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Abstract 

 Polyketides are a large and diverse family of natural products 

encompassing some of the most effective and valuable pharmaceuticals of all 

time, as well as some of the deadliest toxins.  These fascinating molecules are 

biosynthesized by some of nature’s largest and most complex enzymes, the 

polyketide synthases.  Because of their diverse biological activities, polyketide-

based natural products are an attractive target for biosynthetic engineering.  In 

order to effectively engineer polyketide synthases to produce novel compounds, 

we must understand the native enzymology of these molecular machines.  Since 

they consist of only a single set of catalytic domains, the fungal, iterative 

polyketide synthases are particularly challenging to decipher and engineer, 

relative to the assembly-line-like modular polyketide synthases.  In this work, 

biochemical and structural studies are performed to improve understanding of 

iterative polyketide synthase enzymatic programming.  By performing a screen 

of thirty unnatural starter units, the substrate specificity of the iterative 

polyketide synthase PksA was evaluated.  Characterization of enzymatic 

derailment products allowed for interrogation of the tolerance of specific 

catalytic domains to the unnatural substrates.  Through mechanism-based 

crosslinking of a closely related iterative polyketide synthase, CTB1, the structure 

of a polyketide synthase locked in a loading conformation was observed by cryo-
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electron microscopy.  This first-ever multidomain structure of a non-reducing 

polyketide synthase may help to guide future engineering efforts, by beginning 

to establish what conformational changes polyketide synthases undergo during 

biosynthesis and how programming is achieved across multiple catalytic 

domains. 

 

Thesis Advisor: 

Prof. Craig A. Townsend, Department of Chemistry, Johns Hopkins University 

 

Additional Readers: 

Prof. Caren L. Freel Meyers, Department of Pharmacology and Molecular

 Sciences, Johns Hopkins University 

Prof. Scott Bailey, Department of Biochemistry and Molecular Biology, Johns

 Hopkins University 

 

 

 

 

 

 



iv 
 

 

 

 

 

 

 

 

 

 

 

Dedicated to my parents, Jan Roehl and Robert Huitt,  

who instilled in me a life-long love of learning. 

 

 

 

 

 

 

 

 



v 
 

Acknowledgements 

 

 First and foremost, I must thank my mentor, Prof. Craig A. Townsend.  

Prof. Townsend’s love for science and passion for ensuring his students succeed 

is without compare.  I am incredibly grateful to have studied under him, and 

have grown immeasurably as a scientist thanks to his tutelage. 

 I have been incredibly fortunate to work with fantastic collaborators 

during my time in the lab, to whom I owe a great deal of my success.  Dr. 

Dominik Herbst and Dr. Timm Maier at the University of Basel are incredible 

structural biologists, and have drastically transformed the direction in which we 

are taking the study of PKSs.  Dr. Melvin Bolton at the United States Department 

of Agriculture has greatly expanded our knowledge of cercosporin biosynthesis, 

and been an absolute pleasure to collaborate with. 

 Next, none of the work in this dissertation would be possible without the 

help of my fellow lab-mates, particularly the venerable Team PKS.  Dr. Anna 

Vagstad and my rotation mentor Dr. Adam Newman taught me a great deal 

about both PKSs and how to be a great scientist.  Anna’s incredible work on 

PksA paved the way for many of my own experiments, and her meticulous 

record-keeping taught me proper lab organization and notebook-maintenance.  

Adam is one of the smartest graduate students I have met in my time at Johns 



vi 
 

Hopkins, and taught me a great deal about cercosporin, as well as giving 

effective presentations.  Mr. Douglas Cohen, despite working on the dark 

(highly-reducing) side of Team PKS, has been an incredible desk-mate and 

friend, always there to bounce ideas off or just commiserate with failed 

experiments.  Mr. Jacob Kravetz, in addition to being the life of the party, is the 

synthetic backbone of Team PKS, providing crosslinkers for structural studies.  

The newest members of the team, Mrs. Jamie Alley and Ms. Paramita Pal, have 

been wonderful additions to the team, and I look forward to following their 

work in the future. 

 Dr. Phil Storm, another member of Team PKS, has been the world’s best 

partner, both in science and in life.  He has been instrumental in my success in 

graduate school, from my early days as a rotation student in the Townsend lab to 

these final weeks of dissertation writing.  Without his support I would not have 

survived graduate school.  I am so proud of the work he has accomplished in his 

time in the lab, taking the PKS project in exciting new directions, and look 

forward to what the next adventure brings us. 

 The Townsend lab is filled with incredibly talented scientists and 

wonderful friends.  Dr. Darcie Long was the first friend I made in graduate 

school, helping me survive those first few terrifying weeks as a fellow California 

transplant.  Nothing could be accomplished in the lab without Dr. Rongfeng Li, 



vii 
 

whose biological expertise is irreplaceable.  Mr. Ryan Oliver has been another 

great friend in the lab these past six years, and an incredibly knowledgeable 

resource, particularly in organic chemistry.  Mr. Felipe d’Andrea is the most 

talented undergraduate I have ever met, and I cannot wait to see where his 

MD/PhD venture takes him.  To the newest lab members - Mr. Michael 

Wheadon, Ms. Erica Sinner, Mr. Hunter Batchelder, Mr. Trevor Zandi, and Mr. 

Michael Lichstrahl, I thank you for continuing the tradition of excellent science in 

the Townsend lab, and look forward to following your future successes. 

 I also have to thank a number of previous Townsend lab members for 

taking me under their wing and making me feel like a part of the family when I 

first joined – Dr. Jesse Li, Dr. Victor Outlaw, Dr. Courtney Hastings, Dr. Andy 

Buller, Dr. Daniel Marous, Dr. Evan Lloyd, and Dr. Nicole Guadelli.  For both 

your scientific expertise and your friendship I am eternally grateful.  I would 

particularly like to thank Dr. Eric Hill, who has not only taught me a great deal 

about science and surviving graduate school, but has also been an incredible 

confidante and one of my closest friends. 

 Being a part of the Chemistry-Biology Interface (CBI) program at Johns 

Hopkins has been a wonderful experience.  I have greatly appreciated the 

community our small department has fostered, and am very grateful for our 

director Prof. Steve Rokita, and his predecessor Prof. Marc Greenberg.  I’d also 



viii 
 

like to thank all of the support staff that keeps the department and facilities 

running smoothly, particularly Lauren McGhee, Boris Steinberg, and Dr. Phil 

Mortimer. 

 To my thesis committee, Prof. Caren Meyers, Prof. Phil Cole, and Prof. 

Scott Bailey, I am thankful for your patience in scheduling my yearly meetings, 

which was always difficult, and more importantly all of your helpful comments 

and guidance. 

 Finally, I would like to thank my family.  Mike Collins and Kathe Fox took 

me under their wing when I moved to Baltimore, and have been wonderful “East 

coast parents” over the past six years.  I am so thankful for all of the wonderful 

dinners at their house, and generous support.  My brothers, Mike and Eric Huitt, 

and their mother Karen Loepp, have been a great source of support and love, 

and it has been wonderful to be able to spend more time with them.  Most 

importantly, I have to thank my parents, Dr. Jan Roehl and Dr. Robert Huitt.  

Without their influence I would have never pursued a PhD.  I could not ask for 

more supportive parents, and am eternally grateful for everything they have 

done for me.  It has been difficult living a country away for the past six years, but 

they have helped ease the homesickness with regular trips home to paradise.  

Thank you for everything Mom and Dad, I love you. 



ix 
 

 

Publications 

Huitt-Roehl, C.R., Hill, E.A., Adams, M.M., Vagstad, A.L., Li, J.W., Townsend, 
C.A.  Starter unit flexibility for engineered product synthesis by the nonreducing 
polyketide synthase PksA.  ACS Chem. Biol., 2015, 10, 1443—9 
 
Herbst, D.A., Huitt-Roehl, C.R., Jakob, R.P., Kravetz, J.M., Storm, P.A., 
Townsend, C.A., Maier, T.  The structural organization of substrate loading in 
iterative polyketide synthases.  Nat. Chem. Biol., Submitted. 
 
de Jonge, R.*, Ebert, M.K.*, Huitt-Roehl, C.R.*, Pal, P., Suttle, J.C., Neubauer, 
J.D., Jurick II, W.M., Secor, G.A., Thomma, B.P.H.J., Van de Peer, Y., Townsend, 
C.A., Bolton, M.D.   Ancient duplication and horizontal transfer of a toxin gene 
cluster reveals novel mechanisms in the cercosporin biosynthesis pathway. Proc. 
Natl. Acad. Sci.,  Submitted.   *Indicates co-first-authorship 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



x 
 

 
 
 

Table of Contents 
 

 
Front Matter .................................................................................................. i 

Title Page..................................................................................................................... i 
Abstract ...................................................................................................................... ii 
Dedication ................................................................................................................. iv 
Acknowledgements .................................................................................................. v 
Publications .............................................................................................................. ix 
Table of Contents ...................................................................................................... x 
List of Tables and Figures..................................................................................... xiv 

 

Chapter 1: Introduction to polyketide natural products ...................... 1 
1.1. Introduction .........................................................................................................1 
1.2. Polyketide synthases ..........................................................................................7 

1.2.1.  The polyketide synthase catalytic cycle .................................................7 
1.2.2.  Classification of PKSs – Early lessons from modular PKS ................10 

1.3. Tools for understanding polyketide biosynthesis .......................................12 
1.3.1.  Domain dissection for in vitro analysis ................................................12 
1.3.2. Structures of NR-PKS monodomains ...................................................17 
1.3.3.  Full-length PKS structures and the rise of cryo-electron 

microscopy ...............................................................................................22 
1.4. Outlook ..............................................................................................................26 
1.5. References ..........................................................................................................27 

 

Chapter 2: Starter unit flexibility for engineered product synthesis 
by the non-reducing polyketide synthase PksA ................................. 34 

2.1. Introduction .......................................................................................................34 
2.2. Results ................................................................................................................38 

2.2.1.  Alternative starter unit in vitro assays .................................................38 
2.2.2.  Linear acyl-SNAC starter units .............................................................38 
2.2.3.  Halogenated acyl-SNAC starter units ..................................................42 
2.2.4.  Methylated acyl-SNAC starter units ....................................................44 



xi 
 

2.2.5.  Unsaturated acyl-SNAC starter units ..................................................45 
2.2.6.  Heteroatom-substituted acyl-SNAC starter units ..............................47 
2.2.7.  Sterically constrained acyl-SNAC starter units ..................................50 
2.2.8.  SAT active site mutants ..........................................................................51 

2.3. Discussion ..........................................................................................................53 
2.4. Experimental Methods .....................................................................................57 

2.4.1.  Cloning .....................................................................................................57 
2.4.2.  Protein expression and purification .....................................................57 
2.4.3.  In vitro assays ...........................................................................................58 
2.4.4.  HPLC and UPLC-ESI-MS analysis of enzymatic products ...............58 
2.4.5.  Synthesis of acyl-SNAC substrates .......................................................59 
2.4.6.  Ellman’s Reagent assay for acyl-SNAC hydrolysis ...........................59 

2.5. References ..........................................................................................................60 
 

Chapter 3: The structural organization of substrate loading in 
iterative polyketide synthases................................................................. 63 

3.1. Introduction .......................................................................................................63 
3.2. Results ................................................................................................................69 

3.2.1.  Mechanism-based crosslinking of CTB1 ..............................................69 
3.2.2.  Structure of CTB1 SAT-KS-MAT ..........................................................78 
3.2.3.  Structure of CTB1 SAT°-KS-MAT°=ACP2 ...........................................81 
3.2.4.  Mutagenic validation of KS-ACP binding region ..............................84 

3.3. Discussion ..........................................................................................................86 
3.4. Experimental Methods .....................................................................................89 

3.4.1.  Preparation of expression constructs ...................................................89 
3.4.2.  Protein expression and purification for crosslinking and interface  

validation..................................................................................................90 
3.4.3.  Expression and purification of CTB1 SAT-KS-MAT for 

crystallization ..........................................................................................91 
3.4.4.  Proteolysis of tag from CTB1 ACP2-His ..............................................93 
3.4.5.  Synthesis of α-bromopropionyl aminopantetheine ...........................94 
3.4.6.  Phosphorylation of α-bromopropionyl aminopantetheine ............100 
3.4.7.  Loading of ACP2 with α-bromoacyl crosslinker ..............................101 
3.4.8.  Crosslinking of CTB1 SAT°-KS-MAT° to ACP2 ...............................102 
3.4.9.  Crosslinking of CTB1 SAT-KS°-MAT° to ACP2 ...............................103 
3.4.10. In vitro reactions of CTB1 for interface validation and comparison  

of ACP1 and ACP2................................................................................103 
3.4.11. Crystallization, data collection and structure determination of  

CTB1 SAT-KS-MAT ..............................................................................105 



xii 
 

3.4.12. EM sample preparation and data collection .....................................106 
3.4.13. EM data processing and analysis ........................................................107 
3.4.14. Cryo-EM structure refinement and modeling ..................................110 
3.4.15. Structure analysis and visualization ..................................................112 
3.4.16. Sequence analysis ..................................................................................112 

3.5. References ........................................................................................................113 
 

Chapter 4: Cercosporin biosynthesis: Expansion of the gene cluster 
and scope of production by plant pathogens ..................................... 120 

4.1. Introduction .....................................................................................................120 
4.2. Results ..............................................................................................................126 

4.2.1.  Identification of new cercosporin biosynthetic genes .....................126 
4.2.2.  Characterization of pre-cercosporin ...................................................128 
4.2.3.  Identification of cercosporin production by  

Colletotrichum fioriniae ...........................................................................132 
4.3. Discussion ........................................................................................................133 
4.4. Experimental Methods ...................................................................................138 

4.4.1.  Pre-cercosporin isolation and characterization ................................138 
4.4.2.  Pre-cercosporin purification by Sephadex LH20 .............................140 
4.4.3.  Colletotrichum spp. cercosporin assay.................................................141 

4.5. References ........................................................................................................142 
 

Appendix A: General experimental methods .................................... 146 
A.1. Cloning ............................................................................................................146 

A.1.1.  Polymerase chain reaction (PCR) .......................................................147 
A.1.2.  Plasmid assembly by restriction digestion and ligation..................148 
A.1.3.  Plasmid assembly by Gibson assembly .............................................148 
A.1.4.  Transformation of E. coli by electroporation .....................................149 

A.2. Heterologous protein expression ................................................................150 
A.3. Protein purification .......................................................................................150 
A.4. Standard medium recipes ............................................................................151 

A.4.1.  Luria-Bertani Broth (LB) ......................................................................151 
A.4.2.  Terrific Broth (TB) .................................................................................151 

 

Appendix B: Supplementary Material to Chapter 2 ......................... 153 
B.1.  Cloning and mutagenesis ............................................................................153 
B.2.  Synthesis of acyl-SNAC substrates .............................................................155 
B.3.  Supplementary figures .................................................................................174 



xiii 
 

B.4.  References .......................................................................................................214 
 

 
 

Appendix C: Supplementary Material to Chapter 3 ......................... 215 
C.1.  Supplementary figures .................................................................................215 
C.2.  Supplementary tables ...................................................................................223 

 

Appendix D: Supplementary Material to Chapter 4 ........................ 228 
D.1.  CTB gene sequences .....................................................................................228 
D.2.  CTB protein sequences ................................................................................235 

 

Curriculum Vitae ..................................................................................... 238 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiv 
 

 
List of Figures and Tables 
 
Figure 1.1.  Polyketide-based natural products ............................................................2 
Figure 1.2.  Collie’s polyketide hypothesis ...................................................................3 
Figure 1.3.  Site-specific radiolabeling of 6-MSA .........................................................4 
Figure 1.4.  Biosynthesis of actinorhodin ......................................................................6 
Figure 1.5.  General polyketide synthase catalytic cycle .............................................8 
Figure 1.6.  PksA biosynthetic scheme determined by domain deconstruction ...15 
Figure 1.7.  Structure of PksA PT..................................................................................18 
Figure 1.8.  Structure of PksA TE .................................................................................19 
Figure 1.9.  Structure of PksA ACP ..............................................................................20 
Figure 1.10.  Structure of CazM SAT ............................................................................22 
Figure 1.11.  Structure of porcine FAS .........................................................................23 
Figure 1.12.  Structure of DEBS module 5 KS-AT ......................................................24 
Figure 2.1.  PksA biosynthetic scheme and experimental design ............................37 
Figure 2.2.  Relative production of naphthopyrones from linear acyl-SNAC  

starter units ..........................................................................................................40 
Figure 2.3.  Core structures of observed derailment products .................................42 
Figure 2.4.  Relative production of naphthopyrones from halogenated 

acyl-SNAC starter units .....................................................................................43 
Figure 2.5.  Relative production of naphthopyrones from methylated 

acyl-SNAC starter units .....................................................................................45 
Figure 2.6.  Relative production of naphthopyrones from unsaturated 

acyl-SNAC starter units .....................................................................................47 
Figure 2.7.  Relative production of naphthopyrones from heteroatom-substitutes 

acyl-SNAC starter units .....................................................................................49 
Figure 2.8.  Relative production of naphthopyrones from sterically constrained 

acyl-SNAC starter units .....................................................................................51 
Figure 2.9.  Comparison of naphthopyrone production by PksA SAT active site 

mutants .................................................................................................................52 
Figure 2.10.  Ellman’s reagent assay for acyl-SNAC hydrolysis by PksA SAT .....52 
Figure 2.11.  Comparison of intact pentadomain and dissected two-part  

reactions ................................................................................................................55 
Figure 3.1.  CTB1 biosynthetic scheme ........................................................................68 
Figure 3.2.  Comparison of biosynthetic capabilities of CTB1 ACP1 and ACP2 ...70 
Figure 3.3.  Loading of CTB1 ACP2 .............................................................................72 
Figure 3.4.  Enzymatic preparation of crosslinker-loaded ACP ..............................74 
Figure 3.5.  Crosslinking time course ...........................................................................76 



xv 
 

Figure 3.6.  [1-14C]-acetyl-CoA competition assay......................................................77 
Figure 3.7.  Crystal structure of CTB1 SAT-KS-MAT ................................................80 
Figure 3.8.  Asymmetric cryo-EM structure of CTB1 SAT°-KS-MAT°=ACP2 .......83 
Figure 3.9.  Mutagenesis of ACP2 ................................................................................86 
Figure 3.10.  Schematic illustration of suggested modes of conformational 

coupling in CTB1 .................................................................................................88 
Figure 3.11.  Synthesis of α-bromopropionyl crosslinker .........................................94 
Figure 4.1.  Reduced and oxidized cercosporin .......................................................122 
Figure 4.2.  Early proposed biosynthesis of cercosporin.........................................124 
Figure 4.3.  Revised proposal for cercosporin biosynthesis ...................................125 
Figure 4.4.  Revised cercosporin biosynthetic gene cluster ....................................127 
Figure 4.5.  HPLC analysis of C. beticola mutants.....................................................127 
Figure 4.6.  UV-Vis spectra of pre-cercosporin and cercosporin ...........................129 
Figure 4.7.  Large-scale HPLC purification of pre-cercosporin .............................131 
Figure 4.8.  Analysis of Colletotrichum fioriniae extracts ...........................................133 
Figure 4.9.  Proposed role of CTB9 and CTB10 in cercosporin biosynthesis .......135 
Figure 4.10.  Role of HypE in aflatoxin biosynthesis ...............................................135 
Appendix Table B.1.  Plasmids used in Chapter 2 ..................................................155 
Appendix Table B.2.  Primers used in Chapter 2 ....................................................155 
Appendix Figure B.1.  Structures of all starter units assayed in Chapter 2 

and the resulting enzymatic products ...........................................................174 
Appendix Figure B.2.  Product profile for starter unit 2-5 .....................................178 
Appendix Figure B.3.  Product profile for starter unit 2-6 .....................................178 
Appendix Figure B.4.  Product profile for starter unit 2-7 .....................................179 
Appendix Figure B.5.  Product profile for starter unit 2-8 .....................................179 
Appendix Figure B.6.  Product profile for starter unit 2-9 .....................................180 
Appendix Figure B.7.  Product profile for starter unit 2-10 ...................................180 
Appendix Figure B.8.  Product profile for starter unit 2-11 ...................................181 
Appendix Figure B.9.  Product profile for starter unit 2-12 ...................................181 
Appendix Figure B.10.  Product profile for starter unit 2-13 .................................182 
Appendix Figure B.11.  Product profile for starter unit 2-14 .................................182 
Appendix Figure B.12.  Product profile for starter unit 2-15 .................................183 
Appendix Figure B.13.  Product profile for starter unit 2-16 .................................183 
Appendix Figure B.14.  Product profile for starter unit 2-17 .................................184 
Appendix Figure B.15.  Product profile for starter unit 2-18 .................................184 
Appendix Figure B.16.  Product profile for starter unit 2-19 .................................185 
Appendix Figure B.17.  Product profile for starter unit 2-20 .................................185 
Appendix Figure B.18.  Product profile for starter unit 2-21 .................................186 
Appendix Figure B.19.  Product profile for starter unit 2-22 .................................186 
Appendix Figure B.20.  Product profile for starter unit 2-23 .................................187 



xvi 
 

Appendix Figure B.21.  Product profile for starter unit 2-24 .................................187 
Appendix Figure B.22.  Product profile for starter unit 2-25 .................................188 
Appendix Figure B.23.  Product profile for starter unit 2-26 .................................188 
Appendix Figure B.24.  Product profile for starter unit 2-27 .................................189 
Appendix Figure B.25.  Product profile for starter unit 2-28 .................................189 
Appendix Figure B.26.  Product profile for starter unit 2-29 .................................190 
Appendix Figure B.27.  Product profile for starter unit 2-30 .................................190 
Appendix Figure B.28.  Product profile for starter unit 2-31 .................................191 
Appendix Figure B.29.  Product profile for starter unit 2-32 .................................191 
Appendix Figure B.30.  Product profile for starter unit 2-33 .................................192 
Appendix Figure B.31.  Product profile for starter unit 2-34 .................................192 
Appendix Figure B.32.  Product profile for control reactions containing 

only malonyl-SNAC .........................................................................................192 
Appendix Figure B.33.  SDS-PAGE of purified proteins used in Chapter 2 .......193 
Appendix Figure B.34.  NMR spectra of starter unit 2-11 ......................................194 
Appendix Figure B.35.  NMR spectra of starter unit 2-12 ......................................195 
Appendix Figure B.36.  NMR spectra of starter unit 2-13 ......................................196 
Appendix Figure B.37.  NMR spectra of starter unit 2-14 ......................................197 
Appendix Figure B.38.  NMR spectra of starter unit 2-15 ......................................198 
Appendix Figure B.39.  NMR spectra of starter unit 2-16 ......................................199 
Appendix Figure B.40.  NMR spectra of starter unit 2-17 ......................................200 
Appendix Figure B.41.  NMR spectra of starter unit 2-18 ......................................201 
Appendix Figure B.42.  NMR spectra of starter unit 2-19 ......................................202 
Appendix Figure B.43.  NMR spectra of starter unit 2-22 ......................................203 
Appendix Figure B.44.  NMR spectra of starter unit 2-23 ......................................204 
Appendix Figure B.45.  NMR spectra of starter unit 2-24 ......................................205 
Appendix Figure B.46.  NMR spectra of starter unit 2-25 ......................................206 
Appendix Figure B.47.  NMR spectra of starter unit 2-26 ......................................207 
Appendix Figure B.48.  NMR spectra of starter unit 2-27 ......................................208 
Appendix Figure B.49.  NMR spectra of starter unit 2-28 ......................................209 
Appendix Figure B.50.  NMR spectra of starter unit 2-29 ......................................210 
Appendix Figure B.51.  NMR spectra of starter unit 2-30 ......................................211 
Appendix Figure B.52.  NMR spectra of starter unit 2-32 ......................................212 
Appendix Figure B.53.  NMR spectra of starter unit 2-33 ......................................213 
Appendix Figure C.1.  Integration of loading domains in PKS .............................214 
Appendix Figure C.2.  Cryo-EM data processing scheme .....................................216 
Appendix Figure C.3.  Crosslinking and cryo-EM sample preparation ..............217 
Appendix Figure C.4.  Conformational variability in the cryo-EM structure of 

CTB1 SAT°-KS-MAT°=ACP2 ...........................................................................218 
Appendix Figure C.5.  Structural comparison between CTB1 SAT-KS-MAT and 



xvii 
 

CTB1 SAT°-KS-MAT°=ACP2 ...........................................................................219 
Appendix Figure C.6.  CTB1 SAT-KS-MAT alignment of regions interfacing 

ACP2 and phylogeny .......................................................................................220 
Appendix Figure C.7.  Comparison of KS-ACP interactions in PKS and FAS ....221 
Appendix Table C.1.  X-ray crystallographic and cryo-EM data collection 

and refinement statistics ..................................................................................223 
Appendix Table C.2.  Structural comparison and interface analysis of  

CTB1 SAT-KS-MAT ..........................................................................................224 
Appendix Table C.3.  Plasmids used in Chapter 3..................................................225 
Appendix Table C.4.  Primers used in Chapter 3 ....................................................226 

 



1 
 

Chapter 1: Introduction to polyketide natural products 

1.1.  Introduction 

 The polyketide class of natural products encompasses tens of thousands of 

diverse compounds with equally diverse biological activities (Figure 1.1).  Many 

polyketide-based natural products have been transformed into life-saving drugs, 

while others are deadly toxins.  One of the earliest and most well-studied is the 

antibiotic erythromycin 1, which is FDA approved in its native form as well as 

several synthetic derivatives (e.g. clarithromycin, azithromycin), and is on the 

World Health Organization’s List of Essential Medicines1-2.  Some of the most 

successful drugs of the 21st century, including the best-selling pharmaceutical of 

all time, atorvastatin (Lipitor), are the cholesterol-lowering, polyketide-based 

statins3.  The first statin to reach market was lovastatin 2, isolated from the 

fungus Aspergillus terreus4-5.  A fascinating example of the diversity of biological 

activities of polyketide-derived pharmaceuticals is the immunosuppressant 

rapamycin 3, which has also been shown to have anticancer and possibly 

lifespan-extension effects.   
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Figure 1.1.  Examples of polyketide-based natural products. 

 

While many polyketide-based natural products have beneficial effects on 

human health, others are potent toxins of significant concern to the agricultural 

industry.  The hepatotoxin aflatoxin B1 4 is produced by Aspergillus parasiticus, a 

fungal pathogen of staple crops such as corn, wheat, and rice.  A. parasiticus 

frequently colonizes improperly stored crops, and aflatoxin B1 can enter the food 
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supply directly through contaminated crops or through accumulation in 

livestock from contaminated feed6.  Since aflatoxin B1 is so potent, for example, 

causing carcinomas in all rats fed with 15 ppb, it is of significant concern to 

human health7-8.  Another potent polyketide-based toxin, cercosporin 5, is 

produced by the plant pathogens Cercospora spp.9.  Cercospora also infects a wide 

variety of agriculturally important crops, including sugar beets, corn, and rice, 

and causes millions of dollars in losses each year10. 

 Since the first characterization of a polyketide-like molecule by James 

Collie in 1893, the biosynthesis of this remarkable class of molecules has been of 

particular interest11.  After isolating orsinol 6 from a degradation reaction of 

dehydroacetic acid 7, Collie proposed it could be formed by way of a triketone 

intermediate 8 (Figure 1.2).   He further suggested that these polyketone 

intermediates may be involved in production of these molecules by living cells.  

Unfortunately, it was not until the 1950s that the true biosynthetic basis of 

polyketide synthesis was established, when Arthur Birch began researching 6-

methyl-salicylic acid (6-MSA) 9, the precursor to patulin 10, a fungal polyketide 

produced by Penicillium patulum.   

Figure 1.2.  Collie’s proposed formation of orsinol 6 through the triketide intermediate 8. 
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Birch hypothesized that 6-MSA is synthesized by the ‘head-to-tail’ 

assembly of four acetate units.  Subsequent cyclization and aromatization steps 

could then yield the final product.  To prove this hypothesis, he fed radiolabeled 

acetate to the producing organism, and analyzed the resulting natural product 

for a specific labelling pattern12.  If his hypothesis was correct, the isolated 6-MSA 

would be labelled uniformly only at specific positions due to incorporation of the 

[1-14C]-acetate (Figure 1.3).  Through specific degradation of the labelled 

molecule, followed by measurement of radioactivity of each of the fragments, 

Birch was able to demonstrate isotopic enrichment at the predicted sites, 

validating his hypothesis.   

Figure 1.3.  Birch’s demonstration of the polyketide basis of 6-MSA by incorporation of [1-14C]-
acetate (indicated by dots). 

 

The success of Birch’s labelling experiments triggered a burst of similar 

studies to determine the biosynthetic origin of a number of natural products.  A 

further boon to the natural products field came in the 1970s, when Fourier-

transform nuclear magnetic resonance (NMR) spectroscopy became commonly 

available and was applied to polyketide biosynthesis.  This technique became 

especially useful when stable isotopic labels, such as 13C and 2H, became 
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commercially available.  Previously, labelling patterns were determined by 

months of labor-intensive degradation studies.  However, incorporation of these 

stable isotopes into polyketides by their producers allowed for determination of 

structures and labelling patterns in a single NMR experiment; therefore, much 

more complex molecules could be studied. 

Compared to early, simple polyketides such as orsinol and 6-MSA, the 

known scope of polyketide-based natural products is incredibly broad.  While 

the core reaction of polyketide biosynthesis - condensation of acetate units - 

yields a simple poly-β-ketone chain, a huge variety of tailoring reactions produce 

seemingly endless variations on the theme.  While some of these modifications 

are installed by domains within the polyketide synthase (PKS) itself (e.g. 

reduction, dehydration, methylation), many more are catalyzed by distinct 

tailoring enzymes.  Generally, the PKS and its associated tailoring genes are 

organized within a biosynthetic gene cluster13.  Biosynthetic gene clusters contain 

all of the genes required for biosynthesis of a given natural product, as well as 

genes involved in regulation of pathway expression or resistance.  With the 

advent of the genomic era of natural product biosynthesis, their fortunate 

organization into gene clusters has greatly increased the rate at which new 

natural product pathways have been identified. 
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Genetic techniques developed in the 1980s allowed for the 

characterization of the first PKS, a type II system responsible for the biosynthesis 

of the antibiotic actinorhodin 11.  The blue color of 11 provided an obvious 

screening method to identify genes involved in biosynthesis: mutants that 

abolish production lost their characteristic color and antibiotic activity14.  By 

sequencing the region of the genome identified by these mutational studies, the 

biosynthetic enzymes were localized and characterized.  Comparison of these 

enzymes to fatty acid synthase (FAS) sequences showed that they included FAS-

like domains: ketosynthase (KS), acyl-transferase (AT), acyl-carrier protein 

(ACP), and ketoreductase (KR).  Further genetic advances allowed specific 

removal of enzymes within the pathway and complementation of those genes 

through an added plasmid.  These techniques led to interrogation of the pathway 

in full by analyzing intermediates accumulated in vivo by various blocked 

mutants (Figure 1.4)15-16. 

Figure 1.4.  Biosynthesis of actinorhodin 11 by a type II PKS.  (a)  Organization of act genes 
involved in biosynthesis of 11 in Streptomyces coelicolor.  (b) Role of each act gene in 11 
biosynthesis, established by gene knockouts. 
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1.2. Polyketide Synthases 

1.2.1.  The Polyketide Synthase Catalytic Cycle 

 Polyketides are synthesized by some of the world’s largest and most 

complex enzymes, the polyketide synthases (PKSs).  For example, MlsA1, which 

contains the first ten modules involved in biosynthesis of mycolactone, weighs in 

at 1.8 MDa17.  Since their discovery, understanding of PKSs has been based on the 

more well understood fatty acid synthase (FAS) from primary metabolism.  

Biosynthesis of fatty acids by FAS and polyketides by PKSs share a common core 

reaction: homologation of two-carbon units to form poly-β-ketone chains.  This 

core reaction is accomplished by three domains: an acyl-transferase (AT), a 

ketosynthase (KS), and an acyl-carrier protein (ACP) (Figure 1.5).  The ACP is 

post-translationally modified with a phosphopantetheine arm, which is an 

approximately 20 Å long flexible tether that allows for shuttling of substrates 

between the catalytic domains, while keeping the reactive poly-β-ketone 

intermediates covalently bound to the enzyme.  An acyl starter unit, typically 

acetyl-CoA or decarboxylated malonyl-CoA, is selected by the AT to initiate 

catalysis.  This starter unit is then loaded onto the KS, by way of the ACP.  The 

AT is then free to load an extender unit, typically malonyl-CoA, which is 

subsequently transferred to the ACP.  Finally, the KS catalyzes a decarboxylative 
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Claisen condensation between the starter unit and the ACP-bound extender unit, 

resulting in a diketide bound to the ACP, at which point the extension cycle 

repeats. 
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Figure 1.5.  General polyketide synthase catalytic cycle.  The core reaction of PKS biosynthesis is 
elongation via Claisen condensation, catalyzed by the KS.  The newly-installed β-ketone can then 
be optionally reduced by KR, DH, and ER domains.  All substrates and intermediates are 
covalently anchored to the enzyme by the ACP.  The TE catalyzes release of the final product. 

 

 In FAS, the β-ketone is fully reduced to a methylene after each round of 

elongation by a full suite of tailoring domains.  First, the keto group is reduced to 

a hydroxyl by the ketoreductase (KR).  This hydroxyl group is then eliminated as 

water, forming an alkene, by the dehydratase (DH), followed by a final reduction 

to the methylene by the enoyl reductase (ER).  PKSs may contain some, all, or 

none of these reductive domains, and the ketone installed by each elongation 

step can be optionally modified to any of these reduced states.  PKSs may also 
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contain a C-methyltransferase (MT) domain for installation of a S-adenosyl-

methionine (SAM) derived methyl group at the α-position following each round 

of extension.  Finally, the fully extended polyketide or fatty acid is specifically 

released from the enzyme by a thioesterase (TE).  This release is most commonly 

accomplished by hydrolysis, in the case of FAS, or macrolactonization, in the 

case of many modPKSs.  However, TEs also occasionally catalyze lactonization18 

or Claisen cyclization19-20. 

The non-reducing (NR)-PKSs contain two unique domains: a starter unit 

AT (SAT) and a product template (PT) domain.   In these systems, the SAT 

domain is responsible for specific selection of the starter unit, which can be more 

complex than the typical acetyl-CoA starter unit, and in some cases directly 

transferred from an upstream FAS or HR-PKS.  For example, the PksA SAT 

accepts a hexanoyl starter unit from a dedicated pair of yeast-like FASs21-23.  

Similarly, in asperfuranone biosynthesis, the NR-PKS AfoE accepts a 

dimethyloctadienone starter unit from the highly-reducing (HR)-PKS AfoG24.  

Hybrid systems in which the PKS accepts a starter unit from a non-ribosomal 

peptide synthetase further increase the diversity of polyketide-based natural 

products25-27.  In systems with a dedicated SAT, the extender unit loading AT is 

termed the malonyl-CoA AT (MAT).  The PT domain is responsible for 
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regiospecific cyclization of the fully oxidized, extended poly-β-ketone in NR-

PKSs28.   

1.2.2.  Classification of PKSs – Early lessons from modular PKSs 

 FASs and PKSs are closely related biosynthetic enzymes, both accomplish 

the condensation of acetate units into carbon chains, and share many 

biosynthetic domains.  FASs are broadly categorized based on their structural 

organization.  Type I FASs (fungal, mammalian) are multienzymes, where all 

domains are covalently linked in a single polypeptide.  Conversely, in type II 

FASs (bacterial), each domain is contained on its own discrete protein.  PKSs are 

also categorized based on this system, but include a third category – type III 

PKSs, which act on CoA- (rather than ACP-) bound substrates.  

Type I PKSs exist as both modular (modPKS) and iterative (iPKS) systems.  

ModPKSs, where each set of domains (module) canonically performs only a 

single elongation/modification reaction to extend the growing polyketide chain, 

are the most well understood class of PKSs.  Modules are organized in an 

assembly-line fashion, where the domains present in each module (generally) 

dictate the chemical modification at that stage of extension.  The first 

characterized type I PKS was the modPKS involved in biosynthesis of the 

antibiotic erythromycin by Saccharopolyspora erythraea, 6-deoxyerythronolide B 
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synthase (DEBS)29.  DEBS was independently identified by two labs using two 

distinct genetic approaches.  Peter Leadley’s group at Cambridge took advantage 

of the clustering of biosynthetic genes with those that confer self-resistance, and 

identified PKS genes in close proximity to the erythromycin resistance gene 

ermE30-32.  Conversely, Leonard Katz’s group at Abbott Laboratories identified 

mutations that abolished production of 6-deoxyerythronolide B, and found them 

to be located within PKS genes33-35. 

DEBS consists of six biosynthetic modules housed in three polypeptides.  

Each module contains, at minimum, the domains required to catalyze the 

condensation of propionate units into a polyketide chain – KS, AT, and ACP.  

Additionally, a variable selection of tailoring domains is present in each module, 

which determines the reductive modification of each β-ketone during elongation.  

For example, module 4 contains the whole suite of reductive domains – DH, ER, 

and KR – and thus the ketone installed by module 4 is fully reduced to the 

saturated thioester.  Conversely, module 1 contains only a KR, so the ketone 

should be reduced to a hydroxy group.  As expected, the PKS product 6-

deoxyerythronolide B has a structure fully consistent with the domain 

architecture of each module35.  Therefore, DEBS is the paradigm example of co-

linearity in modPKS biosynthesis, where products can be predicted based on 

which domains are present in each module, and domain architecture can be 
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predicted based on the structure of the polyketide product.  This concept of co-

linearity and the assembly-line nature of modPKSs make them much simpler to 

analyze and engineer than iPKSs. 

In contrast to the assembly-line architecture of modPKSs, where each 

module performs only a single round of extension, iPKSs consist of only a single 

set of domains, which act repeatedly during each catalytic cycle.  Therefore, 

while the enzymes themselves are smaller and simpler, the programming and 

prediction of iPKS products is considerably more difficult.  iPKSs are further 

categorized by the extent to which the polyketide is reduced, from highly-

reducing (HR)-PKSs with up to a full suite of reductive domains, to non-

reducing (NR)-PKSs which lack any reductive domains.  A prototypical example 

of NR-PKSs is PksA, responsible for the first step of aflatoxin biosynthesis in 

Aspergillus parasiticus.   

 

1.3.  Tools for understanding polyketide biosynthesis 

1.3.2.  Domain dissection for in vitro analysis 

 The iterative NR-PKSs are typically fungal and notoriously difficult to 

express in traditional heterologous bacterial hosts (e.g. E. coli), so traditional 

biochemical in vitro experiments on this class of PKS have been in short supply.  
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Due to their iterative nature, traditional in vivo mutagenesis experiments do not 

allow for detailed interrogation of the biosynthesis of iPKSs.  Inactivating a given 

catalytic domain through mutagenesis will completely abolish production in 

vivo, since each domain is used repeatedly throughout the catalytic cycle.  

Conversely, the activity of individual domains, or even full modules, of modPKS 

can be interrogated by inactivation and subsequent analysis of the accumulated 

product.  For example, when the KR of module 5 of DEBS is removed, an 

erythromycin analog is produced in which the keto group has been maintained 

at the expected position, rather than being reduced to a hydroxyl group35. 

 Limited proteolysis is commonly used to dissect multidomain enzymes 

into their individual domains36.  The relatively unstructured linker regions 

between the globular domains is proposed to be more accessible to proteases.  In 

early studies of FAS isolated from chicken, fortuitous proteolysis from native co-

purified proteases was observed under specific conditions37.  The susceptibility of 

the multidomain FAS to limited proteolysis could be used as a biochemical tool; 

for example, through controlled trypsinization, the TE was isolated and 

characterized38.  This technique was later used to dissect the modPKSs DEBS1, 2, 

and 3, and identify their linker regions by limited proteolysis followed by N-

terminal sequencing39-40.  Together, these two methods allowed for cloning and 

heterologous expression of isolated PKS and FAS domains, which can be 
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analyzed in vitro to determine catalytic activity or for structural studies.  

However, if native, intact protein cannot be expressed (as in the case of most NR-

PKSs), this technique is of little utility.  Instead, linker regions can be predicted 

based on primary structure, as they exhibit less sequence conservation than the 

catalytic domains.  Udwary and Merski improved upon this simple method of 

linker region prediction with their UMA algorithm, which also takes predicted 

local secondary structure and hydrophobicity into account41.  Their algorithm 

was validated with enzymes of known structure, such as methionine synthase 

(MetH) and DNA polymerase I.  It has since been used to successfully dissect a 

number of NR-PKSs, including PksA19 and PksCT42. 

 Dissection of iPKS catalytic domains has allowed for detailed 

characterization of fungal polyketide biosynthesis.  For instance, despite 

herculean efforts with a variety of heterologous expression systems, the NR-PKS 

PksA was not amenable to expression as an intact construct.  It was not until the 

UMA algorithm allowed dissection of PksA into smaller mono-, di- and tri-

domain constructs that its activity could be studied in vitro19.  By reconstituting 

various PksA domain combinations, the role of each domain in biosynthesis was 

defined (Figure 1.6).  The minimal PKS (SAT-KS-MAT + ACP), and the minimal 

PKS plus TE, produced only minute quantities of products.  However, addition 

of the PT domain to the minimal PKS resulted in significant production of the 
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regiospecifically cyclized product napthopyrone 12, demonstrating the PT’s role 

in cyclization.  Addition of the TE to this reaction nearly eliminated production 

of napthopyrone, instead producing the on-pathway product norsolorinic acid 

anthrone 13 and its oxidation product norsolorinic acid 14.  Therefore, domain 

dissection allows not only for in vitro analysis of PKSs that cannot be expressed 

in their entirety, but also allows for interrogation of activities of specific domains. 

SAT KS MAT PT ACP1 TE

SH SH OH OHSH

C117 C543 S1746 S1937

SAT KS MAT

ACP

S

OOO

O

O O O

PT

C4-C9, 
C2-C11

ACP

S

OOHOH

HO

O

TE

OHOOH

HO

a

b

-
O SCoA

O O

C5H11 C5H11

C14-C1

O O

C5H11

O

OH

O

O
O

O O

O

H

H

S993

4

SCoA

O

O

OOHOH

HO C5H11

O

Spontaneous

OHOOH

HO

C5H11

O

OH
O

[O]

14
13 12

 

Figure 1.6.  PksA biosynthetic scheme, determined by domain deconstruction.  (a)  Domain 
organization of PksA.  Cut sites for domain deconstruction are indicated by block arrows.  (b)  
Role of PksA domains in biosynthesis of 13, determined by in vitro reconstitution of dissected 
domains, as indicated. 

 

 A particularly powerful application of domain dissection is the ability to 

swap domains of different PKSs to further decipher their role in catalytic 
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programming, as well as synthesize novel polyketides.  By combinatorial 

reconstitution of domains from PKSs with products of defined chain length, 

cyclization pattern, and release mechanism, novel polyketides can be rationally 

designed and produced43-44.  Chain length was found to be strictly controlled by 

the KS: in all combinations of CTB1 minimal PKS and alternative PT and TE 

domains, a C14 polyketide was produced, regardless of the chain length 

specificity of the PT and TE domains44.  Cyclization register was faithfully 

determined by the PT domain, as long as the chain length was within one acetate 

unit of the PT’s native substrate.  For example, the ACAS PT combined with the 

CTB1 minimal PKS produced the C6-C11 cyclized pannorin.  Finally, the TE is 

crucial for product release and enzymatic turnover, and tends to be less tolerant 

to alternative substrates than the PT.  This observation is consistent with 

previous observations of TE-mediated editing of off-target or stalled enzymatic 

products45.  Productive biosynthesis of non-native products by combinatorial 

PKS reconstitution relies upon enzymatic cyclization and release occurring fast 

enough to overcome spontaneous cyclization and release, or TE editing.  These 

limitations can be partially overcome by fusing domain combinations into a 

single polypeptide43.  In both native and combinatorial PKSs, deconstruction 

imposes a biosynthetic penalty since domains must come together 
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intermolecularly to accomplish chemistry, as opposed to intramolecular reactions 

in the native system. 

1.3.2.  Structures of NR-PKS monodomains 

Other than the DEBS KS-AT didomain, structures of multidomain (or full-

length) PKS constructs have been difficult to obtain, likely due to their structural 

flexibility.  However, structures of each PKS domain have been elucidated as 

dissected monodomain constructs.  While many structures have been solved of 

modPKS domains (including reductive domains), this summary will focus on 

domains isolated from the NR-PKSs. 

 The first structure of an isolated NR-PKS domain, PksA PT, was reported 

fairly quickly after the UMA algorithm allowed successful deconstruction of 

PksA28.  The PT domain, a domain unique to NR-PKSs, catalyzes aldol 

cyclization and aromatization of the reactive poly-β-ketone intermediate.  In the 

case of PksA, cyclization occurs regiospecifically, first between C4 and C9, 

followed by C2-C11.  The mechanism by which this regiospecific cyclization is 

accomplished was an interesting enzymological problem.  The 1.8 Å resolution 

PT structure reveals a double hot dog fold, similar to that of the DH domains 

from mFAS and modPKSs (Figure 1.7).  Notably, the PT domain is located just 

downstream of the MAT domain in NR-PKS, analogous to the location of the DH 
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in mFAS and modPKS.  Palmitate (from E. coli heterologous expression) was 

found bound within a 30 Å deep pocket that can be divided into three regions.  

The deepest region of the pocket is lined with hydrophobic residues consistent 

with binding of the hexyl starter unit of the poly-β-ketone.  Next is a slightly 

wider cyclization chamber, which contains the His/Asp catalytic dyad.  Finally, a 

14 Å long tunnel leading to the cyclization chamber is proposed to bind the 

phosphopantetheine arm bearing the poly-β-ketone substrate.  The organization 

of the catalytic dyad and a corresponding oxyanion hole within the cyclization 

chamber are proposed to dictate the regiospecificity of PT cyclization. 

Figure 1.7.  1.8 Å crystal structure of PksA PT.  PksA PT forms a double hot dog dimer.  The two 
monomers are shown as ribbon diagrams in green and gray.  Palmitate visualized in the deep 
active site pocket is shown as magenta spheres.   

 

 Shortly after the PksA PT structure was solved, the X-ray crystal structure 

of PksA TE at 1.7 Å resolution was published20.  The PksA TE is distinct from 

mFAS and modPKS TEs, in that it catalyzes a C-C bond formation by way of 

Claisen cyclization, instead of thioester hydrolysis, to release the final PKS 
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product norsolorinic acid anthrone19.  Like other related TEs, monomeric PksA 

TE exhibits an α/β hydrolase fold and a helical lid region (Figure 1.8)46-50.  

Additionally, PksA TE contains the canonical Ser/His/Asp catalytic triad typical 

of TEs.  However, whereas modPKS TEs contain an open, hydrophilic, substrate-

binding channel, the substrate-binding region of PksA TE is deep and highly 

aromatic.  As this feature is conserved amongst TEs with Claisen cyclase activity, 

the hydrophobic nature of the PksA TE substrate-binding chamber appears to be 

characteristic of this class of TE domains. 

Figure 1.8.  1.7 Å crystal structure of PksA TE, shown as a ribbon diagram.  The α/β hydrolase 
core is shown in blue and the lid region is shown in yellow.  The catalytic triad residues 
(Ser1937/His2088/D1964) are shown as magenta spheres. 

 

 To round out the modifying region of PksA, the solution structure of PksA 

ACP was solved in 201051.  While type II FAS and PKS ACP structures have been 

extensively studied52-56, only a single other type I PKS ACP structure has been 

reported57.  PksA ACP was the first structure of an iPKS ACP, which is required 
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to shuttle a wide variety of intermediates throughout the catalytic cycle.  Like 

other type I and type II ACPs, PksA ACP consists of a four-helix bundle (Figure 

1.9).  However, helix III lies perpendicular to the other three parallel helices (I, II 

and IV), in contrast to the other structures.  This unusual conformation of helix 

III was attributed to its unusually hydrophobic nature, and resulting tight 

packing with the other helices.  In FAS ACPs, the more flexible helix III 

undergoes a conformational shift to allow for acyl chain binding55, 58-60.  While a 

slight conformational change was observed between holo PksA ACP and acylated 

(hexanoyl-loaded) holo PksA ACP, no analogous sequestration of the hexanoyl 

starter unit was observed.  ACP sequences are highly homologous amongst the 

NR-PKSs, suggesting these structural features may be conserved amongst this 

class of ACPs. 

Figure 1.9.  Solution structure of PksA ACP, shown as a ribbon diagram.  The 
phosphopantetheine attachment point (Ser1746) is shown as magenta spheres. 

 

 The most recent structure of a NR-PKS domain is that of the CazM SAT 

domain, involved in chaetoviridin 15 biosynthesis in Chaetomium globosum61.  NR-
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PKS SAT domains have the unique capability of accepting an acyl starter unit 

from an upstream FAS or PKS, as opposed to the more typical acetyl-CoA.  For 

example, PksA accepts its hexanoyl starter unit from a dedicated pair of yeast-

like FASs23.  Similarly, CazM utilizes a 4-methyl-hex-2-enoyltriketide starter unit 

16, synthesized by the HR-PKS CazF, and transferred by the CazM SAT domain 

(Figure 1.10a)62.  The structure of CazM SAT resembles other FAS and PKS AT 

domains, containing an α/β-hydrolase core and a small ferredoxin-like 

subdomain (Figure 1.10b).  A primarily hydrophobic active site cavity was 

observed in the interface between the α/β-hydrolase and ferredoxin subdomains.  

These hydrophobic residues likely contribute to CazM’s selectivity for its 

triketide substrate, in contrast to a more oxidized, tetraketide product of CazF.  

Comparison of crucial binding residues within CazM to other NR-PKS SAT 

domains may allow for rational engineering towards production of novel 

polyketides with non-native starter units. 
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Figure 1.10.  (a)  Role of CazM SAT in biosynthesis of chaetoviridin 15 by the HR-PKS CazF and 
the NR-PKS CazM.  CazM accepts a starter unit synthesized by CazF to initiate NR-PKS 
biosynthesis.  (b)  1.6 Å crystal structure of CazM SAT.  The α/β hydrolase core is shown in 
purple, and the ferredoxin subdomain is shown in cyan.  The active site cysteine is shown as 
yellow spheres. 

 

1.3.3.  Full-length PKS structures and the rise of cryo-electron microscopy 

 As discussed previously, type I FAS has long been used as a basis for 

understanding type I PKS biochemistry.  This tactic is also applicable for 

understanding the structure of type I PKSs, since they share many of the same 

biosynthetic domains, organized in similar architectures.  The X-ray crystal 

structure of intact, porcine FAS (mFAS) was first reported in 2005 at 4.5 Å 

resolution63, and was quickly refined to 3.2 Å resolution two years later64.  The 
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dimeric FAS resembles a gingerbread man, with “legs” consisting of the KS-AT 

condensing region and “arms” containing the modifying region (DH, KR, ER, 

ACP, TE) (Figure 1.11).  The dimer is primarily mediated by the KS in the “leg” 

region, and the ER and DH in the “arm” region.  Presumably due to their 

inherent flexibility, neither the ACP nor the TE domains were resolved in either 

structure.  The approximate location of the TE at the end of each of the “arms” 

was inferred from EM images of guinea pig FAS labelled with anti-TE 

antibodies65. 

Figure 1.11.  3.2 Å crystal structure of porcine FAS.  Catalytic domains are color coded (from N- 
to C-terminus):  KS – orange, AT – orange, DH – light green, ψMT – purple, ER - green, KR – 
yellow.  Linker regions are shown in gray. 
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 Shortly after the first porcine FAS structure was published, the first hint 

towards PKS domain architecture emerged from the Khosla lab, which published 

the 2.7 Å crystal structure of the KS-AT didomain from DEBS module 566.  This 

structure closely resembled the corresponding domains in mFAS, in both overall 

topology and individual domain structures.  The KS domains form a tight dimer 

around the 2-fold axis, and are flanked on each side by the AT domains (Figure 

1.12).  Due to this similarity in structure and domain architecture, porcine FAS 

was validated as a model for type I PKS, both biochemically and structurally, 

and type I PKSs, both modular and iterative, were proposed to have a structure 

similar to that of mammalian FAS. 

Figure 1.12.  2.7 Å crystal structure of the KS-AT didomain from DEBS module 5.  Catalytic 
domains are color-coded as in Figure 1.11 (KS – orange, AT – red).  Linker regions are shown in 
gray. 

 In 2016, the relevancy of type I FAS as a model for type I PKS structures 

was further supported by the multidomain structure of an iterative HR-PKS, 
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mycoserosic acid synthase (MSA)67.  To achieve a hybrid crystal structure of the 

full-length enzyme, Maier and co-workers split MSA into a condensing region 

(KS-AT) and modifying region (DH-ER-KR).  The condensing region structure 

was solved to 2.2 Å resolution, and closely resembles that of DEBS KS-AT and 

mFAS.  The 3.75 Å resolution x-ray crystal of the modifying region also 

resembles that of mFAS, consisting of an overall dimeric organization mediated 

by the DH and ER domains.  When combined in silico, these structures yield an 

overall iPKS structure resembling that of mFAS, with modifying “arm” and 

condensing “leg” regions connected by a flexible “waist”.   

 Recently, advances in cryo-electron microscopy (EM) have provided new 

promise for elucidation of full-length PKS structures previously inaccessible by 

X-ray crystallography.  Previously, structure determination by cryo-EM was 

limited to relatively large and rigid proteins and biological particles, such as the 

ribosome and viral particles68-72.  Improvements in sample preparation and 

development of direct-electron detectors have pushed cryo-EM into the realm of 

high-resolution structure determination methods73-77.  These advances have 

allowed for the determination of a cryo-EM structure of an intact PKS module 

involved in pikromycin biosynthesis, PikAIII78.  This structure was surprising, in 

that its overall architecture deviates from the “gingerbread man” model 

developed based on the mFAS structure, which has thus far been consistent with 
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other modPKS and iPKS structures.  The PikAIII module is arch shaped, with a 

single reaction chamber at its center, rather than the dual reaction chambers 

observed in mFAS and HR-PKS.  This architecture represents a 120° rotation of 

the AT relative to the KS compared to other modPKS structures, and a 

completely distinct KS-AT interface.  Cryo-EM analysis of PikAIII also resulted 

in observation of substrate-dependent localization of the ACP domain79.   

 

1.4.  Outlook 

 Through advances in PKS deconstruction and structural elucidation over 

the past ten years, the “black box” of NR-PKS biosynthesis is beginning to be 

unpacked.  Activities of individual domains, and their role in programming 

biosynthesis, have been well studied.  Similarly, many monodomain structures 

have been determined, illuminating the structural basis for starter unit selection, 

cyclization, and product release.  However, the question remains as to how 

overall biosynthetic programming is achieved.  Engineering of PKSs to produce 

novel compounds with valuable bioactivity is an important goal of the PKS field.  

However, success in achieving this goal has been limited.  In order to 

successfully engineer PKSs, understanding of substrate tolerance and enzymatic 

programming must be improved.  In this thesis, studies to interrogate the 
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tolerance of PKS domains to non-native starter units demonstrate some 

capabilities and limitations of iPKS engineering.  Structures of full-length iPKSs 

will help decipher how individual domains interact to accomplish the complex 

series of reactions required by iterative polyketide biosynthesis.  In an important 

step toward this goal, we present a multidomain structure of an iPKS locked in 

its loading state by mechanism-based crosslinking. 
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Chapter 2:  Starter unit flexibility for engineered product 
synthesis by the non-reducing polyketide synthase PksA  
 

This chapter was adapted with permission from Huitt-Roehl, C.R., Hill, E.A., 
Adams, M.M., Vagstad, A.L., Li, J.W. and Townsend, C.A., ACS Chem Biol, 2015, 
10(6), 1443-9 
 

2.1.  Introduction 

Fatty acid synthases (FASs) and all but one clan of the related polyketide 

synthases (PKSs) exemplify the rare catalytic strategy of iteration; that is, the 

catalytic domains of these large proteins are re-used, typically a fixed number of 

times, and can accommodate substrates as small as two carbons to as large as 20 

or more1-3.  Thus, unlike the acute substrate discrimination associated with highly 

evolved primary metabolic enzymes, the potential synthetic hazards of substrate 

promiscuity are overcome by deeply buried active sites accessible to 

intermediates borne on carrier proteins and intraprotein transfers that confer 

high effective concentrations.  Such intrinsic plasticity in iterative systems raises 

the fundamental question of whether these active sites can more readily 

accommodate alternative building blocks to synthesize non-native products.  

Previous studies of modular PKSs, where each module canonically catalyzes a 

single set of elongation and tailoring steps during biosynthesis, have shown 

limited tolerance to a narrow range of both non-native starter4-8 and extender 
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units9-10.  The fungal non-reducing PKSs (NR-PKSs) mediate the simplest chain 

extension chemistry to a classical poly-β-ketone intermediate with no processing 

at the β-carbon during elongation, which distinguishes the other partially and 

highly reducing PKSs and all FASs11-14.  

NR-PKSs contain two domains unique among PKSs: a starter unit acyl-

transferase (SAT) that brings the chain initiating component onto the enzyme15, 

and a product template (PT) domain that controls the cyclization of the fully 

elongated, highly reactive poly--ketone intermediate to specific aromatic and 

fused aromatic products3, 16-17.  Combinatorial assemblies of heterodomains from 

a selection of NR-PKSs have shown that polyketide chain length is largely 

controlled by the ketosynthase (KS) domain, and the cyclization pattern is 

determined by the PT domain18-19.  The enzyme responsible for the biosynthesis 

of norsolorinic acid anthrone 2 in Aspergillus parasiticus, the precursor to aflatoxin 

B1 1, PksA20, accepts an unusual hexanoyl starter unit from a dedicated pair of 

yeast-like FASs (HexA/B, Figure 2.1a,b)21-23.  The SAT domain of most NR-PKSs 

prefers acetyl-CoA from common cellular metabolism and shows strong 

selection against even propionyl-CoA24.  However, there are similar enzyme 

pairs such as Hpm8 and Hpm3, where the highly-reducing PKS Hpm8 

synthesizes a relatively large partially-reduced starter unit, which is then 

transferred to the NR-PKS Hpm3 for further elongation25. 
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 In this work we combine the SAT-KS-MAT (malonyl-CoA acyl-

transferase) tridomain and the PT-ACP (acyl-carrier protein) didomain of PksA 

to examine the ability not only of the SAT to accept non-native starter units but 

also the KS and the PT to perform their central tasks in product synthesis as a 

more complete measure of both starter unit tolerance and NR-PKS synthetic 

function.  To simplify the analysis, the thioesterase (TE) domain, which catalyzes 

a further (Claisen) cyclization to anthrone 2, is not present and we rely on the 

facile self-enol lactonization of the PT-cyclized product 3 to release pyrone 4 or 

its starter unit-dependent structural variant from the ACP (Figure 2.1c). 
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Figure 2.1.  PksA biosynthetic scheme.  (a)  Domain organization of PksA.  Active site residues 
are indicated.  (b)  PksA synthesizes the first intermediate in aflatoxin 1 biosynthesis – 
norsolorinic acid anthrone 2.  Bonds/moieties installed by each catalytic domain are color-coded 
and bolded for emphasis.  (c)  In vitro assay of native and alternative starter-units used in this 
study. 
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2.2.  Results 
 
2.2.1.  Alternative starter unit in vitro assays.   

The C-terminal His6-tagged PksA SAT-KS-MAT tridomain and PT-ACP 

didomain were over-produced in E. coli and purified by Co2+-affinity 

chromatography as previously described18.  Potential starter units were 

presented as N-acetylcysteamine (SNAC) thioesters (Figure 2.1c), which were 

prepared by coupling of N-acetylcysteamine to commercially-available or readily 

synthesized carboxylic acids (see Appendix B).  Each substrate (1 mM) was 

assayed under uniform conditions in phosphate buffer at pH 7 containing 

glycerol (10%), malonyl-SNAC (1 mM), TCEP (1 mM), PksA SAT-KS-MAT and 

PT-ACP (10 μM), and incubated at room temperature for 4 hours. Products were 

extracted into ethyl acetate, separated by HPLC, and the UV-Vis spectrum of 

each was recorded (200-800 nm).  Exact masses were determined by UPLC-ESI-

MS. In all instances the naphthopyrone products gave a characteristic absorbance 

signature. 

2.2.2.  Linear acyl-SNAC starter units.   

Early examination of PksA starter unit preferences of the SAT domain 

indicated modest selectivity for hexanoyl over butanoyl or octanoyl15.  In a first 

set of experiments, systematic examination of the homologous series of linear C4–

C8 SNAC thioesters (5–9) was undertaken in the synthesis of norpyrone 4 and its 
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structural variants.  The non-native C5 fatty acid thioester was incorporated with 

comparable efficiency to the native hexanoyl starter (Figure 2.2, Appendix 

Figures B.2, B.4), but reactions of C4, C7 and C8 chain lengths were still evident.  

To facilitate comparison among the C4–C8 thioesters, the naphthopyrone product 

peak intensities were plotted relative to that of hexanoyl in Figure 2.2.  Starter 

units longer than C8 were not tested owing to their limited solubility under the 

assay conditions. Reactions of 6, 8, and 9 were less efficient in naphthopyrone 

product formation and correspondingly gave increased shunt and truncation 

products appearing at early retention times in the HPLC chromatogram 

(Appendix Figures B.3, B.5, B.6).  Recent deconstruction and domain “swapping” 

or heterodomain combinatorial experiments have revealed tight control of 

overall polyketide chain length to largely ± one ketide (C2) extension, while the 

PT domain exerts strict programming of ring formation despite receiving chain 

lengths both shorter and longer than wild-type18-19.  Reactions utilizing the C8 

starter unit 9 exemplify this tight chain length control, as one fewer ketide 

extension was performed to give a naphthopyrone product with the native C20 

chain length.  Similarly, one extra ketide extension occurred in the reaction of the 

C4 starter unit 6 to yield a C20 product.  In the case of the C7 starter unit 8, both C21 

and C19 products were observed, whereas only the C19 product was produced 

from the C5 starter unit 7.  This overall chain-length constraint in PksA likely 
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amplifies the apparent narrow range of well-accepted linear starter units.  

O
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Figure 2.2.  Relative production of on-target naphthopyrones from linear acyl-SNAC starter units.  
Products are indicated on the y-axis and starter units are indicated on the right side of each bar.  
In the case of starter unit 8, where two naphthopyrone products of different chain lengths were 
produced, the peak areas of both products have been combined for this chart. 

 
 

To analyze the pattern of truncation and derailment products observed in 

all reactions, these off-target products have been categorized by basic core 

structures corresponding to known chromophores (Figure 2.3a, see Appendix 

Figure B.1 for full structures of all characterized products)19, 26.  Control reactions 

containing malonyl-SNAC as the sole substrate produced primarily the 

naphthopyrone 42 (Figure 2.3b) in which decarboxylated malonyl-SNAC was 
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used as the starter unit.  Monitoring the steady-state population of intermediates 

bound to the PksA ACP by mass spectrometry revealed acetyl in addition to the 

expected hexanoyl and malonyl27.  One can visualize that the appearance and 

inefficient utilization of an acetyl starter could arise by direct transfer from 

acetyl-SNAC, but more likely by transfer from malonyl-SNAC to the MAT 

domain and then to the ACP, followed by decarboxylation.  In the case of the 

linear C4–C8 SNAC thioesters 5–9, the primary derailment products observed 

were the tri- and tetra-ketide lactones having core structure C, while only small 

amounts of improperly cyclized but fully extended and cyclodehydrated SEK4 

and SEK4b analogs were produced (cores D and E).  Therefore, extension by the 

KS domain may be the limiting factor in productive biosynthesis with linear 

starter units shorter or longer than the native hexanoyl primer, rather than 

cyclization in the proper register by the PT domain. As expected, the product 

profile for the reaction of C8 -ketothioester 10 is similar to that of the native 

hexanoyl starter unit.  While the observed products were nearly identical for the 

two reactions, efficiency was lower in the non-native case (Appendix Figure B.7).  

As this starter unit represents the first intermediate product of elongation, the 

reason for decreased productivity presumably owes to reduced binding 

efficiency to the SAT (or KS domain, see below) domain before transfer to the 

ACP. 
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Figure 2.3.  Core structures of observed derailment products.  (a)  Derailment product cores were 
determined based on exact mass and known chromophores.  (b)  Major product observed in 
control reactions containing malonyl-SNAC as the sole substrate. 

 
2.2.3.  Halogenated acyl-SNAC starter units.   

Experiments conducted to evaluate the efficiency of naphthopyrone 

production by PksA utilizing substituted acyl-SNAC thioesters demonstrated 

that modifications at the distal end of the thioester were well tolerated by the 

enzyme, particularly halogenation and methylation (Figure 2.4).  Starter units 

halogenated at the remote end of the acyl chain (11–14) were relatively well 

accepted, resulting in high product formation, albeit accompanied by significant 

amounts of derailment products, primarily the triacetic acid lactone analog (core 

C).  The product profiles among the four tested halogenated starter units were 

similar, although relative and absolute amounts of on-target and derailment 

products varied depending on chain length and identity of the halogen 
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substituent.  Similar to the linear, un-substituted starter units, reactions of the 

longer 7-atom halogenated substrates resulted in higher derailment production 

and lower naphthopyrone production.  Additionally, brominated products were 

produced in smaller amounts than chlorinated products, presumably owing to 

the relative steric bulk of the halogen substituent (Figure 2.4, Appendix Figures 

B.8–B.11).  

 
Figure 2.4.  Relative production of on-target naphthopyrones from halogenated acyl-SNAC 
starter units.  Products are indicated on the y-axis and starter units are indicated on the right side 
of each bar.   

 
 
 

 

 



44 
 

2.2.4.  Methylated acyl-SNAC starter units.   

Biosynthetic production and catalytic efficiency decrease with chain 

branching close to the thioester, as exemplified with reactions utilizing 

methylated starter units 15, 16, 17, and 18 (Figure 2.5).    Starter units with 

substituents at the 2- and 3- position were particularly unfavored, while starter 

units substituted at the 4- and 5- position were significantly better tolerated.  In 

the case of 2-branched 15, the major product was 42 (Figure 2.3b, Appendix 

Figure B.12), suggesting this starter unit is so poorly tolerated that inefficient 

priming and extension using decarboxylated malonyl-SNAC took place.  

Similarly, the reaction utilizing 16 also produced 42, albeit in a smaller 

proportion.  The fully extended but improperly cyclized SEK4/SEK4b analogs 

86a,b (cores D and E) were the major derailment products in reactions with 16, 

suggesting the KS domain is significantly more tolerant of substitution at the C-3 

position than the PT (Appendix Figure B.13).  Although only a small difference in 

naphthopyrone production was observed between reactions utilizing 17 and 18 

(Figure 2.5, Appendix Figures B.14, B.15), there was a marked difference in the 

ratio of naphthopyrone to derailment products. Thioester 17 gave a significant 

amount of the SEK4/SEK4b analogs 91a,b (Appendix Figure B.14).  While it was 

expected that a five-carbon long starter unit branched near its terminus, 19, 

would give an outcome comparable to 17 based on the location of the methyl 
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group, production of naphthopyrone product was significantly lower (Figure 2.5, 

Appendix Figure B.16).  These results indicate that branched starter units, 

especially if proximal to the thioester, can impede the ability of the PT domain to 

properly cyclize the mature polyketide chain. 

 
Figure 2.5.  Relative production of on-target naphthopyrones from methylated acyl-SNAC starter 
units.  Products are indicated on the y-axis and starter units are indicated on the right side of each 
bar. 
 

2.2.5.  Unsaturated acyl-SNAC starter units.   

Analogous to the methyl-branched starter units, desaturation was 

relatively well tolerated at the alkyl terminus of the acyl chain (starter unit 22), 

while the α,β-unsaturated SNAC thioester 20 reacted poorly (Figure 2.6).  This 
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reduced reactivity may owe to the intrinsically greater stability of a conjugated 

thioester slowing each acyl transfer step, or enzyme inhibition by this 

electrophilic species.  Three unsaturated starter units were tested for 

incorporation into naphthopyrone products.  The reaction utilizing 22 resulted in 

moderate production of the on-target final product and few derailment products 

(Figure 2.6, Appendix Figure B.19).  Conversely, reactions of 20 produced in the 

main the spontaneously cyclized SEK4/SEK4b analogs 104a,b (Appendix Figure 

B.17).  No significant peaks representing truncation products were observed in 

this reaction, suggesting the α,β-alkene was problematic for processing by the PT 

domain, but not the KS domain.  Unexpectedly, production of the 

naphthopyrone in the reaction of 21 was approximately equal to that of 20, but a 

more diverse profile of derailment products was observed with 20 (Figure 2.6, 

Appendix Figure B.18).  These included both improperly or partially cyclized, 

but fully extended products as well as truncation products.  As was the case of 

the methyl-branched starter units, the relative rigidity afforded by the alkene 

interferes more with proper biosynthetic processing when located closer to the 

thioester. 
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Figure 2.6.  Relative production of on-target naphthopyrones from unsaturated acyl-SNAC 
starter units.  Products are indicated on the y-axis and starter units are indicated on the right side 
of each bar.   

 
 
 

2.2.6.  Heteroatom-substituted acyl-SNAC starter units.   

PksA is capable of incorporating oxyether- and thioether-containing 

starter units into naphthopyrone products (e.g. 23–28), but significant decreases 

in production and efficiency were observed (Figure 2.7).  Reactions utilizing 

methylthioether 23 resulted in product formation comparable to the analogous 

six-carbon starter unit 5, with only a slight increase in derailment products 

(Figure 2.7, Appendix Figure B.20).  The major derailment product observed for 

this reaction was the triketide lactone 114 (core C), while no significant peak 

intensities correlating to the SEK4/SEK4b analogs were observed.  Processing of 

23 into the naphthopyrone product 116 (Figure 2.7, Appendix Figure B.20) is, 

therefore, as efficient as that of the native starter unit.  Reactions of five- and 
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four-atom thioethers (24, 25, 26) resulted in lower product formation than the 

comparable carbon-only starter units (Figure 2.7, Appendix Figures B.21-B.23).  

This effect is particularly evident with starter unit 26, which produced 

significantly less product than its analogous carbon-only starter unit 6 (Figures 

2.2, 2.7, Appendix Figure B.23).  Derailment product types C, D and E were 

prevalent in these reactions, suggesting interference with the activity of both the 

KS and the PT domains.  As in the case of starter unit 6, reactions utilizing four-

atom thioethers underwent one extra extension to maintain the native C20 chain 

length, providing further evidence for tight chain length control by the KS 

domain.  Additionally, an eight-atom oxyether starter unit 27 produced a C20 

chain length product, analogous to the C8 alkane starter unit 9.  Surprisingly, 

production of the naphthopyrone product 129 containing this starter unit was 

significantly greater than that from starter unit 9, with correspondingly lower 

levels of derailment products (Figures 2.2, 2.7, Appendix Figure B.24).  The 

seven-atom oxyether starter unit 28 produced much less naphthopyrone product 

than 27, and increased amounts of the spontaneously cyclized derailment 

product 130a,b (cores D and E) (Appendix Figure B.25).   

Starter units amenable to downstream coupling strategies, such as those 

containing terminal cyano- and azido- groups (e.g. 29 and 30), were accepted by 

the enzyme, albeit with relatively low targeted product formation.  In both cases, 
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significant amounts of triketide and tetraketide truncation products were 

produced (Appendix Figures B.26, B.27).  In the case of starter unit 29, fully 

extended but improperly cyclized products 134a,b (Appendix Figure B.26) were 

observed as well. 

Figure 2.7.  Relative production of on-target naphthopyrones from heteroatom-substituted acyl-
SNAC starter units.  Products are indicated on the y-axis and starter units are indicated on the 
right side of each bar.  In the case of starter unit 27, where two naphthopyrone products of 
different chain lengths were produced, the peak areas of both products have been combined for 
this chart. 
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2.2.7.  Sterically constrained acyl-SNAC starter units.   

To test the tolerance of PksA to bulkier, more rigid substrates, SNAC-

thioesters containing cyclopropyl groups (31, 32), an alkyne (33) and a benzyl 

group (34) were assayed.  In the case of 31 and 32, a small amount of 

naphthopyrone product containing the cyclopropyl group was detected in both 

reactions (Figure 2.8).  Production with these starter units was extremely low, 

and all domains of the enzyme presumably had difficulty accommodating the 

cyclopropyl group within their active sites.  Compound 42 was the dominant 

product of these reactions, suggesting decarboxylated malonyl-SNAC is a more 

favorable primer for these reactions than 31 and 32 (Appendix Figures B.28, 

B.29).  This product was also observed in other reactions where production is 

poor, including starter units 6 and 15, as noted above, and 2-butynoyl-SNAC (33) 

(Appendix Figure B.30). Control reactions where malonyl-SNAC alone was 

provided to the enzyme in the absence of a candidate acyl-SNAC starter unit 

gave similar results (Appendix Figure B.32).  Conversely, benzoyl-SNAC 

reactions did not produce naphthopyrone product (Appendix Figure B.31).  

However, a very small amount of the triketide lactone (core C) was observed in 

the reaction of benzoyl-SNAC, suggesting some tolerance of this starter unit by 

the KS domain. 
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Figure 2.8.  Relative production of on-target naphthopyrones from sterically constrained acyl-
SNAC starter units.  Products are indicated on the y-axis and starter units are indicated on the 
right side of each bar.  The x-axis has been split for clarity due to exceptionally low production of 
140 and 141. 
 

2.2.8.  SAT active site mutants.   

A series of SAT active site (Cys117) mutants was tested for product 

formation to further evaluate the role of the SAT domain in starter unit selection.  

Mutants were initially selected to mimic the other two naturally-occuring SAT 

active site motifs (GXSXG as in Giberella zeae Pks13 and GXGXG as in Aspergillus 

terreus ACAS)28-29 as well as another non-nucleophilic mutant (C117A).  Against 

expectation, presumably inactive C117A formed comparable levels of product to 

wild-type enzyme, as depicted in Figure 2.9.  Furthermore, the C117G mutant 

produced notably more product than wild-type.  Reactions with C117S, however, 

resulted in extremely low product formation.  This pattern was consistent among 
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all starter units tested and owes to hydrolysis of SNAC thioesters before 

inefficient acyl transfer to the ACP can take place (Figure 2.10).   

Figure 2.9.  Comparison of hexyl-naphthopyrone (4) production by PksA-SAT active site 
mutants. 

Figure 2.10.  Ellman’s reagent (DTNB) assay for detection of SNAC hydrolysis by PksA SAT 
active site mutants.  PksA SAT C117S hydrolyzes hexanoyl-SNAC to the free thioester (detected 
by Ellman’s reagent at 412 nm).  Control reactions lack hexanoyl-SNAC substrate. 
 

 
Given the largely unaltered reaction profiles with C117A and C117G 

variants, other SAT active site mutants were constructed to probe whether non-

covalent binding was responsible for increased production in C117A and C117G 
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mutants.  C117L, C117Q and C117N mutations were attempted in an effort to 

partially occlude the active site.  Soluble SAT-C117N-KS-MAT was obtained and 

evaluated for naphthopyrone product formation.  Production by this mutant was 

comparable to that of the wild-type enzyme and the C117A mutant, suggesting 

any non-covalent binding to the active site likely plays a small role, if any (Figure 

2.9).  It is worth noting, however, that production from C117G was still higher 

than the other variants, consistent with the possibility that non-covalent 

recognition and transfer may yet play a role in bringing starters onto the enzyme.  

 

2.3.  Discussion 

PksA can accept and utilize a circumscribed selection of acyl-SNAC 

substrates as starter units to support naphthopyrone biosynthesis.  The enzyme 

is tolerant to minor modifications in chain length and constitution of the thioester 

starter unit, especially at the distal end of the acyl chain, including substituents 

that allow subsequent modification of the resulting tricyclic product; for example 

“Click” chemistry30.  However, significant losses in production efficiency are 

observed with longer chain lengths or substitutions proximal to the thioester.  

Recent experimental advances have allowed production of full-length NR-

PKSs, albeit in much lower yields than smaller multi-domain constructs19.  As a 

control to measure the synthetic penalty, if any, exacted by dissection into a 2-
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part combination of SAT-KS-MAT and PT-ACP tri- and didomains, the 

corresponding fully intact 5-domain construct of PksA was prepared.  Owing to 

low protein yields, in vitro reactions were performed with 1 μM PksA SAT-KS-

MAT-PT-ACP, but under otherwise identical conditions to the previous 

experiments.  Three starter units (hexanoyl-SNAC [5], pentanoyl-SNAC [7], and 

benzoyl-SNAC [34]) were selected to compare production from both efficient and 

inefficient substrates.  For the former two efficient substrates, presuming 

reasonably that product formation tracks linearly with pentadomain enzyme 

concentration, production by the two-part combination lagged the intact 

construct by only a factor of 1.5 in the case of 5 and 1.2 in the case of 7 (Figure 

2.11).  As seen above in experiments with the two-part system, no 

naphthopyrone product containing the benzyl ring was observed in reactions of 

34.  This finding was in complete accord with similar comparisons of intact vs. 

domain combinations determined recently, and confirms the validity of the 

deconstruction method for the purposes of the experiments described herein19.   
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Figure 2.11.  Comparison of intact pentadomain (blue) and dissected two-part (black) reactions.  
(a)  Reaction of starter unit 5 (S-(2-acetamidoethyl) hexanethioate).  (b)  Reaction of starter unit 7 
(S-(2-acetamidoethyl) pentanethioate).  (c)  Reaction of starter unit 34 (S-(2-acetamidoethyl) 
benzothioate). 

 

The SAT active site mutants tested in this study gave unanticipated 

results.  While some native SAT domains contain a glycine substitution of the 

active site cysteine, these have previously been presumed to be inactive and 

compensated for by the activity(ies) of another domain(s).  Our experiments, 

however, suggest that at sufficiently high concentrations of starter unit, the KS 

can recognize the SNAC thioester as an adequate mimic of the normal ACP-
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delivered starter unit to be loaded directly.  Additionally, the possibility remains 

that even in the absence of a covalent bond between the SAT domain and a 

starter unit, non-covalent binding may increase effective concentrations 

sufficiently for efficient biosynthesis.  Although an active SAT domain is 

required for starter unit transfer within the HexA/HexBPksA complex22, under 

the super-physiological conditions utilized in this in vitro study, the SAT appears 

to be bypassed by some starter units and directly loaded on to the KS.  Such 

relatively facile utilization of non-native starter units is fortuitous but useful 

from the perspective of synthetic biology and rationally-directed biosynthesis. 

 Unlike other SAT domains that scavenge acetyl-CoA from their cellular 

environment, PksA receives its hexanoyl starter unit directly in complex with 

HexA/B and thus may have less pressure to be discriminating in its starter unit 

selection.  Analogous observations have been made in the case of the HR-

PKSNR-PKS pair Hpm3 and Hpm8, where a SNAC mimic of the starter unit can 

rescue production in the absence of an active SAT domain25.  Based on the 

limited data from these two examples, it can be anticipated that when SAT 

domains exist in FASNR-PKS or HR-PKSNR-PKS complexes, their primary 

function is interprotein transfer of a relatively large and/or complex starter unit 

and they are likely to be additionally flexible in the modified primers they accept 

and/or can be bypassed to directly load the KS.  Diversity of production is then 



57 
 

determined by the tolerance of the KS and PT to provide full polyketide chain 

elongation and correct cyclization register.  Recently, an X-ray structure of a SAT 

domain has been elucidated, which may facilitate to mutagenesis experiments to 

remodel a SAT active site with the goal of efficient uptake of altered starter units 

and transfer to sustain directed biosynthesis in a physiological context31. 

 

2.4.  Experimental Methods 

2.4.1.  Cloning 

Cloning details for all constructs used in this study are provided in 

Appendix B.  All plasmids used are summarized in Appendix Table B.1, and 

primers are given in Appendix Table B.2. 

 

2.4.2.  Protein Expression and Purification 

All proteins were heterologously expressed in E. coli BL21(DE3) and 

isolated as described previously27, with the exception that Co2+-TALON resin 

(GoldBio) was used in place of Ni2+-NTA resin.  Expression of soluble 

pentadomain PksA SAT-KS-MAT-PT-ACP was achieved by an additional one-

hour cold shock in ice water prior to induction with 1 mM IPTG.  Following 

purification, proteins were dialyzed against assay buffer (100 mM potassium 

phosphate pH 7, 10% glycerol) and optionally frozen at –80 °C prior to use.  If 
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necessary, proteins were concentrated using 10K Molecular Weight Amicon 

Ultra Centrifugation Filters (Millipore).  Protein concentration was measured in 

triplicate using the Bradford assay (Bio-Rad) and bovine serum albumin as a 

standard (New England Biolabs). 

 

2.4.3.  In vitro assays 

Purified SAT-KS-MAT tridomain (10 μM) and PT-ACP didomain (10 μM) 

were combined with 1 mM malonyl-SNAC in assay buffer (100 mM potassium 

phosphate, pH 7.0, 10% glycerol, 1 mM TCEP).  Reactions were initiated by 

addition of 1 mM acyl-SNAC starter unit and allowed to run for 4 h at room 

temperature.  The 500 μL reactions were quenched with 10 μL hydrochloric acid 

and extracted three times with 500 μL ethyl acetate.  Extractions were pooled and 

evaporated to dryness using a Speed-Vac.  Enzymatic products were 

resuspended in 300 μL 40% aqueous acetonitrile for HPLC analysis. 

 

2.4.4.  HPLC and UPLC-ESI-MS analysis of enzymatic products 

100 μL injections of enzymatic products were analyzed over a Prodigy 

ODS3 analytical column (4.6 x 250 mm, 5 μ, Phenomenex) by a gradient HPLC 

method using an Agilent 1200 instrument equipped with an autosampler.  

Bisolvent method: linear gradient of 20% A/80% B to 90% A over 35 min, hold 
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90% A for 10 min, followed by re-equilibration to 20% A over 5 minutes with a 10 

minute hold, where solvent A is acetonitrile + 0.1% formic acid and solvent B is 

0.1% formic acid.  UV-vis spectra were recorded over a range of 200-800 nm, and 

chromatograms recorded at 280 nm.  High-resolution mass data were obtained 

by UPLC-ESI-MS on a Waters Acquity/Xeno-G2 in positive ion mode. 

 

2.4.5.  Synthesis of acyl-SNAC substrates 

Malonyl-SNAC was produced using the malonyl-CoA synthetase MatB 

from Rhizobium leguminosarum and HPLC purified as described previously26, 32.  

The synthesis of all acyl-SNAC starter units used in this study is described in 

Appendix B. 

 

2.4.6.  Ellman’s reagent assay for acyl-SNAC hydrolysis 

 Ellman’s reagent (5,5-dithio-bis-(2-nitrobenzoic acid), DNTB) was used to 

detect the free thiol of SNAC released by SAT-catalyzed hydrolysis.  5 μM SAT, 

0.2 mM DTNB, and 1 mM hexanoyl-SNAC were combined in 100 mM potassium 

phosphate buffer, pH 7.  Absorbance at 412 nm was monitored for 1 h at 25 °C. 
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Chapter 3:  The structural organization of substrate loading 
in iterative polyketide synthases 
 
This chapter was adapted with permission from Herbst, D.A., Huitt-Roehl, C.R., 
Jakob R.P., Kravetz, J.M., Storm, P.A., Alley, J.R., Townsend, C.A., and Maier, T. 
Nat Chem Biol, submitted. 
 

3.1.  Introduction 

 Polyketide synthases (PKS) are large, multi-domain enzymes involved in 

the biosynthesis of a wide variety of pharmaceutically and agriculturally 

important natural products1.  Because of the value of many polyketide-based 

natural products, including lovastatin, erythromycin, and rapamycin, polyketide 

biosynthesis has been studied in great detail over the past several decades2.  Of 

particular interest to the Townsend lab are the fungal type I iterative non-

reducing polyketide synthases (NR-PKS)3.  In contrast to modular PKS 

(modPKS), in which multiple sets of catalytic domains, called modules, act 

sequentially in an assembly-line fashion4, the iterative PKSs (iPKSs) consist of a 

single set of domains.  This single polypeptide iteratively catalyzes substrate 

loading and elongation, with each domain catalyzing multiple reactions to form 

the polyketide.  iPKSs can be most closely compared to mammalian fatty acid 

synthase (FAS), which also acts in an iterative fashion to condense two carbon 

units into an acyl chain5.  In both cases, a ketosynthase (KS) domain catalyzes a 
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series of decarboxylative Claisen condensations to homologate 2-carbon units, 

provided as malonyl-CoA by an acyltransferase (AT, termed the malonyl-CoA 

AT (MAT) in iPKS).  All intermediates are covalently tethered to the enzyme 

through the phosphopantetheine arm of an acyl-carrier protein (ACP), which is 

post-translationally installed6.  In FAS, the polyketide is fully reduced after each 

extension by the reductive domains within the modifying region: a ketoreductase 

(KR), dehydratase (DH), enoyl-reductase (ER).  However, NR-PKSs lack any 

reductive domains, instead the reactive, poly--ketone intermediate is regio-

specifically cyclized by a product template (PT) domain7.   In addition to the PT, 

NR-PKSs contain another unique domain, the starter unit acyl-transferase (SAT), 

which selects an acyl-thioester starter unit to initiate biosynthesis8-10.  Finally, in 

both FAS and PKS, the thioesterase (TE) releases the fatty acid or cyclized 

polyketide, most commonly through hydrolysis11. 

These multidomain enzymes are incredibly challenging to study.  

Classical mechanistic enzymology cannot be employed, as PKSs contain multiple 

active sites, catalyze multiple discrete chemical reactions, and act 

intramolecularly on covalently-tethered substrates.  Furthermore, due to their 

large size and inherent structural flexibility, they are difficult to express in 

traditional heterologous hosts (e.g. E. coli) as intact constructs.  In order to 

circumvent these limitations, much of the biochemical and structural work to 
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date on PKS has been accomplished by utilizing a dissection approach, where 

domains are excised at the genetic level and expressed as smaller constructs 

consisting of 1-3 domains12.  The primary hurdle in successful dissection of PKS 

domains is determination of N- and C-terminal cut sites that will yield stable, 

active protein.  Early dissection attempts relied on limited proteolysis, where the 

relatively unstructured linker regions between domains are more readily 

proteolyzed13.  The cut sites of the resulting fragments can then be identified by 

N-terminal sequencing14.  More recently, linker regions were approximated by 

multiple sequence alignments, as their sequences are less conserved than those of 

the catalytic domains.  Ultimately, an algorithm was developed by Udwary and 

Merski to accurately predict linker regions based on sequence conservation, 

secondary structure prediction, and hydrophobicity15. 

 This domain dissection approach has allowed the functions of individual 

PKS domains to be deduced by in vitro reconstitution.  Furthermore, the 

structures of isolated monodomains have been solved for nearly all NR-PKS 

domains (SAT16, PT7, ACP17, and TE18).  Although structures of KS-AT didomains 

from modPKSs have been determined19-20, NR-PKS KS and MAT have never been 

successfully expressed as excised mono- or di-domains, despite extensive efforts.  

While isolated monodomain structures provide valuable insight into the 

mechanism of individual domains, the question remains how the domains are 
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integrated into the larger multienzyme, and how they coordinate their actions for 

the complex programming required for polyketide synthesis.  

 The X-ray crystal structure of animal FAS was first reported at 4.5 Å 

resolution in 200621, and refined to 3.2 Å in 200822.  Animal FAS forms a 

gingerbread man shaped dimer, with the ‘arms’ and ‘legs’ connected by a flexible 

linker region.  The condensing region (KS-AT) dimer, mediated by the KS, forms 

the ‘legs’, while the modifying region (DH-ER-KR-ACP-TE) dimer, mediated by 

the DH, forms the ‘arms’.  As the domain order and catalytic mechanisms are 

very similar, this breakthrough allowed the development of models of PKS 

architecture23.  Structures of isolated PKS domains, such as the DEBS KS-AT 

didomain19, resemble their FAS counterparts, further supporting animal FAS as a 

structural model for type I PKS. 

 Recently, advances in cryo-electron microscopy (EM) have pushed the 

capabilities of the technique closer to atomic resolution.  Cryo-EM, as well as 

another solution-based technique, small-angle X-ray scattering (SAXS), are well 

suited to elucidation of large PKS structures.  The inherent structural flexibility of 

PKSs has thus far precluded successful crystallization, prohibiting structure 

determination by X-ray crystallography.  However, cryo-EM and SAXS can 

accommodate more structural heterogeneity, and can be used to visualize 

enzymes in distinct conformational states24-25.  Previously, high-resolution cryo-
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EM structures were limited to large, comparatively rigid macromolecular 

complexes, such as the ribosome26-27.  However, development of direct-electron 

detectors has allowed for high-resolution structures of smaller enzymes by 

limiting noise and blurring in image collection28-29.  Recently, these advances 

allowed for the determination of a cryo-EM reconstruction of an entire PKS 

module, PikAIII30-31. 

The inherent flexibility of NR-PKSs makes crystallization or even high-

resolution structural elucidation by cryo-EM very challenging.  The resolution of 

cryo-EM is limited by the “biological resolution” of the molecule, including its 

inherent dynamics and conformational heterogeneity.  To limit structural 

flexibility, we utilized a mechanism-based crosslinking approach to lock the 

enzyme into a single conformation, as well as to observe specific ACP-client 

domain interactions32-35.  Using a selectively reactive substrate mimic, the ACP 

can be covalently crosslinked to the active site of select client domains, without 

off-target reactions.  This technique has been used previously to observe the 

interaction between an AT and an ACP involved in vicenistatin biosynthesis at 

2.3 Å resolution36.  Similarly, a mechanism-based crosslinker was used to 

interrogate residues involved in PT-ACP binding in an NR-PKS37. 

CTB1 is the NR-PKS involved in the first step of cercosporin 1 

biosynthesis in the fungal plant pathogens Cercospora spp., which cause 
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hundreds of millions of dollars in agricultural loss each year38-39.  Cercosporin is a 

perylenequinone natural product that facilitates Cercospora infection by acting as 

a photosensitizer, producing reactive oxygen species upon activation with visual 

light40-42.  The domain architecture and chemistry of CTB1 is prototypical of a NR-

PKS, as described above, with the exception of an additional ACP domain and 

unusual TE activity (Figure 3.1a).  The CTB1 TE catalyzes lactonization, rather 

than the more typical hydrolysis, to release the pyrone nor-toralactone 2 (Figure 

3.1b)43. 
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Figure 3.1.  CTB1 biosynthesis.  (a) Domain organization of CTB1.  Active site residues are 
indicated within each domain.  Wavy bonds on ACPs indicate the post-translationally installed 
phosphopantetheine arm.  (b) Synthesis of nor-toralactone by CTB1.  Bonds formed by specific 
domains are color coded and bolded for emphasis. 
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3.2.  Results 

3.2.1.  Mechanism-based crosslinking of CTB1 

 In this study, we chose to crosslink the CTB1 SAT-KS-MAT to its cognate 

ACP at the KS active site.  The SAT-KS-MAT, or loading and condensing region, 

is catalytically active as the isolated tridomain in cognate and non-native 

reactions44-45.  ACP2 was selected over ACP1 as it shares a higher sequence 

identity to PksA ACP (40% for ACP2, 30% for ACP1), for which a solution 

structure has been determined17.  Additionally, the ACP1 monodomain shows 

poor expression and stability, even following cut-site optimization.  ACP1 and 

ACP2 were shown to be biosynthetically equivalent in vitro in minimal PKS 

reactions (SAT-KS-MAT + ACP) (Figure 3.2).  Both ACPs produce identical 

product profiles, and although ACP1’s overall production is slightly lower (likely 

due to protein instability), there is no observed cooperativity when the two ACPs 

are combined. 
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Figure 3.2.  Comparison of biosynthetic capabilities of CTB1 ACP1 and ACP2.  (a) HPLC 
chromatograms (280 nm) of product profiles of minimal CTB1 reactions with ACP1 (10 μM), 
ACP2 (10 μM), or both (5 μM each).  (b) UV-vis spectra of select derailment products.  When 
possible, products were characterized on the basis of exact mass and UV-vis chromophore.  (c) 
Exact masses of select derailment products determined by UPLC-ESI-MS. 
 

 
 To covalently attach CTB1 ACP2 to its client domain(s), a mechanism-

based crosslinker mimicking the native acetyl-phosphopantetheine substrate was 
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prepared.  In the native system, an acetyl starter unit is selected from the pool of 

primary metabolites as acetyl-CoA by CTB1 SAT and loaded onto the post-

translationally installed phosphopantetheine arm of the ACP (holo-ACP) (Figure 

3.3a).  For crosslinking, we prepared an α-bromoacetyl aminodephospho-CoA 

substrate mimic 8, where the native thioester has been substituted by an amide 

for stability, and an α-bromo group has been installed to facilitate irreversible 

attack by the active site cysteine, covalently linking the ACP to its client domain.  

Unfortunately, the acetyl substrate mimic proved to be too reactive, likely due to 

the primary halogen, and could not be loaded onto CTB1 ACP2 (Figure 3.3b).  A 

less reactive α-bromopropionyl aminodephospho-CoA 9 was used in place of 8, 

as CTB1 SAT has been shown to transfer propionyl groups, albeit at a lower rate 

than acetyl (Figure 3.3c)10.   
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Figure 3.3.  Loading of ACP with its native acetyl-CoA substrate (a), an α-bromo-acetyl substrate 
mimic (b) and an α-bromo-propionyl substrate mimic (c). 
 
 

All crosslinkers were prepared synthetically to the acyl aminopantetheine 

stage 10, followed by enzymatic transformation to the dephospho-CoA 9, by way 

of an aminophosphopantetheine intermediate 11 (Figure 3.4).   This enzymatic 

transformation is accomplished by two enzymes involved in CoA  

biosynthesis: pantetheine kinase (PanK)46 and phosphopantetheine 

adenyltransferase (PPAT)47.  A promiscuous phosphopantetheinyl transferase 

involved in surfactin biosynthesis (Sfp) is then used to transfer the crosslinker 

onto apo ACP48.  The α-bromopropionyl crosslinker 9 was successfully loaded 
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onto apo CTB1 ACP2, however, a significant amount of optimization of the 

process was required.  Intermediates, particularly the phosphopantetheine mimic 

11, were difficult to isolate.  High-performance liquid chromatography (HPLC) 

purification of 11 resulted in <10% recovery, likely because the phosphates 

cannot be fully protonated under typical HPLC conditions (0.1% TFA).  

Therefore, a one-pot enzymatic process was developed.  First, the synthetically 

prepared α-bromopropionyl aminopantetheine 10 was phosphorylated with 

PanK.  Once this reaction went to completion (as determined by UPLC-MS), 

PPAT, Sfp, and CTB1 ACP2 were added to adenylate the phosphopantetheine 

mimic 11 and load it onto the ACP.  Phosphorylation of the 3’ position of the 

ribose ring, to fully mimic native CoA, was eliminated.  The required enzyme 

(dephospho-CoA kinase, DPCK) was found to be difficult to work with, and the 

ACP loading reaction with Sfp does not require the 3’ phosphate. 
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Figure 3.4.  Enzymatic preparation of crosslinker-loaded ACP. 
 
 

Crosslinker-loaded CTB1 ACP2 was successfully crosslinked to two of its 

client domains within the loading and condensing region: SAT and KS.  

However, no crosslinking to the MAT was observed, likely due to the lesser 

nucleophilicity of the active site serine in comparison to cysteine.  In order to 

ensure selective crosslinking to a single client domain, double active-site mutants 

were prepared (C119A-S1010A (SAT°-KS-MAT°) for KS crosslinking, and 

H688A-S1010A (SAT-KS°-MAT°) for SAT crosslinking).  The cysteine to alanine 
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mutation in the KS yielded insoluble protein, so alanine and more conservative 

glutamine mutations to the other two members of the catalytic triad (H688 and 

H733) were attempted.  Of these mutations, one (H688A) was found to block 

crosslinking to the KS domain.  Selective crosslinking with this mutant was 

confirmed by attempted crosslinking to the C119A-H688A-S1010A mutant, 

which was completely blocked. 

 Crosslinking to the SAT domain is markedly slower than to the KS 

domain, likely due to both the inherent reactivity of the domains, and the non-

native propionyl substrate mimic.  Consequently, preparation of 100% 

crosslinked sample was more straight forward in the case of KS crosslinking, and 

the KS crosslinked sample (SAT°-KS-MAT°=ACP2, = denotes crosslinking) was 

chosen to move forward with structural elucidation.  To achieve 100% 

crosslinking, extended (16 h) treatment of the client domains with reductant and 

a large excess of ACP2 was required.  When CTB1 SAT-KS-MAT is in its native 

dimeric state (in the presence of 250 mM NaCl), 50% crosslinking is favored (1:2 

ACP:SKM stoichiometry) (Figure 3.5). 
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Figure 3.5.  Crosslinking time course.  Crosslinking of ACP2 to SAT°-KS-MAT° in presence (a) or 
absence (b) of 250 mM NaCl.  (c) Quantification of extent of crosslinking by densitometry measurements.  
Data presented as mean +/- s.e.m. 
 

 
 Selective crosslinking to the KS active site, rather than non-specific 

crosslinking to a surface residue, was confirmed by a competition assay with 

radiolabeled acetyl-CoA.  CTB1 SAT-KS-MAT was incubated with crosslinker-

loaded ACP (or α-bromopropionyl aminophosphopantetheine 11) for one hour 

prior to treatment with [1-14C]-acetyl-CoA.  Pre-incubation with 11 or crosslinker-

loaded ACP blocked radiolabeling of the protein, suggesting specific crosslinking 

to the KS active site (Figure 3.6).  Additionally, only a single crosslinking event 
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was observed by SDS-PAGE (Figure 3.5), confirming a single ACP covalently 

crosslinked specifically to the KS active site of each SAT-KS-MAT monomer. 

Figure 3.6.  [1-14C]-acetyl-CoA competition assay.  Incubation with crosslinker 11 or crosslinker-
loaded ACP (indicated above gel) blocked labelling of CTB1 SAT°-KS-MAT° with [1-14C]-acetyl-
CoA. 
 

 
 To obtain a more complete picture of the loading and condensing region’s 

interaction with ACP2, CTB1 SAT-KS°-MAT° crosslinked at the SAT domain was 

prepared for structural elucidation.  Based on the prior observation of preferred 

single-site ACP binding, we sought to prepare a sample in which only a single 

ACP2 is bound to each SAT-KS-MAT dimer.  To accomplish this task, 

crosslinking was performed in the absence of salt, at a slightly lower 

concentration of ACP2, for one hour.  At this point, approximately 50% of the 

SAT-KS-MAT monomer had been crosslinked (as determined by SDS-PAGE), 

and 250 mM NaCl was added to the reaction to significantly slow the rate of 

crosslinking.  Rather than the multi-step purification performed on the KS-

crosslinked sample, a streamlined, one step purification was utilized for the SAT-

crosslinked sample, since removal of free SAT-KS-MAT was unnecessary (see 

Methods for details).  The crosslinking reaction was purified by size-exclusion 
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chromatography, removing all free ACP2 or other contaminants.  SDS-PAGE of 

the final crosslinked protein following purification confirms the desired 

stoichiometry of 1:2 ACP2:SAT-KS-MAT.  This optimization of the preparation of 

crosslinked material increased final protein yield from 4% to 50%. 

 
3.2.2.  Structure of CTB1 SAT-KS-MAT 

 The structure of CTB1 SAT-KS-MAT was solved by X-ray crystallography 

to 2.8 Å (Figure 3.7, Appendix Table C.1).  The dimeric protein is compact and of 

rhomboid shape.  Dimerization is primarily mediated by the KS domains, each of 

which is connected to its MAT domain through a small linker domain (LD) 

(Figure 3.7a).  The architecture of the KS-LD-MAT domains, as well as their 

individual structures, is consistent with related structures solved by X-ray 

crystallography: mammalian FAS (mFAS)22, 49, fully-reducing iPKS50, and several 

modPKSs19-20, 51.  However, the arrangement of these domains is markedly 

different in the structure of the PikAIII modular PKS, determined by cryo-EM at 

intermediate resolution30-31. 

 The SAT resembles other ATs, containing an α/ hydrolase core fold and a 

ferredoxin-like subdomain, between which lies a cleft containing the active site.  

The SAT domains form a pseudo-dimer, arranged at 35° relative to the KS-MAT 

dimer (Figure 3.7b), where the direct interface of 324 Å2 is hydrophobic, lacking 

any hydrogen bonds or salt bridges (Appendix Table C.2).  However, 
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interactions with surrounding domains considerably stabilize this pseudo-dimer.  

The 26 amino acid (aa) linker between the C-terminus of the SAT and N-terminus 

of the KS binds a surface groove on the opposite SAT, adding 493 Å2 to the 

interface (Figure 3.7c).  While 9 aa of this linker is disordered and thus not 

visualized in the crystal structure, its connectivity is unambiguous based on 

relative distances to the resolved portions.  An additional 957 Å2 interface is 

formed between the SAT and the MAT of the opposite protomer, containing at 

least two salt bridges and five hydrogen bonds.  The SAT also interfaces with the 

opposite KS domain (184 Å2), however, it does not contact the opposite LD.  

Notably, the SAT domain is located within the cleft formed by the KS and MAT 

of the opposite protomer, in a position analogous to proposed interactions of 

upstream ACPs with KSs in modPKSs (Figure 3.7d)52.  The entrance to each SAT 

active site points into this cleft, at a distance of 56 Å from the opposite KS active 

site.   
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Figure 3.7.  Crystal structure of CTB1 SAT-KS-MAT. (a) Cartoon representation of the SAT-KS-
MAT crystal structure (front view); the intertwined domain connectivity is indicated in the inset.  
Active sites and N- and C-termini are indicated by circles. (b) Top view of SAT-KS-MAT, 
domains are shown in surface representation, linkers as cartoon.  Active sites, termini, and 
twofold axis are indicated as in (a), the angle between the longest axes of the KS-LD-MAT and 
SAT (pseudo-) dimers is indicated.  (c) The SAT-KS linker.  Bottom view of the crystal structure 
as in (b) highlighting the connectivity of the SAT-KS linker and Euclidean distances.  The inset 
provides a close-up view from the side of the C-terminal region of the SAT-KS linker involved in 
contacts to KS’ and SAT.  An Fo-Fc shaked omit difference map is shown at 2.5.  (d) Interdomain 
interfaces between the SAT domains and the KS-LD-MAT region of CTB1 are mapped onto a 
split-surface representation of the SAT-KS-MAT structure by coloring according to the interaction 
partner.  The SAT domains have been separated from the KS-LD-MAT for representation. 
 

The N-terminus of the SAT and C-terminus of the MAT are located close 

to the twofold axis on opposite ends of the molecule (Figure 3.7a).  Therefore, 

while CTB1 functions as an isolated iPKS, its domain arrangement is consistent 

with that required for connectivity in an assembly line.  The only other known 

structure of a NR-PKS SAT, CazM SAT, shows similar domain connectivity to 
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that of CTB1 SAT16.  The structure of CazM SAT, determined by X-ray 

crystallography as an isolated monodomain, shows its C-terminal linker 

terminating close to the position of CTB1 SAT’s, despite a lack of sequence 

conservation (Appendix Figure C.1).  This linker architecture is notably distinct 

from that of the isolated loading AT domain from the avermectin modPKS 

(AVES1)53, which has a distinct domain organization where the loading AT 

connects to an ACP, rather than a KS.  In fact, the AVES1 loading AT linker 

architecture more closely resembles the post-MAT linker in PKS and FAS 

condensing regions.  These domain arrangements and distinct linker 

architectures support a specific, conserved organization among NR-PKS loading 

domains. 

 

3.2.3.  Structure of CTB1 SAT-KS-MAT=ACP2 

 Through mechanism-based crosslinking, CTB1 SAT°-KS-MAT° was 

covalently linked with CTB1 ACP2 to observe specific KS-ACP interactions and 

observe the impact of this interaction on the overall domain architecture.  

Crosslinked CTB1 SAT°-KS-MAT°=ACP2 was visualized by cryo-EM at 7.1 Å 

resolution (Figure 3.8, Appendix Table C.1).  This map was interpreted by rigid 

body and real space refinement using an all-atom model based on the crystal 

structure of CTB1 SAT-KS-MAT and a homology model of CTB1 ACP2 based on 
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the PksA ACP solution structure17.  Due to the limited resolution, and the 

absence of an authentic high-resolution structure, the analysis for ACP2 is 

restricted to conserved structural elements (Appendix Figure C.2, see Methods 

for details).  Single-particle processing including reference-free maximum 

likelihood classification provided a single, predominant conformation of SAT°-

KS-MAT°=ACP2 (for details see Methods).  Surprisingly, while the SAT°-KS-

MAT° was approximately 95% crosslinked to ACP2 (as determined by SDS-

PAGE), only a single ACP was resolved in the structure (Figure 3.8a-c, Appendix 

Figure C.3).  Additionally, the overall structure is asymmetric, with changes in 

domain architecture varied between the apparent crosslinked- and non-

crosslinked protomers (Figure 3.8a-c).  ACP2 is bound in a cleft between the LD 

and the KS/KS’ dimer, with the DSL motif bearing the aminophosphopantetheine 

substrate mimic (located at the N-terminal end of helix II) in close proximity to 

the KS active site entrance (Figure 3.8d).  While no ACP was resolved at the 

second KS active site entrance, the binding surface residues of the second KS are 

more disordered (Appendix Figure C.4), consistent with disordered binding of 

the second ACP.   
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Figure 3.8.  Asymmetric cryo-EM structure of CTB1 SAT°-KS-MAT°=ACP2. (a) Reconstructed 
volume and model of SAT°-KS-MAT°=ACP2 in front and top view.  The canonical four helix 
bundle of CTB1 ACP2 is shown.  All maps are contoured at 7.1.  (b,c) Close-up of the active site 
(indicated in (a)) regions of the two KS domains with (b) or without (c) resolved ACP2.  (d) 
Location of residues on SAT°-KS-MAT° interacting with ACP2 as structure and schematic 
representation.  In the scheme, the approximate position of the KS active site tunnel and the 
crosslinker-modified serine in ACP2 are indicated.  (e) Functional analysis of CTB1 SAT-KS-MAT 
mutants of ACP2 interacting residues.  Nor-toralactone production was quantified by integrated 
peak areas of HPLC chromatograms at 280 nm (mean +/- s.e.m.).    
 

 
 The structure of SAT°-KS-MAT°=ACP2 is considerably more asymmetric 

than the SAT-KS-MAT crystal structure, strongly suggesting ACP2 binding 

causes an asymmetrical conformational shift across the SAT-KS-MAT dimer.  In 

the crosslinked structure, the individual SAT domains are translocated towards 

the KS domains (Appendix Figure C.5).  The proximal SAT moves towards the 

KS by 6.9 Å, while the opposite SAT moves 4.5 Å towards the opposite KS-MAT 

region.  Additionally, the LD and MAT closest to the resolved bound ACP move 

upward by 4.4 Å and 8.4 Å, respectively (Figure 3.10).  Together, these 

movements open the interface between the proximal SAT and MAT domains and 

enlarge the SAT-KS interface (Appendix Figure C.5).  Since only one ACP is 
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resolved in the cryo-EM structure of the 95% crosslinked sample, these 

asymmetric conformational changes upon the first ACP binding likely disfavor 

ordered and competent binding of the second ACP.  This negative feedback is 

consistent with the observed kinetic preference for 50% crosslinking (Figure 3.5), 

as well as activity assays of crosslinked samples of a related NR-PKS.  When 50% 

crosslinked, Pks4 exhibits only 20% activity instead of the expected 50%, relative 

to a non-crosslinked sample32. 

 

3.2.4.  Mutagenic validation of KS-ACP binding region 

  Using the higher resolution crystal structure of SAT-KS-MAT, amino 

acids involved in ACP binding can be identified on the KS and LD.  However, 

the limited resolution of the crosslinked EM structure makes assignment of 

interface amino acids of ACP2 less well defined.  Three positively charged 

residues were identified on the SAT-KS-MAT surface and proposed to interact 

with acidic patches on ACP2 (Figure 3.8d).  Residue R879, located within the LD, 

interacts with the loop connecting helix I and II in ACP2.  Consistent with this 

proposal, production of nor-toralactone in in vitro reconstitution experiments 

with R879A and R879E is reduced, but not completely abolished (Figure 3.8e).  

Conversely, the KS-ACP interaction mediated by two arginines at the KS/KS’ 

active site entrance appears to be more crucial for productive biosynthesis.  R461 
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is strictly conserved in NR-PKSs (Appendix Figure C.6), and may interact with 

the acidic patch consisting of E1794 and E1795.  Mutation of R461 to alanine 

reduces nor-toralactone production, while mutation to glutamate completely 

abolishes it (Figure 3.8e).  R658’ is proposed to interact with D1815 within the 

DSL motif and/or the phosphate of the phosphopantetheine arm, and is 

conserved as a positively charged residue in the CTB1 clade (Appendix Figure 

C.6).  This residue appears to be most critical in mediating ACP binding, as the 

R658A mutation drastically reduces nor-toralactone production, while 

production in reactions with R658E is abolished (Figure 3.8e).  Analysis of 

mutations to proposed binding residues within ACP2 is more complicated, as the 

ACP must interact with multiple client domains, even in a minimal PKS reaction 

(SAT-KS-MAT + ACP).  However, we can infer perturbation of KS-ACP 

interaction if the minimal reconstituted PKS is capable of synthesizing short-

chain (e.g. triacetic acid lactone 3), but not fully extended derailment products 

(e.g. 4-7).  Mutagenesis of proposed binding residues of ACP2 demonstrated only 

two residues that perturb KS-ACP binding when individually mutated, E1794 

and D1815 (Figure 3.9).  However, these residues exist in acidic patches on the 

ACP2 surface, and multiple ACP residues are likely involved in interactions with 

a single residue on the KS/LD. 
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Figure 3.9.  Quantification of derailment product production by ACP2 mutants in a minimal PKS 
reaction.  Integrated peak areas were calculated from HPLC chromatograms at 280 nm in 
triplicate, and are shown as mean +/- s.e.m.  See Figure 3.2 for derailment product 
characterization. 
 

3.3. Discussion 

 Two previous examples of KS-ACP interaction within a multienzyme 

have been visualized: a crystal structure of yeast FAS (yFAS) at 3.1 Å resolution54 

and a cryo-EM reconstruction of a modPKS, PikAIII, at 8.6 Å and 7.3 Å30.  In both 

structures, the observed ACP interactions were strictly symmetrical, in contrast 

to the asymmetric interactions observed in CTB1 SAT°-KS-MAT°=ACP2.  Only 

the heterododecameric yFAS fulfills the distance restraints for symmetric ACP 

interaction, with solvent accessible surface (SAS) distance from the ACP serine 

bearing the phosphopantetheine arm to the KS active site cysteine of 

approximately 27 Å, similar to the corresponding distance in SAT°-KS-

MAT°=ACP2 of 28 Å (Appendix Figure C.7c, f-i).  Conversely, the SAS distances 

between ACP and KS in PikAIII are non-productive (45.2 Å and 43.3 Å) 

(Appendix Figure C.7h, i).  Consistent with this observation, the position and 
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orientation of ACP relative to KS is conserved between yFAS and CTB1 

(Appendix Figure C.7b), but is considerably different between PikAIII and CTB1 

(Appendix Figure C.7d,e).  The ACP docking surface observed in CTB1, and 

verified by mutant activity assays in reconstitution experiments, is partially 

blocked in PikAIII due to the divergent location of the LD domain (Appendix 

Figure C.7d,e).  The PikAIII structure also reveals symmetric large scale 

conformational transitions with the requirement for partial refolding of 

conserved domains, in contrast to asymmetric conformational changes derived 

by local hinge-bending or shear motions observed in CTB1 SAT°-KS-

MAT°=ACP2, as well as a highly-reducing iPKS and modPKS50.  These latter 

conformational changes maintain the individual domain structures, key 

conserved interfaces, and the overall interdomain architecture. 

Given the asymmetric conformational changes observed upon ACP 

binding, we propose that the loading and condensing region acts analogously to 

a V-twin engine, where conformational coupling between the two sets of active 

sites in the dimer is mediated by ACP binding (Figure 3.10).  ACP binding to the 

KS of one protomer within the SAT-KS-MAT dimer results in an asymmetric 

conformational change which disfavors binding to the KS of the second 

protomer.  This conformational coupling is consistent with biochemical 

demonstration of preferential single-site ACP loading in CTB1 and Pks432.  
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Furthermore, a related seesaw-type conformational coupling has been observed 

in FabZ, a hexameric dehydratase involved in fatty acid biosynthesis55.  In this 

system, the dehydratase binds ACPs in a 6:3 ratio.  We propose that this 

conformational change favors ACP binding to one of the other client domains, to 

allow for controlled programming of loading and condensing, where substrate 

(malonyl-CoA) loading by the MAT alternates with elongation by the KS on 

either side of the PKS dimer.  Since domains (including SAT-KS-MAT 

tridomains) can be productively swapped between NR-PKS in in vitro 

reconstitution experiments, this V-twin engine-like mechanism of ACP-mediated 

conformational coupling may be representative of many NR-PKS44-45. 

 

Figure 3.10.  Schematic illustration of suggested modes of conformational coupling in CTB1.  
ACP2 preferentially binds to a single KS active site.  ACP2 binding results in coupled 
conformational changes across the dimeric CTB1, disfavoring productive KS-ACP2 interaction in 
the other ptotomer and re-aligning active sites for ACP2 interaction and substrate shuttling.  Such 
conformational coupling resembles a V-twin engine mechanism for alternating KS-ACP2 
interactions.  Additional regions of complete CTB1 and other NR-PKS, in particular the dimeric 
PT domains, to which ACPs are linked, could contribute to such a coupling mechanism. 
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3.4.  Experimental Methods 

3.4.1.  Preparation of expression constructs 

All plasmids used in this study are summarized in Appendix Table C.3.  

The plasmids for expression of wild-type CTB1 SAT-KS-MAT (pECTB1-NKA6), 

PT (pECTB1-PT), and TE (pECTB1-TE) have been previously described43.  

Primers used for assembly of new plasmids in this study are detailed in 

Appendix Table C.4.  All expression constructs were prepared and maintained in 

E. coli BL21(DE3).  Cut sites for CTB1 ACP2 deconstruction were chosen based on 

the PksA ACP solution structure17.  CTB1 ACP2 was cloned as an N-terminal 

Thrombin-cleavable His6-tagged construct to allow for differential purification 

throughout the crosslinking process.  The desired gene sequence was amplified 

by PCR from pECTB1-ACP (tandem ACP, previously described)43 using CTB1-

ACP2-5 and CTB1-ACP2-stop-3, and ligated into pET-28a at NdeI and NotI sites 

using T4 DNA ligase.  Active-site mutations for selective crosslinking were 

introduced into pECTB1-NKA6 by Gibson assembly56 of PCR-amplified 

fragments using standard protocol, giving pECTB1-SKM-C119A-S1010A and 

pECTB1-SKM-H688A-S1010A.  Mutations to CTB1 SAT-KS-MAT and ACP2 for 

interface validation were introduced via Gibson assembly in the same manner.  

Assembled plasmids were screened by restriction digestion and sequences 
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confirmed by the Johns Hopkins Synthesis and Sequencing Facility (Baltimore, 

MD).  Sequencing revealed the point mutation T321A (compared to Uniprot 

Q6DQW3) in all SAT containing constructs. 

 

3.4.2.  Protein expression and purification for crosslinking and interface 
validation 
 

All proteins were expressed in E. coli BL21(DE3).  One liter Terrific Broth 

cultures supplemented with 25 μg/mL kanamycin (GoldBio) were inoculated 

with overnight starter cultures, and grown at 37 °C with shaking at 250 rpm until 

OD600 reached 0.7.  Cultures were cold-shocked in ice water for 1 h prior to 

induction with 0.5 mM IPTG (GoldBio).  Expression was carried out at 19 °C with 

shaking at 250 rpm for approximately 16 h.  Cells were harvested by 

centrifugation at 4,000 x g for 15 min and flash frozen in liquid nitrogen for 

storage at -80 °C. 

Cell pellets were thawed in lysis buffer A (50 mM potassium phosphate, 

pH 8, 300 mM NaCl, 10% (v/v) glycerol) and lysed by sonication.  Lysate was 

cleared by centrifugation at 27,000 x g for 25 min.  The resulting supernatant was 

batch bound to Co2+-TALON resin (Clontech) at 4 °C, typically for 1 h.  The 

protein-bound resin was applied to a gravity-flow column and washed and 

eluted with lysis buffer containing increasing concentrations of imidazole (0-100 

mM), as directed by the manufacturer.  Fractions containing the protein of 
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interest were pooled and dialyzed against the appropriate buffer (50 mM Tris pH 

7.5, 5% (v/v) glycerol unless otherwise indicated) at 4 °C.  For dialysis of CTB1 

SAT°-KS-MAT°, 1 mM DTT was included to maintain the KS active-site cysteine 

in its reduced form.  If necessary, the protein was concentrated in Amicon Ultra 

centrifuge filters of appropriate molecular weight cut-off (Millipore).  Protein 

concentration was quantified based on absorbance at 280 nm on a Cary 50 UV-

Vis spectrophotometer and extinction coefficients calculated using Expasy 

ProtParam (Appendix Table C.3). 

 

3.4.3.  Expression and purification of CTB1-SAT-KS-MAT for crystallization 

C-terminal hexa-histidine (His6) tagged CTB1 SAT-KS-MAT (pECTB1-

NKA6, aa 1-1293) was overexpressed with Streptomyces chaperonins (pETcoco-

2A-L1SL2 plasmid)57 in E. coli BL21(DE3) pRIL.  Cells were cultured in 2xYT 

medium, supplemented with 0.5 % (v/v) glycerol, NPS (25 mM (NH4)2SO4, 50 

mM KH2PO4, 50 mM Na2HPO4), kanamycin (100 μg/mL), chloramphenicol (34 

μg/mL), and ampicillin (100 μg/mL).  An expression culture (1.5 L) was 

inoculated (1:20), grown at 37 °C for 2 h, cooled to 20 °C, and induced with IPTG 

(0.1 mM) at an OD600 of 1.0.  Cells were harvested after 12 h by centrifugation 

(7,000 x g) and resuspended in lysis buffer B (50 mM HEPES pH 7.4, 200 mM 

NaCl, 2.5mM MgCl2, 40 mM imidazole, 10% (v/v) glycerol, 5 mM β-
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mercaptoethanol), supplemented with protease inhibitors (200 μM 

phenylmethylsulfonyl fluoride, 20 μM bestatin, 4 μM E64, 2 μM pepstatin A, 20 

μM phenantrolin, 2 μM phosphoramidon) as well as DNase I, RNase A, and 

lysozyme.  Cells were placed on ice and lysed by sonication.  The lysate was 

cleared by centrifugation (100,000 x g, 30 min) and immobilized by metal-affinity 

chromatography on a 25 mL Ni-affinity column (GenScript) pre-equilibrated 

with lysis buffer.  Unbound protein was eluted with five column volumes (CV) 

of HisA buffer (50 mM HEPES pH 7.4, 200 mM NaCl, 2.5mM MgCl2, 40 mM 

imidazole, 10% (v/v) glycerol, 5 mM β-mercaptoethanol, protease inhibitors).  

The sample was eluted with a linear gradient to 100% HisB buffer (50 mM 

HEPES pH 7.4, 500 mM imidazole, 50 mM NaCl, 10%(v/v) glycerol, 2.5 mM β-

mercaptoethanol, and protease inhibitors) and directly loaded on a strong anion 

exchange column (PL-SAX 4,000 Å, 10 μm, Agilent).  The protein was eluted with 

a linear gradient from 0% AIC-A (50 mM HEPES pH 7.4, 50 mM NaCl, 10% (v/v) 

glycerol, 2.5 mM β-mercaptoethanol) to 100% AIC-B (50 mM HEPES pH 7.4, 1 M 

NaCl, 10% (v/v) glycerol, 2.5 mM β-mercaptoethanol).  The protein was 

concentrated using Amicon Ultra centrifuge filters (10K MWCO, Millipore) and 

subjected to size exclusion chromatography (SEC) (Superdex 200 16/60, GE 

Healthcare) using 20 mM HEPES pH 7.4, 250 mM NaCl, 5% glycerol (v/v), 1 mM 

dithiothreitol.  Protein-containing fractions were pooled and concentrated in 
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Amicon Ultra centrifuge filters (10K MWCO, Millipore) to 10-15 mg/mL and 

frozen in liquid nitrogen. 

 

3.4.4.  Proteolysis of tag from CTB1-ACP2-His 

To facilitate separation of ACP2 from both crosslinker loading reactions 

and crosslinking reactions, the N-terminal His6-tag was removed by thrombin 

proteolysis using a Thrombin CleanCleave Kit (Sigma Aldrich).  The thrombin 

agarose resin was washed with reaction buffer (50 mM Tris pH 8, 10 mM CaCl2) 

and conditions were optimized as recommended by the manufacturer.  Complete 

cleavage was achieved using approximately 100 μL thrombin agarose resin per 

50 mg CTB1-ACP2 at 2 mg/mL CTB1-ACP2 in reaction buffer.  Reactions were 

rotated for 3 h at 25 °C.  Cleavage was monitored by SDS-PAGE and confirmed 

by MALDI-TOF (Bruker Auto Flex III).  Cleaved CTB1-ACP2 was isolated by 

brief centrifugation at 500 x g to pellet the thrombin resin and dialyzed in 50 mM 

Tris pH 7.5, 5% (v/v) glycerol at 4 °C. 
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3.4.5.  Synthesis of α-bromopropionyl aminopantetheine (10) 

Figure 3.11: Synthesis of crosslinker 10. 

 

All reagents were purchased from Sigma-Aldrich (St. Louis, MO) unless 

otherwise indicated. 

Benzyl tert-butyl ethane-1,2-diyldicarbamate (12):  In a 500 mL round-bottomed 

flask, N-Boc-ethylenediamine (14 mL, 88.5 mmol) was stirred in anhyd. DCM 

(200 mL) under argon.  Triethylamine (16 mL, 113.9 mmol) was added, followed 
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by slow addition of Cbz-Cl (15 mL, 105 mmol).  DMAP (1.1 g, 8.9 mmol) was 

added, and the solution was stirred at room temperature overnight.  The reaction 

was quenched by the addition of a saturated aqueous solution of NH4Cl (100 

mL).  The aqueous layer was washed with EtOAc (3×50 mL).  The combined 

organic extracts were dried over anhyd. Na2SO4.  Crystallization proceeded 

spontaneously upon concentration on a rotary evaporator and the resulting solid 

was filtered on a glass frit to give N-Boc,N’-Cbz-ethylenediamine 12 (23.1 g, 79.7 

mmol, 90%) as a white solid.  1H NMR (400 MHz, CDCl3): δ 7.35-7.33 p.p.m. (m, 

5H), 5.09 (s, 2H), 3.29-3.24 (m, 4H), 1.42 (s, 9H).  13C{1H} NMR (101 MHz, CDCl3): 

δ 136.41, 128.44, 128.04, 128.01, 79.46, 66.65, 45.71, 41.38, 40.52, 28.29, 8.51.  UPLC-

HRMS (ESI) calc’d for C15H22N2O4Na+ 317.1472; found 317.1471 [M+Na]+. 

(S)-3-(2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamido)propanoic acid (13): D-

pantothenic acid hemicalcium salt (11 g, 46.2 mmol) and p-toluene sulfonic acid 

hydrate (17 g, 100 mmol) were added to acetone (200 mL) in a flame-dried, 

round-bottomed flask under argon.  Molecular sieves (4 Å, 200 g) were added, 

and the reaction mixture was stirred vigorously enough to break up the sieves.  

The reaction was run overnight at room temperature.  The sieves were filtered off 

through a bed of Celite.  The solution was concentrated by rotary evaporation 

and the resulting syrup was redissolved in EtOAc (100 mL).  The organic 

solution was washed with brine (2×50 mL) and dried with anhyd. Na2SO4.  The 



96 
 

solution was concentrated partially in vacuo, and hexanes were added.  The ketal-

protected pantothenic acid 13 (7.64 g, 29.4, 64%) precipitated as a white solid 

upon concentration to dryness.  1H NMR (400 MHz, CDCl3): δ 7.06 p.p.m. (t, J = 

5.6 Hz, 1H), 4.10 (s, 1H), 3.67 (d, J = 11.6 Hz, A of ABq, 1H), 3.61-3.56 (m, 1H), 

3.50-3.44 (m, 1H), 3.27 (d, J = 11.6 Hz, B of ABq, 1H), 2.59 (t, J = 6.0 Hz, 2H), 1.39 (s, 

3H), 1.37 (s, 3H), 0.96 (s, 3H), 0.91 (s, 3H).  13C{1H} NMR (101 MHz, CDCl3): δ 

176.32, 170.22, 99.04, 77.00, 71.35, 34.08, 33.77, 32.92, 29.34, 21.96, 18.78, 18.66.   

UPLC-HRMS (ESI) calc’d for C12H21NO5Na+ 282.1312; found 282.1312 [M+Na]+. 

Benzyl (2-aminoethyl)carbamate (14):  To a 250 mL round-bottomed flask 

containing DCM:TFA (30 mL:15 mL) was added 12 (10 g, 34 mmol).  The solution 

was stirred for 2 h at room temperature.  The reaction mixture was diluted with 

toluene, and concentrated by rotary evaporation three times to give Cbz-

ethylenediamine 14 (6.27 g, 32.3 mmol, 95%) as a yellow oil, which was taken 

directly to the next reaction.  The observed spectral data matched those data 

reported previously58. 

Benzyl (S)-(2-(3-(2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamido)propanamido) 

ethyl)carbamate (15):  In a flame-dried, round-bottomed flask, 13 (8 g, 30.6 

mmol), 14 (6.6 g, 34 mmol) and triethylamine (9.48 mL, 68 mmol) were dissolved 

in DCM (300 mL).  The solution was cooled to 0 ℃ in an ice bath.  PyBOP (19.45 

g, 37.4 mmol) was added in one portion.  The reaction mixture was stirred for 3 
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h, and allowed to warm to room temperature.  The reaction was quenched by the 

addition of a saturated aqueous solution of NH4Cl (150 mL).  The aqueous layer 

was extracted with EtOAc (2×100 mL) and the combined organic extracts were 

dried over anhyd. Na2SO4, followed by concentration by rotary evaporation.  A 

white solid precipitated from the solution and was filtered off.  The remaining oil 

was fractionated by flash silica chromatography (100% EtOAc) to afford pure, 

diprotected Cbz-aminopantetheine 15 (9.32 g, 21.4 mmol, 70%) as a colorless 

solid, which was recrystallized from EtOAc/Hexanes.  1H NMR (400 MHz, 

CDCl3): δ 7.25 p.p.m. (m, 5H), 7.05-7.02 (m, 2H), 5.92 (s, 1H), 5.00 (s, 2H), 3.98 (s, 

1H), 3.57 (d, J = 11.7 Hz, A of ABq, 1H), 3.42 (septet, J = 6.6 Hz 2H), 3.30-3.21 (m, 

4H), 3.17 (d, J = 11.7 Hz, B of ABq, 1H), 2.33 (t, J = 6.4 Hz, 2H), 1.38 (s, 3H), 1.32 (s, 

3H), 0.92 (s, 3H), 0.88 (s, 3H).  13C{1H} NMR (101 MHz, CDCl3): δ 171.69, 170.39, 

157.04, 136.37, 128.49, 128.14, 128.10, 99.09, 77.09, 71.32, 66.81, 40.81, 40.13, 36.12, 

34.79, 32.90, 29.40, 22.05, 18.81, 18.64.  UPLC-HRMS (ESI) calc’d for C22H34N3O6+ 

436.2442; found 436.2443 [M+H]+. 

(S)-N-(3-((2-aminoethyl)amino)-3-oxopropyl)-2,2,5,5-tetramethyl-1,3-dioxane-4-

carboxamide (16):  Compound 15 (7 g, 18.4 mmol) was added to MeOH (10 mL) 

in a 100 mL Parr bomb flask.  The reaction mixture and flask were purged with 

argon.  10% Pd/C (700 mg) was added.  The reaction vessel was placed under a 

H2 atmosphere (50 bar), and shaken for 3 h.  The reaction mixture was filtered 
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over Celite to remove the catalyst and the Celite washed with MeOH (3×10 mL).  

The filtrate was concentrated by rotary evaporation to afford ketal-protected 

aminopantetheine 16 (5.5 g, 18.3 mmol, 99%) as a pale yellow oil, which was 

taken directly to the next step.  1H NMR (400 MHz, CDCl3): δ 7.07 p.p.m. (t, J = 

8.0 Hz, 1H), 6.88 (s, 1H), 4.04 (s, 1H), 3.65 (d, J = 15.6 Hz, A of ABq, 1H), 3.52-3.46 

(m, 3H), 3.42 (s, 1H), 3.38-3.37 (m, 2H), 3.24 (d, J = 15.6 Hz, B of ABq, 1H), 2.86 (t, J 

= 7.5 Hz, 2H), 2.42 (t, J = 8.7 Hz, 2H), 1.44 (s, 3H), 1.40 (s, 3H), 0.98 (s, 3H), 0.93 (s, 

3H).  13C{1H} NMR (101 MHz, CDCl3): δ 171.51, 170.05, 98.90, 76.96, 71.19, 41.54, 

41.02, 35.81, 34.86, 32.75 29.26, 21.95, 18.70, 18.51.  UPLC-HRMS (ESI) calc’d for 

C14H28N3O4+ 302.2074; found 302.2079 [M+H]+. 

(4S)-N-(3-((2-(2-bromopropanamido)ethyl)amino)-3-oxopropyl)-2,2,5,5-

tetramethyl-1,3-dioxane-4-carboxamide (17):  In a round-bottomed flask under 

argon, 16 (1.77 g, 5.87 mmol) was added to DCM (20 mL).  To this solution was 

added triethylamine (1.82 mL, 12.9 mmol).  The temperature of the solution was 

lowered to 0 ℃ in an ice bath.  Bromopropionyl bromide (0.645 mL, 6.16 mmol) 

was added dropwise.  The initially milky solution was stirred at 0 ℃ for 1 h and 

became clear.  The reaction was quenched by the addition of a saturated aqueous 

solution of NH4Cl (30 mL), and the organic layer was washed with saturated 

aqueous Na2CO3 (15 mL) and brine (15 mL).  The organic layer was concentrated 

by rotary evaporation.  The resulting off-white solid was purified by flash silica 
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chromatography (1:9 MeOH:EtOAc) to give 2-bromopropionyl 

aminopantetheine 17 (2.13 g, 4.87 mmol, 83%) as a colorless solid.  The isolated 

mixture of diastereomers gave the following analytical data: 1H NMR (400 MHz, 

CDCl3): δ 7.11 p.p.m. (s, 1H), 7.02 (t, J = 5.6 Hz, 1H), 6.57 (br s, 1H), 4.39/4.38 (2×q, 

J = 7.0 Hz, 1H), 4.09/4.07 (2×s, 1H), 3.68 (d, J = 12.0 Hz, A of ABq, 1H), 3.59-3.52 

(m, 2H), 3.43-3.38 (m, 4H), 3.28 (d, J = 12.0 Hz, B of ABq, 1H), 2.46 (t, J = 6.2 Hz, 

2H), 1.85/1.84 (2×d, J = 7.0 Hz, 3H), 1.46 (s, 3H), 1.42 (s, 3H), 1.02 (s, 3H), 0.97/0.96 

(2×s, 3H).  13C{1H} NMR (101 MHz, CDCl3): δ 172.10/172.07, 170.42, 170.10/170.07, 

98.90/98.90, 76.95, 71.12, 43.81/43.80, 40.12/40.05, 38.93, 35.81/35.75, 34.85, 

32.74/32.73, 29.26, 22.31/22.82, 21.96/21.95, 18.72, 18.53.  UPLC-HRMS (ESI) calc’d 

for C17H31BrN3O5+ 436.1442; found 436.1433 [M+H]+. 

(2S)-N-(3-((2-(2-bromopropanamido)ethyl)amino)-3-oxopropyl)-2,4-dihydroxy-

3,3-dimethylbutanamide (10):  To DCM (2 mL) stirring in a 25 mL round-

bottomed flask, 17 (25 mg, 0.06 mmol) was added.  4 mL of deionized water, and 

0.1 mL of TFA were added to the reaction mixture.  The solution was allowed to 

stir at room temperature for 60 min.  The reaction mixture was diluted with 1:1 

H2O:toluene and concentrated by rotary evaporation three times to remove 

residual TFA.  The resulting pale yellow oil was purified by reverse-phase (C18) 

flash silica chromatography (gradient: 5-95% ACN in H2O) to afford 2-

bromopropionyl aminopantetheine 10 (15 mg, 1.2 mmol, 63%) as a white solid 
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after lyophilization.  1H NMR (400 MHz, MeOD): δ 4.47 p.p.m. (q, J = 6.8 Hz, 1H), 

3.91 (s, 1H), 3.50-3.47 (m, 2H), 3.48 (d, J = 10.8 Hz, A of ABq, 1H), 3.40 (d, J = 10.8 

Hz, B of ABq, 1H), 3.36-3.32 (m, 4H), 2.43 (t, J = 6.8 Hz, 2H), 1.77 (d, J = 6.8 Hz, 

3H), 0.93 (s, 6H).  13C{1H} NMR (101 MHz, MeOD): δ 176.00, 174.17, 172.76, 77.30, 

70.28, 43.97, 40.32, 40.30, 39.70, 36.58, 36.38, 22.41, 21.35, 20.88.  UPLC-HRMS 

(ESI) calc’d for C14H27BrN3O5+ 396.1129; found 396.1120 [M+H]+. 

 

3.4.6.  Phosphorylation of α-bromopropionyl aminopantetheine (10) 

α-Bromopropionyl aminopantetheine 10 was phosphorylated 

enzymatically under the following conditions: 0.25 mg/mL PanK, 2 mM 10, 5 mM 

ATP, 20 mM KCl, 10 mM MgCl2, 50 mM Tris pH 7.5 at room temperature for 

approximately 20 h.  Complete phosphorylation to yield 11 was confirmed by 

UPLC-ESI-MS (Waters Acquity/Xevo-G2, negative ion mode).  All protein was 

removed from the reaction with a 3K MWCO Amicon Ultra centrifuge filter 

(Millipore).  The flow-through was flash frozen in liquid nitrogen and 

lyophilized to dryness.  The resulting white powder was resuspended in 5% 

aqueous acetonitrile.  11 was HPLC purified on an Agilent 1100 equipped with a 

Kinetex C18 semi-prep column (250 x 10 mm, 5 μ, Phenomenex) using the 

following method at 4 mL/min: hold 5% solvent A/95% solvent B for 3 minutes, 

5-35% solvent A over 17 minutes, 35-95% solvent A over 5 minutes, followed by 
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re-equilibration to 5% solvent A, where solvent A is acetonitrile + 0.1% 

trifluoroacetic acid and solvent B is 0.1% trifluoroacetic acid.  Purity and identity 

of the isolated compound was confirmed by UPLC-ESI-MS as above, and the 

pooled fractions were lyophilized to dryness. 

 Due to poor recovery of 11 from HPLC purification, preparation of 11 for 

crosslinking to CTB1 SAT-KS°-MAT° was optimized.  The phosphorylation of 10 

was performed as before, and used directly in the next step (adenylation and 

ACP loading), once the reaction was complete. 

 

3.4.7.  Loading of ACP2 with α-bromoacyl crosslinker 

α-Bromopropionyl aminophosphopantetheine 11 was adenylated to yield 

9 and subsequently loaded onto CTB1 ACP2 in a one-pot enzymatic reaction 

under the following conditions: 0.5 mM 11, 0.5 mg/mL PPAT, 5 μM Sfp, 0.5 mM 

CTB1 ACP2, 5 mM ATP, 10 mM MgCl2, 20 mM KCl, 50 mM Tris pH 7.5, 10% 

glycerol.  Reactions were run at room temperature and monitored by MALDI-

TOF (Bruker AutoFlex III).  Once loading was complete, the His-tagged Sfp and 

PPAT were separated from untagged CTB1 ACP2 by passing the reaction 

solution through an equilibrated Co2+-TALON column (Clontech) and recovering 

the flow-through.  Additionally, any unreacted crosslinker was removed by 

repeated concentration and dilution with a 3K MWCO Amicon Ultra centrifuge 
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filter (Millipore).  Complete removal of free crosslinker was confirmed by UPLC-

ESI-MS analysis. 

 

3.4.8.  Crosslinking of CTB1 SAT°-KS-MAT° to ACP2 

CTB1 SAT°-KS-MAT° was combined with 20-fold excess CTB1 ACP2 

bearing the α-bromoacyl crosslinker in 50 mM Tris pH 7.5, 10% glycerol (v/v) at 

room temperature for 1 h.  Crosslinking was monitored by SDS-PAGE, and 

found to be approximately 95% complete after 1 h.  Crosslinked CTB1 SAT°-KS-

MAT°=ACP2 was separated from remaining free CTB1 SAT°-KS-MAT° by anion 

exchange chromatography.  Q-Sepharose Fast Flow resin (GE Healthcare) was 

equilibrated with 50 mM Tris pH 7.5, 10% glycerol, and the crosslinking reaction 

mixture was applied to the column.  CTB1 SAT°-KS-MAT° and CTB1 SAT°-KS-

MAT°=ACP2 were eluted using a gradient of potassium chloride from 0-500 mM.  

To remove free CTB1 ACP2 from the crosslinked protein, fractions containing 

CTB1 SAT°-KS-MAT°=ACP2 were pooled and applied to an equilibrated Co2+-

TALON column.  CTB1 ACP2 was removed in the flow-through, and pure CTB1 

SAT°-KS-MAT°=ACP2 was eluted with a gradient of imidazole from 2-100 mM.   
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3.4.9.  Crosslinking of CTB1 SAT-KS°-MAT° to ACP2 

CTB1 SAT-KS°-MAT° was combined with 10-fold excess CTB1 ACP2 

bearing the α-bromoacyl crosslinker in 50 mM Tris pH 7.5, 10% glycerol (v/v) at 

room temperature for 1 h to reach 50% crosslinking.  NaCl was added to a final 

concentration of 250 mM to impede further crosslinking.  CTB1 SAT-KS°-

MAT°=ACP2 was isolated from free ACP2 by size-exclusion chromatography 

using a Bio-Rad NGC fitted with an ENrich SEC650 column (10 x 300 mm, Bio-

Rad).  Fractions containing CTB1 SAT-KS°-MAT°=ACP2 were pooled and 

concentrated using an Amicon Ultra centrifuge filter (10K MWCO, Millipore). 

 

3.4.10.  In vitro reactions of CTB1 for interface validation and comparison of 
ACP1 and ACP2 
 

CTB1 SAT-KS-MAT (wild-type and select mutants of proposed interface 

residues), PT, ACP2 (wild-type and select mutants of propose interface residues), 

and TE were purified as described above, and dialyzed into 100 mM potassium 

phosphate pH 7, 10% glycerol.  ACP2 mutants were additionally purified by size 

exclusion chromatography (ENrich SEC 70, 10 x 300 mm, Bio-Rad) using 100 mM 

potassium phosphate pH 7, 10% glycerol.  ACP2 was activated enzymatically 

with CoA under the following conditions: 2 μM Sfp, 0.5 mM CoA, 10 mM MgCl2, 

200 μM ACP2, 100 mM potassium phosphate pH 7, 10% glycerol.  Activation 

reactions were run at 25 °C for 1 h, and complete conversion to holo-ACP2 was 
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confirmed by UPLC-ESI-MS (Waters Acquity/Xevo-G2, positive ion mode) and 

MALDI-TOF (Bruker AutoFlex III).  For full PKS reconstitution, 10 μM CTB1-

SAT-KS-MAT, PT, ACP2 and TE were combined in assay buffer (100 mM 

potassium phosphate pH 7, 10% glycerol, 1 mM TCEP).  Minimal PKS reactions 

excluded PT and TE.  Reactions were initiated by addition of 0.5 mM acetyl-S-N-

acetylcysteamine (SNAC) and 2 mM malonyl-SNAC, and incubated for 4 h at 25 

°C.  The 250 μL reactions were quenched with 10 μL hydrochloric acid and 

extracted thrice with ethyl acetate.  Extracts were pooled, dried, and resuspended 

in 250 μL 20% aqueous acetonitrile for HPLC analysis. 

Product profiles of each enzyme mutant were analyzed on an Agilent 1200 

equipped with a Prodigy ODS3 analytical column (4.6 x 250 mm, 5 μ, 

Phenomenex).  100 μL injections were separated by a bisolvent method at 1 

mL/min: 5-85% solvent A over 40 min, 85-95% solvent A over 10 min, re-

equilibrate to 5% solvent A over 10 min, where solvent A is acetonitrile + 0.1% 

formic acid, and solvent B is 0.1% formic acid.  Chromatograms were recorded at 

280 nm, and UV-vis spectra were recorded over a range of 200-800 nm.  Exact 

masses of derailment products were obtained by UPLC-MS (Waters 

Acquity/Xevo-G2, positive ion mode). 
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3.4.11.  Crystallization, data collection and structure determination of CTB1 
SAT-KS-MAT 
 

CTB1 SAT-KS-MAT plate-like crystals were obtained by the sitting drop vapor 

diffusion method in 0.2 M MgCl2, 0.1 M Bis-Tris Propane pH 6.5, 18% (v/v) 

PEG3350 at 4 °C, a drop ratio of 1.0 μL + 0.5 μL and further optimized by 

seeding.  Crystals grew to a final size of 0.4×0.04×0.04 mm3 within one week.  The 

crystals were dehydrated and cryo-preserved by successively increasing the 

concentration to 0.5 M MgCl2, 0.1 M Bis-Tris Propane pH 6.5, 25% PEG3350, 22% 

ethylene glycol.  Diffraction data of crystals in space group C2221 (a= 108.1 Å, 

b= 230.2 Å, c= 253.8 Å) and 56% solvent content were collected at the Swiss Light 

Source (SLS, Villigen, Switzerland) at beamline X06SA, a temperature of 100 K 

and a wavelength of 1.000 Å.  Data reduction was performed using XDS and 

XSCALE59 and data were analyzed using phenix.xtriage60.  The structure was 

solved with PHASER61 using molecular replacement and the KS and AT domains 

of DEBS module five19 as well as the AT domain of CurL51 as search models.  An 

initial model was obtained in iterative cycles of rebuilding with BUCCANEER62 

and density modification using solvent flattening and histogram matching in 

PARROT63.  Iterative cycles of manual model building and real space refinement 

in Coot64 and TLS refinement in Phenix60 yielded a high quality model with 
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Rwork/Rfree values of 0.21/0.24 at 2.8 Å resolution with excellent geometry 

(Ramachandran favored/outliers: 97.07%/0.00%) (Appendix Table C.1a).  

 

3.4.12.  EM sample preparation and data collection. 

Initial sample quality was evaluated by conventional negative-stain EM.  

Initial cryo-EM analysis revealed a monomer-dimer equilibrium, which has 

previously been observed for PKS and FAS fragments30, 50-51, 65-66.  The oligomeric 

state of the CTB1 SAT-KS-MAT was analyzed by analytical size-exclusion 

chromatography (SEC) (4.6/250 Superose 6 Increase, GE Healthcare), using 

buffers with different salt concentrations and a flow rate of 0.1 mL/min.  The 

results indicated a fast equilibrium and a mostly dimeric species in low salt 

buffer (20 mM Tris pH 7.4, 50 mM NaCl, 2.5 mM tris(2-carboxyethyl)phosphine 

(TCEP)) (Appendix Figure C.3c).  For cryo-EM, crosslinked sample was 

concentrated to 15-16 mg/mL, applied to analytical SEC and collected in fractions 

of 50 μL.  For grid preparation 4 μL of individual fractions were applied to glow 

discharged (30 s) lacey carbon grids (300 mesh, copper), immediately blotted for 

2 s and plunge-frozen in liquid ethane using a Vitrobot (FEI, Vitrobot III).  An 

incubation step was omitted due to fast adsorption of the particles to the carbon.  

The integrity of the crosslinked sample was analyzed by denaturating 



107 
 

polyacrylamide gel electrophoresis (PAGE) of the remaining sample after grid 

preparation (Appendix Figure C.3d). 

Grid quality was analyzed using a Philips CM200 FEG cryo-transmission 

electron microscope, operated at an acceleration voltage of 200 kV.  Optimal 

conditions were identified for peak fractions diluted to 270 μg/mL, in a trade-off 

between low particle density (approx. 70 particles per micrograph), monomer 

formation and particle adsorption to carbon.  Final data were collected using a 

Titan Krios electron microscope (FEI), operated at 300 kV, a GIF Quantum LS 

imaging filter (Gatan) and a K2 Summit (Gatan) operating in counting mode.  

Images were acquired at 0.8-4.5 μm defocus and a nominal magnification of 

105,000x, corresponding to a pixel size of 1.326 Å (Appendix Table C.1b).  Movies 

were collected with a total dose of approx. 90 e-/Å2 per 18 s exposure, 

fractionated over 60 frames. 

 

3.4.13.  EM data processing and analysis 

Drift correction of dose fractionated frames28 was performed using Zorro67 

and global contrast transfer function (CTF) parameters were determined using 

CTFFIND4.168.  Particles were picked from aligned dose-filtered averages using 

the swarm semi-automated procedure as implemented in e2boxer.py69, followed 

by extraction from unfiltered averages using Relion-2 70 and local CTF parameter 
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refinement using Gctf v1.06 71.  Single particle analysis included several rounds 

of reference-free maximum a posteriori-2D classification70 to remove junk particles 

and monomers, which revealed a clearly distinguishable shape and could be 

reconstructed at low resolution (Appendix Figures C.2a, C.3b).  For 

reconstruction of the dimeric, crosslinked CTB1 SAT°-KS-MAT°=ACP, an initial 

volume was generated using e2initialmodel.py69 and low-pass filtered to 50 Å.  

Exhaustive global followed by local reference-free 3D classification and 

alignment without symmetry were applied, yielding highly similar classes that 

were combined in a consensus refinement prior to movie refinement and particle 

polishing as implemented in Relion-270.  Parameters for B-factor fitting as 

function of movie frames have been carefully examined as well as the different 

number of frames in the particle movie stacks.  At this stage all 60 frames were 

included in the weighted particle movie stacks as no significant difference 

between including different amounts of frames per movie could be identified 

after applying weighting.  Another round of 2D and 3D classification yielded 

three almost identical volumes that were refined as individual classes and in all 

possible combinations of classes.  The combination of two classes (Appendix 

Figure C.2a) resulted in a slightly improved model at 7.3 Å resolution (25,107 

particles) as compared to all three classes at 7.5 Å (44,859 particles).  For the 

refinement of the final map at 7.1 Å resolution weighted particle averages of 27 
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movie frames were used, corresponding to a total dose of 41 e-/Å2.  All reported 

resolution estimates are based on the 0.143 threshold criterion of the Fourier 

Shell Correlation (FSC)72 between two halves of the dataset refined 

independently in RELION-2, after accounting for correlations introduced by 

masking73.  Throughout all refinements in Relion-270, particles were grouped by 

k-mean clustering of their CTF parameters with a minimum of 50 particles per 

group.  The alignment was not significantly influenced by a preferred 

orientation74 (Appendix Figure C.2b, c), which was assessed by reducing the 

number of particles per angular sampling group to the mean of all groups by 

random subset deletion in four independent refinements.  Later refinements 

were carried out using a soft mask and solvent corrected FSC during the 

refinement73.  Final maps were sharpened with a sharpening B-factor of -350 Å2.  

Local resolution was calculated with ResMap75 and indicated higher resolution 

for secondary structure elements in the center of the particle (Appendix Figure 

C.2d, e).  Therefore, masked 3D classification and refinement after signal 

subtraction76 was carried out, resulting in slightly improved resolution, but 

without significant differences in the electron density map.  Map generation from 

coordinates as well as filtering and file type conversion was done using EMAN2 

tools69.  For analysis, map transformations were applied using the CCP4 tool 
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maprot77.  Maps were resampled using UCSF Chimera78 and difference maps 

were calculated Python Numpy and MRCZ79. 

 

3.4.14.  Cryo-EM structure refinement and modelling 

Modelling of the cryo-EM structure was started by rigid body fitting of 

individual domains of the CTB1 SAT-KS-MAT crystal as well as of an ACP2 

homology model in Coot64.  The model for CTB1 ACP2 was generated using 

SwissModel80 based on PksA ACP17, which shares 40% sequence identity and can 

be functionally replaced with the CTB1 tandem ACPs in in vitro assays44-45.  Initial 

B-factors of the model were scaled relative to B-factors of atomic displacement 

parameter (ADP) refined crystal structures structures in the PDB at similar 

resolution.  Prior to map-based real-space refinement, the model was protonated 

using phenix.reduce and geometry minimization with secondary structure 

restraints and reference coordinate restraints was applied using 

phenix.geometry_minimization60.  Afterwards global minimization and ADP 

refinement with reference structure restraint was carried out against the 

unsharpened cryo-EM map in phenix.real_space_refine60.  Reference structure 

and nonbonded distance restraint weights were carefully monitored and 

optimized.  As the local resolution around the resolved ACP2 is not sufficient to 

unambiguously interpret possible conformational changes of loop regions 
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relative to the isolated PksA ACP NMR structure, the loop regions were 

excluded from the final model after all atom refinement, without affecting model 

statistics (Appendix Table C.1b).  The resulting model contained the regions 

corresponding to the canonical ACP four helix bundle (residues: 1782-1796, 1816-

1828, 1839-1842, 1846-1854) and was validated using phenix.molprobity81 with 

Ramachandran plot statistics of  “favored/outliers”: 96.47%/0.12%.  A position for 

a second crosslinked ACP2 could not be undoubtedly resolved in any 

intermediate or final EM map.  The sample has been analyzed after grid 

preparation and is approximately 95% crosslinked (Appendix Figure C.3d).  

Due to residual noise around the putative second ACP2 binding site the presence 

of a second ACP2 in a mostly disordered state without a solid interface, tethered 

only by covalent crosslinking (Appendix Figure C.4a,b) cannot be strictly 

excluded.  However, we cannot exclude the possibility that effects of selective 

adsorption of partially or fully crosslinked CTB1 SAT°-KS-MAT°=ACP2 or of 

selective destabilization under grid preparation also contribute to selective 

imaging of a single-crosslinked state with low population in the sample used for 

grid preparation.  
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3.4.15.  Structure analysis and visualization 

Related structures were identified using PDBeFold (20% query / 10% 

target)82 and interfaces were analyzed using QtPISA v2.1.083.  Transformations 

and coordinate manipulations were carried out using CCP484 tools and 

MOLEMAN85.  Bias-removal for crystallographic Fobs-Fcalc omit maps was 

achieved by applying a random perturbation to coordinates (Δ0.2 Å) and B-

factors (Δ20% of the mean overall B-factor) with MOLEMAN285 prior to 

refinement.  Cα-r.m.s.d. between domains of the crystal and cryo-EM structure 

were calculated using LSQMAN86.  Structures of PikAIII were modeled 

according to Dutta et al.30 using Chimera78.  Solvent accessible surface distances 

(SAS) between Cα residues of ACP phosphopantetheinylation and KS active site 

residues were calculated using Xwalk87.  Figures, movies and plots were 

generated using Pymol88 and Python Matplotlib. 

 

3.4.16.  Sequence analysis 

Sequence alignments were generated using Clustal Omega89.  A 

Phylogenetic tree was generated using the neighboring joining algorithm in 

Geneious v8.1.690.  
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Chapter 4:  Cercosporin biosynthesis: Expansion of the 
biosynthetic gene cluster and scope of production by plant 
pathogens 
 
Adapted with permission from de Jonge, R.*, Ebert, M.K.*, Huitt-Roehl, C.R.*, 
Pal, P., Suttle, J.C., Neubauer, J.D., Jurick II, W.M., Secor, G.A., Thomma, B.P.H.J., 
Van de Peer, Y., Townsend, C.A., Bolton, M.D.   Ancient duplication and 
horizontal transfer of a toxin gene cluster reveals novel mechanisms in the 
cercosporin biosynthesis pathway.  Manuscript in preparation.   *Indicates co-first-
authorship 
 

4.1.  Introduction 

 The fungal plant pathogens Cercospora spp. infect hundreds of 

agriculturally and economically important crops1, including soy bean, sugar beet, 

tobacco, maize, and rice, causing hundreds of millions of dollars in damage each 

year.  Cercosporin 1, a perylenequinone toxin produced by Cercospora spp., has 

been shown to be the primary virulence factor involved in infectivity.   

Cercosporin was first isolated from C. kikuchii, a pathogen of Japanese soy 

bean, in 1957.  It was shown to be a crystalline red pigment with a quinone core, 

and proposed to be symmetrical, but with optical activity2-3.  This interesting 

finding led to extensive investigation into the stereochemistry of cercosporin, 

ultimately revealing that it is indeed an atropisomer4.  The helical configuration 

of this atropisomer was unambiguously determined by X-ray crystallography5.  

Cercosporin’s perylenequinone core acts as a potent photosensitizer, with 
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quantum yields >0.86.  Following activation to a long-lived triplet state by visible 

light, cercosporin reacts with molecular oxygen, releasing reactive oxygen 

species (ROS), specifically singlet oxygen and superoxide radical7.  The activity of 

cercosporin is photodynamic, and the relative production of singlet oxygen and 

superoxide is modulated by the presence of various reducing agents, allowing 

for a wider scope of reactivity8.  Therefore, cercosporin does not have a specific 

cellular target, but rather causes non-specific damage to DNA, lipids, proteins, 

and other targets.  For example, cercosporin-induced ROS have been shown to 

cause epoxidation of lipids9, resulting in cell membrane damage within minutes 

of exposure10 as well as changes in membrane composition and structure11.  

Damage to the plant’s cell membrane causes leakage of nutrients, feeding the 

fungus and allowing for further penetration of the leaves.  Cercosporin is also 

toxic to mammals and bacteria, in a light- and oxygen-dependent manner12. 

Cercospora spp. resist the non-specific toxic effects of the cercosporin they 

produce through several mechanisms, primarily maintaining cercosporin in an 

inactive, reduced state (2) prior to active secretion (Figure 4.1).  The quantum 

yield of 2 is dramatically lower than that of cercosporin (0.02-0.04 in water), 

significantly diminishing its ability to form ROS13.  Cercosporin-resistant species 

of Cercospora and Alternaria were shown to contain primarily reduced 

cercosporin within their hyphae, while cercosporin-sensitive fungi were not 
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capable of reducing cercosporin14-15.  To date, two cercosporin-specific resistance 

genes have been identified in cercosporin producers.  Cercosporin facilitator 

protein (CFP), a major facilitator superfamily (MFS) transporter, is required for 

virulence and cercosporin secretion, as well as cercosporin resistance in C. 

kikuchii16-17.  Heterologous expression of CFP in a cercosporin-sensitive fungus 

can induce cercosporin resistance18.  Cercosporin resistance gene 1 (crg1), is a 

zinc-finger transcription factor involved in cercosporin resistance and 

biosynthesis19-20.  Introduction of these cercosporin resistance genes into crops 

could be a viable strategy to prevent or mitigate Cercospora infections without the 

use of harmful pesticides21-24. 

Figure 4.1. Cercosporin is maintained in a reduced state by producers until it is actively exported. 
 

 
 Despite extensive research on cercosporin resistance and mechanism of 

action, little is known about the chemical details of its biosynthesis.  Cercosporin 

is a polyketide-derived natural product25-26, however, the complete biosynthetic 

pathway has yet to be conclusively elucidated.  A series of oxidations, 

reductions, methylations, and a dimerization transform the polyketide synthase 



123 
 

(PKS) product into the final perylenequinone product.  Many of the 

intermediates of the pathway are unstable and prone to oxidation, impeding 

elucidation of the pathway by traditional biological methods, such as analyzing 

accumulated intermediates in gene knockout strains27.   

 The gene cluster was first identified in C. nicotianae, a pathogen of tobacco, 

in 200728.  The cluster was found to contain six biosynthetic genes, a zinc-finger 

transcription factor (CTB8), and a MFS transporter involved in cercosporin 

secretion (CTB4)29.  These two regulatory and resistance genes are distinct from 

crg1 and CFP, and are pathway specific.  As expected, the previously identified 

non-reducing (NR)-PKS, CTB1, is included in the cluster26.  Also included in the 

cluster are CTB2, an O-methyltransferase30; CTB3, a didomain O-

methyltransferase/FAD-dependent monooxygenase31; and three oxidoreductases, 

CTB5-732.  All eight genes are regulated by light, and feedback inhibition of 

transcription of other genes in the cluster was shown in response to knockouts of 

each biosynthetic gene28, 32.  A tentative biosynthetic pathway was proposed 

based on putative functions of the six identified biosynthetic genes (Figure 4.2). 
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Figure 4.2.  Proposed biosynthesis of cercosporin based on putative enzyme functions of cluster 
identified in C. nicotianae by Chen et al (2007). 
 

 
 However, the biosynthetic pathway had to be reconsidered when the on-

pathway product of CTB1 was found to be nor-toralactone 3, not the carboxylic 

acid 433.  In vitro characterization of reconstituted CTB1 showed that the NR-PKS 

homologates an acetyl starter unit and six malonyl extender units to form a 

heptaketide.  The heptaketide is regiospecifically cyclized by the product 

template (PT) domain (C4-C9 and C2-C11) and finally released by the thioesterase 

(TE).  Rather than more traditional TE chemistry (e.g. hydrolysis), the CTB1 TE 

catalyzes lactonization to form nor-toralactone.  This lactonization mechanism 

was confirmed by 18O-acetyl-CoA labelling, where retention of the labelled acetyl 

carboxyl group was observed in the final product33.  The observed product of 

CTB1 is not consistent with the previously proposed biosynthetic pathway, 

requiring an updated proposal (Figure 4.3). 
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Figure 4.3.  Revised biosynthetic proposal based on characterization of CTB1 and CTB3 by 
Newman et al (2016). 
 

 
 Analysis of intermediates accumulated by the knockouts of each 

biosynthetic gene in C. nicotianae allowed for a revised proposal of the 

biosynthetic pathway27.  Given the unexpected tricyclic structure of nor-

toralactone 3, an enzyme is needed to open the pyrone ring.  CTB3 was proposed 

to be the second enzyme in the pathway responsible for this ring opening step.  

CTB3 is an unusual didomain, bifunctional enzyme, containing a N-terminal O-

methyltransferase and a C-terminal flavin-dependent monooxygenase.  In vitro 

analysis confirmed CTB3 catalyzes two modifications of nor-toralactone, O-

methylation and oxidative ring opening.  A selection of unusual, off-pathway 

quinones were isolated from knockouts of CTB3, CTB5, and CTB6, while no 

soluble intermediates could be isolated from ΔCTB2 or ΔCTB7.  These quinones 

were rationalized as spontaneous oxidation products of the true on-pathway 

intermediates, and a revised biosynthetic pathway was proposed (Figure 4.3), 
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where CTB2 methylates the product of CTB3 (5) to form the doubly-methylated 

(6), which is reduced by CTB6 to form the hydroxyl (7)27.  Finally, dimerization 

and methylenedioxy ring formation is proposed to be catalyzed by CTB5 and 

CTB7. 

 

4.2.  Results 

4.2.1.  Identification of new cercosporin biosynthetic genes 

 Following publication of this revised biosynthetic pathway, five new 

genes were discovered in the cercosporin gene cluster in C. beticola, a pathogen of 

sugar beets, using an evolutionary genomics approach (Figure 4.4).  These genes 

were not identified with the original eight-gene cluster, as they are separated by 

two open reading frames that are not regulated by light or the transcription 

factor CTB8, and whose knockouts still produce cercosporin28.  One of the newly 

identified genes is cercosporin facilitator protein (CFP), a MFS transporter that 

has previously been identified in C. kikuchii, but thought to lie outside the 

cluster16.  Additionally, four new biosynthetic genes were identified: an α-

ketoglutarate dependent oxygenase (CTB9), an EthD-domain containing protein 

(CTB10), a β-IG-h3 fasciclin (CTB11), and a laccase (CTB12).  All five genes 

abolish cercosporin production when knocked out in C. beticola (Figure 4.5).   
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Figure 4.4.  Revised cercosporin biosynthetic gene cluster in C. beticola 

 
 

Figure 4.5.  HPLC analysis of C. beticola mutants.  280 nm chromatograms are shown.  Scale bar 
indicates 250 mAu. 
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4.2.2.  Characterization of pre-cercosporin (8) 

Two knockouts of the new biosynthetic genes (CTB9 and CTB10) 

accumulated a red, cercosporin-like pigment.  However, this pigment had a 

different retention time by HPLC and migrated differently in potato dextrose 

agar (PDA).  To characterize the red metabolite that accumulated in ΔCTB9 and 

ΔCTB10 mutants, an ethyl acetate extract of the collected mycelia was analyzed 

by reverse-phase HPLC.  At 280 nm, a single peak was observed in both mutant 

extracts with identical retention times (Figure 4.5) and UV-Vis spectra (Figure 

4.6b,c).  This peak was compared to a reference sample of cercosporin produced 

by wild-type C. beticola (Figure 4.6a).  The retention time of this peak was shorter 

than that of cercosporin suggesting a more polar metabolite.  Comparison of the 

UV-vis spectra (Figure 4.6a-c) of the unknown compound and cercosporin 

revealed nearly identical chromophores, suggesting close structural relation.  The 

exact mass of the metabolite from the mutants was determined (∆CTB9: m/z = 

537.1762, ∆CTB10: m/z = 537.1757, [M+H+]), consistent with the elemental 

composition C29H28O10.  This mass is 2 Da greater than that of cercosporin (+2 

hydrogens), which led to a proposed structure for pre-cercosporin (Figure 4.6d).  

Alternative hydroquinones of cercosporin could be excluded simply on the basis 

of the UV-vis spectral information and chemical instability.  The presence of a 

free phenol in pre-cercosporin in place of the unusual 7-membered 
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methylenedioxy of cercosporin is consonant with the red shift of the long 

wavelength λmax and the shorter HPLC retention time. 

Figure 4.6.  UV-vis spectra of cercosporin (a), pre-cercosporin produced by C. beticola ∆CTB9 (b), 
and pre-cercosporin produced by C. beticola ∆CTB10.  Structures and mass spectrometry data for 
pre-cercosporin and cercosporin are shown in (d). 
 

 
To firmly support the tentative structure of pre-cercosporin, the crude 

extract of ∆CTB9 was further purified by reverse-phase HPLC.  Isolation of 

sufficient amounts of pre-cercosporin to characterize by NMR proved difficult 
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due to its instability and tendency to polymerize.  The relative instability of pre-

cercosporin compared to cercosporin suggests a possible role for the 

methylenedioxy bridge in overall stability.  Several large-scale purifications were 

attempted by HPLC, but in all cases the small amount of pre-cercosporin 

obtained (< 1 mg in all cases) was too unstable to characterize by NMR.  

Attempts to acetylate the five free hydroxyls on pre-cercosporin were primarily 

unsuccessful.  Complete acetylation of all positions was not achieved, and a 

mixture of pre-cercosporin with varied numbers of acetyl groups was isolated 

(Figure 4.7b).  This mixture also appeared to be unstable, and could not be 

characterized by NMR.  Extracts of liquid cultures of C. beticola ∆842 were 

relatively complex, in contrast to extracts of solid cultures which consist of pre-

cercosporin and little else, as determined by absorbance at 210 nm.  However, 

liquid cultures can be grown at significantly larger scales than solid culture.  

Therefore, attempts to clean up the liquid culture extracts using size exclusion 

chromatography (Sephadex LH20) prior to HPLC were attempted.  

Unfortunately, this step did not result in more effective HPLC purification, likely 

due to pre-cercosporin degrading and/or polymerizing on the Sephadex LH20 

column or during evaporation of the collected fractions (Figure 4.7c).  Finally, we 

opted to isolate pre-cercosporin from solid cultures, and perform the extractions 

as quickly as possible in the dark (previous extractions were run for 24 h).  This 
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method yielded a very clean crude extract (Figure 4.7a), and allowed isolation of 

enough pre-cercosporin for 1H-NMR analysis. 

Figure 4.7.  Large-scale HPLC purification of pre-cercosporin.  Only extracts of solid cultures 
were clean enough to isolate pure pre-cercosporin.  a) Solid (top) and liquid (bottom) cultures of 
C. beticola ∆842, extracted with ethyl acetate, quickly and in the dark.  b) Crude C. beticola ∆842 
extract acetylated with acetic anhydride.  A mixture of acetylated pre-cercosporin products was 
obtained.  c) C. beticola ∆842 extract purified by Sephadex LH20. 
 

1H-NMR analysis confirmed the proposed structure of pre-cercosporin 

based on the earlier HPLC and UPLC-MS data.  The spectrum lacked a 

methylenedioxy singlet at δ5.74, diagnostic of cercosporin, and instead contained 

a new methoxyl signal at δ4.28 and a phenol at δ9.25.  While we did not isolate 

enough material to definitively determine the stereochemistry of the atropisomer 

by X-ray crystallography, the 1H-NMR spectrum suggests a single atropisomer.  

Presumably the helical configuration of pre-cercosporin is identical to 

cercosporin, however we cannot rule out the possibility that the final 

stereochemistry is set by CTB9 or CTB10.   
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4.2.3.  Identification of cercosporin production by Colletotrichum fioriniae 

To date, cercosporin production has only been observed by Cercospora spp. 

and the closely related pathogen Pseudocercosporella capsellae34-35.  However, 

evolutionary genomics revealed the presence of cercosporin biosynthetic gene 

clusters in multiple species of Colletotrichum, another fungal genus with 

significant agricultural impacts, as well as Sclerotinia sclerotiorum and the rice 

pathogen Magnaporthe oryzae.  Colletotrichum, like Cercospora, infects hundreds of 

agriculturally and economically important crops, including fruits such as apple, 

avocado, citrus, and banana.  For example, Colletotrichum fioriniae is one of the 

top pre- and post-harvest pathogens of apples, causing significant losses in fresh 

and dried apple products36. 

Since our phylogenomic analyses suggested that several Colletotrichum 

spp. harbor cercosporin biosynthetic gene clusters, we questioned whether any 

Colletotrichum spp. can produce cercosporin.  To initially assess this, two 

Colletotrichum fioriniae strains (HC89 and HC91) isolated from apple were 

assayed for cercosporin production using the KOH assay26.  No cercosporin-like 

pigment was observed in the media under the same conditions that stimulate 

cercosporin production in C. beticola.  However, the addition of the epigenetic 

modifier trichostatin A37, a histone deacetylase inhibitor, induced production of a 

red cercosporin-like compound into the medium.  To characterize this red 
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metabolite, mycelia from both Co. fioriniae strains were extracted with ethyl 

acetate.  Reverse-phase HPLC analysis as before revealed a peak with a retention 

time and UV-vis spectrum consistent with cercosporin in both extracts (Figure 

4.8a, b).  The presence of cercosporin was confirmed by UPLC-ESI-MS (Figure 

4.8c). 

 

Figure 4.8.  Analysis of Colletotrichum fiorinae extracts.  a) HPLC chromatograms at 280 nm.  b) 
UV-visual spectra of cercosporin produced by Co. fiorinae HC89 and HC91.  c)  Extracted ion 
chromatograms (m/z = 535.1604) of indicated extracts. 

 
 
 

4.3.  Discussion 

Given the discovery of four new biosynthetic genes within the cercosporin 

gene cluster, the proposed biosynthetic pathway needs to be revised.  

Unfortunately, instability of pathway intermediates and feedback inhibition of 

gene expression have impeded efforts to elucidate the middle steps of the 
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pathway, including the cryptic dimerization to form the unusual atropisomer.  

However, we have now identified the final step in the biosynthetic pathway, 

oxidative closure of the 7-membered methylenedioxy bridge.  Isolation of pre-

cercosporin from both ∆CTB9 and ∆CTB10 shows that two genes are involved in 

this reaction, in contrast to 5-membered methylenedioxy bridge formation, 

which is catalyzed by a single P450 enzyme in plant alkaloid biosynthesis38-39. 

CTB9 is an α-ketoglutarate dependent oxygenase, and presumably 

oxidizes the methoxyl position, analogous to the methylenedioxy forming P450s 

(Figure 4.9).  Since in all known cases of methylenedioxy ring formation, only a 

single enzyme (a P450) is required, the role of CTB10 (an EthD-domain 

containing protein) is less clear.  However, given the unfavorable 7-membered 

ring being formed, it may be required to facilitate closure of the ring.  EthD-

domain containing proteins are very small (~100 amino acids), poorly 

understood proteins, generally implicated as accessory proteins having no true 

catalytic function40.  For example, in aflatoxin biosynthesis, the EthD-domain 

containing HypE is required for the oxidation of 9 to 10 by a cytochrome P450 

(Figure 4.10)41-42.  Therefore, the possibility remains that CTB10’s role is purely 

structural, to stabilize and/or activate CTB9 in some yet-to-be-elucidated 

mechanism. 
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Figure 4.9.  Proposed role of CTB9 and CTB10 in cercosporin biosynthesis. 

 

Figure 4.10.  Role of an EthD-domain containing protein (HypE) in aflatoxin biosynthesis. 

 

Two new additional biosynthetic genes have been identified in this study: 

CTB11, a putative β-IG-h3 fasciclin, and CTB12, a putative laccase.  As no 

intermediates are accumulated in either knockout, the precise role of CTB11 and 

CTB12 remains unknown.  Both enzymes are predicted to be extracellular, with 

small signal peptides, and, in the case of CTB11, a transmembrane domain.  

Fasciclin domain proteins are membrane-anchored, extracellular proteins 

involved in cell adhesion43-44.  Laccases are multicopper oxidases involved in a 

variety of cellular processes, including fungal pigment biosynthesis, lignification, 

and delignification45.  One possible role for these extracellular enzymes is to 

facilitate adhesion of the fungus to the host plant, and subsequently degrade the 

plant’s cell wall through delignification to allow cercosporin access to the cell 



136 
 

membrane.  Alternatively, CTB12 may be involved in the dimerization step of 

cercosporin biosynthesis. 

Characterization of the cercosporin biosynthetic pathway through 

identification of accumulated intermediates from gene knockouts has thus far 

proven to be problematic.  With the exception of nor-toralactone 3 and pre-

cercosporin 8, all isolated intermediates have been apparent oxidation products 

of true on-pathway intermediates.  Therefore, the true on-pathway intermediates 

have been logically inferred.  Additionally, many knockouts of cercosporin 

biosynthetic genes do not accumulate isolable intermediates, likely due to 

feedback inhibition of expression of earlier genes in the pathway.  Alternatively, 

the unstable, oxidatively-sensitive intermediates may be polymerizing, forming 

an insoluble compound(s) that is not readily extracted using traditional methods.  

Isolated pre-cercosporin appeared to dimerize over time (as detected by UPLC-

MS), and earlier, monomeric intermediates in the pathway are likely to be even 

more susceptible to oxidative polymerization.  Therefore, alternate methods, 

such as in vitro reconstitution of enzymes, need to be implemented to fully 

characterize cercosporin biosynthesis. 

The identification of cercosporin production in two isolates of Co. fioriniae 

has significant implications for the apple packing, storage, and processing 

industries.  Bitter rot, caused by Colletotrichum spp., is one of the top pre- and 
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postharvest pathogens of apple36.  This disease is a major problem for the apple 

industry as it limits fresh fruit in the field and during storage, and has a 

quiescent stage allowing decay to occur on seemingly high quality apples, only 

to come out of storage rotten.  Hence, contamination of processed apple products 

with cercosporin could be a significant health hazard.  For example, other fungal-

produced toxins (e.g. patulin, citrinin, penicillic acid) can contaminate processed 

apple products46.  Patulin, produced by Penicillium spp., is the most troubling as it 

is carcinogenic and consequently the United States and Europe have strict 

patulin limits in fruit juices and processed pome fruit products47.  Future studies 

will focus on the role of cercosporin production during the Colletotrichum-apple 

fruit interactions in addition to assaying processed fruit products made from 

apples with bitter rot symptoms to determine levels of the toxin in 

fruit.  Although only Co. fioriniae strains were analyzed for the ability to produce 

cercosporin, the identification of highly similar CTB clusters in other 

Colletotrichum species suggest that cercosporin production is wide-spread in this 

genus. 
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4.4.  Experimental Methods 

4.4.1.  Pre-cercosporin isolation and characterization 

Mycelial plugs of C. beticola ΔCTB9 were placed on top of eight “thin” 

PDA (Difco) plates (3.0 mL PDA per 50 mm Petri plate).  Cultures were 

incubated at 22 °C for one week under continuous light.  Three separate methods 

were attempted to prepare crude secondary metabolite extractions.  1) PDA and 

mycelia were extracted with ethyl acetate for 4 min.  The resulting supernatant 

was collected and frozen for further analysis.  2) PDA and mycelia were placed 

into a GenElute Maxiprep binding column (Sigma Aldrich) and centrifuged at 

3500 x g for 10 min.  The flow-through was collected and frozen for further 

analysis.  3) PDA and mycelia were placed into a GenElute Maxiprep binding 

column along with 15 mL ethyl acetate.  After a 30 s incubation, the column was 

centrifuged at 2400 x g for 10 min.  The flow-through was collected and frozen 

for further analysis.  To obtain sufficient pre-cercosporin for isolation and NMR 

analysis, primary extracts from all three methods were combined. 

The combined extracts were re-suspended with water and acidified with conc. 

HCl.  Pre-cercosporin was extracted quickly from this aqueous solution by 

partitioning thrice with ethyl acetate in the dark, wrapping the glassware with 

aluminum foil.  The combined ethyl acetate fractions were washed with brine, 

dried over anhydrous sodium sulfate and evaporated under vacuum at 30 °C.  
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The reddish-brown residue was resuspended in methanol and filtered through 

0.2 μm PTFE filters.  The methanol extracts were initially analyzed by reverse 

phase HPLC on an Agilent model 1200 fitted with a Kinetex XB-C18 column (4.6 

mm x 75 mm, 2.6 μm, Phenomenex).  Injections of 1 μl were run at 1.25 mL/min 

on a linear gradient of 5% solvent C/95% solvent D to 95% solvent C/5% solvent 

D over 10.8 min, where solvent C was 0.1% formic acid and solvent D was 

acetonitrile + 0.1% formic acid.  Chromatograms were monitored at 436, 280, and 

210 nm, and UV-vis spectra were recorded over a range of 210-800 nm.  High-

resolution mass data were obtained from a Waters Acquity/Xevo-G2 UPLC-ESI-

MS in positive ion mode. 

 To isolate sufficient pre-cercosporin for 1H-NMR analysis, the filtered 

methanol extract prepared above was purified by reverse-phase HPLC on an 

Agilent model 1100 fitted with a Kinetex XB-C18 semi-prep column (10 mm x 250 

mm, 5 μm, Phenomenex).  The crude extract (10 mg/mL in methanol) was 

injected (generally 500 μL) and run at 4 mL/min using the following method: 

20% solvent C/80% solvent D for 3 min, 20-70% solvent C over 17 min, 70-95% 

solvent D over 5 min, where solvent C and D were as above.  Chromatograms 

were recorded at 436, 280, and 210 nm.  The metabolite of interest was collected 

from multiple injections, combined, and lyophilized to dryness.  The purified 
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pre-cercosporin was analyzed by UPLC-ESI-MS as described above and 1H-

NMR.  

 

4.4.2.  Pre-cercosporin purification by Sephadex LH20 

C. beticola ∆842 total culture mass (mycelia and agar) was ground under 

liquid nitrogen twice and lyophilized to dryness.  The resulting powder was 

resuspended in acidified water (pH < 2) and extracted thrice with ethyl acetate.  

The ethyl acetate extractions were pooled, washed with brine, and evaporated to 

dryness.  The crude extract was resuspended in methanol. 

A Sephadex LH20 column (5.25 g) was prepared by swelling in excess methanol 

for five hours.  The resin was poured into a glass fritted column (1.5 cm 

diameter) and packed at 3 mL/min until the volume stabilized.  300 μL aliquots 

of the crude extract were chromatographed over the column at 1.3 mL/min.  

Fractions were collected and analyzed for pre-cercosporin by HPLC on an 

Agilent 1200 as above.  Fractions containing pre-cercosporin were pooled, 

evaporated to dryness, and resuspended in methanol for HPLC purification on 

an Agilent 1100 as above. 
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4.4.3.  Colletotrichum spp. cercosporin assay 

To determine whether Colletotrichum species were able to produce cercosporin, 

two monoconidial isolates C. fioriniae (HC89 and HC91) were grown on 9 cm 

Petri plates containing 15 mL of PDA as described above to replicate conditions 

that were conducive for cercosporin production in vitro.  Seven-day old cultures 

of each isolate were grown in a temperature controlled incubator at 25 °C with 

natural light.  A pinkish to dark red color was visible in the media for all isolates 

except HC75, which had a yellow-colored pigment.  Using a #2 cork borer, three 

plugs were removed from each isolate from the edge, middle and center of each 

colony and placed in small screw cap glass vials.  Three plugs were also removed 

from an uncolonized PDA plate and included as a negative control.  Cercosporin 

(Sigma-Aldrich) was dissolved in acetone to 100 mM and used as a positive 

control.  5N KOH was added to each vial to cover the surface of the plugs and 

incubated on a shaking incubator at room temperature for 4 h.  Supernatants 

were examined for cercosporin spectrophotometrically.  To induce cercosporin 

production, we followed the procedures described by Shwab et al. except 10 μM 

trichostatin A (TSA; Sigma) was used37.  Cercosporin production by C. fioriniae 

HC89 and HC91 was confirmed by HPLC and UPLC-ESI-MS analysis as 

described above for pre-cercosporin.    
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Appendix A:  General Experimental Methods 

A.1.  Cloning 

When necessary, genes are isolated from genomic DNA by PCR using 

primers lacking any restriction enzyme cut sites.  This allows for more efficient 

binding of the primers to the genomic DNA.  Introns are identified based on 

NCBI gene prediction, as well as Softberry’s FGENESH gene prediction 

algorithm.  When available, cDNA sequences greatly simplify this task.  cDNA 

constructs are then put together using overlap extension PCR or Gibson 

assembly. PCR products are gel purified by running on standard agarose gels 

and extracted. 

 New primers containing appropriate restriction enzyme cut sites, or with 

overlap to the target plasmid are then used to PCR amplify the constructed gene 

or domains for cloning into expression vectors.  Both the gene to be inserted and 

the vector are digested with the appropriate restriction enzymes – generally NdeI 

and NotI for pET-24a and pET-28a – according to standard protocol.  Digested 

vector must then be gel-purified to avoid self-ligation, while the insert can be gel- 

or PCR-purified.  Insert and vector are then ligated together using T4 DNA ligase 

overnight at 16oC.  Following purification of the ligation reaction by ethanol 

precipitation, the newly constructed vector is transformed into BL21(DE3) via 



147 
 

electroporation and plated on LB agar plates with antibiotic for selection (25 

ug/mL kanamycin for pET vectors in BL21).  Alternatively, Gibson assembly can 

be performed in lieu of restriction digestion and ligation10.  Constructed plasmids 

are first screened using restriction digestion assays to ascertain whether the 

insert has been successfully ligated into the vector.  Constructs are finally 

verified by sequencing at the Johns Hopkins University Sequencing and 

Synthesis Facility or Genewiz. 

A.1.1.  Polymerase Chain Reaction (PCR) 

 Typical PCRs were run under the following conditions: 0.2 mM each 

dNTP, 0.4 μM forward primer, 0.4 μM reverse primer, 3% DMSO, and 1 μL 

template (miniprepped plasmid) in Phusion HF Buffer (New England Biolabs).  

The PCR was performed in an Eppendorf thermocycler, starting with a 2 min 

hold at 94° C.  1 μL Phusion polymerase (New England Biolabs) was added mid-

way through this initial hold.  30 cycles were performed, with a denaturing step 

of 15 s at 94 °C, an annealing step of X s at 63 °C (where X = 30 s/kb of desired 

product), and an elongation step of 30 s at 72 °C, followed by a 5 min hold at 72 

°C.  If necessary, annealing temperatures were optimized from 50-65 °C.  PCR 

products were visualized by agarose gel (typically 1.1%) and purified with a 

GeneJET Gel Extraction Kit (ThermoScientific). 
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A.1.2.  Plasmid assembly by restriction digestion and ligation 

 Inserts (purified PCR products) and vectors (plasmids miniprepped using 

a GeneJET Plasmid Miniprep Kit (Thermo Scientific)) were digested using the 

appropriate restriction enzyme (New England Biolabs) as directed.  Complete 

digestion was confirmed by agarose gel, and digested fragments were purified 

with a GeneJET Gel Extraction Kit (Thermo Scientific).  Digested fragments were 

ligated using T4 DNA Ligase (New England BioLabs) as directed.  The ligated 

plasmid was purified by ethanol precipation.  2 μL pellet paint (Millipore), 10 μL 

3M sodium acetate, and 20 μL ligation reaction were added to 200 μL ice-cold 

ethanol.  The mixture was vortexed thoroughly and centrifuged at 14,000 rpm for 

2 min.  The supernatant was removed and the pellet resuspended in 200 μL ice 

cold ethanol.  The DNA was re-pelleted by another 2 min centrifugation.  The 

supernatant was removed and the pellet thoroughly dried in a Speedvac.  The 

purified DNA was resuspended in 20 μL sterile ddH2O and transformed into E. 

coli BL21(DE3) by electroporation. 

A.1.3.  Plasmid assembly by Gibson assembly 

 Primers to amplify fragments for Gibson assembly were designed using 

NEBBuilder or SnapGene.  Resulting PCR products were purified using a 

GeneJET PCR Purification Kit (Thermo Scientific).  Similarly, the target vector 
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was digested using appropriate restriction enzymes (generally NdeI and NotI-

HF), as described above, and PCR purified.  DNA concentrations were measured 

by A260 using a Cary 50 UV-Vis spectrophotometer.  Equimolar amounts of each 

insert and vector were combined with Gibson Master Mix to reach the following 

final concentrations: 0.08 U T4 exonuclease (New England Biolabs), 0.5 U 

Phusion polymerase (New England Biolabs), 80 U Taq DNA ligase (New 

England Biolabs), 5% PEG-8000, 100 mM Tris HCl pH 7.5, 10 mM MgCl2, 10 mM 

DTT, 0.2 mM each dNTP, 1 mM NAD.  Gibson reactions were incubated at 50 °C 

for 1 h, diluted 5-fold, and transformed into E. coli BL21(DE3) by electroporation. 

A.1.4.  Transformation of E. coli by electroporation 

 Plasmid (2 μL) was added to 18 μL aliquots of electro-competent E. coli 

BL21(DE3) on ice.  This mixture was applied to chilled Potter cuvettes and 

pulsed with a 10 kV/cm electric field for 10 ms at 4 °C.  The cell mixture was then 

incubated in 180 μL LB at 37 °C for 1 h, with shaking.  The resulting inoculum 

was applied to LB agar plates with appropriate antibiotic, and incubated 

overnight at 37 °C.  When transforming purified plasmid, the inoculum was 

streaked using a sterile loop, while 50-100 μL of transformations of ligation or 

Gibson reactions were spread on the plate with a sterile cell-spreader. 
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A.2.  Heterologous protein expression  

 E. coli BL21 (DE3) cells transformed with the gene of interest were grown 

at 37 oC while shaking in LB supplemented with 25 μg/mL kanamycin.  Once the 

OD600 reached 0.6, flasks were cold shocked in ice water for one hour, until cold 

to the touch.  Protein expression was then induced by addition of 0.5 mM IPTG.  

Cells were induced overnight while shaking at 17 oC.  Cells were then harvested 

by centrifuging at 4000xg for 20 minutes and typically flash frozen in liquid 

nitrogen for storage at -80 oC. 

A.3.  Protein purification 

Cell pellets were thawed and resuspended in a lysis buffer consisting of 50 

mM K/PO4, pH 8, 300 mM NaCl, and 10% glycerol (generally 4 mL lysis buffer 

per gram of cell pellet).  Cells were lysed by sonication, and the resulting lysate 

was cleared by centrifuging at 27,000xg for 30 min.  Cleared lysate was batch 

bound to Ni2+-NTA or Co2+-TALON resin (generally 1 mL resin/1 L culture, 

depending on efficiency of expression) for one hour at 4 oC.  The resin was 

collected by centrifugation at 50xg, washed with lysis buffer and applied to a 

fritted gravity flow column.  The resin was washed and then protein eluted by a 

series of washes of increasing imidazole concentration.  Purified protein was 

dialyzed overnight at 4 oC in appropriate buffer (e.g. 100 mM K/PO4 pH 7 with 
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10% glycerol for in vitro reactions).  A minimum of 100X total protein volume of 

dialysis buffer was used, and proteins were switched into fresh buffer at least 

once.  Protein concentration was measured by absorbance at 280 nm using a Cary 

50 UV-Vis spectrophotometer.  Extinction coefficients were calculated using 

ExPasy ProtParam.  Purity was observed by running all purification fractions on 

SDS-PAGE gels.  If necessary, protein was concentrated using Amicon 3K or 10K 

MWCO Ultracentrifuge filters (Millipore).  Most proteins can be flash frozen in 

liquid nitrogen for storage at -80 oC. 

A.4.  Standard medium recipes 

A.4.1.  Luria-Bertani Broth (LB) 

 10 g/L tryptone, 5 g/L yeast extract, and 5 g/L sodium chloride were 

combined in ddH2O and autoclaved for 25 min.  For agar plates, 7.5 g/L agar was 

added prior to autoclaving.  Autoclaved media was allowed to cool to 

approximately 50 °C prior to addition of antibiotic.  Plates were then poured and 

allowed to set thoroughly prior to storage at 4 °C. 

A.4.2.  Terrific Broth (TB) 

 For each liter of culture 24 g yeast extract, 12 g tryptone, and 8 mL 50% 

glycerol were combined in 900 mL ddH2O and autoclaved for 25 min.  Potassium 

phosphate buffer was prepared and autoclaved separately: 125.4 g/L K2HPO4 and 
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23.1 g/L KH2PO4.  Once sufficiently cooled (approximately 37 °C), 100 mL 

potassium phosphate buffer was added to each 900 mL of media using a sterile 

graduated cylinder.  
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Appendix B: Supplementary Material to Chapter 2 
 
 
B.1.  Cloning and mutagenesis 
 
All plasmids used in this study are summarized in Table B.1.  Cloning of 

plasmids to express PksA-SAT-KS-MAT (pENKA4) and PT-ACP (pEPTACP), as 

well as a series of active site mutants of PksA-SAT-KS-MAT (see table) has been 

described previously1-2.  Additional mutants and PksA-SAT-KS-MAT-PT-ACP 

were cloned for this study using standard methods.  DNA manipulations were 

carried out in E. coli BL21(DE3).  PksA-SAT-KS-MAT-PT-ACP was amplified 

from a pET-28a vector containing full-length PksA cDNA using pksA5-NheI and 

ACP-3-NotI primers.  The resulting PCR product was ligated into pET28a at 

NheI and NotI sites to give pEPksA-SKMPA.  For the SAT active site mutants, 

overlap extension PCR was used to introduce specific point mutations at Cys117.  

These fragments were amplified from pENKA4 using the primers listed in Table 

B.2.  PCR products were ligated into pET-28a at NcoI and NotI sites to give the  

plasmids listed in Table B.1.  All expression constructs were confirmed by  

automated sequencing (Johns Hopkins University Synthesis and Sequencing  

Facility, Baltimore MD). 
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Appendix Table B.1.  Plasmids used in Chapter 2 

  
Appendix Table B.2.  Primers used in Chapter 2 
 

Primer Sequence 5’ to 3’ 
NT5.1 gatccatggctcaatcaaggcaactc 
MAT3.4 gagtgcggccgcggatggacggt 
C117S-5’ gtgctgggattcagcatgggttccttg 
C117S-3’ caaggaacccatgctgaatcccagcac 
C117G-5’ gtgctgggattcggcaggggttccttg 
C117G-3’ caaggaacccatgccgaatcccagcac 
C117N-5’ cgtgctgggattcaacatgggttccttggcc 
C117N-3’ caaggaacccatgttgaatcccagcac 
pksA5-NheI gctagcatggctcaatcaaggc 
ACP-3-NotI gtaagcggccgcctagccagcatccccgcttc 

 
 
  

Plasmid Protein Tag Mol. Wt 
(kDa) Reference 

pENKA4 SAT-KS-MAT C-His6 144 1 
pEPT-ACP PT-ACP C-His6 59 1 

pENKA4-C117A SAT0-KS-MAT C-His6 144 2 
pENKA4-C117S SAT0-KS-MAT C-His6 144 This study 
pENKA4-C117G SAT0-KS-MAT C-His6 144 This study 
pENKA4-C117N SAT0-KS-MAT C-His6 144 This study 

pEPksA-SKMPA SAT-KS-MAT-PT-
ACP 

N-His6 & C-
His6 201 This study 
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B.2.  Synthesis of acyl-SNAC substrates 

All reactions, unless otherwise stated, were performed under a positive N2 

or Ar atmosphere, in anhydrous, freshly distilled solvents.  Commercially 

available compounds were purchased from Sigma-Aldrich or Alfa-Aesar and 

were used without further purification.  All 1H and 13C-NMR spectra were 

acquired on a 300 MHz or 400 MHz Bruker spectrometer and are reported in 

parts per million (δ) referenced against a TMS standard or residual solvent peak.  

All NMR solvents were purchased from Cambridge Isotope Laboratories, Inc.  

Column chromatography was carried out on Silica Gel 60 (Sorbent Technologies, 

200 x 400 mesh).  Exact masses were determined on an Analytical VG-70SE 

Magnetic Sector Mass Spectrometer at the Johns Hopkins University Chemistry 

Department Mass Spectrometry Facility.  ESI-MS spectra were measured at the 

Mass spectrometry facility of Old Dominion University in Norfolk, VA on a 

Bruker Apex-Qe Qh-FTMS instrument.  

 

R OH R OH

Jones O

R SNAC

OA, B or C

 

 

 To a room temperature solution of the alcohol in acetone (200 mM), Jones 

reagent was added dropwise until the red color persisted.  After 15 min, the 
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reaction was quenched with isopropanol, filtered, concentrated, dissolved (5% 

HCl, CH2Cl2), separated, dried and concentrated to afford the desired carboxylic 

acid (~90%).   

 

Method A: 

R OH

O

R SNAC

O1) EDC

2) HSNAC  

 

To a room temperature suspension of N-(3-dimethylaminopropyl)-N′-

ethylcarbodiimide hydrochloride (1 eq.) in CH2Cl2, under N2, Et3N (1 eq.) was 

added. The carboxylic acid (1 eq.) was added dropwise followed by the addition 

of 4-(dimethylamino)pyridine (0.1 eq.).  After 10 min. N-acetylcysteamine (1 eq.) 

was added dropwise. The resulting solution was allowed to react for 12-14 h then 

poured into a saturated solution of NH4Cl and extracted with CH2Cl2 (3×). The 

combined organic phases were washed with H2O and brine, dried (Na2SO4), 

concentrated and purified by column chromatography to afford the 

corresponding thioester.  
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Method B:  

R OH

O

R SNAC

O1) CDI

2) HSNAC  

A room temperature solution of carboxylic acid (1 eq.) and CDI (1.4 eq.) in 

dry THF were allowed to react for 10 min.  A solution of N-acetylcysteamine (1.1 

eq.) was added and the reaction was allowed to stir at room temperature for 12-

14 h. The solvent was removed under vacuum and the residue was redissolved 

in 10 mL of EtOAc, washed (10 ml of brine), dried (Na2SO4), concentrated and 

purified by column chromatography to furnish the respective SNAC-derivative.  

 

Method C: 

R OH

O

R Cl

OOxCl

R SNAC

OHSNAC

 

 

To a 0 °C solution of the carboxylic acid (1 equiv) and DMF (cat) in CH2Cl2 

(150 mM), oxalyl chloride (1.1 equiv) was added slowly.  The ice bath was 

removed and the mixture was allowed to warm to room temperature over 2 h, 

then concentrated in vacuo and used immediately without further purification.  

To a 0 °C solution of N-acetylcysteamine (1.0 equiv) and DIPEA (1.1 equiv) in 

CH2Cl2 (350 mM), a 0 °C solution of the acid chloride (1.0 equiv) in CH2Cl2 (500 

mM) was added slowly, and the mixture was allowed to warm to room 
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temperature over 12 h.  The resulting light orange solution was washed (NH4Cl, 

sat, 1x, CuSO4, sat, 1x, NH4Cl, sat, 3x), filtered through a plug of silica gel, 

concentrated and recrystallized or purified by column chromatography.   

 

Method D: 

R Cl

O 1) Meldrum's Acid

2) HSNAC
SNAC

O

R

O

 

 

 To a 0 °C solution of Meldrum’s acid (1.0 equiv) and pyridine (1.0 equiv) 

in CH2Cl2 (350 mM), a 0 °C solution of the acid chloride (1.0 equiv) in CH2Cl2 (350 

mM) was added.  The resulting red solution was allowed to react at 0 °C for one 

hour, then warm to room temperature for 2 h.  The mixture was concentrated in 

vacuo, then dissolved in toluene (200 mM).  N-acetylcysteamine (1.0 equiv) was 

added and the red solution was heated to reflux for 2 h, cooled, washed (NH4Cl, 

sat, 3x, CuSO4, sat, 2x), dried, concentrated and recrystallized to afford the 

desired β-keto thioester. 
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O

S
O

N
H

 

S-(2-acetamidoethyl) hexanethioate (5) 

Synthesis previously described3. 

O

S
O

N
H

 

S-(2-acetamidoethyl) butanethioate (6) 

Method B  

1H NMR (400 MHz, CDCl3): δ 6.17 (br s, 1H), 3.38 (app q, J = 6.3, 2H), 2.98 (t, J = 

6.5, 2H), 2.51 (t, J = 7.4, 2H), 1.92 (s, 3H), 1.65 (sext, J = 7.4, 2H), 0.91 (t, J = 7.4, 3H). 

13C NMR (101 MHz, CDCl3): δ 200.0, 170.4, 46.0, 39.7, 28.4, 23.2, 19.2, 13.5.  HR-

ESI-MS: 212.0706 ([M + Na]+, (C8H15NO2S)Na+; calc. 212.0716).  Spectral data 

matched that reported by Patel et. al.4. 

O

S
O

N
H

 

S-(2-acetamidoethyl) pentanethioate (7) 

Method A 

1H NMR (300 MHz, CDCl3): δ 6.48 (br s, 1H), 3.32 (app q, J = 6.3 Hz, 2H), 2.94 (t, J 

= 6.6 Hz, 2H), 2.49 (t, J = 7.2 Hz, 2H), 1.89 (s, 3H), 1.57 (pent, J = 7.2 Hz, 2H), 1.25 

(hex, J = 7.2 Hz, 2H), 0.83 (t, J = 7.2 Hz, 3H). 13C NMR (75 MHz, CDCl3): δ 200.1, 
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170.5, 43.8, 39.7, 28.4, 27.7, 23.1, 22.07, 13.7.  HR-ESI-MS calculated exact mass for 

C9H18NO2S: 204.1058, found: 204.1062 [M+H]+.  Spectral data matched that 

reported by Piasecki et. al.5. 

O

S
O

N
H

 

S-(2-acetamidoethyl) heptanethioate (8) 

Method A 

1H-NMR (400 MHz, CDCl3): δ 6.07 (br s, 1H), 3.66 (app q, J = 6.8 Hz, 2H), 2.98 (t, J 

= 6.8 Hz, 2H), 2.53 (t, J = 7.6 Hz, 2H), 1.93 (s, 3H), 1.61 (pent, J = 7.6 Hz, 2H), 1.25 

(br m, 6H), 0.84 (t, J = 7.6 Hz, 3H). 13C NMR (101 MHz, CDCl3): δ 200.4, 170.4, 

44.3, 39.9, 31.5, 28.7, 28.6, 25.9, 23.3, 22.6, 14.1. HR-ESI-MS: 254.1181 ([M + Na]+, 

C11H21NO2SNa+; calc. 254.1185).  Spectral data matched that reported by Prasad 

et. al.6. 

O

S
O

N
H

 

S-(2-acetamidoethyl) octanethioate (9) 

Method C  

1H NMR (400 MHz, CDCl3): δ 5.89 (br s, 1H), 3.46 (app q, J = 6.2 Hz, 2H), 3.09 (t, J 

= 6.3 Hz, 2H), 2.52 (t, J = 7.4 Hz, 2H), 1.97 (s, 3H), 1.59 (pent, J = 7.3 Hz, 2H), 1.34–

1.27 (m, 8H), 0.89 (t, J = 6.8 Hz, 3H). 13C NMR (101 MHz, CDCl3): δ 202.5, 192.6, 
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170.5, 57.3, 43.6, 39.4, 31.3, 29.4, 23.3, 23.3, 22.5, 14.01.  HRFAB m/z calculated 

exact mass for C12H24NO2S 246.1527, found 246.1525 [M+H]+.  Spectral data 

matched that reported by Tse et. al.7. 

O

S

O

O

H
N

 

S-(2-acetamidoethyl) 3-oxooctanethioate (10) 

Synthesis previously described8.  

O

SBr
O

N
H

 

S-(2-acetamidoethyl) 5-bromopentanethioate (11) 

Method B: 76% of a colorless oil. 

1H NMR (400 MHz, CDCl3): δ 6.05 (br s, 1H), 3.36 (m, 4H), 2.98 (t, J = 8.0 Hz, 2H), 

2.55 (t, J = 8.0 Hz, 2H), 1.92 (s, 3H), 1.82 (m, 4H).  13C NMR (101 MHz, CDCl3): δ 

199.3, 170.4, 42.9, 39.6, 32.8, 31.7, 28.5, 24.1, 23.2.  HRFAB m/z calculated exact 

mass for C9H17NO2S79Br 282.0163, found 282.01662 [M+H]+ (79Br); calculated exact 

mass for C9H17NO2S81Br 284.0142, found 284.0146 [M+H]+ (81Br).  See Figure B.32 

for NMR spectra. 

O

S
Br

O

N
H

 

S-(2-acetamidoethyl) 6-bromohexanethioate (12) 
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Method B: 38% of a colorless oil. 

1H NMR (400 MHz, CDCl3): δ 5.88 (br s, 1H), 3.39 (app q, J = 6.2 Hz, 2H), 3.34 (t, J 

= 6.7 Hz, 2H), 2.99 (t, J = 6.7 Hz, 2H), 2.55 (t, J = 6.7 Hz, 2H), 1.92 (s, 3H), 1.83 (m, 

2H), 1.67 (m, 2H), 1.44 (m, 2H). 13C NMR (101 MHz, CDCl3): δ 199.6, 170.2, 43.7, 

39.6, 33.3, 32.3, 28.5, 27.4, 24.7, 23.2. HRFAB m/z calculated exact mass for 

C10H19NO2S79Br 296.0319, found 296.0324 [M+H]+ (79Br); calculated exact mass for 

C10H19NO2S81Br 298.0299, found 298.0305 [M+H]+ (81Br).  See Figure B.33 for NMR 

spectra 

O

SCl
O

N
H

 

S-(2-acetamidoethyl) 5-chloropentanethioate (13) 

Method B: 99% of a colorless oil. 

1H NMR (400 MHz, CDCl3): δ 5.91 (br s, 1H), 3.51 (m, 2H), 3.41 (app q, J = 6.2 Hz, 

2H), 3.01 (t, J = 6.6 Hz, 2H), 2.58 (m, 2H), 1.92 (s, 3H), 1.80 (m, 4H). 13C NMR (101 

MHz, CDCl3): δ 199.3, 170.2, 44.2, 43.1, 39.6, 31.6, 28.6, 23.2, 22.8. HRFAB m/z 

calculated exact mass for C9H17NO2S35Cl 238.0668, found 238.0676 [M+H]+ (35Cl); 

calculated exact mass for C9H17NO2S37Cl 240.0639, found 240.0639 [M+H]+ (37Cl).  

See Figure B.34 for NMR spectra 

O

S
Cl

O

N
H
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S-(2-acetamidoethyl) 6-chlorohexanethioate (14) 

Method B: 97% of a colorless oil. 

1H NMR (400 MHz, CDCl3): δ 5.91 (br s, 1H), 3.49 (t, J = 6.6 Hz, 2H), 3.39 (app q, J 

= 6.2 Hz, 2H), 3.00 (t, J = 6.6 Hz, 2H), 2.57 (t, J = 7.4 Hz, 2H), 1.93 (s, 3H), 1.80 – 

1.60 (m, 4H), 1.45 (m, 2H).  13C NMR (101 MHz, CDCl3): δ 199.8, 170.4, 44.7, 43.8, 

39.7, 32.1, 28.5, 26.1, 25.4, 22.9.  HRFAB m/z calculated exact mass for 

C10H19NO2S35Cl 252.0825, found 252.0823 [M+H]+ (35Cl); calculated exact mass for 

C10H19NO2S37Cl 254.0796, found 254.0794 [M+H]+ (37Cl).  See Figure B.35 for NMR 

spectra 

O

S
O

H
N

 

S-(2-acetamidoethyl) 2-methylhexanethioate (15) 

Method A: 87 % of a colorless oil 

1H NMR (400 MHz, CDCl3): δ 5.84 (br s, 1H), 3.43 (app q, J =  6.1 Hz, 2H), 3.02 (t, J 

= 6.4 Hz, 2H), 2.64 (hex, J = 6.8 Hz, 1H), 1.96 (s, 3H), 1.70 (m, 1H), 1.42 (m, 1H), 

1.29 (m, 4H), 1.11 (d, J = 6.8 Hz, 3H), 0.89 (t, J = 6.8 Hz, 3H). 13C NMR (101 MHz, 

CDCl3): δ 204.9, 170.4, 48.9, 40.1, 34.0, 29.5, 28.3, 23.4, 22.8, 17.9, 14.1. HR-ESI-MS: 

254.1182 ([M + Na]+, C11H21NO2SNa+; calc. 254.1185).  See Figure B.36 for NMR 

spectra 
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S

O H
N

O  

S-(2-acetamidoethyl) 3-methylhexanethioate (16) 

Method C: 95% of a colorless oil. 

1H NMR (400 MHz, CDCl3): δ 5.87 (br s, 1H), 3.44 (app q, J = 6.1 Hz, 2H), 3.02 (t, J 

= 6.6 Hz, 2H), 2.58 (m, 2H), 1.98 (s, 3H), 1.71 (m, 1H), 1.46 (m, 1H), 1.35 (m, 2H), 

1.16 (m, 1H), 0.87 (t, J = 7.2 Hz, 3H), 0.87 (d, J = 6.8 Hz, 3H). 13C NMR (101 MHz, 

CDCl3): δ 200.0, 170.4, 51.4, 39.9, 38.8, 30.9, 28.4, 23.2, 19.9, 19.5, 14.1.  HRFAB m/z 

calculated exact mass for C11H21NO2S 232.1371, found 232.1369 [M+H]+.  See 

Figure B.37 for NMR spectra 

S

O H
N

O  

S-(2-acetamidoethyl) 4-methylhexanethioate (17) 

Method C: 86% of a colorless oil. 

1H NMR (400 MHz, CDCl3): δ 6.00 (br s, 1H), 3.41 (app q, J = 6.0 Hz, 2H), 3.00 (t, J 

= 6.4 Hz, 2H), 2.64 (q, J = 6.8 Hz, 1H), 2.00 (s, 3H), 1.67 (m, 1H), 1.42 (m, 1H), 1.25 

(m, 3H), 1.11 (d, J = 6.8 Hz, 3H), 0.86 (t, J = 6.8 Hz, 3H). 13C NMR (101 MHz, 

CDCl3): δ 200.5, 170.5, 42.0, 39.9, 33.9, 32.1, 29.1, 28.4, 23.1, 18.8, 11.2.  HRFAB m/z 

calculated exact mass for C11H21NO2S 232.1371, found 232.1366 [M+H]+.  See 

Figure B.38 for NMR spectra 
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O

S
O

N
H

 

S-(2-acetamidoethyl) 5-methylhexanethioate (18)  

Method B: 100% of a colorless oil. 

1H NMR (400 MHz, CDCl3): δ 5.94 (br s, 1H), 3.38 (app q, J = 6.2 Hz, 2H), 2.98 (t, J 

= 6.6 Hz, 2H), 2.53 (app.t, J = 15.2, 7.5 Hz, 2H), 1.93 (s, 3H), 1.62 (m, 2H), 1.51 (m, 

1H), 1.17 (m, 2H), 0.84 (d, J = 6.2 Hz, 6H). 13C NMR (101 MHz, CDCl3): δ 200.2, 

170.3, 44.3, 39.7, 38.1, 28.4, 23.5, 24.1, 23.1, 22.0.  HRFAB m/z calculated exact mass 

for C11H22NO2S 232.1371, found 232.1377 [M+H]+.  See Figure B.39 for NMR 

spectra 

O

S
O

N
H

 

S-(2-acetamidoethyl) 4-methylpentanethioate (19)  

Method B: 100% of a colorless oil. 

1H NMR (400 MHz, CDCl3): δ 5.94 (br s, 1H), 3.38 (app q, J = 6.2 Hz, 2H), 2.97 (t, J 

= 6.6 Hz, 2H), 2.53 (app t, J = 7.4 Hz, 2H), 1.91 (s, 3H), 1.51 (m, 3H), 0.85 (d, J = 6.2 

Hz, 6H).  13C NMR (101 MHz, CDCl3): δ 200.4, 170.3, 42.3, 39.7, 34.4, 28.4, 27.6, 

23.1, 22.2.  HRFAB m/z calculated exact mass for C10H20NO2S: 218.1215, found: 

218.1215 [M+H]+.  See Figure B.40 for NMR spectra 
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O

S
O

N
H

 

S-(2-acetamidoethyl) (E)-hex-2-enethioate (20) 

Method A 

1H NMR (400 MHz, CDCl3): δ 6.92 (dt, J = 15.1, 7.3 Hz, 1H), 6.12 (d, J = 15.5 Hz, 

1H), 5.97 (br s, 1H), 3.44 (app q, J = 6.4 Hz, 2H), 3.08 (t, J = 6.4 Hz, 2H), 2.18 (app 

q, J = 7.2 Hz, 2H), 1.96 (s, 3H), 1.50 (pent, J = 7.4 Hz, 2H), 1.72 (t, J = 7.4 Hz, 3H). 

13C NMR (101 MHz, CDCl3): δ 190.6, 170.5, 146.7, 128.57, 47.7, 40.0, 34.4, 28.4, 23.4, 

21.3.  HR-ESI-MS: 238.0866 ([M + Na]+, C10H17NO2SNa+; calc. 238.0872).  Spectral 

data matched that reported by Tang et. al.9. 

S

O H
N

O  

S-(2-acetamidoethyl) (E)-hex-3-enethioate (21) 

Method C 

1H NMR (400 MHz, CDCl3): δ 5.90 (br s, 1H), 5.65 (m, 1H), 5.48 (m, 1H), 3.43 (app 

q, J = 6.3 Hz, 2H), 3.24 (ddd, J = 1.0, 4.4, 6.8 Hz, 1H), 3.02, (t, J = 6.4 Hz, 2H), 2.07 

(m, 2H), 1.96 (s, 3H), 1.00 (t, J = 7.6 Hz, 3H). 13C NMR (101 MHz, CDCl3): δ 198.9, 

170.4, 138.3, 119.8, 47.6, 39.7, 28.5, 25.6, 23.2, 13.3.  HRFAB m/z calculated exact 

mass for C10H17NO2S: 216.1058, found: 216.1062 [M+H]+.  Spectral data matched 

that reported by Gay et. al.10. 
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O

S
O

N
H

 

S-(2-acetamidoethyl) hex-5-enethioate (22)  

Method A: 24% of a colorless oil 

1H NMR (300 MHz, CDCl3): δ 6.13 (br s, 1H), 5.72 (ddt, J = 17.0, 10.2, 6.7 Hz, 1H), 

5.02–4.95 (m, 2H), 3.38 (app q, J = 6.3 Hz, 2H), 2.99 (t, J = 6.3 Hz, 2H), 2.55 (t, J = 

7.5 Hz, 2H), 2.05 (q, J = 6.9, CH2), 1.93 (s, 3H), 1.72 (pent, J = 7.5 Hz, 2H). 13C NMR 

(75 MHz, CDCl3): δ 199.4, 170.5, 137.2, 115.5, 43.1, 39.4, 32.6, 28.3, 24.50, 23.0.  HR-

ESI-MS calculated exact mass for C10H18NO2S: 216.1058, found: 216.1059 [M+H]+.  

See Figure B.41 for NMR spectra 

O

S
S

H3C
O

N
H

 

S-(2-acetamidoethyl) 4-(methylthio)butanethioate (23)  

Method A: 30% of a colorless oil 

1H NMR (400 MHz, CDCl3): δ 5.89 (br s, 1H), 3.42 (app q, J = 6.3 Hz, 2H), 3.04 (t, J 

= 6.3 Hz, 2H), 2.75 (t, J = 6.9 Hz, 2H), 2.44 (t, J = 6.9 Hz, 2H), 2.03 (s, 3H), 1.97 (m, 

2H), 1.96 (s, 3H). 13C NMR (101 MHz, CDCl3): δ 199.3, 170.4, 42.7, 39.6, 33.3, 28.6, 

24.6, 23.4, 15.4. HR-ESI-MS: 258.0589 ([M + Na]+, C9H17NO2S2Na+; calc. 258.0593).  

See Figure B.42 for NMR spectra 
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O

SS
H3C

O

N
H

 

S-(2-acetamidoethyl) 3-(methylthio)propanethioate (24) 

Method A: 27% of a colorless oil 

1H NMR (400 MHz, CDCl3): δ 6.29 (br s, 1H), 3.36 (app q, J = 6.3 Hz, 2H), 2.99 (t, J 

= 6.5 Hz, 2H), 2.81 (AA’BB’, J ≈ 7.1, 1.9 Hz, 2H), 2.73 (AA’BB’, J ≈ 7.1, 1.9 Hz, 2H), 

2.06 (s, 3H), 1.91 (s, 3H). 13C NMR (101 MHz, CDCl3): δ 197.9, 170.4, 43.4, 39.3, 

29.3, 28.5, 23.1, 15.5.  HR-ESI-MS: 244.0431 ([M + Na]+, C8H15NO2S2Na+; calc. 

244.0436).  See Figure B.43 for NMR spectra 

O

S
S

O

N
H

 

S-(2-acetamidoethyl) 2-(ethylthio)ethanethioate (25) 

Method A: colorless oil 

1H NMR (400 MHz, CDCl3): δ 5.89 (br s, 1H), 3.45 (app q, J = 6.4 Hz, 2H), 3.43 (s, 

2H), 3.06 (t, J = 6.4 Hz, 2H), 2.64 (dq, J = 0.8, 7.2 Hz, 2H), 1.97 (s, 3H), 1.27 (dt, J = 

0.8, 7.2 Hz, 3H). 13C NMR (101 MHz, CDCl3): δ 197.4, 170.3, 41.9, 39.5, 29.1, 27.0, 

23.2, 14.1.  HR-ESI-MS calculated exact mass for C8H16NO2S2: 222.0623, found: 

222.0622 [M+H]+.  See Figure B.44 for NMR spectra 

O

S
S

O

N
H
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S-(2-acetamidoethyl) 2-(methylthio)ethanethioate (26) 

Method A: colorless oil  

1H NMR (400 MHz, CDCl3): δ 5.98 (br s, 1H), 3.44 (app q, J = 6.3 Hz, 2H), 3.38 (s, 

2H), 3.06 (t, J = 6.3 Hz, 2H), 2.19 (s, 3H), 1.96 (s, 3H).  13C NMR (101 MHz, CDCl3): 

δ 197.0, 170.4, 44.2, 39.4, 29.1, 23.2, 16.5.  HR-ESI-MS calculated exact mass for 

C7H14NO2S2: 208.0466, found: 208.0464 [M+H]+.  See Figure B.45 for NMR spectra 

O

S
O

O

N
H

 

S-(2-acetamidoethyl) 2-(pentyloxy)ethanethioate (27) 

Method A: 61% of a colorless oil 

1H NMR (300 MHz, CDCl3): δ 6.04 (br s, 1H), 4.10 (s, 2H), 3.54 (t, J = 6.9 Hz, 2H), 

3.41 (app q, J = 6.4 Hz, 2H), 3.03 (t, J = 6.4 Hz, 2H), 1.95 (s, 3H), 1.63 (p, J = 6.9 Hz, 

2H), 1.35 (m, 4H), 0.90 (t, J = 7.1 Hz, 3H). 13C NMR (75 MHz, CDCl3): δ 201.0, 

170.4, 75.8, 72.9, 39.5, 29.3, 28.1, 27.4, 23.2, 22.5, 14.0.  HR-ESI-MS: 270.1132 ([M + 

Na]+, C11H21NO3SNa+; calc. 270.1134).  See Figure B.46 for NMR spectra 

O

S
OO

O

N
H

 

S-(2-acetamidoethyl) 2-(ethoxymethoxy)ethanethioate (28) 

Method A colorless oil  
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1H NMR (400 MHz, CDCl3): δ 6.15 (br s, 1H), 4.73 (s, 2H), 4.22 (s, 2H), 3.63 (q, J = 

7.0 Hz, 2H), 3.40 (app q, J = 6.4 Hz, 2H), 3.03 (t, J = 6.4 Hz, 2H), 1.94 (s, 3H), 1.19 (t, 

J = 7.0 Hz, 3H). 13C NMR (101 MHz, CDCl3): δ 199.7, 170.5, 95.3, 71.9, 64.1, 39.4, 

27.5, 23.1, 15.0.  HR-ESI-MS calculated exact mass for C9H18NO4S: 236.0957, 

found: 236.0966 [M+H]+.  See Figure B.47 for NMR spectra 

O

S
N

O

N
H

 

S-(2-acetamidoethyl) 4-cyanobutanethioate (29) 

Method A: 60% of a colorless oil 

1H NMR (300 MHz, CDCl3): δ 5.95 (br s, 1H), 3.42 (app q, J = 6.0 Hz, 2H), 3.01 (t, J 

= 6.0 Hz, 2H), 2.71 (t, J = 7.2 Hz, 2H), 2.52 (t, J = 6.9 Hz, 2H), 1.95 (pent, J = 7.2 Hz, 

2H), 1.95 (s, 3H).  13C NMR (75 MHz, CDCl3): δ 198.1, 170.4, 118.9, 42.0, 39.4, 28.9, 

23.3, 21.2, 16.3.  HR-ESI-MS calculated exact mass for C9H15N2O2S: 215.0854, 

found: 215.0856 [M+H]+.  See Figure B.48 for NMR spectra 

O

S
N3

O
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S-(2-acetamidoethyl) 4-azidobutanethioate (30) 

Method A: 72% of a colorless oil 

1H NMR (300 MHz, CDCl3): δ 6.17 (br s, 1H), 3.39 (app q, J = 6.3 Hz, 2H), 3.32 (t, J 

= 6.6 Hz, 2H), 3.00 (t, J = 6.3 Hz, 2H), 2.65 (t, J = 7.2 Hz, 2H), 1.93 (s, 3H), 1.88 
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(pent, J = 6.6 Hz, 3H).  13C NMR (75 MHz, CDCl3): δ 198.6, 170.5, 50.4, 40.8, 39.4, 

28.6, 24.7, 23.1.  HR-ESI-MS: 253.0735 ([M + Na]+, C8H14N4O2SNa+; calc. 253.0711).  

See Figure B.49 for NMR spectra 

 

O
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O

H
N

 

S-(2-acetamidoethyl) cyclopropanecarbothioate (31) 

Method C 

1H NMR (400 MHz, CDCl3): δ 6.08 (br s, 1H), 3.41 (app q, J = 6.1 Hz, 2H), 3.03 (t, J 

= 6.4 Hz, 2H), 2.02 (sym m, 1H), 1.95 (s, 3H), 1.15 (sym m, 2H), 1.35 (m, 2H), 0.97 

(sym m, 2H). 13C-NMR (101 MHz, CDCl3): δ 199.9, 170.3, 39.8, 31.1, 28.5, 22.8, 

23.2, 22.7, 11.1.  HR-ESI-MS calculated exact mass for C8H14NO2S: 188.0745, 

found: 188.0751 [M+H]+.  Spectral data matched that reported by Lee et. al.11.  

O

S
O

H
N

 

S-(2-acetamidoethyl) 2-methylcyclopropane-1-carbothioate (32) 

Method C: 72% of a colorless oil 

As a 3:1 mixture of diastereomers.  Major: 1H NMR (400 MHz, CDCl3): δ 5.99 (br 

s, 1H), 3.42 (app q, J = 6.0 Hz, 2H), 3.02 (t, J = 6.8 Hz, 2H), 1.95 (s, 3H), 1.76 (sym 
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m, 1H), 1.55 (b m, 1H), 1.35 (m, 1H), 1.13 (d, J = 6.0 Hz, 3H), 0.82 (sym m, 1H). 

Minor: 1H NMR (400 MHz, CDCl3): δ 5.99 (br s, 1H), 3.42 (app q, J = 6.0 Hz, 2H), 

3.06 (m, 2H), 2.10 (b m, 1H) 1.95 (s, 3H), 1.48 (b m, 1H), 1.14 (d, J = 6.0 Hz, 3H), 

1.11 (m, 1H), 1.10 (m, 1H).  Major: 13C-NMR (101 MHz, CDCl3): δ 199.2, 170.3, 

39.9, 31.4, 28.5, 23.2, 20.4, 19.6, 17.9.  Minor: 13C-NMR (101 MHz, CDCl3): δ 197.7, 

170.3, 40.1, 28.6, 28.3, 23.2, 19.6, 16.3, 11.9.  HR-ESI-MS calculated exact mass for 

C9H16NO2S: 202.0902, found: 202.0910 [M+H]+.  See Figure B.50 for NMR spectra 

O

S
O

H
N

 

S-(2-acetamidoethyl) but-2-ynethioate (33) 

Method A: colorless prisms 

1H NMR (400 MHz, CDCl3): δ 6.01 (br s, 1H), 3.45 (app q, J = 6.3 Hz, 2H), 3.10 (t, J 

= 6.3 Hz, 2H), 2.05 (s, 3H), 1.97 (s, 3H). 13C NMR (101 MHz, CDCl3): δ 176.6, 170.4, 

92.5, 77.9, 39.3, 29.3, 23.2, 4.3.  HR-ESI-MS calculated exact mass for C8H12NO2S: 

186.0589, found: 186.0585 [M+H]+.  Melting point: 59 °C.  See Figure B.51 for NMR 

spectra 

O

S
O

N
H

 

S-(2-acetamidoethyl) benzothioate (34) 

Method C 
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1H NMR (300 MHz, CDCl3): δ 7.96 (d, J = 4.9 Hz, 2H), 7.58 (d, J = 3.8 Hz, 1H), 7.46 

(dd, J = 4.7, 3.8 Hz, 2H), 6.01 (br s, 1H), 3.51 (app q, J ≈ 6.0 Hz, 2H), 3.23 (t, J = 6.0 

Hz, 2H), 1.97 (s, 3H). 13C NMR (75 MHz, CDCl3): δ 192.4, 170.5, 136.8, 133.8, 128.8, 

127.4, 39.8, 28.7, 23.4. HR-ESI-MS: 246.0554 ([M + Na]+, C11H13NO2SNa+; calc. 

246.0559).  Spectral data matched that reported by Prasad et. al.6. 
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B.3.  Supplementary figures  
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Appendix Figure B.1.  Full structures of all starter units assayed in this paper 
and the resulting enzymatic products.  See following figures (Appendix Figure 
B.2-B.32) for HPLC and HR-ESI-MS characterization of enzymatic products 35-
141. 
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Peak Compound Core 
Structure 

R UV max [M+H]+ Chain 
Length 

Dehydration Release, 
Other 

Mol. 
Formula 

1 35 B C5H11 260, 288 309.1342 Hex+5Mal -H2O +H2O C16H20O6 

2 36 B CH2COC5H11 262, 290 351.1434 Hex+6Mal -H2O +H2O C18H22O7 

3 37 A CH2COC5H11 220, 288 333.1337 Hex+6Mal -2H2O +H2O C18H20O6 

4 38 C C5H11 220, 286 183.1027 Hex+2Mal - O-C C10H14O3 

5 39a,b D/E C5H11 224, 278, 
306 

357.1342 Hex+7Mal -H2O O-C C20H20O6 

6 40 F CH2COC5H11 248, 270, 
340, 468 

371.1124 Hex+7Mal -2H2O O-C, [O] C20H18O7 

7 4 G CH2COC5H11 270, 280, 
390 

357.1332 Hex+7Mal -2H2O O-C C20H20O6 

Appendix Figure B.2.  Product profile for starter unit 5 reaction (S-(2-acetamidoethyl) hexanethioate) 

 
Peak Compound Core 

Structure 
R UV max [M+H]+ Chain 

Length 
Dehydration Release Mol. 

Formula 

1 41 C C3H7 232, 284 155.0712 But+2Mal - O-C C8H10O5 

2 42 G CH2COCH2COCH2COCH3 270, 
280, 390 

385.0917 10Mal -2H2O O-C C20H16O8 

3 43a,b D/E C3H7 224, 
278, 306 

329.1027 But+7Mal -2H2O O-C C18H16O6 

4 44 G CH2COCH2COC3H7 270, 
280, 390 

371.1130 But+8Mal -2H2O O-C C20H18O7 

5 44 G CH2COCH2COC3H7 270, 
280, 390 

371.1128 But+8Mal -2H2O O-C C20H18O7 

Appendix Figure B.3.  Product profile for starter unit 6 reaction (S-(2-acetamidoethyl) butanethioate) 
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Peak Compound Core 
Structure 

R UV max [M+H]+ Chain 
Length 

Dehydration Release, 
Other 

Mol. 
Formula 

1 45 B C4H9 260, 288 295.1184 Pent+5Mal -H2O + H2O C15H18O6 

2 46 B CH2COC4H9 262, 288 337.1285 Pent+6Mal -H2O + H2O C17H20O7 

3 47 C C4H9 220, 286 169.0872 Pent+2Mal - O-C C9H12O3 

4 48a,b D/E C4H9 224, 278, 
306 

343.1178 Pent+7Mal -2H2O O-C C19H18O6 

5 49 F CH2COC4H9 246, 270, 
336, 468 

357.0974 Pent+7Mal -2H2O O-C, [O] C19H16O7 

6 50 G CH2COC4H9 272, 280, 
390 

343.1174 Pent+7Mal -2H2O O-C C19H18O6 

Appendix Figure B.4.  Product profile for starter unit 7 reaction (S-(2-acetamidoethyl) pentanethioate) 

Peak Compound Core 
Structure 

R UV max [M+H]+ Chain 
Length 

Dehydration Release, 
Other 

Mol. 
Formula 

1 51 A C6H13 262, 288 305.1391 Hept+5Mal -2H2O +H2O C17H20O5 

2 52 B C6H13 260, 288 323.1494 Hept+5Mal -H2O +H2O C17H22O6 

3 53 B CH2COC6H13 262, 288 365.1602 Hept+6Mal -H2O +H2O C19H24O7 

4 54 A CH2COC6H13 222, 288 347.1497 Hept+6Mal -2H2O +H2O C19H22O6 

5 55 C CH2COC6H13 224, 286 239.1288 Hept+3Mal - O-C C13H18O4 

6 56 C C6H13 220, 286 197.1183 Hept+2Mal - O-C C11H16O3 

7 57 G CH2COC6H13 270, 280, 
390 

371.1493 Hept+7Mal -2H2O O-C C21H22O6 

8 58 G C6H13 270, 280, 
390 

329.1403 Hept+6Mal -2H2O O-C C19H20O5 

Appendix Figure B.5.  Product profile for starter unit 8 reaction (S-(2-acetamidoethyl) heptanethioate) 
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Peak Compound Core 
Structure 

R UV max [M+H]+ Chain 
Length 

Dehydration Release, 
Other 

Mol. 
Formula 

1 59 A C7H15 262, 288 319.1548 Oct+5Mal -2H2O +H2O C18H22O5 

2 60 B C7H15 260, 288 337.1651 Oct+5Mal -H2O +H2O C18H24O6 

3 61 C CH2COC7H15 220, 286 253.1443 Oct+3Mal - O-C C14H20O4 

4 62 C C7H15 220, 286 211.1339 Oct+2Mal - O-C C12H18O3 

5 63 G C7H15 270, 280, 
390 

343.1538 Oct+6Mal -H2O O-C C20H22O5 

Appendix Figure B.6.  Product profile for starter unit 9 reaction (S-(2-acetamidoethyl) octanethioate) 

Peak Compound Core 
Structure 

R UV max [M+H]+ Chain 
Length 

Dehydration Release, 
Other 

Mol. 
Formula 

1 35 B C5H11 260, 288 309.1342 Oct+4Mal -H2O +H2O C16H20O6 

2 36 B CH2COC5H11 262, 288 351.1435 Oct+5Mal -H2O +H2O C18H22O7 

3 37 A CH2COC5H11 220, 288 333.1336 Oct+5Mal -2H2O +H2O C18H20O6 

4 38 C C5H11 218, 286 183.1025 Oct+Mal - O-C C10H14O3 

5 39a,b D/E C5H11 224, 278, 310 357.1337 Oct+6Mal -2H2O O-C C20H20O6 

6    234, 248, 280, 
304 

333.1341 Oct+5Mal   C18H20O6 

7 40 F CH2COC5H11 246, 264, 340, 
468 

371.1127 Oct+6Mal -2H2O O-C, [O] C20H18O7 

8 4 G CH2COC5H11 270, 280, 390 357.1332 Oct+6Mal -2H2O O-C C20H20O6 

Appendix Figure B.7.  Product profile for starter unit 10 reaction (S-(2-acetamidoethyl) 3-
oxooctanethioate) 
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Peak Compound Core 
Structure 

R UV max [M+H]+ Chain Length Dehydration Release, 
Other 

Mol. 
Formula 

1 64 B C4H8Br 262, 290 373.0296 Br-Pent+5Mal -H2O +H2O C15H17BrO6 

2 65 B CH2COC4H8Br 262, 290 415.0380 Br-Pent+6Mal -H2O +H2O C17H19BrO7 

3 66 C C4H8Br 220, 286 246.9974 Br-Pent+2Mal - O-C C9H11BrO3 

4 67 F CH2COC4H8Br 246, 268, 
338, 468 

435.0079 Br-Pent+7Mal -2H2O O-C, [O] C19H15BrO7 

5 68 G CH2COC4H8Br 272, 280, 
388 

421.0273 Br-Pent+7Mal -2H2O O-C C19H17BrO6 

Appendix Figure B.8.  Product profile for starter unit 11 reaction (S-(2-acetamidoethyl) 5-
bromopentanethioate) 

Peak Compound Core 
Structure 

R UV max [M+H]+ Chain 
Length 

Dehydration Release, 
Other 

Mol. 
Formula 

1 69 B C5H10Br 260, 288 387.0440 Br-Hex 
+5Mal 

-H2O +H2O C16H19BrO6 

2 70 B CH2COC5H10Br 262, 288 429.0569 Br-Hex 
+6Mal 

-H2O +H2O C18H21BrO7 

3 71 C C5H10Br 220, 286 261.0121 Br-Hex 
+2Mal 

- O-C C10H13BrO3 

4    212, 234, 
278, 302 

411.0431 Br-Hex 
+6Mal 

  C18H19BrO6 

5 72 F CH2COC5H10Br 246, 264, 
336, 468 

449.0241 Br-Hex 
+7Mal 

-2H2O O-C, [O] C20H17BrO7 

6 73 G CH2COC5H10Br 272, 280, 
390 

435.0427 Br-Hex 
+7Mal 

-2H2O O-C C20H19BrO6 

Appendix Figure B.9.  Product profile for starter unit 12 reaction (S-(2-acetamidoethyl) 6-
bromohexanethioate) 
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Peak Compound Core 
Structure 

R UV max [M+H]+ Chain Length Dehydration Release, 
Other 

Mol. 
Formula 

1 74 B C4H8Cl 262, 288 329.0812 Cl-Pent+5Mal -H2O +H2O C15H17ClO6 

2 75 B CH2COC4H8Cl 262, 288 371.0872 Cl-Pent+6Mal -H2O +H2O C17H19ClO7 

3 76 C C4H8Cl 220, 286 203.0479 Cl-Pent+2Mal - O-C C9H11ClO3 

4    218, 286 245.0481    C11H13ClO4 

5 77 F CH2COC4H8Cl 246, 264, 338, 
468 

391.0569 Cl-Pent+7Mal -2H2O O-C, [O] C19H15ClO7 

6 78 G CH2COC4H8Cl 272, 280, 390 377.0784 Cl-Pent+7Mal -2H2O O-C C19H17ClO6 

Appendix Figure B.10.  Product profile for starter unit 13 reaction (S-(2-acetamidoethyl) 5-
chloropentanethioate) 

Peak Compound Core 
Structure 

R UV max [M+H]+ Chain Length Dehydration Release, 
Other 

Mol. 
Formula 

1 79 B C5H10Cl 260, 288 343.0923 Cl-Hex+5Mal -H2O +H2O C16H19ClO6 

2 80 B CH2COC5H10Cl 262, 288 385.1041 Cl-Hex+6Mal -H2O +H2O C18H21ClO7 

3 81 C C5H10Cl 220, 286 217.0627 Cl-Hex+2Mal - O-C C10H13ClO3 

4    218, 234, 278, 
300 

367.0952 Cl-Hex+6Mal   C18H19ClO6 

5 82 F CH2COC5H10Cl 246, 270, 330, 
468 

405.0741 Cl-Hex+7Mal -2H2O O-C, [O] C20H17ClO7 

6 83 G CH2COC5H10Cl 270, 280, 390 391.0914 Cl-Hex+7Mal -2H2O O-C C20H19ClO6 

Appendix Figure B.11.  Product profile for starter unit 14 reaction (S-(2-acetamidoethyl) 6-
chlorohexanethioate) 
 
 
 



183 
 

Peak Compound Core 
Structure 

R UV max [M+H]+ Chain 
Length 

Dehydration Release, 
Other 

Mol. 
Formula 

1 42 G CH2COCH2COCH2COCH3 272, 280, 
390 

385.0911 10Mal -2H2O O-C C20H16O8 

2 84 G CH2COCH(CH3)C4H9 270, 280, 
390 

371.1487 Me-
Hex+7Mal 

-2H2O O-C C21H22O6 

Appendix Figure B.12.  Product profile for starter unit 15 reaction (S-(2-acetamidoethyl) 2-
methylhexanethioate) 

Peak Compound Core 
Structure 

R UV max [M+H]+ Chain 
Length 

Dehydration Release, 
Other 

Mol. 
Formula 

1 42 G CH2COCH2COCH2COCH3 270, 280, 
390 

385.0905 10Mal -2H2O O-C C20H16O8 

2 85 B CH2COCH2CH(CH3)C3H7 266, 288 365.1596 Me-
Hex+6Mal 

-H2O +H2O C19H24O7 

3    240, 288, 
336 

197.1178    C11H16O3 

4 86a,b D/E CH2CH(CH3)C3H7 224, 278, 
310 

371.1493 Me-
Hex+7Mal 

-2H2O O-C C21H22O6 

5 87 G CH2CO CH2CH(CH3)C3H7 270, 280, 
390 

371.1478 Me-
Hex+7Mal 

-2H2O O-C C21H22O6 

Appendix Figure B.13.  Product profile for starter unit 16 reaction (S-(2-acetamidoethyl) 3-
methylhexanethioate) 
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Peak Compound Core 
Structure 

R UV max [M+H]+ Chain 
Length 

Dehydration Release, 
Other 

Mol. 
Formula 

1 88 B C2H4CH(CH3) 
C2H5 

260, 288 323.1493 Me-Hex 
+5Mal 

-H2O +H2O C17H22O6 

2 89 B CH2CO 
C2H4CH(CH3)C2H5 

262, 288 365.1594 Me-Hex 
+6Mal 

-H2O +H2O C19H24O7 

3 90 C CH2COC2H4CH(CH3) 
C2H5 

220, 284 239.1281 Me-Hex 
+3Mal 

- O-C C13H18O4 

4 91a,b D/E C2H4CH(CH3) 
C2H5 

224, 278, 310 371.1492 Me-Hex 
+7Mal 

-2H2O O-C C21H22O6 

5 92 G CH2COC2H4CH(CH3) 
C2H5 

270, 280, 390 371.1486 Me-Hex 
+7Mal 

-2H2O O-C C21H22O6 

Appendix Figure B.14.  Product profile for starter unit 17 reaction (S-(2-acetamidoethyl) 4-
methylhexanethioate) 

 
Peak Compound Core 

Structure 
R UV max [M+H]+ Chain 

Length 
Dehydration Release, 

Other 
Mol. 

Formula 

1 93 B C3H6C(CH3)2 260, 288 323.1488 Me-Hex 
+5Mal 

-H2O +H2O C17H22O6 

2 94 B CH2COC3H6C(CH3)2 266, 288 365.1590 Me-Hex 
+6Mal 

-H2O +H2O C19H24O7 

4 95 C C3H6C(CH3)2 224, 284 197.1179 Me-Hex 
+2Mal 

- O-C C11H16O3 

5 96 G CH2COC3H6C(CH3)2 270, 280, 390 371.1487 Me-Hex 
+7Mal 

-2H2O O-C C21H22O6 

Appendix Figure B.15.  Product profile for starter unit 18 reaction (S-(2-acetamidoethyl) 5-
methylhexanethioate) 
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Peak Compound Core 
Structure 

R UV max [M+H]+ Chain Length Dehydration Release, 
Other 

Mol. 
Formula 

1 97 B C2H4C(CH3)2 260, 288 309.1338 Me-Pent+5Mal -H2O +H2O C16H20O6 

2 98 B CH2COC2H4C(CH3)2 262, 288 351.1435 Me-Pent+6Mal -H2O +H2O C18H22O7 

3 99 C CH2COC2H4C(CH3)2 220, 284 225.1127 Me-Pent+3Mal - O-C C12H16O4 

4 100 C C2H4C(CH3)2 220, 286 183.1024 Me-Pent+2Mal - O-C C10H14O3 

5 101a,b D/E C2H4C(CH3)2 232, 278, 
304 

357.1339 Me-Pent+7Mal -2H2O O-C C20H20O6 

6 102 F CH2COC2H4C(CH3)2 246, 270, 
330, 468 

371.1121 Me-Pent+7Mal -2H2O O-C, [O] C20H18O7 

7 103 G CH2COC2H4C(CH3)2 270, 280, 
390 

357.1349 Me-Pent+7Mal -2H2O O-C C20H20O6 

Appendix Figure B.16.  Product profile for starter unit 19 reaction (S-(2-acetamidoethyl) 4-
methylpentanethioate) 

Peak Compound Core 
Structure 

R UV max [M+H]+ Chain 
Length 

Dehydration Release, 
Other 

Mol. 
Formula 

1 104a,b D/E CHCHC3H7 226, 262 355.1176 Hex+7Mal -2H2O O-C C20H18O6 

2 105 H CHCHC3H7 222, 264, 304, 
374 

355.1179 Hex+7Mal -2H2O +H2O, C-C C20H18O6 

3 106 G CH2COCHCHC3H7 270, 280, 390 355.1184 Hex+7Mal -2H2O O-C C20H18O6 

Appendix Figure B.17.  Product profile for starter unit 20 reaction (S-(2-acetamidoethyl) (E)-hex-2-
enethioate) 
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Peak Compound Core 
Structure 

R UV max [M+H]+ Chain 
Length 

Dehydration Release, 
Other 

Mol. 
Formula 

1    218, 268, 
382 

349.1281 Hex+6Mal   C18H20O7 

2    228, 284 331.1187 Hex+6Mal   C18H18O6 

3 107 C CH2CHCHC2H5 220, 288 181.0874 Hex+2Mal - O-C C10H12O3 

4 108a,b D/E* CH2CHCHC2H5 224, 280 373.1280 Hex+7Mal -H2O O-C C20H20O7 

5 109 H CH2CHCHC2H5 222, 264, 
304, 374 

355.1182 Hex+7Mal -2H2O C-C C20H18O6 

6 110 G CH2COCH2CHCHC2H5 270, 280, 
390 

355.1183 Hex+7Mal -2H2O O-C C20H18O6 

Appendix Figure B.18.  Product profile for starter unit 21 reaction (S-(2-acetamidoethyl) (E)-hex-3-
enethioate). *108a,b consist of hydrated versions of cores D, E. 
 

Peak Compound Core 
Structure 

R UV max [M+H]+ Chain 
Length 

Dehydration Release, 
Other 

Mol. 
Formula 

1    272, 280, 390 490.1537    ? 

2 111 C C3H6CHCH2 220, 286 181.0865 Hex+2Mal - O-C C10H12O3 

3 112a,b D/E C3H6CHCH2 224, 278, 310 355.1177 Hex+7Mal -2H2O O-C C20H18O6 

4    270, 280, 390 331.1183 Hex+6Mal   C18H18O6 

5 113 G CH2COC3H6CHCH2 270, 280, 390 355.1182 Hex+7Mal -2H2O C-O C20H18O6 

Appendix Figure B.19.  Product profile for starter unit 22 reaction (S-(2-acetamidoethyl) (E)-hex-5-
enethioate) 
 
 



187 
 

Peak Compound Core 
Structure 

R UV max [M+H]+ Chain 
Length 

Dehydration Release, 
Other 

Mol. 
Formula 

1 114 C C3H6SCH3 220, 286 201.0591 ‘Hex’+2Mal - O-C C9H12O3S 

2 115 F CH2COC3H6SCH3 246, 270, 330, 
468 

389.0688 ‘Hex’+7Mal -2H2O O-C, [O] C19H16O7S 

3 116 G CH2COC3H6SCH3 270, 280, 390 375.0899 ‘Hex’+7Mal -2H2O O-C C19H18O6S 

Appendix Figure B.20.  Product profile for starter unit 23 reaction (S-(2-acetamidoethyl) 4-
(methylthio)butanethioate) 
 
 

 
Peak Compound Core 

Structure 
R UV max [M+H]+ Chain 

Length 
Dehydration Release, 

Other 
Mol. 

Formula 

1 117 C C2H4SCH3 220, 286 187.0428 ‘Pent’+2Mal - O-C C8H10O3S 

2 118a,b D/E C2H4SCH3 224, 280, 388 361.0740 ‘Pent’+7Mal -2H2O O-C C18H16O6S 

3 119 G CH2COC2H4SCH3 270, 280, 390 361.0744 ‘Pent’+7Mal -2H2O O-C C18H16O6S 

Appendix Figure B.21.  Product profile for starter unit 24 reaction (S-(2-acetamidoethyl) 3-
(methylthio)propanethioate) 
 
 
 
 
 
 
 



188 
 

Peak Compound Core 
Structure 

R UV max [M+H]+ Chain 
Length 

Dehydration Release, 
Other 

Mol. 
Formula 

1 120 C CH2SC2H5 222, 288 187.0433 ‘Pent’+2Mal - O-C C8H10O3S 

2 121a,b D/E* CH2SC2H5 224, 282 379.0844 ‘Pent’+7Mal -H2O O-C C18H18O7S 

3 122a,b D/E CH2SC2H5 224, 278 361.0744 ‘Pent’+7Mal -2H2O O-C C18H16O6S 

4 123 G CH2COCH2SC2H5 270, 280, 390 361.0744 ‘Pent’+7Mal -2H2O O-C C18H16O6S 

Appendix Figure B.22.  Product profile for starter unit 25 reaction (S-(2-acetamidoethyl) 2-
(ethylthio)propanethioate).  *129a,b are hydrated versions of 130 a,b 
 

Peak Compound Core 
Structure 

R UV max [M+H]+ Chain 
Length 

Dehydration Release, 
Other 

Mol. 
Formula 

1 124 C CH2SCH3 236, 288 173.0273 ‘But’+2Mal - O-C C7H8O3S 

2 125 G CH2COCH2COCH2SCH3 272, 280, 
390 

389.0678 ‘But’+8Mal -2H2O O-C C19H16O7S 

Appendix Figure B.23.  Product profile for starter unit 26 reaction (S-(2-acetamidoethyl) 2-
(methylthio)ethanethioate) 
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Peak Compound Core 
Structure 

R UV max [M+H]+ Chain 
Length 

Dehydration Release, 
Other 

Mol. 
Formula 

1 126 B CH2OC5H11 262, 288 339.1443 ‘Oct’+5Mal -H2O +H2O C17H22O7 

2 127 B CH2COCH2OC5H11 262, 288 381.1544 ‘Oct’+6Mal -H2O +H2O C19H24O8 

3    234, 278, 
300 

363.1441 ‘Oct’+6Mal   C19H22O7 

4 128 G CH2COCH2OC5H11 270, 280, 
390 

387.1476 ‘Oct’+7Mal -2H2O O-C C21H22O7 

5 129 G CH2OC5H11 270, 280, 
390 

345.1339 ‘Oct’+6Mal -2H2O O-C C19H20O6 

Appendix Figure B.24.  Product profile for starter unit 27 reaction (S-(2-acetamidoethyl) 2-
(pentyloxy)ethanethioate) 
 

Peak Compound Core 
Structure 

R UV max [M+H]+ Chain 
Length 

Dehydration Release, 
Other 

Mol. 
Formula 

1 130a,b D/E CH2OCH2OC2H5 232, 280 375.1074 ‘Hept’+7Mal -2H2O O-C C19H18O8 

2 131 G CH2CO 
CH2OCH2OC2H5 

270, 280, 390 375.1076 ‘Hept’+7Mal -2H2O O-C C19H18O8 

Appendix Figure B.25.  Product profile for starter unit 28 reaction (S-(2-acetamidoethyl) 2-
(ethoxymethoxy)ethanethioate) 
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Peak Compound Core 

Structure 
R UV max [M+H]+ Chain Length Dehydration Release, 

Other 
Mol. 

Formula 

1 132 
133 

C 
C 

C3H6CN 
CH2COC3H6CN 

220, 284 
220, 284 

180.0661 
222.0766 

Cyanobut+2Mal 
Cyanobut+3Mal 

- 
- 

O-C 
O-C 

C9H9NO3 
C11H11NO4 

2 134a,b D/E* C3H6CN 224, 280 372.1071 Cyanobut+7Mal -H2O O-C C19H17NO7 

3 135 F CH2COC3H6CN 226, 270, 390 368.0763 Cyanobut+7Mal -2H2O O-C, [O] C19H13NO7 

4    234, 266, 350 396.1095 Cyanobut+8Mal   C21H17NO7 

5 136 G CH2COC3H6CN 270, 280, 390 354.0964 Cyanobut+7Mal -2H2O O-C C19H15NO6 

Appendix Figure B.26.  Product profile for starter unit 29 reaction (S-(2-acetamidoethyl) 4-
cyanobutanethioate).  *142a,b consist of hydrated versions of cores D, E 
 

Peak Compound Core 
Structure 

R UV max [M+H]+ Chain 
Length 

Dehydration Release, 
Other 

Mol. 
Formula 

1 137 
138 

C 
C 

C3H6N3 
CH2COC3H6N3 

220, 284 
220, 284 

196.0718 
238.0417 

Azidobut+2Mal 
Azidobut+3Mal 

- 
- 

O-C 
O-C 

C8H9N3O3 
C10H11N3O4 

2 139 G CH2COC3H6N3 270, 280, 390 370.1022 Azidobut+7Mal -2H2O O-C C18H15N3O6 

Appendix Figure B.27.  Product profile for starter unit 30 reaction (S-(2-acetamidoethyl) 4-
azidobutanethioate) 
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Peak Compound Core 
Structure 

R UV max [M+H]+ Chain 
Length 

Dehydration Release, 
Other 

Mol. 
Formula 

1 42 G CH2COCH2COCH2COCH3 270, 280, 
390 

385.0923 10Mal -2H2O O-C C20H16O8 

2 140 G CH2COCH2COC3H5 280, 390 369.0964    +8Mal -2H2O O-C C20H16O7 

Appendix Figure B.28.  Product profile for starter unit 31 reaction (S-(2-acetamidoethyl) 
cyclopropanecarbothioate) 
 

Peak Compound Core 
Structure 

R UV max [M+H]+ Chain 
Length 

Dehydration Release, 
Other 

Mol. 
Formula 

1 42 G CH2COCH2COCH2COCH3 270, 280, 
390 

385.0921 10Mal -2H2O O-C C20H16O8 

2 141 G CH2COCH2COC3H4CH3 280, 390 383.1123    +8Mal -2H2O O-C C21H18O7 

Appendix Figure B.29.  Product profile for starter unit 32 reaction (S-(2-acetamidoethyl) 2-
methylcyclopropane-1-carbothioate) 
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Peak Compound Core 
Structure 

R UV max [M+H]+ Chain 
Length 

Dehydration Release, 
Other 

Mol. 
Formula 

1 42 G CH2COCH2COCH2COCH3 270, 280, 
390 

385.0914 10Mal -2H2O O-C C20H16O8 

Appendix Figure B.30.  Product profile for starter unit 33 reaction (S-(2-acetamidoethyl) but-2-ynethioate) 

Peak Compound Core 
Structure 

R UV max [M+H]+ Chain 
Length 

Dehydration Release, 
Other 

Mol. 
Formula 

1 34 N/A  245, 274 224.0749    C11H13NO2S 

Appendix Figure B.31.  Product profile for starter unit 34 reaction (S-(2-acetamidoethyl) benzothioate) 

Peak Compound Core 
Structure 

R UV max [M+H]+ Chain 
Length 

Dehydration Release, 
Other 

Mol. 
Formula 

1 42 G CH2COCH2COCH2COCH3 270, 280, 
390 

385.0912 10Mal -2H2O O-C C20H16O8 

Appendix Figure B.32.  Product profile for control reaction containing only malonyl-SNAC 
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Appendix Figure B.33. Purified proteins used in this study separated by SDS-PAGE 
and stained with Coomassie Blue. BenchMark Protein Ladder (Invitrogen) was used 
as a molecular weight standard (indicated in kDa). (A) 12% SDS-PAGE of wild-type 
PksA SAT-KS-MAT and PT-ACP.  (B) 12% SDS-PAGE of PksA SAT-KS-MAT 
mutants.  (C) 12% SDS-PAGE of PksA-SAT-KS-MAT-PT-ACP 
 
 



194 
 

A. 

B. 

Appendix Figure B.34.  NMR spectra of S-(2-acetamidoethyl) 5-bromopentanethioate (11) 
A)  1H NMR spectrum  B)  13C NMR spectrum 
 

11 
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A. 

B. 

Appendix Figure B.35.  NMR spectra of S-(2-acetamidoethyl) 6-bromohexanethioate (12) A)  
1H NMR spectrum  B)  13C NMR spectrum 
 

12 
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A. 

B. 

Appendix Figure B.36.  NMR spectra of S-(2-acetamidoethyl) 5-chloropentanethioate (13) 
A)  1H NMR spectrum  B)  13C NMR spectrum 
 

13 
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A. 

B. 

Appendix Figure B.37.  NMR spectra of S-(2-acetamidoethyl) 6-chlorohexanethioate (14) A)  
1H NMR spectrum  B)  13C NMR spectrum 
 

14 
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A. 

B. 

Appendix Figure B.38.  NMR spectra of S-(2-acetamidoethyl) 2-methylhexanethioate (15) 
A)  1H NMR spectrum  B)  13C NMR spectrum 
 

15 
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A. 

B. 

Appendix Figure B.39.  NMR spectra of S-(2-acetamidoethyl) 3-methylhexanethioate (16) 
A)  1H NMR spectrum  B)  13C NMR spectrum 
 

16 
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A. 

B. 

Appendix Figure B.40.  NMR spectra of S-(2-acetamidoethyl) 4-methylhexanethioate 
(17) A)  1H NMR spectrum  B)  13C NMR spectrum 
 

17 
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A. 

B. 

Appendix Figure B.41.  NMR spectra of S-(2-acetamidoethyl) 5-methylhexanethioate (18) 
A)  1H NMR spectrum  B)  13C NMR spectrum 
 

18 
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A. 

B. 

Appendix Figure B.42.  NMR spectra of S-(2-acetamidoethyl) 4-methylpentanethioate (19) 
A)  1H NMR spectrum  B)  13C NMR spectrum 
 

19 
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A. 

B. 

Appendix Figure B.43.  NMR spectra of S-(2-acetamidoethyl) hex-5-enethioate (22) A)  1H 
NMR spectrum  B)  13C NMR spectrum 
 

22 
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A. 

B. 

Appendix Figure B.44.  NMR spectra of S-(2-acetamidoethyl) 4-(methylthiol)butanethioate 
(23) A)  1H NMR spectrum  B)  13C NMR spectrum 
 

23 
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A. 

B. 

Appendix Figure B.45.  NMR spectra of S-(2-acetamidoethyl) 3-(methylthio)propanethioate 
(24) A)  1H NMR spectrum  B)  13C NMR spectrum 
 

24 
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A. 

B. 

Appendix Figure B.46.  NMR spectra of S-(2-acetamidoethyl) 2-(ethylthio)ethanethioate 
(25) A)  1H NMR spectrum  B)  13C NMR spectrum 
 

25 
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A. 

B. 

Appendix Figure B.47.  NMR spectra of S-(2-acetamidoethyl) 2-(methylthio)ethanethioate 
(26) A)  1H NMR spectrum  B)  13C NMR spectrum 
 

26 
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A. 

B. 

Appendix Figure B.48.  NMR spectra of S-(2-acetamidoethyl) 2-(pentyloxy)ethanethioate 
(27)  (A)  1H NMR spectrum  B)  13C NMR spectrum 
 

27 
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A. 

B. 

Appendix Figure B.49.  NMR spectra of S-(2-acetamidoethyl) 2-
(ethoxymethoxy)ethanethioate (28) (A)  1H NMR spectrum  B)  13C NMR spectrum 
 

28 
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A. 

B. 

Appendix Figure B.50.  NMR spectra of S-(2-acetamidoethyl) 4-cyanobutanethioate (29) (A)  
1H NMR spectrum  B)  13C NMR spectrum 
 

29 
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A. 

B. 

Appendix Figure B.51.  NMR spectra of S-(2-acetamidoethyl) 4-azidobutanethioate (30) (A)  
1H NMR spectrum  B)  13C NMR spectrum 
 

30 
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A. 

B. 

Appendix Figure B.52.  NMR spectra of S-(2-acetamidoethyl) 2-methylcyclopropane-1-
carbothioate (32)  A)  1H NMR spectrum  B)  13C NMR spectrum 
 

32 
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A. 

B. 

Appendix Figure B.53.  NMR spectra of S-(2-acetamidoethyl) but-2-ynethioate (33)  A)  1H 
NMR spectrum  B)  13C NMR spectrum 
 

33 
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Appendix C: Supplementary Material for Chapter 3 

C.1.  Supplementary figures 

 

Appendix Figure C.1.  Integration of loading domains in PKS.  (a)  Sequence alignment of 34 
SAT-KS linker sequences of NR-PKS.  All sequences are labelled as “protein name (organism 
abbreviation) Uniprot number”.  (b)  Superposition of the CazM SAT (black) onto the SAT 
domain of CTB1 SAT-KS-MAT (light grey) shows a similar location of the SAT C-terminal linker 
ending (dark red/light red for CazM/CTB1), which points towards the N-terminus of the KS in 
CTB1.  (c)  Superposition of the loading domain of the AVES1 avermectin modPKS (black) onto 
the SAT domain of CTB1 SAT-KS-MAT reveals differences in C-terminal linker organization.  (d)  
Superposition of the AVES1 loading domain onto CTB1-MAT shows that the AVES1 post-loading 
domain linker contains an α-helix that matches the linker architecture of MAT in CTB1 (and AT 
domains in modPKS). 
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Appendix Figure C.2.  Cryo-EM data processing scheme.  (a)  2D- and 3D-classification and 
sorting scheme for reconstructions of CTB1-SAT°-KS-MAT°=ACP2 dimers as well as monomers. 
3D-class distributions are indicated below the models. FSC plots (corrected for effects of the 
mask) used for determining resolution based on the 0.143 criterion30 is shown below the final 
models.  (b,c)  3D (b) and 2D (c) angular distribution plot based on the alignment used for the 
final reconstruction. (d) Local resolution map of the final reconstruction at 7.1 Å resolution shows 
a resolution below 5 Å in the central KS region, decreasing towards the lateral MAT domains to 
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around 10 Å. (e) The final map reveals features of secondary structure elements as well as linkers. 
All maps are contoured at 7.1σ. 

 

 

Appendix Figure C.3.  Crosslinking and cryo-EM sample preparation. (a) Crosslinking time course in 
high (50 mM Tris pH 7.5, 250 mM NaCl) and low (50 mM Tris pH 7.5) salt buffer as well as for two 
different CTB1-SAT°-KS-MAT°:ACP2 ratios. Crosslinking proceeds faster in low salt buffer and at higher 
excess of ACP2. (b,c) Drift corrected and dose filtered cryo-EM micrographs reveal clearly recognizable 
shapes for monomeric (b) and dimeric (c) particles. (d) Denaturating SDS-PAGE analysis with Coomassie 
staining of the sample used for cryo-EM grid preparation before SEC and after grid preparation. 
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Appendix Figure C.4.  Conformational variability in the cryo-EM structure of CTB1-SAT0-KS-
MAT0=ACP2. (a.b)  KS-based C2 symmetry differences map of the final reconstruction at 7.1 Å 
resolution, contoured at 7.1σ (green: positive, red: negative). The potential ACP2 binding region 
on the KS surface is less ordered on the side lacking ACP2 density. (b) An unmasked map of the 
final reconstruction contoured at 3σ and colored by distance to the atomic model shows 
enhanced noise around the second ACP binding site 
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Appendix Figure C.5.  Structural comparison between CTB1-SAT-KS-MAT and CTB1-SAT°-KS-
AT°=ACP2. (a)  Superposition on the central KS dimer. Transparent cartoon representation of 
CTB1 is shown in white (CTB1 SAT-KS-MAT) and black (CTB1 SAT°-KS-MAT°=ACP2). Selected 
helices are shown in light (CTB1 SAT-KS-MAT) and dark (CTB1 SAT°-KS-MAT°=ACP2) domain 
colors. (b) Schematic representation of relative domain motions. Distances are derived by 
domain-wise Cα-r.m.s.d. calculations. (c, d) Structural differences at the MAT-SAT interface in the 
cryo-EM reconstruction are shown for the unsharpened map. While the side with visualized 
ACP2 (c) reveals a gap, the side with unresolved ACP2 shows a connected interface (d). 

 

 

 

 

 



220 
 

Appendix Figure C.6.  CTB1 SAT-KS-MAT alignment of regions interfacing ACP2 and 
phylogeny. All sequences are labelled as “protein name (organism abbreviation) Uniprot 
number”. (a)  Sequence alignment of regions relevant for ACP2 interaction. *indicates interface 
mutants that reduce activity. (b)  Phylogenetic analysis of NR-PKS indicates three main clades 
with one clustering around CTB1. Distance unit is given as accepted amino-acid substitutions per 
site and indicated by scale bar. 
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Appendix Figure C.7.  Comparison of KS-ACP interactions in PKS and FAS. (a) ACP interactions 
with multienzyme KS domains have been observed in the hetero-dodecameric yFAS and PikAIII 
modPKS. (b)  Superposition of the architecturally distinct yFAS-KS with CTB1-KS-LD°=ACP2. 
The divergent ACP of yFAS consists of a C-terminal four-helix bundle extension (white) and the 
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conserved four-helix bundle at the N-terminus, which interacts with the KS in a similar position 
as observed for ACP2 in CTB1. ACP-interfacing residues in CTB1 are indicated by blue spheres 
(see Figure 3.8) (c)  Derivation of the length of a fully extended crosslink between ACP2 and KS 
in CTB1. The defined length of the phosphopantetheine cofactor bridges a distance of approx. 
27 Å between the ACP-Ser and the KS-Cys Cα atoms for functional ACP interaction with active 
sites. (d,e)  Superpositions of PikAIII with ACP4 (d) and ACP5 (e) on CTB1-KS-LD=ACP2 show 
the relative locations of the ACP binding interfaces. The LD5 arrangement in PikAIII is invers to 
CTB1. (f-i)  Cα-Cα solvent accessible surface (SAS) distances between the ACP anchor and the KS 
active site cysteine in CTB1 (f), yFAS (g), and PikAIII with ACP4 (h) and ACP5 (i) are indicated. 
Solvent accessible surface paths are indicated by tubes of spheres and colored according to the 
agreement (green) or disagreement (red) with the length of the Ppant cofactor. The path for ACP5 
to KS5 in PikAIII (i) is only accessible in the absence of the post-(M)AT linker, which was not 
resolved in the cryo-EM structure. An additional miniaturized-sideview is indicated. 
Corresponding euclidian distances are given in the panels. Domain colors are indicated in the 
panels; only KS, LD, and ACP domains are shown (b-i). 
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C.2.  Supplementary tables 

Appendix Table C.1.  X-ray crystallographic (a) and cryo-EM (b) data collection and refinement 
statistics.  Resolution cutoff in (a) was determined by CC1/2 criterion1.  Highest resolution shell is 
shown in parentheses. 
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Appendix Table C.2.  Structural comparison and interface analysis of CTB1 SAT-KS-MAT.  (a) Cα 

r.m.s. deviations obtained for structural comparison of crystallized CTB1 domains with their 
closest structural neighbors in the PDB and of multienzyme PKSs and FASs (to the best of our 
knowledge).  For structures with several protomers, only the best matches are reported.  *Q-score 
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based, †trans-AT PKS.  (b) Interfaces in the crystal structures of CTB1 SAT-KS-MAT.  §Interface 
with the second protomer. 

Plasmid Protein Vector Tag MW 
(g/mol) 

ε (M-

1cm-1) 

pECTB1-NKA62 SAT-KS-MAT pET-24a C-His6 140150 138200 

pECTB1-SKM-C119A-S1010A SAT°-KS-MAT° pET-24a C-His6 140150 138200 

p28CTB1-ACP2 ACP2 pET-28a N-His6 11970 5500 

pECTB1-SKM-R461A SAT-KS-MAT-R461A pET-24a C-His6 140150 138200 

pECTB1-SKM-R461E SAT-KS-MAT-R461E pET-24a C-His6 140150 138200 

pECTB1-SKM-R658A SAT-KS-MAT-R658A pET-24a C-His6 140150 138200 

pECTB1-SKM-R658E SAT-KS-MAT-R658E pET-24a C-His6 140150 138200 

pECTB1-SKM-R879A SAT-KS-MAT-R879A pET-24a C-His6 140150 138200 

pECTB1-SKM-R879E SAT-KS-MAT-R879E pET-24a C-His6 140150 138200 

pECTB1-PT2 PT pET-24a C-His6 41240 26150 

pECTB1-TE2 TE pET-28a N-His6 33630 38055 

pECTB1-ACP2-E1794A ACP2-E1794A pET-28a N-His6 11970 5500 

pECTB1-ACP2-E1794R ACP2-E1794R pET-28a N-His6 11970 5500 

pECTB1-ACP2-E1795A ACP2-E1795A pET-28a N-His6 11970 5500 

pECTB1-ACP2-E1795R ACP2-E1795R pET-28a N-His6 11970 5500 

pECTB1-ACP2-E1802A ACP2-E1802A pET-28a N-His6 11970 5500 

pECTB1-ACP2-E1802R ACP2-E1802R pET-28a N-His6 11970 5500 

pECTB1-ACP2-D1806A ACP2-D1806A pET-28a N-His6 11970 5500 

pECTB1-ACP2-D1806R ACP2-D1806R pET-28a N-His6 11970 5500 

pECTB1-ACP2-D1811A ACP2-D1811A pET-28a N-His6 11970 5500 

pECTB1-ACP2-D1811R ACP2-D1811R pET-28a N-His6 11970 5500 

pECTB1-ACP2-D1815A ACP2-D1815A pET-28a N-His6 11970 5500 

pECTB1-ACP2-D1815R ACP2-D1815R pET-28a N-His6 11970 5500 

pECTB1-ACP1 ACP1 pET-28a N-His6 11160 N/A 

Appendix Table C.3.  Plasmids used in this study 
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Primer Sequence 5’-3’ 
CTB1-ACP2-5 ATTACATATGGATCCATCCCCTAACGAGAT 
CTB1-ACP2-stop-3 TAATGCGGCCGCCTATTCCGTTGACCCAGAGAACC 
T7 TAATACGACTCACTATAGGG 
T7-term GCTAGTTATTGCTCAGCGG 
CTB1-C119A-5 TGCATTACCGGCGTTGCAACCGGCGCA 
CTB1-C119A-3 CGTCAATGCGCCGGTTGCAACGCCGGT 
CTB1-S1010A-5 GGTAGTTGGCCACGCGTTGGGCGAGTATGC 
CTB1-S1010A-3 GCATACTCGCCCAACGCGTGGCCAACTACC 
CTB1-R461A-5 ACATGAGTCCGGCGGAAGCGCCGC 
CTB1-R461A-3 GCGGCGCTTCCGCCGGACTCATGT 
CTB1-R461E-5 ACATGAGTCCGGAAGAAGCGCCGC 
CTB1-R461E-3 GCGGCGCTTCTTCCGGACTCATGT 
CTB1-R658A-5 GCCTCTATCACTGCGCCTCATGCCGGAG 
CTB1-R658A-3 CTCCGGCATGAGGCGCAGTGATAGAGGC 
CTB1-R658E-5 GCCTCTATCACTGAACCTCATGCCGGAG 
CTB1-R658E-3 CTCCGGCATGAGGTTCAGTGATAGAGGC 
CTB1-R879A-5 GAGTGCACCATGCGCACAGAGCCGTAGC 
CTB1-R879A-3 GCTACGGCTCTGTGCGCATGGTGCACTC 
CTB1-R879E-5 GAGTGCACCATGAACACAGAGCCGTAGC 
CTB1-R879E-3 GCTACGGCTCTGTGTTCATGGTGCACTC 
CTB1-ACP2-E1794A-5 CCTCAAGATCCTGTCTGCGGAGAGTGGCCTCAC 
CTB1-ACP2-E1794A-3 GTGAGGCCACTCTCCGCAGACAGGATCTTGAGG 
CTB1-ACP2-E1794R-5 CCCTCAAGATCCTGTCTCGTGAGAGTGGCCTCAC 
CTB1-ACP2-E1794R-3 GTGAGGCCACTCTCACGAGACAGGATCTTGAGGG 
CTB1-ACP2-E1795A-5 GATCCTGTCTGAAGCGAGTGGCCTCAC 
CTB1-ACP2-E1795A-3 GTGAGGCCACTCGCTTCAGACAGGATC 
CTB1-ACP2-E1795R-5 CCCTCAAGATCCTGTCTGAACGTAGTGGCCTCACTGA 
CTB1-ACP2-E1795R-3 TCAGTGAGGCCACTACGTTCAGACAGGATCTTGAGGG 
CTB1-ACP2-E1802A-5 CCTCACTGATGAGGCGTTGACTGATGACAC 
CTB1-ACP2-E1802A-3 GTGTCATCAGTCAACGCCTCATCAGTGAGG 
CTB1-ACP2-E1802R-5 GTGGCCTCACTGATGAGCGTTTGACTGATGACACAAG 
CTB1-ACP2-E1802R-3 CTTGTGTCATCAGTCAAACGCTCATCAGTGAGGCCAC 
CTB1-ACP2-D1806A-5 GAGGAGTTGACTGATGCGACAAGTTTCGCCG 
CTB1-ACP2-D1806A-3 CGGCGAAACTTGTCGCATCAGTCAACTCCTC 
CTB1-ACP2-D1806R-5 TGAGGAGTTGACTGATCGTACAAGTTTCGCCGACG 
CTB1-ACP2-D1806R-3 CGTCGGCGAAACTTGTACGATCAGTCAACTCCTCA 
CTB1-ACP2-D1811A-5 CACAAGTTTCGCCGCGGTGGGCGTTG 
CTB1-ACP2-D1811A-3 CAACGCCCACCGCGGCGAAACTTGTG 
CTB1-ACP2-D1811R-5 GACACAAGTTTCGCCCGTGTGGGCGTTGATAGC 
CTB1-ACP2-D1811R-3 GCTATCAACGCCCACACGGGCGAAACTTGTGTC 
CTB1-ACP2-D1815A-5 CGTGGGCGTTGCGAGCCTCATGAGTCT 
CTB1-ACP2-D1815A-3 AGACTCATGAGGCTCGCAACGCCCACG 
CTB1-ACP2-D1815R-5 CGACGTGGGCGTTCGTAGCCTCATGAGTCT 
CTB1-ACP2-D1815R-3 AGACTCATGAGGCTACGAACGCCCACGTCG 
CTB1-ACP1-5-A ATTACATATGGCAACCCAAGTGACTCCGCAA 
CTB1-ACP1-3-C ATTAGCGGCCGCGATCTCGTTAGGGGATGGATCAGT 

Appendix Table C.4.  Primers used in this study 
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Appendix D:  Supplementary Material to Chapter 4 
 

D.1.  CTB gene sequences 

 mRNA sequences from C. beticola are shown. 

D.1.1.  CBET_00833 (CTB1) 

ATGGAAGATGGAGCGCAGATGCGAGTGGTGGCATTCGGGGATCAGACATATGACTGCAGTGAGGCAG
TCTCACAGCTCTTAAGGGTCCGCGACGATGCCATAGTCGTCGACTTCCTCGAACGGGCAACAGCCGTT
TTGAAGGCAGAGTTGGCCAGGCTAAGCAGCGAGCAACAAGAAGAGACGCCACGATTCGCCACGCTCG
CTGAACTTGTGCCACGCTACCGAGCTGGCACTTTAAATCCAGCAGTGTCGCAGGCATTGACATGCATC
ACCCAGCTGGGGCTTTTCATCCGACAACACAGCAGCGGACAGGAAGCCTACCCCACAGCAAACGATAG
TTGCATTACTGGCGTCTGCACCGGAGCGCTGACCGCCGTCGCTGTCGGCTCTGCTTCGAGTGTGACC
GCTTTGGTGCCGCTCGCATTGCACACTGTTGCCGTCGCCGTGCGATTGGGTGCTCGAGCCTGGGAGA
TTGGCAGCTGCCTTGCCGATGCCAGGAGAGGTGCGAATGGCCGGTATGCTTCTTGGACATCGGCGGT
GGGCGGTATCAGTCCCCAAGACCTTCAGGATCGAATTTCAGCATACATGACCGAGCAGGCTCTTGCAT
CCGTGTCCGTTCCATATCTCTCGGCAGCGGTCGGCCCGGGCCAATCAAGCGTGTCGGCTGCTCCCGT
CATCCTCGACGCGTTCCTCAGCACACTTCTCCGACCGCTGACAACAACGCGACTTCCCATTACCGCTC
CGTATCACGCACCTCACCTCTTCACTGCGAAAGATGTGCAGCATGTCACGGACTGTCTGCCTCCCAGC
GACGCATGGCCGACAGTGCGCATCCCCATCATCAGCTTCTCCCGCGATGAGGCGGTGTCGCGTGGTG
CAAGCTTCCCGGCCGCCATGAGTGAGGCCGTGCGAGACTGCTTGATCCGCCCCATTGCCCTCGACCG
CATGGCAGTGAGCATTGCCAATCATGCTCGAGATCTCGGCAAAGACTCTGTGCTTCCGTCACCCATCG
CTCTGTCGTTCAGCGACAAGCTGGGTCCACAAGTGAACAGCCATCTGCCAGGCACGAAAGCACCGAC
GCCTGAGCTGACGTCCACATCGTCTATCCCATCTGCTATAGGAGCGGAACAGCAGCCGATGGCAAAAT
CCCCCATTGCTATCCTTGCTGCCTCTGGTCGTTTCCCACAATCTTCATCCATGGACCAGTTCTGGGATG
TACTTATTAACGGCGTCGACACGCACGAACTTGTACCTCCAACCCGTTGGAATGCAGCTACTCATGTCT
CCGAAGATCCTAAAGCAAAGAATGTGTCTGGCACAGGTTTCGGTTGCTGGCTCCACGAAGCCGGTGAA
TTTGATGCCGCCTATTTTAACATGAGTCCGCGTGAAGCGCCGCAGGTTGATCCAGCACAGCGTCTTGC
GCTCTTGACTGCCACCGAAGTCCTCGAGCAGGCCGGCATTGTCCCGAACCGAACGTCGTCAACTCAGA
AAAACCGAGTTGGTGTATGGTACGGCGCAACCAGCAATGATTGGATGGAGACCAACAGCGCTCAAAAC
GTTGATACGTACTTCATTCCCGGTGGCAATCGCGCATTCATCCCAGGAAGAGTGAACTACTTCCACAAG
TTTAGTGGCCCATCTTACACGATCGATACAGCCTGCAGCTCCAGTTTGGCAGCATTGCACATGGCGTGC
AACGCACTTTGGCGAGGCGAAGTCGATACAGCCATCGTAGGTGGGACCAACGTCCTCACGAATCCAGA
CATGACGGCGGGACTCGACGCGGGTCACTTCTTGTCAAGGTCTGGAAATTGTAAGACGTTCGACGACG
AAGCCGATGGCTATTGCAGAGGTGAGGCAGTGGTGACCCTCATTCTCAAACGGCTGCCAGACGCGCA
AGCGGACAAAGATCCAATTCAGGCTTCAATTCTGGGAATTGCCACTAATCACTCAGCCGAGGCCGCCT
CTATCACTAGGCCTCATGCCGGAGCGCAGCAAGACTTGTTCCAACAAGTTCTCACGGAGACAGGTCTT
ACCGCGAACGACATTAGTGTGTGCGAGATGCATGGTACTGGCACCCAGGCTGGAGACAGTGGTGAAA
CAACGTCCGTCGTGGAGACCCTAGCGCCTTTGAACCGATCCGGCTCTGCTGTGCGAACAACACCTCTC
TACATTGGCGCAGTCAAGTCCAATGTGGGTCATGCTGAGTCCGCAGCTGGGGTCAGCAGTCTGGCCAA
GATCTTGCTTATGCTCAAGCATTCCAAGATCCCTCCTCATGTGGGCATCAAAACGAAGCTGAATCACCG
GCTACCAGACCTAGCTGCACGAAATACACACATAGCGCGGACTGAGGTACCTTGGCCTCGGCCAAAGA
ATGGCAAGCGTCGTGTTCTGCTCAATAACTTCTCGGCCGCTGGAGGTAACACGTGCCTTGTGCTTGAG
GATGCGCCCGAGCCCGAGGACTCTCAAGAAGTCGACCCTAGAGAACATCACATCGTTGCACTCTCTGC
TAAAACACCTGATTCAATGGTGAACAACCTCACGAACATGATAACCTGGATCGACAAGCACTCTGGAGA
CAGCATCGCCACCTTGCCTCAACTGTCTTACACGACAACTGCACGAAGAGTGCACCATAGACACAGAG
CCGTAGCTACCGGCACTGATCTGCTGCAAATCCGTTCGTCGCTTCAAGAACAGCTTGACCGCCGGGTG
TCCGGCGAGAGAAGTATCCCTCACCCGCCCAATGGACCTAGCTTTGTCCTTGCTTTCACTGGCCAAGG
CTCGGCGTTCGAAGGTATGGGTGTAGATCTCTACAAACGTTTCGCCTCATTTCGGTCAGACATTGCCCG
CTATGATCAGATCTGCGAGGGTATGAGCCTGCCCTCGATCAAAGCTATGTTCGAGGACGAGAAAGTGT
TCTCCACAGCTTCACCAACTTTGCAGCAGCTCACGCATGTCTGTTTTCAGATGGCCCTGTACAGACTAT
GGAAGTCCCTCGGCGTACAAGCGAAGGCGGTAGTTGGCCACAGTTTGGGCGAGTATGCTGCACTCTA
CGCCGCTGGAGTGCTATCGCAATCCGATACGCTCTACCTGGTGGGGCGGCGTGCACAGCTGATGGAG
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AAACATCTTTCGCAAGGCACACATGCAATGCTGGCCGTCCGTGCGAAAGAAGAAGCCATTGTCGCAGC
GATTGACGGGCCTCCAGGAGAGGCATACGAGTTCTCTTGCCGCAATGGCGAACAGCGAAACGTTCTCG
GAGGCACCGTTGCTCAAATCCAGGCGGCGAAAGCCGCGCTTGAGGCTAAGAAGATTCGATGCCAGTA
CTTGGACACCCCGATGGCATTCCACACTGGCCAAGTTGATCCGATTCTGCCCGAGCTCTTGCAGGTCG
CTGCAGCATGCTCCATCCAGGATCCCCAAATTCCTGTCATCTCCCCAGCATATGGCAAAGTGATCAGGT
CTGCCAAGGACTTCCAACCAGAGTACTTCACCCATCACTGCCGCAGTTCTGTCAACATGGTCGATGCTC
TCCAAAGTGCAGTCGAAGAAGGCTTACTTGACAAGAACATTATTGGCCTCGAGATTGGCCCTGGCCCG
GTCGTCACGCAGTTCGTCAAGGAAGCTGTGGGCACAACCATGCAGACCTTTGCGTCCATCAATAAAGA
CAAAGACACATGGCAGCTCATAACGCAAGCGCTAGCTAAGTTCTATCTTGCAGGTGCCAGTATCGAGT
GGTCGCGCTATCACGAAGACTTCCCTGGAGCTCAGAAAGTCCTTGAGCTCCCGGCTTATGGCTGGACC
TTGAAAAACTACTGGCTGCAATATGTCAACGACTGGTCTCTGAGGAAGGGCGATCCAGCCGTGGTTGT
TGCCGCGTCAAATTTGGAACTCTCTTCGTCGATACACAAGGTCATAACAAACACAATCACCGCCAACAG
CGACGGCGAGCTTGTCGTGGACGCAGACCTCAGTCGAGAGGACCTGCATCCCATGGTTCAGGGGCAT
CAGGTCTACGGTGTTCCACTGTGCACACCTTCCGTGTACGCGGACATCGCTCTGACACTCGGCGAGTA
TATTCGACAGGTCATCAAGCCAGGCGAGGTTGCACAGACATCCGTTGAAGTAGCAGAGATGAACATTC
AAAGCGCACTGGTGGCTAACAACACGGGCAGAGTGCAACTCCTTCGCACGTATGCCAAGTTTGACCCC
AAGGCCCAGGTAGCGTCATGCACGTTCTCTAGTATCAAGGAGGACGGCAGTAGCGTAGTCGAGCAGC
ATGCTAATTGCAAGATCCGGTTCGGCAGTCTCGAGAAGGAGAAGACCGCGCTCGAGAGTGCTGCACTA
GCTGCCCAAGCCAGAATGGCCGCTCTGAAAACACAAGTTGGCCAGGATGACAACACATACCGCTTCAG
CAAAGGCATGATTTACAAGATGATCGGCCAATTAGCTGACTTCGACGAGAAGTACCGCGGGCTCTGCG
CGATCACACTCGACAACGACGCCATGGAAGCCTCGGGCAAAGTATCATTCAAGGGCATTCCAAACGAG
GGCAAATTCCACTCTAGCCCGGCTTATCTCGACGCGTTGTCGCAACTTGGCGGATTCGTCATGAACGC
GAACGAGGGTGTGGATCTTGAGAAAGAAGTCTTTGTCAATCACGGCTGGGGTTCCATGCGCTTCTTCG
CCGCTCTGGATCCAGCAATGACTTACTACACTCATGTGAAGATGACCCAAGGCAAAGACAAATTGTGGA
CTGGCGATGTCTTGATCTTCGACGACAAGCAAGCATTGATCGGCATTGTTGGGGGAGTGGCGTTGCAG
GGCGTGCCCAAGCGACTTATGCATTACATTGTTACAGCTGCCAACAAGAAAGCTTCCGGCCCGCCGAC
AGAGAAGAAGGGCTCTAGCCCGCCAGTCGAAAAGAAAGCCAGCGCGCCAGTCGCGCCCACGAGGCC
AGCGATCCAGCGTAAGAATGCTTCGATTCCTCCACCTGCAACCCAAGTGACTCCGCAAAACAAGACCAT
CAAGACGCCAAGTGTGTCGGCACTGATAGCCCCGGCCCTCGAGATTGTTAGCGAGGAGATCGGGATG
CCAATCGACGAGCTCAAGGATGATATCGACTTCACCGATGCTGGTCTTGACAGTCTGCTCTCCTTGGTA
ATTAGCAGTCGCATGCGGGACCAGCTGGGCATCGAATTCGAGTCCGCGCAGTTCATGGAGATTGGATC
TATCGGTGGACTCAAGGAGTTCTTGACCAGGCTCAGTCCCCCAGTAGCAGTCGCCGTTGCCACTGCCG
TGGAAATTGTCAAGGAGGAAGCGCTCACTTCATTGGAAGAGCTTACTGATCCATCCCCTAACGAGATCG
GCACTGTCTGGCGCGATGCCCTCAAGATCCTGTCTGAAGAGAGTGGGCTCACTGATGAGGAATTGACT
GATGACACAAGTTTCGCCGACGTGGGCGTTGATAGCCTCATGAGTCTTGTGATCACCAGTCGCCTACG
GGATGAATTGGACATCGACTTCCCCGACCGAGCATTATTCGAAGAATGCCAGACTATATTTGACCTTCG
CAAGAGGTTCTCTGGGTCAACGGAAAGCTTCGACTCGACGACGACCAAGCCCAGCGCTGGTGATGCG
ACGCCACCTCTGACCGATTCCAGCGCGTCATCTCCGCCCTCCTCCGAGTTCGATGGCGAGACGCCGAT
GACTGATCTGGACGAGGTGTTCGATTCTCCCCCAGCGCAGAAGAGGATACCATCCCCGCCCAAAGGAC
GAATCCCGCCTGCATGGTCGATGTATTTGCAAGGCTCACAGAAGCGGTCGAAGGAGATTCTTTTCTTGT
TTCCAGACGGCGCTGGCGCCGCAACTTCATACTTGTCTTTACCTCGTTTGGGTGAAGACATTGGCGTAG
TCGCCTTCAATTCGCCTTTCATGAAGACACCGCACAAGTTTGTTGATCATACCTTACCGGACGTCATCG
CGTCCTATGTAGAAGGCATTCGAGGCCGTCAAGCGCAAGGCCCGTATCATCTGGGCGGCTGGTCTGCT
GGTGGTATTCTGGCCTATGCCGTTGCCCAAGAACTCATCGCAGCTGGCGAGGAGGTTTCGACACTCCT
CCTCATCGACTCGCCTTCGCCAACCAAAGGCCTAGATCGCCTTCCAACACGATTCTTCGATCACTGCAC
GAACGTCGGACTCTTTGGAACGGAGCTCTCCAGAGGCAGTGGGGGTCCCAACAAGACACCCGAATGG
CTGATGCCTCACTTCAGAGCTAGTATTGAGCTGCTACATGACTACCACGCTCCTCCTATGAAGCTTGGC
AACAAAACGAAAGTCATGGTGATATGGGCAGGTGAATGTGCCTTTGATGGCGTTCGCTATGCTCACATA
CCGCCCTCTGCAGGCGACACCGACGAAGACACCGAGGGTATGAAGTTCTTGACGGAGAAGCGGAAAG
ATTTTGGAGCCACAGAATGGGCAAGTTTGTTCCCTGGCACTGATGTTGATGCGAGGGTTGTTGAGAGC
GAGCACCATTTCAGCATGATGCGTGATTCTGGTGCACAGATGCTTGTTGAGCATATGCGAGACGGATT
GGGGATTGTCTCGTCGTGA 

D.1.2.  CBET_00832 (CTB2) 

ATGGCTAACCGAATTGAAGCGGACAATCTCTTTGAGCTCACGGCAGAGCTGGTCTCAGCCTCCGCCAA
ATTGCACAAGTTTCTCGACCAGAAGAACCTCCCGCAGCCATCTTTTGATGCTCCAGCTCCATCGGTAGC
TCTCAACACCGCCAACAAGCCTTACTACGATGCGAGAAGCGCGATTGTAGAGGCTGCTGAGCAACTCA
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TCCGCCTGGTCCGTGGACCTCGCGATACTCTTCTCGCTCTGTCCTTCGAGCACTGTGCTACAGCATCG
ATGCAGGTCGTTTTCAAATACAAGTTTGCGAATCACATTCCGCTACATGGCTCGACAACTTATAGCAAGA
TTGCCGAAGCAGTCGGAGATGGTGTGACAACAGCTCTCGTTGAGCGCACGATACAACATTGCGCTTCC
TTTGGCCTATTCGAGACGATCCCTGGCGGCTATGTTACTCACAATGCTACCTCGTCACTACTGGTCACC
GATCCAGATCTCGAAGCCTGGATGTATCTCTCAGCGGTGATCGCTTACCCAGCTGGCGCAGCTATCCC
CAAGGCCGTGGAGCAGTATGGCGTGAGCAGTGAGGCCACCGAAGCAGGGTACGGCGTGAGCATAGG
AAGAAAGATTGCACAATTCCAGCGATTCCGCGAGCCCGATGGGAAGAAGGACCACGAGATGTTCGCAC
GAGCCATGCGTGGTATCGCAGCTGGTGGTGCATACGACTTCCGCCACGCAGTCGACGGCGGATACCC
TTGGCACCTTCTCACAGAAGGCGCAGGACACCTGGTAGTGGATGTCGGCGGAGGTCCGGGCCACGTC
GCCATGGCACTCGCGGAAAAGTACCCAAGCTTGCGATTCCAAGTCCAAGATCTACCCGAGACTGTCCA
AGTGGGAGCGAAGAACTGCCCTGAACACCTTCGTAAACACGTAACCTTCGTGGCACATGATTTTATGAC
CCCTCAACCTGCTCATGAAGTGCAAGACGGCGAAGGAATCGTATACTTTGCTCGATTTATCCTGCACGA
CTGGAGTGACAAGTATGCCACGAAGATCGTGCAGGCGCTTGCCACTGGCTTGAGGCCACAAGACCGC
ATCATCTTGAACGAAGTGGTCGTTCCTGAAGCCGGGCAAGTTGGCAGAGAGACGGAACGAAGAATGCA
CGATCGTGATCTGCTGATGTTGATGAACCTCAATGGACGTGAGCGGACACAGAGTGCATTCGAGGCGA
TCTTCGCTTCAGTGACTCCCAAGCTGCGGCTGCAGAGGGTCATTCACCCAGAGCAAGGCGAATTGTCG
CTCATCGAGGTGACTCTTGATGGCGTTGAGCTTCCTGCCCAGGCGAATGGTGTCAATGGCCATGCGAA
TGGGACTAATGGCGTGAATGGTCATTAA 

D.1.3.  CBET_00834 (CTB3) 

ATGATGCAGTTCCAACGCGATCTTGAGGCGTCCTTGGAGGCCGTATCGGCCAACGCCCAGGAGCTGC
TCAAATCTCTCAAGAGTCGCAAGGATGTTCAAGACCTCAACGCGTCGTTGCCGAAGGATCCTTTAGACA
ACTGCGATGCTCAAACTCAAGCCGCTCGTGCGCAGCTGGCAGAGGCAGCGACAAGAATCTTGCGGTT
GTCGATCCGACCTCAAGAGTATCTGGAGCATCTACAAAACGGCTATCAACATTTAACCTGTTTTCGCTG
GCTGGTGGAACTCAACATATTGGACCACCTTCCACATAGCGGAACGATCAGCTACACAGATCTTGCGA
GAAAAGCCAGCGTGCCGCCTATGCAATTGAGAAGCATCTGTCGCATGGCCATATGCAATGGATTCCTG
GAAGAGCCCGAGGCCAACCAAGTCCGCCACAGTCGCATTTCCGCCTTGTTCGCTCGCGATGAAAGCTA
TTTAGGTTGGGCTAGATGGATGGTCAACTACTCTGTGCCAGCTGCATACAAGCTTAGCGACGCCACGC
GATCGTGGGGCGAGACTGTCGCCAAAGATCAGACCGCGTTCAATCTGGGAATGGATGTGAAAGTCCCA
TTCTTTGACCATCTCCGCCAGACGCCCGCAATGAAGGACGCCTTTGCAGCTTATATGCGTAATGTGACT
TCGAACGCAACTTGGGGCCTTCAGCACGCAGTCACCGGCTTCGACTGGGCTTCCCTTCCGCGGGGCG
CAAAAGTCGTGGATGTCGGTGGCTCTCTTGGGCATGGTAGCATTGCCATTGCCAAGGAGCACACTCAC
CTTACCTTCGTCATTCAAGATCTGCCAGAGACGGTCGCTGGTGCCAGGAAAGAAATGGCCCAAAATGA
CAAGATTGAAGCTTCTGTTAAATCTCGCATCACCTTTCAGGAACACGACTTCTTTGGTCCTCAAACAGTG
AAGGATGCCGATGTTTACTTTCTTCGCATGATCTGTCACGACTGGCCCGACAACGAAGCCAAGGTCATC
CTCTCTCAGATTCGCGCAGCACTGAAACCTGGGGCGCAAATAGTCATCATGGACACCATTCTTCCCCA
GCCCGGCACAACTAGCGTTTTGCAAGAGCAACAACTACGCATTCGGGATCTAACAATGATGGAAGTCTT
CAATGCCAAGGAGCGTGAATTGGAGGACTGGAGCTCATTGATGCAATCTGCCGGTCTCGAGATTTCTC
GCGTGAACCAGCCGCTCAACAGTGTGATGGGTCTGCTCACAGTCCGCTCAGCCGGCCAGACTGCCCT
CTCCGGAACGAATACACTCACGCCAGAGTTGGTGACGGCAGTCTCCGCAAGCACTGGCTCTGCTGATT
CGAGACCAGTCCTCATTGCAGGCGCGGGTATTGCTGGGCTCTGTCTTGCACAGGCTTTGAAGAAGGCC
GGAATTGACTTTCGCGTCTTCGAAAGGGACTCCCATATCGATGCTCGGCCACAAGGATACCGACTCAA
ATTCGAAGCAGACGCCGCACAGTCTCTCAAGAACATCCTGCCTGACGATGTTTATGAGGCTTTCGAACT
CTCAAATGCCGTCACCGCCGTAGGCGAGACAGACTTCAATCCCTTCAATGGCAACATCATCCACAGCC
GCACTGGTGGCGGCCTGTCTGGCAAGAAGGGACTGTATGCGACATTCACTGTTGACCGCAAAGCATTC
AGAACTCAGCTCATGACTGGCATTGAGGACAAGATCTCGTTCGGGAAGGAAATCGCGTACTACAAGAC
TGATGACTCTGCATCTACGGTTACCGCTGAATTCAAGGACGGCACTCACGTCACCGGAAGTTTCCTGG
CCGGCACTGATGGCTTACACTCTGTCGTTCGCAAGACATGTGTACCAGACCATCGTATTGTGGATACTG
GTGCTGCCTGCATCTACGGCAAGACTGTAATGACACCGGAATTCCTCGCGCGGTTCCCCGAGAAAGGC
TTGAGGTTCATGACTGTGGTCAGCGACATCGCACCTATGCTACAATCTTGTCTCATCGGCGACAGCCCA
GTCACCTTACTACTGGAACCCATCCGATTCAGCGAAGCCTCGCGTGCCCGCTACCCAGAACTGCCTGC
AGACTACGTCTACTGGGCACTCATCGGACCCAAGGAACGCTTCGGATCGCAAGAGGTGACTTCCATGA
AGAACTTCGTCTCACTGGACCAAGCGGCAGAACAGGCTGCCAAGCTCAGTCTCGCAGTCACCGAGGAA
TGGCATCCAAGCCTCCGCGCGCTGTTCGAGCTCCAAGACACAAAGCAAGCATCGCTCATTCGCGTTGC
ATCCACAATCCCCGATATTCCCTCATGGGAGTCCCACTCCAATGTTACCGTTCTTGGCGATAGCATTCA
TCCAATGAGCCCTTGTGGTGGAGTCGGAGCGAACACCGCAATAGTCGATGCCGACGCCTTGGCTAAAG
TGCTCGTTGAGCATGGCACGAAGCCACCGGTGAATGCAATCGCCGAATTTGAGGCCGCGATGAGAACA
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AGAGCGAAGAGGAACATTTGGAGGAGTGAAGTTGGTAGTAAGAGAATGTTTGGGCAGAAGAATTTGGT
GGATTGTTCAGAGTTCGTGTTTTGA 

D.1.4.  CBET_00831 (CTB4) 

ATGGCTCTCCCTATCACTGACGATGACCTCGACGGACTGAAGCAGCCCTATGTGACTTTCTCGTCTGGT
TCAGCATCACCACCGCAATCGACGACTGACGCTATGGATCTCGAAGAGCAGGTACTCGACGCAATCAA
GAGTGATGCTTTCCTGGTGGACTGGGTTGGCGAGGATGACAAGGGAAATCCTCAGAATCTACCTTACT
GGCGCAAGTGGGTGATCACAATGTCTTTGGCATTGTATGCTCTCTCGACGACGTTTTCTTCGTCGGTCT
TCGGGGCTGCAACGCACGTTCTCGCAGAAGAGTTTGCCTTGCCCGCGGAGACGGTCGTGCTCGGTTG
CACTTCCCTCTTCATGGTAGGATTCGCTACCGGGCCCATCTTCTGGGGACCCTTCAGCGAGGCTTTTG
GCCGGACTCGACCTCTTCTGGCAGGCTACCTGGCCTTTGCGGTCCTGCAACTGCCCATCGCCGACGC
AAGAAGTCTGACCTCCATATGTATCCTGCGCTTTCTGGGAGGATTCTTCGGCGCAGCGCCTTCGTCAAT
CCTGTCAGGCATCTTGGCAGATATCTGGTCTCCCAGAGAACGAGGTTTCGCTATGCCTACAGTTGGCG
CGTTTCTGACTATCGGGCCAATCCTCGGACCGCTGATTGGATCAGTCCTCGTCCAGAGCGTGCTCGGT
TGGCGGTGGATCGCGAATGTCGTTGCGATCGCCTCGTTCTTCATTGCTGTCTTTACCTTTCCATTCCTC
CCCGAAACGTACACGCCATTGCTTTTGGCGCGTCGTGCTGAACGCATGCGACATATGACACGCAACTG
GGCTTACCGTTCCAAATCTGAAGAAGCGCAGAGCAGTATTGGCGATTTTGCGGAGCGTTACTTGCTTCG
GCCTGCTCGCATGCTGGCCCTTGAACCCATTCTTTTAATGATGACACTCTATGTCAGTGTGTCTTTCGGT
CTGTTGTACAACTTCTTTCTGGCATACCCAACATCGTTCATTCAGGAGCGCGGCTGGGACCAGACGACT
GCCAGTCTTCCACTCATCTCCATCCTCGTGGGCGTCATTATCGCAGGAGCACTACTTTCGTTTACGACC
AACTCCAGATGGGCACCGAACGCCAAAGAGGGACGACCTCAGGAGACAAGACTTTTGCTCATGATGGT
TGGCGCTGTCTCGCTCCCAGCTGGAATGTTCCTCTTCGCTTGGACAAGCTCCGCTACCATGAATCCTTG
GCCTCAAATCTTGTCGGGTATTCCTACTGGCTTCGGTATCCACTTGATCAATATGCAGGGCATGAACTA
CATCATCGACTCTTACAAAATTTATGCGAACTCGGCCATAGCCGCTAACACCTTCTTGAGATCCCTGTTC
GCTGCAGGATTTCCGATCTTGGCGACTTCGATGTATGCTGCAATCGGAGTAAAATGGGGAACGACCAT
TCTTGCATTGCTTGCAGTTGCCATGATCCCGATCCCGATACTGTTCTACTACTTCGGTGCCAAAATCAGA
GCGAAGAGCAAGTGGCAGCCACCTTTGTAA 

D.1.5.  CBET_00835 (CTB5) 

ATGTTGGGGCTTAATTTACAACAGGTCCTCTCCAATGTTCCTACGATATCCAGCATTGTCAGTGGTGTAG
GCTCATATCAACATGGGTCAGACAGCAGTGCATGGGCTTCTGTGGCGGCGTCAAAATCTTGTTGCGAT
GCGTTGACCAAAAGTTTGGGCAAGAATTCAGTGGTTTTCCCATATGATGCGGCCTACTCTCAATCAATG
GGCTCATACTTCAGCTTGAAGAATAGCGACCTCCACCCCAGTTGCATAGCACTTCCACGATCAGCAGAA
GATGTCTCGAAGGCAGTGCGCACATTGTCTCTCGGCGCACACAAATGGGAGGGGCAATGCCAATTCG
GCGTCCGAGGTGGTGGCCATACGCCCTTCAAAGGAGCCGCAAGCACCGACAACGGGATTGTGCTCGA
TCTTCTCCACATGCCGTCCGCGGGCATATCGCCAGACTATGAAACCATTACAGTGTCACCCAGTACGAC
ATGGGATCTGGTATACGAAGTCCTCGATGCTCACAACCGAAGCACGCTTGGTACCAAAGTCGCCGGTA
TCGGTGTCGGAGGAGCGTCAACGAGCTGCGGAGTCTCCTATTTCTCGCCTCGCTATGGATATATTTGC
GATATGGTAGAGAACTGGGAAGTCGTTCTGGCCACCGGCGATATCGTCAATGCCAACGCGAATGAGAA
TCCCGATCTCTGGAAAGCGCTGCGAGGTGGAATCAACAACTTCGGCATCGTCACCGCTGTTACATTGA
AGACCTTTGGACAAGGCCCCTTCTGGGGCGGCCAGACCTTCCACTCCATCGACACCCGCCAAGAACAC
TTCAAGAATCATGAGAAACTGGCCTCGGCGCATCCCTATGATCCATACGCACATTACATCAATACTCTT
GTCTGGGCAAACGGAGGCCATTGGTTCATCGGCAACAGCATCCAGTACACCAAGAGCGACCCGCCCG
TGGCAGAGCCAGAAGTCTTCAAACCGTTCCTCAAGACCGAACGAACCCCGATTTTCCCTGGGCTGCCT
GAAGACACTCTTCGAGTGGACAACGTCACCTCGTTCTCCCGCGAGTACGCAGCAAACACCTTATACCC
TCAACGCTGGCAATTCGCGTGCATCAGCTTCGCTCCGGATGCAGACTTCATGGAGACATTCTTCCAAAT
GGCCAACGACGCCATGCAGCAATACGTAAAATTGGCAGGCTTCAAGCTCATCCTCAACTACCAACCCG
CACCAACTGTTCAGCTGGAACGTAATGGAGCAGTGGACTCCCTGGGCCCAATCCAAACTGAAGGCAAT
GTTGTCTTTGTACACTGGGCTGTCAGCTACGATGAGTCCGAGGCCCAGTTCGACGATGCTATCACCAA
GAGCGTCCAAGACTTGTTCCACGCTGCAAATGCCAAGGCCAAAGAGTTGGGTATCTACAGGCATTTCAT
CCAACCTACTTATGCAGACAGCTGGCAGAGCCCCTTTGATTACAGAAGCAAGAGCACGATTGAGGAAC
TGGTTGCCACGAGCAAGAAGTATGATCCTCTACAGGTTTTCCAGAAGCAGGTGCCGGGTGGCTTCAAG
CTGCCGCAGATTTGA 

D.1.6.  CBET_00830 (CTB6) 
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ATGGCCGACTCTCTCGTTCTATTGACTGGTGCTACCGGCTTCATTGGCTTTCGTATCTTGATTGAGCTG
CTCCGTCAAGGATACAGCGTGCGAGCTGTGATCCGCAGTGCTGGCAAGGGACAATGGCTTGAGTCGC
GGCTGACTGCTGTGATGAAAGGCTCGGACTACAAGGACAGGTTCGAAACTACCACTGTGGCGGATTTC
GTGACAGATGGAGCTTTCGATCAAGCAGCTGAGAACACGTCTTACATTATCCACGTGGCCAGCCCGAT
AGTCAGCTCGGACAACCCAGACGACTGGGAACACGACTTCAAACGTGTTGCTGTGAAAGGTAGTATTG
GGGTCCTGGAGGCAGCCAAACGAAGCGGAACTGTGCGACGAGTCGTCATCACATCTAGCATGGTTGG
ACTTTTCTCGCCGAAAGCTCTTTTTGCTGAGCCATCTGAGGTGCCTCTGAATGCAGAATCGCGCATTCC
GGAAATGGAGCCTCCTTATGCGCACAAAATGCTGGCATACCAAGCTGGGAAGATCGCAAGCATCAACA
GCGCGGAAGCTTGGATCAAGAACGAGAAACCGGCGTTCGATCTTGTTCACATGCACCCGTCCTTCGTG
ACTGGTCGGGATGACCTAGCGACGACACGCGAGGATCTGCGGAAATTCTCGTCGAATTGGCATTCGAT
GCAGATTGTACTCGGCCACAAGAATCCTATCGGCAAGCCAATCCTGACATGTCACAACGATGATGTCG
CTCGCTGTCATGTATTGGCGCTGGATCCCAAGGTCACGGGCAATCAGAGTTTCCTTATTTCGTGCAGTC
CGGAGGATGGATCGGAATGGGATGATGTGAAGAAGTTCGTGCAGAGGGAGTTTCCTGAAGCGGTTGC
GCAGGGCGTGTTGCCCAATGACGGTCACATGCCGACTGTCAATAAAGGCGTCAGATTCGACGTGCGG
AAAACTGAGGAGACCTTTGGCTTCAAGCACATTCCCTATGAGGCACAAGTCCTTGATGTGGTCAAGCAG
TACTTGGAGTTGCCGGAGAAGGATGAAGGGGTGGAGATCTCGACGACGGCGTAG 

D.1.7.  CBET_00836 (CTB7) 

ATGGCATCATCTAACCGAAGAGTCCTGGTCAATGGCGGAGGACCCGCTGGCGCCGTGACGGCTTTCT
GGCTTGCCAAGGGCGGCTTCGAGGTGGTTGTTACAGAGCGCTCAATGAGTCGGCCCTACGGACAAGG
GGTCGACGTCACGGGACGCGCTTCCGACATTATCAAGAAGATGGGATTGGAGCAACGCATTCGAGACA
GCACTACCGGTGAAGCAGGTCTGACCGTTGTCGACGATCAAGGCGAAGATGTTGCTCCCCCGCTGGG
TACTGCACCTATCGAGGGAGGAACGGCCAGCGTCACACAAGAAATCGAGATCATGAGACGGGACTTGA
CAAAAATCTTTGTAGACGCTGCAGAAGCATTGCCAAATGTCACGTTCCGATATGGCTGCACGGTCGACG
AAGTTCAACAGCATGAGAAGTCAATCACTGCCGTTTTATCCGACACAGGCAAACCAGAAGACTTCACTG
CGATCATTGGTGCAGACGGGCTTGGATCAGCTATACGCAAGCTCACATTCGATCCGGAGATCAACAGA
CGTTCTGTGTCGCCGACCAATACCTACGTTGCGTTCTTCTCCATACCAGGTGATCCAAAGTACGATACC
CCAGTCGGCAAACTCCAACATGCCAACAAAGGTCGCGGAATACTTGTCCGCCCCATTGATAAGAAGGG
CACTCAAAGGTCATGTTACCTGATGTCGCAGTCCGATAGCCAGGAGCTGGCACAGGTTGCACGAACTG
GATCGCAAGAAGACCAAAAGGCTCTTTTGGACAACAGATTCAGAGAGTTCACGGGCCCACTGGGTAAA
CGAGCCGTCGAAGGTATGCACAGCGCTGACGACTTCTACTTCACCCGCATAGTGCAAATCAAATTGGA
CTCGTGGCATAGTGGGCGAGCGGCTCTGGTGGGGGATGCTGGTTACTCTCCTTCTCCGCTTACAGGG
CAAGGCACAACTCTTGCTATCATCGGTGCCTATGTGCTCGCGGGTGAGATGGCCAAAAGTCCGGACGA
TCTAGAACGGGCTTTCACCTCGTATTACGCTATACTCAACAAGTTTGTCAGCGAGTCCCAGGAAATTCC
ATTTGGAGGTCAAGCTCCGAAACTTATCTTGCCACAGTCAGACTGGGGCATATGGCTTCTTCGCACCTT
CTACAAAATCATCTCCTGGACAGGCATCTGGCGCTTGCTCAATTTCGGGAACGAAACCGTAAAGGTTGA
GCTTCCTGAGTACGATTTTGGTGGGCTGGATTGA 

D.1.8.  CBET_00837 (CTB8) 

ATGGCGAAGGGGAGCGCAGGCGATGCACCCAACACAAGAGACACATCTTTCAAGCGCCCGAAGATCA
GGGAATCGTGCACTCACTGCTCTAGCCAGAAGATCCGCTGCACCAAAGAACGCCCCGCTTGTGCCCGT
TGCGTCAATAAAGGACTCCTATGTCAGTACAACATCTCGCGGCGTACCGGCACCAGGCGTCATTCTGTT
CGAGCAACGCCTGAGCCTGAAACAACAATATCCAATGCTCCTACCTCCAGCGTTGCCCCGGACTCTGT
TAAGATCGATGGCAAGCGGTCGCCCGCCATGAGCGACTTTGCATTGCTAGATGGTTTGGAGACATTCG
ACAATAGCCTGTGGCACCAGCCCATCACGACAGACATCCAGGATATAGACATGCAGTACTTCGACTTTT
TTGACCCGGGTGGCTACCAAGCTGAGCCGGAACCCATTAATTCATTCGACATAGACAGCACGCTTTTGT
GTGGGACATCGACAGCAGGTTATCTTCCAGAGCTGGACGCAGAAGCGTCAACACGGCCTTCATCGTCA
TCATCGCCTCCTAGTCAACGGAGCGATGGCGGCAGGGCGACGACACATGGTGGTGGTGGATGCATAA
GTACGGCGCTCCAGATCTTCTCCGAACTTCATGTATCAAGTTCAGCGTGCCCCATAGCCGCGGGCGCA
CCATCCCACAACATTCGCGAGTTCGACCATGTGCTGGACAGCAATCGCGCAGCCTTGGAAAAACTGTC
CAGCATTCTCGACTGCCCGCCGTGCTGCCATGATCAAGAGGTTCTCACGGCCTTGTTCCTGGCGGTCC
AAAAAGCGCTGTCGTGGTACTCGGCAGCCTTGGATGTGGCGGGCGACGGCGAGCCCACCAGCCCGTC
CTCGCGGGTGAAGAGCCCGCCGGCATTCCTGGGCAGCTACGCGCTTGGAGCCCAGGCGCAGACGCT
GGCACGCGCGTATGTGGTGATGGCACAGTTGCAACAGCACTTCCAGCCGCTTCTGGCAAAGCTGCAG
CGAATATCGTCCCTGTCGGCGCTGGGGGCGCGCTCGTCGTCGACGACCTCGCTGAGCTCCGTCTCGT
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CGCTGCAGTCATCCACGTCCGGATCGGCGGTGATTGAGTGCCAAAAGCGCGCGCTGCAGGAGGCGCT
GGAGGATGTTGTGGCCAAGATTGAGGGCATCAAGCGCGGGTGA 

D.1.9.  CBET_00842 (CTB9) 

ATGACAAGTACTATCACGACCACTGAGACTCTGCAGGATGCAGTACCATTCGTGGCACCACCAAGCCC
ACCTGAAGACACAAGCAACAAGGAATTGCCAGAGAAGCCTTACTACGATGTTGAATTCAACTACCGTCT
TGACCCACGTGATGGAGGCGACGAAGTCATTTGGGGCGGTACTGTTGGTTTGATGCGCAGGAAGTATG
AGACCCGGACGGTACGAATCAACAATGAACGTGGTAATGAACACAACTTCAACCTCGACACTCATGGCT
TTGCTTGGGTCAAGCACAAAACCTCCGTGACTGAATTTGCGGACTACTTGGCAATTCGTCAGGGACCGT
ACTTTGGCGAAGTTGCTGAGATGTTGAAGAGGGTCACTGGAGCGACTAAGGTTCATGTGATCGGACAT
CTCCATCGTTCGTTGAATTACAACGATACGACTGAGGAGGAGAAGAATGCCCCAGACATGACAATGAC
CAAGGGGCAGACTCCAGGACGTTTCGTGCACGTCGATCAATCCTACCAAGGCGCAGTTCGTAGACTCT
ACCTGGATCTTCCCCAAGAAGAGGCCCGCAGGCTGGAGAAAACCAGATGGGCCATCATCAACGTCTG
GCGTCCCGTTCGGAAAGTCACCAATGAGCCGCTAGCAGTCTGCGATGCTCGATCAGTCCGAGAGGAC
GAGTTGTTCAACACTCTGCATCTTGTACCAATGAGATGGCCGGACGCCGCACCTCAGGAGAACCAGAT
GTGGGCTGTTGCTCCTCCCAAGACTCCAACACAGCACAAGTGGCATTATGTATCTGGTATGACGGAGG
ATGAGGCGTTGTTGATCAAGATGTTTGATTCTAAGAAGGATGGCACTGCAAGACGTGTTCCACATTCTT
CTTTCCCTACTCCAGATGATTTCGGAGAGCCGAGAGCGAGTACTGAAACGAGATGCTTTGTGTTCTGGG
AAGATCAGGAGGCTGAGTAG 

D.1.10.  CBET_00843 (CTB10) 

ATGGGATCCATCGGAGAGCCAAACCGTCTGCTCTGCTGGAGCATCTACGTCACCAAGAAGCCAGACCA
ATCTGAGGAGGATCACCACAACCATGTCTCCAAGGTCAATGCTCCCATGATGATACCATTTCTGAAGAA
ATATGGCATTGTTCGTTACACTGTGAAGCACAACGATGCTCACTCTAAGCCCAAGCAAGCGGCTCTGAT
GGCCGGCCAGCCAGAAGAGAATGTCCTCGCTTATGACACTGTTTTTGAGATGATTGTCAAAGACATTGA
GAGTATTCAGACTATGCAAAAGGATGAGGAGTTTTTGCGTACTACTATTCCAGATCACTTCAACTTTGCG
GATATGACTCGCAGCAAGGGATCGTTGACTTGGATTGAGGAGTTCACTTTCTAG 

D.1.11.  CBET_00844 (CTB11) 

ATGCATTTTCCAGCGCTCGCTGTGGCGGGCTGCCTGCTCTCCCGTGCCACTGCGCAATCACTGGATCA
AGTGCTTGCAAAGCGGGACTCATTCTCACTGCTACGCGATCTTCTTCATCAGCATGGCCTGGTCGATGA
ACTGGAATTCACGGCCAATGCCACGTTTTTCGCGATGACGAATCAGGCACTGCGCAGCCTGGCCGACT
TTGGCATCAACCTTACGACCGCTGACCCCAACATCGCTCGAGCGATCTTCAAGTATGCACAACTGGATG
CCATCTACACAACCGACACGGTCAAGGCATTGCACCACGAAGCAAAGGTTGTGCAGACAGCTCTGCAG
CCACACCTGTTCAACAATTTGACGAGAGGTCAAGCTGCGAAGCTGAGAAGCAATCGAACAGGCGGAGC
GAATGGTATCCTGGTCGAATCCGGATTGGGTGTCTTGACGCCCGTCGTGGAAGCAGACATTCCCTACG
ATCACGGCGTCATTCACGCTATCGACGCGAACATGGTCCTGCCTCACAACATTTCTGAGACTGCAAGG
CTCGGCGGCATGACTGAATTCTTGAATCTGTTGGAACGATCCGACAGCGTTGCTAGACTGGAGAGCTT
GTCGGATGTCACGATCTTCATTCCGCAAGACGAAGCACTCGCCAAGCTGCAGCCTATTCTGGATATGCT
TACATCGGAGCAGCTGAAGTCTGTGGTGGCTCAGCATGCCGTGCCGAATCGAGTGCTGTATCAGAGTC
TCTTTGATGGCGTGGAGACTTTGGAAACTTTGGATGGCAGCACGTTGCGTATTCGTCGTGGAAAGAGA
GGCGAGATCTTTGTTAATGGTGCTGAAGTCGTTCGCACTGATCTGTTGCTATATGGGGGAGTGGCACAT
TTGATTGATGGGGCTCTTTTGCCCGAGAAAGATGCGTCCTGCTCGACCGGTTTATTCGCCGCAGCAGC
TGGTGGATCGAGTCGAGTCTGGAAAATCCTCGCGAGCCACCAGCTTACGCTGCTGGCAGTGCTCGCAA
TGGCTCTGGTGTCCATACTGTACAAGGCTTACCAGTCACGGAAACAGAGTCATCAGCTGATCAGACCG
AGCGATGGTCTTGGCAATTATGAGAAGGTGTAG 

D.1.12.  CBET_00845 (CTB12) 

ATGTGGTCTGTTCGACTCTACCCCTTGGCGTTGACCCTACTGTTTCAATGCGTCAGCCCAGCCGCAGCT
CGTCCATCGGGATGCGTGGACGATGTCGAGGTCGTTCAAGAGATTGGAAGCAAAGAAATACAGGCTCC
AGTTGTTCGCTTCGAAATCTCCCTAACGACACAGTCAATCGACGCAGCTGGAATAGGTTTTCGGGAAGC
GATCTTCATCAACGATGCCTTTATCGGACCTACCCTCTACGCCAAGCAAGGCGATAGGATCGAGTTCGT
CGTTCACAACTACATGCAACAAGACACAAGCATCCATTTCCATGGCATCGATCAGCGATCTACGCCATG
GTCGGACGGAGTGCCAGGCCTGACACAAAGCCAAATCAGGCCTGGGGCGTCATTCCTGTACAACTGG
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ACTGCACACGACGCCGGAACATACTTCTACCATTCTCACGCCAAATCTCAAATGATGGACGGCCTTTAT
GGCGCGGTCGTCATTGCACCAGATGACGAGGCACCGCGTCCATTTCATCTTATCAGCAGCGGCGAGG
CCGATCAGGCGGCAATGCTTGCAGCGGAGAAGTTGATGCGACCCATCTTCGTCAGTGACTGGTCCCAG
TACACGTCTGCAGAATACCACGGAATCCAGCATGCTGCGAATATTGATTTCTCGTGCATGGACTCCATC
CTCGTCCAAGGGGTTGGCTCGCAGTACTGCCTGTCCGAGGAAGAGCTTGACGATATGACGAATCCCAT
TGTTTTGCAGCTGTTGAAAGAGCTCGCAGGCGGACATATGACGCCGAAGGGTTGCATCCCTCCGTTGC
AAATGTTCAATGGAGACTTTGAATTGCACCTGGAGAATGTGCCGGAGCTCGCTTACAACAAGTGCAAAG
GAGGACAGAGCTCGAAGGGAAACTATACGATTGACGTTGACACCTCGATCGGCTGGGCGGCGTTGAC
ATTCGTCAATCCTGGAGGGTTGTACCCTCTGCAGCTGTCGATTGACTCGCACGAATTGTACGTGTACGC
TGTAGATGGGCAGTACGTGTACCCAATAGTCGCAGATCGTGTCCTGGTCAACACTGGGAGTCGAATAT
CCGTGATGATCAAGCTCGATCAAGAGAAGGCCAGACACGTTGTGCGAGTTGCCAACGATTACCTCAAC
CAGATCTTAGGCGGCTTCGCCGAGCTAGCGTACGATGGCGCGACAAATGCTCCCAAACACCCGCATCC
GAAGACGAACTATGGTGGCAAGCTGATTAGCAGCGAGATGGTGTCGTTTGTGCCCGAGGACAGCAGC
CCATACCCAGCCTTGCGACCTGCGCAGAGCGCCGACTCCACTTTCAAGCTTCGGCTGAAAAAACTAGG
CCAACCTTATAGAGCGTACGAGTGGACGCAGACCGGCAGCCTGGGCTACAACATTAGCCATGAGCAC
GACGACCCTCCGTTGCTGCTGCAGAATGTAGAAGATGTTCCCGCCACGGAACTTACGCTGAAAACGCA
GATCGGTGATTGGGTCGACCTCGTCCTCGTAACAGCAGGTCCATTCGCCCAAGCGCATCCAATGCACA
AACACGGCAACAAAGTGTTCCTCATCGGCTCGGGTTCAGGGAGCTTTCCGTGGGAGAGCGTGGAAGA
GGCGATCCCACATCTGCCCGAAGGCACTTTCAACTTCCAAGATCCTCCATACCTGGATACATTCAACAC
AGTGGAGATGGAGGGGCAAGCCAACGATACCTGGACTGCAGTCAGGTACAAGGCTGAATATGCCGGT
GCATGGTTATTCCACTGCCATGTGCAAACGCATTTGTCGGGCGGGATGGGCATGGTCGTCCTGGATGG
CGTGGATGCTTGGCCAGAAGTGCCCTTAGCTTATCAGGAGTGGAATGGATTCGAGCCGCCTGCTTTGT
CGTGA 

D.2.13.  CBET_00841 (CFP) 

ATGGCAAGCCCAGCGCGATCAACGCATACTGACACAGAATCTCACGATGTTGTGAAGAGTGACTCCGA
ATCGAAACTGGAACTGGAGCACAGCGATTCTGATATTCAAGATGAGAAGCCAGCCTCGAAATCTGCGG
AGACTCCTGAAGCCAAGTCAGAAGAAGATGAAGAACTCAACGATCAAGGCGAAAAGTATATCTCCGGC
TGGCCTTTGGTATTCCTCTTGTTAGCCATGGTCTCAACAGTCTTCATTGTCGCTTTGAGCAACACCATCA
TCAGCACAGCCATCCCGGCCATCACAACAGCATTCAATAGTACGCGAGATATTGGTTGGTACAACTCCG
GCGAGGCTCTTGCGGCCACAGCATTCCAACTACCTTTCGGACGAGCGTATCTGTTGATGGACCTGAAG
TGGACTTTTCTCGTGTCATTGACCCTATACCTGATTGGCAGTCTGATCTGCGGAGTGGCAAACTCTTCT
GTGCTTCTCATTCTGGGCAGAGCAATTGCAGGTGTCGGCAACGCAGGAGTCTTCGCTGGCGTCTTCAT
CATCATCGCTCGAAACGTTCCTCTGCGAAAACGAGCACTTTATGCTGGGCTGGTTGGAGCGACATTTGC
CATTGCTGCTGTGCTGGGACCTGTTCTGGGTGGTATCTTTACTGACCGTATTAGCTGGAGATGGTGCTT
CTACATCAATCTGCCTATTGGAGCTGTAGCGGTGGCTATCATAGTGTTCCTCTTGCCATCGAGACCAGG
TGAAAAAGCAGCAGAGGTGAAGGACCTTTCCTGGTGGCAGTTCTTCCTAAAGCTCAATCCTTTTGGGTC
GGCCCTTCTACTGGGATCCCTGGCATGTTTCTTTCTTGCCCTTCAGTGGGGCGGCGGCGAATATCCCT
GGAGTGCTGGTCGCGTGGTCGCGGTCCTTGTGGTCTTCGCTGTCAGCTTCATTGGATGGCTGGTTCTG
CAATATTTCCAAGGTGAAGAGGCCACACTACCATACAACGTTGCGAAACAGCGTACTGTGGGTGGCGC
CTCCATCTATACCCTGCTTCTGAGCGCCGCATTTGGACTCGTGATATACTATCTGCCTCTTTGGTTTCAA
GCAGTACGATCTGACAGTGCCGAAGCTGCTGGTCTCAAGCAACTTGGTATCGTCATCTCGCTCACTCTC
TCATCAATTGCAGCTGGCGGTGCTGTTGTAAAAATAGGATATTACTATCCTTTCATTTACGCCGGAACTA
TCTTATGCAGCATCGGCGCTGGCTTGCTTTACACGATCACACTCGACACACCGCAATGGGATATTATCG
GTTATTCGATCGTATTCGCCATTGGTATCGGCGTCAGTCTCGAGCAATCCAACGTTGCTGTTCAGACTG
TCCTGCCCGATGCTCAGATTCCAGCAGGCACAAGCTTGGTACTCTTCGTCCGATTACTTGGATCAGCAA
TCCCCGGACCCATCGGGCAAAGTGTACTCCAGACAACACTTGCCAGTAGGCTAGGGACTGAGGTCGCT
GAGCAAGCTTATGGTGGCACCGGAGCAACTGAGATCCGCTCAAAGCTCGACAACATCTTTGGAGCTGG
CACACCTGAAGCTCGAGATGCCCTTGACGCTTTCAATGATTCTGTGACGAAGATCTTCATGGTCGCAAT
CATAGTCTCTTGTCTGAGTGTGTTGCCTCTTCCACTCATCGAGCTCAAGAGCGTTAAGCGTGAGAAACG
AGACAACGAAGACGCCAAAGAAGGCAAGAAAACTAATGGGACGACGGGCAAGACAGAAGATCCAGAG
AAAGGGCAGAGTGCAGAGATCGCGGGCAAAGCAGTGTGA 
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D.2.  CTB protein sequences 

D.2.1.  CTB1 

MEDGAQMRVVAFGDQTYDCSEAVSQLLRVRDDAIVVDFLERATAVLKAELARLSSEQQEETPRFATLAELV
PRYRAGTLNPAVSQALTCITQLGLFIRQHSSGQEAYPTANDSCITGVCTGALTAVAVGSASSVTALVPLALHT
VAVAVRLGARAWEIGSCLADARRGANGRYASWTSAVGGISPQDLQDRISAYMTEQALASVSVPYLSAAVGP
GQSSVSAAPVILDAFLSTLLRPLTTTRLPITAPYHAPHLFTAKDVQHVTDCLPPSDAWPTVRIPIISFSRDEAVS
RGASFPAAMSEAVRDCLIRPIALDRMAVSIANHARDLGKDSVLPSPIALSFSDKLGPQVNSHLPGTKAPTPEL
TSTSSIPSAIGAEQQPMAKSPIAILAASGRFPQSSSMDQFWDVLINGVDTHELVPPTRWNAATHVSEDPKAK
NVSGTGFGCWLHEAGEFDAAYFNMSPREAPQVDPAQRLALLTATEVLEQAGIVPNRTSSTQKNRVGVWYG
ATSNDWMETNSAQNVDTYFIPGGNRAFIPGRVNYFHKFSGPSYTIDTACSSSLAALHMACNALWRGEVDTA
IVGGTNVLTNPDMTAGLDAGHFLSRSGNCKTFDDEADGYCRGEAVVTLILKRLPDAQADKDPIQASILGIATN
HSAEAASITRPHAGAQQDLFQQVLTETGLTANDISVCEMHGTGTQAGDSGETTSVVETLAPLNRSGSAVRT
TPLYIGAVKSNVGHAESAAGVSSLAKILLMLKHSKIPPHVGIKTKLNHRLPDLAARNTHIARTEVPWPRPKNG
KRRVLLNNFSAAGGNTCLVLEDAPEPEDSQEVDPREHHIVALSAKTPDSMVNNLTNMITWIDKHSGDSIATL
PQLSYTTTARRVHHRHRAVATGTDLLQIRSSLQEQLDRRVSGERSIPHPPNGPSFVLAFTGQGSAFEGMGV
DLYKRFASFRSDIARYDQICEGMSLPSIKAMFEDEKVFSTASPTLQQLTHVCFQMALYRLWKSLGVQAKAVV
GHSLGEYAALYAAGVLSQSDTLYLVGRRAQLMEKHLSQGTHAMLAVRAKEEAIVAAIDGPPGEAYEFSCRN
GEQRNVLGGTVAQIQAAKAALEAKKIRCQYLDTPMAFHTGQVDPILPELLQVAAACSIQDPQIPVISPAYGKVI
RSAKDFQPEYFTHHCRSSVNMVDALQSAVEEGLLDKNIIGLEIGPGPVVTQFVKEAVGTTMQTFASINKDKD
TWQLITQALAKFYLAGASIEWSRYHEDFPGAQKVLELPAYGWTLKNYWLQYVNDWSLRKGDPAVVVAASN
LELSSSIHKVITNTITANSDGELVVDADLSREDLHPMVQGHQVYGVPLCTPSVYADIALTLGEYIRQVIKPGEV
AQTSVEVAEMNIQSALVANNTGRVQLLRTYAKFDPKAQVASCTFSSIKEDGSSVVEQHANCKIRFGSLEKEK
TALESAALAAQARMAALKTQVGQDDNTYRFSKGMIYKMIGQLADFDEKYRGLCAITLDNDAMEASGKVSFK
GIPNEGKFHSSPAYLDALSQLGGFVMNANEGVDLEKEVFVNHGWGSMRFFAALDPAMTYYTHVKMTQGK
DKLWTGDVLIFDDKQALIGIVGGVALQGVPKRLMHYIVTAANKKASGPPTEKKGSSPPVEKKASAPVAPTRP
AIQRKNASIPPPATQVTPQNKTIKTPSVSALIAPALEIVSEEIGMPIDELKDDIDFTDAGLDSLLSLVISSRMRDQ
LGIEFESAQFMEIGSIGGLKEFLTRLSPPVAVAVATAVEIVKEEALTSLEELTDPSPNEIGTVWRDALKILSEES
GLTDEELTDDTSFADVGVDSLMSLVITSRLRDELDIDFPDRALFEECQTIFDLRKRFSGSTESFDSTTTKPSA
GDATPPLTDSSASSPPSSEFDGETPMTDLDEVFDSPPAQKRIPSPPKGRIPPAWSMYLQGSQKRSKEILFLF
PDGAGAATSYLSLPRLGEDIGVVAFNSPFMKTPHKFVDHTLPDVIASYVEGIRGRQAQGPYHLGGWSAGGIL
AYAVAQELIAAGEEVSTLLLIDSPSPTKGLDRLPTRFFDHCTNVGLFGTELSRGSGGPNKTPEWLMPHFRASI
ELLHDYHAPPMKLGNKTKVMVIWAGECAFDGVRYAHIPPSAGDTDEDTEGMKFLTEKRKDFGATEWASLFP
GTDVDARVVESEHHFSMMRDSGAQMLVEHMRDGLGIVSS* 

D.2.2.  CTB2 

MANRIEADNLFELTAELVSASAKLHKFLDQKNLPQPSFDAPAPSVALNTANKPYYDARSAIVEAAEQLIRLVR
GPRDTLLALSFEHCATASMQVVFKYKFANHIPLHGSTTYSKIAEAVGDGVTTALVERTIQHCASFGLFETIPG
GYVTHNATSSLLVTDPDLEAWMYLSAVIAYPAGAAIPKAVEQYGVSSEATEAGYGVSIGRKIAQFQRFREPD
GKKDHEMFARAMRGIAAGGAYDFRHAVDGGYPWHLLTEGAGHLVVDVGGGPGHVAMALAEKYPSLRFQV
QDLPETVQVGAKNCPEHLRKHVTFVAHDFMTPQPAHEVQDGEGIVYFARFILHDWSDKYATKIVQALATGL
RPQDRIILNEVVVPEAGQVGRETERRMHDRDLLMLMNLNGRERTQSAFEAIFASVTPKLRLQRVIHPEQGEL
SLIEVTLDGVELPAQANGVNGHANGTNGVNGH* 

D.2.3.  CTB3 

MMQFQRDLEASLEAVSANAQELLKSLKSRKDVQDLNASLPKDPLDNCDAQTQAARAQLAEAATRILRLSIRP
QEYLEHLQNGYQHLTCFRWLVELNILDHLPHSGTISYTDLARKASVPPMQLRSICRMAICNGFLEEPEANQV
RHSRISALFARDESYLGWARWMVNYSVPAAYKLSDATRSWGETVAKDQTAFNLGMDVKVPFFDHLRQTPA
MKDAFAAYMRNVTSNATWGLQHAVTGFDWASLPRGAKVVDVGGSLGHGSIAIAKEHTHLTFVIQDLPETVA
GARKEMAQNDKIEASVKSRITFQEHDFFGPQTVKDADVYFLRMICHDWPDNEAKVILSQIRAALKPGAQIVIM
DTILPQPGTTSVLQEQQLRIRDLTMMEVFNAKERELEDWSSLMQSAGLEISRVNQPLNSVMGLLTVRSAGQ
TALSGTNTLTPELVTAVSASTGSADSRPVLIAGAGIAGLCLAQALKKAGIDFRVFERDSHIDARPQGYRLKFE
ADAAQSLKNILPDDVYEAFELSNAVTAVGETDFNPFNGNIIHSRTGGGLSGKKGLYATFTVDRKAFRTQLMT
GIEDKISFGKEIAYYKTDDSASTVTAEFKDGTHVTGSFLAGTDGLHSVVRKTCVPDHRIVDTGAACIYGKTVM
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TPEFLARFPEKGLRFMTVVSDIAPMLQSCLIGDSPVTLLLEPIRFSEASRARYPELPADYVYWALIGPKERFG
SQEVTSMKNFVSLDQAAEQAAKLSLAVTEEWHPSLRALFELQDTKQASLIRVASTIPDIPSWESHSNVTVLG
DSIHPMSPCGGVGANTAIVDADALAKVLVEHGTKPPVNAIAEFEAAMRTRAKRNIWRSEVGSKRMFGQKNL
VDCSEFVF* 

D.2.4.  CTB4 

MALPITDDDLDGLKQPYVTFSSGSASPPQSTTDAMDLEEQVLDAIKSDAFLVDWVGEDDKGNPQNLPYWR
KWVITMSLALYALSTTFSSSVFGAATHVLAEEFALPAETVVLGCTSLFMVGFATGPIFWGPFSEAFGRTRPLL
AGYLAFAVLQLPIADARSLTSICILRFLGGFFGAAPSSILSGILADIWSPRERGFAMPTVGAFLTIGPILGPLIGS
VLVQSVLGWRWIANVVAIASFFIAVFTFPFLPETYTPLLLARRAERMRHMTRNWAYRSKSEEAQSSIGDFAE
RYLLRPARMLALEPILLMMTLYVSVSFGLLYNFFLAYPTSFIQERGWDQTTASLPLISILVGVIIAGALLSFTTNS
RWAPNAKEGRPQETRLLLMMVGAVSLPAGMFLFAWTSSATMNPWPQILSGIPTGFGIHLINMQGMNYIIDSY
KIYANSAIAANTFLRSLFAAGFPILATSMYAAIGVKWGTTILALLAVAMIPIPILFYYFGAKIRAKSKWQPPL* 

D.2.5.  CTB5 

MLGLNLQQVLSNVPTISSIVSGVGSYQHGSDSSAWASVAASKSCCDALTKSLGKNSVVFPYDAAYSQSMGS
YFSLKNSDLHPSCIALPRSAEDVSKAVRTLSLGAHKWEGQCQFGVRGGGHTPFKGAASTDNGIVLDLLHMP
SAGISPDYETITVSPSTTWDLVYEVLDAHNRSTLGTKVAGIGVGGASTSCGVSYFSPRYGYICDMVENWEVV
LATGDIVNANANENPDLWKALRGGINNFGIVTAVTLKTFGQGPFWGGQTFHSIDTRQEHFKNHEKLASAHPY
DPYAHYINTLVWANGGHWFIGNSIQYTKSDPPVAEPEVFKPFLKTERTPIFPGLPEDTLRVDNVTSFSREYAA
NTLYPQRWQFACISFAPDADFMETFFQMANDAMQQYVKLAGFKLILNYQPAPTVQLERNGAVDSLGPIQTE
GNVVFVHWAVSYDESEAQFDDAITKSVQDLFHAANAKAKELGIYRHFIQPTYADSWQSPFDYRSKSTIEELV
ATSKKYDPLQVFQKQVPGGFKLPQI* 

D.2.6.  CTB6 

MADSLVLLTGATGFIGFRILIELLRQGYSVRAVIRSAGKGQWLESRLTAVMKGSDYKDRFETTTVADFVTDGA
FDQAAENTSYIIHVASPIVSSDNPDDWEHDFKRVAVKGSIGVLEAAKRSGTVRRVVITSSMVGLFSPKALFAE
PSEVPLNAESRIPEMEPPYAHKMLAYQAGKIASINSAEAWIKNEKPAFDLVHMHPSFVTGRDDLATTREDLR
KFSSNWHSMQIVLGHKNPIGKPILTCHNDDVARCHVLALDPKVTGNQSFLISCSPEDGSEWDDVKKFVQRE
FPEAVAQGVLPNDGHMPTVNKGVRFDVRKTEETFGFKHIPYEAQVLDVVKQYLELPEKDEGVEISTTA* 

D.2.7.  CTB7 

MASSNRRVLVNGGGPAGAVTAFWLAKGGFEVVVTERSMSRPYGQGVDVTGRASDIIKKMGLEQRIRDSTT
GEAGLTVVDDQGEDVAPPLGTAPIEGGTASVTQEIEIMRRDLTKIFVDAAEALPNVTFRYGCTVDEVQQHEK
SITAVLSDTGKPEDFTAIIGADGLGSAIRKLTFDPEINRRSVSPTNTYVAFFSIPGDPKYDTPVGKLQHANKGR
GILVRPIDKKGTQRSCYLMSQSDSQELAQVARTGSQEDQKALLDNRFREFTGPLGKRAVEGMHSADDFYFT
RIVQIKLDSWHSGRAALVGDAGYSPSPLTGQGTTLAIIGAYVLAGEMAKSPDDLERAFTSYYAILNKFVSESQ
EIPFGGQAPKLILPQSDWGIWLLRTFYKIISWTGIWRLLNFGNETVKVELPEYDFGGLD* 

D.2.8.  CTB8 

MAKGSAGDAPNTRDTSFKRPKIRESCTHCSSQKIRCTKERPACARCVNKGLLCQYNISRRTGTRRHSVRAT
PEPETTISNAPTSSVAPDSVKIDGKRSPAMSDFALLDGLETFDNSLWHQPITTDIQDIDMQYFDFFDPGGYQA
EPEPINSFDIDSTLLCGTSTAGYLPELDAEASTRPSSSSSPPSQRSDGGRATTHGGGGCISTALQIFSELHVS
SSACPIAAGAPSHNIREFDHVLDSNRAALEKLSSILDCPPCCHDQEVLTALFLAVQKALSWYSAALDVAGDG
EPTSPSSRVKSPPAFLGSYALGAQAQTLARAYVVMAQLQQHFQPLLAKLQRISSLSALGARSSSTTSLSSVS
SLQSSTSGSAVIECQKRALQEALEDVVAKIEGIKRG* 

D.2.9.  CTB9 

MTSTITTTETLQDAVPFVAPPSPPEDTSNKELPEKPYYDVEFNYRLDPRDGGDEVIWGGTVGLMRRKYETR
TVRINNERGNEHNFNLDTHGFAWVKHKTSVTEFADYLAIRQGPYFGEVAEMLKRVTGATKVHVIGHLHRSL
NYNDTTEEEKNAPDMTMTKGQTPGRFVHVDQSYQGAVRRLYLDLPQEEARRLEKTRWAIINVWRPVRKVT
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NEPLAVCDARSVREDELFNTLHLVPMRWPDAAPQENQMWAVAPPKTPTQHKWHYVSGMTEDEALLIKMF
DSKKDGTARRVPHSSFPTPDDFGEPRASTETRCFVFWEDQEAE* 

D.2.10.  CTB10 

MGSIGEPNRLLCWSIYVTKKPDQSEEDHHNHVSKVNAPMMIPFLKKYGIVRYTVKHNDAHSKPKQAALMAG
QPEENVLAYDTVFEMIVKDIESIQTMQKDEEFLRTTIPDHFNFADMTRSKGSLTWIEEFTF* 

D.2.11.  CTB11 

MHFPALAVAGCLLSRATAQSLDQVLAKRDSFSLLRDLLHQHGLVDELEFTANATFFAMTNQALRSLADFGIN
LTTADPNIARAIFKYAQLDAIYTTDTVKALHHEAKVVQTALQPHLFNNLTRGQAAKLRSNRTGGANGILVESG
LGVLTPVVEADIPYDHGVIHAIDANMVLPHNISETARLGGMTEFLNLLERSDSVARLESLSDVTIFIPQDEALAK
LQPILDMLTSEQLKSVVAQHAVPNRVLYQSLFDGVETLETLDGSTLRIRRGKRGEIFVNGAEVVRTDLLLYGG
VAHLIDGALLPEKDASCSTGLFAAAAGGSSRVWKILASHQLTLLAVLAMALVSILYKAYQSRKQSHQLIRPSD
GLGNYEKV* 

D.2.12.  CTB12 

MWSVRLYPLALTLLFQCVSPAAARPSGCVDDVEVVQEIGSKEIQAPVVRFEISLTTQSIDAAGIGFREAIFIND
AFIGPTLYAKQGDRIEFVVHNYMQQDTSIHFHGIDQRSTPWSDGVPGLTQSQIRPGASFLYNWTAHDAGTY
FYHSHAKSQMMDGLYGAVVIAPDDEAPRPFHLISSGEADQAAMLAAEKLMRPIFVSDWSQYTSAEYHGIQH
AANIDFSCMDSILVQGVGSQYCLSEEELDDMTNPIVLQLLKELAGGHMTPKGCIPPLQMFNGDFELHLENVP
ELAYNKCKGGQSSKGNYTIDVDTSIGWAALTFVNPGGLYPLQLSIDSHELYVYAVDGQYVYPIVADRVLVNT
GSRISVMIKLDQEKARHVVRVANDYLNQILGGFAELAYDGATNAPKHPHPKTNYGGKLISSEMVSFVPEDSS
PYPALRPAQSADSTFKLRLKKLGQPYRAYEWTQTGSLGYNISHEHDDPPLLLQNVEDVPATELTLKTQIGDW
VDLVLVTAGPFAQAHPMHKHGNKVFLIGSGSGSFPWESVEEAIPHLPEGTFNFQDPPYLDTFNTVEMEGQA
NDTWTAVRYKAEYAGAWLFHCHVQTHLSGGMGMVVLDGVDAWPEVPLAYQEWNGFEPPALS* 

D.2.13.  CFP 

MASPARSTHTDTESHDVVKSDSESKLELEHSDSDIQDEKPASKSAETPEAKSEEDEELNDQGEKYISGWPL
VFLLLAMVSTVFIVALSNTIISTAIPAITTAFNSTRDIGWYNSGEALAATAFQLPFGRAYLLMDLKWTFLVSLTLY
LIGSLICGVANSSVLLILGRAIAGVGNAGVFAGVFIIIARNVPLRKRALYAGLVGATFAIAAVLGPVLGGIFTDRIS
WRWCFYINLPIGAVAVAIIVFLLPSRPGEKAAEVKDLSWWQFFLKLNPFGSALLLGSLACFFLALQWGGGEY
PWSAGRVVAVLVVFAVSFIGWLVLQYFQGEEATLPYNVAKQRTVGGASIYTLLLSAAFGLVIYYLPLWFQAV
RSDSAEAAGLKQLGIVISLTLSSIAAGGAVVKIGYYYPFIYAGTILCSIGAGLLYTITLDTPQWDIIGYSIVFAIGIG
VSLEQSNVAVQTVLPDAQIPAGTSLVLFVRLLGSAIPGPIGQSVLQTTLASRLGTEVAEQAYGGTGATEIRSK
LDNIFGAGTPEARDALDAFNDSVTKIFMVAIIVSCLSVLPLPLIELKSVKREKRDNEDAKEGKKTNGTTGKTED
PEKGQSAEIAGKAV* 
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