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Abstract

Stem cells have been a hot topic in the cardiology community for the last decade

and a half. Ever since we learned how to differentiate cardiomyocytes from embryonic

and induced pluripotent stem cells, there has been a lot of research devoted to the

potential of utilizing these cardiomyocytes for regenerative medicine, drug model

studies, and arrhythmogenesis analysis. However, while cardiomyocyte purification

methods have advanced significantly, methods for the identification and isolation of

specific types of cardiomyocytes, such as ventricular or pacemaking cells, have not

seen the same progress. Among the different avenues for accomplishing this task, the

electrophysiological one is of particular interest because every cardiomyocyte type

generates a distinct signature known as an action potential. The current standard

for analyzing the action potential of a cardiomyocyte is an expert-level subjective

thresholding of specific features, such as action potential duration. However this

approach does not transfer across datasets and does not scale with the increasing

populations of cardiomyocytes.

In this thesis, ideas from the machine learning and shape analysis communities
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ABSTRACT

are explored to develop new, automated methods for the analysis of cardiomyocytes

based on their action potentials. These methods allow us to identify subpopulations

of similar cardiomyocytes based on their action potential morphology, hypothesize

the eventual chamber-specific fate of newly differentiated cardiomyocytes, and make

effective comparisons between cardiomyocytes in drug and cell-line studies. The ob-

jective, scalable methods presented in this thesis present a new paradigm in perform-

ing analysis in high-throughput applications of cardiomyocytes via action potential

morphology, and could be of large benefit to the cardiology and biology communities.
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Chapter 1

Introduction

1.1 Human Stem Cell-Derived Cardiomy-

ocytes

Since the turn of the century, stem cells have presented a new frontier in car-

diology. Ever since the first stem cell derived cardiomyocytes were obtained in [1],

the hope has been that these newly formed heart muscle cells would provide break-

throughs in modern medicine. In particular, two flavors of newly differentiated, im-

mature cardiomyocytes have been the focus of a lot of study over the past 20 years.

Human embryonic stem cell derived cardiomyocytes (hESC-CMs) are derived from

human fetal tissue and are often lauded for their plasticity. This adaptability proved

particularly helpful in highlighting the potential of stem cells to be used in regenera-
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tive medicine back in 2007, when Laflamme et al. showed that hESC-CMs could be

used to temporarily recover functional activity in regions of murine hearts that had

been damaged due to myocardial infarction [2]. However, given the moral implica-

tions of the origin of these cells, they are increasingly less utilized. More common

now are cardiomyocytes that come from reverse engineered stem cells obtained from

other organs, such as the skin. These human induced pluripotent stem cell derived

cardiomyocytes (hiPSC-CMs) have been shown to have less plasticity than their em-

bryonic counterparts, but the resulting cardiomyocytes are still functionally similar

to mature, or adult, heart cells. This similarity has led to even more interest in stem

cells from the cardiology community, as researchers attempt to investigate the via-

bility of hiPSC-CMs as models for testing the effects of drugs, as well as factors of

arrhythmias [3, 4].

Since the groundbreaking work of [1], the methods for obtaining functional car-

diomyocytes has vastly improved. For instance, multiple methods to isolate cardiomy-

ocytes have been proposed [5–8], including methods that can also lead differentiated

cardiomyocytes towards a specific cellular makeup indicative of a specific region of

the heart [9, 10]. However, there are many applications in regenerative medicine

where understanding the phenotype identity is paramount to maintaining functional

compatibility and reducing the risk of arrhythmias. For instance, introducing pace-

making cells into the left ventricle of the heart might lead to asynchronous beating in

that portion of the heart, leading to more harm than good. Despite this, identifying

2
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the chamber specificity of an embryonic cardiomyocyte remains a challenge, as even

commercially available cell lines do not guarantee the uniformity of chamber specific

(ventricular, atrial, pacemaking) cell populations. Thus the question of identifying

the phenotype of these embryonic cardiomyocytes still lies with the biologists at the

laboratory.

One approach to identifying the phenotype of an embryonic cardiomyocyte is to

identify proteins that are indicative of a specific chamber of the heart, and develop

fluorescence markers for those proteins and methods to insert them into the car-

diomyocytes [11]. The common example is the myosin heavy chain protein MHC-2v

indicative of the ventricular phenotype. Since this approach is driven by the biology

of adult cardiomyocytes, these protein biomarkers are regarded as strong indicators

of chamber specificity. However, this approach requires not only the identification of

markers, but also their modification to carry fluorophores and their careful insertion

and uptake into target cardiomyocytes, all of which are labor intensive and invasive

tasks. Additionally, the embryonic cardiomyocytes appear to present multiple cham-

ber phenotypes, as eventual working chamber (atrial and ventricular) heart cells have

been observed to show spontaneous beating patterns indicative of the pacemaking

phenotype.

A much less invasive approach to analyzing cardiomyocytes is the electrophysi-

ological approach. Specifically, ions are carefully taken in and released from a car-

diomyocyte via the activity of various ion channels. An example cardiomyocyte with

3
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Figure 1.1: Ion channel depiction of a cardiomyocyte, taken from [12]

representative ion channels, as described by [12], is shown in Figure 1.1. The selectiv-

ity of ions that pass through the cell membrane generates a voltage potential between

the inside of the heart cell and the outside. As a result of this potential and how it

fluctuates throughout the routine functions of the heart, every cardiomyocyte gener-

ates a unique electrical signature, known as an action potential. Examples of action

potentials from different regions of the heart are shown in Figure 1.2, as described

in [13]. Notice that different regions produce distinct action potential shapes. As

such, while this is a simplified feature of very complex processes inside a particular

cardiomyocyte, it carries enough information to be discriminative of specific regions

of the heart. Because of these reasons, the rest of this thesis will focus primarily on

how to utilize the action potential of hSC-CMs to determine its phenotype.
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Figure 1.2: Action potentials from different heart regions, as described in [13]

1.2 Electrophysiological Methods for Dif-

ferentiating Cardiomyocytes

This section describes methods for differentiating hSC-CMs based on the analysis

of their action potential. In order to accomplish this, I first describe the typical

phases of the action potential in more detail as well as methods for recording action

potentials.
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1.2.1 Cardiomyocyte Action Potential

Figure 1.3: Phases of the cardiac action potential, with primary active currents during
each phase labeled, courtesy of [14]

The cardiomyocyte action potential is typically described as consisting of 5 phases,

as shown in the cardiomyocyte action potential from [14] in Figure 1.3. A large por-

tion of the action potential cycle is spent at rest in phase 4, where the potential is

constant, but the ion concentrations within and outside the cell are actively trying

to achieve equilibrium between the inside and the outside of the cell. The action po-

tential is typically initiated with a stimulus, and leads to a net influx of positive ions

into the cell via primarily sodium channels, but also slower acting calcium channels.

This phase 0 depolarization leads to the rapid increase in the membrane voltage.

Eventually the sodium channels close and the potassium channels open, leading to

potassium ions being expelled out of the cell. This generates the phase 1 “notch” of

the action potential. Eventually, the potassium channels are countered by the slow

influx of calcium and chlorine ions, leading to a temporary equilibrium in the mem-

6
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brane potential. This plateau of voltage is phase 2 of the cardiac action potential

cycle. In the final phase, eventually the calcium channels close and additional potas-

sium channels open, expunging ions out of the interior of the cell. This leads to the

repolarization of the cell membrane and a return to the resting potential.

1.2.2 Methods for Recording Cardiac Action Po-

tentials

As the methods for isolating cardiomyocytes expanded, so, too, did the methods

for obtaining action potential recordings. There are now two common methods to

recording individual cardiomyocyte action potential signals. The long established way

has been to record the action potential of an individual cell using a microelectrode [15,

16]. These electrode recordings have high signal to noise, but recording at individual

sites may not be indicative of a population of cardiomyocytes, such as a cardiomyocyte

monolayer or cardiomyocyte aggregates.

In order to get recordings from an entire population simultaneously, voltage sen-

sitive dyes and optical mapping [17] have started to become more commonly utilized.

The fluorescence in the dye oscillates with the change in membrane potential, and

this fluorescence is captured by a standard charge-coupled device. Typically, the ex-

act membrane potential is lost, but the scaled fluorescence still captures the general

morphology of the action potentially up to scale. This allows one to record one ac-
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tion potential from every pixel in the camera simultaneously, which has resulted in

a growth in populations of action potential recordings from the order of tens to the

order of hundreds and thousands. Depending on the FOV and resolution of the cam-

era, each pixel can could contain the action potential recording from a single heart

cell, or the average recording of the multiple cardiomyocytes contained in the pixel.

1.2.3 Current Methods for Analyzing Action Po-

tential

Figure 1.4: Example action potential showing measurements of APD50 and APD90,
as described in [18]

Lagging behind these key advances in cardiomyocyte differentiation and action

potential recording in the last 15 years have been methods to analyze action potential

data. The current practice is to obtain measurements of certain features of the action

potential, such as the amount of time it takes for the action potential to recover x%
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from depolarization (commonly referred to as action potential duration, or APDx),

or the slope of the depolarization phase. An example of these features on a cardiac

action potential is given in Figure 1.4, courtesy of [18]. Perhaps more egregious is that,

to identify the phenotype, cardiologists have looked at these features and come up

with subjective thresholds to attempt to identify cardiomyocytes as chamber specific

cells. One such delineation [16] is shown in Figure 1.5 These thresholds typically

do not translate from dataset to dataset, as they only encode a subset of the action

potential signal specific to the dataset in question. Further, manual annotations of

these measurements are intractible as newer methods produce ever increasing numbers

of action potential data.

Figure 1.5: Expert Biologist Classification of embryonic action potentials, taken from
[16]
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1.2.3.1 Challenges

What appears to be largely missing from this analysis are well trained algorithms

that can help biologists compare and discriminate the action potential recording data.

In a perfect world, the algorithm unifies all the information from different studies,

reducing the subjectivity of the manual classification by a biologist or cardiologist,

and making it more efficient to analyze new action potentials as new recordings are

generated. The process of training a computer to identify trends and patterns in data

is known as machine learning [19]. Machine learning methods have already found their

impact in other fields of biology, such as gene regulatory networks [20], biomedical

image segmentation [21], and epidemiology [22]. Action potential data, being a one

dimensional time signal, has analogs to other datasets where machine learning has

already been utilized, such as speech recognition [23]. The premise of this thesis is

that they can also be of some impact for the analysis of cardiac action potentials.

Additionally, there is much more information to be leveraged by observing the

entire action potential, instead of just the standard biological features. But in order

to do fully utilize this additional information, appropriate metrics between action

potential signals need to be defined in order to be utilized by the machine learning

algorithms. While standard metrics, such as the Euclidean distance or kernel meth-

ods, can be utilized, they can fail because the modes of variation captured by these

metrics may not be indicative of the common variations in action potentials. An

example of this is shown in Figure 1.6, where the query signal has a shape similar
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to one phenotype, but might be misclassified because the raw potential values are

closer to another phenotype. It is more appropriate to define metrics that have been

tuned to action potential data and its variations, affording smaller penalty to com-

mon variations in action potentials while more strongly penalizing unlikely changes in

action potential morphology. In addition, an appropriate metric should not only dis-

criminate between cardiomyocytes in different regions of the heart, but also provide

a link to connect action potentials at the immature state of cardiomyocytes, where

chamber specificity is less clear, to action potentials of completely differentiated adult

cardiomyocytes. The mathematics of defining such metrics is core topic of the shape

theory community. By learning how to utilize the entire action potential morphology

via shape theoretic methods, we can improve upon the standard biological features

and potentially provide better insight into some mechanisms of cardiomyocytes.

As we have discussed previously, the action potential is the electrophysiological

output of a complex nonlinear system. While some of the factors that influence the

output are intrinsic to the cardiomyocyte, such as the number of sodium or potassium

channels, external factors, such as the stimulus and its rate of occurrence, its con-

nectivity to other cardiomyocytes, or the presence or absence of a drug that targets

specific ion channels also play a vital role in the output of the system. These exter-

nal factors could influence the estimation of the phenotype given by shape theoretic

methods. Multiple action potential recordings of a cardiomyocyte under different en-

vironmental conditions may help alleviate these ambiguities regarding phenotypical
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identity, but how we utilize this additional information to obtain as much information

about the cardiomyocyte has not been throughly studied.

Figure 1.6: Example of how simple metrics may be insufficient to identify action
potential shape similarities. The query AP (green) has a similar shape to the ventric-
ular action potential (red), but membrane potential values closer to the atrial action
potential (blue).

1.3 Thesis Contributions

The goal of this thesis is to improve the cardiologist’s and biologist’s study of

individual and collections of cardiomyocytes by developing shape theoretic and ma-

chine learning tools and algorithms to analyze the action potential in an objective

way. For this purpose, I have developed an automated framework for both separat-

ing populations of newly differentiated stem cell derived embryonic cardiomyocytes
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into subgroups (clustering) and identifying chamber specificity of individual imma-

ture cardiomyocytes (classification). An additional tenet of this thesis is to be able

to utilize the entire action potential morphology, instead of just a subset of hand-

crafted features. For this purpose I have adapted methods from the shape theory

community to define a new metric on the space of action potentials that can be used

to compare cardiomyocytes at the same or different stages of differentiation (e.g.,

to compare an action potential of an immature cardiomyocyte to that of a mature

cardiomyocyte). Additionally, by considering the shape space induced by this metric,

I have developed new methods for comparing cardiomyocytes based on the changes

in the action potential morphology as the cardiac environment changes, allowing us

to investigate the classification of cardiomyocytes at the functional level. Together,

the hope is that this thesis will present a new paradigm for the analysis of stem cell

derived cardiomyocytes, and improve high-throughput applications of populations of

heart cells. To accomplish this I present work on three tasks:

1. In order to identify whether different populations of action potentials exist in

large collections of cardiomyocytes and how they are distributed if they do exist,

I develop a scheme that to identify how similar action potential shapes are and

how to partition the data based on that similarity, based on technique known as

spectral clustering, and a simple shape metric known as the Euclidean distance.

By utilizing this algorithm, I show that some cell aggregates present with a

single phenotype, while others present with potentially multiple phenotypes

13
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(Chapter 2).

2. To determine whether these partitions lead to clinically relevant, chamber-

specific (ventricular, atrial, etc.) phenotypes, I employ a simple classification

method known as nearest neighbors to hypothesize the phenotype of an embry-

onic cardiomyocyte based on mature prototype action potentials. In order to

use the whole action potential recording effectively across different levels of ma-

turity, more sophisticated shape distances are required, as the simple Euclidean

metric proves less effective at defining similarity between action potentials of

different levels of maturity. For this purpose, I will go over deformable tem-

plate theory and test a more sophisticated shape metric, called metamorphosis,

to show whether or not one can identify the chamber specificity of an individual

embryonic cardiomyocyte. Additionally, because it is more sophisticated met-

ric, the cost to computing the metamorphosis distance could prove prohibitive

in larger datasets. I alleviate this problem by developing an efficient implemen-

tation of the metamorphosis algorithm, which allows for one of the optimization

variables to be solved in closed form when the others are fixed (Chapter 3).

3. In order to have a more comprehensive classification protocol, I expand from a

single action potential recording of a given cardiomyocyte to multiple recordings

of the same action potential under different conditions, such as the presence of

a drug or the blocking of a specific ion channel. By looking at the changes in
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the morphology of the action potential via the metamorphosis interpolation,

I can identify behaviors unique to the query cardiomyocyte and potentially

indicative of cardiomyocyte phenotype. But in order to do this, I need not

only to determine features of the metamorphosis interpolation that can help

isolate these behaviors, but a method for making appropriate comparisons of

these features, as they are dependent on the starting action potential. The

process of unifying this information at a common reference point is known as

parallel transport, and can be approximated by a construction known as Schild’s

Ladder. I will show how to implement Schild’s Ladder in the metamorphosis

metric space, and how this improves our analysis of the cardiomyocytes based

on changes in the action potential morphology. (Chapter 4).

A summary of the thesis and potential future experiments is discussed in Chapter 5.
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Chapter 2

Automated Clustering of Action

Potentials using the Euclidean

Distance

The first step to developing tissues for drug discovery assays and therapeutic

technology is assessing the homogeneity of differentiated populations of embryonic

cardiomyocytes. In a perfect world, medical and bioengineering researchers would

have populations of completely identical cardiomyocytes. Phenotypically identical

heart cell tissues could potentially allow cardiologists to isolate the activity of a drug

or treatment or make comparative assessments of therapies without having to account

with the variability of the individuals in the population. This simplified model of in

vitro cardiomyocytes could prove immensely helpful in identifying drug toxicities, and
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testing new treatments.

However, this does not appear to be that simple in practice. While there are

numerous methods for culturing embryonic cardiomyocytes, even within individual

methods the resulting cardiomyocytes show varying electrophysiological properties.

Now that we can measure the action potential at multiple locations simultaneously via

optical mapping, this leads to additional questions regarding how prevalent these vari-

ations are from tissue to tissue, how these variations are arranged spatially throughout

a tissue, and whether these variations lead to alternative outcomes to a given treat-

ment. The last question will be tackled in Chapter 4, while the other two are the

subject of this chapter.

In section 2.1, I will define the problem of clustering and one simple machine

learning approach to handling this problem. In section 2.2 I will focus on the method

of spectral clustering, a graph based approach to the clustering problem that has some

nice robustness and optimization properties as well as how to evaluate the resulting

partitions. In section 2.3, I will show how this method can be applied to action

potentials. Some tests on a dataset of around 7000 action potentials and a discussion

of their results follow.
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2.1 K-Means Clustering

At the core of this scientific query is a much simpler question: How does we

determine whether one action potential is similar to another action potential, and

how does we use this similarity to partition a population of cardiomyocytes into

groups based on the action potential? More generally, suppose I have data {xi}Ni=1,

and would like to find a partitioning of the data so that data points in the same

partition are more similar than data in different partitions. I know nothing about the

partitions other than the fact that they may exist in the data. When the data can

be visualized, as in Figure 2.1 it might be easier to see the partitions, but for higher

dimensional data, such as action potentials, this may not be the case. This problem

is generally called clustering in the machine learning literature.

One of the simplest ways to do this is via K-means clustering [24]. Given a

Euclidean dataset {xi}Ni=1 in RD and a pre-determined, for the time being, number

of clusters, K, the goal of K-means is to identify K prototypes {µk}Kk=1 such that

the sum of the squared distances of all the points dataset to any one of those K

prototypes is minimized. Mathematically, let rik be the indicator of the group of the

data point xi, which takes the value 1 when data point xi is assigned to the prototype

µk, and 0 otherwise. With this notation, the K-means clustering algorithm aims to
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Figure 2.1: Population of data sampled from three Gaussians with different means
adequately separated to see the groups clearly.

minimize the following objective function:

E({rik}, {µk}) =
N∑
i=1

K∑
k=1

rik‖xi − µk‖2, (2.1)

where ‖ ·‖ is the standard Euclidean distance: ‖y‖2 =
∑D

d=1 y
2
d, and rik is constrained

to take on the values 0 or 1. By itself, minimizing this function is ill posed, since the

obvious choice in this case is to not assign any point to any prototype, or rik ≡ 0,

making the function value 0. As a result, we have to add the constraint that every
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point has to be assigned to one prototype, or
∑K

k=1 rik = 1, ∀i, which makes sense

since the physical connotation of the problem is that every data point is assigned to

one group.

In order to minimize this function E, the standard technique is to alternate be-

tween updating the assignments rik with the prototypes µk fixed, and updating the

prototypes with the assignments fixed. Specifically, updating the assignments for a

specific data point xi with the prototypes fixed comes down to choosing the prototype

with the smallest distance to the data point:

r∗ik =


1 if k = arg minl ‖xi − µl‖2

0 otherwise

. (2.2)

When the assignments are fixed, the resulting update of the prototypes comes down

to optimizing a quadratic equation in (2.1). The details are left to the reader, but

taking the derivative of the function with respect to one of the prototypes and setting

it to zero leads to the updates of the prototypes being the mean of the data points

assigned to that prototype, hence the name K-means.

µ∗k =

∑
i rikxi∑
i rik

. (2.3)

Alternating between these two updates decreases the value of the function until a

local minimum is reached.
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2.2 Spectral Clustering

One of the major limitations to K-means is that it imposes a structure on the

partitions of the data that may be too restrictive in practice. Specifically, By using

the Euclidean distance to the prototype to define the membership assignments, the

resulting clusters are isotropic, or circular in nature, as shown in Figure 2.1. When the

data does not follow this distribution, which might be the case with action potentials,

or if each group is distributed differently, as in Figure 2.2, utilizing K-means typically

ends in failure. As a result, one wants a clustering method that can be more robust

to the distribution of the data and find clusters implicitly based on the density of

samples. This can be achieved via a method known as spectral clustering. There

are multiple versions of the spectral clustering algorithm [25, 26], each with their

nuances, but they all operate under the same core tenets. For a complete overview of

the spectral clustering algorithm, the reader is referred to the following review [27].

2.2.1 Spectral Clustering Algorithm

Instead of defining a prototype and connecting data points to prototypes, spectral

clustering defines connections between the data points directly. This is done via

imposing a graph structure on the data. Let G = (V , E , w) be a weighted graph,

comprised of a set of nodes V , a set of edges between nodes E ⊂ V × V and weight

function w : E → [0, 1]. The set of nodes V = {1, . . . , N} is defined so that it

21



CHAPTER 2. EUCLIDEAN CLUSTERING

Figure 2.2: Collection of data sampled from two groups with different distributions.
The red group is sampled via a Gaussian distribution, while the black group is sampled
uniformly over the lower half circle.

corresponds with the set of data points, i.e., node i corresponds to data point xi.

When the data points xi and xj are similar to each other, w(i, j) takes on a value

closer to 1, and when the data points are not similar to each other, the weight is

closer to 0. Since it does not make sense to put an edge between a node and itself,

the weight corresponding to such an edge is 0.

In order to explain the spectral clustering algorithm concretely, a toy example of

a graph generated from a dataset of 6 points is presented in figure 2.3. Assume, for
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Figure 2.3: Toy graphical model generated from a population of 6 data points to
explain spectral clustering.

the time being, that the connections drawn are full weight (w = 1) connections, and

that there are no connections other than the ones drawn (w = 0). Let us define the

matrix of weights Wij = w(i, j) for this toy example as:

W =



0 1 1 0 0 0

1 0 1 0 0 0

1 1 0 0 0 0

0 0 0 0 1 1

0 0 0 1 0 1

0 0 0 1 1 0



. (2.4)

How does W help us identify the groups of connected nodes? In order to continue,

we need to define a second matrix. Let D be the degree matrix of the graph G. D
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is a diagonal matrix, and the value of the diagonal dii is the sum of the weights of

all edges connected to node i. This can be computed by summing the weights on the

rows of W (dii =
∑

j w(i, j)). For our toy example, the degrees of the six nodes are

all 2.

In order to create K groups of nodes, we have to cut the graph into connected

components by cutting the edges. Ideally we cut where the weights are the smallest.

This is simple in our toy example because there is already no connection between the

two groups of nodes. But in general, how do we define this penalty? Suppose we

have a partition {V1,V2, . . .VK} of the nodes. Each of the nodes in the graph belongs

to exactly one of the partitions. Then we can define a “cut” cost on a partition by

looking at the weights that separate each group from the rest of the data:

Cut(V1, . . . ,VK) =
K∑
k=1

∑
i∈Vk,j /∈Vk

w(i, j). (2.5)

Let us first look at the case where K = 2, and let fi be the indicator function for

whether node i is in group V1. Specifically, fi = 1 when node i is in the group, and

fi = 0 otherwise. Given this, another way to write equation (2.5) is the following:

Cut(V1,V2) =
1

2

∑
i,j

w(i, j)(fi − fj)2. (2.6)
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Expanding the quadratic and rearranging terms leads to the following result:

Cut(V1,V2) = fT (D −W )f, (2.7)

where f is the column vector made from concatenating all of the fi’s together. The

matrix L = D −W is typically called the Laplacian of the graph G.

Finding the minimal cut cost partition is the equivalent to solving the following

optimization problem:

min
V1,V2

Cut(V1,V2) = min
f

fi∈{0,1}
f6=0,f6=1

fTLf, (2.8)

where 0, and 1 are the vectors of all 0’s and 1’s, respectively, and the additional two

constraints are added to ensure that two groups are created. Obtaining the minimum

of this problem is difficult given the combinatorial nature of the search space. One

can find an approximate minimum by relaxing this constraint as follows:

min
V1,V2

Cut(V1,V2) ≈ min
f

‖f‖22=1
f⊥1

fTLf. (2.9)

L has some very nice properties. In particular, L is symmetric, as W , D are symmet-

ric, and L is positive semi-definite, since fTLf = 1
2

∑
i,j w(i, j)(fi − fj)2 ≥ 0. Addi-

tionally, this is a well studied optimization problem in the linear algebra community.

According to the Rayleigh-Ritz theorem, the minimizer f of (2.9) is the eigenvector
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of L corresponding to its second smallest eigenvalue, as 1 is the eigenvector related

to the eigenvalue 0, the smallest possible eigenvector since L is positive semi-definite.

Returning to the toy example (Figure 2.3), let us look at the graph Laplacian:

L =



2 −1 −1 0 0 0

−1 2 −1 0 0 0

−1 −1 2 0 0 0

0 0 0 2 −1 −1

0 0 0 −1 2 −1

0 0 0 −1 −1 2



. (2.10)

There are two interesting things about this L. First, 0 is an eigenvalue with multi-

plicity 2. To see the second important feature of L, let us look at the eigenvectors

corresponding to the 0 eigenvalue. The first one is the vector of all ones, 1. The

second one is (1, 1, 1,−1,−1,−1)T . Notice that this vector identifies the membership

of the two connected components in the graph, and thus we can separate the graph

into the two groups easily.

The more interesting case is when signals are close to, but not exactly, connected

components. To see this in the toy example, an edge is added between nodes 3 and

4, but this edge is made weaker than the other edges by reducing the weight. The

modified graph is shown in Figure 2.4, where the dotted line reflects the weaker edge.
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Figure 2.4: Modified Toy graphical model generated from a population of 6 data
points. The dotted line indicates a weaker edge than the solid lines.

Specfically, let w(3, 4) = w(4, 3) = 0.05. The resulting Laplacian becomes:

L =



2 −1 −1 0 0 0

−1 2 −1 0 0 0

−1 −1 2.05 −0.05 0 0

0 0 −0.05 2.05 −1 −1

0 0 0 −1 2 −1

0 0 0 −1 −1 2



. (2.11)

Now 0 is only an eigenvector of multiplicity 1, with the eigenvector of all ones. So

how do we identify the clusters? Let us look at the eigenvector of the second smallest

eigenvalue (0.0326):

v0.0326 = (1, 1, 0.9674,−0.9674,−1,−1)T . (2.12)
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While not the same as the previous example, it still roughly discriminates the two

clusters. In fact, if one performs K-means clustering with K = 2 on this vector,

the resulting clusters will be the two groups from the disconnected example. This

is what spectral clustering does when the clusters are not completely disconnected.

In order to extend this to K > 2 groups, additional assignment vectors are required.

Instead of looking at one vector f, a matrix F is generated by concatenating the

K − 1 assignment vectors together. Following the same logic as in (2.9), one can

approximate the minimizer F by finding the K− 1 smallest eigenvectors of the graph

Laplacian L.

The problem with the cut cost in (2.5) is that it favors making a partition of small

size, because that means fewer edges have to be cut. As a result, it is not a robust cut

cost in the presence of outliers. In order to be more robust to this, other definitions

of the cost of cutting the graph have been proposed. One approach is to scale the

cuts by the total weight of the partition:

NCut(V1, . . . ,VK) =
K∑
k=1

∑
i∈Vk,j /∈Vk w(i, j)∑
i∈Vk,m∈V w(i,m)

. (2.13)

This avoids the problem of favoring small groups in a given partition because the

numerator gets closer to the denominator as the groups get smaller, i.e., more of

the total number of edges of a partition are separating edges, thus increasing the

cost of the partition. At the extreme, when every data point has its own group, the
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numerator and the denominator are identical, and the value of NCut is equal to the

number of data points. The details are omitted, but one can find an approximation

similar to (2.9) for (2.13) with a modified version of L. By replacing L with the

normalized Laplacian Lsym = I − D−
1
2WD−

1
2 , one can find a good approximation

to the minimal NCut (2.13), as described in [27]. The complete spectral clustering

algorithm is outlined in Algorithm 1.

Algorithm 1 Spectral Clustering Algorithm

Input: Weighted Graph G = (V , E , w), choice of Laplacian: unnormalized or nor-
malized, number of clusters K.

1: Compute Weight matrix W : Wij = w(i, j), i, j,∈ {1, . . . , |V|}
2: Compute Degree matrix D : Dii =

∑|V|
j=1 Wij

3: Compute Laplacian L:
4: if Unnormalized then
5: L = D −W
6: else
7: L = Id−D−1/2WD1/2

8: end if
9: Find the K eigenvectors v1, v2, . . . , vK corresponding to the K smallest eigenval-

ues λ1 < λ2 < . . . < λK of L. V = [v1v2 . . . vK ]
10: xi = Vi·, i ∈ {1, . . . , |V|}
11: if Normalized then
12: xi ← xi

‖xi‖
13: end if
14: Perform K-means on {xi}|V|i=1. Assign node i to group k if rik = 1.
Output: Assignments rik

2.2.2 Model Selection

Now that I can approximate the optimal partition of the data into K groups, it

is important to be able to determine which K provides the best representation of the
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data. In order to do that, a measure of the quality of a partition as a function of K

is needed. Two measures are described below.

1) Normalized Cut Cost (NCC): The first measure that I consider is the value of

the objective function of the NCut clustering method in (2.13) divided by the number

of groups K:

NCC(V1, . . . ,VK) =
1

K

K∑
k=1

∑
i∈Vk,j /∈Vk w(i, j)∑
i∈Vk,m∈V w(i,m)

. (2.14)

When the data is well separated into K clusters, the numerator will be very small,

while the denominator will be large, because signal pairs of the same group will be well

connected while signal pairs of different groups will be poorly connected. Therefore

we expect the value of NCC to be small when K is properly chosen. When K is

overestimated, the numerator increases and the denominator decreases, while when

K is underestimated the opposite happens, favoring a small choice of K Dividing

the ratio by K normalizes the cut costs across different values of K and makes them

comparable. The optimal number of groups K∗ will come from the minimal NCC.

2) Davies-Bouldin Index (DBI): The other measure we consider is a cluster dis-

tance between pairs of groups [28, 29]. Let µk(τ) be the mean of the data points in

group Vk:

µk(τ) =
1

|Vk|
∑
ni∈Vk

fi(τ). (2.15)

Given two groups, Vk and Vk′ , the DBI distance between the groups is defined as
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follows:

DBI(k, k′) =
Sk + Sk′

Mkk′
, (2.16)

where Sk and Sk′ are values for the dispersion or spread within each group, and Mkk′ is

a measure between groups. For our work, Sk is defined as the average of the distances

of the signals within one group to the average signal of that group:

Sk =
1

|Vk|
∑
ni∈Vk

d(fi(τ), µk(τ)), (2.17)

while the measure Mkk′ is the distance between the average signals of the two groups:

Mkk′ = d(µk(τ), µk′(τ)). (2.18)

For well separated, tight clusters, the dispersion for each group is very small, since

the distances to the mean will be small, while the measure Mkk′ between groups will

be large because the means are well separated from each other. Therefore, a lower

DBI indicates better grouping. For K groups, the average DBI over all pairs of groups

is chosen to be the group measure:

DBI =
1

|K|
∑
K

DBI(k, k′), (2.19)

where K = {(k, k′) : 1 ≤ k < k′ ≤ K}.
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2.3 Clustering of Cardiomyocyte Action

Potentials

(a) Raw signals (b) Sample APs (c) Graph building (d) Graph cut (e) Final groups

Figure 2.5: Schematic drawing of the proposed method. (a) Action potential record-
ings are obtained from cardiomyocytes, either via optical mapping or electrode record-
ing. (b) Representative action potentials are identified from these recordings. (c) Each
action potential forms a node in a graph, and weighted edges are built based on the
similarity between action potentials. (d) The graph is cut into groups based on where
the edges are weakest. (e) The separated connected components form the groups of
similar action potentials.

In this section, I show how the spectral clustering approach described in the

previous section can be applied to the problem of clustering action potentials. The

overall framework is illustrated in Figure 2.5. Let f(τ) be the voltage of an action

potential derived from a cardiomyocyte. Let us define the domain of this time series

signal as [0, T ], where T is the length of one beat cycle of the action potential.

Although beat to beat variations exist in nature, including alternans behavior is

apparent at shorter cycle lengths [30], in this thesis, we are going to operate under
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the assumption that the action potential is identical from beat to beat. Thus f(τ)

is a periodic function on the set [0, T ] Let {fi}Pi=1 be the set of action potentials in

a population of P cardiomyocytes, and let K be the number of groups we hope to

separate the data into.

As we have discussed already, we want to define a similarity w(i, j) between any

pair fi(τ), fj(τ) of action potential signals. We do this indirectly by identifying in

which ways they are different. A very simple way to do this is with the squared

Euclidean distance: d2(fi, fj) =
∫ T

0
(fi(τ) − fj(τ))2dτ . When the fi and fj are iden-

tical, the distance is 0, and the distance grows as the two signals become more

disparate from each other. Since we are looking at discrete samples of the action

potential signal, this can be re-written as d2(fi, fj) =
∑M

m=1(fi(τm)− fj(τm))2, where

0 < τ1 < τ2 < · · · < τm < T denote the sampling times. Given the distance d, a

typical way to define the weight w(i, j) between the nodes corresponding to fi(τ) and

fj(τ) is to employ the Gaussian, or radial basis function, kernel:

w(i, j) = e(−
d2(fi,fj

σ2
). (2.20)

By using this kernel, we introduce an additional parameter, σ2. This parameter helps

determine how tightly the clusters are bound. When σ2 is large, the denominator

overpowers the numerator inside the exponential, pushing the weights closer to e0 = 1,

encouraging the data to aggregate into one group because the graph is fully connected
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with weights close to 1. Conversely, when σ2 is small, weights tend towards 0, as

limx→∞ e
−x = 0. As a result, the data is much less connected, and spectral clustering

will be encouraged to separate every data point into its own group. Thus, it is

important to find a balanced σ2 that prevents over and under partitioning. Since we

are looking at the Euclidean distances between all pairs of action potentials in the

dataset, an appropriate choice for σ2 is the average distance between pairs:

σ2 =
1

|E|
∑

(i,j)∈E

d2(xi, xj), (2.21)

where |E| is the number of edges in G. Following the spectral clustering convention,

there is no connection between a node and itself, so even though the distance between

an action potential and itself is 0, we set w(i, i) = 0. Having defined the weights

between nodes, we proceed with the spectral clustering algorithm 1.

2.4 Experiments and Results

The spectral clustering algorithm described in 2.3 was applied to a dataset of 6940

action potentials derived from individual cardiomyocytes from 9 different cell bodies

via voltage sensitive dyes and optical mapping. In particular, the H9 line of human

embryonic stem cells was differentiated into aggregates of cardiomyocytes known as

embryoid bodies (hEBs) using a previously described hEB-based protocol [17]. The

hEBs usually start beating around Day 9 after the initiation of differentiation. Beat-
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ing areas of hEBs were mechanically dissected on Day 15-16 of differentiation, and

plated on gelatin-coated plastic coverslips as cardiac cell clusters for optical mapping.

Cardiac cell clusters were stained with 10µM voltage-sensitive dye di-4-ANEPPS

(Invitrogen, Grand Island, NY), and 50µM myosin II inhibitor blebbistatin (Sigma-

Aldrich, St. Louis, MO) was applied throughout experiments to inhibit motion.

Action potentials were recorded using a MiCAM Ultima-L CMOS camera (100× 100

pixels, 16µm/pixel) at 500 frames per second (fps). A pair of platinum electrodes

was used to deliver fixed 90 beat per minute (bpm) pacing to the clusters, and 16

second recordings containing multiple APs were obtained from each cluster. Figure

2.5(a) illustrates the recordings obtained with this protocol. Note that the resulting

optical recordings are normalized so that the resting membrane potential is 0 and the

maximum amplitude is 1.

The result of the optical mapping is an action potential recording at pixels of an

image corresponding to the cell body. In particular, each pixel represents 16µm ×

16µm area of the cellular aggregate. Let I(x, τ) be the optical recording data at a

specific pixel x. Ideally, the collection of these recordings over all of the aggregates

of cells would make up our dataset {fi(τ)}i. However, there is still significant noise

in the optical mapping recording. In order to improve the signal-to-noise ratio, the

follow pre-processing steps are performed. First, we smooth out the action potential

recording across the cell body by averaging spatially across an aggregate. Cardiomy-

ocytes located near each other are likely to have similar action potentials, so this
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helps to magnify the signal quality of a particular pixel. To do this, we implemented

a 5×5 boxcar averaging filter g(x), and convolved this filter with the optical recording

images:

I x̄(x, τ) = g(x) ∗ I(x, τ). (2.22)

Additionally, instead of looking at the entire 16 second recording of 24 cycles of the

action potential, a representative action potential is obtained by averaging across the

24 cycles temporally:

Ixτ (x, τ) =
1

24

24∑
j=1

I x̄(x, τ + (j − 1)T ), (2.23)

with T being the cycle length of one action potential, which is 2
3

s since the data

is paced at 90 bpm. Both of these pre-processing steps improve the signal-to-noise

ratio and make the action potential recordings amenable for analysis. However, given

the conduction velocity of the embryoid body, the signals may not be completely

aligned with each other. The APs from different averaged pixels were aligned by their

activation time, which was calculated to be the time point with maximal upstroke

slope:

Ixτa(x, τ) = Ixτ (x, τ − ∗τ(x)), (2.24)

where

∗
τ(x) = arg max

τ∈[0,T )

∂Ixτ (x, τ)

∂τ
. (2.25)
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This alignment allows us to compare signals from different regions of the cell cluster

that may be offset due to differences in activation time owing to electrical conduction

of the AP wavefront through the cell cluster. Alignment is done post spatial averag-

ing because the increased signal-to-noise ratio allows us to determine a more accurate

∗
τ(x). Experimentally we have found that the local misalignment is negligible com-

pared to misalignment from different regions of the cell cluster. These aligned APs

{Ixτa(x, τ)}x serve as our data elements {fi(τ)}i for the spectral clustering framework.

Figure 2.5(b) illustrates typical representatives obtained by this method.

Before we look at the resulting partitions, let us take a look at the weight matrices

generated by the data, to obtain some intuition about what should happen. Figure

2.6(a) shows the weight matrices for a subset of the populations. The silhouettes of

the 9 cell bodies (gray regions) are shown on the top and rotated 90 degrees on the

left. The subset of pixels being analyzed from each cell body is marked by the blue

lines crossing each cluster. The similarity between the signals at pixel i in one and

pixel j in another line is measured by the weight w(i, j). Red indicates high weight

and blue indicates low weight. Weights along the diagonal are 0 by convention of

spectral grouping. In particular, let us investigate specific pairs of cell aggregates.

Figure 2.6(b) details the AP similarity for a subset of cell aggregates 1 and 9. Since

the weights relating these two clusters are blue (see the top right and bottom left

areas of the submatrix), they should be in different groups. Figure 2.6(c) shows the

AP similarity for a subset of cell aggregates 2 and 3. In contrast with 2.6(b), there are
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(a) AP similarity for the 9 cell aggregates of our
dataset

(b) AP similarity:
aggregates 1 and 9

(c) AP similarity:
aggregates 2 and 3

Figure 2.6: Observed weight matrices for a subset of the hEB data. (a) Selected
pixels from each cell body are indicated with the blue line. Weights are calculated
using the Gaussian kernel 2.20 of Euclidean distance between the representative ac-
tion potentials at the pixel locations. Recordings with high weight connections are
indicated in red, low weight connections are indicated in blue. (b) Subset of the
weight matrix isolating aggregates 1 and 9. The aggregates show high weight with
among APs in the same aggregate, but low weight when compared to APs from the
other cell body. (c) Subset of the weight matrix isolating aggregates 2 and 3. The
left region of aggregate 2 shows low affinity for the right region, but high affinity for
the right region of aggregate 3.

high similarities between the left part of aggregate 2 and the right part of aggregate

3 and vice versa, as well as low similarity between the left and right parts of each of

the aggregates individually. The left side of cell aggregate 2 should group with the

right side of cell aggregate 3 and the right side of aggregate 2 should group with the

left side of aggregate 3.

Spectral clustering is performed to partition the dataset into 2, 3, and 4 groups.
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(a) 2 Groups: NCC = 0.1457, DBI = 1.1655

(b) 3 Groups: NCC = 0.2756, DBI = 1.3203

(c) 4 Groups: NCC = 0.3883, DBI = 1.5863

Figure 2.7: Clustering visualization. The 9 cell aggregates are separated into 2, 3, and
4 groups and the group assignments are indicated by the color at the pixel location.
Scale bars indicate 200 µm. The average action potential recording of each group of
each of the partitions is shown on the right. Scale bar indicates 100 ms. Fitness is
assessed by the NCC (2.14) and DBI (2.19) values.

The visualization of the clustering algorithm is presented in Figure 2.7. The first 9

columns show the results of applying spectral clustering to all the APs in our dataset

for 2 (top row), 3 (middle row), and 4 (bottom row) groups with corresponding NCC

and DBI measures listed underneath. Some cell clusters present with primarily one

phenotype, while others present a mixture of phenotypes. Both NCC and DBI suggest

that K = 2 gives the best grouping fitness. The average AP of each phenotype as

determined by spectral grouping is shown on the last column. The average 2-group

APs suggest different phenotypes, while for 3 and 4 groups, pairs of phenotypes

(phenotypes 2 and 3 for 3 groups, phenotypes 1 and 2 and phenotypes 3 and 4 for 4

groups) have similar shapes.

To further evaluate the characteristics of the obtained groups, we also computed
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the distributions of commonly used AP features [10, 16, 31, 32]. In particular, Figure

2.8 shows the distributions of APD30, APD80, triangulation (APD90 − APD30), and

normalized triangulation (APD90−APD30

APD90
) for the groups determined by spectral group-

ing and visualized in Figure 2.7. As a reminder, APDx stands for action potential

duration, which is the time from depolarization to x% repolarization (see Section

1.2.3). For the case of 2 groups, APD30 and APD80 histograms were fitted well as

distinctly separated sub-populations. However, triangulation, a parameter indicative

of a pro-arrhythmic substrate when prolonged, had a wide range in both groups, with

substantial overlap. By normalizing triangulation to APD90, we obtained a shape pa-

rameter that showed better discrimination of AP morphology between the two groups,

and that the group with shorter APD30 and APD80 had greater triangulation. With

increased number in groups (3 and 4 groups), we observed increased overlap in all

AP features among different groups, especially in normalized triangulation. This

increased overlap suggests that APs in different groups are similar in shape, thus

increasing difficulty in discriminating the groups by such features. Overall, these re-

sults suggest that grouping the population based on standard AP features would be

possible for 2 groups, while using the entire AP waveform is effective for 2, 3, or 4

groups.

There are lots of nice takeaways from this experiment. First, the weight matrix

used for spectral clustering analysis also provides visualization of the similarity among

APs within the dataset. The existence of both similar and dissimilar regions within
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APD30 APD80 Triangulation
Normalized

Triangulation

2
Groups

3
Groups

4
Groups

Figure 2.8: Histograms of standard biologist action potential features APD30, APD80,
Triangulation (APD90 − APD30), and normalized triangulation (APD90−APD30

APD90
) (left

to right) with respect to the 2, 3, and 4 (top to bottom) groups formed by the
spectral clustering algorithm. APDx is the action potential duration, the time from
depolarization to x% repolarization.

some cardiac cell aggregates indicates that more than one phenotype may coexist

within a single cluster, consistent with previous work [33]. Our results show that

while there were cell aggregates in our dataset that expressed primarily one pheno-

type, the majority of the cell aggregates presented with multiple phenotypes. For

the aggregates with more than one phenotype, even though the clustering method

did not enforce spatial regularity, continuous regions of cell aggregates with only one

phenotype were obtained. Further, we observed smoothly varying AP shape across

the boundary separating phenotypes. This is partly because of the spatial averaging

performed during preprocessing, but it primarily reflects that APs vary as a contin-

uum from one phenotype to another. Thus, it is particularly important to develop
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automated algorithms to maintain a consistent decision boundary across datasets.

Perhaps more importantly, a major feature of the proposed framework is that the

pieces are generalizable. We used optical mapping recordings for our dataset, but

because the spectral grouping and fitness evaluation operate with a processed action

potential signal, they are amenable to action potential recordings obtained from other

techniques, and thus could be used to investigate variability in current methods for

purification of specific phenotypes of hESC-CMs [6,10,34]. Additionally, more sophis-

ticated measures other than the Euclidean distance can be implemented. One such

measure will be discussed in Chapter 3. By defining better measures of similarity

between action potentials, we can be more confident in the groups that are estab-

lished via this method and identify more complex phenomena, such as sub-phenotype

variability.
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Chapter 3

Automated Classification of Action

Potentials Using the

Metamorphosis Distance

In the previous chapter, we observed how the Euclidean distance can be utilized to

separate populations of embryonic cardiomyocytes into subpopulations based on the

action potential morphology. A natural follow-up question is to ask whether or not

these subpopulations are representative of separate phenotypes of cardiomyocytes. In

particular, are these subpopulations indeed the precursors to chamber specific (atrial,

ventricular, or pacemaking nodal) adult cardiomyocytes. In this chapter, we will

discuss the challenges in answering this question in the action potential domain and

introduce the metamorphosis metric as a way to address these challenges.
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3.1 Action Potential-based Cardiomyocyte

Classification

The problem of identifying the phenotype, or label, of an action potential, or

any query data, is known in the machine learning community as classification. More

specifically, given a collection of data {xi}Ni=1 ∈ X and their corresponding labels

{yi}Ni=1 ∈ Y ,the goal of classification is to learn a classifier c : X → Y that minimizes

a defined loss, or error, l(c(xi), yi) of assigning each data point a label. In the ideal

scenario, the classifier c not only correctly assigns the correct label to every data point

in the collection, but also robustly extends to new, unseen data points. Examples

of typical classification methods include support vector machines [35, 36], random

forests [37], and, more recently, neural networks and deep learning [38,39].

Defining Exemplars: In order to identify the phenotype of a query cardiomy-

ocyte action potential, we need to first develop a database of action potentials for

which the phenotype is known. In a perfect world, this would be a database of

embryonic action potentials at the same maturation point as the cardiomyocyte in

question. However, as we have discussed already, most works with phenotypically

identified embryonic action potentials have developed that distinction subjectively

via manual annotation, and do not readily transfer between studies and protocols.

Another approach is to find well classified data in an alternative, but related, do-

main, and hope to be able to utilize this data to infer something about the dataset in
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question. Where can we find such a related dataset? Over the last 2 decades, concur-

rent with the growing experimental analysis of cardiomyocytes, the use of computa-

tional models for in silico analysis of action potential generation has shown increasing

popularity. Evolving from the original work of Hodgkin and Huxley [40], these mod-

els attempt to replicate mathematically the cellular processes of the cardiomyocyte

that lead to action potential generation. For adult atrial [41–43], ventricular [44,45],

and pacemaking nodal [46,47] phenotypes, individual systems of differential equations

have been developed that show similar properties to physical cardiomyocytes with re-

gards to pacing protocol, voltage-current recordings, and drug implementations. We

can produce a population of variable action potentials of a particular phenotype by

varying the ion concentrations and conductances of the models within a specified toler-

ance. Ideally we would utilize computational models for embryonic cardiomyocytes,

but while computational models for embryonic cardiomyocytes exist [48], they are

built on heuristics and have not been experimentally verified. Example outputs of

the adult atrial models of [41] and the adult ventricular models of [45] are shown

in Figure 3.1. Visually, while there is variability between the models of a specific

phenotype, there’s still a greater distinction between action potentials belonging to

models of different phenotypes. Further, since these models were developed with the

specific phenotype in mind, we have no ambiguity as to their labeling.

Given this labeled population of adult action potentials, how do we use it to infer

the phenotype of an unknown embryonic action potential? Since this an embryonic
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Figure 3.1: Prototypical Mature Atrial (left) and Mature Ventricular (right) action
potential

heart cell, it will become like one of these mature action potentials, given the time

to mature. We can think of the maturation process as producing an interpolation

between the embryonic and mature action potentials, where consecutive interpolants

are related by a small deformation. A reasonable hypothesis, then, is that an un-

known embryonic action potential requires less energy to be deformed into its correct

phenotype than alternative phenotypes. One way to measure this energy is the min-

imal amount of deformation required to warp the query action potential to a mature

action potential of a particular phenotype. As we will see, the minimal amount of de-

formation provides a distance, that can be approximated by calculating the distances

between the query and all of the exemplar prototypes, and picking the phenotype

based on the phenotype of the cell that has the shortest distance to the test embry-

onic action potential. This classification process is commonly referred to as nearest

neighbors. Since assigning a label based on one nearest neighbor is sensitive to out-

liers and the sampling of the training data spaces (e.g. one spurious outlier being
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closer to the embryonic test action potential could alter the result of nearest neigh-

bors), a more robust approach is to identify K neighbors, and then assign the test

signal based on the mode of the labels of the neighbors. This classification process is

commonly referred to as K-Nearest Neighbors (K-NN).

Regardless of the choice of number of neighbors, this methodology requires the

choice of an appropriate distance between action potentials. One choice is the Eu-

clidean distance we utilized to define the similarity between action potentials in chap-

ter 2. However, this proves to be a poor selection of the distance in this problem.

Recall Figure 1.6. Since the Euclidean distance is a point-wise measure between the

two signals an intermediate signal is based on the difference between the two signals

at any given point, it suggests that the query signal in green is closer to the atrial

signal in blue than the ventricular signal in red. As a result, using nearest neighbors,

the Euclidean distance would suggest that the query action potential is atrial, even

though its shape more closely resembles the ventricular action potential. Addition-

ally, we show the Euclidean interpolation between an embryonic and mature action

potential in Figure 3.2. Notice that the Euclidean interpolation creates a bump along

the repolarization phase of the action potential sequence. This behavior is not indica-

tive of action potential morphology, and appears because we are using the Euclidean

distance. This spurs us on to find an alternative choice for a measure between signals

that, in particular, preserves the shape properties of the action potential.
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Figure 3.2: Example Euclidean Interpolation of an embryonic to mature action
potential

3.2 Continuous Metamorphosis

3.2.1 Basics of Deformable Templates

Given the variations observed in action potential morphology, a better approach

is to consider the whole shape as a member of the family of shapes indicative of

action potentials, i.e. as a member of a shape space, and learn how to define a metric

on this space. The notions of shape spaces and shape theory are usually referred

back to Kendall [49]. In that seminal work, he proposed the notion of a “shape” as

what remains after we remove certain families of reversible transformations, such as

translations, rotations, and scaling. Most interestingly, the resulting quotient space of

shapes after removing these transformations can be analyzed to identify the difference

between shapes via Riemannian geometry.

What if we want to extend the set of allowable transformations from rotations and

translations to more complicated phenomena? D’Arcy Thompson suggested many

centuries ago that related species of animals share form that can be connected via a

smooth deformation of the key grid points [50]. The typical example is that of the

fish shown in Figure 3.3. Given a reference fish, one is able to obtain similar, related
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species of fish by applying an appropriate deformation on the reference. Grenander

formalized these notions mathematically by defining the space of a particular pattern

or shape as the orbit of a reference under the action of a specific group of transfor-

mations [51,52]. Specifically, let r : D → R and I : D → R be the reference template

and target shape, defined over a domain D, respectively. Then the problem of shape

matching can be thought of as finding the member of the group of transformations

that takes the reference template closest to the target shape.

One such family of transformations is the group of diffeomorphisms, which is the

set of functions φ : D → D that are smooth and smoothly invertible. Under these con-

ditions, an observed object I(x) can be seen as a deformation of a reference object r(x)

with some error due to noise or other confounding factors (I(x) = r(φ(x)) + ε). This

family has proven particularly useful in the field of computational anatomy, where

this group of diffeomorphisms have been used to map regions of interest in organs

to an atlas organ in order to develop biomarkers for disease [53, 54]. In the brain,

for example, diffeomorphisms have been utilized to identify subcortical structures,

such as the hippocampus, that are affected by neurological disorders like Alzheimer’s

Disease and the attention deficiency spectrum [55].

3.2.2 Continuous Metamorphosis Energy

Since the previous methods define an orbit of transformed shapes around a pre-

defined template, if the target shape is not in the family of shapes spanned by trans-
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Figure 3.3: Typical example of homologous form from [50]

formations of the template, then these methods will fail to capture the morphology

change accurately. In the diffeomorphism case, this is usually occurs when there is a

subset of the range of the target signal that does not lie in the range of the template

signal. Since we are only allowed to stretch and compress the domain, the result-

ing observed orbit will not capture the change in range of the target, and thus be

attributed to noise. Given the evolving nature of ion channels and concentrations

in cardiomyocytes from embryonic infancy to maturity along with inter-cellular vari-

ability, this is likely to happen when looking at the cardiac action potentials, and

is indicative of electrophysiological phenomena that should not be discarded. How,

then, do we incorporate changes in range into the deformable template framework?

The method of metamorphosis, as described in [56], extends deformable template

theory, so that not only the target domain is deformed via a diffeomorphism, but

also the target range is transformed as the reference evolves with the deformation.
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As a consequence, instead of remaining in the orbit of one template, metamorphosis

allows for a change of orbits in order to reach the target. In that sense, the Euclidean

interpolation is one such metamorphosis transformation, where all of the evolution is

done via modifying the template, and no deformation of the template is applied. Ide-

ally, by finding the right combination of template transformation and diffeomorphic

deformation, we can evolve an embryonic action potential into mature prototypes, in

a way that preserves the shape of the intermediate action potentials.

More formally, let f0(τ) and f1(τ) be action potentials. As discussed in Chapter

2, assume f0 and f1 are periodic with cycle length T . The objective of metamorphosis

is to find a family of functions f(τ, t) parameterized in t ∈ [0, 1] that defines a path

connecting f0 and f1, i.e., f(τ, 0) = f0(τ) and f(τ, 1) = f1(τ). Specifically, a meta-

morphosis defines a sequence of deformations φ(τ, t) and templates i(τ, t) such that

f(τ, t) = i(φ−1(τ, t), t). A logical initial condition is that there is no deformation at

the beginning of the interpolation, i.e., φ(τ, 0) = id(τ) = τ . This leads to the initial

template being the starting action potential, i.e., i(τ, 0) = f0(τ). Note that when this

template remains constant throughout the interpolation, i.e., i(τ, t) = i(τ, 0) = f0(τ),

then the metamorphosis is a diffeomorphic template family like those discussed pre-

viously.

How do we determine whether one metamorphosis between f0 and f1 is better

than another metamorphosis? This requires defining an energy for a metamorphosis.
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In metamorphosis, the energy is defined as follows:

E(φ, i) :=

∫ 1

0

(∥∥∥∥∂φ∂t (τ, t)

∥∥∥∥2

Φ

+
1

σ2

∥∥∥∥∂i∂t(τ, t)
∥∥∥∥2

I

)
dt, (3.1)

where Φ and I are corresponding metrics for φ and i, respectively. In order to see

how this is obtained, recall that metamorphosis defines a path between f0 and f1,

so a logical choice for an energy is the arc length of the path. We calculate ∂f
∂t

by

following the chain rule:

∂f

∂t
(τ, t) =

∂i

∂τ
(φ−1(τ, t), t)

∂φ−1

∂t
(τ, t) +

∂i

∂t
(τ, t). (3.2)

In order to handle ∂φ−1

∂t
(τ, t), we use the fact that φ(φ−1(τ, t), t) = τ . Taking deriva-

tives with respect to τ and t leads to the following pair of equations:

∂φ

∂τ
(φ−1(τ, t), t)

∂φ−1

∂t
(τ, t) +

∂φ

∂t
(φ−1(τ, t), t) = 0, (3.3)

∂φ

∂τ
(φ−1(τ, t), t)

∂φ−1

∂τ
(τ, t) = 1. (3.4)

Combining the two equations leads to a conversion for ∂φ−1

∂t
(τ, t):

∂φ−1

∂t
(τ, t) = −∂φ

∂t
(φ−1(τ, t), t)

∂φ−1

∂τ
(τ, t). (3.5)
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Substituting this into (3.2), we obtain:

∂f

∂t
(τ, t) = − ∂i

∂τ
(φ−1(τ, t), t)

∂φ

∂t
(φ−1(τ, t), t)

∂φ−1

∂τ
(τ, t) +

∂i

∂t
(τ, t). (3.6)

When t = 0, using the initial conditions described earlier, the above equation becomes:

∂f

∂t
(τ, t)

∣∣∣∣
t=0

= −∂f
∂τ

(τ, 0)
∂φ

∂t
(τ, t)

∣∣∣∣
t=0

+
∂i

∂t
(τ, t)

∣∣∣∣
t=0

. (3.7)

Since ∂f
∂τ

(τ, 0) is defined by the choice of template, (3.7) shows that we can evaluate

the size of the infinitesimal change in the family f via infinitesimal changes in the

deformation φ and template i. Furthermore, we can accumulate each infinitesimal

step of the path in the same way by thinking about a corresponding metamorphosis

starting at f(τ, δt) and finishing at f(τ, 1). Thus, integrating over the entire path

leads to (3.1).

Equation (3.1) requires us do define norms on both ∂φ
∂t

(τ, t), and ∂i
∂t

(τ, t). Let

v(τ, t) = ∂φ
∂t

(τ, t). This is typically called the flow field of the diffeomorphism. Given

the periodicity in f , v is must also be periodic with period T . In order to ensure that

the mapping φ is a diffeomorphism, this flow field needs to be smooth over τ . This is

achieved by employing a norm that not only penalizes the magnitude of the function,

but also the magnitude of the function’s derivatives. For example, ‖v‖V = 〈Lv, Lv〉,

where Lv = v− α ∂2v
∂τ2

. Such norms are known as Sobolev norms. With respect to the

norm on i, the Euclidean norm is an appropriate choice here, as we are looking at
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infinitesimal changes in the template. Substituting these into (3.7) gives us:

E(v, f) =

∫ 1

0

(
‖v(·, t)‖2

V +
1

σ2

∥∥∥∥∂f∂τ (·, t)v(·, t) +
∂f

∂t
(·, t)

∥∥∥∥2

L2

)
dt. (3.8)

Now that we have defined the energy for an individual metamorphosis, we can define

the metamorphosis distance between two action potentials f0(τ), f1(τ) as the smallest

energy metamorphosis connecting the two signals:

d2
M(f0, f1) = min

v,f
f(τ,0)=f0(τ)
f(τ,1)=f1(τ)

E(v, f)

d2
M(f0, f1) = min

v,f
f(τ,0)=f0(τ)
f(τ,1)=f1(τ)

∫ 1

0

(
‖v(τ, t)‖2

V +
1

σ2

∥∥∥∥∂f∂τ (τ, t)v(τ, t) +
∂f

∂t
(τ, t)

∥∥∥∥2

L2

)
dt. (3.9)

3.2.3 Optimization of the Continuous Energy

How do we optimize this metamorphosis energy? Given the complicated nature of

the energy, and the product of v and ∂f
∂τ

leading to some highly non-convex dynamics,

our best approach is probably to alternate optimizing in one of the variables, while

keeping the other fixed, until convergence [57]. The simplest way to do this is via

alternating gradient descent. Fixing f and following the chain rule, variation of the

energy with respect to v(τ, t) is the following:

∇vE =

(
L†L+

2

σ2

(
∂f

∂τ
(τ, t)

)2)
v(τ, t) +

2

σ2

(
∂f

∂τ
(τ, t)

∂f

∂t
(τ, t)

)
, (3.10)
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where L is a Sobolev norm operator (Lv = v − α ∂2

∂τ2
v, for example) and L† is its

adjoint. Obtaining the gradient for f is a bit more involved. Specifically, let us begin

with the energy for a fixed v(τ, t):

Ev(f) =

∫ 1

0

1

σ2

∥∥∥∥∂f∂t (·, t) +
∂f

∂τ
(·, t)v(·, t)

∥∥∥∥2

L2

dt. (3.11)

Computing the variation:

(∇fEv; f̃) = lim
ε→0

1

εσ2

(∫ 1

0

∫ T

0

((∂f
∂τ
v +

∂f

∂t

)
+ ε
(∂f̃
∂τ
v +

∂f̃

∂t

))2

dτdt

−
∫ 1

0

∫ T

0

(
∂f

∂τ
v +

∂f

∂t

)2

dτdt

)
= lim

ε→0

1

εσ2

(∫ 1

0

∫ T

0

(
2ε
(∂f
∂τ
v +

∂f

∂t

)(∂f̃
∂τ
v +

∂f̃

∂t

)
+ ε2

(∂f̃
∂τ
v +

∂f̃

∂t

)2
)
dτdt

)
=

2

σ2

∫ 1

0

∫ T

0

((∂f
∂τ
v +

∂f

∂t

)∂f̃
∂τ
v +

(∂f
∂τ
v +

∂f

∂t

)∂f̃
∂t

)
dτdt

=
−2

σ2

∫ 1

0

∫ T

0

(
∂

∂τ

(
v
(∂f
∂τ
v +

∂f

∂t

))
+
∂

∂t

(
∂f

∂τ
v +

∂f

∂t

))
f̃dτdt. (3.12)

Where the last equality is achieved via integration by parts, and the constraints that

f , f̃ , and v are periodic and that f̃ must keep the endpoints of the metamorphosis

family the same (f̃(τ, 0) = f̃(τ, 1) = 0). Thus, the gradient is a sum of complicated

partial derivatives:

∇fEv = −2
( ∂
∂τ

(
v
(∂f
∂τ
v +

∂f

∂t

))
+
∂

∂t

(∂f
∂τ
v +

∂f

∂t

))
. (3.13)
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Given these two gradients, we can build an alternating descent algorithm to minimize

the continuous energy (3.8).

3.2.4 Closed Form Updates for the Metamorpho-

sis Family f (τ, t)

Can we do any better than just obtaining the gradients? Ideally we would like a

closed form solution for one of the variables when the other is fixed. Unfortunately,

looking at the update for v first, solving this complex PDE for v(τ, t) is outside the

scope of this thesis. Surprisingly, fixing v(τ, t) and solving for f(τ, t), however, can

lead to something more tenable by making a change of variable [58]. Instead of looking

at the optimization over the family f(τ, t), let us return to the sequence of templates

i(τ, t). Let us first recall that f(τ, t) = i(φ−1(τ, t), t) and v = ∂φ
∂t

. We then have the

relationship for the infinitesimal change in the template at any evolution time t:

∂i

∂t
(φ−1(τ, t), t) =

∂f

∂t
(τ, t) +

∂f

∂τ
(τ, t)v(τ, t) (3.14)

This leads to an energy over i instead of f :

Ev(i) =
1

σ2

∫ 1

0

∫ T

0

(
∂i

∂t
(φ−1(τ, t), t)

)2

dτdt. (3.15)
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Note that φ−1(τ, t) is known because v(τ, t) is fixed, but let us decouple it from i by

making the substitution u = φ−1(τ, t) (or φ(u, t) = τ). Then dτ = ∂φ
∂u

(u, t)du and

(3.15) becomes:

Ev(i) =
1

σ2

∫ 1

0

∫ T

0

(
∂i

∂t
(u, t)

)2
∂φ

∂u
(u, t)dudt. (3.16)

Now, we need to minimize this with respect to i. Taking the variation with respect

to i:

(∇iEv; ĩ) = lim
ε→0

1

εσ2

∫ 1

0

∫ T

0

(
∂(i+ ε̃i)

∂t
(u, t)

)2
∂φ

∂u
(u, t)dudt

− 1

εσ2

∫ 1

0

∫ T

0

(
∂i

∂t
(u, t)

)2
∂φ

∂u
(u, t)dudt

= lim
ε→0

1

εσ2

∫ 1

0

∫ T

0

(
2ε
∂i

∂t

∂ĩ

∂t
+ ε2

(
∂ĩ

∂t

)2)
(u, t)

∂φ

∂u
(u, t)dudt

=
2

σ2

∫ 1

0

∫ T

0

(
− ∂

∂t

(
∂i

∂t
(u, t)

∂φ

∂u
(u, t)

)
ĩ(u, t)

)
dudt. (3.17)

Where the last equality is achieved by integration by parts, plus the fact that with a

fixed v(τ, t), i(u, 0) and i(u, 1) are fixed in order to meet the constraint on f(τ, 0) and

f(τ, 1). Any variation ĩ of i still needs to respect the constraint on f , which forces

ĩ(u, 0) = ĩ(u, 1) = 0. So this means that ∇iE = 2
σ2

(
− ∂

∂t

(
∂i
∂t

(u, t)∂φ
∂u

(u, t)
)
. In order
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to find the optimum, we set this gradient to 0:

0 =
∂

∂t

(
∂i∗

∂t
(u, t)

∂φ

∂u
(u, t)

)
=⇒ c(u) =

(
∂i∗

∂t
(u, t)

)
∂φ

∂u
(u, t)

=⇒ c(u)

∫ t′

0

1
∂φ
∂u

(u, t)
dt =

∫ t′

0

(
∂i∗

∂t
(u, t)

)
dt = i∗(u, t′)− i∗(u, 0). (3.18)

Setting t′ = 1 allows us to solve for c(u):

c(u) =
i∗(u, 1)− i∗(u, 0)∫ 1

0
1

∂φ
∂u

(u,t)
dt

. (3.19)

Combining the last two equations:

i∗(u, t′) = i(u, 0)

∫ 1

t′
1

∂φ
∂u

(u,t)
dt∫ 1

0
1

∂φ
∂u

(u,t)
dt

+ i(u, 1)

∫ t′
0

1
∂φ
∂u

(u,t)
dt∫ 1

0
1

∂φ
∂u

(u,t)
dt
. (3.20)

Therefore, the optimal family of templates, i∗(u, t), when the diffeomorphisms φ(u, t)

are fixed, is a weighted sum between the templates at the beginning and the end

of the metamorphosis, and can be computed in closed form. Notice that when the

there is no deformation of the template, i.e., φ(u, t) = id(u) = u∀t, (3.20) simplifies

to linear interpolation. For more complex v, we obtain φ(u, t) by integrating along t

(Recall v(τ, t) = ∂φ
∂t

(τ, t)). More simply, φ(u, t) is determined by putting a particle at

time point u at evolution time 0, and observing its location at evolution time t, given

the flow fields v. Doing this for all time points u allows us to calculate ∂φ
∂u

(u, t). Once
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the family of templates is known, combining them with the deformations allow us to

determine the metamorphosis family (Recall f(τ, t) = i(φ−1(τ, t), t)).

3.3 Discrete Metamorphosis

In the previous section, we defined metamorphosis in the continuous domain and

calculated the gradients in order to determine a scheme to minimize the metamorpho-

sis energy. Further, we showed how to solve for metamorphosis the family f(τ, t) in

closed form given a fixed deformation velocity field v(τ, t). But how do we go about

transferring that into an algorithm implementable by a computer. The obvious ap-

proach is to approximate the differential equations in (3.10) and (3.20) with discrete

difference schemes in order to implement the gradients calculated previously. The

discretized updates, however, are not guaranteed to minimize the continuous energy.

Therefore, this thesis will follow the alternative approach of finding an appropriate

discrete approximation to the energy in (3.8), then determine how to minimize the

discretized energy. This ensures that we develop methods to minimize the given

objective and lead to minimal geodesics.
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3.3.1 Discrete Metamorphosis Energy

As previously discussed, the distance between two action potentials comes down

to solving the following optimization problem:

d2
M(f0, f1) = min

v,f
f(τ,0)=f0(τ)
f(τ,1)=f1(τ)

∫ 1

0

(
‖v(·, t)‖2

V +
1

σ2

∥∥∥∥∂f∂τ (·, t)v(·, t) +
∂f

∂t
(·, t)

∥∥∥∥2

L2

)
dt. (3.21)

Let us first discretize the interpolation parameter t at evenly spaced intervals, namely

ts = s
S
, s = 0, . . . , S. First, we need to identify how to discretize the right summand

of the integral in equation 3.9. Note the following Taylor Series expansion:

f(τ + ∆tv(τ, t), t+ ∆t) = f(τ, t) +
∂f

∂τ
(τ, t)(∆tv(τ, t)) +

∂f

∂t
(τ, t)(∆t) +O(∆t2)

= f(τ, t) + ∆t

(
∂f

∂τ
(τ, t)v(τ, t) +

∂f

∂t
(τ, t)

)
+O(∆t2).

Thus as ∆t→ 0,

f(τ + ∆tv(τ, t), t+ ∆t)− f(τ, t)

∆t
→
(
∂f

∂τ
(τ, t)v(τ, t) +

∂f

∂t
(τ, t)

)
. (3.22)

Letting ∆t = 1
S

, we can approximate the energy in equation 3.9 by the following sum:

d2
M(f0, f1) ≈ min

v,f
f(τ,0)=f0(τ)
f(τ,1)=f1(τ)

S−1∑
s=0

(
‖v(τ, ts)‖2

V +
1

σ2

∥∥∥∥f(τ + 1
S
v(τ, ts), ts+1)− f(τ, ts)

1
S

∥∥∥∥2

L2

)
(3.23)
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Instead of carrying this 1
S

term everywhere in the calculation, note that we can

multiply the entire objective by
1
S2
1
S2

, take the 1
S

2
term in the numerator inside the

norm of v, and bring 1
S

into v by substituting 1
S
v(τ, ts) by v(τ, ts). As a result,

d2
M(f0, f1) ≈ min

v,f
f(τ,0)=f0(τ)
f(τ,1)=f1(τ)

S2

S−1∑
s=0

(‖v(τ, ts)‖2
V +

1

σ2
‖f(τ + v(τ, ts), ts+1)− f(τ, ts)‖2

L2)

(3.24)

Now we can focus on τ . Discretization in τ is done by sampling the signal along an

evenly spaced fixed grid, i.e., τj = j
J
T, j = 0, . . . , J − 1. Including the discretization

in τ leads to the final discretized energy:

d2
M(f0, f1) ≈ min

v,f
f(τ,0)=f0(τ)
f(τ,1)=f1(τ)

S2

S−1∑
s=0

(‖v(τj, ts)‖2
Vd

+
1

σ2
‖f(τj + v(τj, ts), ts+1)− f(τj, ts)‖2

l2),

(3.25)

where Vd defines a discretized Sobolev norm, i.e. ‖v‖2
Vd

= 〈Ldv, Ldv〉, with Ld a

discretized approximation of the Sobolev differential operator L. It should be noted

that this optimization problem is nonconvex due to the composition of f and v in

the second term. Thus it is possible to get caught in a local minimum depending on

the initialization and optimization procedure. We make the choice of initializing the

metamorphosis with the Euclidean interpolation (f(τj, t) = (1 − t)f0(τj) + tf1(τj))

with no flow (v(τj, ts) = 0, j = 0, . . . , J − 1, s = 0, . . . , S − 1), as it is a special

case of metamorphosis. We enforce the constraint on f(τ, 0) and f(τ, tS) by fixing

them to be equal to f0(τ) and f1(τ), respectively. This leaves the set of flow fields
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{v(τj, ts), j = 0, . . . , J − 1, s = 0, . . . , S − 1} and the internal interpolants of the

metamorphosis family {f(τj, ts), j = 0, . . . , J−1, s = 1, . . . , S−1} as the independent

variables to be optimized over.

3.3.2 Optimization of the Discrete Energy

Let Ed = S2
∑S−1

s=0 (‖v(τj, ts)‖2
Vd

+ 1
σ2‖f(τj + v(τj, ts), ts+1) − f(τj, ts)‖2

l2). The

simplest approach to obtaining a local minimum of (3.25) is via gradient descent.

Given the complex interactions of v and f in the right summand of the integral, it is

not obvious how to descend in a joint v and f direction. A more tenable approach

is to fix one set of variables, optimize over the other set, and then switch roles and

repeat this process until convergence. This general process is described in Algorithm

2. In order to do this, we need to be able to calculate the gradients with respect to

v(τj, ts) with f(τj, ts) fixed and vice versa.

Calculating the gradient with respect to f(τj, ts). When v(τj, ts) is fixed

the only term in 3.25 that needs to be optimized over f(τj, ts) is the second term: Let

(Ed)v(f) =
∑S−1

s=0
1
σ2‖f(τj + v(τj, ts), ts+1)− f(τj, ts)‖2

l2 =
∑J

j (f(τj + v(τj, ts), ts+1)−

f(τj, ts))
2. The concern then is that position of the sample τj + v(τj, ts) may not

lie on the fixed grid, and thus has to be approximated by the samples on the fixed

grid. We do this via linear interpolation: Let vs be the vector containing the samples

of v(·, ts), i.e. (vs)j = v(τj, ts), and let Nvs be the matrix the approximates the

values of f(τj + v(τj, ts), ts+1) via the samples f(τj, ts+1): (Nvs)f(τj, ts+1) ≈ f(τj +
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Algorithm 2 Discrete Metamorphosis Optimization

Input: Template Signal f0(τ), Target Signal f1(τ), Balance Parameter σ, Number
of Evolution Intermediates S, Sobolev Operator Ld, Update frequency n, Con-
vergence parameter δ, and Maximum number of Iterations M .

1: Initialization
2: m = 0, d−1 =∞, K = L−1

d .
3: for s = 0, . . . , S do
4: w(τi, ts) ≡ 0, v(τi, ts) = Kw(τi, ts) ≡ 0
5: f(τi, ts) = S−s

S
f0(τi) + s

S
f1(τi). fTs = [f(·, ts)]

6: end for
7: d2

0 ←
∑S−1

s=0 ‖w(τi, ts)‖2
l2

+ 1
σ2‖Nvsfs+1 − fs)‖2

l2

8: while |dm−1 − dm| > δ AND j < M do
9: m← m+ 1

10: for s = 0, . . . , S − 1 do
11: Perform gradient descent to update w(τi, ts) using (3.31).
12: v(τi, ts)← R(Kw(τi, ts)),
13: Nvs ← (3.26).
14: end for
15: for s = 1, . . . , S − 1 do
16: Perform gradient descent to update f(τi, ts) using (3.28).
17: end for
18: d2

m ←
∑S−1

s=0 ‖w(τi, ts)‖2
l2

+ 1
σ2‖Nvsfs+1 − fs)‖2

l2

19: end while
Output: Metamorphosis family fs, Metamorphosis velocity v(τi, ts).

v(τJ , ts), ts+1). Specifically:

(Nvs)mn =



τm+v(τm,ts)
∆τ

− (n− 1) n− 1 <= τm+v(τm,ts)
∆τ

< n

n+ 1− τi+v
∆τ

n <= τm+v(τm,ts)
∆τ

< n+ 1

0 otherwise

. (3.26)
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This allows us to write the second term in vector notation as:

(Ed)v(f) =
S−1∑
s=0

1

σ2
‖Nvsfs+1 − fs‖2

l2 , (3.27)

where fs is the column vector that contains the samples of f(·, ts). It is easy to

calculate from here the gradient with respect to fs as:

∂(Ed)v
∂fs

=
2

σ2
NT

vs−1
(Nvs−1fs − fs−1)− 2

σ2
(Nvsfs+1 − fs). (3.28)

Calculating the gradient with respect to v(τj, ts). Let Ld be the discretized

version of the Sobolev norm operator L, and recall that ‖v(·, ts)‖2
Vd

= 〈Ldv(·, ts), Ldv(·, ts)〉.

Ld can be generated via finite differences, but since we are assuming the action po-

tential is periodic, we are going to utilize Fourier theory to generate the discretized

differential operator. With the following choice of operator Ldv = v−α ∂2v
∂τ2

, we obtain:

u = Ldv = v − α ∂2

∂τ 2
v

=⇒ F(u) = F(v)− α(jω)2F(v)

=⇒ Ldv = F−1((1 + αω2)F(v)). (3.29)

Thus Ld can be computed by taking the Fourier Transform, scaling it by the frequency,

and taking the inverse transform. Instead of operating on v, however, and carrying

this operator throughout the calculations of the gradient, we act on the dummy
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variable w(τ, t) = Ldv(τ, t) and let K = L−1
d . It follows from the previous calculation

that for the choice of operator described earlier, we have K = F−1 1
1+αω2F and is still

easily computable. Making this substitution into (3.25) leads to the following for a

fixed metamorphosis f :

(Ed)f (w) =
S−1∑
s=0

‖w(τ, t)‖2
l2 +

1

σ2
‖f(τ +Kw(τ, ts), ts+1)− f(τ, ts)‖2

l2 . (3.30)

It is important to note that with the metamorphosis family f fixed, the updates to

the flow fields w are decoupled from each other. More specifically, following the chain

rule:

∂Ef
∂w(τ, ts)

= 2w(τ, ts)+
2

σ2
K(f(τ+Kw(τ, ts), ts+1)−f(τ, ts))

∂f

∂τ
(f(τ+Kw(τ, ts), ts+1))

(3.31)

3.3.3 Closed Form Updates for the Discrete Meta-

morphosis Family f (τj, ts)

We have shown how to calculate the gradient of the discrete energy with respect

to both v(τj, ts), j = 0, . . . , J − 1, s = 0, . . . , S − 1 and f(τj, ts), j = 0, . . . , J − 1, s =

1, . . . , S− 1. Just as we did in the case of the continuous energy, we would like to use

these gradients to try to solve for the optimum of some of the variables while others

are fixed. Our hope is that by finding a closed form solution for the optimum, we can
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speed up the metamorphosis calculation, allowing us to work with larger populations

of embryonic cardiomyocytes.

The derivation in section 3.2.4 inspires us to seek a potential discrete analog to

the closed form solution for f(τ, t). More specifically, we seek to find an appropriate

closed form update for fs = f(·, ts), s = 1, . . . , S − 1 for a fixed vs that minimizes the

discrete energy defined in 3.25. We begin by considering the gradient of the discrete

energy with respect to f(τj, ts) (Equation 3.28). Let Ns = Nvs and zs = Nsfs+1 − fs.

Then at the optimum, (3.28) becomes:

zs = NT
s−1zs−1, s = 1, . . . , S − 1. (3.32)

Then, for any s between 1 and S − 1:

zs = NT
s−1N

T
s−2 . . . N

T
0 z0 = RT

0,sz0, (3.33)

where R0,s = N0 . . . Ns−1, or more generally, Ra,b = NaNa+1 . . . Nb−1, for a < b. Note

that Ra,bRb,c = Ra,c for a < b < c. It follows from the definition of zs that

fs = Nsfs+1 − zs = Nsfs+1 −RT
0,sz0, (3.34)
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Let us look at what this equation means, starting from s = S − 1:

fS−1 = NS−1fS −RT
0,S−1z0

fS−2 = NS−2fS−1 −RT
0,S−2z0

= NS−2NS−1fS − (NS−2R
T
0,S−1 +RT

0,S−2)z0

fS−3 = NS−3fS−2 −RT
0,S−3z0

= NS−3NS−2NS−1fS − (NS−3NS−2R
T
0,S−1 +NS−3R

T
0,S−2 +RT

0,S−3)z0

= RS−3,SfS −
( S−1∑
i=S−3

RS−3,iR
T
0,i

)
z0

Following this logic, we have:

fs = Rs,SfS −
( S−1∑
i=s

Rs,iR
T
0,i

)
z0 = Rs,SfS − As,Sz0, (3.35)

where Al,m =
∑m−1

i=l Rl,iR
T
0,i. Every fs is a function of fS and z0. We can replace this

dependence on z0 by looking at this equation when s = 0:

f0 = R0,SfS − A0,Sz0 =⇒ z0 = A−1
0,S(R0,SfS − f0). (3.36)

Substituting this back into equation (3.35):

fs = As,SA
−1
0,Sf0 + (Rs,S − As,SA−1

0,SR0,S)fS. (3.37)
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Thus the optimal metamorphosis interpolants (fs, s = 1, . . . , S−1) for the discretized

energy (3.24) is again a weighted combination of the initial signal f0, and the target fS.

Further, based on the following theorem, this update leads to the same interpolants

as in (3.20) in the continuum limit:

Theorem 1. Let τj = j
J
T for j = 0, . . . , J and cycle length T , and ts = s

S
for

s = 0, . . . , S. Let {f(τj, ts), j = 0, . . . , J}Ss=0 = {fs}Ss=0 be set the metamorphosis

interpolants derived from the discrete interpolant update (3.37):

fs = As,SA
−1
0,Sf0 + (Rs,S − As,SA−1

0,SR0,S)fS

and let fc(τ, t) be the continuous metamorphosis family of interpolants derived from

i(u, t) given by the (3.20):

i(u, t) = i(u, 0)

∫ 1

t
1

∂φ(u,t′)
∂u

dt′∫ 1

0
1

∂φ(u,t′)
∂u

dt′
+ i(u, 1)

∫ t
0

1
∂φ(u,t′)
∂u

dt′∫ 1

0
1

∂φ(u,t′)
∂u

dt′

with i(τ, t) = fc(φ(τ, t), t) and u = φ−1(τ, t). Then, as J → ∞, τj → τ and fs →

f(τ, s
S

). That is,

lim
J→∞

fs = fc(τ,
s

S
). (3.38)

Proof. First, we show that the discrete version of the deforming templates is, given fs

is is = R0,sfs. By definition, i0 = f0. Notice that: i1 = i0+z0 = f0+Nv0f1−f0 = Nv0f1.

In order to calculate i2, we need resample z1 at sample points τj + v(τj, t0) in order
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to correspond to the samples τi at i1. This can be done by multiplying z1 on the left

by Nv0 . Then:

i2 = i1 +Nv0z1

= Nv0f1 +Nv0Nv1f2 −Nv0f1

= R0,2f2. (3.39)

Following this logic for subsequent s gives us is = R0,sfs. Given this, the discrete

update can be re-written as follows:

R−1
0,sis = As,SA

−1
0,Si0 + (Rs,S − As,SA−1

0,SR0,S)R−1
0,SiS

=⇒ is = R0,sAs,SA
−1
0,Si0 + (Id−R0,sAs,SA

−1
0,S)iS, (3.40)

where the last equality is achieved as R0,sRs,SR
−1
0,S = R0,SR

−1
0,S = Id. Before we

continue, let us look at R0,sAs,S:

R0,sAs,S = R0,s

S−1∑
k=s

Rs,kR
T
0,k =

S−1∑
k=s

R0,kR
T
0,k =

S−1∑
k=0

R0,kR
T
0,k−

s−1∑
k=0

R0,kR
T
0,k = A0,S−A0,k.

(3.41)

Thus, putting this back in the previous equation, we get:

is = (Id− A0,sA
−1
0,S)i0 + A0,sA

−1
0,SiS. (3.42)
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We have now re-written the discrete update equation (3.37) in terms of is. We now

allow J → ∞. Naturally, i0 → i(·, 0), iS → i(·, 1), and is → i(·, s
S

). To see what

happens to the operator A0,s, we start with R0,s. Since Nvs relates samples at time

ts+1 to samples at time ts, as J → ∞, Nvs represents the deformation map between

[ts, ts+1]. And since R0,s = Nv0 . . . Nvs−1:

lim
J→∞

R0,si = i(φ(·, s
S

)) = i(φ s
S

(·)). (3.43)

For ease of notation, from now on we will drop the notation s
S

from φ. Now, finding

the limit of the adjoint of R0,s as J → ∞ will equal the adjoint of the operator on

the right. The adjoint of i(φ(·)) can be calculated via a dummy integration:

∫ T

0

i(φ(τ))̂i(τ)dτ =

∫ T

0

i(u)̂i(φ−1(u))
∣∣∂φ−1

∂u
(u)
∣∣du. (3.44)

Thus limJ→∞R
T
0,si = i(φ−1(·))

∣∣∂φ−1

∂(·) (·)
∣∣. Combining the two operators together:

lim
J→∞

R0,sR
T
0,si = i(φ−1(φ(·)))|∂φ

−1

∂(·)
(φ(·))|

= i(·)

∣∣∣∣∣ 1
∂φ
∂(·)(·)

∣∣∣∣∣ (3.45)

The final equality can be seen by taking looking at the derivative of u = φ−1(φ(u)).
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Since A0,s =
∑s−1

i=0 R0,sR
T
0,s it follows that:

lim
J→∞

A0,si = i(·)
∫ s

S

0

| 1
∂φ
∂(·)(·)

|dt. (3.46)

Replacing A0,s and A0,S with this limit and doing some basic math leads to (3.20).

As nice as all of this linear algebra and variational calculus is, there is little benefit

if it does not lead to something that is easy and efficient to implement on a computer.

The next question to tackle is how to implement the closed form update in equation

(3.37). Looking at (3.37), the quantities of particular interest to efficiently calculate

are As,S. Attempting to solve it by its current definition (Al,m =
∑m−1

i=l Rl,iR
T
0,i)

would require us to store all of linear operations Ri,j, which is a large computational

burden. So let us first aim to simplify this calculation:

As,S =
S−1∑
i=s

Rs,iR
T
0,i

= Rs,sR
T
0,s +

S−1∑
i=s+1

NsRs+1,iR
T
0,i

= RT
0,s +NkAs+1,S, (3.47)

This final equation is much better, because we can recursively generate As,S, given

As+1,S, and R0,s, which is a much smaller set than Ri,j. Moreover, by letting Bs,S =

As,SA
−1
0,S and CT

0,s = RT
0,sA

−1
0,S, we obtain the recursion Bs,S = CT

0,s + NsBs+1,S. This
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leads to the following system up backwards and forwards updates:

fs = Bs,Sf0 + (Rs,S − Bs,SR0,S)fS, (3.48)

Rs,S = NsRs+1,S, RS,S = Id, (3.49)

CT
0,s = NT

s C
T
0,s−1, C0,0 = A−1

0,S, (3.50)

Bs,S = CT
0,s +NsBs+1,S, BS,S = 0, (3.51)

with Id being the identity matrix. Using these updates allows us to avoid multiple

calculations of A−1
0,S. Specifically, A−1

0,S can be calculated by the definition of A and the

aggregation of R0,s, which can be kept in order to calculate C0,s. As the optimization

gets closer to the optimum, and v(τ, t) changes by smaller amounts, A−1
0,S can be

updated less often to speed up the optimization.

The updated process is given in Algorithm 3. The update of the velocity remains

the same (3.31), and we again initialize with the Euclidean interpolation. There

are two potential avenues for improving this algorithm. The first, which we have

discussed previously, is to utilize the non-homogeneous differential equation in (3.10)

to determine a closed form update for the velocity v(τ, t) for fixed metamorphosis

interpolants f(τ, t). The other is to find a first order approximation to update the

matrices Ri,j and Al,m for a particular change in the velocity fields ∆v(τ, t). As we get

closer to the optimum, v(τ, t) changes very little, and thus Nk, Ri,j, and Al,m should

also be changing by a small amount. Finding an appropriate ∆Nk,∆Ri,j, and ∆Al,m
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for a given ∆v(τ, t) would alleviate a large number of recalculations during every

update of f and would drastically improve the performance of the metamorphosis

algorithm. This sensitivity analysis is part of future research directions.

3.4 Experiments and Results

3.4.1 Single Cell Recording Dataset

In order to evaluate the potential of the metamorphosis distance for action poten-

tial classification, we compare Algorithm 2 and Algorithm 3 on the dataset generated

by [16]. The dataset of [16] consists of 16 atrial and 36 ventricular cells, which

were manually labeled using biological characteristics of the APs, as described by the

authors. Since the embryonic signals were spontaneously paced, we used the pre-

processing steps described in [59] to adjust their cycle length to 1 second. We then

generated 10 mature atrial and 10 mature ventricular protoype action potentials using

the atrial model of [41] and the ventricular model of [45], respectively, by modulating

the conductances in the ion channels between 80% and 120% of the value of the base

model. These prototypes were paced to have a cycle length of 1 second to match

the embryonic data. All signals were then normalized so that the resting membrane

potential has voltage 0, and the amplitude has voltage 1.

We computed the metamorphosis distance from each of the embryonic cardiomy-

ocytes to each one of the mature prototypes. We selected a balance parameter σ = 0.3,
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Figure 3.4: Metamorphosis Distance as a function of iterations of Algorithm 3

number of interpolants between template and target as 3 (S = 4), and the linear oper-

ator Ld(·) = id(·)−α∆(·), with α = 8. We iterated both Algorithm 2 and Algorithm

3 until they reached convergence or 300 iterations. Generally, all 300 iterations are

unnecessary, as the distance tends to converge much sooner, as shown in Figure 3.4.

Figure 3.5 compares the method of Algorithm 2 and two variants of Algorithm 3

(with A−1
0,S updated each iteration or every 10 iterations) in terms of the final inter-

polations and the distances they produce. We see that there is very little difference

between the three interpolations, and that the three distances are approximately
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equal. The main difference is that our method with A−1
0,S updated every 10 iterations

requires about half the number of iterations than the other methods. Notice that the

metamorphosis method acts to preserve the shape of action potential throughout the

entire hypothesized interpolation.

(a) Euclidean Interpolation: d2M = 376.7744

(b) Algorithm 2: Alternating Gradient Descent in v and f : d2M = 206.8240, Iterations: 74

(c) Algorithm 3: A−10,S updated every iteration: d2M = 208.2602, Iterations: 72

(d) Algorithm 3: A−10,S updated every 10 iterations: d2M = 207.6308, Iterations: 38

Figure 3.5: Five samples of the evolution f(τ, ts) for ts = 0, 0.25, 0.5, 0.75, 1 showing
on columns 1-5, respectively, from left to right, generated by Euclidean interpolation
(row 1), Algorithms 2 (row 2) and 2 versions of Algorithm 3 (row 3, 4). The resulting
distance between f(τ, 0) and f(τ, 1) as well at the number of iterations needed to
reach convergence are also displayed.

Table 3.1 compares the Euclidean distance and three methods in terms of their
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Table 3.1: Comparison of the metamorphosis algorithms in terms of classification
performance and computation time on the Kamp dataset [16].

Euclidean Algorithm Algorithm
Distance Algorithm 2 3 (n = 1) 3 (n = 10)

1 NN Atrial 16/16 13/16 14/16 14/16
1 NN Ventricular 29/36 36/36 36/36 36/36

3 NN Atrial 16/16 13/16 14/16 14/16
3 NN Ventricular 29/36 36/36 36/36 36/36

Avg. Comp Time (s) < 1 17.0181 15.8265 12.0815

classification performance and computation time on the entire dataset. As previously

discussed, classification is done with the 1 nearest neighbor (NN) and 3 NN classifiers,

meaning we classify an AP based on the class of the closest 1 or 3 mature prototypes.

While the Euclidean distance is indeed the fastest to compute, the metamorphosis

distance gives a better classification rate. Moreover, we see that using the closed form

update of Algorithm 3 provides a better classification rate at a reduced computation

time. Further, we investigated the misclassified atrial cells obtained from Algorithm

3. Specifically, notice from Figure 3.6 that the shape of one of the misclassified atrial

cells resembles more a ventricular shape than an atrial one. We observed a similar

result for the other misclassified atrial cell. The findings on this dataset suggest that

our algorithms provide a significant improvement over the current standard.

3.4.2 Optical Data

Given our success on the small patch clamp dataset, we utilized Algorithm 3 on

the much larger dataset consisting of 9 cell aggregates discussed in chapter 2, with
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(a) Closest atrial (b) Closest ventricular

Figure 3.6: Misclassified embryonic atrial AP (blue) and closest mature model APs
(red)

action potentials recorded using the optical mapping technique of [17]. The number of

APs in each cell cluster ranges from 400 to 1000, and the total number of APs in the

dataset equals 6940. Mature prototypes were generated using the same computational

models as in the previous experiment. The signals were paced at a rate of 1.5 Hz

(cycle length of 2
3

seconds), and also normalized to have resting potential voltage 0,

and maximum voltage amplitude of 1.

We computed the metamorphosis distance using Algorithm 3 with n = 1 from each

AP in the dataset to each one of the mature prototypes using the same parameters

as in the patch clamp experiment. The algorithms were run in 2 8-core computer

nodes with 8 hyperthreaded 2.3 GHz CPUs per node. The total time to complete

the analysis on the entire dataset was 13 hours, with individual cell clusters taking

between 50 and 80 minutes.

Figure 3.7 compares the classification results obtained by a 1-NN classifier with
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the Euclidean distance versus the metamorphosis distance for each one of the 9 cell

clusters. We omit the 3 NN results as the results are identical. The blue color

indicates areas where the APs were classified as atrial, and red indicates areas that

were classified as ventricular. While some of the cell clusters present with only 1

phenotype, the majority of the cell clusters present with both phenotypes in varying

concentrations, confirming our clustering results in Chapter 2.

(a) Euclidean 1-NN

(b) Metamorphosis 1-NN

Figure 3.7: 1-NN classification results for each of the pixels in each of the cell aggre-
gates of the optical dataset. Blue indicates that the action potential in that pixel is
closer to the atrial phenotype, while red indicates the action potential is closer to the
ventricular phenotype.

We further investigate the heterogeneous cell clusters. For a pair of these clusters,

we show the cell cluster labeling with the overlay of traces for each class in Fig-

ure 3.8. For the metamorphosis classification, the two classes show distinct shapes,

and they are similar to those described by [16] for embryonic atrial-like and embry-

onic ventricular-like (Figure 1.5). In comparison, the Euclidean classification fails to

capture the distinction between the phenotypes. This confirms that the metamorpho-

sis model is a suitable automated counterpart to manual classification by biologists.
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More importantly, it suggests that the metamorphosis model could be used to reliably

assess the phenotype statistics of populations of APs. As a consequence, the meta-

morphosis model may prove insightful to a growing collection of methods that have

been derived to isolate a particular phenotype of embryonic cardiomyocytes [9,10,34].

Classified Cell Cluster Atrial Signals Ventricular Signals

Figure 3.8: Euclidean (top) and Metamorphosis (bottom) cell cluster classifications
and their corresponding action potentials. The distribution of phenotypes given by
the metamorphosis distance more closely resembles the expert delineation (Figure
1.5) than the distribution given by the Euclidean distance.
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Algorithm 3 Discrete Metamorphosis via Direct Image Computation

Input: Template Signal f0(τ), Target Signal f1(τ), Balance Parameter σ, Number
of Evolution Intermediates S, Sobolev Operator Ld, Update frequency n, Con-
vergence parameter δ, and Maximum number of Iterations M .

1: Initialization
2: m = 0, d−1 =∞, K = L−1

d .
3: for s = 0, . . . , S do
4: w(τi, ts) ≡ 0, v(τi, ts) = Kw(τi, ts) ≡ 0
5: f(τi, ts) = S−s

S
f0(τi) + s

S
f1(τi). fTs = [f(·, ts)]

6: end for
7: d2

0 ←
∑S−1

s=0 ‖w(τi, ts)‖2
l2

+ 1
σ2‖Nvsfs+1 − fs)‖2

l2

8: while |dm−1 − dm| > δ AND j < M do
9: m← m+ 1

10: for s = 0, . . . , S − 1 do
11: Perform gradient descent to update w(τi, ts) using (3.31).
12: v(τi, ts)← R(Kw(τi, ts)),
13: Nvs ← (3.26).
14: for k = 0, . . . , S − 1 do
15: R0,k ← Nv0 . . . Nvk−1

, Rk,S ← Nvk . . . NvS−1
.

16: end for
17: if mod(m,n) = 0 then
18: A0,S ←

∑S−1
j=0 R0,jR

T
0,j, Calculate A−1

0,S.
19: end if
20: CT

0,0 ← A−1
0,S, BS,S = 0

21: for k = 0, . . . , S − 1 do
22: CT

0,k ← NT
vk
CT

0,k−1

23: end for
24: for k = S − 1, . . . , 0 do
25: Bk,S ← CT

0,k +NvkBk+1,S

26: fk ← Bk,Sf0 + (Rk,S − Bk,SR0,S)fS
27: end for
28: end for
29: d2

m ←
∑S−1

s=0 ‖w(τi, ts)‖2
l2

+ 1
σ2‖Nvsfs+1 − fs)‖2

l2

30: end while
Output: Metamorphosis family fs, Metamorphosis velocity v(τi, ts).
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Chapter 4

Automated Clustering and

Classification based on Schild’s

Ladder in the Metamorphosis

Metric Space

With the metamorphosis distance, we have provided a method to help predict

the phenotype of embryonic cardiomyocytes based on action potential morphology.

However, as evidenced by the optical mapping data experiment, it might still be

difficult to distinguish, at the decision boundary in particular, what makes a cell

more likely to be one phenotype over another. Furthermore, there is some literature

that has suggested that the AP shape alone may not be sufficient to identify the
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phenotype of a cardiomyocyte [60]. Recall from Figure 1.1 that the action potential

is the electrophysiological output of a complex nonlinear system. While some of the

factors that influence the output are intrinsic to the cardiomyocyte, such as number

of sodium or potassium channels, external factors, such as the stimulus and its rate of

occurrence, its connectivity to other cardiomyocytes, or the presence or absence of a

drug that targets specific ion channels (Recall Figure 1.3) also play a vital role in the

output of the system. The authors of [60] suggest that by taking a snapshot action

potential of the system, those factors are effectively being discarded, and it might

be those factors that are influencing phenotype classification. By leveraging various

external conditions, one should be better able to identify the internal characteristics

of the cardiomyocyte and better ascertain its phenotype.

This suggests that multiple action potential recordings of a cardiomyocyte under

different environmental conditions may help alleviate these concerns regarding phe-

notype identity. Let us suppose that we have multiple observations of a cardiac action

potential at different external conditions. One approach to identify the phenotype of

the query cardiomyocyte is to classify each of the individual observations, and then

aggregate the outputs via a voting or other aggregation system to assess the pheno-

type of the heart cell. This approach is simple, and we have provided a framework to

do the first part of this strategy in Chapter 3. However, this requires training data

at each of the observed conditions, which could lead to a very large computational

overhead.
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A more sophisticated approach would be to analyze the trajectory of the action

potential with respect to the alteration of external conditions. Since the different

phenotypes of cardiomyocytes are intrinsically governed by different sets of differen-

tial equations, it is not unreasonable to believe that, under an appropriate external

condition, the cardiomyocytes of different phenotypes will exhibit different reactions

to the change in the environment. Thus subjecting cells to a common change in the

environment will provide insight into the intrinsic features of a cardiomyocyte that

should be shared amongst cardiomyocytes of the same phenotype. This belief is al-

ready being utilized in anti-arrhythmic drugs that target fibrillation in one chamber

over another [61]. By identifying the discriminating factors of drug responses across

phenotypes of adult cardiomyocytes, we should be able to transfer that insight to the

embryonic cardiomyocytes in order to augment the classification procedure.

Besides phenotype classification, this analysis can help answer additional scientific

inquiries. Identifying drug sensitive/resistant populations is of particular interest in

the cardiac community. For example, Braam and colleagues suggested that there was

a repolarization reserve, or redundancy, linked to the slow acting potassium rectifier

that has an effect on how resilient cardiomyocytes are to alterations in the fast acting

potassium rectifier channel [62]. By observing the trajectories of the action potential

with respect to blockages in fast rectifier, we should be able to verify this observation.

Providing additional methods for assessing the drug response of a population may

prove helpful in isolating other such characteristics of cardiomyocytes.
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As methods for isolating cardiomyocyte populations continue to improve, another

question worth asking along the lines of the previous drug screening examples is

whether cardiomyocytes derived by these specific cell lines and protocols react simi-

larly to a treatment or drug or not, or how a certain cell line interacts with different

classes of drugs. Some commercial cell lines have performed some analysis of the

reaction of their products reaction to certain commonly investigated drugs [4,63], but

this is still largely unexplored electrophysiologially. Comparatively assessing whether

two cell lines differ in their reaction to a drug, and where in the action potential mor-

phology the lines differ, provides information about the mechanistic differences of the

derived cardiomyocytes that biologists can use to identify which cells will be better

suited for a particular treatment strategy. Additionally, there has been preliminary

work in utilizing machine learning techniques based on random forests to identify

certain beating rate modulators by their effect on the action potential [64]. Expand-

ing upon these ideas could provide insight into learning a prototypical response to

a specific drug, and utilizing those prototypes to identify what the effect of a newly

developed drug therapy has on these particular tissues of cardiomyocytes.

Currently, similar to the classification problem discussed in the previous chapter,

the discriminating factors of these drug studies are the action potential features such

as duration, amplitude, and slope. Not only does this analysis discard most of the

signal, which could provide more insight into the machinery of the drug action, but

also it is not clear how appropriate these comparisons are. A comparison based on
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raw change in features does not transfer across members of the population: a change

of 100 ms in APD50 means different things if the original APD50 was 300 ms vs 450

ms. The simplest way around this is to look at the percentage of change in the APD

features, which is unit-less, but even this is still sensitive to initial value of the feature.

The metamorphosis algorithm from Chapter 3 not only provides us a distance from

which to assess similarity between action potentials, but also defines a trajectory

describing the transformation between the template and the target. In particular,

the velocity fields that define the diffeomorphism and the infinitesimal changes in

the template provided by this trajectory may provide additional information that

discriminates one cell from another. Utilizing these metamorphosis features may

provide enough depth to be able to characterize not only the effect of a treatment,

but also the subtleties that differentiate various treatments or individuals.

However, if the standard action potential features were sensitive to the initial

condition of the action potential, the sensitivity of these metamorphosis features are

far worse. Given the temporal structure of the action potential and the corresponding

metamorphosis features, a velocity field that acts at a time τ might mean very different

things depending on which phase of the action potential cycle the cardiomyocyte is in.

How then, do we make these metamorphosis features comparable in order to identify

meaningful functional differences in cardiomyocytes? In this chapter, I will describe

how differential geometry provides a solution to the problem, and provide a novel

implementation of this solution in metamorphosis space.

85



CHAPTER 4. DRUG RESPONSE BASED AP ANALYSIS

4.1 Parallel Transport for Metamorphosis

(a) Erroneous Comparison (b) Appropriate Comparison

Figure 4.1: Comparing observations on the sphere. (left) The two vectors appear
different at face value, but this difference stems from the fact that they are encoding
information from different parts of the sphere, (right) By moving the red vector to
the location of the blue vector while maintaining its tangent information, one can see
that the vectors correspond to similar behaviors

One of the consequences of identifying the metamorphosis metric as a method for

action potential analysis is that action potentials lie in a curved manifold. In order

to see, in another way, how features can be influenced by where in the manifold the

feature is coming from, let us first look at a much simpler manifold, like a sphere

(Figure 4.1). The blue and red vectors appear to be different; they point in different

directions. However, they both appear to encode the same tangent action. Under the

normal Riemannian metric on the sphere, the analog of the red vector at the location

of the red vector is a vector that points to the left, preserving its tangent information.

Once we look at the two vectors at the same point on the circle, it is clear that the
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vectors correspond to similar actions.

Following the example of the sphere, in order to compare different trajectories

of drug activity, we should attempt to carry the trajectories to a common frame of

reference in a way that preserves the information of each trajectory. In the differential

geometry literature, the notion of preserving the information in the trajectory is

defined by requiring the final trajectory at the new frame of reference to be parallel

to the original trajectory at its original starting point. Specifically, if V0 is a vector

field at a point s(t0), and we have a differentiable curve s(t), t ∈ [0, 1], then V (t) is

parallel at time point s(t) to V0 if:

∇ṡ(t)V (t) = 0, (4.1)

where∇y is the covariant derivative in the direction y, and ṡ(t) is the (time) derivative

of the s(t). This is appropriately known as parallel transport [65]. In the spherical

example (Figure 4.1), in order to transport the vector from the equator of the sphere

to the north pole, under the standard spherical metric, the vector has to rotate while

traveling along the arc of the circle. As a result, we can see that the resulting trans-

ported vector is indeed similar to the other vector defined at this frame of reference.

Unfortunately, parallel transport in the space of action potentials with the metamor-

phosis metric is not that simple.
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4.1.1 Defining an Appropriate Atlas, or Frame of

Reference

The first step of parallel transport is picking an atlas, or a frame of reference where

all members of the population are going to be compared. A simple choice for this is a

random member of the population. On the plus side, this requires no computational

overhead, which in larger populations could prove useful. One major concern is the

biased nature of this selection. If the randomly chosen reference is an outlier of the

population, then the resulting parallel transport may include features of the outlier

that are not indicative of the change in the environment, but rather the behavior of

the outlier, potentially harming the resulting analysis.

A typical choice for a reference is the “center” of the data. This is typically

found using the Fréchet mean. Given a collection of data points {xi} and a dis-

tance metric d on the population space, the Fréchet mean x̄ of the population is

the point that minimizes the total square distance to population. Mathematically,

x̄ = arg minp
∑

i d
2(p, xi). It is not difficult to show that the well known arithmetic

mean is the Fréchet mean under the Euclidean distance.

How do we calculate the Fréchet mean in the space induced by the metamorphosis
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metric dM? Let us start with a collection of P action potentials {f̃i}Pi=1:

f̃ = arg min
f

P∑
i

d2
M(f, f̃i)

= arg min
f

P∑
i

min
vi,fi

fi(τ,t0)=f

gi(τ,tS)=f̃i

S−1∑
s=0

(‖vi(τ, ts)‖2
V +

1

σ2
‖fi(τ + vi(τ, ts), ts+1)− fi(τ, ts)‖2

l2).

(4.2)

We have an optimization problem over f , vi, and f̃i. When f is fixed, updating vi

and f̃i is done by calculating the metamorphosis between f and f̃i. Either of the two

algorithms discussed in the previous chapter will work here. Once the optimal vi and

fi are found. We fix them in order to update f . The only terms in this sum that

involve f are those at s = 0, since f = f̃i(τ, 0). The resulting optimization problem

is:

f̃ = arg min
f

P∑
i

1

σ2
‖f̃i(τ + vi(τ, t0), t1)− f‖2

l2). (4.3)

Taking the derivative with respect to f and setting it to 0, shows the update for f is the

arithmetic mean of the undeformed first interpolants: f ∗ = 1
P

∑P
i f̃i(τ + v(τ, t0), t1).

After updating f it is fixed in order to refine the estimates of vi and f̃i. The initial

choice for f is the Euclidean (arithmetic) mean of {f̃i}, and can be used if the varia-

tions in the population are small. Notice that the resulting algorithm for computing

the Fréchet mean entails computing P metamorphoses at every iteration, which, de-

pending on the number of iterations, could be computationally expensive, but in
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general this algorithm requires fewer iterations, both internally with the metamor-

phosis updates, and externally over the update of f because the deformations are

typically small.

Another way to pick a good atlas is by picking a member of the population more

intelligently than by chance. Instead of calculating a mean, one could find a medoid

(similar to a median) of the data. Like the Fréchet mean, a medoid minimizes the

total distance to the entire population, but with the additional constraint that it has

to be a member of the population. More specifically, the medoid M of a set of action

potentials {f̃i}i = 1P is defined as:

M({f̃i}) = arg min
{f̃i}Pi

P∑
j

d2(f̃i, f̃j). (4.4)

Notice that the medioid can be a computed in a straightforward manner by first

calculated the matrix of squared pairwise distance across the dataset (see Chapter

2) and then finding the row of the matrix with the smallest sum. While this can be

computational intense when the distance d is the metamorphosis distance, this can be

still more efficient that computing the Fréchet mean when the latter requires a large

number of iterations. Another advantage of the medoid is that its shape corresponds

to that of an action potential, as the medoid is equal to one of the action potentials

in the dataset.

A comparison of the mean and medoid for a population of data in shown in Figure
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4.2. The two references differ primarily in the phase 3 repolarization, as the medoid

has a steeper repolarization phase. The flatter slope in the mean is likely due to

the starting initialization being the Euclidean mean. In this case, since the medoid

represents a member of the population, and the population doesn’t vary wildly, it is a

better reference to use, as the phase 3 repolarization in the medoid is more coherent

with the rest of the data than the Fréchet mean.

Figure 4.2: Mean Vs. Medoid of a population of 40 simulated ventricular cardiomy-
ocyte action potentials using [45]
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4.1.2 Schild’s Ladder in the Metamorphosis do-

main

Now that we have appropriately chosen a frame of reference, we can discuss how

to perform parallel transport to the chosen atlas. Like the circle, we have shown back

in chapter 3 that the space of action potentials is not flat, since linear combinations

of action potentials do not generate additional action potentials. However, unlike

the sphere, the shape of the space of action potentials is unknown. This makes

finding parallel transport in this space, like the case of the sphere, very difficult. If

we, instead, take small enough steps towards the atlas, we can approximate parallel

transport with parallelogrammoids, or parallelograms in curved spaces. This was the

idea of Alfred Schild, who formalized this mathematically into a construction now

appropriately called Schild’s Ladder [66,67].

We now formally discuss the construction of Schild’s Ladder. Please refer to

Figure 4.3 for additional visual aid. Suppose C0 is original template point, and T0

is original target such that the segment C0T0 is to be transported to a reference CN .

Let C1, . . . , CN−1 be intermediates between C0 and CN . Given C0, T0, and C1, first

find the shortest distance (geodesic) path between T0 and C1. This is depicted in gray

in Figure 4.3. This defines one diagonal of the parallelogram. Define the midpoint of

this segment as H0.5. In order build the other diagonal, calculate the geodesic between

C0 and H0.5 and calculate the arc length l of the geodesic. Since one of the defining
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Figure 4.3: Schild’s Ladder Schematic

properties of parallelograms is that the intersection of the diagonals, in this case H0.5,

bisects both diagonals, extend this new geodesic until it has length 2l. The point

where this geodesic ends is the approximation of the transported target T1 at the

new starting point C1, e.g. C1T1 approximates the parallel transport of C0T0 at C1.

Repeat this process until you arrive at CN , then TN defines the transported target.

The accuracy of the approximation is dependent on the curvature of the segments

connecting Ci and Ci+1, so smaller steps are better as the curvature is closer to flat.

How does one apply Schild’s Ladder to the space defined by the metamorphosis

distance? First, we need to identify the geodesic in the metamorphosis metric be-

tween the original template C0 and the point of reference CN , as well as the geodesic
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between C0 and T0. This can be done via the metamorphosis algorithms (Algorithms

2 and 3) presented in chapter 3. The intermediates in the C0CN metamorphosis can

be used to define Ci. We can use the metamorphosis algorithms to find the geodesic

between Ci+1 and Ti, and from Ci to Hi+0.5. The only remaining step is to determine

how to extend a previously defined geodesic path. This process is typically referred

to as geodesic shooting. The general idea is that, by definition, minimizing the meta-

morphosis distance between two action potentials creates a geodesic. So by defining

relationships achieved at the optimum of the metamorphosis algorithm, and following

those relationships at subsequent, extrapolated points in the path, the resulting path

is still a geodesic. So let us look at the governing equations of our boundary value

metamorphosis problem (see equation (3.24)):

∇w(τ,tk)E = w(τ, tk) +
1

σ2
K((f(τ +Kw(τ, tk), tk+1)− f(τ, tk))

∂f

∂τ
(τ +Kw(τ, tk), tk+1)

≈ w(τ, tk) +
1

σ2
K(Nv(τ,tk)f(τ, tk+1)− f(τ, tk))

∂

∂τ
Nv(τ,tk)f(τ, tk+1), (4.5)

w(τ, tk) = Lv(τ, tk), (4.6)

∇f(τ,tk)E ≈
1

σ2
(NT

v(τ,tk−1)z(τ, tk−1)− z(τ, tk)), (4.7)

z(τ, tk) = Nv(τ,tk)f(τ, tk+1)− f(τ, tk). (4.8)

Recall that w and z are dummy variables defined to simplify the optimization (see

3.31 and 3.32) Let w∗, v∗, f ∗, and z∗ be the optimal parameters of any boundary

value metamorphosis problem. These parameters then must set the gradients in the
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previous set of equations to 0, since they are optimal. This leads to the following set

of equations at the optimum:

0 ≈ w∗(τ, tk) +
1

σ2
K(Nv∗(τ,tk)f

∗(τ, tk+1)− f ∗(τ, tk))
∂

∂τ
Nv∗(τ,tk)f

∗(τ, tk+1),

w∗(τ, tk) = Lv∗(τ, tk),

0 ≈ 1

σ2
(NT

v∗(τ,tk−1)z
∗(τ, tk−1)− z∗(τ, tk)),

z∗(τ, tk) = Nv∗(τ,tk)f
∗(τ, tk+1)− f ∗(τ, tk).

Rearranging the equations leads to the following series of updates, which allow the

continuation of the geodesic:

w∗(τ, tk) ≈ −
1

σ2
K(z∗(τ, tk))

∂

∂τ
(z∗(τ, tk) + f ∗(τ, tk)), (4.9)

v∗(τ, tk) = Kw∗(τ, tk), (4.10)

z∗(τ, tk) ≈ NT
v∗(τ,tk−1)z

∗(τ, tk−1), (4.11)

NT
v(τ,tk)Nv∗(τ,tk)f

∗(τ, tk+1) = NT
v(τ,tk)(z

∗(τ, tk) + f ∗(τ, tk)). (4.12)

There are two things of note from these equations. First, the template evolution

z(τ, tk) = Nv(τ,tk)f(τ, tk+1)− f(τ, tk) is the primary driver of the extension equations.

Given z(τ, tk) and f(τ, tk) one can calculate v(τ, tk) and f(τ, tk+1). This allows us

to calculate z(τ, tk+1), continuing the geodesic shooting procedure. Thus, z(τ, tk) is

often called the momentum of the metamorphosis. Second, we have multiplied the
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last equation by NT
v(τ,tk) to improve numerically solving for fk+1 via methods like

preconditioned conjugate gradient. Even with the help of these numerical methods,

the continuation of f runs a risk of instability, since it is not immediately clear that

Nv is invertible, or if the inverse is well-conditioned if it does exist. Since Nv is

computed via linear interpolation, invertibility can be ensured, at least, when the

maximum absolute value, or the ∞-norm, of the velocity field is less than half of the

discretized sampling of the action potential signal. Following this condition ensures

that Nv is strictly diagonally dominant, a sufficient condition for invertibility. As

we will show, however, invertibility is insufficient. Figure 4.4 compares 2 qualitative

constant velocity fields, one ”small” velocity field such that the interpolation matrix

is close to the identity, and a larger velocity field that is still invertible. While Nv

appears innocuous, the difference in the inversion of NT
v Nv is fairly significant, as we

see oscillatory behavior as the velocity increases. This oscillation does not appear to

manifest when the signal is smooth, but as soon as one deviates from smoothness, as

in the triangle example in Figure 4.5, this behavior can cause a wildly unstable output.

Thus when the velocity is small, the closer to the identity we are, and the more likely

we are to avoid these unstable extensions, especially at aggressively varying portions

of the action potential like phase 0 upstroke.

With the equations for geodesic shooting defined, we can construct the Schild’s

Ladder, using the procedure summarized in Algorithm 4. Since, as we have discussed,

smaller geodesic extensions are typically more stable than larger geodesic extensions,
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(a) Nvlow (b) (NT
vlow

Nvlow)−1

(c) Nvhigh
(d) (NT

vhigh
Nvhigh

)−1

Figure 4.4: Comparison of Nv and (NT
v Nv)

−1 for two different constant velocities: a
small velocity field, where Nv is close to the identity (top row), and a larger velocity
field which deviates from the identity (bottom row). The plots show values for the
specific row of the matrix on its left coded in black.

(a) fvlow2 , sinusoid (b) fvlow5 , sinusoid (c) fvlow2 , triangle (d) fvlow5 triangle

(e) f
vhigh

2 , sinusoid (f) f
vhigh

5 , sinusoid (g) f
vhigh

2 , triangle (h) f
vhigh

5 triangle

Figure 4.5: Stability analysis: ladder steps of test signals with “low” (top) and “high”
(bottom) velocity fields
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Algorithm 4 Schild’s Ladder Computation for Metamorphosis

Input: Original Template C0(τ), Original Target T0(τ), New Template CS(τ), and
metamorphosis parameters: Balance σ, Sobolev norm Ld, Number of Evolution
Intermediates S, Convergence parameter δ, and Maximum number of Iterations
M .

1: Initialization
2: Compute the metamorphosis (vcc, fcc) between C0(τ) and CS(τ). Let Ci(τ) =
fc(τ, ti), i = 1, . . . , S − 1.

3: Compute the metamorphosis (vct, fct) between C0(τ) and T0(τ). Pick T̃0(τ) =
ft(τ, t1).

4: for i = 0, . . . , S − 1 do
5: Compute the metamorphosis (vi, fi) between Ci+1(τ) and T̃i(τ).
6: Hi+0.5(τ) = fi(τ, tS/2+1).
7: Compute the metamorphosis (vi+0.5, fi+0.5) between Ci(τ) and Hi+0.5(τ).
8: Use the geodesic extension equations (4.9) - (4.12) to extend the (vi+0.5, fi+0.5)

metamorphosis from S intermediates to 2S intermediates.
9: T̃i+1(τ) = fi+0.5(τ, t2S)

10: end for
11: Compute the metamorphosis (vs, fs) between CS(τ) and T̃S(τ).
12: Use the geodesic extension equations 4.9 - 4.12 to extend the (vs, fs) metamor-

phosis from S intermediates to S2 intermediates. TS(τ) = fs(τ, tS2).
Output: Transported Target TS(τ).

included in the algorithm is the following step. Instead of transporting the entire

geodesic from C0 to T0, let T̃0 be the first intermediate along the geodesic connecting

C0 and T0. Then transport the geodesic C0T̃0 via the ladder algorithm to obtain T̃N .

After calculating the transported geodesic, obtain TN by extending T̃N back to the

appropriate length. The benefit of this additional step is that instead of calculating

N large geodesic extensions, this approach calculates N much smaller extensions and

finishes with only 1 large extension, thus improving stability of the algorithm.
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4.2 Experiments

In this section, we present several experiments to show how approximate par-

allel transport via Schild’s Ladder can be applied to typical studies in the biology

community, and how the resulting analyses are improved by this algorithm and the

metamorphosis features.

4.2.1 Drug Sensitivity Analysis

In this first experiment, we use simulated action potential data to show the appli-

cability of the metamorphosis features and our derived Schild’s ladder algorithm to

identify a drug sensitive population of cardiomyocytes. More specifically, we generate

simulated 40 ventricular action potentials via the O’Hara ventricular model [45] by

modulating the conductances of the ion channels between 80% and 120%. Half of

the population, however, have an additional systemic 50% conductance block of the

slow acting potassium rectifier (Ks) channel, simulating a loss in the repolarization

reserve as described in [62]. The resulting population is then subjected to increasing

conductance blocks in the fast action potassium rectifier (Kr), starting with at a 25%

blockage and finishing at 45%. The population under the affect of the Kr blockage

is shown in Figure 4.6. The action potentials are smoothed with a Gaussian filter to

help the stability of the ladder algorithm.

Without knowing which action potentials belong to the “at-risk” group, we would
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(a) 0% gKr Block (b) 25% gKr Block

(c) 45% gKr Block

Figure 4.6: Population of 40 APs synthesized with the O’Hara model. The control
population consists of 20 APs synthesized by modulating the conductance of the ion
channels between 80% and 120%. The at-risk population consists of 20 APs with an
additional 50% conductance block of the slow action potassium channel. The entire
population is recorded at 0%, 25%, and 45% conductance blocks of the fast action
potassium channel.
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like to use the change in the action potential morphology to identify which cardiomy-

ocytes have a reduced repolarization reserve (i.e. blockage in the Ks channel). Fol-

lowing the established standard of looking at the action potential duration features,

we obtain the APD30, APD50, APD80 features of the signals at each stage of the gKr

blockage. To follow the conventional approach to identification, the percent change in

these features between no block and 25% block and between 25% and 45% are shown

in Figure 4.7. In order to see if they separate into the normal and at-risk groups auto-

matically, we perform our spectral clustering algorithm into 2 groups with these dif-

ference features. Specifically, the percent changes are concatenated into a vector y =

[%∆APD0→25
30 ,%∆APD0→25

50 ,%∆APD0→25
80 ,%∆APD25→45

30 ,%∆APD25→45
50 ,%∆APD25→45

80 ],

and the weight w(i, j) is Gaussian kernel of the Euclidean distance between the vec-

tors: w(i, j) = e
‖yi−yj‖

2

σ2 , with σ2 being the average squared distance over all pairs.

The ground truth labeling and the output of the spectral clustering result is shown in

Figure 4.7. Notice that these features are not enough to resolve the difference between

the two populations. In addition to looking at the accuracy of the labeling generated

by spectral clustering, by building the graph for the spectral clustering process, we

can look at the cost of cutting the graph according to the ground truth labeling.

Recall that the cut cost ranges from 0 to 1 with lower meaning better separation

between the defined groups. The cut cost is shown for the APD features in Table 4.1,

where it does not suggest a particularly strong separation between the control and

at-risk populations.
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Table 4.1: Accuracy of predicted labels and the cut cost of spectral clustering sepa-
ration based on APD and Metamorphosis feature sets

Feature Set Predicted Label Result SCC Result
%∆ APD Features 27/40 0.4664

Momentum z(τ, 0): Pre-Ladder 23/40 0.5065
Momentum zSL(τ, 0): Post-Ladder 24/40 0.4862

Velocity v(τ, 0): Pre-Ladder 32/40 0.4180
Velocity vSL(τ, 0): Post-Ladder 39/40 0.3486

(a) 0% → 25% gKr Block

(b) 25% → 45% gKr Block

Figure 4.7: Plots of the percent change in APD30, APD50, and APD80 as the blockage
in the conductance of the Kr channel increases from 0% to 25% (top) and 25% to
45% (bottom). The left figures show the assignments of the data according to the
spectral clustering algorithm, while the right figures show the true assignments. Red
indicates the control population, while blue indicates the at-risk population
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In order to cluster based on the metamorphosis features, we first calculate a meta-

morphosis between the action potentials of no and 25% block and 25% and 45% block

via Algorithm 3. After computing this metamorphosis, we look at the initial momen-

tum (z(τ, t0) = Nv(τ,t0)f(τ, t1) − f(τ, t0)) and the initial velocity (v(τ, t0)) as two

different features of the metamorphosis. Similar to the APD features, spectral clus-

tering is performed on these metamorphosis features by concatenating the features

and using the Gaussian kernel, but the Euclidean distance is used on the momentum,

while the Sobolev norm is used on the velocity fields. The table with the resulting

clustering accuracy and the cut cost of the ground truth labeling is provided in Table

4.1. Observe that the momentum does not improve the clustering result, but the

velocity appears to the resolve the difference between the trajectories better than

the APD features. However this result is not as helpful because the features are

not aligned. We then transport the features to the medoid of the population via

Schild’s Ladder (Figure 4.2), and denote the transported momentum and velocity

features as zSL(τ, 0) and vSL(τ, 0), respectively. Spectral clustering is performed on

the transported features, and while this does not dramatically improve the momen-

tum feature’s ability to segregate the at-risk population from the normal population,

the clustering based on the velocity feature greatly improves after parallel transport,

performing the best of all features at self separating the two populations.
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(a) 0% → 25% gKr Block: Pre-Ladder z(τ, 0)

(b) 25% → 45% gKr Block: Pre-Ladder z(τ, 0)

(c) 0% → 25% gKr Block: Post-Ladder zSL(τ, 0)

(d) 25% → 45% gKr Block: Post-Ladder zSL(τ, 0)

Figure 4.8: Metamorphosis momentum features before (a,b) and after (c,d) parallel
transport. The hypothesized at-risk population as a result of the spectral clustering
algorithm is presented in the left column, while the ground truth at-risk population is
presented in the right column. Red indicates control population, while blue indicates
at risk population. 104
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(a) 0% → 25% gKr Block: Pre-Ladder v(τ, 0)

(b) 25% → 45% gKr Block: Pre-Ladder v(τ, 0)

(c) 0% → 25% gKr Block: Post-Ladder vSL(τ, 0)

(d) 25% → 45% gKr Block: Post-Ladder vSL(τ, 0)

Figure 4.9: Metamorphosis velocity features before (a,b) and after (c,d) parallel trans-
port. The hypothesized at-risk population as a result of the spectral clustering al-
gorithm is presented in the left column, while the ground truth at-risk population is
presented in the right column. Red indicates control population, while blue indicates
at risk population. 105
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4.2.2 Drug Comparison on a Single Cell Line

The purpose of this experiment is to define a drug response profile for a particular

population of cardiomyocytes derived from a particular cell line/protocol. Popula-

tions of Cor.4U cardiomyocytes (Axiogenesis, Cologne, Germany) are isolated into

monolayers and each of the monolayers and are subjected to a different concentration

of various ion channel blockers and drug compounds, some of which have been pre-

viously implicated in arrhythmias [68–71]. Action potential recordings from the cells

before and after their selected treatment is provided in Figure 4.10. The goal of the

experiment is to potentially identify groups of drugs that effect the cardiomyocyte

action potential in a similar way, and whether that is an indicator of the arrhythmic

potential.

Figure 4.10: Cor.4U cardiomyocytes before (left) and after (right) prescribed drug
treatment before transport.

Even without the ladder, there are some clear differences between some of the

treatments. For example, it is clear to see that the Nifedipine treatment produces a
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radically different response than the others, as it is the only treatment that reduces

the action potential duration. The separation between the other treatments is less

clear. The percent change in APD features in the remaining treatments (Figure 4.11)

suggests at least 2, and perhaps as many as 4, distinct effects. The hope is that the

metamorphosis features will be better equipped to discriminate between the drugs

because of the additional information being encoded. However, it is hard to make

appropriate comparisons before the ladder, as the features are not aligned due to the

variability in the starting population.

Figure 4.11: Change in APD30, APD50 and APD80 (left), Metamorphosis Momentum
(center), and Metamorphosis Velocity (right) as a result going from the pre-treatment
to post-treatment state for the individual treatments on the Cor.4U Cardiomyocytes
before parallel transport

To reduce this variability, we construct a ladder from each of the individuals to

the mean of the population. While the effect on the action potential features is not

clearly pronounced (Figure 4.12), the effect of transport to align the metamorphosis

features is more significant, as now the velocity fields are coherent with each other.

To see whether this effect is significant, we look at the clustering fitness of the drugs

by their treatment before and after transport. Spectral clustering is performed with
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Figure 4.12: Change in APD30, APD50 and APD80 (left), Metamorphosis Momentum
(center), and Metamorphosis Velocity (right) as a result going from the pre-treatment
to post-treatment state for the individual treatments on the Cor.4U Cardiomyocytes
after parallel transport

a σ equal to the average distance of features between cells of the same group. Before

the ladder, the APD features appear to separate the group the best, but once the

features being compared are coherent with each other, the metamorphosis velocity

has additional information to better separate the cardiomyocyte population (Table

4.2).

Table 4.2: Spectral clustering costs of separation schemes of the treatments on the
Cor.4U cardiomyocyte dataset

Clustering Groups Feature Set Pre-Ladder Cost Post-Ladder Cost
Each Treatment APD 0.4189 0.4353

Separately Momentum 0.5090 0.6108
Velocity 0.5642 0.3784

Combining APD 0.3219 0.3406
Moxifloxacin and Momentum 0.4316 0.5454

Flecainide Velocity 0.4949 0.2735

In particular, we want to note two things. First, Moxifloxacin and Flecainide

appear to have the same action on the cell population. Regardless of feature, the two

drugs aggregate together. To verify this, we compare the cut cost of considering them

as one group instead of two separate groups. The cut cost (CC, (2.14)) reduces for
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all of the groups by combining these treatments, suggesting that considering them

one treatment is a better fit on this population than considering them separate. This

result is interesting because the two drugs are not usually implicated in targeting

the same channels, yet their multiple channel effects generate the same change in the

action potential. Second, the effect of Mexiletine does not appear distinctly in the

APD or metamorphosis velocity feature, but is more pronounced in the momentum

feature. We verify this by looking at the cut cost of separating Mexiletine from the rest

of the population using all three sets of features in Figure 4.13. The reduced cut cost

further indicates that Mexiletine’s effect on the action potential is best characterized

by the momentum feature. This result, and how it manifests in the momentum feature

makes sense given its function as a primary sodium channel blocker. It generally does

not have an effect on APD, but the block in the influx of Na+ makes it more difficult

to balance the action of the potassium channels, leading to the increased APD and the

temporary state of hyper-repolarization at the end of the action potential. Since this

is a change in the lower bound of the action potential, and thus a non-diffeomorphic

change in the action potential, it makes sense that this is captured in the momentum

feature. This suggests that both metamorphosis features may be discriminative in

different ways and certainly provides more information than the current standard of

features.
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(a) ∆ APD: CC = 0.3828 (b) Momentum: CC = 0.2461 (c) Velocity: CC = 0.3132

Figure 4.13: Mexiletine Separation Comparison

4.2.3 Cell Line Comparison of a Single Drug

In this test, we isolate the behavior of one drug across populations of cardiomy-

ocytes derived from two different cell lines. The goal is to determine whether the

cardiomyocytes from these two different isolation procedures react the same way to

a treatment or where they differ if they do differ. We obtained a population of car-

diomyocytes from a monolayer of iCell Cardiomyocytes (Cellular Dynamics Interna-

tional, Madison, WI, USA) and a monolayer of Cor.4U Cardiomyocytes (Axiogenesis,

Cologne, Germany). Action potentials are recorded before and after the addition of

0.01µM E-4031 via optical mapping. Sample action potentials pre- and post-drug

traces are shown in Figure 4.14.

First we look at the difference in APD30, APD50, APD80 before the ladder. A plot

of the raw changes are shown in Figure 4.15. The plots suggest that there is separation

between the cell lines in response to E-4031. To verify this, we perform two sample

student’s t-tests between the distributions of each of these features. The distributions

of the individual features and the corresponding p-value of the t-tests are shown in
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(a) Before Transport

(b) After Transport

Figure 4.14: Action potential recordings from iCell cardiomyocytes (blue) and Cor.4U
cardiomyocytes (red) before (left) and after (right) the addition of 0.01µM E-4031.
The top row shows the recordings from the population before parallel transport.
Parallel transport is performed to carry the changes to the Fréchet mean of the data
(black, bottom row left), and the transported targets are shown on the bottom right
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Figure 4.15: Plots of the change in APD30, APD50, and APD80 after the addition of
E4031 to the CDI and Axiogenesis cardiomyocytes. Before parallel transport (left),
the effect of the drug on APD appears to be different between the populations, but
after parallel transport (right), there is more overlap in the effect of the drug on APD.

Figure 4.16. The p-values suggest that the two populations of cardiomyocytes are

indeed different. But as discussed before, this is misleading because the differences

in these features are heavily influenced by the individual members of the population

generating these differences. The trajectories are then parallel transported to the

mean of the population, and the features are re-evaluated. After parallel transport,

the distributions of the APD features are much closer together, so much so that the

t-tests for APD30 and APD50 no longer support the hypothesis that the distributions

have different means (Figure 4.17). The only statistically significant separation occurs

at APD80, suggesting that the only difference between the cell lines occurs late in the

repolarization phase.

We also investigate the metamorphosis features to see if we can be more exact

about the differences between the two cell lines. The average action potential target,

initial velocity field, and initial momentum of each cell line after parallel transport
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(a) ∆APD30: p = 0.0277 (b) ∆APD50: p < 10−6 (c) ∆APD80: p < 10−11

Figure 4.16: Histograms of change in APD before transport

(a) ∆APD30: p = 0.4024 (b) ∆APD50: p = 0.5675 (c) ∆APD80: p = 0.00011

Figure 4.17: Histograms of change in APD after transport

is presented in Figure 4.18. In order to identify the locations where the two cell

lines differ after transport, Two sample t-tests were performed at each timepoint of

these features to identify where in the features the two cell lines differ. The areas

coded in green indicate where the t-test discerns no difference (p < 0.05) between the

populations. The result of the t-test on the action potential targets coincide with the

APD result at around the 30% repolarization, the noisiness of the CDI data makes

it difficult to corroborate the APD50 result. The momentum is coherent in the same

way, but the velocity appears to encode more differences between the two datasets,

and it appears that the CDI cardiomyocytes exhibit statistically more deformation
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with respect to E4031 than the Axiogenesis cardiomyocytes.

(a) Targets (b) Momenta (c) Velocity

Figure 4.18: Plots of the targets (left), and the metamorphosis momenta (center) and
velocity fields (right) connecting the atlas to the targets after parallel transport. The
populations specific means for each of the plots is overlaid on top in darker colors.
In order to identify locations of statistically significant differences in these plots, two
sample t-tests are performed at each timepoint in the plots. Timepoints with no
statistical difference (p < 0.05) are highlighted in green.

4.2.4 Phenotype Classification Experiment

In this final experiment, we pilot a procedure to attempt to identify the phenotype

of an embryonic action potential by its reaction to channel block. The hypothesis is

that an embryonic cell will be affected by a change in the environment more similarly

to the adult phenotype the cell will become than other phenotypes. To test this,

embryonic ventricular-like and embryonic atrial-like action potentials were generated

via the hiPSC-CM model of [48]. Adult atrial action potentials from the Nygren

[41], Courtemanche [42], and Grandi Left and Right Atrial [43] models, and adult

ventricular action potentials from the O’Hara endocardium and epicardium [45] and

Ten Tusscher endocardium and epicardium [44] models were also utilized. Action
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potentials were recorded from each of the models at normal parameters and after

a 50% block in the conductance of the Kr channel. The population of mature and

embryonic action potentials is shown in Figure 4.19. Unlike the other experiments,

we do not smooth the signals with a Gaussian, as smoothing would lessen the effect

of the much more predominant phase 1 notch out of the atrial signals. Instead, we

mirror the signal, and combine the signals at the top of the upstroke to observe a

more smoothly varying signal. This discards the information at phase 0, which we

are willing to accept, as the fast acting potassium rectifier is not typically implicated

during the rapid depolarization of the cardiomyocyte.

Figure 4.19: Computational Model AP Recordings before (left) and after (right)
blocking conductance in Kr channel

Given the different action potential morphologies it is does not make sense to

compare the features from the previously discussed experiments before transport. So

in order to test the hypothesis, we aim to transport the metamorphosis trajectories of

the effects of the channel block from adult models to the embryonic models. Unfortu-

nately, it appears we have approached a limitation in the presented algorithm, as the
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transport process appears to fail at different levels for each of the trajectories being

transported. Some examples of the failure modes are presented in Figure 4.20. The

potentially un-smooth changes in morphology being introduced by the momentum

combined with the larger deformation required to arrive at the embryonic action po-

tentials cause the transport process to break down, either during the ladder portion

or the final extension.

Figure 4.20: Examples of failures when trying to perform parallel transport to the
embryonic ventricular-like model. Either the extensions are large and cause insta-
bilities (left) or they are small but located at highly sensitive regions of the action
potential like at the peak (right)
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Conclusion

In this thesis, I have presented a shape theoretic model and various machine

learning methods to investigate embryonic and mature cardiomyocytes based on ac-

tion potential morphology. These methods can be used to determine heterogeneity of

cardiomyocytes in populations, providing estimates of the eventual chamber specific

fate of an embryonic cardiomyocyte, and comparisons of multiple treatments or mul-

tiple cardiomyocyte preparations. As the methodology for obtaining cardiomyocytes

and recording their action potential with high fidelity and signal-to-noise ratio con-

tinues to evolve, the work presented in this thesis will prove ever more important in

providing high-throughput analysis of populations of cardiomyocytes.
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5.1 Future Directions

While this thesis introduces multiple methods to analyze action potentials for

various applications, there are still plenty of unexplored extensions of these meth-

ods that are potential future directions of this project. In particular, while I have

presented two different algorithms for finding the metamorphosis between two action

potentials in chapter 3, improving the computational efficiency of these algorithms

could be vital in higher throughput applications. One future direction is to identify a

closed form solution for the velocity fields (v) with a fixed metamorphosis family (f).

Another potential direction, as discussed in 3.3.3, learning the relationship between

incremental changes in v and the resulting interpolation matrix (Nv) and aggregates

(Ri,j, Al,m) could prove particularly helpful increasing the computational efficiency of

the metamorphosis optimization, as having to recompute each of these matrices at

every iteration when the change in the velocity should get smaller as we get closer

to the optimum seems unnecessarily computationally burdensome. To see how one

could potentially do this, let us look at Nv.

(Nv)ij =



τi+v
∆τ
− (j − 1) j − 1 <= τi+v

∆τ
< j

j + 1− τi+v
∆τ

j <= τi+v
∆τ

< j + 1

0 otherwise

. (5.1)

If we now modulate v by a small change δv:
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(Nv+δv)ij =



τi+v+δv
∆τ

− (j − 1) j − 1 <= τi+v+δv
∆τ

< j

j + 1− τi+v+δv
∆τ

j <= τi+v+δv
∆τ

< j + 1

0 otherwise

=



(Nv)ij + δv
∆τ

j − 1 <= τi+v
∆τ

, τi+v+δv
∆τ

< j

(Nv)ij − δv
∆τ

j <= τi+v
∆τ

, τi+v+δv
∆τ

< j + 1

(Nv)ij = 0 j − 1 > τi+v
∆τ

, τi+v+δv
∆τ

or τi+v
∆τ

, τi+v+δv
∆τ

>= j + 1

The open question is how do we define this relationship for the other cases, when the

change in v takes us between segments of the piecewise function, and subsequent linear

operators such as Ri,j, Al,m. Computing these incremental changes would greatly cut

down the amount computations required to calculate a metamorphosis, speeding up

the optimization.

Additionally, while the metamorphosis algorithm is quantitatively coherent with

those obtained by biologists on a small dataset, and qualitatively coherent on a large

dataset, there is still a gap in systematically showing quantitative coherence between

metamorphosis and the established biology at a large scale. Thus a future direction

is to obtain a large dataset annotated either manually or via a phenotype specific

biomarker such as myosin heavy chain for ventricular cells [11]. Such a dataset could

be utilized to validate the metamorphosis metric as a viable predictor of eventual em-
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bryonic cardiomyocyte phenotype. Transferability across various validated datasets

could prove integral to the metamorphosis algorithm’s general acceptance and appli-

cability.

One major limitation of the clustering algorithm presented in Chapter 2 is that the

output is, by problem definition, a partition of the data. This presents issues when

the data does not necessarily like in clusters, but along a continuum. Clustering

algorithms typically do not have criterion to conclude whether the data lies in one

large continuum vs multiple clusters. There are heuristic approaches to provide insight

into this question. For example, one can observe the projected data points from the

spectral clustering algorithm before k-means, and such a projection is provided for the

optical mapping dataset in Figure 5.1. But this projection discards some of the higher

dimensional information of the raw AP signal that the result may not be completely

accurate. Finding such criterion is important to the cardiomyocyte problem because

cardiomyocytes of all chamber phenotypes derive from the pluripotent stem cells,

so identifying when in the maturation process they differentiate from a continuous

population of embryonic heart muscle cells into chamber specific cardiomyocytes is

of particular importance for developing tissue models for scientific and therapeutic

applications. A future direction of this task is modify the objective to allow for the

potential for a continuum. One way of doing this is by introducing a prior on the

number of clusters in the dataset, and then performing clustering based on the fixed

number of clusters and identifying the likelihood of the data given the clusters and
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the prior on the number of clusters.

Figure 5.1: Data projection of optical mapping dataset from section 2.4, with the
clustering labels from the two group spectral clustering algorithm

Perhaps the biggest room for improvement is in the parallel transport process.

As was shown in Chapter 4, there is still a problem with utilizing the ladder as a

tool for embryonic classification. One of the suspected reasons for this is the large

discontinuity at the upstroke. As discussed previously, phase 0 depolarization is a very

integral part of the action potential morphology, and so we would like to preserve the

information there as much as possible. While smoothing allows us to perform parallel

transport with reduced risks of instabilities, it is not a panacea.

There are a couple of different approaches to addressing this concern in the action

potential signals. One approach is to separate the upstroke from the rest of the
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(a) f(τ) (b) uτ0(τ) (c) f̂(τ)

Figure 5.2: Action potential decomposition with a step function

action potential by trying to model it via a step function. To observe this visually,

an example action potential f(τ) and its decomposition into a step function uτ0(τ),

i.e., uτ0 = 1 when τ > τ0 and 0 otherwise, and the smoothly decreasing signal f̂(τ) is

shown in Figure 5.2. In order to see how this affects the metamorphosis, let us start

with the discrete metamorphosis interpolation from equation (3.24).

d2
M(f0, f1) ≈ min

v,f
f(τ,0)=f0(τ)
f(τ,1)=f1(τ)

S−1∑
s=0

(‖v(τ, ts)‖2
V +

1

σ2
‖f(τ + v(τ, ts), ts+1)− f(τ, ts)‖2

l2). (5.2)

Now allowing f(τ, ·) = c(·)uτ0(·)(τ) + f̂(τ, ·):

d2
M(f0, f1) ≈ min

v,f̂ ,c,τ0
f(τ,ts)=c(ts)uτ0(ts)(τ)+f̂(τ)

f(τ,0)=f0(τ)
f(τ,1)=f1(τ)

S−1∑
s=0

(‖v(τ, ts)‖2
V (5.3)

+
1

σ2
‖f̂(τ + v(τ, ts), ts+1)− f̂(τ, ts) + c(ts+1)uτ0(ts+1)(τ + v(τ, ts))− c(ts)uτ0(ts)(τ)‖2

l2),
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d2
M(f0, f1) ≈ min

v,f̂ ,c,τ0
f(τ,ts)=c(ts)uτ0(ts)(τ)+f̂(τ)

f(τ,0)=f0(τ)
f(τ,1)=f1(τ)

S−1∑
s=0

(‖v(τ, ts)‖2
V (5.4)

+
1

σ2
‖f̂(τ + v(τ, ts), ts+1)− f̂(τ, ts) + c(ts+1)uτ0(ts+1−v(τ,ts))(τ)− c(ts)uτ0(ts)(τ)‖2

l2).

(5.5)

Under this construction, the remaining signal f̂ undergoes metamorphosis as we have

previously defined, while u remains a step function and moves with the velocity field

of the metamorphosis on f̂ . By modeling the action potential in this way, we allow the

metamorphosis to act on a much smoother signal, reducing the risk of instabilities

during the transport process. Identifying how to minimize this energy, whether it

can be manipulated into a form amenable to the Schild’s ladder process, and its

continuous analog are all interesting scientific questions worth investigating.

At the heart of the previously discussed approach is that there are deformation

dynamics occurring at different scales throughout action potential; dynamics around

the upstroke occur over the scale of milliseconds while the morphology changes in the

action potential duration occur at the scale of tens to hundreds of milliseconds. As

such, constraining the Sobolev norm to one scale of smoothness may not be appropri-

ate. The step function addresses this by accounting for most of the activity of phase

0, leaving only the APD changes. Instead of splitting the action potential in this
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way, another approach is to try to the perform the metamorphosis in a coarse-to-fine

manner. In this multi-scale approach, a metamorphosis at the tens to hundreds of

milliseconds scale, to attempt to best align the larger morphology changes, then grad-

ually reducing the smoothness constraint over the signal to allow the deformation to

adjust for fine changes at the smaller scales, such as at depolarization. The primary

concern with this approach is marrying different scales together, as each choice of α

induces a new Sobolev norm, which induces a new metamorphosis metric, making for

a more complex minimization.

Improving the methods for obtaining and transporting metamorphosis trajectories

is just one part of the picture. There is still a lot that can be expanded upon in

the analysis of these trajectories. One such problem that we only briefly touched

upon in Chapter 4 is the question of similarity between drug actions, where the

same general trajectory may occur at different dosages for two drugs. A similar

phenomenon can be found in the activity recognition literature, when an action, such

as walking, occurs at different rates due to gait, body type, etc. Similar to the effect of

drugs on action potential morphology, actions also traverse Riemannian trajectories.

Thus we should be able to transfer some of the existing techniques for classifying

actions to the space of action potentials. One potential avenue worth investigating is

based on the work of [72], where actions are not only normalized to remove temporal

variability, but also use common dimensionality reduction techniques on the tangent

space to help visualize the trajectories and improve classification. They not only
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showed state-of-the-art classification results on activity classification datasets, but

also expanded their scope to include stroke rehabilitation classification and action

reconstruction. Pursuing an analog for the action potential drug data to improve

drug action clustering and classification should prove increasingly insightful to clinical

cardiology and anti-arrhythmic studies.
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[45] T. O’Hara, L. Virág, A. Varró, and Y. Rudy, “Simulation of the undiseased

human cardiac ventricular action potential: model formulation and experimental

validation.” PLoS computational biology, vol. 7, no. 5, 2011.

[46] M. Boyett, H. Zhang, A. Garny, and A. Holden, “Control of the pacemaker ac-

133



BIBLIOGRAPHY

tivity of the sinoatrial node by intracellular ca2+. experiments and modelling,”

Philosophical Transactions of the Royal Society of London A: Mathematical,

Physical and Engineering Sciences, vol. 359, no. 1783, pp. 1091–1110, 2001.

[47] Y. Kurata, I. Hisatome, S. Imanishi, and T. Shibamoto, “Roles of l-type ca 2+

and delayed-rectifier k+ currents in sinoatrial node pacemaking: insights from

stability and bifurcation analyses of a mathematical model,” American Journal of

Physiology-Heart and Circulatory Physiology, vol. 285, no. 6, pp. H2804–H2819,

2003.

[48] M. Paci, J. Hyttinen, K. Aalto-Setälä, and S. Severi, “Computational models
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