNPs were filtered before imputation. 

 

Discussion 

The genome-wide marker data was pre-phased and imputed using the Michigan Imputation 

Server. Essential QC steps were performed both pre-imputation and post-imputation to 

ensure the high quality of the resulting dataset of over 25 million markers. The final dataset 

contains 25,108,104 SNPs (including both common and rare variants) for 5,826 complete 

case-parent trios (including 3,387 Asian and 2,334 European individuals) which were then 

prepared for downstream analysis.  
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Part III. Genome-Wide Association analysis  

Introduction 

Case-parent trio design  

As an alternative to population-based (e.g. case-control) studies considering independent 

individuals, family-based (e.g. case-parent trio) designs are frequently used to detect the 

association between genetic variants and disease-related phenotypes. In the case-parent trio 

design, both the affected child (case) and their parents are genotyped, and “pseudo-controls” 

are created by the alleles or genotypes that could have been transmitted from the observed 

parental mating type. The allelic TDT becomes a matched comparison of alleles transmitted 

to the case versus those not transmitted, and McNemars’ chi-square test can be used to test 

the null hypothesis of no deviation from strict Mendelian transmission to the affected child 

[56].  In the genotypic TDT, the observed genotype of the case is compared to the other three 

“pseudo-control” genotypes that could have been generated by the parental mating under a 

1:3 matched design [57].   

 

There are some unique advantages of this case-parent trio design. First, it allows tests for any 

parent-of-origin effect (e.g. imprinting effect) by comparing phenotypic effect of maternal 

allele vs. the paternal allele [58]. Second, it is easier to identify de novo variants using this 

case-parent trio design. Third, population stratification is circumvented by drawing pseudo-

controls from the observed parental mating type. In contrast, spurious associations may arise 

due to population stratification in case-control studies, whenever the allele frequency of 

markers differs across sub-populations of cases and controls. Last, case-parent trio design can 

be more powerful for rare diseases compared with case-control studies [59]. 
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However, there are some drawbacks to this study design. Since the case-parent trio design 

requires the recruitment of both parents and children, early-onset diseases are better 

candidates for this design, as it is more feasible to collect parents’ genetic information in 

early-onset compared to late-onset diseases. Additionally, it is not possible to test for 

independent environmental factors contributing to risk of disease because the cases and the 

pseudo-controls share any maternal exposure status as they come from the same family.  

 

To summarize, the case-parent trio design has some advantages for investigating OFC, a 

common birth defect but a relatively rare disorder with a complex and heterogeneous 

etiology.  Birth defects are not common occurrences and parents are generally available to 

provide DNA.  Additionally, because this study design is robust to population stratification, it 

is a good design for investigating the etiology of OFC where case-parent trios are recruited 

from multiple distinct populations (e.g. Asians and Europeans). 

 

Genotypic transmission disequilibrium test analysis 

The transmission disequilibrium test (TDT) is a fundamental approach for testing genetic 

associations of a disease phenotype under the case-parent trio design [56]. The null 

hypothesis of the TDT is a composite of no association and no linkage between the observed 

markers and an unobserved causal gene. This test focuses on the departure from Mendelian 

expectations for the marker in a sample strictly ascertained through an affected child and 

checks if a target allele is preferentially transmitted to the affected child from a heterozygous 

parent. For the allelic TDT, McNemar’s chi-square test is used to compare the number of 

times the target allele is transmitted to the affected child with the number of times the 

alternative allele is transmitted to the affected child [58]. This test is a non-parametric method 

with no assumption of the distribution of the phenotype (e.g. if the phenotype follows normal 
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distribution in the study population) nor the specific model of inheritance, and is also referred 

to as “allelic TDT” [56].  

 

Another frequently used alternative approach to the allelic TDT is the genotypic transmission 

disequilibrium test (gTDT). In the gTDT analysis, the genotype of the affected individual is 

compared to the three pseudo-control genotypes that could occur given the parents’ 

genotypes [60]. Conditional logistic regression can be used to account for this matching 

structure [61]. Compared to the allelic TDT analysis, the gTDT analysis treats the trio as a 

family unit, assuming a specific genetic model (i.e. either an additive, recessive or dominant 

mode of inheritance). Closed-form solutions have been developed to estimate the coefficient 

of the conditional logistic regression models under different genetic architectures [57]. 

Moreover, because the underlying genetic model is usually unknown, the maximum over all 

gTDT statistics can be used as a test statistic to evaluate the effect of any one SNP. A fast 

approach to compute this test statistic as well as a permutation-based p value has been 

proposed [57, 62]. In addition, the gTDT allows the calculation of an odds ratio of the effect 

of the variant on the outcome and an associated confidence interval, which facilitates the 

combination of results from multiple trio studies, while the allelic TDT only provides chi-

square test statistic values and their p-values. The gTDT also allows tests for GxE interaction 

[57] and has been proven to be more powerful than the allelic TDT analysis in some 

circumstances [63], which makes gTDT attractive for case-parent trio studies. The gTDT 

procedures can be implemented using the open source Bioconductor trio package, available 

at https://bioconductor.org/packages/release/bioc/html/trio.html. Therefore, we analyzed the 

case-parent trios from the GENEVA consortium using gTDT (as implemented in the trio 

package) to test for linkage and association with all SNPs (observed and imputed) passing 

QC steps discussed above to identify genes influencing risk to OFC.  

https://bioconductor.org/packages/release/bioc/html/trio.html
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Multiple comparisons 

Since a large number of SNPs (observed and imputed) are used in this study, we must 

consider the issue of multiple comparisons. Bonferroni correction is the most common 

approach for tackling the multiple comparisons issue. This method calculates the corrected 

type I error rate by dividing the traditional threshold for declaring statistical significance 

(0.05) by the number of independent comparisons. However, this method is conservative if 

the traditional threshold is divided by the number of SNPs in the GWAS analysis because the 

SNPs are correlated and the number of independent comparisons is way smaller than the total 

number of SNPs [64]. In this study, we used a threshold of 5 x 10-7 to declare genome wide 

significance [29].   

  

Methods  

The gTDT analyses for CP and CL/P trios separately were performed using the trio package 

(version 3.20.0) on common SNPs (i.e. those with MAF ≥ 5%) in the combined set of all 

trios together and then stratified into Asian and European sub-groups. Manhattan plots and 

QQ plots were created for each analysis to show signals from the gTDT and to check for 

potential bias in the test statistic. The signals from the combined imputed and genotyped 

SNPs were compared with signals from the original observed genotype SNPs only. We 

expect genotype imputation to increase the sensitivity for detecting and defining 

chromosomal regions showing evidence of harboring genes controlling risk to OFCs.  

 

SNPs reaching genome wide significance from the gTDT analysis were annotated with an 

online tool SNPnexus (https://snp-nexus.org) [65] to indicate potentially important genes. 

LocusZoom plots (http://locuszoom.org/) [66] were created to show evidence of linkage and 

association for the genome-wide significant regions indicated by the gTDT analysis under an 

https://snp-nexus.org/
http://locuszoom.org/


 
 

    28 

additive model in the combined set of all trios, plus the European and Asian sub-groups 

separately, with reference to genome build hg19 and 1000 Genomes European/Asian 

populations (Nov 2014). For the LocusZoom LD information, because the choice of 

European/Asian reference populations did not make much difference in the observed LD 

patterns in either the European or Asian sub-group of trios, we reported regions of interest 

from the gTDT analysis in the combined set of all trios using Europeans as a reference 

population, while the plots of European sub-group used the European population as 

reference, and plots of Asian sub-group used the Asian population as reference. 

 

Results 

The gTDT analysis on autosomal SNPs in 1,942 CL/P trios from all the populations showed 

locations of potential causal polymorphisms (Figure 7A, Supplementary Figure 1A). The Q-

Q plot also showed significant evidence of association and linkage beyond what can be 

explained by random chance alone (Figure 8). The gTDT analysis of CP trios did not yield 

any signal of association (Supplementary Figure 2). This is not unexpected given the small 

sample size of CP trios, which limits the statistical power to detect CP associated genetic 

variants. Previous GWAS of GENEVA study had failed to map genes influencing risk to CP 

[34] while a meta-analysis of GENEVA and POFC studies identified only one gene 

significantly associated with CP [7].  On the other hand, 639 SNPs (47 genotyped, 592 

imputed) from nine different regions showed genome-wide significance (p < 5 x 10-7) for 

CL/P. Among them, eight nearby genes have been previously reported, including 8q24 (gene 

desert region), 1q32 (IRF6), 20q12 (MAFB), 17p13 (NTN1) and 1p22 (ABCA4). One locus 

(18q12, nearest gene TTR) which has not been detected previously also reached genome-wide 

significance (p = 4.33 x 10-8). We stratified the gTDT analysis by ethnic group to check for 

consistency of these significantly associated loci.  
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A 

B 

C 

Figure 7: Manhattan plot for gTDT analysis (imputed + genotyped SNPs) of CL/P trait in the combined set of all trios (A), 
European (B) and Asian (C) sub-groups. Peaks are labeled with overlapped genes or closest upstream or downstream gene 
in the region. Grey labels indicate the previously reported loci, and red labels indicate new loci. 
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Region 8q24 showed genome-wide evidence only in the 575 trios of European ancestry, 

while 1q32 (IRF6), 20q12 (MAFB), 17p13 (NTN1) and 1p22 (ABCA4) were significant only 

in the larger group of 891 Asian ancestry trios (Figures 7B, C). Additionally, a novel locus 

(4q22, GRID2) yielded genome-wide significance (p = 1.82 x 10-7) in the trios of Asian 

ancestry alone (Figure 7C). Numerous SNPs in the 8q24 region showed genome-wide 

significance in this gTDT analysis. The most significant SNP was rs17242358 in the 

combined set of all trios (p = 1.75 x 10-16). SNP rs17242358 showed over-transmission of the 

A allele (over the G allele) with estimated relative risk (RR) = 2.09 [95%CI: (1.76, 2.49)] 

(Table 8). This estimated RR is similar in both ethnic groups: European trios gave an 

estimated RR = 2.09 [95%CI: (1.72, 2.54)] and Asian trios gave a similar estimated RR = 

2.14 [95%CI: (1.38, 3.32)]. However, this locus reached genome-wide significance in the 

European sub-group only (p = 7.11 x 10-14) while achieving nominal significance in the Asian 

sub-group (p = 0.00073). The LD and p-value patterns of SNPs around rs17242358 are 

similar between the combined set of all CL/P trios (when using 1000Genomes of European 

ancestry as the reference population) and European sub-group (using Europeans as the 

reference population), and quite distinct from Asian sub-group (using Asians as the reference 

population) (Figure 9). The MAF for rs17242358 was 23% in European parents and 2% in 

   

Figure 8: Q-Q plot of all autosomal SNPs (imputed + genotyped SNPs) in the combined set of all trios (A), European (B) and 
Asian (C) sub-groups. X axis is the negative logarithm of the expected p value whereas the y axis is the negative logarithm 
of the observed p value. The gray shaded region indicates 95% confidence interval. A departure from the expected value 
was observed after taking random chance into consideration. 

A B C 
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Asian parents, a substantial difference which would severely limit statistical power to detect 

any signal in the latter sub-group.  

In contrast to the 8q24 region, which showed consistent signals in the combined set of all 

trios and the European sub-group, the regions 1q32 (IRF6), 20q12 (MAFB), 17p13 (NTN1) 

and 1p22 (ABCA4) were genome-wide significant in the combined set of all trios and in the 

Asian sub-group. For example, the lead SNP in the 1q32 (IRF6) region in the combined set of 

all trios was rs12075674. The RR of CL/P when comparing trios with A allele at this SNP to 

those without was 0.57 [95%CI: (0.50, 0.66)] as calculated in the combined set of all trios 

(Table 8). This RR is similar to that estimated in the Asian trios only with RR = 0.58 

[95%CI: (0.51, 0.68)] and European trios with RR = 0.39 [95%CI: (0.20, 0.75)]. However, 

this SNP reached genome-wide significance only in the combined set of all trios (p = 1.02 x 

10-14) and in the Asian sub-group (p = 3.30 x 10-13). The European trios showed nominal 

significance with p-value of 5.2 x 10-3. The p-value and LD patterns are consistent between 

the combined set of all CL/P trios (with LD reference to European populations) and Asian 

sub-group (with LD reference to Asian populations), rather than European sub-group (with 

LD reference to European populations) (Figure 10). The MAFs of this allele in the Asian sub-

group and European sub-group are 36% and 2% respectively, meaning the statistical power to 

detect any linkage and LD would be much lower in the European sub-group. Similarly, the 

 Figure 9: LocusZoom plot for GENEVA CL/P gTDT analysis results. The peak SNP (8q24.21, rs17242358) (as calculated 
by gTDT analysis in the combined set of all trios) on chromosome 8 is labeled. (A). gTDT analysis in the combined set 
of all trios. Linkage disequilibrium was color coded with reference to European populations. (B). gTDT analysis in 
European ancestry trios only. Linkage disequilibrium was color coded with reference to European populations. (C). 
gTDT analysis in Asian ancestry only. Linkage disequilibrium was color coded with reference to Asian populations. 
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most-significant SNPs at the 20q12 (MAFB) and 17p13 (NTN1) loci, which were rs6072084 

and rs12944377, showed consistent p-values and LD patterns in the combined set of all trios 

and the Asian trios (Figures 11, 12). The lead SNPs at each of the above four regions were all 

imputed SNPs except for 1p22 (ABCA4), which was directly genotyped. The p-values and 

LD pattern in the 1p22 (ABCA4) region was distinctive between the combined set of all trios 

and the Asian trios considered alone (Figure 13) despite the most significant SNP (rs560426) 

reaching genome-wide significance in both groups. 

 

 

Figure 10: LocusZoom plot for GENEVA CL/P gTDT analysis results. One of the lead SNPs (1q32.2, rs12075674) (as 
calculated by gTDT analysis in the combined set of all trios) on chromosome 1 was labeled. (A). gTDT analysis in the 
combined set of all trios. Linkage disequilibrium was color coded with reference to European populations. (B). gTDT 
analysis in European populations. Linkage disequilibrium was color coded with reference to European populations. (C). 
gTDT analysis in Asian populations. Linkage disequilibrium was color coded with reference to Asian populations. 

Figure 11: LocusZoom plot for GENEVA CL/P gTDT analysis results. The lead SNP (20q12, rs6072084) (as calculated by gTDT 
analysis in the combined set of all trios) on chromosome 20 was labeled. (A). gTDT analysis in the combined set of all trios. 
Linkage disequilibrium was color coded with reference to European populations. (B). gTDT analysis in European populations. 
Linkage disequilibrium was color coded with reference to European populations. (C). gTDT analysis in Asian populations. 
Linkage disequilibrium was color coded with reference to Asian populations. 
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SNPs near 18q12 (TTR) and at 4q22 (GRID2) reached genome-wide significance in the 

combined set of all trios and in the Asian trios considered separately. A 32Kb region around 

the TTR gene encompassing 58 SNPs contained 4 imputed SNPs yielding genome-wide 

significance, among which 3 SNPs were located 15Kb – 10Kb upstream of TTR and 1 SNP 

was located 17Kb downstream of this gene. The most significant SNP in this region on 18q12 

(TTR) was rs1375445. The estimated RR for CL/P based on the combined set of all trios 

contributed by rs1375445 was 1.35 [95%CI: (1.21, 1.51)] (p = 4.33 x 10-8) (Table 8). No 

genome-wide significance was detected in the European (p = 2.94 x 10-5) and Asian trios (p = 

5.52 x 10-5) when considered separately. Patterns of p-value and LD around rs1375445 were 

different in the combined set of all trios, the European trios and the Asian trios (Figure 14). 

Additionally, 2,798 SNPs overlapped with GRID2 gene and 2 imputed SNPs reached 

Figure 13: LocusZoom plot for GENEVA CL/P gTDT analysis results. One of the most significant SNPs (1p22.1, rs560426) 
(as calculated by gTDT analysis in the combined set of all trios) on chromosome 1 was labeled. (A). gTDT analysis in all 
the populations. Linkage disequilibrium was color coded with reference to European populations. (B). gTDT analysis in 
European populations. Linkage disequilibrium was color coded with reference to European populations. (C). gTDT 
analysis in Asian populations. Linkage disequilibrium was color coded with reference to Asian populations. 

Figure 12: LocusZoom plot for GENEVA CL/P gTDT analysis results. The lead SNP (17p13.1, rs12944377) (as calculated by 
gTDT analysis in the combined set of all trios) on chromosome 17 was labeled. (A). gTDT analysis in the combined set of all 
trios. Linkage disequilibrium was color coded with reference to European populations. (B). gTDT analysis in European 
populations. Linkage disequilibrium was color coded with reference to European populations. (C). gTDT analysis in Asian 
populations. Linkage disequilibrium was color coded with reference to Asian populations. 
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genome-wide significance. The most significant SNP in this region on 4q22 (GRID2) was 

rs1471079. The estimated RR for CL/P in the Asian trios based on genotype at rs1471079 

was 0.70 [95%CI: (0.60, 0.80)] (p = 1.82 x 10-7) (Table 8). No genome-wide significance was 

detected in the combined set of all trios (p = 4.99 x 10-5) or in the European trios (p = 0.93) 

alone. The p-value and LD patterns were similar between the combined set of all trios and 

Asian trios, but quite different in the European trios (Figure 15). Both of these SNPs (on TTR 

and GRID2 genes) were imputed with high accuracy (rs1375445: R2 = 0.96; rs1471079: R2 = 

0.97). 

 

Overall, the ability to detect potentially causal genes was greatly increased by genotype 

imputation (Figure 7, Supplementary Figure 1). Several loci (e.g. in 1p36.13, PAX7) reached 

genome-wide significance when the gTDT analysis used both genotyped and imputed SNPs 

Figure 14: LocusZoom plot for GENEVA CL/P gTDT analysis results. The lead SNP (18q12.1, rs1375445) (as calculated by 
gTDT analysis in the combined set of all trios) on chromosome 18 was labeled. (A). gTDT analysis in the combined set of all 
trios. Linkage disequilibrium was color coded with reference to European populations. (B). gTDT analysis in European 
populations. Linkage disequilibrium was color coded with reference to European populations. (C). gTDT analysis in Asian 
populations. Linkage disequilibrium was color coded with reference to Asian populations. 

Figure 15: LocusZoom plot for GENEVA CL/P gTDT analysis results. The lead SNP (4q22.2, rs1471079) (as calculated by gTDT 
analysis in the Asian populations) on chromosome 4 was labeled. (A). gTDT analysis in the combined set of all trios. Linkage 
disequilibrium was color coded with reference to European populations. (B). gTDT analysis in European populations. 
Linkage disequilibrium was color coded with reference to European populations. (C). gTDT analysis in Asian populations. 
Linkage disequilibrium was color coded with reference to Asian populations. 
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compared to analysis of genotyped SNPs alone (Figure 7 and Supplementary Figure 1). 

Moreover, 12 of the 15 lead SNPs in each of these regions were imputed (Table 8). Statistical 

significance was increased for each locus by using both genotyped and imputed SNPs for 

GWAS analysis. For instance, the most significant p-value for markers in 17p13.1 (NTN1) 

from the gTDT analysis combining imputed and genotyped SNPs is 6.46 x 10-12 (lead SNP: 

rs12944377, imputed) while it is 2.07 x 10-8 (lead SNP: rs9788972, genotyped) for gTDT 

analysis with genotyped SNPs only.  
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Table 8. Top significant SNPs from gTDT analysis of CL/P in the combined set of all trios, in the European and the Asian subgroups.  
 

Chr Position SNP Name Locus Gene p-value Genotyped 
(R2) 

RR SE Minor 
Allele 

Major 
Allele 

MAF Europ
ean 
MAF 

Asian 
MAF 

CL/P_ALL 1 18986508 rs56075776 1p36.13 PAX7 1.52E-07 Imp (0.93) 1.49 0.08 A G 0.20 0.42 0.04 
1 94553438 rs560426 1p22.1 ABCA4/ 

ARHGAP29 
2.20E-11 Gen 1.44 0.05 C T 0.39 0.47 0.33 

1 209995470 rs12075674 1q32.2 DIEXF 1.02E-14 Imp (0.99) 0.57 0.07 A G 0.22 0.02 0.36 

3 89534377 rs7632427 3p11.1 EPHA3 7.76E-08 Gen 0.71 0.06 C T 0.27 0.38 0.18 

8 88868340 rs12543318 8q21.3 DCAF4L2 3.20E-07 Gen 0.76 0.05 A C 0.48 0.38 0.38 
8 129964873 rs17242358 8q24.21 Gene desert 1.75E-16 Imp (0.97) 2.09 0.09 A G 0.11 0.23 0.02 

17 8947708 rs12944377 17p13.1 NTN1 6.46E-12 Imp (0.98) 1.50 0.06 T C 0.37 0.42 0.22 
18 29156999 rs1375445 18q12.1 TTR 4.33E-08 Imp (0.96) 1.35 0.06 T C 0.36 0.36 0.36 

20 39271400 rs6072084 20q12 MAFB 1.46E-12 Imp (0.98) 0.68 0.05 A C 0.47 0.45 0.42 
CL/P_ 
EUROPEAN 

8 129890188 rs17241253 8q24.21 Gene desert 7.09E-14 Imp (0.96) 2.18 0.10 C T 0.09 0.21 0.01 

CL/P_ 
ASIAN 

1 94551450 rs17461953 1p22.1 ABCA4/ 
ARHGAP29 

8.09E-08 Imp (0.64) 2.04 0.13 C A 0.08 0.08 0.08 

1 209978777 rs17015250 1q32.2 IRF6 3.06E-13 Imp (0.99) 0.60 0.07 G T 0.45 0.36 0.48 

4 93816799 rs1471079 4q22.2 GRID2 1.82E-07 Imp (0.97) 0.70 0.07 A C 0.44 0.45 0.43 
17 8947708 rs12944377 17p13.1 NTN1 7.92E-08 Imp (0.98) 1.54 0.08 T C 0.37 0.42 0.22 

20 39272739 rs4812449 20q12 MAFB 5.84E-09 Imp (0.97) 0.66 0.07 G C 0.41 0.39 0.43 
Note: Imp = Imputed; Gen = Genotyped; MAF = Minor allele frequency in the combine set of all trios; European MAF = Minor allele frequency in the European sub-
group; Asian MAF = Minor allele frequency in the Asian sub-group. 
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Discussion 

We identified two novel regions yielding genome-wide significant evidence for CL/P [18q12 (TTR), 

4q22 (GRID2)] and replicated previous findings for multiple genes [e.g. 8q24, 1q32 (IRF6), 20q12 

(MAFB), 17p13 (NTN1) and 1p22 (ABCA4)] [7, 25, 29]. The stratified analysis of European and 

Asian sub-groups also recapitulated the prior findings in that the signal from markers on 8q24 was 

most significant in European populations while the other loci [1q32 (IRF6), 20q12 (MAFB), 17p13 

(NTN1) and 1p22 (ABCA4)] were more significant in Asian populations [7, 9, 25, 29]. Stratification 

by sub-group also revealed a new locus on 4q22 (GRID2) achieving genome-wide significance in 

the Asian sub-group. These findings likely reflect differences in MAFs between these two sub-

populations [67]. For example, the MAF for rs17242358 (8q24) was 23% in European trios and 2% 

in Asian trios, resulting in fewer informative Asian trios, which would decrease the statistical power 

to detect significant associations in Asian trios only. Moreover, most of the lead SNPs of these 

significant regions were imputed, suggesting increased statistical power to detect potential risk loci 

was achieved through genotype imputation using more recent larger reference panel.  

 

Despite the fact that the most significant SNP in the 8q24 region (rs17242358) did not reach 

genome-wide significance in the 891 trios of Asian ancestry (where the MAF was low), the 

estimated RR for CL/P was still high [RR = 2.14, 95%CI: (1.38, 3.32)], and yielded nominal 

significance (p = 0.00073). This RR value was higher when compared to the previous GWAS study 

using allelic TDT analysis with 1,038 trios of Asian ancestry, which showed OR(case) = 1.42 

[95%CI: (1.08, 1.85)] under additive model and p-value of transmission = 8.9 x 10-3 [25]. For trios 

of European ancestry, the variants in this locus showed similar effect sizes in our study compared to 

the previous study [25]. This suggests a greater detection power of the gTDT analysis compared to 

the allelic TDT analysis [63], especially for rare variants in a particular population. Additionally, 
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the Michigan Imputation Server allows more efficient use of large reference panels, which also 

increases the efficiency and accuracy of imputation compared to previous imputation tools [47].  

 

TTR is expressed in liver and pancreas. It encodes transthyretin, a homo-tetrameric carrier protein, 

which is responsible for transporting thyroid hormones and retinol in the plasma [68]. Clinical 

syndromes related to TTR are familial amyloid polyneuropathy (FAP) and cardiomyopathy 

(http://omim.org/entry/176300). Despite the absence of clinical reports about CL/P being associated 

with TTR, disorders resulting from thyroid hormones have been detected in CL/P patients [69], 

which may suggest some indirect role on risk to CL/P modulated by thyroid hormones levels.  

 

GRID2 has previously shown evidence of gene and smoking interactions in the European trios, but 

the gene itself has never shown genome-wide significance [37]. However, in our study, the lead 

SNP of this locus reached genome-wide significance in the Asian trios (p = 1.82 x 10-7) but not in 

European trios (p = 0.93), although the MAF is similar between Asians and Europeans with value 

of 43% and 45% respectively. This may result from different LD patterns between sub-groups. It 

may also be due to the prevalence of maternal smoking or maternal exposure to smoking in the two 

sub-groups. Further investigation is needed to understand if GRID2 harbors a causal locus for CL/P. 

The protein encoded by GRID2 is a group of ionotropic glutamate receptors, expressed at cerebellar 

Purkinje cells, ovary and testis (https://www.ncbi.nlm.nih.gov/gene/2895). Mutations in this gene 

can cause cerebellar ataxia. No direct evidence has been detected for association between markers 

in this gene and risk to CL/P, but it may affect the reproductive cells by interrupting the function of 

their membrane receptors. 
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Our findings confirm the complex and genetic heterogeneity of OFCs. Using 25 million imputed 

and observed common SNPs, we detected previously reported genes yielding evidence of linkage 

and association in this case-parent trio study. We also identified two new loci achieving genome-

wide significance which will require further investigation. Stratification by ethnic sub-groups 

(Asian and European ancestry) helped to detect risk loci controlling risk to OFCs in specific sub-

groups while imputation helped increase the power to identify such risk loci. 

 

Limitations 

We detected two novel sites from the gTDT analysis in this case-parent trio study. However, this 

genome-wide association study using the case-parent trio design cannot directly indicate if the SNP 

is casual, in LD with unobserved casual locus or a spurious signal due to some confounding factors. 

Therefore, further replication and functional studies are needed to confirm these findings. In 

addition, it is still challenging to interpret the biological functions of these significant SNPs. 

Moreover, we are unable to detect rare variants which may be associated with OFC malformations 

using this GWAS approach. Finally, since we included only biallelic variants for analysis, we were 

unable to detect the association between other types of variants and risk of OFCs. 

 

Public health impact 

These findings deepen our understanding of the complex genetic architecture of OFCs, which may 

differ across populations. They help further investigate the potential pathways associated with risk 

of OFC. 
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Appendix 
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C 

Supplementary Figure 1:  Manhattan plot for gTDT analysis (genotyped SNPs alone) of CL/P trait 
in the combined set of all trios (A), European (B) and Asian (C) sub-groups. Peaks are labeled 
with overlapped genes or closest upstream or downstream gene in the region. Grey labels 
indicate the previously reported loci. The horizontal dash line indicates the genome-wide 
significant p value of 5 x 10-7. 
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Supplementary Figure 2:  Manhattan plot for gTDT analysis (imputed and genotyped SNPs) of 
CP trait in the combined set of all trios (A), European (B) and Asian (C) sub-groups. Peaks are 
labeled with overlapped genes or closest upstream or downstream gene in the region. The 
horizontal dash line indicates the genome-wide significant p value of 5 x 10-7. 
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