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Abstract

The theory of stochastic processes and their generations are indispensable to char-
acterize wind fluctuations, ocean waves, and earthquake excitations among other
quantities in engineering. To computationally analyze and simulate these stochastic
systems, practical realization of samples of stochastic processes is essential. The ob-
ject of this thesis is to introduce new state-of-the-art methodologies for the generation
of stochastic processes with non-Gaussianity /non-stationarity possessing higher-order
properties than the second-order orthogonality.

A new type of Iterative Translation Approximation Method (ITAM) using the
Karhunen-Loeve expansion was developed for simulating non-Gaussian and non-stationary
processes utilizing translation process theory. The proposed methodology enhances
the accuracy of simulated processes in matching a prescribed autocorrelation, main-
tains the computational efficiency, and resolves limitations caused by utilizing evolu-
tionary power spectra for non-stationary processes.

A new generalized stochastic expansion, the bispectral representation method

(BSRM), expanded from the traditional spectral representation method is introduced
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ABSTRACT

to simulate skewed nonlinear stochastic processes. With new orthogonal increments
to satisfy the conditions of the Cramér spectral representation up to third order or-
thogonality, the BSRM generates samples that match both the power spectrum and
bispectrum of the process by modeling complex nonlinear wave interactions.

A model of phase angle distributions to characterize phase coupling in higher-order
stochastic processes is presented. Relationships between the trigonometric moments
of circular distributions of phase differences and higher-order cumulant spectra are
derived. The prescribed properties are shown to accurately model quadratic and cubic
phase couplings in simple stochastic processes and can easily be extended to general
n-wave couplings.

Lastly, as applications of the prescribed methods, wind pressure and turbulent
wind velocity time histories are generated with SRM, ITAM, and BSRM and applied
to two different nonlinear dynamic structural systems. For structures having material
and geometrical nonlinearities, performance of an elastic perfectly-plastic structure
and the buffeting response of a long-span bridge with coupled aerodynamic forces
are examined. The structures are investigated to observe the effect of higher-order
properties of the excitations on the response when compared to conventional second-

order Gaussian and non-Gaussian excitations.

Primary Reader: Michael D. Shields

Secondary Reader: Lori Graham-Brady, James K. Guest
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Chapter 1

Introduction

The theory of random processes has broad applications in engineering from charac-
terizing and simulating heterogeneous materials to time histories of ocean waves, wind
fluctuations, and seismic excitations. Computational examination of these stochastic
frameworks requires the realistic generation of sample functions of stochastic pro-
cesses. For Monte Carlo(MC) simulation, a large number of samples of the stochastic
processes are simulated and the results are statistically examined. Therefore, the
generation of realistic stochastic processes/fields which include desired properties to
an acceptable degree are important.

Even though there have been several methodologies for sample function realization
introduced during the last 40 years, most are limited to stationary and Gaussian

processes. The general form of the stochastic expansion we employ for simulation is
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given by:

Alz,w) ~ Alz,w) = iCi(w)Hi(x);x €EDwe (1.1)

i=1

where {C;(w)} are a set of random variables on a probability space (2, F, P) and
{0;(z)} are basis deterministic functions. Most stochastic expansions have been de-
rived form Eq. (1.1) only including second-order properties of the processes (by match-
ing the covariance function, C'(x1,23)). The most common and popular expansions
with Gaussian properties are the spectral representation method [1, 2, 3] and the
Karhunen-Loeve expansion [4, 5] with their random variables {C;(w)} derived such

that:

C(x1, 22) = E[A(x1) A(x2)] = E[A(z1)A(5)] (1.2)

The spectral representation utilizes harmonic functions as {6;(z)} and its {C;(w)}
are derived form the power spectral density function (Fourier transform of C(xy, z3)).
Analogously, for the Karhunen-Loéve expansion, the eigenfunctions and eigenvalues of
C(z1,22) are {C;(w)} and {#;(x)} are uncorrelated zero mean, unit variance random
variables.

The fundamental limitation of the prescribed methodologies is their second-order
character, only satisfying the covariance of the process. There is no way to represent
many real stochastic processes with strong non-Gaussian properties which come from
nonlinear systems including turbulent fluctuations given by the Navier-Stokes equa-

tions, seismic excitation in nonlinear soil, and the systems approximated with n-th
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order Volterra series [6, 7]. Processes with complex nonlinear dependencies and wave
interactions that result from nonlinear systems are referred to as nonlinear processes.

One of the attempts to represent the nonlinear processes is nonlinear transfor-
mations (also referred to as translation processes [8]). For a translation process, a
Gaussian process is mapped to a non-Gaussian process which is often depicted by
its marginal non-Gaussian distribution. Another approach is to generate the process
with prescribed higher-order spectra and correlations.

The objective of this thesis is to introduce new methodologies for simulation of
non-Gaussian /non-stationary stochastic processes including higher-order properties
beyond the second-order. Based on translation processes, the expanded Iterative
Translation Approximation Method (ITAM) with Karhunen-Loéve expansion is in-
troduced for the enhanced performance to achieve desired non-stationary properties
[9]. Secondly, a generalized spectral representation method, called as the Bispectral
representation method, is developed to include the bispectrum in its expansion [10].
Thirdly, a new approach to model phase distributions is developed to possess higher-
order phase coupling in the generation of stochastic processes. Finally, materially or
geometrically nonlinear structural dynamics are analyzed to validate the effect of the

higher-order properties in their simulation.
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1.1 Spectral representation method

The spectral representation method to represent stochastic processes is introduced
in this section. Cramér [11] represented a zero mean and stationary stochastic pro-

cesses following the Fourier-Stiltjes integral as

f(t) = /_OO e“tdz(w) (1.3)

[e. 9]

where a spectral process, z(w), satisfies the following orthogonality conditions as

[12, 13, 14]

Eldz(w)] = cldz(w)] = 0
Bldz (o )dz* (w2)] = cldz(wn)d= (w2)] = 8(sn — wa) Sy )deon
Bldz (o )dz(wn)dz* (3)] = cldz(wn)dz(w)dz* (5]

= 8(wr + w — w3) By, wa)duordocy

cldz(wr)dz(wa)dz(ws)dz" (wy)] = 0(w1 + wo + wy — wa)Ts (w1, wa, ws)dw dwadws

cldz(wy)dz(wa)d - - - dz* (wy)]

=0(w1 +wa+ - —wp)Crp(wr, wa, -+ wi—1)dwidws - - - dwy_y
(1.4)

where E[-] denotes expectation, c[-] represents cumulant. §(-) and Syf(w) are delta

function and the power spectrum, respectively. Bjs(wy, ws) is the bispectrum, T’ (w1, w2, ws)
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is the trispectrum, and C'ys(wy, wa, - -+ ,wi—1) is the kth-order polyspectrum. The def-
inition and properties of cumulants and their spectra of various order will be discussed
in Section 1.3.2.

The spectral representation of real processes in Eq. (1.3) can be derived as:

fr(t) = /oo[cos(wt)du(w) + sin(wt)dv(w)] (1.5)

with two orthogonal increments du(w) = 2R[dz(w)] and dv(w) = —2J[dz(w)] and the

prescribed orthogonality conditions [12, 14, 15] in Eq. (1.4) given as

Eldu(w)] = Eldv(w)] =0
Eldu?(w)] = Eldu*(w)] = 25 (w)dw
Eldu(wy)du(ws)] = El[dv(w;)dv(w2)] = 0 for wy,ws > 0;wy # wo

Eldu(w;)dv(wq)] = 0 for wy,ws >0
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The third-order conditions are expressed as

Eldu(w;)du(ws)du(ws)]
= 2R[dB(w1,w2)d (w1 + w2 — w3) + dB(wy, w3)d(wy — we + ws)

+ dB(wq,w3)0(—wy + wy — ws) + dB(w1, w2)0 (w1 + we + ws)]

(1.7)
Eldv(wy)dv(ws)dv(ws)]
= —QQ[CZB(WM w2)5(w1 + Wy — CU3) + dB(wl, W3)5(W1 — Wy + W3)
+ dB (w2, ws3)0(—w1 + wa — w3) — dB(wy,w2)0 (w1 + wa + w3)]
and
Eldu(w;)du(ws)dv(ws)]
= 2Q[dB(wy,w2)0 (w1 + we — w3) — dB(wy, w3 )0(w; — wa + w3)
— dB(CUQ, W3)5(—(JJ1 + W9y — W3) — dB((JJl, wz)é(wl + (09)) + W3)]
(1.8)

E[du(w;)dv(wy)dv(ws)]
= 2R[dB(w1,w2)d (w1 + w2 — w3) + dB(w1, ws)d(w; — we + ws)

— dB(wg, w3)5(—w1 + Wy — w;;) — dB(wl, w2)5(w1 + wqg + wg)]

where dB(w1,ws) = B(wq,ws)dwidws.
At first, the digital simulation of Gaussian stochastic processes was proposed
by Rice [16] by satisfying the form in Eq. (1.5). Secondly, Shinozuka introduced

the simulation of Gaussian multi-variate and multi-dimensional stationary processes
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[1] and Shinozuka and Jan [2] included the non-stationary processes. Furthermore,
Shinozuka and Deodatis [3, 17, 18] reviewed the properties of SRM deeply including
Gaussianity, ergodicity of sample functions and so on.

Let us introduce the prescribed spectral methods to simulate a Gaussian process,
fa(t) which is a zero-mean, stationary Gaussian stochastic process with a autocor-
relation function Ry, s, (7) and two-sided power spectrum Sy, f,(w) related through

the Wiener-Khintchine theorem [19, 20] as

1 - —lwT
Stosal@) = 5= | Resolr)e rar (19)
Riore@) = [ Srare(w)erd (110

For a real and Gaussian process, the former expression of Eq. (1.5) can be dis-

cretized as

fa(t) = Z[cos(wkt)du(wk) + sin(wyt)dv(wg)] (1.11)

k=0

where w, = kAw. The process can be shown to have the corresponding first and
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second-order orthogonal conditions from Eq. (1.6) [12] given as

Eldu(w)] = E[dv(w)] =0
Eldu()?] = Eldo(w)?] = 277, (w)de

(1.12)
Eldu(w;)du(ws] = Eldv(w)dv(ws)] = 05wy # wy

Eldu(w)dv(w)] =0

The two forms of the spectral representation have been proposed by utilizing different

orthogonal increments [21]. The first form of orthogonal increments [16] is following:

du(wy) = Xk
(1.13)

dv(wy) = Y

where X} and Y} are independent and identically distributed Gaussian random vari-

ables following N (0, 1/2S(wk)Aw). Eq. (1.11) is simplified as

F) =) A/ Qi cos(wit — b)) (1.14)

Y,
where Ay = /25(wi)Awy and 0, = tan™! (%) ~ U|—m, ) are independent random
k
phase angles and
X2 Yi\ 2 )
Qr = (A_k) + <A_k> ~ X5 (1.15)

The second form of the SRM was proposed by Shinozuka [2] having different
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orthogonal increments as

du(wg) = V2A; cos(6y)
(1.16)

dv(wy,) = V24;, sin(6;,)
where ¢y, ~ u[—m, ) is uniformly independent random phase angles yielding an ex-

pansion of the form

ft) = \/52 Ay, cos(wyt — 0) (1.17)

Both distinct expressions of the SRM, Eqgs. (1.14) and (1.17), satisfy the mentioned
orthogonal conditions up to second-order in Eq. (1.12). However, they have different
properties in view of Gaussianity and ergodicity. The first representation, Eq. (1.14),
is always Gaussian, but non-ergodic [3]. However, the second one, Eq. (1.17) has
asymptotically Gaussian as N — oo, and is strongly ergodic [3]. Furthermore, the
cosine series formula can be computed efficiently using the Fast Fourier Transform
3, 17, 22].

In this thesis, the second form of the SRM, Eq (1.17) is mainly utilized and
researched. Eq. (1.17) has one independent uniformly distributed random phase
angle per cosine term. However, in non-Gaussian processes, the random phase angles

are not independent and this fact will be exploited for simulation purposes.
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1.2 Karhunen-Loéve expansion

Let assume A(x, 0) be a stochastic process defined on the probability space (2, o, P)
over the domain D with mean A(x) and finite variance E[(A(z,6) — A(x))?]. The

process can be proposed as [4]

Az, 0) = A(z) + Z VAG(O) fil) (1.18)

where f;(z) and \; are the eigenvector functions and eigenvalues of the covariances
C(z1,2) as the deterministic functions. The homogeneous Fredholm integral of the

second kind specifies the prescribed eigenvalues and eigenvectors given by

/130(371,372”1'(551)(1931 = Aifi(r2) (1.19)

Numerical solutions of Eq. (1.19) to determine the basis functions are introduced
[4, 23] in Eq. (1.1). The computed eigenvectors satisfy the following equation as an

orthogonal deterministic set of basis function given by

/sz(x)fj(x)dx = 0 (1.20)

10
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where §;; is the Kronecker-delta function. Furthermore, ¢;(f) in Eq. (1.18) indicates

an uncorrelated random variable set with zero mean and unit standard-deviation as:

6(0) = 7 [ [4(.0) = Ale) i) (1.21)

Practically, the expansion in Eq. (1.18) is approximated using a finite number, M,

of eigenvalues and eigenvectors as:

Az, 0) = A(z) + Z VAG(O) fil) (1.22)

Eq. (1.22) is used for simulation purposes by generating the set of random variables
Gi(0) 4,9, 23]. Although (;(f) are Gaussian for Gaussian processes, they are should be
non-Gaussian for non-Gaussian processes. However, to determine the non-Gaussian
distribution, it is required to solve Eq. (1.21). Phoon et al. [24, 25] suggested iterative
methodologies to solve Eq. (1.21). However, because of the Central Limit Theorem, an
independent non-Gaussian sets easily tend to be closer to Gaussian than the required

non-Gaussian M — oo [26].

1.3 Non-Gaussian stochastic processes

This thesis is specifically concerned with modeling random processes that are non-

Gaussian in nature. That is, the marginal density of the stochastic process does not

11
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follow a Gaussian distribution and, more generally, the full probability structure of the
process does not follow the joint Gaussian. The work here will consider two different

means of modeling non-Gaussian processes as discussed in the following sections.

1.3.1 Translation process theory

Perhaps the most common means of modeling non-Gaussian stochastic processes

utilizes Grigoriu’s translation process theory [8] given by

Y(t) = g(X()) (1.23)

with X (¢) and Y (¢) are a Gaussian and non-Gaussian process, respectively. The
marginal non-Gaussian CDF g(-) = Fy'{®[-]} maps a Gaussian X(¢) to the pre-
scribed non-Gaussian distribution.

For non-stationary processes, Ferrante et al. [27] extended the translation process

theory for non-stationary cases as

Y(t) = g(X(t), 1) = Fy' {®[X(1)], 1} (1.24)

with the inverse time-dependent marginal non-Gaussian CDF Fy'(-,¢) and the sta-

tionary and normalized Gaussian CDF ®(-). The result of translated ACF can be

12
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calculated as

Ry (s,t) = p(s)p(t) + o(s)o(t)&(s,t)
(1.25)

=/m/mg@hﬁm@¢wwhmm@w}mumg

with the mean p(t) and the standard deviation o(t) of the non-Gaussian process
Y (t) at varying time t. The correlation distortion, (s,t), means its non-Gaussian
normalized ACF and ¢{-,-; p(s,t)} is the joint Gaussian PDF with the normalized

Gaussian ACF, p(s,t), as

21, 7o (s — ! oxp [ — x} 4 5 — 2p(s, t) 17,
P bl ) = =) p( 21— (s, 07) ) (126)

For stationary and non-Gaussian processes with 7 = s — ¢, Eq. (1.25) simplified to

Ry(7) = pi* + 0°¢(7)
(1.27)

Z/Z/iﬂﬁw@ﬁM%J%MﬂﬁmM@

By using standard numerical quadrature rules such as quad2D function in MAT-
LAB, we can solve Eq. (1.25) [28].

The translated ACFs, Egs (1.25) or (1.27) can be mapped from an underlying
Gaussian processes at all times, but, the inverse translation to estimate an unknown
Gaussian ACF from a prescribed non-Gaussian PDF does not have an analytical solu-

tion occasionally. These incompatible cases with non-stationary translation processes

13
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are introduced as the following two cases [27, 29, 30]. First, the positive semi-definite
non-Gaussian ACF are not guaranteed in the inversion of Eq. (1.25). Second, part
of the non-Gaussian normalized correlation &(s,t) in Egs. (1.25) and (1.27) are not
placed on its admissible range [£™"(s,t), ™% (s,t)]. To resolve the prescribed cases
with inadmissibility, Iterative Translation Approximation Methods were developed
(22, 29, 9] and the recent methodology with K-L expansion is introduced in Chapter

2.

1.3.2 Higher-order correlations and higher-order

spectra

Another means of modeling non-Gaussian stochastic processes commonly used
in signal processing [31, 32] is through higher-order moments and/or spectra. The
higher-order properties are fundamental factors of stochastic processes resulting from
nonlinear systems that induce non-Gaussianity [31]. Combining these higher-order
moments and spectra with non-Gaussianity in the processes is essential to realistic
modeling and characterization of diverse physical system. Torquato [33] and several
researchers [34, 35| utilized n-point correlations to explain material properties for
random heterogeneous materialswhich are not explained only with the second order
covariances of the processes/fields with inefficient optimization problems. Moreover,

applications in nonlinear dynamics [36, 37, 38| shows that the higher-order proper-

14
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ties are important including turbulence [39, 40, 41] and wave interaction [42, 43, 44].
Furthermore, astronomic data examination [45] and physics of plasma [46] are ex-
tensively studied with their characterization. However, the prescribed researches
have been focused on interpretation and characterization of higher-order properties
of non-Gaussian processes/fields. There had been no mathematical form to include
the higher-order properties, therefore, we will focused on the development of stochas-
tic processes modeling to integrate these properties in Chapter 3. Having motivated
their importance, we now briefly review the specific mathematical properties of inter-

est here.

1.3.2.1 Cumulant and moment functions

The definition of joint moments of order r = ky + ky + - - - + k,, for a real random

vector X = {xy, 29, ,x,} are given by [47, 14]

Moy ey e, = B[22 k]
1.28
o ( Z,)T,aT@(Wl,WQ,"' 7wn) ( )

8wflw§2 e 8&)5% S
and the joint cumulants of order r are defined by:
L0 In®(wy,we, W)
Cky ko, kn = <_Z) 8w]f1w§2 T awrlin o (129)
w1=w2 Wn

15
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where the joint characteristic function is

CI)((A;17 Wo, -+ - 7wn> = E[ei(w1x1+w2x2+---+wnzn)} (130)

In addition, the moments and the cumulants are related as the following expressions

[14] as

Chidgdn = O (VP o= DIE[[[ ] E[[] ] - E[]] =] (1.31)

1€81 1ES2 1€8p

where the summation extends over all groups {s1, sa, - - - , s, } of the integers ki, ko, - - - , ky,.
In special, it is to be observed that each of cumulants higher than second order are zero
when X is a jointly Gaussian random vector in contrast to the moments. Therefore,
the cumulants of order n > 2 quantify the level of non-Gaussianity.

For a real stationary stochastic processes, f(t), the moment and the cumulant can

be indicated by

m[f(t)7f(t+7_1)7"' 7f(t+7-n—1)] EE[f(t)f(t+7—1)f(t+Tn)]

— i (1,73, 1) (1.32)

C[f(t)7 f(t + Tl)? e 7f(t + Tn—l)] = C£(7_177—27 c 'Tn—l)

16
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The cumulant can be denoted by combining Egs. (1.31) and (1.32) as

of = m]
() = mh(r) — m]

ch(r1,72) = mi(r1,72) — m{[m{ (1) + md(r2) + mJ(r2 — 71)] + 2(m])?
01(7'1,72,7'3)

= mz{(ﬁa T2, T3) — mg(ﬁ)mg(ﬁ% —T2) — mg(ﬁ)mg(ﬁa —7) = mg(%)mg(ﬁ —71)
—m[ml(r — 71,75 — 1) + ml (12, 73) + ml (72, 70) + M (11, 72)]

+ (m])*[mf (1) + m(72) + m{(73) + m{ (75 — 71) + md (73 — 72) + m{ (72 — 71)]

+ 6(m{)4

(1.33)

It is obvious that the moments and cumulants up to the third order are duplicated
when f(t) is a processes with zero mean. Similar to the property of cumulants of a
jointly non-Gaussian random variable, all cumulants of the process higher than the
second order represent non-Gaussian properties of the processes. For details, odd-
ordered cumulant and even-ordered cumulants express asymmetric and symmetric

non-linearities, respectively [48].

17
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Furthermore, the statistics can be related the cumulants at 7; = 0 as

¢4(0,0) = m}(0,0) = E[f(t)" (1.34)

¢1(0,0,0) = BIf(t)"] = 3{E[f(£)’]}”

The skewness and kurtosis of the process are matched with the third and fourth-order
cumulants at the origins. However, we need to make a point of that the cumulant
functions provide richer characterization and information of the process than the

singular values of the statistics.

1.3.2.2 Polyspectra

In the frequency domain, the n-th order polyspectrum (also referred as cumulant
spectrum) of a process f(t) is defined as the Fourier transform of its n-th order

cumulants as [47]

Cn(wlvw%' 7wn—1)
1 o o ,
N (2m)n—1 / o / (11, 7oy - Ty Je T TR R T ) gy gy -,y
—00 —00
(1.35)
where C/(wy,ws, - -+ ,w,_1) is a complex number.

As the first order polyspectrum, the power spectrum is a widely known quantity

18
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to show the energy/power related with different frequency waves in the processes. In
addition, the traditional SRM expands a stochastic process by matching the desired
2nd-order property.

The bispectrum, the second form of polyspectrum, also, has been researched exten-
sively to explain physical phenomena [47, 15, 49, 48, 45] regarding quadratic phase
coupling. The details of phase coupling are discussed the following section. The
important properties of bispectrum possesses are reviewed briefly here. First, the

bispectrum owns the following symmetries.

L. B(wy,ws) = B(wy + 27T, wy 4 277T) (1.36)

B(wl,wg) = B(w2,w1) = B*(—WQ, —wl) = B*(—wl, —CL)Q)
2. = B(—w1 — w2,w2) = B(wl, —Wp — UJQ) = B(-U)l — wg,wl) (137)

= B(w2, —W1 — W2)

For thesis symmetries, the bispectrum can be depicted within the principal domain
wy >0, wy > wo, Wy +wy < T as depicted in Figure 1.1.

Bispectrum, as mentioned that it is a complex value, also includes unique property
that the real and imaginary parts having different physical meaning. It was shown
that the real and imaginary components of the bispectrum are deduced to the Fourier
transform of symmetric and antisymmetric parts of the third-order cumulant, s(71, 72)

19
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(nT/2,nT/2)

A w1

' (nT, 0)

Figure 1.1: Symmetry properties of bispectrum.

and a7y, 72) as [50]

RB(wr,w2) = B / / s(11, To)e Tt dr 4y
o oo (1.38)
SB(wr,wsy) = )2 / / a(ry,T2)e e~ wiTiwa2) 10 L dry
where
L,y ’
s(m1,T) = 5{03(7'1,7'2) + (=, —7-2)}
(1.39)

1
a(my, ) = 5{05(7'1,7'2) — cg(—ﬁ, —7'2)}

Following the mentioned relationships, integrating the real and imaginary components

of the bispectrum results in the skewness of the process and the derivative of the

20
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process respectively [40, 42] as

E[f(t)*] = (0,0) = ¢}(0,0)
= /_: /_Z RB(wq,wq)dwidws (1.40)
= 6/000 /OOO RB(wq,wq)dwidws

(%)

t

0
= —/ / wiws (w1 + we) I B (w1, wo)dw dws (1.41)

—0o0

= —6/ / wlwg(wl + U.)g)%B(Wl, w2)dw1dw2
0 0

Finally, we can indicate bispectrum in terms of its magnitude and biphase, 8(w1, ws),

as

B(wi,ws) = | Bluwy, ws)|e?12) (1.42)

where

SB(wr,wa) w2)] (1.43)

B(wy,wy) = arctan [%B(M o)

In addition, trispectrum (also refered as the fourth-order cumulant spectra) can be

defined as the Fourier transform of the fourth-order cumulant by Eq. (1.35). However,

21
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the fourth-order cumulant are different from the the identical order moment as Eq.
(1.34). Similar to the real and imaginary components of the bispectrum (Eq. (1.38)),
the kurtosis and the trispectrum can be related to the one between the fourth-order

cumulant with zero lag as [51]

c4(0,0,0,0) = E[f(1)] = 3- E[f(t)*]?

/ / / §RT wl, Wa, wg)dwldwgdwg

Lastly, similar to Eq. (1.42), a triphase, (w1, ws, ws) and a magnitude of the trispec-

(1.44)

trum can be utilized to represent the trispectrum as

T(wy,wz, w3) = |T (w1, wa, ws)|eW125) (1.45)

where

ST (wy, wo, wg)] (1.46)

w1, Wy, ws) = arctan
’Y( ! 2 3) 3:Ej—‘((")la("}27("}3)

1.3.2.3 Phase coupling and higher-order spectra

Higher-order moments/cumulants or higher-order spectra are used to detect and
and quantify nonlinearities in stochastic processes. In a Fourier-basis, these higher-
order properties show the interaction between distinct harmonic components causing

contribution to the power at their sum and/or difference frequencies. Quadratic phase
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coupling is the simplest interaction phenomenon and has been extensively studied
[52, 53, 46, 54, 14]. 3rd-order cumulant and bispectrum was analytically calculated.

The random process with quadratic phase coupling can be expressed as

f(t) = acos(Mt — 01) + bcos( Aot — o) + ccos(Ast — (6 + 05)) (1.47)

where frequencies are related as A3 = A\; + Ay and independent and identically uni-
formly distributed phase angles 0; ~ U(—m, 7| where i € 1,2,3. At the third harmonic
term, the quadratic phase coupling is placed. The 2nd-order cumulant(=moment) and

power spectrum are calculated as

eo(7) = Ry(7) = E[f (1) f(t + 7))

2 2 ) (1.48)
=5 cos(A17) + 5 cos(AaT) + b) cos(A37)
Sw) = % /_oo co(T)e Tdr
- %2[5(&) — /\1) + 5(w + )\1)] + %2[5@) _ /\2) + 5(&) + /\2)] (149)
+ %2[5(00 —A3) + 8w + Ag)]

The power spectrum of the simple example has 3 impulses with the coefficients a? /4,
b?/4 and ¢?/4, respectively as depicted in Figure 1.2a. The impulses are placed at

the frequencies, A1, Ay, and Az in the region, w > 0. In view of power spectrum, the
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€ :
= 3 W3
[aa)
1,
Al AZ A3 @ /11 wq
(a) (b)

Figure 1.2: (a) Power spectrum and (b) bispectrum for simple two-wave quadratic
phase coupling.

quadratic phase coupling terms just identically performs with the independent terms.

The values of power spectrum causes the variance of Eq. (1.47) as

Variance[f ()] = ¢5(0) = Ry(0) = /_ " S(w)dw = 2(%2 + 1_2 + %) (1.50)

On the other hand, the 3rd-order cumulant(=moment) and bispectrum of the

process is given as [54]

03(7'1,7'2) = 33(7'1,7'2) =
abe
= T[COS<)\27—1 + Mi72) + cos(A3 — A\i72) + cos(A T + AeTo) (1.51)

+ COS()\ng — )\272) + COS()\lTl — )\37’2) + COS()\QTl — )\37’2)]
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1 o0 o
B(wy,wq) = (27)2/ / (03(7'1, TQ))G_wlTle_w2T2dTldTg

(1.52)
abc
= ?[(5@& — A1, w2 — )\2) + (5(w1 + A\, wy + )\2) .. ]
There are 12 impulses with same coefficients %bc in the bispectrum, Eq. (1.47), at

(A1, Ag) within the principal domain, w; > wy > 0 as Figure 1.2b. Compared to the
power spectrum, the bispectrum represents the phase relations of harmonic compo-
nents and contain it as the impulses at the coupled frequencies. Therefore, Eq. (1.47)
has positive value of un-normalized skewness because of the bispectrum as

Skew[f(t)] = 03(0,0) = Rg(0,0) = /oo /Oo B(wl,wz)dwlde ( )
o0 Teo 1.53

Similar to the prescribed quadratic phase coupling example, a random process

with cubic phase coupling at the last harmonic component can be expressed as

f(t) = a-cos(Ait — 61) 4+ beos(Aat — ) + ccos(Ast — b3) + d cos(Agt — (61 + O3 + 65))

(1.54)

25



CHAPTER 1. INTRODUCTION

The second-order cumulant(= moment) and power spectrum are given by

eo(7) = Ro(7) = E[f (1) f(t + 7)]

, ; , 2 (1.55)
= % cos(A\7) + ) cos(AaT) + %COS()\gT) + 03 cos(AgT)
S(w) = % /OO Ry(T)e™“Tdr
= b = M)+ 00w+ A+ (50— ) + 3+ )] (1.56)
4 %2[5@ — As) + 8(w + Ag)] + d;[&w = As) +0(w £ Ag)]

The power spectrum has 4 impulses with the values a?/4, b?/4, ¢?/4, and d?/4, re-
spectively. Similar to the Eq. (1.48) and (1.49), the power spectrum suppresses the
cubic phase relations of harmonic components and is not able to discriminate Eq.
(1.54) from other processes without cubic phase coupling. The power spectrum and

second order moment results in the variance of Eq. (1.54) as
a v E P

Variance|f(t)] = c2(0) = Ry(0) = /_OO S(w)dw =2 - ( 1 + 1 + i + 1 > (1.57)

However, the 4ourth-order cumulant which is not identical to the fourth-order moment
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and depicts the cubic phase coupling obtained as

04(7'177277'3)

= R4(7177'277'3) - Rz(ﬁ) : R2(7'2 - 7'3) - Rz(Tz) : R2(7'3 - 7'1) - 32(73) : R2(7'1 - 7'2)
abed

[cos(AaT1 + A\1To — A6T3) + cos(A3T1 + A\iTo — AgT3) + cos(A 71 + AaTo — AgT3)

+ cos(Ag71 + AaTo — AgT3) + cos(Ai T + A3Ta — AgT3) + cos( Aoy + A3y — A6T3)
+ cos(A¢T1 — Ao — A37T3) + cos(AgT1 — A1Ta — A373) + cos(AgT1 — A3To — AoT3)
+ cos(NgT1 — AT — AaT3) + cos(AgT1 — A3Te — A173) + cos(AgT1 — AaTo — A173)
+ cos(AaT1 — AeT2 + A173) + cos(A3T1 — AeTo + A173) + cos( A3 + AT + A1 73)
+ cos(Aa71 + A3T2 + A73) + cos(A 71 — AeT2 + AaT3) + cos(A3T — NeT2 + AaT3)
+ cos( A3 + MiT2 + Aa73) + cos(Ai T + AgTe + AaT3) + cos(A 71 — AgT2 + A373)

+ COS()\QTl — )\67_2 + )\37‘3) + COS()\QT]_ + )\17'2 + )\37‘3) + COS()\lTl + )\27'2 + )\37’3)]

4
— %[COS(—)\lTl + )\17'2 + /\17’3) + COS()\lTl — )\17’2 — )\17'3) + COS()\lTl + )\17'2 — )\17'3”

b4
— g[COS(—/\QTl + XoTo + Aa73) 4 cos(AaTy — AoTo — Aa73) + cos( ATy + AaTa — Aa73))]
4
— %[COS(—Ag,Tl + )\37’2 + )\37’3) + COS(/\3T1 — )\37’2 — )\37’3) + COS(>\37'1 + )\37'2 — >\37’3)]
d4
— g{COS(—)\ﬁTl + )‘67—2 + )‘67—3) + COS()\67'1 — )\67—2 — )\67'3) + COS()\ﬁTl + )\67—2 — )\67—3)]

(1.58)
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The trispectrum from the prescribed fourth-order cumulant is given by

T(wy,wo, w3) = / / / ca(T1, T2, 73) )€~ T €T 2T Ay dydT

abed
= 1—6[5(601 — )\1,&)2 — )\2,&)3 — )\3) + 5(W1 + )\1,602 + )\2,&)3 + )‘3) + - ]

4

a

16[(5(&)1 + /\1,(,02 /\17CU3 — /\1) + 5((«01 - /\1,(,«}2 + /\17(.{)3 + /\1) + - }
4

16[(5(&]1 -+ )\27(,02 )\27(,03 — >\2) + (5(&)1 - )\27(*)2 + )\2,(,03 + >‘2) + - }
4

C

16[5(w1 + Az, w2 — A3, w3 — Ag) +0(w1 — Az, wa + Az, wg + Ag) + -+ -]

d4

16[(5(w1 + X6, wa — g, w3 — Ag) + (w1 — Ag,wa + Ag,ws + Ag) + - -]

(1.59)

Inspection of Eq. (1.59) shows that the trispectrum has 48 components associated
with cubic phase interactions of distinct harmonics (with magnitude abed/16) and 6
components associated with “self-interactions” (3 wave coupling of waves with iden-
tical frequencies having magnitude —a*/16, —b*/16, —c*/16, —d*/16, respectively).
The second terms exist even in the absence of wave interaction terms in the expan-
sion. In other words, these self-interaction terms exist even in the classical SRM with

asymptotic Gaussianity. The unnormalized kurtosis of Eq. (1.54) is given as

Kurt[f(¢)] = ¢4(0,0,0) / / / (w1, wa, wa)dwr, dws, dws

abed d*
— 4 o _ _
8 16 6- (16+16+16+16)

(1.60)

To understand the “self-interactions” or “asymtonically diminishing” terms, let
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us consider a process f(t) represented by the classical Gaussian SRM of Eq. (1.17).

The trispectrum of classical SRM is

T((.Ul, Wa, (U3)

A4
f[é(wl + A, wo — A, wg — Ag) + 0(w1 — Mg, wo + Ak, ws + Ag) + - -]
0

o]
k=

(1.61)

where there are every 6 peaks per the harmonic term, respectively. As an aside,
the bispectrum of f(t) is zero because there is no quadratic phase coupling. The
unnormalized kurtosis of f(¢) from the classical SRM with the harmonic terms can

be represented as

Kurt[f(t)] = ¢4(0,0,0) = / / / T (w1, wa, w3)dwy, dws, dws

=—6 Z(I)
k=0
The original kurtosis of classical SRM is given by
o A}
. E[f(t)4] 64(07070) +3- 02(0)2 —6 Zkz:O(Tk)
Kurtosis|[f(t)] = = = +3
TOI= Eiri (02 o (163)
32 im0 A
=5 +3=3
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because the limit can be calculated as [3]

N-1

N—-1
lim > Af = lim Z[2S(wk)Aw]4/2
0

N—oo N—oo

(1.64)

2

Smaz‘

1
= . 2 — =
\/_(Wu max) ]\}Hn N 0

—00

where w, is upper cut-off frequency of S(w) and 5,4, is maximum of power spectrum
S(w). Therefore, we notice that the kurtosis of Eq. (1.17) asymptotically converges

to 3, and the SRM is asymptotically Gaussian.
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Chapter 2

Iterative translation approximation
method for non-stationary and

non-Gaussian processes

As an existing family of procedures called the Iterative Translation Approximation
Method (ITAM) to handle inadmissibility of translation processes, a new methodology
is presented for simulating non-Gaussian and non-stationary stochastic processes us-
ing Karhunen-Loeve (KL) expansion and translation process theory [9]. The proposed
method advances the ITAM by iteratively updating the non-stationary covariance
function. Because the original ITAM requires estimation of evolutionary spectrum
from the covariance function for which no analytical relation exists, the presented

method without the prescribed estimation improves the accuracy with efficient com-

31
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putational cost for non-stationary processes. Several stationary and non-stationary

examples are examined.

2.1 ITAM with spectral representation

Translation process model is advantageous in plenty of civil engineering prob-
lems. For example, the extreme values of the non-Gaussian processes are essential
in reliability analysis, therefore, the translation process matching the non-Gaussian
distribution and the prescribed ACF is appropriated in spite of its inadmissible cases
mentioned in Section 1.3.1.

To solve the inadmissibility, the ITAM was introduced to simulate stationary and
non-Gaussian processes by upgrading the underlying Gaussian PSDF in view of SRM
[29]. Furthermore, the ITAM was expanded to represent non-stationary and non-

Gaussian processes by iteratively updating the underlying Gaussian ES [29] as

. T s
S (4, £) = {SN(WJ)} 0)

. Se’ (w, t) (2.1)
Sy w.n)
where ST (w,t) is a target non-Gaussian and non-stationary ES, S%) (w, t) is the esti-
mated non-Gaussian ES at the ith iteration. Sg) (w,t) and Sg+1)(w, t) are the under-
lying Gaussian ES at iteration ¢ and 7 + 1 respectively. The exponent parameter [ is
chosen to adjust convergence speed.

There are several strong advantages in the ITAM. First, it converges fast within
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ten iterations in general. Second, it is computationally light and easy to implement.
Third, the updated underlying Gaussian ES satisfy the condition of PSD. However,
there are primary limitation of the ITAM with ES is that it needs estimation of the
ES from the non-stationary ACF for non-stationary processes since Priestly defined
that the ES is not defined by the non-stationary ACF [55]. Although a method to
calculate a unique ES from the non-stationary ACF under several conditions was
proposed [56], it is computationally expensive. Moreover, an approximation quantity
named as pseudo-autocorrelation that assumes local stationary are introduced in the
ITAM [29]. As a result, the prescribed ITAM for non-stationary and non-Gaussian

processes costed expensive calculation with relatively lower accuracy.

2.2 ITAM with Karhunen-Loéve expan-

sion

The presented method with K-L expansion detours the estimation of ES by di-
rectly updating the underlying non-stationary ACF repeatedly and is denoted as
ITAM-KL. The flowchart of ITAM-KL is provided in Figure 2.1 as well. The follow-

ing sections explain the particulars of the proposed methodology.
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Start

Initialize underlying
Gaussian ACF R(é)(s, t)

Estimate non-Gaussian
ACF RV (s,t) by Eq. (1.25)

yes

no

Upgrade underlying Gaussian
ACF RY™(s,t) by Eq. (2.3)

Find the nearest PSD
matrix by Eq. (2.4)

Figure 2.1: Flowchart of proposed methodology: ITAM-KL.
2.2.1 Initialize underlying Gaussian ACF

With a target incompatible pair of non-stationary autocorrelation and marginal
non-Gaussian CDF, choose an initial arbitrary underlying Gaussian ACF. The initial
ACF must satisfy every condition of ACF. In practical, the initial ACF can be chosen

by the target non-Gaussian ACF.
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2.2.2 Compute the non-Gaussian ACF

Secondly, the non-Gaussian and non-stationary ACF is estimated from the un-
derlying Gaussian based on translation process using Eq. (1.25). The normalized

Gaussian correlation function in Eq. (1.25) is calculated as

o (s,1) = (2.2)

2.2.3 Upgrade underlying Gaussian ACF

Given that the procedure is not converged at i-th iteration, the underlying Gaus-

sian ACF is upgraded for i 4+ 1th iteration as
i Ry (s,t i
RE(5,1) = (NLi)RE;)(s,t) 2.3

Here is no exponent parameter 3 in the conventional ITAM because it will produce
imaginary numbers when the signs of R%(s, ) and Rg)(s, t) are opposite in Eq. (2.1).
Moreover, the upgraded Gaussian ACF is not strictly PSD such as the updated ES
in the original ITAM. Therefore, we require an step for preserving the PSD property

of the updated Gaussian ACF at every iteration.
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2.2.4 Find nearest positive semi-definite ACF

Higham [57] suggested a methodology to compute its nearest correlation matrix
of an arbitrary real and symmetric matrix A in Frobenius norm by solving
. ]— 12
min 5 |A — A

(2.4)
st. A= AT diag(A) =e, A >0

where A is the nearest PSD matrix and e is the unit vector. Furthermore, Qi and
Sun [58] proposed a quadratically convergent Newton method for maintaining the
nearest correlation matrix of the updated ACF by dualizing Eq. (2.4) to a convex
optimization problem. Even though they are several methods for computing the
nearest PSD matrix [59], ITAM-KL employed the method of Qi and Sum mentioned
in the Appendix A.

This step of maintaining PSD correlation is iteratively applied after upgrading
underlying ACF. Even though the computed non-Gaussian and non-stationary ACF
becomes closer to the target without this iterative step, the converged underlying
Gaussian ACF would be negative-definite. Because of the negative eigenvalues of the
underlying ACF, the K-L expansion generates significant numerical errors.

Even though the computed non-Gaussian and non-stationary ACF is closer
to the target without this step, the converged underlying ACF is not PSD (and,

therefore, not a valid ACF). In this case, the underlying Gaussian ACF has negative
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eigenvalues and simulation with the K-L expansion produces considerable numerical

errors. This effect is considered additional in Section 2.5.

2.2.5 Check relative difference and iterate

The relative difference between the target non-stationary and non-Gaussian ACF

and the estimated one is calculated as

_ — 3 2
SN SN [RY (50 tm) — RE (S, t)]

E(i) = 100 — — B}
Y a0 Lo B (5ntm)]

(2.5)

where N is the number of discretized time steps. Corresponding to the level of the

relative difference. the iterative flow of ITAM K-L will continue or stop.

2.2.6 Simulation using K-L Expansion

When ITAM K-L converges in an final underlying Gaussian ACF, translation
process maps the prescribed Gaussian ACF to the target non-Gaussian and non-
stationary ACF closely. At first, K-L expansion with the underlying Gaussian ACF
(Eq. (1.22)) simulates Gaussian and non-stationary samples. Finally, the sample
functions can be mapped to the prescribed non-Gaussian and non-stationary processes

(Eq. (1.24)).
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2.2.7 Comments on numerical implementation

For numerical execution, there is few restrictions in view of that we do not truncate
the K-L expansion - whole eigenvalue and eigenfunctions of ACF are kept. The
truncation and discretization of K-L expansion was studied [5]. Consequently, when
we only consider to select the degree of discretization of the ACF, there are a some of
numerical limits arisen in the representation. The accuracy of the presented ITAM-
KL approach is without regard to the the truncation. However, the truncation of the
ACF is strongly related to the computational cost. Therefore, as the discretization
become finer, it requires exponentially increased computational cost related to the

number of evaluation of Eq. (1.25).

2.3 Numerical examples

A number of numerical examples of stationary /non-stationary and strongly /weakly
non-Gaussian processes are examined to check the availability of the presented method,
ITAM-KL. Furthermore, examples includes the two types of incompatibility in the
translation processes mentioned in Section 1.3.1. This section utilized the identical

and reshaped numerical examples exploited by Phoon et al. [24].
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2.3.1 Stationary and non-Gaussian processes

The target stationary and non-Gaussian ACF's as numerical examples are consid-

ered:

Ci(s,t) = exp(—|s —t|)
Cy(s,t) = exp(—|s — t|?)

(2.6)
Cs(s,t) = exp(—|s — t|) - cos[dn(s —t)]

Cy(s,t) = exp(—|s — t|?) - cos[4m(s — t)]

which are defined within range s, € [0, 2].

As the target non-Gaussian distributions, two different zero mean and unit vari-
ated marginal non-Gaussian CDFs are utilized to investigate the accuracy and effi-
ciency of the presented ITAM-KL for weakly and strongly non-Gaussian processes.

First, the beta distribution CDF is

Fp+q9) [ -1
Plyip.a) = s [ ot o ia: (27)
I'(p)T'(q) Jo
where I'(+) is the gamma function and v = =22 with upper and lower bounds

Ymax —Ymin

Ymin aNd Ymax. The parameters in the given unit variate and zero mean CDF are
chosen as p = 4 and ¢ = 2, and the upper and lower bound are ,,;, = —3.74 and
Ymaz = 1.87. As described in the plots of the PDF and the correlation distortion in

Figure 2.2, the beta distribution is weakly non-Gaussian.
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057 r
—Beta
- - Normal|
04r
0.5r
0.3r
a
“r
A~ 0
0.2
_05¢F
0.1r
—Beta
0 - - Without distortion

4 6 ! 05 0 0.5 1

(a) (b)

Figure 2.2: Weakly non-Gaussian and stationary beta (a) PDF and (b) its correla-
tion distortion.

The results of non-Gaussian and stationary ACFs with the beta distribution are
described with their own target ACFs and the underlying ACFs in Figure 2.3. In this
case with the weakly non-Gaussian distribution, the inadmissibility of the translation
process does not strong. To estimate the effectiveness of ITAM-KL, the relative dif-
ference from Eq. (5.12) are calculated in Table 2.1. The maximum relative difference
is only 1.94%.

Secondly, the shifted lognormal distribution is considered and its CDF is

(2.8)

F(y;a,8,0) :@(M)

B

The parameters of the shifted lognormal CDF are chosen as o« = —0.7707, 5 = 1, and
0 = —0.7628 to make the CDF the mean zero and unit standard deviation distribu-

tion. As plotted in Figure 2.4, the corresponding PDF is strongly non-Gaussian with
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Figure 2.3: Underlying Gaussian, target non-Gaussian and ITAM computed non-
Gaussian ACFs for (a) C, (b) Cy, (¢) Cs, and (d) Cy with weakly non-Gaussian beta

distribution.

the broad inadmissible range in its correlation distortion.

The results for the lognormal distribution are plotted in Figure 2.5 with the es-

timated non-Gaussian ACFs, the target non-Gaussian ACFs, and the corresponding

underlying Gaussian ACFs. Contrast to the beta distribution, the degree of correla-

tion distortion of the translation is extreme. Nevertheless, the proposed ITAM-KL
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Figure 2.4: Strongly non-Gaussian and stationary shifted lognormal (a) PDF and
(b) its correlation distortion.

generate accurate results for ACFs C; and Cy with the respective differences of 0.014%
and 0.228%. Although the translation of the strongly non-Gaussian distribution has
serious negative distortion, the relative differences are small because the ACFs C}
and Cy holds only positive correlation. However, the ACFs C3 and C) possessing
negative correlation have relatively bigger errors of 35.30% and 39.92%, respectively.
Although the relative differences between the estimated non-Gaussian ACFs and tar-
get ACF's are extensive, the general shapes of the target ACFs are preserved in the
computed ACFs. The differences of ITAM-KL for ACFs, C; — Cy with the lognormal
distribution are listed in Table 2.1. Also, the corresponding computational cost with
a single 2.3 GHz Intel Core 17 processeor are provided. Moreover, all number of
iterations across all [TAM-KL and the maximum number of the finding nearest PSD

ACF (referred as Max. N.-CG iter.) also are in Table 2.1.
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Figure 2.5: Underlying Gaussian, target non-Gaussian, and I'TAM computed non-

Gaussian ACFs for (a) C, (b) Cy, (¢) Cs, and (d) Cy with strongly non-Gaussian

shifted lognormal distribution.
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2.3.2 Non-stationary and non-Gaussian processes

As non-stationary and non-Gaussian examples, the following target covariances

are examined as

C5(s,t) = min(s, t)
Cs(s,t) = 4|min(s,t) — st]

(2.9)
Cr(s,t) = min(s, t) cos[dn(s —t)]

Cs(s,t) = 4[min(s,t) — st] cos[dn(s — t)]

where the domain of the AXFs are identically s,t € [0, 1] and the maximum variance
is one. The plots of these target time-varying covariance matrices are presented in
Figure 2.6.

Similar to the stationary numerical examples, two different non-Gaussian and
non-stationary distributions with zero mean are considered, but their variance are
time-dependent according to their own target covariance functions. First, the non-
stationary beta distribution (Eq. (2.7)) with u = 2=y = 44, (¢) =0y (1) ’@,
and Ymax = tp(t) + op(t) @ is examined. The distribution parameters are cho-
sen to be p =4 and g = 2 for the CDFs with the mean 1 (t) = 0 and the time-varying
variance oy,(t)? = C(t,t) for all t. For the non-stationary and weakgly non-Gaussian

beta distribution, the results of the proposed ITAM-KL at time t = 0.5 with target

non-Gaussian, computed non-Gaussian and underlying Gaussian ACF's are plotted in
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Figure 2.6: Target non-stationary covariances: (a) Cs, (b) Cg, (¢) C7, and (d) Cs.

Figure 2.7. The relative difference are negligible as mentioned in Table 2.1.
Secondly, the non-stationary and strongly non-Gaussian shifted lognormal distri-
bution is examined (Eq. (2.8)). The distribution parameters are defined as time-
varying «, ¢ and constant = 1. In special, the parameter o and 0 are functions
of ¢ and are chosen by making the mean p4(t) = 0 and the variance o7 (t) matching

the target time-dependent variance. Therefore, the mean and the variance of the
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Figure 2.7: Underlying Gaussian, target non-Gaussian, and I'TAM computed non-
Gaussian normalized ACFs of (a) Cs, (b) Cs, (¢) C7, and (d) Cs with non-stationary
beta distribution at time ¢ = 0.5.

non-stationary lognormal distribution are given by

pi(t) = 0(t) + exp {a(t) + %2} (2.10)
07 (t) = [exp(B*) — 1] - exp[2a(t) + 5] (2.11)
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The results of ITAM-KL for the non-stationary lognormal distributions are de-
picted in Figure 2.8 at ¢ = 0.5. We can recognize the highly accurate result in the
covariances Cys and Cg with smaller relative differences of only 0.016% and 0.014%
respectively. Nonetheless, the differences in the covariances C7; and Cg are relatively
larger because of their negative 1 correlations. Even though severe incompatibility
between the covariances and the non-stationary CDFs are emerged, the main charac-
teristics of covariances are preserved in the computed covariances. The summary of

the non-stationary results are provided in Table 2.1

2.4 Comparison with ITAM-SRM

One of the most important advantage of the presented method compared to the
conventional ITAM-SRM fro non-stationary processes is that it eliminates the com-
putationally heavy and inaccurate step to estimate ES. The proposed ITAM-KL also
increase the accuracy in view of the relative difference. Compared with the ITAM-
SRM [29], an example with strongly non-Gaussian marginal distribution and non-

stationary ES from the previous work is evaluated. The target non-Gaussian ES is

given by
w—wq(t) 2
Sn(w, 1) = e (5 (2.12)
where the parameter wy(t) is
wolt) = 10 + 20t (2.13)
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Figure 2.8: Underlying Gaussian, target non-Gaussian, and I'TAM computed non-
Gaussian normalized ACFs of (a) Cs, (b) Cs, (¢) C7, and (d) Cs with non-stationary
shifted lognormal distribution at time t = 0.5.

The equivalent non-Gaussian and non-stationary ACF is computed as [55]

Rn(s,t) = /_00 VS (w, 5)Sn(w, t)e™ dw (2.14)

The non-stationary and non-Gaussian ES and ACF are plotted in Figure 2.9.

As non-Gaussian and non-stationary distributions, two different beta CDFs with
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Table 2.1: Relative differences and computational costs for weakly (beta) and
strongly (lognormal) non-Gaussian distributions applied to stationary and non-
stationary processes.

Beta distribution
Rel. diff. € (%) ITAM-KL iter. CPU Time (sec) Max. N.-CG iter.
Stationary (Az = 0.0250, 81 x 81 matrices)

Target

Gy 0.0000 3 667 0
Co 0.0599 4 1529 .
Cs 0.0000 3 5692 0
Cy 1.9372 3 573 3
Non-Stationary (Az = 0.0125, 81 x 81 matrices)
Cs 0.0024 7 1773 0
Co 0.0007 6 1156 0
Cr 0.0007 6 1165 0
Cs 0.0009 6 1016 0
Target Lognormal distribution

Rel. diff. € (%) ITAM-KL iter. CPU Time (sec) Max. N.-CG iter.
Stationary (Az = 0.0250, 81 x 81 matrices)

Ch 0.0146 10 964 0
Cy 0.2277 11 2076 3
Cs 35.393 5 374 5
Cy 39.925 4 316 5
Non-Stationary (Az = 0.0125, 81 x 81 matrices)
Cs 0.0159 14 1584 0
Ce 0.0142 10 851 0
Cr 34.450 4 341 5
Cy 22.685 5 379 4
zero mean and unit variance are considered and defined as
fabed =t D geigopit ()

L(e)l(d)(b - a)

Firstly, an “U-shaped” beta distribution with parameters a = —1.1, b = 1.7, ¢ =

0.342, and d = 0.528 is considered. Secondly, a “L-shaped” beta distribution with
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Figure 2.9: Target non-Gaussian and non-stationary (a) ES and (b) ACF.
parameters a = —0.457, b = 28.45, ¢ = 0.1895, and d = 11.795 is examined. Their
own upper and lower bounded are given by 9,,;, = @ and ¥y,,.. = b. The plots of the

PDFs and correlation distortions are depicted in Figure 2.10.
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Figure 2.10: Two different beta (a) PDFs and (b) these correlation distortions.

The estimated non-Gaussian ESs and ACFs for the prescribed beta distributions

are computed based on the ITAM-SRM and ITAM-KL and the relative difference at
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different time t = 0, t = 1, and ¢ = 2 are listed in Table 2.2. It is evident that the
relative differences with the proposed ITAM with K-L expansion are much smaller
the the one with the ITAM-SRM. Furthermore, the converged non-Gaussian ACFs

using the two different ITAMs are plotted in Figure 2.11.

1 i 1 i
—Target non-Gaussian —Target non-Gaussian
- - ITAM with SRM 0.8} - - ITAM with SRM
0.8r ~~ITAM with K-L |] ~ITAM with K-L
0.6f
0.6f
w 047 <3
2 2
0.2f
0 L
-0.2¢1
-0.4 '
0 0.5 1 1.5 2
S S
(a) (b)

Figure 2.11: Comparison of computed non-Gaussian ACFs using [ITAM-KL and
ITAM-SRM with (a) U-beta distribution at time ¢ = 0 and (b) L-beta distribution
at time t = 1.

2.5 Effect of the finding nearest PSD ma-

trix of underlying ACF

As mentioned before, the importance of the step of finding nearest PSD matrix
of underlying Gaussian ACF in the proposed ITAM-KL are considered. This stage
keeps the underlying Gaussian ACF PSD and ensures the compatibility of transla-
tion process. However, someone may prefer to iterative update the ACF without
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Table 2.2: Comparison of relative differences between the standard ITAM
with SRM and the upgraded ITAM with the K-L expansion.

Relative difference € (%)

U-beta distribution L-beta distribution

Time ITAM with SRM ITAM with K-L. ITAM with SRM ITAM with K-L

t=0 12.798 2.4433 D7.627 12.655
t=1 9.3529 5.8626 69.647 52.139
t=2 7.9026 6.3818 68.608 51.672

the prescribed step and simulate the process only with the positive eigenvalues and
their eigenfunctions. But, the mentioned approach without finding PSD ACF cause
significant difference between the target non-Gaussian ACF and the estimated non-
Gaussian ACF from the stochastic samples.

In Figure 2.12a, the converged normalized non-Gaussian ACFs with and with-
out finding the nearest PSD ACF are depicted. Even though both results seem
to be matched well with the target, the non-PSD solution much converge to the
target ACF. Nevertheless, Figure 2.12b presenting the estimated ACFs from the
sample functions shows us that simply ignoring the non-negative eigenvalues by not
search the nearest PSD ACF during the iterations causes considerable error in the
simulation. Furthermore, the ignoring PSD yields the realization with inaccurate

variance o2, oon & 3.3322) with 100,000 samples compared to the other one
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(0%ien psp ~ 1.0062).

—Target i A —Target
- - Without finding PSD ! il - - Without finding PSD
-—With finding PSD --- With finding PSD

051 0.5

ACF
=)
ACF
=

-0.5¢ -0.5¢

(a) (b)

Figure 2.12: (a) Computed normalized non-Gaussian ACFs after iterations with
and without finding the nearest PSD ACF. (b) Estimated normalized non-Gaussian
ACFs from sample functions produced using the ACFs in (a) with the K-L expansion.

The previous results show that the step searching the nearest PSD ACF is indis-

pensable. However, is it required at every end of iteration or can we only apply this

step once at the last iteration? Table 2.3 shows the accuracy of the two procedures

on the numerical examples in Section 2.3.1 and 2.3.2. It is shown that finding the

nearest PSD at every iteration is superior for every case (C) — Cs). Therefore, given

the inexpensive cost of finding the nearest PSD matrix, it is recommended to search

the nearest PSD at every iteration although the both scheme are valid to satisfy the

PSD condition of ACFs.

23



CHAPTER 2. ITERATIVE TRANSLATION APPROXIMATION METHOD

Table 2.3: Comparison of relative differences between the target
and computed ACFs by finding the nearest PSD ACF at each it-
eration and finding it once at the end of iterations for a shifted
lognormal distribution.

Relative difference € (%)

Target Finding PSD at each iteration Finding PSD once
Stationary

4 0.0146 0.0146

Cy 0.2277 0.2388

Cs 35.393 36.596

Cy 39.925 40.028

Non-stationary

Cs 0.0159 0.0159
Cs 0.0142 0.0142
Cr 34.450 35.217
Cs 22.685 23.380

2.6 Conclusions

A new methodology have been proposed for simulation of strongly non-Gaussian
and non-stationary stochastic process. The proposed methodology belongs to the
scope of the ITAM and is demonstrated to improve the accuracy and computational

efficiency of the ITAM for non-stationary processes. Diverse marginal distribution
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with weakly /strongly non-Gaussian are considered as numerical examples. The re-
sults show that the proposed methodology is competent for both stationary and non-
stationary processes with different incompatibility of translation process. It possesses
several advantages when compared with the conventional simulation methods. First,
the convergence speed is very fast and the accuracy of matching with the target ACFs
is high. Secondly, estimation of ES in the original ITAM for non-stationary processes
is alleviated. Thirdly, the results possesses the marginal non-Gaussian distribution
perfectly because of translation process. Lastly, it is straightforward to apply the

ITAM-KL in diverse situations.
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Chapter 3

Bispectral representation method

The prescribed spectral representation method is generalized for simulation of
asymmetrically nonlinear stochastic processes with skewed higher-order properties
[10]. New orthogonal increments for the spectral process in the Cramér spectral
representation are proposed to include wave interaction and satisfy the orthogonal
conditions up to thrid-order. To define the orthogonal increments, two new quantities
- partial bicoherence and pure power spectrum - that decouple the contribution of the
quadratic wave interactions and single wave powers in the power spectrum. Several
numerical examples of diverse processes with different forms of power spectra and
bispectra are considered to examine the proposed method. Also, turbulent wind

velocities form large eddy simulations are simulated with the proposed methodology.
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CHAPTER 3. BISPECTRAL REPRESENTATION METHOD

3.1 Partial bicoherence and pure power

spectrum

Bicoherence is appropriate normalized form to evaluate the magnitude of the
bispectrum (mentioned in Eq. (1.42)). The most common definition of the bicoherence

derived by Kim and Powers [46] is given by

| B(ws, wa)|?
| F(w1) F(w2) ]S (w1 + w2)

b? (w1, we) = B (3.1)

where F(w) are the Fourier coefficients of the process f(¢). The bicoherence is
bounded on the range [0, 1] by Schwartz’s inequality and represent the fraction of en-
ergy associated with quadratic phase coupling. However, Hinich and Wolinskey [60]
argued that the prescribed bicoherence is not strictly correct and is only appropri-
ate for stochastic processes with narrow-band frequencies. When there is broadband
coupling, this normalization is contaminated [39].

Therefore, we require a new feature to define the proportion of the bispectral
power that comes form the quadratic wave interactions with two frequencies w; and
w; seperately. To do so, we introduce new qualities named as the partial bicoherence

b, (similar to the partial coherence of Bendat and Piersor [61]) and the pure power
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spectrum S, are given by

| B(w;, w))|?
Sp(wi) Sp(w;) S (wi + wj)

b2 (w;,wj) = (3.2)

where

Sp(wk) = S(we) [1 - bi(wiawj)] (3.3)

i+j=k
i>5>0

This partial bicoherence separates the fraction of power in the wave with frequency
wr = w; + w; that comes from the two wave interactions with frequency w; and w;
only by eliminating contributions from other combinations of two frequencies and an
independent part at frequency wy.

There is a valuable property of the partial bicoherence that 0 < > ;4 - bf, (wi,wj) <

i>5>0

1 with the summation Z?ii;]g bf)(wi, w;) that represents total influence of all quadratic
i>j>

wave interactions on the power at frequency wy. Concurrently, the pure power spec-

trum in Eq. (3.3) represents the power spectrum of the process without all quadratic

wave interactions. This partial bicoherence become identical with the bicoherence of

Kim and powers with simple quadratic phase coupling only with three wave (such as

Eq. (1.47)). Although Egs. (3.2) and (3.3) looks like circular definitions between the

partial bicoherence and pure power spectrum, we can constructed both of them in a

term-by-term fashion as starting at the lowest frequencies and increasing.
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3.2 Simulation of higher-order processes

by spectral representation

3.2.1 Third-order processes

We propose a higher-order spectral representation based expansion for the sim-
ulation of stochastic processes. The spectral representation of Eq. (1.5) shows its
capacity to represent third-order processes with the orthogonal conditions, Eqs. (1.7)
and (1.8). To derive the corresponding orthogonal increments for this higher-order
representation, we utilize the partial bicoherence and pure power spectrum defined in
Egs. (3.2) and (3.3). For the simulation, we provide a discretized form of the partial

bicoherence as

B?(wi, wj) Aw;? Aw?

(3.4)
Sp(wi) Aw; Sp(w;j) Aw; S (w; + wj) Aw; + wj)

bi(wi, w]‘) =

As mentioned before, we expand the standard orthogonal increments in the spec-
tral representation given Eq. (1.16) in terms of the independent part only related with
the pure power spectrum dup(-) and dvp(-), and the interacting part arisen from wave

interactions (with the partial bicoherence), du;(-) and dv;(+), for the third-order rep-
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resentation as

du(wy) = dup(wy) + duy(wy)

(3.5)
dv(wy) = dvp(wy) + dvy(wg)
where
i>7>0
dup(wy) \/2 25, (wr)Awy cos g, = |2+ 25 (wg) Awy, | 1 — Z b2 ( w,,w])] COS Oy,
i+j=k
1>2j>0
dvp(wy) \/2 25, (wr)Awy sin g, = |2 - 25 (wg) Awy, |1 — Z bg(u)i,wj)] sin ¢y,
itj=k
(3.6)
and
i>5>0
du(wg) \/2 25( wk)Awk{ Z ‘b;(wi,wj)‘ cos [qﬁi + o5 + ﬁ(wi,wj)} }
i+j=k (37>

1>5>0
dvy(wy) \/2 2.5 (wg Awk{ Z ’b wz,wj)’ sin [gzﬁz + ¢, +ﬁ(wz,wj)]}

i+j=k

where ((w;,w;) is the biphase given by Eq. (1.43). Examination of Egs. (1.16) and
(3.6) shows that dup(wy) and dvp(wy) are consistent with the classical orthogonal
increments based on the pure power spectrum, while the increments duj(wy) and
dvr(wy) express the quadratic wave interactions.

Applying the new orthogonal increments to the spectral representation of Eqg.
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(1.11) provide a new third-order spectral representation as

ft) = \/§Z \/ 25, (wk ) Awy, cos(wit — Pr,)

0o i25>0

+\/§Z Z \/QS(wi—l—wj)A(wi—i—wj)’bp(wi,wj)‘ (3.8)

k=0 i+j=m

- cos[(w; + wj)t — (¢; + ¢; + Bwi, w;))]

that can simulate of the stochastic processes with asymmetric nonlinearities and
we will mention this representation as bispectral representation method (shortly in
BSRM). Furthermore, the sample functions generated from Eq. (3.8) own both the
prescribed power spectrum and bispectrum in ensemble. In Appendix B, it is proven
that the presented orthogonal increments fulfill all the orthogonal conditions of the

spectral process up to third-order.

3.2.2 Fourth and higher-order processes

Simulations of stochastic processes including fourth-order spectra (with cubic
phase coupling and symmetric non-linearities) have not been explicitly developed to
date. However, the process for achieving these expansions will follow the similar pre-
scribed steps with higher-order wave interaction terms in the orthogonal increments
and we need to modify all of lower-order terms. For example, in the fourth-order case,
the orthogonal increments should be divided to three components. The first term will

stand for the independent terms without any effects of two and three wave interac-
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tions. The second components will denote the pure two-wave interactions without
the effects of three wave interactions. Then, the final term will explicitly represent

the tree-wave interactions.

3.3 Numerical examples

We apply the proposed methodology for simulation of third-order skewed stochas-
tic processes with the diverse forms of power spectra and bispectral including analyt-

ical results.

3.3.1 Quadratic phase coupling: real and imagi-

nary bispectrum

As the first example, we examine two stochastic processes with simple quadratic
coupling only with four harmonic terms. Both of the processes share identical power

spectrum as

S(w) = =d(w— 27 -10) + 25(0«) — 27 - 20)

+

e TN

1
5(w—27r-30)+15(w—27r~40) for w>0
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and depicted in Figure 3.1a. However, they possess their own bispectra. The firs

process, f.(t), only has a real bispectrum defined as

(w1 — 27 - 30,wq — 2 - 10)

1/V2 1/V2
8

B(wy,ws) = Té(wl — 2720, wy — 27 - 10) + ——
for w; > wy >0

(3.10)

and the second process, f;(t), only has a imaginary bispectrum given by

B(wl,w2) = Z/f /\/_

O(wr — 27 - 20,wy — 27 - 10) + ——0 (w1 — 27 - 30,wy — 27 - 10)
for wy > wy >0

(3.11)

and both of the bispectra are depicted in Figure 3.1, too. The squared partial bi-

coherence, Eq. (3.2), and the pure power spectra, Eq. (3.3) are identical for both

processes and are given by:

(

0.5, ifw = 2720, wy =27 - 10
Dpwiwa) = 91, ifw = 2730, wy=27-10 fr w1Z2w >0 (3.12)

0, otherwise

\

63



CHAPTER 3. BISPECTRAL REPRESENTATION METHOD

0.4 T T T T

035} ]
03
025
= 02
n
0.15
0.1
0.05
0 .
0 10 20 30 40 50
J(Hz)
(a)
0.1 0.1
=) & 0.054
< g
9 Q
= o 0
3 g
2 2 0,05
& = 0
0.14 0.1
40 50 40 50
20 o 30 20 o 0 B
0o 10 0o 10
f»(Hz) f1(Hz) f2(Hz) J1(Hz)
(b) (c)

Figure 3.1: (a) Power spectrum, (b) real bispectrum of f,.(t) and (c¢) imaginary
bispectrum of f;(¢) for two simple quadratic phase coupling processes.

and

Sp(w) = ;lé(w —2r-10) + }lé(w —2m-20) + é5(w —21-30) for w>0 (3.13)

However, they own different biphases at the coupled frequencies: [(407,207) =
B(60m, 20m) = 0 for the first process with real bispectrum and (407, 207) = 3(60m, 207) =

7/2 for the second process with imaginary bispectrum. With the proposed represen-
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Figure 3.2: (a) Pure power spectrum and (b) squared partial bicoherence for two
simple quadratic phase coupling processes.

tation, these processes can be simulated using the forms of expansion given by

[r(t) = cos(2m - 10t — ¢1) + cos(2m - 20t — o)

+ % cos(2m - 30t — ¢3) + % cos[2m - 30t — (1 + )] (3.14)

+ cos[2m - 40t — (¢1 + ¢3)]

for the first process with real bispectrum and

fi(t) = cos(2m - 10t — ¢1) + cos(27 - 20t — ¢o)

+ % cos(2m - 30t — ¢3) + % sin[27 - 30t — (¢1 + ¢2)] (3.15)

+ sin[27 - 40t — (1 + ¢3)]
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for the second process with imaginary bispectrum. By contrast, the traditional SRM

for this process is given by

fo(t) = cos(2m - 10t — ¢1) + cos(27 - 20t — ¢)
(3.16)

+ cos(2m - 30t — ¢3) + cos(2m - 40t — ¢4)

without any phase coupling. Firstly, we can recognize the BSRM is very simple
and similar to the classical SRM. However, it includes more information beyond the
second-order properties of the processes.

In Figure 3.3, representative sample functions and their derivatives for the pro-
cesses, f.(t) and f;(t) are shown and compared with the sample function of the orig-
inal SRM with identical phase angle set, fo(t). Based on the prescribed properties
of real and imaginary bispectrum (Egs. (1.40) and (1.41)), the two processes with

BSRM have different asymmetric types. Firstly, the real bispectrum process f.(t)

Ofr(t)
ot

has strongly skewed, but its derivative process still are symmetric. Against the

previous result, the process f;(T) remains symmetric while its time-derivative 8’;#@

is negatively skewed. On the other hand, the classical SRM processes fo(t) and %t(t)

are symmetric. Furthermore, the statistics are provided in Table 3.1 with the target

fi(t)

5~ compared with their estimated

variance and skewness of f,.(t), fi(t), 8f5t(t)7 and
values from 50,000 sample functions. Lastly, the estimated power spectra and bispec-
tra for f,.(t) and f;(t) are shown in Figure 3.4 and well match with their own targets

depicted in Figure 3.1.
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Representative sample functions of the simple quadratic phase coupling

process generated using the proposed method and the classical SRM and their time

derivatives having (a,b) real and (c,d) imaginary bispectra.

Figure 3.3

3.3.2 Skewed non-Gaussian white noise

the processes only with distinct frequencies and their

In the previous section,

most stochastic processes of interest have

phase coupling are considered. However,

Hence,

a continuous shape in frequency domain with broadband wave couplings.

we considered a band-limited skewed non-Gaussian white noise process with power
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Figure 3.4: (a,b) Estimated power spectrum and real bispectrum for quadratic phase
coupling process with real bispectrum, f,.(¢). (b,d) Estimated power spectrum and
imaginary bispectrum for quadratic phase coupling process with imaginary bispctrum,
fi(t). Estimates computed from 50,000 sample generated using proposed method.

spectrum given by

S(w)=14 for w; <275 (3.17)

and bispectrum

B(wy,ws) =20 — 20i for w; < 27 -2.5, wy < 27 - 2.5 (3.18)
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All the power spectrum, real and imaginary part of bispectrum are depicted in Figure

5.17. Given the prescribed power spectrum and bispectrum, the squared partial
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Figure 3.5: (a) Power spectrum, (b) real and (c) imaginary bispectrum for non-
Gaussian white noise process.
bicoherence and pure power spectrum of the process are calculated and depicted in
Figure 5.18. Note that a considerable part of the power in the power spectrum from
the quadratic coupling (or the bispectrum) are shown by the hollowed wedge shape
in the pure power spectrum in Figure 5.18a.

In Figure 3.7, representative sample function and its derivative of the skewed
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Figure 3.6: (a) Pure power spectrum and (b) squared partial bicoherence for non-
Gaussian white noise process.

white noise process with the proposed BSRM are presented and compared with the

samples with the conventional SRM . From the comparison, we can notice the positive
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Figure 3.7: (a) Representative sample functions and their (b) time derivatives of
skewed non-Gaussian white noise process f,,(t) generated using the proposed method
and the classical SRM.

skewness in the sample and its derivative from BSRM. Notify that the estimated power
spectrum form 50,000 samples of the BSRM match perfectly with the target power

spectrum and even in terms of both components of bispectrum as provided in Figure
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3.8. Furthermore, the statistics of the target, BSRM, SRM process are compared in

Table 3.1 and the results of BSRM are remarkably accurate.
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Figure 3.8: (a) Estimated power spectrum, (b) real and (c¢) imaginary bispectra of
non-Gaussian white noise process from 50,000 sample functions generated using the

proposed method.

3.3.3 Peaked broadband process

As final numerical example, another broadband process f,(t) having peaks in both

the power spectrum and bispectrum is considered. The power spectrum of the process
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are given by

40 (w=2m-2)?
Slw) = ————¢ 2025 (319)
@) v2m-0.25

and the bispectrum is

20 1 2 2
B(wy,ws) = — =Y o~ zo0eos (W1—2m1.25) (w2 —27-1.25))
27 - 0.026025 (3.20)
s eV et (w1 —2m1.25) 2 (we —27+1.25)?)
. 2.0.0625
T o 0.062¢

and their plots are presented in Figure 3.9. Moreover, the squared partial bicoherence
and pure power spectrum are calculated and depicted in Figure 3.10.

Sample functions of the peak and broadband process f,(t) and its derivative are
plotted in Figure 3.11 compared with samples with SRM. There is substantial dif-
ference between the BSRM and SRM at the peaks within the samples and their
derivatives. Both results from BSRM have negative skewness and their statistics are
summarized in Table 3.1. Moreover, Figure 3.12 shows that the estimated power
spectrum and bispectrum from 50,000 sample functions with BSRM are matched

perfectly in ensemble.

3.3.4 Application to wind velocity generation from

CFD data

We utilize the presented method, BSRM, to simulate wind velocities from statisti-

cal properties of data generated from large eddy simulations (LES) of the atmospheric
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Figure 3.9: (a) Power spectrum, (b) real and (c) imaginary bispectra for the peaked

broadband process.

boundary layer. The data are supported by Yeo and Shi at the National Institute of

Standards and Technology [62].

3.3.5 Summary and statistical analysis of LES study

LES is well-developed tool for the study of atmospheric flow in which governed by

the Navier-Stokes equations and solved numerically above critical length-scale such
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Figure 3.10: (a) Pure power spectrum and (b) squared partial bicoherence for the

peaked broadband process.
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Figure 3.11: Sample functions (a) of the peaked broadband process and (b) their
derivatives generated using the proposed method and the classical SRM.

as a grid scale. Synthetic wind velocities from the LES are statistically characterized

up to the third-order properties. Although simulation with the proposed methodol-

ogy does not represent perfect atmospheric flow, the results possess the given power

spectra and bispectra of the wind velocities from the LES.

In this example, Sin and Yeo described an atmospheric boundary layer of height
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Figure 3.12: (a) Estimated power spectrum, (b) real, and (c¢) imaginary bispectra
from 50,000 sample functions of the peaked broadband process generated using the

proposed method.

1km (computational extents H = 10m, which is 1:100 scaled. The model over open
terrain with assumed roughness length z; = 0.03m (in the model z; = 0.0003m).
The Flow of the atmospheric layer is in the computational domain as depicted in
Figure 3.13a until a stationary condition is achieved. Velocity contours at different
heights are presented in Figure 3.13b. From this synthetic flow field, stream-wise wind

velocities are withdrawn at a point at height h = 1 and the time histories and the
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Table 3.1: Target and estimated moments of stochastic processes and their deriva-
tives from 50,000 sample functions generated using the proposed method and the
classical SRM.

Quadratic phase coupling | Quadratic phase coupling
Real bispectrum - f,.(t) Imag. bispectrum - f;(t)
Target  Sim. SRM | Target Sim SRM
f(t)  Variance 2 1.9991  2.0000 2 1.9999  2.0000

Skewness | 0.7500 0.7497 -0.0006 0 0.0010 -0.0006

) Variance | 59218 58859 58859 59218 58855 58859

Skewness 0 0.0017 -0.0005 | -0.3378 -0.3291 -0.0005

Skewed white noise - f,(¢) | Peaked braodband - f,(¢)
Target  Sim. SRM Target Sim SRM
f(t) Variance | 140  140.71  140.70 80 80.00 80.04
Skewness | 0.4528 0.4468 -0.0002 | -0.1677 -0.1681 -0.0004
%&t) Variance | 46751 41266 41260 13423 12865 12858
Skewness | 0.1022 0.1113  -0.0002 | -0.0793 -0.0789 0.0001

estimated PDF are plotted in Figure 3.14. We can recognize the wind velocity time
history clearly have a negative skewness. Also, the second-order statistical properties
including autocovariance and power spectrum are given in Figure 3.15. Moreover,
the third-order characteristics including the third-order cumulant and bispectrum are
plotted in Figure 3.16 using open source Matlab code, Higher Order Spectra Analysis
[63]. In this examination, the original single history with duration 146 sec. with
discrete time step 1/250 sec. is divided to 146 individual histories with duration 1
sec. This dividing procedure provides smooth polysectral estimates.

By applying the proposed BSRM, we simulate the skewed wind time histories with

the power spectrum (Figure 3.15b) and bispectrum (Figures 3.16b - 3.16¢). One of the
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Figure 3.13: (a) Geometry of the LES computational domain with colored velocity
magnitude and (b) velocity counters at z/H = 7.5¢™3 and z/H = 0.11.

generated samples are plotted in Figure 3.17 and compared with the sample functions
from the classical SRM. From their estimated PDF's, we can see the differences in the
tails.

The statistics of all synthetic wind velocities are compared in Table 3.2 and the
process with BSRM not only matched the target variance but for the target skewness.
The estimated third order correlations form the BSRM sample functions are plotted in

Figure 3.18. The results tell us the proposed methodology generates skewed stochastic
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Figure 3.14: Wind velocity histories extracted from the LES model and the empir-
ical PDF.
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Figure 3.15: (a) Autocovariance, (b) power spectrum of LES modeled wind turbu-
lence.

samples with high accuracy in terms of second and third order properties.
Although the third-order characterization with BSRM is successful, the asymmet-
ric non-Gaussianity with lower kurtosis than three in the PDFs still are not included.

This indicates us fourth order characteristics in the wind velocities are also impor-
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Figure 3.16: (a) Third-order cumulant function, (d) real and (c) imaginary bispectra
of LES modeled wind turbulence.

tant. It becomes a huge motivation to further generalize the presented BSRM to
higher-order.

Table 3.2: Target and estimated moments of the wind velocity process from 10,000
sample functions generated using the proposed method and the SRM.

Target  Sim. SRM
Variance 8.2717 8.2600 &8.2605
Skewness -0.2959 -0.2928 -0.0054
Kurtosis 2.7276  3.0772  2.9850
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Figure 3.17: Simulated wind velocity histories and their PDFs generated using (a)
the proposed method and (b) the SRM.

3.4 Conclusions

In this work, a third-order simulation methodology has been derived from the

Cramér spectral representation that serves as an extension of the classical Spectral
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Figure 3.18: (a) Estimated third-order cumulant, (b) real and (c) imaginary bispec-
tra from 10,000 samples functions of the wind velocity process generated using the
proposed method.

Representation Method. The method is derived by defining an orthogonal spectral
process that includes contributions from nonlinear wave interactions while maintain-
ing the prescribed orthogonality conditions up to third order. This is achieve through
the definition of two new quantities, the pure power spectrum and the partial bicoher-
ence, that enable the single wave and wave interaction components to be decoupled.

Extension of the method to fourth and higher-order processes is discussed. Several
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numerical examples are provided to show the capabilities of the methodology to accu-
rately simulate processes from a known power spectrum and bispectrum. Finally, the
method is applied to the generation of wind velocity histories based on a statistical

characterization of Large Eddy Simulations of the atmospheric boundary layer.

82



Chapter 4

Phase difference distributions in

higher-order stochastic processes

Many stochastic processes exhibit features that are not well-characterized by in-
dependent wave components. These processes are often referred to as nonlinear in the
literature as they involve wave interactions that cannot be expressed through simple
linear models. These nonlinearities, in turn, induce non-Gaussianity in stochastic pro-
cesses with many wave components. The means of characterizing these nonlinearities
have been largely expressed through higher-order moments (cumulants) spectra as
discussed in the previous chapter. It follows logically, and somewhat intuitively, that
those properties should derive from dependancies in phase of the wave components
but, to date, no direct connection has been made between the joint distribution of

the phases (or quantities derived from these, e.q. conditional distributions or joint
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moments) and the higher-order properties of the process. This chapter offers the first

such explicit analytical connection of these qualities.

4.1 Circular probability distributions and

their properties

In this section, we differentiate between probability measures defined on the real
line and circular probability measures whose support lies on the circumference of a
unit circle [64, 65, 66]. As will be shown, it is convenient (and somewhat intuitive)
to consider random phases in the SRM to have circular distributions. For example,
the conventional interpretation of random phases in the SRM, Eq. (1.14), is that
they are uniform on the line (—m, 7]. An equivalent interpretation is that they are
uniformly distributed on a unit circle. Adopting the second interpretation, we now
explore some properties of circular distributions.

Since each point on the circumference of the unit circle represents a direction,
a circular distribution is a way of assigning probabilities to different directions (i.e.
defining a directional distribution of angles). Let f(6) be the probability density

function of a continuous circular random variable ©. The pdf f(#) has the following
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basic properties:

f(8) > 0; Vo

" RO)d =1 (4.1)

—
f(0)=f(O0+k-2m);Vk el
where I denotes the set of integers.
A circular distribution can also be described via its characteristic function. The
value of the characteristic function at an integer p is called the p-th trigonometric

moment of # and is given by

¢o(p) = E[e?’] = / e dF(0) = pye™ where p =0, 41,42, - - (4.2)

—Tr

The amplitude of the trigonometric moment can be bounded by Lyapunov’s inequality

as

(0o (p)| = pp = |E(e™)] < E(]e™]) =1 (4.3)

In particular, consider the first trigonometric moment given by

bg(1) = E[e”] = pret; (4.4)

where p; € [0, 1] is the mean resultant length and p; € (—m, 7] is the mean direction
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determined from

p1 = |E[e”]]

SE[eY) >

p = tan ™ (?]%E[ew]

The mean resultant length represents the magnitude of the expected value of all
unit radial vectors distributed on the unit circle with directions distributed as f(6),
while the mean direction is the mean angle of these vectors. The circular variance
defined as v = 1 — p; is a measure of the dispersion of # analogous to the variance
of a linear RV. Furthermore, the characteristic function of the sum of independent
circular random variables is given by the following. Let 6,,--- ,6, be independent

circular, the characteristic function of S,, = 61 + --- + 6, is given by

n

¢s.(p) = [ 6:») (4.6)

i=1

4.1.1 Circular uniform distribution

Three of the most popular circular probability models are the circular uniform,
von Mises, and wrapped Cauchy distributions. The circular uniform distribution has

probability density function given by

fu(0) = 5—;0 € (=, 7] (4.7)
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That is, all directions of 6 are equally distributed and it is no concentration. Its
trigonometric moments, ¢y(p) of all orders are zero except zero-th order, ¢»(0) = 1.
Because of the unique characteristic function of the circular uniform random variable,
the summation of a circular uniform random variable with any other independent
random variables is uniformly distributed by Eq. (4.6).Accordingly, the first trigono-
metric moments of the circular uniform distribution are given in the following Table
4.1. The circular uniform distribution is non-directional and its mean direction, g,
does not exist. The mean resultant length, p;, is zero, which means the circular vari-
ance has its maximum value, v = 1. The circular uniform distribution is identical to
the linear uniform distribution with range, (—, 7], therefore, it can be used for the

independent random phases in the classical SRM for Gaussian processes.

Trigonometric Moments
Mean direction (p) undefined
Mean resultant length (p;) 0

Table 4.1: Trigonometric moments of circular uniform distribution.

As we will see, when the distribution of phase angles is not circular uniform,
it means that there is a certain concentration and direction of the phases, and a
stochastic process generated by the SRM is non-Gaussian. Therefore, to model more
general phase relationships in stochastic processes, it is useful to consider more general
families of circular distributions. The following two distributions can be used to model

phases in such cases: the von Mises and wrapped Cauchy distributions.
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Figure 4.1: Von Mises distributions in (a) polar and (b) Cartesian coordinates with
zero mean direction and various mean resultant lengths.

4.1.2 Von Mises distribution

The von Mises distribution [67] (shown in Figure 4.1) is a symmetric and unimodal

circular distribution with probability density given by

el cos(0—p1)

—0 € (— — > 4.

Jvam(0; s k) =

where p is a direction parameter (equal to mean direction) , k is a scale parameter,
and I is the modified Bessel function of the first kind having order p = 0 which

follows the general form given by

1 2w
I(k) = %/ <O cos(p - 0)db; p € T (4.9)
0

The von Mises distribution has been well studied with a strong emphasis on pa-
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rameter estimation [68, 69, 70] and its p-th order trigonometric moments are given

by
Mem‘l (4.10)

¢P(8a M1, R) - ]0(/1)

Specifically, the first trigonometric moments are given in Table 4.2. Given the moment

Trigonometric Moments

Mean direction () A
Mean resultant length (p;) %

Table 4.2: Trigonometric moments of the von Mises distribution.

form in Eq. (4.10), the von Mises distribution can be difficult to use for our purposes.
Because the modified Bessel function has no analytical inverse, we cannot easily

identify the parameter k for a given mean resultant length.

4.1.3 Wrapped Cauchy distribution

An easier distribution to work with is the wrapped Cauchy distribution shown in

Figure 4.2. The wrapped Cauchy distribution has pdf given by

1 1—p?
21 1+ p? — 2py cos(0 — py)

fWC(&MlaPl): ;06<_7T77T]7MIE(_7T77T]7OSPIS1
(4.11)
and is directly parameterized by mean direction p; and mean resultant length pq,

also shown in Table 4.3. The wrapped Cauchy distribution is also symmetric and

unimodal. Moreover, the convolution of wrapped Cauchy distributions, fyyc(u1,01)
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Figure 4.2: Wrapped Cauchy distributions in (a) polar and (b) Cartesian coordi-
nates with zero mean direction and various mean resultant lengths.

and fwe(fn, p1) is fwe(pn + i, p1- pr)-

Trigonometric Moments
Mean direction (p1) I
Mean resultant length (p;)  p;

Table 4.3: Trigonometric moments of wrapped Cauchy distribution.

4.2 Relating higher-order spectra and cir-

cular phase difference distributions

In this section, we derive an analytical relation between higher-order spectra and
phase dependencies in the SRM under specific conditions. In particular, it will be
shown how the orthogonality conditions of the Cramér spectral representation can be
used to relate higher-order spectra to the trigonometric moments of circular phase
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difference distributions when a certain form of orthogonal increments are assumed.

Recall from Section 1.1, that there are two widely used forms of the SRM having
orthogonal increments given in Eqgs. (1.13) and (1.16) respectively. Consider the form
given in Eq. (1.16) where the orthogonality derives from randomness in phase angles
0. Again, recall that when 0, ~ fy(—m,n] (circular uniform), processes generated
by the SRM [3] are Gaussian.

The k-th order cumulant of the process represented by Eq. (1.17) can be expressed
purely in term of the k-th trigonometric cumulants of the phase relations which in
turn depends only on the relationship of the random phases. Applying the orthogonal
increments from Eq. (1.16) to the orthogonality conditions in Eq. (1.4) yields

k
v A )
cldz(wy)dz(wy) - - - dz*(wi)] = 0(wy +wa + -+ — wy) - iy A e[ Ot =00)]

VoF

(4.12)

When 6; are independent and circular uniform random variables, it is straight forward
to show that the higher-order cumulants of the processe are equal to zero, because
01+ 05+ - - - — 0, also has a circular uniform distribution. Consequently, the process is
Gaussian as the number of phases increases to infinity. But, more generally, Eq. (4.12)
implies that the cumulants of the process, c[dz(w;)dz(ws) - - - dz*(wy)] are related to
conditional dependencies in the phases. That is, if 1, 65, - - -, 0, are not independent,
then 6; 4+ 65 + - - - — 6, will not be circular uniform and higher-order cumulants will

be non-zero (i.e. the process will be non-Gaussian). To illustrate this point, consider
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the first four cumulants as follows.

The first-order cumulant (moment), or mean, from Eq. (1.16) is given by

cld=(w)] = Eld=(w)] = E[%”k] 0 (4.13)

where dz(w) = 3[du(w) + idv(w)].

The second-order cumulant (moment) is given by

cldz(wy)dz"(w2)] = Eldz(wy)dz" (ws)] = (w1 — w2) -

and relates the orthogonal increments to the power spectral density S(w;). That is,
under the condition, w; = wy (implied by §(w; — ws)), we have #; = 0y and hence
Ele(01=02)] = 1,

The third-order cumulant (moment) is given by

cldz(wy)dz(wy)dz"(w3)] = Eldz(wq)dz(ws)dz" (w3)]

A1 Ax A3

N E[e~t01+62-05)] (4.15)

= (5((,4)1 + wo —(,L)g) .

= B(wl, WQ)AWIAWQ

which we now see relates the first trigonometric moment of the phase difference 63 —
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(01 + 05) to the bispectrum. This is seen directly by rearranging Eq. (4.15) as

. \/gB<W1, wQ)Awl A(A)Q

E[ei(93*(91+92))} i
142A3

for W3 = W1 + wWs (416>

¢93—(91+92) (1) =

In other words, for frequencies related as w3 = wy +ws, the first trigonometric moment
of the circular distribution of the phase difference 65 — (6; + 63) can be determined
exactly from the bispectrum B(wy, ws).

Lastly, the fourth-order cumulant can be related similarly to the trispectrum by

A1 Ay A3 A,
cldz(wy)dz(ws)dz(ws)dz" (wy)] = 0(wy + wa + w3 — wy) » ———
[dz(w1)dz(ws)dz(ws)dz"(wa)] = d(wi + w2 + w3 — wy) NG

,64[64(91+92+93—94)] (4.17)

= T(wl, wWa, W3)AW1AWQAW3

where

C[e—i(91+92+93—94)] — E[e—i(91+92+93—94)] . E[e—i(91+92)]E[e—i(93—94)]

(4.18)
_ E[e—i(92+93)]E[€—i(91—94)] _ E[e—i(91+93)]E[e—i(92—94)]

Notice, however, that as shown in Eq. (4.18) the cumulant and moment are not

equivalent. The cumulant thus induces several expectations. Under the condition
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that wy # ws, wo # w3, and w; # ws, this relation simplifies as

C[eii(01+62+93794)] = E[@ii(91+92+63794)] fOI‘ w1 + W9 7é 0, W9 + W3 7é 0, w1 + W3 75 0

(4.19)

Thus, under the condition in Eq. (4.19), again a straightforward relation can be ex-
pressed between the trigonometric moment of the circular distributed phase difference

0, — (61 + 02 + 05) and the trispectrum of the process as

(1) _ E[ei(947(91+92+93))] _ \/ET(wl, Wa, wg)AwlAngwg
A Ay AsA,

¢94—(91 +062+63) ( )
4.20

for wy = wy + wy + ws

Egs. (4.17) - (4.20) imply that the trispectrum can be obtained from the phase
dependency 04 — (6 + 02 + 05) except when w; = —wy = —w3 = Wy Or Wy = Wy =
—W3 = Wy O —Ww; = Wy = w3 = wy. The values of the tispectrum under the conditions,
W = —Wg = —W3 = W4 OF W] = We = —W3 = W4 OF —W] = Wy = W3 = Wy, are
asymptotically diminishing and therefore do not contribute to the kurtosis in the limit
as mentioned at Section 1.3.2.3. Consequently, the 4th order condition of Cramér’s
representation under the conditions stated above can be related to the trispectrum
values of the processes which alter their kurtosis. The prescribed equations show
that when we have non-zero values of E[e?3=(1902)] and E[ei0a—(01+82403)] (the first

trigonometric moment of 03 — (61 +6s) and 6, — (61 + 05+ 63)), the stochastic process
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will have non-zero bispectrum or trispectrum and it will be non-Gaussian.

Perhaps a more intuitive understanding of these relations can be gained by looking
at the higher-order phases and coherences. Recall the definitions of biphase and
triphase in Eq. (1.43). Utilizing the relations in Eqgs. (4.16)) and (4.20), the biphase
and triphase of the stochastic process can be related to the trigonometric moments

of the phase differences by

[ 7i(91+92*03)
B L [SE[e ]
. %C[e_i(91+02+93_94)]
fy(wl,wQ,w;),) = tan |:§Rc[e_i(01+02+93—94)]]
o~ —i(01+02+03—04)
I [SEe ] 4.22
= tan [%E[e‘i(91+92+93_94)]] ( )

for wy +ws # 0,ws + w3 # 0, w; +w3z #0
From Eq. (4.5), we recognized that the bisphase and triphase of the stochastic process
are equal to the mean directions of the phase differences, 03 — (0, +63) and 6, — (61 +
05 + 03), respectively.
Recalling the squared discretized bicoherences of Brillinger and Rosenblatt [71],

b? and, Kim and Powers [46], b3 in Eqs. (3.4), and applying the relations in Egs.
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(4.16) and (4.20) yields

‘ [AI%A:’, E[e—i(01+62—93)]] ‘2

b%(wluf"-&) = A, 0. AL 0 Ao 0. As b As 0. Az 0
E[%eﬂ v 1} E[Tﬁeﬂ v 2]E[7§e*2 3Rt (4.23)
_ |E[€i(93*(91+6’2)] ‘2
2
’ [AlAzAgE[e—i(el+92—93)]] ‘
by (wr, wz) = &

E {%eﬂ‘(mez) Al_\/fgzei(mez)] E [3—%@*193 %ewg} (4.24)

- ‘E[ei(93—(91+92)] |2

That is, both bicoherences are equivalent under the assumed orthogonal increments
and are equal to the squared mean resultant length of the phase difference 63— (6;+6,).

Next, consider the squared discretized tricoherences by Haubrich [72], #? and Kim
and Powers [46], 3. Again, under the assumed orthogonal increments with conditions

given in Eq. (4.18), applying the relations in Eq. (4.20) yields

2
‘ |:A1A2A3A4 C4 [e—i(91+92+93—94)]]

9 - V16
t1<w17w27w3) - A DA . A oA . A DA . A 0 A .
E [7156_291 7156201:| E [7256_202 7256192:| E [7%6—193 7%6194] E [7%6_194 7%6194

= |y [ei(Oa—(Or+oat0))?

_ ‘E[ei(94—(91+62+93))”2 for wy + wo 7& 0, wy + w3 7é 0,w; +ws 7é 0

(4.25)

96



CHAPTER 4. PHASE DIFFERENCE DISTRIBUTIONS

2
‘ [Mcde—i(eﬁeﬁeg—ﬁ)ﬂ ‘

2 V16
tQ(Wl,UJQ,UJ?,) - - ] ] -
E A1A2A3 6—1(914—92-1—93) A1AzA3 62(91+92+93) E ﬂe—194 ﬂez&;
V8 V8 V2 V2

= |y [0 (OrtOxto))?

(4.26)

Again, the squared tricoherences are identical to the squared mean resultant length
of the phase differences 0, — (61 + 65 + 03).

It is important to reiterate the importance of these results. The expressions given
above provide a first glimpse into the nature of the complex wave interactions that
result in stochastic process non-linearities. Specifically, it has been shown that, un-
der certain conditions, the higher-order spectra can be directly related to the joint
circular distribution of the phases in the stochastic process through the trigonometric
moments of phase differences of different degrees. This generalizes the notion of inde-
pendent circular phase components in Fourier-type expansions of stochastic processes
to enable the use of non-unifrom models (e.g. von Mises or wrapped Cauchy) to
integrate phase dependencies. Explicit examples of its application will be considered

in the following section
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4.3 Simple Examples

In this section, two simple stochastic processes with quadratic and cubic phase
coupling respectively are modeled by explicitly utilizing the circular phase angle differ-
ence distributions discussed in the previous section. Specifically, the phase difference
distributions are selected to possess the mean directions and mean resultant lengths

implied by a specified bispectrum /trispectrum.

4.3.1 Three waves stochastic process with quadratic

phase coupling

Consider a stochastic process with quadratic phase coupling at discrete frequencies

having power spectrum and bispectrum given by

S(w) = 35((» —27r-10) + 25((» —2m-20) + ié(w —27-30) for w>0 (427)

1/v2 (4.28)

B(wy,ws) = Té(wl — 2720, wy — 27 - 10) for wy > wy >0
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Figure 4.3: Target (a) real bispectrum, RB, and (b) squared bicoherence, b?.

The squared bicoherences according to Eq. (4.23) and (4.24) can be calculated as

0.5, if wy =27 -20, wy =27 - 10
b?(%;u&) = b%(wl,m) = for wqy >wy >0

0, otherwise

(4.29)

The target bispectrum and bicoherence are plotted in Figure 4.3.

The biphase at the coupled frequencies is 5(27 - 20, 27 - 10) = 0. The process can

be expanded as

f(t) = cos(2m - 10t — ;) + cos(27 - 20t — 65) + cos(2m - 30t — 03) (4.30)

Because of the quadratic phase coupling the phases, {61, 6,05} are dependent. From

the derivations above, it follows that #; and 6, are, indeed, independent U(—m, 7]
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while 03 is not. Specifically, the quantity 03 — (61 + 62) has mean direction p; = 0 and
mean resultant length p; = by (27 - 20,27 - 10) = +/0.5. To match these quantities,
we consider 03 — (0; + 03) to follow a wrapped Cauchy distribution with parameters
= 0and p; = v/2. To generate phases angles following the prescribed distributions,
first, #; and 6, are independently generated with uniform circular distribution. Next,
the random variable 6, = 03 — (61 + 05) is generated from the given wrapped Cauchy
distribution. Finally, 63 = 6, + 6, + 0, is obtained as the dependent random variable.
Following the proof in Section 4.1, 63 is uniformly distributed. These distributions
are shown from 50,000 random samples in Figure 4.4.

Using the phases shown in Figure 4.4, 50,000 realizations of the process are gener-
ated and one such realization is shown in Figure 4.5. Figure 4.6 shows the estimated
real bispectrum and squared bicoherence from the 50,000 realizations given in Eqs.
(4.28) and (4.29). Given the target bispectrum, the process has positive skewness

given by

* Bwy, ws)dwrd
L o Blenwa)dide, 1 (4.31)

Skewness|f (t)] (> S(w)dw)?? V3

The true and estimated moments from the 50,000 realizations are compared in Table

4.4, showing very good agreement.
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Estimated PDF of 60 Estimated PDF of 6,
/2

-m/2

(a) (b)

Estimated PDF of 63 Estimated PDF of 65 — (61 + 63)
/2

(c) (d)

Figure 4.4: Estimated PDFs of random phase angles; (a) 0, (b) 63, (c) 65, and
quadratic phase difference; (d) 05 — (61 + 65).

0 0.1 0.2 0.3 0.4 0.5
t(sec.)

Figure 4.5: Representative sample function of the three wave process with quadratic
phase coupling.
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0.6 5

o
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RB(20,10) = 0.089
b2(20,10) = 0.504

o e 9
o > o
X S &
L L A

Estimated b2(fi, f2)

Estimated RB(f1, f2)
S

(=1
r

f(Hz) 0 f(liz)
(b)

Figure 4.6: Estimated (a) real bispectrum, ®B, and (b) squared bicoherence, b?.

f(t) Target Estimated
Variance 3/2 1.500
Skewness 1/v/3  0.5776

Table 4.4: Target and estimated moments of the three wave stochastic process with

quadratic phase coupling.

4.3.2 Four wave stochastic process with cubic phase

coupling

Consider next process with cubic phase coupling between discrete frequencies.

The target power spectrum and trispectrum are given by

1 1 1 1
S(w) = Zé(w —27-5) + Zé(w —27r-10) + Zé(w —27-15) + Zé(w — 27 - 30)
for w >0

(4.32)
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Target RT(f1, fa, f3) Target t(f1, f2, f3)
0.04 !
50 50 -
0.02 0.9
RT(15,10,5) RT(5,5,—5) £(15,1 i 2
. .5, — 5,10,5) | e o | 13(5,5,-5)
_yv2 15 !
’mq . = 16 ./ =-1/16 0 § . =05 e =1 0.8
= RT(15,15, —15) __ $~[R7(10,10, -10) = | |#as15.-15) T~ 210,10, -10)
=-1/16 =-1/16 -0.02 =1 °d 2e L= 1 0.7
RT(30, 30, —30) #2(30,30, —30)
| o A
=-1/16 -0.04 =1 0.6
-50 -50
0 0 0 0
20 -0.06 20 0.5
) 50 40 ‘ 50 40 5
f»(Hz) f1(Hz) J»(Hz) J1(Hz)
(a) (b)

Figure 4.7: Target (a) real trispectrum, RT, and (b)squared tricoherences, t3.

1/v/2

2
T (w1, wp,w3) = ~2=0(wi — 2m - 15,y — 2 - 10,03 — 27 - 5) o

for w; > wy>ws3 >0

where the trispectrum is only defined in the domain, w; > wy > w3 > 0, to exclude
the asymptotically diminishing terms of the trispectrum mentioned in Section 1.3.2.3.

Furthermore, the target tricoherences (Eq. (4.25)) and (4.26)) are computed as

0.5, ifwy =27-15, wo=27-10, w3 =27-5

(w1, we) = t5(wr,ws) =

0, otherwise (4.34)

for w; > wy > w3 >0

and the triphase at the coupled frequencies is (27 - 15, 27 - 10,27 - 5) = 0. The target

trispectrum and tricoherence are plotted in Figure 4.7. Similar to the quadratic
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coupling case, we can expand the process as

f(t) = cos(2m - 5t — 61) + cos(2m - 10t — 63) + cos(27 - 15t — 63) + cos(27 - 30t — 6,)

(4.35)

In this case, we have 6,059,035 ~ fy(—m, x|, and 04 — (01 + 05 + 03) ~ fwe(p, p1)
with p; = v(27 - 15,27 - 10,27 - 5) = 0 and p; = t,(27 - 15,27 - 10,27 - 5) = 1/0.5.
Like the prescribed PDF's in the quadratic coupling example, each individual random
phase is uniformly distributed, but the difference 64 — (61 + 65 + 63) is assumed to
follow wrapped Cauchy distribution with 4; = 1 and p; = 4/0.5. Similar to the
previous example, 61, 0, and 03 are independently generated following a circular
uniform distribution. Next, 0., = 04 — (0 + 05 + 63) is produced with the given
wrapped Cauchy distribution. Finally, we can obtain 64 = 6 + 0y + 03 + 0,, and,
again, marginal distribution of 6, is circular uniform. The estimated circular PDF's
of the phases angles and their differences from 50,000 samples are given in Figure 4.8.
From these phase angles, 50,000 realizations of the stochastic process are generated
from Eq. (4.35). One such realization is shown in Figure 4.9.

The estimated real trispectrum and its squared tricoherences in the 1st and 8th
octants from the 50,000 realizations are depicted in Figure 4.10. These quantities
match their targets in Figure 4.7 very accurately. However, the estimated quantities in
Figure 4.10 also include several symmetries and self-cubic phase couplings that are not

present in Eq. (4.33) as well as the terms 7'(5,5, —5), 7°(10, 10, —10), T'(15, 15, —15)
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Estimated PDF of 6, Estimated PDF of 6,

(a) (b)

Estimated PDF of 05

-m/2

(c) (d)

Estimated PDF of 64 — (61 + 05 + 03)
/2

Figure 4.8: Estimated PDFs of random phase angles; (a) 61, (b) s, (c) 03, (d) 64,
and cubic phase difference; (e) 04 — (61 + 02 + 03).
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0 0.1 0.2 0.3 0.4 0.5
t(sec.)

Figure 4.9: Representative sample function of a four wave process with cubic phase

difference.
Estimated RT(f1, fo, f3) Estimated t7(f1, fa, f3)
1
0.04
50 - 50 -
0.02 09
21k [ L4 °
RT(15,10,5) RT(5,5,—5) t1(15,10,5) \o. e | 3(5,5,-5)
- _ =0.502 2
5, 0.044 o |=-0063 0 5, | =1.000 08
= 1 §RT((1)50,61§,—15) o~ %T((I)O(;Glg—lo) = ) r%(llgblgs,fls) (10,10, -10)
o —e _ 000 =1. 02 2o |SLOWO 07
RT (30,30, -30) |__¢ £2(30,30,—30)|___
= —0.063 -0.04 = 1.000 0.6
50 4 50 4 :
0 0 0 0
20 006 20
50 40 50 40 0.5
f2(Hz) f1(Hz) f2(Hz) fi1(Hz)
(a) (b)

Figure 4.10: Estimated (a) real trispectrum, RT, and (b) squared tricoherences, 2.
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and 7°(30, 30, —30) that arise from individual components.
The target unnormalized kurtosis is computed by integrating the trispectrum as

Eq. (1.60) as

UVZ o 4 g5

Kurt[f(t)] = / / / T (w1, wo, w3)dw dwydws = 48 - ETH T

and the target kurtosis becomes

Kurtlf(t)] 32— 1)

Kurtosis[f(t)] = ™ S(w)dw)? = 2

+3 (4.37)

The target and estimated moments from the 50,000 realizations are compared in Table

4.5.

ft) Target Estimated
Variance 2 2.000
Kurtosis 3 +3(v/2—1)/8 3.3718

Table 4.5: Target and estimated moments of the four wave stochastic process with
cubic phase coupling.
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4.4 Practical challenges to relating HOS

and phase difference distributions

For general stochastic processes with continuous spectra, the proposed method
cannot be directly applied for the reasons described in this section. Therefore, the cur-
rent application is limited to simple processes with a small number of distinct/discrete
frequencies. A further generalization/application of the relations derived here requires
further investigation.

Specifically, there are two practical challenges to relating general (continuous)
higher-order spectra(HOS) and phase-difference distributions. The first limitation is
that any frequency exhibiting phase coupling can only result from the coupling of
two unique frequencies. That is, cases where different frequency combinations yield
a common frequency (e.g. ws + wy = wy and w; + w3 = wy) cannot be related as

proposed. Consider, for example, the following process

f(t) = Acos(wit — 61) + B cos(wst — 03) + C cos(wst — fs) + D cos(wyt — 0,) (4-38)

In this process, the proposed relations suggest that both the phase differences 0, =
0, — (05 4+ 65) and 6., = 04 — (01 + 03) must be simultaneously specified. However,
simulating 6, to match both trigonometric moments proves incompatible. Let us

assume the phase differences be distributed as wrapped Cauchy distributions with
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the given the first trigonometric moments as 6, ~ fyc(u1, p1) and O, ~ fiwe (@1, p1)-

Next, we can combine the phase differences as

0, — 0., =05 — 0, (4.39)

According to the convolutional property of wrapped Cauchy distribution mentioned
in Section 4.1, the marginal distribution of 0, — 0. is fywc (1 — fir, p1- p1). Because 6,
and 05 are independently circular uniform di