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Abstract

Functional Endoscopic Sinus Surgery (FESS) is a surgical procedure that
otolaryngologists have adopted to treat sinus diseases. Aiming for accurate
treatments and less complications, surgeons are usually guided with an
endoscopic navigation system when performing the surgery. The state-of-
the-art navigation systems report a submillimeter positioning error. This

significantly reduces intraopertive time and improves surgical outcomes.

Navigating endoscope is similar to Visual Odometry (VO) or Simultane-
ous Localization and Mapping (SLAM), all of which require an estimation
of camera poses and motions in an unknown environment. Feature-based
methods and direct methods are two common approaches for VO and Visual
SLAM for motion estimation, but both methods have drawbacks. Feature
computation and feature extraction consume are usually not computationally
effective, while direct methods suffer from local optima. One recent alter-
native is called Semi-Direct Method, or hybrid method, which overcomes
the drawbacks by applying optimization that is used in direct method to
the selected features.[15] In this work, we introduce a novel endoscopic
navigation system for FESS which uses both prescanned CT model and 2D
endoscope video. The system is able to texture map the CT model in real
time for visualization and to refine the pose estimation of the endoscope

from different prior estimates.
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Chapter 1

Introduction

Estimating the ego-motion of a mobile robot remains a hot topic in Robotics
and Computer Vision over the decades, and one challenging problem is
to compute six degree-of-freedom motion from video stream or sequences
of images [2, 16, 17, 33, 46, 47, 49]. Determining the ego-motion of an
agent with a camera is called Visual Odometry (VO) [38, 44]. If a map of
nearby environment is built simultaneously, this process is referred as Visual
Simultaneous Localization and Mapping (V-SLAM) [7, 11, 25]. The goal for
vision-based motion estimation is to obtain the highest positioning accuracy
and robustness with a considerable cost. Recent state-of-the-art systems are

capable of running on mobile devices with plausible accuracies [13, 15].

1.1 Functional Endoscopic Sinus Surgery

VO and V-SLAM have wide applications in Robotics and automotive indus-
try as well as in surgical treatments. Functional Endoscopic Sinus Surgery
(FESS), as an effective surgical procedure for sinus disease which is per-
formed over 250,000 times annually in the United State, is to treat sinonasal
pathology such as chronic sinusitis [6, 27]. It has a long history which dates
back to the 1980s after the pioneering work of Messerklinger and Kennedy.
[12]. Navigating an endoscope in nasal structures is difficult due to the

complexity of the anatomy. The complication associated with endoscopic



sinus procedures is approximately 6-8%, with about 1% of them result in
major complications [10, 24]. Commercial navigation systems only guarantee
a positioning error of 2mm while the state-of-the-art systems may limit the
error under Imm [26, 33]. However, the error is still large compared to the

nasal pathways.

Similar to VO or V-SLAM, navigating endoscope in nasal structures also
requires accurate position and orientation estimation and tracking of the
endoscope. Well-established endoscope navigation methods use sequences
of endoscope images, and implement Structure from Motion (5fM) for the
endoscopic position and orientation estimation. One recent method incor-
porates both video streams and Computed Tomography (CT) models, and
register reconstructed model from SfM to the prescanned CT model using
Iterative Closet Points (ICP)-based 3D registration. Another alternative ren-
ders virtual images from the CT model, and compare the rendered image
with real images for pose estimation. However, several practical issues still
exist and are required to be addressed before they reach clinical acceptance.
First, navigation methods need to be robust to various tissue surface appear-
ances and anatomy distortions. Second, ICP related methods require high
computational power and good initial registrations, while rendering-based

methods waste too much power in virtual rendering.

1.2 Simultaneous Localization and Mapping

Traditional VO or V-SLAM methods are normally feature-based, which in-
volve feature detection, extraction and registration across frames. Feature
detection finds local features such as corners, blobs or more general features,
while feature extraction computes the feature descriptors that distinguish
each feature [45, 50]. When detectors and descriptors are obtained, feature
matching is usually solved in two ways. For rich feature descriptors, either

they are matched by brute-force methods, which each descriptor is compared



with all others for the best match, or tree-based and vocabulary-based sorting
methods such as Fast Library for Approximate Nearest Neighbor (FLANN)
by K-Means tree [22, 32, 39]. Other descriptors employ optical flow and
search for correspondence by identifying a step size and a direction [5, 30].
Ideally, when feature correspondences are established, camera motion can

be easily estimated with epipolar geometry.

A typical problem associated with feature-based methods is the compu-
tational complexity caused by feature description and matching, as well as
the necessity for robust outlier romoval techniques such as RANSAC and M-
estimators [1, 31]. One alternative for feature-based VO or V-SLAM is called
direct method, which operates directly on pixel-level intensities and uses
intensity differences as a measurement of similarity [19, 36]. Feature-based
methods minimize reprojection errors, which is a sum of Euclidean distances
of each feature pair. This process is called Bundle Adjustment [51]. Direct
methods minimize photometric error between corresponding pixels at same
location directly in sensor space. The great advantage of this method is that
it requires no prior data association hence largely reduce the computational
costs caused by feature extraction, matching and outlier romoval. However,
direct methods are still expensive, as they require dense or semi-dense recon-
struction of the environment for joint optimization. One recent alternative is
called hybrid method or semi-direct method, which combines the advantage
of both indirect and direct methods. One example of hybrid method extracts
blobs as features, optimize photometric error of the selected features. This
method avoids the expenses of both feature description, matching and prior

data association, and achieve comparable accuracy and robustness.[15]

1.3 Outline

This work is organized as follows. Chapter 1 starts with the introduction to

Functional Endoscopic Sinus Surgery, VO and V-SLAM, motion estimation



methods, and motivation and challenges for the work. Chapter 2 presents the
endoscopic navigation system in general, as well as the terminologies and
notations used in this work. It also describes the fundamental knowledge
of computer vision, kinematics and optimization that constantly used in
different chapters. Chapter 3 demonstrates the CT texture mapping method
and shows the result for visualization and virtual image rendering. Chapter
4 illustrates the motion estimation method which is the core chapter for
this work. Chapter 5 describes the optimization method for the system and
chapter 6 shows the experiment results under different situations. In the end,

chapter 7 draws the conclusion and proposes future works.

1.4 Motion Estimation

1.4.1 2D-2D Motion Estimation

The objective for the front end module of VO and SLAM is to estimate the
camera motion across frames. Recover camera positions and orientations
with a sequence of images is generally divided into the following three

classes.
1.4.1.1 Feature-based Methods

The standard procedure for feature-based motion estimation is shown by the

following pipeline:

—_

. Input image sequences

2. Feature detection

3. Feature description

4. Feature matching/tracking
5. Motion estimation

6. Local optimization



Feature detection tracks high frequency textures such as corners and blobs
[18], then describes these features with local information such as local gradi-
ents. Popular feature descriptors include SIFT [29], SURF [4], HOG [9] and
ORB [43]. Feature matching is a procedure that matches features to create
either 2D-2D, 3D-2D or 3D-3D correspondences. The correspondences are
typically involved in the computation of the homography or transforma-
tion Ty, decomposition of Ry and t;, and the computation of concatenate
transformation Cy = Cx_1T. Where Tj, Ry and t; are the homogeneous trans-
formation, rotation and translation of the camera and Cj is the camera pose
at keyframe k. For erroneous correspondences, outlier removal techniques
such as RANSAC[1] and M-estimators[31] are implemented to find salient

matches.

1.4.1.2 Direct Methods

Direct methods estimate motion directly by minimizing photometric error -
an error measure that is based on the pixel-level intensities of two consecutive
images. Compared to feature-based methods that only consider the distance
to feature location, direct methods inherit the idea from optical flow, use local
intensity gradient in the optimization framework. Pixel correspondences
are given directly by the geometry of the problem, eliminating the need for

robust data association.

Direct methods are well-established for monocular, RGB-D and stereo
cameras [8, 20, 23]. For dense direct approaches, examples include DTAM
[37, 48], REMODE [41] and LSD-SLAM [14]. In a complementary manner,
for Sparse direct approaches, the formulation is proposed by Jin et al. [21]

and DSO [13].

There are two major assumptions for direct methods which come from
optical flow: brightness constraint, which assumes that the illumination of

the image is constant and the motion is small, so the pixels are trackable



across consecutive images; and smoothness constraint, which assumes that
in a small neighborhood of an image which is usually called a patch, all the
pixels inside the patch have similar movements. The optical flow problem
can be formulated in different ways. Bruce D. Lucas and Takeo Kanade
interpret the assumptions into two equations, where the detailed math can
be found in Chapter 4.2. It is regarded as a local estimator of optical flow.
The Horn-Schunck method is a global estimator as it formulates the optical

flow problem in one objective function as:
- 2, .2 2 2
E= [ [+ Lo+ 1)+ a(Jull” + [[o])dxdy (11)

Where E is the global energy which the function seeks to optimize. The
intuition behind the formulation is the overall pixel intensity difference can
be minimized by finding an optimal to the first part of equation, at the same
time imposing a penalty on the sum total movement u and v, as seen in the

second part, to satisfy the assumptions.
1.4.1.3 Hybrid Methods

One recent hybrid method proposed by Scarramuza et al. is called SVO
[15]. It uses a direct formulation called sparse image alignment to obtain
correspondences, before switching to an indirect formulation for model

optimization.

1.4.2 3D-2D Motion Estimation

Most existing 3D-2D motion estimation systems are rendering-based. By
rendering a virtual image from the CT model using a graphical engine, it is
possible to estimate motion by comparing the virtual image with the video
stream obtained from the endoscope [40]. It is achieved by utilizing photo-
metric rendering from the CT model following by analyzing the similarity

metric between rendered image and video. Prior to these, Mori et al. [34]



first adopt optical flow to find the homography between two consecutive
real images, then using the homography to render a virtual image from
the CT model. Finally the cross-correlation is computed to refine the pose.
Later on, Robu et al. [42] extend this work with another similarity measure -
discriminative structural similarity (DSSIM), to compensate for illumination

changes and tissue distortions.

1.4.3 3D-3D Motion Estimation

Most navigation systems that implements 3D-3D registration for motion
estimation utilize the variations of ICP. Leonard et al. extract features with
SUREF plus hierarchical multi-affine (HMA) algorithm, and further apply
SfM to generate 3D model [26]. The reconstructed 3D model is registered
with the prescanned CT model for position and orientation estimation us-
ing trimmed-ICP. (TriICP) Billings et al.[6] implement another variation of
ICP called Iterative Most-Likely Point Registration (IMLP) to find point
correspondences, then apply similarity transform in point registration step.
Instead of directly obtaining the endoscope pose after 3D-3D registration,
Mirota et al.[33] track the 2D features using adaptive scale kernel consensus

(ASKC) [52] and further calculating 2D-3D correspondences.

1.5 Motivation and Challenge

The best way to obtain a high navigation accuracy is to make fully use of
the prescanned CT model of the patient, and incorporate the model with
the real time video stream provided by the endoscope. If the CT model
is textured, the back projection of the model vertices can be regarded as
feature points. This could avoid the computation complexity caused by
feature detection and feature extraction. Since each vertex of the CT model is
assigned a unique index and a RGB value, feature matching can be greatly

simplified by utilizing the indices of the potential points to trace the vertices,



and comparing the intensities for determining correspondences.

One major challenge associated with the idea is the variation of illumi-
nation. When the endoscope moves inside the sinus cavity, the lighting
condition might change with the shifting of the light source. This may result
in the change of surface colors or intensities in different time stamps. To solve
this problem, the illumination need to be normalized, and the registration

algorithm should also be designed to be robust to lighting condition changes.

Another challenge is associated with the deformation of sinus structure
during surgery. The sinus cavity is not static during the surgery by virtue
of breathing and the surgical operation. The reflection of deformations on
the video stream will lead to inaccurate registrations between the CT model
and the endoscopic video, hence outputting an inaccurate transformation
estimate. One possible solution is to segment the model and to select regions
that are stationary. If the algorithm is able to run in a high frequency, the
position of the 3D vertices shall also be adjusted adhere to the deformation

in a mapping process.



Chapter 2

Overview

In this chapter, the system architecture is introduced. The terminologies and
notations are then described following by the basics of camera calibration,

kinematics and optimization that are used different parts of this thesis.

2.1 System Architecture

Texture Mapping Thread (Sect. Ill)
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Figure 2.1: Back-projection texture mapping pipeline

Figure 2.1 provides an overview of the proposed endoscopic navigation
system for sinus surgery. A complete VSLAM system generally contains five
modules: Sensor Input, Front End VO, Back End Optimization, Loop Closing
and Mapping. Sensor Input module reads and pre-processes raw sensor data
from cameras and other sensors. The front end of a VSLAM system estimates

the relative motion between two adjacent frames as well as determining the



structure of the local map. This is typically referred as visual odometry. Back
End Optimization takes different poses from VO and Loop Closure Detection
as well as the 3D scene vertices, and optimizes all these parameters to get a
globally consistent trajectory and a map. Loop closing detects if the robot
or camera comes back to one of its previous location. If it has visited the
same place, the loop closing module will send the information to the back
end for trajectory refinement. Finally, Mapping establishes a corresponding

3D scene, or a map, with respect to the current trajectory.

As our system directly takes the prescanned CT model as the scene model,
the Mapping module is no longer required. Our system has two threads -
a Texture Mapping Thread and a Motion Estimation Thread. The texture
mapping thread continuously takes the estimate of the current pose, and
texture maps the CT scene model. When new images are received, the
keyframe selection module will choose a frame of interest from a set of
frames. This reduces the cost of computation and storage. When a new
keyframe is selected, it renders a virtual image from the scene using the prior
estimated pose and sends it to Motion Estimation Thread. In addition to
updating the global scene model and publishing a virtual rendered image,
it also publishes all corresponding indices of back-projected points in the
rendered image. This allows the Motion Estimation Thread to trace the 3D
position of the corresponding vertex of each back-projected point as well as

its RGB value.

Once the rendered image and indices of back-projected points are re-
ceived, the Motion Estimation Thread takes the rendered image and the
current keyframe image, and registers the rendered image with the current
endoscopic image using the method described in chapter 4 to establish 2D-
2D correspondences. As the indices for each back-projected point can be
exploited to obtain the original 3D vertex position, the 3D-2D correspon-

dences are also established simultaneously. The correspondences are then

10



sent to Motion Estimation module and new pose is hence estimated. Each
newly estimated pose will be served as the prior motion estimate for the next

iteration and be further used in the next estimation step.

As our system makes use of raw CT model as a reference map, no Map-
ping module is further needed. On the contrary, assuming a reasonably
good initial endoscope position with registration error less than Imm, the
CT model is first texture mapped by the initial endoscopic image at the

beginning of the process to start the iteration of pose estimation.

2.2 Terminology

Back-projection, or reprojection is the step of projecting the 3D vertices onto
the image plane. Pose is an abbreviation for position and orientation which

is often used in computer vision.

In this work, the prescanned CT model is referred as the model or the
scene model for simplicity. The 3D points stored representing the model
are called 3D vertices. The back-projected points refer to the 2D pixels on
the image plane that are projected from 3D vertices. In general, each back-
projected point has a 2D position in pixel, an index which is the same as the
original 3D vertex, a 3D position that can be found using the index, and a
RGB value also from the 3D vertex. For a back-projected point at pixel (1, v),
the original pixel (1, v) in the image is called the original point. Most of the
back-projected points are registered to the points called corresponding points
or photometric equivalences. They are photometric equivalent, or equivalent
in terms of intensity as they are registered by checking if their intensities are
the same. If the intensities are the same, then they are aligned, otherwise
they are misaligned and there will be an optical flow the point. The flow

contains a direction and magnitude.

11



2.3 Notation

The position and orientation of each camera at keyframe k is defined as C,
while the estimate of the camera pose after prior motion is Cy. The rigid body
transformation between frames k — 1 and k in homogeneous coordinates is
defined as Tx_1x € SE(3), where the rotation is Ry_1 y and the translation
is tx_1 k. All the camera motion are calculated with respect to the world
coordinates. For the transformation at the same keyframe k, the notations

are simplified as Ty, Ry and t.

For each camera pose Cj at keyframe k, the associated image intensity
for the endoscopic image is defined as I : O° C R? — R and the back-
projection image intensity that obtained directly from the back-projected CT
model is defined as I!" : O° C R? — R, where ()? is the image domain. The
reprojection image contains only sparse points back-projected from CT model
with its own intensity. The image coordinates for each back-projected point at
keyframe k is defined as uj} (u]},v7}) € IR? and the photometric equivalence,
or the corresponding image feature point after registration is represented as
uf, (uf), 07)) € IR?, where i is the point index. The intensity for a single pixel
1is hence I}, I} for the back-projected point and the original point intensity

respectively. In addition, the position of a 3D vertex in the CT model with

the same index i in the world coordinates is defined as p;(x;, yi,z;) € R>.

To project 3D vertices in world coordinates into image coordinates, the
camera projection matrix at time k is defined as Ky, hence suf, = Kyp;, where

s is the scale factor.

2.4 Fundamentals

2.4.1 Camera Model and Calibration

In order to transform the real world data onto the image plane, the position

and orientation of the camera relates to the world coordinates need to be

12



acquired as well as the projection between the objects in 3D space and 2D im-
ages. In computer vision, the transformation between world coordinates and
camera coordinates is called Extrinsic Parameters, and the transformation

from the camera coordinates to the image plane is called Intrinsic Parameters.

For a pinhole camera, the Intrinsic Parameters are defined as a 3 x 3

matrix as:
fx 0 cx
K=120 fy Cy (2.1)
0 0 1

where fy, f, are the focal lengths in x and y axis of the camera, and cy, ¢, are

the principal points. The Extrinsic Parameters are defined as:

R t
T:{O 1} 2.2)

where R is the rotation matrix, and t is the translation vector

r o1y 13 ty
R=|ry 15 16 |, t=| 1 (2.3)
r7 18 19 t;

So to transform a 3D vertex [x,y, Z]T in the world coordinates to a 2D

pixel [u,v,1] Tin the image coordinates, we combine the formulas with aug-

mentation as

s|o|=KT=|0 f ¢ 0|5 Te w1V (2.4)
1 0 0 1 0 ry T8 9 t, z
0 0 0 1 1

where s is a normalizing constant. Intuitively, the projection process first
transforms a 3D point in world coordinates into camera coordinates by using
the camera Extrinsic, and then projects the 3D point in camera coordinates

onto the 2D image plane.

Due to the imperfection in lens manufacture and misalignment of lens
and Charge-coupled Device (CCD) in camera assembly, the image obtained

by the CCD is usually distorted. To remove lens distortions, we applied the

13



following formula:

ue = u(1+ ki + kor* 4 ksr®) (2.5)

ve = v(1 + ki7? + kor* + ksr®) (2.6)

for the radial distortion, and

Ue = u+ 2pruv + pa(r* 4 2u?)] (2.7)

Ve = v+ [2pouv + py(r* + 20%)] (2.8)
for the tangential distortion.

So for a pixel at [u, v] T the position of its undistorted corresponding pixel

is noted as [uc, v.]", and the distortion model has 5 parameters (k1 ky, p1, p2, k3).

2.4.2 3D Geometry and Transformation
2421 Homogeneous Representation and Lie Group
Every 3D rotation can be represented by a 3 x 3 matrix
o r2 13
R=|ry r5 rg (2.9)
r7 T8 T9

if it satisfies the following property:
1. R"TR=RRT =1
2. det(R) =1

Any matrix satisfies the above property is special orthogonal, denoted as
SO(@3)
SO(3) = {R € R¥3: RRT = [,det(R) = 1} (2.10)

SO(3) is a group using matrix multiplication as the group operation and

14



the identity matrix I as the identity element. To extend the idea of group into
general rigid body transformations, we denote the special Euclidean group

as

SE(3) = {(t,R):t € R} R € SO(3)} =R x SO(3) (2.11)

where t is the translation of the transformation and R is the rotation. An
element of the special Euclidean group is called the homogeneous represen-

tation of transformation which is denoted as:

R t
T:{O 1} (2.12)

It is easy to check that T € SE(3) forms a group under matrix multipli-
cation with the 4 x 4 identity matrix as the identity element. The inverse is

denoted as:

RT —RT¢
_1_
T _[ 0 ) ] (2.13)

2.4.2.2 Euler Angles

Euler Angles is one of the most intuitive ways to represent a 3D rotation
of the rigid body with respect to a fixed coordinate frame. It is defined as
the combination of «, f,and 7. « is angle between x-axis and N-axis, B is
the angle between z-axis and Z-axis, -y is the angle between N-axis and the

X-axis.

) 1 0 0
Ry(y) =e""=| 0 cosy -—siny (2.14)
| 0 siny  cosy
) [ cosp 0 —sinf
RyB)=e®=| 0 1 0 (2.15)
| sinB 0 cosp
) [ cosa  —sina 0
Ry(a) =¢e** = | sina  cosa O (2.16)
0 0 1
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There are many conventions for the combination of «, B, and~y such as z-x-z,
X-Y-X, Y-2-y, z-y-z, X-z-X and y-x-y. For instance for z-x-z convention, the rigid
body first rotates around z-axis for an angle «, then y-axis for an angle 8, and
finally z-axis for an angle y. To find the rotation of frame A with respect to

frame B, using the above convention

Ry, = Rz(_'Y)Ry(_:B)RZ(_D‘) (2.17)

One application for Euler Angles is yaw, pitch and roll (x-y-z) which are
usually used for describing the orientation of an aircraft. Yaw represents the
bearing angle, pitch represents the elevation and roll represents the bank

angle.

However, Euler Angle representation is always associated with a draw-
back called Gimbal Lock, which means a loss of one degree of freedom in
a 3D system. Gimbal Lock happens when two axis are parallel or colinear,
which introduces a singularity into the system causing the degree of freedom

to drop.
2.4.2.3 Axis-angle Representation

Axis-angle representation is a more general form of representing a 3D ro-
tation. It uses a unit vector as rotation axis and describes the change of
orientation by an angle 6. Let w € R? be a unit vector which specifies the
direction of rotation, and the angle 6 , we can find the relationship of the

3 x 3 rotation matrix and the angle-axis representation using exponential
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map:

= [ + @sinf + @&*(1 — cosbd)

2.18
W+ wiwrvd — w3sh  wiwzv0 + wWysh (2.18)
= | wiwyvl + w3sh w3l + b w0 + ¢
| wiw3vl — wost  wrw3zvh + wish w%vG ~+ c6

rn ry r3
= | T4 T5 Tg
ry 18 T9

where v = 1 — cosf, s6 = sinb, c = cosf. If an rotation matrix is given, the

angle can be found by
-1
0 = cos‘l(%) (2.19)
if 8 # 0, we choose
1 rg — 7g
w = 550 r3 — 1y (2.20)
Ty — 712

2.4.2.4 Quaternions

To avoid the Gimbal Lock problem, another global parameterization of SO(3)
is called the quaternions. Quaterions avoid the Gimbal Lock problem by

generalizing complex numbers
Q=w+xi+vyj+zk [x,yz" €R,i=0,.,3 (2.21)

where w is the scalar component of the quaternions, and 7 is the vector

component. The relation of quaternions and a rotation matrix can be found
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as:
1-2y%—222 2xy—2zw  2xz+2yw
R=| 2xy+2zw 1-2x*-222 2yz2xw (2.22)
2xz —2yw  2yz+2xw 1—2x?—2y?

2.4.3 Non-linear Optimization

Nearly all computer vision problems can be formulated as optimization
problems. An optimization problem is a problem of searching for the best
solution, or the optimizer, that fulfills certain criteria. For instance for a

nonlinear least squares problem.
.1 2
min |1£()]2 (223)

To optimize an arbitrary nonlinear function f and to find the minimizer for

the above equation, we can take the derivative with respect to x

af _
=0 (2.24)

the solution for the equation will be the optimizer. In order to find the
minimizer of a function, the optimization process usually starts with an
initial value x. For the k-th iteration, we need to find an increment Ax; that
makes || f(x¢ + Axg) |5 to be minimized. If Ax is small enough, then the
iteration stops, otherwise let x;, 1 = x; + Axy and repeat the optimization
step.

To find the best parameter, there are two major types of optimization
methods - Line Search Method and Trust Region Method. Line search method
tirst finds a search direction, then determines the step length in that direction.
Trust Region method first selects a region of interest, then finds the optimal

point inside the region.
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2.4.3.1 Line Search Methods

One example of a Line Search Method is called Newton’s Method. Newton’s

method first expands the objective function using Taylor Expansion.

I1£(0) + Axl = IF IR + 30 HA 2.25)

where | and H are the Jacobian and Hessian of the objective function. If only
the first order derivative needs to be taken into consideration, the increment

can be calculated as

Ax* = —]T(x) (2.26)

Intuitively, this means each optimization step searches along the negative
gradient of the objective function to maximize the increment. If we use both

first order and second order derivative, then the increment becomes
HAx* = —]T(x) (2.27)

It has higher convergence rate over linear methods. However, calculating
the inverse of the Hessian is computationally inefficient, so the Hessian is

usually approximated by a combination of Jacobian

J() T T(x)Ax = =] (x)TF(x) (2.28)

This method is called Gauss-Newton Method and it is often used in SLAM
applications. But the disadvantage is that it is not guaranteed to converge

even to a local minimum.
2.4.3.2 Trust Region Methods

Though Gauss-Newton Method has quadratic convergence rate, the algo-
rithm is unstable if the initialization is closed enough to the ground truth.
It is natural to think about adding a trust region for the optimization to

guarantee its convergence. Inside the region the optimization is valid and
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otherwise the region needs to be adjusted.

The trust region can be selected based on the difference between the
change of our approximated model and the change of the objective function
for iteration. If the difference is small, the radius of the trust region could be
increased to allow bigger step size, otherwise it is decreased to guarantee the

decline of error. In practice, we can use

_ flx+Ax—f(x))
= OO0 (2.29)

to determine if the Taylor Expansion well approximates the objective function.
If p is close to 1, then the approximation is valid. If p is too small, then it is

invalid and the trust region needs to be compressed.

Then we can incorporate the region by transforming the constrained
optimization problem into an unconstrained optimization using Lagrange
Multiplier:

1 A
min - || f(x) + ] (x0) Axg]|* + 5 || DAx|? (2.30)
Axk 2 2

where D can either be an identity matrix, or the square root of diagonal
elements of JT]. By taking the derivative with respect to x, the increment

function becomes
(H+ADTD)Ax = —J(x)Tf(x) (2.31)

or

(H+AD)Ax = —J(x) T f(x) (2.32)

if D is chosen to be the identity matrix. This method is called Levenberg-
Marquad Method. It leverages the Gauss-Newton Method and gradient
descent method. When A is small which means the Hessian is dominant, the
Levenberg-Marquad is more similar to the Gauss-Newton. Otherwise if A is

small, it is more similar to the gradient descent.
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Chapter 3

CT Texture Mapping

3.1 Texture Mapping Pipeline

Texture mapping is a process of shading an object not only with solid col-
ors, but also a textured pattern or an image. A standard texture mapping
pipeline contains: a vertex puller module, which retrieves all the vertices; a
geometry processing module, which performs the camera transformation,
lighting, projection, clipping and window viewport transformation; and a

rasterization module, which linearly interpolates the data to access the color.

Scene Model

Vertex Puller Geometry Rasterization
Processing

Screen

Figure 3.1: Standard texture mapping pipeline
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3.2 Back-projection Texture Mapping

We implement the back-projection texture mapping pipeline as follows:

.1

Vertex
processing

!

Rasterization

!

Fragment
shader

.

Figure 3.2: Back-projection texture mapping pipeline

The CT model vertices are stored in an ordered list with each vertex
having a distinct index. Therefore, the vertex specification and tessellation are
not included in this pipeline. The pipeline only contains vertex processing,

rasterization and fragment shader.

The basic operating unit for texture mapping is called a primitive, the
boundary of which is defined by each vertex. The vertex processing includes
clipping and culling. Clipping means that primitives lying on the boundary
between the inside of the viewing volume and the outside are split into sev-
eral primitives, keeping visible primitives lying inside the volume. Triangle
primitives can be culled to avoid rendering triangles facing away from the

viewer.

Rasterization is to determine which pixels are drawn into the frame-
buffer, then interpolates parameters such as colors and texture coordinates
for further processing. The result of rasterizing a primitive is a sequence
of fragments. The state for a fragment includes its position in screen-space

and depth information which is called Z-Buffer. When transforming each 3D
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Figure 3.3: A textured CT model back-projection texture mapping. Gray vertices in
the model means either the vertex is not seen by the camera, or it is occluded, others
are shaded with color from endoscopic image.
vertex from world coordinates to camera coordinates or image coordinates,
Z-Buffer keeps track of the depth information of each individual vertex (z-
axis value in camera coordinate), and retains only the fragment with the
smallest depth value. The nature of Z-Buffer method is when more than one
vertices fall onto the same pixel location on the image plane, the nearest one
is kept as the farther ones are occluded.

Vertex shader performs basic color processing for each vertex. For vertices

with smallest Z-Buffers, the corresponding 2D image pixels are shaded with

the vertex intensities with proper interpolation.

3.3 Image Rendering

Image rendering is a process of generating photorealistic images from a
3D scene. The ultimate goal for computer graphics is to transform the 3D
world objects into 2D images, which means to create images or films from

computer-generated models. Rendering is a way to display such a model.
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(a) Side view of textured sinus structure in RViz

(b) Front view of textured sinus structure in RViz

Figure 3.4: A real time visualization of textured point cloud in RViz
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Figure 3.5: A rendered image from the textured CT model.

The image rendering pipeline also contains vertex processing, primitive
assembly, rasterization and fragment shader which is nearly identical to
the back-projection texture mapping pipeline. This allows us to employ the

previous pipeline to generate a rendered image. See figure
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Chapter 4

Motion Estimation

In this section, we describe the proposed textured CT-based motion es-
timation method for endoscopic navigation. The major assumptions are
brightness constancy and smoothness constancy, which are also the major

assumptions for optical flow and direct methods.

Our key idea is, given a high frequency but relatively noisy prior motion
estimate, camera poses can be optimized by exploiting the CT model. One
reasonable way is to use Perspective-n-Points or Bundle Adjustment, which
requires a registration of 3D vertices and 2D pixels. This registration can be

obtained from optical flow. See figure 4.1

4.1 Prior Motion Estimation

There is a necessity for motion prior in this method as the nasal pathway is
considered to be poor featured, and the camera motion is considered fast
given the scale of the sinus cavity. Moreover, the implementation of high
frequency prior motion estimation can also fill the gap between each cam-
era keyframe therefore enabling a smoothness tracking of the endoscope
throughout the process. The prior motion can be obtained with high fre-
quency measurement devices such as an EM tracker of the endoscope, an
add-on Inertia Measurement Unit (IMU), Ultra-wide Band (UWB). It can be

also obtained by other sensor-based or vision-based method real time motion
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Figure 4.1: A brief illustration of camera motion between two consecutive poses.
Blues points represents reprojected points from the CT model, red camera frames
represent the estimated pose C;_; and Cy at keyframe k — 1 and k from prior motion,
and the black frame represents optimized pose Cx_;. At keyframe k we employ
image registration and PnP/BA to determine Tj_, aligning the reprojected points
with image feature points. Then the refined pose is transformed by another prior
motion Tj_1  to obtain a new prior estimated pose Cy.

estimation methods.

In this project, as the EM-tracker information is not available, we directly
use the previous estimated pose as the prior motion estimate, and form an
iterative estimation of movement. In other words, the estimated pose at time
t — 1 will be used to project the vertices onto the image plane at time ¢ to

estimate the pose at .

4.2 Image Registration

The image registration algorithm is similar to the sparse direct approach,
which uses Lucas-Kanade optical flow to track feature points. Given a 3D
model, the first step is to project 3D vertices onto the image plane. These
points after projection are referred as back-projected points. Due to the noise
and uncertainty introduced by the motion prior, a minor deviation occurs
that causes back-projected 3D points fall onto a pixel location away from

their ground truth locations.

To map the back-projected points to the real corresponding pixels, at
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the same time avoiding the complexity of feature extraction and feature
description, we applied a modified Lucas-Kanade optical flow to track the
back-projected point. Starting from the back-projected point, by determining
a searching direction and a magnitude, if any point along that direction
is detected to have the same pixel intensity, this point is selected as the
corresponding point and registered to the back-projected point. This means
that the back-projected point "flows" or "shifts" from the original point to its
photometric equivalence due to camera motion or noises. If there is no match
of intensity within a certain searching distance, then the back-projected point
is considered invalid and it is discarded. This normally happens in the region
that has sharp intensity contrast such as corners and edges. There is also a
case that some back-projected points have the same intensities as the original
points on the image. This usually happens in flat regions and the points are

also disregarded.

To determine the searching direction and magnitude, we formulate both
brightness constraint and smoothness constraint. The brightness constraint
can be computed using the image intensity of the original points I;; at
position p;, and the intensity of back-projected points I}'; at the same pixel

position at keyframe k as:

(i, yit = 1) = I (g +u(xi, vi),y + o(xi, i), t) 4.1)

Using Taylor expansion, this can be written as:

Iﬂ(xi,yi,t —-1) =~ If,k(x,-, yi, b))+ Lo« u(x;, y;) + I; x0(x,Y;) 4.2)

Hence:

i ik + If,k,yvi,k + ik =0 4.3)

However, this equation is under-determined by using only one pair of
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corresponding points. The standard way to solve the equation is to apply
another constraint, which is called the smoothness constraint, and then
calculating the least squares solution. The smoothness constraint assumes
that in the neighborhood of the pixel of interest, all pixels have an identical
motion. Normally, the eight contiguous pixels in the 3 x 3 neighborhood of

the feature point are selected together with the point.

u.
[If/x I"ny]k L}j . ik (4
Define:
L Iy in
A — Lo Tiyn b — Iiip (45)
k — . r Yk — . .
Iic,x,9 Iic,y,9 k It/i/9 k

Using Moore-Penrose pseudo inverse, the relative motion of a pixel can
be computed as:

u; _
{ vl, 1 = —(Af Ay) 1Al b (4.6)
i 1k

In this case, I; ;i is the intensity difference of point i between original
point intensity, I/} and back-projected point intensity, If;. I; . I;;, are image
derivatives in x and y direction calculated from endoscopic images. As
back-projected points are sparse and isolated, which means no neighboring
pixel intensity can be used for smoothness constraint. Hence, we adjust
smoothness constraint by selecting a region of interest (ROI) and apply least

square to all the reprojected points inside the ROI. See figure 4.2.

Once the relative motion (u;,v;x) for a pixel is calculated, with the
assumption of brightness constancy, the correspondence can be found by
checking if any pixel along the direction (u;, v;x) has the same intensity
value. If, under a certain distance (usually 20 pixels), no pixel has the same
intensity, then the point will be discarded. The result for registration is shown

in figure 4.3.
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Figure 4.2: [llustration of the smoothness constraint. As each back-projected point is
isolated, we select a 15-by-15 ROI (green square) around the point (blue) of interest
as a neighborhood and combine all the back-projected points in the neighborhood
for least squares. The solution (u;, v;) after smoothness constraint calculation is
assigned to be searching direction of the back-projected point.

4.3 OQutlier Removal

Random Sample Consensus (RANSAC) is an iterative method to estimate
parameters of a mathematical model. It is a counting-based method which
counts the number inliers of a given model suggested by a subset of data to

select the best model. The detailed steps are

1. Randomly select a subset of data to form a subset of hypothesis inliers.
2. Calculate the best model from the inliers

3. Test all other data using the model, count the number of total inliers

that fit the model.

4. Resample the data and repeat step 1-4 until certain criteria are met.

1

. Output the best model.

RANSAC-based rejection eliminates outliers based on thresholding of
data. As it randomly selects a subset of data to approximate the real model,

it is more robust to local minima and more effective when the data is noisy.
To determine the number of iterations needed for selecting the best model,

we use the following formula

_ log(1—p)
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Figure 4.3: Result of image registration. Red points means the back-projected points
have the same intensity as the original points. Blue arrows show the registration
between the back-projected points and its corresponding points along the searching
direction. Each pair of these points connected by the arrow has the same intensity.
Green points means that these points cannot find any point with same intensity
given a certain searching direction and step size. Red and green points will be
discarded, only blue pairs will be used for pose refinement.

where p is the confidence value usually selected to be 0.95-0.99, and w is

the ratio of inliers and m is the number of samples that is used to calculate

the model. In practice, k can be manually fixed for simplicity.

4.4 Pose Estimation
4.4.1 3D-2D Perspective-n-points

Perspective-n-point is a general way of solving pose estimation problem of a
calibrated camera, given a set of 3D vertices in the world coordinate and their
corresponding 2D pixels in the image coordinate. From the above section,
for each vertex i, we have obtained correspondences between its 3D vertex,
2D back-projection points and 2D registered points. Thus camera poses can
be estimated by using either 2D-2D epipolar constraints or 3D-2D motion
estimation techniques. However, algorithms using 2D-2D epipolar geometry

such as 5-points Method or 8-points Method may encounter the problem

31



of scale ambiguity because the scale of translation ¢ cannot be determined

through the calculation of homography.

Perspective-n-Point takes the depth information of a 3D vertex into ac-
count to overcome scale ambiguity, and applies Direct Linear Transform
(DLT) to the projection model. For a 3D vertex i p;, the relationship of its
homogeneous coordinates p;(x,y, z, 1) with its image coordinates u; x(u, v)

at keyframe k can be described as:

1 hobo ot ] |
S 0; = ts tg ty I3 zl (48)
T 1, to tio tin ti2 ], 11

Canceling the scale factor s, we have the constraint:

f1x; + by +t3z; + 1y

Uu; = (4.9)
fox; + t1oy; + t112; + t12
_ tsx; + tey; + t7z; + tg (4.10)
tox; + t10y; + t112; + t12
Then we have:
[ pi OT —ulpi |
0 p1 —uipy t
: : t | =0 (4.11)
PN 0 —HN@ ts
| 0 Py —unPN L

where t; = (t1,t,t3,t4)7T, o = (t5,t6,t7,t3) and t3 = (to, t19, t11,t12) . N

for the total number of points.

For our case, the over-determined linear transform can be solved using
SVD and least square, or other methods such as EPnP [28] and DLS. We

choose EPnP proposed by V. Lepetit et al. [28].
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4.4.2 2D-2D 8-point Method

To recover relative motion using only a set of 2D registered points for two
different frames, a common way is to utilize epipolar geometry. In figure 4.4,
assume the relative motion between two frames is R, ¢, the optical centers
are O1, O,. Considering a feature point in the first frame is p;, and its corre-
sponding point in the second frame is py, if they are projected from the same
3D vertex, then their connections with the optical centers, O;)?l' o;éz should
intersect at point P. In this case, the plane defined by O, 0, P is called
epipolar plane. The connection between O; and O; is called base line. The
intersection between the base line — and two frames are called epipoles,

010,
denoted as e, ep. p1e1, paer are called epipolar lines.

P

Figure 4.4: Epipolar geometry

To formulate the geometry mathematically, assume the 3D point P is
P = [X,Y, Z], the calibration matrix is K, so the projection of P on two frames

are

p1 =KP, pp=K(RP+t) (4.12)

This equation can be rewritten as

x1=K1'P, x=K'P, (4.13)
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Where x1, x, are the coordinates on the normalized plane of the pixels.

From the equation we can obtain the relationship

Xp = Rx1 +t (4.14)

Multiply f on both sides we have (outer product)
fx; = fRx; (4.15)

and sz we have

xJfxy = xJiRx; (4.16)

Notice that Tfx, is normal to both t and x,, then the left side of the

equation is 0. Hence we have
xJtRx; =0 (4.17)
Substitute py, p» from equation 4.15 we have
piK TIRK™!py =0 (4.18)

Equation 4.18 is known as epipolar constraint. It encodes the transforma-
tion of two frames in the relationship of two corresponding feature points.

The matrix E is called Essential Matrix
E=fR (4.19)

and matrix F is called Fundamental Matrix
F =K TiRK™!
(4.20)
= K TEK™!
Generally speaking, given a set of corresponding point, we can recover
camera motion by first calculating E or F, then decompose E or F to get R

and t.
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Essential Matix is a 3 x 3 matrix with 9 parameters. Thus the epipolar

constraint can be written as

€1 €2 €3 u
[u v 1] | e es e v | =0 (4.21)
ey €7 ey 1

This can be further simplified linearly as

€1
€2
/15 AN A LR U A G A [ s (R | e3
o e S ot B B S
ujuy - ujvs Uy vjusvv5 vy u; vy 1 B
. ) } es | =0 (422)
: . : : S - 6
N,N ,N,N N _N,N,N,N N N N
upuy Uty Uy Upup0pvy vy Uy vy 1 ey
eg
€9

This is called 8-point Method as eight points are sufficient to solve the
equation so N is normally equal to eight. However in this project, the feature
points are far more than eight, we can also find E by substituting all the

points and solve the over-determined equation.

Once the Essential Matrix is calculated, the transformation between two
adjacent frames can be recovered using Singular Value Decomposition (SVD).
By SVD we will normally have four solutions, with only one that P has
positive depths in both cameras. We can select the right transformation in

this way and get rid of the invalid ones.

However, due to scale ambiguity, the 8-point Method is not able to output
a transformation with the scale consistent to the CT scene model. Therefore,

this method is only used to determine the relative direction of motion.
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Chapter 5

Motion-only Bundle Adjustment

51 Bundle Adjustment

In practice, PnP is normally used as a prior pose prediction followed by a
bundle adjustment formulation of PnP to refine the estimation. The PnP
problem can be regarded as a nonlinear least square problem using Lie Alge-
bra, hence the relative motion of two consecutive frames can be estimated
using bundle adjustment. Bundle adjustment considers both camera poses
and 3D vertices as optimization variables, and minimize reprojection error

for an optimal solution.
Reformulate the above projection equation in Lie Algebra we have:

Xi

U; _
s| v | =Kexp(C) ZZ (5.1)
1 11

In bundle adjustment, the error function is chosen to be the sum of
Euclidean distances between back-projected points and their corresponding

points.

2

* 1 -
Ci_1, = argmin 5 Z (5.2)

Cr1x i=1

1 .
u; — ;K exp (C)p;
1

2
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And globally

n 2

C*:argminlzz
c 273

(5.3)

1 .
u; — ;Kexp (C)p;
1

2

The error function can be linearized by finding the derivative of each
variable with respect to the function, and solved with optimation methods
such as Gauss-Newton Method and Levenberg-Marquardt Method to find

the best solution.

As the prescanned CT scene model and intrinsic parameters are fixed, we
apply motion-only bundle adjustment to optimize the only poses. In this
case, the Hessian Matrix used for optimization is highly sparse with only

camera poses block.

5.2 Pose-graph Optimization

The Front End VO is capable of generating a local trajectory and a scene map.
Due to the noise associated with each step, the trajectory is not consistent
in a large scale, hence requires a global optimization. Bundle adjustment
is effective not only in solving optimization problem between two adjacent
frames, but also the localization and mapping problem across frames in a
large scale. One problem associated with graph-based optimization is, when
the scale of poses and the map increases, the computational efficiency will
drop. 3D points and poses will start to converge at the same time so the

optimization will become less effective.

In our case, as 3D vertices are fixed and directly obtained from the 3D
model, we are no longer interested in optimizing these parameters but only
camera poses, hence we can keep track of only the camera poses to form a

global Pose-Graph and apply graph optimization.

The nodes of the graph is represented by the camera poses, Cy, Co, ..., C;.
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a

Figure 5.1: A pose-graph representation of the motion estimation process. Every
node in the graph corresponds to a pose of the endoscope. Only poses are connected
by edges while the 3D points in the CT model are discarded. These edges represent
the transformation obtained from motion estimation.

Denote the relative motion between two nodes as AC;; we have:
ACj; = lel oCj = In(exp((—C;)" exp(C¥))" (5.4)
Or rewrite the equation using Lie Group we have:
AT;; =T;'T; (5.5)

In general, two sides of the equation may not be identical due to the
accumulation of error and unpredictable noises. Hence, define the error term
for the optimization as:

el']' = IH(ATl;lelT])\/
(5.6)
= In(exp((—Cjj)") exp((—Ci)" exp(C"))"

Then we can formulate the optimization problem by minimizing the cost

function:

1 Ty -1
mcmi Z ez-]-Zl-]- ejj (5.7)

ijce
where ¢ is the set of all vertices and %;; is the covariance matrix between

two poses.

Pose graph optimization is usually associated with a Loop Closure mod-
ule. Loop closure is a module that detects if a robot or camera has revisited

one of its previous location. It is crucial for enhancing the robustness of both
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topological and metrical SLAM algorithms. [3]

Loop closure contains two main module: a keyframe selection module
which selects the keyframes based on the similarity between each frames;
a loop detection module, which determines if two keyframes belong to the

same location.

The selection of keyframe need to be designed to avoid redundant com-
putation. Front end visual odometry is generally of high frequency, hence
generating a sequences of pose estimation. Keyframe selection determines
poses that contain distinctive information from sequence and forms nodes in
the graph. In other words, keyframe selection is based on similarity between

two adjacent frames.

To accelerate the key frame selection process, we utilize CT model indices.
For each key frame, the indices of back-projected points form a index set.
When new frames are received, indices in each new frame will be compared
with all the existing index sets. If the new frame contains more than certain
number of percentage of distinct indices compared to the previous keyframe,
then the new frame will be selected as a new keyframe. If a certain per-
centage of feature points in the new keyframe can be viewed by at least
three keyframes, the this frame is redundant and will be removed from the

keyframes.[35]
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Chapter 6

Performance Evaluations

6.1 Energy Function

In this project, we use Euclidean distance as a measurement of similarity for
the estimated pose with respect to its ground truth. The energy function is

defined as follows:

‘ocz(uz + vz)Hi (6.1)

n
E=)"
i=1
where 7 is the number of points back-projected onto the image plane. u

and v are optical flows in x and y directions calculated in section 4.2. « is

defined as:

0 ifu?+0*>=0
a=1q1 if0o<u?+v*<d (6.2)

0 ifut+v*>d
where d is a thresholding distance in pixel. The intuition behind this is if
a registration is valid, which means the magnitude of the flow is small and
positive, we choose to minimize all these flows disregarding the rest of the
points. In this system we choose d to be 20 pixels which is corresponding to

about 0.3mm pose error in world coordinates. It can be adjusted based on

the endoscopic movements in practice.
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Figure 6.1: Back-projected points selection. Blue arrow means there is a valid
movement between the back-projected points and corresponding points. Red points
means there is no movement and green points means there is no corresponding
point under certain distance. The red and blue will be discarded in each iteration.

6.2 Minimization of Energy Function

There are two scenarios that the energy of the system will drop. In the first
scenario, the estimated pose shifts closer to its ground truth in each iteration

causing the total length of flows to reduce.

In another scenario, when the prior pose estimation is completely off
or the gradient leads to the wrong search direction, the number of valid
registration significantly decreases. It results in the decreasing of energy
function but generates a wrong estimation. This scenario also includes
extreme cases such as the camera is facing out of the sinus cavity. As this
violates the assumption of slow motion, vision-based methods are usually
invalid. But it can be easily solved with other sensor-based prior motion

estimation methods (see Sect. 4.1)

6.3 Estimation results

The following table shows a pose estimation of a single frame. The estimation
process starts with the pose of the last frame, which is 0.5mm off in x direction

to the current pose. The algorithm is designed to have 10 iterations. In each
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iteration, the algorithm minimizes the energy defined in the previous section,

and returns a new value of estimated pose.

Iterative Pose Estimation for a Frame
pose Iteration]l | Iteration2 | Iteration3 | Iteration4 | Iterationb
X 4.091057 4.045245 4.042591 4.045245 4.028958
y 26.974160 | 26.924137 | 26.902820 | 26.924137 | 26.915048
z 11.684938 | 11.655635 | 11.658340 | 11.655635 | 11.671567
X-axis 0.550026 0.544711 0.544711 0.544542 0.542748
y-axis 2.367989 2.368812 2.368812 2.368051 2.368256
Z-axis -1.827689 | -1.826783 | -1.826783 | -1.827071 -1.826622
Iteration6 | Iteration7 | Iteration8 | Iteration9 | Iteration10 | Ground

Truth

3.989887 4.059595 4.047657 4.083908 4.078509 4.3593
26.911758 | 26.957401 | 26.892593 | 26.918454 | 26.939552 | 27.1535
11.694322 | 11.682742 | 11.659985 | 11.651248 | 11.685586 | 11.8704
0.545610 0.546054 0.546067 0.544414 0.547130 0.3598572
2.369949 2.368471 2.368985 2.367433 2.368512 0.0497875
-1.827068 | -1.826612 | -1.827072 | -1.826988 | -1.826609 | -1.8895694

Table 6.1: Motion estimation starting from a manually selected position. The prior
pose is -0.5mm to the current pose in x direction. This table shows the pose estima-
tions for different number of iterations. The unit for movements in x, y, z directions
is in millimeter, and for yaw, pitch, roll is in rads. The last column shows the ground

truth for the estimated pose.
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Figure 6.2: The Euclidean distance of the estimate pose to the ground truth.
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Figure 6.4: The Euclidean distance of the estimate pose to the ground truth in each
angle axis.

To further test our method, we start with a random position which is

about Imm away from its ground truth. The results is shown below.
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Iterative Pose Estimation for a Frame
pose Iterationl | Iteration2 | Iteration3 | Iteration4 | Iterationb
X 5.022175 4904615 4.865226 4.771162 4.741542
y 27.355992 | 27.365783 | 27.353296 | 27.357743 | 27.353421
z 11.794553 | 11.832653 | 11.861530 | 11.879385 | 11.818083
X-axis 0.556773 0.555786 0.557391 0.556387 0.555899
y-axis 2.354605 2.356595 2.357667 2.359798 2.358854
Z-axis -1.831809 -1.831824 | -1.831696 | -1.831950 -1.833448
Iteration6 | Iteration7 | Iteration8 | Iteration9 | Iteration1l0 | Ground

Truth

4.659306 4.633547 4.530066 4.645394 4.531065 4.38557
27.326630 | 27.319720 | 27.299903 | 27.352135 | 27.278241 | 27.1567
11.847258 | 11.882004 | 11.859021 | 11.882315 | 11.843280 | 11.9095
0.554183 0.555833 0.552045 0.553557 0.552027 0.360388,
2.360727 2.361816 2.362929 2.360879 2.363119 0.0522335
-1.833103 -1.832394 | -1.833455 | -1.832502 | -1.833360 -1.88488

Table 6.2: Motion estimation starting from a random position. This table shows the
pose estimates for different iterations. The unit for movements in x, y, z directions is
in millimeter, and for yaw, pitch, roll is in rads. The last column shows the ground

truth for the estimated pose.
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direction.
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Figure 6.6: The Euclidean distance of the estimate pose to the ground truth in each
angle axis.

As seen from results of both manually selected starting position and ran-
domly selected starting position, the iterative pose estimation will reduce the
error to about 0.4mm, which corresponds to the resolution of the prescanned
CT model. For the directions with large disparities (see x directions for both
cases), the error drops rapidly and oscillates around its optimal solution. For
the directions with small disparity, the estimated location oscillates with only

small improvements.

Ideally, the iteration stops when a certain number of iteration is reached.
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In our system, we use 10 iterations. It also stops when no vertex is observed
by the camera. Figure 6.7 shows the visualize the performance of our method
for each iteration. As we can see from the figure, after a certain number
of iterations, the contours of the images are aligned and more points are

mapped to its photometric equivalence.

(a) (b)

(c) (d)

(e) ()

(g (h)

Figure 6.7: Visualization of improvements of each iteration. The back-projected
points are shifting left to align with the original image. The total magnitude de-
creases and more points are aligned. Two images coincide in the end as suggested
by their contours.

Due to the natural of optimization, it normally takes more iterations to
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get to an optima when the disparity is large.
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Figure 6.8: Iteration performance when the energy is no longer decreased.

6.4 Early Stopping

To save computational power, we add one more constraint to decide if the
iteration should continue. If the energy is reduced in the current iteration,
the method continues; otherwise the iteration stops. The maximum number

if iterations is set to 30 in this case.

From figure 6.8, we can see that the method is still able to converge to the
optimal solution if it stops when the energy no longer decreases. It may take

more iterations to converge if the disparity is comparatively large.
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6.5 Error Statistics
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Figure 6.9: Error statistics of the estimated pose given a random perturbation in a
certain range. The horizontal axis represents the magnitude of the perturbation, and
the vertical axis represents the error in Euclidean distance to the ground truth.

To test how the system performs for different starting positions away from
its ground truth, we randomly generate small perturbations from -1.05mm to
1.05mm away from the ground truth as starting positions. The error statistics
of the estimate is shown in figure 6.9. In general, the mean and variance of
the error increase as the perturbation range increases. This means if the prior
pose estimate has a large disparity to its ground truth, the pose estimation
iteration is more likely to run into local minima. But there is still a change to
generate a comparatively good estimate suggested by the lower quartiles of

the boxes.

50



Chapter 7

Conclusion and Discussion

In this work, we introduce a visual navigation system for sinus surgery with
the ability of texture mapping the CT model in real time and localizing the
endoscope for navigation. We also propose a motion estimation method and
show that the method could refine the pose estimates from different prior

estimates.

7.1 Discussion
7.1.1 Mathematical Interpretation

Our method is inspired by the idea of optical flow and bundle adjustment,
and seeks to minimize global energy to find the optimal solution. This proce-
dure can be interpreted as a nonlinear optimization using first order gradient
descent. The direction of the flow can be interpreted as the gradient or search
direction in steepest descent, and the flow magnitude can be interpreted by
the step size.

The first order Newton’s method is greedy, as it maximize the perfor-
mance for each iteration by choosing the optimization direction to be the
local gradient. But it also suffers from the gradient as it usually takes a
zig-zag path for optimization which uses more iterations to converge. As

seen from the figures, the estimated pose also oscillates around its optimum.

To solve this problem, we can adjust the search direction to make it less
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greedy by using the idea of Gauss-Newton Method as described in chapter 2.

J(x)TJ(x) Ax = =] (x)Tf(x) (7.1)

In this case, we can approximate the gradient using the function itself and
its Jacobians, and determine the step size in the similar manner. Similarly,
given the Jacobian and Hessian of an image, Trust Regions Methods and Dog

Leg Methods could also be investigated for future modifications.

7.1.2 Comparison with Direct Methods

Our method is naturally similar to Direct Methods as both methods are
inspired by optical flow. Our method can be regarded as a discrete version of
Direct Methods. Direct Methods formulate the problem using the equation
“ .1 2
Tip = argmin 2 ) || (KT kpi) — Iy () [ (7.2)
Ti—1k i

So for each iteration, it returns a transformation T of rotation R and trans-
lation ¢, and uses this transformation for new iterations. It combines the
registration and motion estimation in one optimization step. One advantage
of combining all substeps into a single objective function is it can achieve high
speed. By putting the optimization variables into an optimization framework
such as G20 and Ceres, Direct Methods could achieve the frequency of more
than 50Hz. It significantly outperforms our method in terms of speed as it
doesn’t require any image rendering or image registration.image rendering

or image registration are the most time consuming steps in our method.

However, our method may outperform Direct Methods in terms of accu-
racy. As Direct Methods are usually dense or semi-dense, they are purely
based on least squares and there is no outlier removal module. They suffer a
lot from the outliers when the when the trackable points is sparse or the im-
age has a lot of textures. In the similar manner, Direct Methods are also more

sensitive to local mimima. Discretization of each optimization step of Direct
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Methods allow us to process and modify the data throughout registration
and motion estimation step. We can regulate the flow to compensate for the
sparseness of the back-projected points, and remove the outliers to improve

the estimation accuracy of each iteration.

7.1.3 Comparison with Feature-based Methods

Our method is also inspired from bundle adjustment as the method is trying
to minimize the reprojection error between the back-projected points and its
corresponding points. There are two major differences between our method
and feature-based methods. Our method regards the back-projected points
as feature points rather than extracting feature points. Bypassing feature
extraction and feature description significantly saves computational power

and processing time.

The second difference is, for feature-based method the registration is solid,
which means the correspondence is fixed throughout the process. Therefore
there is no need for an iterative optimization to get the best result. Principally,
3D-2D motion estimation methods use PnP to obtain a reasonable initial
estimation, and refine the estimate using local bundle adjustment. However,
for our method, the registration is soft. The source point may be registered
to different photometric equivalence in different iterations. In this case, local
Bundle Adjustment is not necessary as a result of the stochastic natural of

the method.

7.2 Future Works

Our future work involves five parts. The first part is to extend our visual
navigation system to a complete visual SLAM system. To achieve this, a pose
graph optimization module and a loop closure module described chapter
5 need to be implemented. Moreover, in surgical data collection and real

surgeries, surgeons need to manually create loops to enable global pose
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optimization.

The second part is to add an initial pose estimation module using other
registration methods. This could be achieved using feature-based 3D-2D
registration or ICP-based 3D-3D registration if an 3D reconstruction is given.

The methods available are described in the introduction.

The third part is to integrate another sensor for prior motion estimation,
such as an IMU or an EM tracker. If a reasonably good estimate (say the error
is less than 0.5mm) is given, the method is more likely to converge with less

time and less iterations.

The fourth is to conduct experiments with real endoscopes and CT data.
The real endoscopic image is slightly different from the simulation image,

which requires modifications and adjustments to the method.

The fifth is to implementing new ways of calculating gradient direction
and step length, as described in Chapter 7.1.1. The could lead to better
results only with simple modifications to the system. One more thing could
be done is to transform all the iterations of our method into one optimization
formulation like Direct Methods for faster processing speed. But it still
requires modifications to regulate the flows as the back-projected points are

highly sparse and the method is sensitive to outliers.
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