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Abstract

The theory of stochastic processes and their generations are indispensable to char-

acterize wind fluctuations, ocean waves, and earthquake excitations among other

quantities in engineering. To computationally analyze and simulate these stochastic

systems, practical realization of samples of stochastic processes is essential. The ob-

ject of this thesis is to introduce new state-of-the-art methodologies for the generation

of stochastic processes with non-Gaussianity/non-stationarity possessing higher-order

properties than the second-order orthogonality.

A new type of Iterative Translation Approximation Method (ITAM) using the

Karhunen-Loève expansion was developed for simulating non-Gaussian and non-stationary

processes utilizing translation process theory. The proposed methodology enhances

the accuracy of simulated processes in matching a prescribed autocorrelation, main-

tains the computational efficiency, and resolves limitations caused by utilizing evolu-

tionary power spectra for non-stationary processes.

A new generalized stochastic expansion, the bispectral representation method

(BSRM), expanded from the traditional spectral representation method is introduced
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to simulate skewed nonlinear stochastic processes. With new orthogonal increments

to satisfy the conditions of the Cramér spectral representation up to third order or-

thogonality, the BSRM generates samples that match both the power spectrum and

bispectrum of the process by modeling complex nonlinear wave interactions.

A model of phase angle distributions to characterize phase coupling in higher-order

stochastic processes is presented. Relationships between the trigonometric moments

of circular distributions of phase differences and higher-order cumulant spectra are

derived. The prescribed properties are shown to accurately model quadratic and cubic

phase couplings in simple stochastic processes and can easily be extended to general

n-wave couplings.

Lastly, as applications of the prescribed methods, wind pressure and turbulent

wind velocity time histories are generated with SRM, ITAM, and BSRM and applied

to two different nonlinear dynamic structural systems. For structures having material

and geometrical nonlinearities, performance of an elastic perfectly-plastic structure

and the buffeting response of a long-span bridge with coupled aerodynamic forces

are examined. The structures are investigated to observe the effect of higher-order

properties of the excitations on the response when compared to conventional second-

order Gaussian and non-Gaussian excitations.

Primary Reader: Michael D. Shields

Secondary Reader: Lori Graham-Brady, James K. Guest
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Chapter 1

Introduction

The theory of random processes has broad applications in engineering from charac-

terizing and simulating heterogeneous materials to time histories of ocean waves, wind

fluctuations, and seismic excitations. Computational examination of these stochastic

frameworks requires the realistic generation of sample functions of stochastic pro-

cesses. For Monte Carlo(MC) simulation, a large number of samples of the stochastic

processes are simulated and the results are statistically examined. Therefore, the

generation of realistic stochastic processes/fields which include desired properties to

an acceptable degree are important.

Even though there have been several methodologies for sample function realization

introduced during the last 40 years, most are limited to stationary and Gaussian

processes. The general form of the stochastic expansion we employ for simulation is

1



CHAPTER 1. INTRODUCTION

given by:

A(x, ω) ≈ Â(x, ω) =
n∑
i=1

Ci(ω)θi(x); x ∈ D,ω ∈ Ω (1.1)

where {Ci(ω)} are a set of random variables on a probability space (Ω, F, P ) and

{θi(x)} are basis deterministic functions. Most stochastic expansions have been de-

rived form Eq. (1.1) only including second-order properties of the processes (by match-

ing the covariance function, C(x1, x2)). The most common and popular expansions

with Gaussian properties are the spectral representation method [1, 2, 3] and the

Karhunen-Loève expansion [4, 5] with their random variables {Ci(ω)} derived such

that:

C(x1, x2) = E[A(x1)A(x2)] ≈ E[Â(x1)Â(x2)] (1.2)

The spectral representation utilizes harmonic functions as {θi(x)} and its {Ci(ω)}

are derived form the power spectral density function (Fourier transform of C(x1, x2)).

Analogously, for the Karhunen-Loève expansion, the eigenfunctions and eigenvalues of

C(x1, x2) are {Ci(ω)} and {θi(x)} are uncorrelated zero mean, unit variance random

variables.

The fundamental limitation of the prescribed methodologies is their second-order

character, only satisfying the covariance of the process. There is no way to represent

many real stochastic processes with strong non-Gaussian properties which come from

nonlinear systems including turbulent fluctuations given by the Navier-Stokes equa-

tions, seismic excitation in nonlinear soil, and the systems approximated with n-th

2
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order Volterra series [6, 7]. Processes with complex nonlinear dependencies and wave

interactions that result from nonlinear systems are referred to as nonlinear processes.

One of the attempts to represent the nonlinear processes is nonlinear transfor-

mations (also referred to as translation processes [8]). For a translation process, a

Gaussian process is mapped to a non-Gaussian process which is often depicted by

its marginal non-Gaussian distribution. Another approach is to generate the process

with prescribed higher-order spectra and correlations.

The objective of this thesis is to introduce new methodologies for simulation of

non-Gaussian/non-stationary stochastic processes including higher-order properties

beyond the second-order. Based on translation processes, the expanded Iterative

Translation Approximation Method (ITAM) with Karhunen-Loève expansion is in-

troduced for the enhanced performance to achieve desired non-stationary properties

[9]. Secondly, a generalized spectral representation method, called as the Bispectral

representation method, is developed to include the bispectrum in its expansion [10].

Thirdly, a new approach to model phase distributions is developed to possess higher-

order phase coupling in the generation of stochastic processes. Finally, materially or

geometrically nonlinear structural dynamics are analyzed to validate the effect of the

higher-order properties in their simulation.

3
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1.1 Spectral representation method

The spectral representation method to represent stochastic processes is introduced

in this section. Cramér [11] represented a zero mean and stationary stochastic pro-

cesses following the Fourier-Stiltjes integral as

f(t) =

∫ ∞
−∞

eiωtdz(ω) (1.3)

where a spectral process, z(ω), satisfies the following orthogonality conditions as

[12, 13, 14]

E[dz(ω)] = c[dz(ω)] = 0

E[dz(ω1)dz
?(ω2)] = c[dz(ω1)dz

?(ω2)] = δ(ω1 − ω2)Sff (ω1)dω1

E[dz(ω1)dz(ω2)dz
?(ω3)] = c[dz(ω1)dz(ω2)dz

?(ω3)]

= δ(ω1 + ω2 − ω3)Bff (ω1, ω2)dω1dω2

c[dz(ω1)dz(ω2)dz(ω3)dz
?(ω4)] = δ(ω1 + ω2 + ω3 − ω4)Tff (ω1, ω2, ω3)dω1dω2dω3

...

c[dz(ω1)dz(ω2)d · · · dz?(ωk)]

= δ(ω1 + ω2 + · · · − ωk)Cff (ω1, ω2, · · · , ωk−1)dω1dω2 · · · dωk−1
(1.4)

where E[·] denotes expectation, c[·] represents cumulant. δ(·) and Sff (ω) are delta

function and the power spectrum, respectively. Bff (ω1, ω2) is the bispectrum, Tff (ω1, ω2, ω3)

4
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is the trispectrum, and Cff (ω1, ω2, · · · , ωk−1) is the kth-order polyspectrum. The def-

inition and properties of cumulants and their spectra of various order will be discussed

in Section 1.3.2.

The spectral representation of real processes in Eq. (1.3) can be derived as:

fR(t) =

∫ ∞
[cos(ωt)du(ω) + sin(ωt)dv(ω)] (1.5)

with two orthogonal increments du(ω) = 2<[dz(ω)] and dv(ω) = −2=[dz(ω)] and the

prescribed orthogonality conditions [12, 14, 15] in Eq. (1.4) given as

E[du(ω)] = E[dv(ω)] = 0

E[du2(ω)] = E[du2(ω)] = 2S(ω)dω

E[du(ω1)du(ω2)] = E[dv(ω1)dv(ω2)] = 0 for ω1, ω2 ≥ 0;ω1 6= ω2

E[du(ω1)dv(ω2)] = 0 for ω1, ω2 ≥ 0

(1.6)

5
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The third-order conditions are expressed as

E[du(ω1)du(ω2)du(ω3)]

= 2<[dB(ω1, ω2)δ(ω1 + ω2 − ω3) + dB(ω1, ω3)δ(ω1 − ω2 + ω3)

+ dB(ω2, ω3)δ(−ω1 + ω2 − ω3) + dB(ω1, ω2)δ(ω1 + ω2 + ω3)]

E[dv(ω1)dv(ω2)dv(ω3)]

= −2=[dB(ω1, ω2)δ(ω1 + ω2 − ω3) + dB(ω1, ω3)δ(ω1 − ω2 + ω3)

+ dB(ω2, ω3)δ(−ω1 + ω2 − ω3)− dB(ω1, ω2)δ(ω1 + ω2 + ω3)]

(1.7)

and

E[du(ω1)du(ω2)dv(ω3)]

= 2=[dB(ω1, ω2)δ(ω1 + ω2 − ω3)− dB(ω1, ω3)δ(ω1 − ω2 + ω3)

− dB(ω2, ω3)δ(−ω1 + ω2 − ω3)− dB(ω1, ω2)δ(ω1 + ω2 + ω3)]

E[du(ω1)dv(ω2)dv(ω3)]

= 2<[dB(ω1, ω2)δ(ω1 + ω2 − ω3) + dB(ω1, ω3)δ(ω1 − ω2 + ω3)

− dB(ω2, ω3)δ(−ω1 + ω2 − ω3)− dB(ω1, ω2)δ(ω1 + ω2 + ω3)]

(1.8)

where dB(ω1, ω2) = B(ω1, ω2)dω1dω2.

At first, the digital simulation of Gaussian stochastic processes was proposed

by Rice [16] by satisfying the form in Eq. (1.5). Secondly, Shinozuka introduced

the simulation of Gaussian multi-variate and multi-dimensional stationary processes

6



CHAPTER 1. INTRODUCTION

[1] and Shinozuka and Jan [2] included the non-stationary processes. Furthermore,

Shinozuka and Deodatis [3, 17, 18] reviewed the properties of SRM deeply including

Gaussianity, ergodicity of sample functions and so on.

Let us introduce the prescribed spectral methods to simulate a Gaussian process,

fG(t) which is a zero-mean, stationary Gaussian stochastic process with a autocor-

relation function RfGfG(τ) and two-sided power spectrum SfG,fG(ω) related through

the Wiener-Khintchine theorem [19, 20] as

SfGfG(ω) =
1

2π

∫ ∞
−∞

RfGfG(τ)e−iωτdτ (1.9)

RfGfG(ω) =

∫ ∞
−∞

SfGfG(ω)eiωτdω (1.10)

For a real and Gaussian process, the former expression of Eq. (1.5) can be dis-

cretized as

fG(t) =
N∑
k=0

[cos(ωkt)du(ωk) + sin(ωkt)dv(ωk)] (1.11)

where ωk = k∆ω. The process can be shown to have the corresponding first and

7
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second-order orthogonal conditions from Eq. (1.6) [12] given as

E[du(ω)] = E[dv(ω)] = 0

E[du(ω)2] = E[dv(ω)2] = 2SfGfG(ω)dω

E[du(ω1)du(ω2] = E[dv(ω1)dv(ω2)] = 0;ω1 6= ω2

E[du(ω)dv(ω)] = 0

(1.12)

The two forms of the spectral representation have been proposed by utilizing different

orthogonal increments [21]. The first form of orthogonal increments [16] is following:

du(ωk) = Xk

dv(ωk) = Yk

(1.13)

where Xk and Yk are independent and identically distributed Gaussian random vari-

ables following N(0,
√

2S(ωk)∆ω). Eq. (1.11) is simplified as

f(t) =
N∑
k=0

Ak
√
Qk cos(ωkt− θk) (1.14)

where Ak =
√

2S(ωk)∆ωk and θk = tan−1
( Yk
Xk

)
∼ U [−π, π) are independent random

phase angles and

Qk =
(Xk

Ak

)2
+
( Yk
Ak

)2
∼ χ2

2 (1.15)

The second form of the SRM was proposed by Shinozuka [2] having different

8
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orthogonal increments as

du(ωk) =
√

2Ak cos(θk)

dv(ωk) =
√

2Ak sin(θk)

(1.16)

where φk ∼ u[−π, π) is uniformly independent random phase angles yielding an ex-

pansion of the form

f(t) =
√

2
N∑
k=0

Ak cos(ωkt− θk) (1.17)

Both distinct expressions of the SRM, Eqs. (1.14) and (1.17), satisfy the mentioned

orthogonal conditions up to second-order in Eq. (1.12). However, they have different

properties in view of Gaussianity and ergodicity. The first representation, Eq. (1.14),

is always Gaussian, but non-ergodic [3]. However, the second one, Eq. (1.17) has

asymptotically Gaussian as N → ∞, and is strongly ergodic [3]. Furthermore, the

cosine series formula can be computed efficiently using the Fast Fourier Transform

[3, 17, 22].

In this thesis, the second form of the SRM, Eq (1.17) is mainly utilized and

researched. Eq. (1.17) has one independent uniformly distributed random phase

angle per cosine term. However, in non-Gaussian processes, the random phase angles

are not independent and this fact will be exploited for simulation purposes.

9
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1.2 Karhunen-Loève expansion

Let assumeA(x, θ) be a stochastic process defined on the probability space (Ω, σ, P )

over the domain D with mean Ā(x) and finite variance E[(A(x, θ) − Ā(x))2]. The

process can be proposed as [4]

A(x, θ) = Ā(x) +
∞∑
i=1

√
λiζi(θ)fi(x) (1.18)

where fi(x) and λi are the eigenvector functions and eigenvalues of the covariances

C(x1, x2) as the deterministic functions. The homogeneous Fredholm integral of the

second kind specifies the prescribed eigenvalues and eigenvectors given by

∫
D

C(x1, x2)fi(x1)dx1 = λifi(x2) (1.19)

Numerical solutions of Eq. (1.19) to determine the basis functions are introduced

[4, 23] in Eq. (1.1). The computed eigenvectors satisfy the following equation as an

orthogonal deterministic set of basis function given by

∫
D

fi(x)fj(x)dx = δij (1.20)

10
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where δij is the Kronecker-delta function. Furthermore, ζi(θ) in Eq. (1.18) indicates

an uncorrelated random variable set with zero mean and unit standard-deviation as:

ζi(θ) =
1√
λi

∫
D

[
A(x, θ)− Ā(x)

]
fi(x)dx (1.21)

Practically, the expansion in Eq. (1.18) is approximated using a finite number, M ,

of eigenvalues and eigenvectors as:

Ã(x, θ) = Ā(x) +
M∑
i=1

√
λiζi(θ)fi(x) (1.22)

Eq. (1.22) is used for simulation purposes by generating the set of random variables

ζi(θ) [4, 9, 23]. Although ζi(θ) are Gaussian for Gaussian processes, they are should be

non-Gaussian for non-Gaussian processes. However, to determine the non-Gaussian

distribution, it is required to solve Eq. (1.21). Phoon et al. [24, 25] suggested iterative

methodologies to solve Eq. (1.21). However, because of the Central Limit Theorem, an

independent non-Gaussian sets easily tend to be closer to Gaussian than the required

non-Gaussian M →∞ [26].

1.3 Non-Gaussian stochastic processes

This thesis is specifically concerned with modeling random processes that are non-

Gaussian in nature. That is, the marginal density of the stochastic process does not

11
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follow a Gaussian distribution and, more generally, the full probability structure of the

process does not follow the joint Gaussian. The work here will consider two different

means of modeling non-Gaussian processes as discussed in the following sections.

1.3.1 Translation process theory

Perhaps the most common means of modeling non-Gaussian stochastic processes

utilizes Grigoriu’s translation process theory [8] given by

Y (t) = g(X(t)) (1.23)

with X(t) and Y (t) are a Gaussian and non-Gaussian process, respectively. The

marginal non-Gaussian CDF g(·) = F−1N {Φ[·]} maps a Gaussian X(t) to the pre-

scribed non-Gaussian distribution.

For non-stationary processes, Ferrante et al. [27] extended the translation process

theory for non-stationary cases as

Y (t) = g(X(t), t) = F−1N {Φ[X(t)], t} (1.24)

with the inverse time-dependent marginal non-Gaussian CDF F−1N (·, t) and the sta-

tionary and normalized Gaussian CDF Φ(·). The result of translated ACF can be

12
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calculated as

RN(s, t) = µ(s)µ(t) + σ(s)σ(t)ξ(s, t)

=

∫ ∞
−∞

∫ ∞
−∞

g(x1, s)g(x2, t)φ{x1, x2; ρ(s, t)} dx1 dx2
(1.25)

with the mean µ(t) and the standard deviation σ(t) of the non-Gaussian process

Y (t) at varying time t. The correlation distortion, ξ(s, t), means its non-Gaussian

normalized ACF and φ{·, ·; ρ(s, t)} is the joint Gaussian PDF with the normalized

Gaussian ACF, ρ(s, t), as

φ{x1, x2; ρ(s, t)} =
1√

2π(1− ρ(s, t)2)
exp

(
− x21 + x22 − 2ρ(s, t)x1x2

2(1− ρ(s, t)2)

)
. (1.26)

For stationary and non-Gaussian processes with τ = s− t, Eq. (1.25) simplified to

RN(τ) = µ2 + σ2ξ(τ)

=

∫ ∞
−∞

∫ ∞
−∞

g(x1)g(x2)φ{x1, x2; ρ(τ)} dx1 dx2
(1.27)

By using standard numerical quadrature rules such as quad2D function in MAT-

LAB, we can solve Eq. (1.25) [28].

The translated ACFs, Eqs (1.25) or (1.27) can be mapped from an underlying

Gaussian processes at all times, but, the inverse translation to estimate an unknown

Gaussian ACF from a prescribed non-Gaussian PDF does not have an analytical solu-

tion occasionally. These incompatible cases with non-stationary translation processes

13
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are introduced as the following two cases [27, 29, 30]. First, the positive semi-definite

non-Gaussian ACF are not guaranteed in the inversion of Eq. (1.25). Second, part

of the non-Gaussian normalized correlation ξ(s, t) in Eqs. (1.25) and (1.27) are not

placed on its admissible range [ξmin(s, t), ξmax(s, t)]. To resolve the prescribed cases

with inadmissibility, Iterative Translation Approximation Methods were developed

[22, 29, 9] and the recent methodology with K-L expansion is introduced in Chapter

2.

1.3.2 Higher-order correlations and higher-order

spectra

Another means of modeling non-Gaussian stochastic processes commonly used

in signal processing [31, 32] is through higher-order moments and/or spectra. The

higher-order properties are fundamental factors of stochastic processes resulting from

nonlinear systems that induce non-Gaussianity [31]. Combining these higher-order

moments and spectra with non-Gaussianity in the processes is essential to realistic

modeling and characterization of diverse physical system. Torquato [33] and several

researchers [34, 35] utilized n-point correlations to explain material properties for

random heterogeneous materialswhich are not explained only with the second order

covariances of the processes/fields with inefficient optimization problems. Moreover,

applications in nonlinear dynamics [36, 37, 38] shows that the higher-order proper-
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ties are important including turbulence [39, 40, 41] and wave interaction [42, 43, 44].

Furthermore, astronomic data examination [45] and physics of plasma [46] are ex-

tensively studied with their characterization. However, the prescribed researches

have been focused on interpretation and characterization of higher-order properties

of non-Gaussian processes/fields. There had been no mathematical form to include

the higher-order properties, therefore, we will focused on the development of stochas-

tic processes modeling to integrate these properties in Chapter 3. Having motivated

their importance, we now briefly review the specific mathematical properties of inter-

est here.

1.3.2.1 Cumulant and moment functions

The definition of joint moments of order r = k1 + k2 + · · ·+ kn for a real random

vector X = {x1, x2, · · · , xn} are given by [47, 14]

mk1,k2,··· ,kn ≡ E[xk11 x
k2
2 · · · xknn ]

= (−i)r ∂
rΦ(ω1, ω2, · · · , ωn)

∂ωk11 ω
k2
2 · · · ∂ωknn

∣∣∣∣
ω1=ω2=···=ωn=0

(1.28)

and the joint cumulants of order r are defined by:

ck1,k2,··· ,kn ≡ (−i)r ∂
r ln Φ(ω1, ω2, · · · , ωn)

∂ωk11 ω
k2
2 · · · ∂ωknn

∣∣∣∣
ω1=ω2=···=ωn=0

(1.29)
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where the joint characteristic function is

Φ(ω1, ω2, · · · , ωn) ≡ E
[
ei(ω1x1+ω2x2+···+ωnxn)

]
(1.30)

In addition, the moments and the cumulants are related as the following expressions

[14] as

ck1,k2,··· ,kn =
∑

(−1)p−1(p− 1)!E
[∏
i∈s1

xi
]
E
[∏
i∈s2

xi
]
· · ·E

[∏
i∈sp

xi
]

(1.31)

where the summation extends over all groups {s1, s2, · · · , sp} of the integers k1, k2, · · · , kn.

In special, it is to be observed that each of cumulants higher than second order are zero

when X is a jointly Gaussian random vector in contrast to the moments. Therefore,

the cumulants of order n > 2 quantify the level of non-Gaussianity.

For a real stationary stochastic processes, f(t), the moment and the cumulant can

be indicated by

m[f(t), f(t+ τ1), · · · , f(t+ τn−1)] ≡ E[f(t)f(t+ τ1) · · · f(t+ τn)]

= mf
n(τ1, τ2, · · · τn−1)

c[f(t), f(t+ τ1), · · · , f(t+ τn−1)] ≡ cfn(τ1, τ2, · · · τn−1)

(1.32)
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The cumulant can be denoted by combining Eqs. (1.31) and (1.32) as

cf1 = mf
1

cf2(τ) = mf
2(τ)−mf

1

cf3(τ1, τ2) = mf
3(τ1, τ2)−mf

1 [mf
2(τ1) +mf

2(τ2) +mf
2(τ2 − τ1)] + 2(mf

1)3

cf4(τ1, τ2, τ3)

= mf
4(τ1, τ2, τ3)−mf

2(τ1)m
f
2(τ3 − τ2)−mf

2(τ2)m
f
2(τ3 − τ1)−mf

2(τ3)m
f
2(τ2 − τ1)

−mf
1 [mf

3(τ2 − τ1, τ3 − τ1) +mf
3(τ2, τ3) +mf

3(τ2, τ4) +mf
3(τ1, τ2)]

+ (mf
1)2[mf

2(τ1) +mf
2(τ2) +mf

2(τ3) +mf
2(τ3 − τ1) +mf

2(τ3 − τ2) +mf
2(τ2 − τ1)]

+ 6(mf
1)4

...

(1.33)

It is obvious that the moments and cumulants up to the third order are duplicated

when f(t) is a processes with zero mean. Similar to the property of cumulants of a

jointly non-Gaussian random variable, all cumulants of the process higher than the

second order represent non-Gaussian properties of the processes. For details, odd-

ordered cumulant and even-ordered cumulants express asymmetric and symmetric

non-linearities, respectively [48].
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Furthermore, the statistics can be related the cumulants at τi = 0 as

cf2(0) = mf
2(0) = E[f(t)2]

cf3(0, 0) = mf
3(0, 0) = E[f(t)3]

cf4(0, 0, 0) = E[f(t)4]− 3{E[f(t)2]}2

(1.34)

The skewness and kurtosis of the process are matched with the third and fourth-order

cumulants at the origins. However, we need to make a point of that the cumulant

functions provide richer characterization and information of the process than the

singular values of the statistics.

1.3.2.2 Polyspectra

In the frequency domain, the n-th order polyspectrum (also referred as cumulant

spectrum) of a process f(t) is defined as the Fourier transform of its n-th order

cumulants as [47]

Cf
n(ω1, ω2, · · · , ωn−1)

=
1

(2π)n−1

∫ ∞
−∞
· · ·
∫ ∞
−∞

cfn(τ1, τ2, · · · τn−1)e−i(ω1τ1+ω2τ2+···+ωn−1τn−1)dτ1dτ2 · · · dτn−1

(1.35)

where Cf
n(ω1, ω2, · · · , ωn−1) is a complex number.

As the first order polyspectrum, the power spectrum is a widely known quantity
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to show the energy/power related with different frequency waves in the processes. In

addition, the traditional SRM expands a stochastic process by matching the desired

2nd-order property.

The bispectrum, the second form of polyspectrum, also, has been researched exten-

sively to explain physical phenomena [47, 15, 49, 48, 45] regarding quadratic phase

coupling. The details of phase coupling are discussed the following section. The

important properties of bispectrum possesses are reviewed briefly here. First, the

bispectrum owns the following symmetries.

1. B(ω1, ω2) = B(ω1 + 2πT, ω2 + 2πT ) (1.36)

2.

B(ω1, ω2) = B(ω2, ω1) = B∗(−ω2,−ω1) = B∗(−ω1,−ω2)

= B(−ω1 − ω2, ω2) = B(ω1,−ω1 − ω2) = B(−ω1 − ω2, ω1)

= B(ω2,−ω1 − ω2)

(1.37)

For thesis symmetries, the bispectrum can be depicted within the principal domain

ω2 ≥ 0, ω1 ≥ ω2, ω1 + ω2 ≤ πT as depicted in Figure 1.1.

Bispectrum, as mentioned that it is a complex value, also includes unique property

that the real and imaginary parts having different physical meaning. It was shown

that the real and imaginary components of the bispectrum are deduced to the Fourier

transform of symmetric and antisymmetric parts of the third-order cumulant, s(τ1, τ2)
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Figure 1.1: Symmetry properties of bispectrum.

and a(τ1, τ2) as [50]

<B(ω1, ω2) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

s(τ1, τ2)e
−i(ω1τ1+ω2τ2)dτ1dτ2

=B(ω1, ω2) =
−i

(2π)2

∫ ∞
−∞

∫ ∞
−∞

a(τ1, τ2)e
−i(ω1τ1+ω2τ2)dτ1dτ2

(1.38)

where

s(τ1, τ2) =
1

2

{
cf3(τ1, τ2) + cf3(−τ1,−τ2)

}
a(τ1, τ2) =

1

2

{
cf3(τ1, τ2)− cf3(−τ1,−τ2)

} (1.39)

Following the mentioned relationships, integrating the real and imaginary components

of the bispectrum results in the skewness of the process and the derivative of the
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process respectively [40, 42] as

E[f(t)3] = s(0, 0) = cf3(0, 0)

=

∫ ∞
−∞

∫ ∞
−∞
<B(ω1, ω2)dω1dω2

= 6

∫ ∞
0

∫ ∞
0

<B(ω1, ω2)dω1dω2

(1.40)

E
[(∂f(t)

∂t

)3]
= −

∫ ∞
−∞

∫ ∞
−∞

ω1ω2(ω1 + ω2)=B(ω1, ω2)dω1dω2

= −6

∫ ∞
0

∫ ∞
0

ω1ω2(ω1 + ω2)=B(ω1, ω2)dω1dω2

(1.41)

Finally, we can indicate bispectrum in terms of its magnitude and biphase, β(ω1, ω2),

as

B(ω1, ω2) = |B(ω1, ω2)|eiβ(ω1,ω2) (1.42)

where

β(ω1, ω2) = arctan
[=B(ω1, ω2)

<B(ω1, ω2)

]
(1.43)

In addition, trispectrum (also refered as the fourth-order cumulant spectra) can be

defined as the Fourier transform of the fourth-order cumulant by Eq. (1.35). However,
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the fourth-order cumulant are different from the the identical order moment as Eq.

(1.34). Similar to the real and imaginary components of the bispectrum (Eq. (1.38)),

the kurtosis and the trispectrum can be related to the one between the fourth-order

cumulant with zero lag as [51]

c4(0, 0, 0, 0) = E[f(t)4]− 3 · E[f(t)2]2

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞
<T (ω1, ω2, ω3)dω1dω2dω3

(1.44)

Lastly, similar to Eq. (1.42), a triphase, γ(ω1, ω2, ω3) and a magnitude of the trispec-

trum can be utilized to represent the trispectrum as

T (ω1, ω2, ω3) = |T (ω1, ω2, ω3)|eiγ(ω1,ω2,ω3) (1.45)

where

γ(ω1, ω2, ω3) = arctan
[=T (ω1, ω2, ω3)

<T (ω1, ω2, ω3)

]
(1.46)

1.3.2.3 Phase coupling and higher-order spectra

Higher-order moments/cumulants or higher-order spectra are used to detect and

and quantify nonlinearities in stochastic processes. In a Fourier-basis, these higher-

order properties show the interaction between distinct harmonic components causing

contribution to the power at their sum and/or difference frequencies. Quadratic phase
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coupling is the simplest interaction phenomenon and has been extensively studied

[52, 53, 46, 54, 14]. 3rd-order cumulant and bispectrum was analytically calculated.

The random process with quadratic phase coupling can be expressed as

f(t) = a cos(λ1t− θ1) + b cos(λ2t− θ2) + c cos(λ3t− (θ1 + θ2)) (1.47)

where frequencies are related as λ3 = λ1 + λ2 and independent and identically uni-

formly distributed phase angles θi ∼ U(−π, π] where i ∈ 1, 2, 3. At the third harmonic

term, the quadratic phase coupling is placed. The 2nd-order cumulant(=moment) and

power spectrum are calculated as

c2(τ) = R2(τ) = E[f(t)f(t+ τ)]

=
a2

2
cos(λ1τ) +

b2

2
cos(λ2τ) +

c2

2
cos(λ3τ)

(1.48)

S(ω) =
1

2π

∫ ∞
−∞

c2(τ)e−iωτdτ

=
a2

4
[δ(ω − λ1) + δ(ω + λ1)] +

b2

4
[δ(ω − λ2) + δ(ω + λ2)]

+
c2

4
[δ(ω − λ3) + δ(ω + λ3)]

(1.49)

The power spectrum of the simple example has 3 impulses with the coefficients a2/4,

b2/4 and c2/4, respectively as depicted in Figure 1.2a. The impulses are placed at

the frequencies, λ1, λ2, and λ3 in the region, ω > 0. In view of power spectrum, the
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(a) (b)

Figure 1.2: (a) Power spectrum and (b) bispectrum for simple two-wave quadratic
phase coupling.

quadratic phase coupling terms just identically performs with the independent terms.

The values of power spectrum causes the variance of Eq. (1.47) as

Variance[f(t)] = c2(0) = R2(0) =

∫ ∞
−∞

S(ω)dω = 2
(a2

4
+
b2

4
+
c2

4

)
(1.50)

On the other hand, the 3rd-order cumulant(=moment) and bispectrum of the

process is given as [54]

c3(τ1, τ2) = R3(τ1, τ2) =

=
abc

4
[cos(λ2τ1 + λ1τ2) + cos(λ3τ1 − λ1τ2) + cos(λ1τ1 + λ2τ2)

+ cos(λ3τ1 − λ2τ2) + cos(λ1τ1 − λ3τ2) + cos(λ2τ1 − λ3τ2)]

(1.51)
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B(ω1, ω2) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

(
c3(τ1, τ2)

)
e−ω1τ1e−ω2τ2dτ1dτ2

=
abc

8
[δ(ω1 − λ1, ω2 − λ2) + δ(ω1 + λ1, ω2 + λ2) · · · ]

(1.52)

There are 12 impulses with same coefficients abc
8

in the bispectrum, Eq. (1.47), at

(λ1, λ2) within the principal domain, ω1 ≥ ω2 ≥ 0 as Figure 1.2b. Compared to the

power spectrum, the bispectrum represents the phase relations of harmonic compo-

nents and contain it as the impulses at the coupled frequencies. Therefore, Eq. (1.47)

has positive value of un-normalized skewness because of the bispectrum as

Skew[f(t)] = c3(0, 0) = R3(0, 0) =

∫ ∞
−∞

∫ ∞
−∞

B(ω1, ω2)dω1dω2

= 12 · abc
8

(1.53)

Similar to the prescribed quadratic phase coupling example, a random process

with cubic phase coupling at the last harmonic component can be expressed as

f(t) = a · cos(λ1t− θ1) + b cos(λ2t− θ2) + c cos(λ3t− θ3) + d cos(λ6t− (θ1 + θ2 + θ3))

(1.54)
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The second-order cumulant(= moment) and power spectrum are given by

c2(τ) = R2(τ) = E[f(t)f(t+ τ)]

=
a2

2
cos(λ1τ) +

b2

2
cos(λ2τ) +

c2

2
cos(λ3τ) +

d2

2
cos(λ6τ)

(1.55)

S(ω) =
1

2π

∫ ∞
−∞

R2(τ)e−iωτdτ

=
a2

4
[δ(ω − λ1) + δ(ω + λ1)] +

b2

4
[δ(ω − λ2) + δ(ω + λ2)]

+
c2

4
[δ(ω − λ3) + δ(ω + λ3)] +

d2

4
[δ(ω − λ6) + δ(ω + λ6)]

(1.56)

The power spectrum has 4 impulses with the values a2/4, b2/4, c2/4, and d2/4, re-

spectively. Similar to the Eq. (1.48) and (1.49), the power spectrum suppresses the

cubic phase relations of harmonic components and is not able to discriminate Eq.

(1.54) from other processes without cubic phase coupling. The power spectrum and

second order moment results in the variance of Eq. (1.54) as

Variance[f(t)] = c2(0) = R2(0) =

∫ ∞
−∞

S(ω)dω = 2 ·
(a2

4
+
b2

4
+
c2

4
+
d2

4

)
(1.57)

However, the 4ourth-order cumulant which is not identical to the fourth-order moment
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and depicts the cubic phase coupling obtained as

c4(τ1, τ2, τ3)

= R4(τ1, τ2, τ3)−R2(τ1) ·R2(τ2 − τ3)−R2(τ2) ·R2(τ3 − τ1)−R2(τ3) ·R2(τ1 − τ2)

=
abcd

8
[cos(λ2τ1 + λ1τ2 − λ6τ3) + cos(λ3τ1 + λ1τ2 − λ6τ3) + cos(λ1τ1 + λ2τ2 − λ6τ3)

+ cos(λ3τ1 + λ2τ2 − λ6τ3) + cos(λ1τ1 + λ3τ2 − λ6τ3) + cos(λ2τ1 + λ3τ2 − λ6τ3)

+ cos(λ6τ1 − λ2τ2 − λ3τ3) + cos(λ6τ1 − λ1τ2 − λ3τ3) + cos(λ6τ1 − λ3τ2 − λ2τ3)

+ cos(λ6τ1 − λ1τ2 − λ2τ3) + cos(λ6τ1 − λ3τ2 − λ1τ3) + cos(λ6τ1 − λ2τ2 − λ1τ3)

+ cos(λ2τ1 − λ6τ2 + λ1τ3) + cos(λ3τ1 − λ6τ2 + λ1τ3) + cos(λ3τ1 + λ2τ2 + λ1τ3)

+ cos(λ2τ1 + λ3τ2 + λ1τ3) + cos(λ1τ1 − λ6τ2 + λ2τ3) + cos(λ3τ1 − λ6τ2 + λ2τ3)

+ cos(λ3τ1 + λ1τ2 + λ2τ3) + cos(λ1τ1 + λ3τ2 + λ2τ3) + cos(λ1τ1 − λ6τ2 + λ3τ3)

+ cos(λ2τ1 − λ6τ2 + λ3τ3) + cos(λ2τ1 + λ1τ2 + λ3τ3) + cos(λ1τ1 + λ2τ2 + λ3τ3)]

− a4

8
[cos(−λ1τ1 + λ1τ2 + λ1τ3) + cos(λ1τ1 − λ1τ2 − λ1τ3) + cos(λ1τ1 + λ1τ2 − λ1τ3)]

− b4

8
[cos(−λ2τ1 + λ2τ2 + λ2τ3) + cos(λ2τ1 − λ2τ2 − λ2τ3) + cos(λ2τ1 + λ2τ2 − λ2τ3)]

− c4

8
[cos(−λ3τ1 + λ3τ2 + λ3τ3) + cos(λ3τ1 − λ3τ2 − λ3τ3) + cos(λ3τ1 + λ3τ2 − λ3τ3)]

− d4

8
[cos(−λ6τ1 + λ6τ2 + λ6τ3) + cos(λ6τ1 − λ6τ2 − λ6τ3) + cos(λ6τ1 + λ6τ2 − λ6τ3)]

(1.58)
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The trispectrum from the prescribed fourth-order cumulant is given by

T (ω1, ω2, ω3) =
1

(2π)3

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

(
c4(τ1, τ2, τ3)

)
e−ω1τ1e−ω2τ2e−ω3τ3dτ1dτ2dτ3

=
abcd

16
[δ(ω1 − λ1, ω2 − λ2, ω3 − λ3) + δ(ω1 + λ1, ω2 + λ2, ω3 + λ3) + · · · ]

− a4

16
[δ(ω1 + λ1, ω2 − λ1, ω3 − λ1) + δ(ω1 − λ1, ω2 + λ1, ω3 + λ1) + · · · ]

− b4

16
[δ(ω1 + λ2, ω2 − λ2, ω3 − λ2) + δ(ω1 − λ2, ω2 + λ2, ω3 + λ2) + · · · ]

− c4

16
[δ(ω1 + λ3, ω2 − λ3, ω3 − λ3) + δ(ω1 − λ3, ω2 + λ3, ω3 + λ3) + · · · ]

− d4

16
[δ(ω1 + λ6, ω2 − λ6, ω3 − λ6) + δ(ω1 − λ6, ω2 + λ6, ω3 + λ6) + · · · ]

(1.59)

Inspection of Eq. (1.59) shows that the trispectrum has 48 components associated

with cubic phase interactions of distinct harmonics (with magnitude abcd/16) and 6

components associated with “self-interactions” (3 wave coupling of waves with iden-

tical frequencies having magnitude −a4/16, −b4/16, −c4/16, −d4/16, respectively).

The second terms exist even in the absence of wave interaction terms in the expan-

sion. In other words, these self-interaction terms exist even in the classical SRM with

asymptotic Gaussianity. The unnormalized kurtosis of Eq. (1.54) is given as

Kurt[f(t)] = c4(0, 0, 0) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

T (ω1, ω2, ω3)dω1, dω2, dω3

= 48 · abcd
16
− 6 · (a

4

16
+
b4

16
+
c4

16
+
d4

16
)

(1.60)

To understand the “self-interactions” or “asymtonically diminishing” terms, let
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us consider a process f(t) represented by the classical Gaussian SRM of Eq. (1.17).

The trispectrum of classical SRM is

T (ω1, ω2, ω3)

= −
∞∑
k=0

A4
k

4
[δ(ω1 + λk, ω2 − λk, ω3 − λk) + δ(ω1 − λk, ω2 + λk, ω3 + λk) + · · · ]

(1.61)

where there are every 6 peaks per the harmonic term, respectively. As an aside,

the bispectrum of f(t) is zero because there is no quadratic phase coupling. The

unnormalized kurtosis of f(t) from the classical SRM with the harmonic terms can

be represented as

Kurt[f(t)] = c4(0, 0, 0) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

T (ω1, ω2, ω3)dω1, dω2, dω3

= −6
∞∑
k=0

(
A4
k

4
)

(1.62)

The original kurtosis of classical SRM is given by

Kurtosis[f(t)] =
E[f(t)4]

E[f(t)2]2
=
c4(0, 0, 0) + 3 · c2(0)2

c2(0)2
=
−6
∑∞

k=0(
A4
k

4
)

σ4
+ 3

= −3

2

∑∞
k=0A

4
k

σ4
+ 3 = 3

(1.63)
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because the limit can be calculated as [3]

lim
N→∞

N−1∑
k=0

A4
k = lim

N→∞

N−1∑
k=0

[2S(ωk)∆ω]4/2

=
√

2(ωu)
2 lim
N→∞

N−1∑
k=0

(S(ωk)

N

)2
≤
√

2(ωu)
2 lim
N→∞

N · S
2
max

N2

=
√

2(ωu · Smax)2 lim
N→∞

1

N
= 0

(1.64)

where ωu is upper cut-off frequency of S(ω) and Smax is maximum of power spectrum

S(ω). Therefore, we notice that the kurtosis of Eq. (1.17) asymptotically converges

to 3, and the SRM is asymptotically Gaussian.
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Iterative translation approximation

method for non-stationary and

non-Gaussian processes

As an existing family of procedures called the Iterative Translation Approximation

Method (ITAM) to handle inadmissibility of translation processes, a new methodology

is presented for simulating non-Gaussian and non-stationary stochastic processes us-

ing Karhunen-Loève (KL) expansion and translation process theory [9]. The proposed

method advances the ITAM by iteratively updating the non-stationary covariance

function. Because the original ITAM requires estimation of evolutionary spectrum

from the covariance function for which no analytical relation exists, the presented

method without the prescribed estimation improves the accuracy with efficient com-
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putational cost for non-stationary processes. Several stationary and non-stationary

examples are examined.

2.1 ITAM with spectral representation

Translation process model is advantageous in plenty of civil engineering prob-

lems. For example, the extreme values of the non-Gaussian processes are essential

in reliability analysis, therefore, the translation process matching the non-Gaussian

distribution and the prescribed ACF is appropriated in spite of its inadmissible cases

mentioned in Section 1.3.1.

To solve the inadmissibility, the ITAM was introduced to simulate stationary and

non-Gaussian processes by upgrading the underlying Gaussian PSDF in view of SRM

[29]. Furthermore, the ITAM was expanded to represent non-stationary and non-

Gaussian processes by iteratively updating the underlying Gaussian ES [29] as

S
(i+1)
G (ω, t) =

[
STN(ω, t)

S
(i)
N (ω, t)

]β
S
(i)
G (ω, t) (2.1)

where STN(ω, t) is a target non-Gaussian and non-stationary ES, S
(i)
N (ω, t) is the esti-

mated non-Gaussian ES at the ith iteration. S
(i)
G (ω, t) and S

(i+1)
G (ω, t) are the under-

lying Gaussian ES at iteration i and i+ 1 respectively. The exponent parameter β is

chosen to adjust convergence speed.

There are several strong advantages in the ITAM. First, it converges fast within
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ten iterations in general. Second, it is computationally light and easy to implement.

Third, the updated underlying Gaussian ES satisfy the condition of PSD. However,

there are primary limitation of the ITAM with ES is that it needs estimation of the

ES from the non-stationary ACF for non-stationary processes since Priestly defined

that the ES is not defined by the non-stationary ACF [55]. Although a method to

calculate a unique ES from the non-stationary ACF under several conditions was

proposed [56], it is computationally expensive. Moreover, an approximation quantity

named as pseudo-autocorrelation that assumes local stationary are introduced in the

ITAM [29]. As a result, the prescribed ITAM for non-stationary and non-Gaussian

processes costed expensive calculation with relatively lower accuracy.

2.2 ITAM with Karhunen-Loéve expan-

sion

The presented method with K-L expansion detours the estimation of ES by di-

rectly updating the underlying non-stationary ACF repeatedly and is denoted as

ITAM-KL. The flowchart of ITAM-KL is provided in Figure 2.1 as well. The follow-

ing sections explain the particulars of the proposed methodology.
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Start

Initialize underlying
Gaussian ACF R

(i)
G (s, t)

Estimate non-Gaussian
ACF R

(i)
N (s, t) by Eq. (1.25)

Converged?

Upgrade underlying Gaussian
ACF R

(i+1)
G (s, t) by Eq. (2.3)

Find the nearest PSD
matrix by Eq. (2.4)

Simulation
yes

no

Figure 2.1: Flowchart of proposed methodology: ITAM-KL.

2.2.1 Initialize underlying Gaussian ACF

With a target incompatible pair of non-stationary autocorrelation and marginal

non-Gaussian CDF, choose an initial arbitrary underlying Gaussian ACF. The initial

ACF must satisfy every condition of ACF. In practical, the initial ACF can be chosen

by the target non-Gaussian ACF.
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2.2.2 Compute the non-Gaussian ACF

Secondly, the non-Gaussian and non-stationary ACF is estimated from the un-

derlying Gaussian based on translation process using Eq. (1.25). The normalized

Gaussian correlation function in Eq. (1.25) is calculated as

ρ(i)(s, t) =
R

(i)
G (s, t)√

R
(i)
G (t, t) ·R(i)

G (s, s)
(2.2)

2.2.3 Upgrade underlying Gaussian ACF

Given that the procedure is not converged at i-th iteration, the underlying Gaus-

sian ACF is upgraded for i+ 1th iteration as

R
(i+1)
G (s, t) =

(
RT
N(s, t)

R
(i)
N (s, t)

)
R

(i)
G (s, t) (2.3)

Here is no exponent parameter β in the conventional ITAM because it will produce

imaginary numbers when the signs of RT
N(s, t) and R

(i)
G (s, t) are opposite in Eq. (2.1).

Moreover, the upgraded Gaussian ACF is not strictly PSD such as the updated ES

in the original ITAM. Therefore, we require an step for preserving the PSD property

of the updated Gaussian ACF at every iteration.
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2.2.4 Find nearest positive semi-definite ACF

Higham [57] suggested a methodology to compute its nearest correlation matrix

of an arbitrary real and symmetric matrix A in Frobenius norm by solving

min
1

2
‖A− Â‖2

s.t. A = ÂT , diag(Â) = e, Â ≥ 0

(2.4)

where Â is the nearest PSD matrix and e is the unit vector. Furthermore, Qi and

Sun [58] proposed a quadratically convergent Newton method for maintaining the

nearest correlation matrix of the updated ACF by dualizing Eq. (2.4) to a convex

optimization problem. Even though they are several methods for computing the

nearest PSD matrix [59], ITAM-KL employed the method of Qi and Sum mentioned

in the Appendix A.

This step of maintaining PSD correlation is iteratively applied after upgrading

underlying ACF. Even though the computed non-Gaussian and non-stationary ACF

becomes closer to the target without this iterative step, the converged underlying

Gaussian ACF would be negative-definite. Because of the negative eigenvalues of the

underlying ACF, the K-L expansion generates significant numerical errors.

. Even though the computed non-Gaussian and non-stationary ACF is closer

to the target without this step, the converged underlying ACF is not PSD (and,

therefore, not a valid ACF). In this case, the underlying Gaussian ACF has negative
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eigenvalues and simulation with the K-L expansion produces considerable numerical

errors. This effect is considered additional in Section 2.5.

2.2.5 Check relative difference and iterate

The relative difference between the target non-stationary and non-Gaussian ACF

and the estimated one is calculated as

ε(i) = 100

√√√√∑N−1
n=0

∑N−1
m=0

[
R

(i)
N (sn, tm)−RT

N(sn, tm)
]2∑N−1

n=0

∑N−1
m=0

[
RT
N(sn, tm)

]2 (2.5)

where N is the number of discretized time steps. Corresponding to the level of the

relative difference. the iterative flow of ITAM K-L will continue or stop.

2.2.6 Simulation using K-L Expansion

When ITAM K-L converges in an final underlying Gaussian ACF, translation

process maps the prescribed Gaussian ACF to the target non-Gaussian and non-

stationary ACF closely. At first, K-L expansion with the underlying Gaussian ACF

(Eq. (1.22)) simulates Gaussian and non-stationary samples. Finally, the sample

functions can be mapped to the prescribed non-Gaussian and non-stationary processes

(Eq. (1.24)).
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2.2.7 Comments on numerical implementation

For numerical execution, there is few restrictions in view of that we do not truncate

the K-L expansion - whole eigenvalue and eigenfunctions of ACF are kept. The

truncation and discretization of K-L expansion was studied [5]. Consequently, when

we only consider to select the degree of discretization of the ACF, there are a some of

numerical limits arisen in the representation. The accuracy of the presented ITAM-

KL approach is without regard to the the truncation. However, the truncation of the

ACF is strongly related to the computational cost. Therefore, as the discretization

become finer, it requires exponentially increased computational cost related to the

number of evaluation of Eq. (1.25).

2.3 Numerical examples

A number of numerical examples of stationary/non-stationary and strongly/weakly

non-Gaussian processes are examined to check the availability of the presented method,

ITAM-KL. Furthermore, examples includes the two types of incompatibility in the

translation processes mentioned in Section 1.3.1. This section utilized the identical

and reshaped numerical examples exploited by Phoon et al. [24].
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2.3.1 Stationary and non-Gaussian processes

The target stationary and non-Gaussian ACFs as numerical examples are consid-

ered:

C1(s, t) = exp(−|s− t|)

C2(s, t) = exp(−|s− t|2)

C3(s, t) = exp(−|s− t|) · cos[4π(s− t)]

C4(s, t) = exp(−|s− t|2) · cos[4π(s− t)]

(2.6)

which are defined within range s, t ∈ [0, 2].

As the target non-Gaussian distributions, two different zero mean and unit vari-

ated marginal non-Gaussian CDFs are utilized to investigate the accuracy and effi-

ciency of the presented ITAM-KL for weakly and strongly non-Gaussian processes.

First, the beta distribution CDF is

F (y; p, q) =
Γ(p+ q)

Γ(p)Γ(q)

∫ u

0

zp−1(1− z)q−1dz (2.7)

where Γ(·) is the gamma function and u = y−ymin

ymax−ymin
with upper and lower bounds

ymin and ymax. The parameters in the given unit variate and zero mean CDF are

chosen as p = 4 and q = 2, and the upper and lower bound are ymin = −3.74 and

ymax = 1.87. As described in the plots of the PDF and the correlation distortion in

Figure 2.2, the beta distribution is weakly non-Gaussian.
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Figure 2.2: Weakly non-Gaussian and stationary beta (a) PDF and (b) its correla-
tion distortion.

The results of non-Gaussian and stationary ACFs with the beta distribution are

described with their own target ACFs and the underlying ACFs in Figure 2.3. In this

case with the weakly non-Gaussian distribution, the inadmissibility of the translation

process does not strong. To estimate the effectiveness of ITAM-KL, the relative dif-

ference from Eq. (5.12) are calculated in Table 2.1. The maximum relative difference

is only 1.94%.

Secondly, the shifted lognormal distribution is considered and its CDF is

F (y;α, β, δ) = Φ

(
ln(y − δ)− α

β

)
(2.8)

The parameters of the shifted lognormal CDF are chosen as α = −0.7707, β = 1, and

δ = −0.7628 to make the CDF the mean zero and unit standard deviation distribu-

tion. As plotted in Figure 2.4, the corresponding PDF is strongly non-Gaussian with

40



CHAPTER 2. ITERATIVE TRANSLATION APPROXIMATION METHOD

t
0 0.5 1 1.5 2

A
C

F

0

0.2

0.4

0.6

0.8

1
Target non-Gaussian
Computed non-Gaussian
Underlying Gaussian

(a)

t
0 0.5 1 1.5 2

A
C

F

0

0.2

0.4

0.6

0.8

1
Target non-Gaussian
Computed non-Gaussian
Underlying Gaussian

(b)

t
0 0.5 1 1.5 2

A
C

F

-1

-0.5

0

0.5

1
Target non-Gaussian
Computed non-Gaussian
Underlying Gaussian

(c)

t
0 0.5 1 1.5 2

A
C

F

-1

-0.5

0

0.5

1
Target non-Gaussian
Computed non-Gaussian
Underlying Gaussian

(d)

Figure 2.3: Underlying Gaussian, target non-Gaussian and ITAM computed non-
Gaussian ACFs for (a) C1, (b) C2, (c) C3, and (d) C4 with weakly non-Gaussian beta
distribution.

the broad inadmissible range in its correlation distortion.

The results for the lognormal distribution are plotted in Figure 2.5 with the es-

timated non-Gaussian ACFs, the target non-Gaussian ACFs, and the corresponding

underlying Gaussian ACFs. Contrast to the beta distribution, the degree of correla-

tion distortion of the translation is extreme. Nevertheless, the proposed ITAM-KL
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Figure 2.4: Strongly non-Gaussian and stationary shifted lognormal (a) PDF and
(b) its correlation distortion.

generate accurate results for ACFs C1 and C2 with the respective differences of 0.014%

and 0.228%. Although the translation of the strongly non-Gaussian distribution has

serious negative distortion, the relative differences are small because the ACFs C1

and C2 holds only positive correlation. However, the ACFs C3 and C4 possessing

negative correlation have relatively bigger errors of 35.30% and 39.92%, respectively.

Although the relative differences between the estimated non-Gaussian ACFs and tar-

get ACFs are extensive, the general shapes of the target ACFs are preserved in the

computed ACFs. The differences of ITAM-KL for ACFs, C1−C4 with the lognormal

distribution are listed in Table 2.1. Also, the corresponding computational cost with

a single 2.3 GHz Intel Core 17 processeor are provided. Moreover, all number of

iterations across all ITAM-KL and the maximum number of the finding nearest PSD

ACF (referred as Max. N.-CG iter.) also are in Table 2.1.
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Figure 2.5: Underlying Gaussian, target non-Gaussian, and ITAM computed non-
Gaussian ACFs for (a) C1, (b) C2, (c) C3, and (d) C4 with strongly non-Gaussian
shifted lognormal distribution.
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2.3.2 Non-stationary and non-Gaussian processes

As non-stationary and non-Gaussian examples, the following target covariances

are examined as

C5(s, t) = min(s, t)

C6(s, t) = 4[min(s, t)− s t]

C7(s, t) = min(s, t) cos[4π(s− t)]

C8(s, t) = 4[min(s, t)− s t] cos[4π(s− t)]

(2.9)

where the domain of the AXFs are identically s, t ∈ [0, 1] and the maximum variance

is one. The plots of these target time-varying covariance matrices are presented in

Figure 2.6.

Similar to the stationary numerical examples, two different non-Gaussian and

non-stationary distributions with zero mean are considered, but their variance are

time-dependent according to their own target covariance functions. First, the non-

stationary beta distribution (Eq. (2.7)) with u = y−ymin

ymax−ymin
, ymin = µb(t)−σb(t)

√
p(p+q+1)

q
,

and ymax = µb(t) +σb(t)
√

q(p+q+1)
p

is examined. The distribution parameters are cho-

sen to be p = 4 and q = 2 for the CDFs with the mean µb(t) = 0 and the time-varying

variance σb(t)
2 = C(t, t) for all t. For the non-stationary and weakgly non-Gaussian

beta distribution, the results of the proposed ITAM-KL at time t = 0.5 with target

non-Gaussian, computed non-Gaussian and underlying Gaussian ACFs are plotted in
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(a) (b)

(c) (d)

Figure 2.6: Target non-stationary covariances: (a) C5, (b) C6, (c) C7, and (d) C8.

Figure 2.7. The relative difference are negligible as mentioned in Table 2.1.

Secondly, the non-stationary and strongly non-Gaussian shifted lognormal distri-

bution is examined (Eq. (2.8)). The distribution parameters are defined as time-

varying α, δ and constant β = 1. In special, the parameter α and δ are functions

of t and are chosen by making the mean µl(t) = 0 and the variance σ2
l (t) matching

the target time-dependent variance. Therefore, the mean and the variance of the
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Figure 2.7: Underlying Gaussian, target non-Gaussian, and ITAM computed non-
Gaussian normalized ACFs of (a) C5, (b) C6, (c) C7, and (d) C8 with non-stationary
beta distribution at time t = 0.5.

non-stationary lognormal distribution are given by

µl(t) = δ(t) + exp

[
α(t) +

β2

2

]
(2.10)

σ2
l (t) = [exp(β2)− 1] · exp[2α(t) + β2] (2.11)
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The results of ITAM-KL for the non-stationary lognormal distributions are de-

picted in Figure 2.8 at t = 0.5. We can recognize the highly accurate result in the

covariances C5 and C6 with smaller relative differences of only 0.016% and 0.014%

respectively. Nonetheless, the differences in the covariances C7 and C8 are relatively

larger because of their negative l correlations. Even though severe incompatibility

between the covariances and the non-stationary CDFs are emerged, the main charac-

teristics of covariances are preserved in the computed covariances. The summary of

the non-stationary results are provided in Table 2.1

2.4 Comparison with ITAM-SRM

One of the most important advantage of the presented method compared to the

conventional ITAM-SRM fro non-stationary processes is that it eliminates the com-

putationally heavy and inaccurate step to estimate ES. The proposed ITAM-KL also

increase the accuracy in view of the relative difference. Compared with the ITAM-

SRM [29], an example with strongly non-Gaussian marginal distribution and non-

stationary ES from the previous work is evaluated. The target non-Gaussian ES is

given by

SN(ω, t) = e−
(
ω−ω0(t)

2

)2
(2.12)

where the parameter ω0(t) is

ω0(t) = 10 + 20t (2.13)
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Figure 2.8: Underlying Gaussian, target non-Gaussian, and ITAM computed non-
Gaussian normalized ACFs of (a) C5, (b) C6, (c) C7, and (d) C8 with non-stationary
shifted lognormal distribution at time t = 0.5.

The equivalent non-Gaussian and non-stationary ACF is computed as [55]

RN(s, t) =

∫ ∞
−∞

√
SN(ω, s)SN(ω, t)eiωtdω (2.14)

The non-stationary and non-Gaussian ES and ACF are plotted in Figure 2.9.

As non-Gaussian and non-stationary distributions, two different beta CDFs with
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Table 2.1: Relative differences and computational costs for weakly (beta) and
strongly (lognormal) non-Gaussian distributions applied to stationary and non-
stationary processes.

Target
Beta distribution

Rel. diff. ε (%) ITAM-KL iter. CPU Time (sec) Max. N.-CG iter.
Stationary (∆x = 0.0250, 81× 81 matrices)

C1 0.0000 3 667 0
C2 0.0599 4 1529 1
C3 0.0000 3 562 0
C4 1.9372 3 573 3

Non-Stationary (∆x = 0.0125, 81× 81 matrices)
C5 0.0024 7 1773 0
C6 0.0007 6 1156 0
C7 0.0007 6 1165 0
C8 0.0009 6 1016 0

Target
Lognormal distribution

Rel. diff. ε (%) ITAM-KL iter. CPU Time (sec) Max. N.-CG iter.
Stationary (∆x = 0.0250, 81× 81 matrices)

C1 0.0146 10 964 0
C2 0.2277 11 2076 3
C3 35.393 5 374 5
C4 39.925 4 316 5

Non-Stationary (∆x = 0.0125, 81× 81 matrices)
C5 0.0159 14 1584 0
C6 0.0142 10 851 0
C7 34.450 4 341 5
C8 22.685 5 379 4

zero mean and unit variance are considered and defined as

f(y; a, b, c, d) =
Γ(c+ d)

Γ(c)Γ(d)(b− a)c+d−1
(y − a)c−1(b− y)d−1 (2.15)

Firstly, an “U-shaped” beta distribution with parameters a = −1.1, b = 1.7, c =

0.342, and d = 0.528 is considered. Secondly, a “L-shaped” beta distribution with
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(a) (b)

Figure 2.9: Target non-Gaussian and non-stationary (a) ES and (b) ACF.

parameters a = −0.457, b = 28.45, c = 0.1895, and d = 11.795 is examined. Their

own upper and lower bounded are given by ymin = a and ymax = b. The plots of the

PDFs and correlation distortions are depicted in Figure 2.10.
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Figure 2.10: Two different beta (a) PDFs and (b) these correlation distortions.

The estimated non-Gaussian ESs and ACFs for the prescribed beta distributions

are computed based on the ITAM-SRM and ITAM-KL and the relative difference at
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different time t = 0, t = 1, and t = 2 are listed in Table 2.2. It is evident that the

relative differences with the proposed ITAM with K-L expansion are much smaller

the the one with the ITAM-SRM. Furthermore, the converged non-Gaussian ACFs

using the two different ITAMs are plotted in Figure 2.11.
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Figure 2.11: Comparison of computed non-Gaussian ACFs using ITAM-KL and
ITAM-SRM with (a) U-beta distribution at time t = 0 and (b) L-beta distribution
at time t = 1.

2.5 Effect of the finding nearest PSD ma-

trix of underlying ACF

As mentioned before, the importance of the step of finding nearest PSD matrix

of underlying Gaussian ACF in the proposed ITAM-KL are considered. This stage

keeps the underlying Gaussian ACF PSD and ensures the compatibility of transla-

tion process. However, someone may prefer to iterative update the ACF without
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Table 2.2: Comparison of relative differences between the standard ITAM
with SRM and the upgraded ITAM with the K-L expansion.

Relative difference ε (%)

U-beta distribution L-beta distribution

Time ITAM with SRM ITAM with K-L ITAM with SRM ITAM with K-L

t = 0 12.798 2.4433 57.627 12.655

t = 1 9.3529 5.8626 69.647 52.139

t = 2 7.9026 6.3818 68.608 51.672

the prescribed step and simulate the process only with the positive eigenvalues and

their eigenfunctions. But, the mentioned approach without finding PSD ACF cause

significant difference between the target non-Gaussian ACF and the estimated non-

Gaussian ACF from the stochastic samples.

In Figure 2.12a, the converged normalized non-Gaussian ACFs with and with-

out finding the nearest PSD ACF are depicted. Even though both results seem

to be matched well with the target, the non-PSD solution much converge to the

target ACF. Nevertheless, Figure 2.12b presenting the estimated ACFs from the

sample functions shows us that simply ignoring the non-negative eigenvalues by not

search the nearest PSD ACF during the iterations causes considerable error in the

simulation. Furthermore, the ignoring PSD yields the realization with inaccurate

variance σ2
without PSD ≈ 3.3322) with 100,000 samples compared to the other one
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(σ2
with PSD ≈ 1.0062).
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Figure 2.12: (a) Computed normalized non-Gaussian ACFs after iterations with
and without finding the nearest PSD ACF. (b) Estimated normalized non-Gaussian
ACFs from sample functions produced using the ACFs in (a) with the K-L expansion.

The previous results show that the step searching the nearest PSD ACF is indis-

pensable. However, is it required at every end of iteration or can we only apply this

step once at the last iteration? Table 2.3 shows the accuracy of the two procedures

on the numerical examples in Section 2.3.1 and 2.3.2. It is shown that finding the

nearest PSD at every iteration is superior for every case (C1 − C8). Therefore, given

the inexpensive cost of finding the nearest PSD matrix, it is recommended to search

the nearest PSD at every iteration although the both scheme are valid to satisfy the

PSD condition of ACFs.
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Table 2.3: Comparison of relative differences between the target
and computed ACFs by finding the nearest PSD ACF at each it-
eration and finding it once at the end of iterations for a shifted
lognormal distribution.

Relative difference ε (%)

Target Finding PSD at each iteration Finding PSD once

Stationary

C1 0.0146 0.0146

C2 0.2277 0.2388

C3 35.393 36.596

C4 39.925 40.028

Non-stationary

C5 0.0159 0.0159

C6 0.0142 0.0142

C7 34.450 35.217

C8 22.685 23.380

2.6 Conclusions

A new methodology have been proposed for simulation of strongly non-Gaussian

and non-stationary stochastic process. The proposed methodology belongs to the

scope of the ITAM and is demonstrated to improve the accuracy and computational

efficiency of the ITAM for non-stationary processes. Diverse marginal distribution
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with weakly/strongly non-Gaussian are considered as numerical examples. The re-

sults show that the proposed methodology is competent for both stationary and non-

stationary processes with different incompatibility of translation process. It possesses

several advantages when compared with the conventional simulation methods. First,

the convergence speed is very fast and the accuracy of matching with the target ACFs

is high. Secondly, estimation of ES in the original ITAM for non-stationary processes

is alleviated. Thirdly, the results possesses the marginal non-Gaussian distribution

perfectly because of translation process. Lastly, it is straightforward to apply the

ITAM-KL in diverse situations.
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Chapter 3

Bispectral representation method

The prescribed spectral representation method is generalized for simulation of

asymmetrically nonlinear stochastic processes with skewed higher-order properties

[10]. New orthogonal increments for the spectral process in the Cramér spectral

representation are proposed to include wave interaction and satisfy the orthogonal

conditions up to thrid-order. To define the orthogonal increments, two new quantities

- partial bicoherence and pure power spectrum - that decouple the contribution of the

quadratic wave interactions and single wave powers in the power spectrum. Several

numerical examples of diverse processes with different forms of power spectra and

bispectra are considered to examine the proposed method. Also, turbulent wind

velocities form large eddy simulations are simulated with the proposed methodology.
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3.1 Partial bicoherence and pure power

spectrum

Bicoherence is appropriate normalized form to evaluate the magnitude of the

bispectrum (mentioned in Eq. (1.42)). The most common definition of the bicoherence

derived by Kim and Powers [46] is given by

b2(ω1, ω2) =
|B(ω1, ω2)|2

E[|F (ω1)F (ω2)|2]S(ω1 + ω2)
(3.1)

where F (ω) are the Fourier coefficients of the process f(t). The bicoherence is

bounded on the range [0, 1] by Schwartz’s inequality and represent the fraction of en-

ergy associated with quadratic phase coupling. However, Hinich and Wolinskey [60]

argued that the prescribed bicoherence is not strictly correct and is only appropri-

ate for stochastic processes with narrow-band frequencies. When there is broadband

coupling, this normalization is contaminated [39].

Therefore, we require a new feature to define the proportion of the bispectral

power that comes form the quadratic wave interactions with two frequencies ωi and

ωj seperately. To do so, we introduce new qualities named as the partial bicoherence

bp (similar to the partial coherence of Bendat and Piersor [61]) and the pure power
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spectrum Sp are given by

b2p(ωi, ωj) =
|B(ωi, ωj)|2

Sp(ωi)Sp(ωj)S(ωi + ωj)
(3.2)

where

Sp(ωk) = S(ωk)

[
1−

∑
i+j=k
i≥j≥0

b2p(ωi, ωj)

]
(3.3)

This partial bicoherence separates the fraction of power in the wave with frequency

ωk = ωi + ωj that comes from the two wave interactions with frequency ωi and ωj

only by eliminating contributions from other combinations of two frequencies and an

independent part at frequency ωk.

There is a valuable property of the partial bicoherence that 0 ≤
∑

i+j=k
i≥j≥0

b2p(ωi, ωj) ≤

1 with the summation
∑

i+j=k
i≥j≥0

b2p(ωi, ωj) that represents total influence of all quadratic

wave interactions on the power at frequency ωk. Concurrently, the pure power spec-

trum in Eq. (3.3) represents the power spectrum of the process without all quadratic

wave interactions. This partial bicoherence become identical with the bicoherence of

Kim and powers with simple quadratic phase coupling only with three wave (such as

Eq. (1.47)). Although Eqs. (3.2) and (3.3) looks like circular definitions between the

partial bicoherence and pure power spectrum, we can constructed both of them in a

term-by-term fashion as starting at the lowest frequencies and increasing.
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3.2 Simulation of higher-order processes

by spectral representation

3.2.1 Third-order processes

We propose a higher-order spectral representation based expansion for the sim-

ulation of stochastic processes. The spectral representation of Eq. (1.5) shows its

capacity to represent third-order processes with the orthogonal conditions, Eqs. (1.7)

and (1.8). To derive the corresponding orthogonal increments for this higher-order

representation, we utilize the partial bicoherence and pure power spectrum defined in

Eqs. (3.2) and (3.3). For the simulation, we provide a discretized form of the partial

bicoherence as

b2p(ωi, ωj) =
B2(ωi, ωj)∆ω

2
i ∆ω

2
j

Sp(ωi)∆ωiSp(ωj)∆ωjS(ωi + ωj)∆(ωi + ωj)
(3.4)

As mentioned before, we expand the standard orthogonal increments in the spec-

tral representation given Eq. (1.16) in terms of the independent part only related with

the pure power spectrum duP (·) and dvP (·), and the interacting part arisen from wave

interactions (with the partial bicoherence), duI(·) and dvI(·), for the third-order rep-
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resentation as

du(ωk) = duP (ωk) + duI(ωk)

dv(ωk) = dvP (ωk) + dvI(ωk)

(3.5)

where

duP (ωk) =
√

2 · 2Sp(ωk)∆ωk cosφk =

√√√√2 · 2S(ωk)∆ωk

[
1−

i≥j≥0∑
i+j=k

b2p(ωi, ωj)

]
cosφk

dvP (ωk) =
√

2 · 2Sp(ωk)∆ωk sinφk =

√√√√2 · 2S(ωk)∆ωk

[
1−

i≥j≥0∑
i+j=k

b2p(ωi, ωj)

]
sinφk

(3.6)

and

duI(ωk) =
√

2 · 2S(ωk)∆ωk

{
i≥j≥0∑
i+j=k

∣∣b2p(ωi, ωj)∣∣ cos
[
φi + φj + β(ωi, ωj)

]}

dvI(ωk) =
√

2 · 2S(ωk)∆ωk

{
i≥j≥0∑
i+j=k

∣∣b2p(ωi, ωj)∣∣ sin [φi + φj + β(ωi, ωj)
]} (3.7)

where β(ωi, ωj) is the biphase given by Eq. (1.43). Examination of Eqs. (1.16) and

(3.6) shows that duP (ωk) and dvP (ωk) are consistent with the classical orthogonal

increments based on the pure power spectrum, while the increments duI(ωk) and

dvI(ωk) express the quadratic wave interactions.

Applying the new orthogonal increments to the spectral representation of Eq.
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(1.11) provide a new third-order spectral representation as

f(t) =
√

2
∞∑
k=0

√
2Sp(ωk)∆ωk cos(ωkt− φk)

+
√

2
∞∑
k=0

i≥j≥0∑
i+j=m

√
2S(ωi + ωj)∆(ωi + ωj)

∣∣bp(ωi, ωj)∣∣
· cos[(ωi + ωj)t− (φi + φj + β(ωi, ωj))]

(3.8)

that can simulate of the stochastic processes with asymmetric nonlinearities and

we will mention this representation as bispectral representation method (shortly in

BSRM). Furthermore, the sample functions generated from Eq. (3.8) own both the

prescribed power spectrum and bispectrum in ensemble. In Appendix B, it is proven

that the presented orthogonal increments fulfill all the orthogonal conditions of the

spectral process up to third-order.

3.2.2 Fourth and higher-order processes

Simulations of stochastic processes including fourth-order spectra (with cubic

phase coupling and symmetric non-linearities) have not been explicitly developed to

date. However, the process for achieving these expansions will follow the similar pre-

scribed steps with higher-order wave interaction terms in the orthogonal increments

and we need to modify all of lower-order terms. For example, in the fourth-order case,

the orthogonal increments should be divided to three components. The first term will

stand for the independent terms without any effects of two and three wave interac-
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tions. The second components will denote the pure two-wave interactions without

the effects of three wave interactions. Then, the final term will explicitly represent

the tree-wave interactions.

3.3 Numerical examples

We apply the proposed methodology for simulation of third-order skewed stochas-

tic processes with the diverse forms of power spectra and bispectral including analyt-

ical results.

3.3.1 Quadratic phase coupling: real and imagi-

nary bispectrum

As the first example, we examine two stochastic processes with simple quadratic

coupling only with four harmonic terms. Both of the processes share identical power

spectrum as

S(ω) =
1

4
δ(ω − 2π · 10) +

1

4
δ(ω − 2π · 20)

+
1

4
δ(ω − 2π · 30) +

1

4
δ(ω − 2π · 40) for ω ≥ 0

(3.9)
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and depicted in Figure 3.1a. However, they possess their own bispectra. The firs

process, fr(t), only has a real bispectrum defined as

B(ω1, ω2) =
1/
√

2

8
δ(ω1 − 2π · 20, ω2 − 2π · 10) +

1/
√

2

8
δ(ω1 − 2π · 30, ω2 − 2π · 10)

for ω1 ≥ ω2 ≥ 0

(3.10)

and the second process, fi(t), only has a imaginary bispectrum given by

B(ω1, ω2) =
i/
√

2

8
δ(ω1 − 2π · 20, ω2 − 2π · 10) +

i/
√

2

8
δ(ω1 − 2π · 30, ω2 − 2π · 10)

for ω1 ≥ ω2 ≥ 0

(3.11)

and both of the bispectra are depicted in Figure 3.1, too. The squared partial bi-

coherence, Eq. (3.2), and the pure power spectra, Eq. (3.3) are identical for both

processes and are given by:

b2p(ω1, ω2) =



0.5, if ω1 = 2π · 20, ω2 = 2π · 10

1, if ω1 = 2π · 30, ω2 = 2π · 10

0, otherwise

for ω1 ≥ ω2 ≥ 0 (3.12)
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Figure 3.1: (a) Power spectrum, (b) real bispectrum of fr(t) and (c) imaginary
bispectrum of fi(t) for two simple quadratic phase coupling processes.

and

Sp(ω) =
1

4
δ(ω − 2π · 10) +

1

4
δ(ω − 2π · 20) +

1

8
δ(ω − 2π · 30) for ω ≥ 0 (3.13)

However, they own different biphases at the coupled frequencies: β(40π, 20π) =

β(60π, 20π) = 0 for the first process with real bispectrum and β(40π, 20π) = β(60π, 20π) =

π/2 for the second process with imaginary bispectrum. With the proposed represen-
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Figure 3.2: (a) Pure power spectrum and (b) squared partial bicoherence for two
simple quadratic phase coupling processes.

tation, these processes can be simulated using the forms of expansion given by

fr(t) = cos(2π · 10t− φ1) + cos(2π · 20t− φ2)

+
1√
2

cos(2π · 30t− φ3) +
1√
2

cos[2π · 30t− (φ1 + φ2)]

+ cos[2π · 40t− (φ1 + φ3)]

(3.14)

for the first process with real bispectrum and

fi(t) = cos(2π · 10t− φ1) + cos(2π · 20t− φ2)

+
1√
2

cos(2π · 30t− φ3) +
1√
2

sin[2π · 30t− (φ1 + φ2)]

+ sin[2π · 40t− (φ1 + φ3)]

(3.15)
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for the second process with imaginary bispectrum. By contrast, the traditional SRM

for this process is given by

f0(t) = cos(2π · 10t− φ1) + cos(2π · 20t− φ2)

+ cos(2π · 30t− φ3) + cos(2π · 40t− φ4)

(3.16)

without any phase coupling. Firstly, we can recognize the BSRM is very simple

and similar to the classical SRM. However, it includes more information beyond the

second-order properties of the processes.

In Figure 3.3, representative sample functions and their derivatives for the pro-

cesses, fr(t) and fi(t) are shown and compared with the sample function of the orig-

inal SRM with identical phase angle set, f0(t). Based on the prescribed properties

of real and imaginary bispectrum (Eqs. (1.40) and (1.41)), the two processes with

BSRM have different asymmetric types. Firstly, the real bispectrum process fr(t)

has strongly skewed, but its derivative process ∂fr(t)
∂t

still are symmetric. Against the

previous result, the process fi(T ) remains symmetric while its time-derivative ∂fi(t)
∂t

is negatively skewed. On the other hand, the classical SRM processes f0(t) and ∂f0(t)
∂t

are symmetric. Furthermore, the statistics are provided in Table 3.1 with the target

variance and skewness of fr(t), fi(t),
∂fr(t)
∂t

, and ∂fi(t)
∂t

compared with their estimated

values from 50,000 sample functions. Lastly, the estimated power spectra and bispec-

tra for fr(t) and fi(t) are shown in Figure 3.4 and well match with their own targets

depicted in Figure 3.1.
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Figure 3.3: Representative sample functions of the simple quadratic phase coupling
process generated using the proposed method and the classical SRM and their time
derivatives having (a,b) real and (c,d) imaginary bispectra.

3.3.2 Skewed non-Gaussian white noise

In the previous section, the processes only with distinct frequencies and their

phase coupling are considered. However, most stochastic processes of interest have

a continuous shape in frequency domain with broadband wave couplings. Hence,

we considered a band-limited skewed non-Gaussian white noise process with power
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Figure 3.4: (a,b) Estimated power spectrum and real bispectrum for quadratic phase
coupling process with real bispectrum,fr(t). (b,d) Estimated power spectrum and
imaginary bispectrum for quadratic phase coupling process with imaginary bispctrum,
fi(t). Estimates computed from 50,000 sample generated using proposed method.

spectrum given by

S(ω) = 14 for ω1 ≤ 2π · 5 (3.17)

and bispectrum

B(ω1, ω2) = 20− 20i for ω1 ≤ 2π · 2.5, ω2 ≤ 2π · 2.5 (3.18)
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All the power spectrum, real and imaginary part of bispectrum are depicted in Figure

5.17. Given the prescribed power spectrum and bispectrum, the squared partial
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Figure 3.5: (a) Power spectrum, (b) real and (c) imaginary bispectrum for non-
Gaussian white noise process.

bicoherence and pure power spectrum of the process are calculated and depicted in

Figure 5.18. Note that a considerable part of the power in the power spectrum from

the quadratic coupling (or the bispectrum) are shown by the hollowed wedge shape

in the pure power spectrum in Figure 5.18a.

In Figure 3.7, representative sample function and its derivative of the skewed
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Figure 3.6: (a) Pure power spectrum and (b) squared partial bicoherence for non-
Gaussian white noise process.

white noise process with the proposed BSRM are presented and compared with the

samples with the conventional SRM . From the comparison, we can notice the positive
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Figure 3.7: (a) Representative sample functions and their (b) time derivatives of
skewed non-Gaussian white noise process fw(t) generated using the proposed method
and the classical SRM.

skewness in the sample and its derivative from BSRM. Notify that the estimated power

spectrum form 50,000 samples of the BSRM match perfectly with the target power

spectrum and even in terms of both components of bispectrum as provided in Figure
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3.8. Furthermore, the statistics of the target, BSRM, SRM process are compared in

Table 3.1 and the results of BSRM are remarkably accurate.
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Figure 3.8: (a) Estimated power spectrum, (b) real and (c) imaginary bispectra of
non-Gaussian white noise process from 50,000 sample functions generated using the
proposed method.

3.3.3 Peaked broadband process

As final numerical example, another broadband process fp(t) having peaks in both

the power spectrum and bispectrum is considered. The power spectrum of the process

71



CHAPTER 3. BISPECTRAL REPRESENTATION METHOD

are given by

S(ω) =
40√

2π · 0.25
e−

(ω−2π·2)2
2·0.25 (3.19)

and the bispectrum is

B(ω1, ω2) =− 20

2π · 0.0625
e−

1
2·0.0625 ((ω1−2π·1.25)2+(ω2−2π·1.25)2)

+ i · 20

2π · 0.0625
e−

1
2·0.0625 ((ω1−2π·1.25)2+(ω2−2π·1.25)2)

(3.20)

and their plots are presented in Figure 3.9. Moreover, the squared partial bicoherence

and pure power spectrum are calculated and depicted in Figure 3.10.

Sample functions of the peak and broadband process fp(t) and its derivative are

plotted in Figure 3.11 compared with samples with SRM. There is substantial dif-

ference between the BSRM and SRM at the peaks within the samples and their

derivatives. Both results from BSRM have negative skewness and their statistics are

summarized in Table 3.1. Moreover, Figure 3.12 shows that the estimated power

spectrum and bispectrum from 50,000 sample functions with BSRM are matched

perfectly in ensemble.

3.3.4 Application to wind velocity generation from

CFD data

We utilize the presented method, BSRM, to simulate wind velocities from statisti-

cal properties of data generated from large eddy simulations (LES) of the atmospheric
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Figure 3.9: (a) Power spectrum, (b) real and (c) imaginary bispectra for the peaked
broadband process.

boundary layer. The data are supported by Yeo and Shi at the National Institute of

Standards and Technology [62].

3.3.5 Summary and statistical analysis of LES study

LES is well-developed tool for the study of atmospheric flow in which governed by

the Navier-Stokes equations and solved numerically above critical length-scale such
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Figure 3.10: (a) Pure power spectrum and (b) squared partial bicoherence for the
peaked broadband process.
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Figure 3.11: Sample functions (a) of the peaked broadband process and (b) their
derivatives generated using the proposed method and the classical SRM.

as a grid scale. Synthetic wind velocities from the LES are statistically characterized

up to the third-order properties. Although simulation with the proposed methodol-

ogy does not represent perfect atmospheric flow, the results possess the given power

spectra and bispectra of the wind velocities from the LES.

In this example, Sin and Yeo described an atmospheric boundary layer of height
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Figure 3.12: (a) Estimated power spectrum, (b) real, and (c) imaginary bispectra
from 50,000 sample functions of the peaked broadband process generated using the
proposed method.

1km (computational extents H = 10m, which is 1:100 scaled. The model over open

terrain with assumed roughness length z0 = 0.03m (in the model z0 ∼= 0.0003m).

The Flow of the atmospheric layer is in the computational domain as depicted in

Figure 3.13a until a stationary condition is achieved. Velocity contours at different

heights are presented in Figure 3.13b. From this synthetic flow field, stream-wise wind

velocities are withdrawn at a point at height h = 1 and the time histories and the
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Table 3.1: Target and estimated moments of stochastic processes and their deriva-
tives from 50,000 sample functions generated using the proposed method and the
classical SRM.

Quadratic phase coupling Quadratic phase coupling
Real bispectrum - fr(t) Imag. bispectrum - fi(t)

Target Sim. SRM Target Sim SRM
f(t) Variance 2 1.9991 2.0000 2 1.9999 2.0000

Skewness 0.7500 0.7497 -0.0006 0 0.0010 -0.0006
∂f(t)
∂t

Variance 59218 58859 58859 59218 58855 58859
Skewness 0 0.0017 -0.0005 -0.3378 -0.3291 -0.0005

Skewed white noise - fw(t) Peaked braodband - fp(t)
Target Sim. SRM Target Sim SRM

f(t) Variance 140 140.71 140.70 80 80.00 80.04
Skewness 0.4528 0.4468 -0.0002 -0.1677 -0.1681 -0.0004

∂f(t)
∂t

Variance 46751 41266 41260 13423 12865 12858
Skewness 0.1022 0.1113 -0.0002 -0.0793 -0.0789 0.0001

estimated PDF are plotted in Figure 3.14. We can recognize the wind velocity time

history clearly have a negative skewness. Also, the second-order statistical properties

including autocovariance and power spectrum are given in Figure 3.15. Moreover,

the third-order characteristics including the third-order cumulant and bispectrum are

plotted in Figure 3.16 using open source Matlab code, Higher Order Spectra Analysis

[63]. In this examination, the original single history with duration 146 sec. with

discrete time step 1/250 sec. is divided to 146 individual histories with duration 1

sec. This dividing procedure provides smooth polysectral estimates.

By applying the proposed BSRM, we simulate the skewed wind time histories with

the power spectrum (Figure 3.15b) and bispectrum (Figures 3.16b - 3.16c). One of the
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(a)

(b)

Figure 3.13: (a) Geometry of the LES computational domain with colored velocity
magnitude and (b) velocity counters at z/H = 7.5e−3 and z/H = 0.11.

.

generated samples are plotted in Figure 3.17 and compared with the sample functions

from the classical SRM. From their estimated PDFs, we can see the differences in the

tails.

The statistics of all synthetic wind velocities are compared in Table 3.2 and the

process with BSRM not only matched the target variance but for the target skewness.

The estimated third order correlations form the BSRM sample functions are plotted in

Figure 3.18. The results tell us the proposed methodology generates skewed stochastic
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Figure 3.14: Wind velocity histories extracted from the LES model and the empir-
ical PDF.
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Figure 3.15: (a) Autocovariance, (b) power spectrum of LES modeled wind turbu-
lence.

samples with high accuracy in terms of second and third order properties.

Although the third-order characterization with BSRM is successful, the asymmet-

ric non-Gaussianity with lower kurtosis than three in the PDFs still are not included.

This indicates us fourth order characteristics in the wind velocities are also impor-
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Figure 3.16: (a) Third-order cumulant function, (d) real and (c) imaginary bispectra
of LES modeled wind turbulence.

tant. It becomes a huge motivation to further generalize the presented BSRM to

higher-order.

Table 3.2: Target and estimated moments of the wind velocity process from 10,000
sample functions generated using the proposed method and the SRM.

Target Sim. SRM
Variance 8.2717 8.2600 8.2605
Skewness -0.2959 -0.2928 -0.0054
Kurtosis 2.7276 3.0772 2.9850
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(a)

(b)

Figure 3.17: Simulated wind velocity histories and their PDFs generated using (a)
the proposed method and (b) the SRM.

3.4 Conclusions

In this work, a third-order simulation methodology has been derived from the

Cramér spectral representation that serves as an extension of the classical Spectral
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Figure 3.18: (a) Estimated third-order cumulant, (b) real and (c) imaginary bispec-
tra from 10,000 samples functions of the wind velocity process generated using the
proposed method.

Representation Method. The method is derived by defining an orthogonal spectral

process that includes contributions from nonlinear wave interactions while maintain-

ing the prescribed orthogonality conditions up to third order. This is achieve through

the definition of two new quantities, the pure power spectrum and the partial bicoher-

ence, that enable the single wave and wave interaction components to be decoupled.

Extension of the method to fourth and higher-order processes is discussed. Several
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numerical examples are provided to show the capabilities of the methodology to accu-

rately simulate processes from a known power spectrum and bispectrum. Finally, the

method is applied to the generation of wind velocity histories based on a statistical

characterization of Large Eddy Simulations of the atmospheric boundary layer.

82



Chapter 4

Phase difference distributions in

higher-order stochastic processes

Many stochastic processes exhibit features that are not well-characterized by in-

dependent wave components. These processes are often referred to as nonlinear in the

literature as they involve wave interactions that cannot be expressed through simple

linear models. These nonlinearities, in turn, induce non-Gaussianity in stochastic pro-

cesses with many wave components. The means of characterizing these nonlinearities

have been largely expressed through higher-order moments (cumulants) spectra as

discussed in the previous chapter. It follows logically, and somewhat intuitively, that

those properties should derive from dependancies in phase of the wave components

but, to date, no direct connection has been made between the joint distribution of

the phases (or quantities derived from these, e.q. conditional distributions or joint
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moments) and the higher-order properties of the process. This chapter offers the first

such explicit analytical connection of these qualities.

4.1 Circular probability distributions and

their properties

In this section, we differentiate between probability measures defined on the real

line and circular probability measures whose support lies on the circumference of a

unit circle [64, 65, 66]. As will be shown, it is convenient (and somewhat intuitive)

to consider random phases in the SRM to have circular distributions. For example,

the conventional interpretation of random phases in the SRM, Eq. (1.14), is that

they are uniform on the line (−π, π]. An equivalent interpretation is that they are

uniformly distributed on a unit circle. Adopting the second interpretation, we now

explore some properties of circular distributions.

Since each point on the circumference of the unit circle represents a direction,

a circular distribution is a way of assigning probabilities to different directions (i.e.

defining a directional distribution of angles). Let f(θ) be the probability density

function of a continuous circular random variable Θ. The pdf f(θ) has the following
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basic properties:

f(θ) ≥ 0; ∀θ∫ π

−π
f(θ)dθ = 1

f(θ) = f(θ + k · 2π); ∀k ∈ I

(4.1)

where I denotes the set of integers.

A circular distribution can also be described via its characteristic function. The

value of the characteristic function at an integer p is called the p-th trigonometric

moment of θ and is given by

φθ(p) ≡ E[eipθ] =

∫ π

−π
eipθdF (θ) = ρpe

iµp where p = 0,±1,±2, · · · (4.2)

The amplitude of the trigonometric moment can be bounded by Lyapunov’s inequality

as

|φθ(p)| = ρp = |E(eipθ)| ≤ E(|eipθ|) = 1 (4.3)

In particular, consider the first trigonometric moment given by

φθ(1) = E[eiθ] = ρ1e
iµ1 ; (4.4)

where ρ1 ∈ [0, 1] is the mean resultant length and µ1 ∈ (−π, π] is the mean direction
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determined from

ρ1 = |E[eiθ]|

µ1 = tan−1
(=E[eiθ]

<E[eiθ]

) (4.5)

The mean resultant length represents the magnitude of the expected value of all

unit radial vectors distributed on the unit circle with directions distributed as f(θ),

while the mean direction is the mean angle of these vectors. The circular variance

defined as v = 1 − ρ1 is a measure of the dispersion of θ analogous to the variance

of a linear RV. Furthermore, the characteristic function of the sum of independent

circular random variables is given by the following. Let θ1, · · · , θn be independent

circular, the characteristic function of Sn = θ1 + · · ·+ θn is given by

φSn(p) =
n∏
i=1

φi(p) (4.6)

4.1.1 Circular uniform distribution

Three of the most popular circular probability models are the circular uniform,

von Mises, and wrapped Cauchy distributions. The circular uniform distribution has

probability density function given by

fU(θ) =
1

2π
; θ ∈ (−π, π] (4.7)
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That is, all directions of θ are equally distributed and it is no concentration. Its

trigonometric moments, φθ(p) of all orders are zero except zero-th order, φθ(0) = 1.

Because of the unique characteristic function of the circular uniform random variable,

the summation of a circular uniform random variable with any other independent

random variables is uniformly distributed by Eq. (4.6).Accordingly, the first trigono-

metric moments of the circular uniform distribution are given in the following Table

4.1. The circular uniform distribution is non-directional and its mean direction, µ1,

does not exist. The mean resultant length, ρ1, is zero, which means the circular vari-

ance has its maximum value, v = 1. The circular uniform distribution is identical to

the linear uniform distribution with range, (−π, π], therefore, it can be used for the

independent random phases in the classical SRM for Gaussian processes.

Trigonometric Moments
Mean direction (µ1) undefined
Mean resultant length (ρ1) 0

Table 4.1: Trigonometric moments of circular uniform distribution.

As we will see, when the distribution of phase angles is not circular uniform,

it means that there is a certain concentration and direction of the phases, and a

stochastic process generated by the SRM is non-Gaussian. Therefore, to model more

general phase relationships in stochastic processes, it is useful to consider more general

families of circular distributions. The following two distributions can be used to model

phases in such cases: the von Mises and wrapped Cauchy distributions.
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Figure 4.1: Von Mises distributions in (a) polar and (b) Cartesian coordinates with
zero mean direction and various mean resultant lengths.

4.1.2 Von Mises distribution

The von Mises distribution [67] (shown in Figure 4.1) is a symmetric and unimodal

circular distribution with probability density given by

fVM(θ;µ1, κ) =
eκ cos(θ−µ1)

2πI0(κ)
; θ ∈ (−π, π], µ1 ∈ (−π, π], κ ≥ 0 (4.8)

where µ is a direction parameter (equal to mean direction) , κ is a scale parameter,

and I0 is the modified Bessel function of the first kind having order p = 0 which

follows the general form given by

Ip(κ) =
1

2π

∫ 2π

0

eκ cos(θ) cos(p · θ)dθ; p ∈ I (4.9)

The von Mises distribution has been well studied with a strong emphasis on pa-
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rameter estimation [68, 69, 70] and its p-th order trigonometric moments are given

by

φp(θ;µ1, κ) =
Ip(κ)

I0(κ)
eipµ1 (4.10)

Specifically, the first trigonometric moments are given in Table 4.2. Given the moment

Trigonometric Moments
Mean direction (µ1) µ1

Mean resultant length (ρ1)
I1(κ)
I0(κ)

Table 4.2: Trigonometric moments of the von Mises distribution.

form in Eq. (4.10), the von Mises distribution can be difficult to use for our purposes.

Because the modified Bessel function has no analytical inverse, we cannot easily

identify the parameter κ for a given mean resultant length.

4.1.3 Wrapped Cauchy distribution

An easier distribution to work with is the wrapped Cauchy distribution shown in

Figure 4.2. The wrapped Cauchy distribution has pdf given by

fWC(θ;µ1, ρ1) =
1

2π

1− ρ21
1 + ρ21 − 2ρ1 cos(θ − µ1)

; θ ∈ (−π, π], µ1 ∈ (−π, π], 0 ≤ ρ1 ≤ 1

(4.11)

and is directly parameterized by mean direction µ1 and mean resultant length ρ1,

also shown in Table 4.3. The wrapped Cauchy distribution is also symmetric and

unimodal. Moreover, the convolution of wrapped Cauchy distributions, fWC(µ1, ρ1)
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Figure 4.2: Wrapped Cauchy distributions in (a) polar and (b) Cartesian coordi-
nates with zero mean direction and various mean resultant lengths.

and fWC(µ̄1, ρ̄1) is fWC(µ1 + µ̄1 , ρ1 · ρ̄1).

Trigonometric Moments
Mean direction (µ1) µ1

Mean resultant length (ρ1) ρ1

Table 4.3: Trigonometric moments of wrapped Cauchy distribution.

4.2 Relating higher-order spectra and cir-

cular phase difference distributions

In this section, we derive an analytical relation between higher-order spectra and

phase dependencies in the SRM under specific conditions. In particular, it will be

shown how the orthogonality conditions of the Cramér spectral representation can be

used to relate higher-order spectra to the trigonometric moments of circular phase
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difference distributions when a certain form of orthogonal increments are assumed.

Recall from Section 1.1, that there are two widely used forms of the SRM having

orthogonal increments given in Eqs. (1.13) and (1.16) respectively. Consider the form

given in Eq. (1.16) where the orthogonality derives from randomness in phase angles

θk. Again, recall that when θk ∼ fU(−π, π] (circular uniform), processes generated

by the SRM [3] are Gaussian.

The k-th order cumulant of the process represented by Eq. (1.17) can be expressed

purely in term of the k-th trigonometric cumulants of the phase relations which in

turn depends only on the relationship of the random phases. Applying the orthogonal

increments from Eq. (1.16) to the orthogonality conditions in Eq. (1.4) yields

c[dz(ω1)dz(ω2) · · · dz∗(ωk)] = δ(ω1 + ω2 + · · · − ωk) ·
∏k

i=1Ai√
2k

· c
[
e−i(θ1+θ2+···−θk)

]
(4.12)

When θi are independent and circular uniform random variables, it is straight forward

to show that the higher-order cumulants of the processe are equal to zero, because

θ1 +θ2 + · · ·−θk also has a circular uniform distribution. Consequently, the process is

Gaussian as the number of phases increases to infinity. But, more generally, Eq. (4.12)

implies that the cumulants of the process, c[dz(ω1)dz(ω2) · · · dz∗(ωk)] are related to

conditional dependencies in the phases. That is, if θ1, θ2, · · · , θk are not independent,

then θ1 + θ2 + · · · − θk will not be circular uniform and higher-order cumulants will

be non-zero (i.e. the process will be non-Gaussian). To illustrate this point, consider
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the first four cumulants as follows.

The first-order cumulant (moment), or mean, from Eq. (1.16) is given by

c[dz(ω)] = E[dz(ω)] = E[
Ak√

2
e−θk ] = 0 (4.13)

where dz(ω) = 1
2
[du(ω) + idv(ω)].

The second-order cumulant (moment) is given by

c[dz(ω1)dz
∗(ω2)] = E[dz(ω1)dz

∗(ω2)] = δ(ω1 − ω2) ·
A1A2√

4
· E[e−i(θ1−θ2)] = S(ω1)∆ω1

(4.14)

and relates the orthogonal increments to the power spectral density S(ω1). That is,

under the condition, ω1 = ω2 (implied by δ(ω1 − ω2)), we have θ1 = θ2 and hence

E[e−(θ1−θ2)] = 1.

The third-order cumulant (moment) is given by

c[dz(ω1)dz(ω2)dz
∗(ω3)] = E[dz(ω1)dz(ω2)dz

∗(ω3)]

= δ(ω1 + ω2 − ω3) ·
A1A2A3√

8
· E[e−i(θ1+θ2−θ3)]

= B(ω1, ω2)∆ω1∆ω2

(4.15)

which we now see relates the first trigonometric moment of the phase difference θ3 −
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(θ1 + θ2) to the bispectrum. This is seen directly by rearranging Eq. (4.15) as

φθ3−(θ1+θ2)(1) = E[ei(θ3−(θ1+θ2))] =

√
8B(ω1, ω2)∆ω1∆ω2

A1A2A3

for ω3 = ω1 + ω2 (4.16)

In other words, for frequencies related as ω3 = ω1+ω2, the first trigonometric moment

of the circular distribution of the phase difference θ3 − (θ1 + θ2) can be determined

exactly from the bispectrum B(ω1, ω2).

Lastly, the fourth-order cumulant can be related similarly to the trispectrum by

c[dz(ω1)dz(ω2)dz(ω3)dz
∗(ω4)] = δ(ω1 + ω2 + ω3 − ω4) ·

A1A2A3A4√
16

· c4[e−i(θ1+θ2+θ3−θ4)]

= T (ω1, ω2, ω3)∆ω1∆ω2∆ω3

(4.17)

where

c[e−i(θ1+θ2+θ3−θ4)] = E[e−i(θ1+θ2+θ3−θ4)]− E[e−i(θ1+θ2)]E[e−i(θ3−θ4)]

− E[e−i(θ2+θ3)]E[e−i(θ1−θ4)]− E[e−i(θ1+θ3)]E[e−i(θ2−θ4)]

(4.18)

Notice, however, that as shown in Eq. (4.18) the cumulant and moment are not

equivalent. The cumulant thus induces several expectations. Under the condition
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that ω1 6= ω2, ω2 6= ω3, and ω1 6= ω3, this relation simplifies as

c[e−i(θ1+θ2+θ3−θ4)] = E[e−i(θ1+θ2+θ3−θ4)] for ω1 + ω2 6= 0, ω2 + ω3 6= 0, ω1 + ω3 6= 0

(4.19)

Thus, under the condition in Eq. (4.19), again a straightforward relation can be ex-

pressed between the trigonometric moment of the circular distributed phase difference

θ4 − (θ1 + θ2 + θ3) and the trispectrum of the process as

φθ4−(θ1+θ2+θ3)(1) = E[ei(θ4−(θ1+θ2+θ3))] =

√
16T (ω1, ω2, ω3)∆ω1∆ω2∆ω3

A1A2A3A4

for ω4 = ω1 + ω2 + ω3

(4.20)

Eqs. (4.17) - (4.20) imply that the trispectrum can be obtained from the phase

dependency θ4 − (θ1 + θ2 + θ3) except when ω1 = −ω2 = −ω3 = ω4 or ω1 = ω2 =

−ω3 = ω4 or −ω1 = ω2 = ω3 = ω4. The values of the tispectrum under the conditions,

ω1 = −ω2 = −ω3 = ω4 or ω1 = ω2 = −ω3 = ω4 or −ω1 = ω2 = ω3 = ω4, are

asymptotically diminishing and therefore do not contribute to the kurtosis in the limit

as mentioned at Section 1.3.2.3. Consequently, the 4th order condition of Cramér’s

representation under the conditions stated above can be related to the trispectrum

values of the processes which alter their kurtosis. The prescribed equations show

that when we have non-zero values of E[eiθ3−(θ1+θ2)] and E[ei(θ4−(θ1+θ2+θ3)] (the first

trigonometric moment of θ3− (θ1 + θ2) and θ4− (θ1 + θ2 + θ3)), the stochastic process
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will have non-zero bispectrum or trispectrum and it will be non-Gaussian.

Perhaps a more intuitive understanding of these relations can be gained by looking

at the higher-order phases and coherences. Recall the definitions of biphase and

triphase in Eq. (1.43). Utilizing the relations in Eqs. (4.16)) and (4.20), the biphase

and triphase of the stochastic process can be related to the trigonometric moments

of the phase differences by

β(ω1, ω2) = tan−1
[=E[e−i(θ1+θ2−θ3)]

<E[e−i(θ1+θ2−θ3)]

]
(4.21)

γ(ω1, ω2, ω3) = tan−1
[=c[e−i(θ1+θ2+θ3−θ4)]
<c[e−i(θ1+θ2+θ3−θ4)]

]
= tan−1

[=E[e−i(θ1+θ2+θ3−θ4)]

<E[e−i(θ1+θ2+θ3−θ4)]

]
for ω1 + ω2 6= 0, ω2 + ω3 6= 0, ω1 + ω3 6= 0

(4.22)

From Eq. (4.5), we recognized that the bisphase and triphase of the stochastic process

are equal to the mean directions of the phase differences, θ3− (θ1 + θ3) and θ4− (θ1 +

θ2 + θ3), respectively.

Recalling the squared discretized bicoherences of Brillinger and Rosenblatt [71],

b21 and, Kim and Powers [46], b22 in Eqs. (3.4), and applying the relations in Eqs.
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(4.16) and (4.20) yields

b21(ω1, ω2) =

∣∣∣[A1A2A3√
8

E[e−i(θ1+θ2−θ3)]
]∣∣∣2

E
[
A1√
2
e−iθ1 A1√

2
eiθ1
]
E
[
A2√
2
e−iθ2 A2√

2
eiθ2
]
E
[
A3√
2
e−iθ3 A3√

2
eiθ3
]

=
∣∣E[ei(θ3−(θ1+θ2)]

∣∣2
(4.23)

b22(ω1, ω2) =

∣∣∣[A1A2A3√
8

E[e−i(θ1+θ2−θ3)]
]∣∣∣2

E
[
A1A2√

4
e−i(θ1+θ2)A1A2√

4
ei(θ1+θ2)

]
E
[
A3√
2
e−iθ3 A3√

2
eiθ3
]

=
∣∣E[ei(θ3−(θ1+θ2)]

∣∣2
(4.24)

That is, both bicoherences are equivalent under the assumed orthogonal increments

and are equal to the squared mean resultant length of the phase difference θ3−(θ1+θ2).

Next, consider the squared discretized tricoherences by Haubrich [72], t21 and Kim

and Powers [46], t22. Again, under the assumed orthogonal increments with conditions

given in Eq. (4.18), applying the relations in Eq. (4.20) yields

t21(ω1, ω2, ω3) =

∣∣∣[A1A2A3A4√
16

c4[e
−i(θ1+θ2+θ3−θ4)]

]∣∣∣2
E
[
A1√
2
e−iθ1 A1√

2
eiθ1
]
E
[
A2√
2
e−iθ2 A2√

2
eiθ2
]
E
[
A3√
2
e−iθ3 A3√

2
eiθ4
]
E
[
A4√
2
e−iθ4 A4√

2
eiθ4
]

=
∣∣c4[ei(θ4−(θ1+θ2+θ3))]∣∣2

=
∣∣E[ei(θ4−(θ1+θ2+θ3))]

∣∣2 for ω1 + ω2 6= 0, ω2 + ω3 6= 0, ω1 + ω3 6= 0

(4.25)
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t22(ω1, ω2, ω3) =

∣∣∣[A1A2A3A4√
16

c4[e
−i(θ1+θ2+θ3−θ4)]

]∣∣∣2
E
[
A1A2A3√

8
e−i(θ1+θ2+θ3)A1A2A3√

8
ei(θ1+θ2+θ3)

]
E
[
A4√
2
e−iθ4 A4√

2
eiθ4
]

=
∣∣c4[ei(θ4−(θ1+θ2+θ3))]∣∣2

=
∣∣E[ei(θ4−(θ1+θ2+θ3))]

∣∣2 for ω1 + ω2 6= 0, ω2 + ω3 6= 0, ω1 + ω3 6= 0

(4.26)

Again, the squared tricoherences are identical to the squared mean resultant length

of the phase differences θ4 − (θ1 + θ2 + θ3).

It is important to reiterate the importance of these results. The expressions given

above provide a first glimpse into the nature of the complex wave interactions that

result in stochastic process non-linearities. Specifically, it has been shown that, un-

der certain conditions, the higher-order spectra can be directly related to the joint

circular distribution of the phases in the stochastic process through the trigonometric

moments of phase differences of different degrees. This generalizes the notion of inde-

pendent circular phase components in Fourier-type expansions of stochastic processes

to enable the use of non-unifrom models (e.g. von Mises or wrapped Cauchy) to

integrate phase dependencies. Explicit examples of its application will be considered

in the following section
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4.3 Simple Examples

In this section, two simple stochastic processes with quadratic and cubic phase

coupling respectively are modeled by explicitly utilizing the circular phase angle differ-

ence distributions discussed in the previous section. Specifically, the phase difference

distributions are selected to possess the mean directions and mean resultant lengths

implied by a specified bispectrum/trispectrum.

4.3.1 Three waves stochastic process with quadratic

phase coupling

Consider a stochastic process with quadratic phase coupling at discrete frequencies

having power spectrum and bispectrum given by

S(ω) =
1

4
δ(ω − 2π · 10) +

1

4
δ(ω − 2π · 20) +

1

4
δ(ω − 2π · 30) for ω ≥ 0 (4.27)

B(ω1, ω2) =
1/
√

2

8
δ(ω1 − 2π · 20, ω2 − 2π · 10) for ω1 ≥ ω2 ≥ 0 (4.28)
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(a) (b)

Figure 4.3: Target (a) real bispectrum, �B, and (b) squared bicoherence, b21.

The squared bicoherences according to Eq. (4.23) and (4.24) can be calculated as

b21(ω1, ω2) = b22(ω1, ω2) =




0.5, if ω1 = 2π · 20, ω2 = 2π · 10

0, otherwise

for ω1 ≥ ω2 ≥ 0

(4.29)

The target bispectrum and bicoherence are plotted in Figure 4.3.

The biphase at the coupled frequencies is β(2π · 20, 2π · 10) = 0. The process can

be expanded as

f(t) = cos(2π · 10t− θ1) + cos(2π · 20t− θ2) + cos(2π · 30t− θ3) (4.30)

Because of the quadratic phase coupling the phases, {θ1, θ2, θ3} are dependent. From

the derivations above, it follows that θ1 and θ2 are, indeed, independent U(−π, π]
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while θ3 is not. Specifically, the quantity θ3− (θ1 +θ2) has mean direction µ1 = 0 and

mean resultant length ρ1 = b1(2π · 20, 2π · 10) =
√

0.5. To match these quantities,

we consider θ3 − (θ1 + θ2) to follow a wrapped Cauchy distribution with parameters

µ1 = 0 and ρ1 =
√

2. To generate phases angles following the prescribed distributions,

first, θ1 and θ2 are independently generated with uniform circular distribution. Next,

the random variable θ∗ = θ3 − (θ1 + θ2) is generated from the given wrapped Cauchy

distribution. Finally, θ3 = θ∗+ θ1 + θ2 is obtained as the dependent random variable.

Following the proof in Section 4.1, θ3 is uniformly distributed. These distributions

are shown from 50,000 random samples in Figure 4.4.

Using the phases shown in Figure 4.4, 50,000 realizations of the process are gener-

ated and one such realization is shown in Figure 4.5. Figure 4.6 shows the estimated

real bispectrum and squared bicoherence from the 50,000 realizations given in Eqs.

(4.28) and (4.29). Given the target bispectrum, the process has positive skewness

given by

Skewness[f(t)] =

∫∞
−∞

∫∞
−∞B(ω1, ω2)dω1dω2

(
∫∞
−∞ S(ω)dω)3/2

=
1√
3

(4.31)

The true and estimated moments from the 50,000 realizations are compared in Table

4.4, showing very good agreement.
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(a) (b)

(c) (d)

Figure 4.4: Estimated PDFs of random phase angles; (a) θ1, (b) θ2, (c) θ3, and
quadratic phase difference; (d) θ3 − (θ1 + θ2).
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Figure 4.5: Representative sample function of the three wave process with quadratic
phase coupling.
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(a) (b)

Figure 4.6: Estimated (a) real bispectrum, �B, and (b) squared bicoherence, b21.

f(t) Target Estimated
Variance 3/2 1.500

Skewness 1/
√
3 0.5776

Table 4.4: Target and estimated moments of the three wave stochastic process with
quadratic phase coupling.

4.3.2 Four wave stochastic process with cubic phase

coupling

Consider next process with cubic phase coupling between discrete frequencies.

The target power spectrum and trispectrum are given by

S(ω) =
1

4
δ(ω − 2π · 5) + 1

4
δ(ω − 2π · 10) + 1

4
δ(ω − 2π · 15) + 1

4
δ(ω − 2π · 30)

for ω ≥ 0

(4.32)
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(a) (b)

Figure 4.7: Target (a) real trispectrum, �T , and (b)squared tricoherences, t21.

T (ω1, ω2, ω3) =
1/
√
2

16
δ(ω1 − 2π · 15, ω2 − 2π · 10, ω3 − 2π · 5)

for ω1 ≥ ω2 ≥ ω3 ≥ 0

(4.33)

where the trispectrum is only defined in the domain, ω1 ≥ ω2 ≥ ω3 ≥ 0, to exclude

the asymptotically diminishing terms of the trispectrum mentioned in Section 1.3.2.3.

Furthermore, the target tricoherences (Eq. (4.25)) and (4.26)) are computed as

t21(ω1, ω2) = t22(ω1, ω2) =




0.5, if ω1 = 2π · 15, ω2 = 2π · 10, ω3 = 2π · 5

0, otherwise

for ω1 ≥ ω2 ≥ ω3 ≥ 0

(4.34)

and the triphase at the coupled frequencies is γ(2π ·15, 2π ·10, 2π ·5) = 0. The target

trispectrum and tricoherence are plotted in Figure 4.7. Similar to the quadratic
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coupling case, we can expand the process as

f(t) = cos(2π · 5t− θ1) + cos(2π · 10t− θ2) + cos(2π · 15t− θ3) + cos(2π · 30t− θ4)

(4.35)

In this case, we have θ1, θ2, θ3 ∼ fU(−π, π], and θ4 − (θ1 + θ2 + θ3) ∼ fWC(µ1, ρ1)

with µ1 = γ(2π · 15, 2π · 10, 2π · 5) = 0 and ρ1 = t1(2π · 15, 2π · 10, 2π · 5) =
√

0.5.

Like the prescribed PDFs in the quadratic coupling example, each individual random

phase is uniformly distributed, but the difference θ4 − (θ1 + θ2 + θ3) is assumed to

follow wrapped Cauchy distribution with µ1 = 1 and ρ1 =
√

0.5. Similar to the

previous example, θ1, θ2, and θ3 are independently generated following a circular

uniform distribution. Next, θ∗∗ = θ4 − (θ1 + θ2 + θ3) is produced with the given

wrapped Cauchy distribution. Finally, we can obtain θ4 = θ1 + θ2 + θ3 + θ∗∗ and,

again, marginal distribution of θ4 is circular uniform. The estimated circular PDFs

of the phases angles and their differences from 50,000 samples are given in Figure 4.8.

From these phase angles, 50,000 realizations of the stochastic process are generated

from Eq. (4.35). One such realization is shown in Figure 4.9.

The estimated real trispectrum and its squared tricoherences in the 1st and 8th

octants from the 50,000 realizations are depicted in Figure 4.10. These quantities

match their targets in Figure 4.7 very accurately. However, the estimated quantities in

Figure 4.10 also include several symmetries and self-cubic phase couplings that are not

present in Eq. (4.33) as well as the terms T (5, 5,−5), T (10, 10,−10), T (15, 15,−15)
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(a) (b)

(c) (d)

(e)

Figure 4.8: Estimated PDFs of random phase angles; (a) θ1, (b) θ2, (c) θ3, (d) θ4,
and cubic phase difference; (e) θ4 − (θ1 + θ2 + θ3).
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Figure 4.9: Representative sample function of a four wave process with cubic phase
difference.

(a) (b)

Figure 4.10: Estimated (a) real trispectrum, �T , and (b) squared tricoherences, t21.
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and T (30, 30,−30) that arise from individual components.

The target unnormalized kurtosis is computed by integrating the trispectrum as

Eq. (1.60) as

Kurt[f(t)] =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

T (ω1, ω2, ω3)dω1dω2dω3 = 48 · 1/
√

2

16
− 6 · 4

16
(4.36)

and the target kurtosis becomes

Kurtosis[f(t)] =
Kurt[f(t)]

(
∫∞
−∞ S(ω)dω)2

+ 3 =
3(
√

2− 1)

8
+ 3 (4.37)

The target and estimated moments from the 50,000 realizations are compared in Table

4.5.

f(t) Target Estimated
Variance 2 2.000

Kurtosis 3 + 3(
√

2− 1)/8 3.3718

Table 4.5: Target and estimated moments of the four wave stochastic process with
cubic phase coupling.
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4.4 Practical challenges to relating HOS

and phase difference distributions

For general stochastic processes with continuous spectra, the proposed method

cannot be directly applied for the reasons described in this section. Therefore, the cur-

rent application is limited to simple processes with a small number of distinct/discrete

frequencies. A further generalization/application of the relations derived here requires

further investigation.

Specifically, there are two practical challenges to relating general (continuous)

higher-order spectra(HOS) and phase-difference distributions. The first limitation is

that any frequency exhibiting phase coupling can only result from the coupling of

two unique frequencies. That is, cases where different frequency combinations yield

a common frequency (e.g. ω2 + ω2 = ω4 and ω1 + ω3 = ω4) cannot be related as

proposed. Consider, for example, the following process

f(t) = A cos(ω1t− θ1) + B cos(ω2t− θ2) + C cos(ω3t− θ3) +D cos(ω4t− θ4) (4.38)

In this process, the proposed relations suggest that both the phase differences θ∗ =

θ4 − (θ2 + θ2) and θ∗∗ = θ4 − (θ1 + θ3) must be simultaneously specified. However,

simulating θ4 to match both trigonometric moments proves incompatible. Let us

assume the phase differences be distributed as wrapped Cauchy distributions with
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the given the first trigonometric moments as θ∗ ∼ fWC(µ1, ρ1) and θ∗∗ ∼ fWC(µ̄1, ρ̄1).

Next, we can combine the phase differences as

θ∗ − θ∗∗ = θ3 − θ1 (4.39)

According to the convolutional property of wrapped Cauchy distribution mentioned

in Section 4.1, the marginal distribution of θ∗−θ∗∗ is fWC(µ1− µ̄1, ρ1 · ρ̄1). Because θ1

and θ3 are independently circular uniform distributed, however, θ3−θ1 is also circular

uniform distributed. Therefore, Eq. (4.39) is incompatible.

The second limitation arises when the processes has “ested” phase coupling, when

a coupled frequency couples with another frequency, which couples with another fre-

quency. For example, the phase differences are given only at coupled frequencies

(ω1 + ω1 = ω2, ω1 + ω2 = ω3 and ω1 + ω3 = ω4) as

θ∗ = θ2 − (θ1 + θ1) ∼ fWC(µ1, ρ1)

θ∗∗ = θ3 − (θ1 + θ2) ∼ fWC(µ̄1, ρ̄1)

θ∗∗∗ = θ4 − (θ1 + θ3) ∼ fWC(¯̄µ1, ¯̄ρ1)

(4.40)

We can generate each phase difference from representative wrapped Cauchy distribu-

tion, yet, undesigned quadratic phase coupling at (ω2, ω2) is generated as

θ4 − (θ2 + θ2) = θ∗∗∗ + 2 · θ∗∗ − 2 · θ∗ ∼ fWC(µ1 + 2µ̄1 − 2¯̄µ1, ρ1 · ρ̄21 · ¯̄ρ21) (4.41)
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However, the method is capable of simulating processes with several phase cou-

plings with all distinct frequencies that avoid the two prescribed cases. Consider

a stochastic process with quadratic phase couplings at distinct frequency-pairs as

follows. The target power spectrum and bispectrum are given by

S(ω) =

1

4
[δ(ω − 2π · 0.6) + δ(ω − 2π · 0.7) + δ(ω − 2π · 0.8) + δ(ω − 2π · 0.9) + δ(ω − 2π · 1.0)

+ δ(ω − 2π · 1.1) + δ(ω − 2π · 1.3) + δ(ω − 2π · 1.5) + δ(ω − 2π · 1.7) + δ(ω − 2π · 1.9)

+ δ(ω − 2π · 2.1) + δ(ω − 2π · 2.2) + δ(ω − 2π · 2.3) + δ(ω − 2π · 2.4) + δ(ω − 2π · 2.5)]

for ω ≥ 0

(4.42)

B(ω1, ω2) =
1/
√

2

8
[δ(ω1 − 2π · 1.9, ω2 − 2π · 0.6) + δ(ω1 − 2π · 1.7, ω2 − 2π · 0.7)

+ δ(ω1 − 2π · 1.5, ω2 − 2π · 0.8) + δ(ω1 − 2π · 1.3, ω2 − 2π · 0.9)

+ δ(ω1 − 2π · 1.1, ω2 − 2π · 1.0)] for ω2 ≥ ω1 ≥ 0

(4.43)

The associated squared bicoherence has identical values of
√

0.5 at frequency-pairs,

(2π · 1.9, 2π · 0.6), (2π · 1.7, 2π · 0.7), (2π · 1.5, 2π · 0.8), (2π · 1.3, 2π · 0.9), and (2π ·
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(a) (b)

Figure 4.11: Estimated (a) real bispectrum, <B, and (b) squared bicoherence, b21.

1.1, 2π · 1.0). Therefore, we can generate the process as

f(t) = cos(2π · 0.6t− θ1) + cos(2π · 1.9t− θ2) + cos(2π · 2.5t− θ3)

+ cos(2π · 0.7t− θ4) + cos(2π · 1.7t− θ5) + cos(2π · 2.4t− θ6)

+ cos(2π · 0.8t− θ7) + cos(2π · 1.5t− θ8) + cos(2π · 2.3t− θ9)

+ cos(2π · 0.9t− θ10) + cos(2π · 1.3t− θ11) + cos(2π · 2.2t− θ12)

+ cos(2π · 1.0t− θ13) + cos(2π · 1.1t− θ14) + cos(2π · 2.1t− θ15)

(4.44)

with θi+2 − (θi + θi+1) ∼ WC(0,
√

0.5) for i ∈ {1, 4, 7, 10, 13}. In this case, every

frequency in the expansion is distinct; there are no over-constrained phases (first

limited case) and there are no nested phase coupling (second limited case). We can

generate quadratic phase coupling at the target pairs. Given 50,000 realizations of

Eq. (4.44), the process has estimated bispectrum and squared bicoherence depicted

in Figure 4.11 and one realization is shown in Figure 4.12. Finally, the estimated
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Figure 4.12: Representative sample function of several quadratic phase couplings.

variance and skewness of the realizations are compared with their target values in

Table 5.2 showing very good agreement.

f(t) Target Estimated
Variance 15/2 7.500

Skewness 1/
√

15 0.2582

Table 4.6: Target and estimated moments of a stochastic process with five distinct
quadratic phase coupling.

4.5 Conclusion

A new approach to identify and generate higher-order stochastic processes with

circular phase angle difference distribution is introduced. The first trigonometric of

the circular distribution defines the higher-order spectra including bispectrum and

trispectrum, and the connection is derived by orthogonal conditions of Cramér repre-

sentation. Here are numerical generation example for the discrete frequencies. As a

future work, the realization of continuous higher-order spectra should be researched
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to construct stochastic processes representation.
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Chapter 5

Applications in nonlinear

structural dynamics

The objective of this chapter is to study the effects of higher-order stochastic

excitation on the response of nonlinear structures and compare the results with the

response observed from existing second-order methods (SRM and ITAM). Two type

of nonlinear properties are considered in this chapter; material and geometric nonlin-

earities. First, a simple elastic-plastic structure with steel rod is subjected to wind

pressure. I generate 10,000 wind pressure time histories using the ITAM and BSRM

based on the characterization of wind pressures from wind tunnel test data. Sig-

nificant differences in the inelastic response are observed, and a connection is made

between these differences and the higher-order properties of the wind pressure process.

Secondly, the aerodynamic simulation of a long-span bridge with coupled self-excited
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and buffeting forces are considered with 5,000 wind fluctuation time histories using

SRM, ITAM, and BSRM. The geometric nonlinearity of aerodynamic forces cause

extraordinary results on the simulation. Statistical properties and higher-order prop-

erties of the aerodynamic forces and displacement are examined.

5.1 Dynamics of a hanging billboard sub-

ject to extreme wind loads

In this section, I utilize data from wind tunnel tests conducted at Tokyo Polytech-

nic University [73] to characterize a wind pressure stochastic process and represent

this process using both the ITAM and BSRM. The resulting simulations from both

methods are then applied to a nonlinear single degree of freedom structure, and some

observations on the structural performance are made. Extensive wind tunnel tests

have been conducted at Tokyo Polytechnic University to study wind flow around

structures of various type. Among the structures were 22 different high-rise build-

ing models with 1/400 length scale, 1/3 velocity scale, and temporal scale 3/400. I

extracted wind pressures coefficient histories, from one structure with the ratio of

breadth, depth, and height as 0.1m: 0.1m: 0.5m, exposure factor is 1/4, and 0 degree

angle of wind at one of the 443 measurement locations. Statistics of the wind pressure

histories are plotted in Figure 5.1. Among the wind pressures, One of the history is

choosen from a measurement which located near the center-bottom of the windward
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(a) (b)

(c) (d)

Figure 5.1: Statistics of wind pressure; (a) mean, (b) variance, (c) skewness, and
(d) kurtosis.

surface, and is shown in Figure 5.2. This location is selected because it represents a

possible location for a sign structure with the highest skewness of wind pressure. The

duration of the time history of the data is 15 sec. with time step 0.001 sec.

After characterizing the process from the time history data (i.e. estimating the

power spectrum, bispectrum, and marginal PDF), the ITAM and BSRM are utilized

to generated 10,000 samples of the wind pressure process. For the ITAM, a lognormal
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Figure 5.2: Time history of zero mean wind pressure located at the center-bottorm
of the windward surface.

distribution given as

f(x) =
1√

2πσ2
N(x− µ̄)

exp
[
− (log (x− µ̄)− µN)2

2σ2
N

]
;x ≥ µ̄ (5.1)

is selected to represent the marginal PDF of the zero-mean wind pressure coefficient

histories. The parameters are estimated from the data as σN = 0.2011, µN = −0.1228

with µ̄ = −0.9025. The quantities are scaled with the temporal scale to model real

wind conditions such that the duration of the generated samples is 2000 sec.

Samples of the zero-mean wind pressure coefficient histories generated using the

ITAM and BSRM with identical phase angles are plotted in Figure 5.3. The empirical

PDFs of the zero-mean wind pressure coefficient from the data, ITAM simulations,

and BSRM simulations are shown in Figure 5.4. The statistics of the data, ITAM

simulations and SRM simulations are given in Table 5.1. All of the PDF have similar

skewness although there are noticeable differences in the tails. The ITAM and BSRM

have similar upper tails but these tails are heavier than the data suggests they should
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Figure 5.3: Zero mean wind pressure coefficient histories of ITAM simulations and
BSRM simulations.

Figure 5.4: Empirical probability densities of the zero mean wind pressure coefficient
of wind tunnel test data, IITAM simulations and BSRM simulations.

be. For the ITAM, this implies that the lognormal model is not a perfect fit. For

the BSRM, this implies that higher than 3rd-order properties may be necessary for

accurate characterization such that, for example, the process can match kurtosis and

other traits that describe the tails. In the lower tail, the ITAM provides a better

fit than the BSRM. This is expected to be less important though because yielding

of the structure will predominantly result from high pressure events occurring in

118



CHAPTER 5. APPLICATIONS

Method Standard dev. Skewness Kurtosis
Data 0.1834 0.6268 3.464
ITAM 0.1841 0.6142 3.653
BSRM 0.1792 0.6171 3.796

Table 5.1: Statistics of the zero mean wind pressure coefficient histories from wind
tunnel test data, ITAM simulations and BSRM simulations.

the upper tail. Nonetheless, this mismatch may influence the dynamics by creating

unexpectedly small pressures (or even suction pressures) that are not consistent with

the data.

The estimated power spectra from the wind pressure data and the ITAM and

BSRM simulations are shown in Figure 5.5. The BSRM simulations match the power

spectrum of the wind pressure data with very high accuracy. Meanwhile, the ITAM

shows a slight increase in power in the low-frequency range as a result of translation

process incompatibility [22].

Figure 5.5: Power spectra of the zero mean wind pressure coefficient from wind
tunnel test data, ITAM simulations and BSRM simulations.
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Lastly, the bispectra of the wind pressure coefficient histories from the data, ITAM,

and BSRM are estimated and compared. The complex bispectrum of the wind tunnel

test data is dominated by the real part because there is no skewness at derivatives

of the time histories, and the magnitude of bispectrum is shown in Figure 5.5. Like

the power spectrum, the amplitude in the low frequency range is much higher than

at higher frequency meaning there are significant interactions between low frequency

waves.

Figure 5.6: Amplitude of the wind pressure coefficient bispectrum from wind tunnel
test data.

Figure 5.7 shows a comparison between the amplitude bispectrum estimates from

the data and the ITAM and BSRM simulations at three different frequencies. Here, I

see noticeable discrepancies between the BSRM and ITAM. The BSRM simulations

show a good match with the data. The ITAM, on the other hand, shows increased

amplitude in the bispectrum at low frequencies and decreased amplitude at high

frequencies. Note that the ITAM is not expected to match the bispectrum. This
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Figure 5.7: Comparison of estimated amplitude Bispectra for the zero mean wind
tunnel test data, ITAM simulations, and BSRM simulations at ω2 = 0.0075 · 2π,
ω2 = 0.0150 · 2π, and ω1 = 0.0225 · 2π.

implies that the ITAM simulations have stronger 3-point correlations than the data

and the BSRM simulations at low frequencies and weaker 3-point correlations at high

frequencies.

The peak pressure of the wind histories with the different simulations are compared

in Figure 5.8. Similar to the result of the proability distributions (Figure 5.4), the

maximum pressure of the ITAM is higher than the BSRM, even they possess similar

skewness. The result shows that approaches by matching only the skewness of the

stochastic processes can not explain the details of the processes including the extreme

values. The effect of the differences in the peak pressure affect the displacements
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consequently, and the outcomes of the structural dynamics are will be considered in

the next subsection.

Figure 5.8: Peak pressure of ITAM and BSRM simulations.

5.1.1 Stochastic wind-structure dynamic simula-

tion

In this section, the wind pressures generated using ITAM and BSRM are applied

to a simple nonlinear structure. The time-varying wind force on the structure is

calculated as

fp(t) =
1

2
ρ[Cp(t) + C̄p]ApŪ

2 (5.2)
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(a) (b)

Figure 5.9: (a) Hanging billboard supported by aluminum bars under wind load
and (b) its idealized lumped mass structure.

where ρ = 1.23kg/m3 is the density of air, Cp(t) is the simulated zero-mean wind

pressure coefficient history, C̄p = 0.44 is the mean pressure coefficient from wind

tunnel test data, Ap is the surface area perpendicular to the direction of the wind,

and Ū = 14.04m/sec is the average wind speed at height 4m.

I consider a hanging billboard supported by aluminum rods as shown in Figure 5.9a

which is idealized by a lumped mass structure in Figure 5.9b with mass m = 1000kg.

The length of the aluminum bars is L = 1.2m, the diameter of circular aluminum bar

is d = 2.8cm, and the tributary surface area for load in each rod is Ap = 3m2.

The rods are Aluminum 6061-T6 and modeled as elastic perfectly-plastic with

yield stress σy = 240MPa and elastic modulus E = 69GPa resulting in an elastic

stiffness for the SDOF structure of k = 7312N/m. The damping ratio is ξ = 0.02.

I are specifically interested in studying the differences in the nonlinear (yielding)

response of the structure between the ITAM and BSRM simulations. To do this,
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I subjected the structure to the 10,000 generated wind pressures (as defined above)

and observed the behavior of the process immediately before and during each yielding

event. Specifically, I observe the peak pressure that results in the yielding event and

the associated impulse defined as:

I =

∫
td

P (t)dt (5.3)

where td is time window between the mean upcrossing prior to yield and the yield

event. The peak pressure is the maximum wind pressure in the time window td.

From these simulations, it was observed that structure yielded 5062 times from the

10,000 ITAM simulation and 2187 times from the 10,000 BSRM simulations. Why,

when the wind pressure processes possess nominally the same variance and skewness

and have almost identical upper tails (Figure 5.4), do they yield such drastically

different response with the ITAM causing the structure to yield more than twice as

often as the BSRM? It appears that this can be explained by the amplification of the

bispectrum by the ITAM illustrated in Figure 5.5.

Consider this from the perspective of the peak pressure and impulse. Figure

5.10 shows the joint probability distribution of the peak pressure and impulse for

the yielding events from both ITAM and BSRM. Notice that the spread in peak

pressure is similar between the two methods (the ITAM has slightly larger spread in

peak pressure). The ITAM, however, has a much larger spread in terms of impulse
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with much more frequent high impulse events. This means that, while the histories

from both methods yield comparable pressures, there is more energy being delivered

by the ITAM histories. In other words, the ITAM model produces wind gusts that

have a longer duration of sustained high pressure. This added energy, I believe, is

a direct result of the strong 3-point correlation (amplified bispectrum) in the ITAM

simulations.

(a)

(b) (c)

Figure 5.10: (a) Peak pressure-impulse diagram of ITAM and BSRM and estimated
probability density of (b) ITAM and (c) BSRM.
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The number of yieldings of the aluminum bars between the simulations are com-

pared in Figure 5.11a. We can see that ITAM simulations have the greater number

of yielding than the BSRM. Because of the stronger positive tail of the ITAM simu-

lations, it causes the yielding more than the result of the BSRM. Figure 5.11b shows

the maximum values of displacement have similar trend compare to the number of

the yielding; the more yielding in the ITAM simulations causes the stronger tail in

the displacements.

(a) (b)

Figure 5.11: (a) Number of yielding and (b) Peak displacements of ITAM and
BSRM simulations.

The distributions of the temporal displacements are considered in Figure 5.12.

After the transient period of the displacements, we can see the divergence of the

difference between the distributions of the displacements as time passed. Specially,

the distribution between the displacement at 500 second has not distinct, but the

tails of the displacement of the ITAM simulations are growing faster than the BSRM.

This result highlights the potential importance of matching higher-order properties
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(a)

(b) (c)

(d) (e)

Figure 5.12: (a) Median, 25th percentile and 75th percentile of displacement and
displacements at time (a) 500sec, (b) 1000sec, (c) 1500sec, (d) 2000sec.
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in the excitation for non-linear structures subject to stochastic dynamic excitation.

While not conclusive at this point, it seems to indicate that higher-order spectra can

greatly influence the structural response. Moreover, additional studies are necessary

to provide a more realistic link to test data. In both models, simplifying assumptions

are made that cause discrepancies between the simulations and the test data so I

cannot currently assess which model is a better representation of the true pressures.

It is nevertheless important to observe how seemingly small changes in the represen-

tation of a stochastic process can have major consequences on the structural response

emphasizing the importance of identifying and utilizing the best possible modeling

practices and recognizing the potential limitations of those models.

5.2 Buffeting response analysis of a bridge

deck

In this subsection, the time domain analysis of coupled self-excited forces and

unsteady characteristics of buffeting forces [74] in the aerodynamic simulation are

examined with non-Gaussian wind fluctuations simulated with the SRM, ITAM, and

BSRM. The time domain analysis is more appropriate to analyze the effect of non-

linear interactions between wind and structures. [75, 76, 77] Frequency-dependent

unsteady aerodynamic forces and nonlinear interactions of aerodynamic and forces

are utilized to estimate the response of the system. The governing equations of the
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simulation at the static equilibrium position are given excluding the the static aero-

dynamic forces as

MZ̈(t) +CZ(t) +KZ(t) = Fse(t) + Fb(t) (5.4)

where M, C, and K are mass, damping, and stiffness matrices, Z(t) is displacement

vector with vertical, lateral and torsional components as [h(t), p(t), α(t)]T , Fse and

Fb indicates self-excited force vector and buffeting force vector with lift, drag, and

pitching moment as [Lse, Dse,Mse]
T and [Lb, Db,Mb]

T , respectively. Figure 5.13 in-

dicates the prescribed aerodynamic forces, the displacements, and wind which U is

mean wind velocity, and u(t) and v(t) are lateral and vertical components of wind

fluctuations on the bridge dec.

Figure 5.13: Configuration of aerodynamic displacements and wind fluctuations on
bridge section.
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5.2.1 Self-excited and buffeting forces

For harmonic motion, the aerodynamic self-excited forces per unit span are de-

scribed with flutter derivatives [78], parameters to define the motion-induced aerody-

namic forces in the theoretical model and identified by means of wind tunnel test, as

[79]

Lse(t) =
1

2
ρU2(2b)

(
kH∗1

ḣ

U
+ kH∗2

bα̇

U
+ k2H∗3α + k2H∗4

h

b
+ kH∗5

ṗ

U
+ k2H∗6

p

b

)
Dse(t) =

1

2
ρU2(2b)

(
kP ∗1

ṗ

U
+ kP ∗2

bα̇

U
+ k2P ∗3α + k2P ∗4

p

b
+ kP ∗5

ḣ

U
+ k2P ∗6

h

b

)
Mse(t) =

1

2
ρU2(2b2)

(
kA∗1

ḣ

U
+ kA∗2

bα̇

U
+ k2A∗3α + k2A∗4

h

b
+ kA∗5

ṗ

U
+ k2A∗6

p

b

) (5.5)

where ρ is the air density, U is the mean wind velocity, k = ωb/U is the reduced

frequency, B = 2b is width of the bridge deck, ω is the circular frequency of vibration,

H∗i , P ∗i , and A∗i ,i ∈ {1, · · · , 6} are flutter derivatives, independent from frequency.

h, p, and α are vertical, lateral, horizontal components of the displacement.

For arbitrary structural displacements, the three components of self-excited forces,

Fse(t), per unit span can be presented regarding convolution integrals as [80]

Lse(t) =
1

2
ρU2

∫ t

−∞

(
ILseh(t− τ)h(τ) + ILsep(t− τ)p(τ) + ILseαα(τ)

)
dτ

Dse(t) =
1

2
ρU2

∫ t

−∞

(
IDseh(t− τ)h(τ) + IDsep(t− τ)p(τ) + IDseαα(τ)

)
dτ

Mse(t) =
1

2
ρU2

∫ t

−∞

(
IMseh

(t− τ)h(τ) + IMsep(t− τ)p(τ) + IMseαα(τ)
)
dτ

(5.6)

where I is the impulse function of the self-excited force, Fse. Aerodynamic transfer
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functions between the aerodynamic impulse function and the flutter derivatives are

given by the Fourier transform of Eq. (5.6) and the corresponding terms in Eq. (5.5)

as [80, 81]

ĪLse,h = 2k2(H∗4 + iH∗1 )

ĪLse,p = 2k2(H∗6 + iH∗5 )

ĪLse,α = 2k2b(H∗3 + iH∗2 )

ĪDse,h = 2k2(P ∗6 + iP ∗5 )

ĪDse,p = 2k2(P ∗4 + iH∗1 )

ĪDse,α = 2k2b(P ∗3 + iP ∗2 )

ĪMse,h
= 2k2b(A∗4 + iA∗1)

ĪMse,p = 2k2b(A∗6 + iA∗5)

ĪLse,α = 2k2b2(A∗3 + iA∗2)

(5.7)

where the overbar denotes the Fourier transform and i means imaginary unit. Again,

k = ωb/U is the reduced frequency, and b is the half of bridge deck width. In

the frequency domain, the self-excited forces can be represented as a product of the

transfer function, Eq. (5.7), and the corresponding displacements.

As time domain analysis of aerodynamic forces, the continuous functions of aero-

dynamic impulse are required. However, the flutter derivatives are estimated as dis-

crete values of the reduced frequency, k, with limited geometric configurations of
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deck in the wind tunnel tests. Therefore, the rational function approximation can

estimates the continuous form of the flutter derivates for the self-excited forces [82].

Corresponding to the lift, drag, and pitching moment induced by each component of

displacements, continuous approximations of the aerodynamic transfer function are

calculated as

ĪLse,h(iω) = ALh,1 + ALh,2 ·
iωb

U
+ ALh,3 ·

( iωb
U

)2
+

m∑
l=1

ALh,l+3 · iω
iω + dlU

b

ĪLse,p(iω) = ALp,1 + ALp,2 ·
iωb

U
+ ALp,3 ·

(iωb
U

)2
+

m∑
l=1

ALp,l+3 · iω
iω + dlU

b

ĪLse,α(iω) = ALα,1 + ALα,2 ·
iωb

U
+ ALα,3 ·

(iωb
U

)2
+

m∑
l=1

ALα,l+3 · iω
iω + dlU

b

ĪDse,h(iω) = ADh,1 + ADh,2 ·
iωb

U
+ ADh,3 ·

(iωb
U

)2
+

m∑
l=1

ADh,l+3 · iω
iω + dlU

b

ĪDse,p(iω) = ADp,1 + ADp,2 ·
iωb

U
+ ADp,3 ·

(iωb
U

)2
+

m∑
l=1

ADp,l+3 · iω
iω + dlU

b

ĪDse,α(iω) = ADα,1 + ADα,2 ·
iωb

U
+ ADα,3 ·

( iωb
U

)2
+

m∑
l=1

ADα,l+3 · iω
iω + dlU

b

ĪMse,h
(iω) = AMh,1 + AMh,2 ·

iωb

U
+ AMh,3 ·

( iωb
U

)2
+

m∑
l=1

AMh,l+3 · iω
iω + dlU

b

ĪMse,p(iω) = AMp,1 + AMp,2 ·
iωb

U
+ AMp,3 ·

(iωb
U

)2
+

m∑
l=1

AMp,l+3 · iω
iω + dlU

b

ĪLse,α(iω) = AMα,1 + AMα,2 ·
iωb

U
+ AMα,3 ·

( iωb
U

)2
+

m∑
l=1

AMα,l+3 · iω
iω + dlU

b

(5.8)

with frequency independent coefficients, A(·),1, A(·),2, A(·),3, A(·),l+3, and dl(≥ 0).

The preceding rational function representation of the aerodynamic transfer func-
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tions can be extended into the Laplace domain, and the inverse Laplace transform

yields the aerodynamic impulse function as

ILse,h(t) = ALh,1δ(t) + ALh,2
b

U
δ̇(t) + ALh,3

b2

U2
δ̈(t) +

m∑
l=1

∫ t

−∞
ALh,l+3 · e

(
− dlU

b
(t−τ)δ̇(τ)

)
dτ

ILse,p(t) = ALp,1δ(t) + ALp,2
b

U
δ̇(t) + ALp,3

b2

U2
δ̈(t) +

m∑
l=1

∫ t

−∞
ALp,l+3 · e

(
− dlU

b
(t−τ)δ̇(τ)

)
dτ

ILse,α(t) = ALα,1δ(t) + ALα,2
b

U
δ̇(t) + ALα,3

b2

U2
δ̈(t) +

m∑
l=1

∫ t

−∞
ALα,l+3 · e

(
− dlU

b
(t−τ)δ̇(τ)

)
dτ

IDse,h(t) = ADh,1δ(t) + ADh,2
b

U
δ̇(t) + ADh,3

b2

U2
δ̈(t) +

m∑
l=1

∫ t

−∞
ADh,l+3 · e

(
− dlU

b
(t−τ)δ̇(τ)

)
dτ

IDse,p(t) = ADp,1δ(t) + ADp,2
b

U
δ̇(t) + ADp,3

b2

U2
δ̈(t) +

m∑
l=1

∫ t

−∞
ADp,l+3 · e

(
− dlU

b
(t−τ)δ̇(τ)

)
dτ

IDse,α(t) = ADα,1δ(t) + ADα,2
b

U
δ̇(t) + ADα,3

b2

U2
δ̈(t) +

m∑
l=1

∫ t

−∞
ADα,l+3 · e

(
− dlU

b
(t−τ)δ̇(τ)

)
dτ

IMse,h
(t) = AMh,1δ(t) + AMh,2

b

U
δ̇(t) + AMh,3

b2

U2
δ̈(t) +

m∑
l=1

∫ t

−∞
Ah,l+3 · e

(
− dlU

b
(t−τ)δ̇(τ)

)
dτ

IMse,p(t) = AMp,1δ(t) + AMp,2
b

U
δ̇(t) + AMp,3

b2

U2
δ̈(t) +

m∑
l=1

∫ t

−∞
AMp,l+3 · e

(
− dlU

b
(t−τ)δ̇(τ)

)
dτ

IMse,α(t) = AMα,1δ(t) + AMα,2
b

U
δ̇(t) + AMα,3

b2

U2
δ̈(t) +

m∑
l=1

∫ t

−∞
AMα,l+3 · e

(
− dlU

b
(t−τ)δ̇(τ)

)
dτ

(5.9)

where δ(t) is Dirac delta functions. Thus, the self-excited forces induced by arbitrary
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each component of the displacement can be expressed as

Lse,h(t) =
1

2
ρU2

(
ALh,1h(t) + ALh,2

b

U
ḣ(t) + ALh,3

b2

U2
ḧ(t) +

m∑
l=1

φLh,l(t)
)

Lse,p(t) =
1

2
ρU2

(
ALp,1p(t) + ALp,2

b

U
ṗ(t) + ALp,3

b2

U2
p̈(t) +

m∑
l=1

φLp,l(t)
)

Lse,α(t) =
1

2
ρU2

(
ALα,1α(t) + ALα,2

b

U
α̇(t) + ALα,3

b2

U2
α̈(t) +

m∑
l=1

φLα,l(t)
)

Dse,h(t) =
1

2
ρU2

(
ADh,1h(t) + ADh,2

b

U
ḣ(t) + ADh,3

b2

U2
ḧ(t) +

m∑
l=1

φDh,l(t)
)

Dse,p(t) =
1

2
ρU2

(
ADp,1p(t) + ADp,2

b

U
ṗ(t) + ADp,3

b2

U2
p̈(t) +

m∑
l=1

φDp,l(t)
)

Dse,α(t) =
1

2
ρU2

(
ADα,1α(t) + ADα,2

b

U
α̇(t) + ADα,3

b2

U2
α̈(t) +

m∑
l=1

φDα,l(t)
)

Mse,h(t) =
1

2
ρU2

(
AMh,1h(t) + AMh,2

b

U
ḣ(t) + AMh,3

b2

U2
ḧ(t) +

m∑
l=1

φMh,l(t)
)

Mse,p(t) =
1

2
ρU2

(
AMp,1p(t) + AMp,2

b

U
ṗ(t) + AMp,3

b2

U2
p̈(t) +

m∑
l=1

φMp,l(t)
)

Mse,α(t) =
1

2
ρU2

(
AMα,1α(t) + AMα,2

b

U
α̇(t) + AMα,3

b2

U2
α̈(t) +

m∑
l=1

φMα,l(t)
)

(5.10)

where

φ̇(·)h,l(t) = −dlU
b
φ(·)h,l(t) + A(·)h,l+3ḣ(t)

φ̇(·)p,l(t) = −dlU
b
φ(·)p,l(t) + A(·)p,l+3ṗ(t)

φ̇(·)α,l(t) = −dlU
b
φ(·)α,l(t) + A(·)α,l+3α̇(t)

(5.11)

Similar to the prescribed procedure for the self-excited forces, convolutional in-

tegrals involving the aerodynamic impulse functions and fluctuating wind velocities
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expresses the buffeting forces, Fb, per unit span corresponding to arbitrary wind

fluctuations as [83, 74]

Lb(t) = −1

2
ρU2

∫ t

−∞

(
ILbu(t− τ)

u(τ)

U
+ ILbw(t− τ)

w(τ)

U

)
dτ

Db(t) =
1

2
ρU2

∫ t

−∞

(
IDbu(t− τ)

u(τ)

U
+ IDbw(t− τ)

w(τ)

U

)
dτ

Mb(t) =
1

2
ρU2

∫ t

−∞

(
IMbu

(t− τ)
u(τ)

U
+ IMbw

(t− τ)
w(τ)

U

)
dτ

(5.12)

where I indicates the impulse functions of buffeting forces. Similar to Eq. 5.5, The

buffeting forces per unit span are commonly expressed as [84, 83, 85]

Lb(t) = −1

2
ρU2(2b)

(
2CLχLbu

u(t)

U
+ (C ′L + CD)χLbw

w(t)

U

)
Db(t) =

1

2
ρU2(2b)

(
2CDχDbu

u(t)

U
+ C ′DχDbw

w(t)

U

)
Mb(t) =

1

2
ρU2(2b)2

(
2CMχMbu

u(t)

U
+ C ′MχMbw

w(t)

U

) (5.13)

where χLbw , χLbu , χDbw , χDbu , χMbw
, χMbu

are the transfer functions between the

buffeting forces and wind fluctuations. The absolute values of the transfer functions

are called as aerodynamic admittance functions.

Similar to the approach for the self-excited forces as Eq. (5.6), the aerodynamic

transfer functions are related to the Fourier transform of the impulse function of the
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buffeting forces as [85]

ĪLbu = 4bCLχLbu

ĪLbw = 2b(C ′L + CD)χLbw

ĪDbu = 4bCDχDbu

ĪDbw = 2bC ′DχDbw

ĪLbu = 8b2CMχMbu

ĪLbw = 4b2C ′MχMbw

(5.14)

Similarly, the rational function approximation of the aerodynamic transfer functions

can be shown as [74, 86]

χLbu = ALbu,1 +

mLbu∑
l=1

ALbu,l+1iω

iω +
dLbu,lU

b

χLbw = ALbw,1 +

mLbw∑
l=1

ALbw,l+1iω

iω +
dLbw,lU

b

χDbu = ADbu,1 +

mLbu∑
l=1

ADbu,l+1iω

iω +
dDbu,lU

b

χDbw = ADbw,1 +

mDbw∑
l=1

ADbw,l+1iω

iω + +
dDbw,lU

b

χMbu
= AMbu,1 +

mMbu∑
l=1

AMbu,l+1iω

iω + +
dMbu,lU

b

χMbw
= AMbw,1 +

mMbw∑
l=1

AMbw,l+1iω

iω +
dMbw,lU

b

(5.15)

with frequency independent coefficients, A(·),1, A(·),2, A(·),3, A(·),l+3, and d(·),l(≥ 0).
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Accordingly, aerodynamic impulse functions of buffeting forces are represented by

the inverse Laplace transform such as Eq. (5.20) and the buffeting forces from the

impulse functions induced by each component of wind fluctuation can be given as [74]

Lbu(t) = −1

2
ρU2 · 4bCL

(
(ALbu,1 +

mLbu∑
l=1

ALbu,l+1)
u(t)

U
−

mLbu∑
l=1

dLbu,lU

b
φLbu,l(t)

)
Lbw(t) = −1

2
ρU2 · 2b(C ′L + CD)

(
(ALbw,1 +

mLbw∑
l=1

ALbw,l+1)
w(t)

U
−

mLbw∑
l=1

dLbw,lU

b
φLbw,l(t)

)
Dbu(t) =

1

2
ρU2 · 4bCD

(
(ADbu,1 +

mDbu∑
l=1

ADbu,l+1)
u(t)

U
−

mDbu∑
l=1

dDbu,lU

b
φDbu,l(t)

)
Dbw(t) =

1

2
ρU2 · 2bC ′D

(
(ADbw,1 +

mDbw∑
l=1

ADbw,l+1)
w(t)

U
−

mDbw∑
l=1

dDbw,lU

b
φDbw,l(t)

)
Mbu(t) =

1

2
ρU2 · 8b2CM

(
(AMbu,1 +

mMbu∑
l=1

AMbu,l+1)
u(t)

U
−

mMbu∑
l=1

dMbu,lU

b
φMbu,l(t)

)
Mbw(t) =

1

2
ρU2 · 4bC ′M

(
(AMbw,1 +

mMbw∑
l=1

AMbw,l+1)
w(t)

U
−

mMbw∑
l=1

dMbw,lU

b
φMbw,l(t)

)
(5.16)

where

φ̇(·)u,l(t) = −
d(·)u,lU

b
φ(·)u,l(t) + A(·)u,l+1

u(t)

U

φ̇(·)w,l(t) = −
d(·)w,lU

b
φ(·)w,l(t) + A(·)w,l+1

w(t)

U

(5.17)

and Aw,1, Aw,l+1, dw,l are frequency independent coefficients, φw,l are additional vari-

ables.

To analyze the coupled aerodynamic forces, Aksahi-Kaikyo bridge was simpli-

fied to a section model of a bridge deck subjected to the aerodynamic forces. The
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primary dimension of the bridge is given in Table 5.2. Base on the configura-

tion, the diagonal components of the mass matrix, M in Eq (5.4) are decided by

[43.79 tf/m, 43.79 tf/m, 9826 tf·m2/m]T . The stiffness and dampling matrix are given

as K = M·diag(ω2
1, ω

2
2, ω

2
3) and C = M·2λ·diag(ω1, ω2, ω3) , respectively. The damp-

ing ratio, λ, of the structure is assumed as 0.02.

Main span (m) 1990
Girder section (m) Width (B) 35.5

Height (D) 14.0
Dead load (tf/m) 43.79
Polar moment of inertia (tf ·m2/m) 9826
Natural frequency (rad/s) 1st lateral bending (ω1) 0.2450

1st vertical bending (ω2) 0.4021
1st torsional (ω3) 0.9425

Table 5.2: Structural dynamic dimension of Akashi-Kaikyo bridge.

For the aerodynamic parameters, the flutter derivates are evaluated using the

Theordorsen function [87, 88] which is given as

C(k) =
H

(2)
1 (k)

H
(2)
1 (k) + iH

(2)
0 (k)

(5.18)

where H
(j)
i is Hankel function, identical to Bessel function of third kind. Therefore,
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when C(k) = F (k) + iG(k), the flutter derivates are assumed as

A∗1(k) =
πF (k)

4k

A∗2(k) = − π

16k
(1− F (k)− 2G(k)

k
)

A∗3(k) =
π

8k2
(
k2

8
+ F (k)− kG(k)

2
)

A∗4(k) = −πG(k)

4k

H∗1 (k) = −πF (k)

k

H∗2 (k) = − π

4k
(1 + F (k) +

2G(k)

k
)

H∗3 (k) = − π

2k2
(F (k)− kG(k)

2
)

H∗4 (k) =
π

2
(1 +

2G(k)

k
)

(5.19)

Furthermore, the other derivates are based on the quasi-steady theory [77] with the

aerodynamic parameters as

P ∗1 (k) = −2CD
k

P ∗2 (k) =
CL − C

′
D

2k

P ∗3 (k) =
C
′
D

k2

P ∗5 (k) =
C
′
D − CL
k

H∗5 (k) =
2CL
k

A∗5(k) = −4CM
k

(5.20)

and P ∗4 = P ∗6 = H∗6 = A∗6 = 0 and CL, CD, CM are mean lift, drag, moment coefficient,
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respectively, and C ′L = dCL/dα, C ′D = dCD/dα, C ′M = dCM/dα. The coefficients are

assumed to be as CD = 0.3230, C
′
D = 0, CL = 0.0942, C

′
L = 1.905, and CM = 0.0104,

C
′
M = 0.2717 [74]. The prescribed flutter derivates are plotted in Figures 5.14, 5.15,

and 5.16. The rational function approximations of the given transfer functions (Eqs.

(5.19) and (5.20)) are compared with their own targets in Figure 5.17, respectively.

χLbu , χLbw , χMbu
, χMbu

are given by Sears functions [89] as

χSears(k) =
J0(k)K1(ik) + iJ1(k)K0(ik)

K1(ik) + k0(ik)
(5.21)

where J0, J1 are Bessel functions of first kind and K0, K1 are modified Bessel functions

of second kind. χDbu and χDbw are based on Davenport’s function [84] as

χ2
Davenport =

2

c2
(c− 1 + e−c) (5.22)

where c = λfD/U , D is section depth, and λ is a decay factor assumed to be 8 [74].
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(a) (b)

(c) (d)

(e) (f)

Figure 5.14: Flutter derivatives; (a) A∗1, (b) A∗2, (c) A∗3, (d) A∗4, (e) A∗5, (f) A∗6.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.15: Flutter derivatives; (a) H∗1 , (b) H∗2 , (c) H∗3 , (d) H∗4 , (e) H∗5 , (f) H∗6 .
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(a) (b)

(c) (d)

(e) (f)

Figure 5.16: Flutter derivatives; (a) P ∗1 , (b) P ∗2 , (c) P ∗3 , (d) P ∗4 , (e) P ∗5 , (f) P ∗6 .
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.17: Target and rational function representations of aerodynamic transfer
functions of self-excited forces; (a) ĪLseh , (b) ĪLsep , (c) ĪLseα , (d) ĪDseh , (e) ĪDsep , (f)
ĪDseα , (g) ĪMseh

, (h) ĪMsep , (i) ĪMseα .
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(a) (b)

Figure 5.18: Target and rational function representations of admittance functions
of buffeting forces; (a) Sears function, (b) Davenport’s function.

5.2.2 Stochastic simulation of wind fluctuations

Target power spectrums for the lateral and vertical wind fluctuations are given by

the von Kármán spectra [85] as follows

STu (f) = 0.5 · σ2
u · 4(f · Lu/U)

f · (1 + 70.78(f · Lu/U)2)5/6

STw(f) = 0.5 · 2(f · Lyw/U)
σ2
w · (1 + 188.88(f · Lw/U)2

f · (1 + 70.78(f · Lw/U)2)11/6

(5.23)

where σu and σw are standard deviations of the lateral and vertical components of

the wind fluctuations respectively and Lu and Lw are turbulence integral scales which

measures the correlation distance of the lateral and vertical components in the along-

wind direction; The coefficients are assumed to be as σu = 0.1 ·U , σw = 0.05 ·U , and

the integral lengths are Lu = 80m, Lw = 40m. The prescribed power spectrums are

illustrated in Figure 5.19. Furthermore, the coherence function between the lateral
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Figure 5.19: Target power spectra for lateral and vertical wind fluctuations.

and vertical components is assumed to be as unity by sharing identical phase angles

and the targer cross-power spectrum is given as

STu,w(f) =
√
Su(f)Sw(f) (5.24)

Wind velocities u(t) and w(t) are simulated in three ways; using the SRM, ITAM

and BSRM. In all cases 5,000 time histories are generated based on Eq. (5.25). First,

the SRM is used to generate wind velocity fluctuation histories in each direction using

Eq. (1.17). Secondly, the ITAM with SRM is used to generated non-Gaussian wind

fluctuations with marginal log-normal distributions having skewness 0.7 with PDF

given by

fr(x) =
1√

2πσ2
N(x− µ̄)

exp
[
− (log (x− µ̄)− µN)2

2σ2
N

]
;x ≥ µ̄, r ∈ {u,w} (5.25)
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Figure 5.20: Target lognormal PDFs with skewness 0.7 for lateral (u) and vertical
(w) wind fluctuations.

where σN = 0.2264, µN = 0.5 · log( σ2
r

exp (σ2
N )−1 − 0.5σ2

N), µ̄ = − exp (µN + 0.5σ2
N).

The skewness of the distributions are identically 0.7 and the variances match those

prescribed in Eq. (5.23). The PDFs are plotted in Figure 5.20. Lastly, the BSRM

from Eq. (3.8) is used to generate wind fluctuations with identical skewness as those

from the ITAM. To achieve this, the partial bicoherence is prescribed as

b2p(ω1, ω2) = C · exp [−λ(ω1 + ω2)] (5.26)

where C = 1/720 and λ = 0.1 for both vertical and horizontal components. Figure

5.21 shows the partial bicoherence. From Eqs. (5.23) and (5.26), the pure power

spectra for each wind fluctuations are computed and shown in Figure 5.22. When

the pure power spectrum is decided, the target bispectra of wind fluctuations are

expressed in Figure 5.23.
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Figure 5.21: Target pure bicoherence of wind fluctuations.

(a) (b)

Figure 5.22: Target power spectra and pure power spectra of (a) lateral and (b)
vertical wind fluctuations.

Again, 5,000 time histories for each wind fluctuation are generated with the given

methodologies. For direct comparison, the random phase are kept constant across the

different simulation methods as mentioned. Examples of simulated wind fluctuations

at mean wind velocity U = 60m/s are shown in Figure 5.24. When viewed in their

total length of 600 sec., the difference between ITAM and BSRM simulations are
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(a) (b)

Figure 5.23: Amplitude of target bispectra for (a) lateral and (b) vertical wind
fluctuations.

minimal. However, the difference become apparent when a closer view is taken as

Figure 5.25 which shows a 10 second segment of the histories. As described in Figures

5.26a, 5.26b, and 5.26c, the estimated power spectra from the SRM, ITAM, and

BSRM histories matched the target power spectra. Moreover, the cross-power spectra

are matched the target one in Figure 5.26d. In the examples considered here, the

lateral wind fluctuation, u, of BSRM has lower tails than the one of ITAM, but, there

is relatively small difference in the vertical fluctuations, w.

The distributions of the histories depicted in the Gaussian probability plots of the

samples in Figure 5.27. As expected probability plots of SRM follow the straight line

of a Gaussian distribution. However, the marginal probability plots of the ITAM and

BSRM have positive skewness. These plots show differences in the tails between the

realizations of the ITAM and BSRM. Even though the skewness of ITAM and BSRM

are the same, the ITAM simulations have a lower bound since the follow a lognormal
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(a)

(b)

Figure 5.24: Examples of simulated (a) lateral and (b) vertical wind fluctuations
with SRM, ITAM, BSRM simulations.

distribution. Meanwhile, there is no lower bound in the BSRM simulations, therefore,

they have a heavier lower tail. The upper tails of ITAM simulations are also sightly

heavier. The maximum values of the wind fluctuations are compared in Figure 5.28.

Because of the skewness and heaviness of the upper tails, the ITAM has the largest
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(a) (b)

Figure 5.25: Comparisons of (a) lateral and (b) vertical wind fluctuations between
SRM, ITAM and BSRM simulations in a short period, t ∈ [25, 35].

peak values in both components of wind fluctuations

Bispectral analysis on wind fluctuations are performed and the amplitudes of

estimated bispectra are plotted in Figures 5.29 and 5.30 and compared with the

target bispectra. First, the SRM realizations have much smaller bispectrum than the

ITAM and BSRM because of their symmetric distribution. In the estimated bispectra

from the ITAM and BSRM, we see that recognize the low-frequency part of the ITAM

bispectrum in Figure 5.29d is slightly higher than the one from the BSRM in Figure

5.29f. However, the bispectra of the vertical component from the ITAM and BSRM

in Figures 5.30d and 5.30f are close to each other. Table 5.3 provides a summary of

the statistics of these wind fluctuations. By sharing the similar variance among the

SRM, ITAM, and BSRM simulations, there are only identical skewness for the ITAM

and BSRM. Similarly, the kurtosis of the SRM is close to be Gaussian, however, the

one of the ITAM and BSRM have different values from three. [!ht]
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(a) (b)

(c) (d)

Figure 5.26: Power spectra of lateral and vertical wind fluctuations with (a) SRM,
(b) ITAM, (c) BSRM and (d) their own cross-power spectra.

5.2.3 Simulated self-excited and buffeting forces

The simulated wind time histories on the bridge deck model were utilized to

calculate the displacement responses from the aerodynamic coupling of self-excited

and buffeting forces. Examples of the self-excited forces per unit length computed

using Eqs. (5.20) are plotted in Figures 5.31a, 5.31c, and 5.31e. Figures 5.31b, 5.31d,

and 5.31f show Gaussian probability plots of the lift, drag, and torsional self-excited
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(a) (b)

Figure 5.27: Gaussian probability plots for (a) lateral and (b) vertical wind fluctu-
ations.

(a) (b)

Figure 5.28: Peak wind fluctuations; (a) lateral and (b) vertical components.

Component Method Standard dev. Skewness Kurtosis
u SRM 5.6742 0.0002 2.9924

ITAM 5.6736 0.6970 3.8629
BSRM 5.6742 0.7009 3.7277

w SRM 2.6590 0.0006 2.9964
ITAM 2.6590 0.6990 3.8733
BSRM 2.6591 0.6927 3.7297

Table 5.3: Statistics of simulated wind fluctuation time histories.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.29: Estimated amplitudes of bispectra of lateral wind fluctuations from
(a, b) SRM, (c, d) ITAM, and (e, f) BSRM.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.30: Estimated amplitudes of bispectra of vertical wind fluctuations from
(a, b) SRM, (c, d) ITAM, and (e, f) BSRM.

155



CHAPTER 5. APPLICATIONS

(a) (b)

(c) (d)

(e) (f)

Figure 5.31: Samples and probability plots of self-excited forces; (a, b) Lse(t), (c,
d) Dse(t), (e, f) Mse(t).
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forces from the SRM, ITAM, and BSRM velocities. The lift and moment of self-

excited forces are skewed by the skewness of wind fluctuations generated by ITAM

and BSRM, although the drag forces are not affected by the skewness. In addition, the

distributions functions of peak values of the peak forces are shown in in Figure 5.32.

The peak lift and moment are dependent of the nonlinearity of the wind fluctuations,

but the drag forces do not appear to change significantly with non-Gaussian wind

velocities. Similar to the Gaussian probability plots, the mean of peak values of the

lift and moment is higher than the drag.

The estimated power spectra of the self-excited forces are presented in Figure

5.33. The power spectra describe the relationships with the natural frequencies of

the bridge and the self-excited forces. All of the power spectra are indistinguish-

able meaning they do not depend on the velocity simulation method. However, the

estimated bispectra of the forces in Figure 5.34 show same difference in the intensi-

ties of phase coupling. The bispectra of the self-excited forces generated by ITAM

and BSRM have stronger non-linear coupling forces from the SRM. Furthermore,

the peaks of the amplitudes of bispectra are located at (0.40rad/s, 0.40rad/s) and

(0.24rad/s, 0.24rad/s), corresponding to the first torsional and vertical bending natu-

ral frequencies of the bridge model. it represents that there are strong quadratic phase

coupling between the pairs of their own frequency-waves and their doubled frequency-

waves such as 0.40rad/s and 0.80rad/s and 0.24rad/s and 0.48rad/s. Compared to

the following bispectra of displacements in Figure 5.43 which have peaks at the edges
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(a) (b)

(c)

Figure 5.32: Probability plots of peak self-excited forces; (a) Lse, (b) Dse, (c) Mse.

of the bispectrum, we can think that the geometric non-linearity of the aerodynamic

simulations causes this differences in higher-order spectra of the excitations and the

displacements. Threfore, the estimation of bispectrum could be used to discriminate

between the effects of he nonlinear dynamic systems including their excitations. A

summary of the statistics of the self-excited forces is given in Table 5.4. At first, we

can see the drag self-excited forces with every methodology are lower kurtosis than

three as described in Figure 5.31d; they have weaker tails than the Gaussian distri-
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(a) (b)

(c)

Figure 5.33: Estimated power spectra of self-excited forces; (a) Lse, (b) Dse, (c)
Mse.

bution. Also, it shows that the self-excited ITAM and BSRM forces are more skewed

than the SRM in the every components.

The buffeting forces are generated by the wind fluctuation components using Eqs.

(5.16). Samples of the buffeting forces per unit length from the SRM, ITAM and

BSRM wind velocities are given in Figure 5.35. The buffeting forces acting on the deck

follow the similar trends of wind fluctuations (Figure 5.27) in the view of probability

plot as presented in Figures 5.35b, 5.35d, 5.35f; the ITAM and BSRM has stronger
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(a)

(b)

(c)

Figure 5.34: Estimated bispectra of self-excited forces; (a) Lse, (b) Dse, (c) Mse.

upper tails than the SRM in the view of marginal distribution and the BSRM has

no lower bound compared to the ITAM in the all of directions. The buffeting forces
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Component Method Standard dev. Skewness Kurtosis
Lse SRM 115.5 -0.0037 2.988

ITAM 115.5 -0.1429 3.085
BSRM 115.5 -0.1409 3.092

Dse SRM 19.33 -0.0013 2.882
ITAM 19.34 -0.0091 2.889
BSRM 19.35 -0.0071 2.882

Mse SRM 2112 0.0039 2.990
ITAM 2118 0.1320 3.085
BSRM 2119 0.1302 3.092

Table 5.4: Statistics of self-excited forces.

from the SRM have Gaussian distribution, however, the ones of ITAM andB SRM

buffeting forces are strongly skewed.

The PDFs and CDFs of the peak values of buffeting forces are shown in Figure

5.36, and the ITAM results have the strongest upper tails than the other simula-

tions similar to the peak values of wind fluctuations (Figure 5.28). Furthermore, the

differences in the drag buffeting forces are bigger than the lift and the moments.

The estimated power spectra of buffeting forces are illustrated in Figure 5.37 and

shown as continuous spectra and identical to each other. However, it is worth men-

tioning the difference in computed bispectra in Figure 5.38; similar to the prescribed

bispectra in self-excited forces (Figure 5.34), there are considerable distinctions among

the different methodologies. Because of the unskewed buffeting forces of the SRM,

their bispectrums are close to zero, but, the results of the ITAM and BSRM shows

stronger amplitude of bispectra. These two results are similar in the lift and pitching

moments, however, there is big difference in the drag buffeting forces. It is show-
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(a) (b)

(c) (d)

(e) (f)

Figure 5.35: Samples and probability plots of buffeting forces; (a, b) Lb, (c, d) Db,
(e, f) Mb.
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(a) (b)

(c)

Figure 5.36: Probability plots of peak buffeting forces; (a) Lb, (b) Db, (c) Mb.

ing that the higher bispectrum in low-frequencies of the lateral wind velocities of

the ITAM (Figure 5.26c makes the stronger bispectrum of the drag buffeting forces

compared to the BSRM. This difference causes relatively bigger skewness in the buf-

feting forces from the ITAM, -0.6117, than the BSRM, -0.5776 compared to the other

components. The statistical summary of buffeting forces are given in Table 5.5.

Probability distributions of the peak total forces are plotted in Figure 5.39. The

buffeting forces, Fb, per unit span are more significant than the self-excited forces,
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(a) (b)

(c)

Figure 5.37: Estimated power spectra of buffeting forces; (a) Lb, (b) Db, (c) Mb

Component Method Standard dev. Skewness Kurtosis
Lb SRM 536.0 0.0005 2.994

ITAM 539.7 0.5601 3.572
BSRM 539.9 0.5739 3.490

Db SRM 387.3 -0.0000 2.988
ITAM 387.2 -0.6117 3.665
BSRM 387.3 -0.5776 3.475

Mb SRM 2513 0.0004 2.994
ITAM 2512 0.5603 3.573
BSRM 2522 0.5743 3.492

Table 5.5: Statistics of buffeting forces.
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(a)

(b)

(c)

Figure 5.38: Estimated bispectra of buffeting forces; (a) Lb, (b) Db, (c) Mb.

Fse, and the distributions of the peak buffeting forces in Figure 5.36 affects on the

distribution of the peak total forces further than the one of the peak self-excited
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forces. However, the gaps in the peak total forces between the ITAM are BSRM are

relatively reduced from the difference in the peak self-excited forces.

(a) (b)

(c)

Figure 5.39: Probability plots of total peak forces; (a) Lse + Lb, (b) Dse + Db, (c)
Mse +Mb.

5.2.4 Analysis of simulated displacements

At last, examples of the aerodynamic responses of the deck are plotted in Figure

5.40. In the probability plots of the displacements, we can recognized weaker tails in
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(a) (b)

(c) (d)

(e) (f)

Figure 5.40: Samples and probability plots of displacements; (a, b) h, (c, d) p, (d,
e) α.
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the vertical and lateral displacements than the Gaussian distribution. However, the

skewness in the torsional displacements (Figure 5.40f), it shows that the importance

of accurate representation of wind fluctuations including skewness because it causes

the divergence of the torsional and vertical displacements easily [74]. Figure 5.41

shows that the stronger skewness in the peak torsional displacements of the ITAM

and BSRM simulations than the SRM, it also mentions us why we needs non-Gaussian

simulations for aerodynamic applications.

(a) (b)

(c)

Figure 5.41: Peak displacements; (a) h, (b) p, (c) α.
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In Figure 5.42, the power spectra of the buffeting responses are closed to each

other. According to the their own natural frequency (Table 5.2), but, the power

spectra of torsional displacements are combined with all of the natural frequencies.

The estimated bispectra of the responses are plotted in Figure 5.43. As mentioned

(a) (b)

(c)

Figure 5.42: Estimated power spectra of displacements; (a) h, (b) p, (c) α.

before, in contrast to the bispectra of self-excited forces in Figure 5.34, the peaks

amplitude of bispectra are not placed at the diagonals of the bispectra, but the ω1

and ω2 axes. The nonlinearity of the system cause the difference in the higher-order
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frequency domain. Also, the amplitudes of the bisepctra are relatively lower than the

ones of the self-excited and buffeting forces.

(a)

(b)

(c)

Figure 5.43: Estimated bispectra of displacements; (a) h, (b) p, (c) α.
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Component Method Standard dev. Skewness Kurtosis
h SRM 0.3207 0.0032 2.948

ITAM 0.3205 0.0373 3.665
BSRM 0.3208 0.0366 2.980

p SRM 0.9297 -0.0018 2.866
ITAM 0.9302 -0.0182 2.897
BSRM 0.9307 -0.0150 2.890

α SRM 0.5515 0.0008 2.988
ITAM 0.5512 0.1170 3.082
BSRM 0.5514 0.1162 3.092

Table 5.6: Statistics of displacements.

The probability distributions of the root mean squares (RMS) of displacements

are illustrated in Figure 5.44. The RMS of displacements represents the variation in

the kinetic energy due to wind fluctuations of the wind time histories [90]. We can

recognize that there are enormous differences between the RMS of the SRM and the

ITAM/BSRM. Specially, the variance of the displacements of the ITAM and BSRM

are much bigger than the SRM even they possess identical power spectra such as

Figure 5.42 . Lastly, the statistics of the aerodynamic displacements are represented

in Table 5.6.

5.3 Conclusion

The generation of higher-order stochastic processes and its application to nonlinear

stochastic structural dynamics are investigated. The BSRM, a new form of higher-

order spectral expansion, is utilized to generate wind pressures and velocities and is

compared with the existing second-order SRM and ITAM. Based on a dataset of wind
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(a) (b)

(c)

Figure 5.44: Root mean squares of displacements; (a) h, (b) p, (c) α.

tunnel tests on the high-rise building, wind pressure histories are generated using the

ITAM and BSRM and utilized to consider the influence of higher-order correlations

on the response of an elastic-plastic single degree of freedom structure. Very different

responses are observed which appear to be attributed to differences in the bispectra of

the simulated histories. Similarly, the wind fluctuations for coupled self-excited and

unsteady buffeting loads are generated with the prescribed methods. The skewness

and the bispectra of the wind fluctuations in ITAM and BSRM affect the stochastic
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properties of the buffeting responses of the bridge deck.
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Chapter 6

Summary and future works

This thesis presents novel techniques for simulation of non-Gaussian/non-stationary

stochastic processes which are following a prescribed target second-order spectrum

by matching a marginal distribution or a third-order spectrum. There has been much

research in the past few decades to represent stochastic properties precisely of time

histories of wind fluctuations, earthquakes and so on. The introduction of existing

representations and definition of high-order spectra, and the efforts to represent the

processes are briefly introduced in Chapter 1.

In Chapter 2, the author extended the ITAM to simulation using the K-L expan-

sion for representing non-stationarity. There were primary limitations of the standard

ITAM for non-stationary processes; it required estimation of an ES by assuming a

pseudo-autocorrelation with high computational time and low accuracy. The pro-

posed method improves the limitations by estimating the underlying Gaussian au-
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tocorrelation without any approximation of evolutionary spectrum and matches the

target non-Gaussian/non-stationary distribution.

Chapter 3 begins with explaining the limitation of the existing second-order based

methodologies without satisfying higher-order orthogonalities of Cramèr representa-

tion. A new method by applying orthogonal increments with phase couplings fulfills

the third-order condition and generates samples of stochastic processes matching

the target power spectrum and bispectrum simultaneously. The author applies the

proposed method on the generation of wind velocity histories of the large eddy sim-

ulations.

A new approach to characterize phase distributions of wave components is intro-

duced for non-Gaussian spectral representation method in Chapter 4. The models and

properties of circular probability distributions are examined and applied to represent

phase coupling based on its difference distributions. Simultaneously, the orthogonal

conditions of the Cramèr’s spectral representation are satisfied with the trigonomet-

ric moments of the circular phase difference distribution. Examples with three and

four waves stochastic processes with quadratic/cubic phase coupling are shown by

matching a given power spectrum and bispectrum or trispectrum respectively.

As applications of the proposed methodologies, the simulation of material or geo-

metrically nonlinear structural dynamics with the time histories generated by SRM,

ITAM, and BSRM are compared in Chapter 5. At first, wind pressures from wind

tunnel test data are characterized and represented by the ITAM and BSRM. The
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performance of an elastic plastic hanging billboard structure is estimated. Secondly,

time histories of wind velocity for aerodynamic simulation of a deck bridge are gener-

ated with the SRM, ITAM, and BSRM. The coupled self-excited and buffeting forces

cause nonlinear excitations and displacements of the deck. The effects of the utilized

methods are investigated, and differences in the maximum loading and higher-order

spectral analysis are detected among SRM, BSRM and ITAM simulations.

There is immense future work in the simulation of non-Gaussian and non-stationary

stochastic processes and fields. Recently, there are several developments to simulate

realization of the realistic processes, but the author presented a new technique con-

sidering higher-order properties which is not done before. However, it remains to

extend the methodology for multi-variate and multi-dimensional processes and fields.

The cross-correlations between multi-variate and multi-dimension processes, for ex-

ample, should be extended to the higher-order correlations and included during their

generation.

Besides, there is a diverse potential for applications for the work including ocean

surface waves. Specifically, the inner-shore waves include apparent phase coupling

among their waves. The proposed methodology with quadratic phase coupling could

improve the generation of the waves. The case of 2-dimensional simulation is required

for the wave fields, too.

Finally, higher-order phase coupling ins necessary to represent the given trispec-

trum or fourth-order correlation of processes and beyond. The prescribed BSRM is
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limited only up to the third-order correlation including skewed non-linearity. There-

fore, it will be important to extend this methodology to include the symmetric non-

linearity shown by trispectrum for accurate representation of stochastic processes. In

this case, the method is expected to present more strongly non-Gaussian properties

including kurtosis.
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Appendix A

Newton-CG methodology for the

nearest positive semidefinite

matrix

Qi and Sun [58] dualized the linear constraints the nearest correlation matrix

problem (5.22) with the convex optimization problem as:

min
y∈Rn

θ(y) :=
1

2
‖(A+ diag(y))+‖2Fb − eTy (A.1)

where diag(y) represents the diagonal matrix with vector y ∈ Rn as elements, while

Diag(B) is the vector of diagonal elements in matrix B.. The projection (·)+ maps

symmetric matrix B ∈ Rn×n onto the positive semidefinite matrix with spectral
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decomposition B = QΛQT where QTQ = I and Λ = diag(λi). The nearest positive

semidefinite matrix to B in the Frobenius norm is B+ = Q diag(max(λi, 0)) QT .

The following algorithm calculates the nearest matrix of A with given convergence

tolerate tol based on Newton method. The methodology is quadratically convergent.

1. Initialize y0 ∈ Rn, η ∈ (0, 1), ρ, σ ∈ (0, 1/2], and k = 0.

2. Calculate gradient ∇θ(yk) = Diag((A + diag(y)+) − e. If ‖θ(yk)‖2 ≤ tol, the

nearest matrix is (A+ diag(yk))+ and stop.

3. Calculate a spectral decomposition of A+diag(yk) and generate the matrix Wyk

as:

Wyk =


Eαα Eαβ T

Eβα 0 0

T 0 0

 , T =

(
λi(yk)

λi(yk)− λj(yk)

)
i∈α,j∈γ

, (A.2)

where the batchs α = i : λi(yk) > 0, β = i : λi(yk) = 0, γ = i : λi(yk) < 0, and

Eαβ indicates the matrix of ones of dimension |α| × |β|.

4. Determine the direction dk by applicating an iterative method to

Vkdk = Diag(Pyk(Wyk ◦ (P T
yk
DkPyk))P

T
yk

) = −∇θ(yk) (A.3)

where d ∈ Rn, Dk = diag(dk), Pyk is matrix which its columns are eigenvectors

179



APPENDIX A. NETWON-CG METHOD FOR THE NEAREST PSD MATRIX

of A+ diag(yk), and the operator ◦ is the Hadamard product(X ◦ Y = (xijyij))

until satisfying the conditions:

‖∇θ(yk) + Vkdk‖2 ≤ ηk‖∇θ(yk)‖2 (A.4)

− ∇θ(yk)
T

‖dk‖2
· dk
‖dk‖2

≥ ηk (A.5)

where ηk = min η, ‖∇θ(yk)‖2. If not satisfying either one of conditions, generate

the new direction as

dk = −B−1k ∇θ(yk) (A.6)

where Bk is any symmetric positive definite matrix with unifornly bounded

{‖Bk‖2} and {‖B−1k ‖2}. In this step, the CG method is employed as the solver

for the linear system, Eq.(A.3).

5. Find an appropriate step length ak by utilizing Armijo backtracking that cal-

culate the smallest non-negative integer mk satisfying the following condition:

θ(yk + ρmkdk) ≤ θ(yk) + σρmk∇θ(yk)Tdk (A.7)

6. Update αk = ρmk , yk+1 = yk + αkdk, and k = k + 1. Return to step 2.
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Orthogonality of proposed

orthogonal increments

The following provides a proof that the proposed orthogonal increments in Eqs.

(3.5) - (3.7) satisfy all orthogonality conditions of the Cramér spectral representation

up to third-order.
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1. The first-order conditions state that E[du(ωk)] = E[dv(ωk)] = 0. That the

proposed orthogonal increments satisfy this condition can be proven as follows.

E[du(ωk)] = E[duP (ωk) + duI(ωk)]

= E

[√
2 · 2S(ωk)∆ωk

{√√√√1−
i≥j≥0∑
i+j=k

b2(ωi, ωj) cosφk

+

i≥j≥0∑
i+j=k

|b(ωi, ωj)| cos
[
φi + φj + β(ωi, ωj)

]}]

=
√

2 · 2S(ωk)∆ωk

{√√√√1−
i≥j≥0∑
i+j=k

b2(ωi, ωj)E[cosφk]

+

i≥j≥0∑
i+j=k

|b(ωi, ωj)|E
[

cos
[
φi + φj + β(ωi, ωj)

]]}

(B.1)

Recalling that φ are i.i.d. random phases ∼ U [0, 2π], it is clear that E[cosφk] =

0 and

E{cos [φi + φj + β(ωi, ωj)]}

= E{cos (φi) cos [φj + β(ωi, ωj)]} − E{sin (φi) sin [φj + β(ωi, ωj)]}

= E{cos (φi)}E{cos [φj + β(ωi, ωj)]} − E{sin (φi)}E{sin [φj + β(ωi, ωj)]}

= 0

(B.2)

Consequently, E[du(ωk)] = 0. Proof that E[dv(ωk)] = 0 follows in exactly the

same way.
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2. Second-order conditions:

The condition with identical orthogonal increments described as

E[du(ωk)du(ωl)] = E{[duP (ωk) + duI(ωk)][duP (ωl) + duI(ωl)]} (B.3)

When ωk = ωl, Eq. (B.3) becomes as

E{[duP (ωk) + duI(ωk)]
2} =

= 4|S(ωk)∆ωk|
{(

1−
i≥j≥0∑
i+j=k

b2(ωi, ωj)
)
E(cos2 φk)

+ 2

i≥j≥0∑
i+j=k

|b(ωi, ωj)|

√√√√1−
i≥j≥0∑
i+j=k

b2(ωi, ωj)E{cosφk cos
[
φi + φj + β(ωi, ωj)

]
}

+

i≥j≥0∑
i+j=k

b2(ωi, ωj)E{cos2
[
φi + φj + β(ωi, ωj)

]
}
}

(B.4)

The first expectation in Eq. (B.4) can be shown as

E{cos2 φk} =

∫ 2π

0

cos2(φk)
1

2π
dφk

=

∫ 2π

0

1 + cos(2φk)

2

1

2π
dφk =

1

2

(B.5)
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and the second one can be shown with independent random phase φ,

E{cosφk cos [φi + φj + β(ωi, ωj)]} = E{cosφk}E{cos [φi + φj + β(ωi, ωj)]}

= 0

(B.6)

Lastly, the third expectation becomes similar to Eq. (B.5),

E
{

cos2
[
φi + φj + β(ωi, ωj)

]}
= E

{
1 + 2 cos

[
φi + φj + β(ωi, ωj)

]
2

}

=
1 + 2E{cos

[
φi + φj + β(ωi, ωj)

]
}

2
=

1

2

(B.7)

Therefore, Eq. (B.4) is written with Eqs. (B.5), (B.6), and (B.7) as

E[du2(ωk)]

= 4|S(ω)∆ωk|

[1−
i≥j≥0∑
i+j=k

b2(ωi, ωj) +
i≥j≥0∑
i+j=k

b2(ωi, ωj)

2

]

= 2S(ωk)∆ωk

(B.8)

Additionally, it can be shown that E[dv2(φk)] = 2S(ωk)∆ωk in the exactly same

way.

The second condition, Eq. (B.3), with different frequencies ωk 6= ωl becomes zero

because the expectation values of cosine terms with random phase becomes zero.

Finally, the expectation of mismatched orthogonal increments with identical

184



APPENDIX B. ORTHOGONALITY OF ORTHOGONAL INCREMENTS

ωk = ωl can be shown as

E[du(ωk)dv(ωk)]

= 4|S(ωk)∆ωk|
{[

1−
i≥j≥0∑
i+j=k

b2(ωi, ωj)
]
E(cosφk sinφk)

+

i≥j≥0∑
i+j=k

|b(ωi, ωj)|

√√√√1−
i≥j≥0∑
i+j=k

b2(ωi, ωj)E{cosφk sin
[
φi + φj + β(ωi, ωj)

]
}

+

i≥j≥0∑
i+j=k

|b(ωi, ωj)|

√√√√1−
i≥j≥0∑
i+j=k

b2(ωi, ωj)E{sinφk cos
[
φi + φj + β(ωi, ωj)

]
}

+

i≥j≥0∑
i+j=k

b2(ωi, ωj)E{cos
[
φi + φj + β(ωi, ωj)

]
sin
[
φi + φj + β(ωi, ωj)

]
}
}
(B.9)

The expected value in the first term becomes

E{cosφk sinφk} =

∫ 2π

0

sin 2φk
2

1

2π
dφk = 0 (B.10)

Similar to Eq. (B.10), the remaining expectations in Eq. (B.9) with different

trigonometric functions become zero, and the final result is written as

E[du(ωk)dv(ωk)] = 0 (B.11)

With different frequencies ωk 6= ωl, the expected value of different orthogonal

increments becomes zero and it can be shown in the synonymous way.
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3. Third-order conditions:

When ωk+ωl = ωm, the term with duP (ωk), duP (ωl), and duI(ωm) only remains

in expectation to have trigonometric functions without any random phase angle.

All expression of terms in expected values can be checked in the supplementary

data.

E[du(ωk)du(ωl)du(ωm)]

= 8
√
S(ωk)S(ωl)S(ωm)∆ωk∆ωl∆ωm

√√√√1−
i≥j≥0∑
i+j=k

b2(ωi, ωj)

√√√√1−
i≥j≥0∑
i+j=l

b2p(ωi, ωj)

E
{ i≥j≥0∑
i+j=m

|b(ωi, ωj)| cosφk cosφl cos
[
φi + φj + β(ωi, ωj)

]}
(B.12)

By the definition of pure power spectrum, Eq. (5.22), power spectra at ωk and

ωl becomes pure power spectra.

E[du(ωk)du(ωl)du(ωm)]

= 8
√
Sp(ωk)Sp(ωl)S(ωm)∆ωk∆ωl∆ωm

E
{ i≥j≥0∑
i+j=m

|bp(ωi, ωj)| cosφk cosφl cos
[
φi + φj + β(ωi, ωj)

]}
(B.13)

In the summation part in Eq. (B.13), the cosine term with φk, φl and φk +

φl + β(ωk, ωj) only maintains itself in expectation among the pairs of φi and φj
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satisfying i+ j = m.

E[du(ωk)du(ωl)du(ωm)]

= 8
√
Sp(ωk)Sp(ωl)S(ωm)∆ωk∆ωl∆ωm

|bp(ωk, ωl)|E
{

cosφk cosφl cos
[
φk + φl + β(ωk, ωl)

]}
(B.14)

The expectation of cosine terms is expressed as

E
{

cosφk cosφl cos
[
φk + φl + β(ωk, ωl)

]}
= E

{cos[β(ωk, ωl)] + cos[2φk + β(ωk, ωl)] + cos[2φl + β(ωk, ωl)]

4

+
cos(2φk + 2φl + β(ωk, ωl))

4

}
=

cos[β(ωk, ωl)]

4

(B.15)

Substituting Eq. (B.15) into (B.14), the result is written as

E[du(ωk)du(ωl)du(ωm)]

= 2
√
Sp(ωk)Sp(ωl)S(ωm)∆ωk∆ωl∆ωm|bp(ωk, ωl)| cos[β(ωk, ωl)]

(B.16)

The discretized definition of partial bicoherence, Eq. (3.4), is applied in Eq.
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(B.16) as

E[du(ωk)du(ωl)du(ωm)]

= 2
√
Sp(ωk)Sp(ωl)S(ωm)∆ωk∆ωl∆ωm√

B2(ωi, ωj)∆ω2
i ∆ω

2
j

Sp(ωi)∆ωiSp(ωj)∆ωjS(ωi + ωj)∆(ωi + ωj)
cos[β(ωk, ωl)]

= 2|B(ωk, ωl)| cos β(ωk, ωl)∆ωk∆ωl

(B.17)

With the relationship between biphase and bispectrum, Eq. (1.43), finally, the

following result satisfy the condition as

E[du(ωk)du(ωl)du(ωm) = 2<B(ωk, ωl)∆ωk∆ωl (B.18)

Finally, in same way it can be shown that

E[dv(ωk)dv(ωl)dv(ωm)] = −2=B(ωk, ωl)∆ωk∆ωl

E[du(ωk)du(ωl)dv(ωm)] = 2=B(ωk, ωl)∆ωk∆ωl

E[du(ωk)dv(ωl)dv(ωm)] = 2<B(ωk, ωl)∆ωk∆ωl

(B.19)

With different frequencies ωk +ωl 6= ωm, the expected value of triple pairs with

orthogonal increments becomes zero and it can be shown in the synonymous

way.
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