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Abstract  

 This dissertation explores the association between diabetes, measures of glycemia 

(average glycemia and glycemic peaks), and cognitive decline and dementia. We also examine 

the association between diabetes, glycemia, and cognitive impairment in older adults. 

Additionally, we address two methodological issues: handling missing cognitive data in 

longitudinal analyses of change in cognitive function, and characterizing the factor structure of 

the neurocognitive battery used in some of these analyses. We have used data from the 

Atherosclerosis Risk in Communities (ARIC).  

We document that diabetes, higher average glycemic levels (measured by hemoglobin 

A1c), and more glycemic peaks (measured by 1,5-anhydroglucitol) are associated with 

accelerated cognitive decline over 20 years. Among persons with diabetes, those with HbA1c 

≥7% (poorly controlled diabetes) had greater decline over 20 years than persons with diabetes and 

HbA1c <7%. Among persons with diabetes, glycemic peaks were associated with incident 

dementia, independent of HbA1c and other risk factors.  

 To address attrition, we used multiple imputation by chained equations (MICE) to impute 

cognitive performance scores. MICE produced unbiased imputations of cognitive function, and 

simulations showed a substantial reduction in the bias of the 20-year association between diabetes 

and cognitive decline comparing MICE to analyses without imputed values. Finally, estimated 

associations between diabetes and 20-year cognitive decline were stronger with MICE than in the 

analyses without imputed values. 

We found that the cognitive battery of 11 tests given at the 2011-2013 ARIC exam 

represented 3 underlying constructs of memory, language, and sustained attention and processing 

speed. These constructs were not different by age, race, sex, education, diabetes, and 

hypertension, providing compelling evidence for the robustness of the cognitive domains 

measured by the test battery across demographic and vascular factors.  
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Lastly, we characterized the level of cognitive impairment by diabetes status and 

glycemia among older adults. Persons with diabetes, longer duration of diabetes, and with glucose 

peaks had higher estimated prevalence of cognitive impairment.  

 In conclusion, we have documented the association of diabetes, mean glycemia (HbA1c), 

and glucose peaks (1,5-AG) with cognitive decline and dementia. This research adds to the 

literature that diabetes, HbA1c, and glucose peaks are risk factors for cognitive decline and 

dementia. This has important implications for the prevention of diabetes as a means to prevent or 

delay cognitive decline. Additionally, the careful management of glycemia among middle-aged 

adults with diabetes may be an important avenue for prevention of cognitive decline and 

dementia.  
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Introduction 

 This dissertation examines the association between glycemia and cognitive function and 

dementia. Specifically, it explores the association between diabetes, prediabetes, average 

glycemia, and glucose peaks and long-term cognitive decline and dementia. It also describes the 

prevalence of cognitive impairment in older adults, using a wealth of data to characterize 

diabetes, glycemia, and cognitive function.  

 

Diabetes and glycemia 

Diabetes mellitus is characterized by elevated blood sugar, either because cells are unable  

to use insulin effectively  (insulin resistance) or there is insufficient insulin produced by the 

pancreas (insulin deficiency)
1
. Type 2 diabetes makes up the vast majority of diabetes in adults, 

accounting for 90-95% of diagnosed cases
1
. The prevalence of type 2 diabetes has substantially 

increased in the past few decades, currently affecting over 20 million adults in the U.S
1,2

. The 

burden accompanying diabetes is considerable, as diabetes is associated with a number of micro- 

and macrovascular complications, including retinopathy, nephropathy, stroke, and heart disease
3–7

. 

Glycemia refers to the amount of glucose circulating in the blood. Hyperglycemia occurs 

when there is an excess amount of glucose circulating, either from insulin resistance, where cells 

are unable to use insulin as effectively, or from insulin deficiency, where not enough insulin is 

produce by the pancreas
1
. Fasting glucose and hemoglobin A1c (HbA1c) are the most commonly 

used biomarkers to characterize hyperglycemia, and are currently used in the diagnosis and 

management of diabetes
8
.  

Fasting glucose is a direct measure of glucose, and reflects acute levels of circulating 

glucose after a period of fasting, usually at least 8 hours. HbA1c is an indirect measure of 

glucose. It is formed when hemoglobin in the red blood cells is exposed to glucose, and as a result 
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increases with chronic exposure to elevated plasma glucose levels. HbA1c reflects mean blood 

glucose over the preceding 2-3 months
9
.  

Current guidelines from the American Diabetes Association (ADA) categorize an HbA1c 

of 5.7-6.4% as indicative of an increased risk for diabetes (prediabetes) and an HbA1c ≥6.5% as 

diagnostic for diabetes
10

. Studies have identified HbA1c values in these ranges as conferring 

higher burden and risk of retinopathy, kidney disease, stroke, and heart disease
3–7

. Additionally, 

ADA guidelines suggest a target HbA1c of <7% among persons with diagnosed diabetes, 

although more flexibility in targets is suggested for older adults given the heterogeneity of 

clinical and functional status in this population
10

. 

There is growing interest in the use of alternative biomarkers of hyperglycemia, which 

measure glycemia over a shorter period (1-3 weeks) compared to HbA1c. 1,5-anhydroglucitol 

(1,5-AG) is a biomarker that provides information about daily fluctuations in glucose
11,12

. 1,5-AG 

is a monosaccharide similar to glucose in structure. In the presence of hyperglycemia (levels 

above the renal filtration threshold of approximately 180 mg/dL), 1,5-AG competes with glucose 

for renal reabsorption, which causes urine excretion of 1,5-AG to increase and as a result serum 

levels fall. 1,5-AG reflects hyperglycemic peaks over a short period of time (7-10 days)
11–14

. 

Studies have documented that in persons with diabetes, 1,5-AG is associated with micro- and 

macro-vascular disease and death
15,16

, independently of average blood glucose (HbA1c). Because 

of their effect on the vasculature, glucose peaks may be particularly important for cognitive 

function and dementia, but this association has not been previously studied.  

 

Cognitive impairment and association with diabetes 

The U.S. population is rapidly aging, with the number of persons 65 and older expected 

to reach nearly 70 million by 2030
17

. As the population ages, the health burden of diabetes in 

older adults will be substantial. Among adults 65 years and older, the prevalence of diabetes and 
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prediabetes is 22% and 24%, respectively
2
. Additionally, the prevalence of dementia among 

persons aged 71 and older is 13.9%, and increases with age, with an estimated prevalence of 

37.4% among persons 90 years and older
18

. Further, an estimated 22% have cognitive impairment 

without dementia
19

.  

A growing body of evidence has found that diabetes affects a wide range of cognitive 

domains, including motor function, processing speed, memory, and attention, and increases the 

risk of dementia
20–27

. The mechanisms underlying these associations are unclear, but a number 

have been proposed, including factors related to the primary metabolic changes associated with 

diabetes, such as insulin resistance, hypo- and hyper-glycemia, or to its treatment or 

complications
27–31

. Several studies have shown that the risk of dementia and cognitive decline 

increases at higher levels of HbA1c
32–34

, but few studies have examined associations with 

glycemic peaks or variability.  

Long-term glycemic variability may be related to microvascular and macrovascular 

complications in persons with diabetes
35

, and fluctuating glucose levels have been shown to be 

more detrimental to neuronal cell functioning in vitro, compared to consistently high or low 

levels
36

. Glucose peaks are very common among persons with diabetes, even those with HbA1c 

values <7%
37

, and may have deleterious effects on cognitive function.  

 

Gaps in prior evidence  

There are several limitations of studies examining the association of diabetes and 

cognitive decline. The primary limitation of previous studies is short study duration. A review by 

Cukierman and colleagues
22

 published in 2005 included only one study with a mean follow-up of 

more than 6 years. Subsequently, several studies have reported associations with longer duration: 

diabetes was associated with a 12-year decline in several tests in the Maastricht Aging Study
38

; a 

10-year decline in a global test, memory, and reasoning in 2 Whitehall II studies
32,39

; and an 8-
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year decline in 1 of 8 tests in the Framingham Offspring Study
40

. However, only one of these 

studies reported associations with diabetes diagnosed before age 65 years. Additionally, few 

studies have reported associations by HbA1c level
41

, or used HbA1c in the definition of diabetes. 

Other limitations include the measurement of diabetes and cognition.  Other limitations of current 

studies include the use of only self-reported diabetes status, lack of use of neuropsychological 

testing, or not based in a large, community-based sample of adults, potentially limiting 

generalizability. To our knowledge, no studies have examined the association between glucose 

peaks and dementia and cognitive decline over 20-years, or examined cognitive function in older 

adults across the full spectrum of HbA1c. 1,5-AG may be used to identify persons at higher risk 

of cognitive impairment even within normal values of HbA1c. Finally, a key challenge in 

studying long-term risk-factor associations in observational studies is that persons at highest risk 

of complications and cognitive decline are also at highest risk of dropping out the study, 

potentially biasing results. Few studies have explored the impact of using methods to address this 

potential bias. 

 

Public health significance  

The increasing prevalence of diabetes, along with the aging population, represents a large 

public health concern, and presents challenges for care of patients with diabetes, especially 

relating to medication adherence, side-effects (hypo- and hyper-glycemia), and management and 

prevention of diabetes-related complications; but it also provides the opportunity for intervention 

and prevention to have substantial impact. There are currently no treatments to stop or reverse 

cognitive decline or dementia. However, if diabetes is associated with increased risk of cognitive 

impairment, then preventing or delaying it may have considerable impact on the prevalence and 

incidence of cognitive impairment and dementia.    
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Overarching research question and study aims 

This dissertation addresses the following overarching research question:  

What is the association between diabetes, mean glycemia (HbA1c), and glucose peaks 

(1,5-AG) and cognitive function and dementia? 

 

To help answer this question, this dissertation addresses the following specific aims: 

Aim 1: To characterize the prospective association between diabetes and mean glycemia 

measured in midlife and 20-year cognitive decline 

Aim 2: To develop and validate a model for imputing missing cognitive performance (outcome) 

data to address bias resulting from study attrition 

Aim 3: To characterize the prospective association between glucose peaks (1,5-AG) in midlife 

and 20-year cognitive decline and incident dementia  

Aim 4: To examine the factor structure of ARIC-NCS neuropsychological test battery, and 

determine if the structure varies by demographic (age, race, sex, education) and vascular factors 

(hypertension, diabetes) 

Aim 5: To estimate the prevalence of cognitive dysfunction among older adults with prediabetes 

diabetes, and glycemic peaks  

 

Conceptual framework  

 Figure 1 shows the conceptual framework underlying the aims of this dissertation. We 

examine two aspects of glycemia, mean glucose and glucose peaks, measured by HbA1c and 1,5-

AG, respectively. Cognitive function is measured using neuropsychological testing at three ARIC 

study visits over 20 years, and dementia is ascertained using community surveillance. Aim 1 

examines the association between mean glycemia (HbA1c and diabetes status) and cognitive 

function over 20 years. Aim 2 examines the utility of multiple imputation to address the issue of 
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study visit dropout, which may bias estimated associations between diabetes and cognitive 

function. Aim 3 examines the association between glucose peaks (1,5-AG) and cognitive function 

over time. Aims 4 and 5 examine cognitive function in older adults. Aim 4 examines the factor 

structure of the neuropsychological test battery at ARIC-NCS, and identifies the number of 

underlying cognitive domains and to determine if the structure is similar across demographic and 

vascular factors. Aim 5 characterizes the prevalence of cognitive dysfunction in three cognitive 

domains (memory, language, and executive function) by diabetes status, HbA1c, and 1,5-AG. 

Potential confounders between the association of glycemia and cognition include age, race, sex, 

education, hypertension, stroke, coronary heart disease, alcohol consumption, cigarette smoking 

status, and apolipoprotein E.  

 

Organization of this dissertation  

 This dissertation contains five chapters formatted as publishable papers. The first chapter 

examines the prospective association between diabetes status (no diabetes, prediabetes, 

undiagnosed diabetes), glucose control (HbA1c <7% and ≥7%) and cognitive decline over 20-

years. This study was published in Annals of Internal Medicine in December 2014 (Ann Intern 

Med. 2014;161:785-793. doi:10.7326/M14-0737)
42

. 

 The second chapter explores the use of multiple imputation to account for the impact of 

differential attrition in long-term prospective studies where auxiliary information exists.  

 The third chapter is a prospective analysis of the association of glucose peaks (1,5-AG) 

and cognitive decline and dementia over 20-years.  

 The fourth chapter examines the factor structure of the ARIC-NCS cognitive battery and 

examines whether the identified cognitive domains vary by demographic (age, race, sex, 

education) and vascular factors (diabetes and hypertension). The paper is in press with the journal 

Psychological Assessment.  



 7 

 The fifth chapter examines is a cross-sectional study that characterizes the prevalence of 

cognitive dysfunction among older adults across clinical categories of HbA1c. It also examines 

the association of glucose peaks, measured by 1,5-AG, with cognitive dysfunction.   
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Figure 1. Conceptual framework for the aims of this dissertation  
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ABSTRACT 

Background  Type 2 diabetes mellitus is associated with dementia risk, however evidence is 

limited for possible associations of diabetes and pre-diabetes with cognitive decline.  

Objective  To determine if diabetes in mid-life is associated with 20-year cognitive decline, and 

to characterize long-term cognitive decline across clinical categories of hemoglobin A1c 

(HbA1c). 

Design  Prospective cohort. 

Setting  The community-based Atherosclerosis Risk in Communities (ARIC) Study. 

Participants  13351 black and white adults aged 48-67 years at baseline (1990-1992).  

Measurements  Diabetes was defined by self-report of physician diagnosis or medication use or 

HbA1c≥6.5%. Undiagnosed diabetes, pre-diabetes, and glucose control in persons with diagnosed 

diabetes were defined using clinical categories of HbA1c. Delayed Word Recall, Digit Symbol 

Substitution, and Word Fluency tests were used to assess cognitive performance, and were 

summarized using a global Z-score. 

Results  Diabetes in midlife was associated with significantly greater cognitive decline over 20 

years (adjusted global Z-score difference=-0.15, 95% CI:-0.22,-0.08), representing a 19% greater 

decline than those without diabetes. Cognitive decline was significantly greater among persons 

with pre-diabetes (HbA1c 5.7-6.4%) than those without diabetes and HbA1c<5.7%. Participants 

with poorly controlled diabetes (HbA1c≥7.0%) had a larger decline compared to persons whose 

diabetes was controlled (adjusted global Z-score difference=-0.16,p-value=0.071). Longer 

duration of diabetes was also associated with greater late-life cognitive decline (p-value-for-

trend=<0.001). No significant differences in the rates of declines were seen in whites compared to 

blacks (p-value-for-interaction=0.4357). 

Limitations  Single measurement of HbA1c at baseline, only one test to per cognitive domain, 

potential geographic confounding of race comparisons.   



 11 

Conclusions  These findings suggest that diabetes prevention and glucose control in midlife may 

protect against late-life cognitive decline.  
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INTRODUCTION 

The prevalence of diabetes has increased substantially over the past several decades, with 

a current prevalence of approximately 10%, affecting 21 million adults in the U.S.(1). Type 2 

diabetes is an established risk factor for heart disease, stroke, hypertension, blindness, and kidney 

disease(2-4). The association of diabetes with dementia risk is well established(5-7). The 

association of diabetes with cognitive decline, however, is less well characterized. Because 

cognitive decline is a precursor to dementia, strong risk factors for decline can help identify 

persons who may realize the benefits of early intervention. The effects of diabetes and early 

hyperglycemic states assessed in mid-life on long-term cognitive decline are relatively 

uncharacterized(6). Previous studies have been limited by short duration of follow-up, lack of 

rigorous adjustment for potential confounding variables, and most were limited to whites and 

conducted in elderly populations, where associations tend to be weaker(8, 9).  

Hemoglobin A1c (HbA1c) is a measure of average circulating glucose in the blood over 

the preceding 2 to 3 months. HbA1c is the standard measure used in the clinical management of 

diabetes control and is now recommended for the use for diagnosis of diabetes and identification 

of persons at risk for future diabetes(10). Studies have shown cross-sectional associations 

between HbA1c and cognitive scores in persons with diabetes(11, 12). However there is little 

evidence prospectively linking better glycemic control to slower cognitive decline
 
and few studies 

have examined the association of chronic hyperglycemia below the threshold for a diagnosis of 

diabetes with long-term cognitive impairment(13-15). 

Our objective was to examine the association of diabetes assessed in middle-age with 

subsequent 20-year cognitive decline in a community-based population of black and white adults. 

We also examined the associations of hyperglycemia below the threshold for a diagnosis of 

diabetes (i.e. “pre-diabetes”) and glycemic control in the setting of diabetes with 20-year 

cognitive decline. An inherent challenge to accurately quantifying the long-term risk factor 
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associations in observational studies is that participants who are ill are less likely to return for 

study visits. In this study, we use methods to account for this attrition, which is important in 

quantifying the long-term associations of diabetes with cognitive decline.  

 

METHODS 

Study Population 

The Atherosclerosis Risk in Communities Study (ARIC) is a community-based 

prospective cohort of 15,792 middle aged adults from four U.S. communities: Washington 

County, Maryland; Forsyth County, North Carolina; suburbs of Minneapolis, Minnesota; and 

Jackson, Mississippi. The Jackson field center recruited only blacks and Forsyth recruited both 

blacks and whites. The other two field centers, like Jackson and Forsyth, selected participants by 

probability sampling; however the racial distribution in these locations at that time resulted in 

only a small percentage of non-white participants. Participants were seen at four visits 

approximately three years apart beginning in 1987-1989. A fifth ARIC visit took place in 2011-

2013. Cognitive function was evaluated at visits 2 (1990-1992), 4 (1996-1998), and at visit 5 

(2011-2013) as part of the ARIC Neurocognitive Study (ARIC-NCS). Detailed information about 

ARIC can be found elsewhere(16).  

 Baseline for the present analysis was visit 2, the first visit where cognitive data were 

collected. Of the 14,348 participants who attended visit 2, we excluded participants who were 

neither white nor black and the small number of blacks in the Minnesota and Washington county 

cohorts (n=91), those who were missing one or more cognitive function tests at baseline (n=217), 

and those missing variables of interest (n=689), giving a final sample size of 13,351 participants 

at baseline (93% of the visit 2 sample). A flow diagram of the study population and the pattern of 

visit attendance is included in the Appendix(eFigure1).   
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Assessment of Cognitive Function  

Three cognitive tests were used to assess cognitive function: the Delayed Word Recall 

Test (DWRT)(17), the Digit Symbol Substitution Test (DSST) of the Wechsler Adult Intelligence 

Scale-Revised (WAIS-R)(18), and the Word Fluency Test (WFT)(19). Protocols for the 

neuropsychological tests were standardized, and trained examiners administered the tests in a 

fixed order during one session in a quiet room.  

The DWRT is a test of verbal learning and recent memory. Participants were asked to 

learn 10 common nouns by using each in a sentence. Two exposures to each word were given. 

After a five-minute filled delay, participants had 60 seconds to recall the words. The score for the 

DWRT is the number of words recalled. 

The DSST is a test of executive function and processing speed. In this 90-second test, 

participants were asked to translate numbers to symbols using a key. The score is the count of 

numbers correctly translated to symbols, with a range of possible scores of 0 to 93.  

The WFT is a test of executive function and language. Participants were given 60 

seconds for each of the letters F, A and S, and were asked to generate as many words as possible 

beginning with each letter, avoiding proper nouns. The WFT score is the total number of words 

generated for each of the letters.  

To facilitate comparison across cognitive tests, Z scores standardized to visit 2 were 

calculated for each test by subtracting each participant’s test score at each visit from the visit 2 

mean and dividing by the visit 2 standard deviation. A composite global cognitive Z score was 

calculated by averaging the Z scores of the three tests, and was then standardized to visit 2 using 

the global Z mean and global Z standard deviation from visit 2. Thus, a Z score of -1 would 

describe cognitive performance that is 1 standard deviation below the mean score at visit 2. 

Composite global scores derived in this manner have been used in analyses of cognitive change in 

ARIC(20, 21) and elsewhere(22-24).  
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Assessment of Diabetes 

Diabetes was defined based on self-reported physician diagnosis, diabetes medication 

use, or HbA1c ≥ 6.5%.   

Measurement of Hemoglobin A1c  

HbA1c was measured in stored whole blood samples using high-performance liquid 

chromatography methods standardized to the Diabetes Control and Complications Trial assay 

(Tosoh A1c 2.2 Plus and Tosoh G7 analyzers, Tosoh, Tokyo, Japan)(25). For analyses of the 

association between HbA1c category and cognitive decline, HbA1c was categorized using 

standard clinical cut-points: in persons without a history of diabetes, <5.7%,5.7-6.4%,≥6.5%; and 

in persons with a history of diabetes, <7.0% and ≥7.0%(10).  

Covariates 

All covariates used in the regression models were assessed during visit 2 except 

education, race, and sex, which were assessed during visit 1. The following covariates were 

evaluated as confounders: age, age-squared, sex, race-field center (Minnesota whites; Maryland 

whites; North Carolina whites; North Carolina blacks; Mississippi blacks), education (<high 

school; high school, high school equivalent, or vocational school; college, graduate, or 

professional school), cigarette smoking (current; former; never), alcohol consumption (current; 

former; never), body mass index (kg/m
2
), hypertension (yes; no – “yes” defined as blood 

pressure-lowering medication use, systolic blood pressure greater than 140 mmHg, or diastolic 

blood pressure greater than 90 mmHg), history of coronary heart disease(yes;no – persons who 

were unsure of their history of heart disease were classified as “no”), history of stroke(yes;no), 

and apolipoprotein E 4 genotype(0;1;2 alleles). We also included interaction terms between 

these variables and time to allow for different rates of decline by these covariates. In sensitivity 

analyses we treated the following variables as time-varying, updating values at each study visit: 

cigarette smoking, alcohol consumption, body mass index, hypertension, history of coronary 
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heart disease, and history of stroke. We also additionally adjusted for total cholesterol and lipid-

lowering medication use.   

Statistical Analysis 

We used linear models to estimate associations between diabetes and cognitive decline, 

fit with generalized estimating equations to account for the within-person correlations of test 

scores arising from the repeated measures across time; unstructured correlation matrices and 

robust variance estimates were employed. Time since baseline was modeled using a linear spline 

with a knot at six years, the mean duration between visits 2 and 4. The spline term allows for a 

non-linear association between time and cognitive decline, more appropriately fits the study 

design than would a quadratic term, and was supported by diagnostic lowess smoothers. The 

primary coefficients of interest were the interactions between diabetes and the time spline terms, 

which address the hypothesis of greater decline among participants with diabetes adjusting for 

age and the other covariates. To examine the role of stroke in mediating the association between 

diabetes and cognitive decline, we censored participant values at the time of stroke, excluding any 

post-stroke cognitive information from our analyses. To test the robustness of our findings and to 

mitigate the differences in baseline characteristics between persons with and without diabetes, we 

reran analyses using propensity score matching. Propensity scores were developed using logistic 

regression and included sex, age, race-center, education, cigarette smoking, drinking status, 

hypertension status, prevalent CHD, prevalent stroke, and body mass index. All but 3 participants 

with diabetes were matched (details in Appendix).   

We tested for effect modification between race and diabetes, and tested for linear trend 

across categories of HbA1c using a variable taking on values 1 through 5 for each category.   

In a separate analysis we examined the association of diabetes duration on 14-year 

cognitive decline, using visit 4 as baseline, and information from all prior visits to categorize 

diabetes duration. We calculated duration as the difference between the date of the visit 4 exam 
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and the date of the visit when diabetes was first identified (based on a diagnosis or elevated 

glucose at any prior visit) and categorized as follows: 1) no diabetes at visit 4 (reference), 2) 

diabetes duration <3 years, 3) diabetes duration 3-6 years, 4) diabetes duration 6-9 years, or 5) 

diabetes duration >9 years.  

We used an inverse probability of attrition weighting (IPAW)(26, 27) approach to 

account for potential informative missingness effects (details in Appendix). Statistical analyses 

were performed with SAS 9.3 (SAS Institute, Cary, NC) and Stata 13.0 (StataCorp LP, College 

Station TX). PROC GENMOD was used for the generalized linear models, with a repeated 

statement to account for correlations between observations, and a weight statement to incorporate 

the IPAW weights.   

 

RESULTS 

The mean age of participants at baseline was 57 years, 56% were female, 24% were 

black, and 13.3% had diabetes (Table 1). Participants with diabetes were older, had less education 

and lower cognitive scores, and had a more adverse cardiovascular risk factor profile at baseline 

than those without diabetes. Persons with diabetes at baseline were less likely to attend visit 5 

(25% versus 48%), which was largely due to the cumulative incidence of mortality (46% versus 

22%) rather than study dropout (29% versus 30%)(Table 1). Those with the lowest Z scores at 

visit 2 (<5
th
 percentile) were also less likely to attend visit 5, with only 20% returning. Of the 

13,351 participants who attended visit 2, 17% did not attend any follow-up visits. Of the 

remaining 83% of participants who had at least one follow-up visit (10,720 attended visit 4, 5,987 

attended visit 5), the median follow-up was 19.3 years (25
th
,75

th
 percentiles: 6.0, 20.9).   

Table 2 shows the estimated 20-year decline from our linear models by diabetes status for 

global cognitive Z score, DWRT, DSST, and WFT. Diagnosed diabetes was associated with 

significantly greater decline in global cognitive Z score, the DSST, and the WFT although not in 
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the DWRT. The average decline over 20 years in global cognitive Z score was 0.78 in persons 

without diabetes and 0.92 in persons with diabetes (difference: -0.15, 95% CI: (-0.22, -0.08)), i.e. 

a 19% greater decline among persons with diabetes (-0.15/-0.78=19%). The difference was 

similar in race-stratified analyses (p-for-interaction=0.4357, Supplemental Tables 1-4). Adjusting 

for attrition using IPAW strengthened the magnitude of all associations by about 50%. To give 

these results some context, and because age-related decline in cognitive function is well-

established, we used our linear model to estimate how much older a person without diabetes 

would need to be at baseline to have, on average, a 0.15 lower Z score. We estimated that a 

participant had to be 4.9 years older. In other words, a 0.15 lower Z score is equivalent to the 

difference in cognitive performance of a 60 year old versus to a 55 year old, who are otherwise 

similar (details in Appendix).  

Our results were robust to an alternative analytical approach using propensity score 

matching (Supplemental Table5-6, Supplemental Figure2). Results were also unchanged when we 

adjusted for total cholesterol, cholesterol-lowering medication use, or when using time-varying 

covariates. In our stroke mediation analysis, excluding post-stroke cognitive scores reduced the 

20-year difference in cognitive decline between persons with and without diabetes by 13%, 

though results remained significant (Supplemental Table7).     

Using visit 4 as baseline shows that duration of diabetes was associated with significantly 

greater subsequent 14-year cognitive decline (Table 3). The p-value for linear trend across 

categories was significant for all tests.  

Figure 1 shows differences in 20-year decline in global cognitive Z score by clinical 

categories of HbA1c. The p-value for linear trend across all categories was significant (p=0.0367 

without adjustment for attrition and p=0.006 for the attrition-adjusted values). Persons without 

diagnosed diabetes but HbA1c of 5.7-6.4% at baseline had significantly more cognitive decline 

over 20 years (adjusted difference in global cognitive Z score=-0.07, p-value=0.005) compared to 
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persons without diabetes and HbA1c<5.7%. Persons without diagnosed diabetes but with 

HbA1c≥6.5% (undiagnosed diabetes) also had a greater decline in cognitive score compared to 

the reference group, however this difference was not statistically significant (p-value=0.105). The 

greatest decline was found in the group with diabetes and HbA1c≥7.0%. Participants in this group 

had a larger decline compared to persons with diabetes and HbA1c<7% (adjusted difference in 

global cognitive Z score=-0.16, p-value=0.071), which was borderline statistically significant. 

Adjusting for attrition strengthened the magnitude of all associations.  

 

DISCUSSION  

 In this community-based population, we found significantly greater cognitive decline 

among both black and white adults with diabetes compared to those without diabetes at baseline, 

with 20-year cognitive decline 19% larger in this group for the global score, or 30% larger after 

accounting for attrition. Duration of diabetes appeared to be a factor, with later life 14-year 

decline greater for participants with longer duration of diabetes. There were trends of increased 

cognitive decline across clinical categories of HbA1c, even among persons without a history of 

diabetes. Those with HbA1c in the 5.7-6.4% range (pre-diabetes) and those with HbA1c≥6.5% 

(undiagnosed diabetes) at baseline had larger declines over 20 years than those with 

HbA1c<5.7%. Excluding person with stroke post-baseline attenuated the results slightly, 

suggesting stroke partially mediates the association between diabetes and cognitive decline.   

The observed association of diabetes with decline in global cognitive function was 

primarily driven by declines in the DSST and WFT, which reflect impairments in the processing 

speed and executive function domains(28, 29). These results suggest that the association of 

diabetes with cognitive function may involve the subcortical microvasculature that damages 

white matter pathways or subcortical grey matter in other ways(30-32). However, we also found 
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associations with memory, but only in whites, after adjustment for attrition. This may be due to 

the fact that the DWRT, with only 10 words, is insensitive to small declines in memory.  

Previous studies of diabetes and cognitive decline have mostly been short in duration: 

Cukierman’s review included only one study with mean follow-up of more than 6 years’ 

duration(6). In four recent reports, diabetes was associated with 12-year decline in several tests in 

the Maastricht Study(33), 10-year decline in a global test, memory, and reasoning in two 

Whitehall II studies(15, 34), and 8-year decline in one of 8 tests in the Framingham Offspring 

Study(35). However, only one of these reported associations with diabetes diagnosed before age 

65. 

ACCORD-MIND, a randomized clinical trial, showed that tight glucose control in elderly 

diabetics with high cardiovascular risk did not reduce cognitive decline measured by DSST(13, 

14). Some have postulated that the lack of benefit in ACCORD-MIND may have been due to the 

older age of participants (mean age 63), the short treatment period (3.3 years), and a higher 

frequency of hypoglycemic episodes in the treatment compared to the control arm. However, our 

observations that higher HbA1c levels were associated with greater 20-year cognitive decline 

even in persons without a diagnosis of diabetes, and that longer duration of diabetes was 

associated with greater cognitive decline, suggests that a long-term trial, if one were feasible, 

could demonstrate the cognitive benefit of glycemic control. The potential benefit of early 

intervention deserves further study(36). 

 Some limitations of our study deserve consideration. We had only one test in each 

cognitive domain at each visit and only a single measurement of HbA1c at baseline. Blacks in 

ARIC come from just 2 study sites, limiting our ability to fully separate the effects of race from 

those of geography. Attrition is a likely concern for any long-term study. However, our attrition-

adjustment likely provides less biased estimates of the effect of diabetes on cognition than when 

attrition is ignored, as in most prior reports. Although we adjusted for attrition using a broad set 
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of available data, it is possible that our method of adjustment does not fully account for the 

effects of drop out, especially dropout directly related to low cognitive function, and our estimate 

of the association of diabetes with cognitive decline may remain conservative. As this is an 

observational study, we cannot conclude that the link between diabetes and cognitive decline is 

causal, and we cannot rule out the possibility of residual confounding.  

Strengths of this study include the large community-based population of blacks and 

whites, rigorous assessment of variables that might affect the association between diabetes and 

cognitive function, and our methods to reduce the effects of dropout. The evaluation of cognitive 

change over time, with 20-year duration of follow-up with cognitive function assessed at several 

time points, is also a particular strength of this study. Rather than assessing dementia or cognitive 

performance at a single time point, examining scores over time reduces the influence of 

confounding variables(20).  

Maintaining cognitive function is a critical aspect of successful aging and for ensuring a 

high quality of life. Diabetes and glucose control are potentially modifiable and may offer an 

important opportunity for the prevention of cognitive decline, thus delaying progression to 

dementia. At the population level, delaying the onset of dementia by even a couple of years could 

reduce the prevalence of dementia by more than 20% over the next 30 years(37).      

This study documents that diabetes and pre-diabetes in middle age are associated with 

greater cognitive decline over the subsequent two decades. The association with cognitive decline 

was stronger for diabetes of longer duration, and our findings were similar in black and white 

adults. These data suggest that primary prevention of diabetes or glucose control in midlife may 

protect against later-life cognitive decline.   
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Table 1. ARIC population visit 2 baseline characteristics by diabetes status 

 
Total  

(N=13,351) 

Diabetes 

(N=1,779) 

No Diabetes 

(N=11,572) 

Age 57.0 (5.7) 58.2 (5.7) 56.8 (5.7) 

Female, % 55.6 57.2 55.3 

Visit 5 Attendance, %    

Died before visit 5 25.4 46.4 22.1 

Alive, but did not attend 29.8 28.6 30.0 

Attended 44.8 25.1 47.9 

Race-Center, %    

Minneapolis - White  26.9 13.9 28.8 

Washington County - White 26.2 24.6 26.4 

Forsyth - White 23.3 16.5 24.4 

Forsyth - Black 2.7 4.9 2.4 

Jackson - Black 21.0 40.1 18.0 

Cognitive scores    

Global cognitive Z score 0.00 (1.0) -0.52 (1.0) 0.08 (1.0) 

Delayed word recall test, number of words 

Recalled 
6.6 (1.5) 6.1 (1.6) 6.7 (1.5) 

Digit symbol substitution test, number of 

symbols translated 
44.7 (14.2) 36.9 (14.4) 45.9 (13.7) 

Word fluency test, number of words 

generated 
33.2 (12.5) 29.3 (12.4) 33.8 (12.4) 

Hemoglobin A1c 5.8 (1.2) 8.0 (2.1) 5.4 (0.4) 

Prevalent coronary heart disease, % 5.7 11.1 4.8 

Prevalent stroke, % 1.7 4.4 1.3 

Apolipoprotein E 4 alleles, %    

0 69.2 69.4 69.2 

1 28.1 27.8 28.2 

2 2.6 2.9 2.6 

Hypertension, % 35.6 59.0 32.0 

Body mass index, kg/m
2
 28.0 (5.4) 31.4 (6.1) 27.4 (5.1) 

Total cholesterol level    

mg/dL 210 (39.5) 216 (45.5) 209 (38.4) 

mmol/L 5.43 (1.02) 5.57 (1.18) 5.41 (0.99) 

HDL cholesterol level    

mg/dL 49.4 (16.7) 43.1 (14.2) 50.4 (16.8) 

mmol/L 1.28 (0.43) 1.11 (0.37) 1.30 (0.44) 

Triglyceride level    

mg/dL 136 (90.3) 178 (135.3) 130 (79.4) 

mmol/L 1.54 (1.02) 2.01 (1.53) 1.46 (0.90) 

Education, %    

Less than high school 21.2 34.9 19.1 

High school, graduate equivalence degree, 

or vocational school 
41.8 37.9 42.3 

College, graduate, or professional school  37.0 27.2 38.6 

Cigarette smoking status, %    

Current 22.3 20.8 22.5 

Former 37.9 37.0 38.1 

Never 39.8 42.2 39.4 

Alcohol consumption, %    

Current 56.6 36.0 59.7 
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Former 20.8 33.2 18.9 

Never 22.6 30.8 21.3 

Age, cognitive scores, hemoglobin A1c, body mass index, total cholesterol, HDL cholesterol, and 

triglycerides are means (SD). All other values are percentages.  
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Table 2. Average difference in 20-year decline in global cognitive Z score, delayed word recall, digit 

symbol substitution, and word fluency among persons with a history of diagnosed diabetes 

compared to persons without diabetes  

No attrition adjustment 

Test 

20 year decline – 

No diabetes 

Estimate (95% CI) 

20 year decline – 

Diabetes 

Estimate (95% CI) 

Difference* 

Estimate (95% CI) Percent† 

Global Z -0.78 (-0.80, -0.75) -0.92 (-1.00, -0.85) -0.15 (-0.22, -0.08) 19% 

Delayed Word 

Recall Test 
-0.98 (-1.02, -0.94) -1.04 (-1.15, -0.92) -0.06 (-0.17, 0.06) 6% 

Digit Symbol 

Substitution Test 
-0.69 (-0.71, -0.67) -0.82 (-0.87, -0.77) -0.13 (-0.18, -0.08) 19% 

Word Fluency Test -0.17 (-0.19, -0.14) -0.28 (-0.35, -0.22) -0.12 (-0.18, -0.06) 71% 

Attrition-adjusted 

Test 

20 year decline – 

No diabetes 

20 year decline – 

Diabetes Difference* Percent† 

Global Z  -0.79 (-0.82, -0.76) -1.01 (-1.11, -0.92) -0.23 (-0.32, -0.13) 29% 

Delayed Word 

Recall Test 
-1.01 (-1.05, -0.96) -1.09 (-1.22, -0.96) -0.09 (-0.22, 0.04) 9% 

Digit Symbol 

Substitution Test 
-0.70 (-0.72, -0.68) -0.87 (-0.94, -0.81) -0.18 (-0.24, -0.11) 26% 

Word Fluency Test -0.17 (-0.20, -0.14) -0.37 (-0.47, -0.28) -0.21 (-0.31, -0.10) 124% 

 

* Calculated as the difference in 20-year decline between persons without and with diabetes (negative 

values indicate greater decline in persons with diabetes) 

† Calculated as the difference expressed as a percentage of the decline in those without diabetes. That is, 

(decline in participants without diabetes – decline in participants with diabetes)/(decline in participants 

without diabetes); thus a value of 19% indicates a 19% greater decline in those with diagnosed diabetes 

compared to those without. Note that the differences and percent declines are calculated before rounding 

of 20-year estimates.  

Note: bold values indicate p-value < 0.05. Z scores can be interpreted as standard deviations above or 

below the mean. For example, a Z score difference of -0.15 means that, on average,  persons with diabetes 

declined an additional 0.15 standard deviations compared to persons without diabetes. Time since 

baseline was the time metric, and cognitive function was modeled using generalized linear models fit 

using generalized estimating equations, with adjustment for age, age squared, race-center, sex, education, 

cigarette smoking, alcohol consumption, body mass index, hypertension, history of coronary heart 

disease, history of stroke, APOE 4 genotype, and interactions between all of these covariates and time. 

N=30,058 total records, with N=13,351 participants at visit 2(N=1,779 with diabetes), N=10,720 at visit 

4(N=1,209 with diabetes), and N=5,987 at visit 5(N=446 with diabetes).   
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Table 3. Average difference in 14-year decline in global cognitive Z score, delayed word recall test, digit symbol substitution test, and 

word fluency test comparing persons of varying diabetes duration to persons without diabetes 

  No attrition adjustment Attrition adjusted 

Test 

Diabetes duration 

(years) 

Absolute 14-year decline 

Estimate (95% CI) 

Difference* 

Estimate (95% CI) 

Absolute 14-year decline 

Estimate (95% CI) 

Difference* 

Estimate (95% CI) 

Global Z  No diabetes -0.67 (-0.70, -0.64) (reference) -0.68 (-0.71, -0.65) (reference) 

< 3  -0.81 (-0.90, -0.71) -0.13 (-0.23, -0.04) -0.85 (-0.97, -0.73) -0.18 (-0.30, -0.05) 

3 - 6  -0.72 (-0.82, -0.62) -0.05 (-0.14, 0.05) -0.73 (-0.83, -0.63) -0.05 (-0.15, 0.05) 

6 - 9  -0.81 (-0.93, -0.68) -0.13 (-0.26, -0.01) -0.86 (-1.01, -0.72) -0.19 (-0.34, -0.04) 

> 9  -0.85 (-0.95, -0.74) -0.18 (-0.28, -0.07) -0.91 (-1.02, -0.79) -0.23 (-0.34, -0.12) 

p-value-for-trend 0.001 - 0.002 - 

Delayed 

Word  

Recall 

Test 

No diabetes -0.89 (-0.94, -0.85) (reference) -0.90 (-0.95, -0.85) (reference) 

< 3  -0.98 (-1.11, -0.84) -0.08 (-0.22, 0.06) -1.02 (-1.19, -0.86) -0.12 (-0.29, 0.05) 

3 - 6  -0.96 (-1.10, -0.81) -0.06 (-0.21, 0.08) -0.97 (-1.13, -0.82) -0.07 (-0.23, 0.08) 

6 - 9  -0.99 (-1.18, -0.81) -0.10 (-0.28, 0.09) -1.01 (-1.20, -0.82) -0.11 (-0.30, 0.08) 

> 9  -1.05 (-1.20, -0.89) -0.16 (-0.31, 0.00) -1.09 (-1.26, -0.91) -0.19 (-0.36, -0.02) 

p-value-for-trend 0.003 - 0.003 - 

Digit 

Symbol 

Substitution 

Test 

No diabetes -0.56 (-0.58, -0.53) (reference) -0.56 (-0.58, -0.54) (reference) 

< 3  -0.68 (-0.75, -0.61) -0.12 (-0.19, -0.05) -0.70 (-0.78, -0.62) -0.14 (-0.22, -0.06) 

3 - 6  -0.62 (-0.69, -0.55) -0.07 (-0.14, 0.00) -0.62 (-0.68, -0.55) -0.05 (-0.12, 0.01) 

6 - 9  -0.65 (-0.74, -0.55) -0.09 (-0.18, 0.00) -0.68 (-0.77, -0.58) -0.11 (-0.21, -0.02) 

> 9  -0.73 (-0.81, -0.64) -0.17 (-0.25, -0.09) -0.77 (-0.87, -0.67) -0.21 (-0.31, -0.11) 

p-value-for-trend <0.001 - <0.001 - 

Word 

Fluency Test 
No diabetes -0.13 (-0.16, -0.11) (reference) -0.13 (-0.16, -0.10) (reference) 

< 3  -0.20 (-0.29, -0.12) -0.07 (-0.16, 0.01) -0.23 (-0.33, -0.13) -0.10 (-0.20, -0.00) 

3 - 6  -0.14 (-0.23, -0.05) -0.01 (-0.10, 0.09) -0.13 (-0.23, -0.03) 0.00 (-0.10, 0.11) 

6 - 9  -0.27 (-0.39, -0.16) -0.14 (-0.25, -0.03) -0.36 (-0.53, -0.18) -0.22 (-0.41, -0.04) 

> 9  -0.24 (-0.33, -0.15) -0.11 (-0.20, -0.02) -0.29 (-0.39, -0.18) -0.15 (-0.26, -0.05) 

p-value-for-trend <0.001 - 0.001 - 
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* Calculated as the difference in 14-year decline between persons with no diabetes at either visit and persons who have prevalent diabetes at visit 2 

or develop diabetes between visits 2 and 4 (negative values indicate greater decline in those with prevalent or incident diabetes) 

Note: bold values indicate p-value < 0.05. Baseline for this analysis was visit 4, and visits 1,2, and 3 were used to calculate diabetes duration. Z 

scores can be interpreted as standard deviations above or below the mean. For example, a Z score difference of -0.15 means that, on average,  

persons with diabetes declined an additional 0.15 standard deviations compared to persons without diabetes. Time since baseline was the time 

metric, and cognitive function was modeled using generalized linear models fit using generalized estimating equations, with adjustment for age, 

age squared, race-center, sex, education, cigarette smoking, alcohol consumption, body mass index, hypertension, history of coronary heart 

disease, history of stroke, APOE 4 genotype, and interactions between all of these covariates and time. N=16,707 total records, with N=10,720 at 

visit 4(N=1,209 with diabetes) and N=5,987 at visit 5(N=446 with diabetes).      
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Figure 1. Difference in global cognitive Z score decline by clinical categories of hemoglobin 

A1c compared to decline in persons without diabetes with hemoglobin A1c < 5.7%. 

 

 

 
 

Legend: Adjusted for attrition refers to the inverse probability of attrition weighting used to 

account for participant death or dropout during follow-up. Estimates (95% confidence intervals) 

are from generalized linear models fit using generalized estimating equations for global cognitive 

Z score, with adjustment for age, age-squared, race-center, sex, education, cigarette smoking 

status, drinking status, hypertension, history of coronary heart disease, history of stroke, APOE ε4 

genotype, body mass index, interactions between these variables and time (except for drinking 

status and history of coronary heart disease, which were not significant), and interactions between 

race-center and sex, hypertension, and education. Hemoglobin A1c was categorized using the 

standard clinical cut-points based on American Diabetes Association criteria (in participants 

without a diagnosis of diabetes (N=12,107): <5.7% (N=9,031), 5.7-6.4% (N=2,365), and ≥6.5% 

(N=711); in participants with diagnosed diabetes(N=1,244): <7% (N=415), ≥7% (N=829).  
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ABSTRACT 

BACKGROUND: Longitudinal studies of cognitive performance are sensitive to dropout, as 

participants experiencing cognitive deficits are less likely to attend study visits. This may bias 

estimated associations between exposures of interest and cognitive decline, especially if 

exposures also predict dropout. Multiple imputation is a powerful tool for handling missing data, 

however its use for missing cognitive outcome measures remains limited.  

METHODS: We use multiple imputation by chained equations (MICE) to impute cognitive 

performance scores of participants who did not attend the 2011-2013 follow-up exam of the 

Atherosclerosis Risk in Communities Study, using data available for subsets of participants. We 

examined the validity of imputed scores by setting to missing cognitive scores of a subset of 

participants and comparing observed and imputed values, and by using data simulated under 

varying assumptions. Finally, we examined differences in the estimated association between 

diabetes at baseline and 20-year cognitive decline with and without imputed values.  

RESULTS: Validation using observed data showed MICE produced unbiased imputations in 

living and deceased participants. Simulations showed a substantial reduction in the bias of the 20-

year association between diabetes and cognitive decline comparing MICE (3% bias) to analysis 

of available data only (23% bias) in a construct where missingness was strongly informative but 

realistic. Associations between diabetes and 20-year cognitive decline were substantially stronger 

with MICE than in the analyses without imputed values.  

CONCLUSIONS: Our study suggests when informative data are available for non-examined 

participants, MICE can be an effective tool for imputing cognitive performance and improving 

the characterization of long-term cognitive decline.  
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INTRODUCTION 

Missing data is a common problem in epidemiologic studies. In longitudinal studies, the 

focus is often on how a baseline exposure is associated with changes in an outcome. Here, since 

participants who do not attend subsequent study visits are likely informatively different from 

those who do attend, associations may be biased if missing data are not handled appropriately. 

Multiple imputation is a powerful tool for dealing with missing data[1–4]. However, use 

of imputation for outcome measures of cognitive decline remains limited[5,6], perhaps because 

other methods are effective for correcting potential biases. For example, maximum likelihood 

methods, routinely used in fitting mixed models, account for bias due to missing data when 

missingness is random with respect to variables included in primary analyses[7]. Inverse 

probability of attrition weighting methods and shared parameter models[8–11] are also used to 

account for biases associated with dropout and death (under specific assumptions), and allow use 

of additional variables not included in primary analyses.  

Multiple imputation is particularly useful when data are available for at least a subset of 

participants who did not attend all study visits. Large epidemiologic studies with repeat 

examinations often collect such data through morbidity and mortality surveillance or follow-up 

telephone calls. When such data are also collected for individuals who attend study visits, 

multiple imputation may effectively address potential biases, especially compared to other 

analytical methods.  

Participants with low cognitive performance are typically less likely to attend follow-up 

examinations[12–15]. Data collected via surveillance of hospitalizations and telephone calls may 

identify participants believed to have dementia or mild cognitive impairment, and such 

identification is indicative of the low cognitive test scores that would be found had they been 

examined. Since a full cognitive battery is often not available for such participants, methods to 

translate such information into a cognitive battery score are needed.  
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In this study we imputed cognitive performance scores of participants from the 

Atherosclerosis Risk in Communities (ARIC) Study, who did not attend the 2011-2013 exam, 

using multiple imputation by chained equations[2,16]. We present validation results using both 

observed and simulated data to test the robustness of the imputation under different assumptions. 

To illustrate the utility of multiple imputation to address issues of dropout, we examined the 

association of diabetes at baseline as the exposure of interest (which is also a risk-factor for study 

dropout and death) with cognitive performance over 20-years (the outcome). 

 

METHODS 

Study population 

The ARIC study is a community-based, prospective cohort of 15,792 middle-aged adults 

from four communities in Maryland, Minnesota, Mississippi, and North Carolina[17]. 

Participants were examined at four triennial visits, beginning in 1987-1989. A fifth examination 

occurred in 2011-2013. Participants in North Carolina and Mississippi also had cognitive 

assessment at ancillary visits in a subsample of participants who participated in the Brain MRI or 

Carotid MRI (2004-2005) studies (N=2790). Baseline for the present study was visit 2 in 1990-

1992 (where cognitive assessment began), so we excluded participants who did not attend 

baseline (N=1444) or who were neither black nor white(N=91). Institutional review boards from 

all study sites approved the study, and all participants provided informed consent.  

Diabetes assessment 

 Diabetes at baseline (1990-1992) was defined as self-reported physician diagnosis, 

diabetes medication use, or a hemoglobin A1c level ≥6.5%.  

Cognitive assessment at study visits  

Cognitive function was assessed at visits 2, 4, and 5 using 3 tests: Delayed Word 

Recall[18], Digit Symbol Substitution[19], and Word Fluency[20]. We standardized each test 

score to baseline by subtracting the test mean (at baseline) from each participant’s score and 
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dividing by the test standard deviation (SD, at baseline). A global Z score, calculated by 

averaging the Z score of the three tests, was likewise standardized to baseline. The global Z score 

was the outcome of interest and the focus of the imputation.  

Auxiliary measures of cognitive function 

Information about cognitive function for participants who did not attend visit 5 was 

available through the modified Telephone Interview for Cognitive Status (TICS-m) questionnaire, 

suspect dementia status, and the Clinical Dementia Rating (CDR) scale.  

The TICS-m, a test of cognitive function given over the telephone[21–23], was offered to 

all participants who did not attend visit 5 (completed for N=1327), and to a random subsample of 

participants who attended visit 5 (N=255).  

Participants were classified as having suspect dementia based on information obtained by 

telephone with the participant or their proxy, or an ICD-9 code of dementia appearing in any 

position in hospital discharge records[24] (N=1462). If participants with suspect dementia did not 

complete visit 5 or the TICS-M, their proxies were sought to complete a CDR. Suspect dementia 

status was available for all participants in ARIC.   

For participants with suspect dementia, interviews were sought with proxy informants.  

The CDR was completed by telephone with informants familiar with the participant’s current 

cognitive status (for living participants) or cognitive status 12 months prior to death. It covers six 

domains (memory, orientation, judgment and problem solving, community affairs, home and 

hobbies, and personal care). For deceased participants, interviewers were carefully instructed to 

focus on change in cognitive status occurring 12 or more months prior to death, and to avoid 

reports of pre-terminal cognitive decline. Because of the perceived limitation in attempting to 

reach proxies of participants who died more than 10 years prior to visit 5 and that few participants 

would be expected to have dementia prior to this date (mean age was 70), a CDR was sought only 

for participants who died after 2004. 
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Interviewers scored each of the six domains using a scale of 0 (no impairment), 0.5 

(questionable), 1 (mild), 2 (moderate), and 3 (severe impairment). The CDR sum of boxes (total 

score) ranged from 0 to 18. The CDR was collected on 885 participants who did not attend visit 5 

(N=575 with suspect dementia) and from 2856 who attended visit 5 (N=176 with suspect 

dementia).  

Diabetes association with cognitive decline 

We used mixed-effects models to accommodate the correlation between repeated 

measures over time. Time since baseline (visit 2) was modeled using a linear spline with a knot at 

six years (median time to visit 4). Our models included one random intercept and a random slope 

for each time spline term, and the random effects were assumed to be independent. The 

coefficients of interest were the interaction terms between diabetes and each time spline term, 

which indicate additional decline over time among persons with diabetes at baseline compared to 

those without. The models were adjusted for demographic, behavioral, and cardiovascular risk 

factors as have been previously used[25] (See Figure 2 legend).  

Multiple imputation  

Missing data can be classified as follows[26,27]: missing completely at random (MCAR) 

when missingness does not depend on either observed or unobserved data; missing at random 

(MAR) when, after conditioning on observed data, missingness does not depend on unobserved 

data; or missing not at random (MNAR), when missingness depends on unobserved data (such as 

unmeasured dementia status). 

Multiple imputation replaces missing data with plausible values, and has been 

demonstrated to produce asymptotically unbiased estimates when missing data are MAR or 

MCAR[2,28]. To account for the uncertainty of the imputation and ensure correct standard error 

estimation, multiple imputations are performed[26]. Multiple imputation by chained equations 

(MICE) involves a series of imputation models, where each variable containing missing data is 

regressed on all other variables, including previously imputed missing variables[2,16,28,29]. The 
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flexibility of MICE to impute different data types (categorical, continuous, binary, etc) makes it 

an attractive tool for use in practice. We used 25 sets of imputations, although we observed little 

variation in estimates after 6-7 imputations (eFigure1). We estimated the association of diabetes 

with 20-year cognitive change by conducting analyses separately on each imputed dataset, and 

combined estimated coefficients and standard errors from each analysis using Rubin’s rules[4]. 

The primary target of inference was the average trajectory of cognition while living, thus 

we imputed cognitive outcomes for persons lost to follow up whether living or dead. For living 

participants, scores were imputed at the median visit date. For deceased participants scores were 

imputed 6 months prior to death (and only for participants deceased after 2004). We also 

conducted analyses imputing scores only for participants alive at the start of visit 5, as such an 

estimand may be of interest for certain study questions. Finally, we examined the effects of 

imputing missing covariates or exposure on associations of interest (these participants are often 

excluded from analyses).  

 The imputation model for the global Z score at visit 5 included the same variables as the 

mixed-effects longitudinal model (described above) as well as variables collected from annual 

telephone calls, TICS-M, suspect dementia status, CDRs, and global Z scores from visits 2 and 4. 

From the most recently available (before visit 5) annual telephone call we included the following 

variables (all coded yes/no): coronary heart disease, diabetes status, hypertension status, history 

of stroke, self-reported poor health, and an indicator of whether a proxy familiar with the 

participant was needed for the telephone call. We selected these variables a priori based on 

knowledge of their association with probability of dropout and cognitive function. Interaction 

terms between suspect dementia and education, race-field center, prior visit Z scores, CDR, 

diabetes, and hypertension were also included. Interaction terms were needed because suspect 

dementia modified outcome relationships with prior cognitive performance and other covariates. 

For example, if a person with suspect dementia was found by CDR to have severe impairments, 

cognitive performance at an earlier exam may be less informative relative to current performance. 
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We examined including other visit-based variables collected in ARIC, e.g. from clinical 

chemistries, medical/health history, anthropometry, and medication survey. These additional 

variables did not improve the imputation or change the results of longitudinal analyses using 

these imputations.   

Validation and simulation  

We used two validation approaches. First, to validate imputations among participants 

alive at visit 5, we set to missing cognitive scores of a random sample of participants who 

attended visit 5, and then compared imputed with observed values. To validate an MCAR 

missingness assumption, we randomly selected 20% of participants and set their Z score to 

missing. To validate a MAR missingness assumption, we used a logit model to allow the 

probability of missingness to differ by the following baseline variables: age, race-center, 

education, diabetes, global Z from baseline, and diabetes*global Z from baseline. To validate 

imputed scores among participants deceased by visit 5, we used Z scores of participants who 

attended the Brain or Carotid MRI visits (2004-2006) and who died within 2 years after those 

visits. Since scores from these visits were not used in the imputation, this is validation based on 

independent information. 

Second, we evaluated the performance of MICE using simulated Z scores and simulated 

patterns of missingness corresponding to MCAR, MAR, and MNAR. We retained the observed 

values of all covariates for individuals from the ARIC population, and simulated Z scores using a 

mixed-effects model that included age, race-field center, sex, body mass index, suspect dementia, 

diabetes, hypertension, and interaction terms suspect dementia*time, hypertension*time, current 

cigarette smoking*time, and diabetes*time, where time was model using spline terms (described 

above). Including suspect dementia was necessary to allow us to retain the correlations between 

risk factors and cognitive decline. Additionally, CDR data were specifically sought for persons 

with suspect dementia, so including it was necessary in generating “believable” Z scores, since 

we retained all observed covariates. Using this model, persons with hypertension, diabetes, or 
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smokers, by design, had accelerated cognitive decline. Coefficients of each variable and the 

random-effects parameters were chosen to be similar to values estimated from the cohort (these 

were estimated by fitting this same model using observed ARIC data). Simulation specifications 

are detailed in the Appendix.  

To model probabilities of dropout and death, we created four scenarios reflecting 

different dropout mechanisms. Scenario 1 (MCAR) assumed death and dropout occurred 

completely at random. Scenario 2 (MAR) assumed the probabilities of death and dropout 

(separately) depended on prior visit global Z score, diabetes, hypertension, and smoking status 

modeled using a multinomial logistic regression. Scenario 3 (MAR for the extended set of 

variables, MNAR for variables included in primary analyses) assumed the probabilities of death 

and dropout depended on prior visit global Z score (visit 2 and 4), diabetes, hypertension, 

smoking status, suspect dementia, and a diabetes*suspect dementia interaction (suspect dementia 

collected around visit 5). Of the four scenarios, this scenario is most consistent with what we 

believe the true missingness pattern in ARIC to be. Scenario 4 (MNAR) assumed that dropout 

depended only on simulated visit 5 global Z scores (i.e. unobserved scores), and that death among 

dropouts was random with a probability of 0.4. For each scenario, we analyzed data using 

available-case analysis (mixed-effects modeling with maximum likelihood), MICE restricted to 

participants living at the time of visit 5, and MICE including both living and dead participants. 

We also calculated standard errors, bias, and confidence interval (CI) coverage (the percentage of 

simulations where the true association was contained in the 95% CI). Bias was calculated relative 

to a trajectory-up-to-death target of inference; comparison with a trajectory-among-those-living-

for-visits target is in the Appendix.  

Analyses were completed using Stata/SE Version 13.1 (StataCorp, College Station, TX). 
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RESULTS 

 Of the original baseline cohort, 55% did not attend visit 5, with approximately equal 

percentages due to death (29%) and dropout but living prior to visit 5 (26%); these percentages 

reflect the percentages of the original baseline cohort for whom imputation was done. Compared 

to participants who attended visit 5, participants who died by visit 5 tended to be older at baseline 

(age 60 vs 55 years), were more likely to have diabetes (24% vs 8%) and a history of stroke (4% 

vs 1%), and had worse baseline cognitive performance (Table 1). Additionally, 15% of the 

deceased were suspected of having dementia, compared to only 4% among participants who 

attended visit 5.  

 Validation results based on observed data are shown in Figure 1. MICE produced 

unbiased imputed values regardless of whether an MCAR or a MAR approach was used to select 

the validation sample (Figure 1, Panels A and B). Additionally, imputed values were unbiased in 

subgroups defined by race, education, diabetes, cognitive performance at visit 4, or  suspect 

dementia (not shown). Among both MCAR and MAR validation samples, and by these 

subgroups, mean differences between imputed and observed global Z ranged from -0.03 to +0.02 

Z scores, and the r-squared from a linear fit model between observed and average imputed scores 

ranged from 0.65 to 0.68. As shown in Figure 1, Panel C, among 74 participants who died less 

than 2 years after attending the Brain or Carotid MRI Study, agreement between the imputed and 

observed global Z scores was excellent. The mean difference was -0.02 Z scores, and the r-

squared was 0.70 from the linear fit model where observations were weighted relative to time 

since the Brain or Carotid MRI Study (calculated as 1/time, such that deaths closer to the visit 

received higher weights). Finally, Figure 1, Panel D shows the distribution of imputed scores at 

visit 5, by CDR availability, among persons with suspect dementia. The characteristics of 

participants without a CDR were similar to those with a CDR (eTable1). However, because the 

informant could not be located (and CDRs were not obtained), the average imputed scores were 

higher by 0.55 Z scores than the average imputed score for participants whose informant was 
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interviewed. This result implies that when a CDR could not be obtained, we had insufficient 

information with which to impute a plausibly low enough cognitive score.  

 Simulation results are in Table 2. In scenario 1 (MCAR), all methods yielded 

approximately unbiased estimates, as expected. When data were MAR (scenario 2), the available-

case analysis and imputation for living participants yielded similar results: both slightly 

underestimated the target association. In contrast, imputation for living and deceased produced 

less biased results – a difference which may result from including suspect dementia in the data 

generating model but not the analytic model. In scenario 3, where death and dropout depended on 

suspect dementia, available-case analysis yielded a 23% bias, which was reduced to 12% with 

imputation for living participants, and 3% with imputation for all participants, both conservative. 

Available-case analysis had 95% CI coverage of 73%, compared to 94% using imputation. In 

scenario 4, where participants were missing based on their unobserved cognitive function, no 

method yielded unbiased results (bias ≈26%). Across all scenarios the bias in estimating the 

standard errors ranged from negligible to 20%. We also evaluated findings against a truth derived 

from only the living participants, an estimand which sometimes may be of interest. Here the 

available-case analysis was less biased (15% compared to 23%), and imputation in the living 

reduced the bias to 3% (eTable2, scenario 3).  

Estimates of decline in persons with diabetes compared to those without are shown in 

Figure 2. Imputation of baseline covariates and exposure had no discernable effect on estimates, 

likely because only 4% of the baseline population was missing any covariates, and 1% was 

missing exposure. During the first 6 years of follow-up, persons with diabetes experienced an 

additional mean decline of 0.10 Z scores compared to those persons without diabetes. Imputation 

of cognitive performance had no discernable effect on estimates of 6-year change, as few 

participants dropped out or died during this time. During the next 14 years of follow-up (years 6-

20), when most dropout occurred, we observe the effect of imputation on estimates of cognitive 
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decline. Using available-case analysis (i.e. no imputation), we estimated an additional mean 

decline of -0.08 Z scores in persons with diabetes compared to those without. Imputing the 

outcome yielded larger decline estimates, with similar results between imputation in only living 

participants (estimated additional decline -0.11 Z scores) and both living and deceased 

participants (estimated additional decline -0.12 Z scores). Imputation in the latter group yielded 

larger standard errors. 

 

DISCUSSION 

In this community-based cohort study, we used MICE to impute cognitive performance 

as the outcome for subsequent epidemiologic investigations. Validation analyses showed that 

MICE yielded unbiased imputations of cognitive performance for both living and deceased 

participants, with the exception that the procedure may not specify scores plausibly low enough 

for persons with suspect dementia whose informants could not be interviewed. We showed that 

estimates of the associations of diabetes with 20-year cognitive decline were substantially further 

from the null with the use of MICE, compared to analyses without imputation. Finally, 

simulations showed that when data are informatively missingness and related additional data are 

available, MICE may produce less biased estimates of associations of interest compared to 

available-case analysis. We note, however, several limitations to our simulations. First, suspect 

dementia was built into the data-generating model in our simulations but not included as a 

covariate in subsequent mixed models. Doing so highlights implications of unobserved covariates 

even in a MAR scenario: analyses including only participants living at visits and those also 

incorporating the deceased may target different estimands as a result. Second, simulation results 

depend on assumptions made about the generating, death, and dropout models. While we chose 

parameters for simulation models that we believe are realistic (coefficients obtained from models 

using observed ARIC data), results nonetheless depend on assumptions chosen.  
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Imputation for the entire study population, including those who died, attempts to 

represent the whole population’s cognitive natural history up to (but not beyond) death. Thus, we 

imputed scores for the dead 6-months before death, with attempts made to ignore pre-terminal 

changes. While this approach has merits, it also has limitations. Imputations for dead participants 

are placed before death, which can occur during a wide time interval, while imputations for living 

participants are anchored to visits. Thus, the former imputation gives different statistical leverage 

to those who died. Our methods attempted to avoid any effect of accelerated pre-terminal decline, 

which though difficult, avoids potentially biasing the associations between outcomes and timing 

of observations. Similarly, estimating trajectories of cognitive function using data only at clinic 

visits of living participants has the advantage of being directly informed by observations timed 

independently of adverse outcomes. However, ignoring the stronger association of diabetes with 

cognitive decline attributable to dementia or death may fail to adequately represent the target 

population’s natural history. The choice of when and for whom to impute the outcome deserves 

careful thought. While our study saw similar results under two scenarios (imputing only for living 

participants and imputing for living and deceased), others may not. Moreover, our study does not 

address the more controversial question of what the preferable approach is to dealing with the 

potential bias induced when attrition is due to death[30]. 

Though guidance regarding multiple imputation is available[2,16,29,31], less is known 

about its utilization in epidemiologic studies for imputing cognitive outcomes. Other methods, 

such as inverse probability weighting or likelihood-based approaches, are more common[32]. 

Multiple imputation may be ideal for handling missing data when valuable information is 

available only in a subset of participants, as is the case in our and other community-based cohort 

studies. More research is needed to determine if a combined approach using both imputation and 

inverse probability weighting in epidemiologic studies would yield improved estimates[33,34].  

Advantages of MICE include its flexibility in imputing different data types (e.g. 

categorical, continuous, etc.), and relative ease of implementation using standard statistical 
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packages. A disadvantage of MICE may be its atheoretical nature. Specifically, the series of 

conditional models may lead to situations where the joint distributions are incompatible. However 

studies have shown that MICE appears to be generally robust against such 

incompatibility[1,28,35]. Though MICE produces unbiased estimates when missing data are 

MAR, in situations where data are missing based on unobserved information, such as unmeasured 

cognitive ability, MICE may produce biased estimates. In such scenarios an alternative approach, 

such as joint modeling, may be helpful; however, it may also be that analyses to explicate 

sensitivity of findings to the strength of non-ignorable associations are most optimal[36,37]. 

Finally, careful thought should be given to collection of alternative data to supplement the data 

collected at regular study visits, whether through proxies, phone calls, or other surveillance. Such 

supplemental data are invaluable to minimize informative missingness, although one should be 

careful to avoid differential information bias.  

In summary, our results suggest that when informative data are available for participants 

who do not attend study visits, MICE is an effective tool for imputing cognitive performance as 

the outcome, and may improve assessment of cognitive decline.  
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Table 1. Participant baseline characteristics by vital status at visit 5  

 

Total 

Attended visit 

5 

Alive, did not 

attend visit 5 

Deceased by 

visit 5 

N (%) 14,229 6,340 (45) 3,713 (26) 4,176 (29) 

Age 57.0 (5.7) 55.1 (5.2) 57.4 (5.7) 59.8 (5.4) 

Female, % 55.4 58.9 61.3 45.0 

Black, % 24.7 22.6 22.9 29.5 

HbA1c, % 5.8 (1.2) 5.6 (0.9) 5.7 (1.0) 6.2 (1.7) 

Diabetes, % 13.6 7.5 12.2 24.2 

Body mass index, kg/m
2
 28.0 (5.4) 27.6 (5.1) 28.1 (5.5) 28.3 (5.8) 

History of CHD, % 5.8 2.6 3.9 12.3 

History of stroke, % 1.9 0.8 1.2 4.3 

Hypertension, % 36.1 27.4 36.3 49.2 

APOE e4 alleles, % 

    0 69.1 71.1 68.9 66.3 

1 28.2 26.6 28.5 30.5 

2 2.6 2.3 2.6 3.2 

Education, % 

    Less than high school 21.9 14.7 23.5 31.4 

High school 41.5 41.9 43.7 38.9 

College/vocational 36.6 43.4 32.9 29.7 

Smoking, % 

    Current 22.4 16.2 21.0 33.1 

Former 37.9 38.5 36.6 38.2 

Never 39.7 45.3 42.4 28.7 

Drinking, % 

    Current 56.3 60.9 53.8 51.5 

Former 21.2 17.1 21.0 27.6 

Never 22.5 22.0 25.2 20.8 

Measures of cognitive 

function 

    Global Z 0.00 (1.00) 0.24 (0.93) -0.01 (0.94) -0.37 (1.04) 

DWRT, words recalled 6.6 (1.5) 6.9 (1.5) 6.6 (1.5) 6.2 (1.6) 

DSST, number completed 44.6 (14.2) 48.1 (13.5) 44.6 (13.4) 39.1 (14.4) 

WFT, words generated 33.2 (12.5) 35.0 (12.2) 32.7 (12.1) 30.8 (12.8) 

Suspected Dementia by 

Visit 5, % 10.3 4.2 15.6 14.7 

CDR sum of boxes* 2.8 (4.7) 1.3 (2.4) 7.3 (6.8) 8.0 (6.9) 

TICS-M 34.2 (7.4) 34.2 (7.7) 34.2 (7.3) - 
Values shown as % or mean (SD). All variables measured at visit 2 (1990-1992) except CDR, which was collect 

around the time of visit 5 (2011-2013) via contact with participants or a proxy. Suspected dementia was ascertained 

prior to visit 5 from hospitalization records with an ICD-9 code for dementia or from contact with participants or their 

proxy where cognitive impairment was indicated. * Available for a subset of participants, N=3741 

Abbreviations: CHD, coronary heart disease; DWRT, delayed word recall test; DSST, digit symbol substitution test; 

WFT, word fluency test; CDR, clinical dementia rating; TICS-M, modified telephone interview for cognitive status. 
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Table 2. Simulation results of estimated 20-year additional decline for persons with diabetes 

compared to those without  
  Truth  Imputation 

Scenario  
Living and deceased 

participants 
Available case 

Living 

participants 

Living and deceased 

participants 

1 MCAR Mean (SE) -0.237 (0.024) -0.235 (0.035) -0.231 (0.034) -0.229 (0.033) 

Bias (%) - -0.001 (0%) -0.005 (2%) -0.007 (3%) 

Empirical SE 0.0202 0.0341 0.0322 0.0313 

CI coverage - 100% 100% 98% 

2 MAR Mean (SE) -0.237 (0.024) -0.225 (0.042) -0.221 (0.043) -0.231 (0.044) 

Bias (%) - -0.012 (5%) -0.016 (7%) -0.006 (2%) 

Empirical SE 0.0202 0.0402 0.0389 0.0403 

CI coverage - 96% 93% 96% 

3 MAR 

for MICE, 

MNAR 

for 

available 

case  

Mean (SE) -0.237 (0.024) -0.182 (0.042) -0.208 (0.044) -0.229 (0.047) 

Bias (%) - -0.055 (23%) -0.029 (12%) -0.007 (3%) 

Empirical SE 0.0202 0.0436 0.0448 0.0452 

CI coverage - 73% 94% 94% 

4 MNAR  Mean (SE) -0.237 (0.024) -0.168 (0.035) -0.174 (0.037) -0.175 (0.037) 

Bias (%) - -0.068 (29%) -0.062 (26%) -0.061 (26%) 

Empirical SE 0.0202 0.0341 0.0308 0.0307 

CI coverage - 51% 65% 66% 

Mean effect is an average of 100 simulations. The standard error (SE) of the mean effect is the square root of mean 

variances across 100 simulations. Bias is calculated as the mean effect estimate from each method (available case, 

imputation in living participants, imputation in both living and deceased participants) minus the mean effect estimate 

from the truth. Negative values indicate underestimation of the true effect and positive values represent overestimation. 

Bias % is calculated as the estimated bias divided by the true effect (ie 0.005/0.237 = 2%). The empirical SE is the 

standard deviation of the mean effect across 100 simulations. CI coverage is the percentage of the simulations where 

the confidence interval for the estimated effect includes the true effect. 

Scenario 1: Death and dropout simulated to be missing completely at random, with probabilities of 0.29 and 0.37, 

respectively, chosen to match proportions observed in ARIC. Scenario 2: Death and dropout simulated to depend on 

prior visit global Z score, diabetes, hypertension, and smoking status. Scenario 3: Death and dropout simulated to 

depend on prior visit global Z score, diabetes, hypertension, current smoking status, and suspected dementia. As a 

result, the “complete case”, which uses a mixed model, is MNAR (suspect dementia not included in the mixed model), 

but MICE is MAR (suspect dementia is included for imputation). This scenario is more consistent with what we believe 

the true missingness pattern in ARIC to be. Scenario 4: Dropout simulated to depend on visit 5 global Z scores (i.e. 

unobserved scores), and death simulated to be missing completely at random. 
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Figure 1. Validation of multiply imputed global Z score using existing data  

 
 

Legend: 

Multiple imputation was done using chained equations, and 25 imputations were obtained and averaged for display in 

each plot. Panel A: 20% validation sample to simulate missing completely at random (MCAR) data. All participants 

had a 0.2 probability of being selected. If selected, participants’ Z scores at visit 5 were set to missing and imputed. 

Panel B: 20% validation sample to simulate missing at random (MAR) data. Participants had varying probabilities of 

selection into the validation sample, with probabilities varying by education (less than high school, high school, greater 

than high school), race (black, white), diabetes (yes, no), or global Z score at visit 2 in the bottom 25th percentile (yes, 

no), and all interactions. If selected, participants’ Z scores at visit 5 were set to missing and imputed. Panel C: 

Validation of imputed scores for participants who were deceased within 2 years of either the brain or carotid MRI 

visits, which took place 2004-2006 (N=74). Square size is inversely related to difference between visit date and death 

date (i.e. weight=1/time between visits), such that larger squares indicate death closer to the time of visit. Linear fit line 

is weighted using the inverse of difference between visit date and death date, and yielded an r-squared of 0.70. Panel 

D: Distribution of imputed scores among people with suspected dementia (N=1,462) by CDR status, adjusted for vital 

status (living/deceased).  
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Figure 2. Estimated additional decline in cognitive performance for persons with diabetes 

compared to persons without, by time period and amount of imputation  

 

 
 
Legend: 

Estimates and 95% CIs are for mixed-effects models using time since baseline as the time axis, modeled using a spline 

term with a knot at 6 years, the median time between visits 2 and 4. Random effects were random intercept and two 

random slopes, one for each time spline term. All models were adjusted for age, age squared, race-field center 

(Maryland (white race); Minnesota (white race); North Carolina (white race); North Carolina (black race); Mississippi 

(black race)), sex, education (less than high school; high school, high school equivalent, or vocational school; or 

college, graduate, or professional school), cigarette smoking status (current; former; never), alcohol consumption status 

(current; former; never), body mass index (kg/m2), hypertension (yes or no), history of stroke (yes or no), 

apolipoprotein E ε4 genotype (0, 1, or 2 alleles). Interaction terms between the time spline terms and age, sex, race-

field center, education, history of stroke, and apoliprotein E ε4 genotype were also included in the model. All 

covariates were assessed at visit 2 (baseline) except education, race, and sex (visit 1). 25 imputations were generated by 

chained equations. Sample sizes were as follows: No imputation: participants=13482, observations=29616; Imputation 

of covariates: participants=13901, observations=30567; Imputation of covariates, exposure: participants=14033, 

observations=30832; Imputation of covariates, exposure, and outcome for living participants: participants= 14151, 

observations=37854; Imputation of covariates, exposure, and outcome for living and deceased participants: 

participants=14151, observations=41479. 

 

  



 

46 

 

Chapter 3: Glucose peaks and the risk of dementia and 20-year cognitive decline 

 

Andreea M. Rawlings MS
1
, A. Richey Sharrett MD DrPH

1
, Thomas H. Mosley PhD

2
; Shoshana 

H. Ballew PhD
1
; Jennifer A. Deal PhD MHS

1
, Elizabeth Selvin PhD MPH

1
 

 

Author affiliations: 

From the 
1
Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 

Baltimore, Maryland; the 
2
Department of Medicine; University of Mississippi Medical Center, 

Jackson, MS 

 

 



 

47 

 

ABSTRACT 

Introduction: The risk of dementia and cognitive decline increase with increasing levels of 

hemoglobin A1c (HbA1c), a measure of average blood glucose. However, the association of 

cognition with glucose peaks is unclear. Here we examine the association of glucose peaks in 

midlife, measured by 1,5-anhydroglucitol (1,5-AG), with risk of dementia and 20-year cognitive 

decline.  

Methods: Nearly 13,000 participants from the Atherosclerosis Risk in Communities Study were 

examined. Dementia was ascertained from community surveillance, visit-based cognitive tests, 

telephone calls with participants or their proxy, or from dementia codes on the death certificate. 

Cognitive function was assessed using three neuropsychological tests at three visits over 20 years, 

and was summarized as Z scores. We used Cox regression to examine the association between 

1,5-AG and incident dementia, and mixed-effects models to model cognitive function over time. 

1,5-AG was dichotomized at 10 μg/mL and examined within diabetes status and categories of 

HbA1c.   

Results: Over a median of 21 years of follow-up, 1105 participants developed dementia. Among 

persons with diabetes, each 5 μg/mL decrease in 1,5-AG increased the risk of dementia by 16% 

(HR=1.16, p-value=0.032). For cognitive decline, among participants with diabetes and HbA1c 

<7%, those with glucose peaks had 0.19 more Z score decline over 20-years (p-value=0.162) 

compared to those without peaks. Among participants with diabetes and HbA1c ≥7%, those with 

glucose peaks had 0.38 more Z score decline compared to persons without glucose peaks (p-

value=<0.001). We did not find associations between glucose peaks and cognition among persons 

without diabetes. 

Conclusions: Participants with diabetes and glucose peaks had higher risk of dementia and 

greater cognitive decline over 20 years, compared to persons without glucose peaks, independent 

of HbA1c and other dementia risk factors. More studies are needed to determine if targeting 
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glucose peaks, in addition to average glucose, can reduce the risk of dementia and cognitive 

decline among persons with diabetes.  
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INTRODUCTION 

Diabetes is an established risk factor for cognitive impairment, with evidence that 

diabetes affects performance in several cognitive domains and puts persons at increased risk of 

dementia
1–4

. However, the pathophysiologic mechanisms underlying these associations are 

unclear. 

Hemoglobin A1c (HbA1c) is the standard clinical measure used for diagnosis and 

management of diabetes
5
, and reflects mean blood glucose over the preceding 2-3 months. 

Several studies have shown that the risk of dementia and cognitive decline increases at higher 

levels of HbA1c
6–9

. However, HbA1c does not capture some aspects of glycemia, such as short-

term variability or glycemic peaks, which may be particularly relevant for cognitive function.  

1,5-anhydroglucitol (1,5-AG) is a monosaccharide similar to glucose in structure. In the 

presence of hyperglycemia (levels above the renal filtration threshold of approximately 180 

mg/dL), 1,5-AG competes with glucose for renal re-absorption, which causes urine excretion and 

serum levels to fall. As a result, 1,5-AG reflects hyperglycemic peaks over a short period of time 

(7-10 days)
10,11

. Studies have documented that in persons with diabetes, 1,5-AG contributes to 

micro- and macro-vascular disease and death
12,13

, independently of average blood glucose. 

Because of their effect on the vasculature, glucose peaks may be particularly important for 

cognitive function and dementia, but this association has not been widely explored.  

Our aim was to characterize the prospective association between glucose peaks, as 

measured by1,5-anhydroglucitol, and 20-year cognitive decline and incident dementia in a 

community-based population. We hypothesized that glucose peaks, indicated by low levels of 

1,5-AG, will be associated with higher risk of dementia and greater long-term cognitive decline, 

independent of average glycemia, as measured by HbA1c, and other risk factors for cognitive 

decline.  
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METHODS 

Study population  

The Atherosclerosis Risk in Communities (ARIC) study is a prospective cohort of 15,792 

community-dwelling adults sampled from four U.S. communities: suburbs of Minneapolis, 

Minnesota; Washington County, Maryland; Forsyth County, North Carolina; and Jackson, 

Mississippi. The first cohort examination took place 1987-1989, with three additional visits 

roughly three years apart. A fifth visit was completed 2011-2013. Institutional review boards at 

each study site reviewed and approved the study. Written informed consent was obtained from all 

participants.  

 The baseline for the current study is the second visit, which took place 1990-1992. Of the 

14,348 participants who attended visit 2, we excluded participants who were neither black nor 

white (n=91) and participants missing 1,5-AG or HbA1c (n=1,246) giving a sample of n=13,007 

for our analysis of incident dementia. For analysis of cognitive change, we further excluded 

persons missing cognitive testing at baseline (n=172) for a final sample of 12,835.  

Measurement of 1,5-AG and HbA1c 

1,5-AG was measured using a Roche Modular P800 system in 2012–2013 in stored 

serum samples originally collected at visit 2 (1990-1992). The interassay coefficient of variation 

was 5%, and the reliability coefficient using 610 masked duplicate samples was 0.99. 

Additionally, previous studies have shown that this assay is reliable in long-term stored 

samples.
14,15

 HbA1c was measured in stored samples originally collected at visit 2 using high-

performance liquid chromatography using the Tosoh 2.2 and the Tosoh G7.
16

  

Definition of diabetes and prediabetes 

Diabetes was defined on the basis of self-reported physician diagnosis, use of glucose-

lowering medication, or measured HbA1c ≥6.5%. Among participants classified as not having 

diabetes using this definition, we defined prediabetes as an HbA1c in the range of 5.7-6.4%.   
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Assessment of incident dementia and cognitive function  

Dementia was ascertained from community surveillance of hospitalizations, visit-based 

cognitive tests, telephone calls with participants or their proxy, or from dementia codes on the 

death certificate. For persons with dementia, the date was defined as the earliest of either: the first 

occurrence of a hospitalization with an ICD-9 code for dementia, date of death (if dementia codes 

were present on death certificate), date of telephone contact with participant or their proxy 

indicating dementia, or date of visit 5 in 2011-2013 (if participant had dementia at the visit but no 

earlier indication of dementia). Participants who attended visit 5 and were algorithmically 

classified as not having dementia
17

 were censored at visit 5. Participants who did not attend visit 5 

were censored at the last date where there was no known indication of dementia (telephone 

contact with the participant or their proxy or a hospitalization where no dementia was indicated).  

Cognitive function was assessed at visits 2, 4, and 5 using 3 neuropsychological tests: 

Delayed Word Recall (DWR)
18

, Digit Symbol Substitution of the Wechsler Adult Intelligence 

Scale-Revised (DSS)
19

, and Word Fluency Test (WFT)
20

. Trained examiners administered the 

tests in a fixed order in a quiet room. Examiner performance was monitored by tape recording 

and reviewed locally and centrally to ensure consistency with testing protocols.  

In the DWRT, participants were presented with 10 common nouns and asked to use each 

in a sentence. After completion of all 10 words, a second exposure to each word was given. After 

a five-minute delay, participants were given 60 seconds to recall the words, with scores ranging 

from 0-10. For the DSST, participants had 90 seconds to translate numbers (0-9) to symbols using 

a key. The score was calculated as the number of correctly translated symbols, with scores 

ranging from 0-93. Finally for the WFT, participants were given three 60-second trials to generate 

words beginning with the letters “F”, “A”, or “S”, excluding proper nouns. The total score for this 

test was the total number of words generated across the three trials.  
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We created a Z score for each test at each visit, standardized to visit 2, by subtracting the 

test mean (at visit 2) and dividing by the standard deviation (at visit 2). Next, we created a global 

composite Z score by averaging the Z score of the three tests and standardizing to visit 2.  

Covariates 

The following variables were evaluated as confounders: age; sex; race–field center (five 

categories: white persons from Minneapolis, Washington County, or Forsyth County; black 

persons from Forsyth County or from Jackson); education (less than high school; high school or 

vocational school; or college or above); cigarette smoking status (current, former, never); 

hypertension (yes/no, based on self-reported diagnosis, medication use or systolic ≥140 mmHg or 

diastolic ≥90 mmHg); history of coronary heart disease (yes/no); history of stroke (yes/no); body 

mass index; diabetes medication use (insulin, yes/no; sulfonylureas, yes/no); and apolipoprotein 

E4 (APOE4) genotype (coded as 0, 1, or 2 ε4 alleles). Education, race, and sex were evaluated at 

visit 1 (1987-1989). All other variables were assessed at visit 2.  

Statistical analysis 

We dichotomized 1,5-AG at 10 μg/mL, a cut-point recommended by the manufacturer 

and used in previous publications using these data
12,13

. This was done in persons without diabetes, 

in persons with diabetes and HbA1c <7%, and in persons with diabetes and HbA1c ≥7%, to 

create a 6-level exposure variable. We also modeled 1,5-AG continuously and using linear splines 

with knots at the 5
th
, 35

th
, 65

th
, and 95

th
 percentiles.

21
  

For analyses of incident dementia, we used Cox proportional hazards regression to 

estimate hazard ratios (HRs) and 95% confidence intervals (CIs), and we used the Efron method 

to handle tied failure times. We verified the proportional hazards assumption using log-log plots. 

We used three models specified as follows: Model 1 was adjusted for age, race-field center, sex, 

and education; Model 2 was adjusted for the variables in Model 1 plus hypertension, history of 

stroke, history of coronary heart disease, cigarette smoking status, drinking status, and APOE4; 
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Model 3 was adjusted for the variables in Model 2 plus HbA1c, and was done stratified by pairs 

of 1,5-AG groups (3 separate models).  

For analyses of change in cognitive function from baseline, we used mixed-effects 

models, which accounts for the correlation of repeated measures over time. We modeled time 

since baseline (visit 2) using a linear spline with a knot at six years (the median time between 

visits 2 and 4).  Models included a random intercept and two random slopes for time (one for 

each spline term), and the three random effects were assumed to be independent. We adjusted for 

age, age squared, race-field center, sex, education, hypertension, history of stroke, history of 

coronary heart disease, APOE4, cigarette smoking status, drinking status, body mass index, and 

included interaction terms between each variable and time. 

Missing data 

477 participants at baseline (3.6%) had missing values for one or more covariates used in 

incident dementia or cognitive change analyses. We used multiple imputation by chained 

equations (MICE) to impute these missing baseline covariates. Additionally, for our analysis of 

cognitive decline, Z scores of participants dropping out of the study over time were also imputed 

using MICE as previously described (Chapter 2). Briefly, Z scores were imputed using 

information collected during and outside of study visits, including annual follow-up telephone 

calls, community surveillance of hospitalizations, the telephone interview for cognitive status, or 

retrospective dementia ascertainment, where the clinical dementia rating scale was given to the 

participant or a proxy. For participants alive at the time of visit 5, scores were imputed at the 

median visit date; for participants deceased by visit 5, scores were imputed 6 months prior to 

death. We calculated 10 imputations and results were combined using Rubin’s rules.  

Sensitivity analyses 

We conducted a few sensitivity analyses to test the robustness of our results. First, for 

analyses of incident dementia, we restricted our study population to only individuals who had at 

least one hospitalization (N=10,646). This allowed us to examine if associations were due to 
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differential ascertainment of dementia between those with and without a hospitalization. This 

addresses the fact that persons with diabetes may be more likely to be hospitalized and thus 

receive a diagnosis of dementia. Second, we performed completely stratified analyses by diabetes 

and HbA1c categories. Third, to mitigate the possibility that participants with already low Z 

scores at baseline have less room to decline over time (floor effects), we excluded participants 

scoring in the bottom 5
th
 percentile at baseline. 

 

RESULTS 

At baseline the average age was 57 years, 56% were female, and 24% were black (Table 

1). Among persons with diabetes and HbA1c <7%, participants with 1,5-AG <10 μg/mL 

compared to those with 1,5-AG ≥10 μg/mL were less likely to be female (48% vs 58%), black 

(33% vs 43%), have less than a high school education (26% vs 36%), have a history of stroke 

(2.4% vs 5.1%), and be current smokers (18% vs 23%). HbA1c, body mass index, hypertension, 

and baseline Z scores were similar between these two groups, but fasting glucose was somewhat 

higher in those with 1,5-AG <10 μg/mL. Among persons with diabetes and HbA1c ≥7%, 

participants with 1,5-AG <10 μg/mL compared to those with 1,5-AG ≥10 μg/mL were less likely 

to be female (57% vs 67%), black (48% vs 58%), and have hypertension (61% vs 66%). They 

were also less likely to have 1 or 2 APOE e4 alleles (29% vs 36%) and had higher baseline Z 

scores (-0.55 vs -0.71).  

Over a median follow-up of 21 years, 1105 participants developed dementia. Table 2 

shows the association of baseline 1,5-AG levels, within diabetes and HbA1c status groups, with 

incident dementia. In fully adjusted models, compared to persons with well-controlled diabetes 

and 1,5-AG ≥10 μg/mL, persons with well-controlled diabetes and 1,5-AG <10 μg/mL had a 33% 

higher risk of dementia, though this was not statistically significant (p-value=0.285). 

Additionally, persons with poorly controlled diabetes and 1,5-AG <10 μg/mL had a 86% higher 

risk of dementia (p-value=0.011) compared to persons with 1,5-AG ≥10 μg/mL. In persons 
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without diabetes, the risk of dementia was not significantly higher in persons with 1,5-AG <10 

μg/mL compared to those with 1,5-AG ≥10 μg/mL (HR = 1.05, p-value=0.754). We found 

similar, but attenuated results, when we stratified by diabetes and HbA1c, with additional 

adjustment for HbA1c (Supplemental Table 1), and when we restricted the population to only 

participants with at least one hospitalization (Supplemental Table 2).  

 The association between continuous values of 1,5-AG and dementia, in persons with 

diabetes, is shown in Figure 1. Each 5-unit decrease in 1,5-AG was associated with a 16% 

increased risk of dementia (HR=1.16, p-value=0.032). The association between 1,5-AG and 

dementia was similar when modeled using linear splines.  

 Figure 2 shows the estimated association between baseline categories of diabetes and 20-

year cognitive decline. Among persons with diabetes and HbA1c <7%, persons with 1,5-AG <10 

μg/mL had 0.19 greater Z score decline compared to persons with 1,5-AG ≥10 μg/mL (p-

value=0.162). Among persons with diabetes and HbA1c ≥7%, persons with 1,5-AG <10 μg/mL 

had 0.38 greater Z score decline compared to persons with 1,5-AG ≥10 μg/mL (p-value<0.001). 

The association between diabetes and cognitive decline appeared to be modified by 1,5-AG status 

at baseline. Participants with 1,5-AG ≥10 μg/mL and diabetes, regardless of HbA1c status, had 

similar decline in cognitive function compared to persons with 1,5-AG ≥10 μg/mL without 

diabetes. However there was a graded association among persons with 1,5-AG <10 μg/mL, with a 

0.26 Z score decline per diabetes and HbA1c category (Figure 2). We observed similar 

differences in 1,5-AG categories in analyses where we removed participants scoring in the bottom 

5
th
 percentile at baseline, however estimates were much less precise in these analyses 

(Supplemental Figure 1).   

 

CONCLUSION 

In this community-based study, we found that low levels of 1,5-AG, indicative of 

glycemic peaks, were associated with increased risk of dementia and greater cognitive decline 
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over 20 years. Specifically, 1,5-AG seemed to modify the association between cognitive decline 

and diabetes status. Persons with glucose peaks had the greatest decline, even if their average 

glycemic level, as measured by HbA1c, appeared to be well controlled (i.e. HbA1c <7%, 

although this was not statistically significant), while there was little difference in rates of decline 

by diabetes status and glycemic control in persons without glucose peaks.  

 The mechanisms by which diabetes leads to cognitive impairment are not well 

understood. It is thought that hyperglycemia, hypoglycemia, and oxidative stress, among other 

factors, play important roles
23

, but less attention has been given to characterize the association 

with glycemic variability and debate on its usefulness in clinical practice is ongoing
24

. At the 

cellular level, fluctuations in glycemia have been shown to more adversely affect endothelial 

function and induce oxidative stress compared to sustained hyperglyceima
25–28

, potentially 

leading to greater vascular damage and cognitive decline. A few studies using continuous glucose 

monitors (CGMs) have found associations between glycemic variability, higher mean amplitude 

of glycemic excursions (MAGE), and cognitive impairment and brain atrophy, independent of 

both mean levels of glycemia and hypoglycemic episodes
29–31

, but long-term prospective studies 

have not been conducted.  

Studies using data from CGMs have found moderate correlations between common 

measures of glycemic variability (e.g. mean amplitude glycemic excursions, postprandial glucose 

excursions) and 1,5-AG
32,33

. Additionally, studies have shown that 1,5-AG is associated with 

long-term micro- and macro-vascular outcomes, independently of HbA1c
12,13

. Glycemic 

variability is an aspect of glycemia that is not well captured by HbA1c, which is less sensitive 

than 1,5-AG to glycemic peaks. If glucose peaks in persons with diabetes contribute to long-term 

cognitive decline and dementia, above and beyond average hyperglycemia, it may also offer 

additional targets for prevention, though additional studies in this area are needed
24,34

.   

  Our study has some limitations that should be considered when interpreting these results. 

First, ascertainment of dementia in participants not seen at the 2011-2013 examination was based 
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in part on ICD-9 codes, and insensitive method that may misclassify some cases. Second, we had 

only a single measure of 1,5-AG, although in ARIC it has been shown that total short-term 

variability of 1,5-AG (over a mean of 6 weeks) is intermediate between fasting glucose and 

HbA1c
35

. Third, we had relatively few participants in some of our exposure groups, which limited 

our statistical power in some analyses. Lastly, over 20 years of follow-up, a number of 

participants died or did not attend follow-up visits, potentially biasing associations of interest in a 

conservative direction. While we used validated methods to account for this drop out, including 

the use of auxiliary information collected to characterize participants’ cognition during follow-up, 

these methods may not fully account for the effects of attrition. Our study also has a number of 

strengths, including a large sample size of nearly 13,000 adults, comprehensive assessment of 

confounders at baseline, well-characterized and validated neuropsychological tests for cognitive 

function and dementia assessment during follow-up, and a median follow-up of 21 years.  

 In summary, our study found that glucose peaks, as measured by 1,5-AG, were 

detrimental to cognitive function in persons with diabetes. 1,5-AG was associated with an 

increased the risk of dementia independently of mean glucose and other risk factors for cognitive 

decline. More research is needed to determine if targeting glucose peaks in the management of 

diabetes, in addition to mean glucose, can prevent or delay dementia and cognitive decline in 

persons with diabetes.  
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Table 1. Characteristics of study participants at baseline by diabetes status*, HbA1c, and 1,5-anhydroglucitol categories 

 
 

No Diabetes  Diabetes 

    HbA1c <7%  HbA1c ≥7% 

 

Total 1,5-AG ≥10 1,5-AG <10  1,5-AG ≥10 1,5-AG <10  1,5-AG ≥10 1,5-AG <10 

N (row %) 12,996 10,708 (82.4) 576 (4.4)  535 (4.1) 125 (1.0)  176 (1.4) 876 (6.7) 

1,5-AG, μg/mL 17.6 (6.7) 19.5 (5.0) 7.4 (2.0)  17.9 (5.0) 6.9 (2.4)  15.4 (4.7) 3.3 (2.5) 

Glucose, mg/dl 114 (44.1) 103 (11.2) 104 (18.2)  126 (24.0) 143 (44.2)  157 (36.3) 243 (85.1) 

HbA1c, % 5.8 (1.2) 5.4 (0.4) 5.5 (0.4)  6.2 (0.5) 6.4 (0.5)  7.6 (0.8) 9.6 (1.9) 

Prediabetes
†
, % 17.0 19.1 26.9  - -  - - 

Diabetes Medication, %          

Insulin
‡
 3.0 - -  6.4 13.6  13.6 35.3 

Sulfonylureas 3.8 - -  14.0 28.8  26.1 38.7 

Diabetes duration, years
§
  5.0 (2.8-11.9) - -  3.0 (2.7-8.9) 6.0 (2.8-14.7)  4.5 (2.8- 9.2) 5.9 (2.3-13) 

Age, years 56.9 (5.7) 56.7 (5.7) 57.3 (6.0)  58.0 (5.8) 58.6 (5.6)  58.3 (5.7) 58.1 (5.7) 

Female, % 56.3 55.6 65.6  58.1 48.0  66.5 57.2 

Black, % 24.0 20.4 25.7  43.4 32.8  58.0 48.1 

Education, % 

   

  

 

 

  Less than high school 21.3 19.2 17.4  35.6 26.4  39.2 36.2 

High school 41.9 42.6 40.4  36.3 40.0  38.1 38.2 

College/vocational 36.9 38.2 42.3  28.1 33.6  22.7 25.6 

Body mass index, kg/m
2
 28.0 (5.4) 27.5 (5.1) 27.0 (5.0)  31.1 (6.1) 31.0 (5.8)  32.5 (6.5) 31.6 (6.1) 

eGFR, mL/min/1.73 m
2
 96.4 (15.7) 96.4 (14.4) 94.9 (18.4)  96.8 (18.3) 91.0 (25.2)  97.8 (20.3) 96.9 (21.9) 

Hypertension, % 35.6 32.0 32.4  57.1 54.0  65.9 60.7 

History of stroke, % 1.9 1.4 2.1  5.1 2.4  4.6 5.2 

APOE e4 alleles, % 

   

  

 

 

  0 69.4 69.5 66.4  69.5 73.4  64.5 71.0 

1 28.0 28.0 31.3  26.1 23.4  32.0 26.8 

2 2.6 2.6 2.3  4.4 3.2  3.5 2.2 

Current smoker, % 22.1 22.7 16.8  23.0 18.4  21.1 18.0 

Current drinker, % 56.6 59.9 57.1  39.1 43.2  31.3 33.3 

Global Z score 0.00 (1.00) 0.08 (0.97) 0.05 (0.99)  -0.43 (1.01) -0.48 (1.05)  -0.71 (0.98) -0.55 (1.05) 

Visit 5 status, N (%)          

Attended 5,869 (45.7) 5,172 (48.8) 275 (48.6)  150 (28.5) 33 (27.0)  45 (26.0) 194 (23.2) 

Alive, did not attend 3,411 (26.6) 2,864 (27.0) 143 (25.3)  156 (29.7) 35 (28.7)  46 (26.6) 167 (19.9) 

Deceased 3,550 (27.7) 2,569 (24.2) 148 (26.1)  220 (41.8) 54 (44.3)  82 (47.4) 477 (56.9) 
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Values shown as mean (SD) or % unless otherwise indicated. * Diabetes was defined as a self-reported physician diagnosis of diabetes, use of glucose lowering 

medication, or an HbA1c ≥6.5% (by definition, persons in the “No diabetes” group have HbA1c <6.5%).   

† Prediabetes was defined as HbA1c 5.7–6.4%.   

‡ Includes insulin plus another oral medication.  
§ Shown as median (25

th
 – 75

th
 percentiles).  

Abbreviations: 1,5-AG, 1,5-anhydroglucitol; HbA1c, hemoglobin A1c; eGFR, estimated glomerular filtration rate; APOE, apolipoprotein E.
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Table 2. Adjusted HRs (95% CI) for the association of 1,5-anhydroglucitol categories with 

incident dementia by diabetes* status 

 

 Events/N 

Model 1 

HR (95% CI) 

 

p-value
†
 

Model 2  

HR (95% CI) 

 

p-value
†
 

No Diabetes 

 

  

 

  

 

 

 1,5-AG ≥10 829/10708 1 (reference) 
 

0.962 1 (reference) 
 

0.754 

 1,5-AG <10 48/576 1.01 (0.75, 1.35)   1.05 (0.78, 1.40)   

Diabetes         

A1c < 7% 1,5-AG ≥10 60/535 1.34 (1.02, 1.75)  0.359 1.27 (0.97, 1.67)  0.285 

 1,5-AG <10 19/125 1.71 (1.08, 2.70)   1.69 (1.07, 2.67)   

         

A1c ≥ 7% 1,5-AG ≥10 19/176 1.41 (0.89, 2.23)  0.020 1.31 (0.83, 2.07)  0.011 

 1,5-AG <10 130/876 2.49 (2.06, 3.02)   2.44 (2.01, 2.97)   

Model 1: Adjusted for age, sex, education, and race-center 

Model 2: Adjusted for the variables in model 1 plus hypertension, history of stroke, history of coronary 

heart disease, cigarette smoking status, drinking status, APOE4 

* Diabetes was defined as a self-reported physician diagnosis of diabetes, use of glucose lowering 

medication, or an HbA1c ≥ 6.5% 

† p-values compare 1,5-AG ≥10 μg/mL to 1,5-AG <10 μg/mL within diabetes status and HbA1c category  
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Figure 1. Adjusted HRs (95% CI) for the association of 1,5-anhydroglucitol with incident 

dementia among persons with diabetes 

 

 
 

Legend: Hazard ratios (HRs) were estimated using Cox proportional hazards regression among persons 

with diabetes (N=1659) with adjustment for age, race (black/white), sex, education, hypertension(yes/no), 

history of stroke (yes/no), history of coronary heart disease (yes/no), apolipoprotein E ε4 genotype (0, 1, or 

2 alleles), and hemoglobin A1c. 1,5-anhydroglucitol was measured at baseline (1990-1992) and modeled 

continuously, with the reference point of 1,5-anhydroglucitol set at 10 μg/mL (the 60
th

 percentile). We also 

modeled the association using linear splines with knots at the 5
th

, 35
th

, 65
th

, and 95
th

 percentiles. Diabetes 

was defined as a self-reported physician diagnosis of diabetes, use of glucose lowering medication, or an 

HbA1c ≥6.5%. Median follow-up was 18 years and there were 217 cases of incident dementia. 
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Figure 2. Estimated association between baseline categories of diabetes and 20-year 

cognitive decline, by diabetes, HbA1c, and 1,5-Anhydroglucitol group  

 

 
Legend: Estimates and 95% confidence intervals are from mixed-effects models with adjustment for age, 

age
2
, race-field center, sex, education, cigarette smoking status, drinking status, hypertension, history of 

stroke, history of coronary heart disease, apolipoprotein E ε4 genotype, body mass index, and interactions 

between these variables and time. Time since baseline was the time axis, and was modeled with a linear 

spline with a knot at 6 years. A random intercept and two random slopes for time (one for each spline term) 

were included, and the three random effects were assumed to be independent. *Dashed lines indicate linear 

regression fit across 3 diabetes groupings (no diabetes, diabetes and HbA1c<7%, diabetes and HbA1c 

≥7%) and 1,5-AG category. Decline indicates the estimated decline per categories and the p-value for the 

trend across categories.  
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ABSTRACT 

Neuropsychological test batteries are designed to assess cognition in detail by measuring 

cognitive performance in multiple domains. This study examines the factor structure of tests from 

the ARIC-NCS battery overall and across informative subgroups defined by demographic and 

vascular risk factors in a population of older adults. We analyzed neuropsychological test scores 

from 6413 participants in the Atherosclerosis Risk in Communities Neurocognitive Study (ARIC-

NCS) examined in 2011-2013. Confirmatory Factor Analysis (CFA) was used to assess the fit of 

an a priori hypothesized three-domain model, and fit statistics were calculated and compared to 

one- and two-domain models. Additionally, we tested for stability (invariance) of factor structures 

among different subgroups defined by diabetes, hypertension, age, sex, race, and education. Mean 

age of participants was 76 years, 76% were White, and 60% were female. CFA on the a priori 

hypothesized three-domain structure, including memory, sustained attention and processing 

speed, and language, fit the data better (CFI=0.973, RMSEA=0.059) than the two-domain 

(CFI=0.960, RMSEA=0.070) and one-domain (CFI=0.947, RMSEA=0.080) models. BIC value 

was lowest, and QQ-Plots indicated better fit, for the three-domain model. Additionally, multiple-

group CFA supported a common structure across the tested demographic subgroups, and 

indicated strict invariance by diabetes and hypertension status. In this community-based 

population of older adults with varying levels of cognitive performance, the a priori hypothesized 

three-domain structure fit the data well. The identified factors were configurally invariant by age, 

sex, race, and education, and strictly invariant by diabetes and hypertension status.  
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INTRODUCTION 

Neuropsychological test batteries are designed to evaluate different areas of cognition in 

order to identify, track, and diagnose cognitive impairment and dementia (Hayden, Jones, et al., 

2011). This motivates the grouping of neuropsychological tests to identify cognitive domains that 

may be differentially affected by disease pathology. Further, grouping cognitive tests into 

domains may reduce measurement error and may better facilitate testing of primary hypotheses 

regarding the possible etiology of various cognitive impairments (Gibbons, Bubb, & Brown, 

2007; Silverstein, 2008).  

Performance on neuropsychological tests may vary by age, global mental status, or for 

reasons unrelated to cerebral pathology, such as education level or cultural factors. It is important 

to determine if the underlying factors measured by cognitive tests are similar (invariant) across 

subgroups to ensure that observed variability in cognitive performance in different groups can be 

appropriately attributed to underlying cognitive abilities rather than to differences in the meaning 

of the tests. Such invariance analyses by demographics and cognitive status are important to 

establish and are commonly conducted (Hayden, Reed, et al., 2011; Mungas, Widaman, Reed, & 

Tomaszewski Farias, 2011; Park et al., 2012; Siedlecki, Honig, & Stern, 2008). Additionally, 

studies have examined invariance by genetic risk factors for Alzheimer’s disease (AD) (Dowling, 

Hermann, La Rue, & Sager, 2010) with invariance among tests often varying by genetic risk 

factors in populations and by subgroups.  

However, the examination of factor invariance by vascular risk factors, such as diabetes 

and hypertension, is less common. This is particularly important as hypertension and diabetes are 

common in the general population, and even more so in older adults and African Americans. 

Establishing the invariance of cognitive tests by vascular risk factors is vital for studies that aim 

to evaluate the associations of vascular risk factors or markers with cognitive decline and 

dementia.  
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Vascular dementia is the second most common type of dementia after AD, with the 

prevalence of pure vascular dementia about 10-15%. However, emerging evidence shows that 

most dementia may be a mix of both vascular dementia and AD pathology (O’Brien & Thomas, 

2015). Studies have also shown that the clinical expression of dementia is larger in the presence 

of vascular disease, independent of the level of AD pathology (Jellinger & Attems, 2015; 

Snowdon et al., 1997). Hypertension and diabetes have been identified as risk factors for vascular 

dementia (Gorelick, 2004) and may be contributors to AD (de Bruijn & Ikram, 2014). Both of 

these risk factors are very common in older adults and, more importantly, are modifiable, 

providing potential means of intervention to prevent or delay the vascular contributions to 

dementia and AD.  

The present study addressed two aims. The first aim was to explore the factor structure of 

the Atherosclerosis Risk in Communities Neurocognitive Study (ARIC-NCS) neuropsychological 

test battery using confirmatory factor analysis (CFA) for a priori hypothesized domains. The 

second aim was to explore the stability of the factor structure by demographic subgroups (defined 

by age, race, sex, and education) and vascular risk factors (diabetes and hypertension). The 

ARIC-NCS battery contains commonly used tests, and is very similar to the neuropsychological 

test battery from the National Institute on Aging Uniform Data Set (Morris et al., 2006; 

Weintraub et al., 2009).  

 

METHODS 

Study Population 

The Atherosclerosis Risk in Communities (ARIC) Study is a bi-ethnic, community-based 

prospective cohort of 15,792 middle aged adults from four U.S. communities: Washington 

County, Maryland; Forsyth County, North Carolina; suburbs of Minneapolis, Minnesota; and 

Jackson, Mississippi. ARIC participants were seen at four in-person visits roughly 3 years apart, 

from 1987-89 for visit 1, through 1996-98 for visit 4. A fifth visit took place from 2011-2013, 
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which included neuropsychological testing as part of the ARIC-NCS. 6538 participants attended 

visit 5, and 6501 completed the neurocognitive assessment. We excluded participants who were 

neither Black nor White (n=20) or who were missing all cognitive tests (n=68), giving a sample 

size of 6413 for the present study. Institutional review boards at each study site reviewed and 

approved the study; written informed consent was obtained from all participants.  

Neuropsychological Assessment  

  The ARIC-NCS test battery included eleven of the neuropsychological tests recommended 

for inclusion in the National Institute of Aging’s National Alzheimer’s Disease Coordinating 

Center (NACC) Uniform Data Set Battery(Morris et al., 2006). Protocols for the tests were 

standardized and examiners were trained centrally. The tests were administered in a fixed order 

during one session in a quiet room.  

  We hypothesized that the tests represented three cognitive domains: Memory, Language 

and Verbal Fluency, and Sustained Attention and Processing Speed (SAPS), and that this 

grouping of tests best represents the data. This a priori hypothesized 3-domain structure was 

based in part on the presumed underlying neurological structures involved (Lezak, 2012) as well 

as findings from two studies, which also used tests comprising the NACC Uniform Data Set 

Battery, namely the Alzheimer’s Disease Neuroimaging Initiative(Park et al., 2012) and the 

NACC study (Hayden, Jones, et al., 2011). Because validation necessitates not only verifying that 

a three-domain model well-characterizes the observed data, but also that models of lower 

dimensions do not suffice to this end, we additionally examined a one-domain model (all tests 

grouped together) and a two-domain model (a memory domain and a domain of the remaining 

tests, representing a language/SAPS combined domain). The tests, grouped according to our a 

priori hypothesized three-domain structure, are described below.  

Memory Domain 

Delayed Word Recall Test (DWRT): In the DWRT participants are presented with 10 

common nouns that they are asked to use in a sentence. Two exposures to the words are given. 
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After a five-minute delay, participants are given 60 seconds to recall the words. The score for the 

DWRT is the number of words correctly recalled. 

Logical Memory Test (LMT): In part 1, participants are read two short stories and are 

asked to recall the details immediately following each story. At the conclusion of Part 1, 

participants are told they will be asked again about the stories. Part 2 is completed after a filled 

delay of approximately 20 minutes, and consists of participants recalling details of the same 

stories from part 1. The metric for both parts is the number of correct details recalled, with a 

maximum score of 50 for each of the two parts. Here we present parts 1 and 2 separately, labelled 

as “LM 1” and “LM 2”, respectively.  

Incidental Learning: Incidental learning is based on the Digit Symbol Substitution Test 

(DSST). For the DSST, participants are not instructed to learn the digit-symbol pairs. 

Immediately following completion of the DSST, participants are asked to remember the symbols 

and corresponding digit-symbol pairs. The metric used for this test is the number of symbol-pairs 

correctly recalled, with a range of 0 to 9.  

Language and Verbal Fluency Domain 

Animal Naming: In this test, participants are asked to name as many animals as they can 

in 60 seconds. Names of extinct, imaginary, and magical animals are admissible. Credit also is 

given for breeds, different names for males, females, or infants of the same species (e.g. bull, 

cow, calf) as well as superordinate and subordinate (e.g. dog and terrier) for birds, reptiles, and 

insects. The score is the total number of animals generated.  

Boston Naming Test (BNT): In the BNT, participants are shown a series of 30 line 

drawings, one at a time, and are given 20 seconds to name the object shown in each drawing. No 

hints or clues are provided. The variable used in our analysis is the number of drawings correctly 

identified.  

Word Fluency Test (WFT): The WFT is a test of executive function and language. 

Participants are given 60 seconds to generate as many words as possible beginning with the 
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letters F, A and S (60 seconds for each letter), avoiding proper nouns. The WFT score is the total 

number of acceptable words generated for the three letters  

Sustained Attention and Processing Speed (SAPS) Domain 

Trail Making Test (TMT): The TMT is comprised of two parts, A and B. In part A, 

participants are presented with numbers 1-25 each in a separate circle and distributed haphazardly 

across a page, and are asked to draw lines connecting the numbers sequentially. Similarly in part 

B, participants are given a page containing numbers (1-13) and letters (A-L), and are asked to 

draw lines connecting the numbers and letters in sequential, but alternating, fashion. Time to 

completion is the metric used for both parts. Participant who take longer than four minutes to 

complete the test, or who make more than 5 errors, are given a maximum time of 240 seconds.  

Digit Symbol Substitution Test (DSST): For the DSST, from the Wechsler Adult 

Intelligence Scale-revised (WAIS-R), participants are asked to translate numbers to symbols 

using a key. The score is the total number of numbers correctly translated to symbols within 90-

seconds and the range of possible scores is 0 to 93.  

Digit Span Backwards (DSB): In the DSB, participants are read a series of numbers 

increasing in length from 2 to 7 digits each and are asked to repeat each series backwards. There 

are two trials for each digit span length, giving a maximum score of 12.   

Hypertension Assessment 

Blood pressure was measured using an OMRON HEM-907XL automated blood pressure 

monitor. Following a five-minute quiet rest period, three blood pressure measurements were 

taken, and the second and third measurements were averaged. Hypertension was defined as an 

average (of the second and third readings) systolic blood pressure greater than 140, a diastolic 

blood pressure greater than 90, or self-reported blood-pressure lowering medication use.  

Diabetes Assessment 

 Participants who had a measured haemoglobin A1c ≥ 6.5%, or who brought glucose-

lowering medication to the study visit were classified as having diabetes. Additionally, 
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participants who self-reported a diagnosis of diabetes or glucose-lowering medication use during 

annual follow-up telephone calls prior to the study visit were also classified as having diabetes.   

Statistical Analysis 

For each cognitive test, we calculated standardized Z scores by subtracting the test mean 

from each participant’s test score and dividing by the test standard deviation. For the Trail 

Making tests, Z scores were calculated after taking the log of the test scores. In addition, because 

a higher score on these tests indicates worse performance, we multiplied the Z score by -1 so that 

low Z scores indicated worse performance for all tests. Participants who did not complete a test 

due to difficulty were assigned a Z score of -2 as described in ARIC-NCS Manual 17 (“Manual 

17. ARIC Neurocognitive Exam (Stages 2 and 3),” 2011).   

Cronbach’s alpha (Cronbach, 1951) was used to describe internal consistency reliability 

for test scores of each domain of the a priori hypothesized three-domain structure.  

Factor Analysis 

We examined the domain (factor) structure of the cognitive tests using the test-specific Z 

scores and confirmatory factor analysis (CFA). CFA was applied to the a priori hypothesized 

three-domain model (tests grouped as described above), the two-domain model, and the one-

domain model. CFA models were fit using full-information maximum likelihood, which allows 

the inclusion of all participants who have at least one test score. Correlations between the errors 

of the two logical memory tests and the two trails making tests were included based on a priori 

expectation that the errors of these pairs of tests would be correlated as the tests themselves are 

highly related. The correlation between the trail making test part A and the digit symbol 

substitution test was included based on examination of model fit. Including these correlations 

allowed us to relax the assumption of conditional independence and resulted in improved model 

fit. Analyses were completed using Stata/SE 13.1 (StataCorp LP, College Station TX). 

Configural invariance is met when the same tests are associated with the same factors in 

each group, and is evaluated using model fit statistics. We focused on configural invariance for 
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subgroups defined by age (dichotomized at the median age), sex, race, and education, using the 

three-domain structure. Education was grouped into three levels: less than high school (<HS), 

high school or vocational school (HS), or more than high school (>HS, includes any college or 

professional school). For hypertension and diabetes, we further examined metric, strong, and 

strict invariance. Metric invariance is met when factor loadings do not differ between subgroups. 

Strong invariance is met when factor loadings and intercepts do not differ between subgroups. 

Finally, strict invariance is met when factor loadings, intercepts, and residual variances do not 

differ between subgroups. The three error correlations (between the logical memory tests, trail 

making tests, and trails part A and digit symbol substitution) were unconstrained (allowed to 

vary) between subgroups for configural invariance, but were constrained for metric, strong, and 

strict invariance.   

We examined five model fit statistics to assess both relative and absolute model fit. The 

Comparative Fit Index (CFI)(Bentler & Mooijaart, 1989; Bentler, 1990) compares the fitted 

model with a null model that assumes uncorrelated variables (i.e. the independence model). The 

Tucker-Lewis Index (TLI)(Marsh & Hau, 1996; Tucker & Lewis, 1973) is a similar measure of 

relative model fit that indicates improvement over the null model. CFI and TLI values range from 

0-1, with values >0.9 indicating good model fit. The Root Mean Square Error of Approximation 

(RMSEA)(M. W. Browne & Cudeck, 1992; Steiger, 1989, 1990) and the Standardized Root 

Mean Residual (SRMR)(Steiger, 1989) assess absolute model fit. They are measures of the size 

of the model residuals and are insensitive to sample size and variable distribution. For RMSEA, 

values <0.05 indicate very good fit. For SRMR, values <0.08 indicate adequate fit, and values 

<0.05 indicate good fit. The Bayesian Information Criterion (BIC) (Raftery, 1995), is a criterion 

for model selection that adds a penalty for increasing model complexity and possible over-fitting 

of the data; the preferred model is the one with the lowest BIC. Additionally, changes in BIC 

values can be interpreted using grades of evidence described by (Raftery, 1995), where decreases 

in BIC >10 indicate very strong evidence to prefer the model with the lower BIC. Finally, for the 
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one-, two-, and three-domain models we calculated the correlation matrix residuals and created 

quantile-quantile (QQ) plots for the residuals of one- versus two-domain models and the two- 

versus three-domain models to further evaluate relative model fit (Michael W Browne, 

MacCallum, Kim, Andersen, & Glaser, 2002).  

 

RESULTS 

Characteristics of study participants and the distributions of the raw, non-standardized 

test scores are shown in Table 1. Participants’ mean age was approximately 76 years, 76% were 

White, and 59% were female. The prevalence of vascular risk factors was high, with 74% of 

participants having hypertension, 33% diabetes, and 15% reporting a history of coronary heart 

disease.  

The a priori hypothesized three-domain model with standardized factor loadings, 

correlations between the factors, and residual errors are shown in Figure 1. Correlations between 

the factors were relatively high, with values of 0.80, 0.82, and 0.85 for Memory/SAPS, 

Memory/Language, and Language/SAPS, respectively.  

Fit statistics for the one-, two-, and three-domain models are shown in Table 2. Fit 

statistics for the one-domain model indicated good absolute fit (CFI=0.947, RMSEA=0.080), 

however they indicated worse fit than the two-domain model (CFI=0.961, RMSEA=0.070); the 

BIC value for the one-domain model was highest among the models considered. All fit statistics 

indicated better fit for the three-domain model (CFI=0.973, RMSEA=0.059), compared to the 

one- and two-domain models, and confidence interval for RMSEA excluded the confidence 

intervals for RMSEA from one and two-domain models. Of note, DSB had the lowest factor 

loading compared to all other tests, and compared to tests within SAPS. Thus, in a CFA where we 

excluded this test from our analyses, model fit statistics indicated even better fit (CFI=0.981, 

RMSEA=0.056). Figure 2 shows the QQ plots for the correlation matrix residuals from models 

for two-domains versus one-domain (Figure 2, Panel A) and three-domains versus two-domains 
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(Figure 2, Panel B). Quantiles of the residuals indicate superior fit for the three-domain model 

compared to the two- and one-domain models.  

Tables 3 and 4 show standardized factor loadings and fit statistics for the subgroup 

analysis of diabetes and hypertension, respectively, by each model of invariance. For both 

subgroups, fit statistics across all four models were similar and did not suggest deterioration in 

model fit as parameters were restricted to be similar across subgroups. Additionally, BIC values 

were lowest for the model with strict invariance; this model additionally had a BIC value that was 

more than 10 units lower than the other models, giving strong evidence to prefer it to the other 

models.   

Standardized factor loadings and fit statistics of our demographic subgroup analyses are 

shown in Table 5. Model fit statistics for multiple group models based on age, sex, education and 

race were similar to the overall model, indicating configural invariance for these subgroups. 

RMSEA values ranged from 0.057 to 0.061 and SRMR values ranged from 0.033 to 0.037, both 

indicating configural invariance in each subgroup. Further exploration of invariance across these 

demographic factors indicated at least metric invariance across all demographic factors (Online 

Tables 1-4). 

The internal consistency reliability of each domain was good, with alpha values of 0.81, 

0.72, and 0.78 for the memory, language, and SAPS, respectively. Test scores within each 

domain had similar correlations with the domain, indicating consistency. For example, Animal 

Naming, Boston Naming, and Word Fluency test scores were correlated 0.827, 0.785 and 0.806 

respectively with the Language and Verbal Fluency domain. An exception was scores of the 

DSB, which were less correlated with the SAPS domain than were test scores of Trails A, Trails 

B, and DSS (Online Table 5). 
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DISCUSSION 

The growing interest in clarifying structural and functional associations in aging and 

disease in the context of the rapidly expanding minority and aging populations in the US 

motivates the need to demonstrate that the measures commonly used in clinical and 

epidemiologic studies have a stable structure (i.e., reflect the same construct) across potentially 

informative subgroups of vascular risk factors and demographics. Our a priori hypothesized 

three-domain structure based on our expectations from available published evidence (i.e. (1) 

Memory, (2) Language and Verbal Fluency, and (3) Sustained attention and Processing Speed), 

fit the data better than a one- or two-domain model. Additionally, we have established invariance 

in a diverse, community-based population of older adults, using a cognitive battery comprised of 

common tests. Our analyses of the stability of the factors across subgroups indicated configural 

invariance, meaning the same domains are being measured regardless of age, race, sex, or 

education. Further, examination of invariance by diabetes and hypertension status suggested 

substantial stability by these vascular risk factors. Similar domain structures and invariance 

between demographic factors have been previously reported (Dowling et al., 2010; Hayden, 

Jones, et al., 2011; Jack  Jr. et al., 2012; Mungas et al., 2011; Siedlecki et al., 2008; Vemuri et al., 

2012), however few studies have examined invariance by vascular risk factors.  

Establishing invariance by vascular risk factors is particularly important, as diabetes and 

hypertension are common, especially so among Blacks and older adults. The ability to identify 

meaningful dimensions of cognitive function is relevant not only for diagnostic purposes but also 

for characterizing those at highest risk for cognitive decline and dementia (e.g., by race or other 

demographics) and informing underlying brain functional-structural relationships.  Establishing 

invariance for these very common vascular risk factors in a diverse sample is an important 

prerequisite for addressing these types of questions.  

Our study has both limitations and strengths. The first limitation is that we have only 3-4 

tests to represent each cognitive domain, thus we may have limited precision to fully characterize 
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the domains. For example, DSB had the lowest factor loading compared to the other tests in the 

SAPS domain. This may indicate that DSB more finely measures an attention construct, whereas 

the other tests included in this domain relate more to processing speed and executive function. 

Second, Blacks in ARIC were recruited primarily from two communities, which may limit 

generalizing to other regions. However, the education backgrounds in Blacks from these centers 

are diverse, and the finding that the domain structure appears similar is encouraging. We note that 

while the alphas we estimated in our study are large enough for the purpose of making group-

level comparisons, they are not large enough to make individual-level inferences (Nunnally & 

Bernstein, 1994).  

A key strength of our study is the administration of a core of widely used tests, using a 

standardized protocol of centrally trained testers, to this large, diverse, community-based 

population. The battery of tests administered in ARIC-NCS is consistent with other large-scale 

studies, which provides for comparability across studies (Hayden, Jones, et al., 2011; Park et al., 

2012; Siedlecki et al., 2008). Additionally, the use of full information maximum likelihood in the 

CFA analyses allowed us to include all participants. Lastly, the ability to infer appropriate 

conclusions about group differences on neuropsychological test performance presumes careful 

attention to the selection of tests, availability of relevant norms for comparison, and sensitivity to 

the measurement process/testing situation that may differentially impact performance. Our study 

goes one step further in addressing the robustness of the construct validity of the underlying 

cognitive domains under study. 

The choice of the number of factors in a given factor analysis depends on a number of 

substantive considerations in addition to statistical fit. Previous studies have noted that persons 

with normal cognition tend to have less variability in their performance and a one-domain model 

is typically found (Gross, Jones, Fong, Tommet, & Inouye, 2014; Jones et al., 2010; Strauss & 

Fritsch, 2004). In contrast, individuals with impairment tend to have more heterogeneity in their 

performance and more than one factor may be needed to accurately capture status distinctions 
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because different cognitive abilities may deteriorate at different rates (Bakkour, Morris, Wolk, & 

Dickerson, 2013; Hayden, Reed, et al., 2011; Kanne, Balota, Storandt, McKeel, & Morris, 1998). 

In our study there was a persuasive improvement in fit for a three-factor model as compared to 

models with fewer factors or domains. Further, BIC values, which penalize for over-fitting, also 

indicated a three-domain model. However, we observed high correlations between the domains, 

ranging from 0.80-0.85, and the fit of the one-domain model was reasonable. Thus, using a global 

composite may have the advantage of greater overall reliability for characterizing individuals 

compared with composites of fewer tests, and perhaps greater sensitivity to the effects of the key 

causal factors that will be assessed in ARIC-NCS. The decision of the number of factors thus 

depends to some extent on the ultimate goal of the factor analysis. 

In summary, in this community-based population of older adults, results from the CFA 

indicate that the ARIC-NCS battery may be summarized into three domains, and that these 

domains are stable across subgroups defined by age, race, education, diabetes or hypertension. 

For investigations into the contributions of vascular predictors (such as hypertension and 

diabetes) to cognition in older persons, it is vital to establish the invariance of cognitive domains 

by these risk factors. Our findings assure us, and future investigators, that one can use the same 

cognitive domain constructs to pursue questions regarding the vascular contribution to 

impairments. Using multiple indicators of cognitive performance may allow us to capture the 

general determinants of cognitive function, and average out method-specific and error 

components.  

These results provide compelling evidence for the robustness of cognitive domains 

measured by our test battery. Our findings are encouraging for studies aiming to test hypotheses 

regarding the associations between midlife vascular factors and late-life cognitive impairment in 

diverse populations defined by age, race, education, and vascular risk factors.  
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Table 1. Characteristics of study participants, N=6413  

 Total 25
th
, 75

th
 percentile 

Age, mean (SD) 76.2 (5.2) 71.9, 80.0 

White, N (%) 4900 (76.4) - 

Female, N (%) 3770 (58.8) - 

Education, N (%)   

Less than high school 956 (14.9) - 

High school or GED 2672 (41.7) - 

College or vocational school 2774 (43.3) - 

Hypertension, N (%) 4744 (74.0) - 

Diabetes, N (%) 2091 (32.6) - 

History of coronary heart disease, N (%) 944 (14.7) - 

Cognitive Tests*   

Delayed Word Recall, words recalled 5.2 (1.9) 4, 6 

Logical Memory 1, details recalled 21.5 (7.5) 16, 27 

Logical Memory 2, details recalled 16.6 (7.9) 11, 22 

Incidental Learning, symbol-pairs recalled 3.3 (2.3) 1, 5 

Trails A, time (seconds) 50.2 (31.1) 33, 56 

Trails B, time (seconds) 128.3 (60.6) 81, 165 

Digit Symbol Substitution, symbols translated 37.8 (12.1) 29, 46  

Digit Span Backwards, correct spans 5.5 (2.0) 4, 7 

Animal Naming, animals generated 16.0 (5.1) 13, 19 

Boston Naming, items identified 24.6 (5.5) 23, 28 

Word Fluency, words generated 32.6 (12.4) 24, 41 

* Sample size for individual tests vary; values reported as mean (SD) 
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Table 2. Fit statistics from confirmatory factor analyses by number of domains and domain 

definitions  

 1 domain 2 domains 

3 domains  

(all tests) 

3 domains 

(without DSB) 

CFI 0.947 0.961 0.973 0.981 

TLI 0.929 0.946 0.962 0.971 

RMSEA* 0.080 (0.077, 0.084) 0.070 (0.067, 0.073) 0.059 (0.056, 0.063) 0.056 (0.052, 0.060) 

SRMR† 0.044 0.046 0.033 0.029 

BIC 160,804 160,372 159,985 143,953 

* RMSEA listed as estimate (90% confidence interval) 

† SRMR calculated from models restricted to complete data 

Abbreviations: DSB, digit span backwards; CFI, comparative fit index (>0.90 indicates good fit); TLI, 

Tucker-Lewis index(>0.90 indicates good fit); RMSEA, root mean squared error of approximation(<0.10 

indicates good fit, <0.05 indicates very good fit); SRMR, standardized root mean squared residual (<0.08 

indicates adequate fit, <0.05 indicates good fit); BIC, Bayesian information criterion (lower numbers are 

better, and decreases >10 indicate strong evidence to prefer the model with the lower BIC). 

 

http://en.wikipedia.org/wiki/Dagger_(typography)
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Table 3. Standardized factor loadings and fit statistics for invariance models by diabetes 

 

Configural Invariance 

Variances constrained to 1, 

means to 0; intercepts, 

residuals, and factor loadings 

unconstrained  

 Metric Invariance  

Variances constrained to 1, 

means to 0, factor loadings 

invariant across groups; 

intercepts and residuals 

unconstrained  

 Strong Invariance 
Variances constrained to 1, 

means to 0, factor loadings 

and intercepts invariant 

across groups; residuals 

unconstrained  

 

Strict Invariance  
Variances constrained to 1, 

means to 0, factor loadings, 

intercepts, and residuals 

invariant across groups 

Memory No Diabetes Diabetes  No Diabetes Diabetes  No Diabetes Diabetes  No Diabetes Diabetes 

DWR 0.64 0.66  0.64 0.65  0.64 0.65  0.64 0.65 

LM 1 0.71 0.70  0.70 0.71  0.70 0.70  0.70 0.71 

LM 2 0.73 0.73  0.73 0.73  0.73 0.73  0.72 0.74 

Incidental Learning 0.63 0.67  0.63 0.67  0.63 0.67  0.64 0.65 

Language 
  

 
  

 
  

 
  

Animal Naming 0.73 0.72  0.72 0.74  0.72 0.74  0.72 0.73 

Word Fluency  0.65 0.70  0.65 0.69  0.66 0.70  0.67 0.68 

Boston Naming 0.65 0.68  0.66 0.66  0.66 0.66  0.66 0.67 

SAPS 
  

 
  

 
  

 
  

Trails A 0.67 0.72  0.68 0.69  0.68 0.69  0.69 0.69 

Trails B 0.83 0.83  0.84 0.83  0.83 0.83  0.83 0.83 

DSS 0.79 0.81  0.79 0.81  0.79 0.81  0.80 0.80 

DSB 0.51 0.53  0.51 0.53  0.50 0.53  0.51 0.51 

Fit statistics 
  

 
  

 
  

 
  

CFI 0.973  0.973  0.971  0.970 

TLI 0.961  0.964  0.965  0.969 

RMSEA* 0.060 (0.056, 0.063)  0.057 (0.054, 0.060)  0.056 (0.053, 0.059)  0.053 (0.050, 0.056) 

SRMR† 0.033  0.034  0.035  0.036 

BIC 158,916  158,868  158,852  158,783 

* RMSEA listed as value (90% confidence interval)  † SRMR calculated from models restricted to complete data 

Abbreviations: DWR, delayed word recall; LM, logical memory; SAPS, sustained attention and processing speed; DSS, digit symbol substitution; DSB, digit 

span backwards; CFI, comparative fit index (>0.90 indicates good fit); TLI, Tucker-Lewis index (>0.90 indicates good fit); RMSEA, root mean squared error of 

approximation (<0.10 indicates good fit, <0.05 indicates very good fit); SRMR, standardized root mean squared residual (<0.08 indicates adequate fit, <0.05 

indicates good fit); BIC, Bayesian information criterion (lower numbers are better, and decreases >10 indicate strong evidence to prefer the model with the lower 

BIC).   

http://en.wikipedia.org/wiki/Dagger_(typography)
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Table 4. Standardized factor loadings and fit statistics for invariance models by hypertension 

 

Configural Invariance 

Variances constrained to 1, 

means to 0; intercepts, 

residuals, and factor loadings 

unconstrained  

 Metric Invariance  

Variances constrained to 1, 

means to 0, factor loadings 

invariant across groups; 

intercepts and residuals 

unconstrained  

 Strong Invariance 
Variances constrained to 1, 

means to 0, factor loadings 

and intercepts invariant 

across groups; residuals 

unconstrained  

 

Strict Invariance  
Variances constrained to 1, 

means to 0, factor loadings, 

intercepts, and residuals 

invariant across groups 

Memory No Htn Htn  No Htn Htn  No Htn Htn  No Htn Htn 

DWR 0.67 0.63  0.66 0.64  0.66 0.64  0.66 0.64 

LM 1 0.71 0.70  0.71 0.70  0.71 0.70  0.71 0.69 

LM 2 0.73 0.72  0.74 0.72  0.74 0.72  0.74 0.72 

Incidental Learning 0.63 0.65  0.64 0.64  0.64 0.64  0.66 0.64 

Language 
  

 
  

 
  

 
  

Animal Naming 0.74 0.72  0.73 0.73  0.73 0.73  0.74 0.72 

Word Fluency  0.65 0.68  0.66 0.67  0.66 0.67  0.68 0.67 

Boston Naming 0.65 0.67  0.65 0.67  0.65 0.67  0.67 0.66 

SAPS 
  

 
  

 
  

 
  

Trails A 0.69 0.69  0.70 0.68  0.70 0.68  0.69 0.68 

Trails B 0.85 0.83  0.86 0.82  0.86 0.83  0.84 0.83 

DSS 0.78 0.80  0.79 0.80  0.79 0.80  0.80 0.80 

DSB 0.52 0.51  0.50 0.52  0.50 0.51  0.52 0.51 

Fit statistics 
  

 
  

 
  

 
  

CFI 0.973  0.973  0.973  0.971 

TLI 0.961  0.965  0.967  0.970 

RMSEA* 0.059 (0.056, 0.063)  0.056 (0.053, 0.060)  0.055 (0.052, 0.058)  0.052 (0.049, 0.055) 

SRMR† 0.034  0.034  0.036  0.036 

BIC 158,441  158,378  158,342  158,277 

* RMSEA listed as value (90% confidence interval)  † SRMR calculated from models restricted to complete data 

Abbreviations: Htn, hypertension; DWR, delayed word recall; LM, logical memory; SAPS, sustained attention and processing speed; DSS, digit symbol 

substitution; DSB, digit span backwards; CFI, comparative fit index (>0.90 indicates good fit); TLI, Tucker-Lewis index (>0.90 indicates good fit); RMSEA, 

root mean squared error of approximation (<0.10 indicates good fit, <0.05 indicates very good fit); SRMR, standardized root mean squared residual (<0.08 

indicates adequate fit, <0.05 indicates good fit); BIC, Bayesian information criterion (lower numbers are better, and decreases >10 indicate strong evidence to 

prefer the model with the lower BIC).   

http://en.wikipedia.org/wiki/Dagger_(typography)
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Table 5. Standardized factor loadings and fit statistics by subgroups of age, sex, race, and education 

 
Age 

 

Sex 
 

Race 
 

Education 

Domain/Test <75 ≥75 

 

Male Female 
 

White Black 
 

<HS HS >HS 

Memory             

DWR 0.57 0.65 
 

0.62 0.67 
 

0.64 0.68 
 

0.68 0.63 0.66 

LM 1 0.62 0.73 
 

0.68 0.72 
 

0.69 0.74 
 

0.67 0.65 0.65 

LM 2 0.65 0.75 
 

0.71 0.74 
 

0.72 0.75 
 

0.70 0.69 0.69 

Incidental Learning 0.60 0.65 
 

0.65 0.64 
 

0.64 0.65 
 

0.59 0.62 0.64 

Language 
            

Animal Naming 0.67 0.73 
 

0.71 0.74 
 

0.73 0.74 
 

0.70 0.69 0.76 

Word Fluency 0.71 0.67 
 

0.68 0.66 
 

0.64 0.77 
 

0.73 0.58 0.59 

Boston Naming 0.61 0.66 
 

0.64 0.70 
 

0.63 0.77 
 

0.62 0.61 0.59 

SAPS 
            

Trails A 0.62 0.68 
 

0.67 0.71 
 

0.66 0.79 
 

0.69 0.69 0.61 

Trails B 0.80 0.83 
 

0.83 0.85 
 

0.84 0.84 
 

0.77 0.81 0.81 

DSS 0.76 0.79 
 

0.82 0.81 
 

0.78 0.87 
 

0.81 0.78 0.75 

DSB 0.51 0.50 
 

0.53 0.50 
 

0.49 0.58 
 

0.50 0.43 0.45 

Fit statistics 
            

CFI 0.971 
 

0.976 
 

0.972 
 

0.970 

TLI 0.958 
 

0.965 
 

0.960 
 

0.956 

RMSEA* 0.059 (0.056, 0.062) 
 

0.057 (0.054, 0.061) 
 

0.061 (0.058, 0.065) 
 

0.059 (0.056, 0.063) 

SRMR† 0.035 
 

0.033 
 

0.034 
 

0.037 

* RMSEA listed as value (90% confidence interval) 

† SRMR calculated from models restricted to complete data 

Abbreviations: HS, high school; DWR, delayed word recall; LM, logical memory; SAPS, sustained attention and processing speed; DSS, digit symbol 

substitution; DSB, digit span backwards; CFI, comparative fit index (>0.90 indicates good fit); TLI, Tucker-Lewis index (>0.90 indicates good fit); RMSEA, 

root mean squared error of approximation (<0.10 indicates good fit, <0.05 indicates very good fit); SRMR, standardized root mean squared residual (<0.08 

indicates adequate fit, <0.05 indicates good fit).

http://en.wikipedia.org/wiki/Dagger_(typography)
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Figure 1. Confirmatory factory analysis model derived from a priori hypothesized domain 

structure 

 
 

Legend: Latent factors are shown in ovals, measured tests are shown in rectangles, and error 

terms are shown in circles. Values shown between factors and between factors and tests are 

correlations. Values along curved and straight arrows are correlations, while values shown 

outside the circles for ε1-ε11 are residual variances.   
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Figure 2. Quantile-quantile plot of correlation matrix residuals comparing one- versus two-

domain models and two- versus three-domain models 

 

 
 

Legend: Each model fit implies estimates for all correlations among neuropsychological tests. 

Residuals from model fits (observed-estimated) are shown as qq-plots in which percentiles of the 

residuals from the two models are plotted against one another (axes are labeled with original units 

of the residuals). Equivalent fits appear as equivalent distributions of the deviations between 

fitted and observed values, hence lie along the y=x line (shown as solid line). Panel A: residuals 

from the one-domain model plotted versus residuals from the two-domain model. Panel B: 

residuals from the two-domain model plotted versus residuals from the three-domain model. In 

both panels, there is systematic deviation from the y=x line with residuals from models with 

lower numbers of domains more dispersed than those from models with higher numbers of 

domains, indicating inferior fit.  
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ABSTRACT 

Objective:  To characterize the prevalence of cognitive impairment among older adults by 

diabetes status, diabetes duration, glucose control (assessed by hemoglobin A1c, HbA1c), and 

glucose peaks (assessed by 1,5-anhydroglucitol, 1,5-AG). 

Research Design and Methods: We conducted a cross-sectional study of 5,746 participants aged 

67-90 years from the Atherosclerosis Risk in Communities Study (2011-2013), and characterized 

cognitive impairment in memory, language, and executive function domains. We categorized 

HbA1c among persons without diagnosed diabetes as low-normal (<5%), normoglycemic (5-

5.6%), prediabetes (5.7-6.4%), and undiagnosed diabetes (≥6.5%), and among persons with 

diagnosed diabetes by glycemic control (HbA1c<7% vs ≥7%). We examined glucose peaks (1,5-

AG<10 µg/mL vs ≥10) within each HbA1c category.  

Results: Participants with diabetes were 13%, 20%, and 11% more likely to have impairment in 

memory, language, and executive function, respectively, compared to participants without 

diabetes. For executive function, we observed the greatest prevalence of cognitive impairment in 

the following groups: low-normal HbA1c (31%), undiagnosed diabetes (34%), in persons with 

diabetes duration >10 years (30%), and in persons with diabetes and HbA1c≥7% (34%), 

compared to a prevalence of 20% in the normoglycemic group. Among persons with diagnosed 

diabetes and HbA1c≥7%, those with glucose peaks compared to those without were 1.41 times 

more likely to have cognitive impairment (p-value=0.018).  

Conclusions: The prevalence of cognitive impairment in older adults with diabetes is high. More 

research is needed to determine if reducing HbA1c or glucose peaks in this group can improve 

cognitive function, and if screening for cognitive impairment among persons with diabetes can 

help to better individualize treatment.   
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INTRODUCTION 

The U.S. population is rapidly aging. In 2010, 14% of the population was 65 and older 

and the number is expected to nearly double, reaching more than 70 million, by 2030
1
. In this 

population of older adults, the prevalence of diabetes and prediabetes is 22% and 24%, 

respectively
2
. Additionally, the prevalence of dementia among persons aged 71 and older has 

been estimated at 13.9%, and increases with age, with an estimated prevalence of 37.4% among 

persons 90 years and older
3
. Further, an estimated 22% have cognitive impairment without 

dementia
4
. Studies have shown that diabetes affects several cognitive domains, including 

processing speed, memory, executive function, and attention, and increases the risk of dementia
5–

7
. The number of adults with both diabetes and cognitive impairment is growing, and represents 

challenges for patient care, as domains typically associated with diabetes are most relevant for its 

management. However the prevalence of cognitive impairment in older adults with diabetes, and 

its association with glycemic control, is relatively uncharacterized. 

Hemoglobin A1c (HbA1c) is recommended for use in the diagnosis of diabetes, and is 

the standard measure used in the clinical monitoring of glycemic control in persons with diabetes, 

reflecting glycemic exposure over the previous 2-3 months
8
. HbA1c is a measure of average 

glucose and does not reflect short-term glucose fluctuations, which are common among persons 

with diabetes, even those with good glycemic control
9
. Fluctuations in glucose and glucose peaks 

may be important aspects of glycemia that contribute to the development of complications in type 

2 diabetes
10,11

.  

1,5-anhydroglucitol (1,5-AG) is a biomarker that provides information about daily 

fluctuations in glucose
12–14

. 1,5-AG is a monosaccharide similar to glucose in structure. When 

serum glucose concentrations rise above the renal threshold, 1,5-AG competes for renal 

reabsorption and is excreted, causing serum levels to fall. Thus, low levels of 1,5-AG are an 

indication of the presence of glucose peaks over the preceding 1-2 weeks
15,16

. Studies have 

documented that 1,5-AG is associated with higher risk of micro- and macro-vascular disease and 
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death in persons with diabetes
17,18

, independently of HbA1c. Mean levels of glycemia have been 

associated with cognitive function
19

, but less is known about the association of cognition with 

glucose peaks. Glucose peaks, in addition to average glycemia, may be particularly important for 

characterizing the heterogeneity in cognitive function among older adults.   

The objective of this study was to characterize the prevalence of cognitive domain 

impairment among older adults, and to examine differences by diabetes status, diabetes duration, 

glucose control assessed by HbA1c, and glucose peaks assessed using 1,5-AG.  

 

RESEARCH DESGIN AND METHODS 

Study population  

The Atherosclerosis Risk in Communities Study (ARIC) is a prospective, community-

based cohort study. A total of 15,792 adults age 45-64 were recruited from four communities in 

the US: selected suburbs of Minneapolis, Minnesota; Jackson, Mississippi; Washington County, 

Maryland; and Forsyth County, North Carolina. Participants attended four visits, each roughly 

three years apart, beginning in 1987-1989. A fifth visit was conducted 2011-2013, and is the 

baseline for the present study.  

Of the 6,538 participants who attended visit 5, we excluded participants who were neither 

black nor white and the small number of black participants from the Minnesota and Washington 

County sites (n=42), and those who did not complete any neuropsychological tests (n=750), for a 

final sample size of 5,746. To calculate adjusted prevalence estimates or ratios, we additionally 

excluded participants missing covariates of interest (n=239). All participants gave written 

informed consent and institutional review boards at each site approved the study. 

Measurement of HbA1c and 1,5-AG 

HbA1c was measured using a Tosoh G7 automated high-performance liquid 

chromatography analyzer (Tosoh Bioscience, Inc, South San Francisco, CA) standardized to the 
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Diabetes Control and Complications Trial assay. 1,5-AG was measured in serum using the 

GlycoMark 1,5-AG reagent on a Roche Modular P800 system (Roche Diagnostics Corporation).  

Definitions of diabetes, glycemic control, and diabetes duration 

We defined diabetes (yes/no) as a self-reported physician diagnosis of diabetes, use of 

glucose-lowering medication, or an HbA1c ≥6.5%. We defined diagnosed diabetes (yes/no) based 

on a self-reported physician diagnosis of diabetes or current glucose-lowering medication use.  

Among participants without diagnosed diabetes, HbA1c was divided into four groups: 

<5% (low-normal), 5-5.6% (normoglycemic), 5.7-6.4% (prediabetes), and ≥6.5% (undiagnosed 

diabetes). Among participants with diagnosed diabetes, we dichotomized HbA1c into <7% or 

≥7%. To examine associations with glucose peaks, we dichotomized 1,5-AG within the HbA1c 

categories described above. As there are currently no established cut-points for 1,5-AG, we 

dichotomized at 10 μg/mL (<10 versus ≥10 μg/mL). Concentrations less than 10 μg/mL are 

associated with glucose peaks above the average renal threshold (~160-180 mg/dL)
15,20

, and have 

been used previously in these data
17,18

.  

Starting with the original study visit (1987-1989), diabetes was ascertained at each study 

visits and on annual telephone calls. Duration was calculated as the date of the visit 5 exam minus 

the date of the first participant report of diabetes or diabetes medication use, either from study 

visits or telephone calls. For participants who first reported diabetes at visit 5, we used the date of 

their most recent contact without a report of diabetes to calculate duration. Participants who 

reported diabetes at the original study visit were classified as having diabetes for 25+ years.  

Neuropsychological test assessment of cognitive function  

We included eight tests from the neuropsychological test battery administered at visit 5: 

delayed word recall test (DWRT), digital symbol substitution test (DSST), word fluency test 

(WFT), logical memory parts 1 and 2 (LM-1, LM-2), trail making test parts A and B (TMT-A, 

TMT-B), and animal naming test (ANT). The cognitive tests are described in the Supplement. We 

grouped the tests into three domains representing memory, language, and executive function. The 
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memory domain included DWRT, LM-1, and LM-2, the language domain included WFT and 

ANT, and the executive function domain included DSST, TMT-A, and TMT-B.   

For each test, raw test scores were converted to Z scores by subtracting the test mean 

from each participant’s score and dividing by the test standard deviation. To calculate domain Z 

scores, tests within each domain were averaged and converted to Z scores by subtracting the 

domain mean and dividing by the domain standard deviation.  

Definition of cognitive domain dysfunction  

Dysfunction in each cognitive domain was calculated using raw scores from each 

neuropsychological test and age-, race-, and education-adjusted norms calculated from a sample 

of ARIC participants free of clinical or subclinical neurological disease or latent dementia
21

. For 

each test, scores more than 1.5 standard deviations below these norms, a commonly used 

criterion
22

, were classified as failure. We defined cognitive domain dysfunction as failure on 2 or 

3 tests of the memory and executive function domains, and 1 or 2 tests in the language domain.  

We also defined cognitive dysfunction in a manner similar to clinical practice, based on 

expert review of participants’ medical information to diagnose mild cognitive impairment (MCI) 

and dementia
23

. Two diagnostic reviewers independently reviewed neuropsychiatric information, 

medical and family history, participant or proxy report of memory complaints, results from the 

physical examination and laboratory values, imaging information from brain MRI at the 2011-

2013 exam, and use of certain medications by participants. If the two reviewers did not agree on a 

diagnosis, the case was assigned to a third independent adjudicator. There were 1,186 cases of 

MCI and 160 dementia cases in our study population, which we grouped and defined 

MCI/dementia. 

Statistical analysis 

We used Poisson regression with robust variance estimation to estimate the prevalence of 

cognitive dysfunction. For models adjusted for covariates, the prevalence of cognitive 

dysfunction was calculated at the mean of each of the covariates. We estimated the prevalence of 
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cognitive dysfunction by diagnosed diabetes and HbA1c category, and among persons with 

diagnosed diabetes, we examined cognitive dysfunction by diabetes duration. We also estimated 

the prevalence of cognitive dysfunction by glucose peaks within each HbA1c category.  

To examine differences between prevalence estimates, we calculated prevalence ratios 

(PRs) adjusted for age, race, sex, education (less than high school; high school or vocational; 

college or professional school), hypertension (yes/no, defined as measured systolic blood pressure 

≥140 mm Hg, or measured diastolic blood pressure ≥90 mm Hg, or use of blood-pressure 

lowering medication), history of coronary heart disease (yes/no), history of stroke (yes/no), 

drinking status (current; former; never), cigarette smoking status (current; former; never), and 

apolipoprotein E ε4 (APOE4) genotype (0,1, or 2 alleles). In analyses comparing 1,5-AG groups 

(<10 µg/mL versus ≥10 µg/mL) within HbA1c category, we additionally adjusted for HbA1c. In 

sensitivity analyses we also examined the individual domain Z scores (continuous variables), 

which provided enhanced power to observe associations since the dichotomizing of cognitive 

function can result in a loss of information.  

All analyses were conducted using Stata/SE version 14.1 (College Station, TX). All p-

values reported are two-sided and p<0.05 was considered statistically significant.  

 

RESULTS 

The mean age was 76 years, 59% of participants were female, 80% were white, and 33% 

had diagnosed diabetes (Table 1). Among persons with no diagnosed diabetes, we observed 

similar differences across the four HbA1c categories for race, education, hypertension, history of 

coronary heart disease, history of stroke, and cognitive scores. Persons without diabetes and 

HbA1c <5% (“low-normal” group) had poorer cardiometabolic profiles, lower cognitive test 

scores, and were much more likely to have 1 or more APOE4 risk alleles as compared to persons 

without diabetes and HbA1c of 5.0-5.6%. These participants also had a decline in HbA1c values 

from midlife, compared to an increase across all other groups (Supplemental Table 1). 
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Overall, 23% of participants had cognitive domain dysfunction in memory and executive 

function, compared to 12% in language. We observed the most cognitive dysfunction in the 

memory and executive function domains among participants without diagnosed diabetes with 

low-normal HbA1c, and among participants with diagnosed diabetes and HbA1c ≥7% (Figure 1). 

Participants with diabetes had significantly higher prevalence of cognitive dysfunction in all three 

domains compared to persons without diabetes, and were 1.27 times (95%CI=1.11–1.46) more 

likely to have dysfunction in multiple domains compared to participants without diabetes 

(Supplemental Figure 1).  

Among persons with diagnosed diabetes, those with the longest duration of diabetes (>15 

years) had significantly higher cognitive dysfunction in all domains (Figure 2), than persons with 

shorter duration of diabetes. Participants with newly diagnosed diabetes (duration <5 years) had 

significantly more cognitive dysfunction in memory compared to persons without diabetes or 

with diabetes duration of 5-10 years. Associations remained significant even after full adjustment 

(Supplemental Figure 2).  

Within each HbA1c category except prediabetes (HbA1c 5.6-6.4%), participants with 

glucose peaks had higher prevalence of cognitive dysfunction compared to participants without 

glucose peaks (Figure 3). For memory, the highest difference between 1,5-AG groups were 

among participants with HbA1c <5% (PR=1.93, p-value=0.079), HbA1c 5-5.6% (PR=1.27, p-

value=0.028), and among persons with diabetes and HbA1c ≥7% (PR=1.31, p-value=0.108) 

(Figure 3, Panel A). Results were similar for executive function (Figure 3, Panel B).  

Trends were similar across HbA1c categories when we examined continuous domain Z 

scores instead of dysfunction by diabetes status (Supplemental Figure 3) and when we defined 

impairment using expert reviewer classification of MCI/dementia (Supplemental Figure 4).  
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CONCLUSIONS 

In this study of community-dwelling adults aged 67 to 90, we found that diabetes, 

diabetes duration, and glycemic peaks measured by 1,5 AG within narrow categories of HbA1c, 

was associated with cognitive dysfunction in memory, language, and executive function. We 

found the highest prevalence of cognitive dysfunction among participants without diagnosed 

diabetes and low-normal HbA1c (<5%), participants with diabetes, and those with longer 

duration of diagnosed diabetes, even after full adjustment. In fully adjusted models, participants 

with diabetes were 13%, 20%, and 11% more likely to have dysfunction in memory, language, 

and executive function, respectively, compared to participants without diabetes. Additionally, 

participants with diabetes were 27% more likely to have dysfunction in 2 or 3 domains, than 

those without diabetes. Finally, we found that within HbA1c categories, participants who had 

recent glucose peaks (1,5-AG <10 µg/mL) were more likely to have cognitive dysfunction 

compared to those without evidence of peaks.  

Estimates of cognitive impairment have been reported in many populations
24

, but few 

have reported diabetes- or HbA1c-specific estimates. A study of older adults in China reported a 

prevalence of MCI of 13.5% among persons with diabetes, although no information was provided 

by cognitive domains of glycemic control
25

. To our knowledge, ours is the first study to examine 

the relationship of cognitive function with subclinical hyperglycemic states defined by HbA1c 

and glucose control and glucose peaks in a community-based older population.    

We found that persons with recent glucose peaks had higher prevalence of cognitive 

impairment across all HbA1c categories except prediabetes. Among persons in the 

normoglycemic group (no diabetes, HbA1c 5-5.6%), those with glucose peaks compared to those 

without peaks were 26%–27% more likely to have impairment in the memory and executive 

function domains. Similarly in participants with diagnosed diabetes and HbA1c≥7%, those with 

glucose peaks compared to those without were 31% and 41% more likely to have impairment in 

these two domains, respectively. Glucose peaks are very common among persons with diabetes, 
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even those with good glycemic control
9
. A study of more than 3200 participants with non-insulin-

treated type 2 diabetes using in-home glucose readings over a 1-week period, found that 84% 

recorded at least one post-prandial blood glucose >160 mg/dL
9
. Additionally, among participants 

with HbA1c <7%, 38% had post-prandial glucose >160 mg/dL in more than 40% of the 

readings
9
. Glycemic variability may be related to microvascular and macrovascular complications 

in persons with diabetes
26

, and may also have deleterious effects on cognitive function
27–29

. 

Fluctuating glucose levels have been shown to be more detrimental to neuronal cell functioning in 

vitro, compared to consistently high or low levels
30

. A few studies suggest that improving 

glycemic control benefits cognitive function
31–34

, but sample sizes have been small.  

Among persons without diagnosed diabetes, the group of participants with HbA1c <5% 

or HbA1c ≥6.5% had the highest estimated prevalence of cognitive impairment in executive 

function. It is important to note, however, that fewer than 4% of all participants were in these two 

groups. HbA1c value of <5% may be a marker of poor health. Prior research in ARIC
35,36

 and in a 

nationally representative sample of adults (mean age 45 years)
37

 has shown that persons with low 

HbA1c are at increased risk of death. Research among this interesting group of older adults with 

low HbA1c, and what value should be considered “low” in this population, may deserve further 

study.  

We found similar estimates of cognitive impairment between the normoglycemic and 

prediabetes groups. Perhaps slight elevations in HbA1c beginning in late life do not carry similar 

risk of cognitive impairment as elevations occurring at an earlier age, particularly if this 

impairment is mediated through accumulation of vascular damage over time. In a prior study in 

ARIC, we found that participants with prediabetes in midlife had greater cognitive decline over 

20 years compared to participants with no diabetes and HbA1c <5.7%
38

. Prospective research is 

needed to determine if similar patterns of cognitive decline emerge among older adults with 

hyperglycemia that develops in late life.  
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Current ADA guidelines do not include recommendations for screening for cognitive 

impairment among older adults with diabetes
8
. In our study, among persons with diabetes and an 

HbA1c ≥7%, we found a large prevalence of cognitive dysfunction in memory (25%) and 

executive function (34%), the domains most relevant for the management of diabetes. More 

research may be needed to determine whether subtle impairments in these domains, perhaps not 

readily apparent in clinical practice, affect diabetes self-management and whether screening for 

impairment in these domains among persons with diabetes would provide clinicians with useful 

information about appropriate medications or patient-specific glycemic targets, as recommended 

by the ADA.  

Our study has a number of strengths. First, we examined a large, community-based 

cohort, allowing us to examine the prevalence of cognitive impairment across specific subgroups 

and exposures. Second, we used age-, education-, and race-adjusted normative data, which was 

developed in a group of ARIC participants who were free of both clinical and subclinical 

neurological disease
21

. Lastly, we used a battery of eight neuropsychological tests to represent 

three cognitive domains, which may better characterize impairment than using a simple cognitive 

screening test like the MMSE, as some previous studies have done.  

Our study has a few limitations that should be considered. First, we had few participants 

in the low-normal HbA1c group and the undiagnosed diabetes group, making estimates in these 

groups less precise. Second, since our study is cross-sectional, we cannot establish the temporal 

relationships between glycemia and cognitive function. Lastly, selection bias is of great concern 

in any study of older adults. Participants with long-standing diabetes, or whose diabetes is not 

well controlled, and those with cognitive impairment (who are also more likely to have diabetes) 

are more likely to have died or be missing from our study. Indeed, the prevalence of MCI and 

dementia in the entire ARIC cohort, including those not examined at the 2011-2013 visit, has 

been estimated as nearly 30%
39

. As a result, our estimates of associations between cognitive 



 

95 

 

 

impairment and glycemic states may be biased toward the null, as surviving participants who 

attended the study visit may be more robust or in better health than participants who did not. 

In summary, these results document important associations of specific cognitive 

impairments with diabetes, its duration, and aspects of glycemic control in older adults with 

diabetes. More research is needed to determine if these impairments interfere with diabetes self-

management, to explore the association of cognitive impairments with low-normal HbA1c, to 

determine if targeting glucose peaks can improve cognitive function in older adults with diabetes, 

and lastly to determine if screening for cognitive impairment may allow for more targeted 

approach toward diabetes management.  
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Table 1. Study population characteristics by diabetes status and HbA1c category, the 

Atherosclerosis Risk in Communities Study, 2011-2013 (Visit 5), N=5,746 

 

No Diagnosed Diabetes  Diagnosed Diabetes 

 
Low-Normal 

Normo-

glycemic 
Pre-diabetes 

Un-

diagnosed 
   

 

HbA1c 

<5% 

HbA1c 

5-5.6% 

HbA1c 

5.7-6.4% 

HbA1c 

≥6.5% 
 HbA1c <7% HbA1c ≥7% 

N (%) 106 1,914  1,692 122   1,381 531 

Age, years 74.8 (5.1) 75.3 (5.0) 75.7 (5.2) 76.5 (5.3)  75.7 (5.2) 75.0 (5.0) 

Female, % 43.4 59.9 61.0 64.8  58.4 55.2 

Black, % 31.1 10.8 21.7 44.3  24.4 35.8 

HbA1c, % 4.7 (0.3) 5.4 (0.2) 5.9 (0.2) 6.8 (0.3)  6.0 (0.5) 8.0 (1.1) 

1,5-AG, μg/mL 16.9 (6.6) 16.7 (6.0) 17.0 (6.0) 16.3 (6.1)  15.6 (6.2) 8.6 (6.0) 

1,5-AG <10 μg/mL, % 14.2 13.0 11.9 14.0  19.7 65.4 

Diabetes duration, years - - - -  9.1 (6.1) 13.5 (6.5) 

Diabetes meds, %        

Biguanides 0.0 0.1 0.1 0.0  30.9 53.1 

Sulfonylureas  0.0 0.0 0.0 0.0  15.8 39.7 

Insulin 0.0 0.0 0.0 0.0  6.4 36.0 

DPP-4 inhibitors 0.0 0.0 0.0 0.0  4.6 10.7 

TZDs 0.0 0.0 0.0 0.0  3.9 5.1 

Education, % 
    

 
  

<HS 11.3 8.1 11.6 18.0  17.3 19.0 

HS 37.7 40.2 43.0 41.0  43.6 44.3 

>HS  50.9 51.7 45.4 41.0  39.1 36.7 

BMI, kg/m2 27.4 (5.7) 27.2 (4.9) 28.4 (5.4) 30.5 (6.1)  30.2 (5.8) 31.9 (6.2) 

Hypertension, % 72.1 64.5 71.9 86.7  83.2 89.3 

History of CHD, % 16.0 9.4 14.2 14.8  18.5 19.0 

History of stroke, % 6.6 2.0 2.8 4.9  4.3 5.7 

Total cholesterol, mg/dL 183 (37) 191 (29) 186 (35) 182 (36)  169 (39) 170 (39) 

HDL-C, mg/dL 54 (25) 56 (14) 53 (17) 49 (22)  49 (20) 45 (23) 

LDL-C, mg/dL 105 (42) 111 (41) 108 (41) 107 (40)  94 (40) 93 (42) 

Triglycerides*, mg/dL 105 (65) 104 (60) 112 (60) 115 (66)  113 (70) 143 (95) 

Current smoker, % 4.7 5.2 6.1 8.2  5.7 4.5 

Current drinker, % 49.1 57.1 49.3 41.0  40.4 32.6 

Apolipoprotein E4 alleles 
    

 
  

0 57.4 72.1 72.6 64.2  73.2 72.0 

1 40.6 26.1 25.4 33.3  24.5 26.3 

2 2.0 1.8 1.9 2.5  2.3 1.8 

Depressive symptoms†, % 4.7 4.7 6.3 12.3  10.5 11.8 

Cognitive Scores 
    

 
  

Memory -0.14 (1.12) 0.09 (1.01) 0.04 (0.98) -0.17 (0.97)  -0.07 (0.99) -0.20 (1.00) 

Executive function -0.16 (1.13) 0.23 (0.93) 0.02 (0.99) -0.40 (1.03)  -0.13 (0.99) -0.43 (1.04) 

Language -0.13 (1.07) 0.20 (0.93) 0.04 (1.00) -0.45 (1.00)  -0.14 (1.01) -0.35 (1.02) 

Values shown as mean (SD) or %. * reported as median (interquartile range) 

† Defined as a score ≥9 on the 11-item Center for Epidemiologic Studies Depression Scale (CESD-11) 

Diabetes was based on self-reported physician diagnosis, diabetes medication use, or HbA1c ≥6.5%. 

Abbreviations: HbA1c, hemoglobin A1c; DPP-4, dipeptidyl peptidase-4; TZD, thiazolidinediones; meds, 

medications; HS, high school; BMI, body mass index; CHD, coronary heart disease; HDL-C, high-density 

lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol;  
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Figure 1. Unadjusted and adjusted prevalence of cognitive dysfunction by diagnosed diabetes status and HbA1c category 

 
 

Legend: Diagnosed diabetes (“Dx DM”) was based on self-reported physician diagnosis or diabetes medication use. Cognitive impairment in each domain was 

defined as test scores more than 1.5 standard deviations below age-, race-, and education-adjusted norms among 2 or more tests in a given domain.  

Panel A: unadjusted prevalence estimates 

Panel B: Prevalence values are estimated from Poisson regression models, adjusted for age, race, sex, education, hypertension, history of coronary heart disease, 

history of stroke, drinking status, cigarette smoking status, and APOE e4 
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Figure 2. Prevalence of cognitive dysfunction by domain and diabetes duration  
 

 
 

Legend: Prevalence estimates are shown unadjusted. Diabetes was based on self-reported physician 

diagnosis or diabetes medication use, and duration was calculated using the date a participant first reported 

a diagnosis or medication use (during a previous visit or during the annual follow-up telephone call). 

Cognitive impairment in each domain was defined as test scores more than 1.5 standard deviations below 

age-, race-, and education-adjusted norms among 2 or more tests in a give domain. The “No DM” (no 

diabetes) group included participants without a self-reported diagnosis of diabetes, who were not taking 

glucose-lowering medication, and who had an HbA1c of 5-6.4% (participants with undiagnosed diabetes 

were excluded).  
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Figure 3. Prevalence of cognitive dysfunction in memory and executive function by 

diagnosed diabetes status, HbA1c, and 1,5-anhydroglucitol (1,5-AG)  

 
 

Legend: Prevalence estimates of cognitive impairment are shown unadjusted. Prevalence ratios (PRs) are 

estimated from Poisson regression models, adjusted for age, race, sex, education, hypertension, history of 

coronary heart disease, history of stroke, drinking status, cigarette smoking status, APOE e4, and 

hemoglobin A1c. Diagnosed diabetes (Dx DM) was based on self-reported physician diagnosis or diabetes 

medication use. Cognitive impairment in each domain was defined as test scores more than 1.5 standard 

deviations below age-, race-, and education-adjusted norms among 2 or more tests in a given domain.  

Panel A: memory domain 

Panel B: executive function domain 
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Conclusion   

This dissertation examined the associations between diabetes and measures of glycemia 

with cognitive function and dementia. We examined the association between diabetes, mean 

glycemia (measured using HbA1c), and glycemic peaks (measured using 1,5-anhydroglucitol) 

with 20-year cognitive decline and incident dementia. We also examined the association between 

diabetes, glycemia, and cognitive impairment in older adults. Finally, we addressed two 

methodological issues, including handling missing cognitive data in longitudinal analyses of 

change in cognitive function (Chapter 2), and characterizing the factor structure of the ARIC-

NCS neurocognitive battery (Chapter 4), the results of which were applied in longitudinal 

analyses (Chapters 3) and cross-sectional analyses of ARIC-NCS data (Chapter 5), respectively. 

   

Summary of findings 

 In Chapter 1 we examined the association between diabetes, levels of HbA1c, and 

cognitive decline over 20 years
1
. We found that participants with diabetes and prediabetes had 

greater cognitive decline over the subsequent two decades. We estimated that the additional 

decline in cognitive test scores among persons with diabetes was equivalent to being 

approximately 5 years older at baseline (ie differences in mean cognitive test scores of a 55 year 

old without diabetes compared to a 60 year old without diabetes). This “accelerated aging” 

among persons with diabetes offers an important avenue for prevention, as delaying the onset of 

dementia by even a couple of years, at the population level, could reduce the prevalence of 

dementia by more than 20% over the next 30 years
2
. We also found that among persons with 

diabetes, those with HbA1c ≥7% (a typical definition for poorly controlled diabetes) had greater 

decline during the same period than persons with diabetes who had HbA1c values <7%. These 

data suggest that primary prevention of diabetes or glucose control in midlife may protect against 

later-life cognitive decline.    
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In Chapter 2 we explored the bias that arises in longitudinal studies of cognitive function, 

as participants who have diabetes and experience cognitive deficits are less likely to attend study 

visits. We used multiple imputation by chained equations (MICE) to impute cognitive 

performance scores of participants who did not attend the 2011-2013 follow-up exam of the 

ARIC study. Using observed and simulated data we found that MICE produced unbiased 

imputations of cognitive function. Simulations showed a substantial reduction in the bias of the 

20-year association between diabetes and cognitive decline comparing MICE (3% bias) to 

analysis of available data only (23% bias). Finally, associations between diabetes and 20-year 

cognitive decline were substantially stronger with MICE than in the analyses without imputed 

values. Multiple imputation is commonly used in the statistical literature, but has not been widely 

applied in epidemiologic studies. Large cohort studies often collect auxiliary information outside 

of study visits, and multiple imputation may be ideally suited for these situations, where there is 

some information available on some participants at some time points (ie not all participants have 

the same data, but there is overlap in the data between persons who do and those who do not 

attend study visits). Our results suggest that when such data are available for participants who do 

not attend study visits, MICE is an effective tool for imputing cognitive performance as the 

outcome, and may improve assessment of cognitive decline.  

Building on the work in Chapter 1 and using the imputation methods developed in 

Chapter 2, in Chapter 3 we examined the association between levels of 1,5-anhydroglucitol (a 

measure of glycemic peaks) and cognitive decline over 20 years and dementia. In fully adjusted 

models, we found that among persons with diabetes and HbA1c <7%, those with glucose peaks 

had higher risk of dementia compared to persons in the same group but without peaks, though the 

results were not statistically significant (HR=1.31, p-value =0.32). We found that among persons 

with diabetes and HbA1c ≥7%, those with glucose peaks had a statistically significant higher risk 

of dementia compared to persons in the same group but without peaks (HR=1.76, p-value =0.04). 

For analyses examining 20-year cognitive decline, we found that the association between diabetes 
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and cognitive decline seemed to be modified by glucose peaks. That is, persons with glucose 

peaks had the most cognitive decline compared to persons without peaks. A few studies using 

continuous glucose monitors have found associations between measures of glycemic variability 

and cognitive impairment and brain atrophy, independent of both mean levels of glycemia and 

hypoglycemic episodes
29–31

, but long-term prospective studies have not been conducted. Our 

study, including over 20 years of follow-up, suggests that glycemic instability, reflected by 

glucose peaks, particularly in persons with HbA1c ≥7%, may be an important contributor to 

vascular damage to the brain. This study also adds to the literature on the clinical utility of 1,5-

AG and the debate on the utility of glycemic variability
3
.  

In Chapter 4 we examined the factor structure of the cognitive battery given to 

participants at the ARIC Neurocognitive study (ARIC-NCS) visit (2011-2013). We found that the 

cognitive battery of 11 tests represented 3 underlying constructs of memory, language, and 

sustained attention and processing speed. Additionally, we found that these constructs were not 

different (invariant) by age, race, sex, education, diabetes, and hypertension, providing 

compelling evidence for the robustness of cognitive domains measured by the test battery across 

demographic and vascular factors. Establishing invariance by vascular risk factors is particularly 

important, as diabetes and hypertension are common. Establishing invariance for these very 

common vascular risk factors in a diverse sample is a vital prerequisite for investigations into the 

contributions of vascular predictors (such as hypertension and diabetes) to cognition in older 

adults. To our knowledge, this is the first study to report invariance by vascular risk factors. 

These findings are assuring that one can use the same cognitive domain constructs to pursue 

questions regarding the vascular contribution to cognitive impairment. 

 In Chapter 5 we characterized the level of cognitive impairment by diabetes status and 

levels of glycemia, across domains developed in Chapter 4. Estimates of cognitive impairment 

have been reported in many populations
24

, but few have reported diabetes- or HbA1c-specific 

estimates, or examined associations with glycemic peaks. Using age-, race-, and education-
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adjusted norms, we found that persons with diabetes had higher levels of cognitive dysfunction. 

Additionally, we found the largest prevalence of cognitive impairment among participants with 

longer duration of diabetes, with diabetes and HbA1c ≥7%, with no diabetes and HbA1c <5%, 

and among persons with glucose peaks. These results document important associations of specific 

cognitive impairments with diabetes, its duration, and aspects of glycemic control in older adults 

with diabetes and have implications for guidelines and future research (described below). 

  

Public health significance and implications  

 The U.S. population is rapidly aging, with the number of persons 65 and older expected 

to reach more than 70 million by 2030
4
. An estimated 13.9% of older adults have dementia

5
, and 

another 22% have cognitive impairment without dementia
6
. Dementia carries tremendous burden 

at the individual, caregiver, and health care levels. On average, persons with Alzheimer’s 

Disease, the most common type of dementia, live 4-8 years after their diagnosis
7–10

. Additionally, 

most of this time is spent in the more severe stages of the disease
11

, often in nursing homes, 

resulting in loss of independence and quality life years. Family members provide the vast 

majority of unpaid help to care for persons with dementia, leading to physical and emotional 

stress for these caregivers. Furthermore, in 2014, caregivers provided an estimated 17.9 billion 

hours of unpaid care to persons with dementia, representing nearly $218 billion
12

. Lastly, the total 

cost of care for persons with dementia in 2015 was estimated to be $226 billion, including $44 

billion out-of-pocket costs, and $153 billion from Medicare and Medicaid
12

.  

The burden of dementia is compounded by the fact that currently only a handful of 

treatment options exist, and none stop or reverse the course of AD or most other dementias
12

. As 

a result, there is tremendous interest in prevention via modifiable risk factors. In its report of the 

summary of evidence for modifiable risk factors
13

, the Alzheimer’s Association stated that “on 

balance, the association between diabetes and dementia appears strong, but not conclusive” (p. 

719), however they nevertheless concluded that there is moderate evidence that diabetes increases 
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the risk of dementia, and strong evidence that it increases the risk of cognitive decline. While the 

evidence for diabetes as a risk factor for cognitive decline and dementia is becoming clearer, 

more research is needed to tease out the underlying pathophysiological mechanisms that link 

diabetes to cognitive decline. Identifying the aspects of diabetes that may be particularly 

detrimental to cognitive function may provide important treatment targets and lead to the 

prevention of cognitive decline.  

The prevalence of type 2 diabetes has increased substantially in the past few decades, 

currently affecting approximately 10% of adults age 20 and older
14,15

. Diabetes also 

disproportionally affects older adults: among adults age 65 and older, the prevalence of diabetes 

and prediabetes is 22% and 24%, respectively
14

. The number of adults with both diabetes and 

cognitive impairment is growing, and represents challenges for patient care, as domains typically 

associated with diabetes may also be most relevant for its management. Perhaps more 

importantly, delaying or preventing diabetes, in addition to reducing the micro- and 

macrovascular complications associated with the disease, may also prevent cognitive decline and 

delay progression to dementia.  

Glycemic peaks are common in older adults. A study of more than 3200 participants with 

non-insulin-treated type 2 diabetes using in-home glucose readings over a 1-week period, found 

that 84% of participants recorded at least one post-prandial blood glucose >160 mg/dL
16

. Even 

among persons with well controlled diabetes (HbA1c <7%), 38% had post-prandial glucose >160 

mg/dL in more than 40% of the readings
16

. Glycemic variability may be related to microvascular 

and macrovascular complications in persons with diabetes
17

, and may also have deleterious 

effects on cognitive function
18–20

. Additionally, fluctuating glucose levels have been shown to be 

more detrimental to neuronal cell functioning in vitro, compared to consistently high or low 

levels
21

.  

Given the trends in diabetes and the aging of the U.S. population, identifying modifiable 

risk factors and treatment targets for the prevention of cognitive decline and dementia has the 
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potential to have tremendous impact at the population level, in addition to the reducing the burden 

for individuals. Brookmeyer et al estimated that at the population level, delaying the onset of AD 

by even a couple of years could reduce its prevalence by more than 20% over the next 30 years
2
.  

Lastly, our finding that cognitive impairment is common among older adults with 

diabetes in two domains relevant for the management of diabetes (~20-30% impairment in 

memory and executive function) has implications for screening for cognitive impairment in this 

group. In the 2016 Standards of Medical Care in Diabetes section on older adults, the ADA 

recommends that clinicians “consider the assessment of medical, functional, mental, and social 

geriatric domains for diabetes management in older adults to provide a framework to determine 

targets and therapeutic approaches” and that “screening for geriatric syndromes may be 

appropriate in older adults experiencing limitations in their basic and instrumental activities of 

daily living, as they may affect diabetes self-management” (p. S81)
22

. Both of the 

recommendations are based on evidence from “expert consensus or clinical experience” (p. S2)
22

, 

however the ADA does not explicitly recommend screening for cognitive impairment in older 

adults with diabetes. Given the relatively high prevalence of cognitive impairment reported in this 

dissertation, and that impairment may not be readily apparent in clinical practice (persons in our 

study were healthy enough to attend study visits), screening for cognitive impairment in older 

adults with diabetes may help “clinicians to help their patients reach individualized glycemic, 

blood pressure, and lipid targets” (p. S82)
22

 as recommended by the ADA. More research is 

needed to quantify the potential costs and benefits of this screening. 

  

Future directions 

More research is needed on several fronts. First, additional studies are needed to 

determine if targeting glucose peaks, in addition to average glucose, among persons with diabetes 

can reduce the risk of dementia and cognitive decline, or reduce the prevalence of cognitive 

impairment among older adults. A few studies suggest that improving glycemic control has 
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benefits on cognitive function
23–25

, but sample sizes have been small, and most have focused on 

mean glycemia. 

To date, there has been one randomized controlled trial (RCT) that specifically examined 

the effects of targeting postprandial glucose excursions on cognitive function
26

. In this trial, 

approximately 150 participants with type 2 diabetes (mean age 74, 51% female) were randomized 

to repaglinide, an oral prandial glucose regulator, or glibenclamide, a sulfonylurea, and followed 

at three-month intervals for one year. After randomization, the two groups showed similar 

declines in both HbA1c and fasting plasma glucose (FPG) over one year (there was no significant 

differences in HbA1c between the two groups during follow-up). However, the group treated with 

repaglinide showed significantly greater decline in the coefficient of variation of FPG, which was 

estimated using data from self-monitoring blood glucose done by participants during the two 

weeks preceding each follow-up visit. Cognitive function was measured using the Mini-Mental 

State Examination (MMSE) and using a battery of neuropsychological tests, including the Trail 

Making Test (parts A and B), the Digit Span test (forward and backward), and the Word Fluency 

Test, which were summarized using a global composite. The group of participants randomized to 

glibenclamide showed a small but statistically significant decline in both MMSE and the global 

composite, while the group randomized to repaglinide showed no decline during the year of 

follow-up.   

This study adds support to the findings and implications of this dissertation that targeting 

glycemic peaks may be beneficial for cognitive function. It is important to note that this RCT was 

conducted in participants age 60-78 and had only one year of follow-up. Previous studies have 

shown weaker associations when risk factors are measured in late life compared to midlife
27–29

, 

and thus interventions in late life may be less beneficial compared to interventions in midlife. As 

a result, an RCT targeting postprandial excursions in midlife may be worthwhile, however the 

duration of follow-up needed to observe significant cognitive decline at this age may make an 

RCT infeasible. Nevertheless, such a study might use intermediate measures, such as MRI 
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measures, which may show subtle changes in brain structure. Such changes may not manifest in 

lower neuropsychological test scores over a short time period, but may be a surrogate for long-

term decline. ARIC may be suitable to study changes in brain volume among persons with 

glycemic peaks using MRI data collected at visits 3 (1993-1995), the Brain MRI visit (2004-

2006), and 5 (2011-2013).  

Second, our analysis of cognitive impairment in older adults (Chapter 5) raises several 

avenues for future research, including determining if the level of impairment found in this 

dissertation (~20-30%) interferes with one’s ability to self-manage their diabetes, determining if 

screening for cognitive impairment in older adults with diabetes can improve outcomes, and 

further exploring the association between low-normal HbA1c (<5%) in older adults without 

diabetes and cognitive function. Previous studies have found increased risk of death among 

persons with low HbA1c
30–32

, but few studies have examined characteristics of this unique group 

of individuals, especially in relation to cognitive function. While our results add to the evidence 

suggesting that low HbA1c may be a marker of poor health, more research is needed to clarify 

associations and clinical implications.    

Third, we explored two aspects of glycemia in this dissertation. Examining other 

biomarkers of glycemia, such as fructosamine
33

 or glycated albumin
34,35

, which reflect average 

glycemia over 1-3 weeks, and potentially other determinants of glycemia such as insulin or 

insulin resistance, maybe provide additional information about glycemic variability and provide 

insight into the pathophysiological mechanisms that link diabetes and cognitive function.  

Examining additional biomarkers raises the methodological issue about how best to incorporate 

information across multiple markers. One potential approach may be the use of latent profile 

analysis, which aims to create classes, or groups, of individuals based on measurement of 

continuous variables (such as biomarkers). Identifying the number of classes of individuals could 

be important for several reasons. First, it may provide a good summary measure of information 

from many markers. Second, identifying individual classes may give us insight into the unique 
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information provided by each marker, and may identify individuals most (or least) at risk for 

cognitive decline or other outcomes. This line of research mayb be beneficial to other fields 

where multiple biomarkers are used in the diagnosis or management of disease. 

 

Limitations 

There are several limitations to this dissertation. First, this dissertation examined the 

association between cognitive function and HbA1c and 1,5-AG, two aspects of glycemia. We did 

not have rigorous measurement of other aspects of glycemia including short- or long-term 

glycemic variability or hypoglycemia, or measures of insulin resistance or insulin sensitivity, 

which have been linked to cognitive function
19,20,36,37

. Second, the studies included in this 

dissertation are observational, so we cannot definitively establish causal relationships between 

glycemia and cognitive function. 

 

Strengths 

 There are several strengths to this dissertation. First, the long duration of the ARIC study 

allowed us to estimate associations between diabetes and cognitive function over 20 years. A 

review by Cukierman and colleagues
38

 published in 2005 included only one study with a mean 

follow-up of more than 6 years, and since 2005 only a handful of studies reported declines over 

10
 
year

39–42
. Additionally, only one study reported associations with diabetes diagnosed before 

age 65, which is important as associations between risk factors and cognitive decline appear 

weaker when risk factors are measured in late life compared to midlife
27–29

. Second, we used 

validated neuropsychological tests as measures of cognitive function, and community 

surveillance and retrospective dementia ascertainment allowed us to examine associations with 

incident dementia. Lastly to our knowledge this is one of the first studies to examine prospective 

associations between glucose peaks and cognitive function and dementia.  
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Summary 

In conclusion, we have documented the association of diabetes, mean glycemia (HbA1c), 

and glucose peaks (1,5-AG) with cognitive decline and dementia. This dissertation adds to the 

literature that diabetes is a risk factor for cognitive decline and dementia and that prevention of 

diabetes or glycemic control in midlife may prevent or delay cognitive decline. To our 

knowledge, no studies to date have examined the prospective association between glucose peaks 

and cognitive decline and dementia, leading to future avenues of research regarding potential 

treatment targets. This dissertation addresses several gaps in the literature of this area, in that our 

studies were prospective, had long duration of follow-up (~20 years), and we were able to well-

characterize diabetes using HbA1c, 1,5-AG, and other rigorously obtained information in the 

ARIC Study. Additionally, we have documented the utility of multiple imputation, which is rarely 

used in epidemiologic studies, to impute cognitive function as the outcome, and we showed that 

biases in associations of interest are reduced as a result. Lastly, we have documented invariance 

of ARIC-NCS cognitive test battery across vascular risk factors, which to our knowledge have 

not been previously shown in the literature, but which is vital to establish to answer research 

questions regarding the vascular contributions to cognitive impairment. 
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APPENDIX A: Supplemental material for Chapter 1 

Supplemental Table 1: Average difference in 20-year decline in global Z score, delayed 

word recall, digit symbol substitution, and word fluency among persons with a history of 

diagnosed diabetes compared to persons without diabetes, white race  

No attrition adjustment 

Test 

20 year decline – 

No diabetes 

Estimate (95% CI) 

20 year decline – 

Diabetes 

Estimate (95% CI) 

Difference* 

Estimate (95% CI) Percent† 

Global Z  -0.81 (-0.84, -0.78) -0.96 (-1.04, -0.87) -0.15 (-0.24, -0.07) 19% 

DWRT -0.97 (-1.02, -0.92) -1.11 (-1.25, -0.97) -0.14 (-0.28, -0.00) 14% 

DSST -0.78 (-0.80, -0.765 -0.87 (-0.94, -0.81) -0.10 (-0.16, -0.04) 13% 

WFT -0.15 (-0.18, -0.13) -0.26 (-0.34, -0.18) -0.10 (-0.18, -0.03) 67% 

Attrition-adjusted 

 

20 year decline – 

No diabetes 

Estimate (95% CI) 

20 year decline – 

Diabetes 

Estimate (95% CI) 

Difference* 

Estimate (95% CI) Percent† 

Global Z  -0.81 (-0.85, -0.77) -1.09 (-1.20, -0.97) -0.27 (-0.39, -0.16) 34% 

DWRT -0.99 (-1.05, -0.93) -1.19 (-1.34, -1.03) -0.20 (-0.35, -0.04) 20% 

DSST -0.78 (-0.80, -0.75) -0.94 (-1.02, -0.85) -0.16 (-0.25, -0.08) 21% 

WFT -0.15 (-0.18, -0.12) -0.39 (-0.53, -0.25) -0.24 (-0.39, -0.09) 158% 

* Calculated as the difference in 20-year decline between persons without and with diabetes 

(negative values indicate greater decline in persons with diabetes) 

† Calculated as the difference expressed as a percentage of the decline in those without diabetes. 

That is, (decline in participants without diabetes – decline in participants with diabetes)/(decline 

in participants without diabetes); thus a value of 20% indicates a 20% greater decline in those 

with diagnosed diabetes compared to those without. 

Note: bold values indicate p-value < 0.05. Z scores can be interpreted as standard deviations 

above or below the mean. For example, a Z score difference of -0.15 means that, on average,  

persons with diabetes declined an additional 0.15 standard deviations compared to persons 

without diabetes. Time since baseline was the time metric, and cognitive function was modeled 

using generalized linear models fit using generalized estimating equations, with adjustment for 

age, age squared, race-center, sex, education, cigarette smoking, alcohol consumption, body mass 

index, hypertension, history of coronary heart disease, history of stroke, APOE 4 genotype, and 

interactions between all of these covariates and time. N=23,287 total records, with N=10,189 

participants at visit 2(N=977 with diabetes), N=8,431 at visit 4(N=711 with diabetes), and 

N=4,667 at visit 5(N=240 with diabetes).    
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Supplemental Table 2: Average difference in 20-year decline in global Z score, delayed 

word recall, digit symbol substitution, and word fluency among persons with a history of 

diagnosed diabetes compared to persons without diabetes, black race  

 

No attrition adjustment 

Test 

20 year decline – 

No diabetes 

Estimate (95% CI) 

20 year decline – 

Diabetes 

Estimate (95% CI) 

Difference* 

Estimate (95% CI) Percent† 

Global Z  -0.78 (-0.89, -0.67) -0.93 (-1.09, -0.77) -0.15 (-0.27, -0.03) 19% 

DWRT -0.93 (-1.14, -0.72) -0.86 (-1.13, -0.60) 0.06 (-0.12, 0.24) -7% 

DSST -0.62 (-0.69, -0.55) -0.81 (-0.91, -0.71) -0.19 (-0.26, -0.11) 30% 

WFT -0.27 (-0.36, -0.18) -0.40 (-0.53, -0.27) -0.13 (-0.22, -0.03) 48% 

Attrition-adjusted 
   

 

20 year decline – 

No diabetes 

Estimate (95% CI) 

20 year decline – 

Diabetes 

Estimate (95% CI) 

Difference* 

Estimate (95% CI) Percent† 

Global Z  -0.82 (-0.95, -0.70) -0.99 (-1.17, -0.81) -0.17 (-0.30, -0.03) 20% 

DWRT -0.98 (-1.21, -0.75) -0.91 (-1.21, -0.61) 0.07 (-0.14, 0.29) -7% 

DSST -0.63 (-0.71, -0.55) -0.83 (-0.95, -0.72) -0.20 (-0.30, -0.11) 32% 

WFT -0.28 (-0.38, -0.18) -0.43 (-0.58, -0.29) -0.15 (-0.27, -0.04) 55% 

* Calculated as the difference in 20-year decline between persons without and with diabetes 

(negative values indicate greater decline in persons with diabetes) 

† Calculated as the difference expressed as a percentage of the decline in those without diabetes. 

That is, (decline in participants without diabetes – decline in participants with diabetes)/(decline 

in participants without diabetes); thus a value of 20% indicates a 20% greater decline in those 

with diagnosed diabetes compared to those without. 

Note: bold values indicate p-value < 0.05. Z scores can be interpreted as standard deviations 

above or below the mean. For example, a Z score difference of -0.15 means that, on average,  

persons with diabetes declined an additional 0.15 standard deviations compared to persons 

without diabetes. Time since baseline was the time metric, and cognitive function was modeled 

using generalized linear models fit using generalized estimating equations, with adjustment for 

age, age squared, race-center, sex, education, cigarette smoking, alcohol consumption, body mass 

index, hypertension, history of coronary heart disease, history of stroke, APOE 4 genotype, and 

interactions between all of these covariates and time.  N=6,771 total records, with N=3,162 

participants at visit 2(N=802 with diabetes), N=2,289 at visit 4(N=498 with diabetes), and 

N=1,320 at visit 5(N=206 with diabetes).     
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Supplemental Table 3: Average difference in 14-year decline in global Z score, delayed word recall, digit symbol substitution, and word 

fluency among persons with prevalent diagnosed diabetes at visit 2 or incident diagnosed diabetes or visit 4, compared to persons without 

diabetes at either visit, white race 

  No attrition adjustment Attrition adjusted 

Test 

Diabetes duration 

(years) 

Absolute 14-year decline 

Estimate (95% CI) 

Difference* 

Estimate (95% CI) 

Absolute 14-year decline 

Estimate (95% CI) 

Difference* 

Estimate (95% CI) 

Global Z  No diabetes -0.72 (-0.75, -0.69) (reference) -0.72 (-0.76, -0.69) (reference) 

 < 3  -0.90 (-1.00, -0.79) -0.18 (-0.28, -0.07) -0.91 (-1.02, -0.79) -0.18 (-0.30, -0.07) 

 3 - 6  -0.87 (-0.99, -0.75) -0.15 (-0.27, -0.03) -0.89 (-1.01, -0.76) -0.16 (-0.29, -0.04) 

 6 - 9  -0.82 (-0.98, -0.66) -0.10 (-0.26, 0.06) -0.91 (-1.14, -0.69) -0.19 (-0.42, 0.04) 

 > 9  -0.87 (-0.97, -0.77) -0.15 (-0.25, -0.05) -0.93 (-1.05, -0.82) -0.21 (-0.32, -0.09) 

 p-value-for-trend 0.007 - 0.006 - 

DWRT No diabetes -0.92 (-0.97, -0.87) (reference) -0.92 (-0.98, -0.87) (reference) 

 < 3  -1.07 (-1.22, -0.91) -0.15 (-0.31, 0.01) -1.08 (-1.25, -0.91) -0.16 (-0.33, 0.01) 

 3 - 6  -1.10 (-1.28, -0.92) -0.18 (-0.36, -0.01) -1.15 (-1.33, -0.96) -0.22 (-0.41, -0.04) 

 6 - 9  -1.05 (-1.29, -0.82) -0.13 (-0.37, 0.10) -1.11 (-1.36, -0.87) -0.19 (-0.43, 0.05) 

 > 9  -1.05 (-1.21, -0.89) -0.13 (-0.29, 0.03) -1.11 (-1.28, -0.93) -0.18 (-0.36, -0.01) 

 p-value-for-trend 0.011 - 0.010 - 

DSST No diabetes -0.65 (-0.68, -0.63) (reference) -0.66 (-0.69, -0.63) (reference) 

 < 3  -0.78 (-0.86, -0.70) -0.13 (-0.21, -0.05) -0.78 (-0.86, -0.70) -0.12 (-0.20, -0.04) 

 3 - 6  -0.73 (-0.82, -0.64) -0.08 (-0.16, 0.01) -0.73 (-0.81, -0.64) -0.07 (-0.15, 0.02) 

 6 - 9  -0.68 (-0.81, -0.54) -0.02 (-0.16, 0.11) -0.71 (-0.84, -0.58) -0.05 (-0.18, 0.08) 

 > 9  -0.82 (-0.90, -0.73) -0.16 (-0.25, -0.07) -0.87 (-0.98, -0.77) -0.21 (-0.32, -0.11) 

 p-value-for-trend 0.002 - <0.001 - 

WFT No diabetes -0.11 (-0.14, -0.08) (reference) -0.11 (-0.14, -0.08) (reference) 

 < 3  -0.21 (-0.30, -0.12) -0.10 (-0.19, -0.01) -0.21 (-0.31, -0.12) -0.10 (-0.19, -0.01) 

 3 - 6  -0.20 (-0.32, -0.09) -0.09 (-0.21, 0.03) -0.18 (-0.32, -0.05) -0.07 (-0.21, 0.07) 

 6 - 9  -0.21 (-0.35, -0.06) -0.10 (-0.24, 0.05) -0.33 (-0.62, -0.04) -0.22 (-0.51, 0.08) 

 > 9  -0.19 (-0.28, -0.09) -0.07 (-0.17, 0.02) -0.24 (-0.35, -0.13) -0.12 (-0.23, -0.02) 

 p-value-for-trend 0.006 - 0.006 - 

* Calculated as the difference in 14-year decline between persons with no diabetes at either visit and persons who have prevalent diabetes at visit 2 

or develop diabetes between visits 2 and 4 (negative values indicate greater decline in those with prevalent or incident diabetes) 
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Note: bold values indicate p-value < 0.05. Z scores can be interpreted as standard deviations above or below the mean. For example, a Z score 

difference of -0.15 means that, on average, persons with diabetes declined an additional 0.15 standard deviations compared to persons without 

diabetes. Time since baseline was the time metric, and cognitive function was modeled using generalized linear models fit using generalized 

estimating equations, with adjustment for age, age squared, race-center, sex, education, cigarette smoking, alcohol consumption, body mass index, 

hypertension, history of coronary heart disease, history of stroke, APOE 4 genotype, and interactions between all of these covariates and time.  

N=13,098 total records, with N=8,431 at visit 4(N=711 with diabetes), and N=4,667 at visit 5(N=240 with diabetes) 
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Supplemental Table 4: Average difference in 14-year decline in global Z score, delayed word recall, digit symbol substitution, and word 

fluency among persons with prevalent diagnosed diabetes at visit 2 or incident diagnosed diabetes or visit 4, compared to persons without 

diabetes at either visit, black race 

  No attrition adjustment Attrition adjusted 

Test 

Diabetes duration 

(years) 

Absolute 14-year decline 

Estimate (95% CI) 

Difference* 

Estimate (95% CI) 

Absolute 14-year decline 

Estimate (95% CI) 

Difference* 

Estimate (95% CI) 

Global Z  No diabetes -0.72 (-0.84, -0.61) (reference) -0.73 (-0.85, -0.61) (reference) 

 < 3  -0.72 (-0.93, -0.50) 0.01 (-0.19, 0.20) -0.85 (-1.16, -0.54) -0.12 (-0.43, 0.20) 

 3 - 6  -0.58 (-0.77, -0.39) 0.14 (-0.01, 0.30) -0.57 (-0.76, -0.37) 0.17 (0.01, 0.33) 

 6 - 9  -0.88 (-1.09, -0.67) -0.16 (-0.34, 0.02) -0.90 (-1.12, -0.69) -0.17 (-0.36, 0.01) 

 > 9  -1.06 (-1.40, -0.71) -0.33 (-0.66, -0.00) -1.08 (-1.43, -0.73) -0.35 (-0.68, -0.01) 

 p-value-for-trend 0.100 - 0.076 - 

DWRT No diabetes -0.88 (-1.10, -0.66) (reference) -0.87 (-1.09, -0.65) (reference) 

 < 3  -0.77 (-1.12, -0.42) 0.11 (-0.18, 0.41) -0.86 (-1.29, -0.43) 0.01 (-0.39, 0.41) 

 3 - 6  -0.74 (-1.06, -0.43) 0.14 (-0.10, 0.38) -0.66 (-0.99, -0.34) 0.21 (-0.05, 0.46) 

 6 - 9  -0.92 (-1.27, -0.57) -0.04 (-0.32, 0.24) -0.86 (-1.23, -0.49) 0.01 (-0.29 0.31) 

 > 9  -1.16 (-1.63, -0.68) -0.27 (-0.71, 0.16) -1.12 (-1.64, -0.60) -0.25 (-0.73, 0.23) 

 p-value-for-trend 0.004 - 0.987 - 

DSST No diabetes -0.59 (-0.67, -0.51) (reference) -0.60 (-0.68, -0.52) (reference) 

 < 3  -0.70 (-0.85, -0.55) -0.11 (-0.25, 0.04) -0.77 (-0.97, -0.57) -0.17 (-0.37, 0.03) 

 3 - 6  -0.63 (-0.77, -0.50) -0.04 (-0.16, 0.07) -0.63 (-0.76, -0.49) -0.03 (-0.14, 0.08) 

 6 - 9  -0.76 (-0.91, -0.61) -0.17 (-0.30, -0.04) -0.79 (-0.95, -0.63) -0.19 (-0.33, -0.05) 

 > 9  -0.77 (-0.99, -0.56) -0.18 (-0.39, 0.02) -0.75 (-0.97, -0.52) -0.15 (-0.37, 0.07) 

 p-value-for-trend 0.004 - 0.007 - 

WFT No diabetes -0.19 (-0.28, -0.10) (reference) -0.21 (-0.31, -0.11) (reference) 

 < 3  -0.15 (-0.34, 0.04) 0.04 (-0.14, 0.23) -0.27 (-0.51, -0.02) -0.06 (-0.31, 0.20) 

 3 - 6  -0.05 (-0.21, 0.11) 0.14 (-0.00, 0.28) -0.08 (-0.25, 0.09) 0.13 (-0.02, 0.28) 

 6 - 9  -0.37 (-0.55, -0.19) -0.18 (-0.34, -0.01) -0.43 (-0.62, -0.24) -0.22 (-0.39, -0.06) 

 > 9  -0.45 (-0.67, -0.23) -0.26 (-0.46, -0.05) -0.46 (-0.68, -0.24) -0.25 (-0.45, -0.05) 

 p-value-for-trend 0.043 - 0.016 - 
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* Calculated as the difference in 14-year decline between persons with no diabetes at either visit and persons who have prevalent diabetes at visit 2 

or develop diabetes between visits 2 and 4 (negative values indicate greater decline in those with prevalent or incident diabetes) 

Note: bold values indicate p-value < 0.05. Z scores can be interpreted as standard deviations above or below the mean. For example, a Z score 

difference of -0.15 means that, on average,  persons with diabetes declined an additional 0.15 standard deviations compared to persons without 

diabetes. Time since baseline was the time metric, and cognitive function was modeled using generalized linear models fit using generalized 

estimating equations, with adjustment for age, age squared, race-center, sex, education, cigarette smoking, alcohol consumption, body mass index, 

hypertension, history of coronary heart disease, history of stroke, APOE 4 genotype, and interactions between all of these covariates and time. 

N=3,609 total records, with N=2,289 at visit 4(N=498 with diabetes) and N=1,320 at visit 5(N=206 with diabetes).   
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Supplemental Table 5: ARIC population visit 2 baseline characteristics by diabetes status, 

propensity score matched cohort 

 Total (N=3,648) 

Diabetes 

(N=1,824) 

No Diabetes 

(N=1,824) 

Age 58.3 (5.7) 58.2 (5.7) 58.4 (5.7) 

Female, % 56.6 57.1 56.1 

Visit 5 Attendance, %    

Died before visit 5 40.3 46.7 33.3 

Alive, but did not attend 30.5 28.3 32.9 

Attended 29.2 25.0 33.8 

Race-Center, %    

Minneapolis - White  14.9 14.3 15.6 

Washington County - White 16.1 16.4 15.0 

Forsyth - White 39.8 40.2 40.7 

Forsyth - Black 4.8 4.8 4.7 

Jackson - Black 24.3 24.2 24.1 

Cognitive scores    

Global cognitive Z score -0.45 (1.0) -0.52 (1.0) -0.38 (1.0) 

Delayed word recall test, number of 

words Recalled 6.2 (1.6) 6.1 (1.6) 6.4 (1.6) 

Digit symbol substitution test, 

number of symbols translated 37.5 (14.6) 36.9 (14.5) 38.5 (14.8) 

Word fluency test, number of words 

generated 29.3 (12.5) 29.3 (12.4) 29.6 (12.5) 

Hemoglobin A1c 6.8 (1.9) 8.0 (2.1) 5.6 (0.4) 

Prevalent coronary heart disease, % 11.2 11.0 11.3 

Prevalent stroke, % 3.9 4.3 3.8 

Apolipoprotein E 4 alleles, %    

0 66.0 67.6 63.4 

1 28.2 27.0 30.3 

2 3.1 2.8 3.3 

Not reported 2.7 2.6 3.0 

Hypertension, % 59.0 58.9 59.8 

Body mass index, kg/m
2
 31.2 (6.3) 31.4 (6.1) 30.9 (6.5) 

Total cholesterol level, mg/dL 214 (43.1) 216 (45.4) 211 (40.4) 

HDL cholesterol level, mg/dL 45.7 (15.2) 43.1 (14.2) 48.4 (15.8) 

Triglyceride level, mg/dL 156 (114.7) 179 (136.0) 132 (79.2) 

Education, %    

Less than high school 36.4 35.0 36.5 

High school, graduate equivalence 

degree, or vocational school 37.2 37.8 37.0 

College, graduate, or professional 

school  26.5 27.2 26.5 

Cigarette smoking status, %    

Current 22.2 20.8 22.0 

Former 36.8 37.4 37.0 

Never 41.0 41.8 41.0 

Alcohol consumption, %    

Current 36.3 36.2 35.9 

Former 33.1 33.3 33.2 

Never 30.6 30.4 30.9 

Notes: shaded lines represent variables on which matching was performed. There was no 

significant difference between persons with and without diabetes on the matched variables (p-
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values>0.4, and means/proportions were very similar between groups). Propensity scores were 

developed using logistic regression and included sex, age, race-center, education, cigarette 

smoking, drinking status, hypertension status, prevalent CHD, prevalent stroke, and body mass 

index, starting with 13,766 participants at baseline, including those with “not reported” APOE 

status. All variables were significant. We used psmatch2 in Stata to select matches based on 

propensity score, with nearest neighbor selected without replacement, using a caliper set to .05, 

which was 0.5 times the propensity score standard deviation (on the probability scale). All but 3 

persons with diabetes had a match.  
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Supplemental Table 6: Average difference in 20-year decline in global cognitive Z score, 

delayed word recall, digit symbol substitution, and word fluency among persons with a 

history of diagnosed diabetes compared to persons without diabetes, for participants of the 

matched cohort  

 

Test 

20 year decline – 

No diabetes 

Estimate (95% CI) 

20 year decline – 

Diabetes 

Estimate (95% CI) 

Difference* 

Estimate (95% CI) 

Global Z -0.82 (-0.89, -0.75) -0.96 (-1.04, -0.87) -0.14 (-0.23, -0.06) 

Delayed Word 

Recall Test 
-1.11 (-1.22, -0.99) -1.10 (-1.23, -0.97) 0.00 (-0.13, 0.14) 

Digit Symbol 

Substitution Test 
-0.70 (-0.75, -0.65) -0.83 (-0.89, -0.78) -0.13 (-0.19, -0.07) 

Word Fluency Test -0.17 (-0.23, -0.10) -0.28 (-0.35, -0.21) -0.12 (-0.19, -0.04) 

* Calculated as the difference in 20-year decline between persons without and with diabetes 

(negative values indicate greater decline in persons with diabetes) 

Note: bold values indicate p-value < 0.05. Z scores can be interpreted as standard deviations 

above or below the mean. For example, a Z score difference of -0.15 means that, on average,  

persons with diabetes declined an additional 0.15 standard deviations compared to persons 

without diabetes. Time since baseline was the time metric, and cognitive function was modeled 

using generalized linear models fit using generalized estimating equations, with adjustment for 

age, age squared, race-center, sex, education, cigarette smoking, alcohol consumption, body mass 

index, hypertension, history of coronary heart disease, history of stroke, APOE 4 genotype 

(including those not reporting genotype), and interactions between all of these covariates and 

time. N=7,472 total records, with N=3,648 participants at visit 2(N=1,824 with diabetes), 

N=2,670 at visit 4(N=1,244 with diabetes), and N=1,154 at visit 5(N=456 with diabetes)
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Supplemental Table 7: Average difference in 20-year decline in global cognitive Z score, 

delayed word recall, digit symbol substitution, and word fluency among persons with a 

history of diagnosed diabetes compared to persons without diabetes, censoring cognitive 

values of participants after they experience a stroke   

Test 

20 year decline – 

No diabetes 

Estimate (95% CI) 

20 year decline – 

Diabetes 

Estimate (95% CI) 

Difference 

Estimate (95% CI) 

Global Z  -0.77 (-0.79, -0.74) -0.91 (-0.98, -0.84) -0.13 (-0.20, -0.06) 

Delayed Word 

Recall Test 
-0.99 (-1.03, -0.95) -1.03 (-1.15, -0.92) -0.04 (-0.16, 0.07) 

Digit Symbol 

Substitution Test 
-0.69 (-0.71, -0.67) -0.82 (-0.87, -0.77) -0.13 (-0.17, -0.08) 

Word Fluency Test -0.16 (-0.18, -0.14) -0.26 (-0.32, -0.20) -0.10 (-0.16, -0.04) 

* Calculated as the difference in 20-year decline between persons without and with diabetes 

(negative values indicate greater decline in persons with diabetes) 

† Calculated as the difference expressed as a percentage of the decline in those without diabetes. 

That is, (decline in participants without diabetes – decline in participants with diabetes)/(decline 

in participants without diabetes); thus a value of 19% indicates a 19% greater decline in those 

with diagnosed diabetes compared to those without. 

Note: bold values indicate p-value < 0.05. Z scores can be interpreted as standard deviations 

above or below the mean. For example, a Z score difference of -0.15 means that, on average,  

persons with diabetes declined an additional 0.15 standard deviations compared to persons 

without diabetes. Time since baseline was the time metric, and cognitive function was modeled 

using generalized linear models fit using generalized estimating equations, with adjustment for 

age, age squared, race-center, sex, education, cigarette smoking, alcohol consumption, body mass 

index, hypertension, history of coronary heart disease, history of stroke, APOE 4 genotype, and 

interactions between all of these covariates and time. N=29,713 total records, with N=13,314 

participants at visit 2 (N=1,762 with diabetes), N=10,596 at visit 4(N=1,174 with diabetes), and 

N=5,803 at visit 5(N=412 with diabetes). 

 

  



 

141 

 

 

Supplemental Figure 1: Flowchart of study visits and exclusions and pattern of attendance 
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Supplemental Figure 2: Propensity score distribution for persons with and without diabetes 

 
Legend: Panel A: propensity score distribution for all cohort participants (N=13,351). Panel B: 

propensity score distribution for matched participants(N=1,824 in each group). Propensity scores 

are calculated from logistic models that included sex, age, race-center, education, cigarette 

smoking, drinking status, hypertension status, prevalent CHD, prevalent stroke, and body mass 

index, starting with 13,766 participants at baseline, including those with “not reported” APOE 

status. All variables were significant. We used psmatch2 in Stata to select matches based on 

propensity score, with nearest neighbor selected without replacement, using a caliper set to .05. 

All but 3 persons with diabetes from the full cohort had a match.  
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Supplemental Text 1: Summary of Propensity Score Methods 

 

Persons with diabetes differ from those without diabetes on a number of demographic, 

behavioral, and clinical characteristics. In studying diabetes as a risk factor, a lack of 

comparability in participant characteristics between the two groups may reduce the effectiveness 

of controlling for confounding using conventional statistical methods, such as regression, 

potentially leading to bias. An alternative to the conventional methods to control for cofounding 

is propensity score matching, a method of treating observational data in an attempt to mimic 

characteristics of a randomized trial. That is, conditional on the propensity score, baseline 

characteristics will be similar among the two groups. We used propensity score matching to test 

the robustness of our findings.   

 

In this propensity score analysis, we modeled diabetes as an outcome using logistic regression 

and included sex, age, race-center, education, cigarette smoking, drinking status, hypertension 

status, prevalent coronary heart disease, prevalent stroke, and body mass index. These variables 

are strongly associated with diabetes and were different between persons with and without 

diabetes in our study population (Table 1). For this analysis we included an additional 415 

participants with “not reported” apolipoprotein E 4 at baseline, giving 13,766 available 

participants (N=1,827 with diabetes). Using this model, we predicted the probability of diabetes 

(propensity score).  

 

For the propensity score, we used nearest neighbor matching without replacement with a caliper 

of 0.05 (on the probability scale) to select matches among persons without diabetes. A caliper of 

0.05 was chosen because it is half of the standard deviation of our propensity score, which is 

indicated by prior research to remove a substantial portion of the initial bias (Rubin and Thomas, 

1996). All but 3 participants with diabetes had a match, giving N=1,824 participants with 

diabetes, compared to N=1,779 in our primary regression analysis.  

 

The propensity score distributions for persons with and without diabetes in the full cohort of 

13,766 participants are shown in eFigure 2, Panel A, along with the propensity score distribution 

among matched participants (eFigure 2, Panel B). In the full cohort (eFigure 2, Panel A) the 

propensity scores for persons with and without diabetes overlapped across the full range of 

probabilities, suggesting that the conventional regression approach was sufficient in this case.    

 

After matching, the propensity scores overlap fully (eFigure 2, Panel B), suggesting that the 

propensity score matching performed well. In addition, Supplemental Table 5 shows baseline 

characteristics among matched participants. Visual inspection of the means and percentages 

showed the matched factors (the gray-shaded lines) were well balanced; we found no significant 

differences between persons with and without diabetes on matched characteristics (p-values>0.4). 

 

When we used the matched sample to examine the relationship between diabetes and cognitive 

decline (Supplemental Table 6), our results were not appreciably different and our conclusions 

were unchanged from the primary regression analysis (Table 2).  

 

Reference 

Rubin, D. B., & Thomas, N. (1996). Matching using estimated propensity scores: relating theory 

to practice. Biometrics, 52(1), 249-264. 
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Supplemental Text 2: Inverse probability of attrition weighting (IPAW) details 

 

Persons with diabetes and those with substantial cognitive impairment are more likely to drop out 

of the study or die before the next study visit, potentially biasing the estimated relationship 

between diabetes and cognitive decline. Inverse probability of attrition weighting (IPAW) is a 

method to account for this differential dropout.  

 

We developed stabilized inverse probability of attrition weights for each individual at each time 

point of participation and used weighted analyses to obtain estimates “adjusted” for attrition. 

These weights are calculated from predicted probabilities of attrition estimated from two sets of 

logistic models, one set for dropout due to attrition, and one for dropout due to death.  

 

For death, we modeled the probability of death between visits 2 and 4, between visits 4 and a 

pseudo visit (based on annual phone call data between visits 4 and 5), and between the pseudo 

visit and visit 5. For non-death drop-out, we modeled the probability of drop out between visits 2 

and 4 and between visits 4 and 5. All models used the same covariates, updated to reflect current 

status or total history, which were selected for inclusion into prediction models using a stepwise 

selection criterion. Models were run separately for black and white participants.  

 

Covariates included: age, sex, center, education, diabetes, APOE ε4 alleles (0,1,2), history of 

stroke, history of coronary heart disease, cigarette smoking, body mass index, height, 

hypertension medication use, global z score (categorized into quintiles), self-reported poor health 

(measured at visit 1), number of prior hospitalizations, retirement status, chronic lung disease, 

lung capacity, insurance status, white blood cell count, anemia, and interactions between age and 

global z score, anemia, and lung volume.  

 

To calculate the stabilized weights, we ran additional models predicting death and dropout using 

a subset of covariates, namely age, sex, center, education, and diabetes. The probabilities from 

these models were multiplied by the weights calculated above to create stabilized weights. Ideally 

these weights have a mean of 1 and represent the distribution of the original population without 

inflating the sample size. Additional information regarding probability weighting can be found in 

(Hernan, 2000).  

 

The table below shows the distribution of the stabilized weights. For completeness, we show the 

unstabilized weights though they were not used in our analyses. 

 

Distribution of stabilized and unstabilized weights, by race: 

 Mean Standard 

deviation 

Minimum 5
th
 

percentile 

95
th
 

percentile 

Maximum 

Black       

Unstabilized 1.504 1.652 1.000 1.000 2.790 82.18 

Stabilized 1.010 0.273 0.125 0.770 1.301 9.123 

White       

Unstabilized 1.320 1.999 1.000 1.000 2.200 243.0 

Stabilized 1.002 0.296 0.282 0.830 1.159 19.24 

  

Reference 

Hernan MA, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of 

zidovudine on the survival of HIV-positive men. Epidemiology. 2000 Sep;11(5):561-70. 
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Supplemental Text 3: Transformation of Global Z-score into an “age equivalent” 

 

To put our main results for the Global Z-score difference of -0.15 into context, we calculated the 

age-related equivalent for this degree of decline. To do this, we used our final model to estimate 

how much older someone without diabetes would need to be, at baseline, to perform 0.15 Z 

scores lower, and we estimated that to be 4.9 years. That is, our model of Z scores included age, 

and at baseline older participants performed worse than younger participants (ie negative 

coefficient for age). The coefficient for age was -0.02998, so each additional year of being older 

at baseline reduced Z scores by ~0.03. Thus being about 5 years older at baseline (without 

diabetes) was “equivalent” to the amount of additional decline over 20 years among persons with 

diabetes.  

 

Also because 0.15 may not be intuitive, we categorized the decline as percent additional decline 

among persons with diabetes. That is, persons without diabetes had -0.78 z-score decline over 20 

years, and persons with diabetes -0.93 (table 2). Therefore persons with diabetes had (0.15)/0.78 

= 19% faster decline than persons without diabetes. 
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APPENDIX B: Supplemental material for Chapter 2 

Supplemental Figure 1. Estimated 20-year additional decline in persons with diabetes 

compared to those without, by number of imputations  
  

 
 

Legend: 

Estimates and 95% CIs are for mixed-effects models using time since baseline as the time axis, modeled 

using a spline term with a knot at 6 years, the median time between visits 2 and 4. Random effects were 

random intercept and two random slopes, one for each time spline term. All models were adjusted for age, 

age squared, race-field center (Maryland (white race); Minnesota (white race); North Carolina (white race); 

North Carolina (black race); Mississippi (black race)), sex, education (less than high school; high school, 

high school equivalent, or vocational school; or college, graduate, or professional school), cigarette 

smoking status (current; former; never), alcohol consumption status (current; former; never), body mass 

index (kg/m
2
), hypertension (yes or no), history of stroke (yes or no), apolipoprotein E ε4 genotype (0, 1, or 

2 alleles). Interaction terms between the time spline terms and age, sex, race-field center, education, history 

of stroke, and apoliprotein E ε4 genotype were also included in the model. Imputations were generated by 

chained equations. Panel A: Imputing values for participants alive at visit 5. Panel B: Imputing values for 

participants alive and deceased by visit 5.  
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Supplemental Table 1: Characteristics of study participants with suspected dementia, by 

clinical dementia rating (CDR) status  

 

Has CDR No CDR obtained 

p-value for 

difference 

N (%) 751 711 - 

Age, years 60.7 (5.1) 60.5 (5.2) 0.554 

Female, % 57.0 59.5 0.334 

Black, % 24.8 28.0 0.162 

HbA1c, % 5.9 (1.3) 6.1 (1.5) 0.100 

Diabetes, % 18.8 21.1 0.271 

Body mass index, kg/m
2
 28.0 (5.0) 28.1 (5.3) 0.552 

History of CHD, % 6.0 5.5 0.678 

History of stroke, % 2.3 3.4 0.198 

Hypertension, % 41.0 47.0 0.022 

APOE e4 alleles, % 

  

 

0 54.4 54.6 0.947 

1 38.3 38.2 0.953 

2 7.2 7.2 0.985 

Education, % 

  

 

Less than high school 30.1 31.2 0.640 

High school 38.1 38.8 0.773 

College/vocational 31.8 30.0 0.441 

Smoking, % 

  

 

Current 19.5 20.8 0.512 

Former 37.6 36.3 0.618 

Never 42.9 42.8 0.964 

Drinking, % 

  

 

Current 46.9 48.6 0.526 

Former 25.2 24.2 0.666 

Never 27.9 27.2 0.770 

Measures of Cognitive 

Function 

  

 

Global Z -0.26 (0.97) -0.35 (1.04) 0.067 

DWRT, words recalled 6.2 (1.5) 6.1 (1.7) 0.417 

DSST, number completed 40.8 (14.1) 39.8 (13.8) 0.177 

WFT, words generated 32.3 (12.2) 30.8 (12.6) 0.022 
All characteristics shown were measured at baseline (visit 2), except education, which was 

collected at visit 1. Values shown as %, or mean (SD) 

Abbreviations: CHD, coronary heart disease; DWRT, delayed word recall test; DSST, digit symbol 

substitution test; WFT, word fluency test; CDR, clinical dementia rating.  
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Supplemental Text 1: Model specifications for simulations 
 

The model used to generate Z scores is shown below, and was used for all scenarios. It is worth noting that 

suspect dementia was built into our data generating model in our simulations, but was not included in our 

mixed model. This was necessary because CDR data were specifically sought for persons with suspect 

dementia, because of the distinct characteristics of these participants, and because including it allowed us to 

retain the correlations between risk factors and cognitive decline. That is, because we retained all covariates 

from ARIC, in generating “believable” Z scores, we needed a way to identify participants who would 

ultimately experience cognitive decline, such that their risk factors, CDR values, TICS, etc would 

correspond with observed covariates (diabetes, hypertension, etc).  

 
global Z = -0.1*timesp1 - 0.3*timesp2 - 1*educ1 - 0.43*educ2 - 0.005*bmi21c 

+ 0.12*rc_0 - 0.74*rc_1 + 0.07*rc_2 - 0.39*rc_3 + 0.004*female - 0.03*agev2c  

- 0.5*suspect_dem - 0.01*timesp1*suspect_dem - 0.4*timesp2*suspect_dem  

- 0.024*htn - 0.025*timesp1*htn - 0.05*timesp2*htn  

- 0.15*diabstrat - 0.05*timesp1*diabstrat - 0.05*timesp2*diabstrat  

- 0.15*smkv2 - 0.01*timesp1*smkv2 - 0.01*timesp2*smkv2  

+ u0i + u1i*timesp1 + u2i*timesp2 + rhi 

 

u0i ~ N(0, 0.6) 

u1i ~ N(0, 0.2) 

u2i ~ N(0, 0.2) 

rhi ~ N(0, 0.4) 

 

We fit the above model using observed ARIC cohort data, and the resulting coefficients (with rounding) in 

the above simulation model.   

 

Description of variables: 

timesp1, timesp2: spline terms for time (years since visit 2, the baseline visit), with the knot at 6 years. The 

spline terms are modeled per 6 years, such that the coefficient of timesp1 represents average decline 

between visits 2 and 4 (6 years is the average time between the two visits)  

educ1: less than high school education 

educ2: high school, high school equivalent, or vocational school 

educ3: college, graduate, or professional school (reference) 

bmi21c: body mass index, centered at 28 kg/m
2
 

rc_*: race-field center (rc_0, Minnesota whites; rc_1, Mississippi blacks; rc_2, Maryland whites; rc_3, 

North Carolina blacks; rc_4, North Carolina whites (reference)) 

female: female sex (yes/no) 

agev2c: age at visit 2, centered at 57 years 

suspect_dem: suspected dementia (yes/no) 

htn: hypertension (yes/no) 

diabstrat: diabetes (yes/no) 

smkv2: current smoker (yes/no) 

u0i: random intercept for participant i 

u1i, u2i: random slopes for each time spline for participant i 

rhi: residual error for participant i at time h (visits 2, 4, and 5) 

 

The probabilities of death and dropout were modeled using multinomial logistic regression. The outcomes 

are 1) attended visit 5 (reference category), 2) alive but did not attend, and 3) deceased. Intercepts for the 

models were chosen such that the average proportions of death and dropout were similar to those observed 

in ARIC. That is, 29.08% of baseline participants were deceased by visit 5, and of the remaining living 

participants, 37.36% did not attend visit 5.  
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Models used to simulate death and dropout: 

Scenario Death Dropout out 

1 MCAR Probability fixed: 0.2908 Probability fixed: 0.3736 

2 MAR Probability using a multinomial logistic model:  

-1.61 - .536*globalz_v4 + 0.711*diabstrat + 

0.529*htn + 0.796*smkv2 

Probability using a multinomial logistic model:  

-0.7 - 0.224*globalz_v4 - 0.054*globalz_v2 + 

0.333*diabstrat + 0.316*htn + 0.298*smkv2 

3 MAR for 

MICE 

Probability using a multinomial logistic model:  

-1.635 - 0.536*globv4 + 0.711*diabstrat + 0.529*htn 

+ 0.796*smkv2 + 0.25*suspect_dem 

Probability using a multinomial logistic model:  

-0.75 - 0.224*globv4 - 0.054*globv2 + 0.333*diabstrat 

+ 0.316*htn + 0.5*suspect_dem 

4 MNAR 
Probability fixed: 0.4 

Probability = 0.8 if simulated global Z at visit 5 is < 25th 

percentile.  

Probability = 0.5 for everyone else 

globalz_v2: simulated global z at visit 2  

globalz_v4: simulated global z at visit 4 

 

The primary Stata commands used were “mi impute chained” to perform the imputations and “mi 

estimate:” to run longitudinal models using the imputed values.   
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Supplemental Table 2: Simulation results of estimated 20-year additional decline for 

persons with diabetes compared to those without, considering only participants alive at visit 

5 

  Truth  Imputation 

Scenario  Living Participants Available case Living Participants 

1 MCAR Mean effect (SE) -0.236 (0.028) -0.235 (0.035) -0.231 (0.034) 

Bias (%) - -0.001 (0%) -0.005 (2%) 

Empirical SE 0.0261 0.0341 0.0322 

CI coverage - 100% 100% 

2 MAR Mean effect (SE) -0.229 (0.031) -0.225 (0.042) -0.221 (0.043) 

Bias (%) - -0.004 (2%) -0.008 (4%) 

Empirical SE 0.0309 0.0402 0.0389 

CI coverage - 95% 95% 

3 MAR for 

MICE, 

MNAR for 

available 

case  

Mean effect (SE) -0.215 (0.031) -0.182 (0.042) -0.208 (0.044) 

Bias (%) - -0.033 (15%) -0.007 (3%) 

Empirical SE 0.0298 0.0436 0.0448 

CI coverage - 94% 98% 

4 MNAR  Mean effect (SE) -0.222 (0.028) -0.168 (0.035) -0.174 (0.037) 

Bias (%) - -0.053 (24%) -0.047 (21%) 

Empirical SE 0.0249 0.0341 0.0308 

CI coverage - 72% 85% 

 

Mean effect is an average of 100 simulations. The standard error (SE) of the mean effect is the square root of mean 

variances across 100 simulations. Bias is calculated as the mean effect estimate from each method (available case, 

imputation in living participants) minus the mean effect estimate from the truth. Negative values indicate 

underestimation of the true effect and positive values represent overestimation. Bias % is calculated as the estimated 

bias divided by the true effect (ie 0.005/0.236 = 2%). The empirical SE is the standard deviation of the mean effect 

across 100 simulations. CI coverage is the percentage of the simulations where the confidence interval for the estimated 

effect includes the true effect.  

Scenario 1: Death and dropout simulated to be missing completely at random, with probabilities of 0.29 and 0.37, 

respectively, chosen to match proportions observed in ARIC 

Scenario 2: Death and dropout simulated to depend on prior visit global Z score, diabetes, hypertension, and current 

smoking status 

Scenario 3: Death and dropout simulated to depend on prior visit global Z score, diabetes, hypertension, current 

smoking status, and suspected dementia. As a result, the “complete case”, which uses a mixed model, is MNAR 

(suspect dementia not included in the mixed model), but MICE is MAR (suspect dementia is included for imputation). 

This scenario is consistent with what we believe the true missingness pattern in ARIC to be 

Scenario 4: Dropout simulated to depend on visit 5 global Z scores (i.e. unobserved scores), and death simulated to be 

missing completely at random 
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APPENDIX C: Supplemental material for Chapter 3 

Supplemental Table 1. Adjusted HRs (95% CI) for the association of 1,5-anhydroglucitol 

categories with incident dementia – stratified analyses by diabetes and HbA1c category 
 

 

 Events/N 

Model 1 

HR (95% CI) 

 

p-value
†
 

Model 2 

HR (95% CI) 

 

p-value
†
 

No Diabetes 

 

  

 

  

 

 

 1,5-AG ≥10 829/10708 1 (reference)  0.959 1 (reference)  0.717 

 1,5-AG <10 48/576 1.01 (0.75, 1.35)   1.06 (0.79, 1.42)   

Diabetes         

HbA1c < 7% 1,5-AG ≥10 60/535 1 (reference)  0.400 1 (reference)  0.202 

 1,5-AG <10 19/125 1.26 (0.74, 2.15)   1.45 (0.82, 2.56)   

Diabetes         

HbA1c ≥ 7% 1,5-AG ≥10 19/176 1 (reference)  0.035 1 (reference)  0.110 

 1,5-AG <10 130/876 1.68 (1.04, 2.73)   1.53 (0.91, 2.58)   

 

Hazard ratios (HRs) and 95% confidence intervals (CI) are from Cox proportional hazards regression 

Model 1: Adjusted for age, sex, education, and race-center 

Model 2: Adjusted for the variables in model 1 plus hypertension, history of stroke, history of coronary 

heart disease, cigarette smoking status, drinking status, APOE4, and HbA1c 

Diabetes was defined as a self-reported physician diagnosis of diabetes, use of glucose lowering 

medication, or an HbA1c ≥ 6.5% 

† p-values compare 1,5-AG ≥10 μg/mL to 1,5-AG <10 μg/mL within diabetes status and HbA1c category  
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Supplemental Table 2. Adjusted HRs (95% CI) for the association of 1,5-anhydroglucitol 

categories with incident dementia by diabetes status among ARIC participants with at least 

one hospitalization, N=10,646 

 

 Events/N 

Model 1 

HR (95% CI) 

 

p-value
†
 

Model 2  

HR (95% CI) 

 

p-value
†
 

No Diabetes 

 

  

 

  

 

 

 1,5-AG ≥10 792/8589 1 (reference) 
 

0.793 1 (reference) 
 

0.567 

 1,5-AG <10 44/473 1.05 (0.73, 1.51)   1.11 (0.77, 1.60)   

Diabetes         

HbA1c < 7% 1,5-AG ≥10 57/483 1.33 (0.96, 1.83)  0.881 1.28 (0.92, 1.78)  0.730 

 1,5-AG <10 19/119 1.39 (0.80, 2.43)   1.43 (0.82, 2.51)   

         

HbA1c ≥ 7% 1,5-AG ≥10 19/159 1.48 (0.85, 2.57)  0.227 1.29 (0.72, 2.32)  0.122 

 1,5-AG <10 125/823 2.11 (1.69, 2.63)   2.08 (1.36, 3.19)   

Model 1: Adjusted for age, sex, education, and race-center 

Model 2: Adjusted for the variables in model 1 plus hypertension, history of stroke, history of coronary 

heart disease, cigarette smoking status, drinking status, and APOE4 

* Diabetes was defined as a self-reported physician diagnosis of diabetes, use of glucose lowering 

medication, or an HbA1c ≥ 6.5% 

† p-values compare 1,5-AG ≥10 μg/mL to 1,5-AG <10 μg/mL within diabetes status and HbA1c category  
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Supplemental Figure 1: Estimated association between baseline categories of diabetes and 

20-year cognitive decline, by diabetes, HbA1c, and 1,5-Anhydroglucitol group, excluding 

participants with baseline scores below the 5
th

 percentile 

 

 
 
Legend: Estimates and 95% confidence intervals are from mixed-effects models with adjustment for age, 

age
2
, race-field center, sex, education, cigarette smoking status, drinking status, hypertension, history of 

stroke, history of coronary heart disease, apolipoprotein E ε4 genotype, body mass index, and interactions 

between these variables and time. Time since baseline was the time axis, and was modeled with a linear 

spline with a knot at 6 years. A random intercept and two random slopes for time (one for each spline term) 

were included, and the three random effects were assumed to be independent. *Dashed lines indicate linear 

regression fit across the three diabetes groupings (no diabetes, diabetes HbA1c<7%, diabetes HbA1c ≥7%) 

and 1,5-AG category. Decline indicates the estimated decline per category and the p-value is for the 

estimated decline across categories.  
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APPENDIX D: Supplemental material for Chapter 4 

Supplemental Table 1. Standardized factor loadings and fit statistics for invariance models by age 

 

Configural Invariance 

Variances constrained to 1, 

means to 0; intercepts, 

residuals, and factor loadings 

unconstrained  

 Metric Invariance  

Variances constrained to 1, 

means to 0, factor loadings 

invariant across groups; 

intercepts and residuals 

unconstrained  

 Strong Invariance 
Variances constrained to 1, 

means to 0, factor loadings 

and intercepts invariant 

across groups; residuals 

unconstrained  

 

Strict Invariance  
Variances constrained to 1, 

means to 0, factor loadings, 

intercepts, and residuals 

invariant across groups 

Memory <75 ≥75  <75 ≥75  <75 ≥75  <75 ≥75 

DWR 0.57 0.65  0.60 0.62  0.61 0.63  0.59 0.66 

LM 1 0.64 0.71  0.65 0.70  0.65 0.70  0.65 0.71 

LM 2 0.67 0.73  0.67 0.73  0.67 0.74  0.67 0.73 

Incidental Learning 0.60 0.65  0.56 0.68  0.55 0.67  0.57 0.64 

Language 
  

 
  

 
  

 
  

Animal Naming 0.67 0.73  0.66 0.74  0.67 0.75  0.68 0.73 

Word Fluency  0.70 0.67  0.66 0.70  0.63 0.67  0.62 0.67 

Boston Naming 0.62 0.68  0.66 0.60  0.67 0.61  0.62 0.68 

SAPS 
  

 
  

 
  

 
  

Trails A 0.62 0.68  0.65 0.65  0.67 0.67  0.66 0.69 

Trails B 0.81 0.82  0.81 0.82  0.80 0.83  0.80 0.83 

DSS 0.75 0.80  0.75 0.80  0.75 0.81  0.77 0.79 

DSB 0.51 0.50  0.48 0.52  0.46 0.50  0.47 0.49 

Fit statistics 
  

 
  

 
  

 
  

CFI 0.971  0.967  0.961  0.951 

TLI 0.959  0.958  0.955  0.949 

RMSEA* 0.058 (0.055, 0.061)  0.059 (0.056, 0.062)  0.061 (0.058, 0.064)  0.065 (0.062, 0.068) 

SRMR† 0.035  0.040  0.044  0.042 

BIC 158,722  158,776  158,886  159,095 

* RMSEA listed as value (90% confidence interval)  † SRMR calculated from models restricted to complete data 

Abbreviations: DWR, delayed word recall; LM, logical memory; SAPS, sustained attention and processing speed; DSS, digit symbol substitution; DSB, digit 

span backwards; CFI, comparative fit index (>0.90 indicates good fit); TLI, Tucker-Lewis index (>0.90 indicates good fit); RMSEA, root mean squared error of 

approximation (<0.10 indicates good fit, <0.05 indicates very good fit); SRMR, standardized root mean squared residual (<0.08 indicates adequate fit, <0.05 

indicates good fit); BIC, Bayesian information criterion (lower numbers are better, and decreases >10 indicate strong evidence to prefer the model with the lower 

BIC).  

http://en.wikipedia.org/wiki/Dagger_(typography)
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Supplemental Table 2. Standardized factor loadings and fit statistics for invariance models by sex 

 

Configural Invariance 

Variances constrained to 1, 

means to 0; intercepts, 

residuals, and factor loadings 

unconstrained  

 Metric Invariance  

Variances constrained to 1, 

means to 0, factor loadings 

invariant across groups; 

intercepts and residuals 

unconstrained  

 Strong Invariance 
Variances constrained to 1, 

means to 0, factor loadings 

and intercepts invariant 

across groups; residuals 

unconstrained  

 

Strict Invariance  
Variances constrained to 1, 

means to 0, factor loadings, 

intercepts, and residuals 

invariant across groups 

Memory Male Female  Male Female  Male Female  Male Female 

DWR 0.62 0.67  0.63 0.67  0.63 0.67  0.64 0.66 

LM 1 0.69 0.72  0.69 0.72  0.68 0.70  0.68 0.70 

LM 2 0.72 0.74  0.72 0.74  0.71 0.73  0.71 0.73 

Incidental Learning 0.65 0.64  0.64 0.64  0.64 0.64  0.63 0.65 

Language 
  

 
  

 
  

 
  

Animal Naming 0.71 0.74  0.70 0.75  0.70 0.75  0.73 0.73 

Word Fluency  0.68 0.66  0.66 0.68  0.65 0.68  0.66 0.67 

Boston Naming 0.64 0.70  0.67 0.68  0.67 0.68  0.67 0.67 

SAPS 
  

 
  

 
  

 
  

Trails A 0.68 0.71  0.68 0.70  0.67 0.69  0.68 0.69 

Trails B 0.84 0.85  0.83 0.85  0.81 0.83  0.82 0.83 

DSS 0.81 0.81  0.82 0.80  0.82 0.80  0.80 0.81 

DSB 0.53 0.50  0.50 0.52  0.50 0.52  0.50 0.51 

Fit statistics 
  

 
  

 
  

 
  

CFI 0.975  0.975  0.952  0.950 

TLI 0.966  0.968  0.944  0.948 

RMSEA* 0.056 (0.053, 0.060)  0.055 (0.051, 0.058)  0.072 (0.069, 0.075)  0.069 (0.066, 0.072) 

SRMR† 0.033  0.034  0.047  0.047 

BIC 159,301  159,266  159,955  159,916 

* RMSEA listed as value (90% confidence interval)  † SRMR calculated from models restricted to complete data 

Abbreviations: DWR, delayed word recall; LM, logical memory; SAPS, sustained attention and processing speed; DSS, digit symbol substitution; DSB, digit 

span backwards; CFI, comparative fit index (>0.90 indicates good fit); TLI, Tucker-Lewis index (>0.90 indicates good fit); RMSEA, root mean squared error of 

approximation (<0.10 indicates good fit, <0.05 indicates very good fit); SRMR, standardized root mean squared residual (<0.08 indicates adequate fit, <0.05 

indicates good fit); BIC, Bayesian information criterion (lower numbers are better, and decreases >10 indicate strong evidence to prefer the model with the lower 

BIC). 
  

http://en.wikipedia.org/wiki/Dagger_(typography)
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Supplemental Table 3. Standardized factor loadings and fit statistics for invariance models by race 

 

Configural Invariance 

Variances constrained to 1, 

means to 0; intercepts, 

residuals, and factor loadings 

unconstrained  

 Metric Invariance  

Variances constrained to 1, 

means to 0, factor loadings 

invariant across groups; 

intercepts and residuals 

unconstrained  

 Strong Invariance 
Variances constrained to 1, 

means to 0, factor loadings 

and intercepts invariant 

across groups; residuals 

unconstrained  

 

Strict Invariance  
Variances constrained to 1, 

means to 0, factor loadings, 

intercepts, and residuals 

invariant across groups 

Memory White Black  White Black  White Black  White Black 

DWR 0.64 0.67  0.64 0.66  0.64 0.66  0.64 0.65 

LM 1 0.70 0.71  0.70 0.71  0.70 0.71  0.70 0.71 

LM 2 0.73 0.72  0.73 0.73  0.73 0.73  0.73 0.73 

Incidental Learning 0.64 0.66  0.64 0.65  0.64 0.65  0.64 0.65 

Language 
  

 
  

 
  

 
  

Animal Naming 0.73 0.74  0.71 0.77  0.71 0.77  0.72 0.75 

Word Fluency  0.64 0.78  0.65 0.76  0.65 0.76  0.67 0.70 

Boston Naming 0.63 0.77  0.64 0.75  0.64 0.75  0.66 0.69 

SAPS 
  

 
  

 
  

 
  

Trails A 0.68 0.76  0.68 0.75  0.68 0.74  0.69 0.71 

Trails B 0.85 0.83  0.84 0.85  0.84 0.84  0.83 0.85 

DSS 0.79 0.86  0.79 0.85  0.79 0.85  0.80 0.82 

DSB 0.49 0.59  0.50 0.56  0.50 0.56  0.51 0.53 

Fit statistics 
  

 
  

 
  

 
  

CFI 0.971  0.970  0.969  0.964 

TLI 0.960  0.963  0.964  0.963 

RMSEA* 0.061 (0.058, 0.064)  0.059 (0.056, 0.062)  0.058 (0.055, 0.061)  0.059 (0.056, 0.062) 

SRMR† 0.035  0.036  0.040  0.046 

BIC 159,954  159,920  159,909  159,985 

* RMSEA listed as value (90% confidence interval)  † SRMR calculated from models restricted to complete data 

Abbreviations: DWR, delayed word recall; LM, logical memory; SAPS, sustained attention and processing speed; DSS, digit symbol substitution; DSB, digit 

span backwards; CFI, comparative fit index (>0.90 indicates good fit); TLI, Tucker-Lewis index (>0.90 indicates good fit); RMSEA, root mean squared error of 

approximation (<0.10 indicates good fit, <0.05 indicates very good fit); SRMR, standardized root mean squared residual (<0.08 indicates adequate fit, <0.05 

indicates good fit); BIC, Bayesian information criterion (lower numbers are better, and decreases >10 indicate strong evidence to prefer the model with the lower 

BIC). 
  

http://en.wikipedia.org/wiki/Dagger_(typography)
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Supplemental Table 4. Standardized factor loadings and fit statistics for invariance models by education  

 

Configural Invariance 

Variances constrained to 1, 

means to 0; intercepts, 

residuals, and factor loadings 

unconstrained  

 Metric Invariance  

Variances constrained to 1, 

means to 0, factor loadings 

invariant across groups; 

intercepts and residuals 

unconstrained  

 Strong Invariance 
Variances constrained to 1, 

means to 0, factor loadings 

and intercepts invariant 

across groups; residuals 

unconstrained  

 

Strict Invariance  
Variances constrained to 1, 

means to 0, factor loadings, 

intercepts, and residuals 

invariant across groups 

Memory <HS HS >HS  <HS HS >HS  <HS HS >HS  <HS HS >HS 

DWR 0.68 0.62 0.66  0.60 0.63 0.68  0.57 0.61 0.65  0.60 0.60 0.64 

LM 1 0.63 0.64 0.68  0.61 0.64 0.68  0.63 0.66 0.70  0.66 0.66 0.70 

LM 2 0.66 0.67 0.72  0.68 0.68 0.70  0.70 0.69 0.72  0.69 0.69 0.73 

Incidental Learning 0.59 0.62 0.64  0.64 0.61 0.63  0.63 0.60 0.63  0.60 0.60 0.64 

Language 
 

 
 

            

Animal Naming 0.70 0.69 0.76  0.76 0.71 0.69  0.70 0.66 0.62  0.67 0.66 0.66 

Word Fluency  0.74 0.58 0.59  0.69 0.60 0.59  0.73 0.64 0.61  0.64 0.63 0.63 

Boston Naming 0.62 0.61 0.59  0.54 0.55 0.65  0.57 0.58 0.66  0.63 0.62 0.61 

SAPS 
 

 
 

            

Trails A 0.66 0.69 0.63  0.58 0.67 0.66  0.57 0.65 0.65  0.61 0.65 0.64 

Trails B 0.76 0.81 0.82  0.80 0.81 0.81  0.80 0.80 0.80  0.77 0.81 0.80 

DSS 0.80 0.78 0.75  0.81 0.78 0.75  0.81 0.78 0.75  0.74 0.78 0.77 

DSB 0.51 0.44 0.45  0.47 0.47 0.43  0.49 0.49 0.45  0.44 0.48 0.47 

Fit statistics 
 

 
 

            

CFI 0.969  0.963  0.951  0.937 

TLI 0.958  0.955  0.947  0.940 

RMSEA* 0.058 (0.055, 0.061)  0.060 (0.056, 0.063)  0.065 (0.062, 0.068)  0.069 (0.066, 0.072) 

SRMR† 0.038  0.045  0.051  0.050 

BIC 157,780  157,819  158,035  158,256 

* RMSEA listed as value (90% confidence interval)  † SRMR calculated from models restricted to complete data 

Abbreviations: HS, high school; DWR, delayed word recall; LM, logical memory; SAPS, sustained attention and processing speed; DSS, digit symbol 

substitution; DSB, digit span backwards; CFI, comparative fit index (>0.90 indicates good fit); TLI, Tucker-Lewis index (>0.90 indicates good fit); RMSEA, 

root mean squared error of approximation (<0.10 indicates good fit, <0.05 indicates very good fit); SRMR, standardized root mean squared residual (<0.08 

indicates adequate fit, <0.05 indicates good fit); BIC, Bayesian information criterion (lower numbers are better, and decreases >10 indicate strong evidence to 

prefer the model with the lower BIC)

http://en.wikipedia.org/wiki/Dagger_(typography)
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Supplemental Table 5: Internal consistency (Cronbach’s alpha) of a priori hypothesized 

three-domain structure  

 

Item-test 

correlation* 

Item-rest 

correlation† Alpha‡ 

Memory    

DWR 0.735 0.508 0.814 

LM 1 0.871 0.746 0.696 

LM 2 0.889 0.780 0.679 

Incidental Learning 0.717 0.491 0.819 

Summary alpha   0.807 

    

Language     

Animal Naming 0.827 0.582 0.575 

Word Fluency  0.785 0.503 0.681 

Boston Naming 0.806 0.544 0.626 

Summary alpha   0.718 

    

SAPS    

Trails A 0.817 0.639 0.700 

Trails B 0.851 0.702 0.681 

DSS 0.844 0.680 0.673 

DSB 0.669 0.405 0.815 

Summary alpha   0.775 
 

* Item-test correlations show the correlation of individual tests with the domain score.  

† Item-rest correlations show the correlation of individual tests with a domain created from the remaining 

tests.  

‡ Values represent summary alphas that result from a domain created after excluding a given test. Summary 

alpha values are the overall Cronbach’s alpha for the domain comprised of the given tests. 

Abbreviations: DWR, delayed word recall; LM, logical memory; SAPS, sustained attention and processing 

speed; DSS, digit symbol substitution; DSB, digit span backwards. 

http://en.wikipedia.org/wiki/Dagger_(typography)
http://en.wikipedia.org/wiki/Double_dagger_(typography)
http://en.wikipedia.org/wiki/Dagger_(typography)
http://en.wikipedia.org/wiki/Double_dagger_(typography)
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APPENDIX E: Supplemental material for Chapter 5 

Supplemental Text 1. Description of neuropsychological tests by cognitive domain 

 

Memory domain 

For the DWRT participants were given ten nouns and asked to use each in a sentence. 

After the administration of the DSST (approximately a five minute delay), the participant was 

given one minute to recall the ten words. The score on the DWRT was the number of words 

correctly recalled. The LM tests provide a measure of immediate and delayed verbal recall. For 

the LM-1, participants were read two short stories, and asked to recall details after being read 

each story. They were informed they would be asked about the stories again and were asked to 

remember the details. LM-2 occurred approximately 20 minutes after the completion of LM-1, 

and participants were asked to again recall the details from the two short stories. The maximum 

possible score on the LM-1 and LM-2 was 50. 

 

Language domain 

During the WFT, participants asked to generate words beginning with F, A, and S, with 

an allotment of one minute per letter. Proper nouns were not included. The total score was the 

number of words generated after the three trials. The ANT is a measure of category fluency. 

Participants were given one minute to name as many animals as possible. Imaginary, magical and 

extinct animals were allowed, as well as animal breeds and age- or sex-specific animals (eg. buck, 

doe, fawn). The participant’s score was the number of animals named. 

 

Executive function domain 

For the DSST, participants were asked to translate digits to symbols using a key within a 

90 second time limit. The score was the number of correctly translated pairs, with a maximum 

possible score of 93. TMT-A consisted of a page with the numbers 1-25 irregularly distributed on 

a white page. The participants were asked to connect the numbers in sequential order as quickly 

as possible. TMT-B was similar to TMT-A, however it consisted of both numbers (1-13) and 

letters (A-L). Participants were asked to connect the numbers and letter in alternating order (e.g. 

1-A-2-B-3-C etc). The score for both TMT-A and TMT-B was the number of seconds required to 

complete the task. If a participant could not complete the task in under 240 seconds, the test was 

ended and a score of 240 seconds was recorded. Participants who made 5 or more mistakes were 

also given the maximum score of 240 seconds. 

 

Abbreviations: DWRT, delayed word recall test; DSST, digit symbol substitution test; LM, 

logical memory; WFT, word fluency test; ANT, animal naming test; TMT, trail making test. 
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Supplemental Table 1. Additional study population characteristics by diabetes status and 

HbA1c category, the Atherosclerosis Risk in Communities Study, 2011-2013 (Visit 5) 

 

 

No Diagnosed Diabetes  Diagnosed Diabetes 

 
Low-Normal 

Normo-

glycemic 
Pre-diabetes 

Un-

diagnosed 
   

 

HbA1c 

<5% 

HbA1c 

5-5.6% 

HbA1c 

5.7-6.4% 

HbA1c 

≥6.5% 
 

HbA1c 

<7% 

HbA1c 

≥7% 

N 106 1,914 1,692 122  1,381 531 

Liver Enzymes        

ALT 17.5 (7.2) 18.8 (8.4) 19.4 (9.6) 22.3 (26.1)  20.1 (21.7) 21.8 (13.2) 

AST 22.6 (7.0) 23.7 (10.9) 23.5 (8.1) 23.3 (10.6)  23.4 (14.9) 22.3 (10.0) 

GGT 26.1 (24.8) 23.4 (19.1) 24.5 (18.9) 30.6 (25.4)  25.6 (20.3) 30.7 (22.6) 

C-Reactive Protein, %        

<1 mg/L 34.0 30.1 24.8 12.4  24.4 17.1 

1-3 mg/L 39.6 39.3 37.3 38.2  36.0 34.5 

≥3 mg/L 26.4 30.6 37.9 49.4  39.6 48.4 

Fasting Insulin, μU/mL  10.6 (6.5) 11.0 (7.5) 13.6 (8.7) 17.8 (9.6)  15.4 (11.9) 21.0 (37.6) 

Hypolipidemia*, %        

Low LDL-c 10.6 5.4 7.0 7.0  17.4 17.9 

Low HDL-c 13.5 5.5 6.0 9.2  12.8 18.2 

Low Total cholesterol 11.5 6.2 7.0 5.8  17.0 15.5 

Low Triglycerides 18.3 12.2 8.3 6.9  9.3 5.2 

HbA1c Visit 2 (1990-1992)† 4.9 (0.5) 5.2 (0.3) 5.5 (0.3) 5.7 (0.4)  5.7 (0.9) 6.6 (1.6) 

HbA1c Visit 5 (baseline) 4.7 (0.3) 5.4 (0.2) 5.9 (0.2) 6.8 (0.4)  6.0 (0.5) 8.0 (1.1) 

Kidney function        

eGFR, ml/min/1.73 m2 67.3 (19.2) 70.8 (15.2) 69.8 (17.0) 69.5 (17.2)  67.9 (18.5) 67.8 (19.6) 

uACR, mg/g 29.6 (67.5) 20.1 (39.2) 21.0 (38.2) 32.5 (67.9)  31.7 (60.3) 49.6 (77.3) 

Values shown as mean (SD) 

* Hypolipidemia was calculated as values below the 10
th

 percentile in the entire population of visit 5 

participants. Cutoffs were as follows: LDL-c <63.4 mg/dL; HDL-c <36 mg/dL; triglycerides <67 mg/dL; 

total cholesterol <131 mg/dL;  

† HbA1c measurements obtained in 1990-1992, 21-23 years prior to the measurements in the present study  

Abbreviations: LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; 

HbA1c, hemoglobin A1c; eGFR, estimated glomerular filtration rate; uACR, urine albumin to creatinine 

ratio.  
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Supplemental Figure 1. Prevalence of cognitive dysfunction by diabetes status (diagnosed or 

undiagnosed diabetes, compared to persons with no diabetes and HbA1c <6.5%)  
 

 
 

Legend: Prevalence estimates are shown unadjusted. Prevalence ratios (PRs) are from Poisson regression 

models adjusted for age, race, sex, education, hypertension, history of coronary heart disease, history of 

stroke, drinking status, cigarette smoking status, and APOE e4. Diabetes was defined based on self-

reported physician diagnosis, diabetes medication use, or A1c ≥6.5%. Cognitive impairment in each 

domain was defined as test scores more than 1.5 standard deviations below age-, race-, and education-

adjusted norms among 2 or more tests in a give domain.   
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Supplemental Figure 2. Adjusted prevalence of cognitive dysfunction by domain and 

diabetes duration  

 

 
 

Legend: Prevalence estimates are from Poisson regression models adjusted for age, race, sex, education, 

hypertension, history of coronary heart disease, history of stroke, drinking status, cigarette smoking status, 

and APOE e4. Diabetes was defined based on self-reported physician diagnosis or diabetes medication use, 

and duration was calculated using the date a participant first reported a diagnosis or medication use (during 

a previous visit or during the annual follow-up telephone call). The group of participants without diabetes 

(“No DM”) did not include participants with HbA1c ≥6.5%. Cognitive impairment in each domain was 

defined as test scores more than 1.5 standard deviations below age-, race-, and education-adjusted norms 

among 2 or more tests in a given domain. 
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Supplemental Figure 3. Mean Global Z score by domain by no diabetes, prediabetes, and HbA1c control among persons with diabetes 

(diagnosed or undiagnosed diabetes, compared to persons with no diabetes and HbA1c <6.5%) 

 

 
Diabetes (“DM”) was defined based on self-reported physician diagnosis, diabetes medication use, or HbA1c ≥6.5%. Global Z score was calculated by taking the 

average of Z scores from eight neuropsychological tests, and was standardized to have a mean of 0 and a standard deviation of 1.  

 

Panel A: unadjusted means  

Panel B: means estimated from linear regression models with adjustment for age, race, sex, education, hypertension, history of coronary heart disease, history of 

stroke, drinking status, cigarette smoking status, and APOE e4.  
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Supplemental Figure 4. Prevalence of cognitive dysfunction defined by expert review of 

participants’ medical information 

 
 
Legend: Adjusted values are from a Poisson regression model with adjustment for age, race, sex, education, 

hypertension, history of coronary heart disease, history of stroke, drinking status, cigarette smoking status, 

and APOE e4. Diabetes was defined based on self-reported physician diagnosis or diabetes medication use. 

Cognitive impairment included algorithm diagnosis (included previous visit neurocognitive test scores 

(1990-1992 or 1996-1998), failure in domains at the current visit (2011-2013), scores from the clinical 

dementia rating) or review by committee (included neuropsychiatric information, medical/family history, 

participant or proxy report of memory complaints, neurological/physical examination/labs, imaging 

information from brain MRI at the 2011-2013 exam, and use of certain medications). MCI (N=1186) and 

dementia(N=160) were grouped to define cognitive impairment. 
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