
STATISTICAL METHODS FOR DECODING GENE REGULATION
IN SINGLE CELLS

by
Zhicheng Ji

A dissertation submitted to Johns Hopkins University
in conformity with the requirements for the degree of

Doctor of Philosophy

Baltimore, Maryland
April, 2020

© 2020 Zhicheng Ji
All Rights Reserved

Abstract

Single-cell sequencing is rapidly transforming biomedical research. With the ability

to measure omics information in individual cells, it provides unprecedented resolu-

tion to study heterogeneous biological and clinical samples, enabling scientists to

discover and characterize previously unknown biological signals and processes carried

by novel or rare cell subpopulations. The new data structure and high level of noise

in the single-cell genomic data pose significant analytical challenges. To address these

challenges, we developed new statistical and computational methods for analyzing

single-cell transcriptome and regulome data. First, to infer cells’ underlying devel-

opmental trajectories, we developed TSCAN that performs “pseudotime” analysis

with a cluster-based minimum spanning tree approach. TSCAN facilitates accurate

construction of pseudotemporal trajectories by regularizing the complexity of span-

ning trees. By improving the bias-variance tradeoff of the spanning tree estimation,

TSCAN substantially improved the accuracy and robustness of the pseudotime anal-

ysis. Second, we developed RAISIN to support regression and differential analysis

in single-cell RNA-seq datasets with multiple samples. Compared to classical linear

mixed effects model, RAISIN improves variance estimate and statistical power for

datasets with small sample size or cell number, and improves scalability for datasets

with large sample size and millions of cells. Third, we developed SCATE to extract and

enhance signals from the highly noisy and sparse single-cell ATAC-seq data. SCATE

accurately infers genome-wide activities of each individual cis-regulatory element by

adaptively integrating information from co-activated cis-regulatory elements, similar

ii

cells, and massive amounts of publicly available regulome data. The enhanced signal

improves the performance of downstream analyses such as peak calling and prediction

of transcription factor binding sites. These methods have been applied in numer-

ous collaborative projects and helped decipher gene regulatory programs in T cell

exhaustion process and identify molecular signatures in neoadjuvant immunotherapy.

Primary Reader and Advisor: Hongkai Ji

Secondary Reader: Jiou Wang, Stephanie Hicks, Kellie Smith

iii

This thesis is dedicated to my wife, my parents, my thesis advisor, and my

collaborators who made everything possible.

iv

Acknowledgements

I would like to express the deepest appreciation to my thesis advisor Dr. Hongkai Ji

for the invaluable support of my Ph.D. study. Without his mentorship, I will not be

able to get prepared as an independent researcher in the field of statistical genomics

and computational biology. I have learned from him not only the necessary knowledge

and skills but also the way of independent and critical thinking as well as how to

efficiently present and communicate the results to the broad scientific community. I

am extremely lucky to have him as my Ph.D. thesis advisor.

I would like to thank all members of my thesis committee for their insightful

comments and suggestions.

I would like to thank my current and former lab colleagues: Dr. Weiqiang Zhou,

Dr. Wenpin Hou, Weixiang Fang, Boyang Zhang, Dr. Fang Du, Dr. Ben Sherwood,

and many others for helpful discussions and generous support in various research

projects.

I would like to thank all my collaborators: Dr. Drew M. Pardoll, Dr. Kellie N.

Smith, Dr. Jiajia Zhang, Dr. Justina X. Caushi, Dr. Sneha Berry, and Dr. Janis

M. Taube in the Bloomberg Kimmel Institute for Cancer Immunotherapy at Johns

Hopkins School of Medicine; Dr. Andrew P. Feinberg, Dr. Michael A. Koldobskiy,

and Dr. Varenka R. DiBlasi in the Epigenetics Center at Johns Hopkins School of

Medicine; Dr. Steven A. Vokes, Dr. Kristin N. Falkenstein, and Rachel K. Lex at the

University of Texas at Austin; Dr. E. John Wherry and Zeyu Chen at University of

v

Pennsylvania; Dr. Fang Han at University of Washington; and Dr. Stephanie Hicks,

Dr. Ni Zhao, Dr. Xiaobing Wang, Dr. Xiumei Hong, and Dr. Guoying Wang at Johns

Hopkins Bloomberg School of Public Health, and many others. I am honored to have

the privilege of contributing to the scientific discoveries through these collaboration

projects, and these collaborations have inspired many of my methodology work.

I would like to thank the Department of Biostatistics at Johns Hopkins Bloomberg

School of Public Health for providing the extraordinary resource of education and

research.

Finally, I would like to thank my wife and my parents for their huge support during

the whole course of my graduate study.

vi

Contents

Abstract . ii

Dedication . iv

Acknowledgements . v

Contents . vii

List of Tables . xi

List of Figures . xii

Chapter 1 Introduction . 1

Chapter 2 TSCAN: Pseudo-time Reconstruction and Evaluation in

Single-cell RNA-seq Analysis 7

2.1 Introduction . 7

2.2 Methods . 12

2.2.1 Problem formulation . 12

2.2.2 Preprocessing . 13

2.2.3 Cell clustering . 14

2.2.4 Ordering cell clusters by MST 15

vii

2.2.5 Cell ordering and pseudo-time calculation 16

2.2.6 Detecting differentially expressed genes 17

2.2.7 Method evaluation . 18

2.2.8 TSCAN package and GUI . 21

2.2.9 Datasets . 21

2.2.10 Comparisons with other methods 22

2.3 Results . 24

2.3.1 HSMM analysis using a priori chosen genes for pseudo-time

reconstruction . 25

2.3.2 HSMM analysis without using a priori chosen genes for pseudo-

time reconstruction . 32

2.3.3 LPS analysis . 35

2.3.4 qNSC analysis . 36

2.3.5 The graphical user interface 37

2.4 Discussion . 38

Chapter 3 Single-cell ATAC-seq Signal Extraction and Enhance-

ment with SCATE . 50

3.1 Introduction . 50

3.2 Methods . 56

3.2.1 Single-cell ATAC-seq data preprocessing 56

3.2.2 Genome segmentation . 56

3.2.3 Bulk DNase-seq database (BDDB) 56

3.2.4 Compiling cis-regulatory elements (CREs) using bulk data com-

pendium . 57

viii

3.2.5 SCATE model for known CREs in a single cell 58

3.2.6 Estimate locus effects mi and si 61

3.2.7 Estimate technical bias function hj(.) 63

3.2.8 Estimate β, δ and µ . 64

3.2.9 Analysis at multiple spatial resolution levels (i.e., multiple Ks) 65

3.2.10 Optimizing spatial resolution (K) by cross-validation 66

3.2.11 Postprocessing – SCATE for other genomic bins in a single cell 66

3.2.12 SCATE for multiple cells . 67

3.2.13 Peak calling and evaluation 68

3.2.14 TFBS prediction . 69

3.2.15 Processing of benchmark bulk DNase-seq and ATAC-seq data 69

3.2.16 Software . 69

3.3 Results . 70

3.3.1 SCATE model for a single cell 70

3.3.2 SCATE for a cell population consisting of multiple cells 75

3.3.3 Benchmark data . 76

3.3.4 Analysis of a homogeneous cell population - a demonstration . 76

3.3.5 Analysis of a homogeneous cell population - a systematic evaluation 82

3.3.6 Analysis of a heterogeneous cell population - demonstration and

systematic evaluation . 86

3.3.7 Analysis of scATAC-seq data from human hematopoietic differ-

entiation . 91

3.4 Discussion . 95

ix

Chapter 4 RAISIN: Regression Analysis in Single-cell RNA-Seq

with multiple samples . 97

4.1 Introduction . 97

4.2 Methods . 98

4.2.1 RAISIN overview . 98

4.2.2 RAISIN data preprocessing 99

4.2.3 RAISIN differential expression (DE) analysis 101

4.2.4 Estimating θs,ϕs and ω2
gs . 107

4.2.5 Estimating αl,γl and σ2
gl . 108

4.2.6 Hypothesis testing . 110

4.2.7 Benchmark data collection and processing 111

4.2.8 Analysis of HCA bone marrow data 112

4.2.9 Simulation study . 113

4.2.10 Performance evaluation by AUC and FDR difference 115

4.3 Results . 116

4.3.1 Simulation study . 116

4.3.2 HCA bone marrow data . 117

4.4 Discussion . 119

Conclusions and general discussion . 122

References . 125

Curriculum Vitae . 132

x

List of Tables

2-I Comparison of TSCAN and other single cell data analysis methods . 23

3-I Comparison of single-cell regulome analysis methods 53

4-I List of differential methods compared. 116

xi

List of Figures

Figure 2-1 TSCAN Overview. (A-B) A toy example illustrating a limi-

tation of cell-based MST. Here cells (blue circles) are placed

in a two dimensional space, and the true biological time runs

top-down. An MST that connects cells is not unique. Both

(A) and (B) are possible solutions. (B) is more consistent with

the truth. However, in reality, random measurement noise

may shift the cell labeled by ’*’ away from other cells as in-

dicated by the arrow and dashed lines. As a result, (B) is no

longer an MST. The MST in (A) on the other hand does not

reflect the true order of cells. (C) The true time-axis can be

found if one first groups similar cells into clusters and then

constructs an MST to connect cluster centers. (D) TSCAN

first constructs cluster-based MST (five clusters of cells en-

coded by different colors are shown as an example; numbers

indicate cluster centers). The tree can have multiple paths

(e.g., 1-2-3-4 or 1-2-3-5). TSCAN orders cells along each path

by projecting each cell onto the tree edge. (E) The number of

principal components to retain is determined by finding the

best piecewise linear fit consisting of two lines (dashed). . . 11

xii

Figure 2-2 TSCAN graphical user interface. Left panel contains func-

tion menus and tools for setting parameters. Right panel

displays data and results. The top scatter plot shows the MST

constructed for the LPS data (see Results). Cells (dots) are dis-

played based on their first two principal components. Clusters

of cells are indicated by different colors. Numbers are cluster

centers. Expression level of a marker gene BCL3 is shown for

each cell. Larger marker size means higher expression. The

bottom plot shows the average BCL3 expression for each tree

node, standardized across all nodes to have zero mean and

unit standard deviation. 12

Figure 2-3 TSCAN analysis in HSMM dataset using 518 a priori chosen

genes for pseudo-time reconstruction. (A) MST reported by

TSCAN is shown in the 3 dimensional space spanned by the

first three principal components (PCs) of E. (B) Users can

display cells and MST in chosen PCs (e.g., PC1 and PC2).

(C) Mean expression level of ENO3 in each cluster. (D) Mean

expression level of SPHK1 in each cluster. Values in (C) and

(D) are both standardized across all clusters to have zero mean

and unit SD. 26

xiii

Figure 2-4 Evaluation results for different methods in HSMM dataset

where pseudo-time was constructed based on 518 a priori cho-

sen genes. (A) POS score. (B) Robustness measured by the

average similarity score from 100 independent perturbations.

The heat map shows robustness of each method in each per-

turbation scheme. Cell Perturb: cell-level perturbation. Expr

Perturb: expression-level pertubation. (C) Mean rank of gold

standard genes. (D) Number of detected gold standard genes

among top differential genes. 28

Figure 2-5 Averaged bulk gene expression level for MEF2C and MYH2 in

HSMM data. 32

Figure 2-6 MEF2C and MYH2 expression patterns in HSMM dataset

where pseudo-time was constructed based on 518 a priori

chosen genes. MEF2C and MYH2 expression in each cell is

plotted as a function of cell order on the analyzed pseudo-time

axis. The curves are the fitted GAM function. The dashed

curve is the GAM fit for ENO3, the marker used to determine

the path direction. 40

Figure 2-7 Demonstration of GUI and TSCAN analysis of HSMM data

using all genes for pseudo-time reconstruction. (A) MST

constructed by TSCAN using all genes. (B) Users can choose

a marker gene in GUI to visualize its expression. (C) Users

can define a path by specifying the clusters to include and

their ordering. (D) The average expression of SPHK1 in each

cluster. (E) The average expression of ENO3 in each cluster. 41

xiv

Figure 2-8 Evaluation results for different methods in HSMM data where

pseudo-time was constructed using all genes. (A) POS score.

(B) Robustness measured by the average similarity score from

100 independent perturbations. (C) Mean rank of gold stan-

dard genes. (D) Number of detected gold standard genes

among top differential genes. 42

Figure 2-9 Comparing the cell ordering constructed using 518 prior genes

and the cell ordering obtained without using these genes in

the HSMM dataset. (A) Similarity score between the two

orderings for each method. (B) The number of common genes

among the top R differentially expressed genes detected by

the two cell orderings is plotted as a function of R. (C) The

number of common genes with consistent change directions

among the top R differentially expressed genes detected by

the two cell orderings is plotted as a function of R. In order

to determine if a gene has consistent change direction in the

two cell orderings, the fitted GAM functions of the gene from

the two cell orderings are compared as follows. First, the

pseudo-time axes for both cell orderings are linearly scaled to

interval [0,1], and the GAM functions are scaled accordingly.

Next, values of the GAM functions are extracted at 100 evenly

spaced pseudo-time points (i.e., 0.01, 0.02, ..., 1), and then

the Pearson’s correlation between the two extracted vectors

(representing the two GAM functions) is computed. Genes

with negative correlation are viewed as inconsistent between

the two cell orderings. 43

xv

Figure 2-10 MEF2C and MYH2 expression patterns in HSMM dataset

where pseudo-time was constructed using all genes. The ex-

pression of each gene in each cell is plotted as a function of

cell order on the pseudo-time axis. The solid curves are the

fitted GAM function. The dashed curve is the GAM fit for

ENO3, the marker gene used to determine the path direction. 44

Figure 2-11 Evaluation results for different methods in LPS dataset. (A)

POS score. (B) Robustness measured by the average similarity

score from 100 independent perturbations. (C) Mean rank of

gold standard genes. (D) Number of detected gold standard

genes among top differential genes. 45

Figure 2-12 STAT2 expression patterns in LPS dataset. STAT2 expression

in each cell is plotted as a function of cell order on the pseudo-

time axis. The orange curve is the fitted GAM function. . . . 46

Figure 2-13 Evaluation results for different methods in qNSC dataset. (A)

Robustness measured by the average similarity score from 100

independent perturbations. (B) Mean rank of gold standard

genes. (C) Number of detected gold standard genes among

top differential genes. 47

Figure 2-14 SOX9 expression patterns in qNSC dataset. SOX9 expression

in each cell is plotted as a function of cell order on the pseudo-

time axis. The orange curve is the fitted GAM function. . . . 48

xvi

Figure 2-15 Further demonstration of TSCAN GUI. (A) Users can set

up trimming criteria by choosing gene names and specifying

expression cutoffs. (B) TSCAN excludes cells that meet all

trimming criteria. (C) Users can also visualize the expression

of specified genes along pseudo-time as heatmaps. 49

Figure 3-1 Background and motivation. (A)-(D): an example genomic

region showing chromatin accessibility in GM12878 and K562

measured by different methods including (A) bulk DNase-

seq, (B) scATAC-seq from one single cell, (C) scATAC-seq by

pooling 100 cells, (D) SCATE-reconstructed scATAC-seq signal

from one single cell. (E): Illustration of CRE-specific baseline

activities using the same genomic region. Bulk DNase-seq data

from multiple different cell types show that some loci tend to

have higher activity than others regardless of cell type (e.g.

compare the two loci in blue boxes). (F): At the individual

CRE level, the correlation between the log-normalized scATAC-

seq read count in one GM12878 cell and the log-normalized bulk

GM12878 DNase-seq signal is low (Pearson correlation = 0.394).

Each dot is a CRE. (G): After aggregating multiple CREs based

on co-activated CRE pathways by SCRAT, the correlation

between the CRE pathway activities in one GM12878 cell

and the bulk GM12878 DNase-seq signal (both at log-scale) is

substantially higher (Pearson correlation = 0.696). Each dot

is a CRE pathway. 52

xvii

Figure 3-2 The empirical distribution (histogram) of the log-normalized

read counts in human BDDB after standardization (i.e., sub-

tract the mean and divide by SD of each CRE) can be fitted

well with a normal distribution (red curve). 62

Figure 3-3 Saturation analysis of BDDB CRE lists. (A): As one increases

the number of DNase-seq samples in the BDDB database, the

proportion of new CREs contributed by adding a new sample

gradually decreases. (B): The scATAC-seq datasets analyzed

in this study would only add 0.0013%-0.118% new CREs to

the precompiled CRE list in BDDB. 71

Figure 3-4 SCATE overview. (A): SCATE model for a single cell. (B):

SCATE model for multiple cells. 72

Figure 3-5 Normalization of scATAC-seq and bulk DNase-seq data. The

scATAC-seq read counts versus baseline mean activities are

shown for low-variability CREs in GM12878 (top panel) and

K562 (bottom panel). Each blue dot is a low-variability CRE,

defined as a CRE with almost constant activity across diverse

cell types in BDDB bulk DNase-seq samples. Different plots

correspond to analyses based on pooling different number of

cells. In each plot, the red curve is the technical bias function

fitted by SCATE. 78

xviii

Figure 3-6 Adaptive tuning of analysis resolution. The number of CRE

clusters automatically chosen by SCATE via cross-validation

(histogram) is compared with the true optimal CRE cluster

number determined by external information from the gold

standard bulk DNase-seq data (dots). Different plots corre-

spond to different cell types and pooled cell number. In each

plot, the histogram shows the CRE cluster number chosen by

SCATE in 10 independent cell samplings. The dots show the

true correlation between the gold standard bulk DNase-seq

signal and the SCATE-reconstructed scATAC-seq signal (both

at log-scale) at each CRE cluster number, averaged across the

10 cell samplings. The dot with the highest correlation is the

true optimal cluster number. 79

Figure 3-7 Comparison of different methods in an example genomic region.

Each row is a method, each column corresponds to a different

cell type or pooled cell number. All columns show the same

genomic region. The blue boxes highlight two CREs. The left

CRE occurs in both GM12878 and K562. It cannot be detected

by Raw reads, Binary and SCRAT CRE cluster methods in

a single cell, but can be detected by Average DNase-seq and

SCATE. The right CRE is K562-specific. It cannot be detected

by Average DNase-seq but can be detected by SCATE. . . . 81

xix

Figure 3-8 Correlation between reconstructed and true CRE activities.

(A): Scatterplots showing true bulk CRE activities vs. CRE

activities estimated by different methods in an analysis that

pools 10 GM12878 cells. In this analysis, both activities are

at log-scale. (B): The correlation between the scATAC-seq

reconstructed and true bulk regulome for different methods.

Each plot corresponds to a test cell type. In each plot, the

correlation is shown as a function of the pooled cell number. 84

Figure 3-9 Peak calling performance. (A): The sensitivity versus FDR

curve is shown for different peak calling methods in an anal-

ysis that pools 25 GM12878 cells. (B): The area under the

sensitivity-FDR curve (AUC) is shown as a function of pooled

cell number for different methods. Each plot corresponds to a

different test cell type. 85

xx

Figure 3-10 TFBS prediction performance. (A): An illustration of TFBS

prediction in an example genomic region. The region contains

a genomic bin with ELF1 motif and high SCATE-reconstructed

CRE activity in GM12878. The bin is predicted as a ELF1

binding site. The prediction can be validated by ELF1 ChIP-

seq peak in GM12878. (B): An example sensitivity versus

FDR curve for comparing different methods for predicting

ELF1 TFBSs in an analysis that pools 25 GM12878 cells. (C):

Two examples (ELF1 in GM12878 and JUND in K562) that

illustrate the method comparison across different cell numbers.

In each example, analyses are performed by pooling different

numbers of cells. The median AUC under the sensitivity-FDR

curve from 10 independent cell samplings is shown as a function

of pooled cell number. (D): The averaged AUC across all TFs

is shown as a function of pooled cell number in GM12878 and

K562 respectively. 87

xxi

Figure 3-11 Analyses of a heterogeneous cell population. (A): Distribu-

tion of cell cluster numbers obtained by SCATE for synthetic

samples with different cell mixing proportions. GM12878 and

K562 cells are mixed at different proportions. For each mixing

proportion, 10 synthetic samples are created and analyzed. (B):

An example tSNE plot showing clustering of cells in a synthetic

sample. (C): At each cell mixing proportion, the frequency

that each cell type is detected in the 10 synthetic samples is

shown. (D)-(F): The correlation between the scATAC-seq re-

constructed and true bulk regulome in (D) GM12878, (E) K562,

and (F) GM12878 and K562 combined for different methods

is shown as a function of cell mixing proportion (GM12878

cell percentage). (G): The peak calling AUC (GM12878 and

K562 combined) vs. cell mixing proportion. (H): The TFBS

prediction AUC (GM12878 and K562 combined) vs. cell mix-

ing proportion. (I): The correlation between the scATAC-seq

reconstructed and true bulk differential log-CRE activities is

shown as a function of cell mixing proportion. (J)-(L): Similar

analyses in samples consisting of human CMP and mono-

cyte cells, including (J) correlation between reconstructed and

true bulk log-CRE activities, (K) peak calling AUC, and (L)

correlation between predicted and true differential log-CRE

activities. (M)-(O): Similar analyses in samples consisting

of mouse thymus and brain cells, including (M) correlation

between reconstructed and true bulk log-CRE activities, (K)

peak calling AUC, and (L) correlation between predicted and

true differential log-CRE activities. 88

xxii

Figure 3-12 An example of predicting differential CRE activities. Scat-

terplots showing true bulk differential log-CRE activities vs.

differential log-CRE activities estimated by different methods

in an analysis of a synthetic sample consisting of 30 GM12878

and 70 K562 cells. 90

Figure 3-13 Analyses of a heterogeneous cell population created using (A)

Dataset 2 and (B) Dataset 3. In each dataset, the left plot

shows distribution of cell cluster numbers obtained by SCATE

for synthetic samples with different cell mixing proportions.

For each mixing proportion, 10 synthetic samples were created

and analyzed. The right plot shows the frequency that each

cell type is detected in the 10 synthetic samples at each cell

mixing proportion. 92

xxiii

Figure 3-14 Analysis of human hematopoietic differentiation cell types.

(A): tSNE plot showing cells color-coded by their true cell

types. (B): tSNE plot showing cells color-coded by their pre-

dicted cell types. Using the default setting, SCATE grouped

cells into 14 clusters (numbers in the plot indicate cluster

centers). The clusters that can be unambiguously linked to

a cell type are color-coded by cell type. (C): Similar to (B),

but cells are clustered using user-specified cluster number (38

clusters). (D)-(F): Regulome reconstruction performance of

different methods in the default analysis, including (D) corre-

lation between reconstructed and true bulk log-CRE activities,

(E) peak calling AUC, and (F) correlation between predicted

and true differential log-CRE activities. (G)-(I): Regulome

reconstruction performance using user-specified cluster number

(38 clusters), including (G) correlation between reconstructed

and true bulk log-CRE activities, (H) peak calling AUC, and

(I) correlation between predicted and true differential log-CRE

activities. (J): Comparison of different methods in an example

genomic region in HSC cell cluster in the default analysis. . . 94

Figure 4-1 A. Schematic of RAISIN algorithm. B. Methods that ig-

nore cell-level variability (limma) or sample-level variability

(Wilcoxon test) yield false positives. C. AUROC and FDR

difference of different methods in a simulation study 118

xxiv

Figure 4-2 A. UMAP of the HCA dataset B. Computational time (y-

axis) with different number of cells in the dataset (x-axis). C.

Number of false positives with different number of cells and

different number of samples. 120

xxv

Chapter 1

Introduction

Gene expression is an essential process in all known life forms. Gene expression is

the process where the information of a gene is used to synthesize functional gene

products such as ribonucleic acid (RNA) and proteins. Gene expression can be

regulated by a wide range of sophisticated mechanisms in almost all steps of the gene

expression process including transcription [1], RNA splicing [2], and translation and

post-translational modification of a protein [3]. Gene regulation controls the timing,

location, and amount of gene products present in a cell, and it has a profound impact on

the functions of cells. The regulation of gene expression is the basis of many biological

processes such as cell differentiation and development. Misregulation of gene expression

can cause many diseases including cancer, autoimmune disease, developmental disorder,

diabetes, cardiovascular disease and others [4]. Thus, decoding the dynamic gene

expression process and elucidating how gene expression is regulated are essential

for understanding the mechanisms of these complex diseases and developing better

intervention and treatment strategies.

Next-generation sequencing (NGS) [5] is a powerful tool to study and under-

stand the gene expression process and how genes are regulated. The classical NGS

technologies measure different perspectives of the gene expression process for a cell

population at a given time point. For example, RNA sequencing (RNA-seq) [6] mea-

sures the transcriptome, which is the complete set of transcripts and their quantity in a

1

sample. DNase I hypersensitive sites sequencing (DNase-seq) [7], assay for transposase-

accessible chromatin sequencing (ATAC-seq) [8], and formaldehyde-assisted isolation

of regulatory elements sequencing (FAIRE-seq) [9] measure genome-wide chromatin

accessibility, which correlates with the degree to which nuclear macromolecules are

able to physically contact chromatinized DNA [10]. Chromatin immunoprecipitation

sequencing (ChIP-seq) [11] identifies the binding sites of DNA-associated proteins.

Whole genome bisulfite sequencing (WGBS) [12] determines the DNA methylation

status of single cytosines. NGS technologies have been widely applied in biomedical

research. For example, the ENCODE project [13] has generated data using different

types of NGS technologies for more than 16,000 samples by far, covering different

species, cell types, tissues, developmental stage, and chemical treatments. This pro-

vides a rich resource for studying gene expression and gene regulation in a wide variety

of biological contexts.

One limitation of the conventional NGS technology, or bulk sequencing technology,

is that it only measures the averaged genomic information of a cell population. For

example, DNase-seq usually requires one million cells [14] and ATAC-seq requires

hundreds to thousands of cells [15]. They measure these cells’ average behavior.

However, in many situations, the genomic information for each cell is desired. For

a heterogeneous cell population such as cancer, measuring the genomic information

for each cell may reveal a clue for rare but critical cell subpopulation such as cancer

stem cell [16]. This information is masked by bulk sequencing. Identifying such cell

subpopulation may provide key insights into the failure of anticancer therapies [16].

Even for a homogeneous cell population, gene expression can also be heterogeneous

due to stochastic variations [17]. The genomic information for each cell may help

reveal how the stochastic events link to cell fate decisions [18]. Finally, it is very

difficult, if not impossible, for bulk sequencing to study a cell population with a very

small number of cells. For example, there are only a few precursor cells available of

2

specific lineages from very early embryos [19]. Thus, it becomes crucial to develop

new sequencing technologies that can measure the genomic information in a single cell.

Such single-cell technology can help researchers to gain deeper understandings of basic

biology and clinical practice which cannot be learned using bulk sequencing alone.

Thanks to the rapid development of the technology and experimental protocol,

different types of single-cell sequencing technology have been developed in the past

decade. The first generation of single-cell RNA-seq technologies was developed around

ten years ago [20–22]. These technologies were able to measure the transcriptome in

one or a few cells. After that, the number of single cells measured in a study increases

exponentially [23]. Single-cell RNA-seq has now become a widely accessible tool to

measure the transcriptome of hundreds of thousands of cells [24–26]. Single-cell RNA-

seq has been widely applied in numerous fields of biomedical research, such as studying

the dynamic changes of transcriptome in a developmental process [27], the immune

cells in breast cancer tumor microenvironment [28], the developmental lineage of a

whole animal [29], the spatial transcriptome of the mouse brain [30], and identifying

new cell types in mouse kidney [31]. Meanwhile, single-cell sequencing technology

to characterize the activities of all genomic regulatory elements, or regulome, starts

to emerge around five years ago. Single-cell ATAC-seq (scATAC-seq [32, 33]) and

single-cell DNase-seq (scDNase-seq [14]) are two technologies for measuring chromatin

accessibility in single cells. Single-cell ChIP-seq (scChIP-seq [34]) measures histone

modifications in single cells. These technologies have been used to uncover the

composition of different cell types in a cell population, as well as to find a link between

chromatin organization and cell-to-cell variation [32]. There are also technologies

developed for mapping different -omics modalities simultaneously in single cells. For

example, sci-CAR can jointly profile chromatin accessibility and mRNA in thousands

of single cells [35]. Other types of single-cell sequencing technologies include single-cell

genome sequencing [36], single-cell DNA methylation sequencing [37], and paired

3

single-cell T cell receptor sequencing (TCR-seq) and RNA-seq [38].

However, analyzing data generated from single-cell sequencing technologies is an

enormous challenge. Analytical methods developed for conventional bulk sequencing

data usually are incapable of dealing with the unique challenges in analyzing single-

cell data. First, new types of analytical tasks may emerge when analyzing data

from single-cell sequencing. For example, to study a continuous biological process

such as cell differentiation, one can collect time-course single-cell RNA-seq datasets

from different experimental time points. However, cells may differentiate at different

speeds, and the experimental time points may not represent the cells’ true states

in the differentiation trajectory. How to computationally order the cells to reflect

the underlying biological process is a new challenge that is not seen in analyzing

bulk sequencing data. Second, data from single-cell technology can be highly sparse

and noisy. For example, data from 10x single-cell RNA-seq [24] can have as high as

90-95% of all gene expression measurements to be zero. Many of these zeroes are

the so-called dropout events, where the observed zero read count does not represent

the actual medium or high expression of the gene due to some technical bias. Data

from single-cell ATAC-seq are even more sparse and are nearly binary. This happens

because the diploid genome only has two copies of DNA and single-cell ATAC-seq

only has a chance of one or two to capture the open chromatin regions. However,

molecular events such as transcription factor binding to DNA is a temporal stochastic

event. Thus, the highly sparse single-cell ATAC-seq signal cannot accurately describe

the probability of the occurrence of molecular events, which is a continuous measure.

Thus, it is essential to develop analytical methods to recover the true signal from

the highly sparse and noisy single-cell sequencing data. Third, data from single-cell

technology can be highly complex. Consider a gene expression dataset with multiple

samples. For each sample, traditional bulk technology will generate a vector of gene

expression values across all genes, while single-cell technology will generate a matrix

4

of gene expression values across all genes and cells. Thus, while bulk data contains the

variability across samples, single-cell data add an extra layer of variability across cells.

More sophisticated analytical methods are needed to account for the extra complexity

of the data. There are many other challenges as well, including how to develop scalable

methods to analyze big single-cell datasets and how to integrate information from

different single-cell data modalities.

To tackle these challenges, many novel statistical and computational methods have

been developed. For example, pseudotime or trajectory analysis methods [39] have

been proposed to tackle the new challenge of ordering cells computationally to infer

their underlying biology. Imputation methods have been developed to tackle the high

sparsity issue of the single-cell RNA-seq data [40]. New methods [41, 42] have also

been created to handle the complex structure of the single-cell datasets. However,

there are still many unsolved challenges. For example, although there are methods to

impute single-cell RNA-seq data, there is no existing method to accurately recover

the activities of genome-wide cis-regulatory elements (CREs).

This thesis introduces three methods we developed to tackle several open challenges

in single-cell data analyses. TSCAN [43] is a pseudotime analysis method that

computationally orders the cells and infers the underlying biological process. TSCAN

reaches a better performance of pseudotime analysis by improving the bias-variance

tradeoff in spanning tree inference. SCATE enhances highly sparse single-cell ATAC-

seq signal and recovers activities of genome-wide CREs by adaptively integrating

information from co-activated CREs, similar cells, and massive amounts of publicly

available regulome data. RAISIN is a regression and differential analysis method that

adequately accounts for the multi-level variance structure in single-cell RNA-seq data

with multiple samples. We demonstrate that these methods can tackle the unique

challenges in analyzing single-cell sequencing data with systematic benchmarking

studies. We are applying these methods in several collaborative projects. Examples

5

include studying the mechanisms of the T cell exhaustion process [44] and deciphering

gene expression and gene regulation in various biological systems.

6

Chapter 2

TSCAN: Pseudo-time
Reconstruction and Evaluation in
Single-cell RNA-seq Analysis

2.1 Introduction

Single-cell RNA-seq is a transformative technology that allows researchers to measure

transcriptomes of individual cells [20, 45]. Unlike single-cell RNA-seq, conventional

RNA-seq (also referred to as “bulk RNA-seq”) [6, 46] or microarray [47, 48] experiments

are used to measure average gene expression of a cell population. In many applications,

the cell population is heterogeneous and contains multiple cell types. As a result, the

average transcriptome of the population may fail to capture important transcriptional

signals in individual cells. Sometimes, using the population average to study cell type

specific behavior can also be misleading due to Simpson’s paradox [27, 49]. With the

ability to measure the transcriptome of each individual cell, single-cell RNA-seq is

capable of generating a higher resolution view of the gene expression landscape in a

heterogeneous cell population [21, 22, 50]. This can lead to a more accurate molecular

characterization of a complex biological phenomenon [51].

As demonstrated by [27], one useful way to gain biological insights from single-cell

RNA-seq data is to computationally order cells according to the gradual transition of

7

their transcriptomes. For example, in a cell differentiation process, cells can evolve

at different speeds. A sample of cells collected at a particular time point during

differentiation can actually contain cells representing different differentiation stages.

Using single-cell RNA-seq data, one may construct an ordered sequence of cells to

describe the gradual transition of the single-cell transcriptome. If this in silico order is

consistent with cells’ true differentiation stages, then by analyzing how gene expression

changes along this ordered sequence of cells, one will be able to obtain insights on the

transcriptome dynamics during the differentiation process. The process of ordering

cells in silico is called pseudo-time reconstruction because it mimics a procedure

that places cells on a time axis. Despite the use of the term “time”, “pseudo-time

reconstruction” can more generally refer to any cell ordering procedure regardless of

whether the ordering has a time interpretation (e.g., the ordering of cells may reflect

cells’ spatial order rather than their temporal order).

Several computational methods have been proposed to analyze single-cell genomic

data such as single-cell mass cytometry data [52–54] and single-cell gene expression

data [27, 55–58]. However, for pseudo-time reconstruction in single-cell RNA-seq data,

there are only a limited number of methods that have been systematically tested and

have easily accessible software tools. In [27], an unsupervised approach Monocle was

proposed to solve this problem. Monocle uses a minimum spanning tree (MST) to

describe the transition structure among cells. The backbone of the tree is extracted to

serve as the pseudo-time axis to place cells in order. A similar unsupervised spanning-

tree approach has also been used previously for analyzing flow cytometry data [54]. As

an unsupervised approach, pseudo-time reconstruction based on spanning trees does

not require any prior information on cell ordering. When temporal order information

8

is available, an alternative approach to analyzing single-cell gene expression dynamics

is to use such information to supervise the analysis. An example of this supervised

approach is SCUBA [55]. SCUBA uses bifurcation analysis to recover biological

lineages from single-cell gene expression data collected from multiple time points. Here

the multiple time points in a time course experiment are used to supervise the cell

ordering and analyses of gene expression dynamics in cell differentiation processes.

By using the available time information, supervised methods can be more accurate

than unsupervised methods. However, in applications where time information is not

available (e.g., if one needs to analyze a heterogeneous cell population from a single

disease sample rather than from a time course experiment), the supervised approach is

not applicable and one has to rely on unsupervised methods. For these reasons, both

supervised and unsupervised methods are useful. The primary focus of this article is

the unsupervised approach.

One potential limitation of Monocle is that its tree is constructed to connect

individual cells. Since the cell number is large, the tree space is highly complex.

Tree inference in such a complex space is associated with high variability and can

be highly unstable. As a result, the optimal tree found by the algorithm may not

represent cells’ true biological order. This can be illustrated using a toy example

in Figure 2-1A-C. Here dots represent cells placed in a two dimensional space (e.g.,

the space corresponding to the top two principal components of the gene expression

profiles), and the true biological time runs top-down vertically. The MST solution

is not unique. Figure 2-1A and Figure 2-1B show two possible solutions. When a

slight measurement noise pushes the cell labeled by ‘*’ away from other cells, the

tree in Figure 2-1A can easily become a better solution based on the MST algorithm.

However, this solution places cells in an order different from their true biological order.

One approach that may alleviate this problem is to reduce the complexity of the tree

space. This is analogous to the bias-variance tradeoff in the statistics and machine

9

learning literature. For instance, if one clusters similar cells together as in Figure 2-1C

and then constructs a tree to connect the cluster centers, recovering the true time-axis

becomes easier. In this article, we exploit this idea to develop TSCAN, a new tool for

pseudo-time reconstruction. One additional advantage offered by clustering cells is

that users can more easily adjust the order of tree nodes (i.e., cell clusters) manually

if they want to do so, since the number of clusters usually is not big. By contrast,

manually specifying the order of hundreds of cells is much more difficult.

Another limitation of existing tools is that they are mostly command-line driven

and do not allow users to interactively adjust or fine-tune the analysis. For example,

users often want to use their existing knowledge such as marker genes to filter out

contamination cells, determine the time origin, or manually change the order of

certain tree nodes. However, these operations are not convenient for a command-

line driven software tool such as Monocle. TSCAN addresses this limitation by

providing a graphical user interface (GUI) (Figure 2-2). Using the GUI, users can

interactively and conveniently incorporate prior biological information into the pseudo-

time reconstruction analysis.

Last but not least, when several different pseudo-time reconstruction methods are

available, being able to evaluate and compare them to identify the best solution is

important. However, how to evaluate different pseudo-time reconstruction methods is

also an open problem. Objective measures for comparing different methods are still

lacking. This article introduces several quantitative measures for evaluating different

cell ordering methods. Using these objective measures, we show that TSCAN is

capable of providing more reliable unsupervised pseudo-time reconstruction results

compared to alternative methods.

10

Figure 2-1. TSCAN Overview. (A-B) A toy example illustrating a limitation of cell-based
MST. Here cells (blue circles) are placed in a two dimensional space, and the true biological
time runs top-down. An MST that connects cells is not unique. Both (A) and (B) are
possible solutions. (B) is more consistent with the truth. However, in reality, random
measurement noise may shift the cell labeled by ’*’ away from other cells as indicated by
the arrow and dashed lines. As a result, (B) is no longer an MST. The MST in (A) on the
other hand does not reflect the true order of cells. (C) The true time-axis can be found if
one first groups similar cells into clusters and then constructs an MST to connect cluster
centers. (D) TSCAN first constructs cluster-based MST (five clusters of cells encoded by
different colors are shown as an example; numbers indicate cluster centers). The tree can
have multiple paths (e.g., 1-2-3-4 or 1-2-3-5). TSCAN orders cells along each path by
projecting each cell onto the tree edge. (E) The number of principal components to retain
is determined by finding the best piecewise linear fit consisting of two lines (dashed).

11

Figure 2-2. TSCAN graphical user interface. Left panel contains function menus and
tools for setting parameters. Right panel displays data and results. The top scatter plot
shows the MST constructed for the LPS data (see Results). Cells (dots) are displayed
based on their first two principal components. Clusters of cells are indicated by different
colors. Numbers are cluster centers. Expression level of a marker gene BCL3 is shown for
each cell. Larger marker size means higher expression. The bottom plot shows the average
BCL3 expression for each tree node, standardized across all nodes to have zero mean and
unit standard deviation.

2.2 Methods

2.2.1 Problem formulation

Consider a representative sample of N cells drawn from a heterogeneous cell population.

Suppose the transcriptome Yi of each cell i ∈ {1, 2, . . . , N} has been profiled using

single-cell RNA-seq. Here Yi is a G dimensional vector consisting of gene expression

measurements for G genes. Assume that Yi is appropriately transformed (e.g., by

12

taking logarithm) and normalized across cells. The single cell ordering problem, also

called pseudo-time reconstruction, is to place cells in an order based on the gradual

transition of Yi.

TSCAN orders cells in three steps. First, cells with similar gene expression profiles

are grouped into clusters. Second, a minimum spanning tree (MST) is constructed

to connect all cluster centers. Finally, cells are projected to the tree backbone to

determine their pseudo-time and order (Figure 2-1D). Once cells are ordered, users may

use the ordered sequence to study cell state transition and gene expression dynamics

in the underlying biological process from which the cells are sampled.

2.2.2 Preprocessing

Before pseudo-time reconstruction, the raw gene expression data are processed as

follows. First, genes with zero read count in all samples are excluded. Second, in

order to alleviate the effect of drop-out events [59] on the subsequent analyses, genes

with similar expression patterns are grouped into clusters by hierarchical clustering

(using Euclidean distance and complete linkage). The number of clusters is set to be

5% of the total number of genes with non-zero expression. For each cluster and each

cell, the expression measurements of all genes in the cluster are averaged to produce

a cluster-level expression which will be used for subsequent MST construction. The

drop-out event refers to the phenomenon that expressed genes, some of which are

highly expressed, may have zero read count in some cells as their molecules may not

be captured and amplified by chance. This is a common phenomenon in single-cell

RNA-seq data. By averaging across many genes, the cluster-level expression is more

stable and has smaller estimation variance compared to the measurements of individual

genes. This can help to dilute the impact of drop-out events.

After gene clustering, single-cell transcriptome for cell i becomes a H dimensional

vector Ei. Here H is the number of gene clusters. Ei still has high dimension,

13

and many components in this vector are still correlated. The dimensionality makes

visualization and statistical modeling difficult. For this reason, TSCAN further reduces

the dimension of Ei using principal component analysis (PCA). Briefly, Ei from all

cells are organized into a H ×N matrix E. Each row corresponds to a gene cluster.

The matrix is standardized such that expression values within each row have zero

mean and unit standard deviation. Then PCA is run on the standardized matrix, and

the top K principal components (PCs) are retained. After PCA, the H dimensional

vector Ei is mapped to a lower dimensional space and becomes a K dimensional vector

Ẽi. Here K is much smaller than H.

In order to determine K (i.e., how many PCs to retain), TSCAN uses the following

criterion. First, let λi be the data variance explained by the ith PC. Define vi ≡
√
λi.

vi is a non-increasing function of i. This function can be approximated using a

continuous piecewise linear model vi = f(i) + ϵ where ϵ represents noise and f(i)

consists of two regression lines (Figure 2-1E):

f(i) =

⎧⎨⎩α0 + α1 ∗ i if i ≤ k

β0 + β1 ∗ i if i > k

s.t. α0 + α1 ∗ k = β0 + β1 ∗ k (2.1)

TSCAN computes the least squares fit of this model using the first 20 PCs. The fitted

model varies when one changes k. TSCAN tries different k ∈ [2, 19] and finds the k

that produces the smallest squared error, ∑︁20
i=1[vi − f(i)]2. This k will be used as the

number of PCs to retain.

2.2.3 Cell clustering

After dimension reduction, cells with similar expression profiles are grouped into

clusters using the model-based clustering approach described in [60]. The clustering

is performed using the mclust [61] package in R which fits a mixture of multivariate

normal distributions to the data Ẽi. The variance-covariance matrix for each normal

14

component in this mixture is designated as “ellipsoidal, varying volume, shape, and

orientation”. The number of clusters is chosen by mclust using the Bayesian Information

Criterion (BIC). After model fitting, the posterior probability that each cell belongs

to each cluster can be computed. Cells are assigned to clusters based on the largest

posterior probability. For each cluster, the cluster mean of Ẽi is treated as the cluster

center. Instead of using the cluster number determined by mclust based on BIC, users

also have the option to specify their own cluster number.

2.2.4 Ordering cell clusters by MST

Next, TSCAN constructs a minimum spanning tree to connect all cluster centers. In

a connected and undirected graph, a spanning tree is a subgraph that is a tree and

connects all the vertices (or “nodes”). Suppose each edge in the graph has a length

equal to the Euclidean distance between the two nodes (i.e., cluster centers) connected

by the edge. A minimum spanning tree (MST) is a spanning tree with the smallest

total edge length among all possible spanning trees. Unlike the MST approach used by

Monocle where the tree is constructed to connect individual cells, the MST in TSCAN

is constructed to connect clusters of cells. Clustering cells reduces the variability and

complexity of the tree space. The cluster level MST therefore may yield better and

more stable estimates of the tree backbone which largely determines the cell ordering.

Another advantage of clustering is that it dramatically reduces the number of tree

nodes, so that it becomes easier for users to interactively fine-tune the analysis later

(e.g., manually adjust the order of tree nodes).

A tree may have multiple branches. By default, we define the main path of the

tree (solid lines in Figure 2-1D) as the path with the largest number of clusters. If

more than one path has the same largest number of clusters, the path with the largest

number of cells becomes the main path. The main path has two ends. Without

other information, one end will be randomly picked up as the origin of the path.

15

Alternatively, users can specify one end as the origin themselves using information

such as marker gene expression. After the main path and its origin are determined,

TSCAN will enumerate all branching paths starting from the origin. For instance,

assume cluster 1 in Figure 2-1D is chosen as the origin, then TSCAN will report a

main path 1-2-3-4 and a branching path 1-2-3-5. If the cluster order generated by the

algorithm is not satisfactory to users, they have options to manually specify the paths

and the order of clusters along each path.

2.2.5 Cell ordering and pseudo-time calculation

Once the cluster-level ordering is determined, individual cells are projected onto tree

edges to create cell-level ordering along the main path and each branching path. For

each path, all clusters on the path are collected. All cells in these clusters will be

ordered along the path as follows. Let Ci (i = 1, 2, ...,M) indicate the ordered clusters,

where M is the number of clusters on the ordered path. Suppose Ẽ(i) and Ẽ(j) are the

cluster centers for two neighboring clusters Ci and Cj in the path, and suppose Ci

precedes Cj in the ordering. The edge that connects the two clusters is determined

by vij = Ẽ(j) − Ẽ(i), and the projection of cell k to the edge is determined by the

inner product vT
ijẼk/||vij|| where ||.|| is the l2-norm of a vector. Cells in cluster C1

are all projected onto the edge that connects C1 and C2. Cells in cluster CM are all

projected onto the edge that connects CM−1 and CM . Cells from an intermediate

cluster Cm(1 < m < M) are divided into two groups according to whether they

are closer to the center of cluster Cm−1 or to the center of cluster Cm+1 in terms of

Euclidean distances. Cells closer to the center of cluster Cm−1 are projected onto the

edge that connects clusters Cm−1 and Cm, while cells closer to the center of cluster

Cm+1 are mapped to the edge connecting clusters Cm and Cm+1.

Cell orderings are determined in three steps. First, for cells which are in the same

cluster and are projected onto the same edge, their order is determined by the projected

16

values on the edge. Second, within each cluster, the order of cells projected onto

different edges is determined by the order of edges, which is given by the cluster-level

ordering. Third, the order of cells in different clusters is determined by the order of

clusters. In this way, all cells can be placed in order.

Once cells are ordered, pseudo-time is computed for each ordered path. For a

given path, the order of a cell on the path is set to be its pseudo-time. For instance,

the pseudo-time for the kth cell on a path is set to k. The pseudo-time is constructed

separately for the main path and each branching path.

2.2.6 Detecting differentially expressed genes

After cells are ordered, one can detect differentially expressed genes following the

approach in Monocle [27]. A generalized additive model (GAM, effective degrees of

freedom = 3) [62] is fitted for each gene to describe the functional relationship between

its expression and pseudo-time. The GAM is fitted using the mgcv [62] package in R.

The model is then compared to a null model that assumes constant expression along

the pseudo-temporal path. The p-value is computed using a likelihood ratio test and

then converted to false discovery rate (FDR) using the method in [63]. By default,

genes with FDR < 0.05 are reported as differential. As in Monocle, the p-value and

FDR are computed based on assuming that cell ordering is given. They do not consider

uncertainties in cell ordering and that, instead of being determined by experiment

design, cell ordering is derived from the same data used for analyzing differential

expression. We note that how to evaluate statistical significance that further accounts

for these additional uncertainties remains an open problem. It requires development

of more sophisticated methods and a systematic investigation of how these additional

uncertainties affect different methods (e.g., how p-values change when one treats cell

ordering as an unknown parameter inferred from the data). These investigations are

beyond the scope of the current study as the main focus of this article is how to

17

improve and evaluate cell ordering.

2.2.7 Method evaluation

We use three methods to evaluate cell ordering performance. The first approach

evaluates cell ordering accuracy based on the ordering expected by independent

sources of information. It is assumed that external information not used in pseudo-

time reconstruction is available to evaluate the pairwise order of cells. Formally, let π

denote an ordered path of Nπ cells produced by a particular pseudo-time reconstruction

method. Let g(π, i, j) be a score that characterizes how well the order of the ith and

jth cells in the ordered path π matches their expected order based on the external

information. We define Pseudo-temporal Ordering Score (POS) for cell ordering π as

the sum of g(π, i, j) for all pairs of cells:

POSπ =
Nπ−1∑︂
i=1

∑︂
j:j>i

g(π, i, j) (2.2)

Cell orderings π produced by different pseudo-time reconstruction methods can then

be compared based on the POS score.

As a concrete example, suppose one has single-cell RNA-seq data collected from a

time course experiment. In such an experiment, the data collection time is known.

For the purpose of evaluating unsupervised pseudo-time reconstruction methods, one

can pool cells from all time points together, pretend that the data collection time

for each cell is unknown, and apply different methods to reconstruct pseudo-time.

Different methods will then be evaluated by comparing their cell ordering results to

the order of cells based on the true data collection time. For instance, if one has N

cells collected at V time points during a differentiation process. Among the N cells,

Nv cells are from time Tv (T1 < T2 < · · · < TV). Consider the ith cell and the jth cell

in the ordered path π where i precedes j (i.e., i < j). One can define the pairwise

score g(π, i, j) as follows:

18

1. If the two cells are originally collected at the same time point (e.g., they are

both from Tv), then g(π, i, j) = 0.

2. Otherwise, if the ith cell is collected from time point Tv and the jth cell is

collected from time point Tu, then g(π, i, j) = (u− v)/Dπ. The value u− v is

positive if v represents an earlier time point, or negative if v represents a time

later than u.

The denominator Dπ above is chosen to normalize POS so that POSπ ∈ [−1, 1] (i.e.,

the maximal and minimal POS among all possible orderings of cells within each path

π is 1 and −1 respectively). Based on this definition, a cell ordering more consistent

with the known data collection time will have higher POS score. POSπ = 1 indicates

that the order of cells produced by pseudo-time reconstruction perfectly matches the

order determined by the data collection time. POSπ = −1 indicates that the order of

cells produced by pseudo-time reconstruction is in the opposite direction compared to

the order determined by the data collection time. Using POS to evaluate cell ordering

is based on assuming that the external information (i.e., the true data collection

time in this example) can roughly reflect the true biological order of cells (e.g., the

differentiation stage of cells). In reality, since cells collected at each time point are

heterogeneous, it is possible that some cells collected at an earlier (less differentiated)

time point in the differentiation time course are actually more differentiated than

certain cells collected at a later time point. Despite this, it is often reasonable to expect

that cells collected at the earlier time point “on average” should be less differentiated

than cells collected at the later time point. Therefore, the external information (i.e.,

the data collection time) used here can still roughly reflect the true biological order of

cells and can be used as a surrogate to evaluate the cell ordering performance.

The second approach evaluates robustness of cell ordering by perturbing the original

single-cell RNA-seq dataset (see below). Each cell ordering method is applied to

19

both the original dataset and the perturbed data. Cell orderings produced by the

original and perturbed data are then compared. To quantify the similarity between

cell orderings in two pseudo-temporal paths π1 and π2, let A be the union of cells in

π1 and π2, let |A| be the cardinality of A (i.e., the number of distinct cells in π1 and

π2), and define the similarity score between π1 and π2 as:

sπ1,π2 = 2
|A|(|A| − 1)

∑︂
i,j∈A;i ̸=j

h(π1, π2, i, j) (2.3)

Here h(π1, π2, i, j) = 1 if the order of two cells i and j remains the same in π1 and π2

(i.e., i appears before or after j in both orderings), and h(π1, π2, i, j) = 0 otherwise.

If either i or j occurs only in one path (e.g., i is in π1 but not π2), the orderings

between i and j in π1 and π2 are viewed as inconsistent, and h(π1, π2, i, j) is also set

to zero. A higher similarity score indicates that the two orderings π1 and π2 are more

similar to each other, whereas a lower score indicates a larger deviation between the

two orderings.

In this article, two different approaches were used to perturb data: cell-level

perturbation and expression-level perturbation. For cell-level perturbation, x percent

(x = 95%, 90% or 75%) of cells were randomly sampled from the original dataset

to serve as the perturbed data. The gene expression profile of each cell remained

unchanged. For expression-level perturbation, we retained all cells in the original

dataset but added simulated noise to their gene expression profiles (i.e., Y). To

generate noise, the average expression value of each gene across all cells was computed

and then subtracted from the gene’s expression value in each cell. Residuals obtained in

this way were scaled by multiplying with a scaling factor κ (κ = 5%, 10% or 25%). The

scaled residuals were then permuted and added back to the original expression values

of the gene. For each perturbation method and parameter value (x or κ), the original

data were independently perturbed 100 times to generate 100 perturbed datasets. For

each perturbed dataset, similarity score between the original and perturbed orderings

was computed. Finally, the average similarity score from the 100 perturbations was

20

calculated to measure the robustness of each pseudo-time reconstruction method.

The third approach evaluates the ability of a cell ordering method to detect known

differentially expressed genes along the ordered cell path. Given a test dataset, one

can collect genes known to be differentially expressed along the biologically ordered

sequence of cells and treat them as the gold standard. One can then detect differential

genes along the pseudo-time axis and compare different methods based on how they

rank gold standard genes.

2.2.8 TSCAN package and GUI

TSCAN is implemented as a Bioconductor package using the statistical programming

language R. It can be run both in a command-line mode and through a graphical

user interface (GUI). The GUI is developed using the shiny package in R. It allows

users to conveniently construct, visualize and tune cell ordering. For example, one

can use the GUI to interactively trim unwanted cells based on expression levels of

user-specified marker genes. One can also change the cluster-level ordering and then

recompute the pseudo-time. TSCAN is open source, and it is freely available at

https://github.com/zji90/TSCAN. Its bioconductor package can be downloaded from

http://www.bioconductor.org/packages/release/bioc/html/ TSCAN.html.

2.2.9 Datasets

Three datasets were compiled from the literature to evaluate TSCAN. The first dataset

consists of single-cell RNA-seq samples from differentiating human skeletal muscle

myoblasts (HSMM) [27]. It contains 271 cells collected at 0, 24, 48 and 72 hours

(hrs) after switching human myoblasts to low serum. The second dataset consists of

single-cell RNA-seq samples collected after stimulating bone-marrow-derived dendritic

cells by lipopolysaccharide (LPS) [64]. 306 cells collected at 1, 2, 4 and 6 hrs after the

stimulation were used for our analysis. The third dataset consists of single-cell RNA-

21

seq samples from hippocampal quiescent neural stem cells (qNSC) [65]. It contains

172 cells collected from the same cell population. For all datasets, the normalized gene

expression values (fragments per kilo base pairs per million total reads for HSMM

and transcripts per million total reads for LPS and qNSC) were log2 transformed

after adding a pseudo-count of 1. After the raw data Yi were processed to Ei, Ei was

used as input for different methods (i.e., TSCAN, Monocle, Waterfall, SCUBA and

Wanderlust below) to construct pseudo-time. The normalized data for Yi and Ei are

available at the TSCAN GitHub website (https://github.com/zji90/TSCANdata).

2.2.10 Comparisons with other methods

Table 2-I compares TSCAN with a number of other single cell data analysis methods.

Among these methods, MARS-seq [56] and SINCE-PCR [58] do not have associated

software for others to use. SPADE [54] and viSNE [52] are developed for analyzing mass

cytometry or flow cytometry data, and they do not provide a cell ordering function.

Diffusion map [66] is a dimension reduction technique used to define differentiation

trajectories. It cannot perform cell ordering itself. The scLVM method [57] primarily

focuses on identifying cell subpopulations. Again, it cannot order cells. For the

above reasons, these methods are not compared with TSCAN in our subsequent data

analyses.

Among the remaining methods, Monocle is designed to handle unsupervised cell

ordering of single-cell RNA-seq and has a software package. Wanderlust [53] is

originally developed for mass or flow cytometry data. It uses a graph-based trajectory

detection algorithm to order cells under the assumption that there is no branch. We

tailored its MATLAB code to allow it to take single-cell RNA-seq data as input.

SCUBA [55], as discussed before, is a supervised approach. However, the SCUBA

package also provides an option for unsupervised cell ordering which is based on fitting

a principal curve to the data and then mapping cells onto the curve. Waterfall is a data

22

Method Data Unsuper-
vised

Cell Col-
lection
Time
Informa-
tion

Pseudo-
time
Recon-
struction

Allow
Branch-
ing
Struc-
ture

Ready-
to-use
Soft-
ware
Package

TSCAN Single-cell RNA-
seq

YES Not Re-
quired

YES YES YES

Monocle Single-cell RNA-
seq

YES Not Re-
quired

YES YES YES

Waterfall Single-cell RNA-
seq

YES Not Re-
quired

YES YES NO

Difussion
map

Single-cell RNA-
seq

YES Not Re-
quired

NO NA YES

SCUBA
(bifurca-
tion)

Single-cell RNA-
seq

NO Required YES YES YES

SCUBA
(prin-
cipal
curve)

Single-cell RNA-
seq

YES Not Re-
quired

YES NO YES

MARS-
seq

Single-cell RNA-
seq

YES Not Re-
quired

NO NA NO

scLVM Single-cell RNA-
seq

YES Not Re-
quired

NO NA YES

SINCE-
PCR

Single-cell PCR YES Not Re-
quired

NO NA NO

SPADE Mass Cytometry
and Flow Cytom-
etry

YES Not Re-
quired

NO YES YES

WanderlustMass Cytometry
and Flow Cytom-
etry

YES Not Re-
quired

YES NO YES

viSNE Mass Cytometry
and Flow Cytom-
etry

YES Not Re-
quired

NO NA YES

Table 2-I. Comparison of TSCAN and other single cell data analysis methods

analysis pipeline used by [65] to construct pseudo-time for their qNSC data. Similar

to TSCAN, Waterfall first groups cells using k-means clustering before pseudo-time

reconstruction. However, as an in-house data analysis pipeline, Waterfall does not

23

have an associated software tool, and the pipeline cannot be directly used to analyze

other datasets without manually editing the code. Also, an objective evaluation of

the effects of cell clustering on cell ordering was not provided in [65]. A systematic

comparison among different pseudo-time reconstruction methods discussed above

is still lacking. In order to benchmark the unsupervised cell ordering performance

of TSCAN, we compared it with Monocle, Wanderlust, unsupervised SCUBA and

Waterfall in our subsequent data analyses.

2.3 Results

We evaluated TSCAN using the three datasets, HSMM, LPS and qNSC, described

above. HSMM and LPS datasets contain cells collected from multiple time points

in time course experiments. The actual data collection time provides important

external information for evaluating cell orderings produced by unsupervised pseudo-

time reconstruction methods. In our evaluation, cells from different time points were

pooled together. We pretended that their data collection time were unknown. We

applied different pseudo-time reconstruction methods to order these cells. Methods

were then compared in terms of their accuracy, robustness and ability to detect

known differentially expressed genes. Accuracy was characterized by the POS score

computed using cells’ actual data collection time. Robustness was characterized by

the cell ordering similarity between the original and perturbed data. In the qNSC

dataset, all cells were collected from the same cell population. Since there was no

external information such as multiple time points to calculate the POS score, we only

evaluated robustness and the ability to detect known differentially expressed genes in

this dataset.

24

2.3.1 HSMM analysis using a priori chosen genes for pseudo-
time reconstruction

We first evaluated the performance of TSCAN using the HSMM dataset, originally

analyzed by [27] using Monocle. In the original Monocle analysis conducted by [27], the

pseudo-time was constructed using 518 genes chosen a priori before ordering the single-

cell RNA-seq data. These genes were derived by comparing different differentiation

time points and therefore are known to be associated with myoblast differentiation.

They represent a strong piece of prior knowledge for pseudo-time reconstruction. In

real applications, if one has strong prior information such as these 518 genes, one can

use them as the input (to replace Ei) for TSCAN and Monocle to construct MST.

We first performed analyses in this way by using the same 518 genes for pseudo-time

reconstruction. Figure 2-3A and Figure 2-3B show the cluster-level MST constructed

by TSCAN. Consistent with the original Monocle results reported in [27], TSCAN

also detected two branches of biological process: the default main path 1-3-5-2 and

a branching path 1-3-5-4. For the main path 1-3-5-2, neither Monocle nor TSCAN

can determine whether node 1 or 2 should be the starting time point without other

information. Therefore, the path has two possible directions. By default, TSCAN

randomly picks one direction. However, if users have marker genes to inform the

direction of the pseudo-temporal path, they can use this information in TSCAN.

To illustrate, ENO3 is a marker gene for myoblast differentiation. Its expression is

expected to increase as the differentiation progresses. After providing ENO3 as a

marker gene, TSCAN displays its expression in each tree node. In this way, one

can see that cluster 1 has low ENO3 expression while cluster 2 has high ENO3

expression (Figure 2-3C). Thus, the starting time point should be in cluster 1. As

reported in [27], the branching path in the MST constructed by Monocle was driven

by contaminating interstitial mesenchymal cells, and SPHK1 is a marker gene for

these contaminating cells. Consistent with this, displaying SPHK1 expression in the

25

TSCAN tree nodes shows that cluster 4 in the branching path 1-3-5-4 had high SPHK1

expression (Figure 2-3D), indicating that this branch was driven by contaminating

cells. Thus, the branching path 1-3-5-4 was not further analyzed.

Figure 2-3. TSCAN analysis in HSMM dataset using 518 a priori chosen genes for
pseudo-time reconstruction. (A) MST reported by TSCAN is shown in the 3 dimensional
space spanned by the first three principal components (PCs) of E. (B) Users can display
cells and MST in chosen PCs (e.g., PC1 and PC2). (C) Mean expression level of ENO3 in
each cluster. (D) Mean expression level of SPHK1 in each cluster. Values in (C) and (D)
are both standardized across all clusters to have zero mean and unit SD.

For both Monocle and TSCAN, we calculated the POS score along their reported

26

main path. According to [27], the main path produced by Monocle in this analysis

corresponds to myoblast differentiation which is the biological process of interest.

Figure 2-4A shows the POS scores. TSCAN outperformed Monocle in terms of the

POS.

In order to understand how cell clustering affects the cell ordering performance,

we tested a modified TSCAN (nocluTSCAN) in which the cell clustering step was

skipped and MST was constructed directly to connect individual cells based on Ẽi.

The analyzed path and direction were then determined as above by using SPHK1 to

exclude the contamination path and using ENO3 to determine the time origin. The

comparison between TSCAN and nocluTSCAN was well-controlled since everything

was the same for these two algorithms except for the use of cell clustering by TSCAN.

By contrast, the performance difference between Monocle and TSCAN represents

a combined effect of many factors since many of their implementation details are

different. Many of these differences are difficult to control for as they are hidden in

the computer code.

We also tested a marker-gene-only approach (marker) in which cells are directly

ordered using the expression level of a marker gene (ENO3). Here, in order to conduct

a relatively fair comparison with TSCAN, the marker-gene-only approach was only

applied to cells from the analyzed TSCAN path (i.e., 1-3-5-2), and cells from the

contaminated TSCAN branch (i.e. the branch with cluster 4) were excluded from

this analysis. The comparison between the marker-gene-only approach and TSCAN

can reveal whether the other genes used for pseudo-time reconstruction contribute

additional information not provided by the marker gene (i.e., ENO3 in this example)

for ordering cells.

As shown by Figure 2-4A, TSCAN had the best performance based on POS. It

not only performed better than Monocle, but also outperformed nocluTSCAN and

the marker-only approach, indicating that cell clustering and using multiple genes for

27

ordering cells were both helpful for improving the pseudo-time reconstruction.

Figure 2-4. Evaluation results for different methods in HSMM dataset where pseudo-time
was constructed based on 518 a priori chosen genes. (A) POS score. (B) Robustness
measured by the average similarity score from 100 independent perturbations. The heat
map shows robustness of each method in each perturbation scheme. Cell Perturb: cell-level
perturbation. Expr Perturb: expression-level pertubation. (C) Mean rank of gold standard
genes. (D) Number of detected gold standard genes among top differential genes.

Next, we compared robustness of different methods based on cell ordering similarity

between the original and perturbed data. Figure 2-4B shows the similarity scores

when the perturbed data were generated by randomly subsampling 75%, 90% or 95%

of cells from the original dataset (cell-level perturbation) or by adding 5%, 10% or 25%

random noise to the original gene expression values (expression-level perturbation). For

each perturbed dataset, the same protocol and marker genes as described above were

used to determine the path direction and eliminate contaminating branch. Compared

to Monocle and nocluTSCAN, TSCAN consistently produced higher similarity scores

in all perturbation schemes (Figure 2-4B). This shows that cell clustering increased

28

the stability (or equivalently, reduced the variability) of cell ordering when data were

perturbed. The marker-gene-only approach was also more robust than Monocle and

nocluTSCAN, and it showed similar level of robustness compared to TSCAN (Figure 2-

4B). The robustness of the marker gene approach was not unexpected. For cell-level

perturbation, genes’ expression values in each cell did not change. Consequently, the

order of any pair of cells based on a marker gene’s expression remained the same. The

difference between the pseudo-temporal path in the original data and the path in the

perturbed data in the marker gene approach mainly reflects the fact that these two

paths did not contain the same set of cells. Note that not all cells in the original

data were retained in the perturbed dataset. Also, contaminating branches of MST

constructed by TSCAN were excluded from our marker-gene-only analyses, and the

contaminating branches in the original and perturbed data could contain different

sets of cells. For expression-level perturbation, noises added to gene expression values

represented 5-25% of the cross-cell variation of the true biological signal. Consequently,

the pairwise order of many cells was still driven by the biological variation and hence

remained unchanged in the marker-gene-based ordering.

It is important to point out that robustness alone is not sufficient to indicate good

cell ordering performance. For instance, suppose each cell has an arbitrary name. If

cells are ordered based on cell name rather than gene expression profile, the order

of any pair of cells will remain the same regardless of how gene expression values

are perturbed. As a result, the cell ordering is robust, but it does not have any

biological meaning since the cell names are arbitrary. This is similar to the well-known

variance-bias tradeoff in statistics: an estimator with zero variance may have huge

bias. For this reason, robustness of a pseudo-time reconstruction method needs to

be interpreted in the context of whether it leads to improved cell ordering accuracy

(e.g., increased POS score). Although the marker-gene-only approach was more robust

than Monocle and nocluTSCAN (Figure 2-4B), its cell ordering accuracy was lower

29

than Monocle and TSCAN (Figure 2-4A), indicating that its bias-variance tradeoff is

not optimal. By contrast, TSCAN was not only more robust (Figure 2-4B) but also

ordered cells more accurately (Figure 2-4A) than Monocle and nocluTSCAN.

For each method, we next detected differentially expressed genes along the ordered

main path of cells. We ranked genes based on FDR, and then different methods were

compared based on their ability to find genes known to be involved in the biological

process in question. For the HSMM dataset, we compiled 13 genes (ENO3 excluded)

known to be involved in myoblast differentiation according to [27]. Figure 2-4C shows

the mean rank of these gold standard genes in the differential gene analysis. A smaller

mean rank indicates better performance (i.e., gold standard genes are more likely to

be ranked on top). Figure 2-4D shows the number of gold standard genes found in

the top 200, 400, . . . , 2000 genes ranked by each method. Monocle and TSCAN had

very similar results in this analysis, and both methods outperformed nocluTSCAN

and the marker gene approach.

Besides TSCAN, we investigated two other ways to perform cell-clustering-based

pseudo-time reconstruction. First, we replaced mclust by k-means clustering in the

cell clustering step of TSCAN while keeping all other procedures the same (k-means

TSCAN). Unlike mclust which allows ellipsoidal shape of clusters, k-means clustering

only allows clusters with circle shape. In order to determine the cluster number of

k-means, we used an approach similar to Figure 2-1E, with its y-axis changed to the

proportion of total data variance unexplained by the cluster structure. Second, we

tested the Waterfall algorithm [65] which also uses k-means to cluster cells before

cell ordering. Waterfall does not provide a way to choose cluster number based on

the data. Its cluster number was fixed to 10 which is the default value in Waterfall

codes. Both the k-means TSCAN and Waterfall produced more robust cell ordering

than Monocle and nocluTSCAN (Figure 2-4B). However, their cell ordering accuracy

did not outperform Monocle and was clearly worse than TSCAN, as indicated by the

30

POS score (Figure 4A) and differential gene detection performance (Figure 2-4C,D).

This suggests that although k-means TSCAN and Waterfall reduced the cell ordering

variability, their bias-variance tradeoff was not optimal for improving the cell ordering

accuracy.

We also tested unsupervised SCUBA (i.e., the principal-curve-based SCUBA)

and Wanderlust. For SCUBA, low expression of the marker gene ENO3 was used to

determine the path origin. Wanderlust was run by using the cell with the highest ENO3

gene expression as the path origin (because the lowest ENO3 expression was zero, and

zero occurred in many cells, making the choice of path origin not unique). The cell

ordering reported by Wanderlust was then reversed so that the reversed path had low

ENO3 expression at the beginning and high ENO3 expression at the end. The same

approach was also used in other test datasets below to run the Wanderlust analyses.

For both methods, after cells were ordered, GAM was used to detect differentially

expressed genes as in TSCAN. Both Wanderlust and SCUBA were more robust than

Monocle and nocluTSCAN (Figure 2-4B). However, they both had lower cell ordering

accuracy compared to TSCAN (Figure 2-4A,C,D). In fact, TSCAN produced the

highest POS score (Figure 2-4A) and best differential gene detection performance

(Figure 2-4C,D).

As demonstrated in [27], cell orderings based on pseudo-time may reveal gene

expression patterns that cannot be discovered by bulk gene expression data. MEF2C

and MYH2 are two genes involved in the HSMM differentiation. It is known that

these two genes should have increasing expression during the differentiation, and the

expression of MEF2C should start increasing earlier than the increase of MYH2 [27].

Based on the average bulk gene expression at different time points, it was not clear

that MEF2C had a monotone increasing pattern, nor was it clear which gene started

to increase first (Figure 2-5). By contrast, all single-cell analysis methods tested

here were able to recover the overall increasing pattern of MEF2C and MYH2 along

31

their analyzed pseudo-time axes, although in Monocle, k-means TSCAN, Waterfall,

SCUBA and Wanderlust, MEF2C decreased a little before increasing (Figure 2-6).

Compared to the other methods, the temporal expression curves fitted by TSCAN and

nocluTSCAN more clearly showed that MEF2C increased earlier than the increase of

MYH2 (Figure 2-6).

MEF2C

MYH2

0

1

2

3

4

0.0

0.5

1.0

0 24 48 72

0 24 48 72
Time of Collection (Hour)

Ex
pr

es
si

on

MEF2C

MYH2

0

1

2

3

4

0.0

0.5

1.0

0 24 48 72

0 24 48 72
Time of Collection (Hour)

Ex
pr

es
si

on

MEF2C

MYH2

0

1

2

3

4

0.0

0.5

1.0

0 24 48 72

0 24 48 72
Time of Collection (Hour)

Ex
pr

es
si

on

MEF2C

MYH2

0

1

2

3

4

0.0

0.5

1.0

0 24 48 72

0 24 48 72
Time of Collection (Hour)

Ex
pr

es
si

on

Figure 2-5. Averaged bulk gene expression level for MEF2C and MYH2 in HSMM data.

Based on all the analyses above, TSCAN was the method that provided the

best overall performance. It offered the best cell ordering accuracy among all tested

methods and improved cell ordering robustness compared to methods without using

cell clustering (i.e., Monocle and nocluTSCAN).

2.3.2 HSMM analysis without using a priori chosen genes
for pseudo-time reconstruction

In real applications, the prior information for pseudo-time reconstruction such as the

518 genes used above is not always available. When no such prior information is

available, pseudo-time reconstruction has to rely on all genes in the RNA-seq data.

32

To evaluate the performance of TSCAN in such a scenario, we repeated the previous

analysis but constructed pseudo-time without using the 518 a priori chosen genes.

Instead, the Ei used for TSCAN was derived from all genes in the single-cell RNA-seq

data using the protocol described in Methods. We also used Ei instead of Yi as the

input for Monocle, Waterfall, SCUBA and Wanderlust in order to make the method

comparison relatively fair. Of note, the dimensionality of Yi was also beyond the

capacity that the Monocle software was able to handle.

The default main path given by TSCAN (Figure 2-7A, path 3-1-2) contained a

cluster of cells with high expression in SPHK1 (Figure 2-7D), indicating that the main

path was contaminated by interstitial mesenchymal cells and may not reflect myoblast

differentiation. In such a scenario, TSCAN allows users to manually tune the analysis.

For instance, with the GUI, one can conveniently visualize the expression of marker

genes (Figure 2-7B) such as SPHK1 (Figure 2-7D, marker for contamination) and

ENO3 (Figure 2-7E, marker for myoblast differentiation). Since SPHK1 is highly

expressed in cluster 3, we chose to study path 2-1-4 which represents the myoblast

differentiation. According to the increasing ENO3 pattern, one can specify that cluster

2 should be the path origin. Alternatively, one can also manually define a path by

specifying the clusters and their order in the path (Figure 2-7C). In this example,

both ways yielded the same path 2-1-4. Similar to TSCAN, the main path in Monocle

was also contaminated by cells with high SPHK1 expression. However, Monocle does

not provide an interface to help users conveniently incorporate such marker gene

information and tune ordering. Users would need to be experienced in programming in

order to adjust the analysis. In comparison, the TSCAN GUI allows users unfamiliar

with programming to visualize and tune the ordering. Therefore, it lowers the bar for

users to customize the pseudo-time analyses and can save them time and effort.

After using high expression of SPHK1 to exclude the contaminating branch and

using low expression of ENO3 to determine the origin of the pseudo-temporal path

33

for each method, different methods were then compared.

In terms of cell ordering accuracy, TSCAN had the highest POS score (Figure 2-8A)

and the best mean rank of gold standard genes (Figure 2-8C) among all methods. It

also had the highest power for detecting the gold standard differential genes (Figure 2-

8D). In terms of robustness, methods based on cell clustering (TSCAN, k-means

TSCAN, Waterfall) were more robust than methods that did not use cell clustering

(Monocle, nocluTSCAN), as shown by the increased similarity scores between the

original and perturbed data (Figure 2-8B).

Besides comparing cell orderings from the original and perturbed data, we also

compared cell orderings constructed using and not using the 518 prior genes. To do

so, similarity score between the cell ordering reported in this section and the ordering

reported in the previous section was computed for each method. Figure 2-9A shows

that TSCAN and the marker gene approach produced higher similarity scores than

other methods, suggesting that they produced the most consistent cell ordering results.

For each method, we also compared the consistency of differentially expressed genes

detected by using and not using the 518 prior genes for pseudo-time reconstruction.

For each analysis (i.e., using or not using the 518 prior genes), we obtained the top R

ranked differential genes. The number of common genes between these two analyses

was then counted and plotted as a function of R in Figure 2-9B. Figure 2-9C shows a

similar analysis with a more stringent definition of common genes. Here, any gene

that did not change in the same direction along the two pseudo-temporal paths (i.e.,

the fitted GAM functions from the two analyses have negative correlation) was not

counted as a common gene even if the gene was identified by both analyses among

their top R genes. After excluding these inconsistent genes from the common gene

list, the number of genes remained in the common gene list was then shown as a

function of R. In both Supplementary Figures 3B and 3C, TSCAN and the marker

gene approach showed higher consistency than the other methods. Compared to the

34

marker gene approach, TSCAN cell ordering was more accurate according to the POS

score and differential gene detection performance (Figure 2-8A,C,D). Thus, our results

show that TSCAN can make the ordering results less dependent on the availability of

prior genes and at the same time provide the best accuracy compared to the other

methods.

When comparing the expression patterns of MEF2C and MYH2 along the pseudo-

time axis, Monocle and Wanderlust failed to reveal the temporal order of MEF2C and

MYH2, and the increasing pattern of these genes also became less clear (Figure 2-

10). In Waterfall, MEF2C first decreased and then increased, and the temporal

order of MEF2C and MYH2 was not very clear. By contrast, the other methods

successfully revealed the increasing pattern of MEF2C and MYH2 in this analysis.

Their results also more clearly show that MEF2C increased before the increase of

MYH2 (Figure 2-10).

Overall, our analyses again show that TSCAN produced the most accurate cell

ordering results, and it was more robust than methods without cell clustering.

2.3.3 LPS analysis

For the LPS data, we reconstructed pseudo-time without using strong prior knowledge

such as the 518 a priori chosen genes in the HSMM analysis. The analyses were run

based on Ei which was computed using all genes following the protocol described

in Methods. All methods only found one main path without branching paths. To

determine the direction of the path, we used BCL3 as a marker gene. BCL3 is known

to be involved in the response to viral and bacterial stimulus, and its expression level

is expected to increase after LPS stimulation. Figure 2-2 shows the expression of

this marker gene in the TSCAN GUI. Accordingly, cluster 1 was determined as the

origin of the pseudo-time axis. Comparing different methods based on POS score

again shows that TSCAN had the best accuracy Figure 2-11A, BCL3 was used as the

35

marker gene for the marker-gene-only approach). Methods based on cell clustering

(TSCAN, k-means TSCAN, Waterfall) were more robust than those not using cell

clustering (Monocle and nocluTSCAN) (Figure 2-11B). To evaluate different methods

based on differentially expressed genes, we compiled 125 known marker genes (BCL3

excluded) from [64]. Figure 2-11C and Figure 2-11D show the mean rank of these

gold standard genes and the number of gold standard genes found in the top ranked

genes reported by each method respectively. Again, TSCAN outperformed all other

methods.

As a specific example, Figure 2-12 shows the expression level of a gold standard

gene STAT2 for the LPS data [64]. STAT2 expression is expected to increase after

LPS stimulation. One can see that the TSCAN result was most consistent with the

known increasing pattern of STAT2. By contrast, the increasing pattern of STAT2

was much less clear in cell orderings produced by all the other approaches. In Monocle,

nocluTSCAN, k-means TSCAN, Waterfall, SCUBA and Wanderlust, STAT2 first

increased and then decreased. In the marker gene approach, the increasing pattern

was weak compared to the high variability of cells around the fitted curve.

2.3.4 qNSC analysis

Lastly, we compared different methods using the qNSC dataset. This dataset does not

have multiple time points or experimental conditions. A prior gene set for cell ordering

was also not available. We therefore run the analyses based on Ei computed using

all genes as described in Methods. All methods produced one single path without

branches. To determine the path direction, we used FOXG1 as a marker gene. FOXG1

is known to be critically involved in proliferative adult NPCs. Low expression of

FOXG1 was used to indicate the origin of the path.

In the qNSC analysis, the POS score cannot be calculated because external

information such as data collection time is not available. Therefore, we only evaluated

36

each method’s robustness and its ability to detect known differential genes. For the

differential gene analysis, 1999 known marker genes (excluding FOXG1) were compiled

from [65] to serve as the gold standard. Once again, methods using cell clustering

(TSCAN, k-means TSCAN, Waterfall) improved robustness of cell ordering compared

to those without using cell clustering (Monocle, nocluTSCAN) (Figure 2-13A). TSCAN

offered the best mean rank of gold standard genes among all methods (Figure 2-13B),

and it also had the highest power for detecting the gold standard differential genes

(Figure 2-13C). Figure 2-14 shows the expression level of a gold standard gene SOX9.

As a down-regulated transcription factor, SOX9 expression is expected to decrease

along the pseudo-time [65]. TSCAN and Waterfall results were consistent with this

known decreasing pattern of SOX9, and the decreasing pattern was most evident in

TSCAN. By contrast, SOX9 expression first increased and then decreased in Monocle,

nocluTSCAN and SCUBA. For k-means TSCAN, SOX9 expression first decreased and

then increased. For the marker-gene-only approach and Wanderlust, SOX9 expression

slightly increased. Overall, TSCAN performed the best among all methods.

2.3.5 The graphical user interface

TSCAN has a GUI. As discussed above, the GUI in TSCAN allows users to visualize

marker genes and tune main paths and cluster-level orderings. Besides these functions,

the GUI also provides multiple trimming criteria for users to efficiently trim unwanted

cells. For example, to exclude cells with high expression in two genes PDGFRA and

SPHK1 in HSMM dataset, one can set up two trimming criteria such as PDGFRA >

1 and SPHK1 > 1 (Figure 2-15A) and TSCAN will exclude cells meeting both criteria

(Figure 2-15B). Finally, the GUI can be used to visualize expression of user-specified

genes along pseudo-time as heat maps. For example, Figure 2-15C visualizes the

expression of two genes CCNA2 and CCNB2 after obtaining the pseudo-time ordering

in HSMM data. Together, these functions make the pseudo-time analyses of single-cell

37

RNA-seq data more convenient and user-friendly.

2.4 Discussion

In summary, TSCAN offers a new tool to support pseudo-time analysis of single-cell

RNA-seq data. As demonstrated by our results, this approach robustly provides

competitive performance based on different criteria. By comparing methods using and

not using cell clustering, we have shown that cell clustering is a useful technique for

reducing the variability and improving the accuracy of the MST-based pseudo-time

analysis. Although the cell clustering idea has also been used previously in Waterfall, a

systematic evaluation of the impact of cell clustering on cell ordering was not provided

in the Waterfall study [65]. Besides the development and systematic evaluation of

the TSCAN algorithm, we also developed a GUI for TSCAN. The GUI of TSCAN

provides users with the flexibility to interactively explore and adjust the analysis

results.

In order to evaluate TSCAN and other unsupervised pseudo-time reconstruction

methods, we used two time course datasets with multiple time points, HSMM and

LPS, and intentionally avoided using any information on data collection time in our

pseudo-time analyses. In this way, the data collection time can provide an independent

source of information for evaluating the accuracy of cell ordering via POS score. Such

an evaluation cannot be done if the test dataset has only one time point. This explains

why we used HSMM and LPS for evaluation even though in principle such data

could be analyzed in other ways. For instance, one could perform supervised rather

than unsupervised analysis to order cells. Alternatively, one could perform an initial

analysis to identify differentially expressed genes between different data collection time

points and then use them as prior genes (similar to the 518 prior genes for HSMM) to

order cells. Unlike the HSMM and LPS data, the qNSC dataset represents a different

situation faced by many investigators. Here, single-cell RNA-seq data are collected

38

from only one biological condition rather than from multiple time points or conditions.

In such a scenario, supervised methods that use data collection time information

to order cells cannot be applied, and one cannot compare different time points or

conditions to find differential genes and use them as prior genes for cell ordering. It is

therefore important to be able to perform unsupervised pseudo-time analysis such as

TSCAN.

Besides TSCAN, this chapter also introduced several methods to quantitatively

evaluate cell ordering performance. We expect that these evaluation methods will

continue to be useful in the future for evaluating other pseudo-time reconstruction

algorithms. Although TSCAN was tested using RNA-seq, in principle it should not

be difficult to tailor this approach to other data types should single-cell data for those

data types become available in the future.

39

●

●
●●

●

●

●

●●

●

●●

●
●
●
●
●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●●

●

●

●●
●

●

●

●
●

●●

●●

●

●
●

●

●

●

●

●

●●●●●●●●
●
●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●●
●●●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●
●
●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●●●

●

●
●

●

●
●

●

●

●
●
●

●
●

●

●●

●

●
●

●

●

●

●
●
●●
●

●
●

●●

●●
●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●
●
●

●

●●●

●

●

●

●

●

●

●●●
●

●
●
●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●
●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●
●
●

●

●

●●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●

●●●

●
●●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●
●
●

●

●

●
●

●

●●

●

●
●●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●
●
●●●●●

●

●●●

●

●
●
●●●●
●

●

●

●

●
●
●

●

●●
●
●

●

●

●●●●

●

●

●

●●

●

●●●●
●

●

●
●

●●

●
●

●

●
●

●

●

●●●
●
●●

●

●
●

●

●

●
●

●

●

●●
●
●●

●

●
●
●

●

●

●

●
●
●

●

●

●●

●
●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●●●

●
●●
●●
●
●

●●

●

●

●
●
●●
●

●
●

●
●
●

●

●

●

●
●
●
●●

●

●

●●

●
●
●

●

●

●

●

●

●

●
●
●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●●

●

●●●●●
●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●
●

●

●●

●

●

●

●

●●●

●●
●

●

●

●
●
●

●

●
●●
●

●

●
●●

●

●

●

●●●●●●●●●

●

●

●

●●

●●

●●

●

●

●

●

●

●●
●
●●

●
●

●●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●
●
●

●

●

●●
●
●
●●●
●
●

●

●

●
●
●

●●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●●
●

●
●
●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●●●

●

●
●

●●

●●

●

●

●

●
●
●
●
●●

●

●

●

●

●

●

●

●●

●
●

●●

●

●
●
●

●

●

●

●

●

●

●

●
●●●●
●

●

●

●
●●●●●●

●

●●●●●

●

●●●●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●
●

●

●

●●
●●

●

●●

●

●●●●●

●

●

●

●

●●
●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●●●●
●●●
●

●

●

●

●

●

●

●
●
●
●
●

●

●

●
●●

●
●●

●

●●
●
●

●

●

●

●
●
●

●

●

●

●

●
●

●

●●

●●

●●

●

●
●
●

●
●
●

●

●

●

●
●
●

●●

●●●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●
●
●●

●
●

●

●

●●●

●●

●

●

●

●
●
●
●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●
●
●

●●

●
●

●
●●
●
●

●
●
●●
●●
●

●

●
●
●

●

●●
●
●●

●

●
●●●●

●●

●●●●

●●

●

●

●

●

●

●●

●

●●●

●

●●●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●

●
●

●

●

●●

●

●

●

●
●
●

●

●
●

●

●

●

●
●●●

●
●●●●

●

●

●

●

●
●

●●
●

●
●
●●

●

●
●

●
●●

●

●

●

●

●●

●

●

●●

Monocle TSCAN

nocluTSCAN Marker

Kmeans Waterfall

Scuba Wanderlust

0

3

6

9

0

3

6

9

0

3

6

9

0

3

6

9

0

3

6

9

0

3

6

9

0

3

6

9

0

3

6

9

0 50 100 150 200 0 50 100 150

0 30 60 90 120 0 50 100 150

0 100 200 0 50 100 150 200

0 100 200 0 100 200
Pseudotime

E
xp

re
ss

io
n

Gene ● MEF2C MYH2 ENO3

Figure 2-6. MEF2C and MYH2 expression patterns in HSMM dataset where pseudo-time
was constructed based on 518 a priori chosen genes. MEF2C and MYH2 expression in
each cell is plotted as a function of cell order on the analyzed pseudo-time axis. The curves
are the fitted GAM function. The dashed curve is the GAM fit for ENO3, the marker used
to determine the path direction.

40

Figure 2-7. Demonstration of GUI and TSCAN analysis of HSMM data using all genes
for pseudo-time reconstruction. (A) MST constructed by TSCAN using all genes. (B)
Users can choose a marker gene in GUI to visualize its expression. (C) Users can define a
path by specifying the clusters to include and their ordering. (D) The average expression
of SPHK1 in each cluster. (E) The average expression of ENO3 in each cluster.

41

Figure 2-8. Evaluation results for different methods in HSMM data where pseudo-time
was constructed using all genes. (A) POS score. (B) Robustness measured by the average
similarity score from 100 independent perturbations. (C) Mean rank of gold standard
genes. (D) Number of detected gold standard genes among top differential genes.

42

Figure 2-9. Comparing the cell ordering constructed using 518 prior genes and the cell
ordering obtained without using these genes in the HSMM dataset. (A) Similarity score
between the two orderings for each method. (B) The number of common genes among
the top R differentially expressed genes detected by the two cell orderings is plotted as
a function of R. (C) The number of common genes with consistent change directions
among the top R differentially expressed genes detected by the two cell orderings is plotted
as a function of R. In order to determine if a gene has consistent change direction in the
two cell orderings, the fitted GAM functions of the gene from the two cell orderings are
compared as follows. First, the pseudo-time axes for both cell orderings are linearly scaled
to interval [0,1], and the GAM functions are scaled accordingly. Next, values of the GAM
functions are extracted at 100 evenly spaced pseudo-time points (i.e., 0.01, 0.02, ..., 1),
and then the Pearson’s correlation between the two extracted vectors (representing the two
GAM functions) is computed. Genes with negative correlation are viewed as inconsistent
between the two cell orderings.

43

●●

●

●

●

●

●

●●●

●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
●

●●

●●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●●

●

●

●
●
●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●●●

●●
●●

●●●

●

●

●
●
●

●●

●

●

●
●

●

●●
●
●●●●●

●

●●

●

●●
●
●●●●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●
●

●
●
●

●
●

●

●
●

●

●

●
●

●
●

●
●●

●
●

●
●

●

●●

●●
●●●
●
●●
●●

●

●

●●

●
●

●
●●●

●
●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●●●
●
●●

●●

●
●
●

●

●

●
●

●
●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●
●
●

●

●

●
●

●

●●

●

●
●●

●●

●

●●

●●

●

●

●

●

●

●

●●

●

●●
●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●
●

●

●

●
●

●

●●

●

●

●●

●

●
●
●
●

●●

●

●
●

●
●

●
●
●

●●

●●

●

●

●

●
●●

●
●
●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●●

●

●●●●●
●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●
●

●

●●

●

●

●

●

●●●

●●
●

●

●

●
●
●

●

●
●●
●

●

●
●●

●

●

●

●●●●●●●●●

●

●

●

●●

●●

●●

●

●

●

●

●

●●
●
●●

●
●

●●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●
●
●

●

●

●●
●
●
●●●
●
●

●

●

●
●
●

●●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●●
●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●●

●●

●

●

●●●
●

●

●
●

●

●●

●

●

●

●

●

●●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●
●●●●●

●

●●●●●●

●
●
●
●
●●●●
●●●

●
●

●
●

●

●

●

●
●●

●
●
●

●
●

●

●

●
●
●●●
●
●●●●

●

●●●●●●

●

●●

●

●

●
●●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●●●
●
●
●
●
●
●

●

●

●

●

●●
●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●●●

●
●

●

●
●

●

●

●
●
●●●●●

●

●

●

●

●●

●

●

●●
●
●

●

●

●●
●●●
●

●
●

●
●●

●

●

●●●●

●
●

●

●●

●

●
●●
●
●
●

●
●●

●

●

●

●
●

●

●

●
●●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●●●●●●
●

●
●

●●
●

●

●

●
●

●

●
●●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●●

●
●●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

Monocle TSCAN

nocluTSCAN Marker

Kmeans Waterfall

Scuba Wanderlust

0

3

6

9

0

3

6

9

0

3

6

9

0

3

6

9

0

3

6

9

0

3

6

9

0

3

6

9

0

3

6

9

0 10 20 30 40 50 0 50 100 150

0 50 100 150 200 0 50 100 150

0 30 60 90 120 0 50 100 150 200

0 100 200 0 100 200
Pseudotime

E
xp

re
ss

io
n

Gene ● MEF2C MYH2 ENO3

Figure 2-10. MEF2C and MYH2 expression patterns in HSMM dataset where pseudo-
time was constructed using all genes. The expression of each gene in each cell is plotted
as a function of cell order on the pseudo-time axis. The solid curves are the fitted GAM
function. The dashed curve is the GAM fit for ENO3, the marker gene used to determine
the path direction.

44

Figure 2-11. Evaluation results for different methods in LPS dataset. (A) POS score. (B)
Robustness measured by the average similarity score from 100 independent perturbations.
(C) Mean rank of gold standard genes. (D) Number of detected gold standard genes
among top differential genes.

45

●

●●

●

●
●●●
●
●

●

●●●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●
●
●

●

●

●●●

●

●
●●●●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●●

●
●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●●●●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●
●

●
●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●●

●
●

●

●

●●
●

●
●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●
●

●
●●

●

●

●

●
●

●

●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●
●

●●●●●●●

●

●●●●●

●

●

●

●
●●
●
●

●

●

●

●

●●

●

●●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●●

●

●

●●●●●

●

●
●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●●●●

●

●●●●

●

●

●

●

●

●
●
●●●●

●

●●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●●

●
●

●

●●

●●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●●

●

●
●
●●
●

●

●

●

●

●

●

●
●

●●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●
●

●

●

●●
●

●

●

●

●●

●

●●●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●●
●
●●●●
●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●●

●

●

●●●●●

●

●

●●

●

●

●

●●

●

●●

●

●●●●●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●●

●

●

●

●

●●●●

●

●
●

●

●

●

●

●

●
●
●
●
●

●

●

●●●●

●

●

●●●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●
●

●

●

●

●

●
●●

●

●
●
●

●

●
●

●

●

●●

●
●
●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●●●

●

●

●

●●

●
●●
●

●●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●●

●

●●

●

●

●●

●●●●●●●

●

●●●●

●

●
●
●

●

●

●
●●

●

●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●●

●

●

●
●

●

●●

●
●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●

●

●

●

●

●

●

●●
●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●
●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●

●

●●●

●

●●

●

●●
●

●

●

●
●

●

●

●●

●

●

●

●●

●

●●●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●

●
●
●●

●

●

●

●

●●●●●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●
●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●●●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●
●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●●●●

●
●

●●●●●

●

●
●

●

●

●

●●●●●●●

●

●

●●

●

●

●
●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●
●●

●●
●
●

●

●

●

●

●

●

●

●
●
●

●●●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●●●●●●●

Monocle TSCAN

nocluTSCAN Marker

Kmeans Waterfall

Scuba Wanderlust

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0 100 200 300 0 100 200 300

0 100 200 300 0 100 200 300

0 100 200 300 0 50 100 150 200

0 100 200 300 0 100 200 300
Pseudotime

E
xp

re
ss

io
n

Figure 2-12. STAT2 expression patterns in LPS dataset. STAT2 expression in each cell
is plotted as a function of cell order on the pseudo-time axis. The orange curve is the
fitted GAM function.

46

Figure 2-13. Evaluation results for different methods in qNSC dataset. (A) Robustness
measured by the average similarity score from 100 independent perturbations. (B) Mean
rank of gold standard genes. (C) Number of detected gold standard genes among top
differential genes.

47

●

●

●

●

●

●

●

●
●●●●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●●
●
●

●

●

●
●●

●

●

●

●

●

●●
●

●

●
●●●
●
●
●
●●
●
●●
●

●●●

●
●●●

●

●●
●
●
●

●

●

●

●

●

●
●
●
●●

●

●

●

●

●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●●

●

●
●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●
●●●

●

●
●●

●
●
●●

●
●

●●

●

●
●

●

●
●
●

●

●

●
●

●

●

●●

●●

●
●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●
●

●

●

●
●

●

●

●
●●●

●

●
●●

●●●●

●

●
●

●

●

●

●

●

●●

●
●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●
●
●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●●

●●

●

●

●

●

●●
●
●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●●●

●

●
●

●

●

●

●

●

●
●

●
●
●
●
●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●
●

●

●

●

●
●
●

●●

●

●
●
●

●●

●

●●●
●

●●
●

●

●
●
●

●

●

●●

●

●
●
●
●

●

●

●

●
●
●
●

●
●

●

●

●

●
●●●

●

●

●
●

●

●
●●
●●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●
●●
●●●
●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●●●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●
●

●

●

●
●●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●●

●

●●

●

●

●
●
●
●●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●●
●

●

●●

●

●

●
●●

●
●
●

●

●

●●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●●
●

●

●

●

●●
●●
●

●

●

●
●●

●

●
●●

●

●

●
●

●

●

●

●

●●
●

●

●●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●●

●●

●

●
●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●
●

●

●●

●

●

●●

●

●

●●●
●

●

●

●

●

●●
●●●●

●●●
●

●●●

●

●●
●●
●

●

●
●

●●

●

●

●●
●

●●

●●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●
●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●●●

●

●

●
●

●
●
●

●

●

●●●

●●
●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●●●

●

●

●●

●

●

●

●●

●●
●●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●
●●●

●
●

●

●

●

●
●

●

●

●●●●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●●
●

●

●●

●

●●
●

●

●

●

●
●

●●

●
●●
●●
●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●
●●●

●
●

●●●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●●●●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●
●

●

●
●

●

●●●
●

●

●

●●

●

●

●
●

●

●

●●

●

●

●
●●
●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

Monocle TSCAN

nocluTSCAN Marker

Kmeans Waterfall

Scuba Wanderlust

0

3

6

9

12

0

3

6

9

12

0

3

6

9

12

0

3

6

9

12

0

3

6

9

12

0

3

6

9

12

0

3

6

9

12

0

3

6

9

12

0 50 100 150 0 50 100 150

0 50 100 150 0 50 100 150

0 50 100 150 0 50 100

0 50 100 150 0 50 100 150
Pseudotime

E
xp

re
ss

io
n

Figure 2-14. SOX9 expression patterns in qNSC dataset. SOX9 expression in each cell is
plotted as a function of cell order on the pseudo-time axis. The orange curve is the fitted
GAM function.

48

A

C

T1
_4

0
T1

_2
T1

_2
6

T1
_2

0
T1

_1
3

T1
_1

4
T1

_5
0

T1
_5

5
T1

_5
T1

_3
T1

_4
7

T1
_2

3
T1

_3
9

T1
_4

1
T1

_1
5

T1
_5

4
T1

_1
0

T1
_3

3
T1

_5
9

T1
_5

8
T1

_3
4

T4
_4

4
T1

_3
0

T1
_4

5
T1

_2
4

T1
_6

0
T1

_1
T1

_4
8

T1
_3

8
T1

_2
8

T1
_4

3
T1

_4
6

T3
_7

T1
_4

T1
_3

1
T1

_1
2

T1
_7

T4
_4

5
T1

_5
7

T1
_2

9
T1

_6
5

T4
_1

2
T1

_3
5

T1
_6

7
T1

_6
4

T1
_5

3
T3

_5
3

T1
_6

6
T1

_2
7

T1
_6

9
T1

_1
9

T1
_4

9
T1

_5
1

T1
_2

5
T1

_4
4

T1
_5

6
T1

_3
6

T1
_3

2
T1

_5
2

T1
_6

2
T1

_6
8

T1
_9

T4
_3

9
T1

_1
8

T1
_8

T2
_2

6
T2

_2
0

T2
_3

4
T2

_5
0

T3
_7

3
T3

_2
3

T4
_2

2
T2

_3
2

T3
_7

6
T4

_1
3

T3
_1

5
T3

_2
5

T3
_6

T2
_1

4
T2

_5
2

T1
_6

3
T2

_4
T3

_5
6

T1
_3

7
T2

_9
T2

_1
7

T2
_6

4
T2

_5
3

T4
_4

6
T2

_4
4

T2
_6

6
T1

_1
1

T1
_1

6
T2

_6
8

T2
_1

T3
_6

9
T3

_4
0

T2
_7

T3
_6

0
T2

_4
5

T2
_3

1
T4

_2
8

T3
_3

3
T4

_4
1

T3
_3

8
T2

_7
2

T2
_4

2
T3

_7
8

T4
_8

T2
_6

7
T4

_4
7

T2
_7

3
T2

_3
3

T2
_4

9
T3

_5
1

T2
_6

0
T2

_7
1

T3
_1

2
T3

_4
6

T3
_3

4
T3

_6
2

T2
_1

0
T3

_4
8

T2
_7

4
T3

_2
8

T2
_8

T3
_5

8
T3

_4
4

T3
_5

5
T1

_6
1

T2
_1

8
T4

_1
4

T3
_9

T4
_1

7
T2

_5
6

T2
_6

9
T3

_2
1

T4
_3

7
T2

_4
0

T2
_6

T1
_6

T4
_4

8
T3

_6
8

T4
_3

6
T4

_1
9

T3
_4

2
T2

_1
6

T3
_3

T2
_5

1
T2

_5
9

T2
_2

5
T4

_2
5

T3
_1

8
T4

_3
T4

_3
3

T3
_4

9
T4

_9
T3

_3
0

T4
_2

7
T2

_6
3

T4
_2

4
T2

_3
9

T4
_7

T3
_5

2
T3

_1
6

T3
_6

1
T4

_1
1

ENSG00000157456.3

ENSG00000145386.5

−1 1 2 3
Row Z−Score

0
10

0

Color Key
and Histogram

C
ou

nt

PDGFRA

SPHK1

CCNA2

CCNB2

B

Figure 2-15. Further demonstration of TSCAN GUI. (A) Users can set up trimming
criteria by choosing gene names and specifying expression cutoffs. (B) TSCAN excludes
cells that meet all trimming criteria. (C) Users can also visualize the expression of specified
genes along pseudo-time as heatmaps.

49

Chapter 3

Single-cell ATAC-seq Signal
Extraction and Enhancement with
SCATE

3.1 Introduction

A cell’s regulome, defined as the activities of all cis-regulatory elements (CREs) in its

genome, contains crucial information for understanding how genes’ transcriptional ac-

tivities are regulated in normal and pathological conditions. Conventionally, regulome

is measured using bulk technologies such as chromatin immunoprecipitation coupled

with sequencing (ChIP-seq [11]), DNase I hypersensitive site sequencing (DNase-seq [7])

and assay for transposase-accessible chromatin followed by sequencing (ATAC-seq [8]).

These technologies measure cells’ average behavior in a biological sample consisting

of thousands to millions of cells. They cannot analyze each individual cell. When

a heterogeneous sample (e.g., a tissue sample) consisting of multiple cell types or

cell states is analyzed, these bulk technologies may miss important biological signals

carried by only a subset of cells.

Recent innovations in single-cell genomic technologies make it possible to map

regulomes in individual cells. For example, single-cell ATAC-seq (scATAC-seq [32, 33])

and single-cell DNase-seq (scDNase-seq [14]) are two technologies for analyzing open

50

chromatin, a hallmark for active cis-regulatory elements, in single cells. Single-cell

ChIP-seq (scChIP-seq [34]), on the other hand, allows single-cell analysis of histone

modification. Technologies for simultaneously mapping open chromatin along with

other -omics modalities are also under active development (e.g., scNMT-seq [67], Pi-

ATAC [68], sci-CAR [35]). These single-cell technologies enable scientists to examine

a heterogeneous sample with an unprecedented cellular resolution, allowing them to

systematically discover and characterize unknown cell subpopulations.

Among the existing single-cell regulome mapping technologies, scATAC-seq is

the most widely used one due to its relatively simple and robust protocol and its

unparalleled throughput for analyzing a large number of cells. It is adopted by the

Human Cell Atlas (HCA) Consortium as a major tool for characterizing regulatory

landscape of human cells ([69]).

Data produced by scATAC-seq are highly sparse. For instance, a typical human

scATAC-seq dataset contains 102–104 cells and 103–105 sequence reads per cell. How-

ever, the number of CREs in the genome far exceeds 105. Thus, in a typical cell, most

CREs do not have any mapped read. For CREs with reads, the number of mapped

reads seldom exceeds two (Figure 3-1A,B) because each locus has no more than two

copies of assayable chromatin per cell in a diploid genome. Also, existing single-cell

regulome mapping technologies including scATAC-seq destroy cells during the assay.

Thus, they only get a snapshot of a cell at one time point. However, molecular events

such as transcription factor (TF)-DNA binding and their dissociation are temporal

stochastic processes. The steady-state activity of a CRE in a cell is determined by

the probability that such stochastic events occur over time. Since probability is a

continuous measure, the overall activity of a CRE in a cell should be a continuous

signal in principle. The sparse and nearly binary scATAC-seq data collected for

each CRE at one single time point therefore cannot accurately describe the CRE’s

continuous steady-state activity in a cell.

51

Kidney

HL−60

Adrenal gland

Muscle of arm

Pancreas

SCATE K562 1 cell

SCATE GM12878 1 cell

scATAC−seq raw reads K562 100 cells

scATAC−seq raw reads GM12878 100 cells

scATAC−seq raw reads K562 1 cell

scATAC−seq raw reads GM12878 1 cell

Bulk DNase−seq K562

Bulk DNase−seq GM12878

0

3

6

9

12

0.0 2.5 5.0 7.5 10.0

Bulk DNase−seq

sc
AT

A
C

−
se

q

Correlation: 0.394

Individual CRE

0

2

4

0.0 2.5 5.0 7.5

Bulk DNase−seq

sc
AT

A
C

−
se

q

Correlation: 0.696

CRE Cluster

A

B

C

D

E

F

G

Figure 3-1. Background and motivation. (A)-(D): an example genomic region showing
chromatin accessibility in GM12878 and K562 measured by different methods including
(A) bulk DNase-seq, (B) scATAC-seq from one single cell, (C) scATAC-seq by pooling 100
cells, (D) SCATE-reconstructed scATAC-seq signal from one single cell. (E): Illustration of
CRE-specific baseline activities using the same genomic region. Bulk DNase-seq data from
multiple different cell types show that some loci tend to have higher activity than others
regardless of cell type (e.g. compare the two loci in blue boxes). (F): At the individual CRE
level, the correlation between the log-normalized scATAC-seq read count in one GM12878
cell and the log-normalized bulk GM12878 DNase-seq signal is low (Pearson correlation =
0.394). Each dot is a CRE. (G): After aggregating multiple CREs based on co-activated
CRE pathways by SCRAT, the correlation between the CRE pathway activities in one
GM12878 cell and the bulk GM12878 DNase-seq signal (both at log-scale) is substantially
higher (Pearson correlation = 0.696). Each dot is a CRE pathway.

The discrete, sparse and noisy data pose significant data analysis challenges.

Conventional methods developed for bulk data cannot effectively analyze single-cell

regulome data [70, 71]. As a result, there is a pressing need for new computational

tools for single-cell regulome analysis. Recently, several single-cell regulome analysis

methods have been developed. They can be grouped into three categories based on

52

how they deal with the sparsity. (Table 3-I)

Method Combine
CREs

Combine
cells

Adaptively
tune res-
olution

Use
public
bulk
data to
model
base-
line

Use
Binary
or
Count
data

Primary goal Reference

SCATE ✓ ✓ ✓ ✓ C Reconstruct activities of each individ-
ual CRE

This
paper

chromVAR ✓ C Cluster cells, identify TF motifs associ-
ated with differential accessibility and
variability

[70]

SCRAT ✓ C Cluster cells, identify CRE pathways
associated with differential accessibil-
ity

[71]

BROCKMAN ✓ B Summarize data by k-mers and per-
form principal component analysis on
k-mer features to identify co-varying
TFs, cluster cells

[72]

Dr.seq2 ✓ C Cluster cells, identify peaks (MACS) in
each cell subpopulation

[73]

Cicero ✓ B Identify correlated pairs of CREs [74]
Scasat B Cluster cells, identify peaks (MACS),

differential accessibility analysis
[75]

Destin B Cluster cells [76]
scABC C Cluster cells [77]
PRISM B Quantify cell-to-cell variation to iden-

tify hyperor hypo-variable genomic fea-
tures

[78]

cisTopic B Represent data using low-dimensional
topiccell and region-topic representa-
tion, cluster cells and CREs accord-
ingly

[79]

Table 3-I. Comparison of single-cell regulome analysis methods

Methods in category 1, including chromVAR [70], SCRAT [71] and BROCKMAN

[72], tackle sparsity by aggregating reads from multiple CREs. Instead of analyzing

each CRE, they combine reads from CREs that share either a TF binding motif,

a k-mer, or a co-activation pattern in DNase-seq data from the Encyclopedia of

DNA Elements (ENCODE) [80, 81]. The aggregated data on motifs, k-mers, or

co-activated CRE pathways are then used as features to cluster cells or characterize

cell heterogeneity. To demonstrate the effect of combining CREs, Figure 3-1F shows

chromatin accessibility in cell line GM12878 computed using non-aggregated data at

each individual CRE, and Figure 3-1G shows accessibility computed using SCRAT

aggregated data (i.e., average normalized read count across CREs) for each co-activated

53

CRE pathway. After aggregation, the signal in scATAC-seq became more continuous

and showed higher correlation with the bulk DNase-seq-measured accessibility. One

major drawback of aggregating multiple CREs is the loss of CRE-specific information.

Thus, existing methods in this category do not analyze the activity of each individual

CRE.

Methods in category 2, including Dr.seq2 [73] and Cicero [74], tackle sparsity

by pooling multiple cells. Dr.seq2 [73] pools cells and applies MACS [82] to the

pooled pseudobulk sample to call peaks. Cicero [74] first pools the binary chromatin

accessibility profiles from similar cells to create pseudobulk samples. It then uses the

pseudobulk samples to study the pairwise correlation among different CREs. Typically,

scATAC-seq data pooled from multiple cells are more continuous than data from a

single cell, and the pooled data also correlate better with bulk data (Figure 3-1 A-C).

Despite this, pooling cells does not fully eliminate sparsity, particularly in a rare

cell type with only a few cells. Also, pooling cells may result in loss of cell-specific

information. Thus, one may want to only pool cells that are highly similar in order

to better characterize a heterogeneous cell population. This could result in grouping

cells into many small cell clusters, each with only a few highly similar cells. In that

situation, pooling cells alone may not be enough for removing sparsity and accurately

estimating activities of individual CREs.

Methods in category 3 directly work with the peak-by-cell read count matrix or

its binarized version. For example, Scasat [75] converts the peak-by-cell read count

matrix into a binary accessibility matrix and uses this binary matrix to cluster cells.

Destin [76] applies weighted principal components and K-means clustering to the

binary accessibility matrix to cluster cells. scABC [77] uses the read count matrix

to cluster cells via a weighted K-medoids clustering algorithm. PRISM [78] uses the

binary accessibility matrix to compute cosine distance between cells and then uses

this distance to evaluate the degree of heterogeneity of a cell population. CisTopic

54

[79] models the binary accessibility matrix using Latent Dirichlet Allocation (LDA).

This approach views each cell as a mixture of multiple topics, and each topic is a

collection of peak regions and their usage preferences. The topic-cell and region-topic

vectors provide a low-dimensional representation of the data. Cells and peaks are then

clustered in this low-dimensional space. Category 3 methods typically are designed

for specific tasks such as clustering and assessment of sample variability rather than

estimating activities of individual CREs.

In summary, while existing methods provide tools for clustering cells, identifying

co-accessible CREs, and analyzing sample heterogeneity, they do not address the

fundamental issue of accurately reconstructing activities of each individual CRE using

sparse data. Knowing activities of each individual CRE is crucial for functional

studies. For example, such knowledge can be used to inform the selection of CREs for

knock-out or transgenic experiments. In order to facilitate accurate reconstruction

of CRE activities using scATAC-seq data, this article introduces a new statistical

and analytical framework SCATE (Single-Cell ATAC-seq Signal Extraction and

Enhancement). SCATE employs a model-based approach to integrate three types of

information: (1) co-activated CREs, (2) similar cells, and (3) publicly available bulk

regulome data. Unlike the existing methods that either aggregate CREs (category

1) or cells (category 2) but not both, SCATE combines both types of information.

SCATE also uniquely uses public regulome data to enhance the analysis and adaptively

optimizes the analysis resolution based on the available information in the scATAC-seq

data. SCATE is freely available as an open source R package via GitHub. Compared

to the existing methods, SCATE can more accurately predict CRE activities and

transcription factor binding sites using the sparse data from a single cell (Figure 3-1

B,D) or a rare cell type as we shall demonstrate.

55

3.2 Methods

3.2.1 Single-cell ATAC-seq data preprocessing

Single-cell ATAC-seq data for GM12878 and K562 cells were obtained from GEO

(GSE65360) [32]; Single-cell ATAC-seq data for human hematopoietic cell types

were obtained from GEO (GSE96769) [83]; Single-cell ATAC-seq data for mouse

brain and thymus were obtained from GEO (GSE111586) [84]. For each cell, paired-

end reads were trimmed using the program provided by [32] to remove adaptor

sequences. Reads were then aligned to human (hg19) or mouse (mm10) genome

using bowtie2 with parameter -X2000. This parameter retains paired reads with

insertion up to 2000 base pairs (bps). PCR duplicates were removed using Picard

(http://broadinstitute.github.io/picard/).

3.2.2 Genome segmentation

Genome is segmented into 200 base pair (bp) nonoverlapping bins. Bins that overlap

with ENCODE blacklist regions are excluded from subsequent analyses since their

signals tend to be artifacts [85].

3.2.3 Bulk DNase-seq database (BDDB)

SCATE borrows information from large amounts of publicly available bulk DNase-seq

data to improve scATAC-seq analysis. We compiled a database consisting of 404

human and 85 mouse DNase-seq samples obtained from the ENCODE. Take human

as an example, we downloaded all ENCODE DNase-seq samples generated by the

University of Washington [80] in bam format. Files marked by ENCODE as low quality

(marked as “extremely low spot score” or “extremely low read depth” by ENCODE)

were filtered out. Technical replicates for each distinct cell type or tissue were merged

into one sample. This has resulted in 404 DNase-seq samples representing diverse cell

56

types. Mouse samples were processed similarly.

3.2.4 Compiling cis-regulatory elements (CREs) using bulk
data compendium

Given a species and a compendium of bulk regulome samples (e.g., DNase-seq samples

in BDDB), SCATE systematically identifies CREs in the genome as follows. Let yi,j

denote the raw read count of bin i in sample j. Let Lj be sample j’s total read count

divided by 108 (i.e., the library size in the unit of hundred million. For example, a

sample with 200 million reads has Lj = 2). We normalize the raw read counts by

library size and log2-transform them after adding a pseudocount 1. This results in

normalized data ỹi,j = log2(yi,j/Lj + 1). Bin i is called a “signal bin” in sample j if

(1) yi,j ≥ 10, (2) ỹi,j ≥ 5, and (3) ỹi,j is at least five times (three times for mouse)

larger than the background signal defined as the mean of ỹi,js in the surrounding

100 kb region. If a bin is a signal bin in at least one bulk sample, it is labeled as a

“known CRE”. In this way, all genomic bins are labeled as either “known CREs” or

“other bins”. 522,173 known CREs for human and 475,865 known CREs for mouse

are identified using our bulk DNase-seq compendium. Locations of these CREs are

stored in SCATE and provided as part of the software package. Saturation analysis

shows that typically a new bulk sample from a new cell type only contributes a small

fraction (0.013 % for human and 0.18 % for mouse) of new CREs to the known

CRE list (Figure 3-3A). In the three benchmark scATAC-seq datasets used in this

article, datasets 1, 2 and 3 would only add 0.050%, 0.0013%, and 0.063% new CREs,

respectively, to our known CRE list. For the human hematopoietic differentiation

dataset used in the last Results section, the scATAC-seq dataset would only add 0.118

% of new CREs to the known CRE list (Figure 3-3B; the calculation was based on

detecting CREs in each cell type separately and then adding the union of all CREs

from all cell types in the scATAC-seq data to the known CRE list). This suggests that

57

the majority of a new sample’s regulome can be studied by analyzing the precompiled

known CREs, which can save user’s work on compiling and clustering their own CREs.

In this article, SCATE is demonstrated using our precompiled known CRE list, as

the performance curves and statistics do not change much by adding new CREs from

each scATAC-seq dataset to the analysis.

3.2.5 SCATE model for known CREs in a single cell

Consider scATAC-seq data from one single cell j. Given aligned sequence reads,

SCATE will estimate activities of known CREs first. Let yi,j denote the observed

read count for CRE i (i = 1, . . . , I) in cell j, and let µi,j denote the unobserved true

activity. Our goal is to infer the unobserved µi,j from the observed data yi,j. We

assume the following data generative model with three components.

1. Model for true activity. The unobserved µi,j is modeled as log(µi,j) = mi + siδi,j .

Here mi and si represent CRE i’s baseline mean activity and standard deviation

(SD). They are used to model the locus-specific but cell-type-independent baseline

behavior of each CRE (i.e., the locus effects observed in Figure 3-1E). Since

these locus-specific effects cannot be reliably learned using sparse data or data

from one cell type, we learn them using the bulk data from diverse cell types in

our bulk regulome data compendium (see below). Once they are learned, mi

and si are treated as known. The unknown δi,j describes CRE i’s cell-specific

activity after removing locus effects (i.e., δi,j = log(µi,j)−mi

si
).

Due to data sparsity, accurately estimating δi,j using the observed data from

only one CRE in one cell is difficult. Thus, we impose additional structure on

δi,js to allow co-activated CREs to share information to improve the estimation.

We group CREs into K clusters based on their co-activation patterns across cell

types (see below). We assume that CREs in the same cluster share the same

58

δ. Mathematically, let δj = (δ1,j, . . . , δI,j)T be a column vector that contains

δi,js from all CREs in cell j. Let X be a I × K cluster membership matrix.

Each entry of this matrix xik is a binary variable: xik = 1 if CRE i belongs to

cluster k, and xik = 0 otherwise. Let βk,j denote the common activity of all

CREs in cluster k. Arrange βk,js into a column vector βj = (β1,j, . . . , βK,j)T .

Our assumption can be represented as δj = Xβj. When the cluster number K

is smaller than the CRE number I, imposing this additional structure on δi,j

reduces the number of unknown parameters from I to K. As a result, it increases

the average amount of information available for estimating each parameter.

Note that in our model, two CREs with the same δ can still have different

activities (i.e., different µi,js) because log(µi,j) = mi + siδi,j. In other words,

SCATE allows co-activated CREs to share information through δ, but at the same

time it also allows each CRE to keep its own locus-specific baseline characteristics.

This is an important feature missing in other existing methods.

Another unique feature of SCATE is that we treat the cluster number K as a

tuning parameter and adaptively choose it based on available information to

optimize the spatial resolution of the analysis. Unlike SCATE, other existing

methods aggregate CREs based on known pathways. For them, K is fixed and

the analysis’ spatial resolution cannot be tuned and optimized.

2. Model for technical bias. Since the locus effects mi and si are learned from the

bulk data, we view µi,j as the activity one would obtain if one could measure a

bulk regulome sample (e.g., bulk DNase-seq) consisting of cells identical to cell

j. In scATAC-seq data, µi,j is distorted to become µsc
i,j due to technical biases in

single-cell experiments (e.g., DNA amplification bias). We model these unknown

technical biases using a cell-specific monotone function hj(.). In other words,

we assume log(µsc
i,j) = hj(log(µi,j)). We estimate the unknown function hj(.) by

59

comparing scATAC-seq data with the bulk regulome data at CREs that show

constant activity across different cell types (see below). Once hj(.) is estimated,

it is assumed to be known.

3. Model for observed read counts. We assume that the observed read count yi,j

is generated from a Poisson distribution with mean Ljµ
sc
i,j. Here Lj is the total

number of reads in cell j divided by 108. It is a cell-specific normalizing factor

to adjust for library size.

To summarize, our model assumes:

yi,j ∼ Poisson(Ljµ
sc
i,j)

log(µsc
i,j) = hj(log(µi,j))

log(µi,j) = mi + siδi,j

δj = Xβj

(3.1)

For a fixed cluster number K, we fit the model as follows: (1) use the bulk regulome

data compendium to learn locus effects mi and si; (2) use scATAC-seq data and the

bulk regulome data compendium to learn technical bias function hj(.) which normalizes

scATAC-seq data with the bulk regulome compendium used to learn locus effects; (3)

given mi, si and hj(.), use the observed data y to estimate β which will determine δ

and µ. The estimated µ provides the final estimates for CRE activities.

In order to optimize the analysis’ spatial resolution, SCATE treats the cluster

number K as a tuning parameter. CREs are clustered at multiple granularity levels

corresponding to different Ks. As K increases, the average number of CREs per

cluster decreases. This increases spatial resolution because the cluster activity more

resembles the activity of individual CREs. However, increasing K also decreases

the amount of information for estimating the activity of each cluster, and thus the

estimates become noisier. We use a cross-validation approach to choose the optimal

K that balances spatial resolution and estimation uncertainty (see below).

60

3.2.6 Estimate locus effects mi and si

We estimate locus effects using the rich bulk data from diverse cell types in the bulk

regulome compendium. Let yi,j be the observed read count for genomic bin i and bulk

sample j (j = 1, . . . , J). Lj represents sample j’s library size in the unit of hundred

million. For each genomic bin i, locus effects are estimated using the observed counts

{yi,j : j = 1, . . . , J}. We model yi,j in bulk data as:

yi,j ∼ Poisson(Ljµi,j)

log(µi,j) = mi + siδi,j

(3.2)

This is similar to the single-cell model above but without the technical bias

component. Without additional constraints, mi and si are not identifiable since each

bin i has only J observed data points but J+2 unknown parameters (i.e., mi, si, and J

different δi,js). Thus, we further assume δi,j ∼ N(0, 1). This is equivalent to assuming

that log(µi,j) for bin i is normally distributed, and mi and si are its mean and SD

respectively. This assumption is based on observing that CREs’ log-normalized read

counts after standardization (i.e. subtract mi and divide by si) are approximately

normally distributed (Figure 3-2). With this additional constraint, mi and si become

identifiable. Since maximum likelihood estimation for all genomic bins in a big genome

like human is computationally slow, SCATE employs the method of moments to

estimate mi and si. Based on the model and theoretical moments of Poisson and

Lognormal distributions, the first and second moments of yi,j/Lj are:

E

(︄
yi,j

Lj

)︄
= emi+ 1

2 s2
i

E

(︄
yi,j

Lj

)︄2

= 1
Lj

emi+ 1
2 s2

i +
[︂
emi+ 1

2 s2
i

]︂2
es2

i

(3.3)

By matching the model-based moments to the empirical first two moments of the

observed yi,j/Ljs, we obtain the following closed-form estimates for mi and si which

can be computed efficiently:

61

δ

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 3-2. The empirical distribution (histogram) of the log-normalized read counts in
human BDDB after standardization (i.e., subtract the mean and divide by SD of each
CRE) can be fitted well with a normal distribution (red curve).

s̃i =

⌜⃓⃓⎷log
(︄∑︁

j(yi,j/Lj)2/J −∑︁
j(yi,j/L2

j)/J
(∑︁j(yi,j/Lj)/J)2

)︄

m̃i = log
(︄∑︁

j(yi,j/Lj)
J

)︄
− s̃2

i /2
(3.4)

In rare cases where
∑︁

j
(yi,j/Lj)2/J−

∑︁
j
(yi,j/L2

j)/J

(
∑︁

j
(yi,j/Lj)/J)2 < 1, the estimates become:

62

s̃i = 0

m̃i = log
(︄∑︁

j(yi,j/Lj)
J

)︄ (3.5)

3.2.7 Estimate technical bias function hj(.)

The cell-specific technical bias function hj(.) is estimated using known CREs whose

activities do not change much across cell types. All known CREs are sorted according

to s̃i estimated above which reflects their variability across diverse cell types in the

bulk regulome data compendium. We split m̃i into ten groups by its 10%, 20%, ...,

100% quantiles, and find 1000 CREs with the smallest s̃i in each group. The union set

of these 10000 CREs is a set H of “low-variability” CREs. For these low-variability

CREs, their activities are almost constant across cell types. Thus, one can assume

that their activities in a new cell are known and approximately equal to m̃i, and the

model for their scATAC-seq read counts in a new cell j can be simplified to:

yi,j ∼ Poisson(Ljµ
sc
i,j)

log(µsc
i,j) = hj(log(µi,j)) ≈ hj(m̃i)

(3.6)

We estimate hj(.) using yi,js from these low-variability CREs. The function hj(.) is

monotonically increasing but has unknown form. We model it using monotone spline

[86] (splines2 package in R):

hj(x) = αj,0 +
T∑︂

t=1
αj,tIt(x) s.t. αj,t ≥ 0 (t = 1, ..., T)

Here It(x) are known I-spline basis functions (which are monotone functions [86])

and αj,ts are unknown regression coefficients. The constraints αj,t ≥ 0 make hj(.)

monotone and non-decreasing. The maximum likelihood estimates for coefficients

αj = {αj,t : t = 0, . . . , T} can then be obtained as:

63

α̃j = arg max
αj

∑︂
i∈H

[yi,j ∗ h(m̃i) − Lje
h(m̃i)] s.t. αj,t ≥ 0 (t = 1, ..., T) (3.7)

To select the optimal set of basis functions, we try different settings of knots by

changing T . We set T = 1, 2, ..., 6, respectively, which sets the number of knots from 0

to 5. For each T , the t/T -th quantiles (t = 1, ..., T − 1) of m̃i are chosen as the knots.

Given the knots, the spline basis functions are then generated by splines2. The T

with the smallest Bayesian information criterion (BIC) is chosen to obtain the optimal

set of basis functions.

3.2.8 Estimate β, δ and µ

Once the locus effects mi and si and technical bias function hj(.) are estimated, SCATE

treats them as known and will then estimate β. Suppose CREs are grouped into K

clusters. The activity for cluster k in cell j, βk,j, can be estimated using the observed

read counts in cell j for all CREs in the cluster. When data are sparse (particularly

for clusters with small number of CREs), the maximum likelihood estimate can

be unreliable due to its high variance. Thus, consistent with our bulk regulome

data model, we impose a prior distribution on βk,j to help regularize its estimation:

βk,j ∼ N(0, 1). We then estimate βk,j using its posterior mode:

β̃k,j = arg max
β

∑︂
i∈C(k)

[yi,jhj(mi + siβ) − Lje
hj(mi+siβ)] − β2/2

Here C(k) represents the set of CREs in cluster k. The above optimization involves

only one variable β, and thus the computation is not expensive. Estimation of different

βk,js are handled separately.

Given β̃k,j, δi,j and µi,j can be derived using model (3.1).

64

3.2.9 Analysis at multiple spatial resolution levels (i.e., mul-
tiple Ks)

SCATE analyzes data at multiple spatial resolution levels by setting the cluster number

K to different values. To do so, known CREs are clustered based on their co-activation

patterns across all samples in the bulk regulome data compendium. Before clustering,

CREs’ normalized data ỹi,j are organized as a matrix. Rows of the matrix correspond

to CREs and columns correspond to samples. Each row is standardized to have zero

mean and unit SD. Then CREs (i.e., rows) are clustered hierarchically at multiple

granularity levels. A naive hierarchical clustering of 522,173 CREs (475,865 CREs for

mouse) is difficult because it requires computing a distance matrix on the order of

500, 000×500, 000. To make the computation tractable, SCATE employs a three-stage

clustering approach.

• Stage 1: CREs are grouped into 5000 clusters using K-means clustering (Eu-

clidean distance). Each cluster contains approximately 100 CREs that show

similar cross-sample activity patterns. For each cluster, the mean activity of all

CREs in each sample is computed. It is then standardized to have zero mean

and unit SD across samples.

• Stage 2: To obtain coarser clusters, the 5000 clusters from stage 1 are grouped

hierarchically using hierarchical clustering (Euclidean distance, complete agglom-

eration) based on their mean activity profile. In this way, CREs are hierarchically

grouped into 5000, 2500, 1250, 625, 312 and 156 clusters.

• Stage 3: To obtain fine-grained clusters, for each cluster obtained in Stage

1, hierarchical clustering is applied to split CREs in that cluster into smaller

clusters. In this way, each cluster from Stage 1 can be divided into 2, 4, 8, ...

subclusters until each subcluster contains only one CRE.

65

CREs’ clustering structure for human and mouse obtained using our DNase-seq

compendium is stored and provided as part of the SCATE package. Users can use it

directly without recomputing them.

3.2.10 Optimizing spatial resolution (K) by cross-validation

SCATE optimizes the spatial resolution of the analysis by choosing the optimal K via

cross-validation. For a given K, after clustering CREs, CREs are randomly partitioned

into a training set (90% CREs) and a testing set (10% CREs). Next, for each cluster

k, CREs in the training set are used to estimate βk,j which is the common activity of

all CREs in that cluster. Using the estimated β̃k,j, the log-likelihood of the test CREs

in cluster k can be computed according to model (3.1) because they share the same

βk,j with training CREs in the same cluster. We perform the same calculations for all

clusters and obtain the median log-likelihood of all testing CREs.

The above procedure is run for different values of K. The cluster number K with

the largest median log-likelihood in test data is selected as the optimal K.

3.2.11 Postprocessing – SCATE for other genomic bins in a
single cell

After estimating activities of known CREs, SCATE will analyze all other bins in the

genome. These bins fall into two classes. First, some bins have zero scATAC-seq

read count across all cells. For these bins, µi,j is estimated to be zero. Second, the

remaining bins have at least one read in the scATAC-seq data. For these bins, we

estimate µi,j using a predictive machine learning approach xgboost (eXtreme Gradient

Boosting [87]) where the response variable is the SCATE signal µ̃i,j and the predictors

are normalized read count yi,j/Lj , mi and si. The model is trained using known CREs.

The trained model is then applied to bins not included in the known CRE list to make

predictions. This will transform the read counts at these bins to a scale consistent

66

with the reconstructed activities for known CREs.

3.2.12 SCATE for multiple cells

When a scATAC-seq dataset contains multiple cells, we first cluster cells using a

method similar to our previously published method SCRAT [71]. Before clustering

cells, CREs are grouped into 5000 clusters using BDDB as before. For each cell, the

average activity of all CREs in each CRE cluster is calculated as in SCRAT. This

transforms the scATAC-seq data in each cell into a feature vector consisting of 5000

CRE cluster activities. After quantile normalizing features across cells, features with

low-variability across cells are filtered out. To identify low-variability features, for

each feature we calculate the mean and SD of its activity across cells. Using the means

and SDs of all features, we fit a polynomial regression with degree=3 to describe the

relationship between the SD (response) and mean (independent variable). Features for

which the observed SD is smaller than the expected SD (from the fitted model) given

the mean activity are filtered out. Among the remaining high-variability features,

we retain those that have non-zero read count in at least 10% of cells. PCA is then

performed on the retained features. The top 50 principal components are then used

to perform tSNE. The model-based clustering (mclust in R) [60] is used to perform

clustering on tSNE space with default settings. The cluster number is chosen based on

the Bayesian Information Criterion in mclust. If users do not want to use the default

cluster number or clustering method, SCATE also provides an option to allow them

to specify the cluster number by their own or use their own clustering results from

other algorithms.

After cell clustering, each cluster consists of a set of similar cells and represents a

relatively homogeneous cell subpopulation. SCATE will estimate the regulome profile

of each cluster. For each cluster, reads from all cells are pooled together to create a

pseudo-cell. The SCATE model for a single cell described above is then applied to the

67

pseudo-cell to estimate CRE activities. The estimated regulome profile of the pooled

sample typically will achieve higher spatial resolution than a single cell since (1) the

pseudo-cell contains data from more than one cell and (2) SCATE automatically tunes

the spatial resolution based on available information. The output of SCATE is the

estimated regulome profile for each cell subpopulation.

3.2.13 Peak calling and evaluation

A moving average approach is used to call peaks from the reconstructed regulome

profile. Given a moving window size 2W + 1, the moving average signal for each 200

bp bin is calculated as the average signal of the bin and its 2W neighboring bins (W

bins on the left and W bins on the right). By default, W = 1 which amounts to

averaging signals from 3 bins spanning 600 bp in total. In parallel, we also calculate

the average signal of 2W + 1 randomly selected bins (not necessarily neighboring bins)

for 100000 times to construct a background distribution for the moving average signal.

For a genomic bin with moving average signal s, the false discovery rate (FDR) is

estimated as the proportion of background distribution larger than s divided by the

observed proportion of genomic bins with signals larger than s. Genomic bins with

FDR smaller than 0.05 are identified and consecutive bins are merged into peaks.

Peaks are ranked by FDR. For peaks tied with the same FDR, they are ranked further

by the moving average signals.

For evaluation, peaks called using signals constructed by different methods are

compared with peaks called using bulk regulome data. In the evaluation, we also

assessed MACS peak calling on pooled cells. MACS is run with settings –nomodel

–extsize 147.

68

3.2.14 TFBS prediction

TF motifs are downloaded from JASPAR [88]. These motifs were mapped to the

genome using CisGenome with likelihood ratio cutoff = 100. Narrow peak files of the

corresponding ChIP-seq data in GM12878 and K562 are downloaded from ENCODE.

For each TF and cell type, genomic bins with motif were ranked based on reconstructed

scATAC-seq signals to predict TFBSs. Genomic bins with motif that overlap with

ChIP-seq peaks are used as gold standard.

3.2.15 Processing of benchmark bulk DNase-seq and ATAC-
seq data

The benchmark bulk DNase-seq data for GM12878 and K562 (Dataset 1) are obtained

from ENCODE. Bulk ATAC-seq data for human CMP and monocytes (Dataset 2)

and human hematopoietic cell types in the last example are obtained from GEO under

accession GSE74912. Bulk DNase-seq data for mouse brain and thymus (Dataset 3)

are obtained from ENCODE.

Bulk DNase-seq samples are processed using the same protocol as DNase-seq data

processing in BDDB. For ATAC-seq sample, reads are aligned to human genome hg19

using bowtie with parameters (-X 2000 -m 1). PCR duplicates are removed by Picard

(http://broadinstitute.github.io/picard/). The aligned reads are used to obtain bin

read counts.

3.2.16 Software

SCATE is freely available as an open source R package via GitHub and licensed under

the MIT License:

https://github.com/zji90/SCATE

In terms of computational time, compiling CREs and clustering CREs typically

take 1-2 days. Given the CRE list and CREs’ clustering structure, running SCATE to

69

https://github.com/zji90/SCATE

reconstruct regulome approximately takes 5 minutes per cell cluster on a computer

with 10 computing cores (2.5 GHz CPU/core) and a total of 20GB RAM.

3.3 Results

3.3.1 SCATE model for a single cell

SCATE begins with compiling a list of candidate CREs and grouping co-activated

CREs into clusters. Currently, most scATAC-seq data are generated from human

and mouse. For user’s convenience, for these two species we have constructed a Bulk

DNase-seq Database (BDDB) consisting of normalized DNase-seq samples from diverse

cell types generated by the ENCODE project. For each species, we compiled putative

CREs using BDDB and clustered these CREs based on their co-activation patterns

across BDDB samples. Users may augment these precompiled CRE lists by using

SCATE-provided functions to (1) add and normalize their own bulk and pseudo-bulk

(obtained by pooling single cells) DNase-seq or ATAC-seq samples to BDDB and then

(2) re-detect and cluster CREs using the updated BDDB. These functions can also

be used to create CRE database for other species. For human and mouse, saturation

analyses show that BDDB covers most CREs one would discover in a new DNase-seq

or ATAC-seq dataset. On average, a new sample only contributes <0.2% new CREs to

our precompiled CRE lists (Figure 3-3). Thus, in order to save time and computation

for CRE detection and clustering, users may directly use the precompiled CRE lists

in BDDB without significant loss. In this article, our analyses using SCATE are all

carried out using these precompiled CREs as the input.

Given a list of CREs, their clustering structure, and scATAC-seq data from a

single cell, the SCATE model contains the following key components (Figure 3-4A).

(1) Modeling a CRE’s cell-independent but CRE-specific baseline behavior using

publicly available bulk regulome data. By analyzing large amounts of ENCODE

70

●

●

●

●

●●●
●●●●
●●

0.013%

●

●

●

●

●

●
●●

0.181%

Human Mouse

0 100 200 300 400 0 20 40 60 80

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.2

0.4

0.6

Number of Samples in Database

P
ro

po
rt

io
n

of
 N

ew
 C

R
E

100%

0.05% 0.001% 0.118%

100%

0.063%0e+00

2e+05

4e+05

Human
BDDB

GM12878
K562

New CRE

CMP Mono
New CRE

human HSC
New CRE

Mouse
BDDB

thymus brain
New CRE

Method

N
um

be
r

of
 C

R
E

A

B Human Mouse

Figure 3-3. Saturation analysis of BDDB CRE lists. (A): As one increases the number of
DNase-seq samples in the BDDB database, the proportion of new CREs contributed by
adding a new sample gradually decreases. (B): The scATAC-seq datasets analyzed in this
study would only add 0.0013%-0.118% new CREs to the precompiled CRE list in BDDB.

DNase-seq data, we found that these bulk data contain invaluable information not

captured by the sparse single-cell data. In particular, our recent analysis of DNase-seq

data from diverse cell types shows that different CREs have different baseline activities

[89]. Some CREs tend to have higher activity levels than others regardless of cell type

(Figure 3-1E: compare two CREs in blue boxes). As a result, the mean DNase-seq

71

Figure 3-4. SCATE overview. (A): SCATE model for a single cell. (B): SCATE model
for multiple cells.

profile across diverse cell types to a large extent can predict the DNase-seq profile

in a new cell type, even though such prediction is cell-type-invariant and cannot

capture cell-type-specific CRE activities. In [89], we found that the mean DNase-seq

profile correlates well with independently measured TF binding activities, indicating

that differences in the baseline activity among different CREs captured by the mean

DNase-seq profile are real biological signals rather than technical artifacts. These

highly reproducible CRE-specific baseline activities cannot be captured by the sparse

data in a single cell or by pooling a small number of cells (Figure 3-1B,C,E). Thus,

in order to better reconstruct activities of each individual CRE from scATAC-seq,

SCATE explicitly models these cell-type-invariant but CRE-specific baseline behaviors

by fitting a statistical model to the large compendium of bulk DNase-seq data in

72

BDDB. This allows us to estimate the baseline mean activity (mi) and variability (si)

of each CRE i.

(2) Modeling a CRE’s cell-dependent activity by borrowing information from similar

CREs. We model the activity of CRE i in cell j, denoted as µi,j, by decomposing

it into two components: a cell-type invariant component that models the baseline

behavior (mi and si), and a cell-dependent component δi,j for modeling the CRE’s

cell-specific activity. In other words, log(µi,j) = mi + siδi,j. The cell-type invariant

component is learned from BDDB as described above. The cell-dependent component

is learned using scATAC-seq data in each cell. To do so, we leverage CREs’ clustering

structure. Recall that co-activated CREs are grouped into clusters. We assume that

CREs in the same cluster have the same δi,j. Thus, information is shared across

multiple co-activated CREs. Unlike other methods, we only share information through

δi,j rather than assuming that µi,j is the same across similar CREs. In our approach,

two CREs in the same cluster have the same δ, but they can have different activities

(i.e., different µs) because of the difference in their CRE-specific baseline behaviors.

(3) Bulk and single-cell data normalization. Since CREs’ baseline characteristics

are learned from bulk DNase-seq data but our goal is to model scATAC-seq data, we

need to reconcile differences between these two technologies. To do so, we assume that

µi,j is the unobserved true activity of CRE i in cell j one would obtain if one could

measure a bulk DNase-seq sample consisting of cells identical to cell j. In scATAC-seq

data, µi,j is distorted to become µsc
i,j due to technical biases in scATAC-seq compared

to bulk DNase-seq. These unknown technical biases are modeled using a cell-specific

monotone function hj(.) such that log(µsc
i,j) = hj(log(µi,j)). The observed scATAC-seq

read count data are then modeled using Poisson distributions with mean Ljµ
sc
i,j where

Lj is cell j’s library size. The technical bias function hj(.) normalizes scATAC-seq

and bulk DNase-seq data. We developed a method to estimate this unknown function

by using CREs whose activities are nearly constant across diverse cell types in BDDB.

73

Once hj(.) is estimated, CRE activities δi,j and µi,j can be inferred by fitting the

SCATE model to the observed read count data.

(4) Adaptively optimizing the analysis resolution based on available data. In order

to examine the activity of each individual CRE, ideally one would hope to pool as few

CREs as possible. However, when data are sparse, pooling too few CREs will lack the

power to robustly distinguish biological signals from noise. Thus, the optimal analysis

should carefully balance these two competing needs. All existing methods reviewed in

category 1 pool CREs based on fixed and predefined pathways (e.g., all motif sites of

a TF binding motif). They do not adaptively tune the analysis resolution based on

the amount of available information. In SCATE, co-activated CREs are grouped into

K clusters. Information is shared among CREs in the same cluster. We uniquely treat

K as a tuning parameter and developed a cross-validation procedure to adaptively

choose the optimal K based on the available data. When the data is highly sparse,

SCATE will choose a small K so that each cluster contains a large number of CREs.

As a result, the activity of a CRE will be estimated by borrowing information from

many other CREs. This sacrifices some CRE-specific information in exchange for

higher estimation precision (i.e., lower estimation variance). When the data is less

sparse and more CREs have non-zero read counts, SCATE will choose a large K so

that each cluster will contain a small number of CREs. As a result, the CRE activity

estimation will borrow information from only a few most similar CREs, and more

CRE-specific information will be retained.

(5) Postprocessing. After estimating CRE activities, we will further process all

genomic regions outside the input CRE list. SCATE will transform read counts at

these remaining regions to bring them to a scale normalized with the reconstructed

CRE activities. The transformed data can then be used for downstream analyses such

as peak calling, TF binding site prediction, or other whole-genome analyses.

74

3.3.2 SCATE for a cell population consisting of multiple cells

For a homogeneous cell population with multiple cells, we will pool reads from all cells

together to create a pseudo-cell. We will then treat the pseudo-cell as a single cell

and apply SCATE to reconstruct CRE activities. Similar to Dr.seq2, this approach

combines similar cells to estimate CRE activities. Unlike Dr.seq2, we also combine

information from co-activated CREs and public bulk regulome data as described above.

Moreover, SCATE adaptively tunes the resolution for combining CREs (i.e. the CRE

cluster number K) which is lacking in other methods. As the cell number in the

population increases, the sparsity of the pseudo-cell will decrease and the optimal

analysis resolution chosen by SCATE typically will increase.

For a heterogeneous cell population, we first group similar cells into clusters.

SCATE is then applied to each cell cluster to reconstruct CRE activities by treating

the cluster as a homogeneous cell population (Figure 3-4B). By default, SCATE uses

model-based clustering [60] to cluster cells, and the cluster number is automatically

chosen by the Bayesian Information Criterion (BIC). Since one clustering method is

unlikely to be optimal for all applications, we also provide users with the option to

adjust the cluster number or provide their own cell clustering. SCATE can be run

using user-specified cluster number or clustering results. For example, if users believe

that the default clustering does not sufficiently capture the heterogeneity, they could

increase the cluster number. In the most extreme case, if one sets the cluster number

equal to the cell number, each cluster will become a single cell.

We note that pooling cells in each cluster to create a pseudobulk sample does not

mean that the value of single-cell analysis is lost or that scATAC-seq can be replaced

by bulk ATAC-seq or DNase-seq. This is because bulk ATAC-seq or DNase-seq

analysis of a heterogeneous sample cannot separate different cell subpopulations or

discover new cell types. Even if one could use cell sorting to separate cells in a sample

75

by cell type and then apply bulk analysis to each cell type, the sorting relies on

known cell type markers and therefore cannot discover new cell types. By contrast, a

scATAC-seq experiment coupled with SCATE can identify and characterize different

cell populations including potentially new cell types in a heterogeneous sample.

3.3.3 Benchmark data

We compiled three datasets for method evaluation. Dataset 1 consists of human

scATAC-seq data from two different cell lines GM12878 (220 cells) and K562 (157

cells) generated by [32]. For this dataset, ENCODE bulk DNase-seq data for GM12878

and K562 were used as the gold standard to evaluate signal reconstruction accuracy.

Dataset 2 contains scATAC-seq data from human common myeloid progenitor (CMP)

cells (637 cells) and monocytes (83 cells) obtained from [83, 90]. We also obtained

bulk ATAC-seq data from human CMP and monocytes generated by [90] and used

them as gold standard. Dateset 3 consists of mouse scATAC-seq data from brain

(3321 cells) and thymus (7775 cells) generated by [84]. For evaluation, the ENCODE

bulk DNase-seq data for mouse brain and thymus were used as gold standard. In all

evaluations, we removed the test cell types from the BDDB before running SCATE in

order to avoid using the same bulk regulome data in both SCATE model fitting and

performance evaluation.

3.3.4 Analysis of a homogeneous cell population - a demon-
stration

We first demonstrate SCATE analysis of a homogeneous cell population using the

GM12878 and K562 data (Dataset 1) as an example. We applied SCATE to each

cell type separately. For each cell type, we randomly sampled n (n = 1, 5, 10, 25,

50, 100, etc.) cells and pooled their sequence reads together to run SCATE. CRE

activities reconstructed by SCATE were compared with their activities measured by

76

bulk DNase-seq in the corresponding cell type.

Figure 3-5 shows the normalization function hj(.) learned by SCATE for normalizing

scATAC-seq and the BDDB bulk DNase-seq data. Each scatter plot corresponds to

a pooled scATAC-seq sample. Different plots represent different cell numbers or cell

types. In these plots, each data point is a low-variability CRE with nearly constant

activity across BDDB samples. For each CRE, the read count in the pooled scATAC-

seq sample (Y-axis) versus the CRE’s baseline mean activity in BDDB (X-axis) are

shown. The red curve is the SCATE-fitted function (ehj(.)) for modeling technical

biases in scATAC-seq. Overall, scATAC-seq read counts were positively correlated

with CREs’ baseline activities at these low-variability CREs, and the SCATE-fitted

normalization functions were able to capture the systematic relationship (i.e., technical

biases) between the scATAC-seq and bulk DNase-seq data.

Figure 3-6 shows the number of CRE clusters adaptively chosen by SCATE. For

each cell type, there are four plots corresponding to SCATE analyses by pooling

different number of cells, with the cell number n shown on top of each plot. For each

n, n cells were randomly sampled from the scATAC-seq dataset and pooled. SCATE

was applied to the pooled data to automatically choose the CRE cluster number. This

procedure was repeated ten times. The histogram shows the empirical distribution of

the cluster number chosen by SCATE in these ten independent cell samplings without

using any information from the gold standard bulk DNase-seq. As a benchmark, we

also ran SCATE by manually setting the CRE cluster number K to different values.

For each K, we computed the Pearson correlation between the SCATE-estimated CRE

activities in scATAC-seq and the gold standard CRE activities in bulk DNase-seq. The

dots in each plot show the correlation coefficients for different Ks, also averaged across

the ten independent cell samplings. The dot with the largest correlation coefficient

corresponds to the true optimal cluster number. In real applications this true optimal

cluster number would be unknown because one would not have the bulk DNase-seq as

77

Figure 3-5. Normalization of scATAC-seq and bulk DNase-seq data. The scATAC-seq
read counts versus baseline mean activities are shown for low-variability CREs in GM12878
(top panel) and K562 (bottom panel). Each blue dot is a low-variability CRE, defined as
a CRE with almost constant activity across diverse cell types in BDDB bulk DNase-seq
samples. Different plots correspond to analyses based on pooling different number of cells.
In each plot, the red curve is the technical bias function fitted by SCATE.

the gold standard to help with choosing K.

Figure 3-6 shows that the CRE cluster number automatically chosen by SCATE

(histogram) typically was close to the true optimal cluster number (the dot with the

highest correlation). For instance, for analyzing a single GM12878 cell, the cluster

number chosen by SCATE had its mode at 1250, and the true optimal cluster number

was 2500. For analyzing 220 GM12878 cells, the cluster number chosen by SCATE

had its mode at 521820, and the true optimal cluster number was also 521820.

Figure 3-6 also shows that, as the cell number increases, both the true optimal CRE

cluster number and the cluster number chosen by SCATE also increase. Increasing

78

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

K562 Cell Number:1 K562 Cell Number:10 K562 Cell Number:100 K562 Cell Number:157

GM Cell Number:1 GM Cell Number:10 GM Cell Number:100 GM Cell Number:220

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0.60 0.65 0.70 0.75 0.800.60 0.65 0.70 0.75 0.800.60 0.65 0.70 0.75 0.800.60 0.65 0.70 0.75 0.80

156
312
625

1250
2500
5000
9856

19008
35361
64398

117596
213432
521820

156
312
625

1250
2500
5000
9856

19008
35361
64398

117596
213432
521820

Frequency

Correlation

C
lu

st
er

 N
um

be
r

Figure 3-6. Adaptive tuning of analysis resolution. The number of CRE clusters
automatically chosen by SCATE via cross-validation (histogram) is compared with the true
optimal CRE cluster number determined by external information from the gold standard
bulk DNase-seq data (dots). Different plots correspond to different cell types and pooled
cell number. In each plot, the histogram shows the CRE cluster number chosen by SCATE
in 10 independent cell samplings. The dots show the true correlation between the gold
standard bulk DNase-seq signal and the SCATE-reconstructed scATAC-seq signal (both at
log-scale) at each CRE cluster number, averaged across the 10 cell samplings. The dot
with the highest correlation is the true optimal cluster number.

cluster number implies decreasing cluster size. Thus, SCATE adaptively changes

analysis resolution: as more data are available for each CRE, SCATE gradually

decreases the number of CREs in each cluster for information sharing. This allows

SCATE to maximally retain CRE-specific information.

Figure 3-7 compares SCATE-reconstructed scATAC-seq signal with bulk DNase-seq

signal in GM12878 and K562 in an example genomic region. The figure has six columns

corresponding to different cell types and different pooled cell numbers. For benchmark

purpose, the figure also compares SCATE with a number of other methods, all run

based on 200bp non-overlapping genomic windows. Here “Raw reads” displays the

scATAC-seq read count pooled across cells for each genomic window. This approach

79

is used by Dr.seq2. Raw read counts are also used by scABC to characterize CRE

activities in single cells, but scABC does not pool cells. “Binary” converts read counts

in each cell to a binary accessibility vector and then adds up the binary accessibility

vectors across cells. This approach is used by Cicero. Binary accessibility is also used

by Scasat, Destin, PRISM and cisTopic as their data matrix. ChromVAR, SCRAT

and BROCKMAN only analyze and report aggregated CRE pathway activities rather

than activities of individual CREs. Thus, they cannot be compared here. However, for

our previously developed SCRAT, we were able to modify the codes to estimate CRE

activities by directly using pathway activities. This results in three methods, “SCRAT

500 CRE cluster”, “SCRAT 1000 CRE cluster” and “SCRAT 2000 CRE cluster”

shown in the figure. Here, CREs were clustered into 500, 1000 or 2000 clusters as in

SCRAT using the bulk DNase-seq data in BDDB. For each CRE cluster, the average

normalized scATAC-seq read count across all CREs in the cluster was calculated. It

was then assigned back to each CRE in the cluster to represent the estimated CRE

activity. The “Raw reads” method can be viewed as a special case of the “SCRAT

CRE cluster” method when the cluster number is equal to the CRE number (i.e., each

CRE is a cluster). “Average DNase-seq” shows the average normalized read count

profile of bulk DNase-seq samples in BDDB. It reflects CRE’s baseline mean activity.

Figure 3-7 shows that SCATE-reconstructed scATAC-seq signals accurately cap-

tured the variation of CRE activities in bulk DNase-seq across different genomic loci

and different cell types, whereas CRE activities estimated using raw read counts,

binarized chromatin accessibility, or SCRAT CRE cluster methods all failed to accu-

rately capture the bulk DNase-seq landscape. Interestingly, SCATE was able to use

scATAC-seq data from one single cell to accurately estimate CRE activities in bulk

DNase-seq. By contrast, the raw read count and binary accessibility methods both

failed due to data sparsity (e.g., see regions in blue boxes). The SCRAT CRE cluster

method also failed because (1) it assigns the same activity to all CREs in the same

80

GM12878
1 Cell

GM12878
25 Cells

GM12878
100 Cells

K562
1 Cell

K562
25 Cells

K562
100 Cells

Bulk DNase−seq

Raw reads
(Dr.seq2, scABC)

Binary (Cicero,Scasat,
Destin,PRISM,cisTopic)

SCRAT 500
CRE Cluster

SCRAT 1000
CRE Cluster

SCRAT 2000
CRE Cluster

Average DNase−seq

SCATE

Figure 3-7. Comparison of different methods in an example genomic region. Each row is
a method, each column corresponds to a different cell type or pooled cell number. All
columns show the same genomic region. The blue boxes highlight two CREs. The left
CRE occurs in both GM12878 and K562. It cannot be detected by Raw reads, Binary and
SCRAT CRE cluster methods in a single cell, but can be detected by Average DNase-seq
and SCATE. The right CRE is K562-specific. It cannot be detected by Average DNase-seq
but can be detected by SCATE.

CRE cluster and ignores CRE-specific behaviors, and (2) it does not adaptively tune

the analysis resolution as in SCATE to maximally retain CRE-specific signals. The

“Average DNase-seq” approach produced relatively continuous signals and captured

81

some variation across genomic loci in the GM12878 and K562 bulk DNase-seq data.

However, it was unable to capture cell-type-specific signals, such as those shown in

the blue boxes.

3.3.5 Analysis of a homogeneous cell population - a system-
atic evaluation

Next, we systematically evaluated SCATE and the other methods in all three bench-

mark datasets by treating the six test cell types as six homogeneous cell populations.

The evaluation was based on the correlation with gold standard bulk regulome data,

peak calling performance using reconstructed signals, and ability to predict transcrip-

tion factor binding sites (TFBSs). Note that even though each test cell type could

potentially be decomposed further into multiple cell subtypes, we could not conduct

the analysis at the cell subtype level because the gold standard bulk regulome data for

those cell subtypes are unavailable and the subtype label of each cell is unknown. Thus,

for benchmark purpose, here we defined “homogeneous” at a coarser scale and view

cells from each test cell type as homogeneous. This is reasonable because according to

statistical theory, cells in the same cell population (regardless of the composition of the

population) are exchangeable in the sense that, without knowing the finer structure of

the population, the expectation of the behavior of any cell randomly drawn from the

population is equal to the population’s bulk (mean) behavior.

In the first evaluation, we computed the Pearson correlation between the scATAC-

seq signals reconstructed by each method and the gold standard bulk signals across

all CREs. As one example, Figure 3-8A shows the results based on pooling scATAC-

seq data from 10 GM12878 cells. Among all methods, SCATE showed the highest

correlation with the bulk gold standard. We performed the same analysis on all six

test cell types by pooling different cell numbers. For each cell number, we repeated

the analysis ten times using ten independent cell samplings. The median performance

82

of the ten analyses was then compared. Figure 3-8B shows that SCATE consistently

outperformed all the other methods and showed the strongest correlation with the

bulk gold standards in all test data. When the pooled cell number was small, the

improvement of SCATE over many methods was substantial. For instance, for the

analysis of one single Monocyte cell, the correlation was 0.22, 0.22, 0.57, 0.57 and 0.57

for Raw reads, Binary, SCRAT 500, 1000 and 2000 CRE cluster methods, respectively.

For SCATE, it was 0.67, representing an improvement of 18%∼205% over the other

methods. Of note, the Average DNase-seq method performed relatively well in this

evaluation when the cell number was small. However, as we will show later, the

average DNase-seq profile cannot predict changes in CRE activity between different

cell types, but SCATE can.

In the second evaluation, we performed peak calling using scATAC-seq signals

reconstucted by SCATE and other methods. Peak calling is a common task in

DNase-seq or ATAC-seq data analyses. Its objective is to find genomic regions with

significantly enriched signals. We implemented a peak calling algorithm using a

moving average approach (see Methods) and applied it to signals reconstructed by

each method (SCATE, Raw reads, Binary, SCRAT CRE cluster, and Average DNase-

seq). In addition, we also performed peak calling by applying MACS2 [82] to the

pseudobulk sample obtained by pooling cells. The peak calling performance of each

method was evaluated using the sensitivity versus false discovery rate (FDR) curve,

where the “truth” was defined by the peaks called from the bulk gold standard data.

Here sensitivity is the proportion of true bulk peaks discovered by scATAC-seq, and

FDR is the proportion of scATAC-seq peaks that are false (i.e., not found in bulk

peaks). As one example, Figure 3-9A compares the sensitivity-FDR curves of different

methods when they were applied to the pooled scATAC-seq data from 25 GM12878

cells. For each curve, we computed the area under the curve (AUC). Figure 3-9B

systematically compares the AUCs of all methods in all six test cell types. In each

83

0

3

6

9

0.0 2.5 5.0 7.5 10.0
Bulk DNase−seq

sc
AT

A
C

−
se

q

Correlation: 0.49
Raw reads

0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0
Bulk DNase−seq

sc
AT

A
C

−
se

q

Correlation: 0.488
Binary

0

2

4

6

0.0 2.5 5.0 7.5 10.0
Bulk DNase−seq

sc
AT

A
C

−
se

q

Correlation: 0.667

SCRAT 500
CRE Cluster

0

2

4

6

8

0.0 2.5 5.0 7.5 10.0
Bulk DNase−seq

sc
AT

A
C

−
se

q

Correlation: 0.678

SCRAT 1000
CRE Cluster

0

2

4

6

8

0.0 2.5 5.0 7.5 10.0
Bulk DNase−seq

sc
AT

A
C

−
se

q

Correlation: 0.686

SCRAT 2000
CRE Cluster

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0
Bulk DNase−seq

sc
AT

A
C

−
se

q

Correlation: 0.725

Average
DNase−seq

0

2

4

6

0.0 2.5 5.0 7.5 10.0
Bulk DNase−seq

sc
AT

A
C

−
se

q

Correlation: 0.751
SCATE

●●●●●●●●●
●●●●●●●●●
●●●●●●

●●
●

●●●●●●
●●●

●●●●●●
●●●

●●
●●

●
●

●

●

●

●●
●●

●
●

●

●

●

SSSSSSSSS
AAAAAAAAA
333333

333

222222
222

111111
111

BB
BBB

B

B

B

B

RR
RRR

R

R

R

R

●●●●●●●
●●●●●●●
●●●●

●
●

●

●●●●
●

●
●

●●●●
●

●
●

●●
●●

●

●

●

●●
●●

●

●

●

SSSSSSS AAAAAAA
3333

3
3

3

2222
222

1111111
BBBB

B

B

B

RRRR

R

R

R

●●●●●●●● ●●●●●●●● ●●●●●●●
●

●●●●●●●●
●●●●●●●● ●●●●

●

●

●

●

●●●●

●

●

●

●

SSSSSSSS AAAAAAAA 33333333
22222222
11111111 BBBB

B
B

B

B

RRRR
R

R
R

R

●●●●●●●● ●●●●●●●●
●●●●●●●

●

●●●●●●●●
●●●●●●●●
●●●

●

●

●

●

●

●●●
●

●

●

●

●

SSSSSSSS AAAAAAAA
33333333
22222222
11111111
BBBB

B

B

B

B

RRRR
R

R

R

R

●●●●●●● ●●●●●●● ●●●●●●
●

●●●●●●
●

●●●●●●●
●●●

●

●

●

●

●●●

●

●

●

●

SSSSSSS AAAAAAA 333333
3

2222222
1111111
BBB

B

B

B

B

RRR
R

R

R

R

●●●●●●
● ●●●●●●● ●●●●

●●
●

●●●●
●●

●

●●●●
●●●

●●
●

●

●
●

●

●●
●

●

●
●

●

SSSSSSS AAAAAAA 3333
33

3

2222222
1111111
BB

B
B

B
B

B

RR
R

R

R
R

R

Monocyte K562 Brain

CMP GM12878 Thymus

0 20 40 60 80 0 50 100 150 0 25 50 75 100

0 200 400 600 0 50 100 150 200 0 25 50 75 100

0.25

0.50

0.75

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.3

0.4

0.5

0.6

0.7

Number of Cells Pooled

C
or

re
la

tio
n

Method

●R ●B ●1 ●2

●3 ●A ●S

Raw reads Binary SCRAT 500
CRE Cluster

SCRAT 1000
CRE Cluster

SCRAT 2000
CRE Cluster

Average
DNase−seq SCATE

A

B

Figure 3-8. Correlation between reconstructed and true CRE activities. (A): Scatterplots
showing true bulk CRE activities vs. CRE activities estimated by different methods in an
analysis that pools 10 GM12878 cells. In this analysis, both activities are at log-scale.
(B): The correlation between the scATAC-seq reconstructed and true bulk regulome for
different methods. Each plot corresponds to a test cell type. In each plot, the correlation
is shown as a function of the pooled cell number.

84

plot, the analyses were run by pooling different numbers of cells, and the median

AUC from 10 independent cell samplings was plotted as a function of the cell number.

Once again, SCATE showed the best overall peak calling performance. When the cell

number was small, the improvement was substantial. For analyzing one Monocyte cell,

for example, the AUC of SCATE was 0.4, whereas the AUCs for the other methods

(except for Average DNase-seq) were all below 0.21. Thus, SCATE improved over

these methods by 90% or more.

S

S

S

S
S

S
S S S S

B

B

B

B

B B B B B B

R

R

R

R

R
R

R R R R

M

M

M
M

M

M M M M M

A

A

A
A

A
A

A A A A

2

2

2

2 2 2 2 2 2 2

1

1

1

1 1 1 1 1 1 1

3

3

3
3 3 3 3 3 3 3

0.0

0.1

0.2

0.3

0.4

0.00 0.05 0.10 0.15 0.20 0.25

FDR

S
en

si
tiv

ity

GM12878 25 Cells

SS
SSSSSSS

MM
MM

M

M

M

MM

AAAAAAAAA 33333333
3

222222222
111111111

BB
BB

B
B

B

B

B

RR
RR

R
R

R

R
R

SSS
SSSS

MM
M

M

M
MM

AAAAAAA
33333

33
22222

22
11111

11

BB
B

B

B

B
B

RR
R

R

R
RR

S
S

SS
SSSS M

MM
M

M

M
MM

AAAAAAAA
3333333

3 2222222
2 11111111

B
BBB

B

B

B

B

R
RRR

R

R
R
R

SS
S

SSSSS
MMM

M

M

MMM

AAAAAAAA

3333333

3

2222222

2

1111111

1

BBBB

B

B

BB

RRRR

R

R

RR

SSSSSSS

M
M

M

MMMM

AAAAAAA

333
33

33

222
22

22

111
11

11

B
B

B

B

B
BB

RR

R

R

R
RR

SSSSSSS

M
M

MMMMM

AAAAAAA

333
3

333

222
2

222

11
1

1

111

B
B

B

B
BBB

R
R

R

RRRR

Mono K562 Brain

CMP GM12878 Thymus

0 20 40 60 80 0 50 100 150 0 25 50 75 100

0 200 400 600 0 50 100 150 200 0 25 50 75 100
0.0

0.2

0.4

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.2

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.2

0.4

Number of Cells Pooled

A
U

C
Method

R

B

1

2

3

A

M

S

Raw reads

Binary

SCRAT 500
CRE Cluster

SCRAT 1000
CRE Cluster

SCRAT 2000
CRE Cluster

Average
DNase−seq

MACS

SCATE

A B

Figure 3-9. Peak calling performance. (A): The sensitivity versus FDR curve is shown
for different peak calling methods in an analysis that pools 25 GM12878 cells. (B): The
area under the sensitivity-FDR curve (AUC) is shown as a function of pooled cell number
for different methods. Each plot corresponds to a different test cell type.

In the third evaluation, we used signals reconstructed by each method to predict

TFBSs. We evaluated 28 TFs in GM12878 and 29 TFs in K562. As gold standard, we

collected ChIP-seq peaks for these TFs from the ENCODE [80]. For the other cell

types, we did not find TF ChIP-seq data suitable for evaluation. Therefore, our TFBS

prediciton analysis was focused on GM12878 and K562. To predict TFBSs of a TF,

we mapped its motif sites in the genome using CisGenome [91]. Genomic windows

overlapping with motif sites were sorted based on their reconstructed scATAC-seq

signals. Windows with the highest signals were labeled as predicted TFBSs (Figure 3-

10A). Motif-containing windows that overlap with TF ChIP-seq peaks were viewed as

85

gold standard true TFBSs. Based on this, we generated the sensitivity-FDR curve for

each TF by gradually relaxing the TFBS calling cutoff. As one example, Figure 3-10B

shows the sensitivity-FDR curves of different methods for predicting ELF1 binding

sites by pooling scATAC-seq data from 25 GM12878 cells. For each TF and cell type,

we performed this analysis using different cell numbers. For each cell number, the

median area under the sensitivity-FDR curve (AUC) of 10 independent cell samplings

was computed. As two examples, Figure 3-10C shows the AUCs for different methods

as a function of pooled cell number for two TFs: ELF1 in GM12878 and JUND in

K562. Finally, Figure 3-10D shows the average performance of all 28 TFs in GM12878

and 29 TFs in K562. In all these analyses, SCATE robustly outperformed all the other

methods. The overall improvement was substantial (e.g., see K562 in Figure 3-10D).

3.3.6 Analysis of a heterogeneous cell population - demon-
stration and systematic evaluation

To demonstrate the analysis of a heterogeneous cell population, we mixed GM12878

and K562 cells from Dataset 1 with different ratios to create synthetic samples with

different heterogeneity levels. Each synthetic sample had 100 cells representing a

mixture of GM12878 and K562 cells. The percentage of GM12878 cells was set to x =

10%, 30% and 50%, respectively. For each percentage x, ten synthetic samples were

created using independently sampled cells. The median performance of each method

on the ten analyses was compared.

Each synthetic sample was analyzed by first clustering cells using the default

cell clustering algorithm in SCATE. SCATE and other methods were then used to

estimate CRE activities for each cell cluster. The number of cell clusters automatically

determined by SCATE in these samples ranged from 2-5 (Figure 3-11A). Figure 3-11B

shows one example in which cells were grouped into 2 clusters.

In order to evaluate whether the analysis can discover the true biology, we first

86

Bulk ChIP−seq

Bulk DNase−seq

SCATE

ELF1 Motif Site

S

S

S
S

B

B

B

B

R

R

R

R

A

A

A

A

2
2 2

2

1

1 1

1

3
3 3

3

GM12878 25 Cells ELF1

0.00 0.25 0.50 0.75

0.00

0.25

0.50

0.75

1.00

FDR

S
en

si
tiv

ity

S
S

SS
S

SSS AAAAAAAA

33333333 22222222 11111111

B

B
B

B

B

B

B

B

R

R
R

R

R

R

R

R

SSSS

S
SS

S AAAAAAAA

33333333

22222222 11111111

B

B
B

B

B

B

B
B

R

R
R

R

R

R

R

R

S
S

S

S
S

SS
S AAAAAAAA

3333333
3

22222222 11111111

B

B
B

B

B

BB
B

R

R
R

R

R

RR
R

SSS
SSSSS AAAAAAAA

33333333 22222222 111111
11

B

B
B

B

B

B
B

B

R

R
R

R

R

R
R

R

GM12878 K562

GM12878 ELF1 K562 JUND

0 50 100 150 200 0 50 100 150

0 50 100 150 200 0 50 100 150

0.2

0.3

0.4

0.5

0.2

0.3

0.4

0.4

0.5

0.6

0.7

0.2

0.3

0.4

Number of Cells Pooled

Method

R

B

1

2

3

A

S

Raw reads

Binary

SCRAT 500
CRE Cluster
SCRAT 1000
CRE Cluster
SCRAT 2000
CRE Cluster
Average
DNase−seq

SCATE

A

B

C

D

A
U

C
A

U
C

Figure 3-10. TFBS prediction performance. (A): An illustration of TFBS prediction in
an example genomic region. The region contains a genomic bin with ELF1 motif and
high SCATE-reconstructed CRE activity in GM12878. The bin is predicted as a ELF1
binding site. The prediction can be validated by ELF1 ChIP-seq peak in GM12878. (B):
An example sensitivity versus FDR curve for comparing different methods for predicting
ELF1 TFBSs in an analysis that pools 25 GM12878 cells. (C): Two examples (ELF1 in
GM12878 and JUND in K562) that illustrate the method comparison across different cell
numbers. In each example, analyses are performed by pooling different numbers of cells.
The median AUC under the sensitivity-FDR curve from 10 independent cell samplings is
shown as a function of pooled cell number. (D): The averaged AUC across all TFs is
shown as a function of pooled cell number in GM12878 and K562 respectively.

annotated each cell cluster based on its dominant cell type. A cell cluster was labeled

as “predicted GM12878” if over 70% of cells in the cluster were indeed GM12878 cells.

Similarly, a cell cluster with ≥70% K562 cells was labeled as “predicted K562”. All

other clusters were labeled as “ambiguous”. For a given sample, if at least one cell

cluster was labeled as “predicted cell type X” (X = GM12878 or K562), we say that

cell type X was detected. Based on this definition, both GM12878 and K562 can be

detected in all samples (Figure 3-11C). Note that one cell type may be identified by

multiple cell clusters. Given the cell type annotation, we then compared the regulome

of each cell type reconstructed by SCATE and other methods. Since all methods used

87

● ● ● ●

●

●●

●●

●●

●

●

●

●●●●●●●●

●

●●

●

●●●●

2

3

4

5

10 30 50

GM12878 Percentage

C
lu

st
er

 N
um

be
r

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●●●
●

●●

●

●

●

●●

●

●

●

● ●

●

●

●

●

● ●

●
●

● ●
●

●

●

●
●

●

●●

tSNE1

tS
N

E
2

Cluster ● ●1 2

Celltype ●GM12878 K562

0.00

0.25

0.50

0.75

1.00

10 30 50

GM12878 Percentage

D
et

ec
tio

n
R

at
e

GM12878 K562

S S S

R

R
R

1
1 12
2 23
3 3

A A A

B

B
B

S S

S

R
R

R
A A

A

1 1

1

2 2

2

3 3

3

M

M M

B

B
B

S S S

R

R

R

1 1 1
2 2 2
3 3 3

A A A

B

B

B

S

R

23

1

B

A S

R

23

1
B

A
S

R
23

1
B

A

S S S

R
R

R

1 1

12 2

2
3 3

3

A A A

B
B

B

S
S S

R

R R

1

1

1

2

2

2

3

3

3

B

B B

A A A

P
oo

le
d

C
or

re
la

tio
n

D
iff

er
en

tia
l C

or
re

la
tio

n

K
56

2
C

or
re

la
tio

n
T

F
B

S
 A

U
C

G
M

 C
or

re
la

tio
n

P
ea

k
A

U
C

10 30 50 10 30 50 10 30 50

10 30 50 10 30 50 10 30 50

0.60

0.65

0.70

0.0

0.1

0.2

0.3

0.4

0.60

0.65

0.70

0.28

0.32

0.36

0.50

0.55

0.60

0.65

0.70

0.75

0.10

0.15

0.20

0.25

0.30

0.35

GM12878 Percentage

SSS

RR

R

11
1

22
2

33
3 AA
A

BB

B

SS

S

R
R

R

AA

A
111 222

333

M

M

M

B
B

B

SS
S RR

R

1
1

1

2
2

2

33

3

BB

B

AAA

D
iff

er
en

tia
l C

or
re

la
tio

n

P
ea

k
A

U
C

C
or

re
la

tio
n

10 30 50 10 30 50 10 30 50

0.0

0.1

0.2

0.3

0.4

0.20

0.25

0.30

0.35

0.40

0.60

0.65

0.70

Mono Percentage

S S
S

R

R
R

1 1
12 2
23 3 3A A
A

B

B
B

S S S

R

R

R

A A A

1

1
12

2
2

3
3

3

M M M
B

B

B

S S S

R

R R

1
1

1

2
2

2

3
3

3

B

B B

A A A

D
iff

er
en

tia
l C

or
re

la
tio

n

P
ea

k
A

U
C

C
or

re
la

tio
n

10 30 50 10 30 50 10 30 50
0.0

0.2

0.4

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.4

0.5

0.6

0.7

0.8

Thymus Percentage

Method
R B 1 2

3 A M S

Raw reads Binary SCRAT 500
CRE Cluster

SCRAT 1000
CRE Cluster

SCRAT 2000
CRE Cluster

Average
DNase−seq MACS SCATE

Dataset 1 (GM12878, K562)

Dataset 2 (CMP, Monocyte)

Dataset 3 (Thymus, Brain)

A B C

D E F

G H I

J K L

M N O

Figure 3-11. Analyses of a heterogeneous cell population. (A): Distribution of cell cluster
numbers obtained by SCATE for synthetic samples with different cell mixing proportions.
GM12878 and K562 cells are mixed at different proportions. For each mixing proportion, 10
synthetic samples are created and analyzed. (B): An example tSNE plot showing clustering
of cells in a synthetic sample. (C): At each cell mixing proportion, the frequency that each
cell type is detected in the 10 synthetic samples is shown. (D)-(F): The correlation between
the scATAC-seq reconstructed and true bulk regulome in (D) GM12878, (E) K562, and (F)
GM12878 and K562 combined for different methods is shown as a function of cell mixing
proportion (GM12878 cell percentage). (G): The peak calling AUC (GM12878 and K562
combined) vs. cell mixing proportion. (H): The TFBS prediction AUC (GM12878 and
K562 combined) vs. cell mixing proportion. (I): The correlation between the scATAC-seq
reconstructed and true bulk differential log-CRE activities is shown as a function of cell
mixing proportion. (J)-(L): Similar analyses in samples consisting of human CMP and
monocyte cells, including (J) correlation between reconstructed and true bulk log-CRE
activities, (K) peak calling AUC, and (L) correlation between predicted and true differential
log-CRE activities. (M)-(O): Similar analyses in samples consisting of mouse thymus
and brain cells, including (M) correlation between reconstructed and true bulk log-CRE
activities, (K) peak calling AUC, and (L) correlation between predicted and true differential
log-CRE activities.

88

the same cell clustering results, the comparison of their signal reconstruction ability is

a fair comparison. We conducted four types of comparisons.

First, we asked whether the regulome reconstructed by each method for each

predicted cell type can accurately recover the cell type’s true regulome measured by

the gold standard bulk data. Take GM12878 as an example. For each cell cluster

predicted as GM12878, the Pearson correlation between the cluster’s reconstructed

scATAC-seq signal and the gold standard bulk GM12878 DNase-seq data was computed.

If a sample had two or more cell clusters predicted as GM12878, each cluster was

analyzed separately. The median correlation of all such clusters in ten independent

synthetic samples is shown in Figure 3-11D. SCATE again performed the best. When

the proportion of GM12878 cells in a sample was small, the improvement by SCATE

was larger. Figure 3-11E shows the same analysis for K562, but the performance was

shown as a function of GM12878 cell proportion. Figure 3-11F shows the combined

results. Here at each cell mixing proportion, the median scATAC-bulk correlation of

all cell clusters predicted either as GM12878 or K562 was shown. In all these analyses,

SCATE consistently performed the best.

Second, we conducted peak calling and evaluated each method’s ability to recover

true peaks in each cell type. Here the truth was defined as peaks called from the

gold standard bulk data, and the evaluation was conducted similar to Figure 3-9.

Figure 3-11G shows the median AUC of all cell clusters predicted either as GM12878

or K562 as a function of cell mixing proportion. SCATE robustly outperformed the

other methods.

Third, we compared different methods in terms of their ability to predict TFBSs.

TFBS prediction and evaluation were performed similar to Figure 3-10. The results

are shown in Figure 3-11H, in which the median AUC for each method is plotted as a

function of cell mixing proportion. SCATE produced the best prediction accuracy.

Last but not least, we applied different methods to predict differential CRE

89

activities between different cell types, which is crucial for characterizing the regulatory

landscape of a heterogeneous sample. Here we collected all pairs of cell clusters that

were predicted as two different cell types (i.e., one cluster was “predicted GM12878”

and the other cluster was “predicted K562”; ambiguous cell clusters were excluded).

For each such pair, we computed the difference of reconstructed CRE activities

between the two cell clusters. We then compared this predicted difference with the

true differential CRE activities derived from the gold standard bulk DNase-seq data

for GM12878 and K562. The Pearson correlation between the predicted and true

differential signals was calculated. As one example, Figure 3-12 shows the results for

a cell cluster pair in a synthetic sample in which 30% of cells was GM12878. SCATE

best recovered the differential CRE activities (Correlation = 0.43). Figure 3-11I shows

the median correlation across ten independent synthetic samples at each cell mixing

proportion. Once again, SCATE performed the best.

Figure 3-12. An example of predicting differential CRE activities. Scatterplots showing
true bulk differential log-CRE activities vs. differential log-CRE activities estimated by
different methods in an analysis of a synthetic sample consisting of 30 GM12878 and 70
K562 cells.

We note that the Average DNase-seq method completely failed for predicting

90

differential signals between two cell types (Correlation = 0) (Figs. 9I,10), even though

it performed relatively well for estimating CRE activities within one cell type, and

peak calling and TFBS prediction in one cell type (Figs. 6,7,8,9F-H). Similarly, each

of the other methods may perform well in some datasets or analyses but not in others.

SCATE is the only method that robustly performed the best in all our analyses.

Similar to GM12878 and K562 (Dataset 1), we also constructed heterogeneous

cell populations using the other two datasets (Datasets 2 and 3) and used them to

evaluate different methods. The results are shown in Figure 3-11J-O and Figure 3-13.

For these two datasets, we did not perform TFBS prediction due to lack of gold

standard ChIP-seq data. For estimating CRE activities (Figure 3-11J,M), peak calling

(Figure 3-11K,N) and predicting differential CRE activities (Figure 3-11L,O), SCATE

again outperformed all the other methods. In many cases, the improvement was

substantial (e.g., Figure 3-11K,L,N,O).

3.3.7 Analysis of scATAC-seq data from human hematopoi-
etic differentiation

To further demonstrate and evaluate SCATE, we analyzed a scATAC-seq dataset

generated by [83] which consists of 1920 cells from 8 human hematopoietic cell types

for which corresponding bulk ATAC-seq data are available. These cell types include

hematopoietic stem cell (HSC), multipotent progenitor (MPP), lymphoid-primed

multipotent progenitor (LMPP), common myeloid progenitor (CMP), common lym-

phoid progenitor (CLP), granulocyte-macrophage progenitor (GMP), megakaryocyte-

erythrocyte progenitor (MEP) and monocyte (Mono). In this dataset, the true

cell type label of each cell was known since cells were obtained by cell sorting.

Figure 3-14A shows the tSNE [92] plot of all cells color-coded by their true cell

types. In the plot, different cell types were distributed along three major differenti-

ation lineages (myeloid: HSC→MPP→(CMP or LMPP)→GMP→Mono; erythroid:

91

●

● ●●● ●●

●●●

●●

●

●

●●

●●●●

●● ●

●

●●

●

●

●

●

2.0

2.5

3.0

3.5

4.0

10 30 50

Mono Percentage

C
lu

st
er

0.00

0.25

0.50

0.75

1.00

10 30 50

Mono Percentage

D
et

ec
tio

n
R

at
e

Data CMP Mono

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●●

●

● ●

●

●

●●●●

2

3

4

5

6

10 30 50

Thymus Percentage

C
lu

st
er

0.00

0.25

0.50

0.75

1.00

10 30 50

Thymus Percentage

D
et

ec
tio

n
R

at
e

Data brain thymus

A

B

Dataset 2 (CMP, Monocyte)

Dataset 3 (Thymus, Brain)

Figure 3-13. Analyses of a heterogeneous cell population created using (A) Dataset 2
and (B) Dataset 3. In each dataset, the left plot shows distribution of cell cluster numbers
obtained by SCATE for synthetic samples with different cell mixing proportions. For each
mixing proportion, 10 synthetic samples were created and analyzed. The right plot shows
the frequency that each cell type is detected in the 10 synthetic samples at each cell
mixing proportion.

HSC→MPP→CMP→MEP; lymphoid: HSC→MPP→LMPP→CLP), which are con-

sistent with known biology. For method evaluation, we analyzed all cells together as a

heterogeneous cell population and pretended that the cell type labels were unknown.

We also downloaded and processed bulk ATAC-seq data for these 8 cell types from

92

[90] and used them as the gold standard to assess regulome reconstruction accuracy.

Using its default cell clustering method, SCATE identified 14 cell clusters. To

evaluate the performance of this unsupervised analysis for recovering true biology, we

first assigned a cell type label for each cluster. A cluster was annotated as “predicted

cell type X” if the cluster contained at least two cells and the true cell type label of

≥70% cells from the cluster was cell type X. Clusters that cannot be annotated using

this criterion were labeled as ambiguous. In this way, we were able to unambiguously

annotate 9 clusters. Since multiple clusters may be annotated with the same cell type,

these 9 annotated clusters corresponded to a total of 6 cell types (Figure 3-14B). For

these 9 clusters, one can evaluate signal reconstruction accuracy because the bulk

ATAC-seq data for the annotated cell type was available. Each cluster was treated

as a homogeneous cell population by SCATE and other methods in our analysis (as

one would do in real applications), even though the cluster actually may not be pure

and may contain cells from more than one cell types. Figure 3-14D compares the

Pearson correlation between the gold standard bulk signal and the CRE activities

reconstructed from scATAC-seq by different methods. Each boxplot contains 9 data

points corresponding to the 9 cell clusters. Figure 3-14E compares the peak calling

performance (AUC under the sensitivity-FDR curve). Figure 3-14F compares the

accuracy for predicting differential CRE activities between different cell types. Here

each data point in the boxplot is a pair of cell clusters annotated with two different

cell types. The Pearson correlation between the gold standard bulk differential signal

and differential signal reconstructed from scATAC-seq was computed and compared.

In all these analyses, SCATE outperformed the other methods. Figure 3-14J shows an

example genomic region in a HSC cell cluster. SCATE most accurately reconstructed

the bulk ATAC-seq signal in HSC.

SCATE provides users with the flexibility to specify their own cell cluster number

or use their own cell clustering results. The software can reconstruct signals based on

93

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●
●

●

●

●

●●

●

●
●●●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●●

●

●

● ●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●●
● ●

●

●

●

●

●●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●● ●

●
●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

● ●

●

●
●

●

● ●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●

●

●

●● ●
●●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●● ●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

● ●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●● ●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●

●

●●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

● ●

●

●

●

●

●

●

●

● ●

●

●● ●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●
●

● ●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

● ●

●
●

●●

●

● ●

●

●●

●
●

●
●

●
●

●

●

●

●

●
●
●●

●

●●

●●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●●

●●●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●
●●

●
●

●
●●

●

●

●

●
●

●

●

●●

●
●

●●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●●
●

●

●

●●
●

●

●
●

●

●

●
●

●
●

●
● ●

●

●

●

●●

●●
●

●

●
● ●●

●

●

●

●●
●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●●
●

●
●
●●

●

●
● ●

●

●

●

●

●

●

●
●●

●

●
●

●

●

Erythroid

Lymphoid

Myeloid

HSC
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●
●

●

●

●

●●

●

●
●●●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●●

●

●

● ●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●●
● ●

●

●

●

●

●●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●● ●

●
●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

● ●

●

●
●

●

● ●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●

●

●

●● ●
●●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●● ●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

● ●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●● ●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●

●

●●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

● ●

●

●

●

●

●

●

●

● ●

●

●● ●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●
●

● ●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

● ●

●
●

●●

●

● ●

●

●●

●
●

●
●

●
●

●

●

●

●

●
●
●●

●

●●

●●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●●

●●●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●
●●

●
●

●
●●

●

●

●

●
●

●

●

●●

●
●

●●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●●
●

●

●

●●
●

●

●
●

●

●

●
●

●
●

●
● ●

●

●

●

●●

●●
●

●

●
● ●●

●

●

●

●●
●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●●
●

●
●
●●

●

●
● ●

●

●

●

●

●

●

●
●●

●

●
●

●

●

12

3

4

5

6

7

8

9

10

11

12

13
14

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●
●

●

●

●

●●

●

●
●●●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●●

●

●

● ●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●●
● ●

●

●

●

●

●●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●● ●

●
●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

● ●

●

●
●

●

● ●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●

●

●

●● ●
●●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●● ●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

● ●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●● ●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●

●

●●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

● ●

●

●

●

●

●

●

●

● ●

●

●● ●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●
●

● ●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

● ●

●
●

●●

●

● ●

●

●●

●
●

●
●

●
●

●

●

●

●

●
●
●●

●

●●

●●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●●

●●●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●
●●

●
●

●
●●

●

●

●

●
●

●

●

●●

●
●

●●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●●
●

●

●

●●
●

●

●
●

●

●

●
●

●
●

●
● ●

●

●

●

●●

●●
●

●

●
● ●●

●

●

●

●●
●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●●
●

●
●
●●

●

●
● ●

●

●

●

●

●

●

●
●●

●

●
●

●

●

1

2

3
4

5
6

7

8

9
10 11

1213
14

1516

17
18

19

20

2122

23

24

25

26
27

28

29
30

31
32

33
34

35

36

37

38

True Cell Type Default Cluster 38 Cluster

−10 0 10 −10 0 10 −10 0 10

−20

−10

0

10

20

tSNE1

tS
N

E
2

● ● ● ● ● ● ● ● ●Ambiguous CLP CMP GMP HSC LMPP MEP Mono MPP

●● ●●●●● ● ●

●●● ●●●●● ●

●●● ● ●●● ●●

●●● ● ●●● ●●

●●● ●●●● ●●

●●● ●●●● ●●

●●● ●●●● ●●

●●● ●●●●●● ●●●●●● ●●●●●●● ●

●●● ● ●● ● ●● ●● ●●●● ● ●●● ● ●● ●

● ●● ●●● ● ●● ●● ●●●● ● ●●● ● ●● ●

● ●● ●●● ● ●● ●● ●●●● ● ●●● ● ●● ●

●●● ●●● ● ●● ●● ●●●● ● ●●● ● ●●●

●●● ●●● ● ●● ●● ●●●● ● ●●● ● ●●●

●●● ●●● ● ●● ●● ●●●● ● ●●● ● ●●●

D
ef

au
lt

C
lu

st
er

38
 C

lu
st

er

0.2 0.4 0.6 0.8

0.2 0.4 0.6 0.8

Correlation

●● ●● ●●● ●●

●● ●● ●●● ●●

●● ● ● ●●● ●●

●● ●●● ●● ●●

●● ●●● ●● ●●

●● ●●● ●● ●●

●●● ● ●●● ●●

●● ●● ●●● ●●

●●● ●●● ●●● ● ●●● ●● ●●● ● ●●● ●

● ● ● ●●● ●● ●● ●● ● ●●●● ● ● ●●● ●

●●● ●●●●●●● ● ●●●● ●●●●● ●● ●

● ●● ●●●●● ●● ●● ● ●●●●● ● ● ●● ●

● ●● ●● ●●● ●● ●● ● ●●●● ● ● ● ●● ●

● ●● ●●●●● ●● ●● ● ●● ● ●●● ● ●● ●

● ●● ● ●● ● ● ● ●● ● ●●● ● ●●●● ●●●

● ● ● ●● ● ●● ● ●●● ● ●●●● ● ● ●●● ●

0.0 0.2 0.4

0.0 0.2 0.4

Peak AUC

●

●●● ●● ●●● ●● ●● ●●●● ●● ● ● ●● ●● ●● ●●● ● ●●●

●●● ●● ●●● ●● ●● ●●●● ●● ● ●●● ●● ●●●●● ●●●●

●●● ●● ●●● ●● ●● ●●●● ●● ● ●●● ●● ●●●●● ●●●●

●●● ● ●●● ● ●● ● ● ●●● ●● ● ●●● ● ●● ● ●●● ● ● ●●●

●●● ● ● ●● ● ●● ● ● ●●● ●● ● ●●● ● ●● ● ●●● ● ● ●●●

●●● ● ● ●● ● ●● ● ● ●●● ●● ● ●●● ● ●● ● ●●● ● ● ●●●

●

●●● ●●● ●●● ●●● ●●● ●●● ● ●● ● ●●●● ● ●● ● ●●●●● ●● ● ●● ● ●●● ● ● ●● ●●●● ●●● ● ● ●● ●●● ●●●● ●●● ●● ●● ●●●● ●● ● ●●●● ● ●●● ●●●● ●● ● ●●●● ● ●●● ●●● ●●●● ● ●●●● ●● ●●● ● ●●● ●● ●●● ● ● ●● ● ●● ● ●● ●● ● ●●●● ● ●●● ●●● ● ●● ● ●●● ● ●●● ● ● ●●● ●●●● ●●●● ● ● ●●

●●● ● ●● ●●● ●●● ●●● ●●● ●●● ● ●●●● ● ●● ● ●●●●● ●● ●●● ●●●● ● ● ●● ●●● ●●●● ● ●●● ●●● ●●●●●●● ●● ●● ●●●● ●● ● ● ●●● ● ●●● ●●●● ●● ● ● ●● ● ●●●● ● ●● ●●●● ● ●●●● ● ● ●● ● ●●●● ● ● ●●● ● ● ●●● ●●● ● ●●● ●●●●● ● ●●●●●● ●●● ● ●●● ● ●●● ● ●●●● ●●●● ● ●●● ● ● ●●

●●● ● ●● ●●● ●●● ●●● ●●● ●●● ● ●●●● ● ●● ● ●●●●● ●● ●●● ●●●● ● ● ●● ●●● ●●●● ● ●●● ●●● ●●●●●●● ●● ●● ●●●● ●● ● ● ●●● ● ●●● ●●●● ●● ● ● ●● ● ●●●● ● ●● ●●●● ● ●●●● ● ● ●● ● ●●●● ● ● ●●● ● ● ●●● ●●● ● ●●● ●●●●● ● ●●●●●● ●●● ● ●●● ● ●●● ● ●●●● ●●●● ● ●●● ● ● ●●

● ●●● ●● ●●● ●●● ● ●● ●● ●●● ● ●●●● ●● ●● ● ●●●●● ●●●●● ●●●●●● ●● ●●●●● ● ●● ● ●●● ●● ● ●●●●●● ●● ●●●● ●● ● ● ●● ●● ●● ●● ●●● ● ● ●●● ●●● ● ●●● ●● ●● ● ●●● ● ●●● ● ●● ●● ●●●● ● ●● ●● ●●●● ●● ● ●●● ●● ●●●● ●● ● ● ●●●● ●●● ●●● ●● ●●●● ●●● ●● ●●●● ●● ●● ●● ●●

● ●●● ●● ●●● ●●● ● ●● ●● ●●● ● ●●●● ●● ●● ● ●●●●● ●●●●● ●●●●●● ●● ●●●●● ● ● ● ● ●●● ●● ● ●●●●●● ●● ●●●● ●● ● ● ●● ●● ●● ●● ●●● ● ● ●●● ●●● ● ● ●● ●● ●● ● ●●● ● ●●● ● ●● ●● ● ●●● ● ●● ●● ●●●● ●● ● ●●● ●● ●●●● ●● ● ● ●●●● ●●● ●●● ●● ●●●● ●●● ●● ●●●● ●● ●● ●● ●●

● ●● ● ●● ●●● ●●● ● ●● ●● ●●● ● ●●●●● ● ●● ● ●●●●● ●●●●● ●●●● ●● ●● ●●●●● ● ● ● ● ●●● ●● ● ●●●●●● ●● ●●●● ●● ● ● ●● ●● ●● ●● ●●● ● ● ●●● ●●● ● ● ●●●● ●● ● ●●● ● ●●● ● ●● ●● ● ●●● ● ●● ●● ●●●● ●● ● ●●● ●● ●●●● ●● ● ● ●●●● ●●● ●●● ●● ●●●● ●●● ●● ●●● ● ●● ●● ●● ●●

0.0 0.2 0.4 0.6

0.0 0.2 0.4 0.6

Differential Correlation

Method
● ● ● ●

● ● ● ●

Raw reads Binary SCRAT 500
CRE Cluster

SCRAT 1000
CRE Cluster

SCRAT 2000
CRE Cluster

Average
DNase−seq MACS SCATE

Bulk
ATAC−seq

Raw reads

Binary

SCRAT 500
CRE Cluster

SCRAT 1000
CRE Cluster

SCRAT 2000
CRE Cluster

Average
DNase−seq

SCATE

A B C

D E F

G H I

J

Figure 3-14. Analysis of human hematopoietic differentiation cell types. (A): tSNE
plot showing cells color-coded by their true cell types. (B): tSNE plot showing cells
color-coded by their predicted cell types. Using the default setting, SCATE grouped cells
into 14 clusters (numbers in the plot indicate cluster centers). The clusters that can be
unambiguously linked to a cell type are color-coded by cell type. (C): Similar to (B), but
cells are clustered using user-specified cluster number (38 clusters). (D)-(F): Regulome
reconstruction performance of different methods in the default analysis, including (D)
correlation between reconstructed and true bulk log-CRE activities, (E) peak calling AUC,
and (F) correlation between predicted and true differential log-CRE activities. (G)-(I):
Regulome reconstruction performance using user-specified cluster number (38 clusters),
including (G) correlation between reconstructed and true bulk log-CRE activities, (H) peak
calling AUC, and (I) correlation between predicted and true differential log-CRE activities.
(J): Comparison of different methods in an example genomic region in HSC cell cluster in
the default analysis.

user-provided cell cluster number or clustering structure. For instance, suppose one

is not satisfied with the default cell clustering and wants to increase the granularity

94

of clustering to make each cluster smaller and more homogeneous, one can manually

adjust the cluster number. To demonstrate, we increased the cluster number to 38

so that each cluster had approximately 50 cells on average. After rerunning SCATE,

24 of the 38 cell clusters can be unambiguously annotated, identifying a total of 7

cell types (Figure 3-14C). As a comparison, the default analysis only unambiguously

identified 6 cell types. For the unambiguously annotated cell clusters, Figure 3-14G-I

compares the performance of different methods for reconstructing CRE activities,

peak calling, and estimating differential CRE activities between different cell types.

SCATE still delivered the best performance. Since the average cell cluster size became

smaller, the performance of some methods decreased substantially in some analyses

(e.g., the CRE reconstruction and peak calling accuracy for Raw reads and Binary in

Figure 3-14G,H). In these cases, the benefit from SCATE was even more obvious.

3.4 Discussion

In summary, SCATE provides a new tool for analyzing scATAC-seq data. Our analyses

show that it robustly outperforms the existing methods for reconstructing activities of

each individual CRE. In many cases, the gain can be substantial.

The main novelty of SCATE is its unique strategy to reconstruct CRE activities

from sparse data by (1) integrating data from both similar CREs and cells, (2)

leveraging the rich information provided by publicly available regulome data, and

(3) adaptively optimizing the analysis resolution based on available data. Coupled

with appropriate cell clustering, SCATE allows one to systematically characterize the

regulatory landscape of a heterogeneous sample via unsupervised identification of cell

subpopulations and reconstruction of their chromatin accessibility profile at the single

CRE resolution.

Since many methods for clustering cells using scATAC-seq data have been developed

95

(Table 3-I), cell clustering per se is not the focus of this article. In principle, the SCATE

model may be coupled with any cell clustering method. While our implementation

uses model-based clustering as the default, users are provided with the option to use

their own cell clustering results as the input for SCATE.

The basic framework adopted by SCATE to improve the analysis of sparse data by

integrating multiple sources of information is general. In principle, a similar approach

may also be used to analyze other types of single-cell epigenomic data such as single-cell

DNase-seq or ChIP-seq, and possibly single-cell Hi-C [93].

Our current implementation of SCATE is focused on identifying and characterizing

cell subpopulations. A future direction is to extend this framework to other types of

analyses such as pseudotime analysis [39] to allow the study of CRE activities along

continuous pseudotemporal trajectories. Another future direction is to develop new

methods that utilize the improved CRE estimation to more accurately reconstruct

gene regulatory networks.

96

Chapter 4

RAISIN: Regression Analysis in
Single-cell RNA-Seq with multiple
samples

4.1 Introduction

Transcriptome profiling by single-cell RNA-sequencing (scRNA-seq) [20, 45] is rapidly

transforming biomedical research. The ability of scRNA-seq to analyze individual

cells enables systematic discovery and characterization of known and unknown cell

populations in a biological sample. Identifying differentially expressed genes associated

with various biological or technical factors such as cell type or experimental condition

is one of the most common tasks for analyzing scRNA-seq data [94, 95]. While many

early studies only analyze cells from one sample, recent studies increasingly analyze

multiple samples such as multiple biological replicates in order to make discoveries

generalizable to the population [28, 96]. For analyzing data with multiple samples, it

is important to consider both cell-to-cell variation and sample-to-sample variation in

order to distinguish true biological signals from noises. However, the most commonly

used differential expression (DE) analysis methods either ignore sample-level variation

[42] or do not consider cell-level variation [97]. Applying them to multi-sample data

will produce unsatisfactory or misleading results.

97

To solve this problem, we developed RAISIN to support Regression Analysis In

SINgle-cell RNA-seq datasets with multiple samples. RAISIN takes raw gene expression

counts and experimental design as input and provides a complete preprocessing pipeline

consisting of cell and gene filtering, normalization and gene expression imputation.

It then aligns cells of the same type across samples and identify cell subpopulations

through clustering. DE analysis is then performed using a flexible mixed effects

regression framework that accounts for both sample-level and cell-level variances

(Figure 4-1A). The classical linear mixed effects model (LMM) [98] does not consider

small sample size or small cell number in rare cell populations, which are common in

scRNA-seq studies and can lead to poor variance estimation and reduced statistical

power. Fitting mixed effects models to large datasets consisting of many samples and

millions of cells is also computationally challenging. To address these issues, RAISIN

combines the mixed model with a hierarchical model to regularize variances, and a

new model fitting algorithm is developed to efficiently handle large datasets.

4.2 Methods

4.2.1 RAISIN overview

Given scRNA-seq data from multiple samples, a basic RAISIN analysis consists of data

preprocessing and differential expression detection. The data preprocessing includes

cell and gene filtering, normalization, imputation, aligning cells across samples, and

clustering cells to identify cell subpopulations. The differential expression detection

analyzes each cell subpopulation or compares different cell subpopulations to identify

gene expression associated with user-specified biological or experimental variables

(e.g., normal vs. disease, age, sex, etc.).

98

4.2.2 RAISIN data preprocessing

The data preprocessing of RAISIN is a multi-step procedure. It is implemented in a

modular fashion so that users can conveniently replace each step by their own functions

or new methods. The default preprocessing pipeline is described below. Users have

options to change the parameter values.

Cell and gene filtering. By default, cells with less than 5,000 reads are removed.

We also remove cells with more than 50,000 reads because an extremely large total read

count may indicate a doublet rather than a single cell. Since high mitochondrial gene

expression is often associated with low sample quality, cells in which mitochondrial

gene reads account for more than 10% of all reads are also filtered out. For gene

filtering, we retain genes that have non-zero read count in at least 1% of cells in at

least one sample and remove the other genes.

Normalization. The raw read counts are normalized across cells using the cell size

factors estimated by SCRAN [99] (using R scran package) which is run across all cells

and samples.

Imputation. SAVER [100] is run on SCRAN normalized data in each sample to

impute dropouts and quantify gene expression values. The output of this step is log2-

transformed gene expression. A pseudocount of 1 is added before log-transformation

to avoid log-zero.

Aligning cells across samples. In order to track cells of the same cell type across

samples, the Mutual Nearest Neighbors (MNN) [101] approach is used to align cells

from different samples. To this end, we first identify genes with (1) expression≥0.1

in at least 1% of all cells across all samples, and (2) positive biological variation

(higher variation than expected controlling for mean expression) as determined by the

decomposeVar function in scran package. The fastMNN function in scran package

is then run using these genes and default settings. This function maps all cells to a

99

common principal component (PC) space and corrects cells’ positions in this space to

removes systematic differences among samples. In this way, cells of the same type but

from different samples are aligned together. By default, MNN generates 50 PCs. A

subset of 50 PCs are further chosen for follow-up analysis. The optimal number of

dimensions to use is chosen using an elbow method same as in TSCAN [43]. Cells’

MNN-corrected coordinates in top L PCs are retained. The optimal L is determined

using the piece-wise linear elbow method described in TSCAN [43] and is truncated

at 50 (i.e., L ≤ 50).

Clustering cells to identify cell subpopulations. Using the MNN-corrected coordi-

nates in the top L PCs, cells are clustered using K-means clustering. Users can either

specify the cluster number by themselves or let RAISIN to automatically choose the

cluster number. To choose the cluster number automatically, K-means clustering is

first run using an relatively large initial cluster number K0 (the default K0 = 100).

The K0 initial clusters are then clustered further using hierarchical clustering and

merged along the dendrogram to obtain k = K0 − 1, K0 − 2, ..., 2 clusters. For each

cluster number k, we calculate the ratio between the within-cluster sum of squared

residuals (RSS) and total data variance (= within-cluster RSS + between-cluster RSS).

This ratio, denoted as rk, characterizes the proportion data variance that cannot be

explained by clustering. It decreases with increasing cluster number k. We calculate

the difference rk−1 − rk for k = 2, 3, ..., K0. These differences are log10 transformed

and grouped into histogram bins. Denote the lower bound of the bin with the largest

number of elements as c. The smallest k that satisfies rk−1 − rk ≤ 10c is chosen as the

cluster number.

Visualization. To visualize cell clustering, UMAP (umap package in R) is applied

to cells’ MNN-corrected coordinates in the top L PCs. UMAP is run with its default

settings which reduce cells’ dimension from L to 2.

100

4.2.3 RAISIN differential expression (DE) analysis

RAISIN uses a mixed effects regression model with variance shrinkage to detect

differential expression. In order to introduce the method, first consider a simple

scenario of comparing two sample types (e.g., cancer vs. normal). For such a

comparison, RAISIN will analyze each cell subpopulation separately. For a given cell

subpopulation, let ygsc be the gene expression value of gene g in sample s and cell c,

and let yg be the column vector consisting of ygscs from all samples and cells in the

cell subpopulation. Here ygscs are normalized gene expression values after imputation

but without MNN correction because biological differences between different sample

types (e.g., normal vs. disease) would be removed from the MNN-corrected expression

values. Thus, MNN is only used to align samples to identify cells of the same type

across samples.

A conventional linear mixed model (LMM) assumes that

yg = Xβg + Zug + eg (4.1)

Here Xβg models fixed effects, Zug models the sample-level random effects, and eg

models the cell-level random effects. The matrices X and Z are known experiment

design information. βg contains unknown regression coefficients of interest. The

random effects ug and eg are unobserved random vectors with zero mean. Their

variances var(ug) = Σg and var(eg) = Ωg characterize cross-sample variability and

cross-cell variability, respectively. Both Σg and Ωg are unknown. In this study, they

are assumed to be diagonal matrices with block structures such that diagonal elements

within the same block are equal but those from different blocks can have different

values. For Ωg, cells from the same sample are treated as a block. For Σg, the block

structure is given by users. For example, if samples are from multiple groups (e.g.,

normal vs. disease), one can treat each group as a block. Under this framework,

differential expression is detected by evaluating linear combinations of regression

101

coefficients βg.

Let xT
sc and zT

sc denote the row corresponding to sample s and cell c in X and Z

respectively. The model can also be written as

ygsc = xT
scβg + zT

scug + egsc (4.2)

For instance, suppose one compares two normal control samples (s = 1, 2) with

two tumor samples (s = 3, 4), and each sample has two cells (c = 1, 2) in the cell

subpopulation in question. The model can be written as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yg11
yg12
yg21
yg22
yg31
yg32
yg41
yg42

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
1 0
1 0
1 0
1 1
1 1
1 1
1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[︄
βg0
βg1

]︄
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
ug1
ug2
ug3
ug4

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eg11
eg12
eg21
eg22
eg31
eg32
eg41
eg42

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.3)

or

ygsc = βg0 + xscβg1 + ugs + egsc (4.4)

where the dummy variable xsc indicates whether a cell comes from a normal sample

(xsc = 0) or a tumor sample (xsc = 1). ugs and egsc are independent sample-level and

cell-level random effects respectively. Finding differential expression between tumor

and normal amounts to evaluating whether βg1 is equal to zero or not.

In this example, one can assume var(ug1) = var(ug2) = σ2
g1 and var(ug3) =

var(ug4) = σ2
g2 (i.e., samples of the same type have the same variance), which implies

that Σg = diag
{︂
σ2

g1, σ
2
g2

}︂
⊗ I2×2 = diag

{︂
σ2

g1, σ
2
g1, σ

2
g2, σ

2
g2

}︂
. In other words, Σg is a

diagonal matrix with two blocks. Here ⊗ denotes Kronecker product and I denotes

an identity matrix. Similarly, one can assume var(egsc) = ω2
gs (i.e., cells in the same

sample have the same variance conditional on their sample-level mean xT
scβg + zT

scug)

and thus Ωg = diag
{︂
ω2

g1, ω
2
g2, ω

2
g3, ω

2
g4

}︂
⊗ I2×2 is a diagonal matrix with four blocks.

102

In the LMM, the marginal variance of yg is ZΣgZT + Ωg, which is no longer a

diagonal matrix. Thus, the model can deal with correlation among cells from the

same sample. By contrast, the Wilcoxon test used by Seurat, MAST, scDD, and t

test used in our benchmark analysis do not consider sample-level variation. This is

similar to removing the Zu component from the LMM model and treating all cells as

independent samples for testing differential expression. Since the actual number of

independent samples (i.e. effective sample size) is much smaller than the cell number,

these methods will underestimate the uncertainty of βg estimates and report overly

optimistic p-values and false discovery rates (i.e., the actual error rates can be much

higher than the reported error rates). By considering correlation among cells, LMM

improves the characterization of the uncertainty of βg estimates and hence can better

control the false discovery rates.

The conventional LMM has several limitations. First, it treats Σg and Ωg as fixed

unknown parameters. When the number of samples or the number of cells in a cell

subpopulation is small, the estimates of Σg and Ωg have high variability and hence

are highly unstable, leading to reduced statistical power. Second, fitting LMM often

requires iterative algorithms since closed-form solutions are unavailable except for a

few special cases. When the cell number or sample size is large, fitting the model

for tens of thousands of genes using the conventional algorithms is computationally

intensive. For cell atlases with millions of cells, model fitting can be very slow.

To overcome these limitations, RAISIN extends LMM using an empirical Bayes

framework which introduces a number of new components.

First, we reformulate the LMM using cells’ average gene expression in each cell

subpopulation and sample. For the given cell subpopulation, let ns be the cell number

of the subpopulation in sample s, and ˜︁ygs = ∑︁
c ygsc/ns be the average expression of

cells in the subpopulation in sample s. Let S be the total number of samples. The

103

LMM is rewritten as

˜︁yg = ˜︂Xβg + ˜︁Zug + ˜︁eg (4.5)

or

˜︁ygs = ˜︁xT
s βg + ˜︁zT

s ug + ˜︁egs (4.6)

For instance, the model for the example considered above will become⎡⎢⎢⎢⎣
˜︁yg1˜︁yg2˜︁yg3˜︁yg4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 0
1 0
1 1
1 1

⎤⎥⎥⎥⎦
[︄
βg0
βg1

]︄
+

⎡⎢⎢⎢⎣
ug1
ug2
ug3
ug4

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
˜︁eg1˜︁eg2˜︁eg3˜︁eg4

⎤⎥⎥⎥⎦ (4.7)

or

˜︁ygs = βg0 + ˜︁xsβg1 + ugs + ˜︁egs (4.8)

where var(ug) = Σg = diag
{︂
σ2

g1, σ
2
g1, σ

2
g2, σ

2
g2

}︂
and var(˜︁eg) = ˜︁Ωg = diag

{︃
ω2

g1
n1
, . . . ,

ω2
g4

n4

}︃
.

This model reformulation can substantially reduce the dimension of y from ∑︁S
s=1 ns

(which can be millions of cells) to S (e.g., a few dozens of samples) and hence simplify

the computation.

Second, in order to deal with unstable variance estimates in small cell number

scenarios (e.g., in a rare cell subpopulation), we assume that parameters in ˜︁Ωg

from different genes are random variables and their prior distributions are shared

across genes. This allows one to derive shrinkage estimators to improve variance

estimation by borrowing information across genes. Specifically, let s denote samples

and
{︂
ω2

gs : s = 1, . . . , S
}︂

be the set of unique variance parameters in ˜︁Ωg. We assume

˜︁egs ∼ N(0,
ω2

gs

ns

) (4.9)

ω2
gs ∼ IG(θs, ϕs) (4.10)

where N(., .) represents normal distribution, and IG(., .) represents inverse-gamma

distribution whose parameters θs and ϕs are shared by all genes. We estimate θs and

104

ϕs using data from all genes via moment estimators similar to limma. An empirical

Bayes shrinkage estimator is then used to estimate ω2
gs for each individual gene by its

posterior mean.

Third, in order to deal with unstable variance estimates in small sample size scenar-

ios, we assume that parameters in Σg are random variables whose prior distributions

do not depend on specific genes. Assume Σg has L blocks and use l to index the block.

Let
{︂
σ2

gl : l = 1, . . . , L
}︂

be the set of unique variance parameters in Σg. For a sample

s that belongs to variance block l, we assume

ugs ∼ N(0, σ2
gl) (4.11)

σ2
gl ∼ Gamma(αl, γl) (4.12)

The parameters αl and γl in the prior distribution are gene-independent and are

estimated using all genes via moment estimation. σ2
gl is then estimated using its

posterior mean. Due to multi-level variance modeling, the posterior mean of σ2
gl does

not have a closed-form. Thus, Gauss-Laguerre quadrature is used to obtain a numerical

approximation. In theory, one could also use inverse-gamma distribution as the prior

for σ2
gl. However, computing Gauss-Laguerre quadrature under the inverse-gamma

assumption empirically is unstable numerically. Thus, gamma distribution is used

instead since it makes the computation numerically stable.

Fourth, suppose the goal is to evaluate whether a linear combination of regression

coefficients aT βg is equal to zero. We assume that a priori each gene has probability

p to be non-differential (H0 : aT βg = 0) and probability 1 − p to be differential (H1 :

aT βg ̸= 0). When a gene is differential, assume aT β̂g/
√︂
var(aT β̂g) ∼ N(0, 1 + τ 2).

We use an Expectation-Maximization algorithm to estimate p and τ 2. The posterior

probability for H1 is used to detect and rank DE genes. Treating the posterior

probability of H0 as a local false discovery rate, a global FDR can also be calculated

as in [102] to compare with other methods.

105

Note that besides the single-cell methods discussed before (Seurat, MAST, scDD,

t test), another existing approach to run DE analysis is to pool cells in each cell

subpopulation and then analyze cells’ average expression as bulk samples using existing

bulk DE methods such as limma, DESeq2, and edgeR. This approach ignores the

cell-level variability, which is similar to removing the ˜︁e component from the LMM.

When the cell-level variability is comparable to the sample-level variability, ignoring

cell-level variability will substantially underestimate the uncertainty of βg estimates,

which can lead to incorrect error rate estimates and reduced statistical power. Note

also that variance shrinkage has been used in the past in linear model (LM) settings

(e.g., limma, DESeq2 and edgeR). However, the LM only requires one level of variance

modeling, whereas the LMM requires multi-level variance modeling. Imposing prior

distributions on both the sample-level and cell-level variances makes the model fitting

complicated. It is difficult to directly apply algorithms in limma, DESeq2 and edgeR.

One solution to fitting the model is to use the fully Bayesian approach and run Markov

Chain Monte Carlo. However, this approach is slow and not scalable to large datasets.

In order to make the model fitting scalable, we developed a computationally efficient

multi-step fitting algorithm that sequentially estimates ˜︁Ωg, ˜︁Σg, β, p, τ 2, and the

posterior probability of DE.

The regression framework adopted by RAISIN is flexible. Besides comparing

two groups of samples, it can also be used to analyze the association between gene

expression and any other categorical or continuous variables. One can also add

covariates to the model to adjust for potential confounding. For instance, one can

formulate a model to identify DE associated with age after accounting for experimental

batches:

˜︁ygs = βg0 + βg1 × ages + βg2 × batchs + ugs + ˜︁egs (4.13)

Here, the design matrix ˜︂X will contain 1 (for intercept), age and batch. The DE will

be detected by evaluating βg1.

106

RAISIN can be further generalized to allow L groups of arbitrary random factors:

˜︁yg = ˜︂Xβg +
[︂ ˜︁Z1

˜︁Z2 ... ˜︁ZL

]︂ ⎡⎢⎢⎢⎣
ug1
ug2
...

ugL

⎤⎥⎥⎥⎦+ ˜︁eg (4.14)

var([ug1,ug2, ...,ugL]) = diag(σ2
g1, ..., σ

2
g1, σ

2
g2, ..., σ

2
g2, ..., σ

2
gL, ..., σ

2
gL)

This formulation allows more flexible types of differential analysis. Below gives an

example of identifying differential genes between two cell subpopulations k1 and k2.

Let ygsc,k denote gene expression for gene g, sample s, and cell c in cell subpopulation

k. Let ˜︁ygs,k be gene g’s average expression in sample s across cells in cell subpopulation

k. For instance, suppose there are four samples and no other covariates to adjust for,

the model would be⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

˜︁yg1,k1˜︁yg2,k1˜︁yg3,k1˜︁yg1,k2˜︁yg2,k2˜︁yg4,k2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
1 0
1 0
1 1
1 1
1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
[︄
βg0
βg1

]︄
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 1 0
0 1 0 0 0 1
0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ug11
ug12
ug13
ug14
ug21
ug22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

˜︁eg1,k1˜︁eg2,k1˜︁eg3,k1˜︁eg1,k2˜︁eg2,k2˜︁eg4,k2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.15)

where var(ug) = Σg = diag
{︂
σ2

g1, σ
2
g1, σ

2
g1, σ

2
g1, σ

2
g2, σ

2
g2

}︂
var(˜︁eg) = ˜︁Ωg = diag

{︃
ω2

g1,k1
n1,k1

, . . .
}︃

.

Methods to estimate ω2
gs,k and σ2

gi can be found below. When there are covariates,

they can be added to the design matrix ˜︂X.

4.2.4 Estimating θs,ϕs and ω2
gs

Denote vgs as the sample variance across all cells for sample s and gene g.

Let ds = ns − 1, we have vgs|ω2
gs ∼ ω2

gs

ds
χ2

ds

By assumption, ω2
gs ∼ IG(θs, ϕs)

107

p(vgs) =
∫︂
p(vgs|ω2

gs)p(ω2
gs) dω2

gs

= 1
vgsB(ds/2, θs)

⌜⃓⃓⃓
⎷ (2θs)2θs(θs

ϕs
dsvgs)ds

(θs

ϕs
dsvgs + 2θs)2θs+ds

where B(., .) denotes beta distribution.

Thus, θs

ϕs
vgs ∼ F (ds, 2θs) and 1

2 log(
θs

ϕs
vgs) ∼ z(ds, 2θs)

where z(., .) denotes Fisher’s z-distribution.

E[log(vgs)] = log(2ϕs/ds) + ψ(ds/2) − ψ(θs)

var[log(vgs)] = ψ′(ds/2) + ψ′(θs)

where ψ(.) and ψ′(.) are the digamma and trigamma functions respectively.

If var[log(vgs)] − ψ′(ds/2) > 0

θs = ψ′−1(var[log(vgs)] − ψ′(ds/2))

ϕs = exp(E[log(vgs)] − ψ(ds/2) + ψ(θs)) ∗ ds/2

Since ω2
gs|vgs ∼ IG(θs + ds/2, dsvgs/2 + ϕs)

Let αs = θs + ds/2,β = dsvgs/2 + ϕs

E[ω2
gs|vgs] =

∫︁∞
0

(dsvgs/2+ϕs)θs+ds/2

Γ(θs+ds/2) x−(θs+ds/2)exp(−dsvgs/2+ϕs

x
) dx

If θ + d/2 > 1, E[ω2
gs|vgs] = dsvgs/2+ϕs

θs+ds/2−1 . Otherwise E[ω2
gs|vgs] is derived using

Gauss–Laguerre quadrature.

If var[log(vgs)] − ψ′(ds/2) ≤ 0

E[ω2
gs|vgs] = exp(ē), where e = log(vgs)

E[ω2
gs|vgs] serves as the estimate of ω2

gs.

For situations where ns = 1, E[ω2
gs|vgs] = E[ω2

gs′|vgs′] s.t. s′ = argminj:nj>1(∥βs − βj∥2)

4.2.5 Estimating αl,γl and σ2
gl

Suppose there are L groups of random effects.

108

αl, γl, σ2
gl are estimated iteratively for each group l in the order of ol (i.e. group l

with smallest ol is estimated first and group l with largest ol is estimated last). Here

ol = ∑︁
i,j I(Zl[i, j] > 0).

To perform the estimation for group l, suppose groups in set Al are already

estimated, and groups in set Bl are not estimated yet (l ̸∈ Bl).

Let Cl = {c|∃ i ∈ {l,Bl} s.t. Zi[c, .] ̸= 0}

Let ˜︂Xl = ˜︂X[Cl, .]

Let ˜︁Zi,l = ˜︂Zi[Cl, .] for i = 1, 2, ..., L

Let ˜︁Σgl = ˜︁Σg[Cl,Cl]

Let ˜︁Ωgl = ˜︁Ωg[Cl,Cl]

Let ˜︁ygl = ˜︁yg[Cl]

Let ˜︁egl = ˜︁eg[Cl]

Find Kl such that Kl
˜︂Xl = 0, Kl

˜︁Zi,l = 0 for i ∈ Bl, and KlKT
l = I.

Kl˜︁ygl = Kl
˜︂Xlβg+∑︁i∈{Al,Bl,l} Kl

˜︁Zi,l˜︁ugi+Kl˜︁egl = ∑︁
i∈Al

Kl
˜︁Zi,l˜︁ugi+Kl

˜︁Zl,l˜︁ugl+Kl˜︁egl

Kl˜︁ygl| ˜︁Σgl, ˜︁Ωgl ∼ N(0, σ2
glKl

˜︁Zl,l(Kl
˜︁Zl,l)T +∑︁

i∈Al
σ2

giKl
˜︁Zi,l(Kl

˜︁Zi,l)T + Kl
˜︁ΩglKT

l)

Note that here σ2
gi are already estimated for i ∈ Al

Let pigl be the ith element of the vector Kl˜︁ygl

Let qil be the ith diagonal element of the matrix Kl
˜︁Zl,l(Kl

˜︁Zl,l)T

Let rigl be the ith diagonal element of the matrix (∑︁i∈Al
σ2

giKl
˜︁Zi,l(Kl

˜︁Zi,l)T +

Kl
˜︁ΩglKT

l)

pigl|σ2
gl ∼ N(0, σ2

glqil + rigl)

Let E[σ2
gl] = Ml, E[(σ2

gl)2] = Vl

E[p2
igl] = E[E[p2

igl|σ2
gl]] = E[σ2

gl]qil + rigl = Mlqil + rigl

Using methods of moment:

Ml
ˆ = (∑︁i,g

p2
igl−rigl

qil
)/(I ∗G)

109

E[p4
igl] = E[E[p4

igl|σ2
gl]] = E[3(σ2

glqil + rigl)2] = 3E[(σ2
glqil)2 + 2(σ2

glqil)rigl + r2
igl] =

3Vlq
2
il + 6Mlqilril + 3r2

il

Using methods of moment:

Vl̂ = ∑︁
i,g(p4

igl−3r2
il−6Mlqilril)
3q2

il
/(I ∗G)

αl = M2
l /(Vl −M2

l)

γl = Ml/(Vl −M2
l)

Using Gauss-Laguerre quadrature to calculate the following two integrals:

P (Kl˜︁ygl) =
∫︁

R P (Kl˜︁ygl|σ2
gl)P (σ2

gl) dσ2
gl

Eσ2
gl

|Kl˜︁ygl
[σ2

gl] =
∫︁

R σ
2
glP (Kl˜︁ygl, σ

2
gl)/P (Kl˜︁ygl) dσ2

gl

Eσ2
gl

|Kl˜︁ygl
[σ2

gl] serves as an estimate of σ2
gl.

4.2.6 Hypothesis testing

To test whether a certain contrast aT βg is zero:

H0 : aT βg = 0

H1 : aT βg ̸= 0

βĝ = (XT X)−1XT ỹg

Let k = aT (XT X)−1XT

The test statistics: tg = aT β̂g/
√︂
var(aT β̂g) = k˜︁yg/

√︂
k˜︁ZΣg

˜︁ZT kT + k ˜︁ΩgkT

Under H0:

tg asymptotically follows N(0, 1) with large sample size.

Under H1:

tg asymptotically follows N(0, 1 + τ 2) with large sample size.

Denote zg = 0 when gene g is non-differential (H0), zg = 1 when gene g is

differential (H1).

P (zg = 1) = p

110

Use E-M algorithm to estimate p and τ 2.

E-step:

L = ∏︁
g[N(tg, 0, 1 + τ 2)p]I(zg=1)[N(tg, 0, 1)(1 − p)]I(zg=0)

log(L) = l = ∑︁
g I(zg = 1)log[N(tg, 0, 1 + τ 2)p] + I(zg = 0)log[N(tg, 0, 1)(1 − p)] =∑︁

g[I(zg = 1)[−log(2π)/2 − log(1 + τ 2)/2 − t2
g

2(1+τ2) + log(p)] + I(zg = 0)[−log(2π)/2 −
t2
g

2 + log(1 − p)]]

Let Mg = Ezg |tg ,(τ2)(t),p(t) [I(zg = 1)]

= P [zg = 1|tg, (τ 2)(t), p(t)] = P [tg|zg = 1, (τ 2)(t), p(t)]P [zg = 1|(τ 2)(t), p(t)]/P [tg|(τ 2)(t), p(t)]

= N(tg, 0, 1 + (τ 2)(t))p(t)/[N(tg, 0, 1 + (τ 2)(t))p(t) +N(tg, 0, 1)(1 − p(t))]

Ezg ,|tg ,(τ2)(t),p(t) [l] = C+∑︁g Mg[−log(1+τ 2)/2− t2
g

2(1+τ2) +log(p)]+(1−Mg)log(1−p)

Where C is some constant.

M-step:

p =
∑︁

g
Mg

G

τ 2 =
∑︁

g
Mgt2

g∑︁
g

Mg
− 1

If τ 2 < 0, τ 2 is set to be 0.

When E-M converges, Mg is treated as posterior probability for differential.

4.2.7 Benchmark data collection and processing

The bone marrow scRNA-seq data from the Human Cell Atlas (HCA) were downloaded

from [103] and aligned to human hg19 genome using Cell Ranger [24] version 2.1.1. The

data are analyzed using the default RAISIN pipeline. For this analysis, bulk RNA-seq

data (count matrix) of FACS-sorted hematopoietic cell types were downloaded from

the Gene Expression Omnibus (GEO accession number: GSE74246). The counts were

converted to TPM and log2 transformed after adding a pseudocount of 1. DESeq2

was used to call DE genes in bulk RNA-seq (FDR cutoff=0.05).

111

4.2.8 Analysis of HCA bone marrow data

For this dataset, differential expression are detected by RAISIN with FDR < 0.05. To

benchmark the performance, we annotated the cell type of each cell subpopulation

using cell-type specific marker genes which were derived from bulk RNA-seq data from

13 FACS-sorted hematopoietic cell types. In bulk RNA-seq, gene expression profiles of

replicate samples were averaged for each cell type. For each pair of cell types k1 and

k2, genes were ranked based on differences in gene expression between the two cell

types, and the top 100 genes upregulated in each cell type were obtained as a marker

gene set.

We first assigned an initial cell type label for each individual cell. For each marker

gene set, genes’ average expression was calculated for each bulk RNA-seq sample.

These data were arranged as a matrix B, where each row represents a marker gene

set and each column represents a bulk RNA-seq sample. Similarly, the averaged

expression of each marker gene set was also calculated for each cell in the scRNA-seq

data. Denote the resulting matrix as C, where each row represents a marker gene set

and each column represents a cell. For both matrices, each row was standardized across

samples or cells to have zero mean and unit variance. For each cell i, the Spearman

correlation between the i-th column of C and each column of B was calculated. If the

maximum correlation was above 0.6, we assigned the cell type corresponding to the

maximum correlation to cell i. Otherwise, the cell was not assigned any cell type.

We then assigned cell type for each cell cluster. For each cluster, the proportion of

cells from each cell type was computed. The cell type with the largest proportion was

identified. If this largest proportion was larger than 0.7, then this cell type was used

to annotate the cell cluster. Otherwise, the cell cluster was annotated as unknown cell

type. After cell type annotation, the performance of differential analysis of scRNA-seq

in each cell cluster was evaluated.

112

4.2.9 Simulation study

We generated simulation data based on the HCA bone marrow scRNA-seq dataset.

Eight simulated samples were created using randomly sampled cells from the eight

bone marrow samples. For each bone marrow sample, cells were drawn from four

cell types including common lymphoid progenitor (CLP), monocyte, erythroid and

hematopoietic stem cell (HSC) to create a simulated sample consisting of four cell

types.

Baseline simulation. The eight simulated samples were partitioned into two

groups, denoted as S1 and S2. Each group contained four samples. Differences in

cell proportion between the two sample groups were introduced for monocyte and

HSC, but not for CLP and erythroid. To implement this, each simulated sample s

was created by randomly drawing as CLP cells, bs erythroid cells, cs HSC cells and

ds monocyte cells from the corresponding HCA bone marrow sample. Here as was a

random integer uniformly drawn from the interval [5, 10]. The ass for 8 samples were

independently generated. Similarly, bs was a random integer uniformly distributed

in interval [40, 50]. cs was also an random integer, but its distribution was different

for the two sample groups. For samples in S1, cs was uniformly drawn from [5, 10].

For samples in S2, cs was uniformly drawn from [40, 50]. Similarly, ds was a random

integer with different distributions for the two sample groups. For samples in S1, ds

was uniformly drawn from [40, 50]. For samples in S2, cs was uniformly drawn from

[5, 10]. After sampling cells, the expression profiles (including raw read counts, scran

normalized values, and SAVER imputed values) of the sampled cells were carried over

to the simulated sample. RAISIN cell clustering was then performed using the SAVER

imputed gene expression to group all cells into four clusters. This baseline simulation

procedure generated two groups of simulated samples with differential cell proportion

for HSC and monocyte and non-differential cell proportion for CLP and erythroid. In

this baseline simulation, the gene expression profile of each cell type was not expected

113

to be differential between the two sample groups because S1 and S2 were obtained by

partitioning samples of the same type (i.e., they were all bone marrow samples).

Simulation 1. In order to benchmark detection of DE between two groups of

samples, we further introduced differentially expressed genes on top of the samples

generated by the baseline simulation. We simulated a total of 48 datasets through

combinations of 3 different DE gene proportions, 4 cell types, and 4 different magnitude

of differential signals. Let G denote the total gene number, and p be the proportion

of genes that are differential. In each simulation dataset, one cell type was chosen

to introduce DE, and the other three cell types remained the same and thus did not

contain DE. For the chosen cell type, DE was introduced to p ∗G randomly chosen

genes so that p
2 ∗G genes were upregulated in sample group S1 and the other p

2 ∗G

genes were upregulated in S2. The DE signal for the p
2 ∗G genes upregulated in S1 was

introduced as follows. For the cell type in question, let C1 denote the set of all cells in

sample group S1, and let Y1 denote the expression matrix of the p
2 ∗G selected genes

in cells in C1. We first randomly sampled the same number of cells with the same cell

type from the bone marrow scRNA-seq data and denote this new set of cells as C2.

In C2, we removed genes with zero expression across all cells. The remaining genes

were stratified into four equal-sized groups based on each gene’s average expression

across cells in C2. The four strata corresponded to genes with expression from high

to low. We then picked up a stratum and randomly sampled p
2 ∗ G genes from the

stratum. Let Y2 denote the expression matrix of these p
2 ∗ G genes in cells in C2.

Note that the matrix dimension of Y2 was the same as the dimension of Y1. We

added Y2 to Y1 and used their sum to replace Y1 in the original data matrix. In

this way, upregulation was introduced to p
2 ∗G genes in sample group S1. Depending

on which of the four gene strata was chosen from C2 to generate Y2, four different

magnitudes of differential expression can be introduced. Using a similar procedure,

the DE signal for the p
2 ∗G genes upregulated in S2 was introduced. This creates one

114

simulation dataset. By selecting different cell types to simulate DE (there were 4 cell

types in total), setting DE gene proportion to 3 different values (p = 0.02, 0.1, 0.2)

and introducing 4 different magnitudes of DE signals, a total of 48 simulation datasets

were created. Different DE analysis methods were then run on each dataset to detect

DE between the two sample groups S1 and S2.

Simulation 2. In order to benchmark detection of DE between two cell types, we

introduced DE genes on top of the samples generated by the baseline simulation as

follows. Given a cell type pair, in order to create a clean non-differential background,

we first randomly sampled 10% of all genes as the evaluation gene set T . For each gene

in T , we then randomly permuted cells’ expression values across the two cell types

within each sample. After this step, all genes in T should be non-differential between

the two cell types. We then added DE to p ∗ T genes in gene set T using the same

approach as in simulation 1, but only in T . Our performance evaluation was based on

genes in T only because the true differential status of the remaining 90% genes not

included in T was unknown. The reason we only chose 10% of genes as the evaluation

gene set is that if we chose too many genes and made them non-differential using

permutation, the two cell types would become the same and could not be separated

into two cell populations by cell clustering. The procedure above creates one simulation

dataset. By selecting different cell type pairs to simulate DE (there were 6 cell type

pairs in total), setting DE gene proportion to 3 different values (p = 0.02, 0.1, 0.2) and

introducing 4 different magnitudes of DE signals, a total of 72 simulation datasets

were created. Different DE analysis methods were then run on each dataset to detect

DE between two cell types.

4.2.10 Performance evaluation by AUC and FDR difference

To evaluate a method’s overall ability to detect DE genes, the sensitivity (y-axis) was

plotted as a function of FDR (x-axis). The area under the sensitivity-FDR curve

115

Table 4-I. List of differential methods compared.

Method Type Preprocessing Reference
limma Bulk RNA-seq Raw Count, SAVER Imputed [97]

DESeq2 Bulk RNA-seq Raw Count [104]
edgeR Bulk RNA-seq Raw Count [105]
t test scRNA-seq Raw Count, SAVER Imputed [106]

wilcoxon test (Seurat) scRNA-seq Raw Count, SAVER Imputed [42]
MAST scRNA-seq Raw Count, SAVER Imputed [95]

limma (dupcor) scRNA-seq Raw Count, SAVER Imputed [107]
scDD scRNA-seq Raw Count, SAVER Imputed [94]

DESeq2 scRNA-seq Zinbwave [108]
edgeR scRNA-seq Zinbwave [108]

(AUC) was calculated for each method. The calculation only considers the curve up

to FDR ≤ 0.25 since in practice users usually only care about findings with relatively

small FDR. For simulations, the true DE status of each gene was known. Thus,

sensitivity and FDR were computed using genes’ true DE status.

To evaluate whether a method can accurately estimate FDR, we computed the

difference between the real FDR and reported FDR. For each method, this difference

was plotted as a function of real FDR. We computed the area under the curve up

to real FDR ≤ 0.25 and called this area “FDR difference”. If the FDR difference is

negative, the real FDR overall is smaller than the reported FDR, and the method is

conservative. If the FDR difference is positive, the real FDR overall is larger than the

reported FDR, and the method is too optimistic and reports misleading error rates.

4.3 Results

4.3.1 Simulation study

We compared RAISIN and the most commonly used DE methods in simulations where

in silico differential signals were added to non-differential background constructed

using real scRNA-seq data from biological replicates. Among the compared methods,

Wilcoxon test (used by Seurat [42]), t-test, MAST [95] and scDD [94] ignore sample-

116

level variance. They treat cells from biological replicates as if they were from one

sample. They were run using both SCRAN [99] normalized data without imputation

and SAVER [109] imputed data. DESeq2 [104], edgeR [105] and limma [97] are bulk

DE methods. They do not consider cell-level variance. To run them, cells in each

sample and cell cluster were pooled to create a pseudo-bulk sample. Pseudo-bulk

samples were then analyzed as if they were bulk samples. DESeq2 and edgeR are based

on modeling read counts. Thus, they were run using both counts and ZINB-WaVE

[108] corrected data. Limma also provides a LMM (limmacell [rename-limma-LMM])

originally designed for handling random effects of microarray probesets. Since limma

accepts both continuous data and discrete counts, limma and limmaLMM were run

using both read counts (normalized by total library size) and SAVER imputed values.

RAISIN were run in four different modes that either use scran normalized unimputed

data or SAVER imputed data as input, and with or without variance regularization.

RAISIN without variance regularization (RAISIN-LMM) reduces to the classical LMM.

For comparing the same cell cluster between two groups of samples, all methods except

for RAISIN and RAISIN-LMM failed to control false discovery rates (FDR) (Figure 4-

1C). RAISIN with variance regularization substantially outperformed RAISIN-LMM

without variance regularization in terms of the sensitivity-FDR curve characterized by

the area under the curve (AUC) (Figure 4-1C).

4.3.2 HCA bone marrow data

To test RAISIN in real data, we analyzed Human Cell Atlas (HCA) [69] bone marrow

scRNA-seq data from 8 healthy donors. After sample alignment, we identified 44 cell

clusters distributed along three major hematopoietic differentiation lineages consistent

with the known biology (Figure 4-2A). We performed a null DE analysis by randomly

partitioning the samples into two groups. The analysis was run both using all samples

and cells and randomly subsampled samples and cells. There should be no DE genes

117

Figure 4-1. A. Schematic of RAISIN algorithm. B. Methods that ignore cell-level
variability (limma) or sample-level variability (Wilcoxon test) yield false positives. C.
AUROC and FDR difference of different methods in a simulation study

between the two sample groups. However, most methods reported over 100 DE genes

at their claimed 5% FDR cutoff in at least one analysis (Figure 4-2C). Here only

RAISIN (SAVER or SCRAN) and RAISIN-LMM (SCRAN) reported fewer than 100

DE genes. Figure 4-1B left panel shows an example to illustrate why methods that

ignore cell-level variability (e.g., limma) failed. This gene is non-differential since the

cell-level variability is larger than the observed difference between groups. However,

when cells from each sample are collapsed into a bulk sample, this variability is not

reflected in the averaged bulk expression which appeared to be differential between the

118

two groups. This yields an overly optimistic FDR of 4.35∗10−3 by limma. Figure 4-1B

right panel shows an example to illustrate why methods that ignore sample-level

variability (e.g., Wilcoxon test) failed. This gene is non-differential since the sample-

level variability is larger than the observed difference between groups. However, when

cells from biological replicates are treated as if they were independently drawn from

one sample, the degrees of freedom of the hypothesis test are falsely determined by

the cell number which is large. This yields an overly optimistic FDR of 5.06 ∗ 10−39

by Wilcoxon test. In both cases, RAISIN reported an FDR of 1.

The regression framework adopted by RAISIN is flexible. Besides comparing two

sample groups or two cell types, it can also be used to analyze the association between

gene expression and any other categorical or continuous variables. One can also

add covariates to the model to adjust for potential confounding (Online Methods).

Figure 4-2B compares computation time of different methods for comparing two

sample groups in a single cell cluster. The time increases as a function of cell number.

The LMM used by limma (limmadupcor) and MAST are not scalable to atlas-scale

datasets, and the classical LMM (RAISIN-LMM) is slow. Compared to the classical

LMM, RAISIN is 8 times faster and can handle a two-group comparison of a cell

cluster with 105 cells in 12 minutes. The computational efficiency of RAISIN is in

between Wilcoxon test and bulk DE analysis methods (i.e., limma, DESeq2, edgeR).

Thus, RAISIN not only improves statistical power and false discovery rate estimation

of the DE analysis, but is also scalable to atlas-level analyses.

4.4 Discussion

With the reduced cost of single-cell sequencing technologies, single-cell RNA-seq data

with multiple samples start to emerge in recent years. Most existing methods to

identify differential genes consider only sample-level variability or cell-level variability.

These methods fail to control for false discovery rate and have impaired statistical

119

43897

24161

35632

25324

23326

42

14023

608645

19948

133285

500108

4269

201325

285

0

4

0

22

1

6

19671

19528

16389

11744

9820

772

6434

529734

8236

72643

418648

6527

112159

995

0

11

0

110

0

12

46

12787

226

244

105

314

80

286423

178

7555

199605

696

18216

310

0

7

45

3

40

2

23

18684

448

445

108

2045

120

111614

498

4247

75681

1281

8215

273

0

5

137

56

184

6

All cells
4vs4 samples

All cells
2vs2 samples

10% cells
4vs4 samples

10% cells
2vs2 samples

0 10100 5000 0 10100 5000 0 10100 5000 0 10100 5000
scDD_scran

limmadupcor_count
DESeq2_zinbwave

edgeR_zinbwave
wilcoxon_scran

limmapseudobulk_count
MAST_scran
scDD_saver

t_scran
MAST_saver

wilcoxon_saver
limmadupcor_saver

t_saver
edgeRpseudobulk_count

RAISINlmm_scran
RAISIN_scran

RAISINlmm_saver
DESeq2pseudobulk_count

limmapseudobulk_saver
RAISIN_saver

Number

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

● ●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

umap1

um
ap
2

●
●
●
●
●
●
●
●
●

Bcell

CD4Tcell

CLP

Ery

GMP

HSC

MEP

Mono

NA ●●●●●
●
●●● ●●●

●
●

●

●●● ●●●

●

●

●

●●● ●●●●

●

●
●
●

●

●●●
●

●

●

●
●●●●

●

●

0

30

60

90

>120

10 100 1000 10000 50000100000
Number of cells

Ti
m

e
(M

in
ut

es
)

●

●

●

●

●

●

●

●

●

DESeq2pseudobulk_count

edgeRpseudobulk_count

limmadupcor_saver

limmapseudobulk_saver

MAST_saver

RAISIN_saver

RAISINlmm_saver

t_saver

wilcoxon_saver

A B

C

Figure 4-2. A. UMAP of the HCA dataset B. Computational time (y-axis) with different
number of cells in the dataset (x-axis). C. Number of false positives with different number
of cells and different number of samples.

power. The classical linear mixed model is able to consider both sample-level and cell-

level variability, but it scales poorly and has an unstable variance estimate with a small

number of cells or samples. To address these issues, we developed a novel statistical

model, RAISIN, that performs differential analysis for single-cell gene expression data

with multiple samples. RAISIN models both sample-level and cell-level variability, and

combines Bayesian shrinkage estimators to stabilize variance estimate with a small

number of cells and samples. RAISIN also improves the scalability of the classical

linear mixed model by reducing the dimensionality of the data. RAISIN has the best

120

statistical power while controls the false positive rate among all existing methods. The

differential genes identified by RAISIN can be used to study the molecular mechanism

that differentiates different groups of samples for each cell type.

In the future, RAISIN can be further extended to study the differential activities

of other types of genomic information. For example, combined with the predicted

chromatin accessibility using gene expression [89], RAISIN is able to identify cis-

regulatory elements that have differential activities across groups of samples. A

differential cis-regulatory element in the promoter region of a differential gene may

help explain the mechanism of the gene’s differential expression. Similar analyses can

also be done for DNA methylation, histone modification and other types of epigenomic

signals.

121

Conclusions and general discussion

Single-cell sequencing has become a powerful tool in biomedical research. It grants

researchers unprecedented resolution in studying cell diversity, cell differentiation,

and many other biological processes. Analyzing data from single-cell sequencing is

challenging, and new statistical and machine learning methods are needed. In this

thesis work, we developed statistical methods that computationally order cells to

infer the underlying biological process, enhance the highly sparse single-cell ATAC-seq

data to better infer the gene regulatory programs, and perform differential analysis

to identify molecular signatures that differentiate different groups of samples. These

methods can extract useful information from the highly sparse, noisy and complex

data from single-cell sequencing. Such information may provide crucial insights into

the biological process.

Single-cell sequencing technologies are evolving rapidly. New types of technologies

keep emerging, which continuously brings new challenges in analyzing the data. Novel

statistical and computational methods also provide new approaches to extracting

useful biological and clinical information from the data. Thus, the development of

new statistical approaches is equally important as the development of new single-cell

sequencing technology. In the near future, it will be especially important to develop

new methods in three directions.

First, highly scalable methods need to be developed to efficiently integrate and

analyze single-cell data from multiple samples. Thanks to the advancement of single-

cell sequencing technology, the cost of single-cell experiments continue to decrease.

122

In recent years, large-scale datasets from single-cell RNA-seq with many samples or

patients start to emerge [28, 96]. Analytical methods have been developed to address

certain issues for such datasets, such as methods to integrate data across individuals [41,

42] and method developed in this thesis to identify genes with differential expression.

However, there are still many issues that remain to be solved. For example, many

current methods are only tested and applied for datasets with thousands to millions of

cells. Their scalability may not be able to handle datasets with billions or even larger

amounts of cells, which may appear in the near future with the next generation of

single-cell sequencing technology (e.g. celsee). While the integration of gene expression

profile across multiple samples has been relatively well studied, how to integrate other

types of genomic information such as T cell receptor sequence from multiple individuals

remains an open question. While the current methodology development has been

focused on comparing the average expression between groups of samples, the method

to identify genes or molecular signatures with differential variation or differential

pattern along pseudotime across groups of samples is still lacking.

Second, methods that can integrate single-cell data from multiple modalities need

to be developed. While single-cell gene expression profiling is relatively mature

and has been widely used, other types of single-cell technologies such as single-cell

ATAC-seq and single-cell DNA methylation are still immature and less prevalent.

Thus, computationally predicting one type of genomic information using the other

is a useful complement to the experimental approach. For example, we have already

demonstrated that it is possible to predict chromatin accessibility using gene expression

information for single cells with reasonable accuracy [110]. A similar idea can be

used to predict other types of epigenetic signals such as histone modification, DNA

methylation, and DNA 3D structure. Since currently technology still cannot reliably

measure multiple data modalities in one single cell, the prediction methods can also

serve as an important bridge between different modalities from experimental data.

123

For example, to align data from single-cell RNA-seq and single-cell ATAC-seq, we

can predict the chromatin accessibility for single-cell RNA-seq data and align it with

the experimental chromatin accessibility from single-cell ATAC-seq. Other potential

directions include to combine CRISPR-based perturbations with single-cell RNA-seq

[111] and single-cell ATAC-seq [112] to better study gene regulatory network, as

well as combine spatial information with single-cell sequencing data to study spatial

transcriptomics and spatial epigenomics.

Third, methods need to be developed to translate the information from single-cell

data to discoveries in biology and improvement in clinical practice. For example,

highly scalable machine learning methods such as deep neural network can be used to

link patients’ response to certain therapy with single-cell data, and to elucidate the

molecular mechanism explaining different treatment outcomes. This information can

be used to find new biomarkers to predict patients’ early outcomes or to improve the

therapy to benefit more patients. Single-cell data can also be used to deconvolve bulk

sequencing data collected from a large population cohort. This information can be

further used to adjust for confounding effects of different cell type compositions in

association studies such as epigenome-wide association studies, which leads to more

accurate identification of epigenetic marks associated with certain traits.

In summary, new statistical and computational methods to extract useful infor-

mation from the single-cell sequencing data are still much needed. Combined with

new single-cell sequencing technologies, these methods will ultimately lead to a deeper

understanding of basic biology, as well as the improvement of clinical practice and

public health.

124

References

1. Levine, M. & Tjian, R. Transcription regulation and animal diversity. Nature 424,
147–151 (2003).

2. Matlin, A. J., Clark, F. & Smith, C. W. Understanding alternative splicing: towards
a cellular code. Nature reviews Molecular cell biology 6, 386–398 (2005).

3. Deribe, Y. L., Pawson, T. & Dikic, I. Post-translational modifications in signal
integration. Nature structural & molecular biology 17, 666–672 (2010).

4. Lee, T. I. & Young, R. A. Transcriptional regulation and its misregulation in disease.
Cell 152, 1237–1251 (2013).

5. Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of
next-generation sequencing technologies. Nature Reviews Genetics 17, 333 (2016).

6. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics.
Nat Rev Genet. 10, 57–63 (2009).

7. Boyle, A. P. et al. High-resolution mapping and characterization of open chromatin
across the genome. Cell. 132, 311–322 (2008).

8. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J.
Transposition of native chromatin for fast and sensitive epigenomic profiling of open
chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 10, 1213–
1218 (2013).

9. Giresi, P. G., Kim, J., McDaniell, R. M., Iyer, V. R. & Lieb, J. D. FAIRE (Formaldehyde-
Assisted Isolation of Regulatory Elements) isolates active regulatory elements from
human chromatin. Genome research 17, 877–885 (2007).

10. Klemm, S. L., Shipony, Z. & Greenleaf, W. J. Chromatin accessibility and the
regulatory epigenome. Nature Reviews Genetics 20, 207–220 (2019).

11. Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in
vivo protein-DNA interactions. Science. 316, 1497–1502 (2007).

12. Frommer, M. et al. A genomic sequencing protocol that yields a positive display of
5-methylcytosine residues in individual DNA strands. Proceedings of the National
Academy of Sciences 89, 1827–1831 (1992).

13. Consortium, E. P. et al. The ENCODE (ENCyclopedia of DNA elements) project.
Science. 306, 636–640 (2004).

14. Jin, W. et al. Genome-wide detection of DNase I hypersensitive sites in single cells
and FFPE tissue samples. Nature. 528, 142 (2015).

125

15. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J.
Transposition of native chromatin for multimodal regulatory analysis and personal
epigenomics. Nature methods 10, 1213 (2013).

16. Frank, N. Y., Schatton, T. & Frank, M. H. The therapeutic promise of the cancer
stem cell concept. The Journal of clinical investigation 120, 41–50 (2010).

17. Li, L. & Clevers, H. Coexistence of quiescent and active adult stem cells in mammals.
science 327, 542–545 (2010).

18. Choi, P. J., Cai, L., Frieda, K. & Xie, X. S. A stochastic single-molecule event triggers
phenotype switching of a bacterial cell. Science 322, 442–446 (2008).

19. Saitou, M., Barton, S. C. & Surani, M. A. A molecular programme for the specification
of germ cell fate in mice. Nature 418, 293–300 (2002).

20. Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods.
6, 377 (2009).

21. Islam, S. et al. Characterization of the single-cell transcriptional landscape by highly
multiplex RNA-seq. Genome Res. 21, 1160–1167 (2011).

22. Ramsköld, D. et al. Full-length mRNA-Seq from single-cell levels of RNA and individ-
ual circulating tumor cells. Nat Biotechnol. 30, 777 (2012).

23. Svensson, V., Vento-Tormo, R. & Teichmann, S. A. Exponential scaling of single-cell
RNA-seq in the past decade. Nature protocols 13, 599–604 (2018).

24. Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells.
Nature communications 8, 14049 (2017).

25. Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal
cord with split-pool barcoding. Science 360, 176–182 (2018).

26. Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–
1014 (2018).

27. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by
pseudotemporal ordering of single cells. Nat Biotechnol. 32, 381 (2014).

28. Azizi, E. et al. Single-cell map of diverse immune phenotypes in the breast tumor
microenvironment. Cell 174, 1293–1308 (2018).

29. Plass, M. et al. Cell type atlas and lineage tree of a whole complex animal by single-cell
transcriptomics. Science 360, eaaq1723 (2018).

30. Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of the
hypothalamic preoptic region. Science 362, eaau5324 (2018).

31. Park, J. et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular
targets of kidney disease. Science 360, 758–763 (2018).

32. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regula-
tory variation. Nature. 523, 486–490 (2015).

33. Cusanovich, D. A. et al. Multiplex single-cell profiling of chromatin accessibility by
combinatorial cellular indexing. Science. 348, 910–914 (2015).

34. Rotem, A. et al. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin
state. Nat Biotechnol. 33, 1165 (2015).

126

35. Cao, J. et al. Joint profiling of chromatin accessibility and gene expression in thousands
of single cells. Science. 361, 1380–1385 (2018).

36. Gawad, C., Koh, W. & Quake, S. R. Single-cell genome sequencing: current state of
the science. Nature Reviews Genetics 17, 175 (2016).

37. Gravina, S., Dong, X., Yu, B. & Vijg, J. Single-cell genome-wide bisulfite sequencing
uncovers extensive heterogeneity in the mouse liver methylome. Genome biology 17,
150 (2016).

38. Tu, A. A. et al. TCR sequencing paired with massively parallel 3 RNA-seq reveals
clonotypic T cell signatures. Nature immunology 20, 1692–1699 (2019).

39. Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell
trajectory inference methods. Nature biotechnology 37, 547 (2019).

40. Hou, W., Ji, Z., Ji, H. & Hicks, S. C. A Systematic Evaluation of Single-cell RNA-
sequencing Imputation Methods. bioRxiv (2020).

41. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902
(2019).

42. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell
transcriptomic data across different conditions, technologies, and species. Nature
biotechnology 36, 411 (2018).

43. Ji, Z. & Ji, H. TSCAN: Pseudo-time reconstruction and evaluation in single-cell
RNA-seq analysis. Nucleic acids research 44, e117–e117 (2016).

44. Chen, Z. et al. TCF-1-centered transcriptional network drives an effector versus
exhausted CD8 T cell-fate decision. Immunity 51, 840–855 (2019).

45. Tang, F. et al. Tracing the derivation of embryonic stem cells from the inner cell mass
by single-cell RNA-Seq analysis. Cell Stem Cell. 6, 468–478 (2010).

46. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and
quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 5, 621 (2008).

47. Schena, M., Shalon, D., Davis, R. W. & Brown, P. O. Quantitative monitoring of gene
expression patterns with a complementary DNA microarray. Science. 270, 467–470
(1995).

48. Schulze, A. & Downward, J. Navigating gene expression using microarrays—a tech-
nology review. Nat Cell Biol. 3, E190 (2001).

49. Simpson, E. H. The interpretation of interaction in contingency tables. J Roy Stat
Soc B Met. 13, 238–241 (1951).

50. Treutlein, B. et al. Reconstructing lineage hierarchies of the distal lung epithelium
using single-cell RNA-seq. Nature. 509, 371–375 (2014).

51. Saliba, A.-E., Westermann, A. J., Gorski, S. A. & Vogel, J. Single-cell RNA-seq:
advances and future challenges. Nucleic Acids Res. 42, 8845–8860 (2014).

52. Amir, E.-a. D. et al. viSNE enables visualization of high dimensional single-cell data
and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol. 31, 545 (2013).

53. Bendall, S. C. et al. Single-cell trajectory detection uncovers progression and regulatory
coordination in human B cell development. Cell. 157, 714–725 (2014).

127

54. Qiu, P. et al. Extracting a cellular hierarchy from high-dimensional cytometry data
with SPADE. Nat Biotechnol. 29, 886 (2011).

55. Marco, E. et al. Bifurcation analysis of single-cell gene expression data reveals epige-
netic landscape. Proc Natl Acad Sci U S A. 111, E5643–E5650 (2014).

56. Jaitin, D. A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition
of tissues into cell types. Science. 343, 776–779 (2014).

57. Buettner, F. et al. Computational analysis of cell-to-cell heterogeneity in single-cell
RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol. 33, 155
(2015).

58. Dalerba, P. et al. Single-cell dissection of transcriptional heterogeneity in human colon
tumors. Nat Biotechnol. 29, 1120 (2011).

59. Kharchenko, P. V., Silberstein, L. & Scadden, D. T. Bayesian approach to single-cell
differential expression analysis. Nat Methods. 11, 740 (2014).

60. Fraley, C. & Raftery, A. E. Model-based clustering, discriminant analysis, and density
estimation. J Am Stat Assoc. 97, 611–631 (2002).

61. Fraley, C., Raftery, A. E., Murphy, T. B. & Scrucca, L. mclust version 4 for R: normal
mixture modeling for model-based clustering, classification, and density estimation
tech. rep. (Technical Report, 2012).

62. Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood
estimation of semiparametric generalized linear models. J Roy Stat Soc B Met. 73,
3–36 (2011).

63. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J Roy Stat Soc B Met. 57, 289–300 (1995).

64. Amit, I. et al. Unbiased reconstruction of a mammalian transcriptional network
mediating pathogen responses. Science. 326, 257–263 (2009).

65. Shin, J. et al. Single-cell RNA-seq with waterfall reveals molecular cascades underlying
adult neurogenesis. Cell Stem Cell. 17, 360–372 (2015).

66. Haghverdi, L., Buettner, F. & Theis, F. J. Diffusion maps for high-dimensional
single-cell analysis of differentiation data. Bioinformatics. 31, 2989–2998 (2015).

67. Clark, S. J. et al. scNMT-seq enables joint profiling of chromatin accessibility DNA
methylation and transcription in single cells. Nat Commun. 9, 781 (2018).

68. Chen, X. et al. Joint single-cell DNA accessibility and protein epitope profiling reveals
environmental regulation of epigenomic heterogeneity. Nat Commun. 9, 4590 (2018).

69. Regev, A. et al. The Human Cell Atlas. Elife. 6, e27041 (2017).
70. Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring

transcription-factor-associated accessibility from single-cell epigenomic data. Nat
Methods. 14, 975 (2017).

71. Ji, Z., Zhou, W. & Ji, H. Single-cell regulome data analysis by SCRAT. Bioinformatics.,
btx315 (2017).

72. De Boer, C. G. & Regev, A. BROCKMAN: deciphering variance in epigenomic
regulators by k-mer factorization. BMC Bioinformatics. 19, 253 (2018).

128

73. Zhao, C., Hu, S., Huo, X. & Zhang, Y. Dr. seq2: A quality control and analysis
pipeline for parallel single cell transcriptome and epigenome data. PLoS One. 12,
e0180583 (2017).

74. Pliner, H. A. et al. Cicero predicts cis-regulatory DNA Interactions from single-cell
chromatin accessibility data. Mol Cell. 71, 858–871 (2018).

75. Baker, S. M., Rogerson, C., Hayes, A., Sharrocks, A. D. & Rattray, M. Classifying
cells with Scasat, a single-cell ATAC-seq analysis tool. Nucleic Acids Res. (2018).

76. Urrutia, E., Chen, L., Zhou, H. & Jiang, Y. Destin: toolkit for single-cell analysis of
chromatin accessibility. Bioinformatics., btz141. (2019).

77. Zamanighomi, M. et al. Unsupervised clustering and epigenetic classification of single
cells. Nat Commun. 9, 2410 (2018).

78. Cai, S., Georgakilas, G. K., Johnson, J. L. & Vahedi, G. A cosine similarity-based
method to infer variability of chromatin accessibility at the single-cell level. Front
Genet. 9, 319 (2018).

79. González-Blas, C. B. et al. cisTopic: cis-regulatory topic modeling on single-cell
ATAC-seq data. Nat Methods. 16, 397 (2019).

80. Consortium, E. P. et al. An integrated encyclopedia of DNA elements in the human
genome. Nature 489, 57 (2012).

81. Yue, F. et al. A comparative encyclopedia of DNA elements in the mouse genome.
Nature 515, 355 (2014).

82. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137
(2008).

83. Buenrostro, J. D. et al. Integrated single-cell analysis maps the continuous regulatory
landscape of human hematopoietic differentiation. Cell. (2018).

84. Cusanovich, D. A. et al. A single-cell atlas of in vivo mammalian chromatin accessibility.
Cell. 174, 1309–1324 (2018).

85. Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE Blacklist: Identification
of Problematic Regions of the Genome. Scientific Reports 9, 9354 (2019).

86. Ramsay, J. O. et al. Monotone regression splines in action. Statistical Science. 3,
425–441 (1988).

87. Chen, T. & Guestrin, C. Xgboost: A scalable tree boosting system in Proceedings of
the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (2016), 785–794.

88. Sandelin, A., Alkema, W., Engström, P., Wasserman, W. W. & Lenhard, B. JASPAR:
an open-access database for eukaryotic transcription factor binding profiles. Nucleic
Acids Res. 32, D91–D94 (2004).

89. Zhou, W. et al. Genome-wide prediction of DNase I hypersensitivity using gene
expression. Nat Commun. 8, 1038 (2017).

90. Corces, M. R. et al. Lineage-specific and single-cell chromatin accessibility charts
human hematopoiesis and leukemia evolution. Nature genetics 48, 1193–1203 (2016).

91. Ji, H. et al. An integrated software system for analyzing ChIP-chip and ChIP-seq
data. Nature biotechnology 26, 1293–1300 (2008).

129

92. Maaten, L. v. d. & Hinton, G. Visualizing data using t-SNE. Journal of machine
learning research 9, 2579–2605 (2008).

93. Ramani, V. et al. Massively multiplex single-cell Hi-C. Nat Methods. 14, 263 (2017).
94. Korthauer, K. D. et al. A statistical approach for identifying differential distributions

in single-cell RNA-seq experiments. Genome biology 17, 222 (2016).
95. Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional

changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome
biology 16, 278 (2015).

96. Li, H. et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated
compartment within human melanoma. Cell 176, 775–789 (2019).

97. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing
and microarray studies. Nucleic acids research 43, e47–e47 (2015).

98. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models
using lme4. arXiv preprint arXiv:1406.5823 (2014).

99. Lun, A. T., Bach, K. & Marioni, J. C. Pooling across cells to normalize single-cell
RNA sequencing data with many zero counts. Genome biology 17, 75 (2016).

100. Li, W. V. & Li, J. J. An accurate and robust imputation method scImpute for
single-cell RNA-seq data. Nature communications 9, 997 (2018).

101. Haghverdi, L., Lun, A. T., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell
RNA-sequencing data are corrected by matching mutual nearest neighbors. Nature
biotechnology 36, 421 (2018).

102. Efron, B. et al. Size, power and false discovery rates. The Annals of Statistics 35,
1351–1377 (2007).

103. Human Cell Atlas 1M immune cells https://data.humancellatlas.org/explore/
projects/cc95ff89-2e68-4a08-a234-480eca21ce79.

104. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome biology 15, 550 (2014).

105. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package
for differential expression analysis of digital gene expression data. Bioinformatics 26,
139–140 (2010).

106. Student. The probable error of a mean. Biometrika, 1–25 (1908).
107. Smyth, G. K., Michaud, J. & Scott, H. S. Use of within-array replicate spots for

assessing differential expression in microarray experiments. Bioinformatics 21, 2067–
2075 (2005).

108. Risso, D., Perraudeau, F., Gribkova, S., Dudoit, S. & Vert, J.-P. A general and flexible
method for signal extraction from single-cell RNA-seq data. Nature communications
9, 284 (2018).

109. Huang, M. et al. SAVER: gene expression recovery for single-cell RNA sequencing.
Nature methods 15, 539–542 (2018).

110. Zhou, W., Ji, Z., Fang, W. & Ji, H. Global prediction of chromatin accessibility
using small-cell-number and single-cell RNA-seq. Nucleic acids research 47, e121–e121
(2019).

130

https://data.humancellatlas.org/explore/projects/cc95ff89-2e68-4a08-a234-480eca21ce79
https://data.humancellatlas.org/explore/projects/cc95ff89-2e68-4a08-a234-480eca21ce79

111. Dixit, A. et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell
RNA profiling of pooled genetic screens. Cell 167, 1853–1866 (2016).

112. Rubin, A. J. et al. Coupled single-cell CRISPR screening and epigenomic profiling
reveals causal gene regulatory networks. Cell 176, 361–376 (2019).

131

Curriculum Vitae

Zhicheng Ji

Department of Biostatistics
Bloomberg School of Public Health
Johns Hopkins University

Mobile Phone: (410) 736-0905
Email: zji4@jhu.edu
Homepage: http://www.zji90.com

Education

• Ph.D. in Biostatistics, Johns Hopkins Bloomberg School of Public Health, 2020

(expected)

Thesis Advisor: Hongkai Ji, Ph.D.

• M.S.E. in Computer Science, Johns Hopkins Whiting School of Engineering,

2020 (expected)

• Sc.M. in Biostatistics, Johns Hopkins Bloomberg School of Public Health, 2015

(transferred to Ph.D. program)

• B.S. in Statistics, Fudan University, 2013

Honors and Awards

• Margaret Merrell Award, Department of Biostatistics, Johns Hopkins University,

2018

Recognizes outstanding research by a doctoral student; Unique recipient

132

mailto:zji4@jhu.edu
http://www.zji90.com/
http://www.biostat.jhsph.edu/~hji/

• June B. Culley Award, Department of Biostatistics, Johns Hopkins University,

2018

Honors outstanding achievement by a doctoral student on schoolwide examination paper;

Unique recipient

• Runner-up, ENCODE-DREAM in vivo Transcription Factor Binding Site Pre-

diction Challenge, 2017

Team leader; 4th place out of 50 teams

• ASA Section on Statistics in Genomics and Genetics Distinguished Student

Paper Award, 2016

• Top Performers, Prostate Cancer DREAM Challenge, 2015

• Kocherlakota Award, Department of Biostatistics, Johns Hopkins University,

2014

Honors outstanding achievement by a master’s student on the first-year comprehensive exami-

nation; Unique recipient

• First-class Scholarship, Fudan University, 2012

Publications

Google Scholar

* indicates equal contributions

Journal Articles and Articles under Review

1. Wenpin Hou, Zhicheng Ji, Hongkai Ji and Stephanie Hicks. A Systematic

Evaluation of Single-cell RNA-sequencing Imputation Methods. Genome Biology,

Under review bioRxiv

133

https://scholar.google.com/citations?user=Uih8yHsAAAAJ&hl=en
https://www.biorxiv.org/content/10.1101/2020.01.29.925974v1

2. Zhicheng Ji, Weiqiang Zhou, Wenpin Hou and Hongkai Ji. Single-cell ATAC-

seq signal extraction and enhancement with SCATE. Genome Biology, Under

review bioRxiv

3. Jifeng Zhang, Shoubao Yan, Cheng Jiang, Zhicheng Ji, Chenrun Wang and

Weidong Tian. (2020) Network Properties of Cancer Prognostic Gene Signatures

in the Human Protein Interactome. Genes. 11(3): 247.

4. Jiajia Zhang*, Zhicheng Ji*, Justina Caushi*, Margueritta El Asmar*, Valsamo

Anagnostou, Tricia Cottrell, Hok Yee Chan, Prerna Suri, Haidan Guo, Taha

Merghoub, Jamie Chaft, Joshua Reuss, Ada Tam, Richard Blosser, Mohsen Abu-

Akeel, John-William Sidhom, Ni Zhao, Jinny Ha, David Jones, Kristen Marrone,

Jarushka Naidoo, Edward Gabrielson, Janis Taube, Victor Velculescu, Julie

Brahmer, Franck Housseau, Matthew Hellmann, Patrick Forde, Drew Pardoll,

Hongkai Ji, and Kellie Smith. (2020) Compartmental analysis of T cell clonal

dynamics as a function of pathologic response to neoadjuvant PD-1 blockade in

resectable NSCLC. Clinical Cancer Research, 26(6):1327-1337

5. Rachel K. Lex*, Zhicheng Ji*, Kristin N. Falkenstein*, Weiqiang Zhou, Joanna

L. Henry, Hongkai Ji and Steven A. Vokes. (2020) GLI transcriptional repression

regulates tissue-specific enhancer activity in response to Hedgehog signaling.

eLife, 9:e50670

6. Kimberly E. Stephens, Weiqiang Zhou, Zhicheng Ji, Zhiyong Chen, Shaoqiu

He, Hongkai Ji, Yun Guan and Sean D. Taverna. (2019) Sex differences in gene

regulation in the dorsal root ganglion after nerve injury. BMC Genomics. 20:147

7. Zeyu Chen*, Zhicheng Ji*, Shin Foong Ngiow, Sasikanth Manne, Zhangying

Cai, Alexander C. Huang, John Johnson, Ryan P. Staupe, Bertram Bengsch,

Caiyue Xu, Sixiang Yu, Makoto Kurachi, Ramin S. Herati, Laura A. Vella,

134

https://www.biorxiv.org/content/10.1101/795609v1

Jennifer E. Wu, Omar Khan, Erietta Stelekati, Laura M. Mclan, Chi Wai

Lau, Xiaolu Yang, Shelley L. Berger, Golnaz Vahedi, Hongkai Ji and E. John

Wherry. (2019) TCF-1-Centered Transcriptional Network Drives an Effector

versus Exhausted CD8 T Cell-Fate Decision. Immunity, 51(5): 840-855.e5

Featured in ACIR and ScienceDaily

8. Weiqiang Zhou, Zhicheng Ji, Weixiang Fang and Hongkai Ji. (2019) Global

prediction of chromatin accessibility using small-cell-number and single-cell

RNA-seq. Nucleic Acids Research, 47(19):e121.

9. Weiqiang Zhou, Ben Sherwood, Zhicheng Ji, Yingchao Xue, Fang Du, Jiawei

Bai, Mingyao Ying, and Hongkai Ji. (2017) Genome-wide prediction of DNase I

hypersensitivity using gene expression. Nature Communications. 8(1):1038

10. Zheng Kuang, Zhicheng Ji, Jef D. Boeke and Hongkai Ji. (2017) Dynamic

motif occupancy (DynaMO) analysis identifies transcription factors and their

binding sites driving dynamic biological processes. Nucleic Acids Research.

46(1): e2

11. Fang Han, Hongkai Ji, Zhicheng Ji and Honglang Wang. (2017) A provable

smoothing approach for high dimensional generalized regression with applications

in genomics. Electronic Journal of Statistics. 11(2):4347-4403

12. Justin Guinney et al. (2017) Prediction of overall survival for patients with

metastatic castration-resistant prostate cancer: development of a prognostic

model through a crowdsourced challenge with open clinical trial data. The

Lancet Oncology. 18(1):132-142 (Listed as consortium coauthor)

13. Zhicheng Ji*, Weiqiang Zhou* and Hongkai Ji. (2017) Single-cell regulome

data analysis by SCRAT. Bioinformatics. 33(18):2930-2932

135

https://acir.org/weekly-digests/2019/october/effector-or-exhausted-tcf-1-seals-t-cell-fate
https://www.sciencedaily.com/releases/2019/10/191015113309.htm

14. Qiang Li, Rachel K. Lex, HaeWon Chung, Simone M. Giovanetti, Zhicheng

Ji, Hongkai Ji, Maria D. Person, Jonghwan Kim and Steven A. Vokes. (2016)

The pluripotency factor NANOG binds to GLI proteins and represses Hedgehog-

mediated transcription. Journal of Biological Chemistry, 291(13):7171-82

15. Jacqueline L. Norrie, Qiang Li, Swanie Co, Bau-Lin Huang, Susan Mackem,

Ding Ding, Zhicheng Ji, Mark T. Bedford, Antonella Galli, Hongkai Ji and

Steven A. Vokes. (2016) PRMT5 is necessary to form distinct cartilage identities

in the knee and long bone. Development. 143(24):4608-4619

16. Zhicheng Ji and Hongkai Ji. (2016) TSCAN: Pseudo-time reconstruction and

evaluation in single-cell RNA-seq analysis. Nucleic Acids Research. 44(13): e117
Winner of ASA Section on Statistics in Genomics and Genetics Distinguished Student Paper
Award
220+ Citations on Google Scholar

17. Xiumei Hong, Christine Ladd-Acosta, Ke Hao, Ben Sherwood, Hongkai Ji,

Corinne A. Keet, Rajesh Kumar, Deanna Caruso, Xin Liu, Guoying Wang,

Zhu Chen, Yuelong Ji, Guanyun Mao, Sheila Ohlsson Walker, Tami R. Bartell,

Zhicheng Ji, Yifei Sun, Hui-Ju Tsai, Jacqueline A. Pongracic, Daniel E. Weeks

and Xiaobin Wang. (2016) Epigenome-wide association study links site-specific

DNA methylation changes with cow’s milk allergy. The Journal of Allergy and

Clinical Immunology, 138(3):908-911.e9

18. Guoying Wang, Frank B. Hu, Kamila B. Mistry, Cuilin Zhang, Fazheng Ren,

Yong Huo, David Paige, Tami Bartell, Xiumei Hong, Deanna Caruso, Zhicheng

Ji, Zhu Chen, Yuelong Ji, Colleen Pearson, Hongkai Ji, Barry Zuckerman, Tina

L. Cheng and Xiaobin Wang. (2016) Association between maternal prepregnancy

body mass index and plasma folate concentrations with child metabolic health.

JAMA Pediatrics. 170(8): e160845

136

19. Detian Deng, Yu Du, Zhicheng Ji, Karthik Rao, Zhenke Wu, Yuxin Zhu and

Yates Coley. (2016) Predicting survival time for metastatic castration resistant

prostate cancer: An iterative imputation approach. F1000research. 5:2672

20. Zhicheng Ji, Steven A. Vokes, Chi V. Dang and Hongkai Ji. (2015) Turning

publicly available gene expression data into discoveries using gene set context

analysis. Nucleic Acids Research, 44(1): e8

Book Chapters

21. Zhicheng Ji and Hongkai Ji. (2019) Pseudotime reconstruction using TSCAN.

Computational Methods for Single-Cell Data Analysis, 115-124. Springer

22. Jiajia Zhang, Zhicheng Ji and Kellie Smith. (2019) Analysis of TCR β CDR3

sequencing data for tracking anti-tumor immunity. Methods in Enzymology.

Elsevier.

Software

Methods for analyzing single-cell genomic data

• SCATE: Single-cell ATAC-seq signal extraction and enhancement [Github]

• TSCAN: Pseudo-time reconstruction in single-cell RNA-seq analysis [Bioconduc-

tor] [Github] [GUI]

• BIRD: Big data regression for predicting DNase I hypersensitivity [Github]

• SCRAT: Single-cell regulome analysis tool [Github] [GUI]

• STIP: State transition inference prediction [Github]

• iXplore: Reproducible interactive data exploration tool [GUI]

• SEPA: Single-cell gene expression pattern analysis [Bioconductor] [Github] [GUI]

137

https://github.com/zji90/SCATE
https://www.bioconductor.org/packages/release/bioc/html/TSCAN.html
https://www.bioconductor.org/packages/release/bioc/html/TSCAN.html
https://github.com/zji90/TSCAN
https://zhiji.shinyapps.io/TSCAN
https://github.com/WeiqiangZhou/BIRD
https://github.com/zji90/SCRAT
https://zhiji.shinyapps.io/scrat
https://github.com/zji90/STIP
https://zhiji.shinyapps.io/ixplore
https://www.bioconductor.org/packages/release/bioc/html/SEPA.html
https://github.com/zji90/SEPA
https://zhiji.shinyapps.io/SEPA/

• SIMEX: Single-cell immune profiling and gene expression [GUI]

Methods for analyzing large-scale multi-modal genomic data

• GSCA: Gene set context analysis [Bioconductor] [Github] [GUI]

• BIRD: Big data regression for predicting DNase I hypersensitivity [Github]

• DynaMO: Dynamic motif occupancy analysis [Github]

• GEOsearch: Extendable search engine for gene expression omnibus [Bioconduc-

tor] [Github] [GUI]

Methods for high-dimensional statistics

• RMRCE: Regularized maximum rank correlation estimator [Github]

Software designed for teaching

• Statistics toolbox [Apple App Store]

• Graderanalytics [GUI]

Teaching

• Guest lecturer, Statistics in Genomics. 2018, 2019, 2020

• Lead teaching assistant and lab instructor, Statistical Methods in Public Health.

2016-2019

• Teaching assistant, Statistical Methods in Public Health. 2014, 2015

138

https://zhiji.shinyapps.io/SIMEX/
https://www.bioconductor.org/packages/release/bioc/html/GSCA.html
https://github.com/zji90/GSCA
https://zhiji.shinyapps.io/GSCA
https://github.com/WeiqiangZhou/BIRD
https://github.com/spo111/DynaMO
https://www.bioconductor.org/packages/3.4/bioc/html/GEOsearch.html
https://www.bioconductor.org/packages/3.4/bioc/html/GEOsearch.html
https://github.com/zji90/GEOsearch
https://zhiji.shinyapps.io/GEOsearch
https://github.com/zji90/RMRCE
https://apps.apple.com/us/app/statistics-toolbox/id1016200287?ls=1
https://zji90.shinyapps.io/Graderanalytics/

Editorial Activities

Journal Referee

• Bioinformatics

• Statistics in Biosciences

Presentations

Contributed Talks

• Single-cell ATAC-seq signal extraction and enhancement with SCATE. ENAR,

March, 2020

• Reproducible interactive data visualization and exploration with iXplore. ENAR,

March, 2017

• Reproducible interactive data visualization and exploration with iXplore. The

10th International Chinese Statistical Association International Conference,

December, 2016

• TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq

analysis. Joint Statistical Meeting, August, 2016

Posters

• Single-cell ATAC-seq signal extraction and enhancement with SCATE. RECOM-

B/ISCB Conference on Regulatory & Systems Genomics, December, 2018

• Turning publicly available gene expression data into discoveries using gene set

context analysis. The American Society of Human Genetics Annual Meeting,

October, 2015

139

• Turning publicly available gene expression data into discoveries using gene set

context analysis. International Genetic Epidemiology Society Annual Meeting,

October, 2015

140

	Abstract
	Dedication
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Introduction
	TSCAN: Pseudo-time Reconstruction and Evaluation in Single-cell RNA-seq Analysis
	Introduction
	Methods
	Problem formulation
	Preprocessing
	Cell clustering
	Ordering cell clusters by MST
	Cell ordering and pseudo-time calculation
	Detecting differentially expressed genes
	Method evaluation
	TSCAN package and GUI
	Datasets
	Comparisons with other methods

	Results
	HSMM analysis using a priori chosen genes for pseudo-time reconstruction
	HSMM analysis without using a priori chosen genes for pseudo-time reconstruction
	LPS analysis
	qNSC analysis
	The graphical user interface

	Discussion

	Single-cell ATAC-seq Signal Extraction and Enhancement with SCATE
	Introduction
	Methods
	Single-cell ATAC-seq data preprocessing
	Genome segmentation
	Bulk DNase-seq database (BDDB)
	Compiling cis-regulatory elements (CREs) using bulk data compendium
	SCATE model for known CREs in a single cell
	Estimate locus effects mi and si
	Estimate technical bias function hj(.)
	Estimate bold0mu mumu ββ2005/06/28 ver: 1.3 subfig packageββββ, bold0mu mumu δδ2005/06/28 ver: 1.3 subfig packageδδδδ and bold0mu mumu µµ2005/06/28 ver: 1.3 subfig packageµµµµ
	Analysis at multiple spatial resolution levels (i.e., multiple Ks)
	Optimizing spatial resolution (K) by cross-validation
	Postprocessing – SCATE for other genomic bins in a single cell
	SCATE for multiple cells
	Peak calling and evaluation
	TFBS prediction
	Processing of benchmark bulk DNase-seq and ATAC-seq data
	Software

	Results
	SCATE model for a single cell
	SCATE for a cell population consisting of multiple cells
	Benchmark data
	Analysis of a homogeneous cell population - a demonstration
	Analysis of a homogeneous cell population - a systematic evaluation
	Analysis of a heterogeneous cell population - demonstration and systematic evaluation
	Analysis of scATAC-seq data from human hematopoietic differentiation

	Discussion

	RAISIN: Regression Analysis in Single-cell RNA-Seq with multiple samples
	Introduction
	Methods
	RAISIN overview
	RAISIN data preprocessing
	RAISIN differential expression (DE) analysis
	Estimating θs,φs and ω2gs
	Estimating αl,γl and σ2gl
	Hypothesis testing
	Benchmark data collection and processing
	Analysis of HCA bone marrow data
	Simulation study
	Performance evaluation by AUC and FDR difference

	Results
	Simulation study
	HCA bone marrow data

	Discussion

	Conclusions and general discussion
	References
	Curriculum Vitae

