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Abstract

Commercially available Automatic License Plate Recognition (ALPR) systems have limited 

ability to provide character recognition on low-quality license plate images [20]. Improving this 

ability would be beneficial for tasks currently requiring human involvement to read low-quality 

license plate characters. Recent advances in Deep Learning networks have shown that, for 

object detection tasks, Deep Learning networks can achieve levels of performance equal to or 

better than those of a human [2,6]. The aim of this thesis is to introduce a foundational Deep 

Learning framework for character recognition performance analysis. The analysis is carried out 

on license plate images that have undergone various types and levels of image quality 

reduction. 

This thesis leverages the TensorFlow Object Detection API to enable rapid development and 

testing of different Machine Learning networks and configurations. The framework allows for the 

creation of synthetically generated datasets on which image augmentation techniques can be 

applied. The various image augmentation techniques expand the dataset, and enable the 

network to be robust to image quality reductions. Networks were trained on the Maryland 

Advanced Computing Center’s GPU system. Per-character metrics of precision and recall are 

framework outputs used to evaluate trained networks. 

 Network performance was evaluated using the framework for several Machine Learning 

models. The Faster R-CNN ResNet 50 network was found to have the best performance for 

character recognition on synthetically generated license plate images. On an ideal dataset, with 

no image degradation applied, the lower threshold of image size, on which the Faster R-CNN 

ii



ResNet 50 network can reliably perform character recognition, was found to be 32 x 16 pixels. 

Finally, the network was trained and tested on image datasets with various data augmentation 

techniques applied. The data augmentation techniques evaluated in this thesis are: JPEG 

Compression, motion blur, affine transforms, and Gaussian noise. The results showed that, 

when trained on augmented synthetic data, the network was robust to quality reduction from 

most of the applied augmentation techniques. 
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Chapter 1

 1  Introduction

 1.1 Problem Statement

This thesis develops a foundation and a framework for license plate recognition on low-quality, 

noisy images. With regards to performance of license plate character identification, this thesis 

does not address reaching, nor evaluation against, human levels of performance. In the long 

term, automated recognition accuracy has the potential to be better than that of humans. If 

networks that meet human performance thresholds can be developed, automatic license plate 

recognition can be applied to novel applications, including digital forensics. 

 1.2 Problem Space

 1.2.1  Forensics Problem

Automatic license plate recognition (ALPR) is a common computer vision task used across 

many domains including automated tolling, access control, and law enforcement. Current 

commercial systems require controlled lighting conditions, specific angles of capture, an image 

of sufficient size, and specific camera settings to accurately read license plate characters [20].

These constraints limit the applications for which commercial ALPR systems are useful. Other 

potential applications of ALPR, like digital forensics, have a need to identify license plates from 

noisy images. These noisy images are frequently obtained on non-dedicated camera equipment 

under poor lighting conditions with unknown camera specifications and locations. For example, 

consider an ALPR system, with closed-circuit television (CCTV) footage, attempting to identify 
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the license plate of a car at a crime scene. For the purposes of forensics, license plate 

characters must be identified manually since commercial ALPR systems do not perform reliably 

on low-quality images. Identifying license plates manually is a labor-intensive process requiring 

specially trained individuals. Development of an ALPR system that is robust to conditions 

contributing to low-quality images has the potential to provide benefits where the identification of 

license plates is needed, or where the identification is not currently possible but would improve 

situational information.

 1.2.2  Implications of Machine Learning

Machine Learning is “programming computers to optimize a performance criterion using 

example data or past experience” [1]. This process has allowed computers to solve complex 

problems, like low-quality character recognition [26]. In recent years, the capabilities of Machine 

Learning have been extended due to the implementation of Deep Learning. Deep Learning is a 

subset of Machine Learning that allows for networks to learn increasing abstraction without 

significant human interaction by using many layers in a network. Simply put, Machine Learning 

and Deep Learning allow for computers to solve problems of logical abstraction by training on 

large datasets.

Machine Learning has begun to obtain results that are as good as, or even better than, those of 

human object detection and identification. The ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC) [2] evaluates algorithms for object detection and image classification 

across a large dataset with many classes. ILSVRC is run every year, which allows for 

observation of the improvement of state-of-the-art networks over time. Human performance has 

been evaluated on the dataset used for ILSVRC. Consequently, a comparison between network 
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performance and that of humans can be determined. As shown in Figure 1, object classification 

networks began to exceed human performance on this dataset as early as 2015 with the 

Inception-v3 network [16]. 

 1.3 Past Work

 1.3.1  Limitations without Machine Learning

Not all previous ALPR approaches use Machine Learning. Optical character recognition (OCR) 

is a common non-Machine Learning-based ALPR solution. OCR is the conversion of images of 

text to a string of characters such that a computer can understand it. This is frequently coupled 

with Machine Learning approaches. Machine Learning is used to extract the license plate from a 

general scene image and segment the individual plate characters that are then fed to an OCR 

system for recognition. M. Sarfraz et al. [3] shows the implementation of an OCR driven license 
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plate recognition system that achieves 95% accuracy for Arabic characters from high-resolution 

digital images. OCR, however, begins to face challenges as picture quality degrades. When 

trying to classify a character, an OCR system tries to match the pixels of the image to known 

templates for each character. As an image degrades these pixel maps become less ideal, and 

OCR systems can struggle to match the appropriate template.

 1.3.2  Multilayer Perceptron (MLP)

There is a need for systems that can perform license plate character recognition on images with 

low quality. Since OCR performance degrades on these images, alternate methods such as 

utilizing Machine Learning, without OCR, have been explored. The simplest implementation of 

Machine Learning is the Multilayer Perceptron (MLP). A perceptron is a basic processing 

element that takes inputs, either from the external environment or from other perceptrons, 

associates each of these inputs with a weight, and then provides an output that is a function of 

the inputs and the weights. A perceptron can be used to distinguish between two classes by 

checking the sign of the output. A negative answer indicates one class and a positive answer 

the other. A single perceptron with only a single layer of weights can only approximate linear 

functions of the input. The breakthrough of the Multilayer Perceptron, as shown in Figure 2, is 

that adding hidden layers between the input and the output allows the network to solve 

nonlinear problems. Nonlinear data is any dataset that when plotted (in any dimensional space) 

cannot be separated into classes by a linear function [1]. 
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Figure 2: Basic MLP Architecture

Mello, et al. [5] uses two MLPs for character recognition in their ALPR system. In this approach, 

the recognition of letters and numbers is divided between the two different MLPs. This can be 

done because for most license plate sequences the order of letters and numbers is fixed; i.e., 

the first three characters are letters, and the last four characters are numbers. In this approach, 

recognition rates of 85.94% and 95.40% were achieved for letters and numbers, respectively. 

The lower recognition rate for letters is explained by the low number of sample images, in some 

cases as low as two training samples for a given character. 

 1.3.3  Convolutional Neural Networks (CNNs)

In object detection problems, Convolution Neural Networks (CNNs) are one of the most used 

Machine Learning networks. Basic neural nets like the Multilayer Perceptron are intended for 

one-dimensional data and do not scale well into image problems. CNNs were designed for 

multi-dimensional data. CNNs process data that comes in the form of multi-dimensional arrays 
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(like images) and can successfully capture the spatial and temporal dependencies found in 

images. The basic CNN architecture is shown below in Figure 3.

Figure 3: Basic CNN Architecture

Four key ideas drive the CNN structure: local connections, shared weights, pooling, and the use 

of many layers. In a CNN, local connections are employed by having each neuron connected to 

only a subset of the input image. This contrasts with MLP where the layers are fully connected. 

In images, local groups of values are often highly correlated with local patterns that are easily 

detected by using local connections. Furthermore, all neurons in a particular feature map share 

weights. These shared weights along with local connections help reduce the number of 

parameters in the system. Pooling allows the CNN to merge similar features and to 

progressively reduce the number of parameters. Reducing the number of parameters makes 

computation more efficient.  Pooling also has the added benefit of suppressing noise. In a CNN, 

the first few stages are convolutional and pooling layers. These layers allow the network to take 

advantage of the improvements in computational efficiency and noise suppression. The result of 

these stages is then flattened into a column vector via a fully connected layer and fed into a 

feed-forward network like the MLP to perform classification. CNNs were neglected in the 

Machine Learning field for many years. The advent of more powerful computing resources and 
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GPUs allowed CNNs to go deeper, which means adding many layers. Making CNNs deeper 

dramatically improves their capability for object detection. This improvement made CNNs the 

basis for competitive networks [6].

Laroca, et al. [7] uses three CNNs for ALPR. One CNN for license plate character 

segmentation, one for recognizing digits, and one for recognizing letters. For single-frame 

images, these networks have a recognition rate of 64.89%. This approach was improved further 

by the incorporation of temporal data from video capture.

 1.3.4  Recurrent Neural Networks (RNNs)

The previously discussed networks are memory-less. The introduction of recurrence in 

Recurrent Neural Networks (RNNs) allows for the addition of short-term memory. Short-term 

memory provides improved performance for sequential information. Simple RNNs are similar to 

MLPs except that RNNs also have recurrence. Recurrence means having connections of a 

perceptron to itself, or to other perceptons. The recurrence acts as short-term memory. Figure 4 

shows a simple RNN with the recurrence in red. 
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Figure 4: Simple RNN. Recurrence is shown in red

The capabilities of RNNs have been extended to allow for long time gaps in the sequence by 

using long short-term memory (LSTM) cells, shown in Figure 5. This memory is gated, meaning 

that the unit decides whether to store or delete the data. Deciding if the information is important 

happens through the assignment of weights [22, 23]. Weights are assigned through the network 

training process. Training is the process of learning a mapping function between input and 

output. The relationship between input and output variables can be described as a complex 

mathematical function. The goal of training is to learn the value of the parameters (weights) that 

result in the best function approximation. Finding optimal parameters requires solving a non-

convex optimization problem. The weights, therefore, are learned by using an iterative process 

to navigate the error surface. A model with a specific set of weights can be evaluated on the 

training dataset to determine model error. A change to the model weights will result in a change 

to model error. A set of weights that results in the smallest possible error is sought. [1, 28]
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Figure 5: LSTM Cell

Li, et al. [8] uses RNNs with LSTMs to perform character recognition on license plates. One 

benefit of this method is that the system can process the whole string of license plate characters 

without the need for segmentation. 

 1.3.5  Poor Quality License Plates

The approaches discussed above have been trained on datasets that do not apply noise 

deliberately or evaluate performance with respect to the noise in the image. This thesis focuses 

on evaluating ALPR for degraded imagery. Previous work in identifying license plate characters 

under deliberate application of degradation are discussed in this section.  
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 1.3.5.1  Motion Blur

Motion blur is an image degradation technique that is caused by the relative movement of 

objects in the field of view of the camera while the image is being captured. Motion blur can be 

reduced by shortening the exposure time. However, shortening exposure time has the 

disadvantage of higher noise. Higher noise imposes higher requirements on image sensor 

quality. Motion blur can also be reduced by providing stronger illumination. These methods of 

reducing motion blur are not always possible or cost-effective. Therefore, deblurring in post-

processing is considered a viable alternative. Svoboda, et al. [9] developed a CNN to perform 

character recognition on license plates with motion blurring artifacts. The CNN was a 15-layer 

network that consisted of only convolutional and Rectified Linear Unit (ReLU) layers. A ReLU is 

an activation function used in neural networks. If the input to a ReLU is positive, the input value 

is passed directly through to the output. If the input to a ReLU is negative, the ReLU output is 

zero. The CNN developed showed that Machine Learning had superior performance to OCR on 

motion-blurred images.

 1.3.5.2  Severely Degraded Plates

Agarwal, et al. [18] performed work looking at extremely low-quality license plate images with 

resolution on the order of 20 pixels. They developed a CNN with eight convolutional layers and 

three fully connected layers followed by three separate SoftMax functions. The SoftMax function 

is an activation function that outputs a probability distribution across the possible outcomes. 

This network provides a probability distribution of the 36 possible alphanumeric characters. The 

CNN was able to recognize characters in these degraded images that (untrained) humans were 

unable to do.
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Chapter 2

 2  Methodology

 2.1 Tools and Infrastructure

 2.1.1  Computational Resources

Machine Learning, and in particular Deep Learning, requires extensive computational resources 

in order to train the network on a large dataset. These resources include: memory, computer 

processing unit (CPU) access, graphical processing unit (GPU) access, and time. GPU 

technology has been one of the pivotal advances that has allowed Machine Learning to solve 

problems with increasing complexity. Specifically, GPUs have allowed networks to go “deeper”. 

Therefore, this research required a GPU based system capable of supporting multiple Machine 

Learning models. Johns Hopkins University is affiliated with the Maryland Advanced Research 

Computing Center (MARCC), a high-performance computing (HPC) facility. This research 

project was conducted using computational resources at MARCC, which supplied access to a 

collection of multi-core/GPU based Linux systems.

 2.1.1.1  Simple Linux Universal Resource Manager (SLURM)

Resource allocation and scheduling are managed on MARCC using Simple Linux Resource 

Manager (SLURM) [24]. SLURM is a resource management system commonly used by HPC 

centers. SLURM uses partitions to allocate resources to jobs. The partition, on which a job is 

requested, defines the maximum amount of resources that can be allocated. Resources that 

vary by partition include: the number of CPU cores, number of GPUs, and the maximum time 

interval during which a job can be run. Memory is tied in fixed amounts to a CPU core. 
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Therefore, the amount of memory available for a job is based on the number of CPU cores 

allocated. The different partitions available on MARCC and their available resources are shown 

in Table 1.

Table 1: MARCC Partition Resources [24]

Partition
Default/Max 
Time 
(hours)

Default/Max 
Cores per 
Node

Default/Max 
Mem per 
Node

Serial / Parallel Limits

shared 1/72 1/24
4.9 GB / 117 
GB

Serial 
(multithreaded)

1 node per 
job

unlimited 1/unlimited 1/24
4.9 GB / 117 
GB

Serial, Parallel

parallel 1/72 24/24-28
4.9 GB / 117 
GB

Parallel

gpuk80 1/48 1/24
4.9 GB / 117 
GB CPU
20 GB GPU

Serial, Parallel

gpup100 1/12 1/24
4.9 GB / 117 
GB
24 GB GPU

Serial
1 node (2 
GPUs per 
user)

lrgmem 1/72 1/48
21 GB  1008 
GB

Serial, Parallel

scavenger 6 1/24-28
5 GB / 128 
GB

Serial, Parallel
5 nodes per 
job

express 1/12 1/6
3.5 GB / 86 
GB

Serial 
(multithreaded)

1 node per 
job

skylake 1/72 1/24
3.5 GB / 86 
GB

Serial 
(multithreaded)

1 node per 
job
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The project for this thesis was developed with a single GPU and six CPU cores for training. 

SLURM jobs are time limited. This project was designed such that training of the network is 

periodically saved. This means that if the SLURM job terminates in the middle of training, 

training can be resumed during a later job.

 2.1.2  Language & Library Selection

 2.1.2.1  MATLAB Constraints on MARCC

While MARCC provides access to resources, it is not without limitations. At the beginning of this 

project’s development (January 2020), the latest version of CUDA (GPU drivers) installed on the 

MARCC system was CUDA 9.0. The most recent version of MATLAB (at that time was 2019b) 

required CUDA 10.0. Using an older version of MATLAB significantly reduced the options 

available for Machine Learning development. Not using a GPU would significantly increase the 

time it would take to train a Machine Learning network. This version issue (resolved March 

2020, too late for this project) effectively precluded the usage of MATLAB as the Machine 

Learning toolset for the project.

 2.1.2.2  TensorFlow

Given the barriers to using MATLAB, other Machine Learning frameworks were investigated. 

TensorFlow was ultimately selected. TensorFlow is a commonly used end-to-end open-source 

Machine Learning platform written in Python. TensorFlow provides a pre-built object detection 

API, which “makes it easy to construct, train, and deploy object detection models” [10]. There 

are two major versions of TensorFlow. The newer version of TensorFlow (anything > 2.0) has 

the same problem as MATLAB, requiring a minimum of CUDA 10.0. However, the Object 

Detection API only supports the older version that works with CUDA 9.0. Using the older version 
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of TensorFlow provides access to sufficient Machine Learning tooling with the GPU drivers 

available on MARCC.

 2.1.3  User Interface

MARCC has a strict requirement that job execution shall not be run on system login. Rather, job 

execution on MARCC must be run by submitting a job request to one of the partitions. The 

simplest way a job can be passed to a partition is by providing a bash script. In this project, a 

bash script could be defined to run Python scripts that leverage the TensorFlow library. Running 

purely through bash scripts, however, does not allow for user interaction in real-time. MARCC 

also offers the option of requesting a job on a partition that launches a Jupyter Notebook or Lab 

instance. Jupyter Notebook or Lab allows the user to run underlying scripts interactively. For this 

project, there was a strong desire to be able to interact with the training in real-time. Therefore, 

jobs were requested on MARCC to launch a Jupyter Lab instance. 

 2.1.3.1  Jupyter Lab

Jupyter Lab is a visualization tool developed to support interactive scientific computing. Jupyter 

Lab allows the developer to see progress in real-time. Running in real-time through Jupyter Lab 

allows different parts of the project framework to be run individually and allows for the 

modification of the configuration on the fly. A screenshot of the Jupyter Lab file for this project is 

shown in Figure 6.    
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 2.2 Framework

Having decided upon the computing resources through MARCC and a Machine Learning 

toolset, a framework to train and test neural networks for the ALPR problem was developed as 

shown in Figure 7. The framework has three major components: data generation and network 

configuration (yellow), training (green), and evaluation (blue). These three components are 

covered here in brief and discussed in detail in the following sections.
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Machine Learning relies on training a network with large amounts of data. There are two options 

for obtaining this data: go out in the real world and collect it or generate it synthetically. The goal 

of this project is to understand how image noise impact network performance. Network 

performance with respect to image noise is easier to evaluate on synthetic datasets where the 

level of introduced noise can be controlled. Therefore, images were synthetically generated. 

Once generated, the images were split into training and test data. Training data comprised 60% 

of the original dataset and test data the remaining 40%.

A dataset can be expanded past its initial size by applying data augmentation techniques. Data 

augmentation increases the amount of available data by applying various algorithms to 
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transform the original dataset. Data augmentation also adds variation to an “ideal”, that is a non-

degraded, dataset. Applying data augmentation techniques to the training dataset can help the 

trained network become robust to variations in the input data. Additionally, data augmentation 

on the test dataset allows performance evaluation of Deep Learning algorithms for the applied 

degradation. 

Once a training dataset is generated, a network needs to be defined. The network is defined 

through a configuration file. The configuration file specifies the type of network architecture and 

training variables. Training variables specified in the configuration file include the 

hyperparameters, batch size and learning rate. Batch size is the number of samples, in this 

case training images, to process before updating model parameters. Learning rate controls the 

amount by which the network weights and biases change.

Once data is generated and a network is defined, the training data is fed into the TensorFlow 

Object Detection API executable. Labeled data is converted into a file format called a TFRecord 

to feed into the executable. As shown in Figure 7, this produces two outputs (when run through 

the Jupyter Lab Configuration): a log file and “Model Checkpoints”. The log file is converted into 

plots of training loss. “Model Checkpoints” are essentially saved files of training progress that 

capture the state of the network at a given time during training. These “Model Checkpoints” 

allow training to be restarted if processing is interrupted due to a MARCC processing queue 

timeout. 

Evaluation is broken into three steps. First, the “Model Checkpoints” are converted into a “frozen 

graph” that exports the trained model to a format that can be used to make detections on 

images. Second, the test images that were generated are run against the trained model to infer 
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detections. These inferred detections are saved in a TF Example Record. Finally, the 

information in the TF Example Record is converted to various object detection and classification 

performance metrics. 

 2.2.1  Configuration

 2.2.1.1  Dataset Generation

The images generated to develop baseline performance are license plate strings that are 

compliant with the rules regarding the most recent Maryland passenger plates on a blank 

background. The most recent passenger vehicle Maryland plates follow the alpha-numeric 

sequence of 1AB2345 [11] all permutations of which give a sample size of over 10 million. Note 

that Maryland excludes easily confused letters such as “I” and “O”, meaning that there were 32 

overall characters to evaluate [12]. Sample generated images are shown in Figure 8.

Figure 8: Sample Generated "Ideal" License Plate Images

 2.2.1.1.1  Data Augmentation

Data augmentation techniques are applied to generated training images in order to increase the 

training dataset size and produce degraded images. Common data augmentation techniques 
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include: JPEG compression, motion Blur, affine transforms, and Gaussian noise. Examples of 

some data augmentation techniques are shown in Figure 9. 

Figure 9: Commonly used data augmentation techniques

A Python library called Imgaug was used to apply data augmentation techniques to the 

generated datasets. Any augmentation technique used on a dataset needs to be used in the 

context of the problem being solved. Even if a data augmentation technique can be applied, the 

question of whether it provides a benefit to the problem must be addressed. Table 2 covers a 

selection of some of the data augmentation techniques available in the Imgaug library. The table 

indicates whether the technique is applicable to the problem space and whether it was 

evaluated in this project. As with any project, this one is limited in scope and focused on a 

subset of applicable data augmentation techniques.
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Table 2: Overview of some data augmentation techniques

Available Data 
Augmentation 
Technique

Applicable to ALPR 
(as configured 
here)

Rational Used

JPEG Compression Yes
License plate images are stored 
and compressed

Yes

Motion Blur Yes
License plate images are taken 
of moving objects

Yes

Affine Transforms Yes
Images may be from a number 
of angles and sizes

Yes

Gaussian Noise Yes
Noise added from the 
environment, camera, etc.

Yes*

Hue / Saturation No
This project focuses on black 
and white images

No

Flip (Horizontal & 
Vertical)

No
License plate images are 
unlikely to experience this

No

Snow Yes
License plate image may be 
taken in many environmental 
conditions

No

Fog Yes
License plate image may be 
taken in many environmental 
conditions

No**

Brightness Yes
Lighting may be unknown when 
image is taken

No**

Contrast Yes
Lighting may be unknown when 
image is taken

No**

* Data augmentation technique was implemented via configuration file not Imgaug

** While these are applicable to the problem space, they were not evaluated due to project 
scope restrictions

20



 2.2.1.1.2  Implementation

The license plate image generation script, run through this project’s Jupyter Lab interface, 

produces two directories of “ideal” license plate images and a comma separated value (csv) file 

of ground truth data for each directory. One directory is comprised of 60% of the samples and is 

used for training. The other is comprised of the remaining 40% and is used for evaluation. In 

order to apply data augmentation techniques to the data, an augmenter was written with the 

Python Imgaug library. The augmenter provides the user augmentation customization capability 

by offering a command line interface to choose which data augmentation techniques to apply 

and the severity of the applied technique. The augmenter not only augments the images with 

the technique but modifies the ground truth data if needed as well (image rotation, for example, 

requires ground truth modification but Gaussian noise does not). The overall implementation 

process for data generation is show in Figure 10.

 2.2.1.1.3  TF Records

The TensorFlow Object Detection API requires input data to be in a format called a TFRecord. 

The TFRecord is a format for storing a sequence of binary records based on protocol buffers. 
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Protocol buffers are a cross-platform, cross-language library that allows for efficient serialization 

of data. The TFRecord converter script takes in generated images (training or testing) as well as 

the csv defining the ground truth and generates a TF Record. These records are used in training 

so that the network can compare its output to the correct class and ground truth. During training, 

knowing ground truth allows the network to determine the error and adjust the model weights 

and biases. Knowing ground truth of the test dataset allows for calculation of network 

performance metrics on the test dataset. 

 2.2.1.2  Network Definition and Setup

Once a synthetic dataset is generated, a network needs to be developed for training and testing 

with the data. For the TensorFlow Object Detection API, networks are defined through a 

configuration file. The configuration file is what makes this API highly flexible. For example, the 

same training and testing framework can be easily modified to be run on different Machine 

Learning models by simply changing a section of the configuration file. The configuration file can 

also define variables associated with training, like the hyperparameters. Driving network 

definition through this file allowed for rapid testing. 

 2.2.1.2.1  TensorFlow Object Detection Model Zoo

The TensorFlow Object Detection API provides the TensorFlow Object Detection Model Zoo. 

This consists of a collection of pre-trained models on common computer vision datasets and the 

configuration files associated with them. These configuration files and pre-trained models, for 

object classification tasks, provide a baseline for this project to perform transfer learning. 

Transfer learning is the process of taking a model trained on one task, e.g. object classification, 

and re-purposing the model to perform on a second task, e.g. character recognition. All the 

networks in the TensorFlow Object Detection API Model Zoo have shown high performance on 
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object detection and classification tasks, but every network has its trade-offs. Therefore, testing 

different networks for the license plate character recognition task is prudent. The TensorFlow 

Object Detection Model Zoo allows for the rapid development of these different models for 

analysis of their capability for performance on the license plate character recognition task. 

 2.2.1.2.2  Image Resizer

The configuration file can control how image sizing is treated on input to the network. Control of 

image sizing is important because in Machine Learning every pixel of an image is treated as a 

discrete piece of information. Therefore, if the number of pixels representing an object, or in this 

case a character, are decreased by reducing the size of the image, the network has less 

information. Size, therefore, can be a limiting factor in the ability of a Machine Learning network 

to perform on a problem set. For network configuration, image size drives layer size and number 

to make localization and class determinations. Therefore, all images must be the same size 

when passed into the network. When raw input images vary in size, as would be the case for a 

license plate image cropped out of a larger scene, the raw image must be adjusted to fit the 

expected size for input into the network. 

When an image is fed into the network, the TensorFlow Object Detection API can resize the 

image in one of two ways. Either as a “fixed shape resizer” or as a “keep aspect ratio resizer”. 

The “fixed shape resizer” stretches the input image to the height and width that is specified in 

the configuration file. The “keep aspect ratio resizer” adjusts the image, keeping the aspect ratio 

to satisfy the minimum and maximum size constraints. If the “keep aspect ratio resizer” option is 

specified, there is a sub-option of padding. Setting “pad to maximum dimensions” to true adds 

zeros to the bottom and right of the image. For this project, a “fixed shape resizer” was used. 

The network was configured to expect images of a single size. Only images of that size were 
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provided to the network. If the image was augmented with the Imgaug library in a way that 

resizes the image, i.e. the application of an affine transform, the augmented images were 

already padded to the default size before processing to the TFRecord. 

 2.2.1.2.3  Configuration File Data Augmentation

The Imgaug library was used for applying most of the augmentation techniques. The Imgaug 

library has the capability to provide basically any augmentation technique that could be desired. 

Using an external library, however, requires additional piping. The options for data augmentation 

techniques in the configuration file are limited, but they are easy to apply with little additional 

effort. The implementation of Gaussian noise, for example, evaluated in this project, was 

implemented through the configuration file, rather than through an external augmenter.

 2.2.1.2.4  Hyperparameters

The first hyperparameter controlled by the configuration file is the batch size. Batch size is the 

number of samples evaluated between updates of network weights and biases. Networks are 

trained as optimization problems, where weights and biases are updated based on error 

estimates. The more training examples (larger batch size) used in an estimate the more 

accurate the estimate will be. Even though a larger batch size, in theory, has more accurate 

estimates, a smaller batch size is generally better at generalization and can be used to combat 

overfitting. Additionally, a smaller batch size makes it easier to fit a batch worth of training data 

in memory, especially as datasets get larger and larger.

The other important hyperparameter that can be controlled via the configuration file is the 

learning rate. The learning rate controls the amount the model changes with respect to the error, 

when model weights are updated. In choosing a learning rate, there is a trade-off between 

convergence and overshooting the solution. A learning rate that is too small can result in longer 
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training times and can get stuck in a local minimum. A learning rate that is too high, on the other 

hand, can jump over minima missing the optimal solution. In order to achieve fast convergence, 

reduce oscillations, and avoid local minima while not missing the global minima, the learning 

rate is often set to be adaptive. There are several types of learning rates that can be selected 

with the configuration file: exponential decay learning rate, cosine decay learning rate, and 

manual step rate. The first two allow the learning rate to change over the course of training 

based on those mathematical patterns. Manual step rate allows the learning rate to be explicitly 

specified based on what step of training is occurring. Manual step rate allows custom 

scheduling of learning rates, because the learning rate can be modified at as many training 

steps as desired. 

 2.2.1.2.5  Label Map

The TensorFlow Object Detection API requires a label map that provides an integer identification 

value to each class. However, TensorFlow does not allow zero to be used as an identification 

value. Based on this, 1-9 are mapped to their respective numerical values, and letters used in 

Maryland license plates are mapped to 10-31. Zero is mapped to 32. 

 2.2.2  Training

In Machine Learning, training is the process where a mapping function between inputs and 

outputs is learned. This is achieved by updating the weights of the network in response to an 

error between the network output and the training dataset. Updates are made continually to 

reduce error until loss is below the desired threshold or the maximum epochs are reached. Loss 

is the sum of classification loss and localization loss. Exactly how loss is determined depends 

on the specific network being trained. Once the loss is below the desired threshold, the model 

can be evaluated against test data. The evaluation process does not iteratively update weights 
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and biases and, consequently, it is significantly less computationally intensive. Training and test 

data are distinct. After training has executed, the test data is used for network performance 

evaluation. An overview of the training process is shown in Figure 11 and described in detail in 

the following sections.

 2.2.2.1  Executable

To perform training, the TensorFlow Object Detection API top-level training executable is run. It 

is recommended that the network be trained until the total loss reaches at least 2 (1%). Total 

loss is the sum of the localization and classification loss, both of which are percentages. The 

total loss is printed at every global step. Each global step corresponds to a batch being 

processed. The exact method of how loss is determined is dependent on the model chosen and 

is defined in the configuration file. The executable saves what is called “Model Checkpoints” 

every ten minutes. The most recent model checkpoint is used for evaluation or to resume 

training if a job is terminated.
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 2.2.3  Visualization

In the Jupyter Lab instance, the output of the training executable script is logged to a text file, 

including the total loss numbers. Once training is complete, a script is run that provides two 

graphs to show how training performed.  

Figure 12: Sample plots of training loss. Top is per-step,  
bottom is moving average.
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Sample plots of what is produced in the Jupyter Lab instance are shown in Figure 12. The top 

plot shows loss per training step. The loss per training step plot is frequently very noisy and, 

therefore, difficult to read especially with longer training runs which increase the density of the 

data. The bottom plot shows a moving average of the loss over the training steps. The moving 

average allows the user to clearly see the trends in the training loss. These graphs provide a 

visual representation of how training is going which can be easier for human comprehension 

than the logged text output.

 2.2.4  Evaluation

 2.2.4.1  Getting Results

In order to get results from a trained network to a metric that can be evaluated, the trained 

network needs to be exported to what is called a “frozen graph”. The “frozen graph” allows for 

the images that are saved in the test dataset (via the testing TFRecord) to be evaluated against 

the trained model. The test images, their ground truth data, and the detections (both detected 

bounding boxes and class guesses) are then saved in a TF Example Record. A flow chart of the 

evaluation process is shown in Figure 13.
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 2.2.4.2  Object Detection Performance Tools & Metrics

In order to understand the results of the test images, the different performance metrics used are 

discussed in the following subsections.

 2.2.4.2.1  Intersection Over Union (IOU)

Intersection Over Union (IOU) is a metric that quantifies the similarity between the ground truth 

bounding box and the predicted bounding box on a 0-1 scale; the closer the prediction is to the 

truth, the higher the value. IOU is defined mathematically as, . The 

intersection, ∩, of truth and prediction is the overlap area of the two bounding boxes. The 
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union, ∪, of truth and prediction is the total area of the two bounding boxes. If the truth and 

predicted bounding boxes match exactly the IOU will be one. 

 2.2.4.2.2  Predictions

IOU provides a threshold for converting the scores to positive/negative classifications where 

IOUs above a threshold (generally 0.5) are positives and IOUs below the threshold are 

negatives. This allows for the determination of true positives, false positives, and false 

negatives. A True Positive (TP) is an outcome in which the model correctly predicts the correct 

class. A False Positive (FP) is an outcome in which the model incorrectly predicts the correct 

class. A False Negative (FN) is the outcome in which the model fails to predict a class, when 

one exists. 

 2.2.4.2.3  Precision and Recall

The true positive, false positive, and false negative numbers can be combined into more generic 

metrics of precision and recall. Precision is the probability of the predicted bounding box to 

match the actual ground truth box and is defined as, . Recall, or the true 

positive rate, is the probability of ground truth objects being correctly identified and is defined 

as, . A result with high recall but low precision means that most objects are 

being detected, but most detections are incorrect. Conversely, a low recall rate with high 

precision means that objects that are detected are classified correctly, but most objects are not 

being detected. The ideal outcome is a high recall and high precision which indicates that the 

objects are detected and classified correctly. 

 2.2.4.2.4  Confusion Matrix

A confusion matrix is a graphical representation of performance that shows actual classification 

vs. predicted classifications. The y-axis shows the truth for each class, and the x-axis shows the 

30

Recall=
TP

TP+FN

Precision=
TP

TP+FP



predictions for each class. This means that true predictions are on diagonal of the plot – the 

darker the cell is the more samples were predicted correctly. A sample confusion matrix is 

shown in Figure 14. Note that the last column shows false negatives and the bottom row shows 

false positives.

Figure 14: Sample Confusion Matrix. Note that for the license  
plate problem letters occur significantly less frequently than  

numbers which accounts for the relative shading.

 2.2.4.3  Framework Outputs

When the evaluation is run through the Jupyter Lab instance, three outputs are generated. First, 

a directory is created with a 100-image sample subset of the larger test dataset with both the 

ground truth boxes and detected boxes overlaid. Generation of the sample detections allows the 

user to visually see what is happening and to uncover potential problems. Second, a Confusion 
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matrix is generated. Lastly, a table of precision, recall, TP, FN, and FP for each character is 

printed. 

 2.3 Architectures and Object Detection Approaches 

A Machine Learning architecture is the structure of the neural network and defines the type and 

number of layers. Object detection approaches define the way objects are localized and 

extracted. A model is the combination of an architecture and an object detection approach. An 

architecture can be combined with several different object detection approaches. While all of 

these approaches and architectures have been used to solve object detection and classification 

problems, they each were developed to address different problems and have different pros and 

cons. For the license plate problem posed in this thesis, it is useful to evaluate the performance 

of these architectures and approaches. One can, then, understand the trade-offs that a given 

network may have on the solution. 

 2.3.1  Architectures

 2.3.1.1  MobileNet

MobileNet is a network that was designed to run on mobile devices, specifically for vision 

problems and for use with TensorFlow. It is able to maximize accuracy while dealing with 

restricted resources that come with embedded applications. The MobileNet architecture is 

based on depth-wise separable convolutions, shown in Figure 15, which are a form of factorized 

convolutions that break down into a standard convolution and a 1x1 convolution (also known as 

a pointwise convolution). This has the effect of reducing computation and model size. The 

architecture consists of normal convolutional layers, depth-wise convolutional layers, and ends 

with an average pooling layer, a fully connected layer and a SoftMax layer. Each convolutional 
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layer is followed by batch normalization and a ReLU nonlinearity [13]. The full MobileNet 

architecture is shown in Figure 16.

  

Figure 15: Comparison between 
standard convolution layer and depth-

wise separable convolution that is used 
in MobileNet

Figure 16: Full Architecture of MobileNet  
[13]

Although not the point of this project, there is much ongoing work in the space of real-time 

license plate recognition on resource-restricted systems such as mobile phones or embedded 

platforms. Given that MobileNet is developed to perform well on resource-restricted systems it 

may be a good choice for ALPR systems on mobile phones or embedded platforms. 

 2.3.1.2  Inception v2

Inception v2 is an update of the original Inception architecture with incremental improvements in 

accuracy and reduced computational complexity. The Inception architecture was designed to 

address two problems: (1) choosing a kernel size can be difficult and (2) increasing depth of 

networks can result in high computation cost and overfitting. The part of an image that is of 

interest (in this case the characters of a license plate) can be one of many sizes in various 
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locations in an image. This means that choosing a kernel size, in order to reliably locate the 

object of interest, can be difficult. CNN based architectures prior to Inception (and Inception v2) 

stacked convolution layers more deeply to achieve performance. Deep networks have two 

downsides; first, they are computationally expensive, and second very deep networks are prone 

to overfitting.

The original Inception architecture addresses these problems by proposing filters with multiple 

sizes that operate on the same level. Essentially the network gets wider rather than deeper, 

reducing the computational complexity and resolving the overfitting issue. Inception v2 improves 

on this. It is noted that an issue with the original Inception architecture is that reducing the 

dimensionality too much can cause loss of information, in what is known as a “representational 

bottleneck”. In order to work around the “representational bottleneck”, the 5x5 convolutions of 

the Inception architecture are factorized into two 3x3 convolution operations in Inception v2. 

This improves computational speed, as a 5x5 convolution is 2.78 times more expensive than a 

3x3 convolution. The idea of breaking down convolutions for speed gain is further extended in 

Inception v2 by recognizing that a convolution of size nxn can be factorized to a combination of 

1xn and nx1 convolutions [14]. Figure 17 to Figure 20 show the full architecture of Inception v2.
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Figure 18: Inception module where 
5x5 convolution is replaced by two 

3x3 convolutions [14]

Figure 19: Inception modules after  
the factorization of the nxn 

convolutions [14]                

Figure 20: Inception module with an 
expanded filter bank [14]
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Inception v2 may be a good choice for this problem as the multiple kernel sizes can help find 

license plate characters which may be rotated, on an angle or in a non-deterministic part of the 

image. 

 2.3.1.3  Residual Network (ResNet)

Residual networks, or ResNet, arose from the problem that the deeper a neural network is, the 

harder it is to train. To work around this, rather than trying to learn an underlying mapping as 

traditional networks do, ResNet learns the differences between the input and output also known 

as the “residual”. ResNet architectures consist of building blocks that are composed of a few 

stacked layers and a shortcut connection that allows for adding the input to the output and 

computing the residuals [15]. Sample ResNet architectures are shown in Figure 21.

Figure 21: Sample ResNet Architecture for a variety of layers [15]
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Figure 22: ResNet building block [15]

ResNet networks are classified by the number of layers of which they are composed. The two 

architectures analyzed in this project are ResNet 101 and ResNet 50. ResNet 101 is a 101-layer 

network that consists of 3-layer blocks, see Figure 22, and ResNet 50 is a 50-layer architecture. 

ResNet has been shown to have good baseline performance for object detection tasks which 

makes it a good candidate for ALPR problems. 

 2.3.1.4  Inception-ResNet

Inception architectures tend to be very deep. Residual connections are argued to be 

instrumental in effectively training very deep networks. Given this, combining the Inception and 

ResNet architectures should lead to an architecture that can be deep but easier to train. In order 

to achieve the combination of the architectures, filter concatenations in the Inception 

architecture are replaced by residual connections, which allow an Inception-style architecture to 

reap the benefits of the residual approach while retaining its benefits in computational efficiency 

[16]. The Inception-ResNet architecture is shown in Figure 23 to Figure 28.
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Like its components, Inception and ResNet, Inception-ResNet as an architecture has been 

shown to have good baseline performance on object detection tasks. Furthermore, it should 

have better performance than either Inception or ResNet architectures, by themselves, making it 

a promising architecture to try for ALPR tasks. 
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 2.3.1.5  Neural Architecture Search (NAS)

Neural Architecture Search (NAS) is not an architecture per-say but rather the process of 

automating architecture engineering. The process behind NAS finds the optimal architecture 

from all possible architectures by following a search strategy that will maximize performance for 

the given problem. In the TensorFlow Object Detection API, NAS is implemented in the same 

way that architecture is selected (through the configuration file) and is included here for that 

reason. NAS is appealing as an option for selecting an architecture. If the optimal architecture 

for any given problem can always be found with this approach, in principle this should be the 

default option to solve any problem including that of the ALPR task. 

 2.3.2  Object Detection Approaches

 2.3.2.1  Single Shot Multibox Detector (SSD)

Single Shot Multibox Detector (SSD) is an object detection approach that reduces the 

computational intensity by eliminating bounding box proposals and subsequent pixel or feature 

resampling. Compared to previous approaches with similar goals, SSD achieves high accuracy 

using relatively low-resolution input. SSD takes all possible bounding boxes and breaks them up 

into a set of default boxes that span different aspect ratios for each feature map location. At 

prediction time, the network will generate scores for the presence of each object category in 

each default box and will adjust the boxes in order to better match object shape. Predictions 

from multiple feature maps that have different resolutions are combined in order to handle 

objects of different sizes in the images [17]. The full schema of the SSD model is shown in 

Figure 29. 
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 2.3.2.2  Faster R-CNN

Faster R-CNN is based on Fast R-CNN which in turn is based on R-CNN. R-CNN was 

developed to detect and localize an object within an image. In order to minimize the number of 

potential regions that may contain the object, a selective search is used to extract region 

proposals or regions of interest (ROIs) from the image. These generated region proposals are 

then fed through a trained CNN. A State Vector Machine (SVM) is then used in order to 

determine the presence of an object within the region.

R-CNN requires a forward pass of the CNN for every single region proposal of every image, 

which is a time-intensive process. Furthermore, three separate networks must be trained: a 

CNN to generate features, a classifier, and a regression model to tighten the bounding boxes. In 

order to address these challenges, Fast R-CNN was introduced. Instead of feeding region 

proposals to the CNN, the input image is fed directly to the CNN to develop a feature map from 

which the region proposals can be determined. The feature map is passed to an ROI pooling 

layer that reshapes it to a fixed size, such that it can be passed to a fully connected layer, and 

then to a SoftMax layer to predict the class and bounding box of the proposed region. This is a 
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“Fast” R-CNN because the work can be done in a single pass of the image through the CNN, 

rather than each region proposal needing to be passed through separately. Additionally, the 

CNN, classifier, and bounding box regressor can be trained jointly in a single model reducing 

training overhead. 

Faster R-CNN fixes the remaining bottleneck of the process – determining the region proposals. 

For Fast R-CNN, region proposals are determined through a selective search. This process is 

slow and has been shown to be the limiting factor in network speed. In Faster R-CNN, similar to 

Fast R-CNN, the image is provided to a CNN which in turn produces a convolutional feature 

map. Rather than apply the selective search to determine the region proposals, a separate 

network, known as a region proposal network, is used. The region proposal network functions 

by passing a sliding window over the CNN feature map. At each point, it outputs k potential 

bounding boxes and scores, based on how good each of the bounding boxes is expected to be. 

Finally, ROI pooling is done to format the data in order to pass it to a classifier [19] [27]. The 

overall network process for the Faster R-CNN is shown in Figure 30. 
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Figure 30: Faster R-CNN network for object  
detection [19]

 2.3.2.3  Region-based Fully Convolutional Network (R-FCN)

Previous region-based detectors have the problem of applying a network to an image hundreds 

of times to determine ROIs. This reapplication of the network on each region is a 

computationally costly endeavor. R-FCN, like Faster R-CNN, attempt to solve this problem. In 

R-FCN, the same region proposal networks from the R-CNN networks is used. Unlike the Faster 

R-CNN network, the fully connected layers are moved to before the ROI pooling layer for R-

FCN. The fully connected layers generate score maps which perform average voting to 

determine scores [25]. The schema for the R-FCN approach is shown in Figure 31.
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Figure 31: Overall schema of R-FCN [25]
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Chapter 3

 3  Results

 3.1 Model Results

In order to determine the optimal network for identifying license plate characters in the idealized 

dataset, several architecture / object detection approach combinations were trained and 

evaluated against the baseline dataset. A brief summary of the tested approaches and 

architectures is shown in Table 3, and the performance of each of these is covered in depth in 

the following sub-sections.

Table 3: Summary of tested models and architectures

Object Detection 
Approaches

Architecture Relative Training Speed Precision Recall

SSD Inception v2 Fast High Low
SSD MobileNet Fast Medium Low
Faster R-CNN Inception v2 Fast High High
Faster R-CNN ResNet 50 Fast High High
Faster R-CNN 0 Fast High High
Faster R-CNN Inception-ResNet Slow - -
Faster R-CNN NAS Slow - -
R-FCN 0 Fast High High

 3.1.1  SSD Inception v2

SSD was tested with the Inception v2 architecture. For the characters that were detected, 

precision was quite high, but recall was low. With the SSD Inception v2 network, however, not 

all characters in the test dataset license plates were detected. For example, all 2063 instances 

of “3” in the test dataset were false negatives. This poor performance is shown in the confusion 

matrix Figure 32 and listed in Table 4. Note that the last column of the confusion matrix indicates 
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false negatives, which were very high for this model. Ideally all detections would be on the 

diagonal, indicating predictions match truth.
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Table 4: SSD Inception v2 Tabular results

Class Precision (%) 
@ 0.5 IOU

Recall (%) 
@ 0.5 IOU

TP FP FN

0 98.7 85.2 1694 23 295
1 100 2.4 48 0 1955
2 100 73.4 1472 0 533
3 - 0 0 0 2063
4 100 1.2 25 0 1999
5 100 12.3 245 0 1746
6 100 2 39 0 1949
7 95.8 41.8 856 37 1192
8 100 74.3 1436 0 497
9 100 1.8 36 0 1920
A - 0 0 0 386
B 94.3 13.3 50 0 325
C 100 0.8 3 0 371
D 89.9 88 295 33 40
E 100 0.8 3 0 356
F 100 1 4 0 365
G - 0 0 0 367
H 99 79.3 292 0 76
J 95.4 47.3 167 0 186
K - 0 0 0 367
L 11 72.4 265 2165 76
M - 0 0 0 186
N - 0 0 0 376
P - 0 0 0 341
R - 0 0 0 367
S - 0 0 0 357
T 100 0.8 3 0 371
V - 0 0 0 375
W - 0 0 0 349
X - 0 0 0 367
Y - 0 0 0 329
Z 100 12 41 0 300

 3.1.2  SSD MobileNet

SSD was tested with the MobileNet architecture. Although precision was mostly in the 80 and 90 

percent range, recall was even worse than the SSD Inception v2 network. The results are 

shown in the confusion matrix, Figure 33, and in more detail in Table 5.
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Table 5: SSD MobileNet Tabular results

Class Precision (%) 
@ 0.5 IOU

Recall (%) 
@ 0.5 IOU

TP FP FN

0 95.8 78.4 1552 68 427
1 99.7 83.3  1659 5 332
2 100 82.4 1663 0 354
3 73.6 36 714 256 1269
4 98 91.2 1861 37 179
5 95.6 14.2 282 13 1698
6 56.6 48.4 1000 766 1066
7 99.6 79.8 1601 6 406
8 49.8 100 1949 1965 0

9 91.7 83 1651 150 337
A 97.1 61.8 201 6 124
B 49.4 44.9 171 175 210
C 66.7 21 75 37 282
D 98.3 75.6 295 5 95
E 90.5 43.1 153 16 202
F 87 40.9 161 24 233
G 80 71.5 261 65 104
H 97 75.7 256 8 82
J 98.9 71.5 271 3 108
K 72.6 71.8 273 103 107
L 100 75.1 272 0 90
M 86 71.6 252 41 100
N 90.6 53.2 202 21 178
P 81.4 91 342 78 34
R 74.4 47.4 186 64 206
S 51.1 33.9 120 115 234
T 94.8 63.2 237 13 138
V 95.4 72.2 249 12 96
W 98.8 47.6 171 2 188
X 78.6 72.3 243 66 93
Y 93.2 97 329 24 10
Z 98 53.8 197 4 169

 3.1.3  Faster R-CNN Inception v2

Faster R-CNN was tested with the Inception v2 architecture. On the surface, the network had 

both high precision and high recall; however, there were significant false positives and false 

negatives. The worst performing characters were “L” with 10 false positives and “N” with four 
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false positives. There also were 75 false negatives. The results are shown in the confusion 

matrix in Figure 34 and the tabular results in Table 6.
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Table 6: Faster R-CNN Inception v2 tabular results

Class Precision (%) 
@ 0.5 IOU

Recall (%) 
@ 0.5 IOU

TP FP FN

0 100 100 1998 0 0
1 100 100 1945 0 0
2 100 100 1999 0 0
3 100 100 1960 0 0
4 100 100 1993 0 0
5 100 100 1983 0 0
6 100 100 2044 0 0
7 100 100 2077 0 0
8 100 100 2029 0 0
9 100 100 1972 0 0
A 100 100 369 0 0
B 100 100 368 0 0
C 100 100 361 0 0
D 100 100 356 0 0
E 100 100 350 0 0
F 100 100 356 0 0
G 100 100 326 0 0

H 100 100 367 0 0
J 98.6 99.7 369 5 1
K 100 100 349 0 0
L 97.4 100 368 10 0
M 98.2 100 392 7 0
N 98.6 78.5 274 4 75
P 100 100 368 0 0
R 100 100 392 0 0
S 100 100 339 0 0
T 100 100 384 0 0
V 100 100 356 0 0
W 99.7 99.7 372 1 1
X 100 100 372 0 0
Y 100 100 365 0 0

 3.1.4  Faster R-CNN ResNet 101

Faster R-CNN was tested with the ResNet 101 architecture. The network had both high 

precision and high recall. The network did have false positives for “1”, “P”, “T”, and “Y” as well 

as a false negative for “Y”. The results for this network are shown in the confusion matrix, Figure

35, and more clearly in the tabular results in Table 7.
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Table 7: Faster R-CNN ResNet 101 tabular results

Class Precision (%) 
@ 0.5 IOU

Recall (%) 
@ 0.5 IOU

TP FP FN

0 100 100 1989 0 0
1 99.9 100 2003 1 0
2 100 100 2005 0 0
3 100 100 2063 0 0
4 100 100 2024 0 0
5 100 100 1991 0 0
6 100 100 1988 0 0
7 100 100 2048 0 0
8 100 100 1933 0 0
9 100 100 1956 0 0
A 100 100 386 0 0
B 100 100 375 0 0
C 100 100 374 0 0
D 100 100 335 0 0
E 100 100 359 0 0
F 100 100 369 0 0
G 100 100 367 0 0
H 100 100 368 0 0
J 100 100 353 0 0
K 100 100 367 0 0
L 100 100 366 0 0
M 100 100 405 0 0
N 100 100 376 0 0
P 99.7 100 341 1 0
R 100 100 367 0 0
S 100 100 357 0 0
T 99.7 99.7 373 1 1
V 100 100 375 0 0
W 100 100 349 0 0
X 100 100 367 0 0
Y 99.6 100 329 1 0
Z 100 100 341 0 0

 3.1.5  Faster R-CNN ResNet 50

Faster R-CNN was tested with the ResNet 50 architecture. The network had both high precision 

and high recall. There is a single false positive on “L”. The results for this network are shown in 

the confusion matrix, Figure 36, and tabular results in Table 8. These results show that this 

network has slightly better performance than Faster R-CNN ResNet 101.
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Table 8: Faster R-CNN ResNet 50 tabular results

Class Precision (%) 
@ 0.5 IOU

Recall (%) 
@ 0.5 IOU

TP FP FN

0 100 100 1963 0 0
1 100 100 1940 0 0
2 100 100 2013 0 0
3 100 100 2040 0 0
4 100 100 2006 0 0
5 100 100 2012 0 0
6 100 100 2011 0 0
7 100 100 2030 0 0
8 100 100 2035 0 0
9 100 100 1950 0 0
A 100 100 369 0 0
B 100 100 366 0 0
C 100 100 368 0 0
D 100 100 342 0 0
E 100 100 351 0 0
F 100 100 340 0 0
G 100 100 373 0 0
H 100 100 349 0 0
J 100 100 362 0 0
K 100 100 385 0 0
L 99.7 100 382 1 0
M 100 100 403 0 0
N 100 100 348 0 0
P 100 100 359 0 0
R 100 100 345 0 0
S 100 100 353 0 0
T 100 100 366 0 0
V 100 100 373 0 0
W 100 100 352 0 0
X 100 100 374 0 0
Y 100 100 379 0 0
Z 100 100 361 0 0

 3.1.6  Faster R-CNN Inception-ResNet

Faster R-CNN was trained with the Inception-ResNet architecture. Compared to training Faster 

R-CNN with ResNet 101, ResNet 50, and Inception v2 training with Inception-ResNet was 

extremely slow, see Figure 37. Not only was training slow, but evaluating test images was slow 

as well. Given the poor speed response of the network and the desire for automatic license 

plate recognition to be run in real-time (not as an element of this project but in the problem 

space more broadly), this network was not further considered as a candidate for this project. 
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 3.1.7  Faster R-CNN NAS

Faster R-CNN was trained with the Network Architecture Search. Compared to training Faster 

R-CNN with ResNet 101, ResNet 50, Inception v2, and even Inception-ResNet, training and 

evaluating test images with Faster R-CNN NAS was extremely slow, see Figure 38. Not only 

was training slow, but evaluating test images was as well. Given that Faster R-CNN Inception-

ResNet was discounted due to its poor speed response, and Faster R-CNN NAS is even worse, 

this network was not included as a contender for further network comparison. 
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 3.1.8  R-FCN ResNet 101

R-FCN was tested with the ResNet 101 architecture. The network had high recall and precision 

comparable to the performance of ResNet 101 with the Faster R-CNN model. Note that, as 

shown in the confusion matrix, Figure 39, and more clearly in the tabular results in Table 9, the 

detections were not perfect and there were false positives for “8”, “9”, and “V”. 
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Table 9: R-FCN ResNet 101 tabular results

Class Precision (%) 
@ 0.5 IOU

Recall (%) 
@ 0.5 IOU

TP FP FN

0 100 100 1963 0 0
1 99.9 100 1940 1 0
2 100 100 2013 0 0
3 99.9 100 2040 1 0
4 100 100 2006 0 0
5 100 100 2012 0 0
6 100 100 2011 0 0
7 100 100 2030 0 0
8 99.6 100 2035 9 0
9 99.5 100 1950 9 0
A 100 100 369 0 0
B 100 100 366 0 0
C 100 100 368 0 0
D 100 100 342 0 0
E 100 100 351 0 0
F 100 100 340 0 0
G 100 100 373 0 0
H 100 100 349 0 0
J 100 100 362 0 0
K 100 100 385 0 0
L 100 100 382 0 0
M 100 100 403 0 0
N 100 100 348 0 0
P 100 100 359 0 0
R 100 100 345 0 0
S 100 100 353 0 0
T 100 100 366 0 0
V 99.7 100 373 1 0
W 100 100 352 0 0
X 100 100 374 0 0
Y 100 100 379 0 0
Z 100 100 361 0 0

 3.1.9  Comparison

 Several models were trained against the baseline license plate dataset. The resulting precision 

and recall were evaluated and averaged across all possible license plate characters for 

Maryland plates. The results of this comparison are shown in Figure 40. 
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Figure 40: Performance across different architectures

Looking at the average precision and recall across the networks, the choice of the network is 

quickly reduced to a choice between Faster R-CNN and R-FCN. The ResNet architectures, both 

the 101-layer and 50-layer versions, performed marginally better than the Inception v2 

architecture in both recall and precision on the Faster R-CNN and R-FCN approaches. Of these 

three top-performing networks, Faster R-CNN ResNet 50 was chosen as the network to 

proceed with in this thesis. 

 3.2 Augmented Results

All experimental results were run on a Faster R-CNN ResNet 50 network based on a 0.5 IOU 

threshold. Confusion matrices and tabular data for runs on datasets with augmentation 

techniques applied, where available, are in Appendix B.
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 3.2.1  Image Size

In order to evaluate network performance as image size decreased, ideal license plate images 

of different sizes were generated and fed into the network. Significant degradation in 

performance was not seen prior to the smallest size tested, 32 x 16 pixels. Performance across 

different image sizes is shown in Figure 41.

Figure 41: Performance across different image sizes

 3.2.2  JPEG Compression

The Faster R-CNN ResNet 50 network was trained on a JPEG Compression augmented 

dataset and evaluated against a test image dataset at varying levels of JPEG Compression. 

Performance degrades slightly at the higher levels of JPEG Compression but does not 

noticeably impact performance. These results indicate that this network, when trained on JPEG 
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Compressed data, can effectively evaluate license plate images with JPEG Compression 

artifacts. JPEG compression is usually indicated by a quality metric ranging from 0 to 100, 

where 100 is perfect with no visible errors and 0 is no visible image. Observed degradation due 

to lowering the JPEG quality is data-dependent and reflects the amount of noise in the image. 

Images with high amounts of noise do not compress well. The severity levels 1-5 correspond to 

the quality levels: 25, 18, 15, 10, and 7 respectively. The synthetically generated images are 

relatively straight forward and compress well with the JPEG compression algorithm, as shown in 

Figure 42. Performance across the different severity levels is shown in Figure 43.

Figure 42: Test Images at a variety of Imgaug JPEG Compression severity levels. Red  
boxes are ground truth, blue boxes are detections.
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Figure 43: Plot showing performance at different JPEG Compression severity levels

 3.2.3  Motion Blur

The Faster R-CNN ResNet 50 network was trained on a dataset augmented with motion blur of 

a kernel size between 4 and 25 (4 being the minimum kernel size allowed by the Imgaug 

library). Test data was generated with incremental kernel sizes to evaluate the trained network’s 

performance. Performance remained relatively high across all tested values, although a drop off 

in performance was seen with the largest motion blur of 25 pixels. Sample images at the 

different motion blur kernel sizes are seen in Figure 44 and performance with different kernel 

sizes is shown in Figure 45.
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Figure 44: Sample images of license plates augmented with different kernel sizes. Red  
boxes are ground truth, blue boxes are detections.

Figure 45: Plot of performance with test images of varying motion blur kernel sizes
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 3.2.4  Affine Transform

The Faster R-CNN ResNet 50 network was trained on a dataset augmented with affine 

transforms. The affine transforms applied to the training dataset scale the license plate image 

between 50-150% of original size and rotate in the positive and negative direction by +/- 5 

degrees. This trained network was then tested on a set of test images at each of these 

transform limits. Samples of these transforms are shown in Figure 46. Plots of the performance 

are shown in Figure 47.
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Figure 47: Plot of performance for different affine transform implemented on test images

Out of all data augmentation techniques, affine transform has the worst performance. The 

performance is particularly poor for the 50% scale images. This is somewhat surprising because 

the network had no issues when the images were made half size. The difference between the 

50% scale and the half-size images is the black border surrounding the images in the 50% 

scaled images. Although various scaled images fit the problem space as a data augmentation 

technique, this black border, that is used when the Imgaug library generates the augmented 

images, does not fit the problem space. Since the features of interest in the plate image are the 

same color as that of the border, it is possible that this is causing the issue.

The affine transform further uncovers some limitations of this framework. The network was only 

trained and tested on 5-degree rotations. This is because, as shown in Figure 48, at higher 
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rotations, the ground truth bounding boxes start to encompass multiple characters limiting their 

usefulness. Ground truth bounding boxes are defined by corner coordinates. The corner 

coordinates can also have the affine transform applied to them. Because only the corners are 

rotated, the bounding box lines are still drawn straight. If the whole box was rotated, rather than 

just the corners, better ground truth boxes for affine augmented images could be produced. 

Figure 48: Bounding boxes at higher rotations

 3.2.5  Gaussian Noise

The Faster R-CNN ResNet 50 network was trained on a Gaussian noise augmented dataset. 

This was the only data augmentation technique implemented through the TensorFlow 

configuration file. Network performance remained high across the different Gaussian noise 

levels. Sample images at the different levels of Gaussian noise, against which the network was 

tested, are shown in Figure 49. Network performance is shown in Figure 50. Severity levels 1-5 

of Gaussian noise correspond to random additive noise scaled by the magnitudes 0.08, 0.12, 

0.18, 0.26, and 0.38, respectively. 
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Figure 49: Sample Gaussian noise augmented images at various severity levels. Red  
boxes are ground truth, blue boxes are detections.

Figure 50: Plot of performance for test image at different levels of Gaussian noise
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 3.3 Conclusions

In this thesis, a Deep Learning framework has been developed on MARCC to perform character 

recognition on synthetically generated license plate images of varying qualities. The 

performance of a suite of Deep Learning architectures and object detection approaches was 

evaluated using the plate images. Initially, all architectures and approaches were evaluated with 

non-degraded license plate images. The results indicate that the Faster R-CNN and related R-

FCN approaches, along with the ResNet architecture, at varying layer depths, have the best 

performance for license plate character recognition problem. The network used for all further 

evaluations was the Faster R-CNN ResNet 50 network. In addition, it was shown that for robust 

performance, the lower bound of the ideal (no degradation) license plate image size was 32 x 

16 pixels.

The Faster R-CNN ResNet 50 network was trained and tested on degraded license plate 

images. The network was robust to image degradation due to Gaussian noise, JPEG 

compression, or motion blur. Performance was slightly worse at the low end of the tested quality 

spectrum for these augmentation techniques. The application of affine transforms caused larger 

issues and revealed holes in the overall framework. An issue uncovered with the affine 

transform was the limit of the Imgaug library. The Imgaug library has a built-in ground truth 

bounding box transform. This bounding box transform performs poorly for this dataset at high 

rotations (above 5 degrees). A potential remedy for the poor performance would be to define a 

custom bounding box transform. The design of a new image augmentor was outside the scope 

of this thesis but would be a future improvement. The fifty percent scaling affine transform case 

had the worst performance of any data augmentation technique applied. Compared to the half-
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size images evaluated when the fifty percent scaling data augmentation technique is applied, 

the image itself does not become smaller rather it is padded. The network did not handle this 

padding well. The poor performance on the fifty percent scaled images could potentially be that 

the padding is the same pixel value (black) as the characters. 

Due to limitations of scope, this thesis is far from a comprehensive analysis of license plate 

character recognition on low-quality images. There is much additional work that could be done. 

A custom bounding box transform could be developed to allow for accurate ground truth 

information when applying data augmentation techniques that require modifications to ground 

truth. There are also numerous data augmentation techniques which are relevant to this dataset 

that were not applied and tested due to scope limitations. Table 2 lists some of these in brief. A 

fully developed system for performing character recognition on license plates would need to be 

robust to many more variations of degradation, as well as robust to the potential for multiple 

methods of distortion introduced in one image. This thesis focused on using license plate 

images with a white background as a baseline for performance. Future analysis on license 

plates with the traditional image background would be useful and would open the door for 

additional color-dependent data augmentation techniques to be implemented. A final step would 

be to train and test on real-world images. This comes with a large collection and labeling 

overhead burden as compared to the synthetic generation work done here.  There is much work 

between this system and one that could be deployed in digital forensics, but this thesis shows 

that a Deep Learning-based approach has potential for character recognition on license plate 

images, even when those images have undergone degradation. 
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Appendix A

Source Code

Source code for this project is available on GitHub at: https://github.com/Hriste/AutomaticLP 
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Appendix B
This appendix contains the available confusion matrices and tabular results for test runs on 

datasets with augmentation techniques applied. 

B.1 Image Size
Image sizes were varied by powers of two from 512 x 256 pixels to 32 x 16 pixels and the 

Faster R-CNN ResNet 50 network was trained and tested on these datasets. Tabular results 

from these evaluation runs are shown below. These results show that network performance 

does not significantly degrade until the image size reaches the smallest tested, 32 x 16 pixels. 

B.1.1 512 x 256
Figure 51 shows tabular results of the Faster R-CNN ResNet 50 network when trained and 

tested on ideal images of the size 512 x 256 pixels. The performance was perfect except for a 

single false positive on the letter “L”.
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B.1.2 256 x 128
Figure 52 shows tabular results of the Faster R-CNN ResNet 50 network when trained and 

tested on ideal images of the size 256 x 128 pixels. Recall was perfect, and precision was in the 

high 90%s to 100%, with small amounts of false positives for “L”, “F”, and “Y”.
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B.1.3 128 x 64
Figure 53 shows tabular results of the Faster R-CNN ResNet 50 network when trained and 

tested on ideal images of the size 128 x 64 pixels. Recall was perfect, and precision was in the 

high 90%s to 100% with small amounts of false positives for “L”, “V”, and “W”.
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B.1.4 64 x 32
Figure 54 shows tabular results of the Faster R-CNN ResNet 50 network when trained and 

tested on ideal images of the size 64 x 32 pixels. The performance was perfect except for a 

single false positive on the letter “F”.
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B.1.5 32 x 16
Figure 55 shows tabular results of the Faster R-CNN ResNet 50 network when trained and 

tested on ideal images of the size 32 x 16 pixels. This is the image size at which performance 

degradation begins to occur with a substantial number of false negatives and positives. 
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B.2 JPEG Compression
JPEG Compression data augmentation technique was applied while varying the severity, as 

specified in the Imgaug library from 1-5. The severity levels 1-5 correspond to the quality levels 

25, 18, 15, 10, and 7, respectively. The Faster R-CNN ResNet 50 network was trained and 

tested on these datasets.  Performance degrades slightly at the higher levels of JPEG 

Compression but does not noticeably impact performance. These results indicate that this 

network, when trained on JPEG Compressed data, can effectively evaluate license plate images 

with JPEG Compression artifacts at a number of levels. 
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B.2.1 Ideal
Figure 56 and Figure 57 show results for an ideal dataset with no JPEG Compression applied. 

Recall and precision both reach 100% for this dataset. 
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B.2.2 Severity 1
Figure 58 and Figure 59 show results for a Faster R-CNN ResNet 50 network trained and tested 

on a dataset with JPEG Compression of severity 1. JPEG Severity 1 in the Imgaug library 

corresponds to a JPEG quality of 25. For this dataset, recall and precision were both 100%. 
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B.2.3 Severity 2
Figure 60 and Figure 61 show results for a Faster R-CNN ResNet 50 network trained and tested 

on a dataset with JPEG Compression of severity 2. JPEG Severity 2 in the Imgaug library 

corresponds to a JPEG quality of 18. For this dataset, recall and precision were both 100%.  
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B.2.4 Severity 3
Figure 62 and Figure 63 show results for a Faster R-CNN ResNet 50 network trained and tested 

on a dataset with JPEG Compression of severity 3. JPEG Severity 3 in the Imgaug library 

corresponds to a JPEG quality of 15. For this dataset, recall and precision were both 100%.  
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B.2.5 Severity 4
Figure 64 and Figure 65 show results for a Faster R-CNN ResNet 50 network trained and tested 

on a dataset with JPEG Compression of severity 4. JPEG Severity 4 in the Imgaug library 

corresponds to a JPEG quality of 10. For this dataset, recall was 100% but there was one false 

positive for character “G”.  
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B.2.6 Severity 5
Figure 66 and Figure 67 show results for a Faster R-CNN ResNet 50 network trained and tested 

on a dataset with JPEG Compression of severity 5. JPEG Severity 5 in the Imgaug library 

corresponds to a JPEG quality of 7. For this dataset, recall was 100% but there was one false 

positive for the character “T”.  
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B.3 Motion Blur
Motion blur data augmentation technique was applied while varying the kernel size from 4 pixels 

to 25 pixels. Motion blur is an image degradation that is caused by the relative movement of 

objects in the camera’s field of view while the image is being captured. Performance remained 

relatively high across all tested value, although a drop off in performance was seen with the 

largest motion blur of 25 pixels.

B.3.1 Ideal
Figure 68 and Figure 69 show results for an ideal dataset with no Motion blur applied. Recall 

was 100% for this dataset, but there were false positives for “E” and “J”. 
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B.3.2 Kernel Size 4 pixels
Figure 70 and Figure 71 show results for a Faster R-CNN ResNet 50 network trained and tested 

on a dataset with a motion blur simulated with a kernel size of 4 pixels. For this dataset, recall 

was 100% but there were false positives for “E”, “J”, and “S”.  
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B.3.3 Kernel Size 10 pixels
Figure 72 and Figure 73 show results for a Faster R-CNN ResNet 50 network trained and tested 

on a dataset with a motion blur simulated with a kernel size of 10 pixels. For this dataset, recall 

was 100% but there was a false positive for “E”.  

92



B.3.4 Kernel Size 15 pixels
Figure 74 and Figure 75 show results for a Faster R-CNN ResNet 50 network trained and tested 

on a dataset with a motion blur simulated with a kernel size of 15 pixels. For this dataset, recall 

was 100% but there were false positives for “E” and “J”.
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B.3.5 Kernel Size 20 pixels
Figure 76 and Figure 77 show results for a Faster R-CNN ResNet 50 network trained and tested 

on a dataset with a motion blur simulated with a kernel size of 20 pixels. For this dataset, there 

was a false negative for “G” and several false positives for “C”, “S”, “V”, and “X”.
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B.3.6 Kernel Size 25 pixels
Figure 78 and Figure 79 show results for a Faster R-CNN ResNet 50 network trained and tested 

on a dataset with a motion blur simulated with a kernel size of 25 pixels. At this size of the 

motion blur, the performance starts degrading significantly with a large number of false 

negatives as well as false positives. 
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B.4 Affine Transforms
Affine transforms were applied as a data augmentation technique, scaling the dataset from 50% 

to 150% and rotating between +/- 5 degrees. 

B.4.1 50% Scale
Figure 80 and Figure 81 show results for a Faster R-CNN ResNet 50 network trained with affine 

transformed dataset and tested against a dataset at 50% scale. Out of all data augmentation 

techniques, this has the worst performance. This is somewhat surprising because the network 

had no issue when the images were made half size. The difference between the 50% scale and 

the half-size images is the black border surrounding the images in the 50% scaled images. 

Although various scaled images fit the problem space as a data augmentation technique, this 

black border, that is used when the Imgaug library generates the augmented images, does not 

fit the problem space. Since the features of interest in the plate image are the same color as 

that of the border it is possible that this is causing part of the issue.
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B.4.2 150% Scale
Figure 82 and Figure 83 show results for a Faster R-CNN ResNet 50 network trained with affine 

transformed dataset and tested against a dataset at 150% scale. While this has better 

performance than the 50% scale, both recall and precision were quite poor.
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B.4.3 +5 Degree Rotation
Figure 84 and Figure 85 show results for a Faster R-CNN ResNet 50 network trained with affine 

transformed dataset and tested against a dataset at +5-degree rotation. Recall and precision 

were above 80% which, while not as good as the other data augmentation techniques, were 

better than the other affine transforms. Note that the ability to train and test on the rotated image 

was limited to this range by the ground truth bounding boxes rotation function which does not 

rotate well. 
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B.4.4 -5 Degree Rotation
Figure 86 and Figure 87 show results for a Faster R-CNN ResNet 50 network trained with affine 

transformed dataset and tested against a dataset at -5-degree rotation. Recall and precision 

were above 50% which, while not as good as the other data augmentation techniques, were 

better than the other affine transforms. Note that the ability to train and test on the rotated image 

was limited to this range by the ground truth bounding boxes rotation function which does not 

rotate well. 
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B.5 Gaussian Noise
Gaussian Noise data augmentation technique was applied to training data via the configuration 

file, and to test data with varying severity from the Imuaug library. Performance remained 

relatively high across all tested values.

B.5.1 Ideal
Figure 88 and Figure 89 show results for an ideal dataset with no Gaussian noise applied. 

Recall and precision for this dataset are both 100%.
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B.5.2 Severity 1
Figure 90 and Figure 91 show results for an ideal dataset with Gaussian noise of severity 1 

applied. Recall and precision for this dataset are both 100%.
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B.5.3 Severity 2
Figure 92 and Figure 93 show results for an ideal dataset with Gaussian noise of severity 2 

applied. Recall and precision for this dataset are both 100%.
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B.5.4 Severity 3
Figure 94 and Figure 95 show results for an ideal dataset with Gaussian noise of severity 3 

applied. Recall and precision for this dataset are both 100%.
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B.5.5 Severity 4
Figure 96 and Figure 97 show results for an ideal dataset with Gaussian noise of severity 4 

applied. Recall was 100% but performance began to degrade with several false positives for 

“M”.
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B.5.6 Severity 5
Figure 98 and Figure 99 show results for an ideal dataset with Gaussian noise of severity 5 

applied. Performance further degraded for this data augmentation technique with several false 

positives for “M” and false negatives for “N”.
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