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Abstract 

 

This work attempts to shed some light on some of the fundamental chemistry utilized by C-F bonds in 

organofluorine compounds, with special care to noncovalent interactions.  A fluorinated sesquinorbornane 

scaffold was the template for the majority of the studies owing to its rigid conformation and ability to be 

modified.  Thanks to those two attributes, the properties of C-F bonds were observed under various conditions 

in a multitude of different conformations.  Through that work, the C-F bond was observed to take part in SN1 

reactions through anchimeric assistance.  Even more interesting is the anchimeric assistance is facilitated 

through a positively charged fluoronium intermediate.  In addition, the conformation of the scaffold, allows 

other functional groups to be placed in close proximity to the C-F bond.  After making a series of molecules 

with different functional groups, the through-space interaction of the C-F bond with the proximal C-H was 

investigated.  A correlation between proton-fluorine coupling constants and the interaction’s strength was 

observed.  The positioning also allowed the observation of a strong hydrogen bonding interaction between 

the fluorine and an alcohol.  While the hydrogen bond appears strong by most spectroscopic methods, IR 

spectroscopy shows little to no shift when compared to a control molecule.  This appears to be a rare case of 

bond compression from steric strain cancelling out bond relaxation from hydrogen bonding, a so called “no-

shift” bond.  In an attempt to be sure our system can be used to generate hydrogen bonds, a hydrogen bond 

between an alcohol and a nonconjugated -system was investigated.  Owing to the reduction of steric strain 

in the molecule a strong hydrogen bond was observed accompanied by a characteristic red shift in the IR 

spectrum.  Interestingly the red shift was nearly 189 cm-1, which is much larger than other observed examples 

of this type of interaction.  In order to bolster our claims about a fluoronium ion intermediate, an in depth 

investigation into the reactivity of the fluoronium system was reported.  This was done through several rate 

studies, control reactions and isotopic labeling experiments.  All of which indicate that the fluoronium is the 

most likely intermediate.  Finally another example of fluorine acting as a directing group was investigated.  

Specifically, a C-F bond was found to influence a Diels-Alder reaction between a fluorinated dienophile and 

a borole so that one product was favored to a substantial degree. 
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Chapter 1 

Generation of a Symmetrical Fluoronium Ion in Solution 

 

1.1 Introduction. 

To new students of organic chemistry, the story of the halonium ions is almost magical; these strange 

species seem to be counterintuitive to everything that was previously taught about bonding by such 

electronegative atoms.  Perhaps the most familiar of the haloniums is the bromonium ion; in its formation, 

bromine, an electronegative atom that normally attaches itself to carbon through a single bond, becomes 

instead a formally positively charged member of a bromocyclopropane ring.1  The first hint of its existence 

came through stereochemical studies, namely the strong preference for trans-addition of dibromine to 

double bonds.  Analogous behavior was documented in chlorination reactions as well.2  In a short span of 

time, the viability of symmetrical chloronium, bromonium and iodonium3 ions, whose stability increases in 

that order, became well established.  However, there was a notable absence; namely, it was not clear that 

fluorine, the most electronegative atom by most measures, could form a fluoronium ion in which equal 

bonding exists between carbon atoms, i.e. [C—F—C]+.  Given the explosive growth in the importance of 

fluorine to synthetic chemistry,4 the pharmaceutical industry,5 and biochemistry6 of late, the problem is 

especially timely – that is, to what extent can divalent fluorine be compelled to withstand a formally 

positively charged environment in solution? 

Assuming that the fluoronium would share similar properties with other halonium ions, it should be 

able to engage in analogous modes of bonding.  For example, bromonium ions can form three-membered 

rings, they can be acyclic, or the bromine can be part of a larger ring.  Thus, the fluorine atom also can be 

imagined as a part of a fluoracyclopropane, with similar bonding interactions (Figure 1.1).  We also note 

that the system may not be symmetric (i.e. both C-F interactions equivalent) depending on substituents; at 

some point, the asymmetrical fluoronium can devolve into an electrostatic interaction.  Such a scenario can 

be anticipated when the C-F bond approaches its normal length.  

Herein we document the previous work we built upon and our thought processes leading up to our 

system designed to observe the fluoronium species.  In addition we lay out our evidence for the conclusions 

we have reached.  Overall, our guiding principle derives from the saying that a strong claim must be met by 
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similar evidence – and as the ions we report herein are not directly observed, as much indirect evidence as 

possible has been amassed. 

 

Figure 1.1 Putative fluoronium configurations. 

 

1.2 Precedents. 

Due to their unique nature, research on fluoronium ions is supported by a diverse foundation of 

precedents.  In the gas phase, Morton et al. have generated a cationic fluoracyclopropane whose existence 

was confirmed by a neutral product study (Figure 1.2).7  In more recent work, Dopfer and Solca 

characterized F-protonated fluorobenzene 2 by IR spectroscopy, also in a gas phase study.8  Moving to 

solution phase chemistry, Gabbai et al. have reported the synthesis of a carbocation engaging in an 

interaction with a neighboring C-F bond in the 1,8-disubstituted naphthalene system 3.9  Although not a 

fluoronium per se, this remarkable species undergoes rapid fluoride shifts as witnessed by NMR 

equilibration at elevated temperatures.  The disilane analog 4 reported by Müller et al., on the other hand, 

possesses equivalent distances between Si and F.10  These works stand in contrast to a notable paper by 

Olah et al. in which the authors demonstrated that cation 6 isomerizes in solution strictly through methyl 

group shifts rather than the putative fluoronium shift depicted in 5; this result suggests that achieving a 

reversible fluoride-shifting system in a small ring would be a challenge.11  In loose regard to the 

intramolecular asymmetrical case (Figure 1.1), we reported a system that undergoes irreversible fluoride 

shifts that are initiated by aryl cations.12  More recently Erdélyi et al. were able to observe a unique, 

asymmetric [N-F—N]+ interaction by trapping it as its bispyridine complex.13  Peterson et al.14 have 

observed a fluoride shift initiated by a vinylic cation; whether this shift occurred through asymmetric 

fluoronium transition states or intermediates is unclear.  There are also claims in the literature of putative 
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symmetrical diarylfluoronium ions (7), although considerations of theory and stability would seem to rule 

both out.15 

 

Figure 1.2 Previously reported bridged fluorine species. 

 

1.3 Our design process.   

Whenever one has to design a new system it pays to start simple.  However, although the simplest 

system – [Me-F-Me]+ - was a stable minimum computationally, the idea that it could exist in solution under 

any circumstances is far-fetched.  In order to imagine a viable system that could at least be generated as a 

reactive intermediate, certain design constraints must be considered: i) the fluoronium ion should form 

intramolecularly;16 ii) the fluorine atom should be positioned between secondary carbons (primary would 

render a system very unstable, whereas tertiary carbons are less likely to form a symmetrical fluoronium);17 

iii) we posit that if an ether linkage can fit comfortably between the two carbon atoms, the isoelectronic, 

formally positively-charged fluorine should as well.  

Bearing these conditions in mind, we determined that a cage hydrocarbon18 would be an ideal 

framework to anchor a fluoronium interaction.  Initially, we screened commonly occurring cages that could 

be modified to become a fluoronium ion.  Figure 1.3 shows the theoretical fluoronium molecules as 

energetic minima (vacuum at B3LYP/6-311++G** [abbrev. “B3”] or B97XD/6-311+G** [“B97”] 

levels).  The structures had to match our original criteria, along with providing identical C-F bond lengths 

at the energetic minimum.  Structure 8 is based on cubane,19 9 on adamantane,20 the more fanciful 10 is a 

distorted dodecahedrane dicationic cage, in which the fluorine engages in interactions with three carbon 

atoms;21 two equivalently, the third more distantly.  The tetracation 11, derived from a gaslamp-type 

skeleton, of course, would likely live only in imagination, confirming that theory can only guide us so far.  
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On the other hand, the most synthetically reasonable in our eyes was the basic sesquinorbornane structure 

12, which we imagined (substituted with an anhydride) could be constructed through a series of 

diastereoselective Diels-Alder reactions.  

 

 

Figure 1.3 Possible fluoronium ion cages. 

 

Why was our first choice to ensconce a fluoronium within a cage?  Perhaps by releasing the restraints 

that the cage imposes, piece by piece, we can gain insight (Figure 1.4).  For example, fluoronium 13 is 

stable relative to kinetically accessible isomers at all HF, MP2, and DFT based levels of theory 

investigated.  Likewise, if we remove the anhydride group, the fluoronium interaction appears to be 

sustained.  However, if we eliminate the ethano-bridges, thus removing strain from the system and 

increasing potential degrees of freedom, we see that classical isomer 15 becomes more stable relative to 

fluoronium 14, which is still a defined intermediate and not a transition state (B97, H2O solvent dielectric). 

 

 

Figure 1.4 Loosening restraints in the fluoronium system. 
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Another insight was provided by calculations on the intermolecular model, [i-Pr-F-i-Pr]+ (B97, 

vacuum).  Fully optimized, the C-F-C angle is 125°, and the C-F bond distances are equivalent (1.61 Å); 

the C-C distance is 2.86 Å. 

 

 

As this C-C distance is stretched, the symmetrical structure is retained until the C-C distance reaches ~ 

3.2 Å.  At 3.3 Å, a “classical,” equilibrating structure is predicted (Equation 1.1).  Thus there are limits to 

the size of C-C distances within a preferred cage, and the framework provided by 13 seems to be closer to 

optimal if not a bit tight (2.66 Å).  Another virtue of this cage is that intramolecular hydride shifts of 

virtually any type are precluded.  For example, a hydride shift could potentially lead to an -

fluorocarbenium ion, as seen in Equation 1.2.22  Not only is such a shift sterically impossible in our system, 

but the calculated energy of the -fluoro cation is higher than the fluoronium at several DFT levels (e.g. 

B3, B97), in contrast to the expected trend.  

 

 

 

The next logical step was to compare the calculated energy of the fluoronium ion to some well-known 

carbocations.  We chose to employ isogyric23 equations (B97) to estimate the stability of fluoronium 13 

with respect to more common carbocations (Scheme 1.1).  In an aqueous dielectric, cation 13 is less stable 

than t-butyl24 and 2-norbornyl,25 but more stable than the isopropyl and 7-norbornyl.26  Note that the 

isopropyl cation has a debatable independent existence in aqueous solution.27  On the other hand, 

comparison with similarly strained cage systems may be more germane.  Whereas theory predicts that the 
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fluoronium is more stable than the -hydrido-bridged species 18, the chloronium, not surprisingly, is quite 

a bit more stabilized. 

 

Table 1.1 Optimizations of cation 13 at various levels of theory. 

 

Method/Basis Set d(Å) C-F C--F—C angle 

(degrees) 

B3LYP/6-311++G** 1.60 115 

B3LYP/6-311++G** 1.58 116a 

B3LYP/cc-pVTZ 1.59 115 

EDF2/6-311++G** 1.59 115 

MP2/6-311++G** 1.57 115 

PBEPBE/6-311++G** 1.61 114 

mPW1PW91/cc-pVTZ 1.55 116 a 

HCTH/cc-pVTZ 1.57 114 a 

B97XD/cc-pVTZ 1.55 116 a 

B3PW91/cc-pVTZ 1.57 115 

B97XD/6-311+G** 1.56 116a 

BPV86/cc-pVTZ 1.59 114 a 

M06/cc-pVTZ 1.56 116 

TPSSTPSS/cc-pVTZ 1.60 114 

aCalculations were performed with the default Gaussian solvation model for water. 

 

Various widely-used levels of theory (DFT and MP2) are in basic agreement on cation 13’s structure 

(Table 1.1).  The C-F bond length average is 1.58 Å among the methods chosen in the table; the C-F-C 

bond angle averages about 115°.  A QTAIM29 analysis (B97) shows that each C-F interaction constitutes a 

little less than half of a normal C-F covalent bond (electron density at BCP  = 0.14), in the roughest sense. 
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Scheme 1.1 Isogyric comparisons of fluoronium 13 versus common cations (B97, aqueous dielectric). 

 

1.4 Previous synthetic approaches.   

As a test, the first approach to the basic skeleton involved the thermal Diels-Alder reaction of 

fluorinated dienophile 2028 with 1,3-cyclopentadiene (Equation 1.3).  This reaction, conducted in a sealed 

tube, produced two diastereomers in comparable amounts (21, 30%; 22, 40%).  As easy as the reaction 

proved to be, compound 21 turned out to be a dead end (other than the interesting through-space interaction 

between bridgehead H and F it displays).29  All attempts to functionalize 21 at the methano-bridge by 

oxidation invariably failed.  
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Next we turned our attention to alkene 22, in which the fluorine interacts closely with the double bond 

on the opposing bridge.  Following the well-established precedents of Paddon-Row et al.30 and Winstein et 

al.31 on similarly configured carbon frameworks, we expected that bromination of 22 would result in 

rearrangement of the carbon skeleton to provide product 23 that could then be further elaborated.  

However, to our surprise, this did not occur (Scheme 1.2).  Thinking that the poor migratory ability of the 

electron deficient carbon vicinal to the anhydride group was partly responsible, we employed a reduced 

version in the form of cyclic ether 24, but this more promising substrate also failed to rearrange upon 

bromination. 

With this result in hand, we reasoned that addition of an electrophile to this unusual alkene 22 must 

involve anchimeric assistance from the lone pairs on the fluorine atom, which would thereby reduce the 

impetus for rearrangement.  In fact, reaction of 22 with Br2 affords the cis-dibrominated product 25 

exclusively.  The crystal structure of 25 determined from single-crystal X-ray diffraction reveals some 

interesting features, including a close interaction of the in-F with two H atoms on the ethano-bridge.  A 

through-space 1H-19F coupling of 4.4 Hz was detected; weaker than the interaction of the two methano-

bridges but still notable.  Although highly selective cis-dibrominations are rare (especially in simple, 

unsubstituted cycloalkenes), similar reactions are precedented.32  Cis-products can be observed in cases 

where a bromonium isomerizes to a carbocation that can undergo free rotation.  In our case this is not 

possible, but a “double inversion” involving assistance from the fluorine would also explain the cis 

stereochemistry, thereby implicating fluorine in an anchimeric role (Scheme 1.3).   

 

Scheme 1.2 Putative rearrangement of 22 upon bromination. 
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One could argue that the fluorine is merely a steric impediment to the reaction of a trans-bromide ion, 

but we may well expect the aforementioned skeletal rearrangement to resolve this problem.  We turned to 

computations to provide some guidance; calculation of bromonium ion 26 at (B97, CH2Cl2 dielectric) 

shows a significant interaction of both carbon atoms with fluorine through a QTAIM analysis ( at the BCP 

= 0.020).  However, lying slightly lower in energy (0.76 kcal/mol) is the (not quite symmetrical) 

fluoronium 28, which can then be trapped by bromide ion through an internal SN2 reaction to provide the 

product.  Something along these lines may indeed happen, as ion 26 should not normally engage in 

frontside trapping of bromide.  Although the explanation is attractive, it does not provide solid proof.  

However, the fluorine should not be immediately dismissed as just a blocking group, as a number of 

examples show.   

 

Scheme 1.3 Proposed cis-dibromination mechanism.  

 

An especially beautiful parallel to the fluorine participation in system 25 can be seen in the work of 

Prinzbach et al.,33 who treated olefin 29 with Br2 and isolated tetrabromide 30.  The “backside” aromatic 

ring evidently participates in the bromination to form a -complex that is in turn trapped by bromide; 

further bromination then yields 30.  The newly-formed C-C bond provides compelling evidence for 

anchimeric assistance, allowing the observer to conclude that the aromatic ring provides more than just 

steric hindrance.  Another example34 involves putative participation of an ether oxygen as an anchimeric 

assistor in an olefin whose two faces are sterically hindered.  Last is a case35 that involves postulated 
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backside anchimeric assistance of a sulfone group to produce a 1:1 mixture of diastereomers in the 

bromination of cyclobutene 33 (Scheme 1.4).  

 

Scheme 1.4 Anchimeric assistance in bromination and notable cis-dibromination reactions that may utilize 

it. 

 

1.5 New synthetic approach. 

Ironically, premature fluorine participation in these initial attempts may have thwarted the synthesis of 

23.  Our next approach for system 13 instead involved the use of a 5-trialkylsilyl-substituted 

cyclopentadiene.  Silane 4036 was chosen as the precedent existed that the silyl substituent would be 

amenable to the stereoselective Fleming-Tamao oxidation37 in a subsequent step.  We were optimistic about 

this approach thanks to several transition state calculations, whose relative energies we have found to be 

quite accurate for fairly nonpolar cycloaddition reactions.38  At the B97 level, the two most favorable 

diastereomeric transition states lie close together in energy.  The desired isomer 36 is calculated to be 

lowest in energy, with 37 only 0.03 kcal/mol higher in energy.  The other two possible isomers are unlikely 

to form as the transition states are considerably higher in energy (3.5 and 3.9 kcal/mol).  At the very least, 

this calculation led us to believe that the Diels-Alder reaction would have an excellent chance of producing 

at least some of the desired diastereomer.   
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To begin the synthesis, cyclopentadiene 40 was made by the reaction of sodium cyclopentadiene with 

1-chloro-1-methylsilacyclobutane.36 Unfortunately, all attempts at a thermal or Lewis acid catalyzed Diels-

Alder reaction using diene 40 and dienophile 20 utterly failed.  The diene, it appeared, was very susceptible 

to rearrangement39 and decomposition; a finding not surprising in light of the migratory aptitude of 

electropositive silicon groups. 

 

Figure 1.5 Transition state calculations for the Diels-Alder reaction of 20 and 40 (B97, vacuum). 

 

At this juncture our approach to system 13 appeared to be in serious jeopardy.  As a last resort, we 

tried a reaction under very high pressure; the literature is filled with examples of failed Diels-Alder 

reactions whose fortunes were transformed by a high-pressure apparatus.40  The reaction was conducted in 

a 10 mL syringe (1:3 mixture of 20:40; 3M in CH2Cl2) for 3 days at 12 kbar.  The crude 19F NMR showed 

the presence of two major diastereomers whose structures we presumed to be those favored by calculation.  

Based on the prediction of 19F chemical shifts ( = -0.914i + 142.63; i = isotropic shielding at B3),41 the 

desired diastereomer was produced in a slightly higher yield than 37, as expected.  The crude mixture was 

then subjected to Fleming-Tamao oxidation; separation of the crude products by column chromatography 

on silica (yielding the desired alcohol in 36%) was followed by hydrogenation with palladium on carbon at 

2 bar (99% yield) and triflation (97% yield).  Our synthetic approach is detailed in Scheme 1.5. 
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Scheme 1.5 Synthetic approach to 42.        

 

We chose to use a triflate as a leaving group as it is a good candidate for the generation of very reactive 

cationic intermediates.42  We obtained a crystal structure of triflate 42, revealing the close interaction of F 

and the in-H (1.86 Å) at its estimated position.43  With that in mind, we surmised that hydrolysis of 42 

would release a fair amount of strain energy.  This triflate proved to be the key molecule for our studies - 

however, due to the bottleneck created by the low throughput high pressure reaction and Fleming-Tamao 

oxidation, making it in large quantities proved impossible - thus very judicious choices of its use were in 

order. 

Initially, the hydrolysis of 42 was attempted in several different solvent systems (due to its low 

solubility in pure water).  A particularly well-behaved example was a combination of the polar, ionizing 

TFE44 and water.  In 70/30 v/v TFE/water, 42 smoothly hydrolyzed to afford 41 in almost quantitative yield 

(98%).  This indicated to us that we had a remarkably stable system with no apparent propensity to 

rearrange; however the identity of the product provided little useful information about the mechanism of 

the substitution reaction.  We considered a number of mechanistic scenarios (Scheme 1.6), such as SN1, an 

SN2 reaction that is “extended” to involve fluorine [SN2(e)], an SN1 “frontside” reaction (SNi),45 a garden-

variety SN2, or cleavage of an S-O bond.  The penultimate mechanism, somewhat less plausible SN2 variant 

can immediately be ruled out as we do not isolate this particular diastereomer, but the others cannot be 

distinguished on the basis of the product, which is the same in all of the cases. 
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Scheme 1.6 Probable mechanistic pathways for the hydrolysis of 42. 

 

1.6 Isotopic Labeling Study. 

We then turned to an isotopic labeling experiment, which allowed differentiation between various 

mechanistic alternatives; scrambling between positions is a classic indication of a cloaked symmetrization 
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process.  We went about labeling our compounds by replacing the hydrogenation step in Scheme 1.5 with a 

deuterated diimide reduction, which upon triflation affords d2-isotopomer 48.  When this labeled substrate 

is subjected to hydrolysis in TFE/water 70/30 v/v, we obtain an approximate (1:1) mixture of isotopomeric 

products 54 and 55 (Figure 1.6).  The situation is now greatly clarified (Scheme 1.7).  Were the reaction 

proceeding through an SN2 or the SNi, a 1:1 ratio would not be expected.  The 1:1 ratio is thus the likely 

result of equal trapping on both electrophilic sites of a symmetrical intermediate.  Although highly 

suggestive, without direct characterization the case is obviously circumstantial.  Circumstantial evidence is 

most compelling when it is overwhelming – thus we sought to accumulate as much evidence for the nature 

of this symmetrical intermediate as we could.  In addition, we thoroughly investigated the mechanistic 

properties and capabilities of this sesquinorbornane system. 

 

 

 

Figure 1.6 Sample integration of isomeric bridgehead carbons in alcohols 54 and 55, 13C spectrum in 

CDCl3.  Zero filling and exponential line broadening (0.4 Hz) were used (calculated 46.3 ppm). 
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Scheme 1.7 Mechanistic outcomes for the hydrolysis of 48. 

 

1.7 Conclusion. 

In a nutshell, evidence for the generation of a fluoronium ion in solution is as follows: i) The 

equivalent ratio of labeled isomers 54 and 55 is consistent with a scenario in which the predominant 

solvolytic pathway results from nucleophilic attack on either bridge of a symmetrical ionic intermediate in 
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which counterions do not interfere.  ii) The conditions of the reaction are consistent with what we would 

expect for the SN1 process (relatively nonnucleophilic medium and high dielectric constant).46 Schneider 

and Schmidt have used HFIP to observe pure SN1 reactions on cyclohexyl tosylates;47 we performed a 

hydrolysis in similar conditions, but results were less accurate due to difficulties experienced in the 

integration of small quantities of the product alcohols. iii) The alternative pathways, shown in Schemes 1.6 

and 1.7, operate only to a very small extent, if at all.  The fact that strictly 1:1 ratios of labeled isomeric 

products were obtained in various mixtures of water and cosolvents argues for a pure SN1 reaction as well.  

iv) As stated, ion 13 is computationally stable at all suitable levels of theory, whereas the conceptual 

nonfluoronium (asymmetric, or nonbridging) isomer, with all its attendant strain and steric hindrance to 

nucleophile trapping, is not stable at any suitable level of theory.  While it is clear the system reacts with 

SN1-like chemistry, the exact nature of the mechanism and the system’s reactivity need to be more 

thoroughly investigated. 
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Chapter 2 

Through-space “Jousting” Interactions 

 

2.1 Introduction. 

Over the last few decades there has been a marked increase in the use of fluorine in chemistry, whether 

it be for medical/biological applications,1 materials development,2 or synthetic methodology.3,4  In 

particular, an estimated 20% of the current pharmaceuticals on the market contain fluorine, and there is a 

large amount of ongoing research investigating the effects of fluorination on the properties of natural 

products for drug discovery.5,6  In a recent review, fluorine was called the “second-favorite heteroatom” 

after nitrogen for drug design.7  It is perhaps a bit extreme to say that this explosion of interest has ushered 

in a “fluorine renaissance,” but the new appreciation fluorine has recently gained from multiple fields of 

science is quite notable.  Due to this fact, interest in the properties of organofluorine molecules has 

experienced a phenomenal growth with each passing year.8  For fluorine to reach its potential, more 

information of its properties and how it acts in complex systems is desirable.9  From both a medicinal and 

academic standpoint, an especially intriguing facet is the way that C-F bonds interact with other extremely 

proximate functional groups, especially intramolecularly.10  With the noted success of fluorination in 

medicine, this information could help pave the way for designing new fluorinated drugs that interact better 

with biological systems.11  In the realm of synthetic chemistry, exploitation of fluorine’s unique acceptor 

properties has imparted stereoselectivity to new reactions.12  Because of their ubiquity in organic chemistry 

and the lively debate surrounding the C-F bond’s ability as a hydrogen bond acceptor, interaction with 

proximate, C-H bonds would be of special interest.13,14   

Herein, we document the properties of a series of molecules in which the nature of a C-F---H-C 

interaction can be modulated by hydrogen bonding that is induced by the placement of functional groups 

geminal to the H-C bond.  Electronic effects arising from these conditions are documented by X-ray 

crystallography, IR, 1H and 19F NMR spectroscopy.  Depending on the nature of the functional group, both 

additional red and rarer blue-shifted hydrogen bonding interactions can be induced relative to a standard 

molecule.  As a starting point for our study, we chose to utilize the easily modifiable organofluorine cage-

system we designed for our fluoronium experiments (Figure 2.1).15  The virtue of this system is that it 
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affords a rigid framework in which fluorine is positioned to interact closely with a nearby, 

conformationally immobile C-H bond.  Now imagine the two -bonds pointing at each other in close 

proximity - they almost look like they are about to clash, like medieval jousters, in effect - a graphic 

description of close, non-bonded interactions between spatially proximate bonds such that one or both may 

experience evident bond compression or distortion.  Although the implication is that such interactions are 

generally strain-inducing, a small bit of hydrogen bonding serves to make the best of a tight situation.  We 

decided to observe if polarizing the "jousting" interaction in the manner of a stronger hydrogen bond would 

counteract the effect in interesting and heretofore unseen ways and enhance attraction.  This is a chance to 

observe true conformationally locked C-F---H-C hydrogen bonding, which is a generally rare occurrence, 

and represents a timely problem in fluorine chemistry.16 

 

2.2 Precedents and theory. 

Our prototype molecule (X = Ha, 17) is an interesting case in itself.  From calculation (B3LYP/6-

311++G**), an intra-bridgehead (H---F) distance of 1.94 Å can be estimated.  This is a very close 

interaction indeed; compare the seminal study of Thalladi et al. on C-H---F interactions in crystalline 

fluorobenzenes, which indicate typical 2.41-2.78 Å H---F distances.17  The authors concluded that these 

constitute weak, but clear, examples of H-bonding.  A recent paper by Thakur et al. highlights several other 

molecules with H---F distances ranging from 2.23-2.35 Å.18  As a point of reference, a basic, prototype C-

H---F interaction between two aliphatic centers, methane and fluoromethane, is exceptionally weak as 

shown by an optimized bond distance in vacuum (2.68 Å at B3LYP/6-311++G**).  One can also see that 

something unusual is going on by comparing the chemical shifts of the in-proton that interacts closely with 

F (Ha) vs. the out (Hb); in a sense, presenting us with an internal reference.  The out-H resonates at  1.30, a 

standard value for methylene groups in hydrocarbons.  The in-H resonates at  3.16, a downfield shift of 

almost 2 ppm from analogous systems.  While this may appear to be clearly the work of a hydrogen bond, 

there are some subtleties.  There is the extreme forced proximity between the fluorine and hydrogen, which 

we would expect to result in putative bond compression.19  Hence we have a rarer situation in which a 

potential H-bonded species exhibits a significant blue-shifted C-H stretch (3108 cm-1).  Blue-shifted (or 

“improper”) X-H---Y hydrogen bonds have become a spirited problem and subject of debate the past 
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decade or so.20   Their existence is often attributed to an increase in s-character of the X-H hybrid orbital, as 

predicted by Bent’s rule,21,22 or, as Joseph and Jemmis have alternatively written, to the “electron affinity of 

X, which causes a net gain of electron density at the X-H bond region in the presence of Y.”21  Spin-spin 

coupling constants are also very illustrative; a primarily through-space (which could also be termed a 

“through hydrogen bond”23) H-F spin-spin coupling of 12 Hz was observed.24  On the other hand, although 

electron density () calculations using the QTAIM program25 indicate a BCP between H and F, its 

magnitude represents a borderline weak/moderate H-bonding interaction ( at BCP = 2.4 X 10-2).26,27,28  In 

this case, it may be that we have some interplay of weak hydrogen bonding and non-bonded repulsion (the 

jousting). 

 

 

Figure 2.1 Molecules and their precursors for the study of through-space (or through-hydrogen bond) 

fluorine interactions. 

 

2.3 Synthetic procedure. 

At this point we sought to make a series of substituted cage molecules from previously characterized 

starting materials as points of comparison (see Figure 2.1).  We chose substituents that were fairly non-

sterically demanding yet homologous, namely halides and the hydroxyl group.  Molecule 17 was 

synthesized by hydrogenation of 21,15b alcohol 41, itself a derivative of interest, served as the substrate for 

the synthesis of 57a (treatment with DAST), and 57b, 57c, 57d, and 57e were all made through triflation of 

41 followed by treatment with NaCl, NaBr, NaI, or NaCN in DMF or acetone.  The SN1 reactions of 57b-e 
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proceeded with no discernible rearrangements to the molecule’s structure, likely due to the effect of the 

electron-withdrawing capabilities of the anhydride ring.29   

 

2.4 Spectroscopic/Theoretical data. 

As can be seen in Table 2.1, the magnitude of JH-F-coupling, which should correlate to the strength of 

the through-space interaction30 (Ha---F), increases in the order: H < F ~ OH < Cl < Br < I, paralleling the 

increase in frequency of the IR stretch of C-Ha (which hybrid DFT calculations show is indeed heavily 

localized on the C-Ha bond).  The largest shift in the IR spectrum occurred for X = I (57d), in which the H 

stretch resonates at 3156 cm-1, representing a 48 cm-1 blue shift from the C-Ha stretch of 17 (and a ca. 190 

cm-1 blue shift from the one carbon bridge of norbornane31).  As it has been observed in other blue-shifted 

systems, the intensity of the IR stretches is generally low.23  The large through-space coupling between the 

bridgeheads (JH-F = 25.3 Hz) is also maximized for the halides in this molecule.  

 

Table 2.1 Spectroscopic and calculational data. 

 

 

 

In addition, we obtained a crystal structure of 57d and compared it to the calculated equilibrium 

structure at the B3LYP/6-311++G** level (Figure 2.2).  Owing to the low scattering power of the H atoms 

in X-ray diffraction the locations of the H atoms cannot be accurately determined, thus the C-H bond length 
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had to be constrained to 1.071(10) Å to match the calculated value obtained from DFT calculations.  The F-

--H distances in both structures are close, with 1.837(18) Å for the crystal structure and 1.842 Å for the 

calculation, reflecting an anticipated downward trend in F---H distances with increasing J-coupling values.  

QTAIM calculations also show an upward trend of electron density (as well as a positive Laplacian of the 

electron density) at the bond critical points of the H---F interactions, surpassing the threshold for moderate 

hydrogen bonding.32  A natural bond order analysis also provides some clues; for example, the percent s-

character of the carbon-centered hybrid orbital of the C-H bond trends upward in line with the IR stretch, 

resulting in a stronger C-H bond.  Larger halogens, engaging in longer bonds, are thus observed to impart 

additional s-character to the remaining hybrid orbitals, in concord with Bent’s rule, thereby enhancing H-

bonding and alleviating bond compression.33  This trend is also present in parallel calculations on 7-

substituted norbornanes, which can be seen as non-hydrogen bonded standards (see Table 2.1).  However, 

one can also see that computed bond lengths are shortened in our study molecules relative to norbornanes, a 

consequence in part on bond compression; natural atomic charges also show a polarization of Ha relative to 

the norbornanes as well.  Thus we have several more apparent cases of blue-shifted hydrogen bonds 

(relative to 17 and the norbornanes), the most dramatic of which is represented by the iodide 57d, in which 

the shift can be attributed to an increase in the s-character of the C-H hybrid orbital from reference 

molecule 17.   

 

Figure 2.2 (a) Crystal structure of 57d determined from single crystal X-ray diffraction.  The C-Ha distance 

was constrained to the value calculated in the DFT equilibrium calculation (1.073 Å).  (b) Equilibrium 

structure calculation of 57d at B3LYP/6-311++G** (B3LYP/DGDZVP on I).  
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Figure 2.3 Blue versus red shifts in C-F---H-C interactions. 

 

2.5 Electron withdrawing effects. 

After exhausting the halides, we wondered: what would happen if we instead attached a sterically 

unencumbered resonance electron-withdrawing substituent to the C-H bond?  To achieve the desired effect, 

we imagined the placement of a cyano group (R = CN) geminal to Ha as ideal.  It is often thought of as 

being a “pseudo-halogen,” and has a comparable steric demand (namely fairly low).  Similarly, a QTAIM 

calculation indicates significantly enhanced electron density residing between H---F ( = 3.0 X 10-2).  How 

should this translate spectroscopically?  In fact, a significant red shift relative to the prototype molecule 17 

(57e, 3082 cm-1) was observed (but still blue-shifted relative to 7-norbornyl derivatives).  H---F coupling is 

also large, as in 57d (X = I) (30.7 Hz [calcd. At B3LYP/6-311++G** using the GIAO method in Gaussian 

0934 to be 26 Hz]), suggesting a more powerful interaction between H and F.  Long-range spin-spin 

couplings between 13C-Ha and 19F are also very large – whereas for 17 (X = H) the coupling is 38 Hz, for X 

= I and CN (57d and 57e respectively) it is 50 Hz.  The C-H bond stretch is red-shifted relative to the 

iodide by 74 cm-1, yet QTAIM predicts comparable  values at the BCP, correlating with the 19F---Ha 

couplings.  The s-character of the C-H hybrid has now dropped to 24.8%, revealing a trend in the opposite 

direction.  Here the resonance electron withdrawing character of the cyano group plays a role through 

hyperconjugation with the C-H bond.35  In Figure 2.3, we compare the effects of iodo (57d, blue shift) 

versus cyano (57e, red shift) substitution on the C-Ha stretches. 

 

2.6 Conclusions.   

We have found that a series of cage molecules, with their rigidity, forced proximity of H and F atoms 

as well as their versatility, provide ideal systems for the investigation of “jousting” interactions.  Our 
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results show clear indications of both F---H hydrogen bonding interactions as well as C-H bond 

compression enforced by the cage framework of the study molecules.  There also appears to be a clear 

correlation between percent s-character in C-H hybrids with the blue-shifted H-bond examples; this trend 

can be counteracted by the placement of a resonance electron-withdrawing cyano group on the cage system 

to afford a red-shifted interaction (relative to a standard molecule).  Most importantly, in this series of 

molecules, the size of the through-space H---F spin-spin couplings may be indicative of the strength of the 

interactions; this conclusion is supported by QTAIM calculations.     
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Chapter 3 

A Strong “No-Shift” O-H---F Interaction 

 

3.1 Introduction. 

A key spectroscopic signature of a hydrogen bond (X--HY) is found in the IR spectrum wherein the 

YH stretch is generally red-shifted.1  However, recent studies have revealed intriguing examples of 

hydrogen bonds in which the YH stretch is blue-shifted – a phenomenon that has become important in its 

own right.2  In a nutshell, the red-shifted examples are often attributed largely to weakening of the YH 

bond due to overlap of lone pairs on X with (YH).3  Blue shifts, on the other hand, have been ascribed to 

the dominant influence of rehybridization-induced YH bond strengthening (in the manner of Bent’s rule).4 

  

Figure 3.1 Blue, red, and no-shift H-bonds. 

 

Blue shifts in the IR spectrum often involve the interactions of CH bonds with donors; on the other 

hand, OH groups that engage in H-bonding are generally red-shifted (Figure 3.1).  A lively debate has 

surrounded the question of whether blue-shifted H-bonds represent a fundamentally different concept than 

their red-shifted counterparts, but the most common belief at the moment is that there exists no basic 

difference between red- and blue-shifted H-bonds, just a changing balance between hyperconjugative- and 

rehybridization-induced effects.  If this is the case, what about the interesting possibility of a fairly strong 

H-bonding interaction in which no meaningful shift in the YH stretch can be observed in a non-interactive 

solvent due to canceling red- and blue-shifting tendencies?5,6  There would be in fact no compelling 

rationale why such an H-bond could not exist.  In this chapter, is reported a serendipitous but apparently 

rare example of a strong, virtually “no-shift” H-bond.  The discovery was made during the investigation of 

a cage molecule that was specially designed to exhibit an intense F---HO interaction, thereby helping to 

clarify the controversy about whether such H-bonds can in fact exist in solution.7  In our case, NMR studies 
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(coupling constants, isotopic chemical shift perturbations, and proton exchange rates) tell the tale of a 

strong H-bond that the IR spectra cannot, and would seem to confirm the emerging orthodoxy concerning 

the nature of blue- vs. red-shifted H-bonds. 

 

Figure 3.2 Structures of 47 generated at B3LYP/6-311++G** (F---H = 1.58 Å) and HF/6-311++G** (F---

H = 2.01 Å). 

 

3.2 Initial work. 

Hydrogen bonding to fluorine as a covalent acceptor is a fascinating subject that has gained relevance 

recently as fluorinated molecules become more prevalent in medicine and biology, and the precise role that 

fluorine plays in medicinal chemistry assumes a central, if not urgent, role.8  Whereas it is generally 

accepted nowadays that fluorine, as part of a C-F bond, is a competent H-bond acceptor, several 

outstanding questions remain, the most important of which involves the strength of the interaction.  From a 

biochemical standpoint, the ubiquity of hydroxyl groups would indicate that the C-F---H-O interaction 

could be especially important.9  On the other hand, periodic screens of the CSD indicate that significant 

interactions (< 2.2 Å H---F distance) are uncommon.10  Rarer still are strong interactions between covalent 

fluorine and relatively non-acidic aliphatic alcohols,11 and controversy has arisen over whether such 

interactions qualify as H-bonding at all.12  One way to establish such an interaction beyond certitude is if 

the OH group was placed in extreme proximity to a neighboring covalently bound fluorine atom, making a 

strong H-bonding interaction literally unavoidable.  With only a slight amount of modification our 

fluoronium precursor should be attenable to such an interaction.13  Alcohol 47 (“in-alcohol”) seemed to be 

an attractive candidate for a new study of extreme interactions involving fluorine (Figure 3.2).  For 

example, at B3, the optimized structure clearly reveals an unusually strong interaction between O-H and 

F.14  The calculated H---F distance is only 1.58 Å, and the distance between O and F is predicted to be 2.54 
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Å (use of a newer functional paired with a triple- basis set [B97XD/cc-pVTZ] that is noted for an 

accurate account of dispersion effects yields a similar result: 1.59 Å; 2.53 Å).15  The H-bond itself is 

roughly linear (170°), and the system, remarkably, does not attempt to relieve strain by bending much.  On 

the other hand, at HF/6-311++G**, the situation is quite different.  The H-bond is apparently much weaker; 

it is highly bent (OH---F bond angle = 104°); the H---F distance is 2.0 Å, and the Cs symmetry of the 

B3LYP structure is disrupted.  Evidently, the account of electron correlation taken by the hybrid DFT 

methods is significant to the predicted structure of 47. 

 

3.3 Synthesis. 

We decide on saturated out-alcohol 41 as a suitable starting point for the synthesis of 47; the goal then 

would be to epimerize the out-OH group to the in-position.  Oxidation of 41 with PCC proceeds slowly 

(presumably due to steric hindrance) over 24 h to afford ketone 58 in 75% yield.  In turn, subjecting 58 to 

LiAlH4 for 2 h in THF at reflux affords alcohol 47 in 32% yield after workup (Fieser method) and column 

chromatography on silica gel.  The reaction requires harsh conditions for a ketone reduction, as models 

indicate a poor potential hydride attack angle that deviates significantly from the optimal Bürgi-Dunitz 

trajectory).16 

 

Scheme 3.1 Synthetic pathway for the generation of 47. 

 

3.4 Spectroscopic data. 

IR spectroscopy.  In order to document the H-bond, an IR study was undertaken.  In fact, the free OH 

stretch of 47 was observed at 3620 cm-1 in DCM, (CH2Cl2 concentrations ranging from 10-3 to 10-2 M).  

Contrast this with alcohol 41 (employed as an appropriate intramolecular non-hydrogen bonded reference 

in dilute solution) whose free OH stretch appears at 3614 cm-1.  Turning to other solvents, in benzene 41 is 

red-shifted from 47 by 45 cm-1, presumably due to its propensity for -cloud-OH interactions.  
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Additionally, in MeCN, 41 is predominately H-bound to solvent, whereas 47 is not.17  In -electron-poor 

benzotrifluoride (PhCF3), the -cloud induced shift is virtually gone; the absence of a significant shift is 

also observed in CCl4.  In cyclohexane (CyH), a very non-interactive solvent and about as close to the gas 

phase as we can get,18 the shift also virtually disappears (Table 3.1).  Keep in mind that OH groups are 

almost invariably red-shifted upon strong H-bonding,19 so these findings are quite unusual.  

 

Table 3.1  IR study of the OH stretches of 41 and 47.   

 

        Solvent 41 47 

        CH2Cl2 3614 3620 

PhH 3591 3636 

PhCF3 3636 3633 

CCl4 3638 3639 

CyH 3658 3659 

 

 

Figure 3.3 Difference Fourier map drawn in the plane defined by O4 H4 F1.  The position of H4 is 

indicated by the contoured green circles near O4. 
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X-ray crystallography.  The investigation of the structure of 47 through X-ray crystallography shows 

clear evidence of the strength of the hydrogen bonding interaction.  When the in-hydrogen was fully refined 

(resulting in a difference Fourier map, Figure 3.3, that showed the position of the hydrogen clearly) the 

structure yielded bond lengths in fairly good agreement with the calculated values.  The O-H bond in the 

structure was measured at 0.93 Å (calc. 0.96 Å) and the H---F distance is 1.58 Å (calc. B97XD/cc-pVTZ 

1.59 Å); the O---F distance is 2.51 Å (calc. 2.53 Å).  The O-H---F angle is given as 171° which fits closely 

with the calculated value (170°) as well.  Investigation of the packing diagram generated from the crystal 

(Figure 3.4) reveals the robustness of the hydrogen bonding interaction; the alcohol hydrogen is not 

observed to have any furcating or otherwise short contact interactions.20  On the other hand, the packing 

diagram of the crystal structure of out-1 reveals several close, polyfurcating interactions of its alcohol 

hydrogen with neighboring oxygen atoms. 

 

Figure 3.4  Packing diagram of 47 (left), alcohol protons are colored purple, and crystal structure of 47 

(right). 

 

NMR spectroscopy.  Examination of the 1H NMR spectrum of 47 immediately suggested some 

unusual features that aid in clarifying the situation.  A sharp multiplet at 4.8 ppm (-OH) encompassing 

strong coupling between H and F was observed (68 Hz).  The one-bond coupling between F and H is 

calculated at 76 Hz (B3LYP/6-311++G**); perhaps more than any factor, this would be indicative of a 

strong interaction.21  The one-bond H-F coupling of the weaker, bent alternative structure predicted at 

HF/6-311++G** is only 18 Hz.  Coupling to the proton vicinal to the oxygen was also seen, representing 

very slow exchange with the CDCl3 solvent.  Even in the presence of several equivalents of D2O, this slow 

exchange was maintained.  Computationally, the sequential placement of water molecules in this vicinity of 
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the O-H---F bond resulted in only very slight distortions to its geometry.  On the other hand, 41, has no 

discernable alcohol proton visible in the NMR spectrum under identical conditions and concentrations 

indicating fast exchange with water.  In anhydrous CDCl3, 41 displays its hydroxyl proton at 1.6 ppm, more 

than 3 ppm upfield from 47.  Coupling to fluorine is negligible, suggesting a predominately through-space 

interaction for the H-bond of 47, which is, surprisingly, of the same magnitude as the fluorine’s strong 

coupling to the geminal proton.   

Labelling experiment.  Clearly, the alcohol hydrogen on 47 is tightly held and led to the attempt to 

replace it with a deuterium and observe what effects such a substitution would have through NMR 

spectroscopy.  Deuteration of 47 was achieved by dissolution in MeOD with the aid of gentle heat under a 

nitrogen atmosphere.  The solvent was removed in vacuo and the deuterated product was redissolved in 

CD2Cl2 for the NMR experiments.  In keeping with our hypothesis, the deuterated 47 was found to undergo 

exchange in solution (CDCl3 saturated with H2O) at a fraction (less than 0.001 times) of the rate of 41.  The 

19F spectrum shows a large isotopic shift (F---DO) – (F---HO) of -0.37 ppm, which is of the same value 

as the isotope shift for [F-H-F]-,22 known as the strongest documented H-bond.23  Additionally, the 1H and 

2H spectra show a large negative isotopic shift (-0.17 ppm).  Together, these results, along with the large 

downfield shift (3.2 ppm), and solvent exchange behavior are evidence of a strong, almost linear H-bond.24  

Comparatively, the IR spectrum is fairly uninformative in a classical sense, barring a four-fold increase in 

the extinction coefficient of the OH stretch of 47 compared to 41.25   

 

3.5 DFT calculations. 

The nature of the hydrogen bond in 47 can also be evaluated by the application of QTAIM parameters 

(B3).26  For example, the electron density () at the BCP is appreciable (0.052).  The question of strain is 

germane as well; 41 is predicted to be more stable than 47 by 3.7 kcal/mol at B3.  On the other hand, in- 

and out-difluoride isomers, 57a and 60 respectfully, which contain significantly less hydrogen bonding 

capability, are separated by 13.1 kcal/mol.  These molecules can be thought of as computational controls; 

they are sterically fairly similar to 47 and 41.  Thus the significant attenuation in the gap between 47 and 41 

is largely attributable to the H-bond.  Alternatively, the Cs-symmetric bond rotamer of 47 may provide 

another semi-quantitative measure27 – it is 7.1 kcal/mol less stable than 47 itself, and its calculated OH---F 
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though-space coupling is only 11 Hz.  Once again, these data point to 47 as possessing a significant H-

bond.  

 

3.6 Control Reactions. 

 

Figure 3.5 Structures of hydrogen bond controls used in calculations. 

Could this be an example of what Jemmis et al. term a “no-shift” H-bond, i.e. one in which OH bond-

shortening and bond-lengthening factors precisely cancel?5  Excellent overlap between a lone pair (n) on F 

and * OH should command a red shift. Nevertheless, the predicted OH bond lengths are close (0.962 Å 

for 47 vs. 0.961 Å for 41).  The lack of elongation in the OH bond of 47 may be due in part to strain; after 

all, the rigid nature of the cage places the OH group in close proximity to the fluorine.  It must be said that 

the choice of references can be somewhat subjective, especially when considering an intramolecular H-

bond.  Although 47 and 41 match up spectroscopically, calculationally several DFT methods predict a 20-

30 cm-1 red shift upon H-bond formation.  It is illustrative to compare 59 as a control in which red-shifting 

H-bonding tendencies have been minimized, yet a substantial proximity-based “jousting” interaction (with 

an attendant blue-shift) remains (Figure 3.5).  At B3, the in-C-H bond (1.083 Å, 25.5% s-character in 

hybrid) is shorter than the out-C-H (1.094 Å, 23.2% s) by 0.011 Å.  The coupled vibrations of the in-C-H 

bonds are predicted to be blue-shifted by 50 cm-1 (asym) and 93 cm-1 (sym) from the closest CH vibrations 

in the molecule.  To summarize, the low energy structure of 47 seems to lie at the equilibrium distance at 

which blue and red shifts cancel.  However, depending upon reference compounds, a very slight blue shift 

H-bond may be inferred, reminding us that the “no-shift” aspect is virtual rather than exact.  

While those systems serve as good intramolecular controls, how does this interaction compare to 

intermolecular bonding systems.  Alcohols 61a-d (Figure 3.6) were thus compared as alternative 

intermolecular references as well (imagine excising the C-F bond and its support from in-1, but leaving 

behind the strained norbornane motif).  These controls are also predicted to show little or no shift of the OH 
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stretch by DFT calculations.  In CCl4, 61a and 61b display free OH stretches at 3631 cm-1 (consequently a 

very slight blue shift separates in-1 from these controls; whereas 61c displays at 3635 cm-1, and 7-

norbornanol itself (61d) at 3633 cm-1.28  Thus, it appears that our putative strong interaction exhibits very 

little, if any, OH stretch perturbation in non-interactive solvents, compared with relevant controls.   

 

Figure 3.6 Controls for intermolecular hydrogen bonding interactions. 

One can also compare the large red shifts observed when control 41 interacts through intermolecular 

H-bonding with basic solvents and additives.   In other words, chemically, the OH groups in 41 and 47 are 

very different.  For example, titration of a solution of 47 with DMAP afforded little change in the OH 

stretch of the IR spectrum up and beyond 5 equiv.  On the other hand, the OH stretch of 41 shifts greatly in 

the presence of excess DMAP to become a broad, strong band centered around 3000 cm-1, indicating 

classical intermolecular hydrogen bonding and a red shift of ca. 600 cm-1. 

 

 

Figure 3.7 Effect of O---F distance on the predicted OH stretch of the MeOH-MeF complex.  Predicted 

MeOH shift is marked with a solid dot. 
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As a control to judge the no-shift aspect of the O-H-F interaction, we subjected the simplest model 

system, the complex of fluoromethane (MeF) and methanol (MeOH), to calculation at a level known to 

handle hydrogen bonding in an exemplary fashion (B97XD/aug-cc-pVTZ).29  At equilibrium, the 

complex shows an H---F distance of 2.07 Å, and an F---O distance of 2.92 Å (bond angle 144°).  Varying 

the F---O distance of the complex provides an illuminating insight; at large distances, the OH stretch 

approaches that of calculated free MeOH at 3914 cm-1 (Figure 3.7).  As the distance shrinks (and the 

complex strengthens) a red shift occurs in the OH stretch that peaks at near the equilibrium distance of the 

complex (2.92 Å).  As the F---O distance is further shortened, an increasing blue shift trend appears.  At 

around 2.5-2.6 Å, the complex reveals cancelling red and blue shifts resulting in a "no-shift" interaction 

(relative to MeOH) which, not coincidentally, is close to the O---F distance in 47 by both calculation and 

crystal structure.  At 2.5 Å, the interaction is predicted to have a higher density at the BCP (0.035) than in 

the equilibrium structure (0.018).  Repeating the process at the B97XD/aug-cc-pVDZ level of theory 

resulted in a similar result, albeit with slightly higher frequencies at larger F---O distances.  Finally, when 

the rigid structure of 47 is loosened (e.g. in congeners 62 and 63), a red shift is calculated, even though the 

magnitude of the H---F interaction decreases (Figure 3.8); this result is in line with our prediction for the 

MeF-MeOH system as well. 

 

Figure 3.8 Effect of O---F distance on the predicted OH stretches of 62 and 63. 

 

3.7 Conclusion. 

In conclusion, the cage system contains an unusually strong asymmetric hydrogen bond between an 

OH donor and a covalent F acceptor.  The structure has been extensively characterized by NMR (coupling 
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constants, isotopic chemical shift perturbations, proton exchange rates and calculations) and 

crystallographic studies, all of which are consistent with a strong interaction.  On the other hand, 47 shows 

little to no perceptible shift in the OH stretch of the IR spectrum relative to non-hydrogen bound standards 

in non-interactive solvents, an example of a putative “no-shift” H-bond, in which blue and red shifts 

virtually cancel relative to controls. 
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Chapter 4 

A Tight Intramolecular Hydrogen Bond to a Non-Conjugated Olefin 

 

4.1 Introduction. 

Hydrogen bonds play a huge role in how the world works, from imparting unique properties to water to 

controlling the genetic code.  Ever since they were first determined to be a viable chemical interaction, the 

effects of hydrogen bonding have been the subject of countless studies.  Over the years a perfect definition 

of a hydrogen bond has remained elusive; one of the first was put forth by Pauling, who classified them as 

electrostatic A-H---B interactions wherein both A and B are electronegative atoms.1  Later this was 

expanded upon by Pimentel and McClellan to consist of A-H---B interactions, wherein there is direct 

evidence of bond formation in which the hydrogen on A plays a key role.2  This greatly expanded the 

definition of H-bonding, for now many weak or “nonclassical” H-bonds could be included.  However, the 

openness of the definition is a mixed blessing, as the sheer number of hydrogen bonding-like interactions 

makes it difficult to nail down exact criteria for their formation.  In addition to the classic OH---O 

interactions, such as in water, other classical and non-classical (weak) interactions have been intensely 

studied over the last decades, such as OH---F,3 NH---N,4 FH---F5 and CH---.6  While a fair number of 

studies have investigated the more popular H-bonding interactions to aromatic -systems such as pyridine,7 

arenes8 and indoles,9 there are relatively few published studies concerning non-conjugated double bonds.  

In this chapter the synthesis and study of a cage system, 64, that displays a close interaction between an OH 

group and a tetrasubstituted double bond is reported.  Spectroscopic and crystallographic evidence indicates 

a significant interaction that more closely mimics the orientation of a calculated optimal intermolecular 

interaction (65).  

 

Figure 4.1 Intra- and intermolecular OH---interactions. 
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4.2 Precedents. 

Of the few studies that have been published on OH---interactions in non-conjugated -systems, all 

have documented fairly weak H-bonding interactions.  The majority of cases have the alcohol group 

positioned too far away or situated poorly for the interaction from a geometric standpoint.10  Some well-

studied examples of weak OH--- interactions can be observed in 3-buten-1-ol11 and o-allylphenol.12,13  

However, owing to the large degree of rotational freedom present in these molecules, the majority of them 

exist in an unbound state in solution.  Several other studies have been undertaken to characterize the OH---

system in syn-7-norbornenol due to its conveniently placed alcohol group and relative lack of rotational 

freedom.14,15  With its alcohol group positioned in close proximity to the double bond, a clear preference for 

the OH--- interaction is seen in the IR spectrum, an observation that is backed up by molecular modeling 

calculations.  In addition, the molecule has an ideal control in its epimer anti-7-norbornenol, wherein the 

hydroxyl group is pointed away from the double bond.  Previous studies, both experimental and theoretical, 

have confirmed the existence of a hydrogen bond, represented by a notable red shift in the IR spectrum (57 

cm-1) in comparison to anti-7-norbornenol in CCl4.16  However, because of the poor positioning of the 

alcohol in syn-7-norbornenol, which is at an awkward angle and a fair distance away, the interaction is still 

nonoptimal (the dihedral angle between the O-H bond and the C=C double bond (H-O---C(2)=C(3)) is 

about 81° at the B97XD/cc-pVTZ level of theory).  What is more, the interaction is characterized by the 

presence of no BCP at suitable levels of theory.  While this measure of the existence of hydrogen bonds is 

(in some cases, hotly) debatable, it does, in a certain way, represent H-bonding strength.17  Ideally, a strong 

ROH---C=C interaction should have a dihedral angle of 0° resulting in the O-H bond and the C=C double 

bond lying in the same plane.  In the previous chapter we discussed a strong OH---F hydrogen bonding 

interaction, where no notable shift was detected in the IR spectrum, compared to appropriate controls.  We 

came to the conclusion that the “no-shift” was due to a mix of hydrogen bonding and bond compression.3  

Building on our previous work, we knew using a similar molecular scaffold as the latter would bring the 

OH group and the double bond into close contact as well as place them nearly orthogonal, perfect for 

hydrogen bonding overlap.  The use of a double bond instead of a C-F would also free up space, reducing 

bond compression and allowing us to see the full strength of the hydrogen bond.  In addition, the double 
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bond could be tetrasubstituted with electron donating aliphatic groups.  The sum of all these factors should 

result in a more intense hydrogen bonding interaction. 

 

4.3 DFT calculations. 

We began our investigation of this putative tight OH--- bond by probing the interaction through 

molecular modeling calculations.  The vibrational modes for both the in- and out-alcohols were predicted 

using the B97XD/cc-pVTZ basis set, because of its reputation for accurately predicting dispersion 

effects.18  The calculated OH shifts place the in-OH of 64 red shifted, compared to the out-OH of 71, with a 

difference of 167 cm-1.   This is an impressive (albeit predicted) red shift; over twice the difference between 

the syn- and anti-epimers of 7-norbornenol.16  The calculation also places the alcohol hydrogen of the 64 

only 1.974 and 2.076 Å from the olefin’s bond ends, compared to the predicted 2.540 and 2.541 Å in syn-7-

norbornenol, with the same method and basis set.  To double check the accuracy of the method, the 

anti/syn-7-norbornenol red shift was calculated and found to be 67 cm-1 at the same level of theory.  

Another test was to compare the energy calculation of 64 to a non-hydrogen bound version of 64 where the 

OH bond is rotated 180°.  The results predict 64 to be 7.30 kcal/mol more stable than the non-hydrogen 

bound version.  Additionally, electron density () calculations using the QTAIM program indicate a BCP 

between the alcohol hydrogen and the olefin, = 0.036.19 

 

4.4 Controls. 

For a better understanding of the strength of the interactions, intramolecular hydrogen bonds are often 

compared to analogous intermolecular hydrogen bonding interactions.  From a computational standpoint, 

one control interaction is the intermolecular H-bond of methanol and ethylene.20  This interaction and the 

related system of water and ethylene have been the topic of multiple computational studies.21  However, we 

believe a model that is a better match for our cage molecule would be the complex of tetramethylethylene 

and MeOH (65, R = Me).  This would take into account the electron donating capabilities of the methyl and 

aliphatic groups substituted on the double bond of 64.  For our investigation, the interaction of 

tetramethylethylene and MeOH was optimized using the same method and basis set as the previous 
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calculations (B97XD/cc-pVTZ).  The predicted distances to the sp2 carbons, 2.279 and 2.315 Å, are 

somewhat looser than those predicted for 64.  The predicted red shift for the control was 39 cm-1.   

 

 

Scheme 4.1 Synthetic pathway for the generation of 64.  

 

4.5 Synthetic method. 

In order to integrate the olefin into our sesquinorbornane scaffold, a new dienophile (68) was designed 

for the synthesis.  The route begins with 6,6-dimethylfulvene, which was allowed to react neatly with 

dimethylacetylene dicarboxylate (DMAD) to yield the trienediester 66.  Wilkinson’s catalyst was employed 

to reduce the least-substituted double bond, yielding 67.  This reduction was followed by saponification of 

the carbomethoxy groups with LiOH to form a dicarboxylic acid, which was then converted without 

workup into the corresponding anhydride using trifluoroacetic anhydride (TFAA).  With this new 

dienophile in hand, it was treated with 40 at high pressure to perform the Diels-Alder reaction that makes 

sesquinorbornane scaffold 69.  This was followed by a Flemming-Tamao oxidation to convert the silane to 

alcohol 70 and a diimide reduction to reduce selectively the less substituted double bond.  Similar to the 

anti/syn-7-norbornenol system, this out-alcohol (71) serves as an ideal control to study the strength of the 
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H-bonding interaction.  Alcohol 71 was oxidized to a ketone (72) by treatment with PCC, and then reduced 

stereospecifically with LiBH4 to form 64.   

 

4.6 Spectroscopic calculations. 

X-ray crystallography.  A single crystal of 64 was obtained through solvent evaporation from a 

solution in dichloromethane, and crystallographic measurements were performed using X-ray diffraction.  

The framework crystallographic analysis with the alcohol O-H bond constrained to 0.963 Å shows a very 

close OH--- interaction (predicted distances to the sp2 carbons: 1.995 and 2.084 Å), which is in agreement 

to the predicted distances 1.974 and 2.076 Å at the B97XD/cc-pVTZ level of theory, as shown in figure 

4.2.  No signs of bifurcation of the OH bond were noted in the crystal packing.   

 

Figure 4.2 (a) Crystal structure of 64 determined from single crystal X-ray diffraction (50% thermal 

ellipsoids).  The O-H bond distance was constrained to the value calculated in the DFT equilibrium 

calculation (0.963 Å). (b) Equilibrium structure calculation of 64 at B97XD/cc-pVTZ.  (c) Crystal 

packing diagram of 64.  Except for the alcohol hydrogen, all hydrogen atoms have been removed for ease 

of observation. 

 

IR spectroscopy.  IR studies of 64 and 71 corroborate the molecular modeling predictions.   When the 

two OH stretches were compared, it was immediately clear the bound alcohol of 64 has a far more intense 

OH stretch than the free alcohol of 71.  Also, the actual red shift in the IR spectrum was in fact greater than 

the prediction, measuring 188 cm-1.  These measurements were performed on dilute (10-2 M) samples in 

dichloromethane.  When the solvent was changed to carbon tetrachloride, the interaction was unaffected as 

64 was observed to have a red shift of 189 cm-1 compared to 71, see Figure 4.3. 
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Figure 4.3 Overlay of the IR spectra of 64 (purple) and 71 (blue), in carbon tetrachloride, highlighting the 

large red shift in the alcohol stretching frequency. 

 

NMR spectroscopy.  In the 1H NMR the alcohol hydrogen of 64 is found at 4.05 ppm; likely due to 

the deshielding effects of the C=C bond.  Another example of this trend was observed in the proton geminal 

to the alcohol.  In 64, the geminal proton, 4.26 ppm, is pointed away from the olefin and effectively free 

from the influence of the C=C bond.  However, in 71 the geminal proton is noticeably deshielded, 

compared to 64, at 5.27 ppm.  Another indication of how tight the hydrogen is held is the lack of exchange 

with the deuterated chloroform contaminated with traces of DCl.  The integrations of the alcohol peak 

reveals that only a negligible amount of the proton in 64 exchanged, whereas the OH protons of 71 

exchanged rapidly and completely. 

 

4.7 Conclusions.   

Our results show that 64 does indeed contain a tight hydrogen bonding interaction between the alcohol 

and the nonconjugated -system.  This is most evident in the IR spectrum where 64 is red shifted 188-189 

cm-1 from the control system 71 and is shown to contain no free alcohol.  In addition, our molecular 

modeling calculations show that 64 positions the alcohol far closer to the double bond compared to 

previously studied systems.  This is a notable change when compared to the previous molecules studied, 

such as syn-7-norbornenol, whose bond distances were not too much different from the free-

methanol/tetramethylethylene system.  With the evidence from both molecular modeling and experimental 
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measurements it is clear that our system possesses a more significant hydrogen bonding interaction than 

previously seen, and thus is a more revealing probe of this phenomenon. 

 

4.8 References.   

                                                           
1 Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: New York, 1960. 

2 Pimentel, G. C.; McClellan, A. L. The Hydrogen Bond; Freeman: San Francisco, 1960. 

3 Struble, M. D.; Kelly, C.; Siegler, M. A.; Lectka, T.  Angew. Chem. Int. Ed. 2014, 53, 8924-8928. 

4 Grunenberg, J.  J. Am. Chem. Soc. 2004, 126, 16310–16311. 

5 Del Bene, J. E.; Alkorta, I.; Sánchez-Sanz, G.; Elguero, J. J. Phys. Chem. A 2012, 116, 9205-9213. 

6 a) Takahashi, O.; Kohno, Y.; Nishio, M.  Chem. Rev. 2010, 110, 6049-6076; b) Brandl, M.; Weiss, M. S.; 

Jabs, A.; Suhnel, J.; Hilgenfeld, R.  J. Mol. Biol. 2001, 307, 357– 377. 

7 Lomas, J. S.  J. Phys. Org. Chem. 2012, 25, 620-627. 

8 a) Banerjee, P.; Chakraborty, T.  J. Phys. Chem. A. 2014, 118, 7074-7084; b) Dušan P. Malenov, D. P.; 

Janjic´, G. V.; Veljkovic´, D. Z.; Zaric´, S. D.  Comp. Theor. Chem. 2013, 1018, 59-65; c) Saggu, M.; 

Levinson, N. M.; Boxer, S. G.  J. Am. Chem. Soc. 2011, 133, 17414–17419; d) Mohan, N.; Vijayalakshmi, 

K. P.; Koga, N.; Suresh, C. H.  J. Comput. Chem. 2010, 31, 2874-2882; e) Gergely Tóth, G.; Bowers, S. G.; 

Truong, A. P.; Probst, G.  Curr. Pharm. Des. 2007, 13, 3476-3493. 

9 a) Sasaki, H.; Daicho, S.; Yamada, Y.; Nibu, Y.  J. Phys. Chem. A. 2013, 117, 3183-3189; b) Steiner, T.; 

Koellner, G. J. Mol. Biol. 2001, 305, 535– 557. 

10 Oki, M.; Iwamura, H.; Onoda, T.; Iwamura, M.  Tetrahedron 1968, 24, 1905-1921. 

11 Bakke, J. M.; Bjerkeseth, L. H. J. Mol. Struct. 1998, 470, 247-263. 

12 Berdyshev, D. V.; Glazunov, V. P.; Novikov, V. L.  J. Appl. Spectrosc. 2009, 76, 630-640. 

13 Rademacher, P.; Khelashvili, L.; Kowski, K.  Org. Biomol. Chem. 2005, 3, 2620-2625. 

14 a) Marchand, A. P.; Ganguly, B.  Struct. Chem. 2000, 11, 241-244; b) Rademacher, P.; Khelashvili, L.; 

Kowski, K.  Org. Biomol. Chem. 2005, 3, 2620-2625; c) Brown, R. S.  Can. J. Chem. 1976, 54, 3206-3209. 

15 Bjerkeseth, L. H.; Bakke, J. M.; Uggerud, E.  J. Mol. Struct.  2001, 367-368, 319-338. 

16 Takasuka, M.; Tanida, H.  J. Chem. Soc., Perkin Trans. 2 1980, 486-492. 

17 Grabowski, S. J. J. Phys. Chem. A 2011, 115, 12789–12799. 



48 

 

                                                                                                                                                                             
18 a) Chai, J. D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008 , 10, 6615–6620; b) Thanthiriwatte, K. 

S.; Hohenstein, E. G.; Burns, L. A.; Sherrill, C. D. J. Chem. Theory Comput. 2011, 7, 88–96. 

19 AIMAll (Version 13.05.06), Keith, T. A., TK Gristmill Software, Overland Park KS, USA, 2013 

(aim.tkgristmill.com). 

20 Tarakeshwar, P.; Choi, H. S.; Lee, S. J.; Lee, J. Y.; Kim, K. S.; Ha, T.; Jang, J. H.; Lee, J. G.; Lee, H.  J. 

Chem. Phys. 1999, 111, 5838-5850. 

21 Engdahl, A.; Nelander, B.  J. Phys. Chem. 1986, 90, 4982-4987. 



49 

 

Chapter 5 

Investigation of the Mechanism of the Fluoronium Intermediate 

 

5.1 Introduction. 

While the labeling experiment in chapter 1 shows substantial evidence that the hydrolysis of the 

fluoronium precursor 42 proceeds through an SN1 path, the evidence is only circumstantial.  In an effort to 

bolster our claims we have subjected the system to a series of experiments to obtain more information on 

its mechanism.  Such methods include rate studies, control experiments, molecular modeling calculations 

and KIE studies. 

 

5.2 Transition state calculations.   

In order to predict isotope effects using DFT,1 we need information about the putative transition states.  

We performed calculations to find potential transition states for the ionization of 42 and trapping of 

fluoronium 13 at several levels of theory.  For example, a transition state for the ionization of triflate 42 (at 

B97, H2O solvent model) was found to reveal some interesting features.  The distance of the ionizing C-O 

bond is 2.37 Å; the structure also shows a forming C-F bond as well (d = 2.20 Å).  Thus the fluorine atom 

rapidly closes in on the carbon as the ionization proceeds.   

Calculation of the transition states using other functionals (M06, PBEPBE) afforded comparable 

results in terms of geometry.  The activation free energy for the process is calculated to be 26.5 kcal/mol at 

55 °C (H2O dielectric), with the cation resting in an energy well about 12.5 kcal/mol below (Figure 5.1).  

The thermochemistry of such calculated reaction pathways should be approached with a high degree of 

caution,2 and mechanistic conclusions derived therefrom subject to experimental verification.  A salient 

example of this danger is provided in the calculated (SN1) mechanism of the reaction of water with triflate 

42.  The transition state for trapping of fluoronium 13 by water was also modeled; the distances of the 

forming/breaking bonds were similar if not identical to the ionization of triflate 42 (C-F = 2.23 Å; C-O = 

2.34 Å; B97, H2O solvent model).  At B97 (H2O dielectric), the second, water-trapping step is predicted to 

be rate-determining.  It is obvious that the difference in the charged nature of the transition states, and the 
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role of specific solvation combined with the continuum solvent model give rise to an erroneous conclusion 

in terms of the energy.   

 

Figure 5.1 Calculated free energy of ionization for triflate 42 (B97, aqueous dielectric). 

 

As mentioned in chapter 1, we proposed an “extended SN2” reaction as a viable mechanistic 

alternative, a possibility seemingly ruled out by the labeling study.  In addition, the stereochemical 

outcomes are inconsistent with this exotic form of the SN2.  What is more, we were unsuccessful at locating 

transition states that would describe this process.  In fact, there is a very strong tendency for 

nucleophiles/Lewis bases to interact with the methano-bridges of system 13 through hydrogen bonding 

instead of engaging in incipient nucleophilic attack.  For example, the depicted structure of a dihydrated 

version of cation 75 (B3) reveals this tendency (Figure 5.2). 

 

 

Figure 5.2 The hypothetical SN2(e) transition states (not found) and a disolvated cation (minimum; found).  

Calculations at B3. 
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Figure 5.3 Calculated three-center bonding orbitals of dimethylfluoronium (C2v symmetry) and their 

energy levels (eV) at several levels of theory (orbital C shown from top view, A, B, and D shown from side 

view). 

Three-Center Bonding in a Model.  Analysis of the C-F-C interaction in cation 13 is made somewhat 

difficult by the admixture of atomic orbitals (AOs) from the cage framework.   If we remove the cage, we 

are left with the question of three-center bonding in the model system [Me-F-Me]+ (imposed C2v 

symmetry).  Various levels of theory are in basic agreement on orbital topology and energy (Figure 5.3 

depicts the four lowest lying molecular orbitals involve the three-center bonding of the C-F-C interaction).  

The lowest lying filled orbital A involves overlap of atomic s-orbitals.  The next highest orbital B involves 

a p-orbital on fluorine, the 2s orbitals on the carbons and the 1s orbitals on the hydrogens, whereas the two 

higher energy orbitals C-D involve p-AO’s on carbon and fluorine.  The relative energies of the orbitals are 

carried over two DFT levels, one MP2, and one CCSD, providing us with a consistent picture. 

Often in discussions of three-center bonding the question arises as to the viability of the so-called 

“classical,” or two-center, alternative.  In the case of the fluoronium system 13, a classical alternative is not 

a stable minimum on the calculated potential energy surface.  In order to estimate the energy of a 

hypothetical classical structure, we employed the procedure of Schleyer et al.3  Namely, the corresponding 
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radical was optimized and then corrected by the computed vertical ionization energy.  The resulting 

artificial cation was found to be 21 kcal/mol (B3) and 22.6 kcal/mol (B97) higher in energy than 

fluoronium 13 - no wonder it is not a minimum.  It is a reasonable assumption that a carbocationic center 

will derive stabilization from any nearby lone pair of electrons (in this case from the fluorine atom).   

 

 

Scheme 5.1 Schleyer method for the calculation of the “classical” carbocation. 

Although electron-counting schemes are arbitrary and sometimes hazardous to interpret, a trend can be 

discerned upon formation of the fluoronium from a model precursor such as 17 through a hypothetical 

hydride transfer (B97, vacuum).  The fluorine atom becomes more positively charged, as do the two 

hydrogens on the methano-bridges.  This gives some credence to the hydrogen bound, dihydrated cation 75.  

On the other hand, the carbon atoms become more negatively charged, a pattern that may be ascribed to a 

natural consequence of three-center, four-electron bonding.     

 

Figure 5.4 Comparison of charge disposition upon fluoronium formation (B97 vacuum; trend holds for 

other theoretical levels and with solvent models). 
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5.3 Rate studies.   

Eyring Plot.  We measured the activation free energy for the ionization of triflate 42 (70/30 v/v 

TFE/H2O) in the temperature range 50-81 °C.  An Eyring plot4 (a plot of lnk v. 1/T) afforded a straight line 

whose slope corresponds to a Hact of 14 kcal/mol.  In addition, Sact is -21 cal/molK and Gact (55 °C) is 

20.7 kcal/mol, which is less than that predicted by theory (26.5 kcal/mol); the enthalpy and entropy terms 

independently also differ substantially.  The exceptionally negative entropy of activation deserves 

comment; although SN1 reactions display negative values routinely,5 this magnitude is unusually large.  We 

attribute the large negative value to the ionizing role of the acidic fluorinated alcohol, which can effectively 

stabilize the developing negative charge on the departing triflate ion.  This ionization ability has been 

shown by Berkessel to propagate through a mutually reinforcing and ordered network of solvent molecules 

(e.g. 73•solv).6  This organized transition state assembly would be expected to reduce entropy. 

 

  

Figure 5.5 Solvation model of transition state 73. 

 

Grunwald-Winstein Test.  This experiment is a fairly rigorous kinetic test for the operation of SN1 

and SN2 mechanisms.  Its basic form is as follows:  log(k/ko) = mY, wherein k is a first order rate constant 

for a solvolysis in a solvent system of choice, and ko is the same in a reference reaction (80% ethanol/water 

v/v).  Y is a solvent “ionizing power” parameter, and m represents the sensitivity to the reactions of choice 

to ionizing power.  Values of m that trend towards one or higher indicate a solvent response similar to an 

established SN1 model reaction, whereas m values of 0.25-0.35 indicate SN2 reactions.  As our hydrolytic 

precursor 42 is a triflate, in order to ensure accuracy we employed the kinetic analysis employing the YOTf 

parameter set, which is based on solvolyses of 2-adamantyl triflate, a substrate rigorously established to 
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react through a pure SN1 mechanism.  Along with the reference reaction (80% ethanol/water v/v), we chose 

(80% acetone/water v/v) as its Y value of 0.243 suggested an easily measurable rate in our system.7  It 

should be noted that both the reaction of choice and the reference were conducted in more nucleophilic 

(and thus less SN1 favorable) media than the TFE solvolyses, thus ensuring a considerable margin of safety.  

The negative slope of plots of ln[triflate] versus time yielded k values that were inserted into the equation.  

The k values for triflate 42 were found to be 0.035 s-1 in 80% ethanol/water and 0.083 s-1 for 80% 

acetone/water.  An m value of 1.54 was then calculated, strongly indicating an SN1 reaction, with negligible 

nucleophilic solvent assistance, as expected.  In comparison with 2-adamantyl triflate solvolysis, the 

present result is consistent with a later, and thus more product like transition state with considerable charge 

separation.  

 

Figure 5.6 Rate study of the solvolysis of 42 in 80% acetone/water (v/v). 

 

Figure 5.7 Rate study of the solvolysis of 42 in 80% ethanol/water (v/v).   
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Common Ion Effects.  Common ion studies are often used to shed light on the role that ion pairs play 

in solvolysis reactions.8  We chose LiOTf as a point of comparison; in the presence of varying quantities of 

(0.01 – 0.1M) LiOTf, the rate of reaction remains essentially the same within error.  Consistent with this 

observation, recovered starting triflate 48 does not scramble its labels to any measurable extent; monitoring 

the solvolysis of triflate-d2 48, we see no isomerization that would be indicative of external return.  These 

results are not surprising – given the very low nucleophilicity of the triflate ion, it possesses little ability to 

compete with the water in the solution.  

 

Figure 5.8 Effect of base and In(OTf)3 on the rate of solvolysis of 42. 

 

Solvolysis in the Presence of a Lewis Acid and a Hindered Base.  This solvent dependent 

mechanistic “switch” prompted us to investigate other methods by which the SN1 reaction coordinate could 

be altered.  Two experiments immediately came to mind.  The first endeavors to answer the question 

whether the addition of a base could lower the energy of the second transition state of the reaction by 

improving the nucleophilicity of the solvent molecules, as well as scavenging any triflic acid formed in the 

reaction (additional base has virtually no effect on the rates of solvolysis in aqueous media).  The second 

experiment would be the addition of an alcohol-tolerant Lewis acid such as In(OTf)3.  In theory, the Lewis 

acid could coordinate to the triflate leaving group to aide in its removal, thus lowering the barrier of the 

first transition state.  This in combination with a non-coordinating base could result in an even greater 

increase of the rate than with the base alone.  For these experiments we chose to use HFIP as solvent and 

2,6-di-tert-butylpyridine (DTBP) as the non-coordinating base.  Initially it looked as though our theory was 

correct.  In a conventional solvolysis reaction with 42 and the Lewis acid (0.1M In(OTf)3, 65 °C) we 
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observed no discernable change in rate, compared to pure HFIP.  Which was expected as the second step is 

rate determining.  Then we attempted the same solvolysis reaction with base alone (1.5 eq. DTBP, 65 °C), 

and a large increase (34 times compared to pure HFIP) in rate was observed.  However, when 0.002M 

In(OTf)3 was added in addition to the base,  the rate of reaction was found to decrease slightly to 31 times 

faster than pure HFIP.  At much higher concentrations of Lewis acid (0.1M) the reaction rate decreased to 

five times that of pure HFIP.  A possible explanation for this surprising result could be that deprotonated 

hexafluoroisopropoxide may be tied up through binding to In(III) (Scheme 5.2).  This would counteract the 

effect of the base, and again make the nucleophile trapping step rate determining.  Also, it is not out of the 

realm of possibility that liberated triflate ions from the Lewis acid may also play a role.  These findings 

demonstrate that a change in rate-determining step in an SN1 reaction can produce counterintuitive, if not 

peculiar, results (Figure 5.8).   

 

 

Scheme 5.2 Putative mechanism for the solvolysis of 42 in the presence of DTBP and In(OTf)3, showing 

the trapping of the alkoxide.  
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These data can be summarized by comparison of qualitative reaction coordinate diagrams A-D (Figure 

5.9); for simplicity’s sake, ion pairs are neglected.  In a lower nucleophilicity, higher ionizing medium 

(pure HFIP), the first step of the solvolysis reaction, loss of the triflate group (TS1‡), decreases in energy, 

whereas the second step, nucleophilic attack by the solvent (TS2‡), increases (A  B).  When a hindered 

base is added (2,6-di-tert-butylpyridine) the energy barrier of the second step drops significantly, such that 

the rate is greater than in the mixture of HFIP and water by almost a factor of two (B  C).  When 

In(OTf)3 is added, quenching the alkoxide, the second step presumably increases in energy once again, and 

triflate is liberated.  The fact that a large decrease in rate occurs in B  C indicates that a common ion 

effect must be considered as well.  This was shown to be unlikely as the addition of LiOTf (0.1M) to a 

solvolysis reaction in pure HFIP has no meaningful effect on the rate.  In addition, the previously discussed 

analogous control reaction (0.1M In(OTf)3) in pure HFIP also showed no appreciable change in the rate.     

  

Figure 5.9 Alterations to the reaction energetics of the solvolysis reaction of 42 due to solvent effects and 

additives. 
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5.4 Isotopic labelling studies. 

Solvolytic behavior of triflate 48 in pure polyfluorinated alcohols.  As shown, hydrolysis and 

alcoholysis experiments were generally performed in mixtures of water and polyfluorinated alcohols.  We 

most commonly employed TFE; rate trends in mixtures of TFE and various proportions of water comport 

with those expected for SN1 reactions.  Rates in mixtures of HFIP and water (70/30 v/v) are only slightly 

higher than those of analogous mixtures in TFE and perfluoro-t-butanol (PFTB) and significant conclusions 

are difficult to reach (Scheme 5.3).  On the other hand, what about the pure alcohols themselves as reaction 

media?  Polyfluorinated alcohols such as TFE are unusual solvents in several ways; for example, whereas 

the ionizing power increases in the order TFE < HFIP,9 the dielectric constant decreases as TFE > HFIP.10  

Thus, as their ability to ionize substrates increases, their corresponding ability to dissociate ion pairs 

decreases.  The properties of the pure solvents give rise to an interesting observation; in pure TFE, the rate 

of alcoholysis of 42 is 10 times greater than in HFIP,11 and more than 1000 times greater than PFTB!  This 

would suggest that the RDS of the triflate solvolysis has changed – instead of ionization, the RDS is now 

nucleophile trapping.  Ingold et al.12 first documented this behavior in the context of triarylmethyl halide 

solvolyses, and a subsequent convention settled on the (somewhat misleading) name SN2C+ to specify this 

mechanistic variant.13  It is a less common phenomenon, and usually occurs in the context of highly stable 

and hindered carbocations.  On the other hand, one can argue that hydrogen bonding of the acidic 

polyfluorinated alcohols to the anhydride group of triflate 42 could be responsible for inhibition of 

ionization.  In light of Creary’s results on the generation of -keto carbocations from the respective 

triflates,14 this seems much less likely, but must be considered. 
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Scheme 5.3 Effects of solvent on solvolysis rate. 

 

If we were seeing a change in the RDS, then a simple experiment would confirm the hypothesis.  

Under hydrolytic conditions (e.g. 70/30 v/v TFE/water), recovered quantities of labeled triflate 48 show no 

isotopic scrambling, consistent with the fast trapping of water by the cationic intermediate.  However, when 

the reactions are conducted in pure TFE, evidence of a partial degree of scrambling is shown by NMR 

(~10%), in addition to formation of the ether product.  When either HFIP or PFTB is employed, complete 

scrambling is observed in recovered triflate (48:78 = 1:1), confirming that the cation-forming transition 

state is surmounted but the RDS has changed so that alcohol trapping is now rate determining (Scheme 

5.3).  These results illustrate the difference between solvents that foster ionization and those that promote 

dissociation; whereas water promotes both, the polyfluorinated alcohols are ionizing, but much less 

dissociating (smaller dielectric) than water.  Hence “tight” ion pairs form in these media that can collapse 

back to the starting triflate.  In aqueous media, however, dissociation is rapid and irreversible (i.e. lack of a 

common ion effect).  Finally, the nucleophilicity of the pure alcohols is low, thereby increasing the barrier 

of the second step.  In the case of PFTB, steric hindrance becomes a very large player as well. 
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Kinetic and Equilibrium Isotope Effects.  Back in our original labeling experiment in chapter 1, we 

used deuterium atoms as labels to differentiate between the two alcohol or ether products of a putative 

fluoronium intermediate for purposes of integration.  The deuterium atoms were positioned remotely to the 

[C-F-C]+ array; thus integration resulted in a 1:1 ratio (within the error limits of our experiment at that 

time).  

 

Scheme 5.4 Basic isotopic labeling study.  Products are either alcohols or ethers depending on the presence 

of water. 

 

It occurred to us, however, that even though the labels were remote, they may still exert a steric effect15 

in the transition state for both (SN1) ionization of triflate 48 and the trapping of cation 49 by water.  In fact, 

triflate-d2 48 ionizes 1.04 times faster than 42 (kH/kD = 0.9630.003) as indicated by careful integration of 

product mixtures.  This measurement is in rough concord with isotope effect calculations at (B97 and B3), 

in which the free energies of labeled and unlabeled transition states for ionization of 42 and 48 were 

compared in a water dielectric (kH/kD = 0.90 and 0.95, respectively at 328 K).   

Owing to deuterium atoms being effectively “smaller” than hydrogens, trapping of water proximally to 

the deuterium atoms should also be favored.  Thus, the ratio of products 80:81, Scheme 5.4 (R=H), is 

measured at 0.93.  The calculated isotope effect for trapping of water likewise predicts the same direction 

in close agreement to the experimental (kdistal/kproximal = 0.93 and 0.94 at B97 and B3, respectively at 328 K).  

Most importantly, these product ratios do not change with conversion, whereas the isotope effect for 

consumption of triflate 48 trends towards 1.00 at 100% conversion.   In the case of water trapping, the 

isotope ratios are the same as measured at 10% conversion; this observation is in line with the trapping of a 

symmetrical intermediate.  
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Figure 5.10 Isotopomeric transition states for C-F-C labeled molecules. 

More interesting and relevant would be the introduction of deuterium labels on the carbon atoms 

anchoring the [C-F-C]+ bond; this, however, represented a synthetic challenge.  We know that out-alcohol 

41 (Scheme 5.5) can be oxidized to ketone 58, and reduced again with LAH to effect an epimerization to 

in-alcohol 47 (see chapter 3).16  By using LiAlD4 (LAD), a deuterium label can be introduced - to the OH 

group to form in-alcohol 85 (34% yield, >98% D incorporation).  It should be noted that the anhydride of 

the caged system is virtually inert to hydrolysis or reducing agents;17 the trajectory needed for nucleophilic 

attack is precluded by steric interference from C-H bonds residing on the ethano-bridges. 

At this point a fortuitous discovery was exploited; in an attempted triflation of in-alcohol 47,16 we 

instead isolated out-triflate18 42 in high yield (94%).  Apparently the in-triflate 86, being more strained 

(calculated activation free energy of ionization = 22.3 kcal/mol (B97, 40 °C, CH2Cl2 dielectric), ionizes 

very rapidly, and retraps the triflate ion in the out-position.  Thus, we can effectively use this in situ 

triflation to epimerize the in-labeled alcohol 87 back to the out-position.  Note however, that this 

triflation/rearrangement produces a mixture of label isomers 88 and 89 in the ratio of 1.14:1.  If we can turn 

our attention back to the transition state 84 for trapping of triflate ion by the fluoronium, we can see why.  

The calculated isotope effect 1.07 (B97, 40 °C, CH2Cl2 dielectric) and more accurately at B3 (kdist/kprox = 

1.12, 40 °C, CH2Cl2 dielectric) is congruent with what we observed, and represents a normal -secondary 

deuterium isotope effect (Scheme 5.5).  What is more, the predicted transition state (B97, CH2Cl2 

dielectric) for ionization of the in-triflate 86 is a fascinating structure in its own right; it reveals a highly 

unusual SNi reaction with very evident frontside participation of fluorine (C-F distance = 2.71 Å, C-O 



62 

 

distance = 2.20 Å).  A QTAIM analysis reveals a BCP between F and C in the transition state, indicating 

some type of interaction.  Interestingly enough, another BCP is predicted to exist between F and the triflate 

ether oxygen. 

   

  

Scheme 5.5 In-to-out isomerization upon attempted triflation of alcohol 87 and the installation of isotopic 

labels in the C-F-C array.  Picture: calculated transition state for ionization of 86 showing frontside 

participation of fluorine. 

However, we must be careful in interpretation; if fluorine assists in the transition state, a remote 

isotope effect would be expected to diminish the phenomenological effect from the otherwise “limiting” 

value (which can be as high as ~1.419 for pure SN1 reactions in related systems).  A remote isotope effect on 

trapping of water also means a remote effect on ionization.  An additional experiment, starting with the 

labeled triflates 88 and 89, allows us to separate the remote KIE from the -secondary KIE upon 

ionization.  To start, triflation of a 1:1.14:1.5 mixture of -labeled isomers 91 and 92 and protio-42 

produces a perfectly corresponding ratio of labeled triflates that are then isolated.  As we have established 

an SN1 process and rate determining ionization, we can now take the liberty of measuring KIEs by internal 
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competition.  A competition was set up between isomer 88, isomer 89, and unlabeled isomer 42 in the said 

ratio (1:1.14:1.5).  Two significant kinetic isotope effects were measured; the first, representing the rate of 

consumption of labeled isomer 89 (geminal D) versus unlabeled triflate, was found to be kH/kD = 

1.220.01, once again a significant -secondary effect.  For comparison, the -secondary KIE for the 

solvolysis of 7-norbornyl triflate in TFE/H2O is 1.13 at 65 °C.20  On the other hand, in 88 kH/kD = 

1.040.01 for the position geminal to the fluorine atom (removed through space from the position of the 

triflate group).  The fact that a measurable remote KIE21 exists is indicative of participation of the fluorine 

in ionization, once again consistent with the model.  Therefore, if fluorine is participating in ionization, it 

participates that much more heavily in the cationic species, thus disfavoring a rapidly equilibrating set of 

classical isomers (Equation 5.2).  One can argue though, that remote effect may be at least partly 

attributable to relief of steric strain upon ionization, although the computational model strongly favors 

direct participation of fluorine.   

 

 

Scheme 5.6 Kinetic isotope effects for the hydrolysis reaction as a result of the isotopic labeling of the [C-

F-C]+ positions. 
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Predicted isotope effects were derived from analysis of the transition state of 90, (B97, 55 °C, water 

dielectric) and computed to be kH/kD ( position) = 1.27 and kH/kD (remote position) = 1.07, roughly in line 

with what was found.  Finally, isotope effects for the trapping of water by substrates 91 and 92 were found 

once again to be 1.14.  These results are very important from a confirmatory standpoint – given 

stereochemically unique substrates (both out- and in-triflate isomers), we observe the exact same outcome, 

thus implying the exact same intermediate.  Regardless of the starting ratio, the presence of a fluoronium 

intermediate commands an identical ratio of label isomers, which is what we observe. 

We thought at this point in time that it would be good to calibrate the method for kinetic isotope effect 

calculations by applying various levels of DFT-based theory to the water-trapping reaction (Scheme 5.7).  

In general, most seem to be in fairly good agreement, including B3 and B97 (the latter chosen for its ability 

to take good account of dispersion effects).22 

 

 

Scheme 5.7 Comparison of calculated isotope effects at various levels of theory (water dielectric, 55 °C). 

 

Attempting to Force SN2(e) Reactivity.  Thanks to our labeling studies, a role for the SN2(e) reaction 

has been ruled out in the hydrolytic reactivity of triflate 42.  However, what would happen if the reaction 

conditions strongly favored an SN2(e) mechanism and disfavored an SN1?  Would that be enough to force 

the reaction to follow the SN2(e) pathway?  The answer seems to be no - employing a reactive SN2 

nucleophile (NaN3, 15-crown-5) in a fairly non-ionizing solvent (benzotrifluoride) at 106 °C affords a 

reaction, but only in low conversion (~10%) over extended periods of time (4 days).  Use of labeled triflate 
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48 confirms that this reaction proceeds through an SN1 mechanism (~1:1 ratio of isotopomeric products 

(Equation 5.3).  An examination of models indicates that the triflate 48 simply presents a very poor possible 

attack trajectory for SN2 reaction.  This result is also consistent with what is seen in the well-studied 7-

norbornyl system; SN2 attack at the 7-position23 is disfavored sterically, in contrast to conventional 

secondary systems.  To summarize, we have found no conditions in which an SN2(e) is observed, even 

when highly favored. 

 

 

 

5.5 Potential role of equilibrium isotope effects.   

One potential criticism of the overall model is that in situ protonation of alcohol 77 followed by 

ionization can produce isotopic scrambling in the product.  When we subjected isotopomers 76-77 and 78-

80 to calculation, we predict an equilibrium isotope effect24 at B97 of 0.93, which is inverse to what is 

expected from a KIE (Scheme 5.8).  That, in addition to the lack of scrambling in alcohol 54 when treated 

with strong acid at high temperatures (Equation 5.4), leads us to rule out equilibration as a source of isotope 

effects under all circumstances. 

 

Scheme 5.8 Calculated equilibrium isotope effects for alcohols and oxoniums. 
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Scheme 5.9 Rate comparison of triflate 42 to 7-norbornyl triflate 98. 

 

 

 

5.6 Control reactions.   

Fluorine Participation in the Transition State.  The transition state models for hydrolysis all predict 

substantial fluorine participation.  Fluorine’s role, borne of its propinquity, would appear to be both 

inherently stabilizing as well as space-filling.  This begs the question, what would happen to the rate if 

fluorine were absent from the system?  The obvious comparison, for which rate data exist, is the 7-

norbornyl triflate system (98).  At 65 °C, triflate 42 solvolyzes in anhydrous TFE almost 100 times faster 

than does 7-norbornyl triflate.69  Although implying a stabilizing role for the fluorine, one should bear in 

mind that system 42 also relieves strain upon ionization.  The presence of the electron-withdrawing 

anhydride group in 42 is expected to retard the rate of hydrolysis of 42 with respect to 98, leading to an 

underestimation in the effect that the fluorine plays in hydrolysis.  The issue here is that the simple 7-

norbornyl framework is structurally removed from that of system 42, and is perhaps not an ideal control. 

Comparison to -Hydrido Bridging.  It is doubtful that an “ideal” control would exist for this 

system.  Nevertheless, the most conservative control is one in which only the F atom is removed or 

replaced.  A model system such as triflate 103 should provide an illuminating contrast.  It is nearly identical 
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to triflate 42, shorn of fluorine’s participation.  Instead, a hydrogen atom replaces fluorine, but the 

anhydride group and the same general amount of strain remain.  Of course, hydrogen can provide 

stabilization to an SN1 transition state through incipient -hydrido-bridging (and it is very likely that a 

cationic reactive intermediate in the hydrolysis of 104 is -hydrido-bridged) as Sorensen et al.25 McMurry 

et al.,26 and others have shown.  -Hydrido-bridging is no longer a controversial topic and is known to 

provide an energetic benefit to numerous carbocationic systems; a comparative system would allow us to 

benchmark -hydrido-bridging versus fluoronium formation.  In any case, the rate comparison of control 

103 places a lower limit on what stabilization may be expected through fluorine participation.  We found 

triflate 103 to be less reactive to hydrolysis than triflate 42 at 65 °C by a factor of 2.7, implying a modest 

stabilizing role for fluorine in the transition state for hydrolysis exceeding that for -hydrido bridging, as 

paralleled by our previous isogyric equations (Scheme 5.11). 

 

 

Scheme 5.10 Synthesis of -hydrido control 103. 

 

The synthesis of control 101 parallels that of triflate 42 (Scheme 1.5).  Known dienophile 10027 is 

treated with silane 40 under high pressure (12 kbar) for 72 h; the silane is immediately cleaved by a 

Fleming-Tamao oxidation (15% yield).  This is followed by hydrogenation with palladium on carbon (95% 

yield) and triflation (94% yield) to afford the product 103, which can be purified by chromatography on 

silica.  The synthetic method can be seen in Scheme 5.10.  
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The activation free energy for SN1 ionization of 73 is computed to be about the same as that of triflate 

104 at B3 (H2O dielectric, TS for ionization of 103 at B97 was not found).  Although there is no calculated 

free energy gap between them, a comparison of the transition state geometries is more illustrative and tells 

a different story.  In both cases, anchimeric participation plays an evident role in stabilizing the transition 

states (F and H).  Firstly, both the C-H and C-F bonds have lengthened a small amount in the transition 

states.  However, in the case of 104, the scission of the C-O bond has progressed much further (2.73 Å 

versus 2.37 Å for 73).  The X---H distance is lessened in 104 (X = H, 1.86 Å) v. 73 (X = F, 2.20 Å); in 

simple terms the H moves much more than F in its transition state.  The conclusion is that 104 represents a 

somewhat “later” transition state.28  While H and F both participate (anchimerically assist), F is apparently 

more effective than H in this role. 

 

Scheme 5.11 Rate comparison of fluoro- to a -hydrido-bridging control. 

 

5.7 Conclusion.   

We have sought to expand upon our initial evidence with a comprehensive study involving several 

lines of experiment and argument to reach a more compelling conclusion about the generation of the 

putative symmetrical fluoronium ion 13 in solution.  In turn: i) isotopic labeling studies show scrambling 

consistent with the trapping of a symmetrical intermediate; ii) rate measurements reveal the operation of an 

SN1 mechanism through which a fluoronium ion must be generated; iii) in pure polyfluorinated alcohols, 

the RDS of the reaction changes from ionization to nucleophile trapping on a presumably hindered 
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carbocation; iv) KIE experiments are consistent with precedent and calculation in implicating participation 

by fluorine in the transition state for ionization of 42 (with unusual remote isotope effects reinforcing this 

conclusion) thus disfavoring the historically oft-postulated “rapidly equilibrating set of isomers” 

alternative; v) Starting with an epimeric precursor that hydrolyzes through a putative frontside SNi 

mechanism involving fluorine participation, KIE studies indicate that the identical intermediate is trapped 

(the fluoronium ion).  vi) Isotopic distributions in the trapping of putative ion 90 by water are invariant to 

concentration and conversion and are also consistent with a symmetrical intermediate; vii) Comparisons 

with control compounds reveal probable anchimeric assistance in the transition state for the hydrolysis of 

42; for example, one experiment demonstrated fluorine’s role from an energetic standpoint relative to 

commonly encountered -hydrido-bridged systems; viii) Computations at multiple levels of theory all 

agree fairly well on the structure of the fluoronium and the transition states leading thereto.  Thus we can 

reach the notable conclusion that system 42 reacts solely through an SN1 mechanism via a symmetrical 

fluoronium ion. 
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Chapter 6 

A C-F Bond Directed Diels-Alder Reaction 

 

 

6.1 Introduction. 

In fluorine chemistry a large amount of focus is put on how fluorine can decrease reactivity.  This is 

perhaps best exemplified by fluorinated drugs that have shown a notable resistance to biological metabolism1 

and the low reactivity of perfluoropolymers like Teflon.2  In some ways, these properties have led to a belief 

that the fluorine atom itself is unreactive and cannot be utilized in reactive chemistry like the other halogens.  

It is likely that the strength of the C-F bond (~110 kcal/mol) and the tight fashion in which it holds its lone 

pairs of electrons contribute to this misconception.3  However, this is not always the case - C-F bond 

activations by transition metals,4 silyl cations,5 and even carbocations6 are well-established processes; the 

nucleophilic displacement of benzylic, allylic, and tertiary C-F bonds are also commonplace.7  On the other 

hand, aside from the fluoronium mentioned in the previous chapters, there are very few examples of C-F 

bonds themselves being used to direct reactivety through anchimeric assistance.  One recent example is that 

a C-F bond positioned over the -cloud of an arene ring can activate it toward electrophilic nitration.8  In the 

search for other reactions with participating C-F bonds, we focused on signature processes in organic 

chemistry, such as the Diels-Alder (DA) reaction.  

The DA reaction is an excellent way of forming C-C bonds, but it can result in several stereoisomers, 

depending on how the dienophile and diene approach each other (endo/exo), the reactants’ symmetry, or 

some combination of both.9  There have been attempts to increase the reaction’s selectivity by relying on the 

anchimeric effect, and some success has been reported with alcohols, a commonly employed directing 

group.10  Is it possible that a fluorine atom could act as a directing group as well?  Herein we report a notably 

selective DA reaction between a fluorinated dienophile and a borole; calculations show that the interaction 

between B and F is a prime instigator in the reaction chemistry, and that by calculation its magnitude is 

maximized at (or very near) the transition state (TS). 
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Scheme 6.1 Diels-Alder reaction of borole 106. 

 

6.2 Precedents. 

Boroles (boracyclopentadienes) were first synthesized in 1969, but it is only recently that they have been 

seen as more than a novelty.11  This is likely due to their antiaromatic nature, which results in a high degree 

of reactivity, especially toward DA reactions, as well as air and moisture sensitivity.  We synthesized the 

borole dimer 105 in two steps from dimethylacetylene following the zirconacycle transfer method of Fagan 

and coworkers.12  When heated at 80 °C, 105 readily converts into monomeric borole 106 (Scheme 6.1).  We 

imagined that the Lewis acidic boron atom on formally antiaromatic borole 106 could interact in solution 

with a suitable Lewis base, such as the lone pairs of fluorine in a C-F bond, in an appropriately configured 

dienophile.  This interaction could help position the borole and thereby improve reaction selectivity.  It 

seemed that alkene 20 would be a good dienophile candidate, as an interaction between B and F in a 

hypothetical DA TS is stereoelectronically feasible, whereas that between B and the O on the carbonyls is 

not.   

 

 

Scheme 6.2 Example of a typical Diels-Alder reaction with dienophile 20. 
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6.3 Synthesis. 

The borole dimer and the dienophile were both dissolved in CH2Cl2 and heated at 80 °C to facilitate the 

retro-DA reaction of the dimer.  We observed that borole 106 reacts rapidly and smoothly to produce a 

moderate yield (45%) of diastereomerically pure adduct 107.  The other observed compounds proved to be 

starting material and decomposed borole; no other adducts were observed.  In our experience, other DA 

reactions of dienophile 20 afford mixtures of stereoisomers, a fact which suggested that the reaction could 

be directed by the boron’s coordination to the fluorine.13  For example, the reaction of 20 with 1,3-

cyclopentandiene occurs at 180 °C to afford a mixture of two diastereomers (Scheme 6.2).13a  

 

   

Figure 6.1 Crystal structure of 107 showing the two crystallographically independent molecules.  Fluorine 

in blue; oxygen in red; boron in salmon.  Note that the crystal is twinned. 

 

6.4 X-ray crystallography. 

Crystals of product 107 suitable for X-ray structure determination were grown from a mixture of CH2Cl2 

and diethyl ether.  The asymmetric unit contains two crystallographically independent molecules of 107 for 

which the phenyl rings are rotated in a different conformation.  In the crystal, the two B---F distances are 

2.5919(18) and 2.6095(18), depending on the conformation.  Not surprisingly, a strong interaction between 

B and the vicinal C=C bond is noted.  The boron is 1.896(2)/1.900(2) or 1.934(2)/1.936(2) Å away from the 

double bond, depending once again on which rotamer is observed.  Although the crystal indicates bonding 

between the boron and the double bond, the carbon atoms still appear to be generally sp2 hybridized.  In fact, 
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the methyl groups seem to be tilted slightly upward toward the boron.  This structure is isoelectronic to the 

7-phenylnorbornenyl cation, and has been observed in a few other cases, such as in dimer 105.12,14  Numerous 

attempts were made to functionalize the vicinal double bond of 107, but it was found to be unreactive to 

various substitution reactions, such as halogenation and hydrogenation.  This is likely a combination of the 

bond donating electron density to the boron as well as steric hindrance from the methyl groups thereon and 

the partial coordination of fluorine. 

Scheme 6.3 Relative energy and activation energy of each TS pathway. 

 

6.5 DFT calculations. 

DFT calculations (6-311++G**/b97xd)15 of four possible TSs for the reaction are shown in Scheme 

6.3.  As expected, TS 108, leading to the observed adduct 107, is almost 4.5 kcal/mol lower than the closest 

competitor 109, presumably due in part to the interaction between B and F.  Calculations also predict that the 

reaction proceeds in TS 108 through an unusual trajectory.  Using DFT, the B---F distance was calculated at 

various lengths of the two C-C -bonds formed during the DA reaction.  This allowed us to map the changes 

to the B---F interaction as the reaction proceeds (Figure 6.2).  Initially as the two reactants approach each 

other, the B and the F are also drawn closer together.  The smallest B---F distance, 2.27 Å, is predicted to be 

reached very close to or at TS 108.  Once the transition state is passed and product 107 begins to form, the 

F---B distance is predicted to lengthen again.  The B---F interaction is evidently being diminished by a strong, 

through-space donating effect from the newly formed vicinal C=C double bond in the product.  This results 

in the B---F distance in 107 being almost 0.33 Å longer than in TS 108.  The F---B interaction thus seems to 

“yo-yo” from tight in the TS to loose in the product wherein the donation from the C=C double bond takes 

precedence.  An atoms-in-molecules analysis of 107 shows a BCP between B and F, which is indicative of a 

through-space interaction.16  However, in TS 108 the BCP shows the same B---F relationship, only stronger.  
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The result is that the boron is unusually coordinated in product 107 - weakly to the C-F bond, strongly in a 

through-space manner to the C=C bond, and covalently to three carbon atoms, to attain polyvalency.   

 

   

Figure 6.2 Predicted B---F distance from set C-C bond length during the C-C bond formation in TS 108; 

curve fitted to a fourth order polynomial.   

 

6.6 Competition reaction. 

Having accumulated some evidence pointing to the B---F interaction providing a directing effect, we 

developed a competition experiment to quantify its kinetic consequences - that is, whether it actually 

accelerates the DA reaction.  It is known that just about all other DA reactions of dienophile 20 require 

forcing conditions, either high temperatures or high pressures; on the other hand, borole 106 is an unusually 

reactive diene, so a faster rate is expected.8,13  In a minimal amount of CH2Cl2 (3 mL), 0.2 equiv. borole dimer 

105 was heated at 80 °C  with 1 equiv. of the dienophile 20 and a second equiv. of control dienophile 112 in 

a sealed tube.  In theory the borole dimer should yield 0.4 equiv. of 106, however it was in practice less due 

to its extreme air sensitivity in our hands.  Dienophile 112 is similar to 20 but has its fluorine pointed away 

from the double bond, so any DA product derived therefrom must form through a transition state bereft of 

fluorine participation.  An assay of reaction progress after one day showed adduct 107 to be the sole observed 

DA derived product to the limit of detection.  This result indicates that the B---F interaction has substantial 

effect on the rate (and selectivity) of the reaction vs. a closely configured control.  In comparison dienophile 
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112, C-F---B coordination can only result in the formation of a nonproductive precomplex, and thus must 

play no role in reaction chemistry.   

 

 

Scheme 6.4 In- vs. out-fluorine competition reaction. 

 

6.7 Conclusion. 

We have reported a highly selective DA reaction between a fluorinated dienophile and a borole.  

Interestingly, the source of the selectivity of this reaction appears to be a rare case of a fluorine on a C-F 

bond acting as a Lewis base and coordinating to the Lewis acidic p-orbital on the boron.  In the TS the 

fluorine is predicted to act as a templating element in the reaction, by coordinating to the borole as it is 

suspended over the double bond.   After the reaction is complete, the boron’s empty p-orbital is drawn to the 

newly formed vicinal double bond.  However, both DFT calculations and crystallography indicate that there 

still exists an interaction between fluorine and boron in the final product. 
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Chapter 7 

Experimental Methods 

 

 

7.1 General methods. 

Unless otherwise stated, all reactions were carried out under strictly anhydrous, air-free conditions 

under nitrogen.  All solvents and reagents were dried and distilled by standard methods.  1H and 13C spectra 

were acquired on a Bruker Avance 400 MHz NMR in CDCl3 at 25 °C; 19F spectra were taken on a Bruker 

Avance 300 MHz NMR in CDCl3.  The 1H and 13C chemical shifts are given in parts per million (δ) with 

respect to an internal tetramethylsilane (TMS, δ 0.00 ppm) and/or and/or CFCl3 (δ 0.00 ppm) standard.  

NMR data are reported in the following format: chemical shifts (multiplicity (s = singlet, d = doublet, t = 

triplet, q = quartet m = multiplet), integration, coupling constants [Hz]).  IR data were obtained using an 

FT-IR with a flat CaF2 cell.  All measurements were recorded at 25 °C unless otherwise stated.  Melting 

Points are uncorrected.  HRMS calculations were performed on an ESI-ion trap mass spectrometer.  

Spectral data were processed with ACD/NMR Processor Academic Edition.1  

 

7.2 Computational methods.   

The Gaussian 09 package and Spartan 10 were used for all geometry optimizations.2,3 The 19F 

calculated chemical shifts were fitted to the empirical equation (at B3LYP/6-311++G**) calc = -0.914 + 

141.83.4   In most cases, geometry optimizations were determined using the ωB97XD/6-311+G** and the 

B3LYP/6-311++G** levels at various temperatures.  In most cases optimized geometries and in all cases 

transition states were confirmed by vibrational analyses.  Calculated electronic energies were converted to 

free energies through corrections obtained by vibrational analyses. 

KIEs were calculated by the following method: the free energy of activation for ionization of 

isotopomers was compared to the free energy of activation for the protio-substrates.  The isotopomeric free 

energies were calculated through comparison of vibrational analyses at specified temperatures of the 

ground states and transition states. 
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7.3 Experimental details for chapter 1. 

 

2,3-dibromo-12-fluorooctahydro-1,4:5,8-dimethano-4a,8a-(methanoxymethano)-naphthalene-9,11-

dione (25).  To a flame dried round bottom flask was added 22 (0.1 g, 0.40 mmol) in 10 mL of DCM.  The 

solution was cooled to -78 °C and bromine (0.02 mL, 0.44 mmol) was added.  The solution was then 

allowed to stir overnight at room temperature.  The solution was quenched with a 10% solution of sodium 

thiosulfate (50 mL), extracted into DCM and the organic fractions were then washed with water and brine, 

dried with magnesium sulfate and concentrated under reduced pressure.  The brominated product was 

isolated by recrystallization from DCM/hexanes to yield 25 as white crystals (0.142 g, 87%); 1H NMR 

(CDCl3) 5.01 (d, 1H, J = 60.8 Hz), 4.81 (m, 2H), 3.20 (m, 2H), 2.83 (s, 2H), 2.65 (d, 1H, J = 12.5 Hz), 

1.89 (d, 2H, J = 9.6 Hz), 1.66 (d, 1H, J = 12.5 Hz), 1.45-1.37 (m, 2H); 13C NMR (CDCl3)  172.5, 100.4 (d, 

J = 213.0 Hz), 67.3 (d, J = 1.5 Hz), 55.5, 52.3 (d, J = 22.1 Hz), 41.3 (d, J = 14.0 Hz), 36.5 (d, J = 3.0 Hz), 

23.2 (d, J = 9.6 Hz); 19F NMR (CDCl3)  -179.46 (d, 1F, J = 60.8 Hz); IR 3053, 2915, 1865, 1785, (cm-1, 

CaF2, CH2Cl2));  HRMS (ESI+) calc for NaC14H13Br2FO3: 430.9093, found 430.9097. 

 

13-fluoro-12-(1-methylsiletan-1-yl)-1,2,3,4,5,8-hexahydro-1,4:5,8-dimethano-4a,8a-

(methanoxymethano)-naphthalene-9,11-dione (36).  Anhydride 20 (1.0 g, 5.49 mmol, 1 equiv) and 

silylated diene 40 (1.80 mL, 11.0 mmol, 2 equiv) were combined with methylene chloride (1 mL) in a 10 

mL syringe.  The resulting slurry was pressurized at 12 kbar for 2 days.  The reaction was then recharged 

with fresh 40 (1.80 mL, 11.0 mmol, 2 equiv) and repressurized for 2 d.  The resulting solution was 

evaporated to dryness and the residue was purified by gradient column chromatography on silica using 2% 



81 

 

EtOAc/hexanes as eluent, then 5% EtOAc/hexanes as eluent to yield 36 (0.42 g, 29%) as a white solid.  19F 

NMR (CDCl3): δ -169.16 (m, 1F), (calc. -168.83); the resulting wax was carried on directly to the Tamao-

Fleming oxidation as it tends to undergo fairly rapid desilylation. 

 

12-fluoro-13-hydroxyoctahydro-1,4:5,8-dimethano-4a,8a-(methanoxymethano)-naphthalene-9,11-

dione (41). Silane 36 (0.35 g, 1.05 mmol, 1 equiv) was dissolved in a 1:1 solution of THF/MeOH, to which 

were added KF (0.12 g, 2.1 mmol, 2 equiv) and KHCO3 (0.21 g, 2.1 mmol, 2 equiv).  The resulting mixture 

was cooled in an ice bath and 30% H2O2 (1.8 mL, 15.8 mmol, 15 equiv) was added dropwise.  The solution 

stirred overnight at room temperature.  The solution was combined with EtOAc and water and extracted; 

the organic layer was washed with a 1M aqueous Na2CO3 solution and extracted.  Aqueous layers were 

combined and back-extracted with EtOAc.  Organic layers were combined, washed with brine and 

evaporated to dryness to give 0.26 g of the putative alcohol.  The resulting product was immediately 

dissolved in EtOH and treated with Pd/C catalyst (0.03 g) and hydrogen gas at 2 bar in a Parr apparatus.  

The reaction was filtered through celite and concentrated in vacuo to yield alcohol 41 (0.25 g, 92%) as a 

white solid.  1H NMR (CDCl3): δ 5.67 (d, 1H, J = 18.3 Hz), 4.97 (d, 1H, J = 62.2 Hz), 2.61 (s, 2H), 2.43 (q, 

2H), 2.16 (d, 2H, J = 9.4 Hz), 1.79 (d, 2H, J = 10.4), 1.61 (d, 1H, J = 4.3), 1.58-1.4 (m, 4H); 13C NMR 

(CDCl3): δ 173.74, 101.47 (d, J = 212.23), 75.88 (d, J = 47.57), 67.62, 45.42, 44.26 (d, J = 13.9), 24.34, 

23.42 (d, J = 9.5); 19F NMR (CDCl3): δ -176.05 (ddt, J = 61.86, 18.6, 9.28, 1F). IR (CH2Cl2): 3613, 2963, 

2901, 1856, 1783 cm−1; HRMS (ESI+) calcd. for NaC14H15FO4, 289.0852, found 289.0854.   

 

13-fluoro-9,11-dioxooctahydro-1,4:5,8-dimethano-4a,8a-(methanoxymethano)-naphthalen-12-yl 

trifluoromethanesulfonate (42).  To a flame dried round bottom flask was added alcohol (41) (0.04 g, 
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0.15 mmol) dissolved in DCM (3 mL).  The solution was treated with pyridine (0.07 mL, 0.86 mmol) and 

cooled to -78 °C.  A 1M triflic anhydride solution in DCM (0.22 mL, 0.22 mmol) was added dropwise, and 

the solution was allowed to stir at room temperature for 1.5 h.  The solution was washed with a cold 10% 

aqueous NaHCO3 solution, then brine.  The organic layer was isolated, dried with magnesium sulfate and 

concentrated under reduced pressure.  The crude product was purified by flash chromatography on florisil 

with a 20% ethyl acetate and hexanes solution to yield 42 as white crystals (0.058 g, 97%); 1H NMR (400 

MHz, CDCl3) 6.68 (d, 1H, J = 25.2 Hz), 5.05 (d, 1H, J = 61.6 Hz), 2.84 (m, 2H), 2.71 (s, 2H), 2.14 (d, 

2H, J = 10 Hz), 1.86 (d, 2H, J = 9.4 Hz), 1.67 (d, 2H, J = 8.8 Hz), 1.49 (t, 2H, J = 8.8 Hz); 13C NMR (400 

MHz, CDCl3)  171.9, 118.6 (q, J = 320 Hz), 101.29 (d, J = 212.3 Hz), 90.2 (d, J = 56.0), 66.49, 44.36 (d, J 

= 8.1 Hz), 44.18, 24.26, 23.2 (d, J = 9.6 Hz), 19F NMR (300 MHz, CDCl3)  -75.33 (s, 3F), -177.03 (m, 

1F); IR 3147, 1866, 1785 (cm-1, CaF2, CH2Cl2);  HRMS (ESI+) calc for NaC15H14F4O6S: 421.0345, found 

421.0341. 

 

13-fluoro-9,11-dioxooctahydro-1,4:5,8-dimethano-4a,8a-(methanoxymethano)-naphthalen-12-yl-6,7-

d2 trifluoromethanesulfonate (48).  To a flame dried round bottom flask was added alcohol 54 (0.15 g, 

0.06 mmol, 1 equiv) dissolved in methylene chloride (3 mL).  The solution was treated with pyridine (0.03 

mL, 0.32 mmol, 5.7 equiv) and cooled to -78 °C.  Triflic anhydride (0.06 mL, 0.06 mmol, 1.1 equiv) was 

added dropwise, and the solution was allowed to stir at room temperature for 1.5 h.  The solution was 

washed with a cold 10% aqueous NaHCO3 solution, then brine.  The organic layer was isolated and 

concentrated in vacuo to yield triflate 48 as a waxy solid, which was used without further purification.  19F 

NMR was used to confirm complete conversion to the triflate.  1H NMR (CDCl3): δ 6.67 (d, 1H, J = 25.8), 

5.05 (d, 1H, J = 61.41), 2.84 (d, 1H, J = 2.1), 2.71 (s, 2H), 1.86 (d, 2H, J = 9.6), 1.65 (s, 2H), 1.51 (t, J = 

8.9, 2H); 19F NMR (CDCl3): δ -75.34 (s, 3F), -177.07 (ddt, J = 65, 25.78, 8.2, 1F), (calc. -176.32); the 

triflate was found to decompose over time, so a 13C NMR was not obtained. 
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12-fluoro-13-hydroxyoctahydro-1,4:5,8-dimethano-4a,8a-(methanoxymethano)-naphthalene-9,11-

dione-2,3-d2 (54).  The Fleming-Tamao reaction undertaken to make alcohol 41 was repeated on 36, and 

the resulting product (0.25 g) was used in the next step without further purification.  The product was added 

to a flame dried, three-necked round bottom flask equipped with a condenser, stir bar and stoppers.  

MeOH-d1 (> 99% D, 40 mL) and dipotassium azodicarboxylate (4.76 g, 24.5 mmol, 26 equiv) were added 

to the flask (that was thoroughly pre-rinsed with deuterated solvent).  The mixture was treated with acetic 

acid-d1 (> 98% D 2.2 mL, 38.5 mmol, 40 equiv) via dropwise addition and stirred for 45 min.  The reaction 

was then recharged with dipotassium azodicarboxylate (3.7 g, 18.8 mmol, 20 equiv) and acetic acid-d1 (> 

98% D, 1.7 g, 29.7 mmol, 31 equiv) and stirred for another 45 min.  This process was repeated four more 

times, for a total of six additions, and the reaction was left to stir overnight.  The reaction was quenched by 

slowly adding water until the solution ceased to bubble, and the product was extracted in EtOAc and 

evaporated to dryness.  The resulting residue was purified by gradient column chromatography on silica 

starting with 20% EtOAc/hexanes as eluent, then switching to 70% EtOAc/hexanes to yield alcohol 54 (> 

97% D incorporation, 0.18 g, 66.5%) as a white solid.  The exo-diastereoselectivity was inferred from 

precedent and the fact that the endo reduction would be almost prohibitively sterically hindered.  1H NMR 

(CDCl3): δ 5.65 (d, 1H, J = 18.4 Hz), 4.96 (d, 1H, J = 62.4 Hz), 2.60 (s, 2H), 2.41 (s, 2H), 1.79 (d, 2H, J = 

9.6), 1.61 (d, 1H, J = 4.3), 1.55-1.37 (m, 4H); 13C NMR (CDCl3): δ 173.76, 101.46 (d, J = 214.4 Hz), 75.87 

(d, J = 47.6), 67.57, 45.34, 44.25 (d, J = 14.6), 23.94 (t, J = 47.7), 23.41 (d, J = 9.5); 19F NMR (CDCl3): δ -

176.08 (ddt, J = 61.86, 18.6, 8.25 1F), (calc. -176.15). IR (CH2Cl2): 3613, 2963, 2901, 1856, 1783 cm−1; 

HRMS (ESI+) calcd. for NaC14H13D2FO4, 291.0978, found 291.0971. 
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Fluoronium ion generation experiment: 12-fluoro-13-hydroxyoctahydro-1,4:5,8-dimethano-4a,8a-

(methanoxymethano)-naphthalene-9,11-dione-6,7-d2 (55) (identical conditions employed for runs 

with unlabeled 42). To a flame dried, round-bottom flask equipped with a condenser was added 48 (0.015 

g, 0.04 mmol).  2,6-Lutidine (0.06 mL, 0.06 mmol) and 2,2,2-trifluoroethanol containing 20% water by 

volume (5 mL) was added and the solution was heated at 60 °C for 10 h.  TFE was removed by rotary 

evaporation and the product was extracted with methylene chloride and concentrated in vacuo to yield a 

brown residue.  This was further purified by gradient column chromatography on florisil, 100-200 mesh, 

with 5% EtOAc/hexanes as eluent, then 50% EtOAc/hexanes to yield alcohol 55 in an inseparable mixture 

of itself and 54 in a 1:1 ratio (96% yield).  13C NMR (CDCl3): δ 173.77, 101.48 (d, J = 213.7), 75.92 (d, 

46.84), 67.58, 45.42, 44.18 (d, J = 13.9), 24.37, 23.3-22.7 (m); 19F NMR (CDCl3): δ -176.08 (ddt, J = 

61.86, 18.6, 8.25 1F), (calc. -176.15); 55 was obtained as an inseparable mixture of itself and 54.  HRMS 

(ESI+) calcd. for NaC14H13D2FO4, 291.0978, found 291.0973. 

 

7.4 Experimental details for chapter 2. 

 

 

12-fluorooctahydro-1,4:5,8-dimethano-4a,8a-(methanoxymethano)naphthalene-9,11-dione (17). 

Compound 21 (0.097 g, 0.391 mmol) was dissolved in THF (5 mL).  The solution was treated with Pd/C 

catalyst (0.01 g) and hydrogen gas at 2 bar in a Parr apparatus for 12 h.  The mixture was then filtered 

through celite and concentrated under reduced pressure to yield 17 as white crystals (0.089 g, 91% yield); 
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mp = 188 C; 1H NMR (CDCl3) δ 4.96 (d, 1H, J = 61.6 Hz), 3.15 (t, 1H, J = 12.3 Hz), 2.62 (m, 2H), 2.60 

(s, 2H), 1.80 (d, 2H, J = 9.9 Hz), 1.75 (d, 2H, J = 9.1 Hz), 1.56-1.48 (m, 4H), 1.30 (dd, 1H, J = 11.7, 8.0 

Hz); 13C NMR (CDCl3) 174.2, 101.4 (d, J = 213.7 Hz), 70.6, 44.3 (d, J = 15.37 Hz), 42.3, 38.7 (d, J = 

38.1 Hz), 28.1, 23.5 (d, J = 10.2 Hz); 19F NMR (CDCl3) -173.04 (dm, 1F, J = 61.9 Hz); IR 3108, 2983, 

2966, 2898, 1850, 1774, (cm-1, CaF2, CH2Cl2);  HRMS (ESI+)  calc for NaC14H15FO3: 273.0903, found 

273.0907. 

 

 

12,13-difluorooctahydro-1,4:5,8-dimethano-4a,8a-(methanoxymethano)-naphthalene-9,11-dione 

(57a).  A solution of 41 (21 mg, 0.08 mmol) in 5 mL of dichloromethane (DCM) was cooled to -78 °C with 

stirring.  To the solution diethylaminosulfur trifluoride (DAST) (0.021 mL, 0.16 mmol) was added 

dropwise, and the solution was stirred for 1 h at -78 °C.  The reaction was then quenched with saturated 

aqueous sodium bicarbonate (4 mL).  The organic layer was separated, dried with magnesium sulfate, 

filtered through celite and the solvent was removed under reduced pressure.  The crude product was 

purified by silica gel flash column chromatography with a 10% ethyl acetate and hexanes solution to yield 

57a as white crystals (5 mg, 23% yield); mp = 153 C; 1H NMR (CDCl3) δ 6.32 (dd, 1H, J = 56.1, 18.0 

Hz), 4.99 (d, 1H, J = 61.6 Hz), 2.68 (q, 2H, J = 4.8, 2.3 Hz), 2.64 (s, 2H), 2.12 (d, 2H, J = 11.9 Hz), 1.82 

(d, 2H, J = 10.4 Hz), 1.56 (d, 2H, J = 4.5 Hz), 1.51 (t, 2H, J = 9.1 Hz); 13C NMR (CDCl3) 173.0 (d, J = 

1.5 Hz), 101.22 (d, J = 213.7 Hz), 96.1 (q, J = 242.2, 53.4 Hz), 66.5 (d, J = 8 Hz), 44.3 (d, J = 14.6 Hz), 

44.0 (d, J = 16.1), 24.3 (d, J = 5.9 Hz), 23.3 (d, J = 9.5 Hz); 19F NMR (CDCl3) (dm, 1F, J = 60.8 

Hz) (dd, 1F, J = 55.7, 19.6 Hz); IR 3135, 2962, 2925, 2858, 1861, 1783, 1725, (cm-1, CaF2, 

CH2Cl2);  HRMS (ESI+)  calc for NaC14H14F2O3: 291.0809, found 291.0802. 
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12-chloro-13-fluorooctahydro-1,4:5,8-dimethano-4a,8a-(methanoxymethano)-naphthalene-9,11-dione 

(57b).  To a solution of compound 42 (68 mg, 0.171 mmol) in 5 mL of dry N,N-dimethylformamide 

(DMF) was added sodium chloride (40 mg, 0.684 mmol).  The solution was heated to 70 °C with stirring in 

a sealed tube and was allowed to react for 20 h.  The solution was then poured into ice-cold water (20 mL) 

and extracted with EtOAc (3 x 15 mL).  The organic layers were combined, dried with magnesium sulfate, 

filtered through celite and concentrated under reduced pressure.  The crude product was then purified by 

silica gel flash column chromatography with a 20% ethyl acetate and hexanes solution to yield 57b as white 

crystals (17.3 mg, 36% yield); mp = 135 C; 1H NMR (CDCl3) δ 5.77 (d, 1H, J = 24.5 Hz), 5.02 (d, 1H, J = 

62.0 Hz), 2.67 (q, 4H, J = 4.3, 1.9 Hz), 2.29 (d, 2H, J = 9.6 Hz), 1.84 (d, 2H, J = 10.7 Hz), 1.62-1.45 (m, 

4H); 13C NMR (CDCl3) (dJ = 213.7 Hz), 68.4, 62.9 (d, J = 52.7 Hz), 47.0, 44.3 (d, J = 

14.6 Hz), 24.9, 23.4 (d, J = 9.5 Hz); 19F NMR (CDCl3) ddt, 1F, J = 61.9, 24.7, 9.3 Hz); IR 

3146.4, 3061.4, 2988.1, 2903.1, 1862.7, 1789.4, (cm-1, CaF2, CH2Cl2);  HRMS (ESI+)  calc for 

NaC14H14ClFO3: 307.0513, found 307.0510. 

 

12-bromo-13-fluorooctahydro-1,4:5,8-dimethano-4a,8a-(methanoxymethano)-naphthalene-9,11-

dione (57c).  To a solution of compound 42 (42 mg, 0.106 mmol) in 5 mL of dry acetone was added 

potassium bromide (51 mg, 0.424 mmol).  The solution was heated to 70 °C with stirring in a sealed tube 

and was allowed to react for 48 h.  The solvent was removed under reduced pressure and the resulting 

residue was dissolved in DCM (10 mL), and washed with water (2 x 10 mL).  The organic layer was then 

dried with magnesium sulfate, filtered through celite and concentrated under reduced pressure.  The crude 
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product was then purified by flash column chromatography on florisil 60-100 mesh with a 10% ethyl 

acetate and hexanes solution to yield 57c as white crystals (9.1 mg, 26% yield); mp = 157 C; 1H NMR 

(CDCl3) δ 5.84 (d, 1H, J = 24.8 Hz), 5.03 (d, 1H, J = 62.4 Hz), 2.72 (q, 2H, J = 4.6, 1.8), 2.68 (s, 2H), 2.33 

(d, 2H, J = 9.6), 1.84 (d, 2H, J = 9.3), 1.61 (d, 2H, J = 8.8 Hz), 1.51 (t, 2H, J = 9.1 Hz); 13C NMR (CDCl3) 

 172.6, 101.6 (d, J = 214.4 Hz), 68.2, 54.0 (d, J = 51.96), 47.3, 44.2 (d, J = 14.6 Hz), 25.8, 23.4 (d, J = 9.5 

Hz); 19F NMR (CDCl3) ddt, 1F, J = 61.9, 24.8, 8.3 Hz); IR 3152, 2962, 2926, 2853, 1865, 1783, 

(cm-1, CaF2, CH2Cl2);  HRMS (ESI+)  calc for NaC14H14BrFO3: 351.0008, found 351.0015. 

 

12-fluoro-13-iodooctahydro-1,4:5,8-dimethano-4a,8a-(methanoxymethano)-naphthalene-9,11-dione 

(57d).  To a solution of compound 42 (110 mg, 0.276 mmol) in 5 mL of dry acetone was added sodium 

iodide (165 mg, 1.1 mmol).  The solution was heated to 70 °C with stirring in a sealed tube and was 

allowed to react for 20 h.  The solvent was removed under reduced pressure and the resulting residue was 

dissolved in DCM (10 mL), and washed with water (2 x 10 mL).  The organic layer was then dried with 

magnesium sulfate, filtered through celite and concentrated under reduced pressure.  The crude product was 

then purified by silica gel flash column chromatography with a 20% ethyl acetate and hexanes solution to 

yield 57d as white crystals that gradually turned brown when exposed to light (33.8 mg, 33% yield); mp = 

167 C; 1H NMR (CDCl3) δ 5.86 (d, 1H, J = 25.3 Hz), 5.03 (d, 1H, J = 62.9 Hz), 2.70 (s, 2H), 2.67 (s, 2H), 

2.33 (d, 2H, J = 10.6 Hz), 1.83 (d, 2H, J = 10.1 Hz), 1.66 (d, 2H, J = 10.1), 1.52 (t, 2H, J = 8.6 Hz); 13C 

NMR (CDCl3)  (d, J = 214.4 Hz), 67.5, 48.3, 44.3 (d, J = 14.6 Hz), 30.1 (d, J = 49.8 Hz), 

27.4 (d, J = 2.2 Hz), 23.44 (d, J = 11.0 Hz); 19F NMR (CDCl3)  -173.16 (ddt, 1F, J = 61.9, 25.8, 8.3 Hz); 

IR 3156, 2961, 2908, 1867, 1772, (cm-1, CaF2, CH2Cl2);  HRMS (ESI+)  calc for NaC14H14IFO3: 398.9869, 

found 398.9873. 
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13-fluoro-9,11-dioxooctahydro-1,4:5,8-dimethano-4a,8a-(methanoxymethano)-naphthalene-12-

carbonitrile (57e).  To a solution of compound 42 (22 mg, 0.056 mmol) in 5 mL of dry N,N-

dimethylformamide (DMF) was added sodium cyanide (11 mg, 0.22 mmol).  The solution was heated to 80 

°C with stirring in a sealed tube and was allowed to react for 20 h.  The solution was then poured into ice-

cold water (20 mL) and extracted with EtOAc (3 x 15 mL).  The organic layers were combined, dried with 

magnesium sulfate, filtered through celite and concentrated under reduced pressure.  The crude product was 

then purified by silica gel flash column chromatography with a 20% ethyl acetate and hexanes solution to 

yield 57e as white crystals (12.2 mg, 79% yield); mp = 174 C; 1H NMR (CDCl3) δ 5.04 (d, 1H, J = 62.7 

Hz), 4.56 (d, 1H, J = 30.8 Hz), 2.91 (q, 2H, J = 4.6, 1.8 Hz), 2.7 (s, 2H), 2.28 (d, 2H, J = 9.9 Hz), 1.87 (d, 

2H, J = 9.3 Hz), 1.71 (d, 2H, J = 8.6 Hz), 1.56-1.49 (m, 2H); 13C NMR (CDCl3) 171.92, 118.7, 101.6 (d, 

J = 213.0 Hz), 69.6, 45.2, 44.3 (d, J = 13.9 Hz), 38.0 (d, J = 49.8 Hz), 26.0, 23.3 (d, J = 9.5 Hz); 19F NMR 

(CDCl3) -170.23 (ddt, 1F, J = 62.9, 30.9, 8.3 Hz); IR 3082, 2962, 2926, 2868, 2854, 1859, 1783, (cm-1, 

CaF2, CH2Cl2);  HRMS (ESI+)  calc for NaC15H14FNO3: 298.0855, found 298.0859. 

 

7.5 Experimental details for chapter 3. 

 

12-fluoro-13-hydroxyoctahydro-1,4:5,8-dimethano-4a,8a-(methanoxymethano)-naphthalene-9,11-

dione (47).  To a solution of 58 (26.5 mg, 0.01 mmol) in 3 mL of dry THF at 0 °C was added a 1M solution 

of lithium aluminum hydride (LAH) (0.2 mL, 0.02 mmol).  The solution was removed from the ice bath 

and refluxed for 2 hours.  The solution was cooled to 0 °C and quenched with water (8 μL), then 15% 
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aqueous NaOH solution (8 μL) and then water again (24 μL).  The mixture was allowed to stir for one hour 

at room temperature before it was diluted with water and extracted with ethyl acetate (3 x 10 mL), dried 

and concentrated under reduced pressure.  The crude product was purified by silica gel flash column 

chromatography with a 60% ethyl acetate and hexanes solution to yield 47 as white crystals (8.4 mg, 32% 

yield); 1H NMR (CDCl3) δ 5.17(d, 1H, J = 65.7 Hz), 4.81 (dd, 1H, J = 68.5, 11.4 Hz), 4.28 (dd, 1H, J = 

11.6, 3.5), 2.94 (s, 2H), 2.66 (s, 2H), 1.89 (t, 4H, J = 10.9 Hz), 1.67 (t, 2H, J = 9.7 Hz), 1.53 (q, 2H, J = 

15.7, 9.4 Hz); 13C NMR (CDCl3) 174.3, 103.8 (d, J = 209.3 Hz), 86.6, 70.7, 46.6, 44.6 (d, J = 13.2 Hz), 

26.5, 24.2 (d, J = 11.0 Hz); 19F NMR (CDCl3) -180.79 (tt, 1F, J = 69.1, 10.3 Hz); IR 3620, 2963, 2914, 

1861, 1780, (cm-1, CaF2, CH2Cl2); HRMS (ESI+)  calc for NaC14H15FO4: 289.0852, found 289.0856.  

 

12-fluoro-13-(hydroxy-d)octahydro-1,4:5,8-dimethano-4a,8a-(methanoxymethano)-naphthalene-9,11-

dione (d1-47).  Compound 47 was dissolved in d1-methanol with light heat.  The solvent was removed in 

vacuo.  2H NMR (CH2Cl2) δ 4.64 (d, 1D, J = 10.1 Hz); 19F NMR (CH2Cl2) -181.00 (t, 1F, J = 10.3 Hz); 

IR 2990, 2963, 2916, 2850, 2673, 1858, 1778, (cm-1, CaF2, CH2Cl2).  

 

13-fluorooctahydro-1,4:5,8-dimethano-4a,8a-(methanoxymethano)naphthalene-9,11,12-trione (58).  

To a solution of 41 (412 mg, 1.55 mmol) dissolved in 25 mL dichloromethane, was added powdered 3Å 

molecular sieves (4.74 g) and potassium carbonate (2.03 g).  The mixture was cooled to 0 °C and 

pyridinium chlorochromate (PCC) (501 mg, 2.32 mmol) was added with stirring.  The mixture was 

removed from the ice bath and heated to reflux.  The mixture was refluxed overnight, after which it was 

filtered through celite and concentrated under reduced pressure.  The crude product was purified through 
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flash column chromatography on florisil 60-100 mesh with 20% ethyl acetate and hexanes solution to yield 

58 as white crystals (308 mg, 75% yield); 1H NMR (CDCl3) δ 5.09 (dt, 1H, J = 56.0, 1.7 Hz), 2.74 (m, 2H), 

2.53 (dd, 2H, J = 2.6, 1.9), 1.99 (d, 2H, J = 10.7 Hz), 1.88 (d, 2H, J = 9.6 Hz), 1.69 (q, 2H, J = 14.3, 5.8 

Hz), 1.57 (m, 2H); 13C NMR (CDCl3) 204.7 (d, J = 6.6 Hz), 172.0, 102.2 (d, J = 205.7 Hz), 64.9 (d, J = 

2.9 Hz), 44.9 (d, J = 15.4 Hz), 44.3 (d, J = 1.5 Hz), 22.1 (d, J = 9.5 Hz), 20.8; 19F NMR (CDCl3) -182.43 

(dt, 1F, J = 56.7, 7.2 Hz); IR: 2984, 2901, 1864, 1781, (cm-1, CaF2, CH2Cl2);  HRMS (ESI+)  calc for 

NaC14H13FO4: 287.0696, found 287.0698. 

 

7.6 Experimental details for chapter 4. 

 

 

in-12-hydroxy-13-(1-methylethylidene)octahydro-1,4:5,8-dimethano-4a,8a-(methanoxymethano)-

naphthalene-9,11-dione (64).  To a flame dried round bottom flask equipped with a condenser and stir bar 

was added 72 (0.074 g, 0.26 mmol) in 4 mL dry THF.  To the solution was added a 2M lithium borohydride 

solution (0.52 mL) in THF.  The solution was then refluxed for three hours.  The solution was then 

quenched with a saturated solution of ammonium chloride and allowed to stir for an hour.  The product was 

extracted into ethyl acetate, and the combined organic extracts were dried with MgSO4 and concentrated 

under reduced pressure.  The residue was purified by silica gel flash chromatography with a 30% ethyl 

acetate and hexanes solution to yield 64 as white crystals (0.0099 g, 13% yield); mp = 167-171 °C; 1H 

NMR (CDCl3)  4.25 (d, 1H, J = 12.9 Hz), 4.05 (d, 1H, J = 13.1 Hz), 3.09 (m, 2H), 2.38 (s, 2H), 1.83 (d, 

2H, J = 8.8 Hz), 1.78 (s, 6H), 1.74-1.64 (m, 4H), 1.45-1.38 (m, 2H); 13C NMR (CDCl3)  173.7, 144.2, 

125.3, 85.3, 70.2, 46.4, 42.0, 26.3, 24.7, 20.8; IR 3424, 3063, 2982, 1856, 1778 (cm-1, CaF2, CH2Cl2); 

HRMS (ESI+) calc for NaC17H20O4: 311.1253, found 311.1257. 
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dimethyl-7-(1-methylethylidene)bicyclo[2.2.1]hept-2-ene-2,3-dicarboxylate (67).  A solution of 66 

(0.50 g, 2.01 mmol) dissolved in 20 mL of THF was treated Wilkinson’s catalyst (75 mg, 0.081 mmol).  

The mixture was shaken in a Parr apparatus under hydrogen at 3.2 bar for two days.  The mixture was then 

filtered through celite and concentrated under reduced pressure.  The crude product was purified by flash 

chromatography on florisil with a 20% ethyl acetate and hexanes solution to yield 67 as a pale yellow oil, 

which solidified overnight into an amorphous solid (0.486 g, 96% yield); 1H NMR (CDCl3)  3.76 (s, 6H), 

3.67 (m, 2H), 1.8 (d, 2H, J = 7.5 Hz), 1.53 (s, 6H), 1.38-1.28 (m, 2H); 13C NMR (CDCl3) 

IR 3063, 2956, 2873, 1727, 1618, 1436 (cm-1, CaF2, CH2Cl2); 

HRMS (ESI+) calc for NaC14H18O4: 273.1097, found 273.1097. 

 

8-(1-methylethylidene)-4,5,6,7-tetrahydro-4,7-methanoisobenzofuran-1,3-dione (68).  To a stirred 

solution of 67 (1.31 g, 5.23 mmol) in 50 mL of THF at 0 °C was added lithium hydroxide monohydrate 

(1.10 g, 26.2 mmol) in 50 mL of water.  The solution was allowed to warm to room temperature and 

continue stirring for an hour.  The solution was then acidified with 3M HCl, and extracted with EtOAc (3 x 

50 mL).  The organic extracts were combined, dried with MgSO4, and concentrated under reduced pressure 

to yield the carboxylic acid, which was used in the following step without further purification.  The 

carboxylic acid was dissolved in 150 mL of trifluoroacetic anhydride and refluxed for two days.  The 

solvent was distilled off and the crude product was purified by flash chromatography on florisil with a 50% 

ethyl acetate and hexanes solution to yield 68 as a pale yellow oil, which solidified overnight into an 

amorphous solid (0.367, 34% yield); 1H NMR (CDCl3)  3.86 (s, 2H), 2.06-1.97 (m, 2H), 1.56 (s, 6H), 
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1.31-1.25 (m, 2H); 13C NMR (CDCl3)  159.9, 158.2, 147.7, 115.1, 40.8, 25.4, 19.6; IR 2984, 2949, 2876, 

1839, 1768, 1728 (cm-1, CaF2, CH2Cl2). 

 

out-12-(1-methylsiletan-1-yl)-13-(1-methylethylidene)-1,2,3,4,5,8-hexahydro-1,4:5,8-dimethano-4a,8a-

(methanoxymethano)-naphthalene-9,11-dione (69).  Anhydride 68 (1.28 g, 6.28 mmol) and silylated 

diene 40 (2.61 mL, 16 mmol) were combined with DCM (5 mL) in a capped 10 mL syringe.  The resulting 

slurry was then pressurized for two days at 12 kbar.  The resulting solution was concentrated under reduced 

pressure and the residue was purified by silica gel flash chromatography with a 5% ethyl acetate and 

hexanes solution to yield 69 as white crystals (0.41 g, 18% yield); mp = 156-158 °C; 1H NMR (CDCl3)  

6.36 (s, 2H), 3.28 (m, 2H), 3.11 (m, 2H), 2.82 (s, 1H), 2.03-1.88 (m, 2H), 1.69 (d, 2H, J = 10 Hz), 1.64 (s, 

6H), 1.57-1.50 (m, 2H), 0.93-0.75 (m, 4H), 0.16 (s, 3H); 13C NMR (CDCl3)  173.7, 142.7, 139.3, 119.5, 

67.5, 51.8, 48.4, 42.2, 26.0, 20.7, 18.5, 14.9, -0.4; IR 2968, 2929, 2887, 1857, 1776, 1217 (cm-1, CaF2, 

CH2Cl2); HRMS (ESI+) calc for NaC21H26O3Si: 377.1543, found 377.1544. 

 

out-12-hydroxy-13-(1-methylethylidene)-1,2,3,4,5,8-hexahydro-1,4:5,8-dimethano-4a,8a-

(methanoxymethano)-naphthalene-9,11-dione (70).  Compound 69 (0.41 g, 1.16 mmol) was dissolved in 

a 1:1 mixture of THF and methanol (50 mL) to which was added potassium fluoride (0.134 g, 2.31 mmol) 

and potassium bicarbonate (0.231 g, 2.31 mmol).  The mixture was then cooled to 0 °C and 30% hydrogen 

peroxide (1.96 mL, 17 mmol) was added dropwise.  The solution was stirred overnight at room 
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temperature.  The solution was mixed with water to dissolve any salts and extracted once with ethyl acetate.  

The organic layer was washed with a 10% aqueous sodium sulfite solution.  Aqueous layers were combined 

and extracted with ethyl acetate (3 x 50 mL).  All organic fractions were combined, dried with MgSO4, and 

concentrated under reduced pressure.  The residue was purified by silica gel flash chromatography with a 

30% ethyl acetate and hexanes solution to yield 70 as white crystals (0.29 g, 88% yield); mp = 174-177 °C; 

1H NMR (CDCl3)  6.34 (s, 2H), 5.19 (s, 1H). 3.24 (m, 2H), 3.13 (m, 2H), 2.19 (s, 1H), 1.68 (s, 6H), 1.68-

1.64 (m, 2H), 1.50-1.42 (m, 2H); 13C NMR (CDCl3)  172.3, 142.4, 135.2, 119.3, 83.7, 64.1, 54.1, 41.7, 

25.7, 20.8; IR 3608, 3558, 3060, 2966, 2894, 1854, 1779 (cm-1, CaF2, CH2Cl2); HRMS (ESI+) calc for 

NaC17H18O4: 309.1097, found 309.1098. 

 

out-12-hydroxy-13-(1-methylethylidene)octahydro-1,4:5,8-dimethano-4a,8a-(methanoxymethano)-

naphthalene-9,11-dione (71).  Compound 70 (0.450 g, 1.57 mmol) was added to a flame dried three-neck 

round bottom flask with large stir bar under nitrogen.  Dipotassium azodicarboxylate (2.14 g, 11 mmol) 

was added and the solids were dissolved in methanol (80 mL).  Glacial acetic acid (1.26 mL, 22 mmol) was 

added dropwise to the stirred mixture.  The mixture was allowed to stir until complete consumption of the 

starting material was observed by TLC (2 hours).  The mixture was slowly quenched with water until gas 

evolution ceased.  The product was extracted with ethyl acetate (3 x 30 mL), and the combined organic 

extracts were dried with MgSO4 and concentrated under reduced pressure.  The residue was purified by 

flash chromatography on florisil with a 30% ethyl acetate and hexanes solution to yield 71 as white crystals 

(0.36 g, 79% yield); mp = 179-181 °C; 1H NMR (CDCl3)  5.28 (s, 1H), 2.97 (s, 2H), 2.41 (m, 2H), 2.05 (d, 

2H, J = 9.2 Hz), 1.70 (s, 6H), 1.62-1.55 (m, 2H), 1.55-1.48 (m, 2H), 1.48-1.39 (m, 2H); 13C NMR (CDCl3) 

 173.6, 143.3, 118.0, 76.7, 65.8, 47.1, 42.6, 25.7, 23.8, 20.9; IR 3612, 2972, 2895, 1854, 1777 (cm -1, CaF2, 

CH2Cl2); HRMS (ESI+) calc for NaC17H20O4: 311.1254, found 311.1254. 
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13-(1-methylethylidene)octahydro-1,4:5,8-dimethano-4a,8a-(methanoxymethano)-naphthalene-

9,11,12-trione (72).  To a flame dried round bottom flask equipped with a condenser and large stir bar, was 

added 71 (0.10 g, 0.35 mmol), crushed 3 Å molecular sieves (0.89 g) and potassium carbonate (0.38 g).  To 

the mixture was added DCM (20 ml) followed by cooling to 0 °C.  Pyridinium chlorochromate (PCC) 

(0.094 g, 0.438 mmol) was added and the solution was allowed to warm to room temperature before being 

refluxed overnight.  The mixture was then filtered through celite and concentrated under reduced pressure.  

The residue was purified by silica gel flash chromatography with a 20% ethyl acetate and hexanes solution 

to yield 72 as white crystals (0.072 g, 72% yield); mp = 160-164 °C; 1H NMR (CDCl3)  2.99 (m, 2H), 2.26 

(m, 2H), 1.87 (d, 2H, J = 10.8 Hz), 1.76 (d, 2H, J = 9.4 Hz), 1.68-1.6 (m, 4H), 1.60 (s, 6H); 13C NMR 

(CDCl3)  205.4,172.1, 134.7, 129.8, 62.3, 45.1, 43.3, 25.1, 21.1, 19.4 ; IR 2988, 2893, 1863, 1781, 1764 

(cm-1, CaF2, CH2Cl2); HRMS (ESI+) calc for NaC17H18O4: 309.1103, found 309.1106. 

 

7.7 Experimental details for chapter 5. 

 

12-hydroxyoctahydro-1,4:5,8-dimethano-4a,8a-(methanoxymethano)naphthalene-9,11-dione (102). 

Alcohol 105 (0.116 g, 0.47 mmol) was dissolved in THF (20 mL) and palladium on carbon (0.02 g) was 

added.  The mixture was hydrogenated on a Parr hydrogenator at 2.4 bar for five hours.  The catalyst was 

removed by filtration through celite and the sample was concentrated under reduced pressure to yield 102 

as white crystals (0.111, 95%); 1H NMR (CDCl3) 5.14 (s, 1H), 2.62 (s, 2H), 2.43 (m, 2H), 2.35 (d, 1H, J 
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= 11.9 Hz), 2.07 (d, 2H, J = 9.6 Hz), 1.64 (d, 2H, J = 10.6 Hz), 1.48 (d, 1H, J = 12.7 Hz), 1.49-1.39 (m, 

4H); 13C NMR (CDCl3)  174.1, 78.0, 67.2, 46.8, 43.2, 43.0, 27.6, 24.1; IR 3055, 2977, 2901, 1861, 1781, 

(cm-1, CaF2, CH2Cl2) ); HRMS (ESI+) calc for NaC14H16O4: 271.0946, found 271.0941. 

 

9,11-dioxooctahydro-1,4:5,8-dimethano-4a,8a-(methanoxymethano)naphthalen-12-yl 

trifluoromethanesulfonate (103).  To a flame dried round bottom flask was added 102 (0.1 g, 0.40 mmol) 

dissolved in DCM (5 mL).  The solution was treated with pyridine (0.18 mL, 2.30 mmol) and cooled to -78 

°C.  A 1M triflic anhydride solution in DCM (0.6 mL, 0.60 mmol) was added dropwise, and the solution 

was allowed to stir at room temperature for 1.5 h.  The solution was washed with a cold 10% aqueous 

NaHCO3 solution, then brine.  The organic layer was isolated, dried with magnesium sulfate and 

concentrated under reduced pressure.  The crude product was purified by flash chromatography on florisil 

with a 20% ethyl acetate and hexanes solution to yield 103 as white crystals (0.143 g, 94%); 1H NMR 

(CDCl3) 5.95 (s, 1H), 2.84 (m, 2H), 2.73 (m, 2H), 2.18 (d, 1H, J = 12.5 Hz), 2.07 (d, 2H, J = 9.6 Hz), 

1.73 (d, 2H, J = 9.0 Hz), 1.67 (d, 2H, J = 8.8 Hz), 1.62 (d, 1H, J = 12.5 Hz), 1.51 (d, 2H, J = 8.9 Hz); 13C 

NMR (CDCl3)  172.1, 118.5 (q, J = 320 Hz), 90.9, 66.3, 45.8, 43.2, 42.9, 27.4, 24.0; 19F NMR (CDCl3)  -

75.40 (s, 3F); IR 2982, 2908, 1861, 1785, (cm-1, CaF2, CH2Cl2) ); HRMS (ESI+) calc for NaC15H15F3O6S: 

403.0439, found 403.0441. 

 

12-hydroxy-1,2,3,4,5,8-hexahydro-1,4:5,8-dimethano-4a,8a-(methanoxymethano)-naphthalene-9,11-

dione (113).  Anhydride 100 (0.5 g, 3.05 mmol) and silylated diene 40 (1.49 mL, 9.14 mmol) were 

combined with DCM (4 mL) in a capped 10 mL syringe.  The resulting slurry was then pressurized for 
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three days at 12 kbar.  The resulting solution was concentrated under reduced pressure and the residue was 

purified by silica gel flash chromatography with 5% ethyl acetate and hexanes to yield an inseparable 

mixture of the Diels-Alder products (1.06 g) as a white waxy solid.  The mixture of isomers was then 

dissolved in a 50:50 mixture of THF and methanol (50 mL).  Potassium fluoride (6.74 mmol) and 

potassium bicarbonate (6.74 mmol) were then added and the solution was cooled to 0 °C.  Then 5.73 mL of 

30% hydrogen peroxide was added dropwise to the flask.  The solution was allowed to warm to room 

temperature and stirred overnight.  The solution was quenched with a 10% solution of sodium sulfite (20 

mL) and extracted four times with ethyl acetate.  The organic layers were washed with water and brine, 

dried with magnesium sulfate and concentrated under reduced pressure.  The crude product was purified by 

gradient column chromatography on silica gel with 30% then 50% ethyl acetate and hexanes to yield 113 as 

white crystals (0.116 g, 15%); 1H NMR (CDCl3) 6.39 (m, 2H), 5.04 (d, 1H, J = 11.7 Hz), 3.34 (m, 2H), 

2.80 (m, 2H), 2.39 (d, 1H, J = 12.1 Hz), 2.21 (d, 1H, J = 11.7 Hz), 1.75 (d, 2H, J = 9 Hz), 1.56 (d, 1H, J = 

12.1 Hz), (d, 2H, J = 9.3 Hz); 13C NMR (CDCl3)  172.6, 135.9, 84.9, 65.9, 54.1, 43.0, 41.5, 27.5; IR 3564, 

3054, 2975, 2902, 1858, 1782, (cm-1, CaF2, CH2Cl2) );  HRMS (ESI+) calc for NaC14H14O4: 269.0784, 

found 269.0783. 

 

7.8 Experimental details for chapter 6. 

 

12-fluoro-1,2,3,4-tetramethyl-13-phenyl-1,4,5,6,7,8-hexahydro-1,4-borano-5,8-methano-4a,8a-

(methanoxymethano)naphthalene-9,11-dione (107).  To a sealed tube was added freshly made dimer 105 

(0.971 g, 2.48 mmol) dissolved in 3 mL dry, degassed DCM and dienophile 20 (0.903, 4.96 mmol).  The 

tube was sealed and heated at 80 C for six hours.  The solvent was removed in vacuo and the crude 

product was purified by flash column chromatography on florisil with a 5% ethyl acetate and hexanes 

solution to yield 107 as white crystals (0.8426 g, 45% yield); mp = 182 C; 1H NMR (CDCl3) δ 7.26-7.20 
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(m, 3H), 7.18-7.09 (m, 2H), 5.11 (d, 1H, J = 56.7 Hz), 2.96 (m, 2H), 1.88 (m, 6H), 1.82 (d, 2H, J = 8.8 Hz), 

1.48 (s, 6H), 1.42 (m, 2 H); 13C NMR (CDCl3) 173.0 (J = 0.7 Hz), 133.58, 133.55, 131.0 (J = 2.6 Hz), 

128.0, 127.7, 103.5 (J = 206.0 Hz), 73.0 (J = 4.8 Hz), 42.1 (J = 15.5 Hz), 21.6, 21.4, 12.1, 11.5;19F NMR 

(CDCl3) -189.1 (d, 1F, J = 56.8 Hz); IR 3055, 2963, 2932, 1856, 1772, (cm-1, CaF2, CH2Cl2). 
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