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Abstract  
Starting from a single fertilized egg, the compendium of human cells is generated via stochastic 

perturbations of earlier generations. Concurrently, canalization of developmental pathways 

limits the type and degree of variation to ensure viability; thus, it is unsurprising that deviations 

early in life have been linked to late manifesting diseases. Human pluripotent stem cells (hPSCs) 

are a highly robust and uniquely human experimental system in which to model the sources and 

consequences of this variability. Further, variation in hPSCs’ transcriptomes has been directly 

linked to both genomic background and biases in differentiation efficiency. Taking advantage of 

this link between genomic background and developmental phenotypes, we developed Genome-

Wide CoGAPS Analysis in Parallel Sets (GWCoGAPS), the first robust whole genome Bayesian 

non-negative matrix factorization (NMF), to find conserved transcriptional signatures 

representative of the functional effect of human genetic variation. Time course RNA-seq data 

obtained from three human embryonic stem cells (ESC) and three human induced pluripotent 

stem cells (IPSC) in three different experimental conditions was analyzed. GWCoGAPS 

distinguished shared developmental trajectories from unique transcriptional signatures of each of 

the cell lines. Further analysis of these “identity” signatures found they were predictive of lineage 

biases during neuronal differentiation. Additionally, lineage biases were consistent with early 

differences in morphogenetic phenotypes within monolayer culture, thus, linking transcriptional 

genomic signatures to stable quantifiable cellular features. To test whether the cell line signatures 

were genome specific, we next developed the projectoR algorithm to assess a given signatures 

robustness in independent data sets. By using the identity signatures as inputs to projectoR, we 

were able to identify samples from the same donor genome in datasets from multiple tissues and 

across technical platforms, including RNA-seq results from post-mortem brain, micro arrayed 

embryoid bodies, and publicly available datasets. The identification of signatures that define the 

functional rather than physical background of an individual’s genome has the potential to 

profoundly influence our view of human variation and disease. 
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Definition of the Gene 

 
 

For this construct of what makes us 
unique and, yet, predictable 

the gene is but a thesis 
 

To evolve with time a must, 
if both are to be viable,  

for this construct of what makes us 
 

Merged and passed through coitus 
--ask what is inheritable-- 

the gene is but a thesis 
 

From biochemical corpus 
arises the sequencable  

for this construct of what makes us 
 

With a panacean promise 
for mutated and mutable 

the gene is but a thesis 
 

Questions are ubiquitous 
though more is well definable  

for a construct of what makes us 
the gene is but a thesis  
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Thesis  
Introduction 
 
Convention speaks of high throughput genetics yielding "high dimensional" data, but I would 

argue that what has increased isn't the dimensionality of the data but the number of tests 

performed on one, perhaps two dimensions.  In 2000, the Human Genome Project announced the 

sequencing of the entire human genome and since then it is this physical map the field of human 

genetics has used to guide their exploration. Linkage and GWAS exist in one dimension--that of 

the physical structure of the genome. Even with eQTLs while the phenotype is continuous the 

SNP is discrete and belongs to a single linear world--it must, the assumptions of linkage 

disequilibrium and independent assortment upon which both tests are based requires it to be so.  

Perhaps the furthest that this methodology has been advanced was by Seymore Benzer in 

1959 when he used the same math involved in linkage and association to test function as well as 

position via an elegant complementation test in t4 phage. As sequencing becomes cheaper, the 

rise of whole exome and whole genome seq has the potential to keep us solidly grounded in this 

physical plane. Yet, all of the cells in the a body have the same DNA, but are as diverse as the 

populations of people that they construct. Any population geneticists will tell you that at most 

only 20% of the overall variance between two individuals can be accounted for by divergence in 

their race. The various iterations of HapMap and now 1000 Genomes have delved farther and 

farther into this terrain. Yet again and again the ancient treasure at the end of the map has been a 

common variant. The public databanks are a wealth of common variants, yet the inflation of our 

understand of their functional consequence has failed to keep pace. If we want functional 

findings than we need a different map.  

In 1999, matrix decomposition techniques were pioneered for high-dimensional biology. 

It was a technique before its time. Since then technological advances in high throughput 

transcriptomics, epigenomic, proteomic, and single-cell have risen as significant tributaries to the 

data stream. In 2010, the data deluge was reported as the increase of “high dimensional” DNA 

sequencing data at a rate outpacing Moore’s law. Data-driven pattern learning techniques, 

including matrix decomposition methods, have advanced to power systems level analyses of 

multiple data types. A major benefit of these techniques is that, as unsupervised methods, they 

can highlight the questions that we have not yet thought to ask. 
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 As datasets grow to tens of thousands of samples, humans can no longer fully consider 

the composition of each sample in a dataset simultaneously. Unsupervised techniques that 

identify such patterns and summarize them into human-interpretable results will power the next 

age of discovery. As this era begins, I have found guidance in voices from the past.  In his "A 

Mathematical Theory of Natural Selection", Haldane established the method for the construction 

of genetic models of selection. Beyond his own models or even those of population genetics, his 

method provides the framework for many of the models required for parametric linkage analysis 

and informs some of the Bayesian models used in association studies. His relevance is his 

reasoning. At the beginning of the first of these ten papers, Haldane explicitly characterized what 

was necessary to construct a satisfactory model of selection, and I would argue can be 

generalized to provide the framework for any genetic model-- must be quantitative, account for 

the facts, explain the rate of change of the relevant characteristics, and ultimately, it must be 

dynamic. To navigate a dynamic system you need dynamics map. To take full advantage of high 

throughput data, we must truly increase its dimensionally by layering the levels of annotation 

and mapping the interactions. 

The work that follows consists of two novel unsupervised pattern-detection methods 

whose unifying goal is to provide tools for building that dynamic map. The first, Genome Wide 

CoGAPS Analysis in Parallel Set (GWCoGAPS) is also the first robust whole genome Bayesian 

non-negative matrix factorization (NMF) algorithm. By accounting for pleiotrophy and the 

inherent dependence of biological systems, GWCoGAPS is able to find conserved transcriptional 

signatures of an individual’s genomic background. The second, ProjectoR enables unprecedented 

in silico experimentation across genomic technologies, model systems, and species by using 

relationships defined within a given data set to interrogate related biological phenomena in 

entirely new data.  Together these algorithms were able to define and probe the functional effect 

of human genetic variation using global patterns of gene expression instead of DNA sequence.  
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PatternMarkers & Genome Wide CoGAPS Analysis in Parallel Set (GWCoGAPS) for novel 
data-driven biomarkers via whole transcriptome NMF   

Introduction  
Numerous high-throughput studies link gene expression changes to biological processes 

(BPs) including regulatory networks and the cell signaling processes. Previously shown effective 

at deconvoluting multiplexed regulation and gene reuse in BPs 1,2, NMF algorithms have 

identified genes associated with yeast cell cycle and metabolism, cancer subtypes, and 

perturbations to cellular signaling in cancer3-10. However, the continuous and interdependent 

nature of many NMF results can make biological inference challenging especially when searching 

for biomarkers or genetic drivers. A method to obtaining genes that uniquely identify NMF 

solutions would eliminate these challenges.  

     Here, we develop patternMarkers, a statistic to take the relative gene weights output 

from NMF algorithms and to return only those genes that are strongly associated with a 

particular pattern or with a linear combination of patterns. Identifying unbiased biomarkers 

using patternMarkers requires genome-wide transcriptional data. To maximize the potential for 

novel marker detection, we set out to expand the O(1,000) gene limit, which is typical to achieve 

convergence in NMF, to the O(10,000) genes comprising the entire human transcriptome. 

Currently, NMF methods are highly dependent upon the genes selected or compaction methods 

to limit the size of the data matrices used for analysis11. Therefore, we developed GWCoGAPS, a 

whole genome implementation of CoGAPS (Fertig, et al. 2010), a Markov chain Monte Carlo 

(MCMC) NMF that encodes sparsity in the decomposed matrices with an atomic prior12. 

Previously, we demonstrated that CoGAPS analysis of datasets containing representative subsets 

of the genes converge with similar patterns. These patterns can then be fixed to a consensus 

pattern across the datasets to provide a robust whole-genome NMF, without the prohibitively 

large computational cost of NMF factorization of a single matrix containing the entire genome. 

GWCoGAPS takes advantage of parallel computing to massively cut runtime and ensure 

genome-wide convergence. We also include a Shiny web application, patternMatcher, to compare 

patterns across parallel runs to increase robustness and interpretability of the resulting patterns. 

Using patternMarkers with GWCoGAPS to analyze tissues from the Genotype-Tissue Expression 
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Project13, we parsed patterns of expression specific to brain regions and cell types to demonstrate 

the power of these algorithms for biomarker discovery.

Methods 

NMF decomposes a data matrix of D with N genes as rows and M samples as columns,

into two matrices, as D ~ AP. The pattern matrix P has rows associated with BPs in samples and 

the amplitude matrix A has columns indicating the relative association of a given gene, where the 

total number of BPs (k) is an input parameter. CoGAPS is a Bayesian NMF that incorporates both

non-negativity and sparsity in A and P as described in (Fertig, et al. 2010). Both patternMarkers 

and GWCoGAPS are in the CoGAPS Bioconductor package as of version 3.5 and are generalized 

for other NMF algorithms.

The patternMarkers statistic (sij) scores the association of the ith gene’s values in the 

amplitude matrix (Ai) with the jth pattern or linear combination of patterns by computing  

                     (1)

where i indices all the genes in the original data matrix, k indices all the patterns in the NMF 

solution, and is a vector of components specifying the jth linear combination of patterns that is 

constrained to sum to 1, and j indices the total number of linear combinations for which 

patternMarkers statistics are computed. The default setting for Eq. (1) sets j={1, … , k}, such that 

 is a set containing a unit vector for each pattern and 𝑠𝑠��(𝑤𝑤�) is an l2 norm indicating the 

exclusivity of the contribution of gene i to the pattern j and the corresponding BP. Scaling by the 

maximum value of each gene in the NMF solution (max Ai) decouples the effect of overall gene 

expression level without impacting the quality of the factorization. Genes are ranked by 

increasing  𝑠𝑠��(𝑤𝑤�) such that the higher the rank of the gene, the less it is associated with the 

considered pattern. Users can output a list of data frames containing the scores and ranks for 

every gene using the “All” option of the “threshold” argument. Alternatively, unique gene sets

can be generated by either subsetting each gene by its lowest ranking  𝑠𝑠�� 𝑤𝑤� . In the case where j 

>1, the ranked list for each pattern can also be thresholded by the highest value for which 𝑠𝑠�� 𝑤𝑤�  

is the lowest. 
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The GWCoGAPS function automates and parallelizes the whole-genome CoGAPS 

analysis from (Fertig, et al. 2013) in a single R function. GWCoGAPS has three parameters: the 

number of sets for partitioning the whole genome data, the seed for each Markov Chain, and the 

method for determining the consensus patterns. A new modification to CoGAPS, setting the seed 

both ensures that each set of genes is run with a different set of random numbers and that runs 

on any dataset are reproducible. A default pattern matching function is provided along with a 

Shiny-based web application patternMatcher for recompiling the parallelized results (Fig. 1A). 

Additional runtime options, input, and manual implementations are described in the 

GWCoGAPS vignette.  

RPKM RNAseq data for the seven samples with most brain regions was downloaded 

from dbGaP. GWCoGAPS was run for a range of k patterns with k=10 selected and uncertainty 

as 10% of the data (Fertig, et al. 2013). The code to reproduce this analysis and the GWCoGAPS 

results are available in the online supplemental files of (Stein-O’Brien, et al. 2017).  

Results 

We apply GWCoGAPS to analyze patterns related to brain regions for different individuals in 

GTEx. The GWCoGAPS solutions for the initial parallel runs of the patterns is used to illustrate 

the strong association between patterns identified from the subsets using patternMatcher (Fig. 

1A).  The first pattern highlights GWCoGAPS’ ability to deconvolute tissue specific signatures 

(Fig. 1B). This pattern uniquely identifies the cerebellum, determined to be the most distinct 

region by the consortium13.  GTEx found that strong individual specific effects increase with tissue 

relatedness as illustrated by their inability to achieve tissue specific clusters of the different brain 

regions by expression alone13,14. By allowing for gene reuse across different patterns, GWCoGAPS 

is able to overcome these effects to isolate the cerebellums signature as confirmed by gene set 

enrichment15 in cerebellum development and morphogensis (GO:0021549 and  GO:0021587 FWER 

p-value <1.0E-03 and 2.6E-03, respectively, described in Supplemental File 5) on these 

patternMarkers scores. 

The second pattern illustrates patternMarkers’ power as inference is difficult from the 

GWCoGAPS result alone (Fig. 1B). This pattern depicts subpopulations of cells in multiple brain 

regions derived from common pallium precursors. Progeny of the pallium are specified by 
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transcription factors TBr1 and Emx116 ranked second and fourth by the patternMarkers statistic. 

Gene set analysis on these patternMarkers scores confirms enrichment for pallium development 

(GO:0021543 FWER p-value <1.0E-03, Online Supplemental File 5). 

Deconvolution of cell type and tissue specific signatures from aggregate data represent a 

major technical challenge. We have illustrated the unique ability of GWCoGAPS, the first whole 

genome Bayesian NMF, to accomplish this. The manual pipeline and Shiny App, patternMatcher, 

also expanded this methodology to a variety of NMF techniques. Finally, the patternMarkers 

statistic derives gene sets uniquely representative of BPs from the continuous weights of NMF 

solutions. Together, patternMarkers and GWCoGAPS find data-driven biomarkers and genetic 

drivers in whole genome transcriptomic data.  
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FIG. 1 FLOW CHART OF GWCOGAPS TO OBTAIN PATTERNMARKERS FROM NMF SOLUTIONS 



 

8 

projectoR: Integrative Analysis of Low-Dimensional Molecular Dynamics across High-
Dimensional Multi-Omic Data Sets 
 
Abstract 

Technological advances continue to spur the exponential growth of omics data. To fully 

leverage these vast databases, methods using previously learned knowledge to improve new 

analysis must be developed. Transfer learning methodologies (TLMs) are agnostic to 

distribution or feature space making them particularly well suited for integrating different 

omics data. Thus, we developed TLMs for integrating high-dimensional analyses across multi-

omic data in the R package ProjectoR. Using public data, we apply ProjectoR to 1) link BMP4 

pathway activity in vitro hPSCS and in vivo embryos, 2) characterize commonalities of 

divergent BMP4 and Activin signaling, 3) connect related expression dynamics to epigenetic 

regulation, and 4) associate alternative regulation of these pathways in tumors with significant 

differences in cancer survival. Thus, ProjectoR enables unprecedented in silico experimentation 

across genomic technologies, model systems, and species by using relationships defined within 

a given data set to interrogate related biological phenomena in entirely new data. 

 

Introduction 

When “data deludge” is used to describe the exponential growth of biological data, the first 

challenge is accessibility, curation, and storage of the data being produced 17-20. In 2009, the 

deluge was the result of DNA sequencing becoming faster and cheaper at a rate outpacing 

Moore’s law21. Since then technological advances in high throughput techniques for 

transcriptomics, epigenomic, proteomic, and single-cell techniques have risen as significant 

tributaries to the data stream22.  The numerous resources and archive databases now available 

successfully store growing datasets and make them available to researchers for analysis. 

Performing analyses of datasets from numerous sources and across high throughput omics 

technologies enables unprecedented inquiry of the regulatory relationships in complex 

biological systems. Thus, the current challenge is now to develop computational methods to 

integrate this data to power systems level analyses in data that span omics technologies and 

experimental systems.  
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It is not trivial to obtain interpretable biological knowledge from disparate data sources. 

Even datasets collected with a single omic platform and common study design can be 

heterogeneous. Non-biological artifacts such as batch effects{Leek:2010jq}, library preparation23, 

and antibody quality{Park:2009gl} can dominate signal. This problem becomes all the more 

complex if datasets use different technologies to measure molecular features.  Given that many 

data mining and machine learning algorithms require that all datasets have the same distribution 

and/or feature space, data must often be heavily manipulated to allow for integration across 

different technologies. Thus, accounting for undesired technical variation can easily grow to be 

prohibitively complex when integrating across both biological and technical mechanism24.  

 In contrast, transfer learning methods do not require that training and future data have 

the same distribution, domain, or feature space25,26. Instead these algorithms use previously 

learned knowledge from one or more sources to improve learning of a new target. In particular, 

statistical{Raykar:2008js}, clustering{Dai:2008de, Dai:2007is}, and dimension 

reduction{Wang:2008fk, Pan:2011ev} TLMs have been successful in computer aided diagnosis, 

natural language processing, image recognition, Wi-fi localization, and text classification tasks. 

TLMs are able to relax many of the constraints of other methods by using the fact that if two 

datasets are related, there may exist mappings or features to connect the samples and 

relationships25. As a result, these transfer learning methods are uniquely suited for integrating -

omic analysis across data modalities and studies.  

 Thus, we implemented TLMs to developed ProjectoR, an R package for integrated 

unsupervised analysis of high dimensional omic data from disparate studies. Projection can 

roughly be defined as a mapping or transformation of points from one space to another often 

lower dimensional space. Mathematically, this can be described as a function φ x =

y:ℜ� ↦ ℜ�  s.t d ≤ D for x ∈ ℜ�, y ∈ ℜ�. The projectoR function is S3 class coded for 

specific analyses including regression, PCA, NMF, clustering as described in the methods and 

package vignette. ProjectoR uses the relationships (e.g. principal components, clusters, 

metagenes, modules, etc) defined within a given high dimensional data set, to interrogate 

related biological phenomena in an entirely new data set. By leveraging relative comparisons 

within data type, ProjectoR is able to extract shared low-dimensional molecular dynamics, 
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while circumventing many issues arising from technological variation. Specifically, meaningful 

relationships/features will stratify new data consistent with their underlying biological 

processes while artifacts or data specific relationships/features result in little to no information 

content.   

 Here we begin with a target RNAseq data set from in vitro differentiation of human 

pluripotent stem cells (hPSC). Using projectoR, we use PCA, correlation, clustering, and NMF 

analyses to explore this target data set in the context of 4 additional publicly available data sets 

spanning species, model systems, and omics data types. In a final analysis, we use RNAseq 

coupled to patient survival data from TCGA to elucidate how cancer prognosis is connected to 

specific tumor signaling mechanisms common to early development. Together, these results 

demonstrate that ProjectoR can use the vast repositories of public data for novel hypothesis 

generation and discovery through in silico experimentation.  

 

RESULTS 

Target data  

Although projectoR is generalized for output from any gene wise analysis, the target dataset 

was specifically chosen for several important features: (i) RNA’s key role as intermediary 

between the genome, epigenome, and the proteome engenders a single degree of separation 

between the biological mechanism in this data and any other data. This, we hypothesized, 

would make biological inference easier, as compared to higher degrees of separation, i.e. 

methylation projected onto tandem mass spectrometry, where increased disconnect between 

data types could require more assumptions and abstraction. (ii) Time course data provides the 

unique opportunity to interrogate biological processes as they unfold as well as the methods 

used to investigate them. Integrated analyses of this type create the opportunity to work out 

temporal and regulatory dynamics between different biological processes which in turn may 

aid in identification of epistatic and/or causal relationships related to cellular phenotypes. This 

is especially relevant to development, where differential timing of a pathways activation has 

been directly linked to differential fate specification27. (iii) Developmental processes are often 

the consequence of relative as opposed to absolute level of gene expression making them 
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excellent systems to test the sensitivity and power of the ProjectoR algorithim27-29. (iv) The 

dataset contained a large number of samples, including widely used cell lines, sequenced at 

extremely high coverage level. Thus, the quality and quantity of the data made it optimal for 

comparing different analytical methods.  

 Specifically, the target data is comprised of RNASeq  (>79 M reads per sample; 

mean=127M) from 3 human embryonic stem cell (hESCs) lines and 3 human induced 

pluripotent cell (hiPSC) lines at 2, 4, and 6 days of a pluripotency, neurectodermal 

differentiation, or mesendodermal differentiation conditions. A high-level overview of the 

target dataset is provided by three classes of unsupervised analytical techniques commonly 

used on –omic data: principal component analysis (PCA), non-negative matrix factorization 

(NMF), and clustering. Each of these techniques simplifies the data in ways that imparts 

additional information about its structure. Regardless of method, the end result is a set of 

features and/or relationships that can be used for TLMs.  

 

ProjectoR links BMP4 pathway activity in in vitro hPSCS and in vivo embryos 

Principal component 1 (PC1) captures the direction of the maximal spread of the data reflecting 

the major reorganization of gene expression by BMP4 treatment. PC2 is correlated with time in 

all conditions and illustrates variation between cell lines in their differentiation rate (Fig. 2B). 

By projecting single cell data from human embryos30, we observed that PC1 clearly separated 

tissues by level of BMP induction and PC2 continued to be associated with temporal 

progression (Fig. 2C). It is important to note, the ability of projectoR to related the shared 

features—BMP4 response and temporal progression—in the two data sets despite of the fact 

that the embryonic tissues are not the lineages targeted by the in vitro differentiation protocols. 

The induction of a trophoblast phenotype by BMP4 treatment in hPSC is a well-established 

paradox in stem cell biology29 and is reflected in the relationship illustrated by projectoR. Thus, 

to further refine our understanding of the dynamics captured in PC1, we next turned to an in 

vitro developmental a datasets specifically designed to parse out the role of BMP4 in hESCs 

differentiation27,29,31. 



 

12 

 In this study, RNAseq was collected from a single cell line at a common baseline and 

following treatment with BMP4 or Activin for 36 hours to induce mesoderm or endoderm, 

respectively29. In accordance with what was observed in the target dataset, the projected PC1 

splits the conditions in this new dataset by degree of BMP4 pathway activation with the 

Activin treated samples halfway between the SR controls and the mesoderm counterparts (Fig. 

2D). This effect of BMP4 treatment has been shown to be time dependent such that within 24 

hrs the same BMP4 signaling necessary for inducing the mesendodermal precursor switches to 

repressing the endodermal lineage and advancing the mesodermal lineage27 directly 

corresponding to the distance traveled in the projection. 

 To test whether Activin pathway activation was limited in the target data to only the 

early mesendoderm induction, another microarray dataset looking at BMP4 or Activin 

treatment in this same cell line for 72 hours was projected into this same PCA space32. While 

the 72 hour BMP4 treated samples moved a significant distance in PC1 (two-sided t-test, p-

value = 5.353e-05), the 72 hour Activin treated samples occupied the same space as the 36 hour 

Activin treated samples (two-sided t-test, p-value=.3519) illustrating that progression along 

PC1 terminates early in Activin treatment and remains off.  

 Conversely, separation between the projected 36 hour and 72 hour Activin treated 

samples was observed in PC2 of the target data. The orthogonal movement of Activin’s 

temporal progression is reflective of the relationship between PC1 and PC2 of the 36 hour 

microarray data (Fig. 3A). Interestingly, the projected Activin samples move in the opposite 

temporal direction than the target data samples that define PC2. Together these data suggest 

that the correlation of the target PC2 with time may be convoluted with progression in 

underlying signaling pathways that are not obvious from the experimental design.  Further, 

PC2 of the target data may also be associated with Activin related signaling.  

 

ProjectoR characterizes commonalities of divergent BMP4 and Activin signaling 

To pin point the location of Activin activity in the target experiment, we correlated the 

positions of the target data and both microarray datasets projected into entire target PCA space.  

Hierarchical clustering of the resulting correlation coefficients placed the 72 hour (3 days) BMP 
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microarray samples directly between the day 2 and day 4 BMP target data (Fig. 3A). Similarly, 

the 36 hour (1.5 days) BMP microarray samples clustered between the day 2 BMP4 target 

samples and 72 hour Activin microarray samples. Interestingly, the 36 hour Activin samples 

cluster much closer to target samples in late pluripotency and NSB treatment than to any of the 

other samples from the microarray including the other Activin treated samples. This may 

reflect Activin’s role as an inhibitor and further illustrates the ability of projectoR to overcome 

technical artifacts to reveal biological relationships. By comparison, correlation of all gene 

expression values followed by hierarchical clustering of the two microarray dataset and the 

target data segregated by technical batch (Fig. 3B).  

 To deconvolute the signaling pathways and subpopulations captured in PCA of the 

target data, we next turned our attention to the output of Genome Wide CoGAPS Analysis in 

Parallel Sets (GWCoGAPS) 33. The self-organization of differentiation patterns within multi-

cellular systems is an iconic feature of developmental systems both in vivo and in vitro34-36. By 

accounting for gene reuse via Bayesian non-negative matrix factorization (NMF), GWCoGAPS 

has previously been successful in parsing apart the activity of highly related pathways and 

identifying subpopulations in bulk RNAseq data33,37.  

 Consistent with the PCA analysis, the majority of the GWCoGAPS patterns captured 

the effect of BMP4 on gene expression. We then projected the same BMP4 and Activin 

treatment microarray datasets used to interrogate PCA space into the GWCoGAPS patterns. 

Since the second of these datasets was developed to investigating the role of T (Brachyury, 

BRA) in hESC differential toward mesendoderm, we were able to transfer knowledge of T 

biology by observing the relationship between the knockdown to the controls in the target data 

patterns.  

 Specifically, mechanistic studies reveal that T+ EpiSCs have an earlier and faster 

responses to BMP4 stimulation than T- EpiSCs31. This difference in response rates was captured 

in the projection of a GWCoGAPS pattern associated with genes induced by BMP4 treatment 

continuously from the second day of treatment (Fig. 4B). This pattern included high weights for 

HOX gene clusters that specify position along the body axis (GO:0009952: anterior/posterior 

pattern specification FDR=5.1e-16, IPR020479: Homeodomain, metazoan FDR=3.34e-08). Since 
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T is a T-box transcription factor in all nascent mesoderm that plays a known role in axial 

elongation, we will refer to this as the mesoderm pattern (Fig. 4A).  

 

ProjectoR connects related expression dynamics to epigenetic and spatial regulation 

To see if we could relate this mesoderm pattern to the corresponding epigenetic state, we used 

ProjectoR to interrogate a dataset containing RNAseq and CHiPSeq data for six different 

histone marks in pluripotency, mesoderm, endoderm, and ectoderm31. Not only did the 

mesoderm RNAseq affirm the mesoderm designation, but also the ProjectoR result showed 

corresponding enrichment in activating H3K27ac, H3K4me1, and H3K4me3 histone markers 

and depletion in repressive H3K27me3 histone modification in the mesoderm lineage (Fig. 4C). 

Thus, the pattern of epigenetic markers output from ProjectoR recapitulated the induction of 

mesoderm seen in the gene expression pattern.  

 Taking advantage of the known topological biases of different histone modifications, 

we decided to test the sensitivity of the projectoR by projecting vectors of binned CHiPSeq 

reads mapped to the 10KB flanking each genes transcription start site. The resolution of 

resulting mappings are remarkable and recapitulate known topological biases of different 

histone modifications (Fig. 4D). Peaks in activating H3K27ac and H3K4me3 ChIPSeq reads 

localize to the transcription start site, while HSK36me3 enrichment is restricted to the gene 

body. As strong indicator of the specificity of ProjectoR, the WCE ChIPSeq measures of 

baseline did are not enriched for any lineage or structure.  

 Having confirmed this approach for a known lineage in the target data, we next sought 

GWCoGAPS pattern(s) associated with the endoderm lineage, Activin activity and/or the 

common mesendoderm precursor. Projection of the RNAseq and CHiPSeq data yielded one 

pattern associated with endoderm (Fig. 5B) and one pattern associated with both endoderm 

and mesoderm (Fig. 5A). Using the PatternMarkers statistic33, we confirmed the identity of 

these patterns as genes uniquely associated with the endoderm pattern included the markers 

Sox7, Sox17, Fox11, and PDGFR while those uniquely associated with the mesendoderm 

pattern included the markers EOMES, T, and ID1 (Fig. 6).  
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 To further investigate the temporal and spatial relationship of these three patterns, we 

projected iTranscriptome, a spatially transcriptome describing the regionalization of gene 

expression and cell fates in the mid-gastrulating mouse embryo38. While all both the 

mesendoderm and mesoderm patterns localized to the proximal portion previously reported as 

associated with BMP signaling38 (Fig. 5D,F), the endoderm pattern was strikingly absent from 

this region (Fig. 5E). Conversely, both endoderm and mesoderm were enriched in the posterior 

region of the embryo previously mapped as primitive streak38.  

 

ProjectoR associates alternative pathway regulation with differences in cancer survival 

To find additional evidence for alternative response to BMP in the mesoderm and endoderm 

patterns, we projected gene expression from a comprehensive glioma study in the Cancer 

Genome Atlas (TCGA) into the 22 CoGAPS 

patterns{TheCancerGenomeAtlasResearchNetwork:2015ga}. BMP4-induced differentiation of 

glioma stem cells (GSCs) is a well establish phenomena and, subsequently, the use of BMPs as 

biomarkers and potential targeted therapeutics has been well studied39,40. Recapitulating 

several studies establishing BMP4 expression as a prognostic indicator41,42, the projected 

mesoderm pattern was significantly associated with tumor grade by Wilcoxon test (1.28e-08, 

FDR=1.415e-07) and tumor histology by ANOVA (8.15e-103, Fig. 7A,C). Strikingly, the 

projected endoderm pattern yielded almost perfectly inverted results and was also significant 

associated with tumor grade by Wilcoxon test (6.4e-12, FDR=9.4-06) and tumor histology by 

ANOVA (8.01e-123, Fig. 7B,D). Stratifying samples by top 25% vs. bottom 75% in each pattern 

yielded significantly different survival curves (Fig. 7E,F). The projected mesoderm pattern has 

increased mortality in the top 25% (p-value = 7.58e−06). Conversely, the upper quartile of the 

projected endoderm pattern has significantly higher survival rates (p-value = 2.07e−04). Taken 

together this strongly suggests that differential regulation of BMP signaling in early 

development is associated with significant differences in cancer survival.  

 

Discussion  
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 Here, we use Projector to illustrate the power of transfer learning to perform integrated 

analysis and in silico experimentation using public data. An R package, ProjectoR, contains 

methods for regression, correlation, clustering, principal component analysis (PCA), and non-

negative matrix factorizations (NMF) techniques. ProjectoR uses learned weights to transfer 

features or relationships across datasets. In this manner, basis vectors corresponding to 

meaningful biological variation can be compared directly, independent of laboratory of origin 

or technical artifacts. Projection of artefactual basis vectors result in little to no information 

content. Conversely, biological basis vectors stratify samples consistent with their underlying 

biological processes. Thus, ProjectoR enable rapid comparisons of multiple data types, tissues, 

and even across species.  

 In addition to testing biological hypothesis, a priori knowledge of the biological 

relationship between datasets can be used to contrast analytical methods or technical platforms. 

The assumptions and biases of a given analysis or technology can strongly effect its results. 

Artifacts from sample preparation and processing techniques are pervasive to nearly every 

comprehensive database. Further, the impact of technical variation on genomics data is highly 

variable within each experiment. By relying on relative comparisons within data type, 

ProjectoR is able to circumvent many issues arising from technological variation. Thus, 

ProjectoR can also be used as a potentially powerful tool for constructing models including 

multiple data types and levels of regulation. Furthermore, the ability to model relationships 

between data could be extended to aid efforts towards reproducible research. Thus in silico 

experimentation via projectoR, while not a replacement for bench science, allows for rapid 

hypothesis testing and development.  
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FIG. 2 PROJECTOR LINKS BMP4 PATHWAY ACTIVITY IN IN 
VITRO HPSCS AND IN VIVO EMBRYOS  
(a) PCA of gene expression values from all four (b) PCA 
of target data RNAseq. PC1 contains the greatest amount 
of variance and is strongly associated with BMP4 
treatment. PC2 is associated with time in culture. (c) 
Projection of scRNAseq from human embryos projected 
into PCs from (b). Using the projected scRNAseq 
samples, PC1 is associated with in vivo BMP4 activity 
and PC2 is associated with embryonic age, suggesting a 
concordance with developmental time. (d) Projection of 
wild-type samples from two microarray experiments on 
hPSC differentiation in BMP4 and Activin treatments. 
Using the projected sample values, PC1 is associated with 
in BMP4 treatment with advancement in PC1 associated 
with increased BMP4 exposure time.  PC2 is associate 
with time in culture and an interaction between time in 
culture and Activin treatment.  
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FIG. 3 PROJECTOR OVERCOMES TECHNICAL ARTIFACTS TO CHARACTERIZES COMMONALITIES OF 
DIVERGENT BMP4 AND ACTIVIN SIGNALING 

(a) Heatmap and hierarchical 
clustering of sample correlation 
matrix for projected PC loading 
of from the two microarray 
dataset and the target data. (b) 
Diagram of relationship between 
target and microarray samples. 
(c) Heatmap and hierarchical 
clustering of sample correlation 
matrix for gene expression 
values from the two microarray 
dataset and the target data 
demonstrates clear segregation 
by technical batch.    
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FIG. 4 PROJECTOR CONNECTS RELATED EXPRESSION DYNAMICS TO EPIGENETIC REGULATION  
(a) GWCoGAPS pattern for rise of mesoderm lineage in response to prolonged BMP4 treatment 
in target hPSC differentiation dataset. (b) Microarray data of hPSCs treated with BMP4 and 
Activin projected into (a) reveals graded rate response between control and T KD concordant 
with T’s role in mesoderm induction. (c) Projection of normalised gene-wise aggregated ChIPseq 
and RNAseq from the four primary embryonic lineages into the transcription signature of (a) 
yields a pattern of epigenetic regulation coinciding with the mesoderm lineage. (d) Expansion of 
(c) into additional histone modification and along 20kb fragements of the genome (+/- 10kb from 
the TSS) illustrates the resolution and sensitivity of ProjectoR to capture the epigenetic landscape 
of this projection.   
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FIG. 5 PROJECTOR MAPS SPATIAL LOCALIZATION OF GWCOGAPS GENE EXPRESSION PATTERNS  

(a) Projections of activiating marks including H3K4me3 are enriched in both DE and VE patterns 
in endoderm samples. (b-d) A planar representation of the cylindrical mid-gasulating mouse 
embryo. The position of each cell sample is defined by the coordinate position in the cross-
sectional plane (A, P, R, L) and the distal-proximal axis (1–11). The relative magnitude of each 
projected cell is presented in a color-coded format. Enrichment in the mesoderm (b) and VE 
patterns (d) co-localized in the proximal portion previously reported as associated with BMP 
signaling, while enrichment in the DE pattern (c) occurs in the distal portion of the embryo 
previously mapped as endoderm. Enrichment in all three patterns is also localized to the 
posterior region of the embryo.  



22

FIG. 6. PATTERNMARKERS FROM GWCOGAPS PATTERNS ASSOCIATED WITH MESENDODERM, 
ENDODERM, AND, MESODERM   
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FIG. 7 ALTERNATIVE PATHWAY REGULATION ASSOCIATED WITH DIFFERENCES IN CANCER SURVIVAL 

Projection of TCGA glioma associates histology and survival associated with different lineages 
and BMP4 pathway activity. (a,b,c) RNAseq of low grade glioma from TCGA projected into 
mesoderm and endoderm patterns, respectively. (c,d,e) Survival curves for top 25% vs. bottom 
75% of projected samples indicate significantly different prognosis for tumors stratified by these 

Astrocytoma Oligoastrocytoma Oligodendroglioma 

0.1

0.0

0.1

0.2

Astrocytoma Oligoastrocytoma Oligodendroglioma 

1.0

1.2

1.4

1.6

Tumor RNAseq in mesoderm pattern

Subset by histology

0 1000 2000 3000 4000 5000 6000
Days

Total/Events
n = 211/29
n = 71/30

0 1000 2000 3000 4000 5000 6000

0

.2

.4

.6

.8

1 Survival curves

Days

p-value = 2.07e-04

Total/Events
n = 211/52
n = 71/7

Tumor RNAseq in endoderm pattern

0

.2

.4

.6

.8

1 Survival curves
p-value = 7.58e-06

Astrocytoma Oligoastrocytoma Oligodendroglioma 

a

e

d

b

c

f

G2 

n =  139

G3 

n =  140

-0.1

0.0

0.1

0.2

GradeG2 

n =  139

G3 

1.0

1.2

1.4

1.6

Grade

n =  140

FDR = 1.4e-07

FDR = 9.4 e-06

p-value = 8.01e-123p-value = 8.15e-103



 

24 

genetic signatures.  
  

 
Defining the origins of variation in human pluripotent stem cells   
 
Abstract 
Defining and controlling variation in early differentiation is necessary for the optimal use of 

human pluripotent stem cells (hPSCs) in cell therapy, disease modeling and therapeutic 

discovery.  To achieve this goal, we require new tools to quantify differences between 

pluripotent lines as they first reveal their differentiation potential.  We report that hPSCs 

spontaneously self-organize to form an epithelium with distinct zones representing major 

embryonic axes and differences between cell lines were seen in these morphogenic mechanisms 

that specify early fates.  In addition, transcriptional differences between lines were defined in 

the early stages of stem cell development that were sustained in adult tissues from the same 

donor.  These signatures provide a strategy to define the mechanistic basis for differentiation 

bias between pluripotent cell lines and to determine how this bias influences cellular behavior 

throughout the life of an individual. 

 

Introduction 

The transition from a single cell, the zygote, through a few hundred pluripotent cells, to several 

thousand committed cells forms the basic architecture of a human embryo 43,44.  hPSCs share 

defining features with cells of the first epithelium, the epiblast, that forms a new individual45,46  and 

great attention is currently focused on the epigenetic mechanisms that regulate the generation of 

adult cell types from hPSCs47,48. However, the use of hPSCs in bio-medicine is limited by the 

difficulty in defining the consequences of variation between hPSC lines in the first steps of 

development **49,50.  Previous studies using transplantation or dissociation of the cells of an embryo 

emphasize the primary role of cell interactions in embryonic patterning.  Here we test the 

hypothesis that interactions between hPSCs as they form an epithelium can recapitulate key 

aspects of the architecture of the human embryo and that stable variation between lines will be 

evident in these morphogenic processes.  Novel high-content imaging tools showed that hPSCs 

generated spatial domains representing major axes of embryonic development.  Remarkably, 

stable quantitative differences between lines were observed in these processes that model early 
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events in human embryogenesis.   High-resolution analysis of RNA-seq data defined stable 

transcriptional traits that regulated early fate decisions and were sustained for the entire lifetime 

of an individual.   This work shows that the dynamics of hPSC self-organization provides a 

powerful tool to define the biology of individual human genomes. 

 

The spatiotemporal dynamics of epithelial morphogenesis in vitro 

In amniotes, the epiblast is an epithelial sheet comprised of pluripotent cells that is first specified 

along the primary embryonic axis to generate the posterior and anterior parts of a new 

individual51.  To search for variation between hPSC lines in these first morphogenic events, we 

established a cell culture system where dissociated hPSCs spontaneously generated a two 

dimensional epithelium (Fig. 8A, see methods for details of this procedure).  To define the initial 

emergence of cellular heterogeneity within a cell line, the spatial distribution of the pluripotency 

regulators POU5F1 (OCT4) and NANOG were tracked over time in the human embryonic stem 

cell (hESC) line SA01. Automated mapping of the location of every cell relative to the nearest 

epithelial edge defined rapid emergence of cellular heterogeneity.  While initially uniformly 

expressed, a clear distinction in expression levels rapidly emerged as cells on the edge of the 

epithelium showed higher levels of POU5F1 (OCT4) and NANOG (Fig. 8A).  To monitor 

temporal dynamics of POU5F1 and NANOG gene expression, the mRNA levels of these 

transcription factors and the class B SOX genes (SOX2, SOX3, and SOX21) were examined on 

different days within a passage.  NANOG and POU5F1 mRNA levels were initially high and 

decreased with time while the SOX genes showed the inverse pattern (Fig. 8B). These 

observations show that precise spatio-temporal rules constrain the spontaneous emergence of 

cellular heterogeneity during the cycle of hPSC self-renewal.  

Activation of the PI3K/AKT/mTOR pathway has been shown to play an important role 

in regulating protein translation, cell growth and the maintenance of self-renewal in hPSCs52.  To 

determine the levels of protein synthesis across the edge and core zones, incorporation of O-

propargyl-puromycin (Op-PURO) into nascent polypeptide chains during protein synthesis was 

assessed53. Op-PURO showed an enhanced signal in the edge zone indicating variation in protein 

synthesis across the epithelium was already present on Day1 (Fig. 8C).   Preferential activation of 
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PI3K/AKT/mTOR pathway was also observed in the edge zone, using antibodies and dose-

response analysis of small molecule inhibitors (fig. S1).  Neuregulin 1β (NRG1β) acting through 

the ERBB2/ERBB3 receptor dimer promotes hPSC growth through the PI3K/AKT/mTOR 

pathway52. These receptors were enriched in cells in the edge zone and these cells also showed a 

rapid preferential response to addition of exogenous NRG1β monitored by phosphorylation of 

AKT (Ser473), the target of mTOR complex 2 (mTORC2; fig. S1B and C).  Inhibition of AKT 

(Ser473) phosphorylation following treatment with a range of kinase inhibitors including the 

mTORC1/2 inhibitor AZD80552, showed elevated base-line activation and greater dynamic 

range of inhibition in the edge zone (fig. S1D).  These results show that exogenous and 

endogenous inputs to the self-renewing AKT signaling pathway define the rapid emergence of 

distinct edge and core zones in the self-renewing pluripotent epithelium. 

To define the role of this spatial segregation on fate specification, hPSCs were treated 

with agonists and antagonists of BMP/TGFb signaling that induce distinct differentiation 

trajectories to mesendodermal and neurectodermal fates, respectively29,54. When this signaling 

pathway was inhibited by treatment with NSB (Noggin, a BMP antagonist plus SB431542, a TGFb 

type 1 ALK receptor-selective inhibitor) on Day0, cells in the core expressed high levels of 

neurectodermal fate regulators, SOX21 and OTX2 on Day4 (Fig. 8D and fig. S2A and B;55,56.  The 

cells at the edge of the epithelium remained in the NANOGhi state suggesting that they were 

resistant to neural induction.  When BMP4 treatment at Day0 was used to activate this pathway, 

all the cells rapidly induced expression of Brachyury (T) or CDX2, transcription factors that 

mediate differentiation toward mesendoderm29.  Importantly, when BMP4 was introduced at a 

later time point when distinct edge and core zones had been established (Day2), only cells in the 

edge expressed these mesendodermal fate regulators (Fig. 8E).  A previous report showed 

gastrulation-like events when cells were plated on micro-patterned surfaces576. Another recent 

analysis of single cell RNASeq and ChIPSeq data defined two similar states in self-renewing 

mouse ES cells58.  Our data extend these findings by showing that when self-renewing hPSCs 

spontaneously and rapidly self-organized into two dominant states or domains; an early state at 

the edge expressing high self-renewal signaling and biased to generate mes-endodermal fates 
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followed by a state that formed in the core of the epithelium biased to form neurectoderm (Fig. 

8F). 

 

Cell line variation in morphogenesis 

Next we determined if spontaneous morphogenesis could reveal differences between cell lines.  

To test this hypothesis, nuclear SOX21 protein expression was monitored through time in 3 ES 

(SA01, UC06, H9) and 3 iPS (i04, i07, i13) cell lines during self-renewal (SR) and differentiation.  

When neural differentiation was induced by NSB treatment, SOX21 expression increased in the 

different lines to varying levels over the 6 day period of culture with the ES line SA01 showing 

the highest level and the iPS line i04 showing the lowest level of this neural fate regulator and 

core marker (Fig. 9A). The similar relative levels of SOX21 in these cell lines across SR and NSB 

conditions suggested cell line-specific differences in the potential for neurectodermal 

differentiation were already present in pluripotency before neural induction (comparing mean 

SOX21 levels across condition within line and day: r=0.84, p=3.6e-7, fig. S5; see methods for 

further statistical analysis on multiple replicate cultures showing that variation in SOX21 

expression is a robust discriminating feature of cell lines). 

To determine if this variation in SOX21 expression results from the generation of distinct 

morphogenic zones, SOX21 and NANOG expression were imaged in the two male lines, SA01 

and i04 on Day6 of treatment with NSB (Fig. 9B).  This analysis revealed that the SOX21hi core 

zone was prominent in the SA01 line and the NANOGhi edge zone was favored in the i04 line.  

When these two cell lines were exposed to increasing doses of neurectodermal inducers, SA01 

cells showed increased induction of SOX21 while i04 cells were resistant to neural induction at all 

doses (fig. S2C). This result suggests that the variation between lines is a consequence of robust 

differences in their ability to generate the edge and core zones that give rise to distinct cellular 

fates.   

The nervous system and anterior mes-endodermal fates are generated from the anterior 

domain of the epiblast51.  To determine if there were cell line differences in the generation of 

regionally-distinct zones, expression of anterior and posterior mes-endodermal genes were 

assessed by immunocytochemistry 59 by treatment with BMP4 for 24 hours at day 2 when distinct 
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edge and core zones had been established (Fig. 9C).   Posterior mesendodermal regulators 

(GATA3, ID1 and p-SMAD1/5) were upregulated within 100µm in the edge of the epithelium in 

both cell lines.  In contrast, the anterior mesendodermal regulators (NANOG, SOX17 and 

GATA4) were expressed in the core zone but at lower levels in i04 compared to SA01.  This 

analysis demonstrates stable phenotypic variation between hPSC lines in mechanisms that 

establish distinct morphogenic zones.   

 

Variation in molecular mechanisms of anterior neural differentiation 

Transcriptional differences between hPSCs with different genomes has been reported but the 

structure and functional impact of this variation in gene expression has not been defined49,60.  To 

determine differences in the transcriptional dynamics of pluripotent cell lines as they establish 

morphogenic zones, RNASeq was performed on the 3 ES and 3 iPS cell lines at 2, 4, and 6 days of 

the SR, NSB, and BMP4 (>79 M reads per sample; mean=127M; see Methods and fig. S3 and 

tables S1 and S2 for details on cell derivation, sequence quality and assembly).  The changing 

gene expression in these samples was first assessed by principal component analysis (Fig. 9D and 

fig. S4).  Principal component 1 (PC1) indicated a major reorganization of gene expression 

following treatment with BMP4.  PC2 defined trajectories of gene expression change over time in 

all conditions.  PC2 also showed variation between cell lines in the timing of their differentiation 

to mes-endodermal or neurectodermal fates.  The advanced position of the cell line SA01 at every 

time point in NSB showed that this cell line undergoes relatively rapid neural differentiation.    

To more fully explore the differences in the efficiency of neural differentiation across 

lines, PCA was conducted on the NSB differentiation data alone (Fig. 9E). PC1 within the NSB 

condition provided a metric for genome-wide transcriptional change where each gene has a 

weight defining its contribution to this developmental trajectory.  The ranking and slope of 

transcriptional change captured by PC1 defined differences between cell lines in the first steps of 

neural differentiation.  To investigate the origins of these different efficiencies in response to NSB, 

we projected SR data into the individual gene weights of NSB PC1 (see Methods).  The 

recapitulation of the cell line rankings showed that the transcriptional differences in 

neurectodermal differentiation were already present in pluripotent cells (Fig. 9E; comparing NSB 
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PC1 with the projection of SR data into this PC within line and day: r=0.88, p=1.7e-6, fig. S5B).  

Correlation of nuclear SOX21 protein levels in NSB (Fig. 9A) with this global measure of 

transcriptional change in NSB PC1 (fig. S5C, r=0.89, p=1e-6) was a further demonstration of the 

stability of this morphogenic difference across lines. This same analysis within the BMP4 treated 

samples revealed similar predictive expression dynamics in the self-renewing state, with line i04 

showing the most pronounced bias towards mesendodermal differentiation during SR (fig. S5D). 

The concept of lineage priming defines a central problem in stem cell biology, how different cell 

types emerge from a common precursor61.  This demonstration of stable variation in global 

transcription is consistent with a lineage priming model where cell lines show distinct expression 

of genes in SR that interact with morphogenic mechanisms to bias their subsequent 

differentiation (Fig. 9F). 

To more precisely define the variation in the transcriptome, we employed a Bayesian 

non-negative matrix factorization (NMF) method, CoGAPS62.  Unlike clustering methods, 

CoGAPS allows a gene to contribute to more than one pattern capturing the pleiotropy that 

results from relative levels of gene expression that are known to play a central role in defining 

distinct pluripotent states63-65.  PCA and clustering analyses of these data are provided for 

comparison (fig. S4, S8 and 9).  CoGAPS assigns gene-specific amplitudes that quantify how 

much of each pattern is needed to model the full expression of each gene (examples of CoGAPS 

mediated decomposition of gene can be inspected in fig. S6). Here we analyze 22 patterns that 

were robustly identified with the CoGAPS algorithm (patterns in fig. S7, see Methods for details).  

ANOVA assessing the effects of condition, day, and line in these patterns identified two types of 

pattern defining (1) dynamic transcriptional change over time or condition (p-values of <.001 for 

Condition and/or Day) and (2) transcriptional differences between cell lines that were stable over 

time (p-values of <.001 for Line) (Fig. 10A). 

The CoGAPS patterns that change over time captured transcriptional modules that 

regulated self-renewal and differentiation. The core pluripotency genes POU5F1, SOX2 and 

NANOG were ranked 6, 8 and 41 of 21,174 genes in pattern 7 (Fig. 10B).  Consistent with the 

large impact of BMP4 on gene expression (Fig. 9D), mesendodermal fates were described in 6 of 

the patterns (2, 3, 5, 6, 8 and 9).  One of these, pattern 3, identified a graded response to BMP4 
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treatment and HOX gene clusters that specify position along the body axis, 66 were highly 

enriched in this pattern (p=1e-6; Fig. 10B).  To test how well these patterns capture conserved 

transcriptional modules in mammalian development, RNASeq data derived from differentiating 

mouse embryos was projected into the gene amplitudes from these 22 CoGAPS patterns (Fig. 

10B; see Methods).  The self-renewal pattern (# 7) defined transcriptional activity that was down-

regulated during early mouse embryo development, delineating the loss of pluripotency.  In 

contrast, BMP-induced genes in hPSCs (pattern 3) increased between days 6 and 8 of mouse 

embryo development, paralleling gastrulation.  The individual gene amplitudes underlying these 

patterns clearly intersect with epigenetic mechanisms controlling lineage-specific gene expression 

as observed by projection of ChIPseq data in differentiating hPSCs (fig. s10; (5)). This analysis 

demonstrates that the CoGAPS decomposition defines conserved transcriptional mechanisms in 

pluripotency and early differentiation. 

To further validate this informatic analysis of the dynamics of gene expression, we 

focused on the first steps in neurectodermal differentiation defined by 2 CoGAPS patterns (15 

and 12).  Consistent with the PCA, the SA01 line showed the most rapid differentiation in both of 

these patterns (Fig. 10C).  The top transcription factors ranked in pattern 15 were HES3, OTX2, 

POU3F1 and SOX21 (ranked 3, 12, 26 and 46) and all are known to be important regulators of 

early neurectodermal differentiation55,65,67. Many transcription factors known to specify 

neurectodermal lineage commitment including PAX6, SOX1, SOX10, SOX11, EMX2, FEZF2, 

WNT1, NEUROG2, and HES568 were represented primarily in subsequent steps in neural 

differentiation captured in pattern 12 (Fig. 10C and table S3).  Immunocytochemistry confirmed 

that these neural fate regulators were induced in the core zone (fig. S11).  This analysis suggests 

that an early step in neural specification induced by NSB was regulated by the transcription 

factors highly ranked in pattern 15.  

To determine if transcription defined by pattern 15 has a specific role in the transition 

from pluripotency to neural lineage commitment, we initially focused on SOX21 as this gene was 

highly ranked (46 of 21,174) only in this dynamic pattern.   The sequential gene expression 

change in neural differentiation was most evident in the cell line SA01 where pattern 15 was 

already elevated by Day2 and was diminished by Day6, while pattern 12 was induced first on 



 

31 

Day4 and increased further on Day6.  In SA01, knockdown and overexpression of SOX21 

regulated expression of the pattern 12 genes OTX2, SOX1 and PAX6 (Fig. 10D and fig. S12).  To 

further map the spatial and temporal role of SOX21, three independent frame-shift mutations in 

the DNA binding HMG domain of both alleles were generated by CRISPR/Cas9 technology (fig. 

S13).  In NSB, the average of the 3 SOX21-KO cell lines generated with different guide RNAs to 

minimize off-target effects showed showed elevated levels of the pluripotency genes NANOG 

and SOX2 in a region extending up to 300µm from the edge of the epithelial sheet (Fig. 10E).  

SOX3, another class B SOX activator that interacts with SOX2 and SOX21 was induced in a 

restricted zone close to the epithelial edge.  Expression of both SOX3 and the fore-brain master 

regulator OTX2 were repressed in the core zone when SOX21 was absent.  These data show that 

SOX21 regulated the spatially ordered transition from pluripotency to anterior neurectoderm that 

occurs in the self-organized epithelium established by hPSCs (Fig. 10G). 

The morphogenic analysis suggested that anterior fates in both the neural and mes-

endodermal lineages were more efficiently generated in SA01 than i04. To determine the effects 

of loss of SOX21 in the putative anterior mes-endoderm, BMP4 treatment was applied on day 2 

when the edge and core zones have already formed.  Under these conditions the average of the 3 

SOX21-KO cell lines generated with different guide RNAs showed elevated expression of 

anterior mes-endodermal regulators T and GATA4 in the core zone (Fig. 10F).  T (Brachyury, 

BRA) is a T-box transcription factor that plays a conserved role in defining the spatial 

organization of bilaterian embryos29.  Genes marking the posterior endoderm (CDX2, GATA3, and 

ID1) were elevated in the edge zone but showed no change when SOX21 expression was absent.  

Consistent with the early appearance of pattern 15, these data show that SOX21 regulates 

fundamental aspects of the emergence of spatial patterning in hPSCs (Fig. 10G).    

 

Transcriptional signatures of individual cell lines and genomes 

In addition to the dynamic patterns defining transcriptional change in self-renewal and 

differentiation, the CoGAPS decomposition identified patterns that were invariant across time 

and treatment for each cell line.  In a hierarchical clustering of the CoGAPS patterns, the 

transcriptional signatures of individual hPSC lines formed a distinct, tightly clustered branch 
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(Fig. 11A).  When gene expression datasets from other institutions that included these cell lines60,69 

were projected into the cell line specific signatures defined by CoGAPS, the same lines were 

identified (Fig. 11B and fig. S14).  These findings extend the identification of genetic differences 

as a determinant of transcriptional variation in human pluripotency49 by demonstrating that these 

transcriptional signatures were robust, present in both the pluripotent and differentiated states 

and that these signatures share a common gene expression structure.    

To test the generality of the dynamic and stable patterns defined by CoGAPS, we 

generated duplicate iPS cell lines from 3 donors whose brain tissue was also obtained and RNA 

sequenced post-mortem (see Methods).  Importantly, CoGAPs analysis of RNAseq data from 

these new lines and projection analyses demonstrated that the differentiation dynamics defined 

by CoGAPs in the original 6 lines were also present in the 6 new lines (fig. S15 and S16).  In 

addition, single transcriptional ID signatures stable across conditions and duplicate lines were 

obtained for each of the 3 new donors studied (Fig. 11C and fig. S17).  Projection of RNASeq data 

from adult prefrontal cerebral cortex samples from these and many more donors into these 

donor-specific patterns demonstrated that these transcriptional signatures observed in 

differentiating pluripotent cells were also present in the mature tissue of these same donors (Fig. 

11C and fig. S17).  The presence of an ID signature in multiple clones of pluripotent cells and in 

differentiated tissues derived from the same donor indicates a significant genetic contribution to 

these transcriptional ID signatures.   A cell line pattern specific to only a single clone from an 

individual donor was also identified (fig. S15; pattern 14 in the second CoGAPS analysis).  

Projection of the prefrontal cortex RNASeq data into this pattern showed this signature was not 

present in differentiated tissue of the donor (fig. S17D), suggesting an epigenetic origin of this 

inter-clonal variation. These data show that genetic and epigenetic components of cell line 

specific transcriptional signatures can be distinguished by the CoGAPS decomposition.  

The GTEx Project is a multi-site consortium established to enable an understanding of the 

relationship between genetic variation and gene expression in individual humans70.  The GTEx 

analysis of RNASeq data from tissues obtained from 175 donors illustrated the need for 

additional tools to define gene expression differences between individuals.  When CoGAPS 

decomposition was applied to the GTEx gene expression dataset spanning many mature tissues 
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sampled from the same individual donors along with patterns defining different tissues, 

transcriptional signatures of individual donors across all tissues were clearly identified (Fig. 11D 

and fig.S18).  The GTEx study also defined a distinct set of eQTLs associated with transcriptional 

variation in multiple tissues from the same individuals.  Genes involved in these multi-tissue 

eQTLs were highly enriched in the CoGAPS ID signatures (genes in top 2% of GTEx multi-tissue 

eQTLs: p=1.3e-3 to 1e-6; bottom 2%: p=0.08 to 0.83).  This analysis shows that ID signatures are a 

stable aggregate of genetic effects on gene expression in multiple tissues from the same donor 

from pluripotency to old age. To our knowledge this is the first demonstration of transcriptional 

signatures that may contribute to cellular phenotypes throughout the life of an individual.    

 

Functional impact of transcriptional signatures 

The identification of transcriptional signatures that identify pluripotent, differentiating, and 

mature cells of an individual human donor raises the important question of the functional 

consequences of this transcriptional diversity.  In contrast to the variance analysis and clustering 

methods that have been used to determine that genetic variation is the greatest contributor to 

transcriptional variance between hPSC lines49,60, the decomposition of expression data by CoGAPS 

defines the structure of genetically driven transcriptional differences for every gene between each 

donor.  Here we explored the predictive power of ID signatures to explain the morphogenic 

differences between cell lines, specifically the difference in neural differentiation between the cell 

lines SA01 and i04.  

OTX2, a bicoid homeobox transcription factor responsible for forebrain differentiation71,72 

was highly ranked (102) in the SA01 ID signature and this amplitude was more than 3-fold 

greater than its level in the i04 ID signature (Fig. 12A).  The ability of OTX2 to specify forebrain is 

opposed by the action of the homeobox GBX2 that correctly positions the boundary between the 

fore-brain and the hind-brain73.  GBX2 was highly ranked in the i04 ID signature and was 

minimally represented in the SA01 ID signature (Fig. 12A).  Along with GBX2, other genes 

associated with posterior regions of the epiblast, including EOMES, FN1 and NR5A2, were 

highly-ranked in the i04 ID signature51,74.   GBX2 was first identified as a RA response gene 

expressed in the posterior neurectoderm75,76.  The role of retinoic acid (RA) in the induction of 
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hindbrain neural stem cells has been intensively studied in powerful models of early neural 

development in vertebrates77. RA acts through canonical sets of target genes78 that were enriched in 

the i04 but not in the SA01 ID signature (Fig. 12A).  These observations show that key regulators 

of anterior and posterior neural fates are differentially represented in the ID signatures of SA01 

and i04 cell lines and predict that the i04 cell line should preferentially differentiate to hind-brain 

fates.   

To test this possibility, SA01 and i04 cells were treated with RA during neural induction 

with NSB.   Expression of the homeotic genes HOXB1 and HOXB4 report on a highly conserved 

transcriptional signaling system controlling key features of hind-brain development in 

vertebrates79.  The transcription factors OLIG2, ISL1, and PHOXB2 report on the differentiation of 

hindbrain motor neurons42,80.  A dose response study revealed that i04 and SA01 cells were 

differentially sensitive to RA treatment (Fig. 12B and C).  In the absence of RA, the relative levels 

of OTX2 and GBX2 protein were consistent with their transcriptional signatures (Fig. 12A).  In 

response to 0.1µm and 0.5 µm RA, OTX2 expression was inhibited in both cell lines but elevated 

GBX2 and HOXB1 expression was only observed in i04.  HOXB4 positive cells were observed in 

i04 at 1µm RA, consistent with the known scalar response of HOX gene clusters.  The spatial 

analysis showed that GBX2 was induced in the core region of the epithelia while HOX positive 

cells were located at the edge of the epithelial sheet, consistent with the migratory behavior of 

hindbrain cells expressing HOX genes (Fig. 12C). Further differentiation showed i04 cells more 

efficiently generated cranial motor neurons compared to SA01, demonstrating that ID signatures 

predict a bias in terminal fates (Fig. 12D).  This demonstrates that stable transcriptional 

differences between hPSCs predict variation in both early morphogenesis and terminal 

differentiated fates  

 A recent report used the generation of inter-species chimeras with hPSCs to propose that 

a cell line could exist in alternate states with a bias towards either anterior or posterior fates50.  In 

this study, relative levels of OTX2 and GBX2 expression were correlated with the change between 

positional epigenetic states defined by introduction of hPSCs into non-human embryos.  

Projection of the SA01 and i04 transcriptional signatures into RNAseq from these regionally 

specified pluripotent cells demonstrates the anterior bias of SA01 and the posterior bias of i04 



 

35 

that we have described here (fig. S19).  GBX2 expression is thought to play an important role in 

regulating the naive pluripotent state found in mouse ES cells and OTX2 regulates, at least in part 

the transition from the naïve to primed pluripotent state in the mouse81,82.   The data presented here 

show that OTX2 and GBX2 play important roles in regulating alternate pluripotent states in the 

human system and relate to an interesting contemporary debate about on mechanisms 

controlling pluripotent states in humans and other species.   Because of ethical concerns around 

using inter-species chimeras to analyze variation between hPSCs, the allocation of US federal 

funds for this purpose has been restricted (http://grants.nih.gov/grants/guide/notice-

files/NOT-OD-15-158.html).  

The important role of cell interactions in embryology has been known since the discovery 

by Spemann of the organizer in the amphibian embryo and emphasized by extensive recent work 

in the mammalian system43,44,51.  Here we set out to test the hypothesis that interactions between 

hPSCs as they form an epithelium can recapitulate aspects of the architecture of the human 

embryo and address a central issue in the use of hPSCs, the lack of phenotypic consistency within 

individual cell lines and unexplained variation across lines83.  The imaging and informatics 

strategies we present here showed stable differences between hPSC lines in the mechanisms that 

execute the early steps of embryonic fate choice leading to distinct developmental paths.  

Remarkably, these cell line specific transcriptional signatures were sustained in differentiated 

adult cells suggesting that stable transcriptional variation may continuously influence the biology 

of an individual (Figure 12E).  The future use of stem cell technologies in developing new cell and 

pharmacological approaches to human disease will require systematic definition of this variation 

in early differentiation.  

The spectrum of germline and somatic variation in human brain development is the 

focus of intense current interest84,85.  The definition of stable variation across human pluripotent 

cells presented here encourages the expanded use of in vitro systems to determine how many 

hPSC states with distinct developmental properties can be obtained from a single genome.  It will 

also be important to define how genetic variation influences the range of hPSC states with 

distinct developmental potentials.  We propose that reconstructing the early stages of 

development in the laboratory using larger numbers of replicate hPSC lines across multiple 
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donors will provide a strategy to systematically map genetic and epigenetic origins of variation 

in hPSCs and the impact of this variation on cellular function and disease risk throughout the 

lifetime. 
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FIG. 8 SPATIOTEMPORAL DYNAMICS OF PLURIPOTENCY, LINEAGE SPECIFICATION, AND GROWTH 
SIGNALING REGULATORS REVEAL IN VITRO MORPHOGENESIS OF HUMAN PSCS.  

(A) Distribution of POU5F1 and NANOG 
in SA01 over time showing emergence of 
distinct zones during formation of an 
epithelium. Transcription factor 
expression in relation to the distance of 
each cell from the nearest edge (dotted 
line). Colors correspond to those in 
distance map (indicating percentiles from 
edge: 0-5%=red, 5-25%=orange, 25-
50%=grey, 50-75%=green, and 75-
100%=blue). ANOVA comparing day 3 
protein expression across domains: 
p<2.2e-16 for both POU5F and, NANOG. 
(B) Cyclical expression of pluripotency 
regulators during passage. Relative qPCR 
expression levels for each gene 
(correlation of average expression of 
POU5F1, NANOG with SOX: r=-0.90, 
p=3.3e-4). (C) OP-puro incorporation 
shows enhanced global translation at 
edge. (D) Spatial expression of NANOG, 
SOX21, and SOX2 on Day 4 indicating 
induction of neuroectoderm in the core 
(left). NANOG, SOX21 and SOX2 levels 
and nuclear area (�m2,black) of individual 
cells plotted against their distance from 
the edge (right). (E) BMP4 treatment at 
different days (Day 0-top, Day 2-bottom) 
shows that once distinct zones are 
established, induction of mesendoderm 
occurs only in the edge. (F) Model shows 

spatiotemporal dynamics of morphogenesis regulating lineage bias and cell growth signaling in 
self-renewal. 
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FIG. 9 CELLULAR AND TRANSCRIPTIONAL DYNAMICS DURING SELF-RENEWAL AND DIFFERENTIATION 
SHOW VARIATION BETWEEN HUMAN PSC CELL LINES. 

 (A) SOX21 levels in SR 
and NSB in 6 hPSC lines. 
Variation between cell 
lines is evident within 
each condition. The effects 
of cell line assessed using 
mixed effects models 
incorporating this data 
and 4 additional 
independent growth 
experiments: p=1e-6. (B) 
NANOG and SOX21 
expression in NSB, Day 6 
show SA01 and i04 have 
distinct morphogenic 
behaviors. (C) Spatial 
expression of anterior 
(right) and posterior (left) 

mesendoderm regulators in BMP4, Day 2. Significantly increased expression of anterior markers 
in line SA01 compared to i04: GATA4, p=2e-6; SOX17, p=3e-5, NANOG, p=6e-6. (D) PCA of 
RNAseq shows each cell line differentiates with varying efficiency. SA01 (green circle) moves 
fastest in neurectodermal differentiation while i04 (yellow square) leads the mesendodermal 
trajectory. (E) PC1 of PCA in NSB (left). SR data projected into NSB PC1 reveals global lineage 
priming (right). Fig. S5B contains multiple analyses of data from panels A and E demonstrating 
the stability of the morphogenic differences across lines. (F) Model depicting differences in 
morphogenesis and lineage bias between SA01 and i04 cell lines.   
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FIG. 10 DECOMPOSITION OF TRANSCRIPTION DURING IN VITRO MORPHOGENESIS.  
(A) Dendrogram of CoGAPS 
patterns. Cell line specific 
patterns boxed. Heatmap of
ANOVA p-values for effects of 
Line, Condition, and Day (B) 2 
CoGAPS patterns delineating 
gene expression changes across
time (left). Projection of 
microarrays of the developing 
mouse embryo into CoGAPS 
patterns (right) correspond to
loss of pluripotency and 
initiation of gastrulation in vivo. 
(C) CoGAPS.1 patterns 15 and 
12 represent the sequential
differentiation to 
neurectodermal fates. (D) 
siRNA-mediated SOX21-KD 
prevents induction of SOX1 and
PAX6 in NSB. (E) Dysregulation 
of NANOG, SOX2, OTX2 and 
SOX3 expression in SOX21-KO 
cells (solid) in day 3, NSB.
SOX21KO-effect assessed at 

<100∝M, >200∝M for each gene: 

<100∝M: SOX3 p=9.434e-09, OTX2 p=0.30, SOX2 p<2.2e-16, NANOG p=0.013; >200∝M: SOX3 

p=8.441e-08, OTX2 p<2.2e-16, SOX2 p=0.0088, NANOG p=0.66).  (F) Immunofluorescence of 
anterior (T/BRA) and posterior (CDX2) mesendodermal regulators in day 2, BMP for WT and 
SOX21-KO (top). Spatial plots (lower) illustrate induction of anterior regulators (T and GATA4) 

in SOX21-KO (solid; n=3) compared to WT (open; n=2). At >100∝M from the colony edge, 

GATA4 and T are differentially expressed (GATA4, p=1.774e-05; T, p<2.2e-16), while CDX2, 
GATA3, and ID1 are unchanged. (G) Model of SOX21 in specification of anterior fates.   
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FIG. 11 COGAPS REVEALS STABLE TRANSCRIPTIONAL 
SIGNATURES OF INDIVIDUAL HUMANS.  
(A) Hierarchical clustering of all gene amplitudes for 
the 22 CoGAPS patterns. ID signatures highlighted 
in green. (B) A CoGAPS pattern that defines the 
transcriptional signature of H9, distinguishing it 
from all other lines across time and differentiation 
conditions (left). Projection of microarray data using 
the same 6 lines differentiated by embryoid body 
formation methods using FBS to induce 
mesendodermal differentiation and KSR to induce 
neural differentiation into this signature (right, 
p=3e-4) (30). (C) ID signature for 2 replicate lines 
from donor 2053 across 3 conditions (SR, LD193189 
plus SB431542: LSB, rapamycin: SRrap) in the 
context of 9 other lines from 7 donors (left). 
Projection of RNASeq data from 260 human brain 
samples into this transcriptional signature identifies 
donor 2053 (right). (D) ID signatures of 2 individuals 
defined across 22 differentiated tissues from 10 
donors in the Genotype-Tissue Expression (GTEx) 
project dataset.  
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FIG. 12 CELL LINE-SPECIFIC TRANSCRIPTIONAL 
SIGNATURES PREDICT RESPONSE TO RETINOIC ACID.  
(A) The distribution of gene-specific amplitudes for 
retinoic acid (RA) responsive genes (red) and all 
other genes (black) in SA01 and i04 transcriptional 
signatures. Amplitudes for specific genes are marked 
in each plot (GBX2, OTX2, N=NR5A2, E=EOMES, 
F=FN1). RA response genes are enriched in the i04 
signature (p=5e-5). (B) OTX2 and HOXB4 expression 
on day 8 of LSB+RA-induced differentiation shows 
differential posteriorization of neural precursors 
between SA01 and i04 cells. (C) Dose-response 
analysis of RA on spatial expression of 
anterior/posterior neural regulators shows a 
sequential posteriorization from the core to edge 
zones and a cell-line specific RA-response. (D) RA-
induced motor neuron differentiation occurs with 
varying efficiency between SA01 and i04 cells. 
Quantitation of Olig2+, Islet1+, and PHOX2B+ 
expressing motor neuron precursors and 
differentiated motor neurons at 28 days of 
differentiation in SA01 and i04. (E) A diagram 
depicting how conserved morphogenic events in the 
epiblast can be modeled in vitro revealing stable 
variation between human stem cells that raises many 
important questions; including, How are these 
differences sustained over many passages? What is 
the range of stable developmental variation shown 
by hPSCs from a single donor? and How do specific 
transcriptional signatures influence the physiology of 
individual humans? 
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Appendices 
Supplementary Figures 

 
FIGURE S1. SPATIOTEMPORAL DYNAMICS OF NEURAL FATE BIAS, RELATED TO FIGURE 1.  
(A) Dynamics of SOX21 and OTX2 expression in SA01 NSB conditions show induction of these 
neural fate transcription factors in the core zone through time. (i) Representative images are 

shown. Scale bar, 100 μm. Dashed lines indicate edge of colonies. (ii) Scatter plot showing single-

cell levels of SOX21 and OTX2 expression in SR and NSB conditions through culture time 
demonstrates positive correlation between them during neurectodermal differentiation. (B) 
Changes of SOX3 and SOX21 expression in SA01 NSB conditions show reduction of SOX3 
expression during neurectodermal differentiation. (i) Representative images are shown. Scale bar, 

100 μm. Dashed lines indicate edge of colonies. (ii) Scatter plot showing single-cell levels of SOX3 
and SOX21 expression in SR and NSB conditions through culture time demonstrates inverse 
correlation between them during neurectodermal differentiation. (C) Different cell lines vary in 
their formation of core zone. SOX21 and NANOG expression at day 6 of NSB treatment in SA01 
and i04 lines show more efficient formation of core zone in SA01 compared to i04. Scale bar, 200 

μm. Dashed lines indicate edge of colonies. (D) Dose-response curve of BMP/TGFβ signaling 
inhibitor LDN193189 and SB431542 on SOX21 induction show differential responses between 
SA01 and i04 lines. *, p<0.05 between lines. (E) Cell numbers in SA01 and i04 lines are similar 
throughout time in all conditions suggesting the differential morphogenetic composition in 
epithelium is not a result of different colony size or overall proliferation rate. *, p<0.05 between 
lines.   
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FIGURE S2. CELL LINE VARIATION IN TRANSCRIPTIONAL DYNAMICS DURING SELF-RENEWAL AND 
DIFFERENTIATION, RELATED TO FIGURE 2 AND FIGURE 3.  
(A) The selected 25 genes among 100 genes most strongly contributing to PC1 (left) and PC2 
(right). Well-known pluripotency and early fate regulators are highlighted in colors. (B) The 
selected 25 genes among 100 genes most strongly contributing to NSB PC1. Neurectodermal 
regulators including SOX21, OTX2 and PAX6 strongly contribute to the up-regulation while 
pluripotency regulators including POU5F1 and NANOG contribute to the down-regulation in 
this PC (highlighted in colors). (C) Scatter plot showing correlation between SOX21 levels in NSB 
(Figure 2A) and NSB PC1 (Figure 2C). (D) The use of each GWCoGAPS pattern across genes can 
be precisely defined by gene-specific amplitudes for all patterns (Table S4). Two examples of 
individual genes whose expression patterns are represented by the combination of multiple 
GWCoGAPS patterns are shown. (Left) The complete expression of POU5F1 is represented by 
two dynamic GWCoGAPS patterns P7 and P9. (Right) The complete expression of OTX1 is 
represented by a dynamic GWCoGAPS pattern P12 and a UC06 line-specific GWCoGAPS pattern 
P11. (E) The 22 patterns generated by GWCoGAPS decomposition across 6 cell lines, 3 conditions 
and 3 times. Patterns are presented in groups of similar characteristics; dynamic patterns 
(pluripotency, BMP4-response mesendoderm, and NSB-response neurectoderm) or cell line-
specific patterns (6 cell line-specific patterns and 2 combined cell line-specific patterns).   
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FIGURE S3. DECOMPOSING DYNAMIC & STABLE TRANSCRIPTION MODULES, RELATED TO FIGURE 3. 
 (A)Protein expression of genes highly ranked in 5 dynamic patterns. The experimental protocols 
of mesendoderm and neurectoderm differentiation are shown in boxes. (i) Representative images 
show expression of MMP9, CK14 and HOXB9, genes that are highly weighted in a mesendoderm 
pattern P3. (ii) Representative images show expression of pluripotency and neurectodermal 
regulators that are highly weighted in patterns P7, P15, and P12 during the accelerated neural 
differentiation. The neural differentiation is accelerated by FGF2 withdrawal and conversion to 
N2B27 medium supplemented with LDN193189 and SB431542. Pluripotency and early 
neurectodermal fate regulator SOX2 show down-regulation on day 6 in the core zone in the 
accelerated neural differentiation condition. An early neurectoderm pattern P15 gene HES3 is 
expressed higher at the edge while another P15 gene SOX21 is expressed at the core on day 2 and 
gradually expands over time. Under this accelerated differentiation condition, a P12 gene HES5 is 
expressed as early as on day 2 at the core and other P12 genes including PAX6, PAX2, WNT1, 

LMX1A and EN1 are induced later. Dashed lines indicate edge of colonies. Scale bar, 100 μm. (B) 
Projections of microarray and DNA methylation data generated from multiple hPSC lines into 
the cell line-specific CoGAPS patterns demonstrate stability of the cell line-specific transcriptional 
signatures within a cell line. (i) H9-, SA01-, and i04-specific GWCoGAPS patterns that define 
distinct transcriptional signature from all other lines across time and condition. Each cell line 
sample circled in green. (ii) Projections of microarray dataset (Mallon et al., 2013) containing the 
same 6 lines under embryoid-body (EB) differentiation conditions (SR for self-renewal in ES 
medium plus FGF2, KSR for ectodermal differentiation, and FBS for mesendodermal 
differentiation) into the each cell line-specific patterns discriminate the corresponding cell line 
samples from all other lines. (iii) Projections of DNA methylation data (Rouhani et al., 2014) show 
promoters of genes expressed specifically in each cell line are hypomethylated in the 
corresponding cell line.   
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FIGURE S4. CELL LINE VARIATION IN HINDBRAIN FATE BIAS, RELATED TO FIGURE 4. 
 (A) Differential OTX2 and GBX2 expression in SA01 and i04 cell lines during neurectoderm 
differentiation. Scatter plot of single-cell level OTX2 and GBX2 expression on day 6 in SR and LSB 
condition. Dashed lines indicate the average intensity of protein level in each condition. (B) Dose-
response analysis of retinoic acid (RA) shows differential posterization of neural precursors 
between SA01 and i04 lines. (i) Representative images show differential OTX2 and HOXB4 
expression on day 8 of LDN193189+SB431542 (LSB)+RA-induced differentiation between SA01 

and i04 lines. Scale bar, 100 μm. Dashed lines indicate edge of colonies. (ii) Dose-response 
analysis of RA on spatial expression of anterior/posterior neural regulators shows a sequential 
posteriorization from the core to edge zones and a cell line-specific RA-response. Single-cell 
levels of OTX2, GBX2, HOXB1 and HOXB4 expression are measured on day 8 of LSB+RA-
induced differentiation and plotted against the distance from the edge.  
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FIGURE S5. RESETTING THE PLURIPOTENCY CYCLE, RELATED TO FIGURE 5.  

(A) Dynamics of NANOG, SOX2, SOX3, and SOX21 expressions reveal that cell states are reset 
within the first 36 hours after passaging. (i) Immunofluorescence images of NANOG, SOX2 and 
SOX21 expression in SA01 show loss of heterogenic expression in cell population during early 

times after passage in SR. Scale bar, 50 μm. (ii) Protein and RNA levels of NANOG, SOX2, SOX3, 
and SOX21 expression are measured in SA01 and i04 lines over time. *, Comparison in protein 
levels between SA01 and i04 (p<0.05). (B) Projection of early time data into PC1 and PC2 of days 
2, 4, and 6 data (Figure 2B) shows continuum between the two datasets. Inset shows cycling 
pattern of SA01 SR samples upon passaging as described in the PC space. (C) 30 selected genes 
among 100 genes most strongly contributing to PC1 (left) and PC2 (right) of SA01 SR shown in 
Figure 5B. Well-known pluripotency and neurectoderm regulators, signaling genes for early 
embryo patterning, and immediate early genes are highlighted in colors.  
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FIGURE S6. SOX21 MEDIATES FOREBRAIN FATE CHOICE, RELATED TO FIGURE 6.  

(A) Knockdown (KD) of SOX21 by siRNA treatment prevents induction of neurectodermal
regulators in NSB condition. (i) Representative images show SOX1 reduction after SOX21-KD in 

day 6 NSB condition. Scale bar, 100 μm. (ii) Relative mRNA expression level analysis shows 
reduction of neurectodermal regulators SOX1 and PAX6, and induction of pluripotency regulator 
NANOG after SOX21-KD. Values are normalized to negative control siRNA treatment (NC) 
within each condition. *, Comparison between NC and SOX21-KD (p<0.05). (B) Overexpression 
of SOX21 induces SOX1 expression. (i) Representative images show induction of SOX1 expression 
after SOX21 overexpression in day 4 NSB condition. Cells were treated with mRNAs for 4 days 
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after ROCK inhibitor removal. Scale bar, 100 μm. (ii) Scatter plot illustrates relative expression of 
SOX1, SOX2, and SOX21 after mRNA transfection. Colors represent SOX21 levels. 
Overexpressing SOX2 and SOX21 together reduced SOX1 induction compared to overexpressing 
SOX21 alone. (C) Establishment of SOX21-KO lines by CRISPR/Cas9 technology. All SOX21-KO 
ESC lines were screened using Surveyor and immunofluorescence assays and verified by DNA 
sequencing. (i) Analysis of SOX21-KO clones using Surveyor assay. The gel image shows 
modification at the SOX21 locus in a clone 4-7. Red arrowheads indicate expected fragment sizes 
for SOX21 locus. (ii) Immunostaining of WT and SOX21-KO clones shows complete loss of SOX21 
expression in the clone 4-7. The cells were cultured in the presence of NSB for 6 days. Scale bar, 

100 μm. (iii) Amino acid sequence of SOX21 alterations by CRISPR/Cas9 confirms knockout of 
SOX21. In three clones (clones 4-7, 5-3, and 5-15) frame shift mutation, premature stop codon 
mutation, or mutation that disrupts HMG domain were confirmed in both SOX21 alleles. These 
three clones were used for the functional assays shown in Figure 6. (D) Projection of WT and 
SOX21-KO line data into PC1 and PC2 of days 2, 4, and 6 data (Figure 2B) reveals delayed 
neurectodermal differentiation in NSB and accelerated early mesendodermal differentiation 
under BMP4 D2T in SOX21-KO compared to WT. (E) SOX21 regulates transition from 
pluripotency to neurectoderm. NANOG expression was induced while SOX1 expression was 
reduced in SOX21-KO cells compared to WT on day 6 in SR and NSB conditions. *, Comparison 
between WT and SOX21-KO (p<0.05).  
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FIGURE S7. CELL LINE VARIATION IN NEURAL FATE TRAJECTORIES, RELATED TO FIGURE 7.  
(A) Projection of the new 6 hiPSC forebrain neural differentiation RNAseq data into PC1 and PC2 
of days 2, 4, and 6 data (Figure 2B) demonstrates the generality of differentiation dynamics 
defined by early differentiation data and further progress in neural fate trajectory. (B) 
Permutation analysis demonstrates the statistical significance of the magnitude of the donor-
specific transcriptional signatures in the corresponding donor’s adult brain tissue. The 2053 
donor-specific signatures, but not the 2053-6 replicate-specific signature was significantly 
enriched in the corresponding adult brain tissue. The wider distribution of the original projection 
values (solid line) compared to the permuted projection values (dashed line) indicates that the 
expression of the gene subset in the cell line-specific transcriptional signatures is more variable 
across individuals than randomly selected gene subset. (C) Differential SOX21 levels in SA01, i04 
and two 2053 lines. *, Comparison between 2053-2 and 2053-6 (p<0.05). (D) Two replicate lines 
from donor 2053 show differential responsiveness to RA. Number of HOXB1 expressing cells on 
day 8 in response to varying doses of RA in SA01, i04 and two 2053 lines. *, Comparison between 
2053-2 and 2053-6 (p<0.05). (E) Heatmap showing expression levels of neural precursor- and 
neuron-related genes that are highly represented in PC1 demonstrates transition from neural 
precursors to neurons in all 6 hiPSC lines during forebrain neural differentiation. (F) Heatmap 
showing expression levels of dorsal and ventral fate specification-related genes that are highly 
represented in PC3 demonstrates distinct brain regional biases dominated by each line. (G) 30 
selected genes among top 50 genes most strongly contributing to the GWCoGAPS-III P3 (left) and 
P15 (right) shown in Figure 7D. Well-known dorsal (green) and ventral (red) fate specification-
related genes are highlighted in colors. (H) Genes involved in cortical hem are highly expressed 
in the lines with dorsal lineage bias at day 8. (i) GWCoGAPS-III P2 reveals distinct dorsal to 
ventral trajectories between the lines at day 8 (top). Projection of primate cortex data (Bakken et 
al., 2016) into P2 distinguished cortical hem samples from dorsal pallium ventricular zone (VZ) 
and ganglionic eminence VZ samples (bottom). (ii) 30 selected genes among top 100 genes most 
strongly contributing to the GWCoGAPS-III P2. (I) Gene expression (RPKM) of FGF8 and 
LMX1A during the forebrain neural differentiation in 6 lines. p=1.5e-29 in DESeq2 analysis of 
differential LMX1A expression on day 8. p=1.2e-25 in DESeq2 analysis of differential FGF8 
expression on day 8.   
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Supplementary Experimental Procedures  
 
Human pluripotent stem cell (hPSC) culture and differentiation 

Single cell-based monolayer culture of hPSC in feeder-free condition was done following the 

previously established protocol (Chen et al., 2012).  The hPSCs were dissociated to single cells 

with accutase (A11105, Life Technologies), plated at a density of 1 X 105 cells/cm2 in a Matrigel 

(354277, BD)-coated plate and cultured with mTeSR1 (05850, Stem Cell Technology). Cells were 

plated in medium containing 5 �M Y27632, ROCK inhibitor (Y0503, Sigma-Aldrich) to increase 

cell survival upon dissociation. ROCK inhibitor was removed from the medium at 24 hours after 

plating and cells were cultured for another 4 days before next passage. For differentiation, cells 

were plated at a density of 18 X 103 cells/cm2 in a Matrigel-coated plate and Noggin (500 ng/ml, 

719-NG, R&D Systems) and SB431542 (2 �M, S4317, Sigma-Aldrich) were added to mTeSR1 

medium for neurectodermal differentiation while BMP4 (100 ng/ml, 314-BP, R&D Systems) was 

added for mesendodermal differentiation upon ROCK inhibitor removal and cultured for 6 days. 

For accelerated neurectodermal differentiation to check the expression patterns of the genes 

defined by dynamic CoGAPS patterns, cells were cultured with Aggrewell medium (05893, Stem 

Cell Technology) for 2 days after ROCK inhibitor removal and then cultured with N2B27 

medium supplemented with LDN193189 (100 nM, 04-0074, Stemgent) and SB431542 (2 �M, 

S4317, Sigma-Aldrich) for another 4 days. For posterior neural differentiation, retinoic acid 

(R2625, Sigma-Aldrich) was added on day 4 in the accelerated neurectodermal differentiation 

protocol to induce the specification toward neural crest and posterior neurectoderm. For the 

further differentiation to spinal neurons, cells were cultured with Neurobasal medium (21103-

049, Life Technologies) supplemented with bovine Insulin (25 �g/ml, I6634, Sigma-Aldrich), B27 

(17504-044, Life Technologies), recombinant human BDNF (10 ng/ml, 248-BD, R&D Systems) and 

recombinant human NT-3 (10 ng/ml, 267-N3, R&D Systems) for another 20 days. For the 

forebrain neural differentiation, cells were differentiated as previously described (Maroof et al., 

2013); cells were cultured in N2B27 medium supplemented with XAV939 (2 �M, Stemgent), 

LDN193189 (100 nM) and SB431542 (10 �M) for 12 days and the differentiation medium was 

switched to Neurobasal medium supplemented with B27 at day 17 and cells were further 

cultured until day 32.  
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Generation of human induced pluripotent stem cell (hiPSC) lines 

The hiPSC line i04, i07 and i13 (NIH-i4, NIH-i7, NIH-i13) have been reported previously (Mallon 

et al., 2013). The hiPSC lines reprogrammed with synthetic mRNAs were generated using mRNA 

reprogramming kit (00-0071, Stemgent) and microRNA Booster kit (00-0073, Stemgent) with 

modifications. Human fibroblasts (Donor 2075, 2053, and 2063) were seeded at 5 X 103 cells/cm2 in 

a Matrigel-coated plate and cultured with DMEM medium supplemented with 10% FBS (Life 

Technologies) and 2 mM L-glutamine. After 24 hours (day 1), the medium was changed to 

Pluriton human NUFF conditioned media with 300 ng/ml B18R protein. On day 1 and 5, the 

microRNA booster kit was used with the StemFect RNA transfection reagent kit (00-0069, 

Stemgent) to enhance reprogramming. On day 2-12, the OSKML RNAs were transfected. The 

mRNA reprogramming process was performed at 37°C in 5% O2
 and CO2 incubator. 

  

Knockdown and overexpression of SOX21 

Silencing endogenous SOX21 expression was performed by siRNA transfection using 

DharmaFECT 1 reagent (T-2001-02, Thermo Scientific). Cells were transfected with non-targeting 

negative control siRNA (#4390843, Life Technologies) or siRNAs targeting SOX21 (sc-38433, 

Santa Cruz Biotechnology) at a final concentration of 50 nM in mTeSR1 medium for 4 days after 

ROCK inhibitor removal. Human SOX21 synthetic mRNA was custom produced by Stemgent. 

Transfection was performed using the StemFect RNA transfection reagent kit at a final 

concentration of 0.5 �g/ml for 24 hours after ROCK inhibitor removal. 

 

Generation of CRISPR/Cas9 mediated SOX21-KO human embryonic stem cell (hESC) line 

The SOX21-KO hESC lines were generated by CRISPR/Cas9 mediated genome deletion system. 

SOX21 specific gRNAs were designed using the CRISPR Design Tool, Optimized CRISPR Design 

- MIT for Sox21NHEJ4 (http://crispr.mit.edu/) (Ran et al., 2013) and CHOPCHOP for 

Sox21NHEJ5 (https://chopchop.rc.fas.harvard.edu/) (Montague et al., 2014). The 

oligonucleotides (CACCGCGGGCTCAGCGGCGCAAGA –top for Sox21NHEJ4; 

AAACTCTTGCGCCGCTGAGCCCGC –bottom for Sox21NHEJ4; 
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CACCGGGTGTGGTCGCGGGCTCAG –top for Sox21NHEJ5; 

AAACCTGAGCCCGCGACCACACCC –bottom for Sox21NHEJ5) were cloned into 

pSpCas9(BB)-2A-Puro (px459; Addgene) and designated the plasmid as pX459-Sox21NHEJ4 and 

pX459-Sox21NHEJ5. All oligonucleotides were synthesized by Integrated DNA Technologies. 

SA01 hESCs were transfected with 2.5 �g  pX459-Sox21NHEJ4 plasmid or pX459-Sox21NHEJ5 

using DNA-In Stem (MTI-Global stem, gifted from Dr. Jessee). Transfected cells were dissociated 

and plated into 10 cm culture dish. After 48 hours of 0.5 �g/ml puromycin selection, hESC 

colonies were maintained for 10 days. Individual colonies were isolated and clonally expanded. 

Genomic DNA was isolated from each hESC clonal line using Wizard Genomic DNA Purification 

Kit (Promega). The genomic region surrounding the CRISPR target site for SOX21 was amplified 

by PCR (KOD Xtreme Hot Start DNA Polymerase; EMD Millipore), and products were treated 

with SURVEYOR nuclease (SURVEYOR Mutation Detection Kit for Standard Gel Electrophoresis, 

Transgenomic) to detect CRISPR/Cas9 -induced indel mutations. The PCR products were cloned 

into pGEM® -T Easy Vector (Promega) and sequenced to confirm the genotypes. Knockout 

validation of SOX21 protein was performed by immunostaining. 

 

Immunofluorescence 

Cells were fixed with 4% paraformaldehyde for 10 min and permeabilized for 40 min using 0.1% 

Triton X-100 (Sigma-Aldrich) in PBS. Subsequently, cells were blocked with 10% donkey serum 

(Sigma-Aldrich) and incubated with primary antibodies overnight. Following primary antibodies 

and dilutions were used: Antibodies for CK14 (ab7800, 1:200), HOXB4 (ab133621, 1:400), HOXB9 

(ab66765, 1:400) and WNT1 (ab85060, 1:200) were from Abcam. Antibody for CDX2 (AM392) was 

from Biogenex. Antibodies for p-SMAD1/5 (9516, 1:200) and p-SMAD2/3 (8828, 1:200) were from 

Cell Signaling Technology. Antibodies for PAX2 (PRB-276P, 1:400), PAX6 (PRB-278P, 1:500), and 

TUJ1 (PRB-435P, 1:1000) were from BioLegend. Antibody for Engrailed-1 was from 

Developmental Studies Hybridoma Bank. Antibody for SOX3 (GT15119, 1:200) was from 

Neuromics. Antibodies for BRACHYURY (AF2085, 1:500), GATA3 (MAB6330, 1:200), GATA4 

(AF2606, 1:400), GBX2 (AF4638, 1:200), HOXB1 (AF6318, 1:200), ID1 (AF4377, 1:200), ISLET1 

(AF1837, 1:200), MMP9 (AF911, 1:200), NANOG (AF1997, 1:200), OCT4A (MAB17591, 1:200), 
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OLIG2 (AF2418, 1:200), OTX2 (AF1979, 1:200), PAX6 (AF8150, 1:200), PHOX2B (AF4940, 1:200), 

SOX1 (AF3369, 1:400), SOX17 (AF1924, 1:500), SOX2 (AF2018, MAB2018, 1:200), SOX21 (AF3538, 

1:200), and TUJ1 (MAB1195, 1:400) were from R&D Systems. Antibody for NANOG was from 

Reprocell. Antibodies for HES3 (sc-323948, 1:200), HES5 (sc-13859, 1:200) and LMX1A (sc-54273) 

were from Santa Cruz Biotechnology. Secondary antibody incubation was performed with Alexa 

flour conjugated antibodies at dilution of 1:400 (Life Technologies). For direct immunostaining, 

primary antibodies were conjugated using Alexa fluor monoclonal antibody labeling kits 

(A20181, A20184, A20186, Life Technologies). Nuclei were counterstained with DAPI (Life 

Technologies). 

 

High-content analysis of colony morphology 

Images were acquired with the Operetta (Perkin Elmer), analyzed in batch mode with custom 

building blocks on a Columbus server (Perkin Elmer) and visualized with Spotfire (Perkin 

Elmer). Colony morphology analysis (‘distance from the edge’ measurement) was achieved using 

a custom Acapella script (Perkin Elmer) run in Columbus with the following commands; 1) stitch 

a montage from 3x3 user-defined contiguous overlapping fields captured with the 20x objective, 

2) segment and binarize DAPI signal from individual nuclei to create nuclear objects, 3) segment 

and binarize DAPI signal from the cytoplasm surrounding each nucleus to create cytoplasmic 

objects (note that hPSCs show strong blue fluorescence arise from sequestration of retinyl esters 

in cytoplasmic lipid bodies (Muthusamy et al., 2014), 4) dilate nuclear objects to eliminate gaps 

between neighboring objects, 5) create super objects by filling holes containing less than 30 pixels, 

6) segment super objects, 7) create a perimeter line at the edge of each super object, 8) calculate 

the minimum distance between the centroid of each nucleus and the closest super object 

perimeter, 9) report fluorescence signal from nucleus and cytoplasm for each object. For each cell 

this script reports nuclear and cytoplasmic signals for all channels and a single measure of 

minimum distance to the closest perimeter of the epithelium. Using data visualization in Spotfire, 

median fluorescence signals from all cells within 10 �m was plotted corresponding to distance 

from an edge of epithelium. 
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Quantitative RT-PCR 

Reverse transcription was performed using SuperScript III Reverse Transcriptase (Life 

Technologies). Quantitative RT-PCR was performed using Taqman gene expression assays (Life 

Technologies). Following Taqman probes were used: NANOG (Hs02387400_g1), PAX6 

(Hs00240871_m1), and SOX1 (Hs01057642_s1). Relative RNA levels were calculated using the 

∆∆Ct method with human GAPDH as reference gene. 

 

RNAseq library preparation 

Total RNA was extracted using mirVana kit (Ambion) according to manufacturer’s protocol. 

RNA quality control was performed using the Agilent 2100 Bioanalyzer System. RNAseq 

libraries were constructed using Illumina mRNA sequencing sample Prep Kit (for Poly-A 

libraries) or TruSeq Stranded Total RNA RiboZero sample Prep Kit (for strand-specific libraries) 

following the manufacturer’s protocol. Briefly, poly-A containing mRNA molecules were 

purified or ribosomal RNAs were removed using RiboZero beads from ~ 800 ng DNase treated 

total RNA. Following purification, the resulting RNA was fragmented into small pieces using 

divalent cations under elevated temperature at 94°C for 2 min. Under this condition, the range of 

the fragment length obtained was 130-290 bp, with a median length of 185 bp. Reverse 

transcriptase and random primers were used to copy the cleaved RNA fragments into first strand 

cDNA. The second strand cDNA was synthesized using DNA Polymerase I and RNase H. These 

cDNA fragments went through an end repair process using T4 DNA polymerase, T4 PNK and 

Klenow DNA polymerase, the addition of a single ‘A’ base using Klenow exo (3' to 5' exo minus) 

and the ligation of Illumina PE adapters using T4 DNA Ligase. An index was inserted into 

Illumina adapters so that multiple samples can be sequenced in one lane of 8-lane flow cell if 

necessary. The concentration of RNA was measured by Qubit (Life Technologies). Quality of 

RNAseq library was measured by LabChipGX (Caliper) using HT DNA 1K/12K/HiSens 

Labchip. The final cDNA libraries were sequenced using HiSeq 2000 (for samples with Poly-A 

library preparation) or HiSeq 3000 (for samples with RiboZero library preparation) for high-

throughput DNA sequencing. 
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RNAseq data processing 

After sequencing run the Illumina Real Time Analysis (RTA) module was used to perform image 

analysis, base calling, and the BCL Converter (CASAVA v1.8.2) were followed to generate 

FASTQ files which contain the sequence reads. The current sequencing depth is over 80 million 

(40 million paired-end) mappable sequencing reads (Table S1). Read-level Q/C was performed 

by FastQC (v0.10.1). Pair-end reads of cDNA sequences are aligned back to the human genome 

(UCSC hg19 from Illumina iGenome) by the spliced read mapper TopHat (v2.0.4) with default 

option with “--mate-innder-dist 160” based on known transcripts of Ensembl Build GRCh37.75. 

For stranded RiboZero samples, TopHat used “--library-type fr-firststrand” option. The 

alignment statistics and Q/C was achieved by samtools (v0.1.18) and RSeQC (v2.3.5) to calculate 

quality control metrics on the resulting aligned reads, which provides useful information on 

mappability, uniformity of gene body coverage, insert length distributions and junction 

annotation, respectively. To achieve gene-level expression profile, the properly paired and 

mapped reads are achieved by “samtools sort –n” option, and these reads are counted by htseq-

count v0.5.3 (with intersection-strict mode and stranded option for RiboZero samples) according 

to gene annotation (Illumina iGenome) and RPKM is calculated. This provides 23,368 gene-level 

expression profiles. 

 

Statistics for SOX21 protein level 

To determine the effect of cell line of origin on nuclear SOX21 protein levels in Figure 2A, we 

used a mixed model comparing the mean expression levels across cell lines while accounting for 

the correlation of expression levels within replicate experiments (a total of 5 independent growth 

experiments were conducted) with a random intercept, implemented in R using the lme4 library 

and the lmer() function: expression~ as.factor (line)*condition*day+(1| replicate). To specifically 

test the effect of line of origin, this model was compared to a second model with no line effect, 

using anova().  
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Bioinformatic analyses 

Principle component analysis was done using the prcomp() function in R. Agglomerative 

hierarchical clustering of genes using gene-level RPKM from RNAseq data was performed using 

hclust() and cutree() with correlational distance (dist=1-r) in the R statistical language. Genome-

wide CoGAPS Analysis in Parallel Sets (GWCoGAPS) was run using default parameters as 

previously described2,62,86,87, for a range of k patterns  (k=22 selected) and uncertainty as 10% of the 

data. Briefly, whole transcriptomic data was parallelized into seven sets. GWCoGAPS 

decomposes a matrix of experimental observations, D—here, log2 RNAseq RPKMs—with genes 

as rows and samples as columns, into two matrices, by the following equation. 

D ~ N(AP,Σ)       (1) 

Where, A is the amplitude matrix indicating the strength of involvement of a given gene in each 

pattern, P is the pattern matrix defining relationships (i.e. patterns) between samples. N and Σ 

are both functions of each element of AP and represent the Normal distribution and the standard 

deviation, respectively. Projection of principal components and GWCoGAPS gene weights 

defines patterns of relationships between samples in a new data associated with the gene 

expression signatures of the patterns from the primary data.  These were achieved using the 

default projectR function in the projectR package as previously described (projectR at: 

https://github.com/genesofeve). Enrichment was calculated via either the calcCoGAPSStat 

function in the CoGAPS Bioconductor package or the geneSetTest function in the limma 

Bioconductor package in R. ANOVAs were used to assess the association of each GWCoGAPS 

pattern with treatment, time, and cell line of origin in Figure 3A, using lm() and summary() in R: 

lm(pattern~treatment*day+line).  
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