
AUTONOMOUSLY NAVIGATING A SURGICAL TOOL INSIDE

THE EYE BY LEARNING FROM DEMONSTRATION

by

Ji Woong (Brian) KIM

A thesis submitted to Johns Hopkins University in conformity with the requirements

for the degree of Master of Science in Engineering

Baltimore, Maryland

May 2020

http://www.johnsmith.com


Abstract

A fundamental challenge in retinal surgery is safely navigating a surgical tool to a desired goal

position on the retinal surface while avoiding damage to surrounding tissues, a procedure that

typically requires tens-of-microns accuracy. In practice, the surgeon relies on depth-estimation

skills to localize the tool-tip with respect to the retina in order to perform the tool-navigation

task, which can be prone to human error. To alleviate such uncertainty, prior work has intro-

duced ways to assist the surgeon by estimating the tool-tip distance to the retina and provid-

ing haptic or auditory feedback. However, automating the tool-navigation task itself remains

unsolved and largely unexplored. Such a capability, if reliably automated, could serve as a

building block to streamline complex procedures and reduce the chance for tissue damage. To-

wards this end, we propose to automate the tool-navigation task by learning to mimic expert

demonstrations of the task. Specifically, a deep network is trained to imitate expert trajectories

toward various locations on the retina based on recorded visual servoing to a given goal speci-

fied by the user. The proposed autonomous navigation system is evaluated in simulation and

in physical experiments using a silicone eye phantom. We show that the network can reliably

navigate a needle surgical tool to various desired locations within 137 µm accuracy in physical

experiments and 94 µm in simulation on average, and generalizes well to unseen situations

such as in the presence of auxiliary surgical tools, variable eye backgrounds, and brightness

conditions.
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Chapter 1

Introduction

Retinal surgery is among the most challenging microsurgical endeavors due to its micron scale

precision requirements, constrained work-space, and the delicate non-regenerative tissue of

the retina. During the surgery, one of the most challenging tasks is the spatial estimation of the

surgical tool location with respect to the retina in order to precisely move its tip to a desired

location on the retina. For example, when performing retinal-peeling or vein cannulation, the

surgeon must rely on intuitive depth-estimation skills to navigate toward a targeted location

on the retina, while ensuring that the tool-tip contacts the retina precisely at the desired loca-

tion. Such maneuvers introduce high risk because the surgical tools are sharp and the slightest

misjudgement can damage the surrounding tissues, which could lead to serious complications.

FIGURE 1.1: System setup: a surgeon chooses the goal location in 2D and the
network generates a 3D waypoint that navigates the surgical tool toward the se-

lected location.

To alleviate the difficulty of the tool-navigation task, we propose to automate it by learning

the closed-loop visual servoing process employed by surgeons, i.e. mapping from visual in-

put (video) to euclidean position control commands to actuate the robot. Specifically, we train

1



FIGURE 1.2: (Top) During robot-assisted retinal surgery, a light source projects a
shadow on the retina which can be used as cues to estimate proximity between
the tool-tip and the retina. (Bottom) Demonstration of tool-shadow dynamics; as
the surgical tool approaches close to the retina, the tool and its shadow converge
(compare top row to bottom row), which can be used as cues to train a network

how to navigate inside the eye.

a deep network to imitate expert trajectories toward various locations on the retina based on

many demonstrations of the tool-navigation task. The input to the network are the monocu-

lar top-down view of the surgery through a microscope and user-input defining the 2D goal

location to be reached.

The advantage of this method is that the user only specifies the goal in 2D, e.g. as simple

as clicking the desired location using a mouse (Fig. 1.1), and the network outputs a 3D way-

point toward the target location on the retina. Since estimating depth is the challenging task

for humans, the network takes the burden of extrapolating how to navigate along the depth

dimension based on its training experience. Learning such simple tool-navigation maneuver is
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fundamental in automating surgery, since it is the primitive action performed in any surgical

procedures.

We note that our approach is grounded in the hypothesis that the tool-navigation task may

be automated primarily using vision. In fact, surgeons rely on their vision to localize objects

and estimate their spatial relationship to navigate the surgical tool. Furthermore, the surgical

scene captures a distinct tool-shadow dynamics which can be useful for recognizing proximity

between the tool-tip and the retina. Specifically, the tool and its shadow converge upon ap-

proaching the retina (Fig. 1.2), which can be as cues to train the network. In addition, while

a complete setup can include stereo vision, in this work we rely on a single camera alone for

simplicity. We also utilize a force-sensing modality to detect contact with retina, such that the

surgical tool can be stopped upon contact.

The system performance is validated experimentally using both an artificial eye-phantom

as well as in simulation employing the Unity3D (Unity Technologies) environment (Juliani et

al., 2018). The main objective is to assess the quality of surgical tool navigation to desired lo-

cations on the retina. To achieve this, we employ a batch of benchmark tasks where various

positions on the retina are targeted in a grid-like fashion (Fig. 5.1). For simplicity, we keep the

eye position and tool-orientation fixed during the experiments. While this is not a realistic as-

sumption in practice, since the eye could involuntarily move during procedures, our approach

can easily extend to the more general setting of different eye rotations and tool orientations

through additional training. To test the robustness of our network, we also perform the bench-

mark task in the presence of unseen distractions in the visual input, such as a light-pipe (used

for illuminating the surgery scene) and forceps (used in retinal-peeling) which are commonly

used surgical tools. On average, we report that the network achieves 137 µm accuracy in var-

ious unseen scenarios in physical experiments using a silicone phantom, and 94 µm accuracy

in simulation on average. Lastly, we propose a change to the baseline network resulting in

marked improvement in its performance, specifically by training the network using future im-

ages along with waypoints as labeled outputs, which turns out to be a richer representation

useful for control. We demonstrate that learning such auxiliary task improves the performance

on the tool-navigation task.
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Chapter 2

Related Work

2.1 Retinal Surgery

Past works in computer-assisted retinal surgery have focused on state estimation or detection

systems to assist surgeons with more information about the surgery. For example, image seg-

mentation can be applied to estimate tool-tip and shadow-tip to model proximity when the

tips approach close by a predefined threshold pixel-distance( Tayama et al., 2018). In addition,

stereo vision can be employed to estimate the depth of the tool and the retina respectively to

create a proximity detection system ( Richa et al., 2012). More recently, optical coherence to-

mography (OCT) was utilized to sense depth between the tool-tip and the retina( Ourak et al.,

2019; Smits et al., 2018). While these methods do not address automation, they are relevant in

the sense that if one could estimate distance from tool-tip to goal, then autonomous naviga-

tion may be achieved by interpolating between the two points. Although stereo-vision method

may be one alternative, it is not expected to work reliably in a clinical setting due the unknown

distortion caused by the patient’s lens and out-of-focus images, which may cause depth recon-

struction error. OCT is also a promising alternative, however, OCT measures distance locally

and is challenging to attach on tool-tips with non-cylindrical geometries such as forceps, which

are commonly used surgical tools. On the other hand, the learning based approach proposed in

this paper can be trained to be robust to visual distortions and navigate complex-shaped surgi-

cal tools, given that appropriate training data is available. This is possible since deep networks

succeed in the task by imitating the expert, who always succeeds in the task.
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2.2 Learning

Various works have shown the effectiveness of deep learning in sensorimotor control such as

playing computer games (Mnih et al., 2015; Dosovitskiy and Koltun, 2016) or navigating in

complex environments (Wang et al., 2018; Bojarski et al., 2016; Xu et al., 2017; Amini et al.,

2018; Codevilla et al., 2018; Bansal, Krizhevsky, and Ogale, 2018). In particular, the approach

employed in our work borrows from the architecture proposed in( Codevilla et al., 2018), where

a network is trained to drive a vehicle based on user’s high level commands such as "go left" or

"go right" at an intersection. Similarly, (Bansal, Krizhevsky, and Ogale, 2018; Amini et al., 2018)

employ topographical maps to communicate the desired route to a destination selected by a

user to drive a vehicle. In our work, we also communicate the goal position as a topographical

representation to navigate the surgical tool (Fig. 1.1). Furthermore, several prior works employ

the idea of learning auxiliary tasks to improve accuracy, such as predicting high-dimensional

future image conditioned on input (e.g. goal or action) ( Oh et al., 2015; Gafni, Wolf, and Taig-

man, 2019; Paxton et al., 2019; Finn and Levine, 2016; Isola et al., 2017), and learning auxiliary

tasks for improved sensorimotor control( Mirowski et al., 2016; Bansal, Krizhevsky, and Ogale,

2018).
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Chapter 3

Problem Formulation

We consider the task of autonomously navigating a surgical tool to a desired location using a

monocular surgical image and topographical 2D goal-position specified by the user as inputs

(Fig. 1.1). We formulate the problem as a goal-conditioned imitation learning scenario, where

the network is trained to map observations and associated goals to actions performed by the

expert. The goal-conditioned formulation is necessary to enable user-control of the network

at test time (i.e. navigate the surgical tool to a desired location). Given a dataset of expert

demonstrations, D = {(oi, gi), ai}N
i=1, where oi, gi and ai denote observation, goal, and action,

respectively, the objective is to construct a function approximator a = F(o; θ) with parameters

θ, that maps observation-goal pairs to actions performed by the expert. The objective function

can then be expressed as the following:

minimize
θ

N

∑
i=1

L(ai, F(oi, gi; θ)), (3.1)

where L is a given loss function.

In our case, we choose the observation to be an monocular image o ∈ I of the surgical scene

viewed from top-down, the action a ∈ W ⊂ R3 to be the 3D euclidean coordinates of a point

in the surgical workspaceW or a waypoint, and the goal input to be gi = (xi, yi) ∈ R2 which

specifies the final desired projected 2D position on the retinal surface. Further details on how

the expert dataset is collected and network is trained are given next.

6



Chapter 4

Method

FIGURE 4.1: (Left) Real-life experimental setup using an eye phantom. (Right)
Experimental setup in simulation

4.1 Eye Phantom Experimental Setup

Our experimental setup consists of the robot, a surgical needle, and a microscope that records

top-down view of the surgery as shown in Fig. 4.1. For our robot platform, we used the Steady

Hand Eye Robot (SHER), which is a surgical robot built specifically for eye surgery applications

(Üneri et al., 2010). The surgical needle is attached at the end-effector with thickness 500μm in

diameter and its small tip measuring 300 μm in diameter (Fig. 5.1). The artificial eye phantom

(i.e. a rubber eye model) is 25.4mm in diameter, slightly larger than a human eye which ranges

20 - 22.4mm (Bekerman et al., 2014). To collect data in our experiments, we control the robot

using motors attached on the robot joints. We record the images from the microscope and the

tool-tip position based on the robot motor encoders.
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4.2 Simulation Setup

In simulation, we used Unity3D software to replicate similar experiment scenarios as the phys-

ical experiment as shown in Fig. 4.1. For sense of scale, the thick part of the tool shaft mea-

sures 500µm and the tool-tip measures 300µm (Fig. 5.1). We perform domain randomization to

change the eye background texture and the lighting condition. Specifically, we created 15 dif-

ferent eyes, each varying in dimension at 20.4mm, 21.2mm, and 22.4mm. These measurements

reflect the minimum, medium, and maximum dimension of human eye sizes (Bekerman et al.,

2014; Vurgese, Panda-Jonas, and Jonas, 2012), and 5 eyes were created for each dimension. The

texture of the eyes were obtained from (Diabetic Retinopathy Detection). Domain randomization

was used to help the network generalize-well to changing brightness conditions, size of the

eye, and unseen eye background textures. three eyes from each size were used in training, and

the remaining two eyes from each size were used for testing.

FIGURE 4.2: (Left) training trajectories with small initialization region; blue tips
indicate starting position of the trajectory (Right) Training trajectories with large

initialization space as data augmentation.

4.3 Data Collection

For real-life experiments, we collected 2000 trajectories in low and high brightness settings. In

simulation, we collected 2500 trajectories under a wide range of brightness conditions, while

various eyes with different size and backgrounds were randomly replaced. The procedure
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for data collection were as follows: we initialized the tool at a random position, then navi-

gated towards a randomly selected position below the eye in a straight-line trajectory. We use

straight-line trajectories as a way to generate predictable and simple ground-truth expert data.

When collision was detected between the tool and the eye phantom using a force sensor at the

end-effector (Fig. 4.1), we logged the images and the tool-tip positions of the trajectory. For

simplicity, we kept the orientation of the tool fixed and only moved the XYZ-position of the

tool. The position of the eye remained fixed as well.

To synthesize the goal for each trajectory, we used the last XY tool-tip position of the exe-

cuted trajectory and plotted it as a white square with dark background as illustrated in Fig. 1.1.

Effectively, we changed the 2-dimensional coordinate representation of the goal to an image

representation. This design choice can be useful in an application where a surgeon may simply

use a mouse to click the goal location in the visual-feed of the surgery, and the network will

navigate the surgical tool to the exact location of the white square corresponding to the surgical

scene (Fig.1.1).

We note that our method for synthesizing goal images do not guarantee precise spatial

correspondence between the tool-tip position and the goal image. This is due to perspective

projection, where objects further away from the camera are subject to shift towards the vanish-

ing point, but the plotted goal position, which is obtained from robot kinematics, is not subject

to perspective projection. One way to guarantee spatial correspondence is to manually anno-

tate the tool-tip positions to create the goal images; however, we leave this for future work.

Our objective is to assess how consistently the network can generate desired trajectories given

a particular goal image. Thus, similar consistency in performance is expected given manually-

annotated goal images with precise spatial correspondences.

FIGURE 4.3: (Left) Baseline network (Right) Extended network

9



4.4 Network Details and Training

The input to the network are the current image of the surgery (224x224x3) and the goal image

(224 x 224 x 1) stacked along the channel dimension, yielding a combined dimension of (224

x 224 x 4). The output of the network is a XYZ-waypoint in the surgical workspace (three-

dimensional vector) which the network must travel in order to reach closer to the target location

on the retina. Specifically, for a single trajectory consisting of n frames I1, ...In ∈ I , n tool-tip

positions p1, . . . , pn ∈ R3, and the goal image coordinate g ∈ R2 specific to this trajectory,

a single sample is expressed as (input, output) = ((It, g), pt+d), for t = 1, . . . , n−d, where

d is a parameter denoting the look-ahead of the commanded action, which is used as a feed-

forward reference signal to the robot. We chose d = 8, which is equivalent to approximately

70µm apart between learned waypoints to ensure that the network moved the surgical tool by a

noticeable distance every control cycle. The complete data set D is constructed using multiple

such trajectories and their corresponding samples. Internally, the network maps the goal g into

an image Ig ∈ I which is concatenated with the actual camera image Ii to form the complete

network input.

We experimented with two architectures, a baseline network that predicts an XYZ waypoint

and another network that predicts an XYZ waypoint plus the future image as shown in Fig.

4.3, which we refer to as extended network. The extended network was enforced to learn an

auxiliary task which helped with the main objective of predicting accurate waypoints. For the

extended network, a single training sample is (input, output) = ((It, g), (pt+d, It+d)). In the

following, we discuss each network in greater detail.

4.4.1 Baseline Network

We use Resnet-18 (He et al., 2016), which takes high dimensional image (224 x 224 x 4) as

input to 512-dim feature vectors. To learn the waypoints or the action output, we discretize

the continuous X, Y, and Z coordinate representation into 100 steps. Specifically, we add a

fully-connected layer outputting 300 neurons on top of the 512-feature vectors, where each

100 neurons is a discretized representation of the continuous X, Y, and Z coordinates of the
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euclidean surgical workspace respectively. The network was trained using cross-entropy loss

with Adam optimizer ( Kingma and Ba, 2014) with a learning rate of 0.0003 and batch size of

170. The loss function is defined as

L(b, p̂) = ∑
j∈{x,y,z}

Mj

∑
c=1
−bj,c log( p̂j,c), (4.1)

where bj,c are binary indicators for the true class label c, and p̂j,c are the predicted probability

that the coordinate j is of class c. The cost combines the errors for all three dimensions j ∈

{x, y, z}. As specified above, we employed Mx = My = Mz = 100 discrete bins.

4.4.2 Baseline + Predicting Future Image (Extended Network)

The extended architecture aims to achieve the baseline task and additionally predict future im-

ages. The architecture is shown in Fig. 4.3. On top of the Resnet-18 architecture, a decoder

network with skip-connections is added. The waypoints were trained using cross-entropy loss

similar to the baseline network and the future-image prediction was trained using RMSE func-

tion. The network is trained using Adam optimizer with a learning rate of 0.0003 and batch

size of 120. The combined loss function is given as

L((b, I), ( p̂, Î))= ∑
j∈{x,y,z}

Mj

∑
c=1
−bj,c log( p̂j,c)+(I− Î)2, (4.2)

where Î denotes the future-image prediction by the network and I denotes the label for the

future image. To balance the loss functions, drop-out approach was used where we performed

back-propagation 70% of the time for the future-image loss term.

4.5 Data Augmentation

For robust learning, we utilized data augmentation such as random drop-out of pixels, Gaus-

sian noise, and random brightness, contrast, and saturation. We also expanded the initializa-

tion space so that the network could reach the same target location from various initial posi-

tions as shown in Fig. 4.2. This effectively enabled the network to recover from mistakes when
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it deviated from its hero path (Ross, Gordon, and Bagnell, 2011). These techniques were crucial

to generalizing well to unseen environments.
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Chapter 5

Results and Discussion

5.1 Physical Experiment Results

FIGURE 5.1: (Top) Example test conditions in real-life physical experiment and
(Bottom) in simulation.

To assess the accuracy of our networks, we performed benchmark experiments where the

baseline and the extended network visited 50 predefined locations in the training region in

grid-like fashion (5 x 10), starting from three different initial locations as shown in Fig. 5.1. The

objective of such experiment was to test how accurately the network could navigate to various

targeted locations, given various goal inputs. We tested each network in the familiar and un-

seen environments as listed in Table 5.1 and Fig. 5.1. For experiments with tool-distractions, we

only tested from the right-most initial position out of the three, since a human had to hold the

tools throughout the long experiments. The light-pipe and forceps were dynamically maneu-

vered to follow the tool-tip. Both tools occasionally occluded the surgical tool and its shadow.
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Our experimental results are summarized in Table 5.1 and the executed trajectories are

shown in Fig. 5.2. The table contains numeric XY-error values in reaching the goal position

under various test conditions. Since the eye position is fixed during training and experimen-

tal validation, the error can be calculated by comparing the input goal-image coordinate (x, y)

against the final landing position of the surgical tool (x
′
, y
′
) after the trajectory execution is

complete (e.g. when force is detected using the force sensor). Thus, the error reported in Table

5.1 is calculated using the formula
√
(x− x′)2 + (y− y′)2. The accuracy reported in Table 5.2

are the classification accuracies achieved on the validation dataset offline, not the online bench-

mark experiments. In Table 5.2, we are able to report errors in the z-axes (depth) because we

have ground-truth xyz-values of the full trajectory from the previously collected dataset.

Our results show that the both baseline and extended network generalizes well to unseen

scenarios, achieving 166µm and 137µm in error, even in the presence of unseen brightness con-

ditions and unseen surgical tools significantly occluding the scene. The extended network also

performed marginally better than the baseline network. This result is expected given the higher

accuracy achieved by the extended network in the validation dataset, achieving 2.5% higher ac-

curacy than the baseline (Table 5.2). Also, as shown in Fig. 5.3, the extended network trains

faster and is more data-efficient than baseline network, achieving best classification accuracy

on the 18th epoch versus 26th epoch by the baseline network. In addition to improving the

baseline network performance, the extended network is able to predict clear future images.

The extended network can imagine different futures depending on various goal inputs (e.g.

move the tool forward, left, right), recognize the surgical tool as a dynamic object apart from

the static background, and also reliably reconstruct surgical objects it has never seen during

training (Fig. 5.4).

5.2 Simulation Experiment Results

Similar to real-life experiments, we performed benchmark tests where each baseline and ex-

tended network visited 100 predefined locations in the training region in grid-like fashion (10
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x 10), starting from three different initial locations as shown in Fig. 5.1. We tested each net-

work in the following conditions as listed in Table 5.3 and shown in Fig.5.1. For experiment

with tool-distractions, we only tested from the middle initial position out of the three. Both the

light-pipe and forceps were moved randomly to imitate hand-tremor, and both tools occasion-

ally occluded the surgical tool and its shadow.

The simulation results are summarized in Table 5.3 and the executed trajectories are shown

in Fig. 5.2. The errors shown in Table 5.3 are calculated using the same formula mentioned

in the real-life experiment results, specifically using the formula
√
(x− x′)2 + (y− y′)2 where

(x, y) denotes input goal-image coordinate and (x
′
, y
′
) denotes the final landing position of the

surgical tool after trajectory execution. Similarly, Table 5.4 shows network results on the vali-

dation dataset. Our results show that both baseline and extended networks achieve good per-

formance and can generalize robustly to unseen scenarios, even in the presence of unseen eye

backgrounds and unseen surgical tools occluding the scene. Similar to real-life experiments,

the extended network also performed marginally better than the baseline network. This re-

sult is expected since the extended network achieved 4.9% higher accuracy than the baseline

network in the validation dataset (Table 5.4). Similar to real-life experiments, the extended

network is also more data-efficient than the baseline network, achieving maximum accuracy

at 13th epoch versus 9th epoch by the baseline network (Fig.5.3) and achieving significantly

higher maximum validation accuracy.

TABLE 5.1: Eye Phantom Experiment Results

Test Condition Baseline Network
Error (mm)

Extended Network
Error (mm)

Train Low Brt.1 0.134 0.139
Train High Brt. 2 0.092 0.108

Unseen Brt. 0.177 0.127
Unseen Brt.+Distr. (1 tool) 0.165 0.146

Unseen Brt.+Distr. (2 tools) 0.155 0.137

"Unseen" Avg. (above 3 rows) 0.166 0.137
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FIGURE 5.2: (Left) Trajectories executed in real-life in unseen brightness condi-
tion (Right) trajectories executed in real-life in changing brightness condition +

unseen eyes

TABLE 5.2: Eye Phantom Training Results

Axes Baseline Val.
Acc. (%)

Extended Network
Val. Acc. (%)

X 82.0 82.8
Y 76.0 76.7

Z (Depth) 60.8 61.9
XYZ Total Sum 218.8 221.3
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FIGURE 5.3: (Left) Waypoint prediction accuracies on the "real-life" validation
dataset and in (Right) simulation. Y-axis is the sum of the classification accuracies
for xyz axes (i.e. maximum possible is 3.0). Dashed lines mark the maximum

accuracy achieved.

FIGURE 5.4: (Left) Future prediction by the extended network under various un-
seen conditions (Right) Different futures predicted by changing the goal input

(rectangle frames are fixed, added to clarify shifted positions of the tool)

TABLE 5.3: Simulation Experiment Results

Testing Condition Baseline Network
Error (mm)

Extended Network
Error (mm)

Train 0.107 0.098
Unseen Eyes 0.102 0.096

Unseen Brt. + Distr. (1 tool) 0.140 0.100

Unseen Brt. + Distr. (2 tools) 0.169 0.087

"Unseen" Avg. (above 3 rows) 0.137 0.094

TABLE 5.4: Simulation Training Results

Axes Baseline Val.
Acc. (%)

Extended Network
Val. Acc. (%)

X 78.9 81.4
Y 84.8 84.0

Z (Depth) 67.3 70.6
XYZ Total Sum 231.0 235.9
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Chapter 6

Conclusions

In this work, we demonstrate end-to-end autonomous navigation of a surgical tool inside the

eye using deep networks. We demonstrate a baseline approach and propose an improved net-

work architecture that predicts a future image, which improved the baseline performance. We

also show that the network generalizes well to unseen brightness setting and in the presence

of unseen distractions, overall achieving 137µm error on average in real-life experiments and

94µm error in simulation. In future work, we hope to test our framework in more realistic sce-

narios. For example, in real surgery, the surgical tool is constrained at a point and can only slide

and tilt through a scelerotomy port on the eye-ball. The eye lens also introduces aberrations

by distorting the surgical scene. It may also be possible to integrate the tool-navigation task

as a sub-task to achieve more complex tasks. We also hope to propose frameworks that enable

more efficient learning requiring less demonstration data in the future.
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