
Endoscopic Motion Estimation Using
Video and CT

by

Linhao Jin

A thesis submitted to The Johns Hopkins University

in conformity with the requirements for the degree of

Master of Science in Engineering

Baltimore, Maryland

March, 2019

© 2019 by Linhao Jin

All rights reserved

Abstract

Functional Endoscopic Sinus Surgery (FESS) is a surgical procedure that

otolaryngologists have adopted to treat sinus diseases. Aiming for accurate

treatments and less complications, surgeons are usually guided with an

endoscopic navigation system when performing the surgery. The state-of-

the-art navigation systems report a submillimeter positioning error. This

significantly reduces intraopertive time and improves surgical outcomes.

Navigating endoscope is similar to Visual Odometry (VO) or Simultane-

ous Localization and Mapping (SLAM), all of which require an estimation

of camera poses and motions in an unknown environment. Feature-based

methods and direct methods are two common approaches for VO and Visual

SLAM for motion estimation, but both methods have drawbacks. Feature

computation and feature extraction consume are usually not computationally

effective, while direct methods suffer from local optima. One recent alter-

native is called Semi-Direct Method, or hybrid method, which overcomes

the drawbacks by applying optimization that is used in direct method to

the selected features.[15] In this work, we introduce a novel endoscopic

navigation system for FESS which uses both prescanned CT model and 2D

endoscope video. The system is able to texture map the CT model in real

time for visualization and to refine the pose estimation of the endoscope

from different prior estimates.

ii

Thesis Committee

Primary Readers

Gregory D. Hager Ph.D. (Primary Advisor)
Mandell Bellmore Professor
Department of Computer Science
Johns Hopkins University

iii

Acknowledgments

First of all, I would like to thank to my academic advisor and thesis advisor,

Dr. Gregory Hager for all of his ideas, advice, and supports. No fantastic

idea would be realized without this decent man.

Next thanks must go to the members in the Malone Center. I am grateful

for the staffs and students who have helped with all aspects of my work

including exchanging ideas, arranging meetings and giving feedback.

Two years at Johns Hopkins have been a great laugh due to my friends:

Ji, Yixuan, Chaoyi, Bowen, and Yulai. You make a lot of things easier.

Last thanks my parents for the financial assistance, daily phone call,

emotional supports and everything else.

iv

Table of Contents

Table of Contents v

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Functional Endoscopic Sinus Surgery 1

1.2 Simultaneous Localization and Mapping 2

1.3 Outline . 3

1.4 Motion Estimation . 4

1.4.1 2D-2D Motion Estimation 4

1.4.1.1 Feature-based Methods 4

1.4.1.2 Direct Methods 5

1.4.1.3 Hybrid Methods 6

1.4.2 3D-2D Motion Estimation 6

1.4.3 3D-3D Motion Estimation 7

1.5 Motivation and Challenge . 7

2 Overview 9

2.1 System Architecture . 9

2.2 Terminology . 11

v

2.3 Notation . 12

2.4 Fundamentals . 12

2.4.1 Camera Model and Calibration 12

2.4.2 3D Geometry and Transformation 14

2.4.2.1 Homogeneous Representation and Lie Group 14

2.4.2.2 Euler Angles 15

2.4.2.3 Axis-angle Representation 16

2.4.2.4 Quaternions 17

2.4.3 Non-linear Optimization 18

2.4.3.1 Line Search Methods 19

2.4.3.2 Trust Region Methods 19

3 CT Texture Mapping 21

3.1 Texture Mapping Pipeline . 21

3.2 Back-projection Texture Mapping 22

3.3 Image Rendering . 23

4 Motion Estimation 26

4.1 Prior Motion Estimation . 26

4.2 Image Registration . 27

4.3 Outlier Removal . 30

4.4 Pose Estimation . 31

4.4.1 3D-2D Perspective-n-points 31

4.4.2 2D-2D 8-point Method 33

5 Motion-only Bundle Adjustment 36

5.1 Bundle Adjustment . 36

5.2 Pose-graph Optimization . 37

vi

6 Performance Evaluations 40

6.1 Energy Function . 40

6.2 Minimization of Energy Function 41

6.3 Estimation results . 41

6.4 Early Stopping . 49

6.5 Error Statistics . 50

7 Conclusion and Discussion 51

7.1 Discussion . 51

7.1.1 Mathematical Interpretation 51

7.1.2 Comparison with Direct Methods 52

7.1.3 Comparison with Feature-based Methods 53

7.2 Future Works . 53

References 55

vii

List of Tables

6.1 Motion estimation starting from a manually selected position.

The prior pose is -0.5mm to the current pose in x direction.

This table shows the pose estimations for different number of

iterations. The unit for movements in x, y, z directions is in

millimeter, and for yaw, pitch, roll is in rads. The last column

shows the ground truth for the estimated pose. 42

6.2 Motion estimation starting from a random position. This table

shows the pose estimates for different iterations. The unit for

movements in x, y, z directions is in millimeter, and for yaw,

pitch, roll is in rads. The last column shows the ground truth

for the estimated pose. 45

viii

List of Figures

2.1 Back-projection texture mapping pipeline 9

3.1 Standard texture mapping pipeline 21

3.2 Back-projection texture mapping pipeline 22

3.3 A textured CT model back-projection texture mapping. Gray

vertices in the model means either the vertex is not seen by the

camera, or it is occluded, others are shaded with color from

endoscopic image. 23

3.4 A real time visualization of textured point cloud in RViz . . . 24

3.5 A rendered image from the textured CT model. 25

4.1 A brief illustration of camera motion between two consecutive

poses. Blues points represents reprojected points from the

CT model, red camera frames represent the estimated pose

Ĉk−1 and Ĉk at keyframe k − 1 and k from prior motion, and

the black frame represents optimized pose Ck−1. At keyframe

k we employ image registration and PnP/BA to determine

Tk−1, aligning the reprojected points with image feature points.

Then the refined pose is transformed by another prior motion

Tk−1,k to obtain a new prior estimated pose Ĉk. 27

ix

4.2 Illustration of the smoothness constraint. As each back-projected

point is isolated, we select a 15-by-15 ROI (green square)

around the point (blue) of interest as a neighborhood and

combine all the back-projected points in the neighborhood

for least squares. The solution (ui, vi) after smoothness con-

straint calculation is assigned to be searching direction of the

back-projected point. 30

4.3 Result of image registration. Red points means the back-

projected points have the same intensity as the original points.

Blue arrows show the registration between the back-projected

points and its corresponding points along the searching direc-

tion. Each pair of these points connected by the arrow has the

same intensity. Green points means that these points cannot

find any point with same intensity given a certain searching di-

rection and step size. Red and green points will be discarded,

only blue pairs will be used for pose refinement. 31

4.4 Epipolar geometry . 33

5.1 A pose-graph representation of the motion estimation pro-

cess. Every node in the graph corresponds to a pose of the

endoscope. Only poses are connected by edges while the 3D

points in the CT model are discarded. These edges represent

the transformation obtained from motion estimation. 38

6.1 Back-projected points selection. Blue arrow means there is a

valid movement between the back-projected points and cor-

responding points. Red points means there is no movement

and green points means there is no corresponding point under

certain distance. The red and blue will be discarded in each

iteration. 41

x

6.2 The Euclidean distance of the estimate pose to the ground truth. 42

6.3 The Euclidean distance of the estimate pose to the ground

truth in each direction. 43

6.4 The Euclidean distance of the estimate pose to the ground

truth in each angle axis. 44

6.5 The Euclidean distance of the estimate pose to the ground

truth in each direction. 46

6.6 The Euclidean distance of the estimate pose to the ground

truth in each angle axis. 47

6.7 Visualization of improvements of each iteration. The back-

projected points are shifting left to align with the original

image. The total magnitude decreases and more points are

aligned. Two images coincide in the end as suggested by their

contours. 48

6.8 Iteration performance when the energy is no longer decreased. 49

6.9 Error statistics of the estimated pose given a random pertur-

bation in a certain range. The horizontal axis represents the

magnitude of the perturbation, and the vertical axis represents

the error in Euclidean distance to the ground truth. 50

xi

Chapter 1

Introduction

Estimating the ego-motion of a mobile robot remains a hot topic in Robotics

and Computer Vision over the decades, and one challenging problem is

to compute six degree-of-freedom motion from video stream or sequences

of images [2, 16, 17, 33, 46, 47, 49]. Determining the ego-motion of an

agent with a camera is called Visual Odometry (VO) [38, 44]. If a map of

nearby environment is built simultaneously, this process is referred as Visual

Simultaneous Localization and Mapping (V-SLAM) [7, 11, 25]. The goal for

vision-based motion estimation is to obtain the highest positioning accuracy

and robustness with a considerable cost. Recent state-of-the-art systems are

capable of running on mobile devices with plausible accuracies [13, 15].

1.1 Functional Endoscopic Sinus Surgery

VO and V-SLAM have wide applications in Robotics and automotive indus-

try as well as in surgical treatments. Functional Endoscopic Sinus Surgery

(FESS), as an effective surgical procedure for sinus disease which is per-

formed over 250,000 times annually in the United State, is to treat sinonasal

pathology such as chronic sinusitis [6, 27]. It has a long history which dates

back to the 1980s after the pioneering work of Messerklinger and Kennedy.

[12]. Navigating an endoscope in nasal structures is difficult due to the

complexity of the anatomy. The complication associated with endoscopic

1

sinus procedures is approximately 6-8%, with about 1% of them result in

major complications [10, 24]. Commercial navigation systems only guarantee

a positioning error of 2mm while the state-of-the-art systems may limit the

error under 1mm [26, 33]. However, the error is still large compared to the

nasal pathways.

Similar to VO or V-SLAM, navigating endoscope in nasal structures also

requires accurate position and orientation estimation and tracking of the

endoscope. Well-established endoscope navigation methods use sequences

of endoscope images, and implement Structure from Motion (SfM) for the

endoscopic position and orientation estimation. One recent method incor-

porates both video streams and Computed Tomography (CT) models, and

register reconstructed model from SfM to the prescanned CT model using

Iterative Closet Points (ICP)-based 3D registration. Another alternative ren-

ders virtual images from the CT model, and compare the rendered image

with real images for pose estimation. However, several practical issues still

exist and are required to be addressed before they reach clinical acceptance.

First, navigation methods need to be robust to various tissue surface appear-

ances and anatomy distortions. Second, ICP related methods require high

computational power and good initial registrations, while rendering-based

methods waste too much power in virtual rendering.

1.2 Simultaneous Localization and Mapping

Traditional VO or V-SLAM methods are normally feature-based, which in-

volve feature detection, extraction and registration across frames. Feature

detection finds local features such as corners, blobs or more general features,

while feature extraction computes the feature descriptors that distinguish

each feature [45, 50]. When detectors and descriptors are obtained, feature

matching is usually solved in two ways. For rich feature descriptors, either

they are matched by brute-force methods, which each descriptor is compared

2

with all others for the best match, or tree-based and vocabulary-based sorting

methods such as Fast Library for Approximate Nearest Neighbor (FLANN)

by K-Means tree [22, 32, 39]. Other descriptors employ optical flow and

search for correspondence by identifying a step size and a direction [5, 30].

Ideally, when feature correspondences are established, camera motion can

be easily estimated with epipolar geometry.

A typical problem associated with feature-based methods is the compu-

tational complexity caused by feature description and matching, as well as

the necessity for robust outlier romoval techniques such as RANSAC and M-

estimators [1, 31]. One alternative for feature-based VO or V-SLAM is called

direct method, which operates directly on pixel-level intensities and uses

intensity differences as a measurement of similarity [19, 36]. Feature-based

methods minimize reprojection errors, which is a sum of Euclidean distances

of each feature pair. This process is called Bundle Adjustment [51]. Direct

methods minimize photometric error between corresponding pixels at same

location directly in sensor space. The great advantage of this method is that

it requires no prior data association hence largely reduce the computational

costs caused by feature extraction, matching and outlier romoval. However,

direct methods are still expensive, as they require dense or semi-dense recon-

struction of the environment for joint optimization. One recent alternative is

called hybrid method or semi-direct method, which combines the advantage

of both indirect and direct methods. One example of hybrid method extracts

blobs as features, optimize photometric error of the selected features. This

method avoids the expenses of both feature description, matching and prior

data association, and achieve comparable accuracy and robustness.[15]

1.3 Outline

This work is organized as follows. Chapter 1 starts with the introduction to

Functional Endoscopic Sinus Surgery, VO and V-SLAM, motion estimation

3

methods, and motivation and challenges for the work. Chapter 2 presents the

endoscopic navigation system in general, as well as the terminologies and

notations used in this work. It also describes the fundamental knowledge

of computer vision, kinematics and optimization that constantly used in

different chapters. Chapter 3 demonstrates the CT texture mapping method

and shows the result for visualization and virtual image rendering. Chapter

4 illustrates the motion estimation method which is the core chapter for

this work. Chapter 5 describes the optimization method for the system and

chapter 6 shows the experiment results under different situations. In the end,

chapter 7 draws the conclusion and proposes future works.

1.4 Motion Estimation

1.4.1 2D-2D Motion Estimation

The objective for the front end module of VO and SLAM is to estimate the

camera motion across frames. Recover camera positions and orientations

with a sequence of images is generally divided into the following three

classes.

1.4.1.1 Feature-based Methods

The standard procedure for feature-based motion estimation is shown by the

following pipeline:

1. Input image sequences

2. Feature detection

3. Feature description

4. Feature matching/tracking

5. Motion estimation

6. Local optimization

4

Feature detection tracks high frequency textures such as corners and blobs

[18], then describes these features with local information such as local gradi-

ents. Popular feature descriptors include SIFT [29], SURF [4], HOG [9] and

ORB [43]. Feature matching is a procedure that matches features to create

either 2D-2D, 3D-2D or 3D-3D correspondences. The correspondences are

typically involved in the computation of the homography or transforma-

tion Tk, decomposition of Rk and tk, and the computation of concatenate

transformation Ck = Ck−1Tk. Where Tk, Rk and tk are the homogeneous trans-

formation, rotation and translation of the camera and Ck is the camera pose

at keyframe k. For erroneous correspondences, outlier removal techniques

such as RANSAC[1] and M-estimators[31] are implemented to find salient

matches.

1.4.1.2 Direct Methods

Direct methods estimate motion directly by minimizing photometric error -

an error measure that is based on the pixel-level intensities of two consecutive

images. Compared to feature-based methods that only consider the distance

to feature location, direct methods inherit the idea from optical flow, use local

intensity gradient in the optimization framework. Pixel correspondences

are given directly by the geometry of the problem, eliminating the need for

robust data association.

Direct methods are well-established for monocular, RGB-D and stereo

cameras [8, 20, 23]. For dense direct approaches, examples include DTAM

[37, 48], REMODE [41] and LSD-SLAM [14]. In a complementary manner,

for Sparse direct approaches, the formulation is proposed by Jin et al. [21]

and DSO [13].

There are two major assumptions for direct methods which come from

optical flow: brightness constraint, which assumes that the illumination of

the image is constant and the motion is small, so the pixels are trackable

5

across consecutive images; and smoothness constraint, which assumes that

in a small neighborhood of an image which is usually called a patch, all the

pixels inside the patch have similar movements. The optical flow problem

can be formulated in different ways. Bruce D. Lucas and Takeo Kanade

interpret the assumptions into two equations, where the detailed math can

be found in Chapter 4.2. It is regarded as a local estimator of optical flow.

The Horn-Schunck method is a global estimator as it formulates the optical

flow problem in one objective function as:

E =
∫∫ [

(Ixu + Iyv + It
)2

+ α2(∥u∥2 + ∥v∥2)]dxdy (1.1)

Where E is the global energy which the function seeks to optimize. The

intuition behind the formulation is the overall pixel intensity difference can

be minimized by finding an optimal to the first part of equation, at the same

time imposing a penalty on the sum total movement u and v, as seen in the

second part, to satisfy the assumptions.

1.4.1.3 Hybrid Methods

One recent hybrid method proposed by Scarramuza et al. is called SVO

[15]. It uses a direct formulation called sparse image alignment to obtain

correspondences, before switching to an indirect formulation for model

optimization.

1.4.2 3D-2D Motion Estimation

Most existing 3D-2D motion estimation systems are rendering-based. By

rendering a virtual image from the CT model using a graphical engine, it is

possible to estimate motion by comparing the virtual image with the video

stream obtained from the endoscope [40]. It is achieved by utilizing photo-

metric rendering from the CT model following by analyzing the similarity

metric between rendered image and video. Prior to these, Mori et al. [34]

6

first adopt optical flow to find the homography between two consecutive

real images, then using the homography to render a virtual image from

the CT model. Finally the cross-correlation is computed to refine the pose.

Later on, Robu et al. [42] extend this work with another similarity measure -

discriminative structural similarity (DSSIM), to compensate for illumination

changes and tissue distortions.

1.4.3 3D-3D Motion Estimation

Most navigation systems that implements 3D-3D registration for motion

estimation utilize the variations of ICP. Leonard et al. extract features with

SURF plus hierarchical multi-affine (HMA) algorithm, and further apply

SfM to generate 3D model [26]. The reconstructed 3D model is registered

with the prescanned CT model for position and orientation estimation us-

ing trimmed-ICP. (TriICP) Billings et al.[6] implement another variation of

ICP called Iterative Most-Likely Point Registration (IMLP) to find point

correspondences, then apply similarity transform in point registration step.

Instead of directly obtaining the endoscope pose after 3D-3D registration,

Mirota et al.[33] track the 2D features using adaptive scale kernel consensus

(ASKC) [52] and further calculating 2D-3D correspondences.

1.5 Motivation and Challenge

The best way to obtain a high navigation accuracy is to make fully use of

the prescanned CT model of the patient, and incorporate the model with

the real time video stream provided by the endoscope. If the CT model

is textured, the back projection of the model vertices can be regarded as

feature points. This could avoid the computation complexity caused by

feature detection and feature extraction. Since each vertex of the CT model is

assigned a unique index and a RGB value, feature matching can be greatly

simplified by utilizing the indices of the potential points to trace the vertices,

7

and comparing the intensities for determining correspondences.

One major challenge associated with the idea is the variation of illumi-

nation. When the endoscope moves inside the sinus cavity, the lighting

condition might change with the shifting of the light source. This may result

in the change of surface colors or intensities in different time stamps. To solve

this problem, the illumination need to be normalized, and the registration

algorithm should also be designed to be robust to lighting condition changes.

Another challenge is associated with the deformation of sinus structure

during surgery. The sinus cavity is not static during the surgery by virtue

of breathing and the surgical operation. The reflection of deformations on

the video stream will lead to inaccurate registrations between the CT model

and the endoscopic video, hence outputting an inaccurate transformation

estimate. One possible solution is to segment the model and to select regions

that are stationary. If the algorithm is able to run in a high frequency, the

position of the 3D vertices shall also be adjusted adhere to the deformation

in a mapping process.

8

Chapter 2

Overview

In this chapter, the system architecture is introduced. The terminologies and

notations are then described following by the basics of camera calibration,

kinematics and optimization that are used different parts of this thesis.

2.1 System Architecture

Figure 2.1: Back-projection texture mapping pipeline

Figure 2.1 provides an overview of the proposed endoscopic navigation

system for sinus surgery. A complete VSLAM system generally contains five

modules: Sensor Input, Front End VO, Back End Optimization, Loop Closing

and Mapping. Sensor Input module reads and pre-processes raw sensor data

from cameras and other sensors. The front end of a VSLAM system estimates

the relative motion between two adjacent frames as well as determining the

9

structure of the local map. This is typically referred as visual odometry. Back

End Optimization takes different poses from VO and Loop Closure Detection

as well as the 3D scene vertices, and optimizes all these parameters to get a

globally consistent trajectory and a map. Loop closing detects if the robot

or camera comes back to one of its previous location. If it has visited the

same place, the loop closing module will send the information to the back

end for trajectory refinement. Finally, Mapping establishes a corresponding

3D scene, or a map, with respect to the current trajectory.

As our system directly takes the prescanned CT model as the scene model,

the Mapping module is no longer required. Our system has two threads -

a Texture Mapping Thread and a Motion Estimation Thread. The texture

mapping thread continuously takes the estimate of the current pose, and

texture maps the CT scene model. When new images are received, the

keyframe selection module will choose a frame of interest from a set of

frames. This reduces the cost of computation and storage. When a new

keyframe is selected, it renders a virtual image from the scene using the prior

estimated pose and sends it to Motion Estimation Thread. In addition to

updating the global scene model and publishing a virtual rendered image,

it also publishes all corresponding indices of back-projected points in the

rendered image. This allows the Motion Estimation Thread to trace the 3D

position of the corresponding vertex of each back-projected point as well as

its RGB value.

Once the rendered image and indices of back-projected points are re-

ceived, the Motion Estimation Thread takes the rendered image and the

current keyframe image, and registers the rendered image with the current

endoscopic image using the method described in chapter 4 to establish 2D-

2D correspondences. As the indices for each back-projected point can be

exploited to obtain the original 3D vertex position, the 3D-2D correspon-

dences are also established simultaneously. The correspondences are then

10

sent to Motion Estimation module and new pose is hence estimated. Each

newly estimated pose will be served as the prior motion estimate for the next

iteration and be further used in the next estimation step.

As our system makes use of raw CT model as a reference map, no Map-

ping module is further needed. On the contrary, assuming a reasonably

good initial endoscope position with registration error less than 1mm, the

CT model is first texture mapped by the initial endoscopic image at the

beginning of the process to start the iteration of pose estimation.

2.2 Terminology

Back-projection, or reprojection is the step of projecting the 3D vertices onto

the image plane. Pose is an abbreviation for position and orientation which

is often used in computer vision.

In this work, the prescanned CT model is referred as the model or the

scene model for simplicity. The 3D points stored representing the model

are called 3D vertices. The back-projected points refer to the 2D pixels on

the image plane that are projected from 3D vertices. In general, each back-

projected point has a 2D position in pixel, an index which is the same as the

original 3D vertex, a 3D position that can be found using the index, and a

RGB value also from the 3D vertex. For a back-projected point at pixel (u, v),

the original pixel (u, v) in the image is called the original point. Most of the

back-projected points are registered to the points called corresponding points

or photometric equivalences. They are photometric equivalent, or equivalent

in terms of intensity as they are registered by checking if their intensities are

the same. If the intensities are the same, then they are aligned, otherwise

they are misaligned and there will be an optical flow the point. The flow

contains a direction and magnitude.

11

2.3 Notation

The position and orientation of each camera at keyframe k is defined as Ck,

while the estimate of the camera pose after prior motion is Ĉk. The rigid body

transformation between frames k − 1 and k in homogeneous coordinates is

defined as Tk−1,k ∈ SE(3), where the rotation is Rk−1,k and the translation

is tk−1,k. All the camera motion are calculated with respect to the world

coordinates. For the transformation at the same keyframe k, the notations

are simplified as Tk, Rk and tk.

For each camera pose Ck at keyframe k, the associated image intensity

for the endoscopic image is defined as Ic
k : Ωc ⊂ R2 ↦→ R and the back-

projection image intensity that obtained directly from the back-projected CT

model is defined as Im
k : Ωc ⊂ R2 ↦→ R, where Ω2 is the image domain. The

reprojection image contains only sparse points back-projected from CT model

with its own intensity. The image coordinates for each back-projected point at

keyframe k is defined as um
i,k(u

m
i,k, vm

i,k) ∈ R2 and the photometric equivalence,

or the corresponding image feature point after registration is represented as

uc
i,k(u

c
i,k, vc

i,k) ∈ R2, where i is the point index. The intensity for a single pixel

i is hence Im
i,k, Ic

i,k for the back-projected point and the original point intensity

respectively. In addition, the position of a 3D vertex in the CT model with

the same index i in the world coordinates is defined as pi(xi, yi, zi) ∈ R3.

To project 3D vertices in world coordinates into image coordinates, the

camera projection matrix at time k is defined as Kk, hence suc
i,k = Kkpi, where

s is the scale factor.

2.4 Fundamentals

2.4.1 Camera Model and Calibration

In order to transform the real world data onto the image plane, the position

and orientation of the camera relates to the world coordinates need to be

12

acquired as well as the projection between the objects in 3D space and 2D im-

ages. In computer vision, the transformation between world coordinates and

camera coordinates is called Extrinsic Parameters, and the transformation

from the camera coordinates to the image plane is called Intrinsic Parameters.

For a pinhole camera, the Intrinsic Parameters are defined as a 3 × 3

matrix as:

K =

⎡⎣ fx 0 cx
0 fy cy
0 0 1

⎤⎦ (2.1)

where fx, fy are the focal lengths in x and y axis of the camera, and cx, cy are

the principal points. The Extrinsic Parameters are defined as:

T =

[
R t
0 1

]
(2.2)

where R is the rotation matrix, and t is the translation vector

R =

⎡⎣ r1 r2 r3
r4 r5 r6
r7 r8 r9

⎤⎦ , t =

⎡⎣ tx
ty
tz

⎤⎦ (2.3)

So to transform a 3D vertex [x, y, z]T in the world coordinates to a 2D

pixel [u, v, 1]T in the image coordinates, we combine the formulas with aug-

mentation as

s

⎡⎣ u
v
1

⎤⎦ = KT =

⎡⎣ fx 0 cx 0
0 fy cy 0
0 0 1 0

⎤⎦
⎡⎢⎢⎣

r1 r2 r3 tx
r4 r5 r6 ty
r7 r8 r9 tz
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

x
y
z
1

⎤⎥⎥⎦ (2.4)

where s is a normalizing constant. Intuitively, the projection process first

transforms a 3D point in world coordinates into camera coordinates by using

the camera Extrinsic, and then projects the 3D point in camera coordinates

onto the 2D image plane.

Due to the imperfection in lens manufacture and misalignment of lens

and Charge-coupled Device (CCD) in camera assembly, the image obtained

by the CCD is usually distorted. To remove lens distortions, we applied the

13

following formula:

uc = u(1 + k1r2 + k2r4 + k3r6) (2.5)

vc = v(1 + k1r2 + k2r4 + k3r6) (2.6)

for the radial distortion, and

uc = u + [2p1uv + p2(r2 + 2u2)] (2.7)

vc = v + [2p2uv + p1(r2 + 2v2)] (2.8)

for the tangential distortion.

So for a pixel at [u, v]T, the position of its undistorted corresponding pixel

is noted as [uc, vc]
T, and the distortion model has 5 parameters (k1, k2, p1, p2, k3).

2.4.2 3D Geometry and Transformation

2.4.2.1 Homogeneous Representation and Lie Group

Every 3D rotation can be represented by a 3 × 3 matrix

R =

⎡⎣ r1 r2 r3
r4 r5 r6
r7 r8 r9

⎤⎦ (2.9)

if it satisfies the following property:

1. RTR = RRT = 1

2. det(R) = 1

Any matrix satisfies the above property is special orthogonal, denoted as

SO(3)

SO(3) =
{

R ∈ R3×3 : RRT = I, det(R) = 1
}

(2.10)

SO(3) is a group using matrix multiplication as the group operation and

14

the identity matrix I as the identity element. To extend the idea of group into

general rigid body transformations, we denote the special Euclidean group

as

SE(3) =
{
(t, R) : t ∈ R3, R ∈ SO(3)

}
= R3 × SO(3) (2.11)

where t is the translation of the transformation and R is the rotation. An

element of the special Euclidean group is called the homogeneous represen-

tation of transformation which is denoted as:

T =

[
R t
0 1

]
(2.12)

It is easy to check that T ∈ SE(3) forms a group under matrix multipli-

cation with the 4 × 4 identity matrix as the identity element. The inverse is

denoted as:

T−1 =

[
RT −RTt
0 1

]
(2.13)

2.4.2.2 Euler Angles

Euler Angles is one of the most intuitive ways to represent a 3D rotation

of the rigid body with respect to a fixed coordinate frame. It is defined as

the combination of α, β,and γ. α is angle between x-axis and N-axis, β is

the angle between z-axis and Z-axis, γ is the angle between N-axis and the

X-axis.

Rx(γ)
.
= ex̂γ =

⎡⎣ 1 0 0
0 cosγ −sinγ

0 sinγ cosγ

⎤⎦ (2.14)

Ry(β)
.
= eŷβ =

⎡⎣ cosβ 0 −sinβ

0 1 0
sinβ 0 cosβ

⎤⎦ (2.15)

Rz(α)
.
= eẑα =

⎡⎣ cosα −sinα 0
sinα cosα 0

0 0 1

⎤⎦ (2.16)

15

There are many conventions for the combination of α, β, andγ such as z-x-z,

x-y-x, y-z-y, z-y-z, x-z-x and y-x-y. For instance for z-x-z convention, the rigid

body first rotates around z-axis for an angle α, then y-axis for an angle β, and

finally z-axis for an angle γ. To find the rotation of frame A with respect to

frame B, using the above convention

Rba = Rz(−γ)Ry(−β)Rz(−α) (2.17)

One application for Euler Angles is yaw, pitch and roll (x-y-z) which are

usually used for describing the orientation of an aircraft. Yaw represents the

bearing angle, pitch represents the elevation and roll represents the bank

angle.

However, Euler Angle representation is always associated with a draw-

back called Gimbal Lock, which means a loss of one degree of freedom in

a 3D system. Gimbal Lock happens when two axis are parallel or colinear,

which introduces a singularity into the system causing the degree of freedom

to drop.

2.4.2.3 Axis-angle Representation

Axis-angle representation is a more general form of representing a 3D ro-

tation. It uses a unit vector as rotation axis and describes the change of

orientation by an angle θ. Let ω ∈ R3 be a unit vector which specifies the

direction of rotation, and the angle θ , we can find the relationship of the

3 × 3 rotation matrix and the angle-axis representation using exponential

16

map:

R(ω, θ) = eω̂θ

= I + θω̂ +
θ2

2!
ω̂2 +

θ2

3!
ω̂3 + · · ·

= I + ω̂sinθ + ω̂2(1 − cosθ)

=

⎡⎣ ω2
1vθ + cθ ω1ω2vθ − ω3sθ ω1ω3vθ + ω2sθ

ω1ω2vθ + ω3sθ ω2
2vθ + cθ ωvθ + cθ

ω1ω3vθ − ω2sθ ω2ω3vθ + ω1sθ ω2
3vθ + cθ

⎤⎦

=

⎡⎣ r1 r2 r3
r4 r5 r6
r7 r8 r9

⎤⎦

(2.18)

where vθ = 1 − cosθ, sθ = sinθ, cθ = cosθ. If an rotation matrix is given, the

angle can be found by

θ = cos−1(
trace(R)− 1

2
) (2.19)

if θ ̸= 0, we choose

ω =
1

2sθ

⎡⎣ r8 − r6
r3 − r7
r4 − r2

⎤⎦ (2.20)

2.4.2.4 Quaternions

To avoid the Gimbal Lock problem, another global parameterization of SO(3)

is called the quaternions. Quaterions avoid the Gimbal Lock problem by

generalizing complex numbers

Q = w + xi + yj + zk, [x, y, z]T ∈ R, i = 0, ..., 3 (2.21)

where w is the scalar component of the quaternions, and q⃗ is the vector

component. The relation of quaternions and a rotation matrix can be found

17

as:

R =

⎡⎣ 1 − 2y2 − 2z2 2xy − 2zw 2xz + 2yw
2xy + 2zw 1 − 2x2 − 2z2 2yz2xw
2xz − 2yw 2yz + 2xw 1 − 2x2 − 2y2

⎤⎦ (2.22)

2.4.3 Non-linear Optimization

Nearly all computer vision problems can be formulated as optimization

problems. An optimization problem is a problem of searching for the best

solution, or the optimizer, that fulfills certain criteria. For instance for a

nonlinear least squares problem.

min
1
2
∥ f (x)∥2

2 (2.23)

To optimize an arbitrary nonlinear function f and to find the minimizer for

the above equation, we can take the derivative with respect to x

d f
dx

= 0 (2.24)

the solution for the equation will be the optimizer. In order to find the

minimizer of a function, the optimization process usually starts with an

initial value x. For the k-th iteration, we need to find an increment △xk that

makes ∥ f (xk +△xk)∥2
2 to be minimized. If △xk is small enough, then the

iteration stops, otherwise let xk+1 = xk +△xk and repeat the optimization

step.

To find the best parameter, there are two major types of optimization

methods - Line Search Method and Trust Region Method. Line search method

first finds a search direction, then determines the step length in that direction.

Trust Region method first selects a region of interest, then finds the optimal

point inside the region.

18

2.4.3.1 Line Search Methods

One example of a Line Search Method is called Newton’s Method. Newton’s

method first expands the objective function using Taylor Expansion.

∥ f (x) +△x∥2
2 ≈ ∥ f (x)∥2

2 +
1
2
△xT H△x (2.25)

where J and H are the Jacobian and Hessian of the objective function. If only

the first order derivative needs to be taken into consideration, the increment

can be calculated as

△x∗ = −JT(x) (2.26)

Intuitively, this means each optimization step searches along the negative

gradient of the objective function to maximize the increment. If we use both

first order and second order derivative, then the increment becomes

H△x∗ = −JT(x) (2.27)

It has higher convergence rate over linear methods. However, calculating

the inverse of the Hessian is computationally inefficient, so the Hessian is

usually approximated by a combination of Jacobian

J(x)T J(x)△x = −J(x)T f (x) (2.28)

This method is called Gauss-Newton Method and it is often used in SLAM

applications. But the disadvantage is that it is not guaranteed to converge

even to a local minimum.

2.4.3.2 Trust Region Methods

Though Gauss-Newton Method has quadratic convergence rate, the algo-

rithm is unstable if the initialization is closed enough to the ground truth.

It is natural to think about adding a trust region for the optimization to

guarantee its convergence. Inside the region the optimization is valid and

19

otherwise the region needs to be adjusted.

The trust region can be selected based on the difference between the

change of our approximated model and the change of the objective function

for iteration. If the difference is small, the radius of the trust region could be

increased to allow bigger step size, otherwise it is decreased to guarantee the

decline of error. In practice, we can use

ρ =
f (x +△x − f (x))

J(x)△x
(2.29)

to determine if the Taylor Expansion well approximates the objective function.

If ρ is close to 1, then the approximation is valid. If ρ is too small, then it is

invalid and the trust region needs to be compressed.

Then we can incorporate the region by transforming the constrained

optimization problem into an unconstrained optimization using Lagrange

Multiplier:

min
△xk

1
2
∥ f (x) + J(xk)△xk∥2 +

λ

2
∥D△x∥2 (2.30)

where D can either be an identity matrix, or the square root of diagonal

elements of JT J. By taking the derivative with respect to x, the increment

function becomes

(H + λDTD)△x = −J(x)T f (x) (2.31)

or

(H + λI)△x = −J(x)T f (x) (2.32)

if D is chosen to be the identity matrix. This method is called Levenberg-

Marquad Method. It leverages the Gauss-Newton Method and gradient

descent method. When λ is small which means the Hessian is dominant, the

Levenberg-Marquad is more similar to the Gauss-Newton. Otherwise if λ is

small, it is more similar to the gradient descent.

20

Chapter 3

CT Texture Mapping

3.1 Texture Mapping Pipeline

Texture mapping is a process of shading an object not only with solid col-

ors, but also a textured pattern or an image. A standard texture mapping

pipeline contains: a vertex puller module, which retrieves all the vertices; a

geometry processing module, which performs the camera transformation,

lighting, projection, clipping and window viewport transformation; and a

rasterization module, which linearly interpolates the data to access the color.

Figure 3.1: Standard texture mapping pipeline

21

3.2 Back-projection Texture Mapping

We implement the back-projection texture mapping pipeline as follows:

Figure 3.2: Back-projection texture mapping pipeline

The CT model vertices are stored in an ordered list with each vertex

having a distinct index. Therefore, the vertex specification and tessellation are

not included in this pipeline. The pipeline only contains vertex processing,

rasterization and fragment shader.

The basic operating unit for texture mapping is called a primitive, the

boundary of which is defined by each vertex. The vertex processing includes

clipping and culling. Clipping means that primitives lying on the boundary

between the inside of the viewing volume and the outside are split into sev-

eral primitives, keeping visible primitives lying inside the volume. Triangle

primitives can be culled to avoid rendering triangles facing away from the

viewer.

Rasterization is to determine which pixels are drawn into the frame-

buffer, then interpolates parameters such as colors and texture coordinates

for further processing. The result of rasterizing a primitive is a sequence

of fragments. The state for a fragment includes its position in screen-space

and depth information which is called Z-Buffer. When transforming each 3D

22

Figure 3.3: A textured CT model back-projection texture mapping. Gray vertices in
the model means either the vertex is not seen by the camera, or it is occluded, others
are shaded with color from endoscopic image.

vertex from world coordinates to camera coordinates or image coordinates,

Z-Buffer keeps track of the depth information of each individual vertex (z-

axis value in camera coordinate), and retains only the fragment with the

smallest depth value. The nature of Z-Buffer method is when more than one

vertices fall onto the same pixel location on the image plane, the nearest one

is kept as the farther ones are occluded.

Vertex shader performs basic color processing for each vertex. For vertices

with smallest Z-Buffers, the corresponding 2D image pixels are shaded with

the vertex intensities with proper interpolation.

3.3 Image Rendering

Image rendering is a process of generating photorealistic images from a

3D scene. The ultimate goal for computer graphics is to transform the 3D

world objects into 2D images, which means to create images or films from

computer-generated models. Rendering is a way to display such a model.

23

(a) Side view of textured sinus structure in RViz

(b) Front view of textured sinus structure in RViz

Figure 3.4: A real time visualization of textured point cloud in RViz

24

Figure 3.5: A rendered image from the textured CT model.

The image rendering pipeline also contains vertex processing, primitive

assembly, rasterization and fragment shader which is nearly identical to

the back-projection texture mapping pipeline. This allows us to employ the

previous pipeline to generate a rendered image. See figure 3.5

25

Chapter 4

Motion Estimation

In this section, we describe the proposed textured CT-based motion es-

timation method for endoscopic navigation. The major assumptions are

brightness constancy and smoothness constancy, which are also the major

assumptions for optical flow and direct methods.

Our key idea is, given a high frequency but relatively noisy prior motion

estimate, camera poses can be optimized by exploiting the CT model. One

reasonable way is to use Perspective-n-Points or Bundle Adjustment, which

requires a registration of 3D vertices and 2D pixels. This registration can be

obtained from optical flow. See figure 4.1

4.1 Prior Motion Estimation

There is a necessity for motion prior in this method as the nasal pathway is

considered to be poor featured, and the camera motion is considered fast

given the scale of the sinus cavity. Moreover, the implementation of high

frequency prior motion estimation can also fill the gap between each cam-

era keyframe therefore enabling a smoothness tracking of the endoscope

throughout the process. The prior motion can be obtained with high fre-

quency measurement devices such as an EM tracker of the endoscope, an

add-on Inertia Measurement Unit (IMU), Ultra-wide Band (UWB). It can be

also obtained by other sensor-based or vision-based method real time motion

26

Figure 4.1: A brief illustration of camera motion between two consecutive poses.
Blues points represents reprojected points from the CT model, red camera frames
represent the estimated pose Ĉk−1 and Ĉk at keyframe k − 1 and k from prior motion,
and the black frame represents optimized pose Ck−1. At keyframe k we employ
image registration and PnP/BA to determine Tk−1, aligning the reprojected points
with image feature points. Then the refined pose is transformed by another prior
motion Tk−1,k to obtain a new prior estimated pose Ĉk.

estimation methods.

In this project, as the EM-tracker information is not available, we directly

use the previous estimated pose as the prior motion estimate, and form an

iterative estimation of movement. In other words, the estimated pose at time

t − 1 will be used to project the vertices onto the image plane at time t to

estimate the pose at t.

4.2 Image Registration

The image registration algorithm is similar to the sparse direct approach,

which uses Lucas-Kanade optical flow to track feature points. Given a 3D

model, the first step is to project 3D vertices onto the image plane. These

points after projection are referred as back-projected points. Due to the noise

and uncertainty introduced by the motion prior, a minor deviation occurs

that causes back-projected 3D points fall onto a pixel location away from

their ground truth locations.

To map the back-projected points to the real corresponding pixels, at

27

the same time avoiding the complexity of feature extraction and feature

description, we applied a modified Lucas-Kanade optical flow to track the

back-projected point. Starting from the back-projected point, by determining

a searching direction and a magnitude, if any point along that direction

is detected to have the same pixel intensity, this point is selected as the

corresponding point and registered to the back-projected point. This means

that the back-projected point "flows" or "shifts" from the original point to its

photometric equivalence due to camera motion or noises. If there is no match

of intensity within a certain searching distance, then the back-projected point

is considered invalid and it is discarded. This normally happens in the region

that has sharp intensity contrast such as corners and edges. There is also a

case that some back-projected points have the same intensities as the original

points on the image. This usually happens in flat regions and the points are

also disregarded.

To determine the searching direction and magnitude, we formulate both

brightness constraint and smoothness constraint. The brightness constraint

can be computed using the image intensity of the original points Ii,k at

position pi,k, and the intensity of back-projected points Im
i,k at the same pixel

position at keyframe k as:

Im
i,k(xi, yi, t − 1) = Ic

i,k(xi + u(xi, yi), y + v(xi, yi), t) (4.1)

Using Taylor expansion, this can be written as:

Im
i,k(xi, yi, t − 1) ≈ Ic

i,k(xi, yi, t) + Ic
x ∗ u(xi, yi) + Ic

y ∗ v(xi, yi) (4.2)

Hence:

Ic
i,k,xui,k + Ic

i,k,yvi,k + It,i,k ≈ 0 (4.3)

However, this equation is under-determined by using only one pair of

28

corresponding points. The standard way to solve the equation is to apply

another constraint, which is called the smoothness constraint, and then

calculating the least squares solution. The smoothness constraint assumes

that in the neighborhood of the pixel of interest, all pixels have an identical

motion. Normally, the eight contiguous pixels in the 3 × 3 neighborhood of

the feature point are selected together with the point.

[
Ic
i,x Ic

i,y

]
k

[
ui
vi

]
k
= −It,i,k (4.4)

Define:

Ak =

⎡⎢⎢⎢⎢⎣
Ic
i,x,1 Ic

i,y,1
Ic
i,x,2 Ic

i,y,2
...

Ic
i,x,9 Ic

i,y,9

⎤⎥⎥⎥⎥⎦
k

, bk =

⎡⎢⎢⎢⎣
It,i,1
It,i,2

...
It,i,9

⎤⎥⎥⎥⎦
k

(4.5)

Using Moore-Penrose pseudo inverse, the relative motion of a pixel can

be computed as: [
ui
vi

]
k
= −(AT

k Ak)
−1AT

k bk (4.6)

In this case, It,i,k is the intensity difference of point i between original

point intensity, Im
i,k and back-projected point intensity, Ic

i,k. Ii,x. Ii,y are image

derivatives in x and y direction calculated from endoscopic images. As

back-projected points are sparse and isolated, which means no neighboring

pixel intensity can be used for smoothness constraint. Hence, we adjust

smoothness constraint by selecting a region of interest (ROI) and apply least

square to all the reprojected points inside the ROI. See figure 4.2.

Once the relative motion (ui,k, vi,k) for a pixel is calculated, with the

assumption of brightness constancy, the correspondence can be found by

checking if any pixel along the direction (ui,k, vi,k) has the same intensity

value. If, under a certain distance (usually 20 pixels), no pixel has the same

intensity, then the point will be discarded. The result for registration is shown

in figure 4.3.

29

Figure 4.2: Illustration of the smoothness constraint. As each back-projected point is
isolated, we select a 15-by-15 ROI (green square) around the point (blue) of interest
as a neighborhood and combine all the back-projected points in the neighborhood
for least squares. The solution (ui, vi) after smoothness constraint calculation is
assigned to be searching direction of the back-projected point.

4.3 Outlier Removal

Random Sample Consensus (RANSAC) is an iterative method to estimate

parameters of a mathematical model. It is a counting-based method which

counts the number inliers of a given model suggested by a subset of data to

select the best model. The detailed steps are

1. Randomly select a subset of data to form a subset of hypothesis inliers.

2. Calculate the best model from the inliers

3. Test all other data using the model, count the number of total inliers

that fit the model.

4. Resample the data and repeat step 1-4 until certain criteria are met.

5. Output the best model.

RANSAC-based rejection eliminates outliers based on thresholding of

data. As it randomly selects a subset of data to approximate the real model,

it is more robust to local minima and more effective when the data is noisy.

To determine the number of iterations needed for selecting the best model,

we use the following formula

k =
log(1 − p)

log(1 − wm)
(4.7)

30

Figure 4.3: Result of image registration. Red points means the back-projected points
have the same intensity as the original points. Blue arrows show the registration
between the back-projected points and its corresponding points along the searching
direction. Each pair of these points connected by the arrow has the same intensity.
Green points means that these points cannot find any point with same intensity
given a certain searching direction and step size. Red and green points will be
discarded, only blue pairs will be used for pose refinement.

where p is the confidence value usually selected to be 0.95-0.99, and w is

the ratio of inliers and m is the number of samples that is used to calculate

the model. In practice, k can be manually fixed for simplicity.

4.4 Pose Estimation

4.4.1 3D-2D Perspective-n-points

Perspective-n-point is a general way of solving pose estimation problem of a

calibrated camera, given a set of 3D vertices in the world coordinate and their

corresponding 2D pixels in the image coordinate. From the above section,

for each vertex i, we have obtained correspondences between its 3D vertex,

2D back-projection points and 2D registered points. Thus camera poses can

be estimated by using either 2D-2D epipolar constraints or 3D-2D motion

estimation techniques. However, algorithms using 2D-2D epipolar geometry

such as 5-points Method or 8-points Method may encounter the problem

31

of scale ambiguity because the scale of translation t cannot be determined

through the calculation of homography.

Perspective-n-Point takes the depth information of a 3D vertex into ac-

count to overcome scale ambiguity, and applies Direct Linear Transform

(DLT) to the projection model. For a 3D vertex i pi, the relationship of its

homogeneous coordinates pi(x, y, z, 1) with its image coordinates ui,k(u, v)

at keyframe k can be described as:

s

⎡⎣ ui
vi
1

⎤⎦
k

=

⎡⎣ t1 t2 t3 t4
t5 t6 t7 t8
t9 t10 t11 t12

⎤⎦
k

⎡⎢⎢⎣
xi
yi
zi
1

⎤⎥⎥⎦ (4.8)

Canceling the scale factor s, we have the constraint:

ui =
t1xi + t2yi + t3zi + t4

t9xi + t10yi + t11zi + t12
(4.9)

vi =
t5xi + t6yi + t7zi + t8

t9xi + t10yi + t11zi + t12
(4.10)

Then we have:

⎡⎢⎢⎢⎢⎢⎣
pT

1 0 −u1pT
1

0 pT
1 −v1pT

1
...

...
...

pT
N 0 −uN pT

N
0 pT

N −vN pT
N

⎤⎥⎥⎥⎥⎥⎦
⎡⎣ t1

t2
t3

⎤⎦ = 0 (4.11)

where t1 = (t1, t2, t3, t4)
T, t2 = (t5, t6, t7, t8)

T and t3 = (t9, t10, t11, t12)
T. N

for the total number of points.

For our case, the over-determined linear transform can be solved using

SVD and least square, or other methods such as EPnP [28] and DLS. We

choose EPnP proposed by V. Lepetit et al. [28].

32

4.4.2 2D-2D 8-point Method

To recover relative motion using only a set of 2D registered points for two

different frames, a common way is to utilize epipolar geometry. In figure 4.4,

assume the relative motion between two frames is R, t, the optical centers

are O1, O2. Considering a feature point in the first frame is p1, and its corre-

sponding point in the second frame is p2, if they are projected from the same

3D vertex, then their connections with the optical centers, →
O1P1

, →
O2P2

should

intersect at point P. In this case, the plane defined by O1, O2, P is called

epipolar plane. The connection between O1 and O2 is called base line. The

intersection between the base line →
O1O2

and two frames are called epipoles,

denoted as e1, e2. p1e1, p2e2 are called epipolar lines.

Figure 4.4: Epipolar geometry

To formulate the geometry mathematically, assume the 3D point P is

P = [X, Y, Z], the calibration matrix is K, so the projection of P on two frames

are

p1 = KP, p2 = K(RP + t) (4.12)

This equation can be rewritten as

x1 = K−1P1, x2 = K−1P2 (4.13)

33

Where x1, x2 are the coordinates on the normalized plane of the pixels.

From the equation we can obtain the relationship

x2 = Rx1 + t (4.14)

Multiply t̂ on both sides we have (outer product)

t̂x2 = t̂Rx1 (4.15)

and xT
2 we have

xT
2 t̂x2 = xT

2 t̂Rx1 (4.16)

Notice that T t̂x2 is normal to both t and x2, then the left side of the

equation is 0. Hence we have

xT
2 t̂Rx1 = 0 (4.17)

Substitute p1, p2 from equation 4.15 we have

pT
2 K−T t̂RK−1p1 = 0 (4.18)

Equation 4.18 is known as epipolar constraint. It encodes the transforma-

tion of two frames in the relationship of two corresponding feature points.

The matrix E is called Essential Matrix

E = t̂R (4.19)

and matrix F is called Fundamental Matrix

F = K−T t̂RK−1

= K−TEK−1

(4.20)

Generally speaking, given a set of corresponding point, we can recover

camera motion by first calculating E or F, then decompose E or F to get R

and t.

34

Essential Matix is a 3 × 3 matrix with 9 parameters. Thus the epipolar

constraint can be written as

[
u v 1

] ⎡⎣ e1 e2 e3
e4 e5 e6
e7 e7 e7

⎤⎦⎡⎣ u
v
1

⎤⎦ = 0 (4.21)

This can be further simplified linearly as

⎡⎢⎢⎢⎣
u1

1u1
2 u1

1v1
2 u1

1 v1
1u1

2v1
1v1

2 v1
1 u1

2 v1
2 1

u2
1u2

2 u2
1v2

2 u2
1 v2

1u2
2v1

2v2
2 v2

1 u2
2 v2

2 1
...

...
...

...
...

...
...

...
...

uN
1 uN

2 uN
1 vN

2 uN
1 vN

1 uN
2 vN

1 vN
2 vN

1 uN
2 vN

2 1

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1
e2
e3
e4
e5
e6
e7
e8
e9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0 (4.22)

This is called 8-point Method as eight points are sufficient to solve the

equation so N is normally equal to eight. However in this project, the feature

points are far more than eight, we can also find E by substituting all the

points and solve the over-determined equation.

Once the Essential Matrix is calculated, the transformation between two

adjacent frames can be recovered using Singular Value Decomposition (SVD).

By SVD we will normally have four solutions, with only one that P has

positive depths in both cameras. We can select the right transformation in

this way and get rid of the invalid ones.

However, due to scale ambiguity, the 8-point Method is not able to output

a transformation with the scale consistent to the CT scene model. Therefore,

this method is only used to determine the relative direction of motion.

35

Chapter 5

Motion-only Bundle Adjustment

5.1 Bundle Adjustment

In practice, PnP is normally used as a prior pose prediction followed by a

bundle adjustment formulation of PnP to refine the estimation. The PnP

problem can be regarded as a nonlinear least square problem using Lie Alge-

bra, hence the relative motion of two consecutive frames can be estimated

using bundle adjustment. Bundle adjustment considers both camera poses

and 3D vertices as optimization variables, and minimize reprojection error

for an optimal solution.

Reformulate the above projection equation in Lie Algebra we have:

s

⎡⎣ ui
vi
1

⎤⎦ = K exp (Ĉ)

⎡⎢⎢⎣
xi
yi
zi
1

⎤⎥⎥⎦ (5.1)

In bundle adjustment, the error function is chosen to be the sum of

Euclidean distances between back-projected points and their corresponding

points.

C∗
k−1,k = arg min

Ck−1,k

1
2

n

∑
i=1

ui −
1
si

K exp ˆ(C)pi

2

2
(5.2)

36

And globally

C∗ = arg min
C

1
2 ∑

k

n

∑
i=1

ui −
1
si

K exp ˆ(C)pi

2

2
(5.3)

The error function can be linearized by finding the derivative of each

variable with respect to the function, and solved with optimation methods

such as Gauss-Newton Method and Levenberg-Marquardt Method to find

the best solution.

As the prescanned CT scene model and intrinsic parameters are fixed, we

apply motion-only bundle adjustment to optimize the only poses. In this

case, the Hessian Matrix used for optimization is highly sparse with only

camera poses block.

5.2 Pose-graph Optimization

The Front End VO is capable of generating a local trajectory and a scene map.

Due to the noise associated with each step, the trajectory is not consistent

in a large scale, hence requires a global optimization. Bundle adjustment

is effective not only in solving optimization problem between two adjacent

frames, but also the localization and mapping problem across frames in a

large scale. One problem associated with graph-based optimization is, when

the scale of poses and the map increases, the computational efficiency will

drop. 3D points and poses will start to converge at the same time so the

optimization will become less effective.

In our case, as 3D vertices are fixed and directly obtained from the 3D

model, we are no longer interested in optimizing these parameters but only

camera poses, hence we can keep track of only the camera poses to form a

global Pose-Graph and apply graph optimization.

The nodes of the graph is represented by the camera poses, C1, C2, ..., Cn.

37

Figure 5.1: A pose-graph representation of the motion estimation process. Every
node in the graph corresponds to a pose of the endoscope. Only poses are connected
by edges while the 3D points in the CT model are discarded. These edges represent
the transformation obtained from motion estimation.

Denote the relative motion between two nodes as ∆Cij we have:

∆Cij = C−1
i ◦ Cj = ln(exp((−Ci)

∧ exp(C∨))∧ (5.4)

Or rewrite the equation using Lie Group we have:

∆Tij = T−1
i Tj (5.5)

In general, two sides of the equation may not be identical due to the

accumulation of error and unpredictable noises. Hence, define the error term

for the optimization as:

eij = ln(∆T−1
ij T−1

i Tj)
∨

= ln(exp((−Cij)
∧) exp((−Ci)

∧ exp(C∨))∧
(5.6)

Then we can formulate the optimization problem by minimizing the cost

function:

min
C

1
2 ∑

i,j∈ε

eT
ijΣ

−1
ij eij (5.7)

where ε is the set of all vertices and Σij is the covariance matrix between

two poses.

Pose graph optimization is usually associated with a Loop Closure mod-

ule. Loop closure is a module that detects if a robot or camera has revisited

one of its previous location. It is crucial for enhancing the robustness of both

38

topological and metrical SLAM algorithms. [3]

Loop closure contains two main module: a keyframe selection module

which selects the keyframes based on the similarity between each frames;

a loop detection module, which determines if two keyframes belong to the

same location.

The selection of keyframe need to be designed to avoid redundant com-

putation. Front end visual odometry is generally of high frequency, hence

generating a sequences of pose estimation. Keyframe selection determines

poses that contain distinctive information from sequence and forms nodes in

the graph. In other words, keyframe selection is based on similarity between

two adjacent frames.

To accelerate the key frame selection process, we utilize CT model indices.

For each key frame, the indices of back-projected points form a index set.

When new frames are received, indices in each new frame will be compared

with all the existing index sets. If the new frame contains more than certain

number of percentage of distinct indices compared to the previous keyframe,

then the new frame will be selected as a new keyframe. If a certain per-

centage of feature points in the new keyframe can be viewed by at least

three keyframes, the this frame is redundant and will be removed from the

keyframes.[35]

39

Chapter 6

Performance Evaluations

6.1 Energy Function

In this project, we use Euclidean distance as a measurement of similarity for

the estimated pose with respect to its ground truth. The energy function is

defined as follows:

E =
n

∑
i=1

α2(u2 + v2)
2

2
(6.1)

where n is the number of points back-projected onto the image plane. u

and v are optical flows in x and y directions calculated in section 4.2. α is

defined as:

α =

⎧⎪⎨⎪⎩
0 if u2 + v2 = 0
1 if 0 < u2 + v2 < d
0 if u2 + v2 > d

(6.2)

where d is a thresholding distance in pixel. The intuition behind this is if

a registration is valid, which means the magnitude of the flow is small and

positive, we choose to minimize all these flows disregarding the rest of the

points. In this system we choose d to be 20 pixels which is corresponding to

about 0.3mm pose error in world coordinates. It can be adjusted based on

the endoscopic movements in practice.

40

Figure 6.1: Back-projected points selection. Blue arrow means there is a valid
movement between the back-projected points and corresponding points. Red points
means there is no movement and green points means there is no corresponding
point under certain distance. The red and blue will be discarded in each iteration.

6.2 Minimization of Energy Function

There are two scenarios that the energy of the system will drop. In the first

scenario, the estimated pose shifts closer to its ground truth in each iteration

causing the total length of flows to reduce.

In another scenario, when the prior pose estimation is completely off

or the gradient leads to the wrong search direction, the number of valid

registration significantly decreases. It results in the decreasing of energy

function but generates a wrong estimation. This scenario also includes

extreme cases such as the camera is facing out of the sinus cavity. As this

violates the assumption of slow motion, vision-based methods are usually

invalid. But it can be easily solved with other sensor-based prior motion

estimation methods (see Sect. 4.1)

6.3 Estimation results

The following table shows a pose estimation of a single frame. The estimation

process starts with the pose of the last frame, which is 0.5mm off in x direction

to the current pose. The algorithm is designed to have 10 iterations. In each

41

iteration, the algorithm minimizes the energy defined in the previous section,

and returns a new value of estimated pose.

Iterative Pose Estimation for a Frame
pose Iteration1 Iteration2 Iteration3 Iteration4 Iteration5
x 4.091057 4.045245 4.042591 4.045245 4.028958
y 26.974160 26.924137 26.902820 26.924137 26.915048
z 11.684938 11.655635 11.658340 11.655635 11.671567
x-axis 0.550026 0.544711 0.544711 0.544542 0.542748
y-axis 2.367989 2.368812 2.368812 2.368051 2.368256
z-axis -1.827689 -1.826783 -1.826783 -1.827071 -1.826622
Iteration6 Iteration7 Iteration8 Iteration9 Iteration10 Ground

Truth
3.989887 4.059595 4.047657 4.083908 4.078509 4.3593
26.911758 26.957401 26.892593 26.918454 26.939552 27.1535
11.694322 11.682742 11.659985 11.651248 11.685586 11.8704
0.545610 0.546054 0.546067 0.544414 0.547130 0.3598572
2.369949 2.368471 2.368985 2.367433 2.368512 0.0497875
-1.827068 -1.826612 -1.827072 -1.826988 -1.826609 -1.8895694

Table 6.1: Motion estimation starting from a manually selected position. The prior
pose is -0.5mm to the current pose in x direction. This table shows the pose estima-
tions for different number of iterations. The unit for movements in x, y, z directions
is in millimeter, and for yaw, pitch, roll is in rads. The last column shows the ground
truth for the estimated pose.

Figure 6.2: The Euclidean distance of the estimate pose to the ground truth.

42

(a) Error in x direction

(b) Error in y direction

(c) Error in z direction

Figure 6.3: The Euclidean distance of the estimate pose to the ground truth in each
direction.

43

(a) Error in x axis

(b) Error in y axis

(c) Error in z axis

Figure 6.4: The Euclidean distance of the estimate pose to the ground truth in each
angle axis.

To further test our method, we start with a random position which is

about 1mm away from its ground truth. The results is shown below.

44

Iterative Pose Estimation for a Frame
pose Iteration1 Iteration2 Iteration3 Iteration4 Iteration5
x 5.022175 4.904615 4.865226 4.771162 4.741542
y 27.355992 27.365783 27.353296 27.357743 27.353421
z 11.794553 11.832653 11.861530 11.879385 11.818083
x-axis 0.556773 0.555786 0.557391 0.556387 0.555899
y-axis 2.354605 2.356595 2.357667 2.359798 2.358854
z-axis -1.831809 -1.831824 -1.831696 -1.831950 -1.833448
Iteration6 Iteration7 Iteration8 Iteration9 Iteration10 Ground

Truth
4.659306 4.633547 4.530066 4.645394 4.531065 4.38557
27.326630 27.319720 27.299903 27.352135 27.278241 27.1567
11.847258 11.882004 11.859021 11.882315 11.843280 11.9095
0.554183 0.555833 0.552045 0.553557 0.552027 0.360388,
2.360727 2.361816 2.362929 2.360879 2.363119 0.0522335
-1.833103 -1.832394 -1.833455 -1.832502 -1.833360 -1.88488

Table 6.2: Motion estimation starting from a random position. This table shows the
pose estimates for different iterations. The unit for movements in x, y, z directions is
in millimeter, and for yaw, pitch, roll is in rads. The last column shows the ground
truth for the estimated pose.

45

(a) Error in x direction

(b) Error in y direction

(c) Error in z direction

Figure 6.5: The Euclidean distance of the estimate pose to the ground truth in each
direction.

46

(a) Error in x axis

(b) Error in y axis

(c) Error in z axis

Figure 6.6: The Euclidean distance of the estimate pose to the ground truth in each
angle axis.

As seen from results of both manually selected starting position and ran-

domly selected starting position, the iterative pose estimation will reduce the

error to about 0.4mm, which corresponds to the resolution of the prescanned

CT model. For the directions with large disparities (see x directions for both

cases), the error drops rapidly and oscillates around its optimal solution. For

the directions with small disparity, the estimated location oscillates with only

small improvements.

Ideally, the iteration stops when a certain number of iteration is reached.

47

In our system, we use 10 iterations. It also stops when no vertex is observed

by the camera. Figure 6.7 shows the visualize the performance of our method

for each iteration. As we can see from the figure, after a certain number

of iterations, the contours of the images are aligned and more points are

mapped to its photometric equivalence.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.7: Visualization of improvements of each iteration. The back-projected
points are shifting left to align with the original image. The total magnitude de-
creases and more points are aligned. Two images coincide in the end as suggested
by their contours.

Due to the natural of optimization, it normally takes more iterations to

48

get to an optima when the disparity is large.

(a)

(b)

Figure 6.8: Iteration performance when the energy is no longer decreased.

6.4 Early Stopping

To save computational power, we add one more constraint to decide if the

iteration should continue. If the energy is reduced in the current iteration,

the method continues; otherwise the iteration stops. The maximum number

if iterations is set to 30 in this case.

From figure 6.8, we can see that the method is still able to converge to the

optimal solution if it stops when the energy no longer decreases. It may take

more iterations to converge if the disparity is comparatively large.

49

6.5 Error Statistics

Figure 6.9: Error statistics of the estimated pose given a random perturbation in a
certain range. The horizontal axis represents the magnitude of the perturbation, and
the vertical axis represents the error in Euclidean distance to the ground truth.

To test how the system performs for different starting positions away from

its ground truth, we randomly generate small perturbations from -1.05mm to

1.05mm away from the ground truth as starting positions. The error statistics

of the estimate is shown in figure 6.9. In general, the mean and variance of

the error increase as the perturbation range increases. This means if the prior

pose estimate has a large disparity to its ground truth, the pose estimation

iteration is more likely to run into local minima. But there is still a change to

generate a comparatively good estimate suggested by the lower quartiles of

the boxes.

50

Chapter 7

Conclusion and Discussion

In this work, we introduce a visual navigation system for sinus surgery with

the ability of texture mapping the CT model in real time and localizing the

endoscope for navigation. We also propose a motion estimation method and

show that the method could refine the pose estimates from different prior

estimates.

7.1 Discussion

7.1.1 Mathematical Interpretation

Our method is inspired by the idea of optical flow and bundle adjustment,

and seeks to minimize global energy to find the optimal solution. This proce-

dure can be interpreted as a nonlinear optimization using first order gradient

descent. The direction of the flow can be interpreted as the gradient or search

direction in steepest descent, and the flow magnitude can be interpreted by

the step size.

The first order Newton’s method is greedy, as it maximize the perfor-

mance for each iteration by choosing the optimization direction to be the

local gradient. But it also suffers from the gradient as it usually takes a

zig-zag path for optimization which uses more iterations to converge. As

seen from the figures, the estimated pose also oscillates around its optimum.

To solve this problem, we can adjust the search direction to make it less

51

greedy by using the idea of Gauss-Newton Method as described in chapter 2.

J(x)T J(x)△x = −J(x)T f (x) (7.1)

In this case, we can approximate the gradient using the function itself and

its Jacobians, and determine the step size in the similar manner. Similarly,

given the Jacobian and Hessian of an image, Trust Regions Methods and Dog

Leg Methods could also be investigated for future modifications.

7.1.2 Comparison with Direct Methods

Our method is naturally similar to Direct Methods as both methods are

inspired by optical flow. Our method can be regarded as a discrete version of

Direct Methods. Direct Methods formulate the problem using the equation

T∗
k−1,k = arg min

Tk−1,k

1
2 ∑

i

Ic
k(KTk−1,k pi)− Ic

k−1(ui)
2

2 (7.2)

So for each iteration, it returns a transformation T of rotation R and trans-

lation t, and uses this transformation for new iterations. It combines the

registration and motion estimation in one optimization step. One advantage

of combining all substeps into a single objective function is it can achieve high

speed. By putting the optimization variables into an optimization framework

such as G2O and Ceres, Direct Methods could achieve the frequency of more

than 50Hz. It significantly outperforms our method in terms of speed as it

doesn’t require any image rendering or image registration.image rendering

or image registration are the most time consuming steps in our method.

However, our method may outperform Direct Methods in terms of accu-

racy. As Direct Methods are usually dense or semi-dense, they are purely

based on least squares and there is no outlier removal module. They suffer a

lot from the outliers when the when the trackable points is sparse or the im-

age has a lot of textures. In the similar manner, Direct Methods are also more

sensitive to local mimima. Discretization of each optimization step of Direct

52

Methods allow us to process and modify the data throughout registration

and motion estimation step. We can regulate the flow to compensate for the

sparseness of the back-projected points, and remove the outliers to improve

the estimation accuracy of each iteration.

7.1.3 Comparison with Feature-based Methods

Our method is also inspired from bundle adjustment as the method is trying

to minimize the reprojection error between the back-projected points and its

corresponding points. There are two major differences between our method

and feature-based methods. Our method regards the back-projected points

as feature points rather than extracting feature points. Bypassing feature

extraction and feature description significantly saves computational power

and processing time.

The second difference is, for feature-based method the registration is solid,

which means the correspondence is fixed throughout the process. Therefore

there is no need for an iterative optimization to get the best result. Principally,

3D-2D motion estimation methods use PnP to obtain a reasonable initial

estimation, and refine the estimate using local bundle adjustment. However,

for our method, the registration is soft. The source point may be registered

to different photometric equivalence in different iterations. In this case, local

Bundle Adjustment is not necessary as a result of the stochastic natural of

the method.

7.2 Future Works

Our future work involves five parts. The first part is to extend our visual

navigation system to a complete visual SLAM system. To achieve this, a pose

graph optimization module and a loop closure module described chapter

5 need to be implemented. Moreover, in surgical data collection and real

surgeries, surgeons need to manually create loops to enable global pose

53

optimization.

The second part is to add an initial pose estimation module using other

registration methods. This could be achieved using feature-based 3D-2D

registration or ICP-based 3D-3D registration if an 3D reconstruction is given.

The methods available are described in the introduction.

The third part is to integrate another sensor for prior motion estimation,

such as an IMU or an EM tracker. If a reasonably good estimate (say the error

is less than 0.5mm) is given, the method is more likely to converge with less

time and less iterations.

The fourth is to conduct experiments with real endoscopes and CT data.

The real endoscopic image is slightly different from the simulation image,

which requires modifications and adjustments to the method.

The fifth is to implementing new ways of calculating gradient direction

and step length, as described in Chapter 7.1.1. The could lead to better

results only with simple modifications to the system. One more thing could

be done is to transform all the iterations of our method into one optimization

formulation like Direct Methods for faster processing speed. But it still

requires modifications to regulate the flows as the back-projected points are

highly sparse and the method is sensitive to outliers.

54

References

[1] Martin A. Fischler and Robert C. Bolles. “Random Sample Consensus:
A Paradigm for Model Fitting with Applications To Image Analysis
and Automated Cartography”. In: 24 (1981), pp. 381–395.

[2] Sameer Agarwal et al. “Building Rome in a Day”. In: Commun. ACM
54.10 (2011), pp. 105–112. ISSN: 0001-0782. DOI: 10.1145/2001269.
2001293.

[3] A. Angeli et al. “Visual topological SLAM and global localization”.
In: 2009 IEEE International Conference on Robotics and Automation. 2009,
pp. 4300–4305. DOI: 10.1109/ROBOT.2009.5152501.

[4] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. “SURF: Speeded
Up Robust Features”. In: Computer Vision – ECCV 2006. Ed. by Aleš
Leonardis, Horst Bischof, and Axel Pinz. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 404–417. ISBN: 978-3-540-33833-8.

[5] S. S. Beauchemin and J. L. Barron. “The Computation of Optical Flow”.
In: ACM Comput. Surv. 27.3 (1995), pp. 433–466. ISSN: 0360-0300. DOI:
10.1145/212094.212141.

[6] Seth D. Billings et al. “Anatomically Constrained Video-CT Regis-
tration via the V-IMLOP Algorithm”. In: Medical Image Computing
and Computer-Assisted Intervention – MICCAI 2016. Ed. by Sebastien
Ourselin et al. Cham: Springer International Publishing, 2016, pp. 133–
141. ISBN: 978-3-319-46726-9.

[7] C. Cadena et al. “Past, Present, and Future of Simultaneous Local-
ization and Mapping: Toward the Robust-Perception Age”. In: IEEE
Transactions on Robotics 32.6 (2016), pp. 1309–1332. ISSN: 1552-3098. DOI:
10.1109/TRO.2016.2624754.

[8] J. Civera, A. J. Davison, and J. M. M. Montiel. “Inverse Depth Parametriza-
tion for Monocular SLAM”. In: IEEE Transactions on Robotics 24.5 (2008),
pp. 932–945. ISSN: 1552-3098. DOI: 10.1109/TRO.2008.2003276.

[9] Navneet Dalal and Bill Triggs. “Histograms of Oriented Gradients for
Human Detection”. In: 1 (2005), pp. 886–893.

[10] Kim Dalziel et al. “Endoscopic sinus surgery for the excision of nasal
polyps: A systematic review of safety and effectiveness”. In: 20 (2006),
pp. 506–19.

55

http://dx.doi.org/10.1145/2001269.2001293
http://dx.doi.org/10.1145/2001269.2001293
http://dx.doi.org/10.1109/ROBOT.2009.5152501
http://dx.doi.org/10.1145/212094.212141
http://dx.doi.org/10.1109/TRO.2016.2624754
http://dx.doi.org/10.1109/TRO.2008.2003276

[11] H. Durrant-Whyte and T. Bailey. “Simultaneous localization and map-
ping: part I”. In: IEEE Robotics Automation Magazine 13.2 (2006), pp. 99–
110. ISSN: 1070-9932. DOI: 10.1109/MRA.2006.1638022.

[12] Kennedy DW. “Functional endoscopic sinus surgery: Technique”. In:
Archives of Otolaryngology 111.10 (1985), pp. 643–649. DOI: 10.1001/
archotol.1985.00800120037003. eprint: /data/journals/otol/17089/
archotol_111_10_003.pdf. URL: +http://dx.doi.org/10.1001/
archotol.1985.00800120037003.

[13] J. Engel, V. Koltun, and D. Cremers. “Direct Sparse Odometry”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 40.3 (2018),
pp. 611–625. ISSN: 0162-8828. DOI: 10.1109/TPAMI.2017.2658577.

[14] Jakob Engel, Thomas Schöps, and Daniel Cremers. “LSD-SLAM: Large-
Scale Direct Monocular SLAM”. In: Computer Vision – ECCV 2014. Ed.
by David Fleet et al. Cham: Springer International Publishing, 2014,
pp. 834–849. ISBN: 978-3-319-10605-2.

[15] C. Forster, M. Pizzoli, and D. Scaramuzza. “SVO: Fast semi-direct
monocular visual odometry”. In: 2014 IEEE International Conference on
Robotics and Automation (ICRA). 2014, pp. 15–22. DOI: 10.1109/ICRA.
2014.6906584.

[16] Gregory D. Hager and Peter N. Belhumeur. “Efficient region track-
ing with parametric models of geometry and illumination”. In: PAMI
(1998).

[17] K. J. Hanna. “Direct multi-resolution estimation of ego-motion and
structure from motion”. In: Proceedings of the IEEE Workshop on Visual
Motion. 1991, pp. 156–162. DOI: 10.1109/WVM.1991.212812.

[18] Berthold Horn and Brian G. Schunck. “Determining Optical Flow”. In:
17 (1981), pp. 185–203.

[19] Michal Irani. “All About Direct Methods”. In: (2000).

[20] H. Jin, P. Favaro, and S. Soatto. “Real-time 3D motion and structure
of point features: a front-end system for vision-based control and
interaction”. In: Proceedings IEEE Conference on Computer Vision and
Pattern Recognition. CVPR 2000 (Cat. No.PR00662). Vol. 2. 2000, 778–779
vol.2. DOI: 10.1109/CVPR.2000.854954.

[21] Hailin Jin, Paolo Favaro, and Stefano Soatto. “A semi-direct approach
to structure from motion”. In: The Visual Computer 19.6 (2003), pp. 377–
394. ISSN: 1432-2315. DOI: 10.1007/s00371-003-0202-6.

[22] M. Kaess, A. Ranganathan, and F. Dellaert. “iSAM: Incremental Smooth-
ing and Mapping”. In: IEEE Transactions on Robotics 24.6 (2008), pp. 1365–
1378. ISSN: 1552-3098. DOI: 10.1109/TRO.2008.2006706.

[23] G. Klein and D. Murray. “Parallel Tracking and Mapping for Small AR
Workspaces”. In: 2007 6th IEEE and ACM International Symposium on
Mixed and Augmented Reality. 2007, pp. 225–234. DOI: 10.1109/ISMAR.
2007.4538852.

56

http://dx.doi.org/10.1109/MRA.2006.1638022
http://dx.doi.org/10.1001/archotol.1985.00800120037003
http://dx.doi.org/10.1001/archotol.1985.00800120037003
/data/journals/otol/17089/archotol_111_10_003.pdf
/data/journals/otol/17089/archotol_111_10_003.pdf
+ http://dx.doi.org/10.1001/archotol.1985.00800120037003
+ http://dx.doi.org/10.1001/archotol.1985.00800120037003
http://dx.doi.org/10.1109/TPAMI.2017.2658577
http://dx.doi.org/10.1109/ICRA.2014.6906584
http://dx.doi.org/10.1109/ICRA.2014.6906584
http://dx.doi.org/10.1109/WVM.1991.212812
http://dx.doi.org/10.1109/CVPR.2000.854954
http://dx.doi.org/10.1007/s00371-003-0202-6
http://dx.doi.org/10.1109/TRO.2008.2006706
http://dx.doi.org/10.1109/ISMAR.2007.4538852
http://dx.doi.org/10.1109/ISMAR.2007.4538852

[24] James G. Krings et al. “Complications of primary and revision func-
tional endoscopic sinus surgery for chronic rhinosinusitis”. In: The
Laryngoscope 124.4 (), pp. 838–845. DOI: 10.1002/lary.24401. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/lary.24401.

[25] J. J. Leonard and H. F. Durrant-Whyte. “Simultaneous map building
and localization for an autonomous mobile robot”. In: Proceedings IROS
’91:IEEE/RSJ International Workshop on Intelligent Robots and Systems ’91.
1991, 1442–1447 vol.3. DOI: 10.1109/IROS.1991.174711.

[26] S. Leonard et al. “Evaluation and Stability Analysis of Video-Based
Navigation System for Functional Endoscopic Sinus Surgery on In-
Vivo Clinical Data”. In: IEEE Transactions on Medical Imaging (2018),
pp. 1–1. ISSN: 0278-0062. DOI: 10.1109/TMI.2018.2833868.

[27] Simon Leonard et al. “Image-based navigation for functional endo-
scopic sinus surgery using structure from motion”. English (US). In:
Medical Imaging 2016: Image Processing. Vol. 9784. SPIE, 2016. DOI: 10.
1117/12.2217279.

[28] V. Lepetit, F. Moreno-Noguer, and P. Fua. EPnP: An Accurate O(n)
Solution to the PnP Problem. 2008.

[29] David G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints.
2003.

[30] Bruce D. Lucas and Takeo Kanade. “An iterative image registration
technique with an application to stereo vision”. In: In IJCAI81. 1981,
pp. 674–679.

[31] K. MacTavish and T. D. Barfoot. “At all Costs: A Comparison of Robust
Cost Functions for Camera Correspondence Outliers”. In: 2015 12th
Conference on Computer and Robot Vision. 2015, pp. 62–69. DOI: 10.1109/
CRV.2015.52.

[32] K. Mikolajczyk and C. Schmid. “A performance evaluation of local
descriptors”. In: IEEE Transactions on Pattern Analysis and Machine In-
telligence 27.10 (2005), pp. 1615–1630. ISSN: 0162-8828. DOI: 10.1109/
TPAMI.2005.188.

[33] Daniel Mirota et al. “Toward Video-Based Navigation for Endoscopic
Endonasal Skull Base Surgery”. In: 12 (2009), pp. 91–9.

[34] K. Mori et al. “Tracking of a bronchoscope using epipolar geometry
analysis and intensity-based image registration of real and virtual
endoscopic imagesâĂăâĂăA preliminary version of this paper was
presented at the Medical Image Computing and Computer-Assisted
Intervention (MICCAI) Conference, Utrecht, The Netherlands (Mori
et al., 2001).” In: Medical Image Analysis 6.3 (2002), pp. 321 –336. ISSN:
1361-8415. DOI: https://doi.org/10.1016/S1361-8415(02)00089-
0. URL: http://www.sciencedirect.com/science/article/pii/
S1361841502000890.

57

http://dx.doi.org/10.1002/lary.24401
https://onlinelibrary.wiley.com/doi/pdf/10.1002/lary.24401
http://dx.doi.org/10.1109/IROS.1991.174711
http://dx.doi.org/10.1109/TMI.2018.2833868
http://dx.doi.org/10.1117/12.2217279
http://dx.doi.org/10.1117/12.2217279
http://dx.doi.org/10.1109/CRV.2015.52
http://dx.doi.org/10.1109/CRV.2015.52
http://dx.doi.org/10.1109/TPAMI.2005.188
http://dx.doi.org/10.1109/TPAMI.2005.188
http://dx.doi.org/https://doi.org/10.1016/S1361-8415(02)00089-0
http://dx.doi.org/https://doi.org/10.1016/S1361-8415(02)00089-0
http://www.sciencedirect.com/science/article/pii/S1361841502000890
http://www.sciencedirect.com/science/article/pii/S1361841502000890

[35] Raul Mur-Artal, J. M. M. Montiel, and Juan D. Tardós. “ORB-SLAM: a
Versatile and Accurate Monocular SLAM System”. In: CoRR abs/1502.00956
(2015). arXiv: 1502.00956. URL: http://arxiv.org/abs/1502.00956.

[36] Nassir Navab et al. “Direct Method for Motion Estimation: An Al-
ternative to Decomposition of Planar Transformation Matrices”. In:
Proceedings of the 24th DAGM Symposium on Pattern Recognition. London,
UK, UK: Springer-Verlag, 2002, pp. 575–582. ISBN: 3-540-44209-X.

[37] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. “DTAM: Dense
tracking and mapping in real-time”. In: 2011 International Conference
on Computer Vision. 2011, pp. 2320–2327. DOI: 10.1109/ICCV.2011.
6126513.

[38] David NistÃl’r, Oleg Naroditsky, and James Bergen. “Visual Odom-
etry”. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition
(CVPRâĂŹ04. 2004.

[39] David NistÃl’r and Henrik StewÃl’nius. “Scalable Recognition with a
Vocabulary Tree”. In: 2 (2006), pp. 2161 –2168.

[40] Yoshito Otake et al. “Rendering-based video-CT registration with phys-
ical constraints for image-guided endoscopic sinus surgery”. In: Pro-
ceedings of SPIE–the International Society for Optical Engineering 9415
(2015).

[41] M. Pizzoli, C. Forster, and D. Scaramuzza. “REMODE: Probabilistic,
monocular dense reconstruction in real time”. In: 2014 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). 2014, pp. 2609–2616.
DOI: 10.1109/ICRA.2014.6907233.

[42] Maria Robu et al. “Intelligent viewpoint selection for efficient CT to
video registration in laparoscopic liver surgery”. In: International Jour-
nal of Computer Assisted Radiology and Surgery. 2017.

[43] Ethan Rublee et al. “ORB: an efficient alternative to SIFT or SURF”. In:
(2011), pp. 2564–2571.

[44] Davide Scaramuzza and Friedrich Fraundorfer. “Visual Odometry
[Tutorial]”. In: 18 (2011), pp. 80–92.

[45] Jianbo Shi and Tomasi. “Good features to track”. In: 1994 Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition. 1994,
pp. 593–600. DOI: 10.1109/CVPR.1994.323794.

[46] Noah Snavely, Steven M. Seitz, and Richard Szeliski. “Photo tourism:
Exploring photo collections in 3D”. In: In Proc. ACM SIGGRAPH. 2006.

[47] George Stockman and Linda G. Shapiro. Computer Vision. 1st. Upper
Saddle River, NJ, USA: Prentice Hall PTR, 2001. ISBN: 0130307963.

[48] Jan Stühmer, Stefan Gumhold, and Daniel Cremers. “Real-Time Dense
Geometry from a Handheld Camera”. In: Pattern Recognition. Ed. by
Michael Goesele et al. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 11–20. ISBN: 978-3-642-15986-2.

58

http://arxiv.org/abs/1502.00956
http://arxiv.org/abs/1502.00956
http://dx.doi.org/10.1109/ICCV.2011.6126513
http://dx.doi.org/10.1109/ICCV.2011.6126513
http://dx.doi.org/10.1109/ICRA.2014.6907233
http://dx.doi.org/10.1109/CVPR.1994.323794

[49] Richard Szeliski. Computer Vision: Algorithms and Applications. 2010.

[50] Carlo Tomasi and Takeo Kanade. Detection and Tracking of Point Features.
Tech. rep. International Journal of Computer Vision, 1991.

[51] Bill Triggs et al. “Bundle Adjustment – A Modern Synthesis”. In: VI-
SION ALGORITHMS: THEORY AND PRACTICE, LNCS. Springer Ver-
lag, 2000, pp. 298–375.

[52] Hanzi Wang, Daniel Mirota, and Gregory D. Hager. “A generalized
kernel consensus-based robust estimator”. English (US). In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 32.1 (2010), pp. 178–
184. ISSN: 0162-8828. DOI: 10.1109/TPAMI.2009.148.

59

http://dx.doi.org/10.1109/TPAMI.2009.148

Linhao Jin
(410) 982-9679 | ljin18@jhu.edu | www.linhaojin.com

Education

May 2019 JOHNS HOPKINS UNIVERSITY (JHU), Baltimore, MD
M.S.E. in Robotics - Perception and Cognitive Systems Track.
Courses: Over 20 graduate-level courses taken/audited related to computer vision and SLAM.
Advisor: Dr. Gregory Hager.

May 2017 NANYANG TECHNOLOGICAL UNIVERSITY (NTU), Singapore
B.Eng in Mechanical Engineering (First-Class Honor) - Robotics and Mechatronics Track.
Honors: Full Merit-Based Scholarship from Ministry of Education in Singapore, Dean’s List 2014 - 2015,
Presidential Research Scholarship, Singapore-MIT Undergraduate Research Fellowship.

Work Experience

Spring Johns Hopkins University Department of Computer Science, Baltimore, MD
2018 Teaching Assistant

· Organized recitations and facilitated discussions for CS663 Algorithms for Sensor-based Robotics..
Jun - Aug Singapore-MIT Alliance for Research and Technology Center (SMART), Singapore

2016 Undergraduate Research Fellow
· Developed a real-time gantry detection, tracking and distance estimation algorithm using line
detection algorithms for RGB and depth inputs.

· Implemented and tested the algorithm with a stereo vision camera (ZED) on SMART Self-Driving Car.
Aug-Dec Rolls-Royce Advanced Technology Center, Singapore
2015 Computational Engineering Intern

· Facilitated Data Analytic as a Service (DaaS) Team front end development and data visualization.
· Created a weekly report automatic compilation application in Visual Basic.
· Assisted in Propeller Defections Detection Project and DaaS Team project/program management.

Research Experience

Present Real-time Endoscopic Navigation Using Video and CT: A SLAM Approach.| Master’s thesis
- · Developed a novel endoscopic navigation system using SLAM.

2018 · Utilized a computer graphics pipeline to texture map the CT model in real-time.
· Developed an optical flow-based method for the CT model and the endoscopic video 3D-2D registration.
· Estimated endoscope motion using PnP and optimized global poses by motion-only bundle adjustment.
· Developing a fast vision-based loop closing algorithm for back end optimization.

Sep - Nov Spacecraft Multi-layer Insulation Segmentation using Fully Convolutional Network
2017 · Implemented Fully Convolutional Networks (FCN-8, FCN-16, FCN-32) to segment multi-layer insulation.

· Achieved cross validation accuracies over 90% on LCSR MLI dataset.
· Compared and analyzed the results with outputs from FCNs with a conditional random field.

Sep - Nov Labeled-Face-in-the-Wilds Face Classification Using Siamese Network
2017 · Constructed a 19-layer Siamese Network in PyTorch on Google Cloud to classify faces in the LFW dataset.

· Achieved the test accuracy over 95% for BCE loss and 80% for contrastive loss.
May 2017 Indoor 3D Reconstruction and Mapping for High Ceiling Spray Painting Robot | NTU Robotics Research Center

- · Devised both software and hardware of a 3D reconstruction system for a mobile spray painting robot.
· Incorporate a stepper motor and a 2D laser scanner with serial communication to generate 3D scans.
· Determined the rigid transformations using 3D-3D point cloud matching methods.

Jan 2017 Event-based Camera and Ultra-wide Band (UWB)-based UAV Localization | NTU Internet of Things Lab
- · Developed both software and hardware of a visual-inertial system for pose estimation of a mobile robot.

Aug 2015 · Constructed the system with an event-based camera, UWBs, LED anchors and an IMU.
· Implemented UKF for sensor fusion and 6-DOF pose estimation. Tested the system under a Vicon system.

Skills

Programming: C++, Python, C, MATLAB, HTML, MS VBA
Software: ROS, PyTorch, OpenCV, PCL, Linux, Gazebo, SOLIDWORKS, Github, QNX, Arduino

60

	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Functional Endoscopic Sinus Surgery
	Simultaneous Localization and Mapping
	Outline
	Motion Estimation
	2D-2D Motion Estimation
	Feature-based Methods
	Direct Methods
	Hybrid Methods

	3D-2D Motion Estimation
	3D-3D Motion Estimation

	Motivation and Challenge

	Overview
	System Architecture
	Terminology
	Notation
	Fundamentals
	Camera Model and Calibration
	3D Geometry and Transformation
	Homogeneous Representation and Lie Group
	Euler Angles
	Axis-angle Representation
	Quaternions

	Non-linear Optimization
	Line Search Methods
	Trust Region Methods

	CT Texture Mapping
	Texture Mapping Pipeline
	Back-projection Texture Mapping
	Image Rendering

	Motion Estimation
	Prior Motion Estimation
	Image Registration
	Outlier Removal
	Pose Estimation
	3D-2D Perspective-n-points
	2D-2D 8-point Method

	Motion-only Bundle Adjustment
	Bundle Adjustment
	Pose-graph Optimization

	Performance Evaluations
	Energy Function
	Minimization of Energy Function
	Estimation results
	Early Stopping
	Error Statistics

	Conclusion and Discussion
	Discussion
	Mathematical Interpretation
	Comparison with Direct Methods
	Comparison with Feature-based Methods

	Future Works

	References

