
Pseudorandom Constructions: Computing in
Parallel and Applications to Edit Distance

Codes

by

Kuan Cheng

A dissertation submitted to The Johns Hopkins University

in conformity with the requirements for the degree of

Doctor of Philosophy

Baltimore, Maryland

May, 2019

© 2019 Kuan Cheng

All rights reserved



Abstract

The thesis focuses on two problems about pseudorandom constructions.

The first problem is how to compute pseudorandom constructions by constant

depth circuits. Pseudorandom constructions are deterministic functions which are

used to substitute random constructions in various computational tasks. Constant

depth circuits here refer to the computation model which can compute functions using

circuits of AND, OR and negation gates, with constant depth, unbounded fan-in, taking

function inputs by input wires and giving function outputs by output wires. They

can be simulated by fast parallel algorithms. We study such constructions mainly for

randomness extractors, secret sharing schemes and their applications. Randomness

extractors are functions which transform biased random bits to uniform ones. They can

be used to recycle random bits in computations if there are some entropies remaining.

Secret sharing schemes efficiently share secrets among multi-parties s.t. the collusion

of a bounded number of parties cannot recover any information of the secret while

a certain larger number of parties can recover the secret. Our work constructs these

objects with near optimal parameters and explores their applications.

The second problem is about applying pseudorandom constructions to build error

correcting codes (ECCs) for edit distance. ECCs project messages to codewords in a

metric space s.t. one can recover the codewords even if there are bounded number of
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errors which can drive the codeword away by some bounded distance. They are widely

used in both the theoretical and practical part of computer science. Classic errors are

hamming errors which are substitutions and erasures of symbols. They are well studied

by numerous literatures before. We consider one kind of more general errors i.e. edit

errors, consists of insertions and deletions that may change the positions of symbols.

Our work give explicit constructions of binary ECCs for edit errors with redundancy

length near optimal. The constructions utilize document exchange protocols which

can let two party synchronize their strings with bounded edit distance, by letting one

party send a short sketch of its string to the other. We apply various pseudorandom

constructions to get deterministic document exchange protocols from randomized

ones. Then we construct ECCs using them. We also extend these constructions to

handle block insertions/deletions and transpositions. All these constructions have near

optimal parameters.
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Chapter 1

Randomness Exraction in AC0

1.1 Introduction

Randomness extractors are functions that transform biased random sources into almost

uniform random bits. Throughout this chapter, we model biased random sources by the

standard model of general weak random sources, which are probability distributions

over n-bit strings with a certain amount of min-entropy k.1 Such sources are referred

to as (n, k)-sources. In this case, it is well known that no deterministic extractors

can exist for one single weak random source even if k = n− 1; therefore seeded

randomness extractors were introduced in [NZ96], which allow the extractors to have

a short uniform random seed (say length O(log n)). In typical situations, we require

the extractor to be strong in the sense that the output is close to uniform even given

the seed. Formally, we have the following definition.

Definition 1.1.1 ([NZ96]). A function Ext : {0, 1}n×{0, 1}d → {0, 1}m is a seeded

1A probability distribution is said to have min-entropy k if the probability of getting any element in
the support is at most 2−k.
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(k, ϵ) extractor if for any (n, k) source X, we have

|Ext(X, Ud)−Um| ≤ ϵ.

Ext is strong if in addition |(Ext(X, Ud), Ud)− (Um, Ud)| ≤ ϵ, where Um and Ud

are independent uniform strings on m and d bits respectively, and | · | stands for the

statistical distance.

Since their introduction, seeded randomness extractors have become fundamental

objects in pseudorandomness, and have found numerous applications in derandomiza-

tion, complexity theory, cryptography and many other areas in theoretical computer

science. In addition, through a long line of research, we now have explicit constructi-

ons of seeded randomness extractors with almost optimal parameters (e.g., [GUV09]).

However, the complexity of randomness extractors is still much less studied and under-

stood. For example, while in general explicit constructions of randomness extractors

can be computed in polynomial time of the input size, some of the known constructi-

ons are actually more explicit than that. These include for example extractors based on

universal hashing [CW79], and Trevisan’s extractor [Tre01], which can be computed

by highly uniform constant-depth circuits of polynomial size with parity gates. Thus

a main question one can ask is: can we do better and construct good randomness

extractors with very low complexity?

This question is interesting not just by its own right, but also because such ex-

tractors, as building blocks, can be used to potentially reduce the complexity of other

important objects. In this chapter we study this question and consider the parallel and

local complexity of randomness extractors.

The parallel-AC0 model. The hierarchy of NC and AC circuits are standard
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models for parallel computation. It is easy to see that the class of NC0 or even

ℓ-local functions for small ℓ , which correspond to functions where each output bit

depends on at most ℓ input bits (including both the weak source and the seed), cannot

compute strong extractors (since one can just fix ℓ bits of the source). Thus, a natural

relaxation is to consider the class AC0, which refers to the family of polynomial-size

and constant-depth circuits with unbounded fan-in gates. Note that although we have

strong lower bounds here for explicit functions, it is still not clear whether some

important objects, such as randomness extractors and pseudorandom generators, can

be computed in AC0 with good parameters. Thus the study of this question also helps

us better understand the power of this class.

Viola [Vio05b] was the first to consider this question, and his result was generalized

by Goldreich et al. [GVW15] to show that for strong seeded extractors, even extracting

a single bit is impossible if k < n/poly(log n). When k ≥ n/poly(log n), Goldreich

et al. showed how to extract Ω(log n) bits using O(log n) bits of seed, or more

generally how to extract m < k/2 bits using O(m) bits of seed. Note that the seed

length is longer than the output length.2 When the extractor does not need to be

strong, they showed that extracting r + Ω(r) bits using r bits of seed is impossible

if k < n/poly(log n); while if k ≥ n/poly(log n) one can extract (1 + c)r bits for

some constant c > 0, using r bits of seed. All the positive results here have error

1/poly(n).

Therefore, a natural and main open problem left in [GVW15] is whether one

can construct randomness extractors in AC0 with shorter seed and longer output.

Specifically, [GVW15] asks if one can extract more than poly(log n)r bits in AC0

2They also showed how to extract poly(log n) bits using an O(log n) bit seed, but the error of the
extractor becomes 1/poly(log n).
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using a seed length r = Ω(log n), when k ≥ n/poly(log n). In [GVW15] the

authors conjectured that the answer is negative. Another open question is to see if one

can achieve better error, e.g., negligible error instead of 1/poly(n).

Goldreich et al. [GVW15] also studied deterministic extractors for bit-fixing sour-

ces, and most of their effort went into extractors for oblivious bit-fixing sources (alt-

hough they also briefly studied non-oblivious bit-fixing sources). An (n, k)-oblivious

bit-fixing source is a string of n bits such that some unknown k bits are uniform,

while the other n− k bits are fixed. Extractors for such sources are closely related to

exposure-resilient cryptography [Can+00; KZ07]. In this case, a standard application

of Håstad’s switching lemma [Hås89] implies that it is impossible to construct extrac-

tors in AC0 for bit-fixing sources with min-entropy k < n/poly(log n). The main

result in [GVW15] is a theorem which shows the existence of deterministic extractors

in AC0 for min-entropy k ≥ n/poly(log n) that output k/poly(log n) bits with error

2−poly(log n). We emphasize that this is an existential result, and [GVW15] did not

give any explicit constructions of such extractors.

1.1.1 Our Results

As in [Vio05b; GVW15], in this chapter we obtain both negative results and positive

results about randomness extraction in AC0. While the negative results in [Vio05b;

GVW15] provide lower bounds on the entropy required for AC0 extractors, our

negative results provide lower bounds on the error such extractors can achieve. We

show that such extractors (both seeded extractors and deterministic extractors for

bit-fixing sources) cannot achieve error better than 2−poly(log n), even if the entropy of

the sources is quite large. Specifically, we have
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Theorem 1.1.2. (General weak source) If Ext : {0, 1}n × {0, 1}d → {0, 1}m is a

strong (k = n− 1, ϵ)-extractor that can be computed by AC0 circuits of depth dth

and size s, then ϵ = 2−(O(log s))dth−1 log(n+d).

(Bit-fixing source) There is a constant c > 1 such that if Ext : {0, 1}n → {0, 1}m is a

(k, ϵ)-extractor for oblivious bit-fixing sources with k = n− (c log s)dth−1, that can

be computed by AC0 circuits of depth dth and size s, then ϵ = 2−(O(log s))dth−1 log n.

3

Thus, our results combined with the lower bounds on the entropy requirement in

[Vio05b; GVW15] almost completely characterize the power of randomness extractors

in AC0.

We now turn to our positive results. As our first contribution, we show that the

authors’ conjecture about seeded AC0 extractors in [GVW15] is false. We give

explicit constructions of strong seeded extractors inAC0 with much better parameters.

This in particular answers open problems 8.1 and 8.2 in [GVW15]. To start with, we

have the following theorem.

Theorem 1.1.3. For any constant c ∈ N, any k = Ω(n/ logc n) and any ϵ =

1/poly(n), there exists an explicit construction of a strong (k, ϵ)-extractor Ext :

{0, 1}n × {0, 1}d → {0, 1}m that can be computed by an AC0 circuit of depth

c + 10, where d = O(log n) , m = kΩ(1) and the extractor family has locality

O(logc+5 n).

Note that the depth of the circuit is almost optimal, within an additive O(1)

factor of the lower bound given in [GVW15]. In addition, our construction is also

3This holds even if we allow Ext to have a uniform random seed, see Theorem 1.3.3.
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a family with locality only poly(log n). Note that the seed length d = O(log n)

is (asymptotically) optimal, while the locality beats the one obtained in [BG13]

(which is O(n/m log(m/ε) log(n/m)) = nΩ(1)) and is within a log4 n factor to

O(n/k log(n/ε)).

Our result also improves that of De and Trevisan [DT09], even in the high min-

entropy case, as our error can be any 1/poly(n) instead of just n−α for some constant

0 < α < 1. Moreover, our seed length remains O(log n) even for k = n/poly(log n),

while in this case the extractor in [DT09] has seed length poly(log n).

Next, we can boost our construction to reduce the error and extract almost all the

entropy. We have

Theorem 1.1.4. For any constant γ ∈ (0, 1), a, c ∈N, any k = δn = Ω(n/ logc n),

ϵ = 1/2O(loga n), there exists an explicit strong (k, ϵ)-extractor Ext : {0, 1}n ×

{0, 1}d → {0, 1}m in AC0 with depth O(a + c + 1) where d = O((log n +

log(n/ϵ) log(1/ϵ)
log n )/δ), m = (1− γ)k.

As our second contribution, we give explicit deterministic extractors in AC0 for

oblivious bit-fixing sources with entropy k ≥ n/poly(log n), which output (1− γ)k

bits with error 2−poly(log n). This is in contrast to the non-explicit existential result in

[GVW15]. Further, the output length and error of our extractor are almost optimal,

while the output length in [GVW15] is only k/poly(log n). Specifically, we have

Theorem 1.1.5. For any constant a, c ∈ N and any constant γ ∈ (0, 1], there

exists an explicit deterministic (k = Ω(n/ loga n), ϵ = 2− logc n)-extractor Ext :

{0, 1}n → {0, 1}(1−γ)k that can be computed byAC0 circuits of depth O(a + c + 1),

for any (n, k)-bit-fixing source.
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1.1.2 Applications to pseudorandom generators in AC0

Like extractors, pseudorandom generators are also fundamental objects in the study

of pseudorandomness, and constructing “more explicit" pseudorandom generators

is another interesting question that has gained a lot of attention. A pseudorandom

generator (or PRG for short) is an efficient deterministic function that maps a short

random seed into a long output that looks uniform to a certain class of distinguishers.

Definition 1.1.6. A function G : {0, 1}n → {0, 1}m is a pseudorandom generator

for a class C of Boolean functions with error ε, if for every function A ∈ C, we have

that

|Pr[A(Um) = 1]− Pr[A(G(Un)) = 1]| ≤ ε.

Here we mainly consider two kinds of pseudorandom generators, namely cryp-

tographic PRGs, which are necessarily based on computational assumptions; and

unconditional PRGs, most notably PRGs for space bounded computation.

Standard cryptographic PRGs (i.e., PRGs that fool polynomial time computation or

polynomial size circuits with negligible error) are usually based on one-way functions

(e.g., [Hås+93]), and can be computed in polynomial time. However, more explicit

PRGs have also been considered in the literature, for the purpose of constructing

more efficient cryptographic protocols. Impagliazzo and Naor [IN96] showed how

to construct such a PRG in AC0, which stretches n bits to n + log n bits. Their

construction is based on the assumed intractability of the subset sum problem. On the

other hand, Viola [Vio05a] showed that there is no black-box PRG construction with

linear stretch in AC0 from one-way functions. Thus, to get such stretch one must use
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non black-box constructions.

In [AIK06; AIK08], Applebaum et al. showed that the existence of cryptographic

PRGs in NC0 with sub-linear stretch follows from a variety of standard assumptions,

and they constructed a cryptographic PRG in NC0 with linear stretch based on

a specific intractability assumption related to the hardness of decoding “sparsely

generated” linear codes. In [App13], Applebaum further constructed PRG collections

(i.e., a family of PRG functions) with linear stretch and polynomial stretch based on

the assumption of one-wayness of a variant of the random local functions proposed by

Goldreich [Gol11].

In the case of unconditional PRGs, for d ≥ 5 Mossel et al. [MST06] constructed

d-local PRGs with output length nΩ(d/2) that fool all linear tests with error 2−n
1

2
√

d ,

which were used by Applebaum et al. [AIK06] to give a 3-local PRG with linear

stretch that fools all linear tests. In the same paper, Applebaum et al. also gave a

3-local PRG with sub linear stretch that fools sublinear-space computation. Thus, it

remains to see if we can construct better PRGs (cryptographic or unconditional) in

NC0 or AC0 with better parameters.

Our PRGs We show that under reasonable computational assumptions, we can

construct very good cryptographic PRGs in AC0 (e.g. with polynomial stretch and

negligible error). In addition, we show that we can construct very good unconditional

PRGs for space bounded computation in AC0 (e.g., with polynomial stretch).

We first give explicit cryptographic PRGs in AC0 based on the one-wayness

of random local functions, the same assumption as used in [App13]. To state the

assumption we first need the following definitions.

8



Definition 1.1.7 (Hypergraphs [App13]). An (n, m, d) hypergraph is a graph over

n vertices and m hyperedges each of cardinality d. For each hyperedge S =

(i0, i1, . . . , id−1), the indices i0, i1, . . . , id−1 are ordered. The hyperedges of G are also

ordered. Let G be denoted as ([n], S0, S1, . . . , Sm−1) where for i = 0, 1, . . . , m− 1,

Si is a hyperedge.

Definition 1.1.8 (Goldreich’s Random Local Function [Gol11]). Given a predicate

Q : {0, 1}d → {0, 1} and an (n, m, d) hypergraph G = ([n], S0, . . . , Sm−1), the

function fG,Q : {0, 1}n → {0, 1}m is defined as follows: for input x, the ith output

bit of fG,Q(x) is fG,Q(x)i = Q(xSi).

For m = m(n), the function collection FQ,n,m : {0, 1}s × {0, 1}n → {0, 1}m is

defined via the mapping (G, x) → fG,Q(x), where G is sampled randomly by the s

bits and x is sampled randomly by the n bits.

For every k ∈ {0, 1}s, we also denote F(k, ·) as Fk(·).

Definition 1.1.9 (One-wayness of a Collection of Functions). For ϵ = ϵ(n) ∈ (0, 1),

a collection of functions F : {0, 1}s × {0, 1}n → {0, 1}m is an ϵ-one-way function

if for every efficient adversary A which outputs a list of poly(n) candidates and for

sufficiently large n’s, we have that

Pr
k,x,y=Fk(x)

[∃z ∈ A(k, y), z′ ∈ F−1
k (y), z = z′] < ϵ,

where k and x are independent and uniform.

We now have the following theorem.

Theorem 1.1.10. For any d-ary predicate Q, if the random local function FQ,n,m is

δ-one-way for some constant δ ∈ (0, 1), then we have the following results.

9



1. If there exists a constant α > 0 such that m ≥ (1 + α)n, then for any constant

c > 1, there exists an explicit cryptographic PRG G : {0, 1}r → {0, 1}t in

AC0, where t ≥ cr and the error is negligible4.

2. If there exists a constant α > 0 such that m ≥ n1+α, then for any constant

c > 1 there exists an explicit cryptographic PRG G : {0, 1}r → {0, 1}t in

AC0, where t ≥ rc and the error is negligible.

As noted in [App13], there are several evidence supporting this assumption. In

particular, current evidence is consistent with the existence of a δ-one-way random

local function FQ,n,m with m ≥ n1+α for some constant α > 0.

Compared to the constructions in [App13], our construction is in AC0 instead of

NC0. However, our construction has the following advantages.

• We construct a standard PRG instead of a PRG collection, where the PRG

collection is a family of functions and one needs to randomly choose one

function before any application.

• The construction of a PRG with polynomial stretch in [App13] can only achieve

polynomially small error, and for negligible error one needs to assume that

the random local function cannot be inverted by any adversary with slightly

super polynomial running time. Our construction, on the other hand, achieves

negligible error while only assuming that the random local function cannot be

inverted by any adversary that runs in polynomial time.

Next we give an explicit PRG in AC0 with polynomial stretch, that fools space

4The error ϵ : N→ [0, 1] is negligible if ϵ(n) = n−ω(1).

10



bounded computation. It is a straight forward application of our AC0-extractor to the

Nisan-Zuckerman PRG [NZ96].

Theorem 1.1.11. For every constant c ∈N and every m = m(s) = poly(s), there is

an explicit PRG g : {0, 1}r=O(s) → {0, 1}m in AC0, such that for any randomized

algorithm A using space s,

|Pr[A(g(Ur)) = 1]− Pr[A(Um) = 1]| = ϵ ≤ 2−Θ(logc s),

where Ur is the uniform distribution of length r, Um is the uniform distribution of

length m.

Compared to the Nisan-Zuckerman PRG [NZ96], our PRG is in AC0, which is

more explicit. On the other hand, our error is 2−Θ(logc s) for any constant c > 0

instead of being exponentially small as in [NZ96]. It is a natural open problem to see

if we can reduce the error to exponentially small. We note that this cannot be achieved

by simply hoping to improve the extractor, since our negative result shows that seeded

extractors in AC0 cannot achieve error better than 2−poly(log n).

1.1.3 Overview of the Constructions and Techniques

Our negative results about the error of AC0 extractors follow by a simple application

of Fourier analysis and the well known spectrum concentration theorem of AC0

functions [LMN93]. We present it in Section 1.3. We now briefly describe our positive

results. We will extensively use the following two facts: the parity and inner product

over poly(log n) bits can be computed by AC0 circuits of size poly(n); in addition,

any Boolean function on O(log n) bits can be computed by a depth-2 AC0 circuit of

size poly(n).
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Basic construction All our constructions are based on a basic construction of a

strong extractor in AC0 for any k ≥ n
poly(log n) with seed length d = O(log n) and

error ε = n−Ω(1). This construction is a a modification of the Impagliazzo-Wigderson

pseudorandom generator [IW97], interpreted as a randomness extractor in the general

framework found by Trevisan [Tre01]. The IW-generator first takes a Boolean function

on log n bits, applies a series of hardness amplifications to get another Boolean

function on O(log n) bits, and then uses the Nisan-Wigderson generator [NW94]

together with the new Boolean function. The hardness amplification consists of

three steps: the first step, developed by Babai et al. [Bab+93], is to obtain a mild

average-case hard function from a worst-case hard function; the second step involves

a constant number of substeps, with each substep amplifying the hardness by using

Impagliazzo’s hard core set theorem [Imp95]; the third step, developed by Impagliazzo

and Wigderson [IW97], uses a derandomized direct-product generator to obtain a

function that can only be predicted with exponentially small advantage.

Trevisan [Tre01] showed that given an (n, k)-source X, if one regards the n bits

of X as the truth table of the initial Boolean function on log n bits and applies the

IW-generator, then by setting parameters appropriately one obtains an extractor. The

reason is that for any x ∈ supp(X) that makes the output of the extractor fail a certain

statistical test T, one can “reconstruct" x by showing that it can computed by a small

size circuit, when viewing x as the truth table of the function with T gates. Thus the

number of such bad elements x ∈ supp(X) is upper bounded by the total number of

such circuits. This extractor works for any min-entropy k ≥ nα.

However, this extractor itself is not in AC0 (which is not surprising since it can

handle min-entropy k ≥ nα). Thus, at least one of the steps in the construction of the
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IW-generator/extractor is not in AC0. By carefully examining each step one can see

that the only step not in AC0 is actually the first step of hardness amplification (This

was also pointed out by [Vio05b]). Indeed, all the other steps of hardness amplification

are essentially doing the same thing: obtaining a function f ′ on O(log n) bits from

another function f on O(log n) bits, where the output of f ′ is obtained by taking the

inner product over two O(log n) bit strings s and r. In addition, s is obtained directly

from part of the input of f ′, while r is obtained by using the other part of the input of

f ′ to generate O(log n) inputs to f and concatenating the outputs. All of these steps

can be done in AC0, assuming f is in AC0 (note that f here depends on X).

We therefore modify the IW-generator by removing the first step of hardness

amplification, and start with the second step of hardness amplification with the source

X as the truth table of the initial Boolean function. Thus the initial function f can be

computed by using the log n input bits to select a bit from X, which can be done in

AC0. Therefore the final Boolean function f ′ can be computed in AC0. The last step

of the construction, which applies the NW-generator, is just computing f ′ on several

blocks of size O(log n), which certainly is in AC0. This gives our basic extractor in

AC0.

The analysis is again similar to Trevisan’s argument [Tre01]. However, since we

have removed the first step of hardness amplification, now for any x ∈ supp(X) that

makes the output of the extractor to fail a certain statistical test T, we cannot obtain a

small circuit that exactly computes x. On the other hand, we can obtain a small circuit

that can approximate x well, i.e., can compute x correctly on 1− γ fraction of inputs

for some γ = 1/poly(log n). We then argue that the total number of strings within

relative distance γ to the outputs of the circuit is bounded, and therefore combining
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the total number of possible circuits we can again get a bound on the number of such

bad elements in supp(X). A careful analysis shows that our extractor works for any

min-entropy k ≥ n/poly(log n). However, to keep the circuit size small we have to

set the output length to be small enough, i.e., nα and set the error to be large enough,

i.e., n−β.

Error reduction We now describe how we reduce the error of the extractor. We

will borrow some techniques from the work of Raz et al. [RRV99], where the authors

showed a general way to reduce the error of strong seeded extractors. However,

the techniques in Raz et al. [RRV99] do not preserve the AC0 property, thus our

techniques are significantly different from theirs. Nevertheless, our starting point is a

lemma from [RRV99], which roughly says the following: given any strong seeded

(k, ε)-extractor Ext with seed length d and output length m, then for any x ∈ {0, 1}n

there exists a set Gx ⊂ {0, 1}d of density 1 − O(ε), such that if X is a source

with entropy slightly larger than k, then the distribution Ext(X, GX) is very close to

having min-entropy m−O(1). Here Ext(X, GX) is the distribution obtained by first

sampling x according to X, then sampling r uniformly in Gx and outputting Ext(x, r).

Giving this lemma, we can apply our basic AC0 extractor with error ε = n−β for

some t times, each time with fresh random seed, and then concatenate the outputs. By

the above lemma, the concatenation is roughly (O(ε))t-close to a source such that one

of the output has min-entropy m−O(1) (i.e., a somewhere high min-entropy source).

By choosing t to be a large enough constant the (O(ε))t can be smaller than any

1/poly(n). We now describe how to extract from the somewhere high min-entropy

source with error smaller than any 1/poly(n), in AC0. This is where our construction

differs significantly from [RRV99], as there one can simply apply a good extractor for

14



constant entropy rate.

Assume that we have an AC0 extractor Ext′ that can extract from (m, m−
√

m)-

sources with error any ε′ = 1/poly(n) and output length m1/3. Then we can extract

from the somewhere high min-entropy source as follows. We use Ext′ to extract from

each row of the source with fresh random seed, and then compute the XOR of the

outputs. We claim the output is (2−mΩ(1)
+ ε′)-close to uniform. To see this, assume

without loss of generality that the i’th row has min-entropy m−O(1). We can now

fix the outputs of all the other rows, which has a total size of tm1/3 ≪
√

m as long as

t is small. Thus, even after the fixing, with probability 1− 2−mΩ(1)
, we have that the

i’th row has min-entropy at least m−
√

m. By applying Ext′ we know that the XOR

of the outputs is close to uniform.

What remains is the extractor Ext′. To construct it we divide the source with length

m sequentially into m1/3 blocks of length m2/3. Since the source has min-entropy

m−
√

m, this forms a block source such that each block roughly has min-entropy at

least m2/3 −
√

m conditioned on the fixing of all previous ones. We can now take

a strong extractor Ext′′ in AC0 with seed length O(log n) and use the same seed

to extract from all the blocks, and concatenate the outputs. It suffices to have this

extractor output one bit for each block. Such AC0 extractors are easy to construct

since each block has high min-entropy rate (i.e., 1− o(1)). For example, we can use

the extractors given by Goldreich et al. [GVW15].

It is straightforward to check that our construction is in AC0, as long as the final

step of computing the XOR of t outputs can be done in AC0. For error 1/poly(n),

it suffices to take t to be a constant and the whole construction is in AC0, with seed

length O(log n). We can even take t to be poly(log n), which will give us error
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2−poly(log n).

Increasing output length The error reduction step reduces the output length from

m to m1/3, which is still nΩ(1). We can increase the output length by using a

standard boosting technique as that developed by Nisan and Zuckerman [NZ96;

Zuc97]. Specifically, we first use random bits to sample several blocks from the

source, using a sampler in AC0. We then apply our AC0 extractor on the blocks

backwards, and use the output of one block as the seed to extract from the previous

block. When doing this we divide the seed into blocks each with the same length as

the seed of the AC0 extractor, apply the AC0 extractor using each block as the seed,

and then concatenate the outputs. This way each time the output will increase by a

factor of nΩ(1). Thus after a constant number of times it will become say Ω(k). Since

each step is computable in AC0, the whole construction is still in AC0.

Explicit AC0 extractors for bit-fixing source Our explicit AC0 extractors for

(oblivious) bit-fixing sources follow the high-level idea in [GVW15]. Specifically, we

first reduce the oblivious bit-fixing source to a non-oblivious bit-fixing source, and

then apply an extractor for non-oblivious bit-fixing sources. This approach is natural

in the sense that the best known extractors for oblivious bit-fixing sources (e.g., parity

or [KZ07]) can both work for small entropy and achieve very small error. Thus by the

negative results in [GVW15] and our result, none of these can be in AC0. However,

extractors for non-oblivious bit-fixing sources are equivalent to resilient functions,

and there are well known resilient functions in AC0 such as the Ajtai-Linial function

[AL93].

The construction in [GVW15] is not explicit, but only existential for two reasons.
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First, at that time the Ajtai-Linial function is a random function, and there was no

explicit construction matching it. Second, the conversion from oblivious-bit fixing

source to non-oblivious bit-fixing source in [GVW15] is to multiply the source by a

random matrix, for which the authors of [GVW15] showed its existence but were not

able to give an explicit construction. Now, the first obstacle is solved by recent explicit

constructions of resilient functions in AC0 that essentially match the Ajtai-Linial

function ([CZ16; Mek15; Li16]). Here we use the extractor in [Li16] that can output

many bits. For the second obstacle, we notice that the extractors for non-oblivious

bit-fixing sources in [CZ16; Li16] do not need the uniform bits to be independent, but

rather only require poly(log N)-wise independence if N is the length of the source.

By exploiting this property, we can give an explicit construction of the matrix used

to transfrom the original oblivious bit-fixing source. Our construction is natural and

simpler than that in [GVW15], in the sense that it is a matrix over F2 while the matrix

in [GVW15] uses fields of larger size. Specifically, we will take a seeded extractor

and view it as a bipartite graph with N = nO(1) vertices on the left, n vertices on the

right and left degree d = poly(log N) = poly(log n). We identify the right vertices

with the n bits of the bit-fixing source, and for each left vertex we obtain a bit which

is the parity of its neighbors. The new non-oblivious bit-fixing source is the N bit

source obtained by concatenating the left bits.

Now suppose the original source has entropy k = δn for some δ ≥ 1/poly(log n),

and let T denote the unfixed bits. A standard property of the seeded extractor implies

that most of the left vertices have a good fraction of neighbors in T (i.e., an extractor

is a good sampler), so that each left bit obtained from these vertices is uniform. Next

we would like to argue that they are poly(log N)-wise independent. For this we
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require the seeded extractor to have a stronger property: that it is a design extractor

as defined by Li [Li12]. Besides being an extractor itself, a design extractor requires

that any pair of left vertices have a small intersection of neighbors. Assuming this

property, it is easy to show that if we take any small subset S of the “good" left

vertices, then there is a bit in T that is only connected to a single vertex in S (i.e., a

unique neighbor). Thus the XOR of any small enough subset of the “good" left bits

is uniform, which indicates that they are some t-wise independent. Several explicit

constructions of design extractors were given in [Li12], and for our applications it

suffices to use a simple greedy construction. By adjusting the parameters, we can

ensure that t = poly(log N) which is enough for applying the extractor in [Li16]. In

addition, the degree d = poly(log N) so the parity of d bits can be computed in AC0.

Once we have the basic extractor, we can use the same techniques as in [GVW15]

to reduce the error, and use the techniques by Gabizon et al.[GRS04] to increase the

output length (this is also done in [GVW15]). Note that the techniques in [GRS04]

require a seeded extractor. In order for the whole construction to be in AC0, we use

our previously constructed seeded extractor in AC0 which can output (1− γ)k bits.

Thus we obtain almost optimal explicitAC0 extractors for oblivious bit-fixing sources.

In contrast, the seeded extractor used in [GVW15] only outputs k/poly(log n) bits,

and thus their (non-explicit) AC0 extractor for oblivious bit-fixing sources also only

outputs k/poly(log n) bits.

Applications to pseudorandom generators For cryptographic pseudorandom ge-

nerators, we mainly adapt the approach of Applebaum [App13], to the AC0 setting.

The construction of cryptographic pseudorandom generator families in [App13] is

based on random local functions. Specifically, given a random bipartite graph with
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n left vertices, m right vertices and right degree d (think of d as a constant), and

a suitable predicate P on d bits, Applebaum showed that based on a conjecture on

random local one-way functions, the m output bits obtained by applying P to the m

subsets of input bits corresponding to the hyper edges give a distribution with high

pseudo Shannon entropy. He then showed how to boost the output to have high pseudo

min-entropy by concatenating several independent copies. At this point he used an

extractor in NC0 to turn the output into a pseudorandom string.

However, an extractor in NC0 needs to have a large seed length (i.e., Ω(n)), thus

the NC0 PRG constructed using this approach only achieves linear stretch. Another

issue is that the NC0 PRG is actually a collection of functions rather than a single

function, because the random bits used to sample the bipartite graph is larger than the

output length, and is treated as a public index to the collection of functions.

Here, by replacing the extractor with our AC0 extractor we can achieve a polyno-

mial stretch PRG (based on appropriate assumptions as in [App13]), although now

the PRG is in AC0 instead of NC0. In addition, we can get a single PRG instead

of a collection of PRG functions, by including the random bits used to sample the

bipartite graph as part of the seed. Since in the graph each right vertex only has a

constant number d of neighbors, the sampling uses md log n bits and can be done in

AC0. To ensure that the PRG has a stretch, we take the sampled graph G and apply

the same graph to several independent copies of n bit input strings. We show that we

can still use the method in [App13] to argue that this gives a a distribution with high

pseudo Shannon entropy. We then use the same method as in [App13] to turn it into a

distribution with high pseudo min-entropy, and finally we apply our AC0 extractor.

This way we ensure that the md log n bits used to sample the graph G are “absorbed"
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by the stretch of the PRG, and thus we get a standard PRG instead of a collection of

PRG functions.

For PRGs for space bounded computation, we simply adapt the PRG by Nisan and

Zuckerman [NZ96], which stretches O(S) random bits to any poly(S) bits that fool

space S computation. We now replace the seeded extractor used there by our AC0

extractor. Notice that the Nisan-Zuckerman PRG simply applies the seeded extractor

iteratively for a constant number of times, so the whole construction is still in AC0.

1.1.4 Open Problems

Our work leaves many natural open problems. First, in terms of the seed length and out-

put length, our AC0 extractor is only optimal when k = Ω(n). Is it possible to simul-

taneously achieve optimal seed length and output length when k = n/poly(log n)?

Second, can we construct good AC0 extractors for other classes of sources, such as

independent sources and affine sources?

Turning to strong extractor families with small locality, again the parameters

of our constructions do not match the parameters of optimal seeded extractors. In

particular, our seed length is still O(k) when the min-entropy k is small. Can we

reduce the seed length further? We note that using our analysis together with the

IW-generator/extractor, one can get something meaningful (i.e., a strong extractor

family with a relatively short seed and small locality) even when k = nα for some

α > 1/2. But it’s unclear how to get below this entropy.

For pseudorandom generators in AC0, there are also many interesting open pro-

blems left. For example, can we construct better cryptographic PRGs, or use weaker
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computational assumptions? In particular, it would be nice to construct a crypto-

graphic PRG with polynomial stretch based on the one-wayness of a random local

function with m = (1 + α)n instead of m = n1+α as in our current construction. For

space bounded computation, is it possible to match the exponentially small error of

the Nisan-Zukerman PRG? Taking one step further, is it possible to construct PRGs

in AC0 for space bounded computation, with stretch matching the PRGs of Nisan

[Nis92] and Impagliazzo-Nisan-Wigderson [INW94]?

1.1.5 Chapter Organization

The rest of the chapter is organized as follows. In Section 1.2 we review some basic

definitions and the relevant background. In Section 1.3, we give the lower bounds

on errors of AC0 extractors for general weak sources and bit-fixing sources. In

Section 1.4 we describe our construction of a basic extractor in AC0, and with small

locality. In section 1.5 we describe the error reduction techniques for AC0 extractors.

In Section 1.6 we show how to increase the output length for our AC0 extractors.

In section 1.7 we construct AC0 extractors for bit-fixing sources. In Section 1.8 we

present several applications, i.e., constructing pseudorandom generators in AC0.

1.2 Preliminaries

For any i ∈N, we use ⟨i⟩ to denote the string which is the binary representation of

i. Let ⟨·, ·⟩ denote the inner product of two binary strings having the same length.

Let | · | denote the length of the input string. Let w(·) denote the weight of the input

binary string. For any strings x1 and x2, let x1 ◦ x2 denote the concatenation of x1

and x2. For any strings x1, x2, . . . , xt, let⃝t
i=1xi denote x1 ◦ x2 ◦ · · · ◦ xt.
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Let supp(·) denote the support of the input random variable.

Definition 1.2.1 (Weak Random Source, Block Source). The min-entropy of a random

variable X is

H∞(X) = min
x∈supp(X)

{− log Pr(X = x)}.

We say a random variable X is an (n, k)-source if the length of X is n and H∞(X) ≥ k.

We say X =⃝m
i=1Xi is an ((n1, k1), (n2, k2), . . . , (nm, km))-block source if ∀i ∈ [m],

∀x ∈ supp(⃝i−1
j=1Xj), Xi|⃝i−1

j=1Xj=x is an (ni, ki)-source.

For simplicity, if n1, n2, · · · , nm are clear from the context, then we simply say

that the block source X is a (k1, k2, . . . , km)-block source.

We say an (n, k)-source X is a flat (n, k)-source if ∀a ∈ supp(X), Pr[X = a] =

2−k. In this paper, X is usually a random binary string with finite length. So supp(X)

includes all the binary strings of that length such that ∀x ∈ supp(X), Pr[X = x] > 0.

Bit-fixing source is a special kind of weak source. In this paper we also consider

deterministic extractors for bit-fixing source.

Definition 1.2.2 (Non-oblivious Bit-Fixing Sources). A source X on {0, 1}n is a

(q, t, γ)-non-oblivious bit-fixing source (in short, NOBF source ) if there exists a subset

Q ⊆ [n] of size at most q and a sequence of functions f1, f2, . . . , fn : {0, 1}|I| →

{0, 1} such that the joint distribution of the bits indexed by Q̄ = [n]\Q (denoted

by XQ̄) is (t, γ)-wise independent (γ-close to a t-wise independent source) and

Xi = fi(XQ̄) for every i ∈ Q.

Bit-fixing sources are special non-oblivious bit-fixing sources. An (n, t)-bit-fixing

source is defined to be an (n− t, t, 0)-non-oblivious bit-fixing source.

22



We use U to denote the uniform distribution. In the following, we do not always

claim the length of U, but its length can be figured out from the context.

Definition 1.2.3 (Statistical Distance). The statistical distance between two random

variables X and Y, where |X| = |Y| , is SD(X, Y) which is defined as follows.

SD(X, Y) = 1/2 ∑
a∈{0,1}|X|

|Pr[X = a]− Pr[Y = a]|

Lemma 1.2.4 (Properties of Statistical Distance [AB09]). Statistical distance has the

following properties.

1. (Triangle Inequality) For any random variables X, Y, Z, such that |X| = |Y| =

|Z|, we have

SD(X, Y) ≤ SD(X, Z) + SD(Y, Z).

2. For any n, m ∈ N+, any deterministic function f : {0, 1}n → {0, 1}m and

any random variables X, Y over {0, 1}n, SD( f (X), f (Y)) ≤ SD(X, Y).

Definition 1.2.5 (Extractor). A (k, ϵ)-extractor is a function Ext : {0, 1}n×{0, 1}d →

{0, 1}m with the following property. For every (n, k)-source X, the distribution

Ext(X, U) is within statistical distance ϵ from uniform distributions over {0, 1}m.

A strong (k, ϵ)-extractor is a function Ext : {0, 1}n × {0, 1}d → {0, 1}m with

the following property. For every (n, k)-source X, the distribution U ◦ Ext(X, U) is

within statistical distance ϵ from uniform distributions over {0, 1}d+m. The entropy

loss of the extractor is k−m.

The existence of extractors can be proved using the probabilistic method. The

result is stated as follows.
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Theorem 1.2.6 ([Vad12]). For any n, k ∈ N and ϵ > 0, there exists a strong

(k, ϵ)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m such that d = log(n − k) +

2 log(1/ϵ) + O(1), m = k− 2 log(1/ϵ) + O(1).

In addition, researchers have found explicit extractors with almost optimal para-

meters, for example we have the following theorem.

Theorem 1.2.7 ([GUV09]). For every constant α > 0, every n, k ∈ N and ϵ >

0, there exist an explicit construction of strong (k, ϵ)-extractor Ext : {0, 1}n ×

{0, 1}d → {0, 1}m with d = O(log n
ϵ ), m ≥ (1− α)k.

We also use the following version of Trevisan’s extractor [Tre01].

Theorem 1.2.8 (Trevisan’s Extractor [Tre01]). For any constant γ ∈ (0, 1], let

k = nγ. For any ϵ ∈ (0, 2−k/12), there exists an explicit construction of (k, ϵ)-

extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m such that d = O((log n/ϵ)2/ log n),

m ∈ [36, k/2).

For block sources, randomness extraction can be done in parallel, using the same

seed for each block.

Lemma 1.2.9 (Block Source Extraction). For any t ∈N+, let X =⃝t
i=1Xi be any

(k1, k2, . . . , kt)-block source where for each i ∈ [t], |Xi| = ni. For every i ∈ [t],

let Exti : {0, 1}ni × {0, 1}d → {0, 1}mi be a strong (ki, ϵi)-extractor. Then the

distribution R ◦ Ext1(X1, R) ◦ Ext2(X2, R) ◦ . . . ◦ Extt(Xt, R) is ∑i∈[t] ϵi-close to

uniform, where R is uniformly sampled from {0, 1}d, and independent of X.

Proof. We use induction. If the source has only 1 block, then the statement is true by

the definition of strong extractors.
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Assume for (t− 1) blocks, the statement is true. We view Ext1(X1, R) ◦Ext2(X2, R) ◦

. . . ◦ Extt(Xt, R) as Y ◦ Extt(Xt, R). Here Y = Ext1(X1, R) ◦ Ext2(X2, R) ◦ . . . ◦

Extt−1(Xt−1, R). Let U1, U2 be two independent uniform distributions, where |U1| =

|Y| = m and |U2| = mt. Then

SD(R ◦Y ◦ Extt(Xt, R), R ◦U1 ◦U2)

≤SD(R ◦Y ◦ Extt(Xt, R), R ◦U1 ◦ Z) + SD(R ◦U1 ◦ Z, R ◦U1 ◦U2).

(1.1)

Here Z is the random variable such that ∀r ∈ {0, 1}d, ∀y ∈ {0, 1}m, Z|R=r,U1=y has

the same distribution as Extt(Xt, R)|R=r,Y=y.

First we give the upper bound of SD(R ◦Y ◦ Extt(Xt, R), R ◦U1 ◦ Z).
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SD(R ◦Y ◦ Extt(Xt, R), R ◦U1 ◦ Z) (1.2)

=
1
2 ∑

r∈{0,1}d
∑

y∈{0,1}m
∑

z∈{0,1}mt

|Pr[R = r]Pr[Y = y|R=r]Pr[Extt(Xt, R) = z|R=r,Y=y]

− Pr[R = r]Pr[U1 = y]Pr[Z = z|R=r,U1=y]|

=
1
2 ∑

r∈{0,1}d
∑

y∈{0,1}m
∑

z∈{0,1}mt

Pr[R = r]Pr[Z = z|R=r,U1=y]|Pr[Y = y|R=r]− Pr[U1 = y]|

=
1
2 ∑

r∈{0,1}d
∑

y∈{0,1}m

Pr[R = r]|Pr[Y = y|R=r]− Pr[U1 = y]| ∑
z∈{0,1}mt

Pr[Z = z|R=r,U1=y]

=
1
2 ∑

r∈{0,1}d
∑

y∈{0,1}m

Pr[R = r]|Pr[Y = y|R=r]− Pr[U1 = y]|

=SD(R ◦Y, R ◦U)

≤
t−1

∑
i=1

ϵi.

Next we give the upper bound of SD(R ◦U1 ◦ Z, R ◦U1 ◦U2).
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SD(R ◦U1 ◦ Z, R ◦U1 ◦U2) (1.3)

=
1
2 ∑

r∈{0,1}r
∑

u∈{0,1}m
∑

z∈{0,1}mt

|Pr[R = r]Pr[U1 = u]Pr[Z = z|R=r,U1=u]

− Pr[R = r]Pr[U1 = u]Pr[U2 = z]|

=
1
2 ∑

r∈{0,1}r
∑

u∈{0,1}m
∑

z∈{0,1}mt

Pr[R = r]Pr[U1 = u]|Pr[Z = z|R=r,U1=u]− Pr[U2 = z]|

=
1
2 ∑

u∈{0,1}m
∑

r∈{0,1}r
∑

z∈{0,1}mt

Pr[R = r]Pr[U1 = u]|Pr[Z = z|R=r,U1=u]− Pr[U2 = z]|

=
1
2 ∑

u∈{0,1}m

Pr[U1 = u] ∑
r∈{0,1}r

∑
z∈{0,1}mt

Pr[R = r]|Pr[Z = z|R=r,U1=u]− Pr[U2 = z]|

=
1
2 ∑

u∈{0,1}m

Pr[U1 = u] ∑
r∈{0,1}r

∑
z∈{0,1}mt

Pr[R = r]|Pr[Extt(Xt, R) = z|R=r,Y=u]− Pr[U2 = z]|

= ∑
u∈{0,1}m

Pr[U1 = u]SD(R ◦ Extt(Xt, R)|Y=u, R ◦U2)

≤ ∑
u∈{0,1}m

Pr[U1 = u]ϵt

=ϵt.

So SD(R ◦Y ◦Extt(Xt, R), R ◦U1 ◦U2) ≤ ∑t
i=1 ϵt. This proves the lemma.

For any circuit C, the size of C is denoted as size(C). The depth of C is denoted

as depth(C).
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Definition 1.2.10 (AC0). AC0 is the complexity class which consists of all families

of circuits having constant depth and polynomial size. The gates in those circuits

are NOT gates, AND gates and OR gates where AND gates and OR gates have

unbounded fan-in.

Lemma 1.2.11. The following are some well known properties of AC0 circuits. For

any n ∈N,

1. ([AB09] forklore) any boolean function f : {0, 1}l=Θ(log n) → {0, 1} can be

computed by an AC0 circuit of size poly(n) and depth 2. In fact, it can be

represented by either a CNF or a DNF.

2. ([Gol+07]) for every c ∈ N, every integer l = Θ(logc n), if the function

fl : {0, 1}l → {0, 1} can be computed by circuits of depth O(log l) and size

poly(l), then it can be computed by AC0 (in n) circuits of depth c + 1.

Proof. For the first assertion, for an input string u ∈ {0, 1}l,

f (u) =
2l−1⋁
j=0

(Iu=⟨j⟩ ∧ f (⟨j⟩)) =
2l−1⋀
j=0

(Iu ̸=⟨j⟩ ∨ f (⟨j⟩)).

Here Ie is the indicator function such that Ie = 1 if e is true and Ie = 0 otherwise. We

know that Iu=⟨j⟩ can be represented as a boolean formula with only AND and NOT

gates, checking whether u = ⟨j⟩ bit by bit. Similarly Iu ̸=⟨j⟩ can be represented as a

boolean formula with only OR and NOT gates by taking the negation of Iu=⟨j⟩. So

the computation of obtaining f (u) can be represented by a CNF/DNF. Thus it can be

realized by a circuit of depth 2 by merging the gates of adjacent levels.

Next we prove the second assertion.
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As there exists an NC1-complete problem which is downward self-reducible

[Gol+07], fl can be reduced to (AC0 reduction) to fl′ where l′ = lα, for any α ∈ (0, 1).

Once we let l′ = lα = O(log n), f can be computed in AC0 (in n). The circuit depth

is c + 1, as AC0 reduction has depth c and fl′ can be realized by CNF/DNFs.

Definition 1.2.12. A boolean function f : {0, 1}l → {0, 1} is δ-hard on uniform

distributions for circuit size g, if for any circuit C with at most g gates (size(C) ≤ g),

we have Prx←U[C(x) = f (x)] < 1− δ.

Definition 1.2.13 (Graphs). Let G = (V, E) be a graph. Let A be the adjacency

matrix of G. Let λ(G) be the second largest eigenvalue of A. We say G is d-regular,

if the degree of G is d. When G is clear in the context, we simply denote λ(G) as λ.

1.3 Lower Bound for Error Parameters of AC0 Ex-
tractors

Here we show a lower bound on the error of strong AC0 seeded extractors. Our

conclusion is mainly based on the well known LMN theorem deduced by Fourier

analysis, given by Linial, Mansour, and Nisan [LMN93].

Let the Fourier expansion of a function f : {−1, 1}n → {−1, 1} be f (x) =

∑S⊆[n] f̂SχS(x), where χS(x) = ∏n
i=1 xi. For any f , g : {−1, 1}n → {−1, 1},

⟨ f , g⟩ = 1
2n ∑x∈{−1,1}n f (x)g(x).

Theorem 1.3.1 (LMN Theorem [LMN93] [O’D14]). Let f : {−1, 1}n → {−1, 1}

be computable by AC0 circuits of size s > 1 and depth dth. Let ϵ ∈ (0, 1/2]. There
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exists t = O(log(s/ϵ))dth−1 · log(1/ϵ) s.t.

∑
S⊆[n],|S|>t

f̂ 2
S ≤ ϵ.

Our first lower bound is as the follows.

Theorem 1.3.2. If Ext : {0, 1}n × {0, 1}d → {0, 1}m is a strong (k = n− 1, ϵ)-

extractor that can be computed by AC0 circuits of depth dth and size s, then ϵ =

2−(O(log s))dth−1 log(n+d).

Proof. Without loss of generality, let m = 1. Let’s transform the function space of

Ext to {−1, 1}n+d → {−1, 1}, achieving function f . Let ϵ0 = 1/2. By Theorem

1.3.1, there exists t = O(log(s/ϵ0))
dth−1 · log(1/ϵ0) = O(log s)dth−1 s.t.

∑
S⊆[n+d],|S|≤t

f̂ 2
S > 1− ϵ0 = 1/2.

Fix an S = S1 ∪ {i + n | i ∈ S2} with |S| ≤ t, where S1 ⊆ [n], S2 ⊆

{1, 2, . . . , d}. We know that

f̂S = ⟨ f , χS⟩ = 1− 2 Pr
u
[ f (u) ̸= χS(u)]

where u is uniformly drawn from {−1, 1}n+d.

For a ∈ {−1, 1}, let Xa be the uniform distribution over {−1, 1}n conditioned on

∏i∈S1
Xi = a. Also for b ∈ {−1, 1}, let Rb be the uniform distribution over {−1, 1}d

conditioned on ∏i∈S2
Ri = b. So χS(x ◦ r) = ab for x ∈ supp(Xa), r ∈ supp(Rb).

For special situations, saying S1 = ∅ (or S2 = ∅ ), let Xa (or Rb) be uniform.

As Ext is a strong (k, ϵ)-extractor, Rb only blows up the error by 2. Also note that
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by definition, Xa has entropy n− 1. So

dist( f (Xa ◦ Rb), U) ≤ 2ϵ,

where U is uniform over {−1, 1}.

So

∀a, b ∈ {−1, 1}, |Pr[ f (Xa ◦ Rb) ̸= ab]− 1/2| ≤ 2ϵ.

Thus

|Pr
u
[ f (u) ̸= χS(u)]− 1/2| = | ∑

a∈{−1,1}
∑

b∈{−1,1}

1
4
(Pr[ f (Xa ◦ Rb) ̸= ab]− 1/2)|

≤ ∑
a∈{−1,1}

∑
b∈{−1,1}

1
4
|Pr[ f (Xa ◦ Rb) ̸= ab]− 1/2|

≤ 2ϵ.
(1.4)

Hence

| f̂S| = |1− 2 Pr
u
[ f (u) ̸= χS(u)]| = 2|Pr

u
[ f (u) ̸= χS(u)]− 1/2| ≤ 4ϵ.

As a result,

1/2 ≤ ∑
S⊆[n+d],|S|≤t

f̂ 2
S ≤

t

∑
i=0

(
n + d

i

)
(4ϵ)2.

So

ϵ ≥
√

1

32 ∑t
i=0 (

n+d
i )

.

As ∑t
i=0 (

n+d
i ) ≤ ( e(n+d)

t )t = 2O(t log(n+d)) = 2O(log s)dth−1 log(n+d), ϵ =

2−O(log s)dth−1 log(n+d).
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We also consider extractors for bit-fixing sources and give the following negative

result on the error.

Theorem 1.3.3. There is a constant c > 1 such that if Ext : {0, 1}n × {0, 1}d →

{0, 1}m is a strong (k, ϵ)-extractor for oblivious bit-fixing sources with k = n −

(c log s)dth−1, that can be computed by AC0 circuits of depth dth and size s, then

ϵ = 2−(O(log s))dth−1 log(n+d).

The proof is slightly different from that of theorem 1.3.2.

Proof. Let m = 1 and also transform the function space of Ext to {−1, 1}n+d →

{−1, 1}, achieving function f . Let ϵ0 = 1/2. By Theorem 1.3.1, there exists

t = O(log(s/ϵ0))
dth−1 · log(1/ϵ0) = O(log s)dth−1 s.t.

∑
S⊆[n+d],|S|≤t

f̂ 2
S > 1− ϵ0 = 1/2.

Fix an S = S1 ∪ {i + n | i ∈ S2}, with |S| ≤ t, where S1 ⊆ [n], S2 ⊆

{1, 2, . . . , d}. We know that

f̂S = ⟨ f , χS⟩ = 1− 2 Pr
u
[ f (u) ̸= χS(u)]

where u is uniformly drawn from {−1, 1}n+d.

For a ∈ {−1, 1}|S1|, let Xa be the uniform distribution over {−1, 1}n conditi-

oned on XS1 = a. For b ∈ {−1, 1}|S2|, let Rb be the uniform distribution over

{−1, 1}d conditioned on RS2 = b. So χS(x ◦ r) = ∏i∈[|S1|] ai ∏j∈[|S2|] bj for

x ∈ supp(Xa), r ∈ supp(Rb). For special situations, saying S1 = ∅ (or S2 = ∅ ),

let Xa (or Rb) be uniform.

As Ext is a strong (k, ϵ)-extractor, Rb only blows up the error by at most 2|S|.
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Also note that Xa has entropy n − |S1| ≥ n − t = n − O(log s)dth−1 ≥ k =

n− (c log s)dth−1 by choosing c large enough. So

dist( f (Xa ◦ Rb), U) ≤ 2|S|ϵ,

where U is uniform over {−1, 1}.

So

∀a ∈ {−1, 1}|S1|, ∀b ∈ {−1, 1}|S2|, |Pr[ f (Xa ◦Rb) ̸= ∏
i∈[|S1|]

ai ∏
j∈[|S2|]

bj]− 1/2| ≤ 2|S|ϵ.

Thus

|Pr
u
[ f (u) ̸= χS(u)]− 1/2|

=| ∑
a∈{−1,1}|S1|

∑
b∈{−1,1}|S2|

1
2|S|

(Pr[ f (Xa ◦ Rb) ̸= ∏
i∈[|S1|]

ai ∏
j∈[|S2|]

bj]− 1/2)|

≤ ∑
a∈{−1,1}|S1|

∑
b∈{−1,1}|S2|

1
2|S|
|Pr[ f (Xa ◦ Rb) ̸= ∏

i∈[|S1|]
ai ∏

j∈[|S2|]
bj]− 1/2|

≤2|S|ϵ.

(1.5)

Hence

| f̂S| = |1− 2 Pr
u
[ f (u) ̸= χS(u)]| = 2|Pr

u
[ f (u) ̸= χS(u)]− 1/2| ≤ 2|S|+1ϵ.

As a result,

1/2 ≤ ∑
S⊆[n+d],|S|≤t

f̂ 2
S ≤

t

∑
i=0

(
n + d

i

)
(2|S|+1ϵ)2 ≤

t

∑
i=0

(
n + d

i

)
(2t+1ϵ)2.
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So

ϵ ≥ 2−(t+1)

√
1

2 ∑t
i=0 (

n+d
i )

.

As ∑t
i=0 (

n+d
i ) ≤ ( e(n+d)

t )t = 2O(t log(n+d)) = 2O(log s)dth−1 log(n+d), ϵ =

2−O(log s)dth−1 log(n+d).

1.4 The Basic Construction of Extractors in AC0

Our basic construction is based on the general idea of I-W generator [IW97]. In

[Tre01], Trevisan showed that I-W generator is an extractor if we regard the string x

drawn from the input (n, k)-source X as the truth table of a function fx s.t. fx(⟨i⟩), i ∈

[n] outputs the ith bit of x.

The construction of I-W generator involves a process of hardness amplifications

from a worst-case hard function to an average-case hard function. There are mainly

3 amplification steps. Viola [Vio05b] summarizes these results in details, and we

review them again. The first step is established by Babai et al. [Bab+93], which is an

amplification from worst-case hardness to mildly average-case hardness.

Lemma 1.4.1 ([Bab+93]). If there is a boolean function f : {0, 1}l → {0, 1} which

is 0-hard for circuit size g = 2Ω(l) then there is a boolean function f ′ : {0, 1}Θ(l) →

{0, 1} that is 1/poly(l)-hard for circuit size g′ = 2Ω(l).

The second step is an amplification from mildly average-case hardness to constant

average-case hardness, established by Impagliazzo [Imp95].

Lemma 1.4.2 ([Imp95]). 1. If there is a boolean function f : {0, 1}l → {0, 1}
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that is δ-hard for circuit size g where δ < 1/(16l), then there is a bool-

ean function f ′ : {0, 1}3l → {0, 1} that is 0.05δl-hard for circuit size g′ =

δO(1)l−O(1)g.

f ′(s, r) = ⟨s, f (a1) ◦ f (a2) ◦ · · · ◦ f (al)⟩

Here |s| = l, |r| = 2l and |ai| = l, ∀i ∈ [l]. Regarding r as a uniform random

string, a1, . . . , al are generated as pairwise independent random strings from

the seed r.

2. If there is a boolean function f : {0, 1}l → {0, 1} that is δ-hard for circuit size

g where δ < 1 is a constant, then there is a boolean function f ′ : {0, 1}3l →

{0, 1} that is 1/2−O(l−2/3)-hard for circuit size g′ = l−O(1)g, where

f ′(s, r) = ⟨s, f (a1) ◦ f (a2) ◦ · · · ◦ f (al)⟩.

Here |s| = l, |r| = 2l and |ai| = l, ∀i ∈ [l]. Regarding r as a uniform random

string, a1, . . . , al are generated as pairwise independent random strings from

the seed r.

The first part of this lemma can be applied for a constant number of times to get a

function having constant average-case hardness. After that the second part is usually

applied for only once to get a function with constant average-case hardness such that

the constant is large enough (at least 1/3).

The third step is an amplification from constant average-case hardness to even

stronger average-case hardness, developed by Impagliazzo and Widgerson [IW97].

Their construction uses the following Nisan-Widgerson Generator [NW94] which is

widely used in hardness amplification.
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Definition 1.4.3 ((n, m, k, l)-design and Nisan-Widgerson Generator [NW94]). A

system of sets S1, S2, . . . , Sm ⊆ [n] is an (n, m, k, l)-design, if ∀i ∈ [m], |Si| = l and

∀i, j ∈ [m], i ̸= j, |Si ∩ Sj| ≤ k.

Let S = {S1, S2, . . . , Sm} be an (n, m, k, l) design and f : {0, 1}l → {0, 1}

be a boolean function. The Nisan-Widgerson Generator is defined as NW f ,S(u) =

f (u|S1) ◦ f (u|S2) ◦ · · · ◦ f (u|Sm). Here u|Si = ui1 ◦ ui2 ◦ · · · ◦ uim assuming Si =

{i1, . . . , im}.

Nisan and Widgeson [NW94] showed that the (n, m, k, l)-design can be con-

structed efficiently.

Lemma 1.4.4 (Implicit in [NW94]). For any α ∈ (0, 1), for any large enough l ∈N,

for any m < exp{ αl
4 }, there exists an (n, m, αl, l)-design where n = ⌊10l

α ⌋. This

design can be computed in time polynomial of 2n.

As we need the parameters to be concrete (while in [NW94] they use big-O

notations), we prove it again.

Proof. Our algorithm will construct these Sis one by one. For S1, we can choose an

arbitrary subset of [n] of size αl.

First of all, S1 can constructed by choosing l elements from [n].

Assume we have constructed S1, . . . , Si−1, now we construct Si. We first prove

that Si exists. Consider a random subset of size l from [n]. Let Hi,j = |Si ∩ Sj|. We

know that EHi,j = l2/n. As n = ⌊10l
α ⌋ ∈ [10l

α − 1, 10l
α ], EHi,j ∈ [ αl

10 , αl
10 + 1].

So Pr[Hi,j ≥ αl] ≤ Pr[Hi,j ≥ (1 + 9)(EHi,j − 1)]
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By the Chernoff bound,

Pr[Hi,j ≥ 10(EHi,j − 1)] ≤ Pr[Hi,j ≥ 9EHi,j]

≤ exp{−
8EHi,j

3
}

≤ exp{− 4
15

αl}

≤ exp{−αl
4
}

(1.6)

By the union bound,

Pr[∀j = 1, . . . , i− 1, Hi,j ≤ αl] ≥ 1−m exp{−αl
4
} > 0.

This proves that there exists a proper Si. As there are n bits totally, we can find it

in time polynomial of 2n.

The following is the third step of hardness amplification.

Lemma 1.4.5 (Implicit in [IW97]). For any γ ∈ (0, 1/30), if there is a boolean

function f : {0, 1}l → {0, 1} that is 1/3-hard for circuit size g = 2γl, then there is

a boolean function f ′ : {0, 1}l′=Θ(l) → {0, 1} that is (1/2− ϵ)-hard for circuit size

g′ = Θ(g1/4ϵ2l−2) where ϵ ≥ (500l)1/3g−1/12.

f ′(a, s, v1, w) = ⟨s, f (a|S1 ⊕ v1) ◦ f (a|S2 ⊕ v2) ◦ · · · f (a|Sl ⊕ vl)⟩

Here (S1, . . . , Sl) is an (|a|, l, γl/4, l)-design where |a| = ⌊ 40l
γ ⌋. The vectors

v1, . . . , vl are obtained by a random walk on an expander graph, starting at v1 and

walking according to w where |v1| = l, |w| = Θ(l). The length of s is l. So

l′ = |a|+ |s|+ |v1|+ |w| = Θ(l).
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The proof of Lemma 1.4.5 is in the Appendix.

The construction of the Impagliazzo Widgerson Generator [IW97] is as follows.

Given the input x ← X, let f : {0, 1}log n → {0, 1} be such that f (⟨a⟩) = xa, ∀a ∈

[n]. Then we run the 3 amplification steps, Lemma 1.4.1, Lemma 1.4.2 (part1 for

a constant number of times, part 2 for once) and Lemma 1.4.5 sequentially to get

function f ′ from f . The generator IW(x, u) = NW f ′,S(u). As pointed out by

Trevisan [Tre01], the function IW is a (k, ϵ)-extractor. Let’s call it the IW-Extractor. It

is implicit in [Tre01] that the output length of the IW-Extractor is kα and the statistical

distance of IW(X, U) from uniform distributions is ϵ = 1/kβ for some 0 < α, β < 1.

This can be verified by a detailed analysis of the IW-Extractor.

However, this construction is not in AC0 because the first amplification step is not

in AC0.

Our basic construction is an adjustment of the IW-Extractor.

Construction 1.4.6. For any c2 ∈N+ such that c2 ≥ 2 and any k = Θ(n/ logc2−2 n),

let X be an (n, k)-source . We construct a strong (k, 2ϵ) extractor Ext0 : {0, 1}n ×

{0, 1}d → {0, 1}m where ϵ = 1/nβ, β = 1/600, d = O(log n), m = kΘ(1). Let U

be the uniform distribution of length d.

1. Draw x from X and u from U. Let f1 : {0, 1}l1 → {0, 1} be a boolean function

such that ∀i ∈ [2l1 ], f1(⟨i⟩) = xi where l1 = log n.

2. Run amplification step of Lemma 1.4.2 part 1 for c2 times and run amplification

step of Lemma 1.4.2 part 2 once to get function f2 : {0, 1}l2 → {0, 1} from f1

where l2 = 3c2+1l1 = Θ(log n).

3. Run amplification step Lemma 1.4.5 to get function f3 : {0, 1}l3 → {0, 1} from
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f2 where l3 = Θ(log n).

4. Construct function Ext0 such that Ext0(x, u) = NW f3,S(u).

Here S = {S1, S2, . . . , Sm} is a (d, m, θl3, l3)-design with θ = l1/(900l3), d =

⌊10l3/θ⌋, m = ⌊2
θl3
4 ⌋ = ⌊n 1

3600 ⌋.

Lemma 1.4.7. In Construction 1.4.6, Ext0 is a strong (k, 2ϵ) extractor.

The proof follows from the “Bad Set” argument given by Trevisan [Tre01]. In

Trevisan [Tre01] the argument is not explicit for strong extractors. Here our argument

is explicit for proving that our construction gives a strong extractor.

Proof. We will prove that for every (n, k)-source X and for every A : {0, 1}d+m →

{0, 1} the following holds.

|Pr[A(Us ◦ Ext0(X, Us)) = 1]− Pr[A(U) = 1]| ≤ 2ϵ

Here Us is the uniform distribution over {0, 1}d and U is the uniform distribution

over {0, 1}d+m.

For every flat (n, k)-source X, and for every (fixed) function A, let’s focus on a

set B ⊆ {0, 1}n such that ∀x ∈ supp(X), if x ∈ B, then

|Pr[A(Us ◦ Ext0(x, Us)) = 1]− Pr[A(U) = 1]| > ϵ.

According to Nisan and Widgerson [NW94], we have the following lemma.

Lemma 1.4.8 (Implicit in [NW94] [Tre01]). If there exists an A-gate such that

|Pr[A(Us ◦ Ext0(x, Us)) = 1]− Pr[A(U) = 1]| > ϵ,
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then there is a circuit C3 of size O(2θl3m), using A-gates, that can compute f3

correctly for 1/2 + ϵ/m fraction of inputs.

Here A-gate is a special gate that can compute the function A.

By Lemma 1.4.8, there is a circuit C3 of size O(m2θl3) = O(2
5θl3

4 ) = O(n1/720),

using A-gates, that can compute f3 correctly for 1/2 + ϵ/m ≥ 1/2 + 1/n1/400

fraction of inputs.

By Lemma 1.4.5, there is a circuit C2, with A-gates, of size at most Θ(n
1
30 ) which

can compute f2 correctly for at least 2/3 fraction of inputs.

According to Lemma 1.4.2 and our settings, there is a circuit C1, with A-gates,

of size n
1
30 poly log n which can compute f1 correctly for at least 1− 1/(c1 logc2 n)

fraction of inputs for some constant c1 > 0.

Next we give an upper bound on the size of B. ∀x ∈ B, assume we have

a circuit of size S = n1/30poly(log n), using A-gates, that can compute at least

1− 1/(c1 logc2 n) fraction of bits of x. The total number of circuits, with A-gates,

of size S is at most 2Θ(mS log S) = 2n1/15poly(log n), as A is fixed and has fan-in

m + d = O(m). Each one of them corresponds to at most ∑
n/(c1 logc2 n)
i=0 (n

i ) ≤

(e · c1 logc2 n)n/(c1 logc2 n) = 2O(n/ logc2−1 n) number of x. So

|B| ≤ 2n1/15poly(log n)2O(n/ logc2−1 n) = 2O(n/(logc2−1 n).

As X is an (n, k)-source with k = Θ(n/ logc2−2 n),

Pr[X ∈ B] ≤ |B| · 2−k ≤ ϵ.
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Then we know,

|Pr[A(Us ◦ Ext(X, Us)) = 1]− Pr[A(U) = 1]|

= ∑
x∈B

Pr[X = x]|Pr[A(Us ◦ Ext(x, Us)) = 1]− Pr[A(U) = 1]|

+ ∑
x/∈B

Pr[X = x]|Pr[A(Us ◦ Ext(x, Us)) = 1]− Pr[A(U) = 1]|

≤2ϵ.

(1.7)

Lemma 1.4.9. The seed length of construction 1.4.6 is O(log n).

Proof. We know that l1 = log n, l2 = 3c2+1l1 = Θ(log n), l3 = Θ(log n). Also S

is a (⌈10l3/c⌉ = Θ(l3), m, cl3, l3)-design. So d = ⌊10l3/c⌋ = Θ(l3) = Θ(log n).

Lemma 1.4.10. The function Ext0 in Construction 1.4.6 is in AC0. The circuit depth

is c2 + 5. The locality is Θ(logc2+2 n) = poly(log n).

Proof. First we prove that the locality is Θ(logc2+2 n).

By the construction of f1, we know f1(⟨i⟩) is equal to the ith bit of x.

Fix the seed u. According to Lemma 1.4.2 part 1, if we apply the amplification

once to get f ′ from f , then f ′(s, r) depends on f (w1), f (w2), · · · , f (wl), as

f ′(s, r) = ⟨s, f (w1) ◦ f (w2) ◦ · · · ◦ f (wl)⟩.

Here l = O(log n) is equal to the input length of f .

The construction in Lemma 1.4.2 part 2 is the same as that of Lemma 1.4.2 part 1.
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As a result, if apply Lemma 1.4.2 part 1 for c2 times and Lemma 1.4.2 part 2 for 1

time to get f2 from f1, the output of f2 depends on Θ(logc2+1 n) bits of the input x.

According to Lemma 1.4.5, the output of f3 depends on f2(a|S1 ⊕ v1), f2(a|S2 ⊕

v2), · · · , f2(a|Sl ⊕ vl2), as

f3(a, s, v1, w) = ⟨s, f2(a|S1 ⊕ v1) ◦ f2(a|S2 ⊕ v2) ◦ · · · f2(a|Sl ⊕ vl2)⟩

So the output of f3 depends on O(logc2+2 n) bits of the x.

So the overall locality is O(logc2+2 n) = poly log n.

Next we prove that the construction is in AC0.

The input of Ext0 has two parts, x and u. Combining all the hardness amplification

steps and the NW generator, we can see that essentially u is used for two purposes: to

select some t = Θ(logc2+2(n)) bits (denote it as x′) from x (i.e., provide t indices

u′1, . . . , u′t in [n]), and to provide a vector s′ of length t, finally taking the inner product

of x′ and the vector s′. Here although for each amplification step we do an inner

product operation, the overall procedure can be realized by doing only one inner

product operation.

Since u has O(log n) bits, s′ can be computed from u by using a circuit of depth

2, according to Lemma 1.2.11 part 1.

Next we show that selecting x′ from x using the indices can be computed by

CNF/DNFs, of polynomial size, with inputs being x and the indices. The indices,

u′i, i ∈ [t], are decided by u. Let’s assume ∀i ∈ [t], u′i = hi(u) for some deterministic

functions hi, i ∈ [t]. As |u| = O(log n), the indices can be computed by CNF/DNFs

of polynomial size. Also ∀i ∈ [t], f (u′i) can be represented by a CNF/DNF when u′i
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is given. This is because

f (u′i) =
|x|⋁
j=0

(Iu′i=j ∧ xj) =
|x|⋀
j=0

(Iu′i ̸=j ∨ xj).

Here Ie is the indicator function such that Ie = 1 if e is true and Ie = 0 otherwise. We

know that Iu′i=j can be represented by a boolean formula with only AND and NOT

gates, checking whether u′i = j bit by bit. Similarly Iu′i ̸=j can be represented by a

boolean formula with only OR and NOT gates, taking the negation of Iu′i=j. As a

result, this step can be computed by a circuit of depth 2.

So the computation of obtaining x′ can be realized by a circuit of depth 3 by

merging the gates between adjacent depths.

Finally we can take the inner product of two vectors x′ and s′ of length t =

Θ(logc2+2(n)). By Lemma 1.2.11 part 2, we know that this computation can be

represented by a poly-size circuit of depth c2 + 3.

The two parts of computation can be merged together to be a circuit of depth

c2 + 5, as we can merge the last depth of the circuit obtaining x′ and the first depth of

the circuit computing the inner product. The size of the circuit is polynomial in n as

both obtaining x′ and the inner product operation can be realized by poly-size circuits.

By Construction 1.4.6, Lemma 1.4.7, Lemma 1.4.9, Lemma 1.4.10, we have the

following theorem.

Theorem 1.4.11. For any c ∈ N, any k = Θ(n/ logc n), there exists an explicit

strong (k, ϵ)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m in AC0 of depth c + 7,

where ϵ = n−1/600, d = O(log n), m = ⌊n 1
3600 ⌋ and the locality is Θ(logc+4 n) =
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poly log n.

We call this extractor the Basic-AC0-Extractor.

1.5 Error Reduction

By Theorem 1.4.11, for any k = n
poly(log n) , we have a (k, ϵ)-extractor in AC0, with

ϵ = 1/nβ where β is a constant. In this section, we do error reduction to give an

explicit (k, ϵ)-extractor in AC0 such that ϵ can be quasi-polynomially small.

We use two major techniques. First is the sample-then-extract method.

1.5.1 Sample-Then-Extract

We first analyze the sampling method which is well studied by Zuckerman [Zuc97],

Vadhan [Vad04], Goldreich et al. [GVW15] and Healy [Hea08].

Definition 1.5.1 ([Vad04]). A (µ1, µ2, γ)-averaging sampler is a function Samp :

{0, 1}r → [n]t such that ∀ f : [n]→ [0, 1], if Ei∈[n][ f (i)] ≥ µ1, then

Pr
I←Samp(Ur)

[
1
t ∑

i∈I
f (i) < µ2] ≤ γ.

The t samples generated by the sampler must be distinct.

Vadhan [Vad04] gives the following lemma on how to use samplers on weak

sources.

Lemma 1.5.2 (Sample a Source [Vad04]). Let 0 < 3τ ≤ δ ≤ 1. If Samp : {0, 1}r →

[n]t is a (µ1, µ2, γ)-averaging sampler for µ1 = (δ− 2τ)/ log(1/τ) and µ2 = (δ−

3τ)/ log(1/τ), then for every (n, δn)-source X, we have SD(U ◦ XSamp(Ur), U ◦
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W) ≤ γ + 2−Ω(τn). Here U is the uniform distribution over {0, 1}r. For every a in

{0, 1}r, the random variable W|U=a is a (t, (δ− 3τ)t)-source.

We mainly use the following samplers given by Healy [Hea08].

Theorem 1.5.3 ([Hea08] Theorem 3). For any n ∈ N, any µ ∈ (0, 1], ε > µ, there

exists an (µ, µ− ϵ, γ)-averaging sampler Samp : {0, 1}r → [n]t with seed length

r = log n +O(log(1/γ)/ε2) and t = O(log(1/γ)/ε2) which can be computed by

NC1 circuits of size poly(n, 1/ε, log(1/γ)).

Remark 1.5.4. If γ = Θ(2− logc n), ε = Θ(1/ loga n), then the sampler can be

computed by AC0 circuitsof depth a + c + 1 by Lemma 1.2.11.

For sample complexity (parameter t), by Lemma 8.3 of [Vad04], we can modify

the sampler and get a new sampler with the number of samples to be at least t while

having the same seed length.

After sampling, we use leftover hash lemma to do extraction.

Lemma 1.5.5 (Leftover Hash Lemma [IZ89]). Let X be an (n′, k = δn′)-source.

For any ∆ > 0, let H be a universal family of hash functions mapping n′ bits to

m = k − 2∆ bits. The distribution U ◦ Ext(X, U) is at distance at most 1/2∆ to

uniform distribution where the function Ext : {0, 1}n′ × {0, 1}d → {0, 1}m chooses

the U’th hash function hU in H and outputs hU(X).

We use the following universal hash function family H = {hu, u ∈ {0, 1}n′}.

For every u, the hash function hu(x) equals to the last m bits of u · x where u · x is

computed in F2n′ .

Specifically, for any constant a ∈ N+, for any n′ = Θ(loga n) then Ext can be

computed by an AC0 circuit of depth a + 1.
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Proof. The proof in [IZ89] has already shown that the universal hash function is a

strong extractor. We only need to show that the hash functions can be computed in

AC0.

Given a seed u, we need to compute u · x which is a multiplication in F2n′ . We

claim that this can be done in AC0. Note that since the multiplication is in F2n′ , it is

also a bi-linear function when regarding the two inputs as two n′-bit strings. Thus,

each output bit is essentially the inner product over some input bits.

This shows that each output bit of p · q is an inner product of two vectors of n′

dimension. As n′ = Θ(loga n), by Lemma 1.2.11, this can be done in AC0 of depth

a + 1 and size poly(n). All the output bits can be computed in parallel. So u · x can

be computed in AC0 of depth a + 1 and size poly(n).

Theorem 1.5.6. For any constant δ ∈ (0, 1], a ∈ N+ and any ϵ = 1/2−Θ(loga n),

there exists an explicit construction of a (k = δn, ϵ)-extractor Ext : {0, 1}n ×

{0, 1}d → {0, 1}m in AC0 of depth 2a + 1, where d = O(log(n/ε)), m =

Θ(log(n/ε)) and the locality is O(log(n/ϵ)).

Proof. We follow the sample-then-extract procedure.

Let Samp : {0, 1}rs → {0, 1}t be a (µ1, µ2, γ)-averaging sampler following from

Theorem 1.5.3. Let τ be a small enough constant, µ1 = (δ− 2τ)/ log(1/τ), µ2 =

(δ − 3τ)/ log(1/τ), γ = 0.8ϵ. As a result, µ1 is a constant and µ2 = αµ1 for

some constant α ∈ (0, 1). For an (n, k)-source X, by Lemma 1.5.2, we have SD(R ◦

XSamp(R), R ◦W) ≤ γ + 2−Ω(τn). Here R is a uniform random variable. For every r

in {0, 1}rs , the random variable W|R=r is a (t, (δ− 3τ)t)-source.

46



By Lemma 1.5.3, rs = log n + O(log(1/γ)) and we can set t = Θ(log(n/ε))

to be large enough.

Let ϵ1 = 0.1ϵ. We pick m = O(log(n/ε)) to be such that (δ− 3τ)t ≥ m +

2 log(1/ϵ1). Let Ext1 : {0, 1}t × {0, 1}d1 → {0, 1}m be a ((δ− 3τ)t, ϵ1)-extractor

following from Lemma 1.5.5. As a result,

SD(U ◦ Ext1(W, U), U′) ≤ ϵ1,

where U, U′ are uniform distributions.

As a result, the sample-then-extract procedure gives an extractor of error

γ + 2−Ω(τn) + ϵ1 ≤ 0.8ϵ + 2−Ω(τn) + 0.1ϵ.

As τ is a constant, 2−Ω(τn) ≤ 0.1ϵ.

Thus the error of the extractor is at most ϵ.

The seed length is rs + d1 = O(log(n/ε)).

The locality is t = O(log(n/ϵ)) because when the seed is fixed, we select t bits

from X by sampling.

The sampler Samp is in AC0 of depth a + 1. The extractor Ext1 is in AC0 of

depth a + 1. So Ext is in AC0 of depth 2a + 1.

In this way, we have an AC0 extractor which can have quasi-polynomial small

errors.
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1.5.2 Previous Error Reduction Techniques

Another tool we will be relying on is the error reduction method for extractors, given

by Raz et al. [RRV99]. They give an error reduction method for poly-time extractors

and we will adapt it to the AC0 settings.

Lemma 1.5.7 (Gx Property [RRV99]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a

(k, ϵ)-extractor with ϵ < 1/4. Let X be any (n, k + t)-source. For every x ∈ {0, 1}n,

there exists a set Gx such that the following holds.

• For every x ∈ {0, 1}n, Gx ⊂ {0, 1}d and |Gx|/2d = 1− 2ϵ.

• Ext(X, GX) is within distance at most 2−t from an (m, m − O(1))-source.

Here Ext(X, GX) is obtained by first sampling x according to X, then choosing

r uniformly from Gx, and outputting Ext(x, r). We also denote Ext(X, GX) as

Ext(X, U)|U∈GX .

Raz et al. [RRV99] showed the following result.

Lemma 1.5.8 ([RRV99]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ϵ)-

extractor. Consider Ext′ : {0, 1}n × {0, 1}2d → {0, 1}2m which is constructed

in the following way.

Ext′(x, u) = Ext(x, u1) ◦ Ext(x, u2)

Here u = u1 ◦ u2.

For any t ≤ n− k, let X be an (n, k+ t)-source . Let U be the uniform distribution

of length 2d.

With probability at least 1−O(ϵ2), Ext′(X, U) is 2−t-close to having entropy

m−O(1).
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Remark 1.5.9. Here we briefly explain the result in lemma 1.5.8. The distribution of

Y = Ext′(X, U1 ◦U2) is the convex combination of Y|U1∈GX ,U2∈GX , Y|U1 /∈GX ,U2∈GX ,

Y|U1∈GX ,U2 /∈GX and Y|U1 /∈GX ,U2 /∈GX . That is

Y =IU1∈GX ,U2∈GXY|U1∈GX ,U2∈GX + IU1 /∈GX ,U2∈GXY|U1 /∈GX ,U2∈GX

+ IU1∈GX ,U2 /∈GXY|U1∈GX ,U2 /∈GX + IU1 /∈GX ,U2 /∈GXY|U1 /∈GX ,U2 /∈GX .

(1.8)

Also we know that Pr[IU1 /∈GX ,U2 /∈GX = 1] = O(ϵ2). As a result, according to Lemma

1.5.7, this lemma follows.

Informally speaking, this means that if view Y = Ext′(X, U) = Y1 ◦ Y2, then

with high probability either Y1 or Y2 is 2t-close to having entropy m−O(1).

We adapt this lemma by doing the extraction for any t ∈N+ times instead of 2

times. We have the following result.

Lemma 1.5.10. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ϵ)-extractor. For

any t ∈N+, consider Ext′ : {0, 1}n × {0, 1}td → {0, 1}tm which is constructed in

the following way.

Ext′(x, u) = Ext(x, u1) ◦ Ext(x, u2) ◦ · · · ◦ Ext(x, ut)

Here u = u1 ◦ u2 ◦ · · · ◦ ut.

For any a ≤ n − k, let X be an (n, k + a)-source. Let U = ⃝t
i=1Ui be the

uniform distribution such that ∀i ∈ [t], |Ui| = d.

1. For S ⊆ [t], let IS,X be the indicator such that IS,X = 1 if ∀i ∈ S, Ui ∈

GX, ∀j /∈ S, Uj /∈ GX and IS,X = 0 otherwise. Here GX is defined according to

1.5.7. The distribution of Ext′(X, U) is a convex combination of the distributions
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of Ext′(X, U)|IS,X=1, S ⊆ [t]. That is

U ◦ Ext′(X, U) = ∑
S⊆[t]

IS,XU ◦ Ext′(X, U)|IS,X=1

2. For every S ⊆ [t1], S ̸= ∅, there exists an i∗ ∈ [t1] such that Ext(X, Ui∗)|IS,X=1

is 2−a-close to having entropy m−O(1).

Proof. The first assertion is proved as the follows. By the definition of Gx of Lemma

1.5.7, for each fixed x ∈ supp(X), ∑S⊆[t] IS,x = 1 as for each i, Ui ∈ Gx either

happens or not. Also IS,X is a convex combination of IS,x, ∀x ∈ supp(X). So

∑S⊆[t] IS,X = ∑S⊆[t] ∑x∈supp(X) IS,x IX=x = 1. As a result, the assertion follows.

The second assertion is proved as the follows. For every S ⊆ [t1], S ̸= ∅,

by the definition of IS,X, there exists an i∗ ∈ [t1], Ui∗ ∈ GX. By Lemma 1.5.7,

Ext(X, Ui∗)|Ui∗∈GX = Ext(X, Ui∗)|IS,X=1 is 2−a-close to having entropy m−O(1).

1.5.3 The Construction

Finally we give the construction for error reduction of super-polynomially small

errors.

Construction 1.5.11 (Error Reduction for Super-Polynomially Small Error). For

any constant a ∈ N+, any constant c ∈ N, any k = Θ(n/ logc n) and any

ϵ = 1/2Θ(loga n), we construct a strong (k, ϵ)-extractor Ext : {0, 1}n × {0, 1}d →

{0, 1}m with m = kΩ(1).

• Let Ext0 : {0, 1}n0=n × {0, 1}d0 → {0, 1}m0 be a (k0, ϵ0)-extractor following

from Theorem 1.4.11 with k0 ≤ k− ∆1, ∆1 = log(n/ϵ), ϵ0 = k−Θ(1), d0 =
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Θ(log n), m0 = kO(1).

• Let Ext1 : {0, 1}n1=m0/t2 × {0, 1}d1 → {0, 1}m1 be a (k1, ϵ1)-extractor follo-

wing from Theorem 1.5.6 where k1 = 0.9n1, ϵ1 = ϵ/n, d1 = O(log(n/ϵ)),

m1 = Θ(log(n/ϵ)).

• Let t1 be such that (2ϵ0)
t1 ≤ 0.1ϵ. (We focus on the case that ϵ < ϵ0. If ϵ ≥ ϵ0,

we set Ext to be Ext0.)

• Let t2 = m1/3
0 .

Let X be the input (n, k) source. Our construction is as follows.

1. Let R1, R2, . . . , Rt1 be independent uniform distributions such that for every

i ∈ [t1] the length of Ri is d0. Get Y1 = Ext0(X, R1), . . . , Yt1 = Ext0(X, Rt1).

2. Get Y = Y1 ◦Y2 ◦Y3 ◦ · · · ◦Yt1 .

3. For each i ∈ [t1], let Yi = Yi,1 ◦ Yi,2 ◦ · · · ◦ Yi,t2 such that for every j ∈

[t2], Yi,j has length n1 = m0/t2. Let S1, S2, . . . , St1 be independent uniform

distributions, each having length d1. Get Zi,j = Ext1(Yi,j, Si), ∀i ∈ [t1], j ∈

[t2]. Let Zi = Zi,1 ◦ Zi,2 ◦ · · · Zi,t2 .

4. Let R = ⃝iRi, S = ⃝iSi. We get Ext(X, U) = Z =
⨁t1

i Zi where U =

R ◦ S.

Lemma 1.5.12. Construction 1.5.11 gives a strong (k, ϵ)-extractor.

In order to prove this Lemma, we need the following facts.
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Lemma 1.5.13 (Chain Rule of Min-Entropy [Vad12]). Let (X, Y) be a jointly distri-

buted random variable with entropy k. The length of X is l. For every ϵ > 0, with

probability at least 1− ϵ over x ← X, Y|X=x has entropy k− l − log(1/ϵ).

Also there exists another source (X, Y′) such that ∀x ∈ {0, 1}l, Y′|X=x has

entropy k− l − log(1/ϵ) and SD((X, Y), (X, Y′)) ≤ ϵ.

Lemma 1.5.14. Let X = X1 ◦ · · · ◦ Xt be an (n, n − ∆)-source where for each

i ∈ [t], |Xi| = n1 = ω(∆).

Let k1 = n1 − ∆− log(1/ϵ0) where ϵ0 can be as small as 1/20.9n1 .

Let Ext1 : {0, 1}n1 × {0, 1}d1 → {0, 1}m1 be a strong (k1, ϵ1)-extractor.

Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be constructed as the following,

Ext(X, Us) = Ext1(X1, Us) ◦ · · · ◦ Ext1(Xt, Us).

Then Ext is a strong (n − ∆, ϵ)-extractor where ϵ = SD(Us ◦ Ext(X, Us), U) ≤

t(ϵ0 + ϵ1).

Proof. We prove by induction over the block index i.

For simplicity, let X̃i = X1 ◦ · · · ◦ Xi for every i. We slightly abuse the nota-

tion Ext here so that Ext(X̃i, Us) = Ext1(X1, Us) ◦ · · · ◦ Ext1(Xi, Us) denotes the

extraction for the first i blocks.

For the first block, we know H∞(X1) = n1 − ∆. According to the definition of

Ext1,

SD(Us ◦ Ext1(X1, Us), U) ≤ ϵ1 ≤ (ϵ0 + ϵ1).

Assume for the first i− 1 blocks, SD(Us ◦ Ext1(X̃i−1, Us), U) ≤ (i− 1)(ϵ0 +

ϵ1). Consider X̃i. By Lemma 1.5.13, we know that there exists X′i such that
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SD(X̃i, X̃i−1 ◦X′i) ≤ ϵ0, where X′i is such that ∀x̃i−1 ∈ supp(X̃i−1), H∞(X′i |X̃i−1 =

x̃i−1) ≥ n1 − ∆ − log(1/ϵ0). So according to Lemma 1.2.4 part 2, as Us ◦

Ext(X̃i−1, Us) ◦Ext1(Xi, Us) is a convex combination of u ◦Ext(X̃i−1, u) ◦Ext1(Xi, u), ∀u ∈

supp(Us) and Us ◦ Ext(X̃i−1, Us) ◦ Ext1(X′i , Us) is a convex combination of u ◦

Ext(X̃i−1, u) ◦ Ext1(X′i , u), ∀u ∈ supp(Us), we have

SD(Us ◦Ext(X̃i−1, Us) ◦Ext1(Xi, Us), Us ◦Ext(X̃i−1, Us) ◦Ext1(X′i , Us)) ≤ SD(X̃i, X̃i−1 ◦X′i) ≤ ϵ0.

According to the assumption, Lemma 1.2.9 and the triangle inequality of Lemma

1.2.4, we have the following.

SD(Us ◦ Ext(X̃i−1, Us) ◦ Ext1(Xi, Us), U)

≤SD(Us ◦ Ext(X̃i−1, Us) ◦ Ext1(Xi, Us), Us ◦ Ext(X̃i−1, Us) ◦ Ext1(X′i , Us))

+ SD(Us ◦ Ext(X̃i−1, Us) ◦ Ext1(X′i , Us), U)

≤ϵ0 + (i− 1)(ϵ0 + ϵ1) + ϵ1

=i(ϵ0 + ϵ1)

(1.9)

The first inequality is due to the triangle property of Lemma 1.2.4. For the second ine-

quality, first we have already shown that SD(Us ◦ Ext(X̃i−1, Us) ◦ Ext1(Xi, Us), Us ◦

Ext(X̃i−1, Us) ◦ Ext1(X′i , Us)) ≤ ϵ0. Second, as X̃i−1 ◦ X′i is a ((i − 1)n1 −

∆, n1−∆− log(1/ϵ0))-block source, by our assumption and Lemma 1.2.9, SD(Us ◦

Ext(X̃i−1, Us) ◦ Ext1(X′i , Us), U) ≤ (i − 1)(ϵ0 + ϵ1) + ϵ1. This proves the in-

duction step.
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As a result, SD(Us ◦ Ext(X, Us), U) ≤ (ϵ0 + ϵ1)t.

Next we prove Lemma 1.5.12.

Proof of Lemma 1.5.12. Let GX be defined by Lemma 1.5.7 on X and Ext0.

For any T ⊆ [t1], let IT,X be the indicator such that IT,X = 1, if ∀i ∈ T, Ri ∈

GX, ∀i /∈ T, Ri /∈ GX and IT,X = 0, otherwise. By Lemma 1.5.10,

R ◦Y

= ∑
T⊆[t1]

IT,X(R ◦Y|IT,X=1)

=I∅,X(R ◦Y|I∅,X=1) + (1− I∅,X)(R ◦Y|I∅,X=0)

=I∅,X(R ◦Y|I∅,X=1) + ∑
T⊆[t1],T ̸=∅

IT,X(R ◦Y|IT,X=1)

(1.10)

Fixing a set T ⊆ [t1], T ̸= ∅, by Lemma 1.5.10, there exists an i∗ ∈ [t1] such

that Ri∗ ∈ GX and R ◦Y|IT,X=1 is 2−∆1-close to

R′ ◦ A ◦W ◦ B =⃝iR′i ◦ A ◦W ◦ B

Here W = Yi∗ |Ri∈GX has entropy at least m0 − O(1). Also, A, B and R′i, i =

1, 2, . . . , t are some random variables where A = (i∗ − 1)m1, |B| = (t− i∗)m1 and

∀i ∈ [t], |R′i| = d1. In fact, R′ = R|IT,X=1.

According to our construction, next step we view A ◦W ◦ B as having t1t2 blocks

of block size n1. We apply the extractor Ext1 on each block. Although for all blocks

the extractions are conducted simultaneously, we can still view the procedure as first

extracting A and B, then extracting W. Assume for A, after extraction by using
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seed SA, it outputs A′. Also for B, after extraction by using seed SB, it outputs B′.

So after extracting A and B, we get A′ ◦W ◦ B′. The length of A′ ◦ B′ is at most

t1m0m1/n1 = t1t2m1 = Θ(t1t2 log n), as n1 = m0/t2.

We know that n1 = m0/t2 = m2/3
0 ≥ 10t1t2m1 = m1/3

0 poly(log n). Also

according to Lemma 1.5.13, R′ ◦ SA ◦ SB ◦ A′ ◦W ◦ B′ is ϵ′-close to R′ ◦ SA ◦ SB ◦

A′ ◦W ′ ◦ B′ such that for every r′ ∈ supp(R′), a ∈ supp(A′), b ∈ supp(B′), sA ∈

supp(SA), sB ∈ supp(SB), conditioned on R′ = r′, SA = sA, SB = sB, A′ = a, B′ =

b, W ′ has entropy at least n1 −O(log n)− t1t2m1 − log(1/ϵ′) = n1 − ∆2 where

∆2 = O(log n) + t1t2m1 + log(1/ϵ′) = O(m1/3
0 log n). Here ϵ′ can be as small as

2−kΩ(1)
. That is

∀r′ ∈ supp(R′), a ∈ supp(A′), b ∈ supp(B′), sA ∈ supp(SA), sB ∈ supp(SB),

H∞(W ′|R′=r′,SA=sA,SB=sB,A′=a,B′=b) ≥ n1 − ∆2.
(1.11)

Let Ext′1(W ′, Si∗) = ⃝i∈[t2]Ext1(W ′i , Si∗) where W ′ = ⃝i∈[t2]W
′
i and ∀i ∈

[t2], |W ′i | = n1. By Lemma 1.5.14, as k1 = 0.9n1 ≤ n1−∆2, Si∗ ◦Ext′1(W ′, Si∗)|R′=r′,SA=sA,SB=sB,A′=a,B′=b

is (ϵ′0 + ϵ1)t2-close to uniform distributions where ϵ′0 can be as small as 2−kΩ(1)
.
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As a result, we have the following.

SD(U ◦ Ext(X, U), U′)

=SD(R ◦ S ◦ Ext(X, U), R ◦ S ◦ Ũ)

=SD(I∅,X(R ◦ S ◦ Ext(X, U)|I∅,X=1), I∅,X(R ◦ S ◦ Ũ|I∅,X=1))

+ SD((1− I∅,X)(R ◦ S ◦ Ext(X, U)|I∅,X=0), (1− I∅,X)(R ◦ S ◦ Ũ|I∅,X=0))

=Pr[I∅,X = 1]SD(R ◦ S ◦ Ext(X, U)|I∅,X=1, R ◦ S ◦ Ũ|I∅,X=1)

=(2ϵ0)
t1SD(R ◦ S ◦ Ext(X, U)|I∅,X=1, R ◦ S ◦ Ũ|I∅,X=1)

+ SD((1− I∅,X)(R ◦ S ◦ Ext(X, U)|I∅,X=0), (1− I∅,X)(R ◦ S ◦ Ũ|I∅,X=0))

(1.12)

As

(2ϵ0)
t1SD(R ◦ S ◦ Ext(X, U)|I∅,X=1, R ◦ S ◦ Ũ|I∅,X=1) ≤ (2ϵ0)

t1
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let’s focus on SD((1− I∅,X)(R ◦S ◦Ext(X, U)|I∅,X=0), (1− I∅,X)(R ◦S ◦ Ũ|I∅,X=0)).

SD((1− I∅,X)(R ◦ S ◦ Ext(X, U)|I∅,X=0), (1− I∅,X)(R ◦ S ◦ Ũ|I∅,X=0))

=SD( ∑
T⊆[t1],T ̸=∅

IT,X(R ◦ S ◦ Ext(X, U)|IT,X=1), ∑
T⊆[t1],T ̸=∅

IT,X(R ◦ S ◦ Ũ|IT,X=1))

= ∑
T⊆[t1],T ̸=∅

Pr[IT,X = 1]SD(R ◦ S ◦ Ext(X, U)|IT,X=1, R ◦ S ◦ Ũ|IT,X=1)

≤ ∑
T⊆[t1],T ̸=∅

Pr[IT,X = 1](2−∆1 + SD(R′ ◦ S ◦ (A′ ⊕ Ext′1(W, Si∗)⊕ B′), R′ ◦ S ◦ Ũ))

=(1− (2ϵ0)
t1)(2−∆1 + SD(R′ ◦ S ◦ (A′ ⊕ Ext′1(W, Si∗)⊕ B′), R′ ◦ S ◦ Ũ))

≤2−∆1 + SD(R′ ◦ S ◦ (A′ ⊕ Ext′1(W, Si∗)⊕ B′), R′ ◦ S ◦ Ũ)

≤2−∆1 + SD(R′ ◦ S ◦ (A′ ⊕ Ext′1(W, Si∗)⊕ B′), R′ ◦ S ◦ (A′ ⊕ Ext′1(W ′, Si∗)⊕ B′))

+ SD(R′ ◦ S ◦ (A′ ⊕ Ext′1(W ′, Si∗)⊕ B′), R′ ◦ S ◦ Ũ)

≤2−∆1 + ϵ′ + SD(R′ ◦ S ◦ (A′ ⊕ Ext′1(W ′, Si∗)⊕ B′), R′ ◦ S ◦ Ũ)

≤2−∆1 + ϵ′ + (ϵ′0 + ϵ1)t2

(1.13)

Here U, U′, Ũ are uniform distributions. In the second equation, I∅,X is the indicator

such that I∅,X = 1 if ∀i ∈ [t1], Ri /∈ GX where GX is defined by Lemma 1.5.7 on X

and Ext0. For the first inequality, we need to show that

SD(R ◦ S ◦ Ext(X, U)|IT,X=1, R′ ◦ S ◦ (A′ ⊕ Ext′1(W, Si∗)⊕ B′)) ≤ 2−∆1 .
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We know that for every s ∈ supp(S), by Lemma 1.2.4 part 2,

SD(R ◦ S ◦ Ext(X, U)|IT,X=1,S=s, R′ ◦ S ◦ (A′ ⊕ Ext′1(W, Si∗)⊕ B′)|S=s)

≤SD(R ◦Y|IT,X=1, R′ ◦ A ◦W ◦ B)

≤2−∆1 .
(1.14)

Here R ◦ S ◦Ext(X, U)|IT,X=1,S=s = h(R ◦Y|IT,X=1) for some deterministic function

h as S = s is fixed. Also R′ ◦ S ◦ (A′⊕Ext′1(W, Si∗)⊕ B′)|S=s = h(R′ ◦ A ◦W ◦ B)

for the same reason. As a result,

SD(R ◦ S ◦ Ext(X, U)|IT,X=1, R′ ◦ S ◦ (A′ ⊕ Ext′1(W, Si∗)⊕ B′))

= ∑
s∈supp(S)

Pr[S = s]SD(R ◦ S ◦ Ext(X, U)|IT,X=1,S=s, R′ ◦ S ◦ (A′ ⊕ Ext′1(W, Si∗)⊕ B′)|S=s)

≤2−∆1 .
(1.15)

The third inequality holds by the triangle property of Lemma 1.2.4 part 1. The 4th

inequality holds because by Lemma 1.2.4 part 2,

SD(R′ ◦ S ◦ (A′ ⊕ Ext′1(W, Si∗)⊕ B′)|S=s, R′ ◦ S ◦ (A′ ⊕ Ext′1(W ′, Si∗)⊕ B′)|S=s)

≤SD(R′ ◦ S ◦ A ◦W ◦ B, R′ ◦ S ◦ A ◦W ′ ◦ B)

≤ϵ′.
(1.16)

.

As a result, the total error is at most

(2ϵ0)
t1 + (2−∆1 + ϵ′ + (ϵ′0 + ϵ1)t2)
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We can set ϵ′ = 0.1ϵ, ϵ′0 = ϵ/n so that (2−∆1 + ϵ′ + (ϵ′0 + ϵ1)t2) ≤ 0.1ϵ. As

(2ϵ0)
t1 < 0.1ϵ, we know SD(U ◦ Ext(X, U), U′) ≤ ϵ.

Lemma 1.5.15. In Construction 1.5.11, the output length of Ext is m = Ω(n10800 log(n/ϵ)).

Proof. The output length is equal to t2×m1 = m1/3
0 Ω(log(n/ϵ)) = Ω(n1/10800 log(n/ϵ))

Lemma 1.5.16. In Construction 1.5.11, the function Ext can be realized by a circuit

of depth 3a + c + 7. Its locality is O(log2a+c+4 n).

Proof. By Theorem 1.4.11 and Lemma 1.5.6, both Ext0 and Ext1 in our construction

are in AC0. For Ext0, it can be realized by circuits of depth c + 7. For Ext1, it can be

realized by circuits of depth 2a + 1.

In the first and second steps of Construction 1.5.11, we only run Ext0 for t1 times

in parallel. So the computation can be realized by circuits of depth c + 7

For the third step, we run Ext1 for t1t2 times in parallel, which can be realized by

circuits of depth 2a + 1.

The last step, according to Lemma 1.2.11, taking the XOR of O(log(1/ϵ)) bits

can be realized by circuits of depth a + 1. Each bit of Z is the XOR of t1 bits and

all the bits of Z can be computed in parallel. So the computations in this step can be

realized by circuits of depth a + 1.

Now we merge the three parts of circuits together. As the circuits between each

parts can be merged by deleting one depth, our construction can be realized by circuits

of depth

(c + 7) + 2a + 1 + a + 1− 2 = 3a + c + 7.
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For the locality, by Theorem 1.4.11, the locality of Ext0 is O(logc+4 n). By

Lemma 1.5.6, the locality of Ext1 is O(log(n/ϵ)). So each bit of Z is related with at

most t1 ×O(log(n/ϵ))×O(logc+4 n) = O(log2a+c+4 n) bits of X.

Lemma 1.5.17. In Construction 1.5.11, d = O(log n +
log(n/ϵ) log(1/ϵ)

log n ).

Proof. In Construction 1.5.11, as

U = R ◦ S =⃝iRi ◦⃝iSi,

|U| = O(t1d0 + t1d1). By the definitions of Ext0 and Ext1, we know that d0 =

O(log n) and d1 = O(log(n/ϵ)). Also we know that t1 = O(log(1/ϵ)/ log n)

because ϵ0 = n−Θ(1), (2ϵ0)
t1 ≤ 0.1ϵ. Note that we have to compute Ext0 for at least

once. So d = O(log n +
log(n/ϵ) log(1/ϵ)

log n ).

Theorem 1.5.18. For any constant a, c ∈ N, any k = Θ(n/ logc n) and any

ϵ = 1/2Θ(loga n), there exists an explicit construction of a strong (k, ϵ)-extractor

Ext : {0, 1}n × {0, 1}d → {0, 1}m in AC0 of depth 3a + c + 7, where d =

O(log n +
log(n/ϵ) log(1/ϵ)

log n ), m = Ω(n1/10800 log(n/ϵ)) = kΩ(1) and the locality

is (log n)2a+c+4.

Proof. It follows from Construction 1.5.11, Lemma 1.5.12, Lemma 1.5.15 , Lemma

1.5.16 and Lemma 1.5.17.

If we do not require the extractor to be in AC0, we can get an extractor with low

locality while having very small error. The construction is similar to Construction

1.5.11. The proof is also in the same way as that of Theorem 1.5.18. So we directly

give the result.
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Theorem 1.5.19. For any constant c ∈N, any k = Θ( n
logc n ), there exists an explicit

construction of a strong (k, ϵ)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m, where ϵ

can be as small as 2−kΩ(1)
, d = Θ(log n +

log(n/ϵ) log(1/ϵ)
log n ), m = Ω(n

1
10800 log(n

ϵ ))

= kΩ(1) and the locality is log2(1/ϵ) logc+O(1) n.

1.6 Output Length Stretching

In this section, we show how to extract (1− γ)k bits for any constant γ > 0.

1.6.1 Pre-sampling

By Theorem 1.5.18, we have a (k, ϵ)-extractor in AC0 for any k = n/poly(log n)

and any ϵ = 1/poly(n). We use pre-sampling to increase the output length.

Zuckerman [Zuc97] gives sampler (oblivious sampler) constructions from extrac-

tors.

Definition 1.6.1 ( [Zuc97] ). An (n, m, t, γ, ϵ)-oblivious sampler is a deterministic

function Samp : {0, 1}n → ({0, 1}m)t such that ∀ f : {0, 1}m → [0, 1],

Pr
I←Samp(Ur)

[|1
t ∑

i∈I
f (i)− E f | > ϵ] ≤ γ.

The following lemma explicitly gives a construction of oblivious samplers using

extractors.

Lemma 1.6.2 ( [Zuc97]). If there is an explicit (k = δn, ϵ)-extractor Ext : {0, 1}n ×

{0, 1}d → {0, 1}m, then there is an explicit (n, m, t = 2d, γ = 21−(1−δ)n, ϵ)-

oblivious sampler.

The sampler is constructed as follows. Given a seed x of length n, the t = 2d
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samples are Ext(x, u), ∀u ∈ {0, 1}d.

As a result, we can construct the following samplers.

Lemma 1.6.3. For any a ∈N+ , let γ be any 1/2Θ(loga n).

• For any c ∈N, let ϵ be any Θ(1/ logc n). There exists an explicit (O(log(1/γ)),

log n, t, γ, ϵ)-oblivious sampler for any integer t ∈ [t0, n] with t0 = poly(log n).

• For any constant α in (0, 1), any c ∈N, any µ = Θ(1/ logc n), there exists an

explicit (µ, αµ, γ)-averaging sampler Samp : {0, 1}Θ(loga n) → [n]t in AC0 of

circuit depth a + 2, for any integer t ∈ [t0, n] with t0 = poly(log n).

Specifically, if c = 0, t can be any integer in [t0, n] with t0 = (log n)Θ(a).

Proof. Let k = loga n. For any ϵ = Θ(1/ logc n), let’s consider a (k, ϵ)-extractor

Ext : {0, 1}n′=c0 loga n × {0, 1}d → {0, 1}log n for some constant c0, following

Lemma 1.2.8. Here we make one modification. We replace the last d bits of the output

with the seed. We can see in this way, Ext is still an extractor.

Here the entropy rate is δ = 1/c0 which is a constant. According to Lemma 1.2.8,

we know that, d can be Θ(
log2(n′/ϵ)

log n′ ) = Θ(log log n).

For the first assertion, according to Lemma 1.6.2, there exists an explicit con-

struction of a (c loga n, log n, t, γ, ϵ)-oblivious sampler where γ = 21−(1−2/c)(c loga n).

As we can increase the seed length to log n by padding uniform random bits, t can be

any integer in [t0, n] with t0 = 2
Θ(

log2(n′/ϵ)

log n′ )
= poly(log n). As c0 can be any large

enough constant, γ can be 1/2Θ(loga n).

Next we prove the second assertion.
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According to the definition of oblivious sampler, we know that ∀ f : [n]→ [0, 1],

Pr
I←Samp(U)

[|1
t ∑

i∈I
f (i)− E f | > ϵ] ≤ γ.

Next we consider the definition of averaging sampler.

Let (1− α)µ = ϵ. As µ = Θ(1/ logc n), ϵ = Θ(1/ logc n). For any f : [n]→

[0, 1] such that µ ≤ E f , we have the following inequalities, where Samp is a (c loga n,

log n, t, γ, ϵ)-oblivious sampler.

Pr
I←Samp(U)

[
1
t ∑

i∈I
f (i) < αµ]

= Pr
I←Samp(U)

[
1
t ∑

i∈I
f (i) < µ− ϵ]

= Pr
I←Samp(U)

[µ− 1
t ∑

i∈I
f (i) > ϵ]

≤ Pr
I←Samp(U)

[E f − 1
t ∑

i∈I
f (i) > ϵ]

≤ Pr
I←Samp(U)

[|1
t ∑

i∈I
f (i)− E f | > ϵ]

≤γ

(1.17)

The first inequality holds because if the event that µ− 1
t ∑i∈I f (i) > ϵ happens, then

the event that E f − 1
t ∑i∈I f (i) > ϵ will happen, as µ ≤ E f . The second inequality

is because E f − 1
t ∑i∈I f (i) ≤ |E f − 1

t ∑i∈I f (i)|. So if E f − 1
t ∑i∈I f (i) > ϵ

happens, then |1t ∑i∈I f (i)− E f | > ϵ happens.

Also as we replace the last d bits of the output of our extractor with the seed, the
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samples are distinct according to the construction of Lemma 1.6.2.

According to the definition of averaging sampler, we know that this gives an

explicit (µ, αµ, γ)-averaging sampler.

According to the construction described in the proof of Lemma 1.6.2, the output of

the sampler is computed by running the extractor following Lemma 1.2.8 for t times

in parallel. So the circuit depth is equal to the circuit depth of the extractor Ext.

Let’s recall the construction of the Trevisan’s extractor Ext.

The encoding procedure is doing the multiplication of the encoding matrix and

the input x of length n′ = c loga n. By Lemma 1.2.11, this can be done by a circuit

of depth a + 1.

The last step is the procedure of N-W generator. The selection procedure can be

represented as a CNF/DNF, as the seed length for Ext is at most Θ(log n). (Detailed

proof is the same as the proof of Lemma 1.4.10.)

As a result, we need a circuit of depth a + 2 to realize Samp.

For the special situation that c = 0, the seed length d for Ext can be Θ(a log log n).

So t0 = 2d = (log n)Θ(a).

By Lemma 1.5.2, we can sample several times to get a block source.

Lemma 1.6.4 (Sample a Block Source). Let t be any constant in N+. For any

δ > 0, let X be an (n, k = δn)-source . Let Samp : {0, 1}r → [n]m be a

(µ1, µ2, γ)-averaging sampler where µ1 = (1
t δ− 2τ)/ log(1/τ) and µ2 = (1

t δ−

3τ)/ log(1/τ), m = ( t−1
t k − log(1/ϵ0))/t. Let ϵs = γ + 2−Ω(τn). For any

i ∈ [t], let Uis be uniform distributions over {0, 1}r. Let Xi = XSamp(Ui)
, for i ∈ [t].

It concludes that⃝t
i=1Ui ◦⃝t

i=1Xi is ϵ = t(ϵs + ϵ0)-close to⃝t
i=1Ui ◦⃝t

i=1Wi
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where for every u ∈ supp(⃝t
i=1Ui), conditioned on ⃝t

i=1Ui = u, ⃝t
i=1Wi is

a (k1, k2, . . . , kt)-block source with block size m and k1 = k2 = · · · = kt =

(δ/t− 3τ)m. Here ϵ0 can be as small as 1/2Ω(k).

Proof. We prove by induction on i ∈ [t].

If i = 1, according to Lemma 1.5.2, we know U1 ◦ X1 is ϵs = (γ + 2−Ω(τn))-

close to U1 ◦W such that ∀u ∈ supp(U1), H∞(W|U1=u) = (δ/t− 3τ)m.

Next we prove the induction step.

Suppose⃝i
j=1Uj ◦⃝i

j=1Xj is (ϵs + ϵ0)i-close to⃝i
j=1Uj ◦⃝i

j=1Wj, where for

every u ∈ {0, 1}ir, conditioned on⃝i
j=1Uj = u,⃝i

j=1Wj is a (k1, k2, . . . , ki)-block

source with block size m and k1 = k2 = · · · = ki = (δ/t− 3τ)m.

Consider i + 1. Recall the Chain Rule Lemma 1.5.13. First notice that⃝i
j=1Uj ◦

⃝i
j=1Xj ◦ X has entropy ir + k. Then we know that⃝i

j=1Uj ◦⃝i
j=1Xj ◦ X is ϵ0-

close to ⃝i
j=1Uj ◦ ⃝i

j=1Xj ◦ X′ such that for every u ∈ {0, 1}ir and every x ∈

{0, 1}im, conditioned on ⃝i
j=1Uj = u,⃝i

j=1Xj = x, X′ has entropy k − im −

log(1/ϵ0) ≥ k/t which means the entropy rate is at least δ/t.

By our assumption for i,⃝i
j=1Uj ◦⃝i

j=1Xj ◦X′ is (ϵs + ϵ0)i-close to⃝i
j=1Uj ◦

⃝i
j=1Wj ◦ X̃, where X̃ is a random variable such that ∀u ∈ {0, 1}ir, ∀x ∈ {0, 1}im,

X̃|⃝i
j=1Uj=u,⃝i

j=1Xj=x has the same distribution as X′|⃝i
j=1Uj=u,⃝i

j=1Wj=x. As a result,

for every u ∈ {0, 1}ir and x ∈ {0, 1}im, conditioned on⃝i
j=1Uj = u,⃝i

j=1Wj = x,

X̃ has entropy k− im− log(1/ϵ0) ≥ k/t.

Denote the event (⃝i
j=1Uj = u,⃝i

j=1Wj = x) as e, by Lemma 1.5.2, by sam-

pling on source X̃|e, we get Ui+1 ◦ (X̃|e)Samp(Ui+1)
= Ui+1 ◦ X̃Samp(Ui+1)

|e. It is ϵs-

close to Ui+1 ◦W|e where ∀a ∈ {0, 1}r, (W|e)|Ui+1=a is a (m, (δ/t− 3τ)m)-source.
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Thus⃝i+1
j=1Uj ◦⃝i

j=1Wj ◦ X̃Samp(Ui+1)
is ϵs-close to⃝i+1

j=1Uj ◦⃝i
j=1Wj ◦W.

Let Wi+1 = W. As a result, ⃝i+1
j=1Uj ◦ ⃝i

j=1Xj is (ϵs + ϵ0)(i + 1)-close to

⃝i+1
j=1Uj ◦⃝i+1

j=1Wj such that for every u ∈ {0, 1}ir, conditioned on⃝i+1
j=1Uj = u,

⃝i+1
j=1Wj is a (k1, k2, . . . , ki)-block source with block size m and k1 = k2 = · · · =

ki+1 = (δ/t− 3τ)m.

This proves that induction step.

This lemma reveals a way to get a block source by sampling. Block sources are

easier to extract.

1.6.2 Repeating Extraction

Another important technique is the parallel extraction. According to Raz at al.

[RRV02], we have the following lemma.

Lemma 1.6.5 ([RRV02]). Let Ext1 : {0, 1}n × {0, 1}d1 → {0, 1}m1 be a strong

(k, ϵ)-extractor with entropy loss ∆1 and Ext2 : {0, 1}n × {0, 1}d2 → {0, 1}m2 be

a strong (∆1 − s, ϵ2)-extractor with entropy loss ∆2 for any s < ∆1. Suppose the

function Ext : {0, 1}n × {0, 1}d1+d2 → {0, 1}m1+m2 is as follows.

Ext(x, u1 ◦ u2) = Ext1(x, u1) ◦ Ext2(x, u2)

Then Ext is a strong (k, ( 1
1−2−s )ϵ1 + ϵ2 ≤ ϵ1 + ϵ2 + 2−s)-extractor with entropy

loss ∆2 + s.

This can be generalized to the parallel extraction for multiple times.
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Lemma 1.6.6. Let X be an (n, k)-source. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be

a strong (k0, ϵ)-extractor with k0 = k− tm− s for any t, s such that tm + s < k. Let

Ext′ : {0, 1}n × {0, 1}td → {0, 1}tm be constructed as follows.

Ext′(x,⃝t
i=1ui) = Ext(x, u1) ◦ Ext(x, u2) ◦ · · · ◦ Ext(x, ut)

Then Ext′ is a strong (k, t(ϵ + 2−s))-extractor.

Proof. Consider the mathematical induction on j.

For j = 1, it is true. As Ext is a strong (k0, ϵ)-extractor, it is also a strong

(k, j(ϵ + 2−s))-extractor.

Next we prove the induction step.

Assume it is true for j. Consider j + 1.

Ext′(x,⃝j+1
i=1ui) = Ext′(x,⃝j

i=1ui) ◦ Ext(x, uj+1)

Here Ext′(x,⃝j
i=1ui) is a strong (k, j(ϵ + 2−s))-source. Its entropy loss is k −

jm. Also we know that Ext is a strong (k − tm − s, ϵ)-extractor, thus a strong

(k− jm− s, ϵ)-extractor. According to Lemma 1.6.5, Ext′(x,⃝j+1
i=1ui) is a strong

(k, (j + 1)(ϵ + 2−s))-extractor. Its entropy loss is k− (j + 1)m.

This completes the proof.

Lemma 1.6.6 shows a way to extract more bits. Assume we have an (n, k)-source

and an extractor, if the output length of the extractor is kβ, β < 1, then we can extract

several times to get a longer output. However, if we merely do it in this way, we need
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a longer seed. In fact, if we extract enough times to make the output length to be Θ(k),

we need a seed with length Θ(k1−β log n). This immediately gives us the following

theorem.

Theorem 1.6.7. For any constant a, c ∈ N, γ ∈ (0, 1), any k = Θ(n/ logc n),

ϵ = 1/2Θ(loga n), there exists an explicit strong (k, ϵ)-extractor Ext : {0, 1}n ×

{0, 1}d → {0, 1}m in AC0 of depth 3a + c + 7. The locality is O(log2a+c+4 n). The

seed length d = O(
k log(1/ϵ)

n1/10800 log n ). The output length m = (1− γ)k.

Proof. Let Ext0 : {0, 1}n × {0, 1}d0 → {0, 1}m0 be a (k0, ϵ0 = ϵ/n) extractor

following from Theorem 1.5.18. Here k0 = k − tm0 − s where s = log(n/ϵ),

t = (1− γ)k/m0. By lemma 1.6.6, we know that there exists a (k, ϵ′) extractor Ext

with ϵ′ = t(ϵ0 + 2−s) ≤ ϵ. The output length is (1− γ)k.

According to the construction in Lemma 1.6.6, Ext has the same circuit depth and

locality as Ext0. The seed length is t× d0 = O(
k log(1/ϵ)

n1/10800 log n ).

If we only consider local extractors then similarly we have the following.

Theorem 1.6.8. For any constant c ∈ N, γ ∈ (0, 1), any k = Θ( n
logc n ), there

exists an explicit construction of a strong (k, ϵ)-extractor Ext : {0, 1}n × {0, 1}d →

{0, 1}m, where ϵ can be as small as 2−kΩ(1)
, d = O(

k log(1/ϵ)
n1/10800 log n ), m = (1− γ)k and

the locality is log2(1/ϵ) logc+O(1) n.

1.6.3 The Construction

In order to extract more bits while keeping seed length small, we use classic bootstrap-

ping techniques. Our construction is still in AC0 but it does not have small locality
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.

Construction 1.6.9. For any constant a, c ∈ N, any k = δn = Θ(n/ logc n), ϵ =

1/2Θ(loga n), we construct a (k, ϵ)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m

where d = O(log n +
log(n/ϵ) log(1/ϵ)

log n ), m = O(δk).

• Let X be an (n, k = δn)-source

• Let t ≥ 10800 be a large enough constant.

• Let Samp : {0, 1}r → [n]ms be a (µ1, µ2, γ)-averaging sampler following

from Lemma 1.6.3, where µ1 = (1
t δ − 2τ)/ log(1/τ) and µ2 = (1

t δ −

3τ)/ log(1/τ), ms = ( t−1
t k − log(1/ϵ0))/t, τ = 1

4 δ, γ = ϵ/n. Let

ϵs = γ + 2−Ω(τn).

• Let Ext0 : {0, 1}n0=ms ×{0, 1}d0 → {0, 1}m0 be a (k0, ϵ0)-extractor following

from Theorem 1.5.18 where k0 = 0.1(1
t δ− 3τ)ms − s, ϵ0 = ϵ/(10tn), d0 =

O(log n0 +
log(n0/ϵ0) log(1/ϵ0)

log n0
), m0 = n1/10800

0 Θ(log(n0/ϵ0)). Let s be such

that 2−s ≤ ϵ/(10tn).

Next we construct the function Ext as follows.

1. Get Let Xi = XSamp(X,Si)
for i ∈ [t], where Si, i ∈ [t] are independent uniform

distributions.

2. Get Yt = Ext0(Xt, U0) where U0 is the uniform distribution with length d0.

3. For i = t− 1 to 1, get Yi = Ext′(Xi, Yi+1) sequentially. The function Ext′ is

defined as follows.

Ext′(x, r) =⃝min{⌊|r|/d0⌋,⌊0.9( 1
t δ−3τ)ms/m0⌋}

i=1 Ext0(x, ri)
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where r =⃝⌊|r|/d0⌋
i=1 ri ◦ r′ for some extra bits r′ and ∀i, |ri| = d0.

4. Output Ext(X, Ud) = Y1 = Ext′(X1, Y2), where Ud = U0 ◦⃝t
i=1Si.

Lemma 1.6.10. For ϵ1 = 1/2Ω(k),⃝t
i=1Si ◦⃝t

i=1Xi is t(ϵs + ϵ1)-close to⃝t
i=1Si ◦

⃝t
i=1Wi.

Here Sis are independent uniform distributions and ∀r ∈ supp(⃝t
i=1Si), condi-

tioned on⃝t
i=1Si = r,⃝t

i=1Wi is a (k1, k2, . . . , kt)-block source with k1 = k2 =

· · · = kt = k′ = (1
t δ− 3τ)ms .

Proof. It follows from Lemma 1.6.4.

Lemma 1.6.11. In Construction 1.6.9, the function Ext is a strong (k, ϵ)-extractor.

Proof of Lemma 1.6.11. By Lemma 1.6.10,⃝t
i=1Si ◦⃝t

i=1Xi is t(ϵs + ϵ1) = 1/poly(n)-

close to ⃝t
i=1Si ◦ B where B = B1 ◦ B2 ◦ . . . ◦ Bt. The Sis are independent uni-

form distributions. Also ∀s ∈ supp(⃝t
i=1Si), conditioned on⃝t

i=1Si = s, B is a

(k1, k2, . . . , kt)-block source with k1 = k2 = · · · = kt = k′ = (1
t δ− 3τ)ms. We

denote the first i blocks to be B̃i =⃝i
j=1Bi.

Let Y′i = Ext′(Bi, Y′i+1) for i = 1, 2, . . . , t where Y′t+1 = U0 is the uniform

distribution with length d0.

Next we use induction over i (from t to 1) to show that

SD(U0 ◦Y′i , U) ≤ (t + 1− i)k(ϵ0 + 2−s).

The basic step is to prove that ∀b1, b2, . . . , bt−1 ∈ {0, 1}ms , conditioned on

B1 = b1, . . . , Bt−1 = bt−1, SD(U0 ◦ Y′t , U) ≤ k(ϵ0 + 2−s). According to the
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definition of Ext′,

SD(U0 ◦ Ext′(Bt, U0), U) ≤ ϵ0.

This proves the basic step.

For the induction step, assume that ∀b1, b2, . . . , bi−1 ∈ {0, 1}ms , conditioned on

B1 = b1, . . . , Bi−1 = bi−1,

SD(U0 ◦Y′i , U) ≤ (t + 1− i)k(ϵ0 + 2−s).

Consider U0 ◦Y′i−1 = U0 ◦ Ext′(Bi−1, Y′i ).

We know that ∀b1, b2, . . . , bt−2 ∈ {0, 1}ms , conditioned on B1 = b1, . . . , Bi−2 =

bi−2, B̃i−1 ◦U0 ◦Y′i is a convex combination of bi−1 ◦U0 ◦Y′i , ∀bi−1 ∈ supp(B̃i−1).

As a result,

SD(B̃i−1 ◦U0 ◦Y′i , B̃i−1 ◦U) ≤ (t + 1− i)k(ϵ0 + 2−s).

Thus, ∀b1, b2, . . . , bt−2 ∈ {0, 1}ms , conditioned on B1 = b1, . . . , Bi−2 = bi−2, as

B̃i−1 ◦U0 ◦ Y′i is a convex combination of bi−1 ◦U0 ◦ Y′i , ∀bi−1 ∈ supp(B̃i−1) and

B̃i−1 ◦U is a convex combination of bi−1 ◦U, ∀b ∈ supp(B̃i−1), by Lemma 1.2.4

part 2,

SD(U0 ◦ Ext′(Bi−1, Y′i ), U1 ◦ Ext′(Bi−1, U2))

≤SD(B̃i−1 ◦U0 ◦Y′i , B̃i−1 ◦U)

≤(t + 1− i)k(ϵ0 + 2−s).

(1.18)

Here U = U1 ◦U2. U1 is the uniform distribution having |U1| = |U0|. U2 is the

uniform distribution having |U2| = |Y′i |.
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According to the definition of Ext′ and Lemma 1.6.6, we know that ∀b1, b2, . . . , bi−2 ∈

{0, 1}ms , conditioned on B1 = b1, . . . , Bi−2 = bi−2,

SD(U1 ◦ Ext′(Bi−1, U2), U) ≤ k(ϵ0 + 2−s).

So according to triangle inequality of Lemma 1.2.4, ∀b1, b2, . . . , bt−2 ∈ {0, 1}ms ,

conditioned on B1 = b1, . . . , Bi−2 = bi−2,

SD(U0 ◦Y′i−1, U)

=SD(U0 ◦ Ext′(Bi−1, Y′i ), U)

≤SD(U0 ◦ Ext′(Bi−1, Y′i ), U1 ◦ Ext′(Bi−1, U2)) + SD(U1 ◦ Ext′(Bi−1, U2), U)

≤(t + 1− i)k(ϵ0 + 2−s) + k(ϵ0 + 2−s)

=(t + 1− (i− 1))k(ϵ0 + 2−s).
(1.19)

This proves the induction step.

So we have SD(U0 ◦Y′1, U) ≤ tk(ϵ0 + 2−s).
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As a result,

SD(Ud ◦ Ext(X, Ud), U)

=SD(U0 ◦⃝t
i=1Si ◦Y1, U)

≤SD(U0 ◦⃝t
i=1Si ◦Y1, U0 ◦⃝t

i=1Si ◦Y′1) + SD(U0 ◦⃝t
i=1Si ◦Y′1, U)

≤SD(U0 ◦⃝t
i=1Si ◦⃝t

i=1Xi, U0 ◦⃝t
i=1Si ◦⃝t

i=1Bi) + SD(U0 ◦⃝t
i=1Si ◦Y′1, U)

≤t(ϵs + ϵ1) + tk(ϵ0 + 2−s).
(1.20)

According to the settings of ϵ0, ϵs, t and by setting ϵ1 to be small enough, we

know the error is at most ϵ.

Lemma 1.6.12. In Construction 1.6.9, the length of Yi is

|Yi| = Θ(min{m0(
m0

d0
)t−i, 0.9(

1
t

δ− 3τ)ms}).

Specifically, m = |Y1| = Θ((1
t δ− 3τ)ms) = Θ(δk).

Proof. For each time we compute Yi = Ext′(Xi, Yi+1), we know |Yi| ≤ |Yi+1|(m0
d0
).

Also according to the definition of Ext′, |Yi| ≤ 0.9(1
t δ− 3τ)ms. So

|Yi| = Θ(min{m0(
m0

d0
)t−i, 0.9(

1
t

δ− 3τ)ms})

for i ∈ [t].

By Theorem 1.5.18, m0 = Θ(n1/10800
0 log n). Also we know that n0 = ms =

O(tk). As a result, when t ≥ 10800, m0(
m0
d0
)t−1 = ω(ms). As a result, m = |Y1| =
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Θ((1
t δ− 3τ)ms) = Θ(δk).

Lemma 1.6.13. In Construction 1.6.9, the seed length d = O(log n+
log(n/ϵ) log(1/ϵ)

log n ).

Proof. The seed for this extractor is Ud = U0 ◦⃝t
i=1Si. So |Ud| = |U0|+ Σt

i |Si| =

O(log n +
log(n/ϵ) log(1/ϵ)

log n ) + O(log(1/ϵ)) = O(log n +
log(n/ϵ) log(1/ϵ)

log n ).

Lemma 1.6.14. In Construction 1.6.9, the function Ext is in AC0. The depth of the

circuit is O(a + c + 1).

Proof. We in fact run Samp and Ext0 for constant number of times in sequential. So

the total depth is O(a + c) as the depth of Samp and Ext0 are both O(a + c + 1).

Theorem 1.6.15. For any constant a, c ∈ N, any k = δn = Θ(n/ logc n), ϵ =

1/2Θ(loga n), there exists an explicit strong (k, ϵ)-extractor Ext : {0, 1}n×{0, 1}d →

{0, 1}m in AC0 with depth O(a + c + 1), where d = O(log n +
log(n/ϵ) log(1/ϵ)

log n ),

m = Ω(δk) .

Proof. By Construction 1.6.9, Lemma 1.6.11, Lemma 1.6.12, Lemma 1.6.13 , and

Lemma 1.6.14 , the conclusion immediately follows.

Theorem 1.6.16. For any constant γ ∈ (0, 1), a, c ∈N, any k = δn = Θ(n/ logc n),

ϵ = 1/2Θ(loga n), there exists an explicit strong (k, ϵ)-extractor Ext : {0, 1}n ×

{0, 1}d → {0, 1}m in AC0 with depth O(a + c + 1) where d = O((log n +

log(n/ϵ) log(1/ϵ)
log n )/δ), m = (1− γ)k.
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Proof. Let the extractor following Theorem 1.6.15 be Ext0 : {0, 1}n0 × {0, 1}d0 →

{0, 1}m0 which is a (k0, ϵ0)-extractor with n0 = n, k0 = γk− s for some s < γk.

The construction of Ext is

Ext(x, u) =⃝t
i=1Ext0(x, ui).

Here t is such that tm0 = (1− γ)k.

By Lemma 1.6.15, we know that m0 = Θ(δk) where δ = Θ( 1
logc n ). So t =

Θ(1/δ). By Lemma 1.6.6, if tm0 = (1− γ)k, then Ext is a (k, ϵ)-extractor with

output length (1− γ)k and error t(ϵ0 + 2−s).

We choose s to be large enough and ϵ0 to be small enough such that the error

is at most ϵ. The seed length d = td0. By Theorem 1.6.15, d0 = O(log n +

log(n/ϵ) log(1/ϵ)
log n ), m0 = Ω(δk), so d = O((log n +

log(n/ϵ) log(1/ϵ)
log n )/δ), m = (1−

γ)k. The circuit depth maintains the same as that in Theorem 1.6.15 because the

extraction is conducted in parallel.

1.7 Deterministic Extractor for Bit-fixing Source

We use two crucial tools. One is the extractor for non-oblivious bit-fixing sources,

proposed by Chattopadhyay and Zuckerman [CZ16] and improved by Li [Li16].

Theorem 1.7.1 ([Li16] Theorem 1.11). Let c be a constant. For any β > 0 and all

n ∈ N, there exists an explicit extractor Ext : {0, 1}n → {0, 1}m such that for any

(q, t, γ)-non-oblivious bit-fixing source X on n bits with q ≤ n1−β, t ≥ c log21 n and

γ ≤ 1/nt+1,

SD(Ext(X), U) ≤ ϵ
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where m = tΩ(1), ϵ = n−Ω(1).

The extractor can be computed by standard circuits of depth ⌈ log m
log log n⌉+ O(1).

To see the depth is ⌈ log m
log log n⌉+ O(1), let’s briefly recall the construction of the

extractor. It first divides the input in to nO(1) blocks. Then for each block, it applys

the extractor from [Li16] Theorem 4.1 which has depth 4. At last, it conducts a

multiplication between a matrix of size m×O(m) and a vector of dimension O(m),

both over F2. The last step can be computed by a circuit of depth ⌈ log m
log log n⌉+ 1 by

Lemma 1.2.11 part 2.

The other tool is the design extractor introduced by Li [Li12].

Definition 1.7.2 ([Li12]). An (N, M, K, D, α, ϵ)-design extractor is a bipartite graph

with left vertex set [N], right vertex set [M], left degree D such that the following

properties hold.

• (extractor property) For any subset S ⊆ [M], let ρS = |S|/M. For any vertex

v ∈ [N], let ρv = |Γ(v) ∩ S|/D. Let BadS = {v ∈ [N] : |ρv − ρS| > ϵ},

then |BadS| ≤ K. (Γ(·) outputs the set of all neighbors of the input.)

• (design property) For any two different vertices u, v ∈ [N], |Γ(u) ∩ Γ(v)| ≤

αD.

Construction 1.7.3. For any constant a ∈N, any t = poly(log n), the deterministic

extractor Ext : {0, 1}n → {0, 1}m=tΩ(1)
for any (n, δn = Θ(n/ loga n))-bit-fixing

source is constructed as the follows.

• Construct an (N, M, K, D, α, ϵ)-design extractor, where M = n, K = n1/0.9, N =

n1/0.3, ϵ = 1/ logc N, D = logb N, α = D/M+ ϵ, for c = ⌈log t/ log log N⌉+

a + 1 and large enough constant b = Θ(c).
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• Let Y = (Y1, Y2, . . . , YN). Compute Yi =
⨁

j∈Γ(i) Xj, for i = 1, . . . , N, by

taking i as the ith vertex in the left set of the design extractor.

• Let Ext(X) = Ext′(Y) where Ext′ : {0, 1}N → {0, 1}m is the extractor from

Theorem 1.7.1 with error ϵ = n−Ω(1).

Lemma 1.7.4. An (N, M, K, D, α, ϵ)-design extractor, where K = N1/3, M = K0.9,

ϵ = 1/ logc N, D = logb N,α = D/M + ϵ, for any constant c and large enough

constant b = Θ(c), can be constructed in polynomial time.

Proof. In [Li12] it is showed that design extractors can be constructed in deterministic

polynomial time by a greedy algorithm.

The construction is based on a (k0, ϵ)-extractor Ext0 : {0, 1}n0 × {0, 1}d0 →

{0, 1}m0 , from Theorem 1.2.7 (almost optimal parameters), for any (n0, k0)-source,

where n0 = 4k0, m0 = 0.9k0, d0 = O(log(n0/ϵ)). Also we substitute the first d0

bits of the output by the seed s.t. every left vertex has exactly 2d0 neighbors. Recall

the greedy algorithm proposed by Li [Li12], which picks vertices one by one, deleting

the vertices which does not meet the design property before each picking. At last we

can get 2n0−k0 ≥ 23k0 left vertices. Let N = 23k0 , K = 2k0 , M = 2m0 . We know that

ϵ = 1/ logc N and d0 = O(log(n0/ϵ)). Thus if b = Θ(c) is large enough, D can

be logb N by adding extra random bits to adjust the length of the seed.

Lemma 1.7.5. For any constant a ∈N, any t = poly(log n), if X is an (M, δM =

Θ(M/ loga M))-bit-fixing source, then Y = g(X) is a (q, t, 0)-non-oblivious bit-

fixing source, where q = K.
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Proof. Assume the coordinates of random bits of X form the set S. By the extractor

property of design extractors, the number of left vertex x, such that |ρx − ρS| > ϵ, is

at most K. These vertices form the set BadS.

We prove that for any subset V ⊆ [N]\BadS with size |V| ≤ t,
⨁

j∈V Yj is

uniformly distributed.

Let V = {v1, v2, . . . , vt′} be a subset of [N]\BadS, where t′ ≤ t. So |Γ(vt′) ∩

S| ≥ (δ− ϵ)D. By the design property of design extractors, for any i = 1, 2, . . . , t′−

1, |Γ(vt′) ∩ Γ(vi)| ≤ αD. So |(Γ(vt′) ∩ S)\⋃t′−1
i=1 Γ(vi)| ≥ (δ− ϵ)D− t · αD ≥ 1

for c = ⌈log t/ log log N⌉+ a + 1 and large enough constant b. Thus
⨁

j∈V Yj is

uniformly distributed because some uniform random bits in Γ(vt′) ∩ S cannot be

canceled out by bits in
⋃t′−1

i=1 Γ(vi).

By the Information Theoretic XOR-Lemma in [Gol95], Y[N]\BadS
is t-wise inde-

pendent. Thus Y = g(X) is a (q = K, t, 0)-non-oblivious bit-fixing source.

Theorem 1.7.6. For any constant a ∈ N, there exists an explicit deterministic

(k = δn = Θ(n/ loga n), ϵ = n−Ω(1))-extractor Ext : {0, 1}n → {0, 1}m that

can be computed by AC0 circuits of depth Θ(
log m

log log n + a), for any (n, k)-bit-fixing

source, where m can be any poly(log n).

Proof. We claim that Construction 1.7.3 gives the desired extractor. Let X be an

(n, k)-bit-fixing source. By lemma 1.7.5, we get Y which is a (q, t, 0)-non-oblivious

bit-fixing source with length Θ(n1/0.3), where q = Θ(n1/0.9) and t can be any large

enough poly(log n).

By Theorem 1.7.1, Ext(X) = Ext′(Y) is ϵ-close to uniform. The output length
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m = tΩ(1) can be any poly(log n) as we can set t to be any poly(log n).

We show that the circuit for computing the extractor is in uniform AC0. In

Construction 1.7.3, each Yi is the XOR of poly-logarithmic bits of X. Also the

extractor of Theorem 1.7.1 is in AC0. So the overall construction is in AC0. It is in

uniform AC0 because the design extractor can be constructed in polynomial time by

Lemma 1.7.4 while all other operations are explicit and can be computed by uniform

AC0 circuits.

The depth of the circuit is Θ(
log m

log log n + a). Because in Construction 1.7.3, c =

⌈log t/ log log N⌉ + a + 1 and b = Θ(c). By lemma 1.2.11 part 2, the XOR of

D = 1/ logb N bits can be computed by circuits of depth b. Also the depth of Ext′ is

⌈ log m
log log n⌉+ O(1). Thus the overall depth is Θ(

log m
log log n + a).

Next we do error reduction. Our method is based on the XOR lemma given by

Barak, Impagliazzo and Wigderson [BIW06].

Lemma 1.7.7 ([BIW06] Lemma 3.15). Let Y1, Y2, . . . , Yt be independent distributions

over F such that ∀i ∈ [t], SD(Yi, U) ≤ ϵ. Then

SD(
t

∑
i=1

Yi, U) ≤ (2ϵ)t,

where U is uniform over F.

Proof. For simplicity, let F = {0, 1, . . . , M− 1}.

We use induction to show that for j = 1, 2, . . . , t, SD(∑j
i=1 Yi, U) ≤ (2ϵ)j.

As Y1 is ϵ-close to uniform, this shows the base case.

Let Y′ = ∑
j−1
i=1 Yi. Suppose SD(Y′, U) ≤ (2ϵ)j−1.
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Let p′ = (p′0, p′1, . . . , p′M−1) be such that p′i = Pr[Y′ = ib] = 1/M + δ′i , for

i = 0, 1, . . . , M− 1, where ib is the binary form of i.

We know that SD(Y′, U) = 1/2(∑M−1
i=1 |δ′i |) and ∑M−1

i=0 δ′i = 0.

Let p = (p0, p1, . . . , pM−1) be such that pi = Pr[Yj = ib] = 1/M + δi for

i = 0, 1, . . . , M− 1. We know that SD(Yj, U) = 1/2(∑M−1
i=1 |δi|) and ∑M−1

i=0 δi = 0.

So

Pr[Y′ + Yj = ib]| =
M−1

∑
k=0

Pr[Y′ = kb]Pr[Yj = (i− k)b]

=
M−1

∑
k=0

p′k · pi−k

= 1/M + 2(
M−1

∑
k=0

δk)/M +
M−1

∑
k=0

δkδi−k

= 1/M +
M−1

∑
k=0

δkδi−k.

(1.21)

Thus |Pr[Y′ + Yj = ib]− Pr[U = ib]| = |∑M−1
k=0 δkδi−k|.
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As a result,

SD(Y′ + Yj, U) = 1/2
M−1

∑
i=0
|Pr[Y′ ⊕Yj = ib]− Pr[U = ib]|

= 1/2
M−1

∑
i=0
|

M−1

∑
k=1

δkδi−k|

≤ 1/2(
M−1

∑
k=0

M−1

∑
l=0
|δkδl|)

= 1/2(
M−1

∑
i=1
|δ′i |)(

M−1

∑
i=1
|δi|)

≤ (2ϵ)j.

(1.22)

Theorem 1.7.8. If Ext : {0, 1}n → {0, 1}m is a (k, ϵ)-extractor for (n, k)-bit-fixing

sources, then for every l ∈ N, the function Ext′ : {0, 1}ln → {0, 1}m, given by

Ext′(x1, . . . , xl) = ⊕i∈[l]Ext(xi) is a (2lk, ϵΘ(l))-extractor for (ln, 2lk)-bit-fixing

sources.

Proof. Let X = (X(1), . . . , X(l)) be an (ln, 2lk)-bit-fixing source. Then for δ = k/n

fraction of j ∈ [l], X(j) is an (n, δn)-bit-fixing source. Because if not, the total

number of random bits is at most δl · n + (1− δ)lδn < 2δln = 2lk. Also we know

that X(1), X(2), . . . , X(l) are independent because X is a bit-fixing source. We regard

each Ext(X(i)) as a random element (coefficients of the corresponding polynomial) in

F2m . By Lemma 1.7.7, Ext′(X) is ϵΘ(l)-close to uniform.

By using the deterministic extractor in Theorem 1.7.6, combining with Theorem
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1.7.8, adjusting the parameters, we get the following result.

Theorem 1.7.9. For any constant a, c ∈ N , there exists an explicit deterministic

(k = Θ(n/ loga n), ϵ = 2− logc n)-extractor Ext : {0, 1}n → {0, 1}m that can be

computed by AC0 circuits of depth Θ(
log m

log log n + a + c), for any (n, k)-bit-fixing

sources, where m can be any poly log n.

Finally we do output length optimization by applying the same technique as that

in [GVW15]. The technique is given by Gabizon et al.[GRS04].

Theorem 1.7.10. For any constant a, c ∈ N and any constant γ ∈ (0, 1], there

exists an explicit deterministic (k = Θ(n/ loga n), ϵ = 2− logc n)-extractor Ext :

{0, 1}n → {0, 1}(1−γ)k that can be computed byAC0 circuits of depth Θ(a + c + 1),

for any (n, k)-bit-fixing sources.

proof sketch. The difference between our construction and [GVW15] Theorem 5.12

is that, for the three crucial components in the construction, we use the deterministic

extractor of Theorem 1.7.9, the seeded extractor of Theorem 1.6.16 and the averaging

sampler in Lemma 1.5.3 instead. We briefly describe the construction as the follows.

• A deterministic ϵ1-error extractor Ext1 : {0, 1}n → {0, 1}r+r2 for (n, µ′s)-bit-

fixing sources, by Theorem 1.7.9;

• A seeded ϵ2-error extractor Ext2 : {0, 1}n × {0, 1}r2 → {0, 1}m for (n, µn−

s)-bit-fixing sources, by Theorem 1.6.16;

• An (µ, µ′, θ)-averaging sampler Samp : {0, 1}r → [n]s, by Lemma 1.6.3 .
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We set µ = k/n, µ′ = µ/2, s = k/2 such that µ′s = Θ(n/ log2a n) and

µn − s = Θ(n/ loga n). Also we set ϵ1 = 2− log3c n, ϵ2 = θ = 2− log2c n, m =

(1− γ)k, r2 = (log n)Θ(a+c) and r = Θ(log2c n).

Theorem 7.1 of [GRS04] constructs a deterministic extractor Ext : {0, 1}n →

{0, 1}m for (n, µn)-bit-fixing sources, where the error is ϵ = ϵ2 + 2r+3ϵ1 + 3θ. So

ϵ ≤ 2− logc n. The construction is Ext(x) = Ext2(x[n]\S(Z1)
◦ 0t, Z2), where Z1 is

the first r bits of Ext1(X) and Z2 is the last r2 bits of Ext1(X).

Here we only need to compute the depth of the circuit. We know that r + r2 =

(log n)Θ(a+c). The depth of the final extractor is the sum of the depths of all three

components. By Theorem 1.7.9, the depth for the deterministic extractor is Θ(a +

c + 1) . By theorem 1.6.16, the depth for the seeded extractor is also Θ(a + c + 1).

By Lemma 1.6.3, the depth for the sampler is Θ(c + 1). So the overall depth is

Θ(a + c + 1).

1.8 Applications

In this section, we give some constructions of PRGs based on our AC0 extractor.

1.8.1 PRG in AC0 Based on Random Local One-way Function

Our first construction is based on random local one-way functions following the

method of Applebaum [App13].

Let dist(·) denotes the hamming distance between the two input strings (with

equal length).
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Definition 1.8.1 (Hypergraphs [App13]). An (n, m, d) hypergraph is a graph over

n vertices and m hyperedges each of cardinality d. For each hyperedge S =

(i0, i1, . . . , id−1), the indices i0, i1, . . . , id−1 are ordered. The hyperedges of G are also

ordered. Let G be denoted as ([n], S0, S1, . . . , Sm−1) where for i = 0, 1, . . . , m− 1,

Si is a hyperedge.

Remark 1.8.2. Here we do not require the indices i0, i1, . . . , id−1 to be distinct. This

setting is the same as that in [BQ12] and [Gol11] (Random Construction).

Definition 1.8.3 (Predicate). A d-ary predicate Q : {0, 1}d → {0, 1} is a function

which partitions {0, 1}d in to V0 and V1, where Va = {w ∈ {0, 1}d|Q(w) = a} for

a = 0, 1.

Let HQ = (V0 ∪V1, E) be a bipartite graph where (u, v) ∈ V0×V1 is an edge if

dist(u, v) = 1. LetM be all the possible matchings of HQ. The size of the maximum

matching of HQ is

Match(Q) = max
M∈M

Pr
v
[∃u, (u, v) ∈ M or (v, u) ∈ M] = max

M∈M
2|M|/2d,

where v is uniformly distributed in V0 ∪V1.

Definition 1.8.4 (Collection of Functions). For s = s(n), m = m(n), a collection of

functions F : {0, 1}s × {0, 1}n → {0, 1}m takes an input (k, x) and outputs F(k, x).

Here k is a public index and x can be viewed as the input for the kth function in

the collection. We also denote F(k, x) as Fk(x) where Fk is the kth function in the

collection.

Remark 1.8.5. For simplicity, we usually consider n as an exponential of 2.

In the following paragraph, an efficient adversary is defined to be a probabilistic
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polynomial time Turing Machine. Also the term efficient means in probabilistic

polynomial time.

Definition 1.8.6 (Approximate One-way Function for Collection of Functions). For

δ = δ(n) ∈ (0, 1) and ϵ = ϵ(n) ∈ (0, 1), a collection of functions F : {0, 1}s ×

{0, 1}n → {0, 1}m is an (ϵ, δ)-approximate one-way function if for every efficient

adversary A which outputs a list of poly(n) candidates and for sufficiently large n’s,

we have that

Pr
k,x,y=Fk(x)

[∃z ∈ A(k, y), z′ ∈ F−1
k (y), dist(z, z′)/n ≤ δ] < ϵ,

where k and x are independent and uniform. Specially, when δ = 0, we say the

collection F is ϵ-one-way.

Definition 1.8.7 (Goldreich’s Random Local Function [Gol11]). Given a predicate

Q : {0, 1}d → {0, 1} and an (n, m, d) hypergraph G = ([n], S0, . . . , Sm−1), the

function fG,Q : {0, 1}n → {0, 1}m is defined as follows: for input x, the ith output

bit of fG,Q(x) is fG,Q(x)i = Q(xSi).

For m = m(n), the function collection FQ,n,m : {0, 1}s × {0, 1}n → {0, 1}m is

defined via the mapping (G, x)→ fG,Q(x).

Lemma 1.8.8. For every d = O(log n), every m = poly(n) and every predicate

Q : {0, 1}d → {0, 1}, the random local function FQ,n,m, following Definition 1.8.7,

is in AC0.

Proof. For every i ∈ [m], we claim that the ith output bit of FQ,n,m(G, x) can be

computed in AC0. The reason is as follows. We know that FQ,n,m(G, x)i = Q(xSi).

So it is determined by d bits of x and Si which corresponds to d log n bits of G. Thus
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for Si = (j0, j1, . . . , jd−1), ∀l ∈ [d], the lth input for Q is

xjl =
n⋁

k=0

(Ijl=k ∧ xk) =
n⋀

k=0

(Ijl ̸=k ∨ xk).

As |jl| = log n, Ijl=k and Ijl ̸=k can be computed in AC0 by Lemma 1.2.11. So

every input bit in xSi can be computed in AC0. As d = O(log n), we know that

FQ,n,m(G, x)i = Q(xSi) can be computed in AC0. Thus FQ,n,m(G, x) can be compu-

ted in AC0.

Definition 1.8.9. Two distribution ensembles Y = {Yn} and Z = {Zn} are ϵ-

indistinguishable if for every efficient adversary A,

|Pr[A(1n, Yn) = 1]− Pr[A(1n, Zn) = 1]| ≤ ϵ(n).

Here the subscript of a random variable indicates its length.

Definition 1.8.10 (PRG for a Collection of Functions). Let m = m(n). A collection

of functions F : {0, 1}s × {0, 1}n → {0, 1}m is an ϵ-PRG, if (K, FK(Un)) is ϵ-

indistinguishable from the uniform distribution. Here K is uniform over {0, 1}s, Un is

uniform over {0, 1}n.

A collection of functions F : {0, 1}s × {0, 1}n → {0, 1}m is ϵ-unpredictable

generator (UG) if for every efficient adversary A and every sequence of indices

{in}n∈N where in ∈ [m(n)], we have that

Pr
k←Us,x←Un

[A(k, Fk(x)[0,...,in−1]) = Fk(x)in ] ≤ ϵ(n)

for sufficiently large n’s. Here F is ϵ-last-bit unpredictable generator (LUG) if

in = m(n)− 1.

86



Remark 1.8.11. Let t = t(r). A function G : {0, 1}r → {0, 1}t is a classic ϵ-PRG,

if (K, FK(Un)) is ϵ-indistinguishable from the uniform distribution. Here K is uniform

over {0, 1}r, Un is uniform over {0, 1}n.

The definition of PRG for a collection of functions implies the classic definition

of PRG. Following our definition, if there exists an explicit ϵ-PRG F(·, ·) for a

collection of functions, we know (Us, FUs(Un)) is ϵ-indistinguishable from uniform

distributions. Let G : {0, 1}r=s+n → {0, 1}t=s+m be such that ∀k ∈ {0, 1}s, ∀x ∈

{0, 1}n, G(k ◦ x) = k ◦ F(k, x). We know that G(Ur) is indistinguishable from

uniform distributions. So G is a classic ϵ-PRG.

Definition 1.8.12. An ϵ-LPRG is an ϵ-PRG whose output length is linear of its input

length (including the index length, m > (1 + δ)(n + s) for some constant δ).

An ϵ-PPRG is an ϵ-PRG whose output length is a polynomial of its input length

(including the index length, m > (n + s)(1+δ) for some constant δ).

Lemma 1.8.13. For every c ∈N+, an ϵ-PRG G : {0, 1}r → {0, 1}t in AC0 can be

transformed to an (cϵ)-PRG G′ : {0, 1}r → {0, 1}t(t/r)c
.

Here G′(·) = G(c)(·), where G(i+1)(·) = G(i)(·), ∀i ∈ N+ and G(1)(·) =

G(·).

If c is a constant, then G′ is in AC0.

Proof. We use inductions. Assume the the output length for G(i) is t(i).

For the basic step, as G is an ϵ-PRG, G(1) = G is an ϵ-PRG.

For the induction step, assume for i, G(i) is an (iϵ)-PRG. Suppose there exists an

efficient adversary A such that

|Pr[A(G(i+1)(Ur)) = 1]− Pr[A(Ut(i+1)) = 1]| > (i + 1)ϵ.
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We know that

|Pr[A(G(i+1)(Ur)) = 1]− Pr[A(Ut(i+1)) = 1]|

≤|Pr[A(G(i+1)(Ur)) = 1]− Pr[A(G(Ut(i))) = 1]|+ |Pr[A(G(Ut(i))) = 1]− Pr[A(Ut(i+1)) = 1]|
(1.23)

As |Pr[A(G(Ut(i))) = 1]− Pr[A(Ut(i+1)) = 1]| ≤ ϵ,

|Pr[A(G(i+1)(Ur)) = 1]− Pr[A(G(Ut(i))) = 1]| > iϵ

contradicting the the induction assumption. So G(i+1) is an (i + 1)ϵ-PRG.

Theorem 1.8.14. For any d-ary predicate Q, if the random local function FQ,n,m is

δ-one-way for some constant δ ∈ (0, 1), then we have the following results.

1. For some constant c = c(d) > 1, if m > cn , then there exists a ϵ-LPRG in

AC0 with ϵ being negligible.

2. For any constant c > 1, if m > nc, then there exists a ϵ-PPRG in AC0 with ϵ

being negligible.

Before we prove Theorem 1.8.14, we first use it to obtain our main theorem in this

subsection.

Theorem 1.8.15. For any d-ary predicate Q, if the random local function FQ,n,m is

δ-one-way for some constant δ ∈ (0, 1), then we have the following results.

1. For some constant c > 1, if m > cn , then for any constant a > 1, there exists

a ϵ-LPRG G : {0, 1}r → {0, 1}t in AC0, where t ≥ ar and ϵ is negligible.

2. For any constant c > 1, if m > nc, then for any constant a > 1 there exists a

ϵ-PPRG G : {0, 1}r → {0, 1}t in AC0, where t ≥ ra and ϵ is negligible.
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Proof. For the first assertion, let the LPRG in Theorem 1.8.14 be G0 : {0, 1}r0 →

{0, 1}t0 with t0 > c0r0 for some constant c0 > 1. We apply the construction in

Lemma 1.8.13 to obtain G(c1) such that cc1
0 ≥ a. So c1 is a constant. By Lemma

1.8.13 we know that G(c1) is a c1ϵ-PRG in AC0. This proves the first assertion.

By the same reason, the second assertion also holds.

Construction 1.8.16. Let FQ,n,m : {0, 1}s× {0, 1}n → {0, 1}m be the random local

function following Definition 1.8.7. We construct F′ : {0, 1}s × {0, 1}n′ → {0, 1}m′

where n′ = tn, m′ = tm, t = n.

1. Draw G uniformly from {0, 1}s.

2. Draw x(1), x(2), . . . , x(t) independently uniformly from {0, 1}n. Let x = (x(1), x(2), . . . , x(t)).

3. Output F′(G, x) =⃝t
i=1G(x(i)).

Lemma 1.8.17. In Construction 1.8.16, for every constant d ∈N+, every predicate

Q : {0, 1}d → {0, 1}, every m = poly(n) and every ϵ = 1/poly(n), if FQ,n,m is

(1
2 + ϵ)-last-bit unpredictable then F′ is (1

2 + ϵ(1 + 1/n))-unpredictable.

Proof. Suppose there exists a next-bit predictor P and a sequence of indices {in}

such that

Pr
x←Un,G←Us,y=F′(G,x)

[P(G, y0,...,in−1) = yin ] ≥
1
2
+ ϵ(n)(1 + 1/n)

for sufficiently large n’s.

Now we construct a last-bit predicator P′ which can predicate the last bit of FQ,n,m

with success probability 1/2 + ϵ.
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By Remark 3.2 of [App13], P′ can find an index j ∈ [m′] by running a randomized

algorithm M in polynomial time, such that, with probability 1− 2−Θ(n) over the

random bits used in M,

Pr
G,x,y=F′(G,x)

[P(G, y[0,...,j−1]) = yj] >
1
2
+ ϵ(n) +

ϵ(n)
2n

.

Recall that in Remark 3.2 of [App13], M′ tries every index and pick the best one.

According to Construction 1.8.16, assume j = an + b for some a, b ∈N, b < n.

Given (G, y[0,...,m−2]), P′ generates x(1), x(2), . . . , x(a−1) independently uniformly

over {0, 1}n. Also P′ constructs a hypergraph G′ by swapping Sb and Sm−1 of G.

Next, P′ computes y′ =⃝a
i=1G′(x(i)) ◦ y[0,...,b−2]. Finally P′ outputs P(G′, y′). As

G is uniform, G′ is also uniform. Also as x(1), . . . , x(a) are uniform, (G′, y′) has the

same distribution as (G, y[0,...,j−1]). So

Pr[P′(G′, y′) = ym−1] ≥
1
2
+ ϵ(n) +

ϵ(n)
2n
− 2Θ(n) >

1
2
+ ϵ(n).

This contradicts that FQ,n,m is (1
2 + ϵ)-last-bit unpredictable.

Theorem 1.8.18 ([App13], Section 5). For every constant d ∈ N, predicate Q :

{0, 1}d → {0, 1}, and constant ϵ ∈ (0, Match(Q)/2), there exists a constant c > 0

such that for every polynomial m > cn the following holds. If the collection FQ,n,m is

ϵ/5-one-way then it is a (1−Match(Q)/2+ δ)-last-bit UG where δ = ϵ(1− o(1)).

Thus it is also a (1−Match(Q)/2 + ϵ)-UG.

Remark 1.8.19. Our definition of random local function has only one difference with

the definition of [App13]. That is, for each hyperedge we do not require the incoming

vertices to be distinct. This difference does not affect the correctness of Theorem

1.8.18.
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Construction 1.8.20 (Modified from [App13] Construction 6.8). Let F : {0, 1}s(n)×

{0, 1}n → {0, 1}m(n) be a UG and Ext : {0, 1}n1 ×{0, 1}d1 → {0, 1}m1 be a strong

(k = αn1, ϵ1)-extractor following Theorem 1.6.16 where n1 = n, α is some constant,

ϵ = 1/2Θ(loga n) for some large enough constant a ∈ N+, d1 = (log a)Θ(a),

m = 0.9k.

We construct the following UG H : {0, 1}sn × {0, 1}n2+d1n → {0, 1}mn.

1. Index: Generate G0, G1, . . . , Gn−1 independently uniformly over {0, 1}s. Ge-

nerate extractor seeds u0, u1, . . . , um−1 independently uniformly over {0, 1}d1 .

Denote G = (G0, G1, . . . , Gn−1) and u = (u0, u1, . . . , um−1).

2. Input: Generate x(0), x(1), . . . , x(n−1) independently uniformly over {0, 1}n.

Denote x = (x(0), x(1), . . . , x(n−1)).

3. Output: Compute the n×m matrix Y whose ith row is Gi(x(i)). Let Yi denote

the ith column of Y. Output H(G, u, x) = Ext(Y0, u0) ◦ Ext(Y1, u1) ◦ · · · ◦

Ext(Ym−1, um−1).

Remark 1.8.21. There are 2 differences between our construction and Construction

6.8 of [App13]. First, we use our AC0-extractor to do extraction. As our extractor

is strong, its seed can also be regarded as part of the public key (index). Second,

our construction is for any m, while their construction only considers m as a linear

function of n.

Lemma 1.8.22. For any constant ϵ ∈ [0, 1/2), if F is (1
2 + ϵ)-unpredictable, then

the mapping H is a PRG with negligible error.

Proof Sketch. The proof is almost the same as that of Lemma 6.9 of [App13].
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By the same argument of Lemma 6.9 of [App13], we know that for every sequence

of efficiently computable index family {in} and every efficient adversary A, there

exists a random variable W ∈ {0, 1}n jointly distributed with G and Y such that

• the min-entropy of W, given any fixed G and the first in columns of Y, is at

least n(1− 2ϵ− o(1)).

• A cannot distinguish between (G, Y[0,...,in]) and (G, [Y[0,...,in−1]W]) with more

than negligible advantage even when A is given an oracle which samples the

distribution (G, Y, W). Here [Y[0,...,in−1]W] is a matrix such that the first in

columns are Y[0,...,in−1] and the last column is W.

By the definition of strong extractors, for every family {in}, the distribution

(G, u, Y[0,...,in−1], Ext(Yin , uin))

is indistinguishable from (G, u, Y[1,...,in−1], Um1). Otherwise, suppose there is an ad-

versary B that can distinguish the two distributions. We construct another adversary A

as the follows. First A generates a uniform u as seeds for the extractors and invokes B

on (G, u, y, Ext(v, u)) where G is generated from uniform, y is drawn from Y[0,...,in−1].

If v is drawn from Yin then B gets a sample from (G, u, Y[0,...,in−1], Ext(Yin , u)). If v

is drawn from W, then B gets a sample from (G, u, Y[0,...,in−1], Ext(W, u)) which is

ϵ0-close to (G, u, Y[0,...,in−1], Um1) by the definition of strong extractors, where ϵ0 is

negligible according to our settings in Construction 1.8.20 and Um1 is the uniform

distribution of length m1. So A can distinguish (G, Y[0,...,in]) and (G, [Y[0,...,in−1]W]),

having the same distinguishing advantage as B does (up to a negligible loss). This is a

contradiction.
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As a result, for every family {in}, the distributions

(G, u, H(G, u, x)[0,...,in]) and (G, u, H(G, u, x)[0,in−1]
◦Um1)

are indistinguishable. So H is a (1/2 + neg(n))-UG. By Fact 6.1 (Yao’s theorem) of

[App13], H is a PRG.

Proof of Theorem 1.8.14. We combine Construction 1.8.16 and Construction 1.8.20

together by using the UG of Construction 1.8.16 in Construction 1.8.20. By Theorem

1.8.18 and Lemma 1.8.22, we know that our construction gives a PRG (with negligible

error). Assume the PRG is H : {0, 1}sH × {0, 1}nH → {0, 1}mH .

Next we mainly focus on the stretch. The output length of H is mH = Θ(ntm),

the input length (including the index length) is sH + nH = sn + d1n + n2t. Here we

know that s = m log n, t = n.

Assume m > cn for some constant c > 1. We know that mH
sH+nH

= c′ > 1, for

some constant c′.

For the polynomial stretch case, assume m > nc for some constant c > 1. We

know that mH ≥ (sH + nH)
c′ for some constant c′ > 1.

For both cases, the construction is in AC0. The reason is as follows. By Lemma

1.8.8, the random local function is in AC0. In Construction 1.8.16 and Construction

1.8.20, we compute O(nt) random local functions (some of them share the same

index) in parallel. Also our extractor is in AC0. So the overall construction is in AC0.

This proves the theorem.
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1.8.2 PRG in AC0 for Space Bounded Computation

In this subsection, we give an AC0 version of the PRG in [NZ96].

Theorem 1.8.23. For every constant c ∈N and every m = m(s) = poly(s), there is

an explicit PRG g : {0, 1}r=O(s) → {0, 1}m in AC0, such that for any randomized

algorithm A using space s,

|Pr[A(g(Ur)) = 1]− Pr[A(Um) = 1]| = ϵ ≤ 2−Θ(logc s),

where Ur is the uniform distribution of length r, Um is the uniform distribution of

length m.

Proof Sketch. We modify the construction of [NZ96] by replacing their extractor with

the extractor from Theorem 1.6.16 for some constant entropy rate and with error

parameter ϵ′ = 2−Θ(logc s). In the PRG construction of [NZ96], it only requires an

extractor for constant entropy rate. As our extractor meets their requirement, the proof

in [NZ96] still holds under this modification.

For the security parameter ϵ, according to [NZ96], ϵ = poly(s)(ϵ′ + 2−s). As a

result, ϵ = 2−Θ(logc s).
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Chapter 2

Secret Sharing in AC0

2.1 Introduction

The motivation for this chapter comes from two different sources. The first is the

general theme of improving performance at the price of allowing some small proba-

bility of error or failure. This is evident throughout computer science. For example,

randomized algorithms tend to be much more efficient than their deterministic counter-

parts. In cryptography and coding theory, randomization with small failure probability

can often be used to amplify security or improve efficiency. This is arguably a good

tradeoff in practice.

The second source of motivation is the goal of minimizing the computational

complexity of cryptographic primitives and related combinatorial objects. For example,

a line of work on the parallel complexity of cryptography [Gol11; CM01; MST06;

AIK06; AIK08] successfully constructed one-way functions and other cryptographic

primitives in the complexity class NC0 based on different kinds of assumptions,

including very standard cryptographic assumptions. Works along this line have found

several unexpected applications, most recently in the context of general-purpose
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obfuscation [Lin16]. The study of low-complexity cryptography is also motivated by

the goal of obtaining stronger negative results. For instance, low-complexity pseudo-

random functions imply stronger hardness results for learning [NR99] and stronger

natural proof barriers [MV15], and low-complexity decryption [BL16] implies a

barrier for function secret sharing [BGI15].

In this chapter, we address the question of minimizing the complexity of secret

sharing schemes and error correcting codes by introducing additional randomization

and allowing for a small failure probability. We focus on the complexity class AC0,

which is the lowest class for which a secret can be reconstructed or a message be

decoded with negligible error probability. We show that the randomization approach

can be used towards obtaining much better parameters than previous constructions. In

some cases, our parameters are close to optimal and would be impossible to achieve

without randomization.

We now give a more detailed account of our results, starting with some relevant

background.

2.1.1 (Robust) secret sharing in AC0

A secret sharing scheme allows a dealer to randomly split a secret between n parties

so that qualified subsets of parties can reconstruct the secret from their shares while

unqualified subsets learn nothing about the secret. We consider here a variant of

threshold secret sharing (also known as a “ramp scheme”), where any k parties can

learn nothing about the secret, whereas all n parties together can recover the secret

from their shares. We also consider a robust variant where the secret should be

correctly reconstructed even if at most d shares are corrupted by an adversary, possibly
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in an adaptive fashion. We formalize this below.

Definition 2.1.1 (secret sharing). An (n, k) secret sharing scheme with message alp-

habet Σ0, message length m, and share alphabet Σ is a pair of functions (Share, Rec),

where Share : Σm
0 → Σn is probabilistic and Rec : Σn → Σm

0 is deterministic, which

satisfy the following properties.

• Privacy: For a privacy threshold k, the adversary can choose a sequence

W = (w1, . . . , wk) ∈ [n]k of share indices to observe, either adaptively (where

each wi depends on previously observed shares Share(x)w1 , . . . , Share(x)wi−1)

or non-adaptively (where W is picked in one shot). We say that the scheme

is ϵ-private if for every such strategy, there is a share distribution D over Σk

such that for every secret message x ∈ Σm
0 , Share(x)W is ϵ-close (in statistical

distance) to D. We refer to ϵ as the privacy error and say that the scheme has

perfect privacy if ϵ = 0.

• Reconstruction: We say that the scheme has reconstruction error η if for every

x ∈ Σm
0 ,

Pr[Rec(Share(x)) = x] ≥ 1− η.

We say the scheme has perfect reconstruction if η = 0.

We are also interested in robust secret sharing, where an adversary is allowed to

modify at most d shares.

• Robustness: For any secret x ∈ Σm
0 , let Y = Share(x). Consider an arbitrary

adversary who (adaptively or non-adaptively) observes d shares and can then

arbitrarily change these d shares, transforming Y to Y′. The scheme is d-robust
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if for every such adversary,

Pr[Rec(Y′) = x] ≥ 1− η.

If the share alphabet and the message alphabet are both Σ, then we simply say the

alphabet of the scheme is Σ. By saying that a secret sharing scheme is in AC0, we

mean that both the sharing function and the reconstruction function can be computed

by (uniform) AC0 circuits.

A recent work of Bogdanov et al. [Bog+16] considers the complexity of sharing

and reconstructing secrets. The question is motivated by the observation that almost

all known secret sharing schemes, including the well known Shamir’s scheme [Sha79],

require the computation of linear functions over finite fields, and thus cannot be

implemented in the class AC0 (i.e., constant depth circuits). Thus a natural question

is whether there exist secret sharing schemes in AC0 with good parameters. In the

case of threshold secret sharing, Bogdanov et. al [Bog+16] showed a relation between

the approximate degree1 of a function and the privacy threshold of a secret sharing

scheme. Using this and known approximate degree lower bounds, they obtained

several secret sharing schemes with sharing and reconstruction functions computable

in AC0. However, to achieve a large privacy threshold (e.g., k = Ω(n)) their

construction needs to use a large alphabet (e.g., size 2poly(n)). In the case of binary

alphabet, they can only achieve privacy threshold Ω(
√

n) with perfect reconstruction

and privacy threshold Ω((n/ log n)2/3) with constant reconstruction error η < 1/2.

This limit is inherent without improving the best known approximate degree of an

AC0 function [BT17]. Furthermore, their schemes only share one bit, and a naive
1The approximate degree of a Boolean function is the lowest degree of a real polynomial that can

approximate the function within, say, an additive difference of 1/3 on every input.
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approach of sharing more bits by repeating the scheme multiple times will lead to a

bad information rate. This leaves open the question of improving these parameters.

Ideally, we would like to share many bits (e.g., Ω(n)), obtain a large privacy threshold

(e.g., Ω(n)), and achieve perfect reconstruction and small alphabet size at the same

time.

In order to improve theAC0 secret sharing schemes from [Bog+16], we relax their

perfect privacy requirement and settle for the notion of ϵ-privacy from Definition 2.1.1.

(This relaxation was recently considered in [BW17], see discussion below.) Note that

this relaxation is necessary to improve the privacy threshold of AC0 secret sharing

schemes, unless one can obtain better approximate degree lower bounds of an explicit

AC0 function (as [Bog+16] showed that an explicit AC0 secret sharing scheme with

privacy threshold k and perfect privacy also implies an explicit function in AC0 with

approximate degree at least k). Like most schemes in [Bog+16], we only require that

the secret can be reconstructed by all n parties. On the other hand, we always require

perfect reconstruction. We show that under this slight relaxation, we can obtain much

better secret sharing schemes in AC0. For an adaptive adversary, we can achieve both

a constant information rate and a large privacy threshold (k = Ω(n)) over a binary

alphabet. In addition, our privacy error is exponentially small. Specifically, we have

the following theorem.

Theorem 2.1.2 (adaptive adversary). For every n ∈ N and constant γ ∈ (0, 1/4),

there exists an explicit (n, Ω(n)) secret sharing scheme in AC0 with alphabet {0, 1},

secret length m = Ω(n), adaptive privacy error 2−Ω(n
1
4−γ) and perfect recon-

struction.

Note that again, by using randomization and allowing for a small privacy error, we
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can significantly improve both the privacy threshold and the information rate, while

also making the scheme much more efficient by using a smaller alphabet.

Remark 2.1.3. We note that a recent paper by Bun and Thaler [BT17] gave improved

lower bounds for the approximate degree of AC0 functions. Specifically, for any

constant α > 0 they showed an explicitAC0 function with approximate degree at least

n1−α, and by the relation established in [Bog+16] this also gives a secret sharing

scheme in AC0 with privacy threshold n1−α. However, our results are stronger in

the sense that we can achieve threshold Ω(n), and furthermore we can achieve

perfect reconstruction while the secret sharing scheme in [BT17] only has constant

reconstruction error.

Remark 2.1.4. Our construction of AC0 secret sharing schemes is actually a general

transformation and can take any such scheme in [Bog+16] or [BT17] as the starting

point. The error 2−Ω(n
1
4−γ) in Theorem 2.1.2 comes from our use of the one-in-a-box

function [MP88], which has approximate degree n1/3. We can also use the new AC0

function of [BT17] with approximate degree n1−α, which will give us an error of

2−Ω(n
1
2−γ) but the reconstruction error will become a constant. We note that the

privacy error of our construction is also close to optimal, without further improvement

on the lower bounds of approximate degree of AC0 functions. This is because a

privacy error of 2−s will imply an AC0 function of approximate degree Ω(s/ log n).

Thus if one can achieve a sufficiently small privacy error (e.g., 2−Ω(n)), then this will

give an improved approximate degree lower bound for an AC0 function.

A very recent paper by Bogdanov and Williamson [BW17] considered a similar

relaxation as ours. Specifically, they showed how to construct two distributions over n

bits that are (k, ϵ)-wise indistinguishable, but can be distinguished with advantage 1−
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η by some AC0 function. Here (k, ϵ)-wise indistinguishable means that if looking at

any subset of k bits, the two distributions have statistical distance at most ϵ. Translating

into the secret sharing model, this roughly implies an AC0 secret sharing scheme

with binary alphabet, privacy threshold k, privacy error ϵ and reconstruction error η.

Bogdanov and Williamson [BW17] obtained several results in this case. Specifically,

they showed a pair of such distributions for any k ≤ n/2 with ϵ = 2−Ω(n/k),

that can be distinguished with η = Ω(1) by the OR function; or for any k with

ϵ = 2−Ω((n/k)1−1/d), that can be distinguished with η = 0 by a depth-d AND-OR

tree.

We note the following important differences between our results and the corre-

sponding results by Bogdanov and Williamson [BW17]: first, the results in [BW17],

in the language of secret sharing, only consider a 1-bit secret, while our results can

share Ω(n) bits with the same share size. Thus our information rate is much larger

than theirs. Second, we can achieve a privacy threshold of k = Ω(n) while simulta-

neously achieving an exponentially small privacy error of ϵ = 2−nΩ(1)
and perfect

reconstruction (η = 0). In contrast, the results in [BW17], when going into the range

of k = Ω(n), only have constant privacy error. In short, our results are better than

the results in [BW17], in the sense that we can simultaneously achieve asymptotically

optimal information rate and privacy threshold, exponentially small privacy error and

perfect reconstruction. As a direct corollary, we have the following result, which is

incomparable to the results in [BW17].

Corollary 2.1.5. There exists a constant α > 0 such that for every n and k ≤ αn,

there exists a pair of (k, 2−nΩ(1)
)-wise indistinguishable distributions X, Y over

{0, 1}n and an AC0 function D such that Pr[D(X)]− Pr[D(Y)] = 1.
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Next, we extend our AC0 secret sharing schemes to the robust case, where the

adversary can tamper with several parties’ shares. Our goal is to simultaneously

achieve a large privacy threshold, a large tolerance to errors, a large information rate

and a small alphabet size. We can achieve a constant information rate with privacy

threshold and error tolerance both Ω(n), with constant size alphabet, exponentially

small privacy error and polynomially small reconstruction error. However, here we can

only handle a non-adaptive adversary. Specifically, we have the following theorem.

Theorem 2.1.6 (non-adaptive adversary). For every n ∈N, every η = 1
poly(n) , there

exists an explicit (n, Ω(n)) robust secret sharing scheme in AC0 with share alphabet

{0, 1}O(1), message alphabet {0, 1}, message length m = Ω(n), non-adaptive

privacy error 2−nΩ(1)
, non-adaptive robustness Ω(n) and reconstruction error η.

2.1.2 Error correcting codes for additive channels in AC0

Robust secret sharing schemes are natural generalizations of error correcting codes.

Thus our robust secret sharing schemes in AC0 also give error correcting codes

with randomized AC0 encoding and deterministic AC0 decoding. The model of

our error correcting codes is the same as that considered by Guruswami and Smith

[GS16]: stochastic error correcting codes for additive channels. Here, the code has

a randomized encoding function and a deterministic decoding function, while the

channel can add an arbitrary error vector e ∈ {0, 1}n of Hamming weight at most

ρn to the transmitted codeword of length n. As in [GS16], the error may depend on

the message but crucially does not depend on the randomness used by the encoder.

Formally, we have the following definition.
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Definition 2.1.7. For any n, m ∈N, any ρ, ϵ > 0, an (n, m, ρ) stochastic binary er-

ror correcting code (Enc, Dec) with randomized encoding function Enc : {0, 1}m →

{0, 1}n, deterministic decoding function Dec : {0, 1}n → {0, 1}m and decoding

error ϵ, is such that for every x ∈ {0, 1}m, every e = (e1, . . . , em) ∈ {0, 1}m with

hamming weight at most ρn,

Pr[Dec(Enc(x) + e) = x] ≥ 1− ϵ.

An (n, m, ρ) stochastic error correcting code (Enc, Dec) can be computed byAC0

circuits if both Enc and Dec can be computed by AC0 circuits.

Guruswami and Smith [GS16] constructed such codes that approach the Shannon

capacity 1− H(ρ). Their encoder and decoder run in polynomial time and have

exponentially small decoding error. Here, we aim at constructing such codes with

AC0 encoder and decoder. In a different setting, Goldwasser et. al [Gol+07] gave

a construction of locally decodable codes that can tolerate a constant fraction of

errors and haveAC0 decoding. Their code has deterministic encoding but randomized

decoding. By repeating the local decoder for each bit for O(log n) times and taking

majority, one can decode each bit in AC0 with error probability 1/poly(n) and thus

by a union bound the original message can also be decoded with error probability

1/poly(n). However we note that the encoding function of [Gol+07] is not in AC0,

and moreover their message rate is only polynomially small. In contrast, our code

has constant message rate and can tolerate a constant fraction of errors (albeit in

a weaker model) when the decoding error is 1/poly(n) or even 2−poly log(n). The

rate and tolerance are asymptotically optimal. We can achieve even smaller error

(2−Ω(r/ log n)) with message rate 1/r. Furthermore both our encoding and decoding
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are in AC0. Specifically, we have the following theorems.

Theorem 2.1.8 (error-correcting codes). For any n ∈N and ϵ = 2−poly log(n), there

exists an (n, Ω(n), Ω(1)) stochastic binary error correcting code with decoding error

ϵ, which can be computed by AC0 circuits.

Theorem 2.1.9 (error-correcting codes with smaller decoding error). For any n, r ∈

N, there exists an (n, m = Ω(n/r), Ω(1)) stochastic binary error correcting code

with decoding error 2−Ω(r/ log n), which can be computed by AC0 circuits.

Note that Theorem 2.1.9 is interesting mainly in the case where r is at least

poly log n.

Remark 2.1.10. We note that, without randomization, it is well known that deter-

ministic AC0 circuits cannot compute asymptotically good codes [LV11]. Thus the

randomization in our AC0 encoding is necessary here. For deterministic AC0 deco-

ding, only very weak lower bounds are known. In particular, Lee and Viola [LV15]

showed that any depth-c AC0 circuit with parity gates cannot decode beyond error

(1/2− 1/O(log n)c+2)d, where d is the distance of the code. While the repetition

code can be decoded in AC0 with a near-optimal fraction of errors by using approxi-

mate majority, obtaining a similar positive result for codes with a significantly better

rate is open.

2.1.3 Secure broadcasting with an external adversary

We apply our ideas and technical approach to the following flavor of secure broadcas-

ting in the presence of an adversary. The problem can be viewed as a generalization of

a one-time pad encryption. In a one-time pad encryption, two parties share a secret key
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which can be used to transmit messages with information-theoretic security. Suppose

that each party wants to transmit an m-bit string to the other party. If an external

adversary can see the entire communication, then it is well known that to keep both

messages secret, the parties must share a secret key of length at least 2m. This can be

generalized to the case of n parties, where we assume that they have access to a public

broadcast channel, and each party wants to securely communicate an m-bit string

to all other parties. This problem can be useful, for example, when n collaborating

parties want to compute a function of their secret inputs without revealing the inputs

to an external adversary. Again, if the adversary can see the entire communication,

then the parties need to share a secret key of length at least nm.

Now, what if we relax the problem by restricting the adversary’s power? Suppose

that instead of seeing the entire communication, the adversary can only see some

fraction of the communicated messages. Can we get more efficient solutions? We

formally define this model below, requiring not only the secrecy of the inputs but also

correctness of the outputs in the presence of tampering with a bounded fraction of

messages.

Definition 2.1.11. Let n, m ∈N and α, ϵ > 0. An (n, m, α, ϵ, η)-secure broadcasting

protocol is an n-party protocol with the following properties. Initially, each party i

has a local input xi ∈ {0, 1}m and the parties share a secret key. The parties can

then communicate over a public broadcast channel. At the end of the communication,

each party computes a local output. We require the protocol to satisfy the following

security properties.

• (Privacy) For any adversarial observation W which observes at most 1− α

fraction of the messages, there is a distribution D, such that for any inputs
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x = (x1, . . . , xn) ∈ ({0, 1}m)n leading to a sequence of messages Y, the

distribution YW of observed messages is ϵ-close to D.

• (Robustness) For any adversary that corrupts at most 1− α fraction of the

messages, and any n-tuple of inputs x = (x1, . . . , xn) ∈ ({0, 1}m)n, all n

parties can reconstruct x correctly with probability at least 1− η after the

communication.

The naive solution of applying one-time pad still requires a shared secret key

of length at least nm, since otherwise even if the adversary only sees part of the

communication, he may learn some information about the inputs. However, by using

randomization and allowing for a small error, we can achieve much better performance.

Specifically, we have the following theorem.

Theorem 2.1.12 (secure broadcasting). For any n, m, r ∈N with r ≤ m, there exists

an explicit (n, m, α = Ω(1), n2−Ω(r), n2−Ω(r) + nm2−Ω(m/r)) secure broadcasting

protocol with communication complexity O(nm) and shared secret key of length

O(r log(nr)).

2.1.4 Overview of the techniques

Secret sharing. Here we give an overview of the techniques used in our constructi-

ons of AC0 secret sharing schemes and error correcting codes. Our constructions

combine several ingredients in pseudorandomness and combinatorics in an innova-

tive way, so before describing our constructions, we will first describe the important

ingredients used.
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The secret sharing scheme in [Bog+16]. As mentioned before, Bogdanov et. al

[Bog+16] were the first to consider secret sharing schemes in AC0. Our constructions

will use one of their schemes as the starting point. Specifically, since we aim at perfect

reconstruction, we will use the secret sharing scheme in [MP88] based on the so called

“one-in-a-box function" or Minsky-Papert CNF function. This scheme can share one

bit among n parties, with binary alphabet, privacy threshold Ω(n1/3) and perfect

reconstruction.

Random permutation. Another important ingredient, as mentioned before, is

random permutation. Applying a random permutation, in many cases, reduces worst

case errors to random errors, and the latter is much more convenient to handle. This

property has been exploited for improving the efficiency of error correcting codes in

several previous work, such as the error correcting codes by Smith [Smi07], Guru-

swami and Smith [GS16], and Hemenway et al. [Hem+11]. We note that a random

permutation from [n] to [n] can be computed in AC0 [MV91; Hag91; Vio12].

K-wise independent generators. The third ingredient of our construction is the

notion of k-wise independent pseudorandom generators. This is a function that

stretches some r uniform random bits to n bits such that any subset of k bits is uniform.

Such generators are well studied, while for our constructions we need such generators

which can be computed by AC0 circuits. This requirement is met by using k-wise

independent generators based on unique neighbor expander graphs, such as those

constructed by Guruswami et. al [GUV09] which use seed length r = kpoly log(n).

107



Secret sharing schemes based on error correcting codes. Using asymptotically

good linear error correcting codes, one can construct secret sharing schemes that

simultaneously achieve constant information rate and privacy threshold Ω(n) (e.g.,

[Che+07]). However, certainly in general these schemes are not in AC0 since they

need to compute linear functions such as parity. For our constructions, we will use

these schemes with a small block length (e.g., O(log n) or poly log(n)) such that

parity with such input length can be computed by constant depth circuits. For robust

secret sharing, we will also be using robust secret sharing schemes based on codes,

with constant information rate, privacy threshold and tolerance Ω(n) (e.g., [Che16]),

with a small block length.

The constructions. We can now give an informal description of our constructions.

As mentioned before, our construction is a general transformation and can take any

scheme in [Bog+16] or [BT17] as the starting point. A specific scheme of interest is the

one in [Bog+16] based on the one-in-a-box function, which has perfect reconstruction.

Our goal then is to keep the property of perfect reconstruction, while increasing the

information rate and privacy threshold. One naive way to share more bits is to repeat

the scheme several times, one for each bit. Of course, this does not help much in

boosting the information rate. Our approach, on the other hand, is to use this naive

repeated scheme to share a short random seed R. Suppose this gives us n parties

with privacy threshold k0. We then use R and the k-wise independent generator G

mentioned above to generate an n-bit string Y, and use Y to share a secret X by

computing Y⊕ X.

Note that now the length of the secret X can be as large as n and thus the informa-

tion rate is increased to 1/2. To reconstruct the secret, we can use the first n parties to
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reconstruct R, then compute Y and finally X. Note that the whole computation can be

done in AC0 since the k-wise independent generator G is computable in AC0. The

privacy threshold, on the other hand, is the minimum of k0 and k. This is because if an

adversary learns nothing about R, then Y is k-wise independent and thus by looking

at any k shares in Y⊕ X, the adversary learns nothing about X. This is the first step

of our construction.

In the next step, we would like to boost the privacy threshold to Ω(n) while

decreasing the information rate by at most a constant factor. Our approach for this

purpose can be viewed as concatenating a larger outer protocol with a smaller inner

protocol, which boosts the privacy threshold while keeping the information rate and

the complexity of the whole protocol. More specifically, we first divide the parties

obtained from the first step into small blocks, and then for each small block we

use a good secret sharing scheme based on error correcting codes. Suppose the

adversary gets to see a constant fraction of the shares, then on average for each small

bock the adversary also gets to see only a constant fraction of the shares. Thus, by

Markov’s inequality and adjusting the parameters, the adversary only gets to learn the

information from a constant fraction of the blocks. However, this is still not enough

for us, since the outer protocol only has threshold nΩ(1).

We solve this problem by using a threshold amplification technique. This is one of

our main innovations, and a key step towards achieving both constant information rate

and privacy threshold Ω(n) without sacrificing the error. On a high level, we turn the

inner protocol itself into another concatenated protocol (i.e., a larger outer protocol

combined with a smaller inner protocol), and then apply a random permutation.

Specifically, we choose the size of the block mentioned above to be something
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like O(log2 n), apply a secret sharing scheme based on asymptotically good error

correcting codes and obtain O(log2 n) shares. We then divide these shares further

into O(log n) smaller blocks each of size O(log n) (alternatively, this can be viewed

as a secret sharing scheme using alphabet {0, 1}O(log n)), and now we apply a random

permutation of these smaller blocks. If we are to use a slightly larger alphabet, we

can now store each block together with its index before the permutation as one share.

Note that we need the index information when we try to reconstruct the secret, and

the reconstruction can be done in AC0.

Now, suppose again that the adversary gets to see some small constant fraction

of the final shares, then since we applied a random permutation, we can argue that

each smaller block gets learned by the adversary only with some constant probability.

Thus, in the larger block of size O(log2 n), by a Chernoeff type bound, except with

probability 1/poly(n), we have that only some constant fraction of the shares are

learned by the adversary. Note that here by using two levels of blocks, we have

reduced the probability that the adversary learns some constant fraction of the shares

from a constant to 1/poly(n), which is much better for the outer protocol as we shall

see soon. By adjusting the parameters we can ensure that the number of shares that

the adversary may learn is below the privacy threshold of the larger block and thus the

adversary actually learns nothing. Now, going back to the outer protocol, we know that

the expected number of large blocks the adversary can learn is only n/poly(n); and

again by a Chernoff type bound, except with probability 2−nΩ(1)
, the outer protocol

guarantees that the adversary learns nothing. This gives us a secret sharing scheme

with privacy threshold Ω(n) while the information rate is still constant since we only

increased the number of shares by a constant factor. With the O(log n) size alphabet,
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we can actually achieve privacy threshold (1− α)n′ for any constant 0 < α < 1,

where n′ is the total number of final parties.

To reduce to the binary alphabet, we can apply another secret sharing scheme

based on error correcting codes to each share of length O(log n). In this case then

we won’t be able to achieve privacy threshold (1− α)n′, but we can achieve βn′ for

some constant β > 0. This is because if the adversary gets to see a small constant

fraction of the shares, then by Markov’s inequality only for some constant fraction of

the smaller blocks the adversary can learn some useful information. Thus the previous

argument still holds.

As described above, our general construction uses two levels of concatenated

protocols, which corresponds to two levels of blocks. The first level has larger blocks

of size O(log2 n), where each larger block consists of O(log n) smaller blocks of size

O(log n). We use this two-level structure to reduce the probability that an adversary

can learn some constant fraction of shares, and this enables us to amplify the privacy

threshold to Ω(n). We choose the smaller block to have size O(log n) so that both

a share from the larger block with length O(log n) and its index information can be

stored in a smaller block. This ensures that the information rate is still a constant even

if we add the index information. Finally, the blocks in the second level are actually

the blocks that go into the random permutation. This general strategy is one of our

main contributions and we hope that it can find other applications.

The above construction gives anAC0 secret sharing scheme with good parameters.

However, it is not a priori clear that it works for an adaptive adversary. In standard

secret sharing schemes, a non-adaptive adversary and an adaptive adversary are almost

equivalent since usually we have privacy error 0. More specifically, a secret sharing
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scheme for a non-adaptive adversary with privacy error ϵ and privacy threshold k is

also a secret sharing scheme for an adaptive adversary with privacy error nkϵ and

privacy threshold k. However in ourAC0 secret sharing scheme the error ϵ is not small

enough to kill the nk factor. Instead, we use the property of the random permutation

to argue that our final distribution is essentially symmetric; and thus informally no

matter how the adversary picks the shares to observe adaptively, he will not gain any

advantage. This will show that our AC0 secret sharing scheme also works for an

adaptive adversary.

To extend to robust secret sharing, we need to use robust secret sharing schemes

instead of normal schemes for the first and second level of blocks. Here we use the

nearly optimal robust secret sharing schemes based on various codes by Cheraghchi

[Che16]. Unfortunately since we need to use it on a small block length of O(log n),

the reconstruction error becomes 1/poly(n). Another tricky issue here is that an

adversary may modify some of the indices. Note that we need the correct index

information in order to know which block is which before the random permutation.

Suppose the adversary does not modify any of the indices, but only modify the shares,

then the previous argument can go through exactly when we change the secret sharing

schemes based on error correcting codes into robust secret sharing schemes. However,

if the adversary modifies some indices, then we could run into situations where more

than one block have the same index and thus we cannot tell which one is correct (and

it’s possible they are all wrong). To overcome this difficulty, we store every index

multiple times among the blocks in the second level. Specifically, after we apply the

random permutation, for every original index we randomly choose O(log n) blocks in

the second level to store it. As the adversary can only corrupt a small constant fraction
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of the blocks in the second level, for each such block, we can correctly recover its

original index with probability 1− 1/poly(n) by taking the majority of the backups of

its index. Thus by a union bound with probability 1− 1/poly(n) all original indices

can be correctly recovered. In addition, we use the same randomness for each block to

pick the O(log n) blocks, except we add a different shift to the selected blocks. This

way, we can ensure that for each block the O(log n) blocks are randomly selected and

thus the union bound still holds. Furthermore the randomness used here is also stored

in every block in the second level, so that we can take the majority to reconstruct it

correctly. In the above description, we sometimes need to take majority for n inputs,

which is not computable in AC0. However, we note that by adjusting parameters we

can ensure that at least say 2/3 fraction of the inputs are the same, and in this case it

suffices to take approximate majority, which can be computed in AC0 [Vio09].

For our error correcting codes, the construction is a simplified version of the robust

secret sharing construction. Specifically, we first divide the message itself into blocks

of the first level, and then encode every block using an asymptotically good code

and divide the obtained codeword into blocks of the second level. Then we apply

a random permutation to the blocks of the second level as before, and we encode

every second level block by another asymptotically good code. In short, we replace

the above mentioned robust secret sharing schemes by asymptotically good error

correcting codes. We use the same strategy as in robust secret sharing to identify

corrupted indices. Using a size of O(log2 n) for blocks in the first level will result in

decoding error 1/poly(n), while using larger block size (e.g., poly log(n)) will result

in decoding error 2−poly log(n). This gives Theorem 2.1.8. To achieve even smaller

error, we can first repeat each bit of the message r times for some parameter r. This
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serves as an outer error correcting code, which can tolerate up to r/3 errors, and can

be decoded in in AC0 by taking approximate majority. The two-level block structure

and the argument we described before can now be used to show a smaller decoding

error of 2−Ω(r/ log2 n). This gives Theorem 2.1.9.

Comparison with related works on efficient error-correcting codes. As discus-

sed above, our construction of error correcting codes shares some common ideas with

earlier constructions of Smith [Smi07], Guruswami and Smith [GS16], and Hemen-

way et al. [Hem+11]. All these constructions have a common structure which has a

“control-information" part and a “payload” part, where the payload part encodes the

message using some randomness that is encoded in the control-information part. The

general strategy to encode the payload part is to first encode the message, then do a

random permutation over all the symbols, and finally encode again. The idea of using

random permutations to randomize errors and thereby improve efficiency was also

used by some earlier works such as [BBR88; Lip94]. Here we are using fully random

permutations as in [BBR88], whereas [Smi07; GS16] used k-wise independent permu-

tations and [Lip94; Hem+11] assumed the existence of a pseudorandom generator for

permutations. Our goals are quite different from those considered in [Smi07; GS16;

Hem+11]. The goal of [Smi07; GS16] was to optimize standard code parameters, so

some components in their constructions are not local or in AC0. Hemenway et. al.

[Hem+11] mainly focused on locally decodable codes in the computational secure

setting so they use cryptographic primitives (based on cryptographic assumptions)

such as semantically secure public-key encryption and pseudorandom generators.

Their construction cannot be in AC0 unless they use stronger assumptions such that

those cryptographic primitives can be computed in AC0. Our construction focuses
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on the information theoretic secure setting. We observe that the payload part can be

realized in AC0 if the encodings, before and after the permutation, are conducted

over small blocks, though this only gives decoding error quasi-polynomially small.

Finally, there is a technical difference between our encoding of the control information

and the one used in prior works. Here we use a new index backup technique that be

implemented (for both encoding and decoding) in AC0 and can be used to reconstruct

all the indices under non-adaptive adversaries. The analysis for the backup technique

argues that a non-adaptive adversary corrupting a small constant fraction of the shares

can only corrupt at most 1/3 fraction of the backups for one index, thus one can

recover every index correctly by taking the approximate majority.

Secure broadcasting. We turn to describe the ideas behind our solution to the

secure broadcasting problem from Section 2.1.3. Rather than use the naive approach

of one-time pad, here a more clever solution is to use secret sharing (assuming that

each party also has access to local private random bits). By first applying a secret

sharing scheme to the input and then broadcasting the shares, a party can ensure that

if the adversary only gets to see part of the messages (below the secrecy threshold),

then the adversary learns nothing. In this case the parties do not even need shared

secret key. However, one problem with this solution is that the adversary cannot be

allowed to see more than 1/n fraction of the messages, since otherwise he can just

choose the messages broadcasted from one particular party, and then the adversary

learns the input of that party. This is the place where randomization comes into play.

If in addition, we allow the parties to share a small number of secret random bits,

then the parties can use this secret key to randomly permute the order in which the

they broadcast their messages (after applying the secret sharing scheme). Since the
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adversary does not know the secret key, we can argue that with high probability only a

small fraction of each party’s secret shares are observed. Therefore, by the properties

of secret sharing we can say that the adversary learns almost nothing about each

party’s input. The crucial features of this solution solution are that first, the adversary

can see some fixed fraction of messages, which is independent of the number of

parties n (and thus can be much larger than 1/n). Second, the number of shared secret

random bits is much smaller than the naive approach of one-time pad. Indeed, as we

show in Theorem 2.7.11, to achieve security parameter roughly r it is enough for the

parties to share O(r(log n + log r)) random bits. Finally, by using an appropriate

secret sharing scheme, the communication complexity of our protocol for each party

is O(m), which is optimal up to a constant factor. Note that here, by applying random

permutation and allowing for a small probability of error, we simultaneously improve

the security threshold (from 1/n to Ω(1)) and the length of the shared secret key

(from nm to O(r(log n + log r))).

2.1.5 Discussion and open problems.

In this chapter we continue the line of work on applying randomization and allowing

a small failure probability for minimizing the computational complexity of crypto-

graphic primitives and related combinatorial objects while maximizing the level of

achievable security. In the context of secret sharing in AC0, we show how to get

much better parameters by allowing an (exponentially) small privacy error. We note

that achieving exponentially small error here is non-trivial. In fact, if we allow for a

larger error then (for a non-adaptive adversary) there is a simple protocol for AC0

secret sharing: one can first take a random seed R of length Ω(n), and then apply
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a deterministic AC0 extractor for bit-fixing sources to obtain an output Y of length

Ω(n). The secret X can then be shared by computing the parity of Y and X. This

way, one can still share Ω(n) bits of secret, and if the adversary only learns some

small fraction of the seed, then the output Y is close to uniform by the property of

the extractor, and thus X remains secret. However, by the lower bound of [CL16],

the error of such AC0 extractors (or even for the stronger seeded AC0 extractors)

is at least 2−poly log(n). Therefore, one has to use additional techniques to achieve

exponentially small error. We also extended our techniques to robust AC0 secret

sharing schemes, stochastic error correcting codes for additive channels, and secure

broadcasting. Several intriguing open problems remain.

First, in our robust AC0 secret sharing schemes, we only achieve reconstruction

error 1/poly(n). This is because we need to use existing robust secret sharing

schemes on a block of size O(log n). Is it possible to avoid this and make the

error exponentially small? Also, again in this case we can only handle non-adaptive

adversaries, and it would be interesting to obtain a robust AC0 secret sharing scheme

that can handle adaptive adversaries. These questions are open also forAC0 stochastic

error correcting codes.

Second, as we mentioned in Remark 2.1.4 (see also [BW17]), a sufficiently small

privacy error in an AC0 secret sharing scheme would imply an improved approximate

degree lower bound for AC0 functions. Is it possible to improve our AC0 secret

sharing scheme, and use this approach to obtain better approximate degree lower

bound for AC0 functions? This seems like an interesting direction.

In addition, the privacy threshold amplification technique we developed, by using

two levels of concatenated protocols together with a random permutation, is quite
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general and we feel that it should have applications elsewhere. We note that the

approach of combining an “outer scheme” with an “inner scheme” to obtain the best

features of both has been applied in many previous contexts. For instance, it was used

to construct better codes [Alo+92a; GS16] or better secure multi-party computation

protocols [Dam+08]. However, in almost all of these previous applications, one

starts with an outer scheme with a very good threshold (e.g., the Reed-Solomon code

which has a large distance) and the goal is to use the inner scheme to inherit this

good threshold while improving some other parameters (such as alphabet size). Thus,

one only needs one level of concatenation. In our case, instead, we start with an

outer scheme with a very weak threshold (e.g., the one-in-a-box function which only

has privacy threshold n1/3). By using two levels of concatenated protocols together

with a random permutation, we can actually amplify this threshold to Ω(n) while

simultaneously reducing the alphabet size. This is an important difference to previous

constructions and one of our main contributions. We hope that these techniques can

find other applications in similar situations.

Finally, since secret sharing schemes are building blocks of many other important

cryptographic applications, it is an interesting question to see if the low-complexity

secret sharing schemes we developed here can be used to reduce the computational

complexity of other cryptographic primitives.

2.1.6 Chapter organization.

We introduce some notation and useful results in Section 2.2. In Section 2.3 we

give our privacy threshold amplification techniques. In Section 2.4, we show how to

increase the information rate using k-wise independent generators. Combining all the
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above techniques, our final construction of AC0 secret sharing schemes is given in

Section 2.5. Instantiations appear in Section 2.6. Finally, we give our constructions of

robust AC0 secret sharing schemes, AC0 error correcting codes, and secure broadcast

protocols in Section 2.7.

2.2 Preliminaries

Let | · | denote the size of the input set or the absolute value of an input real number,

based on contexts.

For any set I of integers, for any r ∈ Z, we denote r + I or I + r to be {i′ : i′ =

i + r, i ∈ I}.

We use Σ to denote the alphabet. Readers can simply regard Σ as {0, 1}l for

some l ∈ N. For σ ∈ Σ, let σn = (σ, σ, . . . , σ) ∈ Σn. For any sequence s =

(s1, s2, . . . , sn) ∈ Σn and sequence of indices W = (w1, . . . , wt) ∈ [n]t with t ≤ n,

let sW be the subsequence (sw1 , sw2 , . . . , swt).

For any two sequences a ∈ Σn, b ∈ Σ′n
′

where a = (a1, a2, . . . , an), b =

(b1, b2, . . . , bn′), let a ◦ b = (a1, . . . , an, b1, . . . , bn′) ∈ Σn × Σ′n
′
.

Let supp(·) denote the support of the input random variable. Let I(·) be the

indicator function.

Definition 2.2.1 (Statistical Distance). The statistical distance between two random

variables X and Y over Σn for some alphabet Σ, is SD(X, Y) which is defined as

follows,

SD(X, Y) = 1/2 ∑
a∈Σn
|Pr[X = a]− Pr[Y = a]|.

Here we also say that X is SD(X, Y)-close to Y.
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Lemma 2.2.2 (Folklore Properties of Statistical Distance [AB09]). 1. (Triangle In-

equality) For any random variables X, Y, Z over Σn, we have

SD(X, Y) ≤ SD(X, Z) + SD(Y, Z).

2. ∀n, m ∈N, any deterministic function f : {0, 1}n → {0, 1}m and any random

variables X, Y over Σn, SD( f (X), f (Y)) ≤ SD(X, Y).

We will use the following well known perfect XOR secret sharing scheme.

Theorem 2.2.3 (Folklore XOR secret sharing). For any finite field F, define Share+ :

F→ Fn and Rec+ : Fn → F, such that for any secret x ∈ F, Share+(x) = y such

that y is uniformly chosen in Fn conditioned on ∑i∈[n] yi = x and Rec+ is taking the

sum of its input.

(Share+, Rec+) is an (n, n− 1) secret sharing scheme with share alphabet and

message alphabet both being F, message length 1, perfect privacy and reconstruction.

Definition 2.2.4 (Permutation). For any n ∈N, a permutation over [n] is defined to

be a bijective function π : [n]→ [n].

Definition 2.2.5 (k-wise independence). For any set S, let X1, . . . , Xn be random

variables over S. They are k-wise independent (and uniform) if any k of them are

independent (and uniformly distributed).

For any r, n, k ∈N, a function g : {0, 1}r → Σn is a k-wise (uniform) indepen-

dent generator, if for g(U) = (Y1, . . . , Yn), Y1, . . . , Yn are k-wise independent (and

uniform). Here U is the uniform distribution over {0, 1}r.

Definition 2.2.6 ([GUV09] ). A bipartite graph with N left vertices, M right vertices

and left degree D is a (K, A) expander if for every set of left vertices S ⊆ [N] of size
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K, we have |Γ(S)| > AK. It is a (≤ Kmax, A) expander if it is a (K, A) expander

for all K ≤ Kmax.

Here ∀x ∈ [N], Γ(x) outputs the set of all neighbours of x. It is also a set

function which is defined accordingly. Also ∀x ∈ [N], d ∈ [D], the function

Γ : [N]× [D]→ [M] is such that Γ(x, d) is the dth neighbour of x.

Theorem 2.2.7 ([GUV09] ). For all constants α > 0, for every N ∈ N, Kmax ≤

N, and ϵ > 0, there exists an explicit (≤ Kmax, (1− ϵ)D) expander with N left

vertices, M right vertices, left degree D = O((log N)(log Kmax)/ϵ)1+1/α and

M ≤ D2K1+α
max. Here D is a power of 2.

Definition 2.2.8 (AC0). AC0 is the complexity class which consists of all families of

circuits having constant depth and polynomial size. The gates in those circuits are

NOT, AND and OR, where AND gates and OR gates have unbounded fan-in.

For any circuit C, the size of C is denoted as size(C). The depth of C is denoted

as depth(C). Usually when we talk about computations computable by AC0 circuits,

we mean uniform AC0 circuits, if not stated specifically.

Lemma 2.2.9 (Forklore properties of AC0 circuits [AB09; Gol+07]). The following

are well known properties of AC0 circuits.

For every n ∈N,

1. ([AB09] forklore) every boolean function f : {0, 1}l=Θ(log n) → {0, 1} can be

computed by an AC0 circuit of size poly(n) and depth 2.

2. ([Gol+07]) for every c ∈ N, every integer l = Θ(logc n), if the function

fl : {0, 1}l → {0, 1} can be computed by a circuit with depth O(log l) and

121



size poly(l), then it can be computed by a circuit with depth c + 1 and size

poly(n).

Remark 2.2.10. We briefly describe the proof implied in [Gol+07] for the second

property of our Lemma 2.2.9. As there exists an NC1 complete problem which is

downward self-reducible, the function fl can be reduced to (AC0 reduction) a function

with input length O(log n). By Lemma 2.2.9 part 1, and noting that the reduction

here is an AC0 reduction, fl can be computed by an AC0 circuit.

2.3 Random Permutation

2.3.1 Increasing the privacy threshold

The main technique we use here is random permutation.

Lemma 2.3.1 ([MV91; Hag91; Vio12]). For any constant c ≥ 1, there exists an

explicit AC0 circuit C : {0, 1}r → [n]n with size poly(n), depth O(1) and r =

O(nc+1 log n) such that with probability 1− 2−nc
, C(Ur) gives a uniform random

permutation of [n]; When this fails the outputs are not distinct.

In the following we give a black boxAC0 transformation of secret sharing schemes

increasing the privacy threshold.

Construction 2.3.2. For any n, k, m ∈ N with k ≤ n, any alphabet Σ, Σ0, let

(Share, Rec) be an (n, k) secret sharing scheme with share alphabet Σ, message

alphabet Σ0, message length m.

Let (Share+, Rec+) be a (t, t − 1) secret sharing scheme with alphabet Σ by

Theorem 2.2.3.
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For any constant a ≥ 1, α > 0, large enough b ≥ 1, we can construct the

following (n′ = tnn̄, k′ = (1− α)n′) secret sharing scheme (Share′, Rec′) with

share alphabet Σ × [n′], message alphabet Σ0, message length m′ = mn̄, where

t = O(log n), n̄ = bna−1.

Function Share′ : Σm′
0 → (Σ× [n′])n′ is as follows.

1. On input secret x ∈ Σmn̄
0 , parse x to be (x1, x2, . . . , xn̄) ∈ (Σm

0 )
n̄ .

2. Compute y = (y1, . . . , yn̄) = (Share(x1), . . . , Share(xn̄)) and parse it to be

ŷ = (ŷ1, . . . , ŷnn̄) ∈ Σnn̄. Note that Share is from Σm
0 to Σn.

3. Compute (Share+(ŷ1), . . . , Share+(ŷnn̄)) ∈ (Σt)nn̄ and split every entry to be

t elements in Σ to get y′ = (y′1, . . . , y′n′) ∈ Σn′ . Note that Share+ is from Σ to

Σt.

4. Generate π by Lemma 2.3.1 which is uniformly random over permutations of

[n′]. If it fails, which can be detected by checking element distinctness, set π to

be such that ∀i ∈ [n′], π(i) = i.

5. Let

Share′(x) = (y′π−1(1) ◦ π−1(1), . . . , y′π−1(n′) ◦ π−1(n′)) ∈ (Σ× [n′])n′ .

Function Rec′ : (Σ× [n′])n′ → Σm′
0 is as follows.

1. Parse the input to be (y′
π−1(1) ◦ π−1(1), . . . , y′

π−1(n′) ◦ π−1(n′)).

2. Compute y′ = (y′1, . . . , y′n′) according to the permutation.

3. Apply Rec+ on y′ for every successive t entries to get ŷ.
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4. Parse ŷ to be y.

5. Compute x by applying Rec on every entry of ŷ.

6. Output x.

Lemma 2.3.3. If Share and Rec can be computed by AC0 circuits, then Share′ and

Rec′ can also be computed by AC0 circuits.

Proof. As Share can be computed by an AC0 circuit, y can be computed by an AC0

circuit (uniform). By Lemma 2.2.9 part 1, we know that (Share+, Rec+) both can be

computed byAC0 circuits. By Lemma 2.3.1, (π−1(1), π−1(2), . . . , π−1(n′)) can be

computed by an AC0 circuit. Also ∀i ∈ [n′], y′
π−1(i) =

⋁
j∈[n′](y′j ∧ (j = π−1(i))).

Thus Share′ can be computed by an AC0 circuit.

For Rec′, ∀i ∈ [n′], y′i =
⋁

j∈[n′](y′π−1(j) ∧ (π−1(j) = i)). As Rec+ can be

computed by an AC0 circuit, y can be computed by an AC0 circuit. As Rec can be

computed by an AC0 circuit, Rec′ can be computed by an AC0 circuit.

Lemma 2.3.4. If the reconstruction error of (Share, Rec) is η, then the reconstruction

error of (Share′, Rec′) is η′ = n̄η.

Proof. According to the construction, as (Share+, Rec+) has perfect reconstruction by

Lemma 2.2.3, the y computed in Rec′ is exactly (Share(x1), Share(x2), . . . , Share(xn̄)).

As ∀i ∈ [n̄], Pr[Rec(Share(xi)) = xi] ≥ 1− η,

Pr[Rec′(Share′(x)) = x] = Pr[
⋀

i∈[n̄]
(Rec(Share(xi)) = xi)] ≥ 1− n̄η,

by the union bound.

In order to show privacy, we need the following Chernoff Bound.
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Definition 2.3.5 (Negative Correlation [AD11; Bis+16]). Binary random variables

X1, X2, . . . , Xn are negative correlated, if ∀I ⊆ [n],

Pr[
⋀
i∈I

(Xi = 1)] ≤∏
i∈I

Pr[Xi = 1] and Pr[
⋀
i∈I

(Xi = 0)] ≤∏
i∈I

Pr[Xi = 0].

Theorem 2.3.6 (Negative Correlation Chernoff Bound [AD11; Bis+16]). Let X1, X2, . . . , Xn

be negatively correlated random variables with X = ∑n
i=1 Xi, µ = E[X].

• For any δ ∈ (0, 1),

Pr[X ≤ (1− δ)µ] ≤ e−δ2µ/2 and Pr[X ≥ (1 + δ)µ] ≤ e−δ2µ/3.

• For any d ≥ 6µ, Pr[X ≥ d] ≤ 2−d.

Lemma 2.3.7. Let π : [n]→ [n] be a random permutation. For any set S, W ⊆ [n],

let u = |W|
n |S|. Then the following holds.

• for any constant δ ∈ (0, 1),

Pr[|π(S) ∩W| ≤ (1− δ)µ] ≤ e−δ2µ/2,

Pr[|π(S) ∩W| ≥ (1 + δ)µ] ≤ e−δ2µ/3.

• for any d ≥ 6µ, Pr[|π(S) ∩W| ≥ d] ≤ 2−d.

Proof. For every s ∈ S, let Xs be the indicator such that Xs = 1 is the event that π(s)

is in W. Let X = ∑s∈S Xs. So |π(S) ∩W| = X. Note that Pr[Xs = 1] = |W|/n.

So µ = E(X) = |W|
n |S|.

For any I ⊆ S,

Pr[
⋀
i∈I

(Xi = 1)] =
|W|

n
· |W| − 1

n− 1
· · · |W| − |I|

n− |I|
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(if |W| < |I|, it is 0). This is because the random permutation can be viewed as

throwing elements 1, . . . , n into n boxes uniformly one by one, where every box can

have at most one element. We know that for j = 1, . . . , |I|, |W|−j
n−j ≤

|W|
n as |W| ≤ n.

So Pr[
⋀

i∈I(Xi = 1)] ≤ ∏i∈I Pr[Xi = 1]. In the same way, for any I ⊆ [n],

Pr[
⋀
i∈I

(Xi = 0)] =
n− |W|

n
· n− |W| − 1

n− 1
· · · n− |W| − |I|

n− |I|

(if n− |W| < |I|, it is 0). Thus ∀I ⊆ [n], Pr[
⋀

i∈I(Xi = 0)] ≤ ∏i∈I Pr[Xi = 0].

By Theorem 2.3.6, the conclusion follows.

We can get the following more general result by using Lemma 2.3.7.

Lemma 2.3.8. Let π : [n] → [n] be a random permutation. For any W ⊆ [n] with

|W| = γn, any constant δ ∈ (0, 1), any t, l ∈ N+ such that tl ≤ 0.9δ
1+0.9δ γn, any

S = {S1, . . . , Sl} such that ∀i ∈ [l], Si ⊆ [n] are disjoint sets and |Si| = t, let

Xi be the indicator such that Xi = 1 is the event |π(Si) ∩W| ≥ (1 + δ)γt. Let

X = ∑i∈[l] Xi. Then for any d ≥ 0,

Pr[X ≥ d] ≤ e−2d+(e2−1)e−Ω(γt)l.

Proof. For any s > 0, Pr[X ≥ d] = Pr[esX ≥ esd] ≤ E[esX ]
esd by Markov’s inequality.

For every i ∈ [l], ∀x1, . . . , xi−1 ∈ {0, 1}, consider p = Pr[Xi = 1|∀j < i, Xj = xj].

Let S̄i =
⋃i

j=1 Sj for i ∈ [l]. Note that the event ∀j < i, Xj = xj is the union of

exclusive events π(S̄i−1) = V, ∀j < i, Xj = xj for V ⊆ [n] with |V| = (j− 1)t

and π(S̄i−1) = V does not contradict ∀j < i, Xj = xj. Conditioned on any one of

those events, saying π(S̄i−1) = V, ∀j < i, Xj = xj, π is a random bijective mapping

from [n] − S̄i to [n] − V. Note that |W∩([n]−V)|
n−(i−1)t ≤ γn

n− 0.9δ
1+0.9δ γn

≤ γn
n− 0.9δ

1+0.9δ n
≤

(1 + 0.9δ)γn, since (i − 1)t ≤ lt ≤ 0.9δ
1+0.9δ γn. So E[π(Si) ∩W||π(S̄i−1) =
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V, ∀j < i, Xj = xj] ≤ (1 + 0.9δ)γt. By Lemma 2.3.7, Pr[Xi = 1|π(S̄i−1) =

V, ∀j < i, Xj = xj] = Pr[|π(Si) ∩W| ≥ (1 + δ)γt|π(S̄i−1) = V, ∀j < i, Xj =

xj] ≤ e−Ω(γt). Thus p ≤ e−Ω(γt). Next note that

E[es ∑l
k=i Xk |∀j < i, Xj = xj]

=pesE[es ∑l
k=i+1 Xk |∀j < i, Xj = xj, Xi = 1] + (1− p)E[es ∑l

k=i+1 Xk |∀j < i, Xj = xj, Xi = 0]

≤(pes + 1− p)max(E[es ∑l
k=i+1 Xk |∀j < i, Xj = xj, Xi = 1], E[es ∑l

k=i+1 Xk |∀j < i, Xj = xj, Xi = 0])

≤ep(es−1) max(E[es ∑l
k=i+1 Xk |∀j < i, Xj = xj, Xi = 1], E[es ∑l

k=i+1 Xk |∀j < i, Xj = xj, Xi = 0])

≤ee−Ω(γt)(es−1) max(E[es ∑l
k=i+1 Xk |∀j < i, Xj = xj, Xi = 1], E[es ∑l

k=i+1 Xk |∀j < i, Xj = xj, Xi = 0]).
(2.1)

As this holds for every i ∈ [l] and every x1, . . . , xi−1 ∈ {0, 1}, we can iteratively

apply the inequality and get the result that there exists x′1, . . . , x′l ∈ {0, 1} such that

E[esX] ≤ ee−Ω(γt)(es−1)E[es ∑l
k=2 Xk |X1 = x′1] ≤ e2e−Ω(γt)(es−1)E[es ∑l

k=3 Xk |X1 =

x′1, X2 = x′2] ≤ · · · ≤ ee−Ω(γt)(es−1)l. Let’s take s = 2. So Pr[X ≥ d] ≤ E[esX ]
esd ≤

e−2d+(e2−1)e−Ω(γt)l.

Let’s first show the non-adaptive privacy of this scheme.

Lemma 2.3.9. If the non-adaptive privacy error of (Share, Rec) is ϵ, then the non-

adaptive privacy error of (Share′, Rec′) is n̄(ϵ + 2−Ω(k)).

Proof. We show that there exists a distribution D such that for any string x ∈ Σm′
0 ,

for any sequence of distinct indices W = (w1, w2, . . . , wk′) ∈ [n′]k
′
(chosen before
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observation),

SD(Share′(x)W ,D) ≤ n̄(ϵ + 2−Ω(k)).

For every i ∈ [nn̄], the block Share+(ŷi) has length t. Let the indices of shares in

Share+(ŷi) be Si = {(i− 1)t + 1, . . . , it}.

For every i ∈ [n̄], let Ei be the event that for at most k of j ∈ {(i − 1)n +

1, . . . , in}, π(Sj) ⊆ W. Let E =
⋂

i∈[n̄] Ei. We choose b to be such that tn ≤
0.9α

1+0.9α |W|. So by Lemma 2.3.8, Pr[Ei] ≥ 1− e−Ω(k)+(e2−1)e−Ω((1−α)t)n. We choose a

large enough t = O(log n) such that Pr[Ei] ≥ 1− e−Ω(k). So Pr[E] ≥ 1− n̄e−Ω(k)

by the union bound.

Let’s define the distribution D to be Share′(σ)W for some σ ∈ Σm′
0 . We claim that

Share′(x)W |E and D|E have statistical distance at most n̄ϵ. The reason is as follows.

Let’s fix a permutation π for which E happens. We claim that Share′(x)W is a de-

terministic function of at most k entries of each yi for i ∈ [n̄] and some extra uniform

random bits. This is because, as E happens, for those i ∈ [nn̄] with π(Si) * W, the

shares in π(Si) ∩W are independent of the secret by the privacy of (Share+, Rec+).

Note that they are also independent of other shares since the construction uses inde-

pendent randomness for Share+(ŷi), i ∈ [nn̄]. For those i ∈ [nn̄] with π(Si) ⊆ W,

the total number of them is at most k. So the claim holds. Hence by the privacy of

(Share, Rec) with noting that yi, i ∈ [n̄] are generated using independent randomness,

SD(Share′(x)W ,D) ≤ n̄ϵ.

So with probability at least 1− n̄e−Ω(k) over the fixing of π, Share′(x)W and D
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have statistical distance at most n̄ϵ, which means that

SD(Share′(x)W ,D) ≤ n̄(ϵ + 2−Ω(k)).

Next we show the adaptive privacy.

Lemma 2.3.10. For any alphabet Σ, any n, k ∈ N with k ≤ n, for any distribution

X = (X1, . . . , Xn) over Σn, let Y = ((Xπ−1(1) ◦π−1(1)), . . . , (Xπ−1(n) ◦π−1(n)))

where π is a random permutation over [n]→ [n]. For any adaptive observation W

with |W| = k, YW is the same distribution as Y[k].

Proof. Let W = (w1, . . . , wk).

We use induction.

For the base step, for any x ∈ Σ, any i ∈ [n],

Pr[Yw1 = (x, i)] = Pr[Xi = x]/n,

while

Pr[Y1 = (x, i)] = Pr[Xi = x]/n.

So Yw1 and Y1 are the same distributions.

For the inductive step, assume that YW[i]
and Y[i] are the same distributions. We

know that for any u ∈ (Σ× [n])i,

Pr[YW[i]
= u] = Pr[Y[i] = u].

Fix a u ∈ (Σ× [n])i. For any v = (v1, v2) ∈ (Σ× [n]), where v1 ∈ Σ, v2 ∈ [n],

Pr[Ywi+1 = v|YW[i]
= u] = 0 if v2 has already been observed in the previous i
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observations; otherwise Pr[Ywi+1 = v|YW[i]
= u] =

Pr[Xv2=v1]
n−i . Also Pr[Yi+1 =

v|Y[i] = u] = 0 if v2 has already been observed in the previous i observations;

otherwise Pr[Yi+1 = v|Y[i] = u] =
Pr[Xv2=v1]

n−i .

Thus YW[i+1]
and Y[i+1] are the same distributions. This finishes the proof.

Lemma 2.3.11. If (Share, Rec) has non-adaptive privacy error ϵ, then (Share′, Rec′)

has adaptive privacy error n̄(ϵ + 2−Ω(k)).

Proof. First we assume that the adaptive observer always observes k′ shares. For

every observer M which does not observe k′ shares, there exists another observer

M′ which can observe the same shares as M and then observe some more shares.

That is to say that if the number of observed shares is less than k′, M′ will choose

more unobserved shares (sequentially in a fixed order) to observe until k′ shares are

observed. Since we can use a deterministic function to throw away the extra observes

of M′ to get what M should observe, by Lemma 2.2.2 part 2, if the privacy holds for

M′ then the privacy holds for M. As a result, we always consider observers which

observe k′ shares.

By Lemma 2.3.10, for any s ∈ Σm′
0 , Share′(s)W , for any adaptive observation W,

is the same distribution as Share′(s)W ′ where W = {w1, w2, . . . , wk′}, W ′ = [k′].

As W ′ is actually a non-adaptive observation, by Lemma 2.3.9, for distinct s, s′ ∈

{0, 1}m′ , SD(Share′(s)W ′ , Share′(s′)W ′) ≤ n̄(ϵ + 2−Ω(k)). So

SD(Share′(s)W , Share′(s′)W) = SD(Share′(s)W ′ , Share′(s′)W ′) ≤ n̄(ϵ + 2−Ω(k)).
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Theorem 2.3.12. For any n, m ∈ N, m ≤ n, any ϵ, η ∈ [0, 1] and any constant

a ≥ 1, α ∈ (0, 1], if there exists an explicit (n, k) secret sharing scheme in AC0 with

share alphabet Σ, message alphabet Σ0, message length m, non-adaptive privacy error

ϵ and reconstruction error η, then there exists an explicit (n′ = O(na log n), (1−

α)n′) secret sharing scheme in AC0 with share alphabet Σ× [n′], message alphabet

Σ0, message length Ω(mna−1), adaptive privacy error O(na−1(ϵ + 2−Ω(k))) and

reconstruction error O(na−1η).

Proof. It immediately follows from Construction 2.3.2, Lemma 2.3.3, Lemma 2.3.4

and Lemma 2.3.11.

2.3.2 Binary alphabet

In this subsection, we construct AC0 secret sharing schemes with binary alphabet

based on some existing schemes with binary alphabets, enlarging the privacy threshold.

If we simply break each share in Construction 2.3.2 into bits, then we in fact get

a secret sharing scheme with non-adaptive privacy. However, the privacy threshold

becomes O(n/ log n) which is sublinear, as the observer does not have to observe the

indices. To overcome the barrier, we use some coding techniques and secret sharing

for small blocks. An even bigger problem is that whether we can achieve adaptive

privacy in this case. It seems to be hard since we have to break the indices into pieces.

But surprisingly, we are still able to show adaptive privacy.

Lemma 2.3.13 ([Che+07] Section 4). For any n ∈ N, any constant δ0, δ1 ∈ (0, 1),

let C ⊆ Fn
2 be an asymptotically good (n, k = δ0n, d = δ1n) linear code.

1. There exists an (n, d) secret sharing scheme (Share, Rec) with alphabet {0, 1},
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message length k,perfect privacy and reconstruction. Here ∀x ∈ {0, 1}k,

Share(x) = f (x) + c with c drawn uniform randomly from C⊥ (the dual code

of C) and f is the encoding function from {0, 1}k to C. For y ∈ {0, 1}n, Rec(y)

is to find x such that there exists a c ∈ C⊥ with f (x) + c = y.

2. For any p = poly(n), there exists an explicit (n, d) secret sharing scheme

(Share, Rec) with alphabet {0, 1}p, message length k, perfect privacy and

reconstruction.

3. If the codeword length is logarithmic (say n = O(log N) for some N ∈ N),

then both schemes can be constructed explicitly in AC0 (in N).

Proof. The first assertion is proved in [Che+07].

The second assertion follows by applying the construction of the first assertion in

parallel p times.

The third assertion holds because, when the codeword length is O(log N), both

encoding and decoding functions have input length O(log N). For encoding, we

can use any classic methods for generating asymptotically good binary codes. For

decoding, we can try all possible messages to uniquely find the correct one. By

Lemma 2.2.9, both functions can be computed by AC0 circuits.

Now we give the secret sharing scheme in AC0 with a constant privacy rate while

having binary alphabet.

Construction 2.3.14. For any n, k, m ∈ N with k, m ≤ n, let (Share, Rec) be an

(n, k) secret sharing scheme with alphabet {0, 1}, message length m.
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Let (ShareC, RecC) be an (nC, kC) secret sharing scheme with alphabet {0, 1}p=O(log n),

message length mC by Lemma 2.3.13, where mC = δ0nC, kC = δ1nC, nC = O(log n)

for some constants δ0, δ1.

Let (Share0, Rec0) be an (n0, k0) secret sharing scheme with alphabet {0, 1},

message length m0 by Lemma 2.3.13, where m0 = δ0n0 = p +O(log n), k0 = δ1n0.

For any constant a ≥ 1, we can construct the following (n′ = O(na), k′ =

Ω(n′)) secret sharing scheme (Share′, Rec′) with alphabet {0, 1}, message length

m′ = mn̄, where n̄ = Θ(na−1) is large enough.

Function Share′ : {0, 1}m′ → {0, 1}n′ is as follows.

1. On input x ∈ {0, 1}mn̄, parse it to be (x1, x2, . . . , xn̄) ∈ ({0, 1}m)n̄ .

2. Compute y = (y1, . . . , yn̄) = (Share(x1), . . . , Share(xn̄)) ∈ ({0, 1}n)n̄. Split

each entry to be blocks each has length pmC to get ŷ = (ŷ1, . . . , ŷñ) ∈

({0, 1}pmC)ñ, where ñ = n̄⌈ n
pmC
⌉.

3. Let y∗ = (ShareC(ŷ1), . . . , ShareC(ŷñ)). Parse it to be y∗ = (y∗1 , . . . , y∗n∗) ∈

({0, 1}p)n∗ , n∗ = ñnC.

4. Generate π by Lemma 2.3.1 which is uniform random over permutations of

[n∗]. If it failed, which can be detected by checking element distinctness, set π

to be such that ∀i ∈ [n∗], π(i) = i.

5. Compute

z(x) = Share′(x) = (Share0(y∗π−1(1) ◦π−1(1)), . . . , Share0(y∗π−1(n∗) ◦π−1(n∗))) ∈ ({0, 1}n0)n∗ .

6. Parse z(x) to be bits and output.
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Function Rec′ : {0, 1}n′=n0n∗ → {0, 1}m′ is as follows.

1. Parse the input bits to be z ∈ ({0, 1}n0)n∗ and compute

(y∗π−1(1) ◦ π−1(1), . . . , y∗π−1(n∗) ◦ π−1(n∗)) = (Rec0(z1), . . . , Rec0(zn∗)).

2. Compute y∗ = (y∗1 , . . . , y∗n∗).

3. Compute ŷ by applying RecC on y∗ for every successive nC entries.

4. Parse ŷ to be y.

5. Compute x by applying Rec on every entry of y.

Lemma 2.3.15. If Share and Rec can be computed by AC0 circuits, then Share′ and

Rec′ can be computed by AC0 circuits.

Proof. As Share can be computed by an AC0 circuit, y can be computed by an AC0

circuit. By Lemma 2.2.9 part 2 and 2.3.13, we know that (ShareC, RecC) both can

be computed by AC0 circuits. By Lemma 2.3.1, π can be computed by an AC0

circuit. Also ∀i ∈ [n∗], y∗
π−1(i) =

⋁
j∈[n∗](y∗j ∧ (j = π−1(i))). Thus Share′ can be

computed by an AC0 circuit.

For Rec′, ∀i ∈ [n∗], y∗i =
⋁

j∈[n∗](y∗π−1(j) ∧ (π−1(j) = i)). As RecC can be

computed by an AC0 circuit, y can be computed by an AC0 circuit. As Rec can be

computed by an AC0 circuit, Rec′ can be computed by an AC0 circuit.

Lemma 2.3.16. If the reconstruction error of (Share, Rec) is η, then the recon-

struction error of (Share′, Rec′) is η′ = n̄η.
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Proof. As (Share0, Rec0) and (ShareC, RecC) have perfect reconstruction by Lemma

2.3.13, the y computed in Rec′ is exactly (Share(x1), Share(x2), . . . , Share(xn̄)). As

∀i ∈ [n̄], Pr[Rec(Share(xi)) = xi] ≥ 1− η,

Pr[Rec′(Share′(x)) = x] = Pr[
⋀

i∈[n̄]
(Rec(Share(xi)) = xi)] ≥ 1− n̄η,

by the union bound.

Lemma 2.3.17. If the non-adaptive privacy error of (Share, Rec) is ϵ, then the non-

adaptive privacy error of (Share′, Rec′) is n̄(ϵ + 2−Ω(k/ log2 n)).

Proof. Let k′ = 0.9δ2
1n′. We show that there exists a distribution D such that for any

string x ∈ {0, 1}m, for any W ⊆ [n′] with |W| ≤ k′,

SD(Share′(x)W ,D) ≤ n̄(ϵ + 2−Ω(k/ log2 n)).

Let D be Share′(σ)W for some σ ∈ {0, 1}m′ .

Consider an arbitrary observation W ⊆ [n′], with |W| ≤ k′. Note that for at least

1− 0.9δ1 fraction of all blocks zi ∈ {0, 1}n0 , i = 1, . . . , n∗, at most δ1 fraction of

the bits in the block can be observed. Otherwise the number of observed bits is more

than 0.9δ1 × δ1n′. Let W∗ be the index set of those blocks which have more than δ1

fraction of bits being observed.

For every i ∈ [n∗]\W∗, zi is independent of y∗
π−1(i) ◦ π−1(i) by the privacy of

(Share0, Rec0). Note that zi is also independent of zi′ , i′ ∈ [n∗], i′ ̸= i since it is

independent of y∗
π−1(i) ◦ π−1(i) (its randomness is only from the randomness of the

Share0 function) and every Share0 function uses independent randomness. So we only
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have to show that

SD(zW∗(x), zW∗(σ)) ≤ n̄(ϵ + 2−Ω(k/ log2 n)).

For every i ∈ [ñ], let Si = {(i− 1)nC + 1, . . . , inC}. Let Xi be the indicator that

|π(Si) ∩W∗| > kC, i ∈ [ñ]. Note that E[|π(Si) ∩W∗|] ≤ 0.9δ1nC = 0.9kC.

For every i ∈ [n̄], let Ei be the event that ∑
i⌈ n

pmC
⌉

j=(i−1)⌈ n
pmC
⌉+1 Xj ≤ k

pmC
. Let

E =
⋂

i∈[n̄] Ei. We take n̄ to be large enough such that nC⌈ n
pmC
⌉ ≤ 0.9×0.1

1+0.9×0.1 |W∗|.

For every i ∈ [n̄], by Lemma 2.3.8,

1− Pr[Ei] ≤ e−2k/(pmC)+(e2−1)e−Ω(0.9δ2
1nC)⌈ n

pmC
⌉.

We take nC = O(log n) to be large enough such that the probability is at most

e−Ω(k/(pmC)) ≤ e−Ω(k/ log2 n).

Next we do a similar argument as that in the proof of Lemma 2.3.9. We know that

Pr[E] ≥ 1− n̄e−Ω(k/ log2 n). We claim that zW∗(x)|E and zW∗(σ)|E have statistical

distance at most n̄ϵ. The reason follows.

Let’s fix a permutation π for which E happens. We claim that zW∗(x) is a determi-

nistic function of at most k bits of each yi for i ∈ [n̄] and some extra uniform random

bits. This is because, as E happens, for those i ∈ [ñ] with |π(Si) ∩W∗| ≤ kC, the

shares in π(Si) ∩W∗ are independent of the secret by the privacy of (ShareC, RecC).

Note that they are also independent of other shares since the construction uses indepen-

dent randomness for ShareC(ŷi), i ∈ [ñ]. For those i ∈ [ñ] with |π(Si) ∩W∗| > kC,

the total number of them is at most k
pmC

. By the construction, Share′(x)W∗ is com-

puted from at most k
pmC
× pmC = k bits of each yi for i ∈ [n̄] and some extra

uniform random bits. Hence by the privacy of (Share, Rec) and noting that yi,∈ [n̄]
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are generated using independent randomness,

SD(zW∗(x), zW∗(σ)) ≤ n̄ϵ.

Thus with probability at least 1− n̄e−Ω(k/ log2 n) over the fixing of π, zW∗(x) and

zW∗(σ) have statistical distance at most n̄ϵ, which means that

SD(zW∗(x), zW∗(σ)) ≤ n̄(ϵ + e−Ω(k/ log2 n)).

Lemma 2.3.18. For any alphabet Σ, any n ∈N, Let X = (X1, . . . , Xn) be an arbi-

trary distribution over Σn. For any n0, k0 ∈N with k0 ≤ n0, let (Share0, Rec0) be an

arbitrary (n0, k0)-secret sharing scheme with binary alphabet, message length m0 =

log |Σ|+O(log n), perfect privacy. Let Y = (Share0(Xπ−1(1) ◦π−1(1)), . . . , Share0(Xπ−1(n) ◦

π−1(n))) where π is a random permutation over [n]→ [n]. For any t ≤ n · k0, let

W be an any adaptive observation which observes t shares. Then there exists a deter-

ministic function f : {0, 1}poly(n) → {0, 1}t such that YW has the same distribution

as f (YW ′ ◦ S), where S is uniform over {0, 1}poly(n) and W ′ = [t′n0], t′ = ⌈ t
k0
⌉.

Proof. For every i ∈ [n], Let Bi = {(i− 1)n0 + 1, . . . , in0}. Assume the adaptive

adversary is M.
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Let f be defined as the following.

Algorithm 2.3.1: f (·)
Input :y ∈ {0, 1}t′n0 , s ∈ {0, 1}poly(n)

Let c = 1;
∀i ∈ [n], li ∈ [n] ∪ {null} is assigned to be null;
Compute the secrets for the t′ blocks y, which are

(x1, . . . , xt′) ∈ ({0, 1}m0)t′ ;

Compute (Share0(σ), . . . , Share0(σ)) ∈ ({0, 1}n0)n and parse it to be
r ∈ {0, 1}n0n, for an arbitrary σ ∈ Σ. Here for each Share0 function, we
take some unused bits from s as the random bits used in that function.

Next f does the following computation by calling M;
while M wants to observe the ith bit which is not observed previously do

Find j ∈ [n] such that i ∈ Bj;
if the number of observed bits in the jth block is less than k0 then

Let M observe ri;
else

Let Ij be the indices of the observed bits in the jth block. (The indices
here are the relative indices in the jth block)

if lj = null then
lj = c;
c = c + 1;
Draw a string vj from Share0(xc)|Share0(xc)Ij=r(j−1)n0+Ij

by using

some unused bits of s;
end
Let M observe vj

i−(j−1)n0
;

end
end

Let W = (w1, . . . , wt) ∈ [n · n0]
t, Z = f (YW ′ ◦ S). Let R ∈ {0, 1}nn0 be the

random variable corresponds to r.

We use induction to show that YW has the same distribution as Z.

For the base case, the first bits of both random variables have the same distributions

by the perfect privacy of (Share0, Rec0).
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For the inductive step, assume that, projected on the first d bits, the two distributi-

ons are the same. Fix the first d observed bits for both YW and Z to be ȳ ∈ {0, 1}d.

Assume that the (d + 1)th observation is to observe the wdth bit where wd is in Bj for

some j.

If the number of observed bits in the jth block is less than k0 then Y{w1,...,wd+1}∩Bj

has the same distribution as R{w1,...,wd+1}∩Bj
, following the privacy of (Share0, Rec0).

Note that the blocks Y{w1,...,wd+1}∩Bi
, i ∈ [n] are independent. The blocks R{w1,...,wd+1}∩Bi

, i ∈

[n] are also independent. As f will output Rwd+1 , the conclusion holds for d + 1.

Else, if the number of observed bits in the jth block is at least k0, it is sufficient to

show that Ywd+1 |Y{w1,...,wd}
=ȳ has the same distribution as that of Zd+1|Z{1,...,d}=ȳ. Note

that there are c blocks such that W observes more than k0 bits for each of them. Let

q1, . . . , qc denote those blocks. Let I = ((q1 − 1)n0 + Iq1 , . . . , (qc − 1)n0 + Iqc),

which is the set of indices of all observed bits. Note that I ⊆ {w1, . . . , wd}.

By the privacy of the secret sharing scheme, for those blocks which have at most k0

bits being observed, they are independent of the secret and hence independent of other

blocks. So Ywd+1 |Y{w1,...,wd}
=ȳ is in fact Ywd+1 |YI=y∗ where y∗ are the corresponding

bits from ȳ with a proper rearrangement according to I. From the definition of f we

know that for i ∈ [c], the observed bits in the qith block is exactly the same distribution

as (YBlqi
)Iqi

= Share0(xlqi
)Iqi

. So for Zd+1|Z{1,...,d}=ȳ, it is the same distribution as

T = (YBlj
)wd−(j−1)n0

|⋀c
i=1((YBlqi

)Iqi
=y∗

(qi−1)n0+Iqi
)

= Share0(xlj)wd−(j−1)n0
|⋀c

i=1(Share0(xlqi
)Iqi

=y∗
(qi−1)n0+Iqi

).
(2.2)

By Lemma 2.3.10, (YBq1
, . . . , YBqc

) has the same distribution as (YBlq1
, . . . , YBlqc

)

as they both are the same distribution as (Share0(x1), . . . , Share0(xc)). Thus Ywd+1 |YI=y∗
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has the same distribution as T, as Ywd+1 |YI=y∗ is the distribution of some bits in

(YBq1
, . . . , YBqc

) and T is the distribution of the corresponding bits (same indices) in

(YBlq1
, . . . , YBlqc

) . So we know that Ywd+1 |Y{w1,...,wd}
=ȳ has the same distribution as

Zd+1|Z{1,...,d}=ȳ and this shows our conclusion.

Lemma 2.3.19. If the non-adaptive privacy error of (Share, Rec) is ϵ, then the adap-

tive privacy error of (Share′, Rec′) is n̄(ϵ + 2−Ω(k/ log2 n)).

Proof. Let W be an adaptive observation . Let W ′ = [⌈|W|/k0⌉n0]. Let |W| =

Ω(n′) be small enough such that |W ′| ≤ 0.9δ2
1n′. By Lemma 2.3.18, there exists a de-

terministic function f such that for any x, x′ ∈ {0, 1}m′ , SD(Share′(x)W , Share(x′)W) =

SD( f (Share′(x)W ′ ◦ S), f (Share′(x′)W ′ ◦ S)) where S is the uniform distribution as

defined in Lemma 2.3.18 which is independent of Share′(x)W ′ or Share′(x′)W ′ . By

Lemma 2.2.2, we know that

SD( f (Share′(x)W ′ ◦ S), f (Share′(x′)W ′ ◦ S)) ≤ SD(Share′(x)W ′ , Share′(x′)W ′).

By Lemma 2.3.17 we know that

SD(Share′(x)W ′ , Share′(x′)W ′) ≤ n̄(ϵ + 2−Ω(k/ log2 n)).

Hence

SD(Share′(x)W , Share′(x′)W) ≤ n̄(ϵ + 2−Ω(k/ log2 n)).

Theorem 2.3.20. For any n, m ∈ N, m ≤ n, any ϵ, η ∈ [0, 1] and any constant

a ≥ 1, if there exists an explicit (n, k) secret sharing scheme in AC0 with alphabet
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{0, 1}, message length m, non-adaptive privacy error ϵ and reconstruction error

η, then there exists an explicit (n′ = O(na), k′ = Ω(n′)) secret sharing scheme

in AC0 with alphabet {0, 1}, message length Ω(mna−1), adaptive privacy error

O(na−1(ϵ + 2−Ω(k/ log2 n))) and reconstruction error O(na−1η).

Proof. It follows from Construction 2.3.14, Lemma 2.3.15, 2.3.16 and 2.3.19.

2.4 k-wise independent generator in AC0

In this section we focus on increasing the secret length to be linear of the number

of shares while keeping the construction in AC0. The privacy rate is not as good as

the previous section. The main technique is to use the following well known k-wise

independent generator which is constructed from expander graphs.

Theorem 2.4.1 ([MST06]). For any N, D, M ∈ N, any ϵ > 0, if there exists a

(≤ Kmax, (1
2 + ϵ)D) expander with left set of vertices [N], right set of vertices

[M], left degree D, then the function g : {0, 1}M → {0, 1}N, defined by g(x)i =⨁
j∈[D] xΓ(i,j), i = 1, 2, . . . , N, is a Kmax-wise uniform independent generator.

Proof. For any subset S ⊆ [N] with |S| ≤ Kmax, there exists a u ∈ Γ(S) such that

∃v ∈ S, u ∈ Γ(v) while ∀w ∈ S with w ̸= v, u /∈ Γ(w). This is because if not, then

|Γ(S)| ≤ 1
2 D|S| which contradicts that Γ is a (≤ Kmax, (1

2 + ϵ)D) expander.

As ⨁
i∈S

g(x)i =
⨁
i∈S

⨁
j∈[D]

xΓ(i,j),

⨁
i∈S g(UM)i is uniform.
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By the Information Theoretic XOR-Lemma of [Gol95], for every set S′ ⊆ [N]

of size Kmax, g(UM)S′ is uniform. Thus g is a Kmax-wise uniform independent

generator.

Theorem 2.4.2. For any M ∈N, N = poly(M), any alphabets Σ0, Σ, any constant

γ ∈ (0, 1], there exists an explicit K-wise independent generator g : ΣM
0 → ΣN in

AC0, where K = (
M log |Σ0|

log |Σ| )1−γ.

Proof. We first consider Σ0 = Σ = {0, 1}. By Theorem 2.2.7 for any constant α and

every ϵ > 0 there exists an explicit function Γ : [N]× [D]→ [M] which is the neig-

hbour function of a (≤ Kmax, (1
2 + ϵ)D) expander, where D = O((log N)(log Kmax)/ϵ)1+1/α

and M ≤ D2K1+α
max. We take ϵ = 0.1 and take α to be a small enough constant such

that Kmax ≥ M1−γ. By Theorem 2.4.1 we get an explicit K-wise independent

generator g : {0, 1}M → {0, 1}N where K = M1−γ.

For arbitrary alphabets Σ0, Σ, we simply apply the generator for log |Σ| times

in parallel using independent seeds. Note that the total seed length is M log |Σ0| by

parsing the input symbols into bits. So for every one of the |Σ| generator in parallel,

its seed length is M log |Σ0|
log |Σ| . Hence each of them is a K-wise uniform independent

generator with K = (
M log |Σ0|

log |Σ| )1−γ.

By Theorem 2.4.1, the construction take XOR over D bits. So by Lemma 2.2.9, it

can be computed in AC0. Thus the generator can be computed in AC0.

Now we give the construction of secret sharing schemes inAC0 with large message

rate (saying 1− 1/poly(n)).
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Construction 2.4.3. For any n, k, m ∈ N with k ≤ n, any alphabets Σ0, Σ, let

(Share, Rec) be an (n, k) secret sharing scheme with share alphabet Σ, message

alphabet Σ0, message length m.

For any constant a > 1, γ ∈ (0, 1], we construct the following (n′ = n+m′, k′ =

min(k, l)) secret sharing scheme (Share′, Rec′) with alphabet Σ, message length

m′ = Ω(na), where l = Θ(
m log |Σ0|

log |Σ| )1−γ.

The function Share′ : Σm′ → Σn′ is as follows.

1. Let gΓ : Σm
0 → Σm′ be the l-wise independent generator by Theorem 2.4.2.

2. For secret x ∈ Σm′ , we draw r uniform randomly from Σm
0 let

Share′(x) = (Share(r), gΓ(r)⊕ x).

The function Rec′ : Σn′ → Σm′ is as follows.

1. The input is y = (y1, y2) where y1 ∈ Σn, y2 ∈ Σm′ .

2. Let

Rec′(y) = gΓ(Rec(y1))⊕ y2.

Lemma 2.4.4. If Share and Rec can be computed by AC0 circuits, then Share′ and

Rec′ can be computed by AC0 circuits.

Proof. As Share can be computed by an AC0 circuit and gΓ(r)⊕ x can be computed

by a CNF or DNF, Share′ can be computed by an AC0 circuit.

Similarly, Rec′ can also be computed by an AC0 circuit.
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Lemma 2.4.5. If the reconstruction error of (Share, Rec) is η, then the reconstruction

error of (Share′, Rec′) is η′ = η.

Proof. Let the input for Rec′ be (y1, y2) = (Share(r), gΓ(r)⊕ x). If Rec(·) compu-

tes correctly then

Rec′(y) = gΓ(Rec(y1))⊕ y2 = gΓ(r)⊕ gΓ(r)⊕ x = x,

which means that Rec′ recovers the correct secret.

So η′ = η.

Next we show the non-adaptive privacy error of the construction.

Lemma 2.4.6. If the non-adaptive privacy error of (Share, Rec) is ϵ, then the non-

adaptive privacy error of (Share′, Rec′) is also ϵ.

Proof. Consider an arbitrary set W ⊆ [n′] of size k′. We view W as the union

of two disjoint sets W1 ⊆ [n] and W2 ⊆ {n + 1, . . . , n + m′}. Consider any

two distinct secrets x, x′ ∈ Σm′ . As gΓ is an l-wise independent generator and

k′ ≤ l, Share′(x)W2 = (gΓ(R) ⊕ x)W2 and Share′(x′)W2 = (gΓ(R) ⊕ x′)W2 are

both uniform distributions where R is uniform over Σm. For any string u ∈ Σm′ ,

the statistical distance between the distribution Share′(x)W1 |Share′(x)W2=u and the

distribution Share′(x′)W1 |Share′(x′)W2=u is ϵ, because (Share, Rec) has privacy error ϵ.
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So we have that

SD(Share′(x)W , Share′(x′)W)

= ∑
u∈Σm′

1
|Σ|m′

SD(Share′(x)W1 |Share′(x)W2=u, Share′(x′)W1 |Share′(x′)W2=u)

=ϵ.

(2.3)

Theorem 2.4.7. For any n, m ∈ N, m ≤ n, any ϵ, η ∈ [0, 1] , any constant γ ∈

(0, 1], any m′ = poly(n) and any alphabets Σ0, Σ, if there exists an explicit (n, k)

secret sharing scheme in AC0 with share alphabet Σ, message alphabet Σ0, message

length m, non-adaptive privacy error ϵ and reconstruction error η, then there exists an

explicit (n+m′, min(k, (m log |Σ0|
log |Σ| )1−γ)) secret sharing scheme inAC0 with alphabet

Σ, message length m′, non-adaptive privacy error ϵ and reconstruction error η.

Proof. It immediately follows from Construction 2.4.3, Lemma 2.4.4, 2.4.5 and 2.4.6.

2.5 Final construction

In this section we give our final AC0 construction of secret sharing schemes which

has constant message rate and constant privacy rate.

Our construction will use both random permutation and k-wise independent gene-

rator proposed in the previous sections.

2.5.1 The construction

We first give the construction with a relatively big alphabet.
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Construction 2.5.1. For any n, k, m ∈ N with k, m ≤ n, any alphabets Σ0, Σ, let

(Share, Rec) be an (n, k) secret sharing scheme with share alphabet Σ, message

alphabet Σ0, message length m.

Let (ShareC, RecC) be an (nC, kC) secret sharing scheme from Lemma 2.3.13 with

alphabet Σ, message length mC, where mC = δ0nC, kC = δ1nC, nC = O(log n) for

some constant δ0, δ1.

For any constant a ≥ 1, γ ∈ (0, 1], we can construct the following (n′ =

O(na), k′ = Ω(n′) secret sharing scheme (Share′, Rec′) with share alphabet Σ× [n′],

message alphabet Σ, message length m′ = Ω(n′).

The function Share′ : Σm′ → (Σ× [n′])n′ is as follows.

1. Let n̄ = Θ(na−1) where the constant factor is large enough.

2. Let gΓ : Σmn̄
0 → Σm′ be the l-wise independent generator by Theorem 2.4.2,

where l = Ω(
mn̄ log |Σ0|

log |Σ| )1−γ.

3. For secret x ∈ Σm′ , we draw a string r = (r1, . . . , rn̄) uniformly from (Σm
0 )

n̄.

4. Let y = (ys, yg), where ys = (Share(r1), . . . , Share(rn̄)) ∈ (Σn)n̄ and yg =

gΓ(r)⊕ x ∈ Σm′ .

5. Get ŷs ∈ (ΣmC)ns from ys by parsing ys,i to be blocks each having length mC

for every i ∈ [n̄], where ns = ⌈ n
mC
⌉n̄.

6. Get ŷg ∈ (ΣmC)ng from yg by parsing yg to be blocks each having length mC,

where ng = ⌈ m′
mC
⌉.
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7. Compute

(ShareC(ŷs,1), . . . , ShareC(ŷs,ns), ShareC(ŷg,1), . . . , Share′C(ŷg,ng)).

and parse it to be y′ = (y′1, . . . , y′n′) ∈ Σn′ , where n′ = (ns + ng)nC.

8. Generate a random permutation π : [n′]→ [n′] and output

z = ((y′π−1(1) ◦π−1(1)), (y′π−1(2) ◦π−1(2)), . . . , (y′π−1(n′) ◦π−1(n′))) ∈ (Σ× [n′])n′ .

The function Rec′ : (Σ× [n′])n′ → Σm′ is as follows.

1. The input is z = ((y′
π−1(1) ◦ π−1(1)), (y′

π−1(2) ◦ π−1(2)), . . . , (y′
π−1(n′) ◦

π−1(n′))).

2. Compute y′ = (y′1, . . . , y′n′).

3. Parse y′ to be (y′s, y′g) where y′s = (y′s,1, . . . , y′s,ns) ∈ (ΣnC)ns , y′g = (y′g,1, . . . , y′g,ng) ∈

(ΣnC)ng .

4. Compute (RecC(y′s,1), . . . , RecC(y′s,ng)) and (RecC(y′g,1), . . . , RecC(y′g,ng)). Parse

them to get ys and yg.

5. Compute r by applying Rec on every entry of ys.

6. Output

Rec′(z) = gΓ(r)⊕ yg.

Lemma 2.5.2. If (Share, Rec) can be computed by AC0 circuits, then (Share′, Rec′)

can be computed by AC0 circuits.
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Proof. By Theorem 2.4.2, gΓ can be computed by an AC0 circuit. As Share can be

computed by an AC0 circuit, y can be computed by an AC0 circuit. By Lemma 2.2.9

part 2, as nC = O(log n), (ShareC, RecC) can be computed by an AC0 circuit. By

Lemma 2.3.1 the random permutation π can be computed by an AC0 circuit. Also

∀i ∈ [n′], y′
π−1(i) =

⋁
j∈[n′](y′j ∧ (j = π−1(i))). Thus Share′ can be computed by

an AC0 circuit.

For Rec′, ∀i ∈ [n′], y′i =
⋁

j∈[n′](y′π−1(j) ∧ (π−1(j) = i)). As RecC and Rec can

be computed by an AC0 circuits, Rec′ can be computed by an AC0 circuit.

Lemma 2.5.3. If the reconstruction error of (Share, Rec) is η, then the reconstruction

error of (Share′, Rec′) is η′ = n̄η.

Proof. As (ShareC, RecC) has perfect reconstruction, the error only occurs when we

apply Rec. So we can compute each ri, i = 1, . . . , n̄ correctly except with error η.

By the union bound, with probability 1− n̄η, r is correctly computed. Once we can

compute r correctly, the secret x = gΓ(r)⊕ yg. Note that the correctness of yg is

guaranteed. This is because from z we can get the value of every entry of y′ since

each entry of z includes one entry of y′ and an index showing which entry of y′ it is.

So yg is correct as it is part of y′.

Lemma 2.5.4. If the non-adaptive privacy error of (Share, Rec) is ϵ, then the non-

adaptive privacy error of (Share′, Rec′) is n̄(ϵ + e−Ω(k/ log n)) + e−Ω(l/ log n).

Proof. Let k′ = 0.9δ1n′. Consider an arbitrary W ⊆ [n′] with |W| ≤ k′.
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For every i ∈ [ns], let Si = {nC(i− 1) + 1, . . . , nCi}. Let S = {S1, . . . , Sns}.

Let Xi be the indicator such that Xi = 1 is the event |π(Si) ∩W| > kC. Note that

E[|π(Si) ∩W|] ≤ 0.9δ1nC = 0.9kC.

For every i ∈ [n̄], let Ei be the event that ∑
i⌈ n

mC
⌉

j=(i−1)⌈ n
mC
⌉+1 Xj ≤ k

mC
. Since n̄ is

large enough, nC⌈ n
mC
⌉ ≤ 0.9×0.1

1+0.9×0.1 |W|. By Lemma 2.3.8,

1− Pr[Ei] ≤ e−2k/mC+(e2−1)e−Ω(0.9δ1nC)⌈ n
mC
⌉.

We take nC = O(log n) to be large enough such that the probability is at most

e−Ω(k/mC) ≤ e−Ω(k/ log n).

Let T = {T1, . . . , Tng}, where Ti = nsnC + {nC(i − 1) + 1, . . . , nCi}, i =

1, . . . , ng. Let Yi be the indicator such that Yi = 1 is the event |π(Ti) ∩W| > kC.

Let Y = ∑i∈[ng] Yi. Note that E[|π(Ti) ∩W|] ≤ 0.9δ1nC = 0.9kC. Let Eg be the

event that Y ≤ l
mC

. Since n̄ is large enough, we can have nCng ≤ 0.9×0.1
1+0.9×0.1 |W| when

m′ = Ω(n). By Lemma 2.3.8,

1− Pr[Eg] ≤ e−2l/mC+(e2−1)e−Ω(0.9δ1nC)ng .

We take nC = O(log n) to be large enough such that the probability is at most

e−Ω(l/mC) ≤ e−Ω(l/ log n).

Let E be the event that (
⋂

i∈[n̄] Ei) ∩ Eg. By the union bound, Pr[E] ≥ 1 −

n̄e−Ω(k/ log n) − e−Ω(l/ log n). We claim that Share′(x)W |E and Share′(σ)W |E have

statistical distance at most n̄ϵ, where σ is an arbitrary string in Σm′ . The reason is as

follows.

We fix a permutation π for which E happens. Let Ws = (
⋃

i∈[ns] Si) ∩W,

Wg = (
⋃

i∈[ng] Ti) ∩W. Let R be the random variable which corresponds to the
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random choice of r.

We claim that Share′(x)Wg is a deterministic function of at most l entries of

yg and some extra uniform random bits. As Eg happens, for those i ∈ [ng] with

|π(Ti) ∩W| ≤ kC, the shares indexed by π(Ti) ∩W are independent of the secret

by the privacy of (ShareC, RecC). Note that they are also independent of other shares

since the construction uses independent randomness for sharing ŷg,i, i ∈ [ng] and

ŷs,i, i ∈ [ns]. For those i ∈ [ng] with |π(Ti) ∩W| > kC, the total number of them

is at most l
mC

. So Share′(x)Wg is computed from at most l
mC
×mC = l entries of yg

and some extra uniform random bits.

As gΓ(·) is an l-wise independent generator, the distribution of Share′(x)Wg is in-

dependent of the secret. For any v ∈ supp(Share′(x)Wg), Share′(x)Ws |Share′(x)Wg=v is

a convex combination of Share′(x)Ws |R=r for some different r such that Share′(x)Wg =

v happens.

We claim that Share′(x)Ws |R=r is a deterministic function of at most k entries

of each ys,i for i ∈ [n̄] and some extra uniform random bits. This is because, as E

happens, for those i ∈ [ns] with |π(Si) ∩W| ≤ kC, the shares in π(Si) ∩W are

independent of the secret by the privacy of (ShareC, RecC). Note that they are also

independent of other shares since the construction uses independent randomness for

sharing ŷg,i, i ∈ [ng] and ŷs,i, i ∈ [ns]. For those i ∈ [ns] with |π(Si) ∩W| > kC,

the total number of them is at most k
mC

. So Share′(x)Ws |R=r is computed from at

most k
mC
×mC = k entries of each ys,i for i ∈ [n̄] and some extra uniform random

bits.

Since the privacy error of (Share, Rec) is ϵ and ys,i|R=r, i ∈ [n̄] are computed
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using independent uniform random bits, for any r, r′ ∈ (Σm
0 )

n̄,

SD(Share′(x)Ws |R=r, Share′(σ)Ws |R=r′) ≤ n̄ϵ.

So

SD(Share′(x)Ws |Share′(x)Wg=v, Share′(σ)Ws |Share′(σ)Wg=v) ≤ n̄ϵ.

As a result,

SD(Share′(x), Share′(σ)) ≤ n̄ϵ.

Thus with probability at least 1− n̄e−Ω(k/ log n) − e−Ω(l/ log n) over the fixing of

π, Share′(x)W and Share′(σ)W have statistical distance at most n̄ϵ, which means that

SD(Share′(x), Share′(σ)W) ≤ n̄(ϵ + e−Ω(k/ log n)) + e−Ω(l/ log n).

Lemma 2.5.5. If the non-adaptive privacy error of (Share, Rec) is ϵ, then the adaptive

privacy error of (Share′, Rec′) is n̄(ϵ + e−Ω(k/ log n)) + e−Ω(l/ log n).

Proof. It follows immediately from Lemma 2.3.10 and 2.5.4.

Theorem 2.5.6. For any ϵ, η ∈ [0, 1], any n, m ∈ N, m ≤ n and any constant

a > 1, γ ∈ (0, 1], if there exists an explicit (n, k) secret sharing scheme in AC0 with

share alphabet Σ, message alphabet Σ0, message length m, non-adaptive privacy error

ϵ and reconstruction error η, then there exists an explicit (n′ = O(na), Ω(n′)) secret

sharing scheme in AC0 with share alphabet Σ× [n′], message alphabet Σ message

length Ω(n′), adaptive privacy error O(na−1(ϵ + e−Ω(k/ log n)) + e−Ω(l/ log n)) and

reconstruction error O(na−1η) where l = Ω(
mna−1 log |Σ0|

log |Σ| )1−γ.
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Proof. It follows from Construction 2.5.1, Lemma 2.5.2, 2.5.3, 2.5.5.

In step 5 of Construction 2.5.1, if we instead using xor based secret sharing scheme

(Theorem 2.2.3) then we can get a even larger privacy threshold, but shorter message

length. The proof is similar.

Theorem 2.5.7. For any n, m ∈ N, m ≤ n, any ϵ, η ∈ [0, 1] and any constant a >

1, γ ∈ (0, 1], if there exists an explicit (n, k) secret sharing scheme inAC0 with share

alphabet Σ, message alphabet Σ0, message length m, non-adaptive privacy error ϵ

and reconstruction error η, then there exists an explicit (n′ = O(na log n), (1− α)n′)

secret sharing scheme in AC0 with share alphabet Σ × [n′], message alphabet Σ,

message length Ω(na), adaptive privacy error O(na−1(ϵ + 2−Ω(k)) + 2−Ω(l)) and

reconstruction error na−1η, where l = Ω(
mna−1 log |Σ0|

log |Σ| )1−γ.

2.5.2 Binary alphabet

Our construction can be modified to have binary alphabet while keeping the message

rate and privacy rate to be constant. We again use the tiny secret sharing schemes

from asymptotically good codes as in Section 2.3.

Construction 2.5.8. For any n, k, m ∈ N with k, m ≤ n, let (Share, Rec) be an

(n, k) secret sharing scheme with alphabet {0, 1}, message length m.

Let (ShareC, RecC) be an (nC, kC) secret sharing scheme from Lemma 2.3.13

with alphabet {0, 1}p=O(log n), message length mC, where mC = δ0nC, kC = δ1nC,

nC = O(log n) for some constants δ0, δ1.

Let (Share∗C, Rec∗C) be an (n∗C, k∗C) secret sharing scheme from Lemma 2.3.13
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with alphabet {0, 1}, message length large enough m∗C, where m∗C = δ0n∗C = p +

O(log n), n∗C = δ1n∗C.

For any constant a > 1, γ > 0, we can construct the following (n′ = O(na), k′ =

Ω(n′) secret sharing scheme (Share′, Rec′) with alphabet {0, 1}, message length

m′ = Ω(n′).

The function Share′ : {0, 1}m′ → {0, 1}n′ is as follows.

1. Let n̄ = Θ(na−1) where the constant factor is large enough.

2. Let gΓ : {0, 1}mn̄ → {0, 1}m′ be the l-wise independent generator by Theorem

2.4.2, where l = Ω(mna−1)1−γ.

3. For secret x ∈ {0, 1}m′ , we draw a string r = (r1, . . . , rn̄) uniform randomly

from ({0, 1}m)n̄.

4. Let y = (ys, yg), where ys = (ys,1, . . . , ys,n̄) = (Share(r1), . . . , Share(rn̄)) ∈

({0, 1}n)n̄ and yg = (yg,1, . . . , yg,m′) = gΓ(r)⊕ x ∈ {0, 1}m′ .

5. Compute ŷs ∈ (({0, 1}p)mC)ns from ys by parsing ys,i to be blocks over

({0, 1}p)mC for every i ∈ [n̄], where ns = ⌈ n
pmC
⌉n̄.

6. Compute ŷg ∈ (({0, 1}p)mC)ng from yg by parsing yg to be blocks over

({0, 1}p)mC , where ng = ⌈ m′
pmC
⌉.

7. Let

y′ = (ShareC(ŷs,1), . . . , ShareC(ŷs,ns), ShareC(ŷg,1), . . . , ShareC(ŷg,ng)).

Parse y′ as (y′1, . . . , y′n∗) ∈ ({0, 1}p)n∗ , where n∗ = (ns + ng)nC.
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8. Generate a random permutation π : [n∗]→ [n∗] and compute

z(x) = (Share∗C(y′π−1(1) ◦π−1(1)), . . . , Share∗C(y′π−1(n∗) ◦π−1(n∗))) ∈ ({0, 1}n∗C)n∗ .

9. Parse z(x) to be bits and output.

The function Rec′ : {0, 1}n′ → {0, 1}m′ is as follows.

1. Parse the input bits to be z = (z1, . . . , zn∗) ∈ ({0, 1}n∗C)n∗ .

2. For every i ∈ [n∗], let (y′
π−1(i) ◦ π−1(i)) = Rec∗C(zi) to get y′.

3. Parse y′ = (y′s, y′g) where y′s = (y′s,1, . . . , y′s,ns) ∈ ({0, 1}pnC)ns , y′g =

(y′g,1, . . . , y′g,ng) ∈ ({0, 1}pnC)ng .

4. Let

ŷs = (RecC(y′s,1), . . . , RecC(y′s,ns)), ŷg = (RecC(y′g,1), . . . , RecC(y′g,ng)).

5. Parse ŷs to get ys.

6. Parse ŷg to get yg

7. Let r = (Rec(ys,1), . . . , Rec(ys,n̄)).

8. Output

Rec′(z) = gΓ(r)⊕ yg.

Lemma 2.5.9. If (Share, Rec) can be computed by AC0 circuits, then (Share′, Rec′)

can be computed by AC0 circuits.
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Proof Sketch. The construction is similar to that of Construction 2.5.1. As nC =

O(log n), n′C = O(log n), n∗C = O(log n), we know that (ShareC, RecC) and

Share∗C, Rec∗C can be computed by AC0 circuits by Lemma 2.2.9 part 2.

So the overall construction can be computed by AC0 circuits.

Lemma 2.5.10. If the reconstruction error of (Share, Rec) is η, then the recon-

struction error of (Share′, Rec′) is η′ = n̄η.

Proof. As (ShareC, RecC) and (Share∗C, Rec∗C) have perfect reconstructions, the error

only occurs when we apply Rec. So we can compute each ri, i = 1, . . . , n̄ correctly

except with error η. By the union bound, with probability 1− n̄η, r is correctly

computed. Once we can compute r correctly, the secret x = gΓ(r)⊕ yg. It remains

to show the correctness of yg. From z we can get the value of every entry of y′, since

for every i ∈ [n∗], (y′
π−1(i) ◦ π−1(i)) = Rec∗C(zi) and we can get y′ by putting each

value into its correct position. Thus y′g is correct as it is part of y′. By noting that

RecC has no reconstruction error, ŷg is correct. As yg is from ŷg by parsing, it is also

correct.

Lemma 2.5.11. If the non-adaptive privacy error of (Share, Rec) is ϵ, then the non-

adaptive privacy error of (Share′, Rec′) is n̄(ϵ + e−Ω(k/ log2 n)) + e−Ω(l/ log2 n).

Proof Sketch. Let k′ = 0.9δ2
1n′. We need to show that there exists a distribution D

such that for any W ⊆ [n′] with |W| ≤ k′, for every x ∈ {0, 1}m′ ,

SD(Share′(x)W ,D) ≤ n̄(ϵ + e−Ω(k/ log2 n)) + e−Ω(l/ log2 n).
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Let D be Share′(σ)W for an arbitrary σ ∈ {0, 1}m′ .

Consider an arbitrary observation W ⊆ [n′] with |W| ≤ k′. For at least 1− 0.9δ1

fraction of the blocks zi, i = 1, . . . , n∗, at most δ1 fraction of the bits in each block

can be observed, because otherwise the number of observed shares is more than

0.9δ1 × δ1n′ = 0.9δ2
1n′. Let W∗ be the index sequence of those blocks which have

more than δ1 fraction of their bits observed. Let |W∗| = k∗ which is at most 0.9δ1n∗.

Consider every i /∈W∗. The distribution of zi is independent of y′
π−1(i) ◦ π−1(i)

by the privacy of (Share∗C, Rec∗C). Since every Share0 function uses independent

randomness, zi is also independent of zi′ for every i′ ∈ [n∗] with i′ ̸= i. So we only

have to show that

SD(zW∗(x), zW∗(σ)) ≤ n̄(ϵ + e−Ω(k/ log2 n)) + e−Ω(l/ log2 n).

For every i ∈ [ns], let Si = {nC(i − 1) + 1, . . . , nCi} and Xi be the boolean

random variable such that Xi = 1 is the event |π(Si) ∩W∗| > kC. Let S =

{S1, . . . , Sns}. Note that ∀i ∈ [ns], E[|π(Si) ∩W∗|] ≤ 0.9δ1nC = 0.9kC.

For every i ∈ [n̄], let Ei be the event that ∑
i⌈ n

pmC
⌉

j=(i−1)⌈ n
pmC
⌉+1 Xj ≤ k

pmC
. We take n̄

to be large enough such that nC⌈ n
pmC
⌉ ≤ 0.9×0.1

1+0.9×0.1 |W∗|. By Lemma 2.3.8, for every

i ∈ [n̄].

1− Pr[Ei] ≤ e−2k/(pmC)+(e2−1)e−Ω(0.9δ2
1nC)⌈ n

pmC
⌉.

We take nC = O(log n) to be large enough such that the probability is at most

e−Ω(k/(pmC)) ≤ e−Ω(k/ log2 n).

For every i ∈ [ng], Ti = {n′C(i − 1) + 1, . . . , nCi} and Yi be the event that

|π(Ti) ∩W∗| > kC. Let T = {T1, . . . , Tng}. Let Y = ∑i∈[ng] Yi. Note that

E[|π(Ti)∩W∗|] ≤ 0.9δ1nC = 0.9kC. Let Eg be the event such that Y ≤ l
pmC

. Since
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n̄ is large enough, we have nCng ≤ 0.9×0.1
1+0.9×0.1 |W∗|. By Lemma 2.3.8,

1− Pr[Eg] ≤ e−2l/(pmC)+(e2−1)e−Ω(0.9δ2
1nC)ng .

We take nC = O(log n) to be large enough such that the probability is at most

e−Ω(l/(pmC)) ≤ e−Ω(l/ log2 n).

Let E be the event that (
⋂

i∈[n̄] Ei) ∩ Eg. By the union bound, Pr[E] ≥ 1 −

n̄e−Ω(k/(log2 n)) − e−Ω(l/(log2 n)). We claim that zW∗(x)|E and zW∗(σ)|E have sta-

tistical distance at most n̄ϵ. The reason is as follows.

We fix a permutation π for which E happens. Let Ws = (
⋃

i∈[ns] Si) ∩W∗,

Wg = (
⋃

i∈[ng] Ti) ∩W∗. Let R be the random variable which corresponds to the

random choice of r.

We claim that zWg(x) is a deterministic function of at most l entries of yg and some

extra uniform random bits. As Eg happens, for those i ∈ [ng] with |π(Ti) ∩W∗| ≤

kC, the blocks indexed by π(Ti) ∩W∗ are independent of the secret by the privacy

of (ShareC, RecC). Note that they are also independent of other blocks since the

construction uses independent randomness for sharing ŷg,i, i ∈ [ng] and ŷs,i, i ∈ [ns].

For those i ∈ [ng] with |π(Ti) ∩W∗| > kC, the total number of them is at most l
pmC

.

So zWg(x) is computed from at most l
pmC
× pmC = l entries of yg and some extra

uniform random bits.

As gΓ(·) is an l-wise independent generator, the distribution of zWg(x) is inde-

pendent of the secret. For any v ∈ supp(zWg(x)), consider zWs(x)|zWg (x)=v and

zWs(σ)|zWg (σ)=v. Note that zWs(x)|zWg (x)=v is a convex combination of zWs(x)|R=r

for some different r such that zWg(x) = v happens.

We claim that zWs(x)|R=r is a deterministic function of at most k entries of
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each ys,i for i ∈ [n̄] and some extra uniform random bits. This is because, as E

happens, for those i ∈ [ns] with |π(Si) ∩W∗| ≤ kC, the shares in π(Si) ∩W∗ are

independent of the secret by the privacy of (ShareC, RecC). Note that they are also

independent of other shares since the construction uses independent randomness for

sharing ŷg,i, i ∈ [ng] and ŷs,i, i ∈ [ns]. For those i ∈ [ns] with |π(Si) ∩W∗| > kC,

the total number of them is at most k
pmC

. So zWs(x)|R=r is computed from at most

k
pmC
× pmC = k entries of each ys,i for i ∈ [n̄] and some extra uniform random bits.

Since the privacy error of (Share, Rec) is ϵ and every Share function uses indepen-

dent uniform random bits, for any r, r′ ∈ (Σm
0 )

n̄,

SD(zWs(x)|R=r, zWs(σ)|R=r) ≤ n̄ϵ.

So

SD(zWs(x)|zWg (x)=v, zWs(σ)|zWg (σ)=v) ≤ n̄ϵ.

As a result,

SD(zWs(x), zWs(σ)) ≤ n̄ϵ.

Thus with probability at least 1− n̄e−Ω(k/(log2 n))− e−Ω(l/(log2 n)) over the fixing

of π, zW∗(x) and zW∗(σ) have statistical distance at most n̄ϵ, which means that

SD(zW∗(x), zW∗(σ)) ≤ n̄(ϵ + e−Ω(k/ log2 n)) + e−Ω(l/ log2 n).

Using Lemma 2.5.11 and a similar argument as in Lemma 2.3.19, we can get

adaptive privacy as follows.
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Lemma 2.5.12. If the non-adaptive privacy error of (Share, Rec) is ϵ, then the adap-

tive privacy error of (Share′, Rec′) is n̄(ϵ + e−Ω(k/ log2 n)) + e−Ω(l/ log2 n).

Proof. Let W be the adaptive observation of length k′. Let W ′ = [⌈k′/k∗C⌉]. By

Lemma 2.3.18, there exists a deterministic function f such that for x, x′ ∈ {0, 1}m′ ,

SD(Share′(x)W , Share(x′)W) = SD( f (Share′(x)W ′ ◦ R ◦ S), f (Share′(x′)W ′ ◦ R ◦

S)) where R, S are as defined in Lemma 2.3.18 which are independent of Share′(x)W ′

and Share′(x′)W ′ . By Lemma 2.2.2, we know that

SD( f (Share′(x)W ′ ◦R ◦S), f (Share′(x′)W ′ ◦R ◦S)) ≤ SD(Share′(x)W ′ , Share′(x′)W ′).

By Lemma 2.5.11 we know that

SD(Share′(x)W ′ , Share′(x′)W ′) ≤ n̄(ϵ + e−Ω(k/ log2 n)) + e−Ω(l/ log2 n).

So

SD(Share′(x)W , Share′(x′)W) ≤ n̄(ϵ + e−Ω(k/ log2 n)) + e−Ω(l/ log2 n).

Theorem 2.5.13. For any ϵ, η ∈ [0, 1], any n, m ∈ N, m ≤ n and any constant

a > 1, γ > 0, if there exists an explicit (n, k) secret sharing scheme in AC0 with

alphabet {0, 1}, message length m, non-adaptive privacy error ϵ and reconstruction

error η, then there exists an explicit (n′ = O(na), Ω(n′)) secret sharing scheme in

AC0 with alphabet {0, 1}, message length Ω(n′), adaptive privacy error O(na−1(ϵ+

2−Ω(k/ log2 n)) + 2−Ω((mna−1)1−γ/ log2 n)) and reconstruction error O(na−1η).

Proof. It follows from Construction 2.5.8, Lemma 2.5.9, 2.5.10, 2.5.12.
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2.6 Instantiation

The Minsky-Papert function [MP88] gives a secret sharing scheme in AC0 with

perfect privacy.

Theorem 2.6.1 ([MP88]). For any n ∈ N, there exists an explicit (n, n
1
3 ) secret

sharing scheme in AC0 with alphabet {0, 1}, message length 1, perfect privacy and

reconstruction.

Combining our techniques with Theorem 2.6.1, we have the following results.

Theorem 2.6.2. For any n ∈ N, any constant α ∈ (0, 1], β ∈ [0, 1), there ex-

ists an explicit (n, (1 − α)n) secret sharing scheme in AC0 with share alphabet

{0, 1}O(log n), message alphabet {0, 1}, message length m = nβ, adaptive privacy

error 2−Ω(( n
m log n )

1/3) and perfect reconstruction.

Proof. It follows from Theorem 2.6.1 and 2.3.12. We use the (n0, n1/3
0 ) secret sharing

scheme from Theorem 2.6.1 to instantiate Theorem 2.3.12. So n = O(na
0 log n0) for

some constant a > 1. The message length is O(n/(n0 log n)). Since n0 = n
m log n ,

the privacy error is 2−Ω(( n
m log n )

1/3). The share alphabet is {0, 1} × [n].

Note that when β = 0, this is a scheme sharing 1 bit. Next we give our theorem

for secret sharing schemes with binary alphabet, constant secret rate and constant

privacy rate.

Theorem 2.6.3. For any n ∈ N, for any constant γ ∈ (0, 1/4), there exists an

explicit (n, Ω(n)) secret sharing scheme in AC0 with alphabet {0, 1}, message
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length m = Ω(n), adaptive privacy error 2−Ω(n
1
4−γ) and perfect reconstruction.

Proof. It follows from Theorem 2.6.1 and 2.5.13.

Let (n0, n1/3
0 ) be the secret sharing scheme of Theorem 2.6.1 with message length

m0 = 1. Let n = O(na
0) for some constant a > 1. For any constant β ∈ (0, 1),

let n1/3
0 = (m0na−1

0 )1−β. Then a = 4−3β
3(1−β)

. So n0 = O(n
3(1−β)
4−3β ). Hence by

Theorem 2.5.13, we have the desired secret sharing scheme with the privacy error

2−Ω(n
1−β
4−3β / log2 n).

2.7 Extensions and Applications

2.7.1 Robust secret sharing

Our secret sharing schemes can be made robust by using robust secret sharing schemes

and authentication techniques in small blocks.

We will use cyclic shifting of indices in some constructions in this section. For

any index i in some index set S, for any j ∈N, i≫ j is the index obtained from i by

doing right cyclic shifting for j positions, whereas i≪ j is the index obtained from i

by doing left cyclic shifting for j positions.

Theorem 2.7.1 ([Che16]). For any n ∈ N, any constant ρ < 1/2, there exists an

(n, Ω(n)) robust secret sharing scheme, with alphabet {0, 1}O(1), message length

Ω(n), perfect privacy, robustness parameter d = ρn and reconstruction error 2−Ω(n).

Also we need the following theorem about computing approximate majorities.
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Theorem 2.7.2 ([Vio09]). For every n ∈ N, there exists an explicit depth 3 circuit

Cn : {0, 1}n → {0, 1} which decides whether the fraction of 1’s in the input is at

least 2/3.

We use concatenations of the schemes from Theorem 2.7.1 to get the following

robust secret sharing scheme in AC0 with poly-logarithmic number of shares.

Lemma 2.7.3. For any n ∈N, any constant a ∈N, any ϵ = 1/poly(n), there exists

an (n0 = O(loga n), k0 = Ω(n0)) robust secret sharing scheme in AC0 (in n), with

share alphabet {0, 1}O(1), message alphabet {0, 1}, message length Ω(n0), perfect

privacy, robustness parameter Ω(n0), reconstruction error ϵ.

Proof. Let (RShare1, RRec1) be an (n1 = O(log n), k1 = Ω(n1)) robust secret

sharing scheme from Theorem 2.7.1 with message length m1, robustness parameter

d1, share alphabet {0, 1}p=O(1).

We use induction on a.

For a = 1, as the output length is O(log n), by Lemma 2.2.9, the sharing and

reconstruction can both be done in AC0. Other properties follow from Theorem 2.7.1.

Assume the conclusion holds for some a ≥ 1. So there exists an (na =

O(loga n), ka = Ω(na)) robust secret sharing scheme meeting the requirements,

with message length ma, message alphabet {0, 1}, robustness parameter da, share

alphabet {0, 1}p. Consider a + 1. For any x ∈ {0, 1}O(loga+1 n), let RSharea+1 be

constructed as follows. Split x into blocks (x̄1, . . . , x̄m1) ∈ ({0, 1}ma)m1 . Let ȳi =

RShare1(x̄1,i, . . . , x̄m1,i), i = 1, . . . , ma, where x̄j,i is the ith bit of x̄j, j = 1, . . . , m1 .

Let x̃i = (ȳ1,i, . . . , ȳma,i), i = 1, . . . , n1, where ȳj,i is the ith bit of ȳj, j = 1, . . . , ma.
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Let yi = RSharea(x̃i), i = 1, . . . , n1. Let RSharea+1(x) = (y1, . . . , yn1). The mes-

sage length is ma+1 = m1 · ma. The privacy is ka+1 = k1 · ka = Ω(na). This is

because, if the adversary can see at most k1 · ka shares, then at most k1 of x̃1, . . . , x̃n1

are observed. So by the privacy of Share1, x̄1, . . . , x̄m1 are not observed. Thus x is

not observed. The robustness is da+1 = d1da = Ω(na), due to a similar argument

as for the privacy. RSharea+1 can be computed by AC0 circuits since both RShare1

and RSharea can be computed by AC0 circuits. The reconstruction is in AC0 since

we can first apply RReca on yi for every i = 1, . . . , n1. By assumption this is in AC0.

Then we apply RRec1 on ȳi for every i = 1, . . . , ma. This is in AC0 by the base

case. The reconstruction error is still 1/poly(n) since both (RShare1, RRec1) and

(RSharea, RReca) have reconstruction error 1/poly(n).

Next, we give our construction of robust secret sharing scheme with “asymptoti-

cally good” parameters.

Theorem 2.7.4. For any n ∈ N, any η = 1
poly(n) , there exists an explicit (n, Ω(n))

robust secret sharing scheme in AC0 with share alphabet {0, 1}O(1), message alp-

habet {0, 1}, message length m = Ω(n), non-adaptive privacy error 2−nΩ(1)
, non-

adaptive robustness Ω(n) and reconstruction error η.

Proof Sketch. We modify Construction 2.5.8. Let δ0, δ1, ρ be some proper constants

in (0, 1).

Let (RShareC, RRecC) be an (nC, kC) secret sharing scheme from Theorem 2.7.3

with share alphabet {0, 1}p=O(log2 n′), message alphabet {0, 1}, message length mC,

where mC = δ0nC, kC = δ1nC, nC = O(log n′), robustness parameter ρnC.
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Also let (RShare∗C, RRec∗C) be an (n∗C, k∗C) secret sharing scheme from Theorem

2.7.3 with share alphabet Σ = {0, 1}O(1), message alphabet {0, 1}, message length

m∗C = p + O(log2 n), where m∗C = δ0n∗C, k∗C = δ1n∗C, robustness parameter ρn∗C.

The robust secret sharing scheme construction is the same as that of Construction

2.5.1 except the following modifications. We replace (ShareC, RecC) and (Share∗C, Rec∗C)

by their corresponding robust ones (RShareC, RRecC) and (RShare∗C, RRec∗C) . For

the share function, we replace the last two steps in Construction 2.5.8 by the following.

• Generate a random permutation π : [n∗]→ [n∗].

• Randomly pick l′ = O(log n∗) indices r′1, . . . , r′l′ ∈ [n∗] and let r′ = (r′1, . . . , r′l′).

• For each block y′
π−1(i) ◦ π−1(i), i = 1, . . . , n∗, we attach r′ and π−1(i ≫

r′1), π−1(i≫ r′2), . . . , π−1(i≫ r′l′) to it. That is, the ith block is

ỹi = y′π−1(i) ◦ π−1(i) ◦ π−1(i≫ r′1) ◦ · · · ◦ π−1(i≫ r′l′) ◦ r′.

• Compute z(x) = (RShare∗C(ỹ1), . . . , RShare∗C(ỹn∗)).

• Parse z to be shares over Σn′=n∗Cn∗ and output.

For the reconstruction function we replace the first two steps with the following.

• Parse the input to be blocks each of length n∗C and apply RRec∗C on every block

to get ỹ.

• Compute r′ by taking the approximate majority of the r′s in ỹi, i = 1, . . . , n∗.

• ∀i ∈ [n′], take the approximate majority of the l backups of π−1(i) to recon-

struct π−1(i).
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• Compute y′ using the recovered indices and ỹ.

We claim that, we get a (n′, Ω(n′)) robust secret sharing scheme with share alphabet

{0, 1}O(1), message alphabet {0, 1}, message length m′ = Ω(n′), non-adaptive

privacy error 2−n′Ω(1)
, non-adaptive robust parameter Ω(n′) and reconstruction error

η.

The non-adaptive privacy can be proved in the same way as that of Lemma 2.5.11.

Note that for each i ∈ [n∗] we attach additional information about the indices. But this

gives no more information about the secret since we are considering the non-adaptive

case.

What we need to prove is that the reconstruction works under non-adaptive advers-

aries. Assume that the adversary corrupts at most min(0.9ρ2, ρ/3) fraction of shares.

Thus for at most 1/3 fraction of zi, i ∈ [n∗], the fraction of corrupted shares is more

than ρ. Because otherwise the total fraction of corrupted shares is more than ρ/3.

Hence for at least 2/3 fraction of zi, i ∈ [n∗], the fraction of corrupted shares is at

most ρ. By the robustness of (RShare∗C, RRec∗C), at least 2/3 fraction of ỹi, i ∈ [n∗]

can be reconstructed correctly. By Theorem 2.7.2, we can reconstruct r′ correctly.

For any i ∈ [n∗], the event π−1(i) can be recovered correctly with probability

1− e−Θ(log n′) = 1− poly(n′) by a Chernoff bound, since the l′ indices r′1, . . . , r′l′ are

independently chosen and at most ρ/3 fraction of ỹ1, . . . , ỹn∗ cannot be reconstructed

correctly. By the union bound with probability 1− poly(n′), ∀i ∈ [n∗], π−1(i) can

be recovered correctly. Before applying RRecC on every y′i, we bound the number

of corrupted bits (including the blanks) for y′i. The probability that the fraction of

corrupted bits in y′i is at most ρ is at least 1− 1/poly(n′) by Lemma 2.3.7. Once for

every block y′i, i = 1, . . . , n∗, the corrupted rates are at most ρ , we can finally get the
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correct secret. By the union bound, we know the probability that this happens is at

least 1− 1/poly(n′).

The construction is still in AC0. We only need to show that the modified parts

can be computed in AC0. For the share function, generating random permutation is

by Lemma 2.3.1. Additions of indices can be computed by AC0 circuits by Lemma

2.2.9 since the indices are recorded by O(log n′) bits. Also note that RShare∗C is from

Lemma 2.7.3. For the reconstruction, note that RRec∗C is from Lemma 2.7.3. The

approximate majority is from Theorem 2.7.2. So they all can be computed by AC0

circuits. The tests which check the equivalence of indices are inAC0 by Lemma 2.2.9,

as the input length is O(log n′).

We still use Theorem 2.6.1 to instantiate the scheme.

2.7.2 Stochastic error correcting code

Using our general strategy, we can also construct stochastic error correcting codes in

AC0 which can resist additive errors ([GS16]).

One important component of our construction is the following “tiny" codes. It is

constructed by classic code concatenation techniques.

Lemma 2.7.5. For any n ∈ N, any constant a ∈ N, there exists an asymptotically

good binary (n0 = O(loga n), m0, d0) code C such that the encoding and decoding

can both be computed by AC0 circuits of size poly(n).

Proof. Let C1 be an (n1 = O(log n), m1, d1) binary code which is asymptotically

good.
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We use induction on a.

For a = 1, as the code length is O(log n) and there are plenty of asymptotically

good binary codes construction, by Lemma 2.2.9, the encoding and decoding can both

be done in AC0. So our conclusion holds in this case.

Assume the conclusion holds for some a ≥ 1. So there exists an asymptotically

good binary (na = O(loga n), ma, da) code Ca. Consider a + 1. For any x ∈

{0, 1}O(loga+1 n), let Ca+1(x) be computed as the following codes concatenation.

Parse x into blocks of length ma, which is (x̄1, . . . , x̄m1). Let ȳi = C1(x̄1,i, . . . , x̄m1,i),

i = 1, . . . , ma, where x̄j,i is the ith bit of x̄j. Let x̃i = (ȳ1,i, . . . , ȳma,i), i = 1, . . . , n1,

where ȳj,i is the ith bit of ȳj, j = 1, . . . , ma. Let yi = Ca(x̃i), i = 1, . . . , n1. Let

Ca+1(x) = (y1, . . . , yn1). The message length is ma+1 = m1 ·ma. The distance is

da+1 = d1 · da. So Ca+1 is still an asymptotically good code due to that a is a constant.

The encoding can be computed by AC0 circuits since the encoding of both C1 and Ca

can be computed by AC0 circuits. The decoding is in AC0 since we can first decode

yi for every i = 1, . . . , n1. By assumption this is in AC0. Then we decode ȳi for

every i = 1, . . . , ma. This is in AC0 by the base case.

Here we give the construction of stochastic error correcting codes in AC0 which

are “asymptotically good”.

Construction 2.7.6. For any n ∈N, we construct the following (n, m = Ω(n), ρ =

Ω(1)) stochastic error correcting code.

Let δ0, δ1 be some proper constants in (0, 1).

Let (Enc0, Dec0) be an asymptotically good (n0, m0, d0) error correcting code
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with alphabet {0, 1}p, n0 = O(log n), m0 = δ0n0, d0 = δ1n0. In fact we can realize

this code by applying an asymptotically good binary code, having the same rate, in

parallel p times.

Let (Enc1, Dec1) be an asymptotically good (n1, m1, d1) error correcting code

from Lemma 2.7.5 with alphabet {0, 1}, n1 = p + O(log n), m1 = δ0n1 = O(p),

d1 = δ1n0.

Encoding function Enc : {0, 1}m=Ω(n) → {0, 1}n is a random function which is

as follows.

1. On input x ∈ {0, 1}m, split x into blocks of length pm0 such that x =

(x̄1, . . . , x̄m/(pm0)) ∈ ({0, 1}pm0)m/(pm0).

2. Compute (Enc0(x̄1), . . . , Enc0(x̄m/(pm0))) and parse it to be y = (y1, . . . , yn′) ∈

({0, 1}p)n′ , n′ = m/(δ0p).

3. Generate a random permutation π : [n′]→ [n′].

4. Randomly pick l = O(log n) different indices r1, . . . , rl ∈ [n′] and let r =

(r1, . . . , rl).

5. For every i ∈ [n′], let ỹi = (yπ−1(i), π−1(i), π−1(i ≫ r1), . . . , π−1(i ≫

rl), r).

6. Output z = (Enc1(ỹ1), . . . , Enc1(ỹn′)) ∈ ({0, 1}n1)n′ .

Decoding function Dec : {0, 1}n=n1n′ → {0, 1}m is as follows.

1. On the input z, apply Dec1 on every block of length n0 to get ỹ.
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2. Take the majority of the r in every ỹi, i ∈ [n′] to get r.

3. ∀i ∈ [n′], take the approximate majority of the l backups of π−1(i) to recon-

struct π−1(i).

4. Compute the entries of y using the recovered indices and ỹ.

5. Apply Dec0 on every block of y of length pn0 to get x.

Theorem 2.7.7. For any n ∈N, any ϵ = 1/poly(n), there exists an explicit (n, m =

Ω(n), ρ = Ω(1)) stochastic binary error correcting code with decoding error ϵ,

which can be computed by AC0 circuits.

The proof here is similar to the proof of Theorem 2.7.4.

Proof Sketch. We claim that Construction 2.7.6 gives such a code.

Let ρ = 0.9(δ1/3)2. So for at most 0.9(δ1/3) fraction of blocks z1, . . . , z′n, each

of them has at least (δ1/3) fraction of bits being corrupted, since otherwise the overall

corrupted bits is larger than 0.9(δ1/3)× (δ1/3)n1n′ = ρn. For blocks of z1, . . . , zn

with less than (δ1/3) fraction of bits being corrupted, they can be decoded correctly

since d1/2 = δ1n1/2. Thus we know that r can be reconstructed correctly through

taking approximate majorities.

For any i ∈ [n′], as r1, . . . , rl are randomly chosen and at most 0.9(δ1/3) fraction

of ỹ1, . . . , ỹn′ can not be computed correctly, by a Chernoff bound, the probability

that π−1(i) is correctly computed can be at least 1− 0.5ϵ/n′ by setting l to be large

enough. So by the union bound, the probability that for every i ∈ [n′], π−1(i) is

correctly recovered, is at least 1− 0.5ϵ.
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Now we bound the number of corrupted bits for every yi. The probability that the

fraction of corrupted bits in yi is at most δ1/3 is at least 1− 1/poly(n) by Lemma

2.3.7. Once for every block yi, i = 1, . . . , n′, the corrupted rates are at most δ1/3 , we

can decode correctly. By the union bound, we know the probability that this happens

is at least 1− 1/poly(n).

The Construction can be computed by AC0 circuits since all components can be

computed by AC0 circuits.

Note that if we set both levels of codes in our construction to be from Lemma

2.7.5 with length poly log n and l to be also poly log n, we can get quasi-polynomially

small decoding error following the same proof. The result is stated as the follows.

Theorem 2.7.8. For any n ∈N, any ϵ = 2−poly log n, there exists an explicit (n, m =

Ω(n), ρ = Ω(1)) stochastic binary error correcting code with decoding error ϵ,

which can be computed by AC0 circuits.

We can use duplicating techniques to make the decoding error to be even smaller,

however with a smaller message rate.

Theorem 2.7.9. For any n, r ∈ N, there exists an (n, m = Ω(n/r), ρ = Ω(1))

stochastic binary error correcting code with decoding error 2−Ω(r/ log n), which can

be computed by AC0 circuits.

Proof Sketch. For message x ∈ {0, 1}m, we simply repeat every bit for r times and

then apply the coding scheme in Construction 2.7.6. When decoding, we apply

the circuits from Theorem 2.7.2 to decide each xi from r symbols. The error is
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2−Ω(r/ log n) since we need to correctly reconstruct Ω(r/ log n) blocks to have the

approximate majority being correct.

2.7.3 Secure broadcasting

We give a secure protocol for the multi-party broadcasting model against external

adversaries. The definition is given by Definition 2.1.11. Here we briefly describe the

model again.

There are n parties where every party i ∈ [n] has a local input xi ∈ {0, 1}m.

After communication, they want every party to know all xi, i ∈ [n]. Usually we

assume the communication is conducted in a broadcast channel. The adversary can

observe/corrupt some messages appeared in the communication but not all of them.

A protocol for this model is secure in the sense that the adversary can learn almost

nothing about the local inputs.

The major difference between our model and the multi-party computation model

is that, in our case, all parties are honest. The adversary can only observe/corrupt a

constant fraction of messages.

The model is pretty practical in real world. For example, in military, we can

think of several command-centres willing to exchange their information, while there

are enemy radars or receivers which can detect their information frequently (but not

always, since our army will find and attack them). Or several players want to have a

common guess for the lottery but do not want anybody else occasionally passing by to

know their guess.

To achieve our objective, we need to use the almost t-wise independent random
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permutation. A random variable π : [n] → [n] is an ϵ almost t-wise independent

random permutation if for every t elements i1, . . . , it ∈ [n], (π(i1), . . . , π(it)) has sta-

tistical distance at most ϵ from (π′(i1), . . . , π′(it)) where π′ is a random permutation

over [n]. Kaplan, Naor and Reingold [KNR05] give a polynomial time construction

generating ϵ almost t-wise independent permutations using O(t log n + log(1/ϵ))

random bits.

Our protocol for secure broadcasting is as follows. We assume that all parties

share a small secret key. This assumption is reasonable since in our protocol the length

of the shared secret key is significantly smaller than the total input length.

Protocol 2.7.10. For any n, m ∈N, for any i ∈ [n], let xi ∈ {0, 1}m be the input of

party i. Let the security parameter be r ∈N with r ≤ m.

Let (RShare0, RRec0) be an (n0, k0 = δ0n0) robust secret sharing scheme with

share alphabet {0, 1}p=O(1), secret length m0 = m = δn0 and robust parameter

d0 = δ1n0, by Theorem 2.7.1 for some constant δ, δ0, δ1 with δ0 ≥ δ1.

Let (RShare1, RRec1) be an (n1, k1 = δ0n1) robust secret sharing scheme with

share alphabet {0, 1}p=O(1), secret length m1 = pn0/r = δn1 and robust parameter

d1 = δ1n1, by Theorem 2.7.1.

Assume that all parties have a common secret key s ∈ {0, 1}O(r log(nr)).

The i-th party does the following.

1. Generate a 2−Ω(r)-almost r-wise independent random permutation π over [nr]

using s.

2. Compute the secret shares yi = RShare0(xi) ∈ ({0, 1}p)n0 . Split yi into r

blocks each of length pn0/r such that yi = (yi,1, . . . , yi,r).
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3. View the communication procedure as having [nr] time slots. For j ∈ [r], on

the π((i− 1)r + j)’s time slot, send message zi,j = RShare1(yi,j).

4. For every i ∈ [n], j ∈ [r], compute yi,j = RRec1(zi,j), where zi,j is the message

received in the π((i− 1)r + j)’s time slot.

5. For every i ∈ [n] get yi = (yi,1, . . . , yi,r).

6. For every i ∈ [n], xi = RRec0(yi).

Theorem 2.7.11. For any n, m, r ∈N with r ≤ m, there exists an explicit (n, m, α =

Ω(1), n2−Ω(r), n2−Ω(r) + nm2−Ω(m/r)) secure broadcasting protocol with commu-

nication complexity O(nm), secret key length O(r log(nr)).

Proof Sketch. Let α = 0.1δ2
1/p. We consider the non-adaptive adversary. For at least

1− 0.1δ1 fraction of nr blocks, the adversary can only observe/corrupt at most δ1/p

fraction of bits in one block. Because otherwise the total observed/corrupted fraction

is more than 0.1δ1 × δ1/p.

For every block zi,j with at most δ1/p fraction of bits being corrupted, yi,j is

hidden and can be reconstructed correctly, since (RShare1, RRec1) is a robust secret

sharing scheme. Let W ⊆ [nr] denote the set of indices of those blocks for which the

adversary can tempt more than δ1/p fraction of bits. So |W|nr ≤ 0.1δ1.

Let’s first assume that π is a perfect random permutation.

Let Xi,j be the indicator such that Xi,j = 1 is the event that π((i− 1)n + j) ∈W.

Let Xi = ∑j∈[r] Xi,j. Thus

Pr[Xi,j = 1] ≤ 0.1δ1.
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By Lemma 2.3.7,

Pr[Xi > δ1r] ≤ 2−Ω(r).

As (RShare0, RRec0) and (RShare1, RRec1) are all robust, once Xi ≤ δ1r, xi can

be reconstructed correctly. Since δ0 ≥ δ1, xi is also hidden.

Now consider π being a 2−Ω(r)-almost r-wise independent random permutation.

Since Xi is a deterministic function of π, by Lemma 2.2.9 the statistical distance

between Xi and that in the perfect random permutation case is 2−Ω(r). So

Pr[Xi > δ1r] ≤ 2−Ω(r).

By the union bound, the probability that ∀i ∈ [n], xi is hidden and can be

reconstructed correctly, is at least 1− n2−Ω(r).

The reconstruction error is from the two reconstruction functions RRec0 and

RRec1. As we applied them for at most O(nm) times and want them to always

compute correctly, the error is at most n2−Ω(r) + nm2−Ω(m/r). Note that the support

of the almost r-wise independent random permutation is a subset of the set of all

permutations [KNR05], so the reconstruction can still be done following a same

analysis as the proof of Theorem 2.7.4.

The total number of bits in the transmission is nm(p/δ)2 = O(nm).
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Chapter 3

Edit Distance: Document Exchange
Protocol and Error Correcting Code

3.1 Introduction

Given two strings x, y over some finite alphabet Σ, the edit distance between them

ED(x, y) is defined as the minimum number of edit operations (insertions, deletions

and substitutions) to change x into y. Being one of the simplest metrics, edit dis-

tance has been extensively studied due to its wide applications in different areas. For

example, in natural language processing, edit distance is used in automatic spelling

correction to determine possible corrections of a misspelled word; and in bioinforma-

tics it can be used to measure the similarity between DNA sequences. In this chapter,

we study the general question of recovering from errors caused by edit operations.

Note that without loss of generality we can only consider insertions and deletions,

since a substitution can be replace by a deletion followed by an insertion, and this at

most doubles the number of operations. Thus from now on we will only be interested

in insertions and deletions, and we define ED(x, y) to be the minimum number of

such operations required to change x into y.
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Insertion and deletion errors happen frequently in practice. For example, they

occur in the process of reading magnetic and optical media, in genetic mutation where

DNA sequences may change, and in internet protocols where some packets may

get lost during routing. Another typical situation where these errors can occur is in

distributed file systems, e.g., when a file is stored in different machines and being

edited by different people working on the same project. These files then may have

different versions that need to be synchronized to remove the edit errors. In this

context, we study the following two basic problems regarding insertion and deletion

errors.

• Document exchange. In this setting, two parties Alice and Bob each holds

a string x and y, and we assume that their edit distance is bounded by some

parameter k. The goal is to have Alice send a sketch to Bob based on her string

x and the edit distance bound k, such that Bob can recover Alice’s string x

based on his string y and the sketch. Naturally, we would like to require both

the message length and the computation time of Alice and Bob to be as small as

possible.

• Error correcting codes. In this setting, two parties Alice and Bob are linked by

a channel where the number of worst case insertion and deletions is bounded

by some parameter k. Given any message, the goal is to have Alice send

an encoding of the message to Bob through the channel, so that despite any

possible insertion and deletion errors that may happen, Bob can recover the

correct message after receiving the (possibly modified) codeword. Again, we

would like to minimize both the codeword length (or equivalently, the number

of redundant bits) and the encoding/decoding time. This is a generalization of

176



the classical error correcting codes for Hamming errors.

It can be seen that these two problems are closely related. In particular, a solution

to the document exchange problem can often be used to construct an error correcting

code for insertion and deletion errors. In this chapter, we focus on the setting where

the strings have a binary alphabet, arguably the most popular and important setting

in computer science.1 In this case, assume that Alice’s string (or the message she

wants to send) has length n, then it is known that for small k (e.g., k ≤ n/4) both the

optimal sketch size in document exchange and the optimal number of redundant bits

in an error correcting code is Θ(k log(n
k )), and this is true even for Hamming errors.

In addition, both optimum can be achieved using exponential time, with the first one

using a greedy coloring algorithm and the second one using a greedy sphere packing

algorithm (which is essentially what gives the Gilbert-Varshamov bound).

It turns out that in the case of Hamming errors, both optimum (up to constants) can

also be achieved efficiently in polynomial time. This is done by using sophisticated

linear Algebraic Geometric codes [HVLP98]. As a special case, one can use Reed-

Solomon codes to achieve O(k log n) in both problems. However, the situation

becomes much harder once we switch to edit errors, and our understanding of these

two basic problems lags far behind the case of Hamming errors. We now survey

related previous work below.

Document exchange. Historically, Orlitsky [Orl91] was the first one to study the

document exchange problem. His work gave protocols for generally correlated strings

1Although, our document exchange protocols can be easily extended to larger alphabets, we omit
the details here.
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x, y using a greedy graph coloring algorithm, and in particular he obtained a determi-

nistic protocol with sketch size O(k log n) for edit errors. However, the running time

of the protocol is exponential in k. The main question left there is whether one can

design a document exchange protocol that is both communication efficient and time

efficient.

There has been considerable progress afterwards [Cor+00], [IMS05], [Jow12].

Specifically, Irmak et al. [IMS05] gave a randomized protocol that achieves sketch

size O(k log(n
k ) log n) and running time Õ(n). Independently, Jowhari [Jow12]

also obtained a randomized protocol with sketch size O(k log2 n log∗ n) and running

time Õ(n). A recent work by Chakraborty et al. [CGK16] introduced a clever

randomized embedding from the edit distance metric to the Hamming distance metric,

and thus obtained a protocol with sketch size O(k2 log n) and running time Õ(n).

Using the embedding in [CGK16], Belazzougui and Zhang [BQ16] gave an improved

randomized protocol with sketch size O(k(log2 k + log n)) and running time Õ(n +

poly(k)), where the sketch size is asymptotically optimal for k = 2O(
√

log n).

All of the above protocols, except the exponential time protocol of Orlitsky [Orl91],

are however randomized. In practice, a deterministic protocol is certainly more useful

than a randomized one. Thus one natural and important question is whether one can

construct a deterministic protocol for document exchange with small sketch size (e.g.,

polynomial in k log n) and efficient computation. This question is also important

for applications in error correcting codes, since a randomized document exchange

protocol is not very useful in designing such codes. It turns out that this question is

quite tricky, and no such deterministic protocols are known even for k > 1 until the

work of Belazzougui [Bel15] in 2015, where he gave a deterministic protocol with
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sketch size O(k2 + k log2 n) and running time Õ(n).

Error correcting codes. Error correcting codes are fundamental objects in both

theory and practice. Starting from the pioneering work of Shannon, Hamming and

many others, error correcting codes have been intensively studied in the literature. This

is true for both standard Hamming errors such as symbol corruptions and erasures, and

edit errors such as insertions and deletions. While the study of codes against standard

Hamming errors has been a great success, leading to a near complete knowledge and a

powerful toolbox of techniques together with explicit constructions that match various

bounds, our understanding of codes for insertion and deletion errors (insdel codes

for short) is still rather poor. Indeed, insertion and deletion errors are strictly more

general than Hamming errors, and the study of codes against such errors has resisted

progress for quite some time, as demonstrated by previous work which we discuss

below.

Edit Errors Since insertion and deletion errors are strictly more general than Ham-

ming errors, all the upper bounds on the rate of standard codes also apply to insdel

codes. Moreover, by using a similar sphere packing argument, similar lower bounds

on the rate (such as the Gilbert-Varshamov bound) can also be shown. In particular,

one can show (e.g., [Lev66]) that for binary codes, to encode a message of length n

against k insertion and deletion errors with k ≤ n/2, the optimal number of redundant

bits is Θ(k log(n
k )); and to protect against ε fraction of insertion and deletion errors,

the optimal rate of the code is 1−Θ(ε log(1
ε )). On the other hand, if the alphabet

of the code is large enough, then one can potentially recover from an error fraction

approaching 1 or achieve the singleton bound: a rate 1− ε code that can correct ε
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fraction of insertion and deletion errors.

However, achieving these goals have been quite challenging. In 1966, Levenshtein

[Lev66] first showed that the Varshamov-Tenengolts code [RRV65] can correct one

deletion with roughly log n redundant bits, which is optimal. Since then many

constructions of insdel codes have been given, but all constructions are far from

achieving the optimal bounds. In fact, even correcting two deletions requires Ω(n)

redundant bits, and even the first explicit asymptotically good insdel code (a code that

has constant rate and can also correct a constant fraction of insertion and deletion

errors) over a constant alphabet did not appear until the work of Schulman and

Zuckerman in 1999 [SZ99], who gave such a code over the binary alphabet. We

refer the reader to the survey by Mercier et al. [MBT10] for more details about the

extensive research on this topic.

In the past few years, there has been a series of work trying to improve the situation

for both the binary alphabet and larger alphabets. Specifically, for larger alphabets,

a line of work by Guruswami et. al [GW17], [GL16], [BG16] constructed explicit

insdel codes that can correct 1− ε fraction of errors with rate Ω(ε5) and alphabet

size poly(1/ε); and for a fixed alphabet size t ≥ 2 explicit insdel codes that can

correct 1− 2
t+1 − ε fraction of errors with rate (ε/t)poly(1/ε). These works aim to

tolerate an error fraction approaching 1 by using a sufficiently large alphabet size.

Another line of work by Haeupler et al [HS17], [HS18], [Che+18] introduced and

constructed a combinatorial object called synchronization string, which can be used to

transform standard error correcting codes into insdel codes, at the price of increasing

the alphabet size. Using explicit constructions of synchronization strings, [HS17]

achieved explicit insdel codes that can correct δ fraction of errors with rate 1− δ− ε
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(hence approaching the singleton bound), although the alphabet size is exponential in

1
ε .

For the binary alphabet, which is the focus of this chapter, it is well known that

no code can tolerate an error fraction approaching 1 or achieve the singleton bound.

Instead, the major goal here is to construct explicit insdel codes for some small

fraction (ε) or some small number (k) of errors that can achieve the optimal rate of

1−Θ(ε log(1
ε )) or the optimal redundancy of Θ(k log(n

k )), which is analogous to

achieving the Gilbert-Varshamov bound for standard error correcting codes. Slightly

less ambitiously, one can ask to achieve redundancy O(k log n), which is optimal

when k ≤ n1−α for any constant α > 0, and easy to achieve in the case of Hamming

errors by using Reed-Solomon codes. In this context, Guruswami et. al [GW17],

[GL16] constructed explicit insdel codes that can correct ε fraction of errors with

rate 1− Õ(
√

ε), which is the best possible by using code concatenation. For any

fixed constant k, another work by Brakensiek et. al [BGZ17] constructed an explicit

insdel code that can encode an n-bit message against k insertions/deletions with

O(k2 log k log n) redundant bits, which is asymptotically optimal when k is a fixed

constant. We remark that the construction in [BGZ17] only works for constant k,

and does not give anything when k becomes larger (e.g., k = log n). Finally, using

his deterministic document exchange protocol, Belazzougui [Bel15] constructed an

explicit insdel code that can encode an n-bit message against k insertions/deletions

with O(k2 + k log2 n) redundant bits. In summary, there remains a huge gap between

the known constructions and the optimal bounds in the case of a binary alphabet. In

particular, even achieving O(k log n) redundancy has been far out of reach.
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Block insertions/deletions and Transpositions We also consider document ex-

change protocols and error correcting codes for block edit errors, as well as block

transpositions. This kind of errors is also pretty common, as most errors that happen

in practice, such as in wireless or mobile communications and magnetic disk readings,

tend to be concentrated. We model such errors as block insertions and deletions, where

in one operation the adversary can insert or delete a whole block of bits. It is again

easy to see that this is indeed a generalization of standard edit errors. However, in

addition to the bound k on such operations, we also need to put a bound on the total

number of bits that the adversary can insert or delete, since otherwise the adversary

can simply delete the whole string in one block deletion. Therefore, we model the

adversary as follows.

For some parameters k and t and an alphabet Σ, a (k, t) block edit adversary is

allowed to perform three kinds of operations: block insertion, block deletion and

block transposition. The adversary is allowed to perform at most k such operations,

while the total number of symbols inserted/deleted by the first two operations is at

most t. We also use (k, t) block edit errors to denote errors introduced by such an

adversary. All our results focus on the case of binary alphabet, but in our protocols

and analysis we will be using larger alphabets.

We note that by the result of Schulman and Zuckerman [SZ99], to correct

Ω(n/ log n) block transpositions one needs at least Ω(n) redundant bits. Thus

we only consider k ≤ αn/ log n for some constant 0 < α < 1. Similarly, we only

consider t ≤ βn for some constant 0 < β < 1 since otherwise the adversary can

simply delete the whole string. We also note the following subtle difference between

the three block edit operations. While we need a bound t on the total number of
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bits that the adversary can insert or delete, for block transposition an adversary can

choose to move an arbitrarily long substring. Therefore, we need to consider the

three operations separately, and cannot simply replace a block transposition by a block

deletion followed by a block insertion.

Edit errors with block transpositions have been studied before in several different

contexts. For example, Shapira and Storer [SS02] showed that finding the distance

between two given strings under this metric is NP-hard, and they gave an efficient

algorithm that achieves O(log n) approximation. Interestingly, a work by Cormode

and Muthukrishnan [CM07] showed that this metric can be embedded into the L1

metric with distortion O(log n log∗ n); and they used it to give a near linear time

algorithm that achieves O(log n log∗ n) approximation for this distance, something

currently unknown for the standard edit distance. Coming back to document exchange

and error correcting codes, in our model, we show in the appendix that non-explicitly,

the information optimum for both the sketch size of document exchange, and the

redundancy of error correcting codes, is Θ(k log n + t).

When it comes to more general errors such as block transpositions, as far as

we know, there are no known explicit deterministic document exchange protocols.

The only known randomized protocols which can handle edit errors as well as block

transpositions are the protocol of [IMS05], which has sketch size O(k log(n
k ) log n);

and the protocol of [Jow12], which has sketch size Õ(k log2 n). The protocol of

[IMS05] uses a recursive tree structure and random hash functions, while the protocol

of [Jow12] is based on the embedding of Cormode and Muthukrishnan [CM07]. We

stress that both of these protocols are randomized, and there are very good reasons

why it is not easy to modify them into deterministic ones. Specifically a direct
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derandomization of the hash functions used in [IMS05] (for example by using almost

k-wise independent sample space) does not give a deterministic protocol, because

block transpositions will make the computation of a matching problematic. We shall

discuss this in more details when we give an overview of our techniques. On the

other hand, the embedding of Cormode and Muthukrishnan [CM07] results in an

exponentially large dimension, thus directly sending a sketch deterministically will

result in a prohibitively large size. This is why the protocol of [Jow12] has to perform

a dimension reduction first, which is necessarily randomized.

Similarly, the only previous explicit codes that can handle edit errors as well as

block transpositions are the work of Schulman and Zuckerman [SZ99], and the work of

Haeupler et al. [HS18]. Both can recover from Ω(n/ log n) block transpositions with

Ω(n) redundant bits ([HS18] can also recover from block replications), but [SZ99]

has a binary alphabet while [HS18] has a constant size alphabet. However the work

of Schulman and Zuckerman [SZ99] also needs Ω(n) redundant bits even to correct

one block transposition. We further note that by combining the techniques in [HS18]

and [HSV17], one can get an explicit binary code that corrects k block transpositions

with Õ(
√

kn) redundant bits. However to our knowledge this result has not appeared

anywhere in the literature, and moreover it requires at least Ω̃(
√

n) redundant bits

even to correct one block transposition. We note that however none of the previous

works mentioned studied edit errors that can allow block insertions/deletions.

3.1.1 Our results

In this chapter we significantly improve the situation for both document exchange

and binary insdel codes. Our new constructions of explicit insdel codes are actually
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almost optimal for a wide range of error parameters k. First, we have the following

theorem which gives an improved deterministic document exchange protocol.

Theorem 3.1.1. There exists a single round deterministic protocol for document

exchange with communication complexity (sketch length) O(k log2 n
k ), time complexity

poly(n), where n is the length of the string and k is the edit distance upper bound.

Note that this theorem significantly improves the sketch size of the determinis-

tic protocol in [Bel15], which is O(k2 + k log2 n). In particular, our protocol is

interesting for k up to Ω(n) while the protocol in [Bel15] is interesting only for

k <
√

n.

Then we use this theorem to get improved binary insdel codes for the general case

of k errors.

Theorem 3.1.2. For any n, k ∈ N with k ≤ n/4, there exists an explicit binary error

correcting code with message length n, codeword length n + O(k log2 n
k ) that can

correct up to k edit errors.

Remark 3.1.3. In all our insdel codes, both the encoding function and the decoding

function run in time poly(n).

We also construct explicit document exchange protocols, and error correcting

codes for block edit errors.

Theorem 3.1.4. There exist constants α, β ∈ (0, 1) such that for every n, k, t ∈ N

with k ≤ αn/ log n, t ≤ βn, there exists an explicit binary document exchange

protocol with sketch size O((k log n + t) log2 n
k log n+t ), against a (k, t) block edit

adversary.
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This is the first explicit binary document exchange protocol for block edit errors.

The sketch size matches the randomized protocols of [IMS05] and [Jow12] up to an

additional log n
k log n+t factor, and is optimal up to an additional log2 n

k log n+t factor.

Using this protocol, we can construct the following error correcting code.

Theorem 3.1.5. There exist constants α, β ∈ (0, 1) such that for every n, k, t ∈ N

with k ≤ αn/ log n, t ≤ βn, there exists an explicit binary error correcting code with

message length n and codeword length n + O((k log n + t) log2 n
k log n+t ), against a

(k, t) block edit adversary.

3.1.2 Overview of the techniques

For normal edit errors. In this section we provide a high level overview of the

ideas and techniques used in our constructions. We start with the document exchange

protocol.

Document exchange. Our starting point is the randomized protocol by Irmak et

al. [IMS05], which we refer to as the IMS protocol. The protocol is one round, but

Alice’s algorithm to generate the message proceeds in L = O(log(n
k )) levels. In each

level Alice computes some sketch about her string x, and her final message to Bob is

the concatenation of the sketches. After receiving the message, Bob’s algorithm also

proceeds in h levels, where in each level he uses the corresponding sketch to recover

part of x.

More specifically, in the first level Alice divides her string into Θ(k) blocks where

each block has size O(n
k ), and in each subsequent level every block is divided evenly

into two blocks, until the final block size becomes O(log n). This takes O(log(n
k ))
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levels. Using shared randomness, in each level Alice picks a set of random hash

functions, one for each block which outputs O(log n) bits, and computes the hash

values. In the first level, Alice’s sketch is just the concatenation of the O(k) hash

values. In all subsequent levels, Alice obtains the sketch in this level by computing the

redundancy of a systematic error correcting code (e.g., the Reed-Solomon code) that

can correct O(k) erasures and symbol corruptions, where each symbol has O(log n)

bits (the hash value). Note that this sketch has size O(k log n) and thus the total

sketch size is O(k log n log(n
k )).

On Bob’s side, he always maintains a string x̃ which is the partially corrected

version of x. Initially x̃ is the empty string, and in each level Bob tries to use his string

y to fill x̃. This is done as follows. In each level Bob first tries to recover all the hash

values of Alice in this level (notice that the hash values of the first level are directly

sent to Bob). Suppose Bob has successfully recovered all the hash values, Bob then

tries to match every block of Alice’s string in this level with one substring of the same

length in his string y, by finding such a substring with the same hash value. We say

such a match is bad if the substring Bob finds is not the same as Alice’s block (i.e., a

hash collision). The key idea here is that if the hash functions output O(log n) bits,

and they are chosen independently randomly, then with high probability a bad match

only happens if the substring Bob finds contains at least one edit error. Moreover, Bob

can find at least li − k matches, where li is the number of blocks in the current level.

Bob then uses the matched substrings to fill the corresponding blocks in x̃, and leaves

the unmatched blocks blank. From the above discussion, one can see that there are

at most k unmatched blocks and at most k mismatched blocks. Therefore in the next

level when both parties divide every block evenly into two blocks, x and x̃ have at
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most 4k different blocks. This implies that there are also at most 4k different hash

values in the next level, and hence Bob can correctly recover all the hash values of

Alice using the redundancy of the error correcting code.

Our deterministic protocol for document exchange is a derandomized version of

the IMS protocol, with several modifications. First, we observe that the IMS protocol

as we presented above, can already be derandomzied. This is because that to ensure

a bad match only happens if the substring Bob finds contains at least one edit error,

we in fact just need to ensure that under any hash function, no block of x can have a

collision with a substring of the same length in x itself. We emphasize one subtle point

here: Alice’s hash function is applied to a block of her string x, while when trying

to fill x̃, Bob actually checks every substring of the string y. Therefore we need to

consider hash collisions between blocks of x and substrings of x. If the hash functions

are chosen independently uniformly, then such a collision happens with probability

1/poly(n), and thus by a union bound with high probability no collision happens.

However, notice that if we write out the outputs of all hash functions on all inputs,

then any collision is only concerned with two outputs which consists of O(log n) bits.

Thus it’s enough to use O(log n)-wise independence to generate these outputs. To

further save the random bits used, we can instead use an almost κ-wise independent

sample space with κ = O(log n) and error ε = 1/poly(n). Using for example the

construction by Alon et. al. [Alo+92b], this results in a total of O(log n) random bits

(the seed), and thus Alice can exhaustively search for a fixed set of hash functions in

polynomial time. Now in each level, Alice’s sketch will also include the specific seed

that is used to generate the hash functions, which has O(log n) bits. Note this only

adds O(log n log n
k ) to the final sketch size. Bob’s algorithm is essentially the same,
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except now in each level he needs to use the seed to compute the hash functions.

The above construction gives a deterministic document exchange protocol with

sketch size O(k log n log n
k ), but our goal is to further improve this to O(k log2 n

k ).

The key idea here is to use a relaxed version of hash functions with nice “self matching"

properties. To motivate our construction, first observe that in each level, when Bob

tries to match every block of Alice’s string with one substring of the same length in his

string y, it is not only true that Bob can find a matching of size at least li − k (where

li is the number of blocks in this level), but also true that Bob can find a monotone

matching of at least this size. A monotone matching here means a matching that does

not have edges crossing each other. In this monotone matching, there are at most k

bad matches caused by edit errors, and thus there exists a self matching between x

and itself with size at least li − 2k. In the previous construction, we in fact ensure that

all these li − 2k matches are correct. To achieve better parameters, we instead relax

this condition and only require that at most k of these self matches are bad. Note if

this is true then the total number of different blocks between x and x̃ is still O(k) and

we can again use an error correcting code to send the redundancy of hash values in

the next level.

This relaxation motivates us to introduce ε-self matching hash functions, which is

similar in spirit to ε-self matching strings introduced in [HS17]. Formally, we have

the following definitions.

Definition 3.1.6. (monotone matching) For every n, n′, t, p, q ∈ N, q ≤ p, any

hash functions h1, h2, . . . , hn′ where ∀i ∈ [n′], hi : {0, 1}p → {0, 1}q, given

two strings x ∈ ({0, 1}p)n′ and y ∈ {0, 1}n, a monotone matching of size t

between x, y under hash functions h1, . . . , hn′ is a sequence of pairs of indices
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w = ((i1, j1), (i2, j2), . . . , (it, jt)) ∈ ([n′] × [n])t s.t. i1 < i2 < · · · < it, j1 +

p − 1 < j2, . . . , jt−1 + p − 1 < jt, jt + p − 1 ≤ n and ∀l ∈ [t], hil(x[il]) =

hil(y[jl, jl + p− 1]). When h1, . . . , hn′ are clear from the context, we simply say that

w is a monotone matching between x, y.

For l ∈ [t], if x[il] = y[jl, jl + p− 1], we say (il, jl) is a good match, otherwise

we say it is a bad match. We say w is a correct matching if all matches in w are good.

We say w is a completely wrong matching is all matches in w are bad.

If x and y are the same in terms of their binary expression, then w is called a

self-matching.

For simplicity, in the rest of the chapter, when we say a matching w we always

mean a monotone matching.

Definition 3.1.7. (ε-self matching hash function) Let p, q, n, n′ ∈ N be such that

n = n′p. For any 0 < ε < 1 and x ∈ ({0, 1}p)n′ , we say that a sequence of

hash functions h1, h2, . . . , hn′ where ∀i ∈ [n′], hi : {0, 1}p → {0, 1}q is a sequence

of ε-self matching hash functions with respect to x, if any matching between x and

y ∈ {0, 1}n under h1, h2, . . . , hn, where y is the binary expression of x, has at most

εn bad matches.

The advantage of using ε-self matching hash functions is that the output range of

the hash functions can be reduced. Specifically, we can show that a sequence of ε-self

matching hash functions exists with output range poly(1/ε) (i.e., O(log(1/ε)) bits)

when the block size is at least c log(1/ε) bits for some constant c > 1. Furthermore,

we can generate such a sequence of ε-self matching hash functions with high proba-

bility by again using an almost κ-wise independent sample space with κ = O(kbi),
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where bi is the current block length, and error ε = 1/poly(n). The idea is that in a

monotone matching with εn bad matches, we can divide the matching gradually into

small intervals such that at least one small interval will have the same fraction of bad

matches. Thus in order to ensure the ε-self matching property we just need to make

sure every small interval does not have more than ε fraction of bad matches, and this

is enough by using the almost κ-wise independent sample space.

As discussed above, we need to ensure that there are at most k bad matches

in a self matching, thus we set ε = k
n . Consequently now the output of the hash

functions only has O(log(n/k)) bits instead of O(log n) bits. Now in each level,

in order to get optimal sketch size, instead of using the Reed-Solomon code we will

be using an Algebraic Geometric code [HVLP98] which has redundancy O(k log n
k ).

The almost κ-wise independent sample space in this case again uses only O(log n)

random bits, so in each level Alice can exhaustively search the correct hash functions

in polynomial time and include the O(log n) bits of description in the sketch. This

gives Alice’s algorithm with total sketch size O(k log2 n
k ). On Bob’s side, we need

another modification: in each level after Bob recovers all the hash values, instead of

simply searching for a match for every block, Bob runs a dynamic programming to

find the longest monotone matching between his string y and the sequence of hash

values. He then fills the blocks of x̃ using the corresponding substrings of matched

blocks.

Error correcting codes. Our deterministic document exchange protocol can be

used to directly give an insdel code for k edit errors. The idea is that to encode an

n-bit message x, we can first compute a sketch of x with size r, and then encode

the small sketch using an insdel code against 4k edit errors. Since the sketch size is
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larger than k, we can use an asymptotically good code such as the one by Schulman

and Zuckerman [SZ99], which results in an encoding size of n0 = O(r). The actual

encoding of the message is then the original message concatenated with the encoding

of the sketch.

To decode, we can first obtain the sketch by looking at the last n0 − k bits of the

received string. The edit distance between these bits and the encoding of the sketch is

at most 4k, and thus we can get the correct sketch from these bits. Now we look at

the bits of the received string from the beginning to index n + k. The edit distance

between these bits and x is at most 3k, thus if r is a sketch for 3k edit errors then

we will be able to recover x by using r. This gives our insdel code with redundancy

O(k log2 n
k ).

For block insertions/deletions and transpositions For this kind of errors, it seems

that the recently introduced synchronization techniques i.e. synchronization strings

[HS17] and the technique above do not work. The reason is that synchronization

strings are designed for relatively large alphabets (e.g., constant size), and often

result in worse parameters when translating into the binary alphabet; while self-

matching hash functions are specifically tailored for standard edit errors, and they

break down once block transpositions are allowed. Instead, for document exchange

we rely on the basic recursive tree structure used in [IMS05], together with a new and

more sophisticated way to approximate maximum non-monotone, non-overlapping

matchings in the computation; and for error correcting codes we deploy a similar

strategy as for normal edit errors. We start giving more details by describing our

document exchange protocol.
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Document exchange. Our starting point is to generalize our protocol for normal

edit errors. However, one immediate difficulty is how to handle block transpositions.

The previous protocol actually performs badly for such errors. To see this, consider

the following example: the adversary simply moves the first 0.4n bits of x to the

end. Since the previous protocol tries to find the maximum monotone matching in

each level, Bob can only recover the last 0.6n bits of x since this gives the maximum

monotone matching. In this case, one single error has cost roughly half of the string;

while as a comparison, for standard edit errors, Bob can recover all except O(1)

blocks if there is only one edit error.

To resolve this issue, we make several important changes to the previous protocol.

The first major change is that, in each level, instead of having Bob find the maximum

monotone matching between x and y using the hash values, we let Bob find the

maximum non-monotone matching. However, the self-matching hash functions are

not suitable for this purpose, since the hash functions there actually allow a small

number of collisions in the hash values of blocks of x, and the use of such hash

functions relies crucially on the property of a monotone matching. Instead, here we

strengthen the hash function to ensure that there is no collision, by using a slightly

larger output size. We call such hash functions collision free hash functions.

Definition 3.1.8 (Collision free hash functions). Given n, p, q ∈ N, p ≤ n and a

string x ∈ {0, 1}n, we say a function h : {0, 1}p → {0, 1}q is collision free (for

x), if for every i, j ∈ [n − p + 1], h(x[i, i + p)) = h(x[j, j + p)) if and only if

x[i, i + p) = x[j, j + p). Here x[i, j) denotes the substring of x which starts at the

i’th bit and ends at the j− 1’th bit.

This definition guarantees that if the hash function we used is collision free, then
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any two different substrings of x cannot have the same hash values.

We show that a collision free hash function can be constructed by using a 1
polyn -

almost O(log n)-wise independent generator with seed length (number of random

bits used) O(log n). This can work since for each pair of distinct substrings, their

hash values are the same with probability 1/poly(n). Since there are at most O(n2)

pairs, a union bound shows the existence of collision free hash functions. To get a

deterministic hash function, we check each possible seed to see if the corresponding

hash function is collision free, which can be done by checking if every pair of different

substrings of x have different hash values. Note that there are at most O(n2) pairs and

the seed length of the generator is O(log n), so this can be done in polynomial time.

However, even a non-monotone matching under collision free hash functions is

not enough for our purpose. The reason is that in the matching, we are trying to match

every well divided block of x to every possible block of y (not necessarily the blocks

obtained by dividing y evenly into disjoint blocks), because we have edit errors here.

If we just do this in the naive way, then the matched blocks of y can be overlapping.

Using these overlapping blocks of y to fill the blocks of x̃ is problematic, since even a

single edit error or block transposition can create many new (overlapping) blocks in y

(which can be as large as the length of the block in each level). These new blocks are

all possible to be matched, and then we won’t be able to maintain an upper bound of

O(k) on the different blocks between x and x̃.

To solve this, we need to insist on computing a maximum non-overlapping, non-

monotone matching.

Definition 3.1.9 (Non-overlapping (non-monotone) matching). Given n, n′, p, q ∈

N, p ≤ n, p ≤ n′, a function h : {0, 1}p → {0, 1}q and two strings x ∈ {0, 1}n, y ∈
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{0, 1}n′ , a (non-overlapping) matching between x and y under h is a sequence of

matches (pairs of indices) w = ((i1, j1), . . . (i|w|, j|w|)) s.t.

• for every k ∈ [|w|],

– ik = 1 + plk ∈ [n] for some lk, i.e., each ik is the starting index of some

block of x, when x is divided evenly into disjoint blocks of length p,

– jk ∈ [n′],

– h(x[ik, ik + p)) = h(y[jk, jk + p)).

• i1, . . . , i|w| are distinct.

• Intervals [jk, jk + p), k ∈ [|w|], are disjoint.

Under this definition, we can indeed show a similar upper bound on the number

of different blocks between x and x̃ in each level, if Bob finds the maximum non-

overlapping matching. However, another technical difficulty arises: how to compute

a maximum non-overlapping, non-monotone matching efficiently. This is unclear

since the standard algorithm to compute a maximum matching only gives a possibly

overlapping matching, while the dynamic programming approach only works for a

monotone matching.

Computing the maximum non-overlapping, non-monotone matching turns out to

be a hard task, and we were not able to find an efficient algorithm that accomplishes

this exactly. Instead, we consider an algorithm that approximates the maximum

non-overlapping, non-monotone matching. However, this raises several other issues.

The first issue is how to maintain the invariance that in each level x and x̃ only

differ in a small number of blocks. For example, consider level i and assuming x is
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partitioned into li blocks, then we would like Bob to obtain a matching of size at least

li −O(k + t/ log n) (recall t is the total number of bits inserted or deleted). Thus if

k and t are small then even a 0.99 approximation is still far from achieving our goal.

To get around this, we modify the protocol so that in each level Bob only computes

a matching for the blocks that are unmatched in the previous level or detected to

be incorrectly matched in this level (the detection can be done by comparing the

hash values of the block and its matched block). If the number of such blocks can be

bounded by some O(k+ t/ log n), then we only need a constant factor approximation.

To keep the invariance in each level, note that the approximation factor should be

larger than 1/2 since each unmatched or incorrectly matched block will become two

blocks in the next level.

Unfortunately, directly achieving such an approximation still seems hard. Thus we

further relax the problem to allow some slight overlaps in the matching, i.e., we require

that each bit of Bob’s string y appears in at most d matched pairs in each level for

some small number d (e.g., a constant or log n). We call this a degree d overlapping

matching (note that a non-overlapping matching is simply a degree 1 overlapping

matching). Although this may cause extra errors in the matching, we show that the

number of incorrectly matched pairs can be bounded by O((k + t/ log n)i) (instead

of O(k + t/ log n)) in level i.

To achieve this, we first give a 1/3 approximation algorithm for the maximum

non-monotone, non-overlapping matching. Then we give another algorithm that

achieves matching size at least 2/3 of the maximum non-monotone, non-overlapping

matching, while this matching obtained is a degree 3 overlapping matching. For

simplicity we also refer to this as a 2/3 approximation algorithm.
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The 1/3 approximation is obtained by a greedy algorithm, which starts with

an empty matching w and visits x’s blocks one by one and tries to match it with a

substring in y (according to the hash function and hash values), such that the substring

does not overlap with any substring in y that is already matched. If such a matched

pair is found then it is added to w. The algorithm keeps running until it cannot add

any more matched pair.

To see this indeed gives a 1/3 approximation, assume the maximum non-monotone,

non-overlapping matching is w∗. Each time the algorithm adds a matched pair to w, at

most 3 matched pairs in w∗ will be excluded from being added to w since they either

have overlaps with y’s substring in the added pair or correspond to the same block of

x. As a result, when |w| < 1/3|w∗|, there always exist some matched pairs in w∗

that can be added to w. Thus, at the end of the algorithm, |w| ≥ 1/3|w∗|.

Next we show a 2/3 approximation algorithm that gives a degree 3 overlapping

matching. The idea is to run the greedy algorithm for 3 times, where each time the

algorithm is applied to unmatched blocks of x and the entire string y. To see the

approximation factor, again let w∗ be the optimal non-monotone, non-overlapping

matching. After the first time, the matching w has size at least 1/3|w∗|. So |w∗| will

have at least |w∗| − |w|matched pairses for unmatched blocks in x. Therefore after the

second time, the size of the matching is at least |w|+ 1/3(|w∗| − |w|) ≥ 5/9|w∗|.

Similarly, after the third time, the matching will have size at least 2/3|w∗|. As the

greedy algorithm is applied three times, each bit of y can appear in at most 3 matched

pairses in w.

We now bound the number of incorrectly matched and unmatched blocks in each

level. First we claim that each non-monotone non-overlapping matching has at most
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O(k + t/ log n) incorrectly matched blocks.

This is because by our definition of collision free hash function, if a pair is

incorrectly matched then the substring of y must contain some edit operation applied

to x, since otherwise the pair will definitely have different hash values if they are

different. Thus we only need to count how many non-overlapping new substrings

in y (i.e. those not equal to any substring of x) one can get after (k, t) block edit

errors. One insertion or deletion of t1 bits will create at most O(1) + O(t/ log n)

new substrings since the block size is always at least log n. One block transposition

will create at most O(1) non-overlapping substrings in y that are not equal to any

substring of x. So in total there are at most O(k + t/ log n) new non-overlapping

substrings in y. Similarly, it is easy to generalize this claim, and show that each degree

d overlapping matching has at most O(d(k + t/ log n)) incorrectly matched blocks.

Now to bound the number of incorrectly matched blocks in level i, notice that

the matching we obtained in this level is a degree 3i overlapping matching, since in

each level we compute a degree 3 overlapping matching using the entire string y and

we combine them together. Thus there are at most O((k + t/ log n)i) incorrectly

matched blocks.

The number of unmatched blocks can also be upper bounded by O((k+ t/ log n)i)

using induction. For the base case, the number of blocks in the first level of Bob is

at most l1 = O(k + t/ log n) so the claim holds. Now assume in level i − 1, the

number of unmatched blocks is c1(i− 1)(k+ t/ log n), and the number of incorrectly

matched blocks is at most c2(i− 1)(k + t/ log n), for some constants c1, c2. In level

i, once Bob recovers all the correct hash values, he can detect some of the incorrectly

matched blocks. Let the total number of detected blocks and unmatched blocks be
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s with s ≤ (c1 + c2)(i− 1)(k + t/ log n). In our algorithm, these blocks are to be

rematched in level i, and following our previous argument at least s− c3(k+ t/ log n)

of them can be matched in the maximum non-overlapping matching for some constant

c3. By our 2/3 approximation algorithm, the actual matching wi we get has size at

least 2/3(s− c3(k + t/ log n)). Hence the number of unmatched blocks after this is

at most s− |wi| ≤ 1/3s + 2/3c3(k + t/ log n). We can set c1 to be large enough

s.t. this number is still upper bounded by c1i(k + t/ log n).

As we have bounded the number of incorrectly matched blocks and unmatched

blocks by O(i(k + t/ log n)) in level i, at the beginning of level i + 1, Alice can

send the redundancy of the hash values of her blocks using a code that corrects

O(i(k + t/ log n)) errors. This allows Bob to recover all the hash values correctly,

and the size of the redundancy is O(i(k + t/ log n) log n) since the hash function

outputs O(log n) bits. We start the protocol with a block size of O( n
k log n+t ) and thus

the protocol takes L = O(log n
k log n+t ) levels. A straightforward computation gives

that the sketch size of our protocol is O((k log n + t) log2 n
k log n+t ).

Error correcting codes. We now describe how to construct an error correcting

code from a document exchange protocol for block edit errors. Our starting point is to

first encode the sketch of the document exchange protocol using the code by Schulman

and Zuckerman [SZ99], which can resist edit errors and block transpositions. Then

we concatenate the message with the encoding of the sketch. When decoding, we

first decode the sketch, then apply the document exchange protocol on Bob’s side to

recover the message.
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However, here we have an additional issue with this approach: a block transposi-

tion may move some part of the encoding of the sketch to somewhere in the middle

of the message, or vice versa. In this case, we won’t be able to tell which part of the

received string is the encoding of the sketch, and which part of the received string is

the original message.

To solve this issue, we use a fixed string buf = 0ℓbuf ◦ 1 as a buffer to mark the

encoding of the sketch, for some ℓbuf = O(log n). More specifically, we evenly

divide the encoding of the sketch into small blocks of length ℓbuf , and insert buf

before every block. Note that this only increases the length of the encoding of the

sketch by a constant factor. The reason we use such a small block length is that, even

if the adversary can forge or destroy some buffers, the total number of bits inserted

or deleted caused by this is still small. In fact, we can bound this by O(k) block

insertions/deletions with at most O(k log n) bits inserted/deleted, for which both the

sketch and the encoding of the sketch can handle. When decoding, we first recognize

all the buf’s. Then we take the ℓbuf bits after each buf to form the decoding of the

sketch, and take the remaining bits as the message.

Unfortunately, this approach introduces two additional problems here. The first

problem is that the original message may contain buf as a substring. If this happens

then in the decoding procedure again we will be taking part of the message to be in the

encoding of the sketch. The second problem is that the small blocks of the encoding

of the sketch may also contain buf. In this case we will be deleting information from

the encoding of the sketch, which causes too many edit errors.

To address the first problem, we turn the original message into a pseudorandom

string by computing the XOR of the message with the output of an appropriate
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pseudorandom generator that has seed length O(log n). We show that with high

probability buf does not appear as a substring in the XOR. We can then exhaustively

search for a seed that satisfies this requirement, and append the seed to the sketch of

the document exchange protocol.

To address the second problem, we choose the length of the buffer to be longer

than the length of each block in the encoding of the sketch, so that buf doesn’t appear

as a substring in any block. This is exactly why we choose the length of the buffer to

be ℓbuf + 1 while we choose the length of each block to be ℓbuf .

We can directly apply our document exchange protocol to the construction above,

obtaining an error correcting code with O((k log n + t) log2 n
k log n+t ) redundant bits.

Chapter Organization In Section 3.2 we introduce some notation and basic techni-

ques used in this chapter. In Section 3.3 we give the deterministic protocol for

document exchange. In Section 3.4 we construct error correcting codes for edit errors

using results from previous sections.

3.2 Preliminaries

3.2.1 Notations

Let Σ be an alphabet (which can also be a set of strings). For a string x ∈ Σ∗,

1. |x| denotes the length of the string.

2. x[i, j] denotes the substring of x from position i to position j (Both ends inclu-

ded).

3. x[i] denotes the i-th symbol of x.

201



4. x ◦ x′ denotes the concatenation of x and some other string x′ ∈ Σ∗.

5. B-prefix denotes the first B symbols of x. (Usually used when Σ = {0, 1}.)

6. xN the concatenation of N number of string x.

We use Un to denote the uniform distribution on {0, 1}n.

3.2.2 Edit distance and longest common subsequence

Definition 3.2.1 (Edit distance). For any two strings x, x′ ∈ Σn, the edit distance

ED(x, x′) is the minimum number of edit operations (insertions and deletions) requi-

red to transform x into x′.

Definition 3.2.2 (Longest Common Subsequence). For any strings x, x′ over Σ, the

longest common subsequence of x and x′ is the longest pair of subsequences of x and

x′ that are equal as strings. LCS(x, x′) denotes the length of the longest common

subsequence between x and x′.

Note that ED(x, x′) = |x|+ |x′| − 2LCS(x, x′).

Definition 3.2.3 (Block edit errors). A block-insertion/deletion (or burst-insertion/deletion)

of b symbols to a string x is defined to be inserting/deleting a block of consecutive

b symbols to x. When we do not need to specify the number of symbols inserted or

deleted, we simply say a block-insertion/deletion.

We define (k, t)-block-insertions/deletions (to x) to be a sequence of k block-

insertions/deletions, where the total number of symbols inserted/deleted is at most

t. Similarly, we define (k, t)-block edit errors to be a sequence of k block-insertions,

deletions, and transpositions, where the total number of symbols inserted/deleted is at

most t.
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3.2.3 Almost k-wise independence

Definition 3.2.4 (ε-almost κ-wise independence in max norm [Alo+92b]). Random

variables X1, X2, . . . , Xn ∈ {0, 1}n are ε-almost κ-wise independent in max norm if

∀i1, i2, . . . , iκ ∈ [n], ∀x ∈ {0, 1}κ, |Pr[Xi1 ◦ Xi2 ◦ · · · ◦ Xiκ = x]− 2−κ| ≤ ε.

A function g : {0, 1}d → {0, 1}n is an ε-almost κ-wise independence generator

in max norm if g(U) = X = X1 ◦ · · ·Xn are ε-almost κ-wise independent in max

norm.

In the following passage, unless specified, when we say ε-almost κ-wise indepen-

dence, we mean in max norm.

Theorem 3.2.5 (ε-almost κ-wise independence generator [Alo+92b]). There exists an

explicit construction s.t. for every n, κ ∈ N, ε > 0, it computes an ε-almost κ-wise

independence generator g : {0, 1}d → {0, 1}n, where d = O(log κ log n
ε ).

The construction is highly explicit in the sense that, ∀i ∈ [n], the i-th output bit

can be computed in time poly(κ, log n, 1
ε ) given the seed and i.

3.2.4 Pseudorandom generator

Definition 3.2.6 (Pseudorandom generator). A generator g : {0, 1}r → {0, 1}n is a

pseudorandom generator (PRG) against a function f : {0, 1}n → {0, 1} with error ε

if

|Pr[ f (Un) = 1]− Pr[ f (g(Ur)) = 1]| ≤ ε

where r is called the seed length of g.

We also say g ε-fools function f . Similarly, g ε-fools a class of function F if g

fools all functions in F .
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Theorem 3.2.7 (PRG for CNF/DNFs [De+10]). There exists an explicit PRG g s.t.

for every n, m ∈N, ε > 0, every CNF/DNF f with n variables, m terms,

|Pr[ f (Un) = 1]− Pr[ f (g(n, m, ε, Ur)) = 1]| ≤ ε

where |g(n, m, ε, Ur)| = n, r = O(log n + log2(m/ε) · log log(m/ε)).

3.2.5 Random walk on expander graphs

Definition 3.2.8 ((n, d, λ)-expander graphs). If G is an n-vertex d-regular graph and

λ(G) ≤ λ for some number λ < 1, then we say that G is an (n, d, λ)-expander

graph. Here λ(G) is defined as the second largest eigenvalue (in the absolute value)

of the normalized adjacency matrix AG of G.

A family of graphs {Gn}n∈N is a (d, λ)-expander graph family if there are some

constants d ∈N and λ < 1 such that for every n, Gn is an (n, d, λ)-expander graph.

Theorem 3.2.9 (Random walk on expander graphs, [Alo+95], [HLW06] Theorem

3.11). Let A0, . . . , At be vertex sets of densities α0, ..., αt in an (n, d, λ)-expander

graph G. Let X0, . . . , Xt be a random walk on G. Then

Pr{∀i, Xi ∈ Ai} ≤
t−1

∏
i=0

(
√

αiαi+1 + λ).

It is well known that some expander families have strongly explicit constructions.

Theorem 3.2.10 (Explicit expander family [AB09]). For every constant λ ∈ (0, 1)

and some constant d ∈ N depending on λ, there exists a strongly explicit (d, λ)-

expander family.

204



3.2.6 Error correcting codes (ECC)

An (n, m, d)-code C is an ECC (for hamming errors) with codeword length n, message

length m. The hamming distance between every pair of codewords in C is at least d.

Next we recall the definition of ECC for edit errors.

Definition 3.2.11. An ECC C ⊆ {0, 1}n for edit errors with message length m and

codeword length n consists of an encoding mapping Enc : {0, 1}m → {0, 1}n and a

decoding mapping Dec : {0, 1}∗ → {0, 1}m ∪ {Fail}. The code can correct k edit

errors if for every y, s. t. ED(y, Enc(x)) ≤ k, we have Dec(y) = x. The rate of the

code is defined as m
n .

An ECC family is explicit (or has an explicit construction) if both encoding and

decoding can be done in polynomial time.

We will utilize linear algebraic geometry codes to compute the redundancy of the

hamming error case.

Theorem 3.2.12 ([HVLP98]). There exists an explicit algebraic geometry ECC family

{(n, m, d)q-code C | n, m ∈ N, m ≤ n, d = n − m −O(1), q = poly(n
d )} with

polynomial-time decoding when the number of errors is less than half of the distance.

Moreover, ∀n, m ∈N, for every message x ∈ Fm
q , the codeword is x ◦ z for some

redundancy z ∈ Fn−m
q .

To construct ECC from document exchange protocol, we need to use a previous

result about asymptotically good binary ECC for edit errors given by Schulman and

Zuckerman [SZ99].
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Theorem 3.2.13 ([SZ99]). There exists an explicit binary ECC family in which a code

with codeword length n, message length m = Ω(n), can correct up to k = Ω(n) edit

errors.

3.3 Deterministic protocol for document exchange

We derandomize the IMS protocol given by Irmak et. al. [IMS05], by first constructing

ε-self-matching hash functions and then use them to give a deterministic protocol.

3.3.1 ε-self-matching hash functions

The following describes a matching property between strings under some given hash

functions.

Definition 3.3.1. For every n, n′, t, p, q ∈N, q ≤ p, any hash functions h1, h2, . . . , hn′

where for every i ∈ [n′], hi : {0, 1}p → {0, 1}q, given two strings x′ ∈ ({0, 1}p)n′

and y ∈ {0, 1}n, a (monotone) matching of size t between x′, y under hash functions

h1, . . . , hn′ is a sequence of pairs of indices w = ((i1, j1), (i2, j2), . . . , (it, jt)) ∈

([n′]× [n])t s.t. 1 ≤ i1 < i2 < · · · < it ≤ n′, j1 + p− 1 < j2, . . . , jt−1 + p− 1 <

jt, jt + p− 1 ≤ n and ∀l ∈ [t], hil(x′[il]) = hil(y[jl, jl + p− 1]).

For l ∈ [t], if x′[il] = y[jl, jl + p− 1], we say (il, jl) is a good pair, otherwise we

say it is a bad pair. We say w is a correct matching if all pairs in w are good. We say

w is a completely wrong matching is all pairs in w are bad.

If parsing x′ to be binary we get x which is equal to y, then w is called a self-

matching of x′ (or x).

For the match w between x′, y under hash functions h1, . . . , hn, we simply say a
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match w if x′, y and h1, . . . , hn′ are clear in the context.

The next lemma shows that the maximum matching between two strings under

some hash functions can be computed in polynomial time, using dynamic program-

ming.

Lemma 3.3.2. There is an algorithm s.t. for every n, n′, p, q ∈ N, q ≤ p, any hash

functions h1, h2, . . . , hn′ where for every i ∈ [n′], hi : {0, 1}p → {0, 1}q, every

x′ ∈ ({0, 1}p)n′ and y ∈ {0, 1}n, given h1(x′[1]), . . ., hn′(x′[n′]), y, n, n′, p, q, it

can compute the maximum matching between x′, y under hash functions h1, . . . , hn′

in time O(n2(th + log n)), if for every i ∈ [n′], hi can be computed in time th. (Note

that x is not necessary to be part of the input).

Proof. We present a dynamic programming to compute the maximum matching.

For every j′ ∈ [n′], j ∈ [n], let f (j′, j) be the size of the maximum matching

between x′[1, j′] and y[1, j] under h1, . . . , hj′ . We compute f as follows,

f (j′, j) =

⎧⎪⎪⎨⎪⎪⎩
max( f (j′ − 1, j− p) + 1, f (j′ − 1, j), f (j′, j− 1)),

if hj′(x′[j′]) = hj′(y[j− p + 1, j]);
max( f (j′ − 1, j), f (j′, j− 1)),

if hj′(x′[j′]) ̸= hj′(y[j− p + 1, j]).

Although f only computes the size of the maximum matching, we can record the

corresponding matching every time when we compute f (j′, j), j′ ∈ [n′], j ∈ [n]. So

finally we can get the maximum matching after computing f (n′, n).

We need to compute f (j′, j), j′ ∈ [n′], j ∈ [n] one by one and nn′ = O(n2).

Every time we compute an f (j′, j), we need to compute a constant number of evalua-

tions of the hash functions and append a pair of indices to some previous records to

create the current record of the maximum matching. That takes O(log n + th). So
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the overall time complexity is O(n2(log n + th)).

Next we show that a matching between two strings with edit distance k, induces

a self-matching in one of the strings, where the number of bad pairs decreases by at

most k.

Lemma 3.3.3. For every n, n′, k, m, p, q ∈ N, k ≤ n′, q ≤ p, any hash functions

h1, h2, . . . , hn′ where ∀i ∈ [n′], hi : {0, 1}p → {0, 1}q, given two sequences x ∈

{0, 1}pn′ and y ∈ {0, 1}n s.t. ED(x, y) ≤ k, parsing x to be x′ ∈ ({0, 1}p)n′ , if

there exists a matching w between x′ and y under h1, . . . , hn′ having at least m bad

pairs, then there is a self-matching w′ of x with size |w′| ≥ |w| − k, having at least

m− k bad pairs.

Proof. Assume w.l.o.g. the m bad pairs in the matching are the pairs ((j′1, j1), . . . , (j′m, jm)).

As the number of edit errors is upper bounded by k, to edit y back to x, we

only need to do insertions and deletions on at most k of substrings y[j1, j1 + p −

1], y[j2, j2 + p− 1], . . . , y[jm, jm + p− 1]. The substrings left unmodified induce a

self-matching of x, which is a subsequence of w. Note that only at most k entries of

w are excluded. So the number of bad pairs in the matching is at least m− k and the

size of w′ is at least |w| − k.

The following property shows that a matching between two long intervals induces

two shorter intervals having a matching s.t. the ratio between the matching size and

the total interval length is maintained.

Lemma 3.3.4. For every n, n′, t, p, q ∈ N, t ≤ n, q ≤ p, any hash functions

h1, h2, . . . , hn′ where ∀i ∈ [n], hi : {0, 1}p → {0, 1}q, given two sequences x′ ∈
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({0, 1}p)n′ and y ∈ {0, 1}n, if there is a matching w between x and y under

h1, . . . , hn′ having size t, then for every t∗ ≤ t, there is a matching w∗ between

x′0, y0 having size t∗, where x′0 is an interval of x′, y0 is an interval of y, and

|x0|+ |y0|/p ≤ 2t∗
t (n′ + n/p). Here w∗ is a subsequence of w.

Proof. We consider the following recursive procedure.

At the beginning (the first round), let w1 = w. We know that n′ + n/p ≤
t
t (n
′ + n/p).

For the i-th round, assume we have a matching wi between x′[j′1, j′2], y[j1, j2] with

|wi| = ti and |x′[j′1, j′2] + y[j1, j2]| ≤ ti
t (n
′+ n/p). Let wi = (ρ′1, ρ2), . . . , (ρ′ti

, ρti).

We pick l = ⌊ti/2⌋. Consider the following two sequences wi[1, l] and wi[l +

1, ti]. Here wi[1, l] is a matching between x′1 = x′[j′1, ρ′l] and y1 = y[j1, ρl + p− 1].

Also wi[l + 1, ti] is a matching between x′2 = x′[ρ′l+1, j′2] and y2 = y[ρl + p, j2].

Note that either (|x′1|+ |y1|/p) ≤ l
t (n
′ + n/p) or (|x′2|+ |y2|/p) ≤ ti−l

t (n′ +

n/p). Because if not, then

⏐⏐x′[j′1, j′2]
⏐⏐+ |y[j1, j2]| = (|x′1|+ |y1|/p) + (|x′2|+ |y2|/p) >

ti

t
(n′ + n/p),

which contradicts the assumption that |x′[j′1, j′2] + y[j1, j2]| ≤ ti
t (n
′ + n/p). Thus

we can pick one sequence as wi+1.

We can go on doing this until the i∗-th round in which there is a matching wi∗

of size ti∗ ∈ [t∗, 2t∗), whose corresponding pair of substrings are x′0 and y0. We

know that |x′0|+ |y0|/p ≤ ti∗
t (n + n′/p). We pick t∗ pairs in wi∗ and this gives a

matching between x′0 and y0 s.t. |x′0|+ |y0|/p ≤ 2t∗
t (n′ + n/p).
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We now describe an explicit construction for a family of sequences of ε-self-

matching hash functions.

Theorem 3.3.5. There exists an algorithm which, on input n, p, q ∈ N, ε ∈ (0, 1),

n ≥ p ≥ q, q = Θ(log 1
ε ), x ∈ {0, 1}n, outputs a description of ε-self-matching

functions h1, . . . , hn′ : {0, 1}p → {0, 1}q, in time poly(n), where the description

length is O(log n) and n′ = n
p .

Also there is an algorithm which, given the same n, p, q ∈N, the description of

h1, . . . , hn′ , i ∈ [n′] and any a ∈ {0, 1}p, can output hi(a) in time poly(n).

To prove this theorem we consider the following construction.

Construction 3.3.6. Let n, p, q ∈ N, ε ∈ (0, 1), n ≥ p ≥ q, q = Θ(log 1
ε ),

x ∈ {0, 1}n be given parameters.

1. Divide x into consecutive blocks to get x′ ∈ ({0, 1}p)n′ , n′ = n/p;

2. Let g : {0, 1}d → {0, 1}qn′2p
be the εg-almost κ-wise independence generator

from Theorem 3.2.5, where κ = O(εnq), εg = 1/poly(n), d = O(log n);

3. View the output of g as in a two dimension array ({0, 1}q)[n
′]×{0,1}p

;

4. Exhaustively search u ∈ {0, 1}d s.t.

(⋆) For every consecutive t1 ≤ 4m
pε -blocks x′0 ∈ ({0, 1}p)t1 of (x′[1], . . . , x′[n′])

and every substring x0 of x having length t2 ≤ 4m
ε , x′0 and x0 have no

completely wrong matching of size m = Θ(
log n

q ) under functions hi(·) =

g(u)[i][·], i ∈ [n′], where g(u)[i][·] is the corresponding entry in the two

dimension array g(u);
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5. return u which is the description of the ε-self-matching hash functions.

(Evaluation of a hash function) Given u, i ∈ [n′], n, p, q, ε, an input v ∈ {0, 1}p,

one can compute hi(v) = g(u)[i][v].

Lemma 3.3.7. There exists an u such that the assertion (⋆) holds.

Proof. We consider a uniform random string u and show that with high probability u

satisfies assertion (⋆).

Fix a pair of substrings x′[j′1, j′2], x[j1, j2], and a matching w∗ = ((ρ′1, ρ1), . . . , (ρ′m, ρm))

between them of size m = Θ(
log n

q ). The probability

Pr
u
{w∗ is a completely wrong matching }

≤Pr
u
{∀l ∈ [m], hρ′l

(x′[ρ′l]) = hρ′ℓ
(x[ρℓ, ρℓ + p− 1])}

≤ ∑
a∈({0,1}p)m

Pr
u
{∀ℓ ∈ [m], hρ′ℓ

(x′[ρ′ℓ]) = hρ′ℓ
(x[ρℓ, ρℓ + p− 1]) = aℓ}

≤2qm((
1
2q )

2m + εg)

≤ 1
2qm + 2qmεg

=
1

poly(n) ,

as long as we take εg to be a sufficiently small 1/poly(n). The total number

of pairs x′[j′1, j′2], x[j1, j2] is at most poly(n). For each fixed pair there are at most

(t1
m)(

t2
m) ≤ (Θ(1

ε ))
Θ(

log n
q )

= (Θ(1
ε ))

Θ(
log n
log 1

ε
)
= poly(n) number of different matc-

hings of size m. Thus by the union bound, the probability that the assertion (⋆) holds

is at least 1− 1/poly(n) if we choose the parameters appropriately.
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Lemma 3.3.8. Construction 3.3.6 gives a sequence of ε-self-matching hash functions.

Proof. Let w be a self-matching of x, having at least εn + 1 bad pairs. We pick all

the wrong pairs in this matching to get a completely wrong self-matching w̃.

By Lemma 3.3.4, there are two substrings, x′[j′1, j′2] and x[j1, j2], 1 ≤ j′1 ≤ j′2 ≤

[n′], 1 ≤ j1 ≤ j2 ≤ [n], |x′[j′1, j′2]| + |x[j1, j2]|/p ≤ 2m
εn+1(n

′ + n/p), having a

completely wrong matching of size at least m, which is a subsequence of w̃. Note

that |x′[j′1, j′2]| ≤ 2m
εn+1(n

′ + n/p) = 4mn
(εn+1)p ≤

4m
εp . Also |x[j1, j2]| ≤ 2m

εn+1(n/p +

n/p)p = 4mn
εn+1 ≤

4m
ε . This contradicts (⋆).

Lemma 3.3.9. The evaluation of a function in the sequence takes polynomial time.

Proof. For evaluation, by Lemma 3.2.5, given a seed and a position index, the corre-

sponding bit in g’s output can be computed in time poly(κ, log(qn′2p), 1
εg
) = poly(n).

The output of a function has q bits. One can compute the q bits one by one and the

total running time is still poly(n).

Lemma 3.3.10. The algorithm runs in polynomial time.

Proof. Checking the assertion (⋆) takes time poly(n). To see this, first note that there

are poly(n) pairs of x′0 and x0. Also for each pair, the total number of matchings of

size m is at most(
t1

m

)(
t2

m

)
≤

(4m
pε

m

)(4m
ε

m

)
≤ (

4e
ε
)2m = (

4e
ε
)

Θ(
log n

q )
= (

4e
ε
)

Θ(
log n
log 1

ε
)
= poly(n).
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For a specific matching, Alice can first compute the hash values in time poly(n) by

Lemma 3.3.9. Alice can check whether it is a wrong matching and compute the size

of the matching in time poly(n).

Note that there are poly(n) number of different seeds. So the algorithm of genera-

ting the description runs in polynomial time.

Proof of Theorem 3.3.5. We use Construction 3.3.6, the theorem directly follows from

Lemma 3.3.7, 3.3.8, 3.3.10.

3.3.2 Deterministic protocol for document exchange

Our deterministic protocol for document exchange is as follows.

Construction 3.3.11. The protocol is for every input length n ∈ N, every k ≤ αn

number of edit errors where α is a constant. For the case k > αn, we simply let Alice

send her input string.

Both Alice’s and Bob’s algorithms have L = O(log n
k ) levels.

Alice: On input x ∈ {0, 1}n;

1. We set up the following parameters;

• For every i ∈ [L], in the i-th level,

– The block size is bi =
n

3·2ik , i.e., in each level we divide a block in

the previous level evenly into two blocks. We choose L properly s.t.

bL = O(log n
k );
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– The number of blocks li = n/bi;

2. For the i-th level,

2.1. Divide x into consecutive blocks to get x′ ∈ ({0, 1}bi)li;

2.2. Construct a sequence of ε = k
n -self-matching hash functions h1, . . . , hli :

{0, 1}bi → {0, 1}b∗ for x by Theorem 3.3.5, with b∗ = O(log n
k ). Let

the description of the hash functions be u[i] ∈ {0, 1}O(log n) by Theorem

3.3.5;

2.3. Compute v[i] = (h1(x′[1]), h2(x′[2]), . . . , hli(x′[li]));

2.4. Compute the redundancy z[i] ∈ ({0, 1}b∗)Θ(k) for v[i] by Theorem 3.2.12,

where the code has distance 14k;

3. Compute the redundancy zfinal ∈ ({0, 1}bL)Θ(k) for the blocks of the L-th level

by Theorem 3.2.12, where the code has distance 8k;

4. Send u = (u[1], u[2], . . . , u[L]), z = (z[1], z[2], . . . , z[L]), v[1], zfinal.

Bob: On input y ∈ {0, 1}O(n) and received u, z, v[1], zfinal;

1. Create x̃ ∈ {0, 1, ∗}n (i.e. his current version of Alice’s x), initiating it to be

{∗, ∗, . . . , ∗};

2. For the i-th level where 1 ≤ i ≤ L− 1,

2.1. Divide x̃ into consecutive blocks to get x̃′ ∈ ({0, 1}bi)li;

2.2. Apply the decoding of Theorem 3.2.12 on h1(x̃′[1]) ◦ h2(x̃′[2]) ◦ . . . ◦

hli(x̃′[li]) ◦ zi to get the sequence of hash values v[i] = (h1(x[1]), h2(x[2]),
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. . ., hli(x[li])). Note that v[1] is received directly, thus Bob does not need

to compute it;

2.3. Compute w = ((ρ′1, ρ1), . . . , (ρ′|w|, ρ|w|)) ∈ ([li]× [|y|])|w| which is the

maximum matching between x′ and y under h1, . . . , hli , using v[i], by

Lemma 3.3.2;

2.4. Evaluate x̃ according to the matching, i.e. let x̃′[ρ′j] = y[ρj, ρj + bi − 1];

3. In the L’th level, apply the decoding of Theorem 3.2.12 on the blocks of x̃ and

zfinal to get x;

4. Return x.

Lemma 3.3.12. Both Alice’s and Bob’s algorithms are in polynomial time.

Proof. We first consider Alice’s algorithm. For the i-th level, i ∈ [L], dividing x

into blocks takes time O(n). Computing the description and doing evaluation of

ε-self-matching hash functions takes time poly(n) by Theorem 3.3.5.

The redundancy z[i], i ∈ [L] and zfinal can be computed in polynomial time by

Theorem 3.2.12.

Thus the time complexity for Alice is poly(n).

Next we consider Bob’s algorithm. Creating x̃′ at the beginning of each level takes

O(n) time. Decoding of h1(x̃′[1]) ◦ h2(x̃′[2]) ◦ . . . ◦ hli(x̃′[li]) ◦ z[i] takes poly(n)

time by Theorem 3.2.12. By Lemma 3.3.2, computing the maximum matching

between x′ and y under h1, . . . , hli takes time O(n2(th + log n)) where th is the time

complexity of evaluating any one of the hash functions. By Theorem 3.2.5, th is

poly(n), so computing the maximum matching takes poly(n). Decoding on the last

level of x̃’s blocks and zfinal also takes polynomial time by Theorem 3.2.12.

215



So the overall running time for Bob is also poly(n).

Lemma 3.3.13. The communication complexity is O(k log2 n
k ).

Proof. For every i ∈ [L], |u[i]| = O(log n) by Theorem 3.3.5. Thus the total number

of bits of u is L ·O(log n) = O(log n
k log n).

Also for every i ∈ [L], by Theorem 3.2.12 the number of bits in zi is O(k log n
k ).

So the total number of bits of z is O(k log2 n
k ).

Again by Theorem 3.2.12, zfinal has O(k log n
k ) bits.

Note that v[1] has O(k log n
k ) bits, since there are l1 = O(k) blocks in the first

level and the length of each hash value is O(log n
k ).

Thus the total communication complexity is O(log n
k log n+ k log2 n

k ) = O(k log2 n
k ),

since k log n
k ≥ log n when k ≤ αn.

Next we show the correctness of the construction. We first establish a series of

lemmas.

Lemma 3.3.14. For any i ≤ L− 1, if v[i] is correctly recovered, then in the i-th level

the number of bad pairs in w is at most 2k.

Proof. We prove by contradiction.

Suppose there are more than 2k bad pairs in w. By Lemma 3.3.3, there is a

self-matching having at least k bad pairs. By picking all the wrong pairs in this

matching, we get a completely wrong self-matching w̃ having size at least k = εn.

This is a contradiction to the fact that h1, . . . , hli is a sequence of ε-self-matching hash

functions.
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Next we show that w is large enough so that in each level Bob can recover many

blocks of x correctly.

Lemma 3.3.15. For any i ≤ L− 1, in the i-th level, we have |w| ≥ li − k.

Proof. The k edits which the adversary makes on x can change at most k blocks of x′.

The remaining unchanged blocks induce a matching between x′ and y of size at least

li − k. Since w is the maximum matching between x′ and y, |w| ≥ li − k.

Lemma 3.3.16. Bob computes x correctly.

Proof. Alice can do every step in her algorithm correctly due to Theorem 3.3.5 and

3.2.12 since she only constructs ε-self-matching hash functions, doing evaluation of

these functions and computing redundancies of some sequences.

So the remaining is to show that Bob can compute x correctly once he receives

Alice’s message.

We first show that for every level i, Bob can recover v[i] correctly, by indcution.

For the first level, Bob can do it because v[1] is sent directly to him from Alice.

For level i = 2, . . . , L− 1, assume Bob gets v[i− 1] correctly. By Lemma 3.3.14,

the matching w has at most 2k bad pairs. By Lemma 3.3.15, |w| ≥ li − k. Thus |w|

gives at least li − k− 2k = li − 3k correctly matched pairs of blocks. So according to

w, Bob can recover at least li − 3k blocks of x correctly. Thus in the i-th level, there

are at most 3k× 2 = 6k wrong blocks in x̃. So h1(x̃1) ◦ . . . ◦ hli(x̃li) ◦ z[i] is a word in
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({0, 1}b∗)li+Θ(k) having distance at most 6k to a codeword of an (li +Θ(k), li, Θ(k))-

code. Let the distance of the code Θ(k) be at least 14k s.t. by Theorem 3.2.12 the

decoding algorithm can compute v[i] correctly.

Note that for the last level, there are at least n − 3k correctly matched pairs

of blocks. So there are at most 3k wrong blocks in x̃. The redundancy length

|zfinal| = Θ(k). So x̃ ◦ zfinal has hamming distance at most 3k from a codeword

x ◦ zfinal of an (n + Θ(k), n, Θ(k))-code with distance at least 8k. Thus the decoding

algorithm of Theorem 3.2.12 can compute the message x correctly.

Theorem 3.3.17. There exists a deterministic protocol for document exchange, having

communication complexity (redundancy) O(k log2 n
k ), time complexity poly(n), where

n is the input size and k is the edit distance upper bound.

Proof. Construction 3.3.11 gives the deterministic protocol for document exchange.

The communication complexity is O(k log2 n
k ) by Lemma 3.3.13. The time complex-

ity is poly(n) by Lemma 3.3.12. The correctness is proved by Lemma 3.3.16.

3.4 Explicit binary ECC for edit errors

In this section we’ll show how to use the document exchange protocol to construct

ECC for edit errors.
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3.4.1 Constructing binary ECC using redundancies

Lemma 3.4.1. For every n, r, k ∈N, every x ∈ {0, 1}n, z ∈ {0, 1}r, if C is a binary

code with message length r, codeword length nC, that can correct up to 4k edit errors,

then for every y ∈ {0, 1}∗ s.t. ED(y, x ◦ C(z)) ≤ k, one can get z from y using the

decoding algorithm of C.

Proof. We can run the decoding of C on y[n + 1− k, |y|], where |y| ≤ n + nC + k.

Since there are at most k edit operations, LCS(y[n + 1− k, |y|], C(z)) ≥ nC − k. So

ED(y[n + 1− k, |y|], C(z)) = |y[n + 1− k, |y|]|+ nC − 2LCS(y[n + 1− k, |y|], C(z))

≤ |y[n + 1− k, |y|]|+ nC − 2(nC − k)

= |y| − (n + 1− k) + 1 + nC − 2(nC − k)

≤ (n + nC + k)− (n + 1− k) + 1 + nC − 2(nC − k)

≤ 4k.
(3.1)

Thus the decoding can output the correct z.

Theorem 3.4.2. If there exists an explicit document exchange protocol with commu-

nication complexity r(n, k), where n ∈ N is the input size and k ∈ N is the upper

bound on the edit distance, then there exists an explicit family of binary ECCs with

codeword length nC = n + O(r(n, k)), message length n, that can correct up to k

edit errors.

Proof. The encoding algorithm is as follows: for message x ∈ {0, 1}n, we first
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compute the redundancy z for x and 3k edit errors using the document exchange

protocol. Then we encode the redundancy z to be c̃ using the binary ECC from

Theorem 3.2.13 which can correct α fraction of errors with constant rate. Here α is a

constant such that α|c̃| ≥ 4k. Assume the length of the code is n0 = O(r). The final

codeword c is the concatenation of the original message x and the encoded redundancy

c̃. That is, c = x ◦ c̃ and |c| = n + n0.

By Lemma 3.4.1, we can get the redundancy z from the corrupted codeword

c′. Note that there are at most k edit errors, ED(c′[1, n + k], x) = n + k + n −

2LCS(c′[1, n + k], x) ≤ n + k + n− 2(n− k) ≤ 3k. Here LCS(c′[1, n + k], x) ≥

n− k is because c′[1, n + k] contains a subsequence of x which are the symbols that

are not deleted. There are at most k deletions so the subsequence has length at least

n− k.

Finally we run the document exchange protocol to compute the original message

x, where Bob’s string is c′[1, n + k] and the redundancy from Alice is z.

3.4.2 Binary ECC for edit errors with almost optimal parame-
ters

A direct corollary of Theorem 3.4.2 is the following binary ECC.

Theorem 3.4.3. For any n, k ∈ N with k ≤ n/4, there exists an explicit binary error

correcting code with message length n, codeword length n + O(k log2 n
k ) that can

correct up to k edit errors.

Proof. It follows directly from Theorem 3.4.2 and 3.3.17.
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Corollary 3.4.4. There exists a constant 0 < α < 1 such that for any 0 < ε ≤ α

there exists an explicit family of binary error correcting codes with codeword length n

and message length m, that can correct up to k = εn edit errors with rate m/n =

1−O(ε log2 1
ε ).

3.5 Deterministic document exchange protocol for block
edit errors

Definition 3.5.1 (Collision free hash functions). Given n, p, q ∈ N, p ≤ n and a

string x ∈ {0, 1}n, we say a hash function h : {0, 1}p → {0, 1}q is collision free

(for x), if for every i, j ∈ [n− p + 1], h(x[i, i + p)) = h(x[j, j + p)) if and only if

x[i, i + p) = x[j, j + p).

Theorem 3.5.2. There exists an algorithm which, on input n, p, q ∈ N, p ≤ n, q =

c0 log n for large enough constant c0, x ∈ {0, 1}n, outputs a description of a hash

function h : {0, 1}p → {0, 1}q that is collision free for x, in time poly(n), where the

description length is O(log n).

Also there is an algorithm which, given the description of h and any u ∈ {0, 1}p,

can output h(u) in time poly(n).

Proof. Let ε = 1/poly(n) be small enough. Let g : {0, 1}d → ({0, 1}q){0,1}p

be an ε-almost 2q-wise independence generator from Theorem 3.2.5 with d =

O(log 2q log(2pq)
ε ). Here g outputs q2p bits and we view the output as an array indexed

by elements in {0, 1}p, where each entry is in {0, 1}q.

To construct h, we try every seed v ∈ {0, 1}d. Let h(·) = g(v)[·]. This means

that, for every u ∈ {0, 1}p, h(u) is the value of the entry indexed by u in g(v). For
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any i, j ∈ [n− p + 1], we check whether h(x[i, i + p)) = h(x[j, j + p)) if and only

if x[i, i + p) = x[j, j + p). If this is the case then the algorithm returns h. The

description of h is the corresponding seed v.

Now we show that we can indeed find such a v by exhaustive search. If we let v

be chosen uniformly randomly, then by a union bound, the probability that there exists

i, j ∈ [n− p + 1] s.t. h(x[i, i + p)) = h(x[j, j + p)) but x[i, i + p) ̸= x[j, j + p) is

at most 1/poly(n) · n2 = 1/poly(n). Thus there exists a v s.t. the corresponding h

is collision free.

The exhaustive search is in polynomial time because the seed length is d =

O(log n). The evaluation of h is in polynomial time by Theorem 3.2.5. Thus the

overall running time of our algorithm is a polynomial in n.

Definition 3.5.3 (Matching). Given n, n′, p, q ∈ N, p ≤ n, p ≤ n′, a function

h : {0, 1}p → {0, 1}q and two strings x ∈ {0, 1}n, y ∈ {0, 1}n′ , a matching (may

not be monotone) between x and y under h is a sequence of matches (pairs of indices)

w = ((i1, j1), . . . (i|w|, j|w|)) s.t.

• for every k ∈ [|w|],

– ik = 1 + plk ∈ [n] for some lk,

– jk ∈ [n′],

– h(x[ik, ik + p)) = h(y[jk, jk + p)),

• i1, . . . , i|w| are distinct.

A non-overlapping matching is a matching with one more restriction.

• Intervals [jk, jk + p), k ∈ [|w|], are disjoint.
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When considering overlaps, the matching has overlapping degree d, if each bit of

y appears in at most d matched pairs for some small number d.

For a match (i, j), it matches two intervals, one from x, the other from y. When

we say the y’s interval (of the match (i, j)), we mean [j, j + p), and similarly the

x’s interval is [i, i + p). A match (i, j) in a matching is called a wrong match (or

wrong pair) if x[i, i + p) ̸= y[j, j + p). Otherwise it is called a correct match (or

correct pair). A pair of indices (i, j) is called a potential match between x and y

if h(x[i, i + p)) = h(y[j, j + p)). It may be wrong because x[i, i + p) may not be

y[j, j + p). When x, y are clear from the context we simply say (i, j) is a potential

match.

To compute a monotone non-overlapping matching we can use the dynamic

programming method. But our matching is not necessarily monotone. So this raises

the question of how hard this problem is.

It seems difficult to find a polynomial algorithm which can exactly compute it. So

instead we use constant approximation techniques. There’re two difficulties at the

first thought. One is that if we compute the non-overlapping matching over the entire

strings, then a constant approximation is too bad since there will be O(n) unmatched

blocks. So for each level, we restrict our attention to blocks that are uncovered and

wrongly recovered (but discovered by us). The other problem is that we need the

approximation rate to be a large enough constant. To achieve this goal, we actually

computing matchings with constant degree.

We start from a 1/3-approximation algorithm, which is greedy.

Construction 3.5.4. Given n, n′, p, q ∈ N, p ≤ n, p ≤ n′, a polynomial time

computable function h : {0, 1}p → {0, 1}q and two strings x ∈ {0, 1}n, y ∈
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{0, 1}n′ , we have the following 1/3-approximation algorithm for computing the

non-overlapping matching.

1. Let the sequence of matches w be empty;

2. Find i = 1 + pl ∈ [n] and j ∈ [n′], where l ∈N, s.t.

• h(x[i, i + p)) = h([j, j + p)),

• i is not in any match (as the first entry) of the current w,

• [j, j + p) does not overlap with any [j′, j′ + p) for any j′ as the second

entry in any matches of the current w;

3. If there is such a pair of indices i, j, then add the match (i, j) to w and go to

step 2; Otherwise, output w and stop.

Lemma 3.5.5. Construction 3.5.4 gives a 1/3-approximation algorithm for compu-

ting the non-overlapping matching.

Proof. Suppose w∗ is the maximum non-overlapping matching between x, y under h.

Every time the greedy algorithm adds a match (i, j) to w, we may delete at most

3 matches in w∗. They may be the match which includes [i, i + p), or the matches

whose intervals of y overlap with [j, j + p).

Note that in the first case, there can be at most 1 match of w∗ deleted since by

definition of matching, [i, i + p) can only be the x’s interval for at most l match of

w∗. For the second case, note that since w∗ is non-overlapping, there are at most two

y’s intervals, of matches in w∗, overlapping with [j, j + p).

If |w| < 1/3|w∗|, then we can delete less than |w∗| matches in w∗.
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We claim that the matches left can be selected by the greedy algorithm. Suppose

one remaining match is (i, j). Note that [i, i + p) is not in any match of w. Since

if it is, then this match should have been deleted. Also note that [j, j + p) does not

overlap with any intervals in matches of w. Since if it does, then it also should have

been deleted.

As a result, if |w| < 1/3|w∗|, our greedy algorithm will not stop. Also note

that every time the algorithm conducts step 2 and 3 it will either increase the current

matching size by 1, or stop, and the matching size is O(n/p). So our greedy algorithm

will halt in polynomial time.

Next we give an explicit algorithm which computes a even larger matching (better

approximation), but it allows overlaps.

Construction 3.5.6. Given n, n′, p, q ∈ N, p ≤ n, p ≤ n′, a (polynomial time

computable) function h : {0, 1}p → {0, 1}q and two strings x ∈ {0, 1}n, y ∈

{0, 1}n′ , we have the following algorithm.

1. Let the matching w be empty, set S = {i = 1 + pl | l ∈ N, i ∈ [n]}, integer

c = 0;

2. Conduct Construction 3.5.4 to compute a matching w′ between xS and y under

h. Here xS is the projection of x on intervals in set S;

3. Let w = w ∪ w′;

4. Let S = S \ {u | ∃(u, v) ∈ w};

5. c = c + 1;
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6. If c ≥ 3, output w; Otherwise go to step 2.

Note that Construction 3.5.6 is in polynomial time since it simply conducts Con-

struction 3.5.4 for 3 times and after each conduction it removes matched blocks of

x and only considers the remaining blocks in the next iteration. So we only need to

show its correctness.

Lemma 3.5.7. Construction 3.5.6 computes a degree 3 overlapping matching w

between x and y under h, such that |w| ≥ 2/3|w∗|, where w∗ is the maximum

non-overlapping matching between x and y under h.

Proof. Let wi, i = 1, 2, 3 be the matching the algorithm computes after round i. Also

let Si, i = 1, 2, 3 be the set S after the ith round.

By Lemma 3.5.5, |w1| ≥ 1/3|w∗|. The number of unmatched blocks is n̄ −

|w1| ≤ n̄− 1/3|w∗|, where n̄ = ⌊n/p⌋ is the total number of blocks of x.

The maximum matching between xS1 and y is at least |w∗| − |w1|. This is because

that, each of the matched blocks of x by w1, should be among the x’s blocks in the

matches of w∗. There are at most |w1| of them. So there are still |w∗| − |w1|

remaining matches in w∗ which corresponds to blocks in xS1 .

Again by Lemma 3.5.5, for i ≥ 2, at least 1/3(|w∗| − |wi−1|) blocks of xSi−1

will be matched in the ith round.

226



Thus

|wi| ≥ |wi−1|+ 1/3(|w∗| − |wi−1|) (3.2)

= 1/3|w∗|+ 2/3|wi−1| (3.3)

≥ (1− (2/3)i−1)|w∗|+ (2/3)i−1|w1| (3.4)

≥ (1− (2/3)i−1)|w∗|+ (1/3)(2/3)i−1|w∗| (3.5)

= (1− (2/3)i)|w∗|. (3.6)

Inequality 3.2 is due to Lemma 3.5.5 as explained above. Equality 3.3 is due to a

direct computation. 3.4 is by recursively applying 3.2 and 3.3 from i− 1 to 2. 3.5 is

because |w1| ≥ 1/3|w∗|.

As a result, |w3| ≥ 19/27|w∗| ≥ 2/3|w∗|.

Note that we apply Construction 3.5.4 for 3 times, where in each time, it gives a

non-overlapping matching. So each entry of y is in at most one of the matches in that

round. So finally we get a degree 3 overlapping matching.

We now give the following document exchange protocol.

Construction 3.5.8. The protocol works for every input length n ∈N, every (k1, t)

block-insertions/deletions k2 block-transpositions, k1, k2 ≤ αn/ log n, t ≤ βn, for

some constant α, β. (If k1 or k2 > αn/ log n, or t > βn, we simply let Alice send her

input string.) Let k = k1 + k2.

Both Alice’s and Bob’s algorithms have L = O(log n
k log n+t ) levels.

For every i ∈ [L], in the i-th level,
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• Let the block size be bi =
n

18·2i(k+ t
log n )

, i.e., in each level, divide every block

of x in the previous level evenly into two blocks. We choose L properly s.t.

bL = O(log n);

• The number of blocks li = n/bi;

Alice: On input x ∈ {0, 1}n,

1. For the i-th level,

1.1. Construct a hash function hi : {0, 1}bi → {0, 1}b∗=Θ(log n) for x by

Theorem 3.5.2.

1.2. Compute the sequence of hash values i.e. v[i] = (hi(x[1, 1+ bi)), hi(x[1+

bi, 1 + 2bi)), . . . , hi(x[1 + (li − 1)bi, libi)));

1.3. Compute the redundancy z[i] ∈ ({0, 1}b∗)
Θ((k+ t

log n )i) for v[i] by Theorem

3.2.12, where the code has distance at least 180(k + t
log n )i;

2. Compute the redundancy zfinal ∈ ({0, 1}bL)
Θ((k+ t

log n ) log L) for the blocks of

the L-th level by Theorem 3.2.12, where the code has distance at least 90(k +

t
log n )L;

3. Send h = (h1, . . . , hL), z = (z[1], z[2], . . . , z[L]), v[1], zfinal to Bob.

Bob: On input y ∈ {0, 1}O(n) and received h, z, v[1], zfinal,

1. Create x̃ ∈ {0, 1, ∗}n (i.e. Bob’s current version of Alice’s x), initiating it to be

(∗, ∗, . . . , ∗);

2. For the i-th level where 1 ≤ i ≤ L− 1,
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2.1. Apply the decoding of Theorem 3.2.12 on hi(x̃′[1, 1 + bi)), hi(x̃′[1 +

bi, 1 + 2bi)), . . . , hi(x̃′[1 + (li − 1)bi, libi)), z[i] to get the sequence of

hash values v[i]. Note that v[1] is received directly, thus Bob does not

need to compute it;

2.2. Let S = {j ∈ [n] | hi(x̃[1 + (j− 1)bi, 1 + jbi)) ̸= v[i][j] or x[1 + (j−

1)bi, 1 + jbi) = (∗, . . . , ∗)};

2.3. Compute the matching wi = ((p1, p′1), . . . , (p|w|, p′|w|)) ∈ ([li]× [|y|])|wi|

between xS and y under hi, using v[i], by Lemma 3.5.6;

2.4. Evaluate x̃ according to the matching, i.e. let x̃[pj, pj + bi) = y[p′j, p′j +

bi), where pj, p′j ∈ wi, j ∈ [|wi|];

3. In the L’th level, apply the decoding of Theorem 3.2.12 on the blocks of x̃ and

zfinal to get x;

4. Return x.

Lemma 3.5.9. For every i, the maximum non-overlapping matching between xS and

y under hi has size at least |S| − (2k1 + 3k2 + t/ log n).

Proof. Note that block-insertions do not delete bits. One block insertion can corrupt at

most one block. For block-deletions, assume that the j-th block-deletion delete tj bits.

This can corrupt (delete a block totally or delete part of a block) at most ⌈tj/bi⌉+ 1

blocks. So the total number of corrupted blocks is at most ∑k1
j=1(⌈tj/bi⌉ + 1) ≤

2k1 + t/bi ≤ 2k1 + t/ log n.

On the other hand, k2 block-transpositions can corrupt at most 3k2 blocks, because

one block-transposition can only corrupt the two blocks at the end of the transposed
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substring and another block which contains the position that is the destination of the

transposition.

As a result, the total number of corrupted blocks is at most 2k1 + 3k2 + t/ log n.

After corruption, uncorrupted blocks can be matched to its corresponding blocks

(before corruption) in x. So there exists a matching between xS and y under hi having

size at least |S| − (2k1 + 3k2 + t/ log n).

Lemma 3.5.10. For every i, if v[i] is correctly computed by Bob, then |wi| ≥

2/3(|S| − (2k1 + 3k2 + t/ log n)).

Proof. By Lemma 3.5.9, the maximum non-overlapping matching between xS and

y under hi has size at least |S| − (2k1 + 3k2 + t/ log n). By Lemma 3.5.7, |wi| ≥

2/3(|S| − (2k1 + 3k2 + t/ log n)).

Lemma 3.5.11. For every i, if v[1], . . . , v[i] are correctly recovered, then in the i-th

level the number of wrongly recovered blocks of x is at most 3i(2k1 + 3k2 +
t

log n ).

Proof. Consider the matching w∗ corresponding to the current recovering of x after i

levels, i.e., this matching is generated at level 1 and adjusted level by level. In level

j, we first use hash values to test every block to see if it is correctly recovered. For

wrongly recovered blocks we delete their corresponding matches. Then for remaining

wrongly recovered blocks and unrecovered blocks, we compute a matching wj for

them, and add all matches in wj to w∗.

For wj, j ≤ i, after level i, the number of wrongly recovered blocks in level i

caused by (the remaining part of) wj is at most 3(2k1 + 3k2 +
t

log n ).
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This is because in wj is constructed by Construction 3.5.6, which is a union of

3 matchings. Each matching of them is non-overlapping. We only need to show

that wj, after eliminating detected wrong pairs in these i levels, contains at most

2k1 + 3k2 +
t

log n wrong matches between x’s and y’s blocks in the i-th level. To see

this, first note that these matches’ y intervals are only from blocks which are modified

from x’s blocks or newly inserted. For each block-insertion of tj bits, it can contribute

at most ⌈tj/bi⌉+ 1 wrong matches. Each block-deletion can contribute at most 2

wrong matches. So totally block insertions/deletions can cause ∑k1
j=1(⌈tj/bi⌉+ 1) ≤

2k1 + t/bi wrong matches. On the other hand, k2 block-transpositions can contribute

at most 3k2 wrong matches, because 1 block-transposition can only cause 1 wrong

match when deleting the block and inserting the block to its destination may contribute

2 wrong matches. Hence the total number wrong matches is at most 2k1 + 3k2 + t/bi.

Since there are i matchings w1, . . . , wi, each containing 3 non-overlapping matc-

hings, the number of wrongly recovered blocks remaining in w∗ is at most 3i(2k1 +

3k2 +
t

log n ).

Lemma 3.5.12. For every i, if v[1], . . . , v[i] are correctly recovered, then in level i,

the number of unrecovered blocks is at most 36i(k + t
log n ).

Proof. We use induction.

For the base case i = 1, all blocks of x are unknown to Bob. So the number is at

most l1 = 18 · 21(k + t/ log n) = 36(k + t/ log n).

For the induction case, assume the number of unrecovered blocks is at most

36j(k + t/ log n), for all j ≤ i. By Lemma 3.5.11, for level i (after the matching is
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computed), the number of wrongly recovered blocks of x is at most

3i(2k1 + 3k2 +
t

log n
).

So at level i + 1, the number of wrongly recovered blocks is at most doubled, i.e.

|{j ∈ [n] | hi+1(x̃[1 + (j− 1)bi+1, 1 + jbi+1)) ̸= v[i][j]}|

≤6i(2k1 + 3k2 +
t

log n
)

≤18i(k + t/ log n).

Since Bob has the correct v[i + 1], he can detect at most all the wrong blocks. So

|S| ≤ (72 + 18)i(k + t/ log n) = 90i(k + t/ log n).

By Lemma 3.5.10, the number of unrecovered blocks is at most |S| − |wi| ≤

1/3|S|+ (2k1 + 3k2 + t/ log n) ≤ 30(i + 1)(k + t/ log n).

Lemma 3.5.13. Bob can recover x correctly.

Proof. We use induction to show that for every i ∈ [L], v[i] can be computed correctly

by Bob.

For the first level, v[1] is directly received from Alice.

Assume v[1], . . . , v[i − 1] can be computed correctly. By Lemma 3.5.12, the

number of unrecovered blocks after level i− 1 is at most 36(i− 1)(k + t/ log n).

By Lemma 3.5.11, the number of wrongly recovered blocks is at most 9(i− 1)(k +

t/ log n). So the total number of wrongly recovered and unrecovered blocks is at
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most

(36(i− 1)(k + t/ log n) + 9(i− 1)(k + t/ log n))

≤90(i− 1)(k + t/ log n)

<90i(k + t/ log n).

Note that with the redundancy z[i], its corresponding code has distance at least

180(k + t/bi)i. So Bob can recover v[i] correctly by Theorem 3.2.12.

As a result, at level L. By Lemma 3.5.11, the number of wrongly recovered

blocks is at most 3L(2k1 + 3k2 +
t

bL
). By Lemma 3.5.12 the number of unrecovered

blocks, is at most 36L(k + t/ log n). So the total number of wrongly recovered

and unrecovered blocks is at most 45L(k + t/ log n). Note that the code distance

corresponding to the redundancy zfinal is at least 90(k + t/bL)L. So all blocks of x

can be recovered correctly by using the decoding from Theorem 3.2.12.

Lemma 3.5.14. The communication complexity is O((k log n + t) log2 n
k log n+t ).

Proof. For the i-th level of Alice, |z[i]| = Θ(k + t
log n )ib

∗ = Θ((k log n + t)i). So

|z| =
L

∑
i=1
|z[i]| =

L

∑
i=1

O ((k log n + t)i) = O(k log n + t)L2.

Also |zfinal| = O(k + t
bL
) · L · O(log n) = O ((k log n + t)L) by Theorem

3.2.12.

For every i ∈ [L], |hi| = O(log n) by Theorem 3.5.2. So |h| = O(log n)L.

The length of v[1] is l1O(log n) = n
b1

O(log n) = O(k + t
log n ) ·O(log n) =
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O(k log n + t).

Since L = log n
k log n+t , the overall communication complexity is

O
(
(k log n + t) log2 n

k log n + t

)
.

Lemma 3.5.15. Both Alice and Bob’s algorithms are in polynomial time.

Proof. For Alice’s algorithm, let’s consider the i-th level. Constructing hi and eva-

luating hi takes polynomial time by Theorem 3.5.2. Computing the redundancy z[i]

takes polynomial time by Theorem 3.2.12. So the overall running time is polynomial.

For Bob’s algorithm, we still consider the i-th level. By Theorem 3.2.12, getting

v[i] takes polynomial time. It takes linear time to visit every block and check if their

hash value is equal to the corresponding entry of v[i]. By Lemma 3.5.7, computing

the maximum matching takes polynomial time. So the overall running time is also

polynomial.

Theorem 3.5.16. There exists an explicit binary document exchange protocol, having

communication complexity O((k log n + t) log2 n
k log n+t ), time complexity poly(n),

where n is the input size and k = k1 + k2, for (k1, t) block-insertions/deletions and

k2 block-transpositions, k1, k2 ≤ αn/ log n, t ≤ βn, for some constant α, β.

Proof. It follows from Construction 3.5.8, Lemma 3.5.13, Lemma 3.5.14 and Lemma

3.5.15.
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3.6 Binary codes for block edit errors

3.6.1 Encoding and decoding algorithm

Given the document exchange protocol for block edit operations, we can now con-

struct codes capable of correcting (k1, t) block insertions/deletions, and k2 block

transpositions, where k1 + k2 = k, and t ≤ αn for some constant α. The encoding

and decoding algorithms are as follows:

Construction 3.6.1. Encoding Algorithm

Let ℓbuf = 2 log n and buf = 0ℓbuf−1 ◦ 1.

Input: msg of length n.

Ingredients:

• A pseudorandom generator PRG : {0, 1}O(log n) → {0, 1}n, from Theorem

3.6.3, s.t. there exists at least one seed r for which msg ⊕ PRG(r) doesn’t

contain buf as a substring and has B-distinctness.

• An error correcting code C1 from Theorem 3.2.13 which is capable of correcting

O(k log n + t) edit errors, as well as k2 block transpositions. Denote the

encoding map of C1 as Enc1 : {0, 1}ml1=O(k log2 n+t) → {0, 1}cl1=O(k log2 n+t)

and the decoding map as Dec1 : {0, 1}cl′1 → {0, 1}ml1 .

Operations:

1. Find a seed r of PRG s.t. msg⊕ PRG(r) does not contain buf as a substring

and satisfies B-distinctness. Let msgP = msg⊕ PRG(r).
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2. Compute the sketch skm for msgP for Ω(k) block insertions/deletions and

Ω(k) block transpositions, where the number of bits inserted and deleted is

Ω(k log n + t) in total.

3. Let sk = skm ◦ r, and encode sk with C1. Let the codeword be c1 = Enc1(sk).

4. Divide c1 into blocks of length log n. Denote these blocks as c(1)1 , c(2)1 , . . . , c(M)
1

where M is the number of blocks.

5. Insert buf to the beginning of each block c(i)1 , 1 ≤ i ≤ M.

6. Let c = (msg⊕ PRG(r)) ◦ buf ◦ c(1)1 ◦ buf ◦ c(2)1 · · · ◦ buf ◦ c(M)
1 .

Output: c.

The construction of PRG is left to subsection 3.6.2. We call the concatenation

buf ◦ c(1)1 ◦ buf ◦ c(2)1 · · · ◦ buf ◦ c(M)
1 as the sketch part and msgP = msg⊕ PRG(r)

as the message part. Now we give the corresponding decoding algorithm.

Construction 3.6.2. Decoding Algorithm

Input: the received codeword c′.

Operations:

1. Find out all substrings buf in c′. Number these buffers as buf1, . . . , bufM′ .

2. Pick the log n bits after buf j as block c′1
(j), 1 ≤ j ≤ M′. Then remove all the

buffers buf j and c′1
(j), 1 ≤ j ≤ M′ from c′. The rest of c′ is regarded as the

message part msg′P.

3. Let c′1 = c′1
(1) ◦ c′1

(2) ◦ · · · ◦ c′1
(M′). Decode c′1 with the decoding algorithm

Dec1 for C1 and get sk = Dec1(c′1).
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4. Get skm and r from sk.

5. Use skm and msg′P to recover msgP.

6. Compute msg = msgP ⊕ PRG(r).

Output: msg.

3.6.2 Analysis

In this subsection we’ll give the construction of PRG and prove the correctness of the

algorithms.

Building blocks: PRG

We recall the following pseudorandom generator.

Theorem 3.6.3. For every n ∈N, there exists an explicit PRG g : {0, 1}ℓ=O(log n) →

{0, 1}n s.t. for every x ∈ {0, 1}n, with probability 1 − 1/poly(n), g(Uℓ) + x

satisfies B-distinctness.

Proof. Let g be the ε-almost κ-wise independence generator from Theorem 3.2.5,

where ε = 1/poly(n), κ = 2B, seed length ℓ = O(log κ log n
ε ) = O(log n).

Given a fixed x, g(n, Uℓ) + x is ε-almost κ-wise independent. So for every pair

of two intervals u, v ∈ {0, 1}B of it,

Pr[u = v] = ∑
a∈{0,1}B

Pr[u = a, v = a] ≤ ∑
a∈{0,1}B

(
1

22B + ε) ≤ 1
2B + 1/poly(n) ≤ 1

2B−1 ,

where the first inequality is due to the definition of ε-almost κ-wise independence. The

second inequality holds since ε = 1/poly(n) is small enough. The third inequality
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is because ε is small enough and we can take the constant in B = O(log n) to

be large enough. By a union bound over all O(n2) pair of u, v, it concludes that

g3(n, Uℓ) + x ∈ {0, 1}n is B-distinct with probability 1− 1/poly(n) since B is large

enough.

Theorem 3.6.4. For every n ∈ N, x ∈ {0, 1}n,there exists an explicit PRG g :

{0, 1}ℓ=O(log n) → {0, 1}n s.t. for every x ∈ {0, 1}n, with probability 1− 1/poly(n),

the following two conditions hold simultaneously.

• buf is not a substring of PRG(Uℓ)⊕ x.

• PRG(Uℓ)⊕ x satisfies B-distinctness.

Proof. Let κ = ℓbuf be the length of buf, ε = 1/n2. From Theorem 3.2.5, there

exists an explicit ε-almost κ-wise independence generator g′ : {0, 1}d → {0, 1}n,

where d = O(log κ log n
ε ) = O(log n). Then, for any x ∈ {0, 1}n,

Pr
r′←{0,1}d

[buf is a substring of g′(r′)⊕ x]

≤ ∑
i∈[n−ℓbuf+1]

Pr[buf = (g′(r′)⊕ x)[i, i + ℓbuf)]

≤n
(

1/2ℓbuf + 1/n2
)
= 1/poly(n).

Let g be the generator in Theorem 3.6.3 with seed length ℓ′. Let ℓ = max(ℓ′, d),

and construct PRG(r) = g(r1)⊕ g′(r2) where r1, r2 are disjoint substrings of r of

length l′ and l. Then by the union bound, the probability that at least one of the

conditions fails is upper bounded by 1/poly(n).
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Correctness of the construction

We show that a code C with encoding algorithm 3.6.1 and decoding algorithm 3.6.2

can correct (k1, t)-block insertions/deletions and k2 block transpositions.

First, we prove the sketch sk can be correctly recovered.

Lemma 3.6.5. In the 4th step of decoding algorithm 3.6.2, the sketch sk is correctly

recovered.

Proof. We show that c′1 can be obtained by applying at most 12k log n + t edit errors

and k block transpositions over c1.

Note that after inserting buffers to the blocks of c1, the total number of appearance

of the buffer in the sketch part is equal to the number of buffers inserted, because

the buffer length is longer than the block length of c1. Also note that concatenating

the message part and sketch part will not insert any buffers because by the choice

of r, msg⊕ PRG(r) does not contain buf. As a result, if there are no errors, by the

decoding algorithm we can get the correct c1 and thus get the correct sk.

Next we consider the effects of block insertions/deletions and transpositions for

the sketch part. Specifically, we consider how the sketch part changes after each of

these operations.

• block insertion: Consider one block insertion of t0 bits. We claim that after this

operation, at most ⌈t0/(3 log n)⌉ new blocks can be introduced to the sketch

part, because to insert one new block to the sketch, we only need to insert a

new buffer and attach the new block to it. We also note that this operation may

delete one block by damaging a buffer, or replace one block by damaging the

block right after the buffer.
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So k1 block insertions of t bits inserted can insert at most k1 + t/(3 log n) new

blocks. It can also delete at most k1 blocks, and replace at most k1 blocks.

• block deletion: we first consider a block deletion of t0 bits. After this operation,

at most ⌈t0/(3 log n)⌉ blocks of the sketch part can be deleted, since there are

at most ⌈t0/(3 log n)⌉ blocks in the deleted substring. The operation may also

create one extra block, since the remaining bits may combine together to be

a buffer. It may also replace an existing block, since the remaining bits may

combine together to be a new block after an original buffer.

So k1 block deletions of t bits deleted can delete at most k1 + t/(3 log n)

blocks. It can insert at most k1 blocks. It can also replace k1 blocks.

• block transposition: After one block transposition (i, j, l), at most 3 new blocks

can be introduced to the sketch part, since a new block may be created at the

original position i, and two new blocks may appear when inserting the block to

the destination j. Also it may delete at most 3 blocks, since two buffers may be

damaged when removing the transferred block, and one buffer can be damaged

when inserting the transferred block. By a similar argument this operation

can replace at most 3 blocks. Also, a block transposition can cause one block

transposition for the sketch part.

As a result, k2 block transpositions can insert or delete at most O(k2) blocks

and cause O(k2) block transpositions.

In summary, there are at most O(k + t/ log n) block insertions/deletions and k2

block transpositions on c1. Note that O(k + t/ log n) block insertions/deletions, each

of length O(log n) bits can be regarded as O(k log n + t) edit errors. Since our code
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C1 can correct O(k log n + t) edit errors and k2 block transpositions, we can decode

sk correctly.

Next, we show that the message output by the decoding algorithm is correct.

Lemma 3.6.6. At the end of algorithm 3.6.2, the original message is correctly deco-

ded.

Proof. According to Lemma 3.6.5, we have correctly recovered sk. Thus we get skm

and r correctly.

Note that if there are no errors, then by deleting the buffers and the blocks of c1

appended to these buffers, the remaining string is exactly the original message part,

since the original message part does not contain buf as substrings.

Now we consider the effects of block insertions/deletions and transpositions for

the message part. Specifically, we consider how the message part changes after each

of these operations.

• block insertion: First consider one block insertion of t0 bits. It can insert at

most t0 symbols to the message part if it does not damaging any original buffers.

If it damages buffers, it may insert O(log n) more bits to the message part. It

can also cause at most one block deletion of O(log n) bits since the rightmost

buffer it inserts may cause our algorithm to delete the O(log n) bits following

that buffer.

• block deletion: Consider a block deletion of t0 bits. It can delete at most t0

blocks of the message part. If it damages buffers, it can cause at most one
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block insertion of O(log n) bits, since the rightmost deleted buffer may cause

our algorithm to regard the O(log n) bits following that buffer as part of the

message part.

• block transposition: now we consider one block transposition. It may cause at

most one block transposition of the message part. Also it may create at most 3

new buffers and thus delete 3 log n bits of the message part. Moreover, it may

delete three buffers and thus insert 3 log n bits to the message part.

Thus (k1, t)-block insertions/deletions can cause inserting/deleting at most O(k1)

blocks of O(t + k1 log n) bits. Also k2 block transpositions can cause O(k2) block

insertions/deletions of O(k2 log n) bits in total and k2 block transpositions.

In summary, there are at most O(k) block insertions/deletions of O(k log n + t)

bits in total and k2 block transpositions. Since our sketch sk can be used to correct

(O(k), O(k log n + t)) block insertions/deletions and k block transpositions, we can

get msgP correctly. As a result we can compute msg = msgP ⊕ PRG(r) correctly.

We can directly use our document exchange protocol to get an ECC.

Theorem 3.6.7. For every n, k1, k2, t ∈ N with k = k1 + k2 < αn/ log n, t ≤ βn,

for some constant α, β, there exists an explicit binary error correcting code for (k1, t)-

block insertions/deletions and k2 block transpositions, having message length n,

codeword length n + O((k log n + t) log2 n
k log n+t ).

Proof. We construct the encoding as Algorithm 3.6.1 where the sketch in Stage 2 is

computed by using Alice’s algorithm (encoding) of the protocol of Theorem 3.5.16.
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The decoding is as Algorithm 3.6.2, where its stage 5 is computed by using Bob’s

algorithm of the protocol of Theorem 3.5.16.

The correctness of the construction is similar to Lemma 3.6.5, 3.6.6, the (k1, t)-

block insertions/deletions and k2 block transpositions causes (k, O(k log n + t))-

block insertions/deletions and transpositions on the message and sketch part. Hence,

according to Theorem 3.5.16, a sketch of size O((k log n + t) log2 n
k log n+t ) for the

document exchange protocol is enough to correct the errors.

By Algorithm 3.6.1 and Theorem 3.2.13, the size of c1 is O((k log n+ t) log2 n
k log n+t )

. The total length of the buffer inserted is O(log n) · |c1|/ log n = O(|c1|). Hence,

the total length of the redundancy is O((k log n + t) log2 n
k log n+t ) .
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