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Abstract 

There has been a sustained research interest in the unique reactivities of ultra-small metal 

and metal oxide clusters. Numerous studies have highlighted the capability of the cluster 

deposition method to explore the catalytic reactivity of ultra-small clusters with different 

sizes, stoichiometries, and substrates. In this thesis, two beam line coupled surface 

analytical apparatus are introduced. The newly constructed one is an upgraded version of 

the previous one with better mass selection capability and improved geometries for 

combined temperature-programmed desorption (TPD) and X-ray photoelectron 

spectroscopy (XPS) analysis. Two combined TPD and XPS studies, which were performed 

on the previous apparatus, are presented, including ligation and decomposition of 1,6-

hexanedithiol, and decomposition of dimethyl methylphosphonate (DMMP) by size 

selected copper and copper oxide clusters. Several crucial troubleshooting processes for 

the new apparatus are discussed, and some preliminary experimental results are presented.  
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1. Introduction 

1.1 Background 

Exploring and understanding the catalytic reactivities of small metal clusters is of great 

significance not only in academia but also in industry. Small metal clusters, which have high 

surface to volume ratios and a high percentage of low-coordinated metal atoms on the surface, have 

unique physical and chemical properties that are distinct from their macroscopic counterparts. No 

better example is the unique activities of small gold nanoclusters, which are able to catalyze a range 

of oxidation reactions, whereas bulk gold is inert. Although the origin of the activities of small gold 

nanoclusters together with the size effects of other metal clusters remain an area of intense 

experimental and theoretical study, most of the explanations essentially rely on the electronic 

properties and high density of low coordinated sites, which are unique to very small clusters. These 

studies have maintained a sustained interest in exploring the unique properties of small metal, as 

well as metal containing (e.g. metal oxide, metal carbide), clusters for catalytic applications. 

In this prospective, it is of great significance that the number of atoms within the deposited 

clusters is precisely known during the preparation of model supported clusters. Numerous studies 

have highlighted the ability of the cluster deposition method to explore the reactivity of ultra-small 

clusters with different sizes, contents, and substrates. Pioneering work on size selected Aun and Ptn 

clusters deposited on a Si(100) wafer by the Exxon group marked the emergence of this cutting-

edge research field.1 From then on, a lot of studies have focused on size-selected noble metals such 

as Ptn,2-5 Pdn,6-7 and Aun,
8-9

 and a wide range of catalytic reactions have been investigated such as 

CO oxidation,2, 10-14 dehydrogenation,4, 15 methanol synthesis16 and so on. 

In this work, all the supported clusters sample are made through the cluster deposition method. 

Depending on the experimental conditions, the reactants are usually introduced into the system 

through different methods. The reactivities of the as-deposited clusters are analyzed by combined 
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TPD and XPS measurements. By varying the size and content of the clusters, as well as other 

experimental conditions, such as dosing amounts, oxygen conditions, and temperatures, reaction 

mechanism insights can be obtained.   

1.2 Experimental 

The focus of this section is on the preparation of model supported cluster samples, in which 

the size, coverage and stoichiometry of deposited clusters are precisely controlled by gas phase 

cluster ion sources, ion beam transport, mass spectrometry, soft-landing and differential pumping 

techniques. This approach is especially effective in studying ultra-small clusters in the size range 

of 2-200 atoms (or < 2 nm), where the physical and electronic structures evolve quickly with 

increasing sizes. Once a supported size-selected clusters sample has been prepared, various surface 

sensitive characterization techniques can then be applied. 

1.2.1 Cluster Ion Sources 

The cluster ion source is one of the most important components of a cluster deposition 

surface analytical apparatus. It is crucial to have a cluster ion source with great tunability to 

optimize the clusters ions of interest, along with sufficient ion intensity that can persist for a 

reasonable time period. Otherwise, the experiments after the deposition can be very hard to carry 

out consistently. There are three commonly used cluster ion sources namely, magnetron sputtering, 

laser vaporization and pulsed arc clusters ionization. Magnetron sputtering is the only ion source 

that has proven to work routinely thus far on the two apparatuses involved in this work. Some 

efforts have been made to install the other two sources physically into the source chamber, but a 

lot more work still needs to be done to make them fully functional. 

The basic idea of magnetron sputtering is shown in Figure 1.1. Strong electric and magnetic 

fields are utilized to confine charged plasma particles close to the surface of the sputter target. In a 
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magnetic field, electrons follow helical paths around magnetic field lines. In this way, gaseous 

neutrals can undergo more ionizing collisions near the target surface. The sputter gas is typically 

an inert gas such as argon. Collisions cause an electrostatic repulsion which ‘knock off’ electrons 

from the sputtering gas atoms, causing ionization. The positive sputter gas atoms can then be 

accelerated towards the negatively charged cathode, leading to high energy collisions with the 

surface of the target. As the target material is depleted, a "racetrack" sputtering profile appears on 

the surface of the target (Figure 1.2). 

 

Figure 1.1 Scheme of magnetron sputtering. 

 

Figure 1.2 Tungsten sputtering target with a clear "racetrack" sputtering profile. 
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1.2.2 Surface Characterization Methods 

Temperature-programmed desorption/reaction (TPD/R) 

TPD is the method of observing desorbed molecules from a surface when the surface 

temperature is increased. It is an important method for determination of kinetic and thermodynamic 

parameters of desorption processes.17 When surface reactions that occur during the desorption 

process are the main interest, it is also called TPR.18 

For a typical TPD/R experiment, the sample is heated with a temperature program β(t) = 

dT/dt, in which the temperature T is usually a linear function of the time t.  During the temperature 

ramp, the partial pressures of atoms and molecules evolving from the surface of the sample are 

measured by mass spectrometry.19 In surface science studies under UHV conditions, the samples 

are usually well-defined surfaces of single-crystalline samples20, thin films21, clusters4, or single 

atoms22 supported on well-defined surfaces. There is usually a dwell time when the sample is 

maintained at certain temperatures and reactants are dosed onto the sample. Mass spectrometry in 

these experiments usually involves a quadrupole mass spectrometer with high sensitivity and high 

data acquisition speed, often called a residual gas analyzer (RGA). The RGA consists of three 

components, (1) the ion source, (2) the actual quadrupole analyzer consisting of four cylindrical 

rods, and (3) the ion detector (electron multiplier). Ions are generated by electron impact ionization. 

Free electrons are formed by thermal emission from an electrically heated tungsten filament. The 

emitted electrons are accelerated by a potential difference of 70 V. 

Since most organic molecules display complex fragmentation patterns in their electron 

ionization mass spectra with significant signals for multiple m/e values, it is usually necessary to 

deconvolute the cracking patterns from the raw TPD data in order to identify the desorption peaks 

for each product. When studying a new system via TPD, the first thing that needs to be done is to 

identify the potential products to be followed.  This can be done by obtaining survey TPD data with 

https://en.wikipedia.org/wiki/Desorption
https://en.wikipedia.org/wiki/Molecule
https://en.wikipedia.org/wiki/Surface_science
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chemical intuition. The trial experiments on the earlier stage usually provides clues on what 

products may be forming in the TPD experiments.  On one hand, each TPD peak, with its unique 

shape and position, can represent the desorption of one product or it can be a combination of 

multiple products.  On the other hand, the same species may desorb in more than one temperature 

regime, and those peaks seen in different traces may also correspond to the same species.  Therefore, 

it is important to compare the peak shape and position of features among the traces of different m/e. 

If a peak for one m/e can be superimposed to another peak for a different m/e with a scaling factor, 

it is possible that both peaks correspond to the same species.  Comparison of the scaling factors to 

what have been reported in the literature using the same ionization energy can help identify the 

nature of that product. The confirmation of a compound usually requires at least two deconvoluted 

traces to follow each other with a scale factor comparable to what has been reported in the literature. 

Once all desorbing products have been identified, a narrower set of m/e values can be 

chosen to carry out the remaining of the TPD experiments in order to explore the effect of other 

parameters such as coverage, adsorption temperatures, physi-desorption temperatures and so on. 

For clusters deposition experiments on highly oriented pyrolytic graphite (HOPG), it is 

recommended that three background TPD experiments should be done in advance using the same 

experimental protocol: (a) without reactant or clusters; (b) without reactants but with clusters; (c) 

without clusters but with reactants. For (a) and (b), there is usually a rising background for common 

gases such as carbon monoxide, carbon dioxide, oxygen, and water. Sometimes, there may be very 

weak peaks for reactants or products in (b) experiment, indicating there may be some residual 

reactant remaining in the UHV system which needs to be removed by bake out, or some other 

residual contamination species.  For (c), one may see physi-desoprtion or chemi-desorption peaks 

from the substrate and the sample holder, which should coexist with other products’ peaks in the 

TPD experiment with both reactants and clusters. 
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Once consistent TPD results have been obtained, one can use it as the starting point of a 

‘story line’. The story line starts with the clusters of interest, the oxidation states, sizes, and 

stoichiometries of which can be varied in more TPD experiments for parallel story lines. For each 

cluster, variations in coverage and adsorption temperature, titration of surface species, as well as 

TPD experiments with probing molecules can be designed to gain more insights about the reaction 

mechanism. The fact that changes in adsorption temperatures can have great effects on TPD results 

has been well exemplified by CO oxidation experiments.10 Titration TPD experiments usually 

involve introducing another reactant to interact with the speculated surface intermediates before 

the temperature ramp. The effects that those titration molecules can have on the later on TPD results 

can help provide more insights about the reaction mechanism. For example, hydrogen atom titration 

is used to confirm that the rate of bipheny1 evolution above 300 K is determined by the rate of 

phenyl coupling as opposed to the rate of biphenyl desorption.23 A similar titration experiment has 

also been designed to support the proposed reaction mechanism in Chapter 2.24 Probe molecule 

TPD is usually used to analyze the surface binding sites or reactive sites. Common probing 

molecules include carbon monoxide25, oxygen26, methanol27-29, and so on. Additionally, isotopic 

labeling TPD experiments can also provide valuable insight into reaction pathways when materials 

are available.29-30 

X-ray photoelectron spectroscopy (XPS) 

XPS is a surface-sensitive quantitative spectroscopic technique based on the photoelectric 

effect that can identify the elements on the surface of a sample as well as their chemical state. XPS 

is accomplished by irradiating a sample with monoenergetic soft X-rays and analyzing the kinetic 

energies and intensity of the detected electrons. Mg Kα (1263.6 eV) or Al Kα (1486.6 eV) X-rays 

are usually used via a twin anode X-ray source. These photons interact with atoms, causing 

electrons to be emitted by the photoelectric effect.31 The emitted electrons have measured kinetic 

energies given by: 

https://en.wikipedia.org/wiki/Photoelectric_effect
https://en.wikipedia.org/wiki/Photoelectric_effect
https://en.wikipedia.org/wiki/Chemical_state
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Ekinetic = Ephoton – Ebinding - ϕs 

where Ephoton is the photo energy,  Ebinding is the binding energy of the atomic orbital from which the 

electron originates, ϕs is the spectrometer work funciton.31 Because each element has a unique set 

of core electron binding energies, XPS can be used to identify and determine the concentration of 

the elements on the surface. 

XPS is also very useful in analyzing the chemial state of an element since the changes in 

the chemial bonding of that element can cause changes in binding energy of a core electron of the 

element, which is also called chemical shift. Chemical shift can be altered by the electrostatic 

shielding of the nuclear charge from all other electrons in the atom including valence electrons, as 

well as removal or addition of electronic charges resulting from changes in oxidation states. 

For cluster deposition experiments, XPS can be applied to analyze the cleanliness of the 

substrates, the chemical compositions of the deposited clusters, the physiosorbed reactants, and the 

chemistry between the clusters and the reactants. XPS can also be applied after the sample is heated 

to certain temperatures to thermally induce reactions and desorption. Therefore, XPS and TPD can 

be applied synergetically in clusters deposition and surface analysis studies. 

For a new system (size-selected clusters of interest with certain reactants) to be studied, 

XPS is usually carried out first to verify the composition of the as-deposited clusters. It should be 

noted that size effects, clusters-support interactions, clusters agglomeration and aggregation 

mechanism can lead to shifts in binding energies and changes in the shape of spectra.32-34 Therefore, 

binding energies and spectra shape reported in the literature for macroscopic samples, which are 

usually done on single crystals35-36 or polycrystalline particles37-38, cannot be directly used for 

interpretation of the spectra. XPS should also be applied on multilayers of a reactant frozen on the 

substrate at cryogenic temperature, so that binding energies for molecular form of the reactant can 
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be obtained for comparison.39 Once major gaseous reaction products have been identified by TPD 

experiments, several critical temperatures can be decided to carry out temperature-dependent XPS. 

In short, the use of TPD and XPS together is a synergetic combination, providing chemical 

characterization of reaction products in gas phase as well as on the surface that result from thermally 

induced reactions between clusters and reactants. 

 

1.2.3 Apparatus Development 

This section explains firstly the old apparatus on which all the previous works were done. 

Then, the new apparatus is introduced briefly, with a focus on the major improvements over the 

old machine. More importantly, how these improvements can broaden our capabilities to study 

more supported size-selected clusters is explained. 

Previous Beam Line Couple Surface Apparatus 

As illustrated schematically in Figure 1.3, the previous apparatus consisted of a magnetron 

sputtering ion source, several vacuum chambers for differential pumping purposes, a magnetic 

sector for mass selection, a deposition chamber for sample preparation as well as TPD 

measurements, and an analysis chamber for in-situ or ex-situ XPS measurements. There was a 

horizontal transfer arm which could transfer the sample from the load-lock chamber into the 

deposition chamber, then further into the analysis chamber, and finally into the STM chamber. 
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Figure 1.3 Previous beam line coupled surface analytical apparatus. 

The magnetron setup consisted of a sputtering target placed in a magnetic field and biased to -

500V where a mixture of argon and helium was introduced. Argon was ionized to create argon 

cations, which sputtered the metal target to produce a plasma. The added helium served to cool and 

transport the cluster anions down the beamline. Metal oxide, metal carbide, and metal sulfide 

clusters could be generated by adding oxygen, methane, and hydrogen sulfide respectively together 

with helium and argon. The cluster anions were then electrostatically accelerated before entering a 

magnetic sector mass spectrometer (25o sector magnet with resolution of m/Δm = 20). By tuning 

the magnetic field strength, a beam of cluster anions was mass-selected and focused by ion optics 

into the deposition chamber, where they were soft-landed (<1eV per atom) onto a piece of freshly 

peeled and annealed HOPG. The resulting sample could be cooled down to approximately 100 K 

by liquid nitrogen (LN2) or heated up via resistive heating up to 800 K. The temperature of the 

sample was monitored by a K-type thermocouple spring loaded to the back of the HOPG.  
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Usually, it takes hours to prepare a sample due to the low ion intensity of the ion beam deposition 

method. However, reactants are usually introduced into the system within a relatively shorter time 

window. In fact, the reactant can be introduced into the system before, during40 or after16 a sample 

is made. In most studies on supported size-selected metal clusters, defect rich surfaces or metal 

oxide thin films that can interact strongly with the as-deposited metal clusters are chosen as 

substrates.41 This is because they can offer preferred metal cluster binding sites, effectively pinning 

the clusters to the surface and inhibiting agglomeration as well as aggregation.9, 42-43 It should be 

noted that in these studies, the reactants are generally introduced into the system after the sample 

preparation. However, in the previous studies done on the old apparatus, the inert and super flat 

HOPG surface was chosen to reduce cluster-substrate interactions. To also reduce the cluster-

cluster interactions and promote the cluster-reactant interactions, size-selected clusters were 

deposited into a frozen matrix of reactants (such as 1,6-hexanedithiol and DMMP) formed on the 

HOPG substrate at 100K. This method was originally inspired by the common experimental 

technique used in the matrix isolation infrared spectroscopy.44 Generally, noble gases such as argon 

are chosen to form a hosting matrix because of their inert nature as well as broad optical 

transparency. Using this matrix isolation technique, short lived, highly-reactive species can be 

trapped and analyzed by spectroscopic means.45-46 This method was later adopted to probe the 

activities of metals or metal oxides towards a reactive matrix.47-49 For instance, (MoO3)3 or (WO3)3 

clusters were deposited into a reactive matrix of ethanol to study the clusters’ dehydration and 

oxidation properties toward ethanol.50 In those previous studies, we adopted a similar idea by 

freezing a reactive matrix of 1,6-hexanedithiol (chapter 2) as well as DMMP (chapter 3) onto an 

inert HOPG substrate, and we denoted this method as the Liquid Nitrogen Matrix Deposition 

method (LNMD method). 
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Newly built apparatus 

The new apparatus was designed and constructed under the leadership of Dr. Zachary 

Hicks. All the details about the new apparatus were described in his thesis.51 There are several 

major improvements in the new apparatus (Figure 1.4). First, the source chamber is compatible 

with three different ion sources such as magnetron sputtering, laser vaporization and pulsed arc 

cluster ionization source (PACIS). Compared to the old apparatus, which had magnetron sputtering 

as the only ion source, the new apparatus has a broader research scope with its capability of 

generating various clusters via three different cluster ion sources.  

 

Figure 1.4 Scheme of the newly constructed apparatus. 

The second improvement is the mass selection method. On the previous apparatus, the 

whole beam line needed to be floated to 500 to 1500 V since the cluster anions need to be 

accelerated to a certain kinetic energy to pass the magnetic sector for mass selection purposes. For 

a certain lead voltage value, the magnetic sector needs to be calibrated by Aun
-. However, in the 

current set up, quadrupole mass spectrometry (QMS) serves as the mass selection tool. Therefore, 
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the cluster ions are guided through the whole beamline via quadrupole and octupole ion guides with 

relatively low kinetic energies. 

The QMS also has higher accuracy and resolution than the magnetic sector. For example, 

Figure 1.5 shows a typical mass spectrum from the previous apparatus. It is clear that the magnetic 

sector can only differentiate the number of tungsten atoms but not the number oxygen atoms. For 

lighter elements such as copper, the mass spectrum usually looks like a big blob with all the peaks 

blur together. As is shown in Figure 1.6, the QMS is able to resolve oxygen atoms and it is clear 

that overoxidized tungsten oxide clusters are being made in the magnetron source. 

 

Figure 1.5 Mass spectrum for tungsten oxide clusters taken on the previous apparatus via a magnetic sector. 



13 

 

 

Figure 1.6 Mass spectrum for tungsten oxide clusters taken on the new apparatus via a quadrupole mass filter. 

Another major improvement is the configuration of all the surface analytical equipment. In 

the previous apparatus, since the old TPD sample holder was not transferable, it was impossible to 

do in-situ XPS and LNMD TPD on the same sample. To mitigate that problem, TPD was carried 

out through the LNMD method using the TPD sample holder, and in-situ XPS was done by co-

deposition of the reactant (DMMP) at relatively higher partial pressure.40 However, in the new 

apparatus, the TPD and XPS are set up in the same chamber, therefore the TPD sample just needs 

to be transferred vertically to undergo all the measurements. Furthermore, the old transferable 

sample holder does not allow liquid nitrogen cooling, meaning that an XPS measurement could not 

be taken below room temperature. This problem can be overcome if the TPD holder can also be 

used for in-situ XPS as in the new apparatus. This improvement is very important because the 

reaction temperature is a decisive factor for the dominant reaction pathway. Specifically, XPS 

cannot be carried out on molecular DMMP on the previous apparatus since DMMP is usually 

chemically adsorbed or partially decomposed at room temperature. However, on the new apparatus, 

XPS for molecular DMMP can be taken at cryogenic temperatures when multilayers of DMMP are 

frozen on the HOPG substrate. In chapter 3, although almost all the data were acquired on the old 
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apparatus, the XPS spectrum for molecular DMMP (Figure 3.6) was obtained on the new apparatus, 

which provides a good binding energy reference for phosphorus. 

The sample cleaning process has also been made much easier on the new apparatus. Since 

the old TPD sample holder was not transferable, cleaning the HOPG substrate using scotch tape 

exfoliation required breaking vacuum and taking the whole manipulator out. This was the case 

because the old apparatus was not originally designed for TPD experiments. The RGA and the TPD 

sample holder were features added later on to the old apparatus. The new apparatus, however, was 

designed to carry out TPD experiments on a daily basis. Therefore, a differentially pumped sliding 

seal has been designed and installed between the surface analysis chamber and the load-lock 

chamber. The sample can be cleaned at the bottom in the load-lock chamber while the pressure in 

the analysis chamber can still be maintained at low 10-9 torr. More details about the slide seal are 

described elsewhere.51 Even though the original intention of adding the slide seal was great, its 

usage caused some unexpected issues later on. Those issues are discussed in chapter 4. 

 

2. Ligation and Decomposition of 1,6-Hexanedithiol on Size-

Selected Copper Clusters 

ABSTRACT: Ligation and decomposition of 1,6-hexanedithiol on copper clusters have been 

studied by means of temperature-programmed desorption (TPD) and X-ray photoelectron 

spectroscopy (XPS). Copper cluster anions were first made via magnetron sputtering, then size 

selected and soft landed into a frozen matrix of 1,6-hexandithiol on HOPG maintained at 100K. 

After warming up to 298K, a combination of TPD and XPS were performed to characterize the 

newly deposited sample. TPD data shed light upon the adsorption and decomposition pathways of 

1,6-hexanedithiol molecules on copper clusters. Based on the TPD data, two different binding 

motifs are proposed: the dangling motif is with one sulfur atom binding to a copper cluster, and the 

Reprinted with permission from {J. Phys. Chem. C 2018, 122, 4, 2173–2183}. Copyright {2018} American Chemical Society. 
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bidentate motif is with both sulfur atoms binding to a copper cluster.  Different decomposition 

products were observed for each binding motif. A series of hydrogen atom titration experiments 

were designed to provide further evidence for the proposed decomposition mechanism. XPS 

measurements at varied temperatures agree well with the TPD profile by confirming the formation 

of dithiol ligated copper clusters though Cu-S bond formation, and the decomposition of them via 

C-S bond scission. How well the dithiol ligand can protect the copper clusters from being oxidized 

is discussed and the ligand number per cluster is estimated. 
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2.1 Introduction 

Exploring and understanding the catalytic properties of ultra-small metal clusters are of 

great significance not only in academia but also in industry. Ultra-small metal clusters, which have 

high surface to volume ratios and a high percentage of low-coordinated metal atoms on the surface, 

have unique physical and chemical properties that are distinct from their macroscopic counterparts. 

Numerous studies have highlighted the ability of the cluster deposition method to explore the 

catalytic reactivity of ultra-small clusters with different sizes, contents, and substrates.41 Pioneering 

work on size selected Aun and Ptn clusters deposited on a Si(100) wafer by the Exxon group marked 

the emergence of this cutting-edge research field.1 From then on, a lot of studies have been focusing 

on size selected noble metals such as Ptn,5, 52 Pdn,6-7, 53 Agn,42, 54-55 and Aun
8-9, 13, 56. Copper, a readily 

available and less expensive catalyst, also served as a promising candidate in this field. For example, 

size-selected Cu4 clusters supported on Al2O3 thin films have demonstrated promising catalytic 

activity towards the activation of CO2 and its hydrogenation to methanol.16  

Atomic sulfur is well known to poison the surface of many catalysts.57-59 Adsorption studies 

of sulfur-containing molecules on different transition metal surfaces are of great interests to both 

catalytic and surface chemists.60 There have been comprehensive adsorption studies for 

alkanethiols, especially the simplest methanethiol, on different metal single crystal surfaces.61-67 

There have also been studies of longer carbon chain monothiols especially on Cu single crystal 

surfaces.68-69 However, studies on interactions between ultra-small copper clusters and alkanethiols 

using surface science techniques under ultra-high vacuum (UHV) are rare. Moreover, studies on 

bifunctional and longer carbon chain alkanethiols, such as 1,6-hexanedithiol, interacting with ultra-

small copper clusters are even rarer. 

Using inorganic synthesis and material science approaches, long alkanethiols, as well as 

complex thiol group containing organics, have been effectively used as capping agents for various 

nanoparticles.70-73 It is reasonable to expect that the alkanethiols may behave differently with copper 



17 

 

clusters in a wet chemistry solution phase than in a surface science UHV environment. Only 

recently, J. E. Whitten et. al., have carried out a comparison study between colloidal copper oxide 

particles and oxidized copper single crystal surfaces, exploring the adsorption of thiols and 

reduction of copper oxides.74 However, studies on the formation and decomposition of alkanethiol 

ligated copper clusters from a surface science perspective are still rare. 

In this study, we use the size-selected cluster deposition method to study the interactions 

between ultra-small copper clusters of desired size and 1,6-hexanedithiol molecules. 1,6-

hexanedithiol is chosen because of its bifunctional and six-membered carbon chain structure, which 

may result in unique adsorption and decomposition properties. In most studies on the catalytic 

properties of size-selected metal clusters, defect rich surfaces or metal oxide thin films that can 

interact strongly with the as-deposited metal clusters are chosen as substrates, because they can 

offer preferred metal cluster binding sites, effectively pinning the clusters to the surface and 

inhibiting agglomeration.9, 41-43 However, in this study, the inert and super flat HOPG surface is 

chosen to reduce cluster-substrate interactions. To also reduce the cluster-cluster interactions and 

promote the cluster-ligand interactions, size-selected copper clusters are deposited into a frozen 

matrix of 1,6-hexanedithiol formed on the HOPG substrate maintained at 100K. This method is 

originally inspired by the common experimental technique used in the matrix isolation infrared 

spectroscopy.75 Generally, noble gases such as argon are chosen to form a hosting matrix because 

of their inert nature and also broad optical transparency. Using this matrix isolation technique, short 

lived, highly-reactive species can be trapped and analyzed by spectroscopic means.45-46, 76 This 

method was later adopted to probe the activities of metals or metal oxides towards a reactive 

matrix.47-49, 77-78 For instance, (MoO3)3 or (WO3)3 clusters were deposited into a reactive matrix of 

ethanol to study the clusters’ dehydration and oxidation properties toward ethanol.50 A graphene 

thin film over Pt(111) was chosen as an inert substrate not only for its unreactivity toward alcohols, 

but also to minimize the substrate’s effects on the acidic and redox properties of those metal oxide 
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clusters.50 In this study, we adopt a similar idea by freezing a reactive matrix of 1,6-hexanedithiol 

onto an inert HOPG substrate. After deposition, the HOPG substrate was warmed up to 298K, when 

dithiol ligated copper clusters were believed to form. Then, temperature-programed desorption 

(TPD) and X-ray photoelectron spectroscopy (XPS) measurements were carried out to characterize 

and understand the adsorption and decomposition properties of 1,6-hexanedithiol on copper 

clusters. 

2.2 Experimental Methods 

Copper clusters Cun
- were prepared as negative anions by a magnetron sputtering source. 

After acceleration, mass selection and deceleration, they were then deposited (soft-landed) onto a 

highly-ordered pyrolytic graphite (HOPG, Bucker, ZYB grade, 1.2·1.2 mm2, 2 mm thickness) 

substrate in ultra-high vacuum (base pressure 1·10-9 torr). The whole setup has been described in 

detail elsewhere.79 

The magnetron setup consisted of a copper sputtering target (99.99%) placed in a magnetic 

field and biased to -500V when a mixture of argon (Airgas, 99.999%) and helium (Airgas, 99.999%) 

was introduced. The argon gas was ionized to create argon cations, which sputtered the metal target 

to produce a plasma. The added helium served to cool and transport the cluster anions down the 

beamline, where they were then electrostatically accelerated before entering a magnetic sector mass 

spectrometer (25o sector magnet with resolution of m/Δm = 20). By tuning the magnetic field 

strength, a beam of Cun
- (for Cu100

-, n=100±5) cluster anions was mass-selected and focused by ion 

optics into the deposition chamber, where they were soft-landed (<1eV) onto a freshly peeled and 

annealed HOPG surface. The resulting sample could be cooled down to approximately 100K by 

liquid nitrogen (LN2) or heated via resistive heating to 720K by passing current through a piece of 

HOPG. The temperature of the sample was monitored by a K-type thermocouple spring loaded to 

the back of the HOPG.  
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Dithiol ligated copper clusters were made via the Liquid Nitrogen Matrix Deposition 

method (LNMD method). HOPG samples were cleaved in air right before being transported into 

the vacuum chamber and then annealed at 720K for 30 minutes before use. 1,6-hexanedithiol(96%) 

purchased from Sigma Aldrich was degassed by three freeze-pump-thaw cycles before being 

introduced into the vacuum chamber through a UHV compatible leak valve. For the LNMD method, 

the dithiol was dosed into the chamber when the HOPG had already been cooled down to and held 

at 100K, forming multilayers on the HOPG surface. The dose of the dithiol was monitored by a 

pressure gauge and a residual gas analyzer (RGA) (Hiden HAL/3F PIC quadrupole mass 

spectrometer (QMS)). And the dose amount was given in Langmuir (L, 10-6 torr·s). After dosing, 

size selected copper clusters were deposited into that pre-made frozen dithiol matrix. During 

deposition, the deposition current was monitored by a picoammeter, and the coverage of the as-

deposited clusters was given in current (ampere, A) integrated over time (second, s). For each 

deposition, the average deposition current was about 70 pA, corresponding to an average deposition 

speed of 4·108 clusters per second; and the final deposition amount was controlled to be 1·10-6 A·s, 

corresponding to the total amount of 6·1012 clusters on a 1.2·1.2 centimeter square substrate. After 

deposition, the sample was ramped up from 100K to 298K by resistive heating.  

Once warmed up to 298K when the dithiol ligated copper clusters were believed to have 

formed, temperature-programmed desorption (TPD) was used to characterize dithiol 

decomposition properties on copper clusters. Desorption products were detected and identified by 

a QMS which was positioned normal to the plane of the substrate at a distance about 5 mm, also 

the entrance of the QMS is covered by a glass shroud with a 6 mm diameter hole cut in the center, 

both of which can help to minimize the contribution from background gases and maximize the 

sensitivity toward the species desorbing directly from the substrate. For the custom TPD sample 

holder, two small pieces of tantalum foil are wrapped on two copper power rods respectively for 

resistive heating purpose, and a piece of HOPG is held between them.  
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The as-prepared dithiol ligated copper clusters were also characterized via ex-situ XPS 

with non-monochromatic Mg Kα-rays (1253.6 eV), and the kinetic energies of ejected electrons 

were analyzed via a high energy hemispherical analyzer. To accomplish this, the sample needed to 

be taken out of the deposition chamber and then transferred into an adjacent chamber dedicated to 

XPS. For XPS measurements at varied temperature, the sample was heated in-situ via e-beam 

heating to the desired temperatures and then cooled back down to about 300K, at which XPS spectra 

were recorded. All the XPS spectra were calibrated by graphite carbon 1s at 284.5eV.80 Sulfur XPS 

spectra were numerically fitted with the Gaussian broadened Lorentzian function (LF(1,1,25,280)) 

after a Shirley background subtraction in CasaXPS (CasaXPS, Casa Software Ltd.). S 2p spin-

orbital splitting doublets composed of two components separated by 1.18eV with an integrated area 

ratio of 1:2.65  Full width at half maximum (FWHM) were controlled in a range of 3.5-4 eV 

depending on the surface species when using a pass energy of 178.95 eV. For each oxidation state, 

same binding energy range constrains, intensity ratio and FWHM were set for spectra obtained 

under different annealing temperatures. 

2.3 Results and Discussion 

2.3.1   1,6-hexanedithiol Reaction Pathway on Copper Clusters 

The reaction pathways of 1,6-hexandithiol on copper clusters were studied via TPD. HOPG 

has been used as an inert carbon substrate to study the desorption energetics of alkane derivatives 

as well as the catalytic reactivity of clusters through TPD.81-83 There are also STM and AFM studies 

on self-assembly of organic molecules using HOPG as an inert substrate.84 However, there are not 

many TPD studies of alkanethiols on HOPG. The LNMD method requires formation of a dithiol 

matrix; however, most of the dithiols are just physi-adsorbed on the HOPG surface due to the low 

intensity of the cluster deposition. Therefore, the physi-desorption properties of 1,6-hexanedithiol 

on HOPG without copper clusters was studied via TPD initially. 
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Figure 2.1 shows the TPD profile of 1,6-hexandithiol desorption from HOPG without copper 

clusters. Figure 2.1 (a) shows the TPD spectra of intact dithiol (m/e=150) with varied dose amount. 

For a dose larger than 0.2L, there are apparently three features, each of which is associated with 

dithiol molecules desorbing from a different surface layer. At the lowest temperature (230K), there 

is an intense, sharp peak due to multilayers’ desorption; a broad peak lies in a slightly higher 

temperature range (~260K) representing the monolayer; also note that there is a less intensive 

shoulder possibly coming from the sample holder at a slightly higher temperature (~310K). As the 

dose amount decreases, the first two peaks shift to lower temperatures with lower intensity, 

suggesting a 0th order desorption indicative of physi-adsorption. Also note that even when the dose 

is decreased to 0.05L, the multilayer peak still exists and that for increasing dose amounts, the 

monolayer peak does not seem to be saturated when the multilayer peak is already very strong. 

These two features suggest that the adsorbates may grow according to a Volmer-Weber mechanism 

rather than a layer-by-layer mode.85 In other words, multilayers tend to form when a monolayer 

hasn’t formed completely. The similar mechanism has also been proposed to explain acetone 

adsorption on HOPG based on experimental and theoretical investigations.86 
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Figure 2.1 TPD profile of 1,6-hexanedithiol physi-desorption on HOPG substrate. (a) TPD scans of molecular 

dithiol (m/e=150) as a function of dose amount; (b) Composite TPD scans of 0.5L dose: molecular dithiol 

(m/e=150), monothiol (m/e=116), hexane (m/e=86) and cyclohexane (m/e=84); (c) ■: RGA intensity of the 

monothiol plotted to that of the molecular dithiol, red line is the linear fitting (slope: 2.97±0.01, intercept: 

1380±80, R2: 0.996);  (d) ■: RGA intensity of hexane plotted to that of the monothiol and the corresponding 

linear fitting (slope: 0.0422±0.0005, intercept: 553±11, R2: 0.96 ) ▲:RGA intensity of cyclohexane plotted 

to that of the monothiol and the corresponding linear fitting (slope: 0.0648±0.0006, intercept: 866±14, R2: 

0.97) 

The dose amount was maintained at 0.5L for the rest of the TPD experiments for better 

consistency. Figure 2.1 (b) shows a composite TPD scan collected from a dose of 0.5L. Monothiol 

of m/e=116 is one of the major fragments of 1,6-hexanedithiol through desulfurization, while 



23 

 

hexane (m/e=86) and cyclohexane (m/e=84) are not the major fragments based on the relatively 

low RGA intensity. Linear fittings shown in Figure 2.1 (c) and (d) by RGA intensity of the 

fragments versus that of the intact dithiol reveal that the fragmentation pattern remains constant for 

the whole desorption process, indicating that neither the HOPG substrate nor the sample holder 

causes obvious decomposition of the dithiol molecules. 

For an experimental TPD scan, data cannot be collected from 100K all the way to 700K, 

because the intensive physi-desorption signal will overwhelm the desorption peaks caused by the 

copper clusters. A compromising solution is to ramp up to 298K first, then remain there for 30 min 

to remove any physi-absorbed dithiol, then collect the TPD spectra from 298K to 700K. As is 

shown in Figure 2.2 (a), it is identified that monothiol (m/e=116), hexane (m/e=86) and 

cyclohexane (m/e=84) are the major volatile products that desorb upon heating. There are three 

desorption temperature regions:  a low temperature region in the 350-420K range, a medium 

temperature region in the 460-540K range, and a high temperature region in the 540-600K range. 

In each region, there is a different combination of the three desorption products. It should be 

mentioned that before each deposition, a background scan was carried out to make sure that there 

was no obvious peak in the 350-600K temperature region, and also to obtain the fragmentation 

ratios which were later on used to subtract the contributions due to ionization fragmentation of the 

intact dithiol molecules.  
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Figure 2.2 Composite TPD of dithiol ligated clusters under different oxygen conditions: (a) Cu100 without 

dosing oxygen; (b) Cu100 with 3000L oxygen dosing; (c) Cu100 with 90000L oxygen dosing; (d) (CuO)80 

without dosing oxygen. 

In the low temperature region, hexane is the major desorption product. There is also a rising 

terrace for the monothiol, part of which may be due to a rising background. However, the 

cyclohexane peak is too weak to be discernable from the background. In the medium temperature 

range, all three decomposition products are observed, among which cyclohexane is the major 

product. In the high temperature region, there is no peak for hexane, but two small peaks for 

cyclohexane and monothiol. Comparing these three temperature regions and their respective three 

desorption species, the following can be established: 1. The medium temperature region is the 
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major desorption region because of the higher intensity of  desorption peaks, especially for 

cyclohexane, as well as the certain existence of all three decomposition species; 2. Monothiol is 

the only species that desorbs in all three temperature regions; 3. Both hexane and cyclohexane 

evolve in two consecutive temperature regions; 4. Hexane is likely to form in a relatively low 

temperature range, while cyclohexane tend to evolve in a relatively high temperature range; 5. 

Every temperature region has at least two desorption species, the peak positions of which coincide 

with each other very well.  

Monothiol (m/e=116) can get fragmented to produce an ion with an m/e of 86 or 84 by electron 

bombardment in the ionization zone of a QMS. However, the evolutions of m/e=86 and m/e=84 do 

not really follow that of m/e=116 as is shown in Figure 2.2 (a). Moreover, as the linear fitting in 

Figure 2.1 (d) illustrates, the percentages of m/e=116 that can fragment into ion species of m/e=86 

or m/e=84 due to electron bombardment are very limited (less than 7% percent). Based on these 

two facts, even though the peaks of m/e=86, 84 and 116 appear coincident, the evolutions of m/e=86 

and 84 are from decomposition of dithiol on copper clusters instead of fragmentation of m/e=116 

in the ionization zone. 

The proposed adsorption and decomposition mechanism of 1,6-hexanedithiol is shown in Figure 

2.3. First, size selected copper clusters (Cun
-, n=100±5) are deposited into a pre-made 1,6-

hexanedithiol frozen matrix. Secondly, while ramping up to room temperature, dithiol molecules 

either chemisorb to the copper clusters via S-H bond scission and Cu-S bond formation, or physi-

desorb from HOPG. Since a 1,6-hexanedithiol molecule has two thiol groups, it can anchor to a 

copper cluster with one end forming a dangling dithiol (equation (1)) or with both ends forming a 

bidentate dithiol (equation (2)). Thirdly, during a TPD ramp, the chemisorbed dithiol molecules 

undergo decomposition via C-S bond scission. A dangling dithiol will lose one sulfur after C-S 

bond scission and form a six-carbon monothiol (equation (3)), while a bidentate dithiol will either 

recombine with two absorbed hydrogen atoms to form hexane (equation (4)) or undergo 
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intramolecular coupling to form cyclohexane (equation (5)). Finally, only atomic sulfur atoms 

remain on the copper clusters. 

HSC6H12SH (a) → HSC6H12S (a) + H (a)                                                            (1) 

HSC6H12SH (a) → SC6H12S (a) + 2H (a)                                                             (2) 

HSC6H12S (a) → HSC6H12 (g) + S (a)                                                                  (3) 

SC6H12S (a) + 2H (a) → C6H14 (g) + 2S (a)                                                         (4) 

SC6H12S (a) → C6H12 (g) + 2S (a)                                                                        (5) 

2H (a) → H2 (g)                                                                                                     (6) 

 

 

Figure 2.3 Diagram of the formation of 1,6-hexanedithiol ligated copper clusters and the decomposition of 

dithiol on copper clusters. 

This decomposition mechanism is proposed based on the TPD spectra of our supported copper 

clusters system and also the literature on monothiol copper single crystal system. From the point 

of view of surface science studies, the simplest monothiol, methanethiol, has been the starting point 
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of studies on interactions between thiols and copper single crystal surfaces.19 Adequately high 

resolution XPS measurements and HREELS spectra have identified the main surface species as an 

intact, physi-adsorbed molecule at the lowest temperature (~80K); a surface thiolate, i.e. methyl 

mercaptide, produced by deprotonation at slightly higher temperatures (still lower than room 

temperature); the formation of atomic sulfur via C-S bond scission and the evolution of 

hydrocarbon products occur at temperature higher than 300K.60, 64 Combined TPD studies have 

identified the evolution of methane formed via recombination of adsorbed hydrogen, ethane formed 

via intermolecular coupling, ethene formed via coupling and C-H bond scission, as well as H2 

formed via adsorbed hydrogen atoms recombination.60, 65-66 

Compared to single crystal studies, hexane observed in our system is speculated to evolve 

through the similar hydrogen recombination reaction pathway. In terms of coupling reactions, Hung 

et.al. have found that intermolecular coupling of alkyl groups is not observable for C2H5SH and 

C4H9SH, in contrast with CH3SH.65 They attribute that to the possibility that longer alkyl groups 

might diffuse along the surface with greater difficulty, or the molecular orientation for coupling 

may be restrictive.65 In our system, instead of undergoing intermolecular coupling, ideal carbon 

chain length and bifunctional nature make it more feasible for 1,6-hexanedithiol to form a stable 

six-membered ring via intramolecular coupling. With both sulfur atoms binding to copper clusters 

through a bridge structure, the two ends are forced to stay close to each other for facile coupling 

without necessary diffusion process. 

As explained above, ionization induced fragmentation has been ruled out for causing the 

coincidence of desorption peaks. Also note that thermal induced C-S scission is the elementary 

reaction step involved in the evolution of each desorption product. Hence, it is reasonable to 

speculate that C-S scission is the rate-limiting step for the evolution of all three desorption products. 
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2.3.2   Adsorbed Hydrogen Atom Titration.  

As was summarized for Figure 2.2 (a) previously, hexane is likely to evolve in a relatively low 

temperature range, while cyclohexane tends to desorb in a relatively high temperature range. 

Considering the hydrogen recombination mechanism for the evolution of hexane, it is speculated 

that this phenomenon is caused by the fact that the amount of absorbed hydrogen decreases during 

the ramp. In the low temperature region, there are plenty of absorbed hydrogen, resulting in 

preferential formation of hexane; in the medium temperature region, when there is significantly 

less absorbed hydrogen, cyclohexane becomes prevalent; in the high temperature region, the 

absorbed hydrogen atoms have all undergone either C-H formation (equation (4)) or H-H formation 

(equation (6)), making it impossible for hexane to evolve, but still possible for cyclohexane or 

monothiol to evolve. 

To provide more evidence for this proposed mechanism, a series of hydrogen atom titration 

experiments have been designed. For a typical titration TPD scan, the sample was held at 298K and 

oxygen was background introduced into the vacuum chamber via a UHV compatible leak valve. 

The purpose of this titration experiment is to use dosed oxygen to react and then remove the 

adsorbed hydrogen atoms at 298K. The effects of this titration process should be revealed in the 

TPD ramp afterwards. Background experiments have also been done with the same amount of 

oxygen dosing but no deposited copper clusters, and there is no obvious peak in the 350-600K 

range (data not shown here), which is very similar to the TPD with dosing only the dithiol molecules. 

Qualitative changes in the TPD spectra were observed when 3000L of oxygen was background 

dosed at 298K. As is shown in Figure 2.2 (b), the major change occurred in the low temperature 

region, namely, the appearance of a small, broad peak of cyclohexane coinciding with that of 

hexane. Figure 2.4 (a) and (b) show a better comparison between the runs without and with dosing 

oxygen for solely cyclohexane. A reasonable explanation for this phenomenon is that the dosed 

oxygen can titrate some of the adsorbed hydrogen atoms. As a result, in the low temperature region, 
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not all of the bidentate dithiols have a chance to recombine with hydrogen atoms then form hexane. 

Hence, some of the dithiol species will undergo intramolecular coupling and form cyclohexane. In 

other words, dosing 3000L of oxygen at 298K can titrate the absorbed hydrogen atoms partially, 

thus making hydrogen recombination and intramolecular coupling the two competing reaction 

pathways for bidentate dithiol binding motif in the low temperature region. 

 

Figure 2.4 TPD scans of cyclohexane (m/e=84) collected from 1,6-hexanedithiol ligated clusters supported 

on HOPG as a function of different oxygen conditions. 

If we follow this idea, it seems reasonable to expect that increasing the amount of dosed oxygen 

can eventually titrate almost all of the absorbed hydrogen atoms such that hexane may disappear 

from the TPD spectra. However, it turned out not to be the case. Figure 2.4 (c) shows that, after a 

significantly larger amount of oxygen (900000L) being background dosed into the chamber, the 

low temperature peak for cyclohexane becomes weaker compared to that in Figure 2.4 (b). In fact, 
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it almost disappears and becomes comparable to the peak from the TPD spectrum without an 

oxygen dose shown in Figure 2.4 (a). Also note that the medium temperature peak for cyclohexane 

gets larger and broader, while the high temperature peak becomes less discernable from the 

background. Additionally, for hexane, the low temperature peak gets weaker compared to the 

medium temperature peak. In general, a larger oxygen dose causes a redistribution of desorption 

products from the low and high temperature regions to the middle temperature region. 

In fact, dosed oxygen can not only titrate absorbed hydrogen but also form chemisorbed oxygen 

on copper clusters. With a relatively small amount of oxygen (3000L), the main effects revealed in 

the TPD spectra is its partial titration effects. However, with a larger amount of oxygen (90000L), 

after some adsorbed hydrogen atoms being titrated, the copper clusters can start to become oxidized. 

Small clusters, such as Cu100, can have their chemical properties and electronic structure perturbed 

as a result of oxidation on the surface. And these perturbations can have discernible influences in 

the TPD spectra. The evolution of desorption peaks from Figure 2.2 (b) to Figure 2.2 (c) indicates 

that the effects stemming from oxidation of copper clusters with a large oxygen dose may 

overwhelm the effects of partial hydrogen titration, which should be revealed with a relatively small 

amount of oxygen otherwise. To gain more evidence to support this uncertain statement, a pre-

oxidation experiment was carried out. Unlike the titration experiment, in which oxygen was 

introduced after the ligation process; for this pre-oxidation experiment, we made copper oxide 

cluster anions by introducing oxygen into the magnetron source, then (CuO)80
- (same m/e as Cu100

-) 

was mass selected, and finally deposited into the frozen dithiol matrix. Therefore, copper clusters 

were oxidized first, and then got ligated by dithiol molecules.  

As is shown in Figure 2.2 (d), the (CuO)80 dithiol TPD spectrum has only one desorption region, 

which is close to the medium temperature region shown in Figure 2.2 (a), (b) and (c). This means 

that, unlike Cu100, which has three very different groups of binding sites; on (CuO)80 clusters, there 

is only one group of binding sites, the sulfur binding energies of which are similar to that of the 
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binding sites corresponding to the medium temperature region for Cu100. Moreover, the peaks of 

the three major desorption species coincide with each other very well, indicating that C-S bond 

scission is also the rate limiting step for decomposition and desorption of the adsorbed dithiol on 

(CuO)80 clusters.  

As for now, there is a series of TPD experiments with different oxygen effects: without oxygen, 

a small amount of oxygen, a large amount of oxygen and pre-oxidation. Since the pre-oxidation 

one is with oxidized copper clusters, it can be seen as the maximum dosing amount of oxygen. For 

the three desorption products, Figure 2.4, Figure 2.5 and Figure 2.6 show the evolution of each 

species under different oxygen conditions, sorted (bottom to top) in order of increasing oxygen 

amount. As oxygen amount increase, the changes occur mainly in the low temperature region for 

hexane and cyclohexane. For hexane, the intensity of the peak in low temperature region gradually 

decreases until finally disappears. For cyclohexane, a weak and broad peak appears with a small 

amount of oxygen, and then becomes weaker until finally disappears. Based on the evolution of 

TPD spectra of hexane and cyclohexane, it is likely that with a small oxygen dosing amount such 

as 3000L, the TPD spectra reveal the partial hydrogen titration effects, and that with a larger oxygen 

dosing amount such as 90000L, the TPD spectra reveal mainly the oxidation effects. 
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Figure 2.5 TPD scans of hexane (m/e=86) collected from 1,6-hexanedithiol ligated clusters supported on 

HOPG as a function of different oxygen conditions. 
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Figure 2.6 TPD scans of the monothiol (m/e=116) collected from 1,6-hexanedithiol ligated clusters supported 

on HOPG as a function of different oxygen conditions. 

2.3.3   XPS Characterization.  

Surface species formed upon ligation and left behind after annealing on Cu clusters were 

identified chemically using XPS. Figure 2.7 shows the spectra of S 2p sorted (bottom to top) in 

order of increasing annealing temperature. In the case of 298K, the binding energy of S 2p3/2 is 

observed predominantly at 162.6 eV, which is attributed to the thiolate group (Cu-S-R). The higher 

binding energy peak at 167.3 eV indicates that some thiol groups get oxidized when exposed to air. 

No obvious oxidation state at around 164-165eV is observed, which should be assigned to intact 

thiol groups. It is speculated that some thiol groups from the dangling ligands may be oxidized or 

chemisorbed to the oxidized copper clusters. 
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Figure 2.7 XPS spectra for S 2p from dithiol ligated copper clusters supported on HOPG at varied temperature: 

(a) 298K; (b) 370K; (c) 470K; (d) 570K. Black dots are the experimental data. Different deconvoluted 

oxidation states are marked with different colors. Each oxidation state has two spin-orbital splitting 

components with a same color. The black line is the overall fitting curve. The light blue vertical lines mark 

the binding energies of the two critical oxidation states. 
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As is shown in Figure 2.7 from (a) to (d), the major envelope peak position gradually shifts to 

lower binding energy. Deconvoluted peaks reveal three different oxidation states: 161.5 eV, 162.6 

eV and 167.3eV, refer to sulfur oxidation states in Cu-S, Cu-S-R and SO2, respectively. From 298K 

to 570 K, the peak of S 2p3/2 at 162.6 eV due to Cu-S-R gradually disappears as a result of C-S 

bonds scission. Meanwhile, the peak of S 2p3/2 at 161.5eV increases, indicating the formation and 

accumulation of atomic sulfur atoms on the copper clusters. At 570 K, no obvious 162.6eV 

component exists, implying that all the Cu-S-R species have decomposed and that the atomic sulfur 

that bind to copper is the only version of sulfur left behind. In this dithiol copper clusters system, 

the evolution of sulfur oxidation states agree with the studies of different thiols’ adsorption and 

decomposition on copper single crystal surfaces.65-66 In those studies, similar binding energies were 

identified for different sulfur species, such as Cu-S-R at 162.4 eV and Cu-S at 161.5 eV.  Unlike 

the XPS analysis on single crystals, the C 1s signal from the carbon chain is not shown here, because 

it is overwhelmed by the strong graphene carbon signal due to the HOPG substrate. 
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Figure 2.8 XPS spectra for Cu 2p from dithiol ligated copper clusters and bare copper clusters at varied 

temperature: (a) ligated clusters at 298K; (b) ligated clusters after being annealled at 370K; (c) bare clusters 

at 298K; (d) bare clusters after being annealled at 370K. The blue verticle lines mark the shift of peak position 

for Cu 2p3/2. The blue arrows mark the import features for Cu2+. 

It would be interesting to know how well 1,6-hexanedithiol can protect the copper clusters from 

oxidation under ambient environment. In fact, when exposed to air, the oxidation process can be 

partially hindered by the dithiol ligands, as demonstrated in Figure 2.8. The relatively lower 

intensity of satellite peaks and slightly lower binding energy for Cu 2p3/2 at 933.8 eV in Figure 

2.8 (a) compared to Figure 2.8 (c) (Cu 2p3/2 at 934.2eV), confirm the reduced formation of CuO 

in the dithiol ligated clusters. Note also that the peak shape in Figure 2.8 (c) implies full oxidation 

to CuO. Since copper sulfur interaction is fairly strong, it is speculated that dithiol may occupy 
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most of the reactive sites on the copper clusters, thus increasing the reaction barrier for oxygen to 

oxidize the copper clusters afterwards. These results agree with the copper single crystal studies.66 

Davies et al. have demonstrated that oxygen chemisorption on Cu(110) occurs at low methyl 

mercaptide coverage but can be completely inhibited at high methyl mercaptide coverage under 

UHV.66 Formed via LNMD method, dithiol ligated copper clusters in our system can be seen as 

alkanethiol chemisorbed to copper single crystal surfaces in the high coverage scenario. However, 

only partial, rather than complete, inhibition of oxidation was seen is likely due to: 1. 1,6-

hexanedithiol has a long carbon chain, with both ends anchoring to a copper cluster and a relatively 

bulky bridge structure, preventing active sites from being fully saturated by dithiol; 2.  Clusters as 

small as Cu100 are more reactive than copper single crystal surfaces in terms of oxidation reactions; 

3. Exposure to ambient pressure is a more severe oxidative situation than dosing oxygen into a 

UHV chamber. 

XPS measurements for Cu 2p at varied temperature are also shown in Figure 2.8. Unlike the 

gradual evolution of sulfur oxidation states from 298K to 570K, the major change for Cu happened 

immediately when heated up to 370K. By comparing Figure 2.8 (b) to Figure 2.8 (a), it is obvious 

that the satellite peaks of Cu2+ have almost disappeared upon heating. Moreover, the Cu 2p3/2 peak 

at 370K becomes narrower, implying fewer oxidation states; and shifts to a lower binding energy 

(933.5 eV), indicating the dominance of low oxidation states (Cu+ or Cu0). Further annealing to 

470K and then 570K only shifted the peak slightly to a lower binding energy of 933.4 eV (data not 

shown here). By comparing Figure 2.8 (d) to Figure 2.8 (c), it is apparent that, without dithiol 

ligands, Cu2+ still get reduced when heated up to 370K. In fact, heating under UHV is a quite 

reductive environment for many metal oxides. For example, White et al. have found that for 

partially oxidized Cu films, CuO gets reduced to Cu2O at around 380K.87 In this sense, the reduction 

shown in Figure 2.8 (b) is assigned to the thermally induced reduction instead of the ligation-

induced reduction. 
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Figure 2.9 S/Cu ratios of varied cluster sizes and varied temperatures as implied in the graph. 

Very similar evolutions of sulfur oxidation states and copper oxidation states were seen for 

varied sizes of copper clusters. Upon ramping to 298K, it is more likely that dithiol molecules are 

only ligated to the surface of the copper clusters to form dithiol ligated copper clusters. Therefore, 

it is expected that the S/Cu ratios should be different among varied cluster sizes. The S/Cu ratios 

were calculated using the integrated area and then normalized by relative sensitivity factors (sulfur: 

0.668, copper: 5.321). As is shown in Figure 2.9, the smaller are the clusters, the larger are the S/Cu 

ratios. The S/Cu ratios of dithiol ligated Cu130 and Cu100 clusters are quite close to each other; 

however, when the cluster size decreases to 50, the S/Cu ratio increases dramatically. It is also 

worth noticing that no matter what size of the copper clusters, S/Cu ratios always decrease upon 

annealing, but not by more than half of the initial value. This is due to the bifunctional nature of 

1,6-hexanedithiol. Recall the studies of monothiol on copper single crystal which showed that the 

sulfur XPS signal almost did not change after annealing.66 This means that any sulfur atoms that 

have already bound to copper should not desorb upon heating and then cause the S/Cu ratio to 

decrease. In this sense, the dangling dithiol motif, which is believed to evolve monothiol based on 
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the TPD data should be the only source of sulfur loss. It should be also mentioned that some 

dangling thiol groups may be oxidized or bind to the partially oxidized copper clusters, as is 

indicated in Figure 2.7 (a). However, in neither of these two situations, the sulfur atoms directly 

bind to the copper atoms. In this sense, the unattached thiol groups on the dangling ligands, no 

matter they are oxidized or not, should eventually cause the S/Cu ratio to decrease. If the thiol 

groups are somehow oxidized and also attached to the partially oxidized copper clusters, the 

disproportionation reaction, which can happen upon heating, may also cause some fraction of sulfur 

being left on the copper clusters.88 However, the overall differences in the evolution of S/Cu ratio 

between the Cu50 and the Cu100 are mainly caused by the ratio of sulfur atoms that actually bind to 

the surface of the copper clusters. Therefore, it is very likely that these differences are mainly 

caused by the size effect. 

Table 1 Estimated ligand numbers of Cu50 and Cu100 clusters. 

total number of copper atoms 50 100 

total number of dithiol ligand 25 21 

number of dangling dithiol ligand 24 8 

number of bidentate dithiol ligand 1 13 

  

Based on the initial and final S/Cu ratios and the assumption that dangling dithiol ligands should 

be the only source of sulfur loss, the numbers of dangling and bidentate dithiol ligands per copper 

cluster can be estimated. As is shown in Table 1 Estimated ligand numbers of Cu50 and Cu100 

clusters., for the total numbers of dithiol ligands, it may be surprising that a Cu50 cluster has even 

more ligands than a Cu100 cluster. However, if we take a further comparison between the numbers 

of dangling and bidentate ligands, it is actually fairly reasonable. For Cu50, nearly all of the dithiol 

ligands are dangling; however, for Cu100, the majority of the dithiol ligands are bidentate. Unlike a 

dangling dithiol which needs only one binding site, a bidentate dithiol must occupy two binding 
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sites. Moreover, the bidentate dithiol ligands have a bridge structure with larger steric hindrance, 

thus likely blocking some of the binding sites. Additionally, it is likely that a smaller cluster, such 

as Cu50, tends to have more dangling dithiol ligands, while a larger cluster, such as Cu100, tends to 

have more bidentate dithiol ligands. As results, with more bidentate dithiol molecules binding to a 

Cu100 cluster, it ends up with fewer dithiol ligands compared to a Cu50 cluster. The structural 

properties of Cu50 and Cu100 clusters have also been reported using Monte Carlo simulations.89 

According to this study, there are 37 surface atoms for Cu50, and 65 surface atoms for Cu100.89 Based 

on these numbers, the surface S/Cu ratio for Cu50 and Cu100 are estimated to be 70% and 50%, 

respectively. 

2.4 Conclusion 

This work highlights a unique method to synthesize and analyze small ligated metal clusters. The 

mass-selected soft-landing method makes it efficient to prepare small copper clusters of desired 

size. The LNMD method can limit the cluster-cluster interactions and maximize the opportunity 

for dithiol molecules to ligate to the copper clusters. The as-prepared dithiol ligated copper clusters 

supported on HOPG can be further analyzed though TPD and XPS.  

This work has also filled a gap of cluster size in the field previously studied for the copper 

alkanethiol system. Copper single crystals have been serving as the model system to study copper 

thiol interactions, and simple short chain monothiols have been the major thiol candidates. This 

work focuses on the interactions between small copper clusters (i.e. Cu100) and a six-membered 

bifunctional dithiol (1,6-hexanedithiol). The TPD profiles have shown interesting properties of how 

1,6-hexanedithiol ligate and decompose on the small copper clusters. Two different binding motifs 

(dangling and bidentate) of dithiol ligands have been proposed. Upon heating, three different thiol 

or hydrocarbon products evolve though C-S bond scission. A monothiol is ascribed to evolve from 

the dangling motif. Hexane and cyclohexane are assigned to evolve from the bidentate motif though 
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hydrogen recombination and intramolecular coupling, respectively. Temperature varied XPS 

measurements have revealed a similar evolution of the sulfur oxidation states to that of the copper 

single crystal studies. XPS measurements have shown that after being exposed to air, the dithiol 

ligands can partially protect the small copper clusters from being oxidized. 

This work offers a fundamental understanding of the interactions between small copper clusters 

and bifunctional 1,6-hexandithiol molecules, which may be useful in designing the building blocks 

of 2-D functional materials. 

 

3. Decomposition of Dimethyl Methylphosphonate on Size-

Selected Clusters 

Abstract 

Room temperature decomposition and thermal decomposition of dimethyl methylphosphonate 

(DMMP), a chemical warfare agent (CWA) simulant, on size-selected copper clusters have been 

studied via combined X-ray photoelectron spectroscopy (XPS) and temperature programmed 

desorption (TPD). Cu100 and (CuO)80, which have the same nominal masses, were chosen to present 

a direct comparison between the reactivity of metallic copper and that of cupric oxide with DMMP. 

Room temperature XPS results have shown that most of the DMMP molecules decompose 

completely and reductively into atomic phosphorus on Cu100, while almost all the DMMP 

molecules are only dissociatively adsorbed on (CuO)80 as methyl methylphosphonate (MMP). XPS 

and TPD have been carried out to analyze the thermal decomposition of adsorbed DMMP by 

identifying the surface species after annealing to certain temperatures and the gaseous products 

evolved during linear temperature ramps, respectively. Methanol, formaldehyde, and methane are 

the three most significant gaseous products for DMMP decomposition on both Cu100 and (CuO)80. 

Reprinted with permission from {J. Phys. Chem. C 2021, 125, 21, 11348–11358}. Copyright {2021} American Chemical Society. 

 



42 

 

Methanol and formaldehyde, which evolve in the low temperature region, are believed to originate 

from surface methoxy species. Methanol, formaldehyde, and methane evolved in the high 

temperature region are related to further decomposition of the phosphorus-containing surface 

species. A set of methanol-probed TPD experiments have also been carried out, which suggest that 

methane evolution originates from the methyl group within DMMP instead of the surface methoxy 

species. 

3.1 Introduction 

Synthetic organophosphonates ubiquitous in the agricultural, chemical, and pharmaceutical 

industries.90 One group of organophosphonates, which are especially notorious, are chemical 

warfare agents (CWAs).91 Dimethyl methylphosphonate (DMMP) is a commonly used simulant 

for one of those highly toxic CWAs, i.e., sarin, and it has been used extensively during the 

development of sensors and the study of catalytic decomposition processes.92-93 DMMP and many 

other similar pesticide molecules are also studied in the field of environmental chemistry.94-96 Due 

to high perseverance, toxicity, and potential for bioaccumulation, their removal is imperative.97 To 

this end, developing a more fundamental understanding of how DMMP decomposes on different 

surfaces is highly imperative. 

The adsorption and decomposition chemistries of DMMP have been studied on an extensive 

library of metal oxide surfaces, such as Al2O3
98-101, SiO2

102-104, TiO2
105-112, CeO2

113-115, WO3
108, 116, 

MoO2
117, MoO3

40, 118-119, Fe2O3
101, 105, 113, CuO120, Cu2O121 and so on. On most of these metal oxide 

surfaces, DMMP first adsorbs via its phosphoryl oxygen (P=O) at the coordinatively unsaturated 

metal ion sites or on surface hydroxyls at relatively low temperature (typically below room 

temperature).93, 103, 105, 108, 112, 117 The P=O bond can convert to a bridging O-P-O moiety at near room 

temperature.112, 115 Adsorbed DMMP can then undergo stepwise elimination of methoxy groups 

upon heating.100, 108, 111 The formation of methyl methylphosphonate (MMP) and surface methoxy 
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species via P-OCH3 bond scission is commonly seen as the first decomposition step on many metal 

oxides.98, 108, 111, 117 The P-CH3 bond usually stays intact before scission of the two P-OCH3 bonds 

within one DMMP molecule108. However, exceptions have been reported for DMMP 

decomposition on CuO and Cu2O surfaces, both of which have shown room temperature P-CH3 

scission.120-121 In evidence that a small portion of adsorbed DMMP can decompose completely into 

atomic phosphorus on Cu2O121, but not on CuO120, suggests that the oxidation states of metal ions 

in metal oxide materials can have significant effects on their reactivity towards DMMP.  

Besides metal oxides, DMMP adsorption and decomposition studies have also been done on 

single crystal surfaces, such as Ni(111)122, Pd(111)122, Pt(111)123, Rh(111)124, and Mo(111)125. 

Metallic copper has been investigated in the form of copper clusters and films supported on 

TiO2(110)126, as well as Cu/TiO2 composite aerogels127. However, the sample preparation 

procedures in these two studies may have produced a copper oxide layer on top of the metallic 

copper. As a result, these two studies have shown some similarities to the work done on pure CuO, 

Cu2O and TiO2 surfaces. Considering the fact that copper oxide surfaces have shown unique 

reactivities towards DMMP, while the actual reactivity of metallic copper remains unclear, a direct 

comparative study between metallic copper and copper oxide is desirable. 

Ultrasmall clusters, which have high surface-to-volume ratios and a high percentage of low-

coordinated metal atoms on the surface, have unique physical and chemical properties that are 

distinct from their macroscopic counterparts. Numerous studies have highlighted the ability of the 

cluster deposition method to explore the reactivity of ultrasmall clusters, with different sizes and 

composition, supported on a given substrate.41 In this work, Cu100 and (CuO)80 clusters were size-

selected and deposited onto a highly oriented pyrolytic graphite (HOPG) substrate, where they were 

exposed to DMMP. Combined X-ray photoelectron spectroscopy (XPS) and temperature 

programmed desorption (TPD) characterizations were carried out to analyze the room temperature 

decomposition and thermal decomposition of DMMP, respectively. Based on this direct 
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comparison between metallic copper and cupric oxide in cluster forms, the rather significant effect 

that the metal oxidation state within the clusters can have on their reactivity towards DMMP is 

demonstrated and the unique reactivity of Cu100 is highlighted. 

3.2 Experimental 

3.2.1 Formation and Deposition of Clusters 

    Copper and copper oxide cluster anions were generated in a magnetron sputtering source. After 

acceleration, mass selection and deceleration, the clusters were then deposited (soft-landed, <1 

eV/atom) onto an HOPG substrate (Bucker, ZYB grade, 12·12 mm2, 2 mm thickness) under ultra-

high vacuum (UHV, base pressure 5·10-9 torr). 

In the magnetron sputtering source, a copper sputtering target (Kurt J. Lesker Co, 99.99%) was 

placed in front of a circular magnet and biased by up to -500V, where a mixture of argon (Airgas, 

99.999%) and helium (Airgas, 99.999%) with a ratio of 1:1-1.2 (Ar/He) was introduced. Argon gas 

was ionized to create argon cations, which sputtered the metal target to produce a plasma. Helium 

served to cool and transport the cluster anions down the beamline. Anionic clusters were first 

electrostatically accelerated to 500 eV and then entered a magnetic sector mass filter (25o sector 

magnet with resolution of m/Δm = 20). By tuning the magnetic field strength, a beam of Cun
- cluster 

anions of desired size was mass-selected. The size-selected cluster anions were then deflected and 

focused into the deposition chamber, where they were decelerated and finally soft-landed onto the 

HOPG substrate. (CuO)n
- clusters were generated, transported, and deposited in the same manner, 

with the addition of oxygen into the Ar/He mixture via a dosing valve (INFICON VDH016-x) with 

an oxygen (Airgas, 99.994%) backing pressure of 15 psi. By reducing the dosing to a negligible 

pressure and lowering the oxygen backing pressure to 5 psi, (CuO1-x)n
- clusters were generated for 

comparative experiments. Cun
- (n=100±5), (CuO)n

- (n=100±4), and (CuO1-x)n
-, which all have the 

same atomic mass range, were selected via the magnetic sector with the same settings. Once 

https://twitter.com/KurtJLeskerCo?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
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deposited on the surface, the anionic clusters lost their negative charges to form neutral species. 

For the convenience of expression, Cu100, (CuO)80, (CuO1-x)n are used in the rest of this article to 

denote these three groups of clusters with the same confined mass range. 

During a deposition process, the deposition current was monitored by a picoammeter, and the 

coverage of the as-deposited clusters was given in current (ampere, A) integrated over time (second, 

s). For each deposition, the average deposition current was about 70 pA, corresponding to an 

average flux of 4·108 clusters per second; and the final deposition amount was controlled to be 

1·10-6 A·s, corresponding to a total amount of 6·1012 clusters. 

3.2.2 Temperature Programmed Desorption (TPD) 

    TPD experiments were carried out via the liquid nitrogen matrix deposition (LNMD) method. 

This method was originally inspired by the common experimental technique used in matrix 

isolation infrared spectroscopy.44 It was then adopted to probe the activities of metals or metal 

oxides towards a reactive matrix.50 In our lab, the LNMD method was successfully implemented in 

order to probe the ligation and decomposition process of 1,6-hexanedithiol on size-selected Cu100 

clusters.24  

    Prior to cluster deposition, the HOPG substrate was cleaved under ambient conditions right 

before being transported into a load-lock chamber and then into a UHV chamber.  The substrate 

was then annealed at 500oC for 30 minutes. This preparation step was proven to be adequate to 

obtain a relatively low background in a control TPD run, in which no clusters were deposited while 

all the other experimental conditions remained the same. The as-prepared HOPG was then cooled 

down and maintained at -170oC by a liquid nitrogen reservoir. DMMP (Sigma Aldrich, 97%) was 

degassed and purified by three freeze-pump-thaw cycles before being dosed into the vacuum 

chamber through a UHV compatible leak valve. The dose of DMMP was monitored by a pressure 

gauge and a residual gas analyzer (RGA) (Hiden HAL/3F PIC quadrupole mass spectrometer 
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(QMS)). The dose amount was 1x10-8 Torr for 100 seconds, i.e., 1 Langmuir (L, 10-6 Torr·s), which 

was sufficient to form a frozen multilayer matrix of DMMP on HOPG at -170 oC. After dosing, 

size-selected clusters were deposited into the pre-made frozen DMMP matrix.  

After cluster deposition, the sample was ramped from -170oC to 25 oC by resistive heating 

to remove the physi-adsorbed DMMP. Once warmed up to 25 oC, DMMP had likely been 

irreversibly adsorbed by the clusters, while most unreacted DMMP had already been physi-

desorbed. TPD was then carried out to characterize the thermal decomposition properties of DMMP 

on the size-selected clusters. The gaseous decomposition products were detected and identified via 

a residual gas analyzer (RGA), which was positioned normal to the plane of the substrate at a 

distance of about 5 mm. Moreover, the entrance of the RGA is covered by a glass shroud with a 6 

mm diameter hole cut at the center. These two configurations can both help to minimize the 

contributions from background gases and maximize the sensitivity toward the species desorbing 

directly from the substrate. Regarding the customized TPD sample holder, two small pieces of 

tantalum foil are wrapped on two copper power feedthroughs to allow for resistive heating, where 

the HOPG substrate is held. A k-type thermocouple joint is spring-loaded to the back of the HOPG 

for temperature measurement and ensuring a linear heating ramp. 

3.2.3 X-ray photoelectron spectroscopy (XPS) 

The method by which DMMP binds and decomposes on copper and copper oxide clusters was 

characterized via XPS with non-monochromatic Mg Kα-rays (1253.6 eV), and a hemispherical 

analyzer (Perkin-Elmer PHI 5100 10-360). For XPS measurements at varied temperatures, the 

sample was heated to certain critical temperatures and then cooled back down to room temperature, 

at which point XPS spectra were acquired. All the XPS spectra were calibrated by graphite C 1s at 

284.5eV.128  
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The cluster source, beam line, cluster deposition and surface instrumentation are all within one 

vacuum system separated by gate valves. The sample can be transferred between two vertical 

manipulators by a horizontal magnetic transfer arm. More details about this apparatus are described 

elsewhere.79 

3.3 Results 

3.3.1 Room temperature XPS characterization 

    XPS measurements were carried out at room temperature on bare clusters as well as DMMP-

adsorbed clusters to elucidate how DMMP reacts differently between copper and copper oxide 

clusters. Figure 3.1 (a) shows Cu 2p3/2 XPS spectra for the bare clusters. Specifically, the spectrum 

for (CuO)80 has a broad main peak at around 934.2 eV and a strong satellite feature in the range of 

940-950 eV, which confirms the majority of the Cu atoms should be in Cu2+ oxidation state. 

Whether or not a small amount of Cu0 or Cu1+ also exists is not clear based on Cu 2p3/2 XPS 

spectrum alone. By contrast, the spectrum for Cu100 has a much narrower peak with a lower binding 

energy at around 933.7 eV, indicating a Cu0 or Cu1+ oxidation state. Moreover, the spectrum in the 

middle, which has no obvious satellite peak, confirms no evident existence of a Cu2+ oxidation state 

above the detection limit. Additionally, the black vertical line in Figure 3.1 (a), which marks the 

approximate peak positions for Cu100, indicates that the clusters corresponding to the middle 

spectrum may have an intermediate oxidation state between what have been observed for (CuO80) 

and Cu100, respectively. This argument is made not solely based on the Cu 2p spectrum, but also 

with consideration of the clusters synthesis procedures as well as the P 2p spectra, which are 

discussed later on. Since there is no further evidence on whether or not the clusters exhibit purely 

Cu1+ or a mixture of different oxidation states, it is therefore denoted as (CuO1-x)n in this work. 
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Figure 3.1 Cu 2p3/2 XPS on bare clusters and DMMP-adsorbed clusters. (a) Cu 2p3/2 XPS on bare (CuO)80 

(blue), (CuO1-x)n (red), and Cu100 (black). (b) Cu 2p3/2 XPS on DMMP absorbed (CuO)80 (blue), (CuO1-x)n 

(red), and Cu100 (black). 

    How DMMP reacts differently among these three clusters with varied copper oxidation states is 

shown by comparing Figure 3.1 (b) to (a) for each cluster. First, the spectrum for DMMP-adsorbed 

(CuO)80 in Figure 3.1 (b) shows a slightly narrower main peak and a weaker satellite feature 

compared to the one in Figure 3.1 (a), implying partial reduction of Cu2+ to Cu1+. The possibility 

of Cu2+ reduction cannot be excluded here as it was done by Trotochaud et al.120 due to low signal 

to noise ratio and lack of other characterization methods. Second, for DMMP-adsorbed (CuO1-x)n, 

there is no obvious binding energy shift for Cu 2p3/2 relative to the bare cluster. Third, for DMMP-

adsorbed Cu100, the Cu 2p3/2 peak shifts to a slightly higher binding energy, suggesting an oxidative 

effect of DMMP on the copper metal clusters as compared to the copper oxide clusters. Furthermore, 

the two vertical lines, which mark the approximate peak positions for Cu100 in Figure 3.1 (a) and 

(b), show that the binding energy trends are different before and after DMMP adsorption. It is 

clearly shown that the Cu 2p3/2 binding energies from Cu100 to (CuO)80 bare clusters exhibit an 

increasing trend (Figure 3.1 (a)). However, this increasing trend is apparently weakened for 

DMMP-adsorbed clusters, possibly due to oxidative effects that DMMP may have on metallic 
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copper clusters, as well as reductive effects that DMMP may have on cupric oxide clusters. In brief, 

as a result of DMMP adsorption, the binding energies of Cu 2p3/2 from these three clusters become 

much closer to each other. However, based on Cu 2p3/2 XPS spectra alone, no further conclusions 

can be drawn. 

Other than Cu 2p3/2 XPS, P 2p XPS measurements of DMMP absorbed clusters can give further 

evidence as to how DMMP reacts differently between Cu100 and (CuO)80, with (CuO1-x)n 

representing an intermediately oxidized state. As is shown in Figure 3.2 (a-c), the three P 2p spectra 

contain two main groups of phosphorus species marked by two vertical lines. The one with higher 

binding energy, centered at around 133.5 eV, is assigned to adsorbed phosphonate species. The 

other one, with a binding energy below 130 eV, is assigned to adsorbed atomic phosphorus. As is 

shown in Figure 3.2 (a), the phosphorus species on Cu100 are almost exclusively atomic phosphorus 

with only a very small amount of phosphonate species. In this sense, most of the DMMP molecules 

adsorbed on Cu100 have decomposed completely. By contrast, there is no obvious signal for any 

atomic phosphorus on (CuO)80 (Figure 3.2 (c)). Instead, DMMP mainly undergoes cleavage of one 

P-OCH3 bond and forms adsorbed methoxy and methyl-methylphosphonate (MMP), which is a 

partial decomposition process. For (CuO1-x)n, which has an intermediate copper oxidation state, an 

intermediate state is also observed in P 2p XPS measurements. As is shown in Figure 3.2 (b), (CuO1-

x)n has a fair amount of both adsorbed phosphonate species and atomic phosphorus, with the 

phosphonate species as the dominant adsorbate. In brief, room temperature XPS measurements 

have shown that Cu100 can lead to the complete breakdown of DMMP into atomic phosphorus while 

(CuO)80 can only cause partial dissociation of DMMP into adsorbed phosphonate species. 
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Figure 3.2 P 2p XPS on DMMP-adsorbed clusters: (a) Cu100, (b) (CuO1-x)n, (c) (CuO)80. The two vertical 

lines mark the two main groups of phosphorus-containing species, which are phosphonate species and atomic 

phosphorus. The corresponding diagrams are shown on the left for each cluster. 
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3.3.2 XPS characterization after heating to certain temperatures 

It is known that DMMP can undergo further decomposition at elevated temperature. Therefore, 

XPS spectra, which were collected after heating the sample to certain temperatures and then cooling 

back down to room temperature, are shown here to compare the thermal decomposition processes 

of DMMP on Cu100, and (CuO)80. 

For the Cu 2p3/2 spectra, after heating to 200 oC or beyond, there is no obvious change in either 

peak position or peak shape (Figure 3.3 (a)). For (CuO)80, the major change only occurs when 

annealed to 200 oC (Figure 3.3 (b)). The facts that the satellite features disappear and that the main 

peak becomes narrower and shifts to a lower binding energy indicates the reduction of the majority 

of Cu2+ to Cu1+. Similarly, there is no obvious change after annealing to 300 oC and 400 oC. 

For the P 2p spectra, the major difference between Cu100 and (CuO)80 remains in the low binding 

energy region from 128 eV to 131 eV. As is shown in Figure 3.3 (c), the vertical line marks the low 

binding energy area, which is mainly atomic phosphorus on Cu100 for all four annealing 

temperatures. By contrast, there is no obvious atomic phosphorus peak for (CuO)80 (Figure 3.3 (d)). 

As for the high binding energy region from 131 eV to 135 eV, the P 2p peaks for both Cu100 and 

(CuO)80 share a similar trend with incremented temperatures, despite a great difference in peak 

intensity. As is shown in Figure 3.3 (c) and (d), the two diagonal lines mark the two similar rising 

binding energy trends with incremented temperatures. Because of the abundance of phosphonate 

species on (CuO)80, it is clearly shown that the major binding energy shift happens upon heating to 

200 oC. After heating to 300 oC, there is no obvious change in the peak position. Even so, given 

that the peak position shifted to the highest binding energy for 400 oC, the overall trend in binding 

energy shift is still an increase with incremented temperatures. Similarly, the weak phosphonate 

peaks for Cu100 also shift to higher binding energies after annealing (Figure 3.3 (c)).  
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In short, XPS measurements after heating to certain temperatures have shown that atomic 

phosphorus formed due to complete decomposition of DMMP is only observed for Cu100, and that 

phosphonate species formed due to partial dissociation of DMMP is observed in a large extent on 

(CuO)80 and only a minor extent on Cu100 at room temperature, with further decomposition 

observed at elevated temperatures. 

 

Figure 3.3 XPS of Cu 2p3/2 and P 2p for DMMP-adsorbed Cu100 and (CuO)80 clusters at 25 oC and after 

heating to 200 oC, 300 oC, and 400 oC: (a) Cu 2p3/2 XPS for DMMP-adsorbed Cu100; (b) Cu 2p3/2 XPS for 

DMMP-adsorbed (CuO)80; (c) P 2p XPS for DMMP-adsorbed Cu100; (d) P 2p XPS for DMMP-adsorbed 

(CuO)80. For all four graphs, spectra are presented from bottom to top in order of increasing temperature, 

which are color coded as 25 oC (black), 200 oC (red), 300 oC (blue), 400 oC (green). Vertical and diagonal 
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lines in all the graphs, which mark the approximate peak positions, show the binding energy shifting trends 

with incremented temperatures. 

3.3.3 Temperature-programmed desorption (TPD) 

The gaseous products formed during the thermal decomposition processes of DMMP on Cu100 

and (CuO)80 clusters were studied via TPD. Several DMMP fragments and likely reaction products 

were monitored. The three major products are plotted in Figure 3.4 after being corrected for 

fragmentation. More details on the correction process are described in the Supporting Information 

(SI). 

As is shown in Figure 3.4 (a) and (b), methanol, formaldehyde and methane are the three major 

gaseous products for both Cu100 and (CuO)80. There are apparently two desorption regions: the low 

temperature region from 120 oC to 220 oC, and the high temperature region from 220 oC to 320 oC. 

For Cu100, the methanol spectrum has a rising shoulder feature culminating in a peak, which 

coincides with formaldehyde in the low temperature region. In the high temperature region, 

methane evolves at a slightly lower temperature than that of the second peak of formaldehyde. For 

(CuO)80, the peaks of all three products occur in the high temperature region, with methanol and 

formaldehyde having rising shoulder features in the low temperature region. By comparison, both 

Cu100 and (CuO)80 have a methane peak and a formaldehyde peak in the high temperature region, 

while the major differences lie in the low temperature region, where Cu100 has a significant peak 

for both formaldehyde and methanol but (CuO)80 only has broad shoulder features for each species. 
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Figure 3.4 DMMP decomposes into methanol (black), formaldehyde (red) and methane (blue) on Cu100 and 

(CuO)80 in TPD experiments. Methanol, formaldehyde, and methane are tracked by m/e of 31, 29 and 16, 

respectively. The traces are offset for clarity, and data has been corrected for fragmentation patterns. 

3.4 Discussion 

The results presented here demonstrate the unique reactivity of Cu100 with DMMP at room 

temperature when compared to that of (CuO)80. Specifically, the fact that DMMP mainly 

decomposes into atomic phosphorus on Cu100 at room temperature is quite exceptional. At elevated 

temperatures, XPS and TPD offer greater details on the thermal decomposition process of DMMP 

on Cu100 and (CuO)80. Here, we will start our discussion with the assignment of features in the XPS 

spectra and its limitations in identifying surface species in this study. Next, a set of methanol-

probed TPD experiments will be presented to provide further insights regarding the origin of the 

gaseous products. Finally, a proposed reaction scheme considering both the XPS and TPD results 

will be discussed. 
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3.4.1 Assignment of features in XPS spectra 

A formal peak fitting process has not been applied to the P 2p spectra due to low signal-to-noise 

ratio. Since size-selected cluster deposition experiments generally have prepared samples with low 

cluster coverage, and phosphorus has a low relative sensitivity factor, it is expected that the signal 

intensity for P 2p XPS should be very low. Therefore, no specific binding energy for phosphorus 

species has been reported here to avoid overinterpretation of the data. Instead, rational speculations 

have been drawn for the low (128-130 eV), middle (130-133 eV), and high (133-135 eV) binding 

energy range. It is generally accepted that phosphorus species with fewer oxygen-containing 

coordinated groups tend to have lower P 2p binding energies.31 Accordingly, those phosphorus 

species, which have no coordinated oxygen, usually have the lowest binding energies. For example, 

a binding energy of 128.5 eV was reported for atomic phosphorus on copper clusters supported on 

TiO2(110).126 Similarly, the low binding energy peak is assigned as mostly atomic phosphorus on 

Cu100. Moreover, Lai et al. demonstrated a stepwise dealkylation of PR3 (R is methyl or ethyl) on 

Cu(110), showing that PR3, PR2 and PR have P 2p binding energies  of 131.6 eV, 130.8 eV and 

129.6 eV, respectively.129 Considering that DMMP only has one methyl group to begin with, even 

though there is no discernable peak feature in the middle binding energy area, it is speculated that 

there may be some surface -PCH3. Furthermore, a surface-bound phosphinate group 

[O=PH(OCH3)O-Cu] with a binding energy of 132.5 eV was identified for DMMP decomposition 

on polycrystalline cuprous oxide surfaces at room temperature.121 Even though there is no 

discernable feature in the middle binding energy area, it is speculated that there may be an 

analogous phosphinate group. These arguments are discussed further in the following sections.  

DMMP physisorbed on different metal oxides was reported to be in the range of 134.0-135.0 eV, 

while chemisorbed DMMP was reported to have a slightly lower binding energy.121 In this work, 

the binding energy of P 2p for molecular DMMP was also measured in the form of a frozen DMMP 

matrix on HOPG without any clusters. As is shown in Figure 3.6, intact DMMP has a binding 



56 

 

energy of 134.2 eV, while the peak positions in the high binding energy range shown in Figure 3.3 

(c) and (d) are clearly below 134 eV. Methyl methylphosphonate (MMP), which is a dissociative 

adsorption product of DMMP, was identified on metal oxides with binding energies lying in the 

range of 132.8-133.8 eV.40, 120-121 Moreover, extensive IR studies have provided direct evidence for 

the formation of MMP and surface-adsorbed methoxy groups at or below room temperature on 

other metal oxide surfaces.112 Therefore, the peak feature in the high binding energy area at room 

temperature is assigned to mostly MMP. 

Upon heating to 200 oC, there is no obvious change in low and middle binding energy range. In 

the high binding energy range, the peak position shifts to an even higher binding energy. It is 

speculated that the decomposition of both phosphinate and MMP may contribute to the formation 

of POx through P-O bond and P-C bond scission, which has been proposed in a study of DMMP 

decomposition on a Cu2O surface.121 Moreover, potential surface-bound -PCH3 is speculated to 

decompose into atomic phosphorus via P-C bond cleavage upon  heating to 200 oC. However, this 

phenomenon was not observed at all in the work on Cu2O. In fact, atomic phosphorus disappeared 

completely on Cu2O after heating to 160 oC.121 In this sense, the abundance and accumulation of 

atomic phosphorus in this work are attributed to the unique reactivities of metallic copper in Cu100. 

Once annealed to 300 oC, the two peaks lying within the low and high binding energy range 

seem to be more ambiguously separated from each other, indicating other types of phosphorus-

containing species may have formed in the middle binding energy range. It is speculated that 

oxidative decomposition of -PCH3 and oxidation of atomic phosphorus can both give rise to the 

increased signal intensity detected in the middle binding energy range. This may seem 

contradictory, because -PCH3 is believed to partially decompose into atomic phosphorus after 

heating to 200 oC, which is a reductive process. A reasonable explanation is that the residual water 

and oxygen in the chamber can cause oxidation during the heating and cooling processes for XPS 

experiments, which usually last several hours. The higher the ultimate temperature attained, the 
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longer the experiment has lasted, thus leading to the higher degree of oxidation. This can also 

explain why the atomic phosphorus peak is further weakened, and the POx peak becomes even 

stronger at 400 oC. It is also reasonable to speculate that the surface phosphorus species lying in 

the middle binding energy range at 300 oC may undergo further oxidation into POx during the 

heating process from 300 oC to 400 oC. After annealing to 400 oC, only POx and atomic phosphorus 

are present due to their relatively higher thermodynamic stability. 

Unlike Cu100, there is no obvious peak in the low binding energy range for (CuO)80. At room 

temperature, the main peak in the high binding energy range is assigned to MMP, which has also 

been identified on polycrystalline CuO surfaces.120 The very weak peak feature in the low binding 

energy range can be explained by the existence of a small amount of atomic phosphorus or the 

satellite features for Cu 3s. Recalling the fact that both Cu100 clusters and polycrystalline Cu2O can 

give rise to complete decomposition of DMMP into atomic phosphorus at room temperature, the 

presence of a trace amount of atomic phosphorus here indicates that some residual Cu0 or Cu1+ may 

have played a role within the size-selected (CuO)80 clusters. It should be noted that the main peak 

of a typical Cu 3s spectrum lies in the range of 123.0-124.0 eV, and that Cu 3s spectra in Cu2+ 

compounds have satellite features that lie in the range of 3 to 10 eV higher in binding energy relative 

to the main peak. In this sense, the satellite features of Cu 3s in the (CuO)80 Cu 3s spectrum can 

overlap with the P 2p peak region, especially the low binding energy range for atomic phosphorus. 

Due to the limitation of low signal-to-noise ratio, neither of these two explanations can be ruled 

out. 

After heating to 200 oC, it is clearly shown that the low binding energy feature has vanished and 

the MMP peak has shifted slightly to higher binding energy. It should be mentioned that Cu2+ in 

bare (CuO)80 clusters can be reduced completely to Cu1+ upon annealing to 200 oC under UHV 

(Figure 3.3 (b)). Moreover, multiple studies have shown that lattice oxygen in CuO can participate 

in dissociative adsorption and oxidative decomposition processes at room temperature and elevated 
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temperatures for many organic molecules such as DMMP120, methanol130-131, and alkanethiols.24, 74 

Therefore, the disappearance of low binding energy feature can be ascribed to the oxidative effects 

on potential atomic phosphorus from the activated lattice oxygen within (CuO)80 as well as the loss 

of satellite feature of Cu 3s due to reduction of Cu2+ into Cu1+ upon heating to 200 oC. 

As for the peak in the high binding energy range, which is persistent from 200 oC to 300 oC with 

only a minor shift in binding energy, it is speculated to arise from phosphorus oxide species with 

one methoxy or methyl group. The fact that the peak at 200 oC seems broader than the one at room 

temperature indicates the co-existence of multiple similar surface-bound species at 200 oC. Since 

these surface species are likely to have binding energies very close to each other, it is impossible 

to differentiate them from each other via peak fitting process. It has been reported that accumulation 

of a phosphate layer with a stoichiometry similar to P2O5 occurs after the removal of all 

carbonaceous species via annealing of polycrystalline Cu2O.121 Considering the TPD results which 

have shown all carbonaceous products evolve in the temperature range of 120 oC to 320 oC, the 

peak for 400 oC, which is located at around 134 eV, is assigned as POx. 

 

3.4.2 Insight into the reaction mechanism from TPD experiments 

Stepwise elimination of methoxy and methyl groups has been reported to be a common feature 

in the DMMP decomposition pathway.91 It is usually the case that these groups leave the surface in 

the gas phase as, for example, methanol, formaldehyde, methane, and/or dimethyl ether.40, 115, 126, 

132-133 In this work, methanol, formaldehyde and methane are all identified as gaseous products upon 

heating for both Cu100 and (CuO)80. The frozen matrix of DMMP sublimes from HOPG at -110 oC, 

and the monolayer desorbs at around -50 oC (Figure 3.7). Background TPD experiments as well as 

the Cu/P ratio calculated from XPS spectra both indicate that there is no obvious phosphorus-

containing species desorbed from the clusters. More details are addressed in the SI. 
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In the low temperature region for Cu100, the coincidence of methanol and formaldehyde at around 

180 oC is attributed to the disproportionation reaction of surface methoxy (Figure 3.4 (a)). The low 

temperature shoulder feature for methanol suggests that the methoxy groups tend to desorb as 

methanol by reacting with surface hydroxyls before the disproportionation reaction becomes a 

competitive pathway. Unlike Cu100, (CuO)80 has no obvious peak in the low temperature region. 

Instead, both methanol and formaldehyde have broad rising features, which are likely due to the 

convolution of multiple desorption peaks. It is known that lattice oxygen in CuO can be activated 

to oxidize surface adsorbates such as methanol into formaldehyde.28 In this study, it is shown that 

the Cu2+ within (CuO)80 are reduced to Cu1+ upon heating to 200 oC. During this process, the lattice 

oxygen can also be involved in the oxidation of adsorbed methoxy groups. Considering the multiple 

reaction pathways as well as the drastic changes in structure and composition of the (CuO)80 clusters, 

it is reasonable to expect some broad rising features for methanol and formaldehyde in the TPD 

spectrum for (CuO)80. 

In the high temperature region, both Cu100 and (CuO)80 have discernable peaks for methane and 

formaldehyde. It is speculated that methane and formaldehyde evolve from further decomposition 

of MMP instead of adsorbed surface methoxy. In order to obtain more evidence to support this 

claim, a set of methanol TPD experiments were performed. Methanol, which is known to undergo 

dissociative adsorption on a variety of metal oxides to form surface methoxy intermediates, has 

been successfully employed as a ‘smart’ surface probe to quantify surface active sites.28 In this 

study, methanol is used as a probe by forming surface methoxy, which should also exist when 

DMMP decomposes into MMP. As is shown in Figure 3.9, there is no obvious peak for methane, 

which indicates that surface methoxy cannot evolve into methane under the experimental 

conditions in this study. Moreover, methanol has a strong desorption peak at around 50 oC for both 

Cu100 and (CuO)80, suggesting an undissociated adsorption form for most of the detected methanol. 

It should be noted that the methanol peak for Cu100 is much broader with a long tail extending above 
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100 oC. This can be reasonably explained by a reversibly dissociative adsorption form, through 

which the methanol should desorb at a relatively higher temperature compared to the undissociated 

adsorption form. This reversibly dissociative adsorption form may also exist on (CuO)80; however, 

the oxidation of surface methoxy can be a competing reaction pathway. As a result, formaldehyde 

evolves at around 80 oC, and the signal from methanol decreases drastically after peaking at 50 oC. 

The lattice oxygen within (CuO)80 is believed to participate in the formation of formaldehyde, while 

the lack of lattice oxygen makes Cu100 almost inert toward methanol. These results generally agree 

with the single crystal studies in the literature.36, 134-136  

 

3.4.3 Proposed reaction scheme based on XPS and TPD results 

Combined XPS and TPD is a powerful approach to study the decomposition processes of 

organic molecules on size-selected clusters of interest. TPD can offer evidence on the evolution of 

gaseous products during the temperature ramping, while XPS acquired after heating the sample to 

several critical temperatures can elucidate residual species on the surface. Our group has 

successfully applied this method to shed light on the decomposition mechanism of several organic 

molecules, including DMMP, on size-selected metal and metal oxide clusters.24, 40 Similarly, the 

decomposition process of DMMP on Cu100 and (CuO)80 clusters has been analyzed and compared 

via combined XPS and TPD in this study. As is shown in Figure 3.5, a plausible DMMP 

decomposition scheme is presented with all the surface species and gaseous products described in 

the previous sections. Several important interpretations which can be mutually rationalized by both 

the XPS and TPD results are discussed as well. 

First, insights obtained from the XPS results can explain why methanol has a different 

leading edge but a comparable signal intensity between Cu100 and (CuO)80 in the low temperature 

region of the TPD spectra. Specifically, the room temperature XPS shows that the major 
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phosphorus-containing species on Cu100 is atomic phosphorus, from which no gaseous product can 

evolve during a TPD ramp. The weak XPS peak for MMP indicates a small amount of surface 

methoxy groups on Cu100 at room temperature. By contrast, (CuO)80 has surface-bound MMP 

almost exclusively, indicating a fair amount of surface methoxy groups at room temperature. 

Therefore, the difference in the initial amounts of surface methoxy groups between Cu100 and 

(CuO)80 explains why (CuO)80 has a stronger rising shoulder feature for methanol in the low 

temperature region compared to that of Cu100, as is shown in Figure 4. Moreover, considering that 

the decomposition of both phosphinate and MMP may contribute to the formation of POx after 

heating to 200 oC, it is reasonable to speculate that the decomposition of these two surface species 

may contribute to the methanol and formaldehyde formation in the low temperature region for Cu100. 

This also helps to explain why the signal intensity of methanol and formaldehyde for Cu100 in the 

low temperature region is comparable to that of (CuO)80, despite the fact that Cu100 should have 

much less surface methoxy groups to begin with at room temperature. 
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Figure 3.5 Proposed reaction scheme of DMMP decomposition on Cu100 and (CuO)80. 

Moreover, the differences in C 1s XPS between Cu100 and (CuO)80 agree with the fact that 

the overall TPD signal intensity for (CuO)80 is stronger than Cu100. As is shown in Figure 3.8, for 

(CuO)80, the obvious shoulder feature in the range of 286-287 eV is a strong indication for methoxy 

groups. The shoulder feature decreases with incremented temperatures, suggesting that those 

methoxy groups may evolve into gaseous products and leave the surface. By contrast, neither the 

shoulder feature nor its decreasing process is obviously discernable for Cu100. It has been reported 

that the C 1s for the methoxy group within MMP is largely indistinguishable from that of methoxy 

groups absorbed on CuO120; however the methoxy group on clean Cu(110) may have a slightly 

lower C 1s binding energy.135 Therefore, the C 1s XPS spectra not only provide additional evidence 

for the abundance of methoxy groups on (CuO)80, but also agrees with the fact that (CuO)80 has 
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stronger RGA signals for methoxy-originated gaseous products, such as methanol and 

formaldehyde. 

Furthermore, broad peaks are expected in both XPS and TPD spectra based on fundamental 

considerations. Theoretical studies have shown that dynamic fluxionality can cause supported 

clusters to populate many distinct structural and stoichiometric states under reaction conditions.137 

Hence, the reaction interface should be viewed as an evolving statistical ensemble of many 

structures.138 This theory has been exemplified by size-selected cluster catalysis experiments, in 

which the size-dependent properties are explained by different compositions of thermal ensembles.4, 

15 In this study, it is believed that the support (HOPG) and the absorbate (DMMP) can affect the 

structure of the clusters, causing the ensembles to change for all reaction intermediates. The 

structural dynamics can become even more complex during the heating process, when reaction 

intermediates can follow different reaction pathways and the lattice oxygen within (CuO)80 is 

activated. Since both XPS and TPD can only provide the ensemble-average information, it is 

reasonable to expect that the XPS peaks are broader at elevated temperatures; and that the TPD 

peaks are more broadened for (CuO)80 in the low temperature region. 

Although all of the above discussion shows that our overall reaction scheme is reasonable 

considering the mutual agreement between the XPS and TPD results, it should be realized that the 

XPS results cannot be directly mapped to the TPD results. The reason is that TPD is the result of 

continuous measurements during a programmed linear temperature ramp, while XPS is taken at 

room temperature, which is a relatively thermodynamically stable state reached after prolonged 

heating of the sample at certain critical temperatures. The P 2p XPS does show well-separated 

peaks for certain surface species, especially for atomic phosphorus on Cu100. However, the presence 

of broad peaks and low signal-to-noise ratio in the heating data makes it very hard to conclusively 

assign peaks. Moreover, the unresolved peaks in the TPD data also make it difficult to relate every 

surface species to their corresponding gaseous products. Additional characterizations, such as FT-
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IR, isotopic labelling, and computational work would further validate more details in the proposed 

reaction scheme; however, these efforts are outside the scope of the study presented here. 

 

3.5 Conclusions 

In this work, we use combined XPS and TPD to investigate the room temperature decomposition 

and thermal decomposition of DMMP on size selected Cu100 and (CuO)80 clusters supported on 

HOPG. Cu100 has shown remarkable reactivities towards DMMP, which is drastically different from 

(CuO)80. At room temperature, the XPS results show that most of the adsorbed DMMP molecules 

decompose completely into atomic phosphorus on Cu100, while phosphine, phosphinate and 

phosphonate groups may exist in only small amounts. By contrast, DMMP mainly dissociates into 

surface-bound MMP and methoxy species through P-OCH3 bond scission on (CuO)80 at room 

temperature, which is commonly seen on many other metal oxides. TPD results show evidence of 

two distinct desorption regions and that methanol, formaldehyde, and methane are the three main 

volatile products for both Cu100 and (CuO)80. The differences between the TPD results can be 

correlated to the XPS results to some degree. A set of methanol probed TPD experiments, which 

show the desorption of formaldehyde from (CuO)80 but not from Cu100 and no methane production 

for either cluster, suggest that lattice oxygen within (CuO)80 is involved in thermal decomposition 

of DMMP and that methane originates from the methyl group within DMMP instead of the surface 

methoxy species. 

This work highlights a unique method to synthesize small clusters and analyze their reactivities 

towards DMMP. The mass-selected soft-landing deposition method makes it efficient to prepare 

small copper and cupric oxide clusters of desired size on a prepared surface. Combined XPS and 

TPD offers a powerful approach to analyze the decomposition process of DMMP. The results not 

only add to the library of metal and metal oxide clusters studied for degradation of CWA simulants, 
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but also showcase how changing the metal oxidation states can affect the reactivity towards DMMP 

substantially. It should be emphasized that the remarkable reactivities of Cu100 towards DMMP at 

room temperature should motivate more work on metallic copper materials. Besides oxidative 

decomposition of CWAs, for which many metal oxide materials have been explored, reductive 

decomposition, which is exemplified by Cu100 in this work, may be another promising path. 

 

3.6 Supporting Information 

 

Figure 3.6 P 2p XPS of molecular DMMP in the form of a frozen matrix on HOPG at -170 oC. The P 2p3/2 

peak is labeled as P0 with a binding energy of 134.2 eV. 

The data in Figure 3.6 was acquired on the newly rebuilt version of the original apparatus, 

on which the sample can be maintained at -170 oC for XPS measurements. The original apparatus, 

which was used to acquire the rest of the data in this work, was described in detail elsewhere.79 The 

original apparatus can only take XPS measurements at room temperature. Since there is no obvious 
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sign for any physical adsorption of DMMP on HOPG without any clusters at room temperature, P 

2p XPS cannot be obtained for molecularly adsorbed DMMP on the original apparatus. Since the 

data in Figure 3.6 was acquired on a multilayer of DMMP at cryogenic temperature, while the rest 

P 2p XPS in this work was done on less than 10% monolayer coverage, it is reasonable to expect 

that Figure 3.6 has much stronger signal intensity compared to the other P 2p spectra. 

 

 

Figure 3.7 TPD spectrum of physi-desorption of a DMMP frozen matrix adsorbed on HOPG measured by 

m/e 124 (parent DMMP ion), and 79 (major fragment ion). The frozen matrix of DMMP consists of a DMMP 

multilayer. The multilayer sublimes at around -110 oC, and the remaining monolayer adsorbed on HOPG 

desorbs at around -50 oC. 
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Figure 3.8 C 1s XPS for DMMP adsorbed Cu100 and (CuO)80. The arrows show the direction, in which the 

spectra shift with incremented temperatures. The inserted picture shown in the left graph is an enlargement 

of the binding energy area from 286 eV to 287 eV. Data points for different temperatures are marked by 

different symbols: 25 oC (■), 200 oC (♦), 300 oC (▲), 400 oC (▼). 

 

Figure 3.9 Methanol TPD experiments on Cu100 and (CuO)80. Methanol (black), formaldehyde (red) and 

methane (blue) are tracked by m/e of 31, 29 and 16, respectively. The traces are offset for clarity and data 

has been corrected for fragmentation pattern. 

A1. Fragmentation correction and background subtraction. 
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The products are identified with the QMS by considering the fragmentation pattern and the 

background from the sample holder. Monitored masses for the experiments with DMMP are m/e = 

124, 79, 32, 31, 30, 29, 16, 15; with methanol are m/e = 32, 31, 29, 30, 16, 15. Methanol is identified 

by m/e of 32, 31, 30, and 29. formaldehyde are identified by m/e of 30 and 29. Methane is identified 

by 16.  

As is described in the experimental section, the sample must be annealed to 25 oC first, before it 

is brought directly in front of the RGA for a TPD run. Even though 25 oC is believed to be high 

enough to remove all of the physi-adsorbed DMMP on the HOPG surface, there is still a small 

amount of DMMP that can desorb at around 90 oC, possibly from the sample holder or the defects 

on HOPG, as is shown in Figure 3.10. Even though m/e of 32, 31, 30 and 29 also have peaks at 

around 90 oC, based on the fact that they follow the trend of m/e of 79, it is believed that there is 

no obvious evidence for methanol or formaldehyde. 

 

Figure 3.10 (a) Background TPD spectra obtained after annealing the sample at 25 oC to remove all the 

physisorbed DMMP. No cluster was deposited in this case. (b) Linear fitting for m/e of 32, 31, 30, and 29 to 

m/e of 79 in the low temperature range from 50 oC to 90 oC. 

The raw data for experimental TPD as is shown in Figure 3.11 (a), which is taken after 

cluster deposition into the frozen matrix of DMMP, also have low temperature peaks analogous to 
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the background experiment. In the low temperature region from 50 oC to 90 oC, m/e of 32, 31, 30, 

and 29 are well linearly fitted to m/e of 79. Therefore, the spectra for m/e of 32, 31, 30, 29 are 

corrected by m/e of 79 using the ratio determined in the linear fitting. The TPD spectrum for 

(CuO)80 DMMP is also corrected in the same way. The ratios tend to deviate among experiments 

carried out in different days, which is possibly due to some slight change in the filament conditions 

and differential pumping conditions in the RGA. 

 

Figure 3.11 (a) Raw TPD spectrum for Cu100 DMMP. (b) Linear fitting for m/e of 32, 31, 30, and 29 to m/e 

of 79 in the low temperature range from 50 oC to 90 oC. 

It should be noted that DMMP, methanol and formaldehyde all contribute to m/e of 30 and 29. 

As is shown in Figure 3.11, DMMP only has its contribution below 150 oC, but methanol has its 

contribution extending to 250 oC. The correction for m/e of 30 and 29 were done using the ratio 

determined by the methanol TPD experiments. Since the signal intensity for m/e of 30 and 29 are 

relatively stronger compared to that for m/e of 32 and 31, this correction does not change the 

spectrum in a qualitative manner. 

For the methanol TPD experiments, the correction for m/e of 30 and 29 can make a huge 

difference. As is shown in Figure 3.12 (a) and (c), it is not obvious to see the difference between 
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Cu100 and (CuO)80 in terms of methanol decomposition. However, when plotting m/e of 31, 30 and 

29 to 32, it is apparent that there is formaldehyde desorption for (CuO)80 but not for Cu100. 

 

Figure 3.12 Methanol TPD raw data and linear fittings for m/e of 31, 30 and 29 to 32. (a) Methanol Cu100 

TPD spectrum without fragmentation correction. (b) Linear fitting for m/e of 31, 30 and 29 to 32. (c) 

Methanol (CuO)80 TPD spectrum without fragmentation correction. (d) Plotting for m/e of 31, 30 and 29 to 

32. 

A2. P/Cu ratio 

Figure 3.13 shows the P/Cu ratios at all four temperatures for Cu100 and (CuO)80. The 

relative sensitivity factors used for P 2p and Cu 2p3/2 are 0.486 and 3.547.31 The P/Cu ratios 
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generally remain at around 0.1. Since there is no obvious decreasing in the P/Cu ratios, it is believed 

that the DMMP desorption below 100 oC is not from the clusters but from the sample holder. 

 

Figure 3.13 P/Cu ratio for Cu100 and (CuO)80 at 25 oC, 200 oC, 300 oC, 400 oC. 

 

 

4. Testing and Troubleshooting of the New Apparatus 

Besides installing every component physically, testing and troubleshooting a newly 

constructed apparatus also take tremendous efforts. This section discusses a few major 

improvements and troubleshooting processes that have been made to bring the new apparatus to be 

fully functional.  

4.1 Magnetron Sputtering Source Modification 

A stable ion source which can generate the clusters of interest with high enough ion 

intensity is the first requirement for consistent and reliable clusters deposition experiments. 
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On the new apparatus, copper cooling coils have been added to the aggregation region of 

the magnetron sputtering source (Figure 4.1). VCO fittings have been used for easy uninstallation. 

With water cooling for each deposition process, the ion intensity, as well as the size distribution, 

seem to be more stable compared to without water cooling and using a stainless-steel aggregation 

column. Liquid nitrogen cooling was also tried for making zirconium oxide clusters; however, no 

significant changes were observed compared to water cooling. Nevertheless, it is still worth trying 

liquid nitrogen cooling with other systems. It should be noted that Teflon O-rings should be used 

for liquid nitrogen cooling, and they should be replaced every time after the cooling lines are 

uninstalled, otherwise they may start to leak during the cooling process. 

 

 

Figure 4.1 Aggregation region for magnetron sputtering source. 

Another issue that has been fixed for the magnetron is the gas line. As is shown in Figure 

4.2, the rigid gas line has been changed with flexible bellows tubing. Even though the U-shape of 

the rigid gas line has some degree of flexibility, it was not good enough for easy installation. 

Moreover, restricting the rigid tubing towards the center could easily cause the weld to break since 

it was the weakest part in the gas line. 
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Figure 4.2 Magnetron source gas line. (a) Replacing the rigid U-shape gas line into flexible bellow tubing. 

(b) (c) Flexible tubing has been restricted towards the center to prevent rubbing again the housing wall during 

operation. 

Once the cooling line and gas line problems have been fixed, the next important factor to 

ensure stable operation are the two sealing surfaces: one is between the copper aggregation region 

and the front plate, the other one is between the copper aggregation region and the back column. 

One may assume that the seals may not matter that much since the diameter of the iris is as large 

as 1-1.5 centimeter. However, they are very important to ensure high ion intensity and high signal 

stability. On the new apparatus, it is usually the case that the pressure in the inner source is 1.0-1.4 

torr while the pressure in chamber 1 is 1.0×10-4 - 1.0×10-3 torr. If the pressure in chamber 1 is 

already close to 1.0×10-3 torr, while the inner source pressure is still below 1.0 torr, it is very likely 

that the two seals are not maintained very well. In this scenario, the two sealing surfaces need to be 

checked or the O-rings need to be replaced. 

It is usually the case that the ion intensity for the clusters of interest drops significantly 

during the deposition period of a few hours. For a decent deposition process, the signal intensity 
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should still remain at least more than 50% of the starting point with almost no change in the source 

and only a few adjustments on the ion optics. This was rarely the case on the old apparatus; however, 

it has been achieved routinely on the new apparatus. 

 

Figure 4.3 Gas column installed on the magnetron head with a limited and controlled distance of 0.5-1 mm. 

Based on the experience on the old apparatus, it appeared to the author that the distance 

between the gas column and the target holder (Figure 4.3) is very important for stable and intense 

ion signal. For a typical deposition process on the old machine, the ion intensity often dropped to 

less than half of what it was at the beginning before enough clusters were deposited. Then, the 

source conditions and ion optics needed to be adjusted. Sometimes, the deposition needed to be 

paused, and the ion signal needed to be tuned up on the last few ion optics. There were also some 

days when the ion signal was stable, and the source conditions did not require any adjustment 

during the deposition. The author realized that the distance between the gas column and the target 

holder was maintained at a small distance for those good depositions, and the gas column became 

crooked or slipped away from the target holder during deposition for those bad depositions. This 

was the case because the U-shaped rigid gas line always carried some tension, and the three screws 

for the gas column sometimes did not have enough friction force to hold the gas column in place, 
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especially during operation when everything was heated up. On the new apparatus, after replacing 

the magnetron head with a stronger magnet, the slots on the gas column have also been precisely 

readjusted so that the largest distance is now controlled by the slots instead of relying on the 

frictions between the screws and the slots. In this case, the distance between the gas column and 

the target holder has now been controlled reliably at a small distance (0.5-1 mm) for every 

reassembly of the source as well as during every deposition process. The resistance between the 

gas column and the metal target is usually in the range of 0.5-5 MΩ if the gas column is installed 

right. As a result, the magnetron has been working much more consistently on the new apparatus. 

A few parameters can be adjusted within the magnetron source such as the pressure of 

helium, argon, oxygen, sputtering current, sputtering voltage, and the aggregation distance. The 

sputtering current and voltage can be controlled by a programmable DC power supply (KEPCO 

KLN 600-1.25). The constant current mode has been proven to be better for stable ion intensity. 

Adjusting oxygen content under constant current mode can cause the sputtering voltage to change 

dramatically from 200-400V, therefore, it is recommended that one should adjust the oxygen in 

small amount and wait for a few minutes for the sputtering voltage to stabilize. If the ion intensity 

drops dramatically, the iris and the big skimmer voltages should be adjusted accordingly first. For 

the pressure of argon, it is usually related to the sputtering current and the material being sputtered. 

The optimized argon pressure is usually not dramatically different among different systems. For 

helium and aggregation distance, it is usually the case that larger clusters prefer higher helium 

pressure and longer aggregation distance. 

It should be noted that the inner pressure range is more limited on the new apparatus (<1.5 

torr) than what it was on the old apparatus (< 4 torr), due to the pressure limit in chamber 1 (1x10-

3 torr) since it is pumped primarily by a VHS-6 diffusion pump. This is the case because the multi-

stage skimmers (Figure 1.3) for differential pumping have not been inherited onto the new 

apparatus. However, based on the experience on both the old and new apparatus, it is believed that 
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the pressure limit may be the main reason why larger clusters cannot be easily made on the new 

machine.  

4.2 Laser Vaporization Sources 

A laser vaporization disk sources was designed by Dr. Zachary Hicks by taking inspiration 

of another pioneering laser vaporization disk sources design139 in Dr. Ulrich Heiz’s lab. Similar in 

effect to Heiz’s hypocycloidal gear setup, a planetary gear setup was applied so that the laser shot 

traces could cover the whole area of a 2 -inch-diameter target disk as is shown in Figure 4.4. More 

details are described in Dr. Hicks’s thesis.51 

 

Figure 4.4 Petaled rose curve laser ablation traces on zirconium target. 

Even though the planetary gear system allows for a petaled rose curve ablation pattern on 

the disk target, the mechanical integrity of the gear system turns out to be not strong enough to 

press the target holder up against the front plate to create a seal. As is shown in Figure 4.5, some 

green light is leaking through from the upper side of the target holder, where there should also be 

a huge leak for helium and oxygen gases. During the rotating process, the leakage between the 

target holder and the front plate is constantly changing due to the uneven force from the square peg 
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pressed into one of the planet gears. As a result, the ion intensity is also changing dramatically. It 

should be noted that the ion intensity is always higher when there is no obvious green light leakage, 

therefore the seal is believed to be one of the most critical factors for the laser vaporization disk 

source to be working for cluster deposition experiments. Unfortunately, solving this problem by 

modifying the current design or redesigning the mechanical structures completely is beyond the 

author’s experience and knowledge. 

 

Figure 4.5 Laser vaporization disk source. 

4.3 Tuning and measuring of the deposition ion signal 

Besides stable cluster ion sources, an efficient beam line with high transmission and good 

stability is the next key factor for routine cluster deposition experiments. On the new apparatus, the 

clusters ions remain collimated in the xy-axis as they travel down the z-axis from aperture to 

aperture by one quadruple ion guide and multiple octupole ion guides. A 90° beam bender is placed 

before the QMS to filter out neutral clusters and ions of the undesired polarity. More details about 

the beam line are described elsewhere.51 
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In the early stage of tuning up the beam line, SIMION, which is an ion trajectory simulation 

software, can help provide approximate electrostatic voltage ranges that are needed to be applied 

on the first a few ion optics. An electrometer (Keithley 6514) is connected through a BNC cable to 

the feedthroughs for every ion optics (mostly ion guides) to measure the ion intensity while all the 

voltages applied before that ion optic are being tuned. It is usually very easy to get several 

nanoamps of ion current on the thin aperture 1 as long as the voltage polarities applied onto the 

quadrupole ion guide and the first octupole ion guide are right. The voltages for the iris and the big 

skimmer depend largely on the source conditions and how long the source has been running without 

cleaning out metal oxide deposit. 

Table 2 Voltages for ion optics (the unit is V). 

Ion Optics in Sequence CuxZryOz
+ CuxZryOz

- Pt NbxOy
- 

Iris 9 0 0 

Big Skimmer 28 0 -24 

Quadrupole 24 -2 -23 

Small Skimmer 1 0 -20 

Octupole -122 24 30 

Thin Aperture 1 -160 69 148 

Bender Inlet Octupole -62 56 109 

Bender Aperture 1 -220 175 136 

Bender Aperture 2 -276 278 306 

Bender Aperture 3 10 93 306 

Bender Aperture 4 10 93 306 

Bender Rods 1, 3 -276 290 264 

Bender Rods 2, 4 53 -48 -58 



79 

 

Bender Outlet Octupole -45 39 69 

Thin Gate Valve -67 55 66 

 

Once, several nanoamps of ion signal can be measured on the thin aperture 1, it is not 

necessary to stay on it for tuning up the ion intensity. Instead, it is recommended to move on to the 

thin gate valve. It should be noted that the thin gate valve is grounded when it is fully closed and is 

completely out of the way when it is fully open. Therefore, the thin gate valve should be halfway 

open while measuring ion signal on it. As is shown in Table 2, with one set of voltages for positive 

ions and two sets of voltages for negative ions, it is expected that the positive and negative cluster 

ions need the opposite polarity of voltages on the bender. The signal intensity is most sensitive to 

the voltages applied on bender rod 1, 3 and 2, 4; less sensitive to that on bender aperture 1, and 2; 

and least sensitive to that on bender aperture 3, and 4. More time can be devoted to tuning up the 

ion signal on the thin gate valve until the ion intensity reaches tens of nanoamps. 

Once a set of voltages has been figured out, for example, the set of voltages for PtNbxOy- 

clusters shown in Table 2, for similar systems, such as PtMxOy- (M = Zr, Ti, and Mo), one should 

be able to turn on the beam line and immediately detect ion signal of decent intensity on the 

deposition octupole under unselected mode of the QMS. Then, a few mass spectra of different 

resolutions and ranges can be acquired in order to decide which clusters are to be mass selected. At 

last, all the voltage conditions and sources conditions should be fine-tuned to maximize the ion 

intensity for the selected size of clusters. 

When there is no ion current at all, here are some troubleshooting steps to be followed: 1. 

Check if the electrometer is connected right (including the continuity across the RC filter box); 2. 

Check the source conditions, such as the pressures, sputtering current, and what the interior source 

region looks like when viewing down through the beam line via the laser inlet window (especially 

color and consistency); 3. Check all the DC voltages and verify the correct outputs are being applied; 
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4. Check the RF oscillator boxes. All the RF boxes are home-built based on the literature140, the 

high voltage power supplies of which should usually output ~400V with 90-120 mA. When there 

is no current, it is usually the case that the capacitors C4 or C5 has blew out. C4 and C5 provide a 

low-impedance path for radio frequencies but block the plate dc voltage.140 Typically a blown 

capacitor in an RF box will produce a subtle, but noticeable smell of burning plastic. The value of 

these capacitors is not critical, as long as they are equal and large compared to the capacity of the 

load. Therefore, C4 and C5 have to be replaced at the same time for repairment even through it is 

usually the case that only one of them blows out. When the current is higher than normal, it is 

usually the case that one of the alligator clips has detached from the potentiometer coils within the 

RF box. It should be easy to fix by repositioning the two alligator clips so that the same number of 

coils are connected into the circuit. 

It should be noted that the tunability of voltages applied on all the ion optics are limited by 

the voltage that can be applied to float the QMS, due to the fact that the housing shield of the QMS 

has been designed to be grounded through flange mounting of the housing. The housing should had 

have been designed to mount in such a way that it is electrically isolated and can be floated. The 

float voltage of the QMS can be applied through the LabVIEW program by setting the value for 

Pole Bias from -5 to 5 scaled to -200 to 200 V.51 When operating with quadrupole pole bias different 

from quadrupole housing potential of more than 10 V, sensitivity can diminish by more than an 

order of magnitude and peaks can split because the housing potential can assert itself into the 

quadrupole, which causes octupolar and dodecapolar non-linear resonances.141 On the current 

apparatus, since the housing is grounded, the quadrupole pole bias should be set to within -10 to 10 

V. In practice, the voltage range can be expanded to -15 to 15 V while the quality of the mass 

spectra is still maintained. If the housing of the QMS is modified to be electrically isolated and 

floated, the whole beam line will probably achieve better efficiency. 
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4.4 Fluorine Contamination 

The fluorine contamination originated from the use of Apiezon 501 grease, which was 

applied on the three slide seal spring-energized Teflon O-rings due to a gross misconception that 

O-rings always need grease to create a better seal. However, Teflon is a self-lubricating material, 

which can create a transfer film on the mirror polished stainless steel rod.142 In fact, the energized 

Teflon O-rings work better unlubricated, compared to when used with grease. 

Apiezon 501 grease is advertised as a chemically inert, low vapor pressure (1.3×10-12 Torr 

at 25 oC), high temperature lubricant, that can be used in oxygen rich or UHV environments. 

However, the vapor pressure is as high as 10-5 Torr at 200 oC. What is worse is that the grease can 

break down into toxic and corrosive gases above 300 oC. Furthermore, it is not suitable for 

cryogenic applications. Lastly, the composition of Apiezon 501 is a mixture of 

perfluoropolyether (PFPE) and polytetrafluoroethylene (PTFE) which are susceptible to 

degradation by X-rays.143-145 Unfortunately, in the surface analytical region of the new apparatus, 

where there are local high temperature regions and X-rays, Apiezon 501 grease was unavoidably 

decomposed into HF and other organofluoride species with higher vapor pressures. 

When there was still a macroscopic level of grease in the chamber, the TPD results for 

DMMP decomposition were inconsistent and of very low signal intensity (data not shown here). 

The TPD experiments with and without clusters had almost similar peak intensity, which was very 

likely caused by the extensive fluorine contamination. After the macroscopic level of grease was 

cleaned out, the results of DMMP TPD experiments seemed to be more consistent but the signal 

intensity was still extremely low compared to the old apparatus. For example, Figure 4.6 shows 

two TPD spectra for DMMP decomposition on ZrCu2-3On clusters with a very week peak for all the 

products as compared to the results obtained on the old apparatus (Chapter 2, and Chapter 3). 
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Figure 4.6 Figure 4.5 DMMP TPD results for ZrCu2On and ZrCu3On. 

The macroscopic level of grease was cleaned out by a high vapor pressure perfluorinated 

solvent followed by acetone. Then the fluorine contamination level was estimated via XPS and 

RGA. As is shown in Figure 4.7, freshly peeled HOPG could collect organofluoride species 

immediately after being transferred into the analysis chamber. After annealing to 400 oC for 10 

minutes, the F 1s signal intensity increased moderately.  
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Figure 4.7 F 1s XPS for freshly peeled HOPG. 

When 3×1013 ZrCu3O4-6 clusters were deposited onto the HOPG at room temperature, F 1s 

signal intensity increased significantly (Figure 4.8). After annealing to 400 oC for 10 minutes, F 1s 

shifted to higher binding energy indicating the organofluoride species could have decomposed or 

reacted with the clusters. 
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Figure 4.8 F 1s XPS for ZrCu3O4-6 supported on HOPG before and after annealing. 

 

Figure 4.9 Peak fitting of F 1s XPS for freshly deposited ZrCu3O4-6 supported on HOPG. 
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Figure 4.10 Peak fitting of O 1s XPS for ZrCu3O4-6 supported on HOPG before and after annealing. 

Peak fitting for F 1s shows that metal fluoride was formed after cluster deposition at room 

temperature (Figure 4.9). Peak fitting for O 1s shows that fluorinated oxygen species increased 

significantly after annealing to 400 oC (Figure 4.10). 

In order to remove residual fluorine contamination, prolonged baking at around 130 oC was 

applied. During the baking process, the RGA intensity for all the organofluoride species went up 

but not for m/z 19. m/z 19 is believed to be F+, which might be mainly from HF (Figure 4.11). 

 

Figure 4.11 Prolong baking with RGA monitoring m/z 19 (F+), 97 (C2F3O+), 119 (C2F5
+), 147 (C3F5O+), 

169 (C3F7
+) 
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Figure 4.12 RGA intensities for organofluoride species. 

Figure 4.12 shows that the RGA intensity for those organofluoride species increased 

significantly in the first day, dropped back down in the next two days, and gradually decreased to 

close to zero counts at the end. After a week of prolonged baking, it was believed that further baking 

could not provide considerable progress anymore. 

Since baking was not very effective in cleaning out the X-ray source and fluorinated 

oligomers are X-ray sensitive, it was expected that more fluorine contamination species can be 

generated during the X-ray outgassing process. 

 

Figure 4.13 Degassing of the X-ray source at 10 kV 70W. 
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First, the filaments of the X-ray source were degassed from 3A up to 4.5A. Then, high 

voltage conditioning was applied to the anode from 10 kV to 15 kV. Finally, the power of the X-

ray source was stepped up with the degassing pressure staying below 10-7 torr. As is shown in 

Figure 4.13 (left), degassing of the X-ray source to 10 kV and 70W caused m/z 19 and 69 to spike 

up. Figure 4.13 (right) shows that all the heavier organofluoride species went up when the X-ray 

source was on, and immediately went down then X-ray source was turned off. 

 

Figure 4.14 Degassing of the X-ray source from 15 kV 90W to 15 kV 130W. 

X-ray Gun Degassing to 15 kV 90W and then 15 kV 130W caused m/z 19 and 69 to spike 

up and then slowly decrease as in shown in Figure 4.14 (left). The trend was the same for all the 

heavier organofluoride species as is shown in the zoomed in spectrum (Figure 4.14 right). 

After the X-ray source was almost fully degassed, baking should be applied again to 

remove the fluorine contamination in the system. This time, hot Ar flushes were applied during 

baking. All three turbomolecular pumps for the UHV region were turned off, and 5-10 torr of Ar 

was dosed into the chamber via a leak valve with 60-70 psi of backing pressure. After 30 min, the 

chamber was pumped down by a scroll pump to low vacuum. This Ar flush process was repeated 

several times before the chamber was pumped down to UHV. Ar flushes were cycled with X-ray 

source degassing, RGA degassing and TSP cycles. All these efforts helped to lower the level of 

fluorine contamination even more. 
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To increase the collision energies between argon and the chamber wall, argon glow 

discharge was carried out. A glow discharge plasma is formed when the voltage applied on a low-

pressure gas exceeds its breakdown voltage and causes its ionization.146 Mild plasma 

cleaning of metal surfaces was shown to be effective in removing organic contaminants.147-148 

In practice, a copper electrode was installed onto the copper lead on the sample holder, as 

is shown in Figure 4.15. The physics of argon glow discharge is similar to magnetron sputtering. 

The metal target in the magnetron source is like the chamber wall in the argon glow discharge 

cleaning process. Therefore, the power supply for the magnetron sputtering source was used for 

argon glow discharge. The positive voltage applied to the copper wire hanging in the center of the 

chamber was tuned up gradually until a purple plasma occured (Figure 4.16). The glow discharge 

was maintained with ~+300 V with a constant flow of Ar maintaining at about 6.5×10-2 Torr. The 

discharge current was stabilized at around 55 mA. 

 

Figure 4.15 Copper electrode installed onto the copper lead on the sample holder. 
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Figure 4.16 Argon glow discharge plasma. 

Argon glow discharge seemed to be a more effective way of removing organofluoride 

species from the system. After several sessions of argon glow discharge for a few hours followed 

by baking the whole system routinely as well as degassing the RGA, there was almost no 

organofluoride species being detected by the RGA except for a few thousands counts for m/z 19. 

However, after each baking cycle, the X-ray source needed to be degassed again, and a small 

amount of m/z 19 as well as organofluoride species were still outgassed by the X-ray source. 

4.5 Methods to Make Heterometallic Oxide clusters 

Interactions between metals and oxides are key factors to determine the performance of 

metal/oxide heterojunctions.149 A systematic rationalization of the field is lacking due to the great 

diversity in catalysts, reactions and modification strategies.150 Cluster deposition methods, through 

which the coverage and stoichiometry of the clusters are highly controllable, offer another route to 

study interactions between metals and oxides within the smallest unit with less than twenty atoms. 

In order to study heterometallic oxide clusters, a few strategies have been explored for making them 

in the magnetron sputtering source. 
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Half-Moon Sputtering Target 

The most straightforward way to make mixed metal oxide clusters is to use half-round, 

semicircular targets for the two metals of interest. Figure 4.17 shows the copper molybdenum half-

moon magnetron sputtering target, which were used to make MoxCuyOz clusters. Since the half-

round target is made from a full target, there is always a gap between the two pieces, a metal sheet 

should be placed behind the gap to avoid sputtering of the magnet cover. In this case, a copper or 

a molybdenum sheet should be placed behind the gap. 

 

Figure 4.17 The copper molybdenum half-moon magnetron sputtering target. 

Figure 4.18 shows a comparison between mass spectra (acquired on the old apparatus) for 

magnetron sputtering of a single molybdenum target and a copper molybdenum half-moon target. 

For (MoO3)n
-, for n < 4, each size of the molybdenum oxide clusters can be completely separated 

from each other. However, since copper has a smaller atomic mass and mixed metal oxide clusters 

have more complex compositions, the magnetic sector failed to completely resolve a certain size 

of clusters even for the smallest mixed metal oxide clusters (CuMoO4). 
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Figure 4.18 Mass spectra of magnetron sputtering single molybdenum target and copper molybdenum half-

moon target. 

Pressed Powder 

A pressed powder method was tried for expensive metals such as gold. As is shown in 

Figure 4.19 right, sixteen 1.2 mm diameter holes were drilled along the trough of the sputtering 

racetrack on a niobium target. Those holes were press-filled with gold powder at 0.5-0.8 micron. 

The gold powder was greyish brown before being pressed. It turned a shiny gold color once press-

filled into the holes on the niobium target. 

Using this method can only generate very weak signal for AuNbyOz
-. The number of holes 

was doubled and then quadrupled, which still could not increase the absolute intensity for AuNbyOz
- 

to be high enough for deposition experiments. At the biggening of the sputtering process, it was 

very likely that most of the gold powder got sputtered away very quickly. Therefore, the intensity 

for AuNbyOz
- could not be maintained over a period of several hours. 
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Figure 4.19 mass spectrum of AuxNbyOz
- and niobium target with 16 holes press-filled with gold powder. 

Spot Welding of Metal Strips 

The weldability for platinum with a lot of early transition metals such as Mo, Nb, Zr, Ti, 

V, Ta, and W is decent. Therefore, platinum strips were spot welded onto those metal sputtering 

targets (Figure 4.20) in order to make PtMxOy clusters. 

 

Figure 4.20 Zirconium target with 4 platinum stripes spot welded onto it. 
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While sputtering a metal (M) target spot welded with several platinum strips in the 

magnetron sputtering source, MxOy
-, PtxOy

-, and PtMxOy
- can be generated at the same time. In order 

to select pure heterometallic oxide clusters, it is desired that the peaks for PtMxOy
- can sit between 

the peaks for MxOy
-. The transition metals in the fifth period such as Mo, Nb and Zr can fulfill this 

requirement. 

 

Figure 4.21 Mass spectra of PtMoxOy
- under high resolution (left) and low resolution (right). 

 

Figure 4.22 Mass spectra of PtNbxOy
- under high resolution (left) and low resolution (right). 
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Figure 4.23 Mass spectra of PtZrxOy
- under high resolution (left) and low resolution (right). 

Figure 4.22, Figure 4.23, and  Figure 4.23 show the mass spectra of PtMoxOy
-, PtNbxOy

-, 

and PtZrxOy
-, respectively. The spectra on the left are of high resolution when the number of oxygen 

atoms within the clusters are resolved. The spectra on the right are of low resolution with higher 

overall cluster ion intensity. Under mid-to-low resolution, PtMxOy
- can be selected with known x 

value, two or three y values, and high enough ion intensity for deposition.  

 

Figure 4.24 Mass spectra of PtTixOy
- under high resolution (left) and low resolution (right). 

 



95 

 

 

Figure 4.25 Mass spectra of PtVxOy
- under high resolution (left) and low resolution (right). 

For transition metals in the fourth period such as Ti and V, PtMxOy
- have more overlaps 

with MxOy
- in the mass spectra as is shown in Figure 4.25 and Figure 4.25. Both PtTixOy

- and 

PtVxOy
- have decent cluster ion intensities under mid-to-low resolution. Therefore, PtMxOy

- clusters 

mixed with a small amount of MxOy
- clusters can be selected for deposition experiments. 

 

Figure 4.26 Mass spectra of TaxOy
- (left) and PtTaxOy

- (right). 
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Figure 4.27 Mass spectra of WxOy
- (left) and PtWxOy

- (right). 

For transition metals in the sixth period such as Ta and W, PtMxOy
- are heavily overlapped 

with MxOy
- in the mass spectra as is shown in Figure 4.27 and Figure 4.27. The mass spectrum for 

PtMxOy
- needs to be compared to that for pure MxOy

- in order to assign the peaks for PtMxOy
-. The 

clusters ion intensity for PtMxOy
- is generally much lower than that for MxOy

-, thus making the 

deposition experiments for PtTaxOy
- and PtWxOy

- to be not very practical. 

 

Figure 4.28 Mass spectra for PtNbOn
- (n=4, 5, and 6) with relatively lower (left) and higher (right) oxygen 

content in the magnetron sputtering source. 

In short, Mo, Nb, Zr, Ti, and V are good candidates for M in PtMxOy
 clusters deposition 

experiments. Among those candidates, Nb stands out with superior cluster ion intensity for 
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PtNbxOy
-, so that the number of oxygens can be resolved for cluster deposition. By tuning the 

oxygen amount in the magnetron sputtering source, PtNbOn
- (n=4, 5, and 6) can be selected 

respectively with decent cluster ion intensities for deposition experiments. (Figure 4.28) 

4.6 Preliminary results on the new apparatus: formic acid decomposition 

4.6.1 Background of formic acid decomposition 

Hydrogen, an environmentally friendly energy carrier, has been considered as one of the 

most promising candidates as the fuel for the future. There has been sustained interest in searching 

for a safe manner to transport and store hydrogen. Currently, using a proper chemical as the 

hydrogen carrier is one of those potential approaches.151 Among all the hydrogen storage chemicals 

investigated recently, formic acid has drawn a lot of attention.151-154 

There are two competing pathways for formic acid decomposition.155-156 One is 

dehydration, which generates CO and H2O; the other is dehydrogenation, which generates CO2 and 

H2. Apparently, the second pathway is desired for the production of H2. For the first pathway, CO 

is not only toxic, but also can be poisonous for the catalysts, such as Pt and Pd. Therefore, 

developing an efficient catalyst that can preferentially decompose formic acid into CO2 and H2 is 

very crucial. There have been a lot of supported noble metal catalysts being explored for selective 

dehydrogenation of formic acid.155, 157-159 

Formic acid decomposition has also been investigated under UHV conditions. Different 

single metal crystal surfaces serve as the model systems to unveil the adsorption and decomposition 

mechanism.160-161 For Pd(111), formic acid was found to decompose into all four possible products, 

namely CO, CO2, H2 and H2O.160 A second element has also been introduced into the system by 

doping162 or adding a substrate163 for a Pd thin film to grow on, both of which have been used to 

achieve a higher selectivity for formic acid dehydrogenation. Very recently, Marcinkowski et.al. 
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conducted a comparison experiment on Pt-Cu single-atom alloy under UHV and solution phase 

environment.30 They found that the Pt single atom is what makes the Pt-Cu single-atom alloy 

surface exhibit such high selectivity, however, this conclusion doesn’t apply to the solution phase 

counterpart, which is a Pt-Cu single-atom alloy nanoparticle.30 Even so, this work still indicates a 

great potential for developing better model systems for fundamental surface science studies on the 

catalytic properties of Pt single atom catalysts. 

4.6.2 Experimental 

HOPG was freshly peeled before transferred into the UHV chamber. It was then annealed 

at 500 oC for 30 minutes. After that, it was cooled down to ~-175 oC for clusters deposition. 4×1013 

clusters were deposited for a typical TPD experiment. Several freeze-pump-thaw cycles with 

acetone dry ice bath was applied to formic acid (≥95% Sigma-Aldrich) in order to degas it and 

pump away the residual water. Formic acid was dosed into the chamber at low 10-9 torr for 100 

seconds. The dosing amount is monitored by RGA with m/z 46 at around 20000 counts. The sample 

was then heated to -50 oC for 5 minutes to remove the physi-adsorbed formic acid. After the 

physisorption process, the sample was allowed to cool back down to cryogenic temperature. 

Finally, the sample was ramped up to 500 oC at 1 oC/s in front of the RGA to record a TPD spectrum. 
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4.6.3 Preliminary TPD results 

 

Figure 4.29 Formic acid TPD spectra: (a) PtZr2O6-7 formic acid TPD; (b) PtZr2O6-7 TPD without formic acid; 

(c) PtTi2O6-7 formic acid TPD; (d) formic acid TPD. 

Figure 4.29 shows the TPD results of formic acid decomposition on size-selected clusters 

with their control experiment. By comparing Figure 4.29 (a) to (b), it is reasonable to conclude that 

the desorption of CO2 and CO in temperature range of 100-200 oC in Figure 4.29 (a) is mostly due 

to formic acid decomposition on PtZr2O6-7 clusters. By comparing Figure 4.29 (a) to (d), the rising 

background for CO2 and CO above 300 oC are very likely due to the HOPG or the sample holder. 

Figure 4.29 (a) and (c) shows that PtZr2O6-7 and PtTi2O6-7 have similar peak positions for CO2 and 

CO, indicating the metal oxide support for Pt single atom may not have much effect on the reaction. 
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It is not clear why no obvious H2 desorption can be detected. Water desorption that is due 

to formic acid decomposition will required isotopic labeling experiments. 

Formic acid TPD experiments have been repeated several times and the results are 

consistent, indicating the fluorine contamination should have much less effect on the results 

compared to the situation before the decontamination process. 
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