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Abstract 

The overall goal of this thesis is to investigate the various applications in which 

micron and nanometer sized polymeric particles could be synthesized to mimic biological 

cells and tissues to achieve a therapeutic effect.  Particularly, the emphasis of this particle 

design is on the development of artificial antigen presenting cells (aAPC) for 

immunotherapy.  Although the work in this thesis is varied in nature, this dissertation can 

be broadly categorized in three aims.  In Aim 1, the role of shape in the design of aAPC 

was investigated with respect to use for cancer immunotherapy.  An automated process 

was developed for the generation of anisotropic particles as well as a model system with 

which to evaluate their therapeutic efficacy in combination with immune checkpoint 

blockades.  These therapeutics were then evaluated in a murine model and non-spherical 

aAPC were found to outperform spherical aAPC.  Furthermore, the core polymeric 

material was modified to generate much stronger aAPC, with sufficient 

immunostimulation to engage the endogenous immune cells.  In Aim 2, the role of 

surface chemistry was investigated in the design and use of particles for biomimetic drug 

delivery applications.  Particles with biomimetic surface bound lipid membranes were 

synthesized to mimic the natural biological membrane of a cell.  Anisotropic particles 

were synthesized and coated with naturally derived red blood cell membranes and were 

found to outperform equivalently coated spherical nanoparticles in various important 

drug delivery parameters such as pharmacokinetics and cellular uptake and elimination.  

In Aim 3, the role of stimulus response was investigated with respect to particle design.  

Particles with thermally triggered shape memory effect were synthesized and found to 

allow for spatiotemporally controlled shape control of spherical and ellipsoidal particles.  
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In addition, focused ultrasound triggered drug delivery particles were synthesized to 

enable focal, noninvasive neuromodulation in a rat seizure model.  The particle 

therapeutic systems developed as part of this thesis will have a wide and diverse impact 

on multiple fields in medicine including immunotherapy, regenerative medicine, and 

neuromodulation.  
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Chapter 1: Introduction 

1.1 Overview of Thesis 

 The work presented in this thesis from the most generalized standpoint possible 

can be summarized as a dissertation on the design and implementation of therapeutics 

that are based on micron and nanoscale polymeric particles that possess a particular 

feature of biomimicry.  Specifically, these particle systems were designed to mimic the 

features of cellular anatomy and physiology that allow cells to perform their natural 

functions in the body with precision and efficiency.  Chapter 2 presents background 

information on the state of the art for biomimetic therapeutics.  Although not a 

comprehensive investigation into all possible characteristics of a cell that can be 

mimicked in a particle system, this thesis is focused on the exploration of particle shape 

(to mimic cell shape), particle surface chemistry (to mimic cell membranes), and particle 

stimulus response (to mimic cell physiology).   

 In recent years, particle shape has been found to impact their efficacy as 

biomedical therapeutics.  By designing particles that deviate from the traditional spherical 

shape, it has been shown therapeutic efficacy can be greatly enhanced.  In Chapter 3, a 

process for the automated generation of ellipsoidal polymeric particles is presented.  The 

primary application that these non-spherical particles has been applied to is in the 

generation of artificial antigen presenting cells (aAPC), particles that are designed to 

mimic antigen presenting cells in their interaction with T-Cells to direct the effector 

function of the latter.  Chapter 4 demonstrates how biodegradable polymeric aAPC can 

be combined with the immune checkpoint blockade to achieve modest therapeutic effect 

in a murine treatment model.  Chapter 5 then incorporates the principle of non-spherical 
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particles and aAPC to demonstrate enhanced therapeutic efficacy of nanoellipsoidal 

aAPC in a murine melanoma model.  Finally, Chapter 6 summarizes a new direction in 

the design of aAPC, namely the use of a novel polymeric blend in the synthesis of aAPC. 

 In addition to shape, biomimetic surface chemistry has been found to be an 

important factor in the therapeutic efficacy of particle-based therapeutics.  Generally, the 

trend has been found that increasing the biomimicry of the particle surface results in 

increased biological functionality.  This has been accomplished through various 

mechanisms but one promising strategy has been the synthesis of supported lipid bilayers 

on the surface of the particle to reproduce the cell membrane, a key cellular component to 

allow it to interact with the extracellular environment.  The work in this thesis along this 

line of investigation has been to engineer these artificial cell membranes on the surface of 

the anisotropic ellipsoidal particles.  In Chapter 7, synthetic lipids were utilized to create 

an artificial membrane on the surface.  It was found that these particles maintain the 

properties of cell membranes including lateral membrane fluidity and presentation of 

ligands for interaction with other cells.  In Chapter 8, naturally derived cell membranes 

from red blood cells (RBC) were used to coat the anisotropic particles.  It was found from 

this work that the RBC membranes synergized with particle shape to enhance particle 

drug delivery efficacy and pharmacokinetic properties. 

 The final parameter of biomimicry investigated in this thesis is the capability of 

particle therapeutics to perform an action in response to a controlled stimulus.  Cells in 

the body have a tremendous capacity to respond to a variety of mechanical, chemical, and 

electrical cues to perform a variety of functions.  Particles can be similarly engineered to 

respond to an external stimulus that effects a biologically relevant function such as drug 
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release or thermal ablation.  The work in the thesis along this paradigm of biomimicry 

centers around two particle systems designed to mimic cellular physiology through 

stimulus response.  In Chapter 9, a system for photothermal actuation of particle shape 

changes is presented and found to influence the interaction of particles with phagocytes 

similarly to what was presented in previous chapters through shape effects.  In Chapter 

10, a liquid core particle was developed for the focused ultrasound triggered release of 

neuromodulatory agents for non-invasive neuromodulation.  It was found that the 

particles were sufficiently potent to silence chemically induced seizures in a rodent 

model. 

 Finally, some speculative future directions for these projects are presented in 

Chapter 11.  These are possible and probable projects and uses for the biomimetic 

therapeutics that are presented in the thesis.  These ideas represent the very forefront of 

biomimetic particle technology and have the potential to revolutionize the landscape of 

biomedical therapeutics.    

1.2 Specific Aims 

 The following is an outline of the specific aims that served as the benchmarks for 

completion of this dissertation.  Each of the aims corresponds to one of the feature of 

biomimetic particle therapeutics that were summarized in section 1.1.  In Aim 1 the role 

of particle shape and particle material was investigated with respect to artificial antigen 

presenting cells and serves as the basis for the work presented in Chapters 3, 4, 5, and 6.  

In Aim 2, the role of particle surface chemistry was investigated in terms of anisotropic 

particle cell membrane coating.  This work serves as the basis of Chapters 7 and 8.  In 

Aim 3, the role of particle stimulus response is investigated with respect to photothermal 
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actuation of particle shape change and focused ultrasound triggered drug delivery for 

noninvasive neuromodulation.  The work of this aim serves as the basis of Chapters 9 and 

10.  

Specific Aim 1. Develop anisotropic polymeric particles of various ellipsoidal shapes 

and apply these materials to the design of artificial antigen presenting cells (aAPCs) 

for cancer immunotherapy. 

a. Develop an automated thin film stretching process for the generation of 

anisotropic polymeric micro- and nanoparticles. 

b. Develop an in vivo tumor treatment model for evaluation of aAPC efficacy. 

c. Examine the effect of particle shape in the design and efficacy of micro and 

nanodimensional aAPCs for antigen specific T-Cell activation. 

d. Develop enhanced artificial antigen presenting cells using polymeric blends and 

apply to cancer immunotherapy. 

Specific Aim 2. Develop supported lipid bilayers (SLBs) from synthetic and 

naturally derived lipid sources and apply to biomimetic drug delivery.  

a. Develop functionalized supported lipid bilayers from synthetic lipid sources and 

characterize stability and membrane fluidity. 

b. Develop functionalized supported lipid bilayers from naturally derived cell based 

lipid sources and characterize potential for biomimetic drug delivery. 

c. Implement anisotropic supported lipid bilayers from naturally derived cell-based 

lipid sources for enhanced pharmacokinetics and drug delivery. 

Specific Aim 3. Synthesize polymeric particles of varying biomimetic materials and 

investigate potential for drug delivery and immunotherapy. 
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a. Develop polymeric micro- and nanoparticles encapsulating hydrophobically 

stabilized gold nanoparticles for laser triggered shape memory. 

b. Develop ultrasound sensitive particles for spatiotemporally controlled delivery of 

anesthetic for noninvasive neuromodulation. 

c. Implement ultrasound sensitive particles for spatiotemporally controlled 

neuromodulation in a rat pharmacokinetic model and a rat seizure model. 

1.3 Summary of Contributions 

 The following is a summary of the major scientific contributions that have been 

published and presented as a result of the work described in this thesis presented by the 

chapter in which they correspond to: 

Chapter 2: 

➢ Meyer RA and Green JJ. Shaping the Future of Nanomedicine: Anisotropy in 

Polymeric Nanoparticle Design. Wiley Interdisciplinary Reviews: Nanomedicine 

and Nanobiotechnology, 8(2), 2016, 191-207.  

➢ Ben-Akiva E,* Meyer RA,* Wilson DR,* and Green JJ. Surface engineering for 

lymphocyte programming.  Advanced Drug Delivery Reviews. 114(2017), 2017, 

102-115. 

➢ Meyer RA and Green JJ. Artificial Antigen Presenting Cells: Biomimetic 

Strategies for Directing the Immune Response. Biomaterials in Regenerative 

Medicine and the Immune System. Springer International Publishing, 2015, 257-

277. 

Chapter 3: 
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➢ Meyer RA, Meyer RS, and Green JJ. An automated multidimensional thin film 

stretching device for the generation of anisotropic polymeric micro- and 

nanoparticles. Journal of Biomedical Materials Research Part A 103(8), 2015, 

2747-2757. 

➢ Meyer RA, Meyer RS, Green JJ. An Automated Thin Film Stretching Device for 

the Generation of Anisotropic Polymeric Micro- and Nanoparticles. NanoDDS. 

2016. 

Chapter 4: 

➢ Kosmides AK,* Meyer RA,* Hickey JW, Aje K, Green JJ, and Schneck JP. 

Biodegradable artificial antigen presenting cells with anti PD-1 immunotherapy to 

treat melanoma. Biomaterials, 118, 2017, 16-26. 

➢ Meyer RA, Kosmides AK, Aje K, Schneck JP, and Green JJ.  Anti-PD1 and 

Biodegradable Artificial Antigen Presenting Cell Dual Therapy for Melanoma. 

Biomedical Engineering Society Annual Meeting, 2015. 

Chapter 5: 

➢ Meyer RA,* Sunshine JC,* Perica K, Kosmides AK, Aje K, Schneck JP, and 

Green JJ. Biodegradable Nanoellipsoidal Artificial Antigen Presenting Cells for 

Antigen Specific T-Cell Activation. Small 11(13), 2015, 1519-1525. (Featured on 

the Back Cover) 

➢ Meyer RA, Sunshine JC, Perica K, Aje K, Schneck JP, and Green JJ. 

Biodegradable Nanoellipsoidal Artificial Antigen Presenting Cells for Cancer 

Immunotherapy. Biomedical Engineering Society Annual Meeting, 2014. 

Chapter 6: 
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➢ Meyer RA, Hickey JW, Kosmides AK, Rhodes KR, Bartkowski A, Schneck JP, 

Green JJ. Biomimetic Biodegradable Artificial Antigen Presenting Cells for 
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Chapter 2: State of the Art1 

2.1 Overview of the Impact of Shape in Particle Design 

2.1.1 Introduction 

Polymeric nanoparticles are finding increasing success in nanomedicine 

applications as both therapeutics and diagnostics.  Due to their biocompatibility, their 

capability to circumvent normal biological barriers to small molecules, and their targeting 

abilities, polymeric nanoparticles have been shown effective in numerous functions.  

These applications include most prominently drug delivery vehicles for various types of 

chemical and biological therapeutics1-4 and contrast agents for diagnostic and imaging 

purposes.5-7 A wide range of fabrication methods exist for polymeric nanoparticles 

including bulk emulsions,8 microfluidics,9 and self-assembly.10  These methods have 

been successful at synthesizing spherical nanoparticles with advantageous properties 

including biodegradability, drug release, biological targeting, and evasion of in vivo 

elimination.   

 One property of nanoparticles that has been investigated extensively in the 

literature for controlling biological interactions is particle size.11-13  Nanodimensional 

polymeric constructs have been synthesized across the full range of 1-1000 nm depending 

on their desired application.  Although particle size has been shown to have a significant 

                                                 
This chapter contains material modified from the following articles previously published as: Meyer RA and 
Green JG. Shaping the Future of Nanomedicine: Anisotropy in Polymeric Nanoparticle Design. WIREs: 
Nanomed. Nanobiotechnol., 8(2), 2016, 191-207. Ben-Akiva E, Meyer RA, Wilson DR, and Green JJ. 
Surface engineering for lymphocyte programming.  Adv. Drug Deliver. Rev. 114(2017), 2017, 102-115. 
Meyer RA and Green JJ. Artificial Antigen Presenting Cells: Biomimetic Strategies for Directing the 
Immune Response. Biomaterials in Regenerative Medicine and the Immune System. Springer International 
Publishing, 2015, 257-277. Meyer RA, Sunshine JC, and Green JJ. Biomimetic Particles as Therapeutics. 
Trend. Biotechnol. 33(9), 2015, 514-524. 
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effect on properties such as biodistribution and cellular uptake of polymeric 

nanomedicines, it is not the only parameter that should be considered in the design of a 

nanotherapeutic or nanodiagnostics.  Interest in nanoparticle shape has emerged in the 

past several years as a novel strategy to control the interface between particles and 

biological systems and to enhance efficacy of polymeric nanomedicines.14  Anisotropy 

and shape specificity in biological interactions have been shown to be a critical 

parameters at the molecular,15 cellular,16 and tissue levels.17  As such, to enable superior 

biological interaction between a nanoparticle and its target, the shape of the nanoparticle 

should be rationally engineered for its biological function.  In this review, shape has been 

considered in a variety of settings including nanoparticle drug delivery, targeting, cellular 

uptake, biodistribution, immunoengineering, and tissue engineering. 

 This section describes the state-of-the-art of polymeric anisotropic nanoparticles 

and summarizes the main fabrication methods and applications of anisotropic 

nanoparticles in the literature over the past decade.  The primary focus of this section is 

on polymeric nanoparticles and on engineered nanoscale features.  While larger, micron 

scale polymeric particles and inorganic nanoparticles are also of interest, they are beyond 

the scope of this chapter and a reader is referred to other manuscripts18,19 that discuss 

these circumstances. Future research into the fabrication and application of anisotropic 

polymeric nanoparticles will provide insight into the benefits of their utilization and 

optimize their use in nanomedicine. 

2.1.2 Fabrication of Anisotropic Nanoparticles and Nanofeatures 

Top-Down Methods 
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Top-down assembly methods are widely applicable and controllable for the 

fabrication of nanostructures including nonspherical anisotropic particles.  Through 

macroscopic manipulation to environments containing preformed nanoscale objects, a 

wide variety of particle shapes and morphologies can be produced.  The main top-down 

fabrication methods utilized for the fabrication of anisotropic nanoparticles and creation 

of nanofeatures include mechanical deformation by thin film stretching, particle 

replication in non-wetting templates, and micro/nanoscale lithography. 

 A widely applied method to generate particles of non-spherical shape is the thin 

film stretching method pioneered by Ho et. al.20  The method consists of synthesizing 

spherical polymeric nanoparticles and casting them into a thin film of polyvinyl alcohol.  

The film is then heated above the glass transition temperature of the polymer so that the 

particles can be easily deformed and the thin film is stretched utilizing a single 

dimensional mechanical tension application device.  Upon cooling, the resulting particles 

are ellipsoidal in shape and have been demonstrated to have an aspect ratio of 2-5.20  

Alternatively, rather than increasing temperature, a solvent can also be used to enable 

particle deformation within a film.  In recent years, this method has been adapted and 

further developed to produce polymeric micro- and nanoparticles consisting of a wide 

repertoire of shapes.  By translating the method to two dimensions and modifying particle 

deformation procedures, Champion et. al. demonstrated the capability to generate many 

different shapes including rods, discs, worms, bullets, barrels, as well as porous 

morphological variants of these shapes (Figure 2.1).21   

Particles fabricated by thin film stretching method have also been of recent 

interest for their shape memory properties.  Yoo et. al. published a study investigating the 
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effect of various environmental stimuli on the shape retraction of ellipsoidal PLGA 

particles,22 rendered anisotropic by the thin film stretching method.  The authors 

demonstrated complete reversion to a spherical form in the presence of liquefying factors 

including increased temperature, decreased pH, and chemical treatment.  In addition, 

upon incubating shape-switching opsonized microparticles with macrophages, the authors 

demonstrated that the particle resisted uptake until it assumed a spherical form.22 

Wischke et. al. examined the capability of  copolymers composed of polycaprolactone 

(PCL) and polypentadecalactone (PPDL) to undergo shape programming and reversion.23   

Utilizing the stretching method and taking advantage of the fact that the polymers 

possessed a “permanent reprogramming” melting temperature and a “temporary 

reprogramming” melting temperature, the authors were able to induce shape change from 

oblate ellipsoid to prolate ellipsoid as well as reversion of the ellipsoids to the spherical 

form (Figure 2.2).23   

 Another method utilized for the production of nonspherical nanoparticles is the 

particle replication in non-wetting templates (PRINT) technique.  Pioneered by Rolland 

et. al. this method allows for excellent top-down control over particle morphology.24  The 

method consists of first synthesizing a silicon mold with nanoscale features by e-beam 

lithography.  From this fabricated template, a photocurable non wetting polymer 

perfluoropolyether (PFPE) is deposited and solidified to form the mold.  The non-wetting 

nature of the polymer allows for individual, discrete particles to be molded as opposed to 

a film smear.  The authors demonstrated wide versatility of this method through the 

synthesis of poly (lactic acid), poly(pyrole), and poly(ethylene glycol) (PEG) particles of 

various shapes including cones, rods, and arrows.24 The method was combined with 
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mechanical elongation of the PFPE mold to produce rods with a higher aspect ratio as 

well as disc shaped particles.25  In addition, this procedure has been recently combined 

with layer by layer spray-on technology to generate biologically active nanoparticles.26 

 An additional technique that has been investigated extensively in the literature for 

the fabrication of anisotropic nanoparticles and nanofeatures is particle lithography.  

Through the use of particle-surface interactions, various methods have been developed to 

add nanoscale features anisotropically onto micron scale particles. Contact printing has 

been utilized to induce Janus-like “two faced” anisotropy in micron sized latex 

particles.27  Micron scale particle lithography has been utilized to add nanoscale 

anisotropic features to chemically modified polystyrene particles.  By immobilizing the 

particles on a charged glass surface, the authors were able to block the functionalization 

of a nanoscale region on the surface of the particle.  Upon release from the surface, the 

previously blocked nanoscale region could be further modified.28  Nanoscale patches of 

gold have also been deposited on tightly packed lattices of microparticles.29  The 

morphology of these particles is controlled through the crystal structure of the multilayer 

particle lattices.   

 In addition to particle lithography, nanoimprint lithography has recently been 

appropriated for the fabrication of anisotropic polymeric nanoparticles.  Direct 

fabrication of nanorods has also be reported through a procedure in which a nanoetched 

silicon is utilized as a template to mold a photoresist in order to produce rod shaped 

particles less than a micron in size.30  This procedure could theoretically be translated to 

any photocurable polymer and aspect ratio can be regulated by the depth of silicon 

etching.  Nanoimprint lithography has also been applied to synthesize anisotropic 
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particles made of a crosslinked peptide that can be utilized to encapsulate antibodies and 

nucleic acids.31  The authors demonstrated that these particles could be degraded and 

release their cargo through the addition of a protease.  Thus, there are multiple 

approaches to successful top-down fabrication of nanoparticles designed to have various 

anisotropic shapes.       

Bottom-Up Methods 

Nonspherical nanoparticles have also been synthesized from a variety of directed 

self-assembly methods.  Generally these procedures are more experimental in nature and 

have not found widespread application due to the difficulty of controlling self-assembly.  

However, the simplicity of these bottom-up approaches makes them attractive for the 

synthesis of anisotropic nanoparticles.  These methods include block co-polymer 

aggregation, phase separation by polymerization, and particle core destabilization. 

 Block copolymers offer the capability to design particle shape at the molecular 

level.  By varying the length and composition of the individual blocks in a block 

copolymer, anisotropic nonspherical particles can be synthesized by self-assembly.  One 

example of the use of block copolymers in non-spherical particle synthesis was a study 

published by Jiang et.al. which demonstrated the self-assembly of PEG and 

polyphosphoaramidate (PPA) block copolymers into long string like micelles in the 

presence of DNA plasmids.32  The resultant nanoparticles demonstrated an enhanced 

stability in aqueous media as well as reduced toxicity for in vivo applications. Other 

approaches have yielded better control over the rod-like shape of the particles.  Petzetakis 

et. al. demonstrated the use of enantiomerically pure poly lactide (as opposed to the 

mixture of D and L enantiomers which is commonly used) in a block copolymer with 
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polyacrylic acid resulted in the formation of self-assembled cylindrical micelles.33  The 

aspect ratio was shown to be a function of the time of self-assembly.  Stripped non-

spherical particles have been synthesized by block copolymers of polystyrene and poly(2-

vinylpyridine) (P2VP) along with a surfactant gold nanoparticle.34  The block copolymer 

forms an alternating layer structure and this was exploited to produce ellipsoidal particles 

with stripes by utilizing gold nanoparticles that neutralized the preferential interaction of 

the polystyrene with the emulsion interface (Figure 2.3). 

 Phase separation emulsions offer the potential to synthesize Janus particles as 

well as non-spherical anisotropic polymeric particles.  Kaewsaneha et. al. demonstrated 

the production of polymeric nanoparticles with a single magnetic face.35  Starting with an 

emulsion of styrene, acrylic acid, and oleic acid coated magnetic nanoparticles, the 

polymerization of the two organics resulted in a polymer matrix that excluded the 

magnetic nanoparticles, resulting in the uneven distribution on the surface.  Emulsions of 

liquid crystal materials with a polymerizable monomer have enabled the synthesis of non-

spherical microparticles with nanocolloids at their poles.36  By taking advantage of the 

positional preference for surface defects in the liquid crystal, the authors demonstrated a 

polar arrangement of polystyrene nanoparticles on the surface of the microparticle.  In 

addition, upon removal of the liquid crystal, the polymerized material assumed a non-

spherical shape due to the deswelling of the polymer matrix.36  Anisotropic bulging 

nanoparticles have been reported utilizing the polymerizable nature of surface styrene 

monomers. Park et. al. demonstrated the formation of dumbbell shaped particles through 

the initiation of styrene surface polymerization with a core-shell 

polystyrene/poly(styrene-co-trimethoxysilylpropylacrylate) particle.37  Multibulge 
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anisotropic particles have also been synthesized with seed particles of poly (vinyl 

chloride-co-acetoacetoxyethyl methacrylate).38   Induced polymerization of surface 

adsorbed polystyrene resulted in a bulging morphology of these particles that could be 

controlled by increasing the concentration of the acetoacetocyetyhl monomer in the seed 

particle.    

Block copolymer nanoparticles have also been investigated for a shape memory 

effect.  Yang et. al. studied the capability of the copolymer poly(9,9dioctylfluorene-co-

benzothiadiazole) to achieve a native ellipsoidal shape after bulk synthesis by emulsion.39  

Upon heating this liquid crystalline polymer above its nematic transition temperature, it 

attained a temporary spherical shape.  Reversion to ellipsoidal shape was evident upon 

cooling as well.  The stripped ellipsoidal nanoparticles described above34 have also been 

utilized for a shape memory application.  By crosslinking the P2VP layer the authors 

demonstrated a pH dependent, reversible swelling and deswelling property of the 

polymer matrix to produce ellipsoidal shapes with different aspect ratios.40     

 Particle core destabilization also offers the bottom-up capability to produce 

anisotropically shaped particles.  By either starting with a hollow core template, or 

chemically destabilizing the core of a core shell particle, various shapes have been 

produced.  In the case of a hollow particle precursor, liquefaction alone has also been 

shown to produce particles of red blood cell (RBC) shape.  Doshi et. al. demonstrated 

how hollow polystyrene particles could be heated, thereby inducing a collapse of the 

particle into an RBC shape.41 In the same study, RBC shaped particles were shown to be 

produced from poly (lactic-co- glycolic) acid through solvent based liquefaction.  

Chemical destabilization of spherical core polystyrene particles has also been shown to 
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produce rod shaped nanoparticles of bovine serum albumin (BSA) and poly L lysine 

(PLL).42  Zhou et. al. demonstrated that coating a spherical polystyrene template with 

BSA and PLL followed by solvent based extraction of the polystyrene core resulted in the 

fracturing of the surface layer and the production rod shaped nanoparticles.42  

Microfluidic Methods 

Microfluidics technology has revolutionized many fields of research including 

particle synthesis.  Although the majority of microfluidic particle synthesis has been 

completed on the micron scale (to which the reader is referred to a more comprehensive 

review43-45), there has been some research on the synthesis of nanoparticles and nanoscale 

features utilizing microfluidics technology.  The predominant methods that have emerged 

for the synthesis of nanoscale particles on a microfluidic chip include electrojetting and 

nanoprecipitation. 

Electrojetting has been utilized in a variety of applications and has been used with 

microfluidics technology to produce Janus particles.  Roh et. al. demonstrated the 

synthesis of biphasic particles that have Janus surface characteristics.46  By electrojetting 

two different solutions adjacent to each other, nanoparticles and microparticles made of 

dextran were formed with nanoscale features.  In addition, this method was utilized with 

poly acrylic acid to generate nonspherical Janus nanoparticles.46  This method was 

extended to produce micron scale Janus particles encapsulating nanoscale 

superparamagnetic particles and titanium dioxide particles for imaging.47,48  The authors 

demonstrate localized distribution of these nanoparticles within the larger nano and 

micron scale structures.     
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 Nanoprecipitation in a microfluidic device has been recently investigated for its 

capability of fabrication of nonspherical nanoparticles as well as anisotropic micron sized 

structures with nanoparticulate features.  Hasani Sadrabadi et. al. demonstrated direct 

fabrication of anisotropic polybenzimidazole (PBI) nanoparticles by focused 

hydrodynamic flow of a solution containing the polymer.49  As the solvent exchange took 

place at the flow interface, nanoparticles precipitated out of the focused flow (Figure 

2.4).  The anisotropy of the particles was controlled by changing the ratio of the inlet 

focusing flow.49 Lan et. al. utilized a similar hydrodynamic focusing scheme to 

synthesize microparticles with an anisotropic coating of nanoparticles by the use of 

coinjection of a photocurable phase and a nonphotocurable phase.48  By dispersing 

nanoparticles in the nonphotocurable phase a single face of spherical nanoparticles was 

formed on the surface.48  Another method developed by Suh et. al. demonstrated the 

capability to induce growth of magnetic nanoparticles on the surface of anisotropically 

fabricated microparticles synthesized by a stop flow photolithography process.50  The 

shape of the particles could be directed by a photomask and the Janus nature was 

achieved by a side by side laminar flow of two polymer solutions.  Polyethylene glycol 

(PEG) and poly (acrylic acid) (PAA) were utilized for these studies and the authors 

demonstrated subsequent growth of magnetic nanoparticles directed by the anionic nature 

of the PAA.50    Nanoprecipitation of particles into micro scale molds has also been 

utilized for production of anisotropic microstructures.  Angly et. al. demonstrated the 

capability to form densely packed nonspherical arrays of nanoparticles through a 

selective permeable microfluidic chamber.51  Water droplets containing PEG and silicon 
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dioxide coated gold nanoparticles were assembled into lithographically specified 

superstructures by evaporation of the water phase through convection of dry gas.   

2.1.3 Characterization of Anisotropic Nanoparticles 

Nonspherical anisotropic microparticles and nanoparticles are routinely 

characterized by microscopy methods including scanning electron microscopy (SEM), 

transmission electron microscopy (TEM), atomic force microscopy (AFM), and optical 

microscopy.  Although these procedures work suitably for a thorough characterization of 

anisotropic nature of these constructs, they typically require substantial preparation and 

expensive microscopes.  As a result there is active research in developing alternative 

methods of characterizing non-spherical nanoparticles. 

 Mathaes et. al. made a comparison of different standard methods utilized in 

particle and cell characterization to detect differences between spherical and non-

spherical microparticles and nanoparticles.52  These protocols included flow 

cytometry/coulter counter for microparticles and asymmetrical flow field flow fraction 

for nanoparticles.  The authors were able to detect differences between the spherical and 

nonspherical of aspect ratio 3-5 microparticles and aspect ratio 4 nanoparticles that were 

40 nm in size in each of the assays.  In addition, they were able to record characteristic 

data that could be used to predict the shape of an unknown sample of particles.52       

 Innovative light scattering methods have also been developed for the 

characterization of non-spherical nano and microparticles.  Wang et. al. utilized 

predictive dipole modeling of holograms projected by particles scattering a laser beam.53  

The resulting approximation method was able to characterize 3D diffusion and rotation of 

non-spherical microparticles of aspect ratio 2 and size 2 microns.  In addition, this 
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method was utilized to characterize the content and anisotropy of spherical Janus 

nanoparticles of size 900 nm.53  Methods based on light scattering of gold nanorods at 

different wavelengths of light54 and light scattering detecting differences of 

electrophoretic mobility of nanorods vs nanospheres55 have also been reported.  

2.1.4 Biomedical Applications of Anisotropic Nanoparticles 

Shape Specific Targeting 

Among the most useful properties that have been demonstrated for nonspherical 

nanoparticles are the inhibition of non-specific cellular uptake leading to enhanced in 

vivo biodistribution56 and the increased targeting capabilities due to the higher radius of 

curvature.14 These two properties have been investigated extensively in recent years and 

have been characterized in a wide variety of systems.  These characteristics of anisotropic 

nanoparticles make the technology an attractive platform for biomedical applications (see 

Table 2.1). 

 Inhibition of non-specific cellular uptake is an important attribute for in vivo 

therapeutics as the reticuloendothelial (RES) system’s clearance of nanoparticles prevent 

the majority of the administered dose from reaching its target.  Sharma et. al. investigated 

the capability of non-spherical micro and nanoparticles to resist cellular uptake by 

macrophages, the primary cells responsible for RES clearance.57  By utilizing confocal 

microscopy image analysis, their results demonstrated that prolate ellipsoids (AR 2) 

attached to the cells more efficiently than oblate ellipsoids (AR 2) which in turn attached 

more efficiently than spheres.  However, uptake of prolate ellipsoids was inhibited 50% 

compared to spheres whereas uptake of oblate ellipsoids was enhanced nearly 300% 

compared to spheres.57  Similar trends were demonstrated with mesenchymal stem cells 
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(MSCs) and HeLa cells.58  It was shown that not only particle shape, but also the aspect 

ratio of the ellipsoidal particle had an impact on cellular uptake as a particle with an 

aspect ratio of 4 was internalized at a rate nearly 3-fold higher than an ellipsoid with an 

aspect ratio of 2.58  Orientation of the particle once it is attached to the cell membrane 

appears to play a role in phagocytosis.  Champion et. al. demonstrated that prolate and 

oblate microellipsoids that attached to cells on their long axis were not phagocytosed as 

readily as ellipsoidal particles attached on their short axis.59  The orientation was shown 

to be important for “UFO” shaped particles as particles approaching at a 45º angle were 

not internalized at all compared to particles approaching at 0º and 90º angles.59  The work 

was translated to a theoretical model of shape dependent uptake presented by Dasgupta 

et. al.60  Computation results based on the minimization of free energy of binding and 

membrane deformation indicated that nanoellipsoids attach on their long axis.  The 

particles must then undergo a transition to attachment on the short axis in order to be 

internalized completely by a cell.60  Particle internalization pathways have also been 

investigated for anisotropic particles.  It has been shown that smaller (150-200 nm) 

anisotropic cylindrical nanoparticles are taken up by clatharin-mediated endocytosis and 

caveolae-mediated endocytosis.61  The importance of which uptake pathway 

nanoparticles take has been investigated62 and can directly impact the efficacy of 

intracellular therapeutics.  Surface density of 5 kDa PEG (PEG5K) has also been shown to 

be an important factor in the macrophage uptake and cellular biodistribution of 

anisotropic 320 nm nanoparticle therapeutics.63  Reduced PEGylation surface density 

(0.028 PEG5K/nm2) resulted in higher macrophage uptake, lower in vivo circulation time, 
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and higher accumulation in the liver compared to higher surface density of PEG5K (0.083 

PEG5K/nm2).63            

 In addition to the altered cellular uptake patterns exhibited by anisotropic 

particles, shape appears to confer increased specific uptake mediated by stronger avidity 

of surface bound targeting ligands.  Antibody targeting efficacy and specificity was 

directly demonstrated in vitro by Barua et. al.64  The authors utilized Trastuzumab (an 

antibody specific for the human epidermal growth factor receptor HER2) and cell lines 

that were HER2 + and HER2-.  Cell uptake was shown to be increased 1.5-3 fold for 

nanodimensional prolate and 1.5-2.5 fold for oblate ellipsoids compared to spheres for 

only the HER2+ cell lines.64 Circular disk particles have also been shown to have greater 

targeted adhesion efficiency than rod-like disk particles under various flow shear rates.65  

Substantial investigation has also been conducted into the role of size and shape for in 

vivo targeting as well.  Muro et. al. demonstrated anti ICAM-1 surface bound discs had 

30 fold higher targeting specificity for endothelial cells and longer circulation time than 

spheres.66  However, the spheres were taken up by targeted cells more readily than the 

discs.  Prolate ellipsoids have also been shown to have targeting enhancement over 

spherical particles.  Kolhar et. al. investigated the in vitro and in vivo accumulation of 

targeted rods vs. spheres.67  The authors found that under flow in vitro there was about a 

2-fold increase in specific adhesion of rods compared to spheres under shear rates 

ranging from 15 s-1 to 250 s-1.  Similarly there was close to a 2 fold decrease non-specific 

adhesion of rods compared to spheres at lower shear rates (15 s-1).  In vivo experiments 

demonstrated that rods had greater accumulation in the organs they were targeted to 

compared to spheres.  For lung targeted rods, there was a 2 fold increase in accumulation 
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of rods vs. spheres.  For brain targeted rods there was a 7.5 fold increase in the 

accumulation of rods compared to spheres (Figure 2.5).67  

Drug Delivery 

With the added benefits of reduced non-specific cell uptake, longer circulation 

time in vivo and higher specific targeting, anisotropic non-spherical particles have been 

utilized for a wide variety of applications.  One of the most prominent uses for non-

spherical nanoparticles in recent years has been for delivery of small molecule drugs such 

as chemotherapeutics and genetic material such as siRNA.  Many of the fabrication 

methods presented in this review have been extended to produce non-spherical 

nanoparticles with unique properties that are tailored for specific drug delivery 

applications. 

 The PRINT technology has been utilized in multiple applications for non-

spherical particle drug delivery.  Hasan et. al. demonstrated a novel approach to the 

delivery of short interfering RNA (siRNA) for gene knockdown.68  The authors utilized a 

modified emulsion technique to encapsulate siRNA in PLGA and then induced 

biomimicry in their nanoparticle production through the addition of a cationic lipid coat.  

Although there was no comparison to a spherical particle, the authors demonstrated 

comparable efficacy to Lipofectamine 2000 for gene delivery to a variety of cell lines.  In 

addition, there was a 60-80% knockdown of KIF11 in prostate cancer cells by the 

cylindrical particles.68  A similar study was published by Xu et. al. utilizing lipid coated 

PRINT BSA particles with a bioreducible cross-linker for RNA replicon delivery for 

vaccination purposes.69  There was a 2 fold increase in transfection efficacy observed by 

the formulated particles compared to the commercially available TransIT reagent.  The 
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authors were also able to demonstrate the utility of this platform as a genetic vaccine 

through the enhanced delivery of RNA encoding the influenza hemaglutinin gene.69   

PRINT based PLGA particles have also been utilized in chemotherapeutic 

applications as well. Chu et. al. demonstrated the favorable pharmacokinetics of a non-

spherical PLGA particle loaded with Docetaxel.70  There was greater tumor accumulation 

over the initial time points and lower clearance by spleen and liver of the non-spherical 

particles compared to the spherical particles.  The same group also synthesized PRINT 

PLGA non-spherical particles with acid sensitive prodrug of Docetaxel to enable higher 

dosing and antitumor therapeutic effect.71  The prodrug encapsulated in the particle was 

shown to be able to be delivered at higher effective doses in the particle to mediate 

significant antitumor effects in a subcutaneous cancer model, without excess toxicity.  

The enhanced pharmacokinetic profiles of the non-spherical particle enabled them to 

remain just as effective as the free chemotherapeutic drug even though they had reduced 

toxicity.71 

Another class of PRINT based particles utilized in drug delivery carriers have 

been in RBC mimicking particles for oxygen transport.72,73  Although these particles are 

micron in size (due to the desire to achieve complete biomimicry of the RBC), the studies 

resulted in important implications for the design of nanoparticle therapeutics to achieve 

the same goal of oxygen transport.  RBC mimicking hydrogels were utilized to conjugate 

hemoglobin internally without the loss of protein activity.72  Also, due to a low elastic 

modulus, the particles could be sheared at physiologically relevant rates without loss of 

structures.  In addition to the proof of principle, these hydrogel microparticles were 

utilized to investigate the role of particle modulus in the administration and clearance of 
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therapeutics.73  By controlling the modulus of the hydrogel microparticles, the authors 

demonstrated that these therapeutics could avoid entrapment in the lung and elimination 

in the spleen and liver.  Decreasing the modulus by 8 fold also led to a 30 fold increase in 

circulation time of the particles.   Further investigations into how the role of modulus 

plays into the biodistribution of analogous nanoparticles would be of great interest.   

 Self-assembled nonspherical particles by block copolymer micelle aggregation 

have also been utilized for drug delivery applications.  As described above, Jiang et. al. 

pioneered a method to form condensed plasmid-PEG-PPA micelles that demonstrated an 

enhanced stability for in vivo applications.32  A follow up study illustrated that the 

condensation shape could be controlled by the polarity of the solvent with increasing 

hydrophobicity corresponding to increased sphericity of the particles.74  This study was 

particularly interesting because the authors were able to achieve enhanced in vivo 

luciferase transfection of hepatic cells by intrabiliary administration of the worm-like 

nanoparticles compared to the spherical nanoparticles.  The worm-like particle was 

immensely superior to the spherical particle, mediating a 10000 fold increase in 

luciferase expression of hepatic cells.74  Block copolymer nanoparticles of various shapes 

and sizes have also been successfully applied to drug delivery of chemotherpeutics. 

Karagoz et. al. demonstrated the capability of rod-like and worm-like micelles of 

copolymers containing styrene, vinyl benzaldehyde, and oligo (ethylene glycol) 

methacrylate to encapsulate doxorubicin via conjugation to aldehyde groups in the 

polymer.75  The resulting worm-like and rod-like micelles exhibited greater capability to 

be taken up by target cells and thus an enhanced ability to deliver the payload of 

doxorubicin to mediate cellular toxicity. Geng et. al. also published promising results in 
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the synthesis of filamentous micelles consisting of block copolymers containing PEG-

polyethylethylene and PEG-polycaprolactone.76  Particles bearing shapes with 4 fold 

higher length were shown to circulate in vivo for 2-3 days longer than micelles with a 

shorter length and also mediated higher tumor apoptosis than their shorter counterparts.76 

2.1.5 Conclusions 

Non-spherical polymeric nanoparticles hold promise for various biomedical 

applications.  Although shape has been traditionally neglected with respect to polymeric 

nanoparticle design, in recent years it has come to light as an important parameter.  With 

the advent of many new fabrication methods based on top-down, bottom-up, and 

microfluidic technologies, our understanding of how to control the shape and anisotropy 

of polymeric nanoparticles is continuing to expand.   

Top-down technologies allow readily translatable methods for applications in the 

biomedical sciences due to their reliable production of uniformly anisotropic 

nanoparticles.  These methods include thin film stretching of spherical particles, PRINT 

based lithography, particle lithography, and nanoimprint lithography.  Among these 

methods, the thin film stretching protocol is the easiest and most approachable protocol to 

produce particles bearing anisotropic shape.  Many of the current biomedical applications 

of anisotropic particles utilize fabrication methods based on the thin film stretching 

method.  However, particles produced by the thin film stretching protocol are limited to 

prolate/oblate ellipsoidal shape and derivatives thereof.  Lithography based techniques 

such as PRINT and nanoimprint lithography can circumvent this shape limitation, 

however they are more difficult to implement in practice.  As efforts progress to identify 
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the optimal shaped particle for each biomedical scenario, each of these methods can be 

utilized for the translatable production of anisotropic particles.  

Bottom-up and microfluidic technologies offer the promise of simple platforms to 

rapidly synthesize large batches of anisotropic nanoparticles.  Key methods in this 

category of fabrication include phase separation emulsion, block copolymer micelle 

formation, and microfluidic nanoprecipitation.  Phase separation emulsion is an 

approachable method to generate anisotropy on spherical polymeric nanoparticles, 

however this technology has not been well established for biomedical applications.  

Block copolymer micelle formation has been utilized to produce particles of different 

shapes encapsulating various therapeutics and has already shown promise for translation.  

However, it can be difficult to control the micelle formation as evidenced by the limited 

repertoire of shapes that can be produced with this method.  Microfluidic 

nanoprecipitation shares similar advantages and disadvantages as block copolymer 

micelle formation, except translation of anisotropic polymeric nanoparticle produced on 

microfluidic device to biomedical applications is more limited.  Further experimentation 

into the control of anisotropy in particles fabricated by the bottom up method will be of 

great interest in the coming years. 

 Given the existence of these well-established methods for synthesizing non-

spherical, anisotropic nanoparticles, there are many applications in fields such as drug 

delivery, immunoengineering, and tissue engineering, which can benefit immensely from 

consideration of shape in the design of nanotherapeutics.  Due to the increased in vivo 

circulation time and targeted avidity/cell uptake, non-spherical nanoparticles are a 

versatile, robust platform for drug delivery such as intracellular delivery of genetic 
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therapeutics and chemotherapeutic drugs.  In addition, the increased avidity for ligand 

targeted nanoparticles make them the ideal candidate for the application of nanomedicine 

to immunoengineering.   

The distinct topological features of anisotropic polymeric nanoparticles can also 

be utilized in the synthesis of novel tissue engineering scaffolds to better mimic the 

ECM.  Among the numerous applications of nanoparticles in medicine, tissue 

engineering has become a prominent venue for the utilization of nanofabricated 

materials.77  Although the application of nanoparticles in tissue engineering and 

regenerative medicine has been numerous,78 the impact of anisotropic nanostructures is 

just coming to be understood for the ex vivo induction of various tissues.  Non-spherical 

nanostructures can be key to the development of tissues as nanotopography has been 

proven to be important for the accurate delivery of ECM cues to cells in the development 

of tissues.79,80  Non-polymeric, non-particulate anisotropic nanostructures such as carbon 

nanotubes,81 electrospun fibers,82 and hydoxyapaite nanoparticles83 have demonstrated 

the importance of anisotropic nanotopographical features in tissue scaffold engineering 

and also highlight the potential impact polymeric particles can have in this discipline.    

Although the breadth of applications is vast, we have only begun to understand 

the benefits that non-spherical and anisotropic nanoparticles can confer compared to 

traditional spherical particle.  Continued investigation into the properties, fabrication 

methods, and interactions with biological systems will elucidate the true potential of the 

anisotropic polymeric nanoparticle and make an immense impact in nanomedicine 

research.      

2.2 Overview of Artificial Antigen Presenting Cell Technology 
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2.2.1 Introduction 

Immunotherapy can be broadly defined as modulation of the immune system to 

achieve a medicinal benefit.  Several examples of modern immunotherapies include the 

use of cytokines for general immune activation in disease such as chronic granulomatous 

disorder84 or the use of immunosuppressive drugs such as steroids in the treatment of 

autoimmune disorders.85  As our understanding of the immune system continues to 

develop, so does our capability to intervene therapeutically.  Over the past few decades 

there has been a significant increase in new immunotherapies developed to treat a variety 

of diseases.  Among these is the manipulation of autologous antigen presenting cells to 

achieve a therapeutic effect.  Although partly successful in some limited cases such a 

prostate cancer,86 autologous antigen presenting cell-based therapy suffers from several 

drawbacks such as limited potency due to susceptibility to immune regulation and the 

high costs and labor involved with cellular therapy.87  Therefore, there is an impetus to 

develop an alternative strategy to achieve the same desired goal of adaptive immune 

system modulation.     

One promising technology is the artificial antigen presenting cell (aAPC) to serve 

as a biomimetic platform to modulate the adaptive immune system.  Artificial antigen 

presenting cells are synthetic constructs that are designed to recapitulate the natural 

process of T-Cell activation by biological antigen presenting cells (APCs).  Through the 

presentation of crucial APC signal proteins on a surface, aAPCs are capable of directing a 

T-Cell response very similar to the natural APC.  aAPCs possess certain advantages over 

autologous biological APCs.  Generally, an aAPC is based on a plastic particle that is 

much easier to produce and maintain, thus making the aAPC technology capable of being 
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an “off the shelf” therapy.87  In addition, aAPCs are not derived from an immune cell 

progenitor and thus are resistant to the immune suppression that can inhibit the activity of 

natural APCs. aAPCs have also been proven to be equally or more effective than the 

autologous APC at immune system stimulation in certain scenarios.  Taken together, 

these traits of the aAPC make it an attractive platform for immunotherapy with 

applications to treat various diseases such as cancer, infectious disease, and autoimmune 

disorders. 

This section covers the relevant immunobiology as well as several criteria that 

should be considered in the design of aAPCs, including fully synthetic aAPCs as well as 

engineered biological cells that function as cellular aAPCs.  In addition, the approaches 

that have been taken to develop the aAPC as well as the broad application of these 

constructs in various biomedical scenarios are reviewed.  Continued development of 

aAPCs will greatly benefit medicine as an engineered synthetic strategy to control the 

power of the immune response. 

2.2.2 The Natural APC 

 A strong understanding of the natural APC/T-Cell interaction is required in order 

to generate the most effective aAPC for antigen specific T-Cell modulation.  The 

following summarizes the basic APC physiology as well as the important aspects of the 

APC/T-Cell interaction that should be considered in the design of this technology. 

The Role of APC in Innate and Adaptive Immunity 

 Adaptive immune modulation interactions occur primarily through the 

professional antigen presenting cell.  Nearly every cell in the body acts as an “antigen 

presenting cell” due to their ability to present MHC Class I restricted antigens on the 
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surface.  In addition, B-Cells and cytotoxic T-Cells can present antigens through the 

MHC Class II surface protein in order to be activated further by helper T-Cells.  Despite 

these capabilities to present antigens on the surface, generally these cell types are subject 

to effector functions of the immune system and do not heavily impact the course of an 

immune response.  Professional aAPCs have the capabilities to strongly influence the 

immune system through the presentation of antigens restricted to MHC Class I and Class 

II as well as companion signals to either activate or suppress the T-Cell response.  The 

two types of cells that have been identified as “professional APC” include dendritic cells 

and macrophages.  Generally dendritic cells are considered the primary APC of the body 

with specific physiological adaptation for this function.88  The dendritic cell will be used 

in subsequent explanation of APC activity. 

 APCs have a special function in immunity as the bridge between innate and 

adaptive immune systems.  Immature dendritic cells generally reside in the periphery and 

continuously screen environmental antigens through rapid macropinocytosis.  Although 

extracellular antigens are generally exclusively presented by MHC Class II molecules (to 

engage helper CD4+ T Cells), APCs can partake in cross-presentation of these antigens to 

present them on MHC Class I molecules (to interact with cytotoxic CD8+ T-Cells).  DCs 

are activated into their mature, immunogenic form through encountering a danger signal.  

This can include pathogen associated molecular patterns (PAMPs), inflammatory 

cytokines, or previously activated T-Cells.  Upon activation, the dendritic cell will halt 

rapid cellular uptake, upregulate antigen presenting MHC molecules, produce more 

costimulatory surface signals, and synthesize chemokine homing receptors for lymph 

node targeted chemotaxis.  Upon entering the lymph nodes the dendritic cell will interact 
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with target T-Cells to activate them to carry out their effector functions.89 Activation will 

also result in a positive feedback loop with macrophages and natural killer cells in the 

innate immune system through the production of cytokines IL-12 and IFN𝛾.90 In the 

absence of the correct danger signal, dendritic cells have also been shown to promote 

tolerance through regulatory T-Cell induction.91 

Signal 1, Signal 2, and Signal 3: APC Communication with a T-Cell 

 The most important aspect in the design of an aAPC is recapitulation of the 

signals that a natural APC relays to a T-Cell upon cell contact.  These signals are in part 

mediated by cell surface receptor interactions as well as soluble cytokines.  Together, 

three signals enable tight control of the nature of the immune response. (Figure 2.6) 

 Signal 1 is considered the “Recognition” signal.  At the protein level, this signal 

occurs as the result of the interaction of the T-Cell Receptor (TCR) and the antigen 

loaded in the MHC complex.  This signal is central to the specificity of the immune 

system as it establishes the identity of target antigen the T-Cell will seek in its subsequent 

effector function.  In addition to the TCR (CD3) signal, the T-Cell differentiation marker 

(CD-4 for helper T-Cells and CD-8 for cytotoxic T-Cells) participates in the Signal 1 

protein machinery.  It has been proposed that these co-receptors help to concentrate the 

MHC protein to permit for continued signaling despite relatively low affinity of the 

MHC/TCR interaction.92 

 Signal 2 can be described as the “Outcome” signal.  While Signal 1 establishes 

the identity of the antigen in question, Signal 2 directs the nature of the T-Cell response 

to the APC/T-Cell binding event.  For T-Cell activation, the classic stimulatory pathway 

is through CD28 on the T-Cell surface.92  In addition, 41BB and CD40 on the surface of 
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T-Cells have been shown to have an activation effect in the context of CD4+ T-Cells 

engaging a CD8+ T-Cell to further activate it.93  Other important types of Signal 2 are the 

ones that induce anergy in target T-Cells.  This is important for the establishment of 

peripheral tolerance for autologous antigens.  Some of the proteins on the T-Cell that 

have been shown to be involved in this suppressive form of Signal 2 include the Fas 

receptor for apoptosis, CTLA-4 and PD-1 for inhibition of immune activation, as well as 

the absence of Signal 2 for induction of anergy.94 

 Signal 3 provides additional direction for the T-Cell response and typically 

consists of soluble cytokines secreted by the APC during T-Cell engagement.  Signal 3 

has been shown to direct the character of the type of T-Cell response that is elicited upon 

activation.  Generally this signal has been determined to be a product of polarization to 

one of two types of dendritic cell for the Th1 response or the Th2 response.   One of the 

most well characterized cytokines involved in this process is IL-12 secreted by APCs 

upon engagement.  This has been linked to the development of a Th1 type response, 

directed towards the elimination of intracellular pathogens.  Recently, a fourth potential 

signal has also been characterized in dendritic cells.95  DCs have been shown to induce 

upregulation of chemokine receptors in T-Cells by the use of Vitamin A and Vitamin D.  

IL-12 has also been shown to have an effect on the homing capabilities of T-Cells.96 

The APC/T-Cell Interface 

 Given the majority of the intercellular signaling that occurs between the APC and 

the T-Cell occurs at the APC/T-Cell interface, this is a critical factor that must be taken 

into account in the mimicry of the APC by the aAPC. Typically when a natural APC 

engages a T-Cell, it has been shown that there is a dynamic rearrangement of surface 
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proteins involved in immune signaling.  The mature complex that forms has been termed 

the immunological synapse or IS.  This synapse has been shown to have a distinct 

molecular composition with the TCR and the CD28 costimulatory molecule in an inner 

central supra-molecular activation cluster (cSMAC), integrin-based adhesion molecules 

such as LFA-3 concentrated outside the cSMAC in the peripheral supra-molecular 

activation cluster (pSMAC), and actin rich exterior zones termed distal supra-molecular 

activation clusters (dSMAC) (Figure 2.7).  The role of the immune synapse in TCR 

signaling and subsequent acquisition of effector function is not completely understood, 

but it has been confirmed to play an important role.  Although a concentric ring formation 

is the most well studied, it is not the only formation that the IS can assume.97     

 T-Cell/APC IS formation is a highly specific process that occurs only in the event 

that the TCR and MHC bound antigen match with appropriate specificity.  T-Cells are 

specialized for high throughput scanning of multiple antigen presenting cells to find a 

correct match.  Such temporary interactions between the T-Cell and the APC are termed 

immune kinapses.  In the event that a T-Cell finds its specific APC partner (as dictated by 

the time scale of the TCR and MHC-antigen interaction), an immunological synapse 

forms.  Despite the fact that the TCR and costimulatory molecule CD28 are concentrated 

in the center of the IS, the signaling events are generally not localized to this region.  

Instead, the TCR and associated costimulatory signals form as microclusters (on the order 

of 100 nm in size) which quickly travel to the center of the IS propelled by actin 

polymerization.  TCR signaling at this time is characterized by low affinity and rapid 

signaling events that are sustained as the cluster moves.  The TCR signaling is strongest 

in the dSMAC and weakens as the cluster reaches the cSMAC.  The ultimate fate of the 
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TCR once it reaches the cSMAC is unclear but depending on the antigen, it has been 

shown to continue signaling, or be eliminated from the surface membrane.98 

 Another important consequence of the IS formation is the polarization of the T-

Cell membrane for appropriate effector function.  Upon IS formation, the T-Cell will 

translocate its secretory granules to the portion of the membrane that is engaged with the 

APC in a region of the cSMAC.  For helper T-Cell effector functions, this allows for the 

localized delivery of stimulatory cytokines and signals to target cells such as B-Cells and 

other APCs.  In the context of killer T-Cells, this relocation to the cSMAC can be very 

important as it allows for localized release of cytotoxic compounds that are prevented 

from escaping into the peripheral cell space by the “sealed” regions of the pSMAC.  As 

such, a CD8+ cell can be highly selective in the target cell it destroys.98   

2.2.3 Design Considerations for the aAPC 

 Given the complex nature of the APC interaction with the T-Cell there are many 

parameters to consider in the fabrication of aAPCs.  Many aAPC characteristics have 

been engineered and have led to insight into effective biomimicry conditions.  These 

parameters include size and shape of the aAPC, surface proteins for relaying the critical 

Signal 1 and Signal 2, protein release to mimic Signal 3, and recreation of the IS through 

the use of a fluidic membrane. (Figure 2.8)   

Size and Shape of the APC 

 One of the most important parameters described in the literature for the design of 

an aAPC is size.  Generally it has been considered that the optimal size for an aAPC is at 

the micron/cellular level.  For aAPCs, it has been shown that size can have an important 

effect on aAPC efficacy.99  For in vitro efficacy using a PLGA based aAPC, it has been 
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shown that micron scale aAPCs could induce a 3 fold increase in IL-2 production of 

CD8+ T-Cells for the same protein dose as nano scale aAPCs.100  However, due to 

biodistribution considerations, micron sized aAPCs may not be the optimal choice for in 

vivo use.  Recently it has been shown that nanodimensional aAPCs can induce nearly a 

10 fold increase in IFN𝛾 production upon in vivo immunization compared to micron scale 

aAPCs.101  This was linked to a favorable biodistribution of the nano scale aAPC, in that 

it demonstrated superior draining to the lymph nodes, the natural site of T-Cell/APC 

interaction.  Continued investigation into the impact of size will be important in the 

design of the optimal aAPC. 

 Another important biophysical parameter that has recently come to light in the 

design of the aAPC is shape.  As was described previously, the surface area of contact 

between the T-Cell and the APC is critical for proper stimulation.  Rigid, spherical 

aAPCs allow for minimal surface area contact with the target T-Cell.  However, rod-

shaped aAPCs can increase the available area of contact between the aAPC and the T-

Cell through the increased radius of curvature of the long axis.  This was shown to have a 

very powerful effect on the activation of CD8+ lymphocytes.  Spherical and ellipsoidal 

aAPCs, with the same volume and the same protein on their surfaces, were compared for 

their capability to induce antigen specific proliferation and the ellipsoidal aAPCs were 

shown to increase the expansion of CD8+ T-Cells by up to 20 fold.102 In addition, live 

cell confocal imaging revealed a higher prevalence of aAPC conjugates as well as a 

preference for the long axis of the aAPC in conjugation.  An in vivo effect was also seen 

with the ellipsoidal aAPC mediating stronger tumor immunity compared to the spherical 
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aAPC.102 Although traditionally neglected in terms of aAPC design, shape is another 

important design consideration in the fabrication of aAPCs. 

Proteins for Antigen Presentation and Costimulation: Signal 1 and Signal 2 

 The choice of surface protein and the density at which it is presented have also 

been shown to be important for aAPC function.  For Signal 1, there have been two 

predominantly used strategies to trigger the T-Cell receptor.  The first is the use of an 

anti-CD3 antibody as a direct trigger for the TCR (CD3).  Although this is a simple way 

to deliver Signal 1 and is used ubiquitously throughout the research community for the 

study of T-Cell biology, it lacks the antigen specificity that a natural APC possesses.  

Therefore, this strategy can be used to trigger T-Cells in vitro, but in vivo there would be 

the complication of antigen specificity.  The second, and more popular for disease based 

applications of aAPCs, is the direct use of a MHC class I (for CD8+ T-Cells) or MHC 

class II (for CD4+ cells) loaded with the cognate antigen.  Although slightly more 

complicated than the use of a monoclonal antibody, the added benefit of antigen 

specificity is absolutely necessary for the use of aAPCs in therapeutic applications.87 

 Recreation of the second signal delivered upon APC engagement is generally 

accomplished by the use of a monoclonal antibody to directly trigger a costimulatory 

molecule on the surface of the T-Cell.  The most popular targets for Signal 2 are CD28 

and 41BB.  Although classic aAPCs have focused on the use of anti CD28, 41BB has 

been shown to effectively stimulate lymphocytes.103 More recent advances in aAPC 

technology have shown that a blend of these two signal protein may be optimal in the 

design of an aAPC.  A 25:75 blend of CD28 and 41BB induced a 3-5 fold greater 
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expansion of CD8+ cells than anti-CD28 or anti-41BB alone.104  In addition, it was 

demonstrated that these cells had a strong effector and memory function in vitro.  

 Surface density of the aAPC proteins is another parameter to be considered in the 

design of an effective aAPC.  Recent advances in nanofabrication have allowed for 

nanometer scale control over surface density and orientation of stimulatory proteins.  

Utilizing anti-CD3 as a Signal 1, Matic et. al. demonstrated that 1000 proteins/µm2 

spacing of anti-CD3 proteins was optimal at triggering T-Cell activation as evidenced by 

increased production of IL-2 and enhanced rates of proliferation (upon the addition of 

anti-CD28 as a costimulatory signal) compared to 120 and 60 proteins/µm2.105 

Soluble Cytokines and Recreation of Signal 3 

 Although not critical for aAPC function, the capability to deliver a third signal 

through soluble cytokines has been of interest in the design of APCs.  The strategy to 

achieve this in biological APCs has been to transfect the cell with a gene to produce a 

soluble cytokine. Although this is an interesting possibility in the design of engineered 

biological APCs, it can be difficult to control the amount of the soluble cytokine that is 

released.  Currently, the technology has been limited to use in studying the biology of 

certain cytokines released during the APC/T-Cell engagement including IL-21 which has 

been shown to have opposing effects of activation and suppression.106 The engineering of 

a third signal into aAPCs can be accomplished through the use of a controlled release 

system as the core particle.  In this manner, the core of the particle can be designed to 

optimize Signal 3, whereas the particle surface is designed to optimize Signal 1 and 

Signal 2.  Controlled release from the core can be accomplished through the use of a 

biodegradable polymer such as PLGA.  The advantage of the use of Signal 3 in a 
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biodegradable acellular system is that the rate of delivery can be controlled based on the 

type of biomaterial.  Currently, there has been limited use of a third signal in the design 

of an acellular aAPC.  Steenblock et. al. demonstrated the feasibility of this approach by 

encapsulation and controlled release of IL-2 in a PLGA-based aAPC.107  It was shown 

that there was a 3-4 fold increase in the expansion of T-Cells upon stimulation of 

encapsulated IL-2 as opposed to exogenous IL-2 due to local concentration release 

effects.  This approach has the potential to lead to much higher local concentrations of 

soluble cytokines at a T-cell surface than the concentrations that can be achieved through 

systemic in vivo administration.107 

2.2.4 Cellular aAPCs 

 While the focus of this section is on acellular antigen presenting cells, such as 

those fabricated from beads or particles, engineered biological cells, or cellular artificial 

antigen presenting cells, have also been constructed. Cellular aAPCs derived from the 

genetic modification of existing cell lines remain a popular choice for the modulation of 

T-Cell activity for therapeutic purposes. (Table 2.2)  Although cell-based therapies are 

immensely expensive compared to acellular therapies, many of these cell based strategies 

have been entered into clinical trials for various diseases.  The following is a summary of 

the key advances in the field of cellular based aAPCs. 

K562 Cell Line 

 The most popular cell line utilized in the design of a cellular aAPC is the K562 

human leukemia line.108  This cell type is frequently used due to the absence of any 

endogenous MHC molecules on its surface, thus allowing for the expression of only of 

the chosen MHC for antigen specific cell therapy.  In addition, this cell line does not 
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express any of the costimulatory molecules characteristic of a natural aAPC.  This allows 

for greater control over the type of stimulatory protein that is delivered upon aAPC/T-

Cell engagement.  They also lack expression of inhibitory molecules that can be used by 

APCs to suppress the activity of T-Cells.  In addition, these cells can easily be genetically 

modified and have a history of safe use in humans.  Taken together, these advantages 

make the K562 cell line an attractive platform for cellular aAPC development.108 

 Several different categories of the K562 cell line based APC have been developed 

based on the application and immune cell to be targeted.  One type of K562 aAPC that 

has been developed was a cell line to activate CD4+ T-Cells.  Through transduction of 

genes encoding the HLA-DR MHC Class II protein as well as the costimulatory signals 

for CD28, the authors were able to generate a stable aAPC cell line with expression of all 

desired proteins on the surface.109    The authors were able induce exogenous antigen 

presentation through the added transduction of a gene encoding the Fc𝛾 receptor, thus 

enabling receptor mediated endocytosis.  Fold expansion of antigen specific T-Cells was 

noted to be greater the 1,000 fold over the course of 150 days with repeated stimulation 

by the cellular aAPCs.  In addition, the authors did not note the generation of regulatory 

T-Cells.109   

The K562 has also been applied to the stimulation of CD8+ cytotoxic T-Cells as 

well as CD4+ cells, in numerous applications.  One interesting example is the use of a 

costimulation strategy with both CD28 and 41BB.  The authors utilized a K562 cell line 

genetically modified to express the Fc𝛾 receptor for immobilization of an anti-CD3 and 

an anti-CD28 antibody.110  The authors then transduced these cells with a gene encoding 

the 41BB ligand for costimulation.  With this strategy, the authors were able to generate 
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up to 1,000-10,000 fold expansion of CD8+ T-Cells over the course of 25 days.  The 

ultimate fold expansion was nearly 100 times greater than the cellular APCs bearing anti-

CD3 and anti-CD28 alone.110 

Other examples of the use of the K562 cell line have also been reported for 

different, specific applications.  CD19 transduced K562 cells were utilized to stimulate T-

Cells with chimeric antigen receptors designed to react specifically to CD19.  Through 

zinc finger nuclease based elimination of the endogenous TCR, the authors were able to 

generate an APC and companion T-Cell line that could specifically target B cell 

lymphoma.111  A similar strategy was used to generate natural killer cells that exerted a 

cytotoxic effect on CD19+ cells.112  K562 based aAPC were also genetically modified 

further to secrete the soluble cytokine IL-21 as a Signal 3.106  Although not used for a 

biomedical application, the authors were able to use this technology to study the 

biological effects of this cytokine.    

Murine and Drosophilla Based aAPCs 

 In addition to human based cell systems, other xenogenic systems have been 

developed using similar transduction strategies.  One of the earliest cell based aAPC 

systems to be utilized for T-Cell expansion was the Drosophila based cell line.113  Using 

a similar strategy to that of the K562 cells of genetic transduction with a murine MHC 

molecule class 1 protein, a costimulatory molecule for CD28, and ICAM-1 for integrin 

based binding to LFA-3 on T-Cells, these Drosophila cells were able to mediate 

expansion of murine CD8+ T-Cells.  Due to the foreign nature of the cells, the authors 

also noted a stimulatory effect on B-Cells, which could then be relayed to the CD8+ T-

Cells.113 
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Another alternative to the K562 is the mouse fibroblast line NIH/3T3.  These cells 

were transduced with the genes for an HLA MHC protein and a costimulatory molecule 

for CD28.114  In addition, these cells were genetically modified to express the ICAM-1 

protein for adhesion to the T-Cell through LFA-3.  The aAPC was shown to efficiently 

mediate antigen targeted activation of influenza primary CD8+ T-Cells.  Compared to the 

autologous APC, stimulation with this aAPC resulted in a 2 fold increase in the number 

of CD8+ T-Cells derived from peripheral blood.  In addition, these cells were able to 

mediate an antigen specific cytotoxicity against melanoma cells.114  

2.2.5 Acellular aAPCs 

 Despite the broad utility that cellular aAPCs have demonstrated, there are still a 

number of concerns over their use.  Genetic modification of cells has the potential to 

result in cancerous growth due to the unpredictable nature of the site of insertion into the 

target genome.  In addition, cell based therapies are time consuming and costly to 

produce.  While possessing the advantage of supreme cell mimicry, cellular aAPCs also 

lack the antigen flexibility that an “off the shelf” particle based system can provide.  

Switching the type and nature of the protein signal is much simpler, and can be 

engineered more precisely, using an acellular aAPC system with a defined conjugation 

chemistry.  To that end, numerous acellular aAPCs have been developed and 

characterized for the activation and suppression of target T-Cell populations.115 (Table 

2.2) 

Polymeric Particle aAPCs 

 Some of the earliest work in the development of aAPCs was with non-

biodegradable polystyrene particles.  Immobilization of protein ligands for aAPC 
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function involved a simple surface adsorption.  Polystyrene based aAPCs have been used 

in antigen specific and antigen non-specific stimulation of T-Cells.116 One example of the 

use of polystyrene is in the expansion of ovalbumin specific T-Cells.  Tham et.al. utilized 

a polystyrene bead displaying an MHC I molecule loaded with an ovalbumin antigen as 

well as recombinantly produced B7-1 and B7-2, the natural ligand for CD28 

costimulation.  In vitro stimulation results demonstrated a 3-fold increase of proliferation 

and IL-2 production of CD8+ T-Cells compared to soluble stimulation proteins.117 

 Over recent years, emphasis has shifted from non-biodegradable polymers to 

biodegradable polymers for aAPC construction.  These materials have gained popularity 

in recent years due to their capabilities of controlled degradation and thus predictable 

elimination from the body.  In addition, biodegradable polymeric aAPCs offer the 

advantage of sustained release of a third soluble signal.  Taken together, these advantages 

have resulted in effective aAPCs for a wide variety of applications.  

  One of the earliest examples of the biodegradable aAPC was the use of 

polyglycolic acid microparticles as a platform for APC protein immobilization.118  For 

the generation of aAPCs, the authors demonstrated a conjugation-free surface adsorption 

of anti-CD3 and anti-CD28 antibodies.  The aAPC was evaluated against a plate coated 

with these antibodies and was determined to 2-fold more efficient at eliciting T-Cell 

proliferation.  Combining this aAPC with another degradable particle containing GM-

CSF, the authors were able to demonstrate in vivo efficacy by reduced tumor burden of a 

fibrosarcoma cancer implantation.118 

 More recent biodegradable systems have focused on the use of PLGA based 

particles for aAPC synthesis.  Steenblock et. al. developed a PLGA aAPC using both 
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MHC dimer and anti-CD3 as a Signal 1 and anti-CD28 as a Signal 2.100  The authors 

were able to demonstrate a 3-fold production of IL-2 by CD8+ T-Cells compared to 

soluble signal protein.  In addition, the study demonstrated the utility of a biodegradable 

polymer to have sustained release of a third signal, IL-2.  Comparing IL-2 released 

locally by the particle to bulk delivery of IL-2, there was a 2-fold increase in the 

production of IFN𝛾 by target T-Cells.100 

 A major advantage of these biodegradable polymeric systems is the ability to 

modify particle shape by one of many established protocols.  As was described earlier, 

the impact of aAPC shape on function and T-Cell stimulatory capacity has recently come 

to light.   Combining this approach with the biodegradable polymer based approach of 

sustained cytokine or chemokine release may result in an even more powerful aAPC 

which may be useful for clinical applications. 

Liposome aAPCs 

 Liposomes have also been of interest as a platform for aAPC generation.  Owing 

in part to their fluid membranes, a liposome based aAPC has the potential to allow for 

recreation of the IS during T-Cell signaling.  One of the first aAPC platforms involved 

the use of liposomes reconstituted from cellular membranes.119  While the use of 

liposomes as aAPCs has not found widespread application for therapeutic application or 

for the expansion of clinically relevant T-Cells, there are examples of efficacy.  One was 

the use of GM-1 enriched liposomes for clustering of anti-CD3 and anti-CD28 

stimulation ligands mediated by neutravidin bound cholera toxin.  The authors compared 

this liposome based aAPC to a rigid bead based aAPC and found close to a 1.5-fold 



45 
 

increase in the expansion of Mart-1 antigen specific T-Cells, with an overall expansion of 

about 175-fold over the course of 14 days.120 

Magnetic aAPCs 

 Another popular choice of materials for construction of aAPCs are paramagnetic 

materials.  Due to the ease of purification and processing, these magnetic particles have 

found widespread application in the generation of aAPCs.  One study published by Oelke 

et. al. focused on the antigen specific expansion of CD8+ T-Cells.121  The strategy was to 

couple an HLA MHC Class I loaded with antigen as a Signal 1 and an anti-CD28 

molecule as a Signal 2.  The authors demonstrated 1,000-fold expansion of specific cells 

responding to the target antigen.  The T-Cells also demonstrated excellent targeted 

effector activity in a cell lysis assay.121  

 One interesting and recent application of magnetic materials is in the induction of 

TCR clustering by magnetic field driven aggregation of nano aAPC bound to the 

receptors.  Through antibody staining of TCR before and after an applied magnetic field, 

the authors demonstrated a doubling of cluster size and overall reduction in the number of 

clusters per T-Cell.122   At a maximal dose, these magnetically clustered nano aAPCs 

were able to mediate a 15-fold antigen specific expansion of target T-Cells compared to 

the non-clustered nano aAPCs which only mediated a 5-fold expansion of cells over 7 

days.  Ex vivo stimulation of these T-Cells under the influence of the magnetic field also 

led to a reduced tumor burden and enhanced survival of mice in an adoptive transfer 

immunotherapy model.122     

Other Materials 
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 Another material which has found use in the application of aAPCs are single 

walled carbon nanotubes (SWNTs).  This material has a large surface area that can be 

used for activation of T-Cells.  The authors demonstrated a more than 10-fold production 

of IL-2 of T-Cells by anti-CD3 loaded onto the surface of these carbon nanotubes vs. free 

antibody in solution.43  There was also a demonstrated effect of surface area for 

activation.  Through expansion of the available SWNT surface area for activation, the 

authors were able to demonstrate enhanced activation of T-Cells for a similar dose of 

protein to fabricate the aAPCs.123 

 Quantum dots have also been utilized recently for the stimulation of T-Cells.  

Through the use of MHC Class I protein and anti-CD28 immobilized on the surface of 30 

nm quantum dots, the authors of this study were able to demonstrate an antigen specific 

expansion of T-Cells.124  Over the course of 7 days, there was a 15-fold expansion of 

target T-Cells and no expansion of non-cognate T-Cells.  In addition these quantum dot 

aAPCs mediated an excellent in vivo tumor reduction in an adoptive transfer model.124 

2.2.5 Biomedical Applications of the aAPC 

Cancer Immunotherapy 

 One of the primary applications of aAPCs over the past years has been in the 

induction and expansion of cytotoxic T-Cells for cancer immunotherapy.  Both cellular 

and acellular aAPCs have been utilized for this purpose.  One study that highlights the 

use of aAPC for this purpose was the application of micron scale latex particles bonded 

to MHC dimer to serve as a Signal 1 and a blend of anti- CD28, 41BBL, and CD83 as 

Signal 2.125  The bead based system was able to mediate a 250-fold expansion of 

melanoma CTL from naïve splenocytes.  In addition, a strong in vivo effect was 
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demonstrated in both a murine lung metastasis model and a subcutaneous melanoma 

adoptive transfer model.125 

 Efficacy of aAPCs in the context of cancer immunotherapy has also been shown 

in the context of human cytotoxic lymphocytes.  Butler et. al. demonstrated impressive 

long term CD8+ expansion and functionality of human CD8+ T-Cells.126  The platform 

utilized was the K562 cells line transduced to express a human MHC molecule as well as 

costimulatory molecules for CD28.  Similar to previous studies with this cell based 

aAPC, there was a rapid short term expansion of antigen specific T-Cells (~100,000 fold 

over 5 weeks).126  However, there was impressive long term efficacy noted as well.  Over 

the course of 1.5 years there was more than a 1,000,000 fold expansion of antigen 

specific T-Cells which were verified to have effector function in a cancer cell lysis 

assay.126 (Figure 2.9)  Following the successful preclinical studies, this cellular aAPC 

has been transferred to clinical trials for ex vivo expansion of T-Cells for immunotherapy 

of advanced melanoma.108 

Infectious Disease 

 Beyond cancer therapy, the aAPC platform has also been investigated in the 

context of infectious disease.  One pathogen which has been investigated extensively for 

potential treatment by aAPC based immunotherapy is cytomegalovirus (CMV).  

Adoptive immunotherapy in the context of CMV has been previously established using 

autologous APCs.127  Despite this clinical efficacy, the need to establish an autologous 

APC for each patient would render the therapy very expensive.  As a result, an aAPC was 

developed for the expansion of CMV specific CD8+ T-Cells.  The platform utilized was 

the murine fibroblast cell line expressing a human based MHC protein.  The aAPC was 



48 
 

shown to induce a near 100-fold expansion over 10-14 days of culture with CD8+ cells 

from CMV+ human donors.128  These T-Cells were also shown to have specific effector 

function against target cells.  In addition, the authors of this study demonstrated the 

capability to generate memory T-Cells from this population.128 

 aAPC platforms have also been investigated in the context of other viral 

infections.  One of the published examples is the use of aAPCs to treat Epstein-Barr virus 

(EBV).  Lu et. al. utilized a latex bead coated with a human MHC dimer loaded with 

cognate EBV peptide, as well as anti-CD28 and ICAM-1 as costimulatory molecules and 

adhesion molecules respectively.  The authors demonstrated a selective cytotoxicity 

against cells pulsed with the target EBV associated antigen.129  Another platform which 

could benefit from the use of aAPCs is human immunodeficiency virus (HIV-1).  Clinical 

benefit has already been established utilizing an autologous APC platform.130  Additional 

research into the use of expanded CD8+ T-Cells to treat the active or latent reservoir of 

HIV infection will likely be of benefit in the coming years.    

Autoimmunity and Killer aAPCs 

 In addition to the stimulation of T-Cells to attack a target disease such as cancer 

or infection, there has been research devoted to researching how aAPCs can mimic the 

regulatory function of normal aAPCs through deletion of T-Cells in an antigen specific 

fashion (Figure 2.10).  Termed “Killer aAPCs” these particles have been designed from a 

paramagnetic bead conjugated to MHC dimer to serve as a Signal 1 and anti-Fas as a 

Signal 2 to mimic the engagement of Fas by the FasL on the APC to induce activated T-

Cell apoptosis.131 This technology has been used in a demonstrative capacity using Mart-

1, the melanoma antigen, and CMVpp65, the CMV antigen.  Culturing antigen specific 
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T-Cells with the cognate killer aAPC resulted in more than a 5-fold reduction of the T-

Cell population.132  This was not observed in non-cognate populations of T-Cells.  In 

addition, this elimination was shown to occur within 30 min of the beginning of 

coculture.132 This technology is promising for autoimmune disorders as several different 

target antigens have been implicated in diseases such as Type I diabetes, multiple 

sclerosis, and primary biliary cirrhosis.131  

2.2.6 Conclusion 

 Artificial antigen presenting cell technology enables the capability for modern 

science to harness and control the immense power of the mammalian adaptive immune 

system.  Many platforms have been developed for this technology.  Cell based aAPCs, 

including the K562 leukemia cell line and murine fibroblast lines have shown direct and 

powerful activation of T-Cells in an antigen specific manner.  There are several ongoing 

clinical trials with different cell based aAPCs for various diseases.108 Acellular, 

biomaterials-based aAPCs have proven nearly as effective as cell-based aAPCs and have 

enabled this powerful arm of immunotherapy to be translated to an “off-the-shelf” 

technology.  These aAPCs also enable precise tuning of their physical, chemical, and 

biological properties.  As a result, therapeutic aAPC platforms are becoming more 

amenable to clinical use.  Continued development of both of these platforms will be 

interesting to follow in the coming years.  

 One of the key advantages of the aAPC design is its ability to have an impact in 

any disease that has an immune component.  As a result, the aAPC technology has found 

application in many illnesses for which immune targeted antigens have been identified.  

Cancer immunotherapy has benefitted greatly from the aAPC due to the capability but 
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inadequacy of the natural immune response to a cancerous growth.  In addition, aAPCs 

have been developed for several viral infections including EBV and CMV.  Despite a 

focus on aAPCs for T-Cell activation, there has also been work in the development of 

aAPCs to deplete T-Cells in an antigen specific fashion.  This could have an impact for 

autoimmune diseases and organ transplantation where the current option is systemic 

immunosuppression.   

 aAPCs represent a successful biomimicry of the APC in its regular function of 

immune cell engagement.  With a thorough understanding of the function and physiology 

of APCs, we can engineer more effective aAPCs for a wide variety of applications.  

Ongoing development of aAPCs for biomedical and therapeutic purposes will greatly 

benefit human medicine through engineered synthetic control of the natural immune 

response.    

2.3 Overview of Surface Chemistry in Particle Design 

2.3.1 Introduction 

The field of drug delivery has in many ways focused on the controlled delivery of 

soluble biomolecules to tissue types of interest and increasingly to targeted cell types.  

While this mode of delivery covers many categories of therapeutics, including both small 

molecule drugs and biologics such as peptides, proteins, and nucleic acids, certain types 

of biologics require presentation from a surface, rather than soluble presentation, for their 

desired cellular function.  Biomimetic materials, in particular, that aim to mimic the 

physical, chemical, and biological aspects of natural biological materials for cellular 

engineering, must take into account this feature of surface presentation.  As 

understanding of these natural systems has advanced, investigators have sought to design 
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artificial systems capable of mimicking and controlling these interactions to shape the 

cellular response. Moving towards this goal, engineered particle and surface based 

systems have been designed that can modulate the activity of a variety of cell sub-types 

in vitro and in vivo for purposes of therapeutics. 

Biological cells are surrounded by highly complex membranes composed of lipid 

bilayers and glycated cell surface proteins, which are highly organized and transmit and 

receive critical signals that direct normal and abnormal cellular function. Recently, there 

has been increased attention in taking cues from this biology to design therapeutic 

particles with greater biomimicry.  There are two main approaches towards development 

of particles that mimic cell surfaces. Bottom-up approaches begin with the molecular 

components of cellular membranes and specifically add in the desired surface proteins 

synthetically either by surface functionalization of an intact lipid bilayer or by 

formulating the proteins with lipid linkers and adding them during a particle coating step. 

Top-down approaches begin with harvested membranes from biological cells that are 

directly added to particle cores. 

2.3.2 Fabrication of Surface Mimetic Particles for Drug Delivery 

Bottom-Up Approaches 

 A major goal in particle-based drug delivery involves the avoidance of non-

specific uptake and rapid clearance from the blood by immune cells such as 

macrophages. Classical approaches towards this problem involve densely conjugating 

hydrophilic polymers such polyethylene glycol (PEG) to the particle surface in an effort 

to minimize interactions with biomolecules and cells based on hydrophobic interactions 

and charge.133,134  One approach to improve on the PEGylated particle model is 



52 
 

identification and use of biological “self” signals. CD47 has recently been identified as 

perhaps the most potent “self” marker and Rodriguez et. al. developed “self” peptides, 

computationally derived from human CD47, that optimally bind to the same binding 

partner as CD47 (CD172a). 135  These “stealth” self-peptides strongly inhibit nanoparticle 

uptake by macrophages at far lower densities than are required for effective protection by 

PEG, requiring only a single CD47 molecule per 60 nm particle.135 

Cellular membranes are formed from fluid lipid bilayers and present a variety of 

protein signals in addition to being shielded by a dense glycocalyx. Sengupat et al 

developed anticancer “nanocells” (NC)136 composed of a core PLGA nanoparticle with 

an encapsulated chemotherapeutic that was surrounded by a peglyated-lipid envelope that 

trapped an anti-angiogenic agent. This allowed for rapid release of the antiangiogenic 

agent followed by slower release of the chemotherapeutic, enabling vascular shutdown 

prior to direct tumor killing. NC showed significant tumor accumulation, tumor growth 

inhibition, mouse survival, tumor cell apoptosis, and reduced systemic toxicity.  

 Polymer-supported lipid bilayers (SLBs) have been used for a long time as cell-

surface models.137-150 Advantages of SLBs over polymer-support free systems such as 

free standing lipid membranes or liposomes include improved mechanical stability and 

maintenance of membrane fluidity.144,145 They have been developed for phase-transition 

chromatography146,147 as well as isolation of cell membranes on particle surfaces.148-150 In 

a biomimetic approach, the Brinker group developed “protocells” with mesoporous silica 

cores surrounded by fully synthetic lipid bilayers.151-154 These fully synthetic protocells 

can encapsulate a variety of chemically active drugs and present ligands on the supported 

lipid bilayer surface, including short peptides and larger antibodies or glycoproteins 
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(Figure 2.11A). This enables presentation of a variety of important biological signals on 

the cell-like artificial surface, including targeting moieties to enhance specific cell 

targeting and fusogenic peptides to enhance endosomal escape on the surface of the 

nanocarrier.154  Compared to liposomes presenting the same targeting peptides, these 

protocells show increased membrane fluidity and as a result show enhanced specific 

binding due to the ability to recruit additional peptides to the particle-cell interface, 

increasing the multivalency of the interaction.154   

Top-Down Approaches 

Rather than synthesizing an artificial membrane out of fully synthetic 

components, several groups have recently explored the concept of harvesting and 

purifying biological membranes from cells and then using the purified membrane to coat 

particles. Red blood cells (RBCs) offer a number of advantages as potential targets for 

biomimetic therapeutic particles as they have extremely long circulating half-lives, 

possess a discoidal-shape, and have the flexibility to squeeze through capillaries. 

Multiple groups have purified RBC membranes and generated RBC vesicles, named 

resealed erythrocytes, which can then be loaded with a variety of hydrophilic drugs in the 

same fashion as with synthetic liposomes.155-157 Challenges with this approach include 

early removal from the circulation, early drug release for smaller or more lipophilic 

molecules, and variability with particle fabrication and stability. 

Hu et. al.158 fused RBC vesicles with nanoparticle cores to form RBC membrane 

camouflaged nanoparticles (Figure 2.11b). These RBC membrane camouflaged 

nanoparticles showed superior in vivo half-life compared to PEGylated nanoparticles. 

The process coats the nanoparticles in a unilamellar fashion, preserves the majority of the 
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membrane proteins, including CD47, and presents them in a correct-side out 

orientation.159 These RBC-coated particles were used as RBC decoys to protect against 

RBC lysis from pore forming toxins (PFTs).160 When formulated with PFTs and injected, 

these particles engender effective immune responses against the PFTs.161  

Leukocytes or white blood cells use their cell surface interactions to bind to 

inflamed endothelium and respond to infection in the tissues. Parodi et. al.162 

encapsulated nanoporous silica nanoparticles with white blood cell (leukocyte) 

membranes and demonstrated that these “leukolike vectors” (LLVs) recapitulate 

functions of white blood cells, including avoiding immunological clearance, interacting 

with endothelial cells, and transporting drugs across a model of inflamed endothelium. In 

the presence of TNF-alpha, LLVs are transported across an inflamed endothelial barrier 

4-fold more efficiently than bare particles, showing the same propensity to cross-

inflamed endothelium as biologic leukocytes. These properties allowed doxorubicin-

loaded LLVs to show enhanced tumor cell killing with relative protection of the 

endothelium, delayed liver clearance, and tumor accumulation in mice.  

Nanoparticle biomimicry may be extended to other cell types as well through the 

harvesting of cellular “ghosts” such as from platelets163 or mesenchymal stem cells 

(MSCs).164 MSCs show intriguing active tumor-targeting properties, and Furman et al. 

showed that MSC vesicles or nanoghosts loaded with sTRAIL could substantially inhibit 

prostate tumor growth in vivo.164 Of particular note, this effect was restricted to 

nanoghosts derived from MSCs, as nanoghosts derived from human smooth muscle cells, 

which were of similar size and physical properties, showed no therapeutic effect.164  This 

type of biomimicry is not restricted to use of purified membranes from healthy cells 
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alone.  Cancer cell membrane coated nanoparticles (CCNPs)165 have also been produced 

and are efficiently taken up by dendritic cells and useful as cancer nanovaccines. CCNPs 

may also show enhanced tumor targeting for direct delivery of anticancer drugs.  

2.3.3 Fabrication of Surface Mimetic Particles for Immunoengineering 

One of the varied areas of biology where the proper balance of physical, 

chemical, and biological interactions appears most critical is in the signaling of the 

immune system.  Thus, for the engineering of lymphocytes, surface engineering of 

biomolecules is key to deliver the proper signals for lymphocyte programming.  This 

section highlights immunoengineering approaches including the components of the 

necessary chemical and biological signals that engender cellular responses, the required 

features of the surfaces that best present these signals such as surface fluidity, and the 

physical properties of the supporting substrate that also modulate lymphocyte behavior 

(Table 2.3).      

Surface Patterning and Fluidity 

Interactions between lymphocytes and APCs or soluble antigens are highly 

complex in spatial arrangement.  An immunological synapse (IS) is formed at the 

interface between lymphocytes and APCs.  The IS is characterized by dynamic 

rearrangements of proteins into specific clusters.  Randomly distributed, immobilized 

proteins cannot recapitulate this organization and clustering.166 As a result, patterned and 

fluid surfaces have been engineered to replicate the IS and enhance lymphocyte 

modulation. 

Microfabrication allows for deposition of proteins in a site-specific manner on 

surfaces at resolutions down to approximately 1 µm to allow for effective pre-clustering 
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of signal molecules to study lymphocyte activation.167 Using microfabrication with 

biotinylated photoresist to pattern anti-CD3 onto a glass substrate, solid focal spots were 

shown to be more effective for T-Cell activation than annulus shaped protein deposition, 

demonstrating the importance of receptor clustering for T-Cell activation.168  This study 

further concluded that differences in T-Cell activation were due specifically to the shape 

of the protein deposition spots and not due to density of ligand or surface area of the 

receptor, which has implications for particle systems that are capable of only displaying a 

certain surface area to T-Cells based on their geometry.102,168  

 In contrast to microfabricated surfaces that allow for receptor localization at the 

micron level, nanoarrays of gold nanoparticles to specifically localize ligands at defined 

intervals between 35-150 nm have been used to study the importance of inter-receptor 

spacing for T-Cell activation.105 Using anti-CD3 conjugated to gold nanoparticles, a 

spacing of 60 nm was shown to be optimal for maximal threshold stimulation of T-

Cells,105 which has implications for the design of particle-based aAPC systems with 

surface conjugated ligands where ligand localization is more challenging to define. 

The fluidity of proteins on a synthetic surface of a particle is an important 

component of mimicking the membrane fluidity of a cell.  Surface fluidity allows 

particles to behave in a more biomimetic manner by enabling receptor clustering, which 

is an important aspect of the physiological interaction between T cells and APCs.  

 Supported lipid bilayers (SLB) on planar substrates have long been utilized to 

study receptor interactions between cells, in particular as they enable membrane fluidity 

and facilitate receptor clustering. Artificial APC surfaces have been engineered to mimic 

the lateral diffusivity of the IS by coating a support substrate with an SLB containing 
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Signal 1, Signal 2, and adhesion molecules.  SLBs with immobilized ligands separated by 

chromium strips for precise localization have been used to demonstrate the importance of 

receptor clustering for T-Cell activation.169 This study was one of the first to demonstrate 

the necessity of ligand positioning and fluidity for the formation an immunological 

synapse required for robust T-Cell activation.169 SLBs have also been used to study the 

requirements for TCR triggering, which were found to include surface-anchoring of 

pMHC, T-Cell surface adhesion, and subsequent ability of the T-Cell to move, suggesting 

that a fluid aAPC/T-Cell contact area is optimal.170 Ligand mobility, specifically, has 

been shown to be an important parameter in modulating T-Cell response.171 SLBs of 

different lipid compositions were engineered to vary ligand mobility, and those with 

greater ligand mobility had increased CD3 accumulation at the IS and increased 

phosphotyrosine (pY) signaling at the TCR microclusters (Figure 2.12A).  

 Knowledge of the importance of membrane fluidity for immunological synapse 

formation has implications for lymphocyte surface engineering that have been 

investigated through the use of liposomes with conjugated signal molecules that allow for 

free movement and clustering of the biomolecules.120,172 As planar SLBs are only 

relevant for ex vivo T cell expansion, 3D aAPCs with membrane fluidity have been 

engineered by incorporating Signal 1, Signal 2, and adhesion molecules into 

liposomes.120,172,173 TCR molecules on T-Cells engaging with liposome-based aAPCs 

formed clusters over time that co-localized with the aAPCs, suggesting the formation of 

an IS.173 In the first generation of liposome-based aAPCs, the pMHC molecules were 

randomly distributed throughout the membrane.173 However, pre-clustering MHC class II 

on lipid rafts for highly concentrated spots of signaling molecules has been shown to 
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increase activation of T-Cells.174 As a result, liposome-based aAPCs were enhanced by 

pre-clustering the T-Cell ligands in microdomains on the aAPC surface, which 

significantly increased antigen-specific T cell stimulation.172 Microdomains composed of 

anti-CD3, anti-CD28, and anti-LFA-1 were anchored to GM-1-enriched liposomes by 

neutravidin bound cholera toxin.  This liposome-based aAPC generated almost a 1.5-fold 

increase in the expansion of T-Cells compared to bead-based aAPCs with immobilized 

ligands, with an overall expansion of over 150-fold over the course of 14 days.  

Liposome-based aAPCs allow receptor clustering but are limited by shape, size, and the 

number of signaling molecules that can interact with the T-Cell.  SLBs atop a particle 

core would allow for control over these parameters, in addition to surface fluidity.  

Particles coated with lipid bilayers have been successfully engineered for targeted drug 

delivery applications,154,175 and are an interesting approach for next generation aAPCs. 

Alternative engineering methods allow for receptor clustering on T-Cells without 

patterning the particle surface or using a fluid lipid bilayer.  One way to accomplish this 

is through the use of a semi-flexible polymer based on poly(isocyano peptides) 

conjugated with anti-CD3 and anti-CD28 to allow for receptor clustering, as well as 

efficient multivalent binding.175,176 The polymers were able to activate T-Cells at 

significantly lower concentrations in vitro than rigid spherical poly(lactic-co-glycolic 

acid) (PLGA) counterparts, but their efficacy and biodistribution in vivo has yet to be 

studied.  

With the knowledge of receptor clustering necessary for TCR activation, 

nanoparticle systems capable of self-clustering in response to paramagnetic activation 

have been designed that allow for larger focal spot formation, with a length scale similar 
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to that of micron-sized particles.124,177 Perica et al. engineered paramagnetic iron-dextran 

nano-aAPC to drive receptor clustering.122,124 Under the influence of an external magnetic 

field, nanoparticles bound to T-Cells aggregate, leading to receptor clustering on the T-

Cell and an increase in TCR cluster size (Figure 2.12B). T-Cells activated by the nano-

aAPC in a magnetic field mediated tumor rejection in a melanoma adoptive 

immunotherapy model and were more effective in activating naïve T-Cells than nano-

aAPC without magnetic field counterparts.  In addition, magnetic preclustering of these 

nano aAPC resulted in 80% long term survival of mice compared to unclustered 

controls.122,124  

 Similar to T-Cells, B-Cells form an immunological synapse when engaged with 

APCs, and receptor clustering is an important component of B-cell activation.178,179 

Antigen binding to the BCR triggers BCR crosslinking and the formation of 

microclusters, which initiate downstream signaling that leads to B-Cell activation.178,180 

BCR/antigen clusters in the cSMAC, while LFA-1/ICAM-1 migrate to the pSMAC.179,181 

However, unlike T-Cells, adhesion molecules are not required for mature synapse 

formation if the affinity of BCR-antigen binding is high enough.179 SLBs and liposomes 

have been used to recapitulate this spatial organization for B-Cell modulation. 

 Supported lipid bilayers have been used to study B-Cell activation by membrane-

anchored antigen in vitro.179-187 Typically, SLBs contain biotinylated anti-IgM, anti-IgD, 

or anti-IgG as surrogate antigen tethered to biotinylated lipids with a strepdavidin 

linker.188 Anti-IgG SLBs with lateral mobility result in enhanced BCR microcluster 

formation and signaling compared to immobilized IgG, which form small and unstable 

microclusters that lead to inefficient signaling.180 Although adhesion molecules are not 
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required to induce BCR clustering and synapse formation, incorporating ICAM-1 into 

SLBs can enhance contact formation for lower-avidity antigens.179,184  

Although biotinylation is widely used to conjugate IgG to SLBs, it is difficult to 

control the location of biotin binding on the antibody, which can lead to inaccessibility of 

the antigen to BCRs, and multiple IgG molecules can bind to one streptavidin 

molecule.188 Zhang et al. addressed these issues by using a modified D domain from 

staphylococcal protein A molecule fused with a polyhistidine tag, which binds to nickel-

containing SLBs.188 Protein A binds IgG with high affinity only in the constant region. 

This technique enhanced lateral mobility compared to tethering IgG with strepdavidin. 

However, this approach cannot be used to target B-Cells expressing IgG BCRs since the 

linker protein will bind the BCRs. Others have similarly utilized nickel-containing SLBs 

to conjugate histidine-tagged antigen and adhesion molecules,189-192 as well as the 

inhibitory receptor FcγRIIB, which blocks BCR microcluster formation and prevents 

downstream signaling.193 

 Results using planar lipid bilayers suggest that a liposome-based design for B-

Cell therapies may be more effective than particles with immobilized antigen.194 

Researchers have used liposomes presenting peptide antigen to stimulate a B-Cell IgG 

response by including a costimulatory TLR ligand194 and to induce tolerance by 

incorporating the ligand for CD22, an inhibitory co-receptor.195 Studies have focused to a 

greater extent on delivering free antigen encapsulated in liposomes to B-Cells.196 

However, given that membrane-anchored antigen stimulates B-Cells more strongly, 

surface presentation on fluid particles is a promising new direction.181 

Surface Rigidity and Mechanical Properties 
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The effect of substrate stiffness on lymphocyte modulation has been relatively 

unexplored but has been shown to have an important role in the differentiation and 

activation of other cell types, such as mesenchymal stem cells (MSCs)197-200 and 

endothelial cells.201-203 For example, Engler et al. showed that substrate stiffness alone 

can drive MSC differentiation fate.198 A limited number of studies have shown that 

lymphocyte activation and differentiation may be affected by planar substrate rigidity.204-

209 This is an interesting area for further investigation of particle-based systems, as 

particle stiffness is an important component of cellular biomimicry.  

It has been shown that mechanical forces can mediate T-Cell signaling, through 

both the TCR/CD3 complex and the costimulatory receptor, CD28.210,211 T-Cells cultured 

on elastomer pillar arrays presenting CD3 and CD28 activating antibodies generated 

traction forces on the pillars.204 Traction forces were also generated through the TCR on 

pillars presenting antigen-loaded MHC.  Additionally, inhibition of actin 

polymerization169,170,212 and myosin213 significantly inhibits TCR signaling. This evidence 

suggests that cytoskeletal and cellular forces play a role in T-Cell activation at the 

immunological synapse.  Optimizing particle rigidity may allow T-Cells to perform 

mechanosensing during the formation of the immune synapse as they do with biological 

APCs. 

While particle stiffness has not been explored, it has been shown that the rigidity 

of planar surfaces plays a role in T-Cell activation, proliferation, and differentiation.  

Kam and colleagues have investigated the effect of substrate stiffness on ex vivo T-Cell 

activation and expansion.206,207 Human T-Cells were cultured on PDMS substrates of 

varying elastic modulus coated with anti-CD3 and anti-CD28, and softer substrates (E < 
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100 kPa) exhibited enhanced polyclonal expansion compared to stiffer substrates (E > 2 

MPa).206 Specifically, softer substrates yielded a higher level of CD4+ and CD8+ T-Cell 

stimulation, as evidenced by increased proliferation and IL-2 production.  Additionally, 

softer substrates generated a greater proportion of IFN-γ producing Th1-differentiated 

cells. In a different study, mouse T-Cells expanded on polyacrylamide gels of elastic 

modulus varying from 10 to 200 kPa showed increased IL-2 secretion on stiffer 

substrates.207 The seemingly opposite trends in the two studies are likely due to the 

different ranges of elastic moduli tested—the mouse T-Cells were cultured on 

polyacrylamide gels ranging in elastic modulus from 10 to 200 kPa,207 while the human 

T-Cell study tested PDMS substrates ranging from 50-100 kPa to >2 MPa.206 Both papers 

show that the optimal elastic modulus for T-Cell stimulation in the ranges tested is 

approximately 100 kPa.  A different group looked at a larger range of elastic moduli—

Jurkat T-Cells were cultured on polyacrylamide gels of elastic modulus (E) ranging from 

200 Pa to ~6 kPa.205 T-Cell signaling persisted for a longer period of time on softer 

substrates, but the efficiency of T-Cell activation and expansion on the different 

substrates needs to be further investigated. 

Additional research needs to be performed to determine the effect of surface 

rigidity of particles, in addition to planar substrates, on T-Cell activation and 

differentiation.  In engineering particle-based aAPCs, mimicking the low compressive 

modulus of biological APCs may optimize the T-Cell-aAPC interaction.  Dendritic cells 

have been measured to have an elastic modulus of ~800 Pa when activated,214 so T-Cell 

activation may be optimal on surfaces with lower elastic moduli. The effect of particle 

stiffness on T-Cells needs to be explored to better understand the mechanics of 
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lymphocyte signaling and to optimize particle therapies designed to modulate 

lymphocytes. 

There has been a limited amount of research on the effect of substrate stiffness on 

B-Cell stimulation.  Unlike T-Cells, B-Cells encounter antigen in vivo on substrates of 

varying stiffness—for example, B-Cells sense antigen on the surface of stiff viral capsids, 

on the membranes of infected host cells, and in soluble form.  Liu and colleagues found 

that B-Cells cultured on antigen-coated polyacrylamide gels of elastic moduli varying 

from 2.6 to 22.1 kPa were more strongly activated and were better able to perform 

antigen affinity discrimination on the stiffest substrate.208 B-Cells were even more 

efficiently activated on a PDMS surface with an elastic modulus of 1100 kPa compared 

to a 20 kPa substrate, as measured by formation of the immune synapse.209 However, the 

softer substrate showed enhanced B-Cell expansion and antibody response.  Further 

evaluation with a larger number of substrate elastic moduli is necessary.  Nonetheless, 

these studies suggest that B-Cells perform mechanosensing and that optimizing particle 

rigidity based on the desired response could be beneficial for therapies designed to 

modulate B-Cells, such as particle-based vaccines and B-Cell lymphoma treatments.  

2.3.4 Conclusion 

In this section, current approaches at extending the therapeutic efficacy of 

nanoparticle and microparticle systems were discussed in the context of designing the 

particles to be more biomimetic.  Bio-inspired design of nanoparticles enables long 

circulation times and stealth interaction with off-target molecules and cells and 

simultaneous high affinity interactions with target cells.  Such biomimetic particles can 

encapsulate and release soluble small molecules and proteins extracellularly or 
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intracellularly and can also present biological molecules in specific orientations to trigger 

cell signaling of target cells. 

Recent advances in the field of immunoengineering have enabled the 

development of technologies designed to activate and deactivate lymphocytes, including 

T-Cells and B-Cells.  Researchers have attempted to recapitulate the complex spatial 

arrangement of proteins and membrane reorganization that occurs during the formation of 

the immunological synapse by engineering surfaces with patterned proteins and surface 

fluidity. While these features have all been individually implemented, in the future, 

enhanced biological factors, surface diffusivity, surface area, and mechanical properties 

will likely be combined to create highly effective advanced biomimetic materials for 

immunotherapy.  

These approaches can be used to combat many diseases, including treating cancer 

in new ways including through nanoparticle-based vaccines and construction of artificial 

antigen presenting cells.  The future of particle-based therapeutics involves learning from 

natural biological systems and designing the needed physical, chemical, and biological 

parameters to emulate them.  Such biomimetic therapeutic particles have a promising 

outlook to benefit human health. 
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2.5 Tables 
 
Table 2.1: Summary of applications of various anisotropic polymeric nanoparticles 
 

Method Application Material* Size Shape** Result Ref 
Thin Film 
Stretching 

Inhibition of 
macrophage 

uptake 

PS 500 nm 
– 4 µm 

Prolate 
ellipsoid 
(AR 2), 
Oblate 

ellipsoid 
(AR 2) 

Prolate ellipsoids 
attached 4 times 

more, oblate 
ellipsoids 

phagocytosed 3 fold 
more than spheres. 

57 

Inhibition of 
MSC/HeLa 

uptake 

PS 100 nm Prolate 
ellipsoid 
(AR 2-4) 

AR 2 particles taken 
up 2-5 times more 
than AR 4 particles 

58 

Enhanced 
antibody 

specificity 

PS 200 nm Prolate/ 
oblate 

ellipsoid 
(AR 3), 

Targeted prolate 
ellipsoid particles 
taken up 3 times 

more than spheres 

64 

Endothelial 
targeting 

PS 100 nm 
- 10 µm 

Oblate 
ellipsoid 
(AR 3) 

30 fold organ 
specificity of targeted 
ellipsoids vs. spheres 

65 

In vivo brain and 
lung targeting 

PS 200 nm Prolate 
ellipsoid 
(AR 3) 

Targeted ellipsoids 
accumulated 2 fold 

more in lung and 7.5 
fold more in brain 

compared to sphere 

67 

Artificial antigen 
presenting cells 

PLGA 4.5 µm Prolate 
ellipsoid 
(AR 2-7) 

20 fold increase in 
antigen specific 
proliferation by 
ellipsoid aAPC 

compared to 
spherical. 

102 

Particle 
Replication in 
Non-Wetting 

Templates 
(PRINT) 

siRNA delivery PLGA 320 nm Rod shaped 
(AR 4) 

60-80% knockdown 
of KIF11 in cancer 
cells over 72 hrs. 

68 

RNA replicon 
delivery 

BSA 1 µm Cylindrical 2 fold increase in 
target protein 

expression over 
Trans IT 

69 

Docetaxel 
delivery 

PLGA 320 nm Cylindrical 
(AR 4) 

Reduced tumor size 
and toxicity vs free 

drug 

71 

Self-Assembly Plasmid delivery PEG-PPA 40-70 
nm 

Rod like (AR 
3) 

10000 fold increase 
of in vivo expression 
of target gene by rods 
compared to spheres 

74 

Doxorubicin 
delivery 

POEGMA-
P(ST-co-

VBA) 

20-200 
nm 

Rod and 
worm shaped 

7 fold increase of 
cancer cell killing of 
worms over spheres 

75 

Enhanced 
biodistribution 

PEG-
PEE/PCL 

1-8 µm Worm 
shaped 

2 fold increase in 
circulation time for 4 
fold increase in AR** 

76 

* PS = polystyrene, PLGA = poly(lactic-co-glycolic acid), BSA = bovine serum albumin, PPA = polyphosphoramidate. POEGMA-
P(ST-co-VBA) = poly[oligo(ethyleneglycol) methacrylate]-block-[poly(styrene)-co-poly(vinyl benzaldehyde)]. PEE = 
polyethylethylene. PCL = polycaprolactone.  ** AR = aspect ratio 
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Table 2.2: Examples of the various existing aAPCs and their efficacies. 
 

Type Material* Size Signal 1 Signal 2 Efficacy Ref 
Cellular K562 cells 10-20 

µm 
HLA 
MHC 

Class II 

B7-1 1000 fold expansion of 
CD4+ T-Cells. 

109 

K562 cells 10-20 
µm 

HLA 
MHC 
Class I 

B7-1 1,000,000 fold expansion 
of CD8+ T-Cells over 1.5 

years. 

126 

K562 cells 10-20 
µm 

Anti-CD3 Anti-
CD28/ 

41BB-L 

1000-10000 fold 
expansion of CD8+ T-

Cells. 

110 

NIH/3T3 
murine 

fibroblasts 

18 µm HLA 
MHC 

Class 1 

B7-1 2 fold greater CD8+ 
expansion compared to 

autologous APC. 

114 

NIH/3T3 
murine 

fibroblasts 

18 µm HLA 
MHC 
Class I 

B7-1 100 fold expansion of 
CMV CD8+ T-Cells over 

14 days. 

128 

Acellular PS 5 µm Kb MHC 
Class 1 

B7-1/B7-2 3 fold secretion of IL-2 
compared to soluble 

protein. 

117 

PS 6 µm HLA 
MHC 
Class I 

Blend of 
Anti-

CD28/ 
Anti 41BB 

5 fold increase of CD8+ 
T-Cells of blended Signal 
2 compared to individual 

Signal 2. 

104 

PGA 7 µm Anti-CD3 Anti-CD28 2 fold greater CD8+ T-
Cell expansion compared 

to plate bound ligand. 

118 

PLGA 
encapsulating 

IL-2 

6 µm Anti-CD3 Anti-CD28 3 fold greater secretion 
of IL-2 by T-Cells 

compared to soluble 
signal. 

107 

Non-Spherical 
PLGA 

4-5 µm Db MHC 
Class 1 

IgG dimer 

Anti-CD28 20 fold greater of 
expansion of CD8+ T-

Cells of ellipsoidal 
compared to spherical 

particles. 

102 

Liposomes 60 nm Anti-CD3 Anti-CD28 175 fold expansion of 
CD8+ T-Cells over 14 

days. 

97 

Magnetic 
Dynal® Beads 

4.5 µm HLA 
MHC 

Class 1 

Anti-CD28 1000 fold expansion of 
antigen specific CD8+ T-

Cells. 

121 

Magnetic 
Dynal® Beads 

4.5 µm HLA 
MHC 
Class I 

Anti-Fas 5 fold reduction in 
antigen specific CD8+ T-

Cells. 

132 

SWNT Bundles 5-10 nm 
tubes/100 

µm 
bundles 

Anti-CD3 None 10 fold increase in 
secretion of IL-2 

compared to soluble 
antibody. 

123 

QDs 30 nm Db MHC 
Class 1 

Anti-CD28 15 fold expansion of 
CD8+ T-Cells over 7 

days. 

124 

*PS = Polystyrene, PGA = Poly glycolic acid, PLGA = Poly(lactic-co-glycolic acid), SWNT = Single walled carbon nanotubes, QDs 
= Quantum Dots 
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Table 2.3. Summary of various surface engineering features for immunoengineering. 

 
 
 

Lymphocyte 
Target 

Surface Feature1 Material2 Signal 
Protein3 

Result Ref 

T-Cells MHC Dimer for 
antigen specific 

activation 

Dynal® 
microbead 

S1: MHC 
Dimer + 
S2: Anti-

CD28 

Micro-aAPC gave 106 
expansion ex vivo over two 
months of tumor specific 

T-Cells 

121 

Paracrine delivery 
of IL-2 

PLGA S1: Anti-
CD3 + S2: 
Anti-CD28 

Enhanced CD8+ expansion 
with IL-2 delivery 

107 

Ellipsoidal shape 
– micron scale 

PLGA S1: MHC 
Dimer + 
S2: Anti-

CD28 

20-fold increase in T-Cell 
proliferation in ellipsoidal 

aAPC compared to 
spherical 

102 

Ellipsoidal shape 
– nano scale 

PLGA S1: MHC 
Dimer + 
S2: Anti-

CD28 

3-fold stronger in vivo 
induction of T-Cells by 

ellipsoidal aAPC compared 
to spherical aAPC 

215 

MHC Dimer with 
FasL 

Dynal® 
microbead 

S1: MHC 
Dimer + 
S2: FasL 

Killer aAPC induced T-
Cell apoptosis with both 

high efficacy and 
specificity 

132 

SLB with variable 
ligand mobility 

DMPC and 
DPPC 

S1: Anti-
CD3 

T-Cell activation and IS 
formation preferentially 
induced by more fluid 

membranes 

171 

Paramagnetic 
nanoparticle 

Iron-dextran S1: MHC 
Dimer + 
S2: Anti-

CD28 

5.5-fold increase in T cell 
expansion with magnetic 
clustering of nano aAPC 

compared to non-clustered 
nano aAPC 

122 

Planar substrate 
with variable 

rigidity 

PDMS S1: Anti-
CD3 + S2: 
Anti-CD28 

4-fold increase in T cell 
expansion on softest 

substrate compared to 
stiffest substrate. 

206 

B-Cells Patterned antigen 
with surface 

fluidity 

Liposome Trimeric 
HIV-1 
spikes 

B-Cell activation against 
HIV-1 antigen ex vivo 

216 

Combine B-Cell 
and CD4+ T-Cell 

stimulation 

Copolymer OVA 
antigen + 

B-Cell 
epitope 

Enhanced activation of B-
Cells in combination with 

CD4+ cells 

217 

Planar substrate 
with variable 

rigidity 

Polyacrylamide Anti-IgM Enhanced B-Cell activation 
on stiffer substrates 

208 

NK Cells Membrane bound 
IL-15 

K562 cells sIL-15 + 4-
1BBL 

Ex vivo expansion of NK 
cells 

218 

Membrane bound 
IL-15 and IL-21 

K562 cells sIL-15 + 
sIL-21 

Enhanced NK cell 
stimulation with both IL-15 

and IL-21 

219 
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2.6 Figures 
 

 
 
Figure 2.1: A wide repertoire of particle shapes can be produced with the thin film 
stretching method.  (a) Spherical, (b) rectangular disk, (c) prolate ellipsoidal, (d) worm-
like, (e) oblate ellipsoidal, (f) prolate ellipsoidal disk, (g) UFO-like, (h) flattened circular 
disk, (i) wrinkled prolate ellipsoidal, (j) wrinkled oblate ellipsoidal, and (k) porous 
prolate ellipsoidal particles can all be synthesized by liquefaction in a thin film and 
mechanical stretching.  The technology is also translatable to the (l) nanoscale as the size 
of the particle is determined by bulk spherical particle synthesis.  Scale bars are 2 µm.  
Adapted with permission from ref 21. 
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Figure 2.2: Shape memory and reprogramming applications are one application of 
nanoparticles produced from block copolymers.   (a) Non spherical and spherical 
microparticles utilized as an example to explain the procedure of shape reprogramming. 
(b) Schematic of temporary shape reprogramming process utilized.  Particles are 
stretched to a non-spherical shape at the “temporary reprograming” temperature and upon 
heating the particles reassume their spherical shape.  (c) Schematic of permanent 
reprogramming and shape memory reversion to ellipsoidal particles.  Spherical particles 
are first stretched to prolate ellipsoids at the “permanent reprogramming” temperature, 
followed by stretching to oblate ellipsoids at the “temporary reprogramming” 
temperature.  Upon heating, the oblate ellipsoid assumes the permanently programmed 
prolate ellipsoid shape.  Similar trends were seen with nanoparticles in the study.  
Adapted with permission from ref 23. 
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Figure 2.3: Nonspherical stripped nanoparticles can be synthesized from the gold 
nanoparticle based surfactant dissolution of a layer block copolymer.  (a) The main 
driving force behind the formation of this particle from a layered spherical particle is the 
administration of a smaller gold nanoparticle with a crosslinked polymer shell and 
polystyrene on the surface. (b) Stripped ellipsoidal nanoparticles can be formed through 
this emulsion based bottom up process.  (c) and (d) Zoomed in and rotated TEM 
micrographs of the particle demonstrate how the gold acts as a surfactant for only one of 
the two polymer layers.  (e) and (f) Cross-sections of the particle at different orientations 
illustrate the localization of the gold nanoparticle surfactant to the outside of the stripped 
ellipsoidal nanoparticle.  Adapted with permission from ref 34. 
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Figure 2.4: Nonspherical polymeric nanoparticles can be synthesized by 
nanoprecipitation of polymer in a focus flow microfluidic device.  (a) A solution of 
polymer is injected into the inlet along with two other flanking streams to focus polymer 
solution.  Subsequent solvent exchange results in the nanoprecipitation of particles.  (b) 
By controlling the ratio of focus solution flow and polymer solution flow, the aspect ratio 
and size of the nanoparticles can be tuned as desired. (c) TEM images of particles 
produced with increasing flow ratios of the two inlet solutions.  Non-spherical particles of 
nanoscale size are successfully produced by this method.  Adapted with permission from 
ref 47. 
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Figure 2.5: Non-spherical particles mediate better specific adhesion under flow and 
enable enhanced in vivo targeting.  (a) Number of particles adhered at the inlet of a 
microfluidic device of targeted (OVA-mAb) and nontargeted (IgG) rods (R) and spheres 
(S) under different shear rates.  (b) Number of particles attached at the bifurcation of the 
device to simulate the bifurcation of a blood vessel.  Increased specific adhesion and 
decreased non-specific adhesion are evident for rods vs. spheres.  (c) Increased 
accumulation of ICAM targeted rods in the liver compared to spheres measured by lung 
to liver accumulation ratio. (d) Increased ratio of rod shaped transferrin receptor targeted 
particle to equivalent spherical particle accumulation in the brain indicates enhanced in 
vivo targeting capabilities of rods compared to spheres. Adapted with permission from ref 
67. 
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Figure 2.6: The natural APC relays several signals to T-Cells to decide the fate of the 
interaction.  Signal 1 is what is used in APC/T-Cell recognition and ensures antigen 
specificity in the APC’s effect on the immune system.  Typically it is mediated by the 
surface bound TCR on the T-Cell and the antigen bound to the MHC on the surface of the 
antigen presenting cell.  Signal 2 determines the overall outcome of the interaction.  This 
can be used to activate the T-Cell to proliferate and target the antigen in question, become 
anergic or apathetic to the antigen presented, or differentiate into a regulatory T-Cell to 
actively suppress an immune response to that antigen.  Signal 2 is mediated by a variety 
of surface bound proteins.  Signal 3 consists of soluble cytokines released by the T-Cell 
during the interaction and provides further direction for the nature of the T-Cell response.   
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Figure 2.7: The natural APC/T-Cell interaction is a dynamic process at the cellular and 
molecular level.  (A) Natural T-Cells will rapidly scan through multiple antigen 
presenting cells through the formation of immune kinapses.  If there is sufficient 
compatibility between the T-Cell and the APC, the two cells will form a much tighter 
interaction termed the immunological synapse.  (B) The immunological synapse consist 
of three concentric domains of surface receptor termed the cSMAC, dSMAC, and 
pSMAC.  (C) Productive T-Cell signaling begins as microclusters of TCRs and various 
signaling proteins form in the dSMAC, bind to the APC, and are transported to the 
cSMAC where signaling ends.  (D) After interaction with an APC, the T-Cell will 
polarize its secretory vesicles to the site of the IS formation to allow for either targeted 
killing or targeted delivery of helper cytokines.   Adapted with permission from ref 98. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



75 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.8: Various parameters have been considered in the design of an optimal aAPC.  
(A) The classic aAPC consists of a micron scale artificial bead bound to surface proteins 
to serve as Signal 1 and Signal 2.  (B) Newer aAPC designs have focused on the use of 
nanoparticles as a scaffold for immune protein immobilization.  Although not as efficient 
as microparticles at stimulating T-Cells, the nano aAPC has the added benefit of more 
favorable in vivo properties such as biodistribution.  (C) Classic aAPC platforms utilized 
spherical microparticles whereas new data suggests that a non-spherical shape such as an 
ellipsoid is preferable due to the higher radius of curvature for aAPC interaction.  (D) 
Biodegradable aAPCs can be used to enable local delivery of costimulatory cytokines and 
Signal 3.  (E) New aAPC designs can enable the dynamic rearrangement of surface 
proteins through the use of lipid based aAPCs either with liposomes or supported lipid 
bilayers.   
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Figure 2.9: Cellular aAPCs have demonstrated the potential to generate long lasting, 
anti-tumor T-Cell responses.  (A) Human CD8+ T-Cells were stimulated with the K532 
aAPC cell line over the course of nearly 2 years and proliferation was noted to be more 
than 1,000,000 fold over this time period.  (B) MHC tetramer staining demonstrates an 
antigen specific enrichment of T-Cells directed toward human cancer antigen NY-ESO-1.  
(C) T-Cell effector function was evaluated over the 2 year stimulation period and 
expanded T-Cells were able to maintain their antigen targeted killing effector function 
during the entire time of stimulation. Adapted with permission from ref 126. 
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Figure 2.10: aAPCs can be applied to modulate many aspects of the immune system 
similar to natural APCs. (A) Traditional aAPCs incorporate recognition Signal 1 proteins 
as well as costimulatory Signal 2 molecules such as recombinant B7 or anti-CD28.  The 
result is T-Cell activation and proliferation.  (B) aAPCs can also be used to down regulate 
the immune response.  By maintaining the same Signal 1 proteins, and changing the 
Signal 2 protein to be an apoptosis inducing ligand, aAPCs can be used to deplete T-Cells 
in an antigen specific/non-specific manner.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A 
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Figure 2.11: Schematics of (A) bottom-up, fully synthetic, biomimetic particle supported 
lipid bilayers, adapted with permission from ref 154, and (B) top-down particle coating 
with biological membranes, adapted with permission from ref 158. 
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Figure 2.12. Receptor clustering is critical for T cell activation. (A) Supported lipid 
bilayers conjugated with biotinylated anti-CD3 mAb via  NTA (neutravidin) were 
synthesized with different compositions of DMPC (1,2-dimyristoyl-sn-glycero-3-
phosphocholine) and DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) to produce 
ligand mobility. SLBs with a higher diffusion coefficient (D), which corresponds to 
greater ligand mobility, induced higher levels of TCR signaling. Adapted with permission 
from ref 171 (B) Paramagnetic nano-aAPC induce clustering of the TCR/CD3 complex 
on T cells under the influence of a magnetic field. Adapted with permission from ref 122. 
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Chapter 3: An Automated Multidimensional Thin Film Stretching 

Device for the Generation of Anisotropic Polymer Micro- and 

Nanoparticles2 

3.1 Introduction 

Shape and anisotropy are gaining increasing importance as design parameters in 

the construction of micro- and nanoparticles composed of various biomaterials.  Although 

research in this area of biomaterials science has traditionally focused on spherical, 

isotropic particle formulation methods, non-spherical particles have been shown to enable 

superior biological performance compared to the spherical particle.1  One of the 

properties of non-spherical particles that makes them an attractive candidate for various 

biomedical applications is their ability to avoid non-specific cellular uptake.2  Particles of 

a wide size range from 500 nm3 to 5 µm4 have been show to avoid clearance by 

macrophages, the primary cells responsible for elimination of particle based therapeutics.  

In addition, it has been shown that prolate ellipsoidal polymeric particles can avoid non-

specific uptake by HeLa Cells and mesenchymal stem cells.5  Another unique property of 

non-spherical particles is their enhanced binding and targeted cellular internalization that 

has been exhibited when compared to isotropic particles.6  In addition to in vitro studies 

of specific particle binding and internalization, recently it has been shown that targeted 

                                                 
This chapter contains material modified from the following articles previously published as: 
Meyer RA, Meyer RS, Green JJ. An automated multidimensional thin film stretching device for the 
generation of anisotropic polymer micro- and nanoparticles. J Biomed Mater Res: Part A. 
2015;103(8):2747-57. Ben-Akiva E, Rhodes KR, Meyer RA, Green JJ. Fabrication of anisotropic 
polymeric artificial antigen presenting cells for CD8+ T cell activation. JoVE. 2018. In press. 
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prolate and oblate ellipsoids localize to targets superiorly to equivalent spherical 

particles.7,8  

Taken together, the reduced non-specific cellular uptake and enhanced targeted 

cellular uptake make the anisotropic particle an attractive candidate for various 

biomedical applications.  Most notably in the literature, these utilizations of non-spherical 

particles have been centered on drug delivery.  Genetic therapeutics have successfully 

been delivered by anisotropic nanoparticles including RNA9,10 and DNA.11,12  In 

instances where spherical shape was compared to rod shape, the rod shaped particles 

exhibited enhanced biodistribution and were more effective at in vivo delivery of 

therapeutics.12  In addition to genes, chemotherapeutic agents also have been delivered 

utilizing anisotropic particles.  Micellar rods of high aspect ratio exhibited an increased 

capability to deliver different anti-tumor drugs to cancer cells.13,14  PLGA particles of 

anisotropic shape have been shown to be capable of delivering chemotherapeutic agents 

in an environmentally triggered manner.15,16  In addition to drug delivery, the field of 

immunoengineering has recently benefited from the use of non-spherical particles.  RNA 

replicon vaccines have been successfully delivered to Vero cells utilizing a cylindrical 

shaped particle.10  Artificial antigen presenting cells for cancer immunotherapy have been 

constructed from ellipsoidal microparticles and have shown superior antigen specific 

activation of T-Cells compared to spherical microparticles.17  

Given the unique properties and successful application of anisotropic particles as 

biomaterials in biomedical scenarios, there has been recent interest in novel methods of 

fabrication for these non-spherical particles.  Significant research has been devoted to 

various microfluidic18-20 and bottom-up approaches11,21-23 for the design of anisotropic 
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polymeric particles.  One particularly well characterized method for fabrication of non-

spherical particles in a highly controlled top-down scheme is the particle replication in 

non-wetting template or PRINT.24 With the capability to fabricate any shape as specified 

by a photolithographic mask, this method has allowed for highly scalable top-down 

fabrication of anisotropic particles.25,26  Despite the strong control over the particle 

anisotropy, the PRINT method involves the use of expensive machinery for processes 

such as e-beam lithography to write the photomasks required to make nanoparticles.  The 

most accessible method that has been developed to date for the fabrication of anisotropic 

polymeric particles is the thin-film stretching method.  Originally pioneered by Ho et. al., 

this method consists of immobilizing polymeric particles in a thin plastic film, heating the 

film above the glass transition temperature of the polymer, and then stretching to deform 

the particles.27  This method was originally used to produce polystyrene rods of defined 

aspect ratio, but has recently been expanded for the production of a wide variety of 

shapes including disk, rods, barrels, UFO’s, and other shapes.28,29  In addition, by 

destabilizing the core of a polymeric particle, this method has been shown to be capable 

of producing red blood cell (RBC) shaped particles.30 This process has gained popularity 

in recent years for the generation of anisotropic polymeric microparticles due to its 

simplicity of implementation and its capability to fabricate diverse shapes from different 

biomaterials. 

Despite the simplicity of this method, there exist some difficulties in the thin film 

stretching protocol as it is described in the literature.  The devices designed to stretch the 

thin film that have been utilized have relied on manual control of the applied machine 

force to stretch the film.27,28  In our experience, manual control has led to several 
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inconsistencies and faults in the method including the film tearing due to uneven 

application of strain, particles failing to stretch with the film due to exposure to ambient 

conditions during manual stretching resulting in subsequent cooling of the film, and 

excessive time consumption of the user to monitor the film and slowly stretch it to full 

deformation.  To overcome these limitations, we have developed a thin film stretcher 

with an alternative design based on stepper motor automation to circumvent these 

difficulties.  The original stretching protocol was used in conjunction with an automated 

tension application device to yield an automated thin film stretching procedure. This 

device was then utilized to fabricate anisotropic particles composed of various 

biomaterials.  In this study we describe the device we have designed to use with this 

protocol and demonstrate the wide versatility of the method as it can be applied to make 

anisotropic particles of different size, shape, internal morphology, and biomaterial 

consistency.  Continued development of the automated stretching procedure will allow 

for streamlining and scaling up of anisotropic particle production and expanded 

investigation into biomaterials for further biomedical applications.    

3.2 Materials and Methods 

3.2.1 Overview of Automated Stretcher Design 

 The automated stretcher was inspired by a design presented in Ho et. al.,27 

describing the original application of thin film stretching.  The machine consists of two 

sets of mechanical grips mounted onto aluminum guide rails, designed to control the path 

of the film during stretching.  To enable simultaneous 2D stretching of the thin film, we 

fixed the aluminum grips onto a custom designed composite lead screw, consisting of two 
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individual, opposing lead screws, threaded in opposite directions of each other (Roton 

Products; Kirkwood, MO).  Upon turning either conjoined lead screw, the two grips 

holding the film will pull apart from the center point, allowing for controlled, efficient 

stretching of the thin film (Figure 3.1A,C). 

Although the machine can be operated by manual turning of the lead screw, we 

opted to automate it to facilitate the thin film stretching process and have greater control 

over the strain rates applied to the viscoelastic films. To automate the machine, two 400 

oz-in unipolar stepper motors (Probotix; Peoria, IL) were mounted and coupled to either 

axis.  The wires running from the motors were also soldered to heat resistant 8-pin 

Amphenol connectors (Mouser Electronics; Mansfield, TX) and mounted to the machine 

board, to enable quick connect and disconnect whenever the stretching apparatus was 

moved in and out of the oven. 

To control the stepper motors from any conventional computer and enable the 

sensitive electronics utilized in stepper motor control to remain out of the oven during a 

stretching procedure, we designed an external driver console to relay the USB control 

signal to the stepper motor.  A 40 VDC, 10 A power supply (Probotix; Peoria, IL) was 

fused and wired to two unipolar stepper motor drivers (Probotix; Peoria, IL) as well as a 

microcontroller (Probotix: Peoria, IL) following the manufacturer’s schematic.  Each of 

the drivers were then linked to a 12.5 foot cable consisting of individual 22-gauge PTFE, 

heat resistant wires (Power Werx; Yorba Linda, CA), shielded in ¼ in PTFE tubing 

(Grainger; Lake Forest, IL).  The cables were terminated in heat resistant Amphenol 

connectors (Mouser Electronics; Mansfield, TX), capable of quick connecting to the 

mounted sockets (Figure 3.1B,D).    
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Given that the stepper motor drivers emit a considerable amount of heat during 

operation, we installed an aluminum heat sink to the controlling integrated circuit 

following the manufacturer’s suggestion.  To permit convective cooling of the heat sink, 

we installed a 12 V computer fan (Radio Shack; Fort Worth, TX) and powered it using an 

AC power tap on the power supply, wired to a bridge rectifier and subsequently to a 

voltage regulator to bring the voltage to 12 V (Radio Shack; Fort Worth, TX).  Finally, 

given the primary operation of the machine in a high temperature environment, we 

installed an external power switch for the main 40 V power supply.  Therefore, the power 

source and stepper motors were not operational constitutively, but rather intermittently to 

minimize heat generation.  

The microcontroller was chosen to be USB compatible and the controller software 

used was CNC-USB (Planet CNC).  Standard G-Code was utilized to program the 

machine and instruct the stepper motors to move to a specified location at a user defined 

rate.  Machine program settings were adjusted following the manufacturer’s protocol.                 

3.2.2 Microparticle and Polymer Synthesis 

 All particles synthesized for this study were fabricated into microspheres by a 

single emulsion technique for organic polymeric particles.  100 mg of a chosen polymer 

or polymer blend was dissolved in 5 mL of dichloromethane.  To generate labeled 

particles which could be visible across multiple fluorescence channels, 7-amino-4-methyl 

coumarin, (Sigma Aldrich; St. Louis, MO), coumarin-6 (Sigma Aldrich; St. Louis, MO), 

and Nile Red (Life Technologies; Grand Island, NY) dyes were added to the DCM each 

at a 1% w/w ratio to the polymer.  The polymer-DCM solution was homogenized into 50 

mL of a 1% PVA solution for one minute at either a low speed of 5,000 rpm, medium 



102 
 

speed of 10,000 rpm, high speed of 15,000 rpm, or for nanoparticle synthesis, sonication 

at 12W for 120 seconds, to generate the particles used in this study.  The homogenizer 

low speed of 5,000 rpm was selected as the standard formulation condition for the 

standard sized particles utilized most often in this study.  The initial emulsion was then 

poured into 100 mL of a 0.5% PVA solution and the DCM was allowed to evaporate over 

the course of 4 hours to permit for the formation of particles.  The sample was then 

washed three times with water to yield the final product which was frozen and 

lyophilized prior to use in thin film stretching studies. 

 Most polymeric biomaterials utilized in this study were purchased commercially 

including the PLGA 50:50 lactic acid to glycolic acid content, MW 38,000-54,000 Da 

(Sigma-Aldrich; St. Louis, MO) and the PCL (MW 80,000 Da) (Sigma Aldrich; St. 

Louis, MO).  The poly(beta-amino ester)s (PBAE)s utilized in this study were 

synthesized from commercially available monomers as described previously with 

modifications.31 Briefly 1, 4 butanediol diacrylate (Alfa Aesar; Ward Hill, MA) and 4, 4’- 

trimethylenedipiperidine (Sigma Aldrich; St. Louis, MO) were dissolved together in a 

1.05:1 molar ratio in 5 mL of dichloromethane and heated at 90 ºC for 24 hrs.  The 

resulting polymer was then reacted and end-capped at room temperature for one hour 

with 1-(3-aminopropyl)-4-methylpiperazine (Alfa Aesar; Ward Hill, MA) in a 10-fold 

molar excess.  The final polymer was then purified by addition of hexane, and the 

precipitated polymer was dried under a vacuum for 2 days.  The polymer was then 

resuspended in dicholormethane at 100 mg/mL and stored in a dry environment at -20 ºC 

until use.   

3.2.3 Thin Film Stretching Method 
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 The thin film stretching method adapted for this study was originally developed 

by Ho et. al. 27 and recently expanded by Champion et. al. 28 to produce particles of 

anisotropic shape.  The lyophilized particles were suspended in 1 mL of water and then 

mixed with 19 mL of a 10% w/w PVA and 2% w/w glycerol solution by trituration.  The 

resulting particle solution was then cast into films in 5 mL aliquots onto 5 cm x 7 cm 

rectangular petri dishes (VWR International; Radnor, PA) for 1D stretching or in 10 mL 

aliquots onto 10 cm x 10 cm (Thermo Fisher; Rockville, MD) square petri dishes for 2D 

stretching.  The films were allowed to dry overnight and were then removed from the 

petri dish.  The film was cut to size and then mounted on the aluminum blocks and heated 

to 70 ºC (unless otherwise noted) to bring the polymeric microparticles above their glass 

transition temperatures.  After 10 min of heating, the program was loaded to the 

microcontroller and the stepper motors were instructed to pull apart the film at a strain 

rate of 0.2 min-1 (unless otherwise noted).  The film was then allowed to rest for 1 min 

and then removed from the oven and allowed to cool for 20 min.  After cooling, the film 

was cut from the grips and dissolved in 25 mL of water.  The resulting particle 

suspension was then washed 3 times and lyophilized prior to use.  

3.2.4 SEM Imaging and Image Analysis 

 All imaging was conducted with a Leo FESEM scanning electron microscope.  To 

prepare samples for analysis, lyophilized particles were spread onto carbon tape (Nisshin 

EM Co.; Tokyo, Japan) adhered to aluminum tacks (Electron Microscopy Services; 

Hatfield, PA).  The excess particles were removed and the particles then were sputter 

coated with a 20 nm thick layer of gold-palladium.  The samples were then loaded into 
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the microscope and imaged.  All images were processed in ImageJ to obtain relevant 

measurements (size, aspect ratio, etc.).  

3.3 Results and Discussion 

3.3.1 Particle Size Distribution 

 We were first interested to investigate the capability to control the size in the 

initial microparticle synthesis as a means to synthesize ellipsoidal microparticles with 

various sizes utilizing the automated stretching process.  By controlling the type of 

agitation (sonication vs. homogenization) we were able to control whether or not our 

synthesized constructs were nanoparticles (Figure 3.2A) or microparticles (Figure 3.2B-

D).  In addition, by varying the homogenization speed, we were able to control the size 

distribution of the microparticles (Figure 3.2E-H).  The emulsion made by sonication 

yielded nanoparticles with an average size of 224 nm. The particles generated at the low, 

middle, and high homogenization speeds were 3.02 µm, 1.77 µm, and 1.13 µm 

respectively. 

 Each particle formulation was then stretched 2-fold in PVA film to generate 

ellipsoidal particles.  SEM (Figure 3.2J-L) and TEM (Figure 3.2I) images reveal the 

automated stretching process can be used to generate anisotropic, ellipsoidal particles of 

each formulation.  In order to quantify anisotropy further, we analyzed the aspect ratio of 

the low homogenization speed microparticles in their spherical and non-spherical forms 

(Figure 3.2M).  The aspect ratio of the spherical microparticles was distributed tightly 

around 1, whereas the aspect ratios of the ellipsoidal particles were distributed across a 



105 
 

variety of values with an average value of 3.3 (Figure 3.2M).  This is near the predicted 

value for a two-fold stretched particle which was computed previously to be ~3.17    

3.3.2 2-Dimensional Particle Stretching 

 Upon successful 1-dimensional stretching of various particle sizes to form prolate 

ellipsoidal particles, we were next interested in generating disk shaped (oblate ellipsoidal) 

particles from stretching films in 2 dimensions.  As the automated stretcher allows for 

constant strain rates to be applied to a film in both directions, we wanted to see the effect 

of stretching the films in 2 dimensions to different extents. Starting with a spherical 

particle (Figure 3.3A) we stretched the film in 2 dimensions at 1.25 x 1.25 fold (Figure 

3.3B), 1.25 x 1.5 fold (Figure 3.3C), 1.5 x 1.5 fold (Figure 3.3D) and 1.75 x 1.75 fold 

(Figure 3.3E).  The film stretching was limited to 1.75 fold due to the integrity of the 

film during the stretching procedure. As shown in the SEM images of these particles, the 

2D stretching was successful at creating disk particles with various radii of curvature on 

both of their axes.  

 To determine whether or not the stretching was evenly applied across both 

dimensions, we conducted an aspect ratio analysis of the spherical particles compared to 

the 1.5 fold x 1.5 fold stretched particles to determine the amount of stretch fold applied 

to the particles.  Although the aspect ratio analysis was more challenging due to the fact 

that not all of the disk shaped (oblate ellipsoidal) particles were positioned flat against the 

surface for imaging, we were able to determine that the spherical particles and the oblate 

ellipsoidal particles were similar in aspect ratio, which was expected due to equal stretch 

in two different dimensions, as opposed to the spherical vs. prolate ellipsoid comparison, 

where the one dimensional stretched prolate ellipsoids had significantly higher aspect 
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ratio (compare Figure 3.3F to Figure 3.2M).  In addition, the distribution of aspect ratios 

of the oblate ellipsoids was narrower than that of the prolate ellipsoids, thus indicating 

successful automated stretching of the particles in 2 dimensions. 

 Next, we wanted to examine the effect of the temperature at which we stretched 

the particles as another variable which can be controlled precisely utilizing an automated 

process.  Although our stretching protocol was successful at the temperature initially 

tested (70 °C), we wanted to see the effect of raising the temperature on particle 

stretching in 2 dimensions.  We stretched the particles 1.5 fold x 1.5 fold at 70 °C 

(Figure 3.4A), 80 °C (Figure 3.4B), 90 °C (Figure 3.4C), and 100 °C (Figure 3.4D).  

All stretching conditions produced disk like particles similar to the ones we expected 

from the earlier studies (Figure 3.3D).  However, one striking difference across the 

temperatures we tested was the emergence of a dimple at higher temperatures to produce 

red blood cell shaped particles (compare Figure 3.4C and Figure 3.4D to Figure 3.4A 

and Figure 3.4B).  The dimple appeared to become more prevalent at 90 °C and 100 °C, 

and less prevalent or absent at 80 °C and 70 °C respectively.  Due to precise control of 

the temperature during stretching afforded by the automated process, we have enabled 

control over the formation of dimpled vs. non-dimpled particles. The control of dimple 

formation may be an important aspect for the fabrication of biomaterials into cell-like 

biomimetic shapes and as a parameter to tune drug release from the center of a particle.   

3.3.3 Stretching Strain Rate  

 Another parameter that can be precisely tuned by the automated version of the 

thin film stretching process is the strain rate.  Although the maximal strain rate possible is 

determined by the material properties of the film (strain rate to failure) and not the 
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automated stretcher itself, we were interested to determine if there was any effect on the 

particle aspect ratio as a result of strain applied at different rates during the stretching 

procedure. Starting with a spherical microparticle, we stretched the film 2 fold at 0.2 min-

1 (Figure 3.5A), 0.4 min-1 (Figure 3.5B), 0.8 min-1 (Figure 3.5C), 1.6 min-1 (Figure 

3.5D), and 3.2 min-1 (Figure 3.5E).  All strain rates produced ellipsoidal particles as 

expected.  Aspect ratio analysis of the particles stretched at different strain rates 

demonstrated that there was no effect of the strain rate on the shape of the particles 

produced, and that all strain rates were capable of producing high aspect ratio particles 

(Figure 3.5F).  Although this was hypothesized due to the successful manual film 

stretching procedures in the past, we have now proven that strain rate has minimal effect 

on particle production and can be tuned based on the needs of the user and the material 

properties of the PVA film. 

3.3.4 Stretching of Different Biomaterials 

 One of the advantages of the thin film stretching method is that, due to its top-

down nature, it can be applied to a wide variety of biomaterials.  This versatility is 

limited by the ability to attain the glass transition temperature of the material to stretch, 

but for many biomaterials currently utilized for drug delivery applications, it is 

appropriate for the generation of anisotropic particles.   

 Among the numerous benefits of particle synthesis by emulsion is the ability to 

encapsulate drugs and imaging contrast agents.  To that end, we first wanted to prove the 

versatility of the automated thin film stretching method by generating ellipsoidal particles 

of biodegradable PLGA with different fluorophores encapsulated in them.  The 

fluorophores that were tested were 7-amino-4-methyl coumarin (fluorescence on the blue 
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DAPI channel) (Figure 3.6A), coumarin 6 (fluorescence on the green GFP channel) 

(Figure 3.6B), and Nile Red (Figure 3.6C) (fluorescence on the Red channel).  As 

shown, all fluorophores can be encapsulated in the PLGA thus conferring different modes 

of fluorescence to the particles.  Upon thin film stretching of each of these formulations, 

we were able to generate anisotropic microparticles with these different fluorescent 

properties conferred by 7-AMC (Figure 3.6D), coumarin-6 (Figure 3.6E), and Nile Red 

(Figure 3.6F).  Encapsulation of these fluorophores did not affect our ability to stretch 

the particles or influence their final aspect ratios. 

In addition to small molecule encapsulation, we were interested to apply the thin 

film stretching material to other materials aside from PLGA, including PCL and a 

PLGA/PBAE hybrid particle.  We synthesized PCL (Figure 3.7A) and the PLGA/PBAE 

(Figure 3.7B) hybrid by single emulsion.  Upon deforming each spherical polymeric 

particle by the automated thin film stretching procedure, we determined that we could 

synthesize anisotropic ellipsoidal particles from PCL (Figure 3.7C) and PLGA/PBAE 

(Figure 3.7D).  Thus, the automated thin film stretching method was demonstrated to be 

robust and applicable to a variety of biomaterials.  

3.3.5 Discussion  

 The study of anisotropic polymeric micro and nanoparticles is becoming 

increasingly important in the biomaterials community.  Owing in part to their capability 

to resist non-specific cellular uptake2 while simultaneously increasing in vitro6 and in 

vivo7 targeted specific cell interactions, the non-spherical particle is becoming a 

promising candidate for biomedical applications such as drug delivery.  Although 

traditional particle fabrication methods have been shown to generate spherical 
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biodegradable particles of different sizes,32 different procedures have been and continue 

to be developed to synthesize non-spherical particles.  Among these, the most popular 

and approachable method is the thin-film stretching method.  Despite the simplicity of its 

design, there can be difficulty in implementing this method manually due to the imprecise 

nature of a human operator at applying strain to the films in different dimensions in order 

to fabricate particles with varied shapes.  As such, we have developed and described here 

an automated film stretcher for the generation of oblate and prolate ellipsoidal particles.   

 One of the main advantages of the thin film stretching method is that it is a post-

synthesis modification of a spherical particle.  As such, it is compatible with a wide 

variety of particle fabrication techniques, including emulsion, which was specifically 

highlighted in this study.  Particle synthesis by emulsion offers the capability to 

accurately and reproducibly control size distribution of synthesized particles.  These 

particles can then be deformed to anisotropic shapes utilizing the thin film stretching 

methods while containing various encapsulated cargos as we have demonstrated.  We 

have shown here that the automated thin film stretching method is capable of producing 

polymeric, ellipsoidal nanoparticles and microparticles of different sizes and shapes, with 

certain advantages compared to manual fabrication.28  Particle size and shape have been 

determined to be very important parameters for biologic therapeutics impacting the 

biodistribution upon administration7,8,33 and elimination from the body.34  In addition, 

particle size and shape have determined the potency of interaction of biomaterial surfaces 

with biological cells such as in immune stimulation by artificial antigen presenting 

cells.17,35  The capability of simultaneously controlling size and shape of a particle is a 

definitive advantage of this automated process. 
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 We have shown in this study that it is possible to control the type of shape 

generated by an automated thin film stretching process.  Although this method is limited 

to tuning particle shapes by axial deformations, the degree of deformation can specify the 

aspect ratio and class of the synthesized ellipsoid and multiple stretching steps in varied 

directions could also be performed.  This has been naturally integrated into the automated 

process through the use of stepper motors for precise control over thin film grip 

positioning and rate of separation.  We have shown here that prolate ellipsoids can be 

synthesized with a predictable average aspect ratio as previously specified by parametric 

modeling of spheroid deformation.17  In addition, we have generated oblate ellipsoidal 

particles of various aspect ratios and radii of curvature.  The ability to control these 

parameters can be critical given cellular capability to respond to spatial cues and 

biomaterial surfaces in the environment.36-38  As a result, the capability to generate 

particles of various shapes by the automated thin film stretching method is another 

advantage of the process. 

 In addition to determining the effect of stretching distance of the deformation of 

the polymeric particle, we have explored the effect of stretching temperature and rate.  

The stretching temperature was determined to be a critical parameter for the generation of 

disk-like oblate ellipsoidal microparticles.  At lower temperatures, the particles deformed 

as expected into oblate ellipsoids.  By raising the temperature, the particles deformed 

instead into dimpled oblate ellipsoids similar in 3D shape to a red blood cell.  Similarly 

shaped particles have been previously produced by the manual film stretching method 

through a chemical based destabilization of the core of a particle.  Here we show for the 

first time that biomaterials can be fabricated into biomimetic red blood cell-shaped 
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particles, without the addition of destabilizing chemicals, through a film-stretching 

method at particular temperatures (higher than simply above the polymer glass transition 

temperature).  The capability to mimic red blood cells (RBC) surface membranes39,40 and 

physiology41,42 has been investigated in the literature.  The application of polymeric 

particles that have been deformed to RBC shape by the high temperature automated 

stretching procedure is an interesting future direction motivated by this work.   

Strain rate was also investigated with respect to anisotropic particle synthesis by 

thin film stretching.  At all strain rates tested, the generated ellipsoids had similar aspect 

ratios indicating strain rate independence.  This has important implications for the scaled 

up production of these anisotropic particles which would ultimately be needed for 

potential manufacturing and clinical use.  The automated process coupled with the 

ellipsoid particle insensitivity to strain rate makes this fabrication procedure scalable for 

rapid production of large quantities of anisotropic particles.  Further investigation into the 

impact of strain rate on the generation of different polymeric particles will be of interest 

as their biomedical application expands. 

 A final advantage of using the thin film stretching method as a post synthesis 

modification of spherical microparticles is the ability to specify the material to deform 

including the polymer and any encapsulated bioactive small molecules.  Biodegradable 

polymers have found vast application in drug delivery43 and tissue scaffold engineering.44  

We have shown that the automated thin film stretching method is amenable to small 

molecule encapsulation as evidenced by the use of three fluorophores for visualization.  

In addition, we have shown in this study that PCL and PLGA/PBAE hybrid particles can 

also be deformed into ellipsoids utilizing the thin film stretching method.  PCL is of 
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interest due to its use in various biomedical scenarios45 and shape memory properties.46  

PBAEs have been investigated extensively for their genetic material delivery 

capabilities31,47,48 and the PLGA/PBAE hybrid particle has been utilized for intracellular 

delivery of vaccination agents49 and genetic material.50  Investigating the impact of shape 

in the context of these different biomaterials is a valuable pursuit in the study of 

anisotropic polymeric particles.    

3.4 Conclusions 

In conclusion, we have demonstrated in this work the construction of an 

automated device for the fabrication of polymeric biomaterials into anisotropic micro- 

and nanoparticles.  The process can be applied uniformly to particles of different sizes 

and can be utilized to form ellipsoids with different aspect ratios and radii of curvature.  

In addition, we have described the scale up capability of this method by demonstrating an 

insensitivity to thin film strain rate and compatibility of the thin film process with 

automated stepper motor control.  We have also shown the utility of this approach in 

generating biomimetic red blood cell-shaped particles.  Finally, we have exhibited the 

versatility of this automated method by applying it to polymeric particles synthesized 

with different biomaterials and encapsulating various fluorescent small molecules.  

Application of this automated thin film stretcher to the generation of non-spherical 

polymeric particles can be of great utility in the study of anisotropy in biomedical 

materials applications. 
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3.5 Figures 

 
Figure 3.1: Image and schematic of the automated thin film stretcher utilized in this 
study.  (A,C) A USB linked microcontroller is linked to two stepper motor drivers which 
relay signals to two unipolar stepper motors through thermally protected wire. (B,D) The 
stepper motors are mounted to the axes.  Each axis is composed of opposing direction 
lead screws to drive apart two aluminum mounts which grip and stretch the film.  
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Figure 3.2: The automated thin film stretching method can be applied to a variety of 
different particle sizes.  SEM micrographs of PLGA particles fabricated under (A) 
sonication, (B) high rpm, (C) medium rpm, and (D) low rpm homogenization.  All 
particles demonstrated a spherical morphology (E, F, G, H). Particle size histograms of 
the fabricated particles in (A, B, C, D) respectively.  SEM micrographs of 2-fold 
stretched particles under (I) sonication, (J) high rpm, (K) medium rpm, and (L) low rpm 
homogenization.  (M) Aspect ratio analysis of SEM images reveals non-spherical 
ellipsoidal microparticles can be generated from the thin film stretching procedure. 
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Figure 3.3: Non-spherical particles of various shapes can be synthesized with the two-
dimensional automated thin film stretching method. (A) Spherical microparticles can be 
stretched (B) 1.25x by 1.25x, (C) 1.25x by 1.5x, (D) 1.5x by 1.5 x, (E) 1.75x by 1.75x to 
create particles of various flattened oblate ellipsoidal shape.  (F) Aspect ratio analysis of 
1.5x by 1.5x stretched particles reveals that the aspect ratio of one is roughly maintained 
through the 2D stretching procedure. 
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Figure 3.4: The shape of the particle depends on the temperature at which it was 
stretched.  Spherical micro particles were stretched at (A) 70 ºC, (B) 80 ºC, (C) 90 ºC, 
and (D) 100 ºC in 2 dimensions at a fold of 1.5x by 1.5x.  As the temperature increases 
the frequency of dimpled particles increases. 
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Figure 3.5: The strain rate at which the film is stretched does not have an effect on the 
final particle shape.  Spherical microparticles were stretched at 70 ºC to a 2 fold length in 
one dimension at a strain rate of (A) 0.2/min (B) 0.4/min, (C) 0.8/min, (D) 1.6/min, and 
(E) 3.2/min  (F) Aspect ratio analysis reveals there was not an effect of the strain rate. 
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Figure 3.6: Fluorescence microscopy images of (A, B, C) spherical and (D, E, F) 
stretched microparticles encapsulating three fluorophores.  Each of the fluorophores 
could be imaged on a separate channel including (A, C) blue DAPI channel for 7-AMC, 
(B, E) green GFP channel for coumarin-6, and (C, F) red channel for Nile Red.   
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Figure 3.7: Different biomaterials can be made into ellipsoidal microparticles utilizing 
the automated thin film stretching procedure. In addition to PLGA as shown in Figure 1D 
and Figure 1L, (A, D) PCL, and (B, E) PLGA/PBAE blend can all be fabricated into 
ellipsoidal shapes by the automated stretching method.  (C) Particle size distribution 
demonstrates that PCL microparticles have larger size than PLGA/PBAE microparticles.  
(F) Aspect ratio analysis of each sample shows that despite size differences, similar 
aspect ratios can be attained for each particle. 
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Chapter 4: Biodegradable Artificial Antigen Presenting Cells with Anti 

PD-1 Immunotherapy to Treat Melanoma 

4.1 Introduction3 

Biomimetic materials that target the immune system hold promise for cancer 

immunotherapy.1 Synthetic immunotherapies can be designed with defined 

characteristics and therefore often outperform their cell-based counterparts.  These 

platforms can be engineered in terms of biodegradability,2 controlled release of immuno-

modulators,3 and physical parameters including shape and size.4 Biomimetic materials 

can be customized to incorporate combination therapies in an all-in-one therapeutic and 

are therefore an exciting platform for the future of cancer immunotherapy. Despite their 

potential, current development of combinatorial immunotherapies utilizing biomaterials 

has been limited as their interaction with other existing therapeutics must first be 

understood. 

Synthetic artificial antigen presenting cells (aAPC), a biomaterial-based 

immunotherapy, have shown success in generating an anti-tumor immune response in 

vitro and in vivo.5-8 aAPC are three-dimensional platforms that minimally express the two 

signals required for T cell activation – a signal 1, peptide-MHC (pMHC) to provide T cell 

receptor (TCR) specificity, and a signal 2, such as anti-CD28 monoclonal antibody 

(mAb) to provide the co-stimulatory “go” signal. aAPC can be functionalized with 

tumor-specific pMHC to activate a patient’s immune system against cancer antigens and 

                                                 
This chapter contains material modified from the following article previously published as: 
Kosmides AK, Meyer RA, Hickey JW, Aje K, Cheung KN, Green JJ, Schneck JP. Biomimetic 
biodegradable artificial antigen presenting cells synergize with PD-1 blockade to treat melanoma. 
Biomaterials. 2017;118:16-26.  
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mediate tumor rejection.9-11 They can be utilized in adoptive cell transfer (ACT) of ex 

vivo activated autologous T cells9, 12, 13 or directly administered intravenously (IV) for in 

vivo anti-tumor T cell activation.14, 15 Synthetic aAPC platforms have distinct advantages 

over cellular systems in terms of long-term storage and the ability to optimize T cell 

activation and biocompatibility.16 Unlike biological antigen presenting cells used as 

cellular therapy, biomaterial-based aAPC have the advantage of being able to maintain an 

“always on” state that cannot be down-regulated by the microenvironment as well as 

flexibility for manufacturing as an acellular product.  Compared to PLGA-based drug 

delivery particles for cancer therapy, the anti-cancer drugs must reach and destroy every 

cancer cell to ultimately be effective.  In contrast, PLGA-based aAPC particles for 

immunotherapy need only reach tumor specific T cells that can recognize the tumor 

antigen for the aAPC to then be able to direct a robust systemic immunotherapy response 

against the cancer cells.  Biomimetic modifications of PLGA-based aAPC materials that 

greatly enhance their effector capacity, including controlling the shape of the aAPC4, 17 or 

slowly releasing pro-inflammatory cytokines from their core,18, 19 have demonstrated the 

benefit of bringing novel materials engineering concepts to the development of 

immunotherapeutics.  

In addition to amplifying positive regulators of the immune system, inhibiting 

negative regulators has also shown success in generating anti-tumor immune responses.  

Checkpoint molecules, including programmed death 1 (PD-1) and CTLA-4, are negative 

regulators of T cell function.  These molecules are upregulated on tumor infiltrating 

lymphocytes and on activated T cells expanded during ACT, being described as a 

rheostat of the immune system.20 PD-1 signaling inhibits CD8+ T cell effector function 
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upon ligation with its ligand, programmed death ligand 1 (PD-L1), and is one of the 

methods by which tumors escape immune surveillance.  Checkpoint blockade with 

monoclonal antibodies against PD-1 and PD-L1 delay tumor growth in murine tumor 

models,21, 22 and FDA approved monoclonal anti-PD-1 and anti-CTLA-4 antibodies have 

shown significant overall response rates and long-term survival benefits.  However, 

clinical responses only reach approximately 30%23-26 indicating that there is a necessity 

for improvement. 

Single-targeted approaches have limited efficacy because cancerous cells utilize 

multiple mechanisms to avoid immune surveillance and the immune system internally 

suppresses prolonged strong activation.27 The combination of checkpoint inhibitors with 

other immunotherapies that boost T cell effector functions or promote cancer cell 

recognition by the immune system have potential to increase anti-tumor effectiveness. 

Checkpoint blockade in conjunction with T cell costimulatory antibodies resulted in 

tumor regression in multiple murine tumor models28-30 and increased effector functions of 

exhausted CD8+ T cells by forcing them out of quiescence.31 These studies suggest that 

checkpoint blockade can boost the effects of other immune-stimulatory approaches, 

although their interaction with biomaterial-based antigen-specific T cell stimulation has 

not been studied.  

Here, we investigate the synergy between a biomimetic material, biodegradable 

PLGA-based aAPC, and anti-PD-1 monoclonal antibody treatment for the activation of 

tumor-specific CD8+ T cells.  Combinatorial treatment enhances CD8+ T cell effector 

functions in vitro and significantly delays tumor growth in vivo.  These results 

demonstrate the effectiveness of PLGA-based aAPC in combination immunotherapy, and 
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identify a molecule that could potentially be incorporated and released from polymeric 

aAPC for increased effectiveness.  

4.2 Materials and Methods 

4.2.1 Artificial antigen presenting cell synthesis and characterization 

Artificial antigen presenting cells were synthesized in a two-step core particle 

formation and functionalization.  Particles cores were synthesized from poly (lactic-co-

glycolic acid) (PLGA 50:50 lactic acid to glycolic acid ratio, MW 34,000-58,000 Da) that 

was purchased commercially (Sigma Aldrich; St. Louis, MO).  For a typical 

microparticle synthesis, 100 mg of PLGA was dissolved in 5 mL dichloromethane and 

homogenized into a 50 mL, 1% poly vinyl alcohol (PVA) solution by an T-25 digital 

ULTRA-TURRAX IKA tissue homogenizer at a speed of 5,000 rpm (IKA Works; 

Wilmington, NC).  The resulting microparticle emulsification was then added to 100 mL 

of 0.5% PVA solution.  The dichloromethane was then allowed to evaporate over the 

course of 4 hrs.  After particle hardening, the particles were washed three times in water 

through centrifugation at 3000 g for 5 min.  The washed microparticle solution was flash 

frozen in liquid nitrogen and lyophilized for 1 day prior to characterization and use. 

Functionalization was achieved through EDC/NHS chemistry to conjugate 

carboxylic acid terminated PLGA to amines on the proteins of interest.  Lyophilized 

particles were dissolved in 0.1 M MES buffer at pH 6.0 at a concentration of 2 mg/mL.  

100 µL of EDC/NHS (Sigma Aldrich; St. Louis, MO) stock solution at 40 mg/mL and 48 

mg/mL respectively were added to each sample and the particles were activated for 30 

min.  The resulting surface activated particles were washed in PBS through centrifugation 

at 5,000 g for 5 min.  The particles were resuspended in PBS at 2 mg/mL.  8 µg MHC 
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IgG dimer loaded with the antigen of choice and 10 µg anti-CD28 monoclonal antibody 

(mAb) (BD Biosciences; San Jose, CA) was added to each sample and the particles were 

allowed to react with the proteins overnight at 4 ºC.  The resulting aAPC were washed 3x 

in PBS through centrifugation at 5,000 g and then dissolved in 400 µL of 100 mg/mL 

endotoxin free sucrose.  The resulting suspension was then lyophilized overnight. 

Particle imaging was conducted with a Leo FESEM scanning electron 

microscope.  To prepare samples for analysis, lyophilized particles were mounted onto 

carbon tape (Nisshin EM Co.; Tokyo, Japan) and placed upon aluminum tacks (Electron 

Microscopy Services; Hatfield, PA).  The excess particles were removed by blowing air 

across the surface of the tack and the sample was then sputter coated with a 20 nm thick 

layer of gold-palladium.  The samples were then loaded into the microscope and imaged.  

The images were processed in ImageJ to obtain size information. 

To determine the amount of protein on the surface, conjugated aAPC 

microparticles were stained with Alexa Fluor 647 goat anti-mouse IgG for the dimer and 

Alexa Fluor 546 goat anti-hamster IgG for the anti-CD28 (Life Technologies; Grand 

Island, NY) for 1 hour at 4 °C.  The particles were subsequently washed with PBS three 

times and fluorescence readings of particles were evaluated for fluorescence with a 

BioTek Synergy 2 plate reader (Biotek; Winooski, VT).  The mass of protein on the 

particle was calculated to evaluate conjugation efficiency.  Conjugation efficiency was 

calculated as (Protein Calculated on Particles)/(Protein Added to Conjugation Media) 

*100%.   

4.2.2 Anti-PD1 monoclonal antibody synthesis 
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Anti-PD-1 mAb clone G4 was grown from the G4 hybridoma cell line. 

Hybridoma cells were grown in hybridoma serum free media supplemented with L-

glutamine.  After one week, the supernatant was harvested and run over a HiTrap protein 

G column (GE Healthcare, Little Chalfont, Buckinghamshire, UK), then eluted according 

to the manufacturer’s protocol.  G4 mAb was concentrated by membrane ultrafiltration 

with a Vivaspin 20 50 kDa MWCO (GE Healthcare) and concentration was measured by 

Nanodrop ND-1000 Spectrophotometer. 

4.2.3 In vitro artificial antigen presenting cell T cell stimulation 

To determine the effectiveness of the aAPC at stimulating antigen specific T cells, 

we used primary CD8+ T cells isolated from PMEL or 2C mouse splenocytes.  All mice 

were maintained according to Johns Hopkins University’s Institutional Review Board. 

The mice were sacrificed and then the spleen was dissected out and homogenized through 

a cell strainer.  The CD8+ T cells were then isolated using the Miltenyi CD8a+ Isolation 

Kit (Miltenyi; Auburn, CA).  The cells were then stained with Vybrant Cell Tracker 

carboxyfluorescein succinyl ester (CFSE) (Life Technologies; Grand Island, NY) dye 

following the manufacturer’s protocol.  CFSE stained cells were incubated with the 

particle bearing the antigen of choice at a concentration of 1 mg, 0.1 mg, or 0.01 mg 

aAPC (polymer weight)/100,000 CD8+ T cells in RPMI supplemented with L-glutamine, 

non-essential amino acids, vitamin solution, sodium pyruvate, β-mercaptoethanol, 10% 

FBS, ciproflaxin, and a cocktail of T cell growth factors.  CFSE dilution was then 

assessed after three days of incubation through flow cytometry analysis on a BD 

FACSCalibur. Each generation is defined as a distinct peak of the flow cytometry CFSE 

histogram, as the CFSE dye is diluted in half with each cell division.  Generational 
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analysis was assessed using the built in function in FlowJo (TreeStar). Total proliferation 

after seven days was assessed by cell counting on a hemocytometer and using a trypan 

blue exclusion test to exclude dead cells.    

4.2.4 In vitro anti-PD-1 mAb functionality assay 

To evaluate the functional effectiveness of the synthesized anti-PD-1 mAb, we 

utilized an in vitro assay of repeated CD8+ T cell stimulation to upregulate PD-1 

expression, as PD-1 expression is low on naïve CD8+ T cells.  On day 0, primary 

splenocytes were isolated from naïve 2C transgenic mouse (Jackson Labs; Bar Harbor, 

ME) spleens through cell straining.  Cells were treated with 4 mL of ACK lysis buffer for 

1 minute to lyse red blood cells. CD8+ T cells were isolated by negative selection with 

the Miltenyi CD8a+ Isolation Kit following the manufacturer’s protocol (Miltenyi; 

Auburn, CA).  Micro anti-CD3 (145.2C11)/anti-CD28 (37.51) aAPC were synthesized on 

4.5μm M-450 Epoxy Dynabeads (Life Technologies; Grand Island, NY) at a 1:1 protein 

ratio, following manufacturer’s protocol.  Anti-CD3 and anti-CD28 antibodies were 

purchased from BioXCell (West Lebanon, NH).  2C CD8+ T cells were mixed with 

micro aAPC at a 1:1 ratio and cultured in RPMI supplemented with L-glutamine, non-

essential amino acids, vitamin solution, sodium pyruvate, β-mercaptoethanol, 10% FBS, 

ciproflaxin, and a cocktail of T cell growth factors.  On day 4, additional T cell growth 

factors and anti-CD3/anti-CD28 beads were added at a 2:1 bead:cell ratio.  On day 6, 

B16-SIY and B16-F10 cells were cultured in RPMI supplemented with L-glutamine, non-

essential amino acids, vitamin solution, sodium pyruvate, β-mercaptoethanol, 10% FBS, 

ciproflaxin, and 20 ng/ml recombinant murine IFN-γ (R&D Systems, Minneapolis, MN) 

to upregulate PD-L1 expression. 
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On day 8, B16-F10 and B16-SIY were harvested and washed three times to 

remove all IFN-γ, as confirmed by ELISA.  CD8+ T cells were also harvested, washed 

three times, and aAPC were removed with a magnet.  PD-1 and PD-L1 expression was 

confirmed on CD8 and B16 cells by flow cytometry using fluorescently labeled anti-PD-

1 and anti-PD-L1 antibodies (Biolegend).  CD8+ T cells and B16-SIY or B16-F10 cells 

were mixed at a 1:1 effector target ratio in the presence of 10 µg/ml anti-PD-1 mAb or 

Armenian hamster IgG isotype control antibody.  The cells were co-incubated for 18 

hours at 37 ˚C, then supernatants were collected. IFN-γ was measured by ELISA using 

the ebioscience murine IFN-γ Ready-SET-Go! Kit (San Diego, CA).  

4.2.5 In vitro anti-PD-1 mAb and aAPC assay 

To evaluate the synergistic effect of aAPC and anti-PD-1 mAb treatment, we 

utilized an in vitro T cell and tumor cell co-incubation assay.  CD8+ T cells were 

stimulated at a single earlier time-point prior to the start of the assay to allow for resting 

time before the secondary stimulation.  On day -5, primary splenocytes were isolated 

from naïve 2C transgenic mouse (Jackson Labs; Bar Harbor, ME) spleens through cell 

straining, and incubated with a 1:1 ratio of anti-CD3/anti-CD28 microbeads as above.  

Additional T cell growth factors and media were added on day -2.  On day -2, B16-SIY 

and B16-F10 cells were cultured in the presence of 20 ng/ml IFN-γ, as above.  On day 0, 

B16-F10 and B16-SIY were harvested and washed three times to remove all IFN-γ, as 

confirmed by ELISA.  2C cells were also harvested, washed three times, and aAPC were 

removed with a magnet.  Cells were stained with PE anti-PD-1, PE anti-PD-L1, PE anti-

PD-L2, and isotype control antibody (Biolegend) and read on a BD FacsCalibur to 

confirm expression.  CD8+ T cells and B16-SIY or B16-F10 cells were mixed at a 1:1 
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effector target ratio, and anti-PD-1 mAb and PLGA aAPC were added into culture at 

titrating amounts.  The cells were incubated for 18 hours at 37˚, then supernatants were 

collected. IFN-γ was measured by ELISA using the ebioscience murine IFN-γ Ready-

SET-Go! Kit (San Diego, CA).  

4.2.6 In vivo particle and cell biodistribution study 

To evaluate the influence of the combination of adoptively transferred cells on the 

biodistribution of our aAPC, we used near infrared (IR) fluorescence to track the aAPC 

upon intravenous administration.  The particles and aAPC were synthesized as previously 

described except that 1 mg of a custom synthesized hydrophobic dye from LI-COR 

biotechnologies (LICOR Biosciences; Lincoln, NE) was added to the dichloromethane 

mixture to be encapsulated into the particles.  Labeled aAPC were split up into two 

different treatment groups. For group 1, Thy 1.2+ C57BL/6 mice (Jackson Laboratories; 

Bar Harbor, ME) received intravenously 2 mg of the IR labeled aAPC alone. For group 2, 

Thy 1.2+ C57BL/6 mice received intravenously 2 mg of IR labeled aAPC with 1x106 

Thy1.1+ PMEL CD8+ T cells that had been pre-incubated for 1 hour at 4 °C. Blood was 

collected retroorbitally at 10, 20, 30, and 40 min post injection to monitor elimination 

from the bloodstream and was imaged in the LI-COR Pearl Impulse. At 24 hours, mice 

were sacrificed and the liver, kidney, spleen, heart, and lung were dissected out and 

imaged in the LI-COR Pearl Impulse (LICOR Biosciences; Lincoln, NE) to determine 

biodistribution of the particles over 24 hrs.  All fluorescence was quantified by ImageJ 

for normalized measurements of particle concentration.  For retroorbital bleeds, the data 

for each mouse was normalized to the fluorescence value of the initial time point 

collected.  This data was then fit to a single exponential decay curve using the GraphPad 
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non-linear regression analysis module (GraphPad Software; La Jolla, CA).  For organ 

distribution, the fluorescence readings were normalized to the sum of the fluorescence 

values across all organs to get a percent distribution across the organs analyzed.   

4.2.7 In vivo tumor treatment study 

To evaluate the efficacy of dual treatment in vivo we utilized an adoptive 

immunotherapy murine melanoma treatment model.  Power calculations were performed 

to determine the necessary group size using assumptions based on previous experience 

with subcutaneous B16-F10 tumor models.  For a two-sided t-test at power level 0.8 and 

significance level 0.05, at least 6 mice are needed for each group to see statistically 

significant data in tumor burden differences.  

Thy 1.2+ C57BL/6 mice (Jackson Laboratories; Bar Harbor, ME) were inoculated 

subcutaneously on the right flank with 3x105 B16-F10 melanoma cells four days prior to 

treatment.  One day prior to treatment, the mice were irradiated with a central dose of 500 

cGy, a sublethal dose to induce transient lymphopenia as per standard approaches to 

adoptive immunotherapy.32  On the day of treatment, when tumors were palpable, mice 

were subdivided into four groups randomly by cage: 1) no treatment, 2) CD8+ adoptive 

transfer + anti-PD-1 mAb, 3) CD8+ adoptive transfer + aAPC, or 4) CD8+ T cell 

adoptive transfer + anti-PD-1 mAb + aAPC.  All injection volumes were 100 µL.  All 

injections were completed intravenously, and group 1 received mock injections of PBS, 

labeled as no treatment control. Group 2 received an injection of 1x106 Thy 1.1+ PMEL 

CD8+ T cells and 200 µg of anti-PD-1 antibody intraperitoneally.  Group 3 received an 

injection of 1x106 Thy 1.1+ PMEL CD8+ T cells that had been pre-incubated with 2 mg 

of PLGA aAPC particles for one hour at 4˚C.  Group 4 received an injection of 1x106 
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Thy 1.1+ PMEL CD8+ T cells that had been pre-incubated with 2 mg of PLGA aAPC 

particles as well as 200 µg of anti-PD-1 antibody intraperatoneally.  One day post 

treatment, Groups 2 and 4 received an additional 100 µg of anti-PD-1 antibody 

intraperitoneally.  PD-1 expression on PMEL cells stimulated with 1 mg/ml aAPC was 

confirmed by staining with an APC-anti-CD8 and PE-anti-PD-1 or isotype antibody 

(Biolegend) and reading them by flow cytometry after 7 and 24 hours.  

At six, ten, and thirteen days post treatment, the mice were bled retroorbitally to 

analyze peripheral blood.  Red blood cells were lysed with 4 min of treatment in ACK 

lysis buffer and then the remaining white blood cells were stained with anti-CD8a-APC 

(BD Biosciences; San Jose, CA) and anti-Thy1.1-Alexa Fluor 488 (BioLegend).  The 

cells were then analyzed by flow cytometry on a BD FACSCalibur to evaluate the 

percentage of antigen specific Thy1.1+ CD8+ T cells in the periphery at the indicated 

time points.  Beginning seven days after treatment, all tumor areas were measured by 

multiplying the length of the longest dimension by the length of the perpendicular 

dimension.  The mice were sacrificed once tumor size progressed past 200 mm2.  The in 

vivo experiment was repeated two independent times and results were pooled. 

4.2.8 In vivo CD8+ T cell harvest and analysis 

To further probe the effect of treatment on CD8+ T cells, we used the same in 

vivo set up as used in Section 2.7.  However, at day 11 post treatment, tumor size was 

measured, mice were sacrificed, and spleen and tumors were harvested and homogenized 

through a cell strainer.  Tumor infiltrating lymphocytes (TILs) were isolated by a density 

separation technique, using Lympholyte-M (Cedarlane; Burlington, Ontario, Canada) 

according to the manufacturer’s protocol.  Splenocytes were treated with 4 mL of ACK 
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lysis buffer for 1 minute to lyse red blood cells.  Total immune cells were measured from 

the spleen and TILs with manual counting on a hemocytometer and a Trypan blue 

exclusion test to exclude dead cells.  Immune cells were stained with surface staining 

antibodies anti-PD-1-PE/Cy7, anti-Thy1.1-APC, anti-CD8-APC/Cy7(Biolegend); 

Live/Dead-FITC (Life Technologies; Carlsbad, CA) for 30 minutes at 4 °C. No more 

than 200,000 cells were used for any given condition.  One sample per treatment group 

per organ was stained with anti-PD-1 mAb isotype antibody anti-RIgG2a-PE/Cy7.  All 

samples were then washed and analyzed by flow cytometry on a BD FACSCalibur.   

To look at the stimulatory potential of CD8+ T cells isolated from tumor-bearing 

animals of this in vivo experiment, we stimulated splenocytes isolated with micro-aAPC. 

Techniques previously described in 4.2.3. In Vitro Artificial Antigen Presenting Cell T-

Cell Stimulation were followed with minor modifications.  Briefly, micro Db-

GP100/anti-CD28 mAb (37.51) aAPC on 4.5μm M-450 Epoxy Dynabeads (Life 

Technologies) were made at a 1:1 protein ratio, following manufacturer’s protocol.  Anti-

CD28 monoclonal antibody was purchased from BioXCell (West Lebanon, NH). 

Splenocytes were stained with CFSE and Db-GP100/anti-CD28 mAb micro aAPC were 

added to isolated splenocytes at a 1:1 ratio.  Total dilution was assessed after three days 

of incubation by flow cytometry.  Percent of diluted CD8+ T cells was measured by 

comparing flow cytometry histograms to non-stimulated controls for each condition 

studied.  

4.3 Results and Discussion 

4.3.1 PLGA-based aAPC synthesis and characterization 



136 
 

 PLGA-based aAPC were made as recently described.4 Briefly, the core PLGA 

particle was synthesized by a single emulsion technique.  The particles were subsequently 

functionalized by EDC/NHS chemistry with two proteins to mimic the surface of the 

natural APC which relays two critical signals to CD8+ T cells.4  We used a soluble major 

histocompatibility complex (MHC) Class I-Ig fusion protein to mimic signal 1 in the 

aAPC/CD8+ T cell interaction, and an agonistic monoclonal anti-CD28 antibody to serve 

as a costimulatory molecule to mimic signal 2.17 In this way, the aAPC are designed to 

activate only a particular cognate CD8+ T cell that recognizes the specific MHC with 

loaded melanoma antigen peptide as signal 1, which differs from common aAPC 

synthesis that have anti-CD3 antibody to the surface that could interact with T cells 

without antigen specificity.  

 Initially we evaluated the physical and chemical properties of the PLGA-based 

aAPC by imaging lyophilized particles by scanning electron microscopy (SEM) to 

determine particle morphology and size (Figure 4.1A).  SEM images revealed that the 

conjugated particles were spherical in nature.  Image analysis determined an average 

particle size of 4.42 µm with a standard deviation of 1.45 µm (Figure 4.1B).  We 

designed the aAPC to be approximately 4-5 µm in size as this is large enough to mimic 

the length scale of biological antigen presenting cells and also small enough to avoid 

pulmonary embolism following systemic injection.  

We further looked to optimize protein conjugation and biodegradable particle 

stability by analyzing the surface protein content over various reaction times.  To 

evaluate the surface protein content, we stained the particles with fluorescent monoclonal 

antibodies for the conjugated proteins, and measured the effect of incubation time of 
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activated particle and protein on conjugation efficiency over a 48 hour period (Figure 

4.1C).  There is a clear increase in both pMHC and anti-CD28 mAb content at longer 

incubation times, maximally approximately 10% and 3% at 48 hours, respectively. This 

is an important finding for future manufacturing of biodegradable aAPCs; thus, we 

synthesized all subsequent particles for this study by incubating for 48 hours with protein. 

4.3.2 aAPC stimulate peptide-specific CD8+ T cells 

 Biologically, one of the most important properties of an aAPC is the capability to 

specifically stimulate T cells of interest.  This is important because non-specific 

activation would be problematic as it could lead to off-target inflammation and 

autoimmunity events.  To that end we evaluated the ability of our aAPC to specifically 

stimulate CD8+ T cells from two primary transgenic mice (PMEL or 2C) whose CD8+ T 

cells are all specific for the same peptide-MHC.  The particles were functionalized with 

either Db-GP100 (cognate to PMEL CD8+ T cells) or Kb-SIY (cognate to 2C CD8+ T 

cells) peptide-MHC and an anti-CD28 co-stimulatory monoclonal antibody. CD8+ T cell 

activation was quantified by two measurements of cell proliferation – CFSE dilution and 

day 7 cell counts.  

Each particle type was separately incubated with CFSE-labeled 2C or PMEL 

CD8+ T cells, and CFSE dilution was analyzed by flow cytometry after three days.  In 

this assay, if the CD8+ T cells are stimulated by the aAPC, they rapidly divide, diluting 

the CFSE dye between daughter cells following each division.  Effective stimulation of 

CD8+ T cells occurred only in the case of a cognate antigen/CD8+ T cell match as seen 

by CFSE dilution (Figure 4.1D).  
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Besides antigen-specificity, we also studied the antigen-specific dosing of aAPC 

to help guide in vitro and in vivo studies with checkpoint therapy.  Nearly all CD8+ T 

cells divided one or more times at the highest 1 mg dose of aAPC. CD8+ T cell 

expansion was dose dependent as evidenced by CD8+ T cell generation analysis of CFSE 

data (Figure 4.1D-E).  Nearly 80% of PMEL CD8+ T cells divided 4 or more times at a 

1 mg particle dose as compared to only 15% at a 0.01 mg dose. For 2C CD8+ T cells, 

which have a lower activation threshold, robust proliferation was seen across all doses 

studied (Figure 4.1D-E).   

Cell counts after 7 days of stimulation confirmed the dose-dependence of aAPC-

based activation in both transgenic systems (Figure 4.1F).  At the highest aAPC particle 

dose of 1 mg, PMEL CD8+ T cells reached approximately 30-fold expansion and 2C 

CD8+ T cells reached approximately 20-fold expansion which is similar to our previously 

reported proliferation levels for spherical PLGA aAPCs.4  

4.3.3 Anti-PD-1 mAb and aAPC activate cognate CD8+ T cells in vitro 

We hypothesized that simultaneous PD-1 blockade would further enhance 

activation of cognate cells for adoptive cell transfer.  To investigate this, we first 

developed an in vitro system to mimic some of the major immunosuppressive 

characteristics of the tumor microenvironment.  We utilized PD-L1hi target tumor cells 

and pre-activated CD8+ T cells that express PD-1 (schematic, Figure 4.2A).  

To establish the in vitro system, 2C CD8+ T cells were stimulated with cognate 

aAPC on days 0 and 4 to upregulate PD-1 expression.  This resulted in elevated PD-1 

expression by day 8 compared to naïve cells (Figure 4.2B). B16-SIY murine melanoma 

cells which express the cognate Kb-SIY pMHC, and noncognate B16-F10 murine 
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melanoma cells, were treated with IFN-γ for 48 hours to upregulate PD-L1 expression 

(Figure 4.2C).  All IFN-γ was removed from B16-SIY cells from prior treatment, as 

confirmed by undetectable levels of the cytokine from B16-SIY cells alone (Figure 

4.2D). 

To validate that the resultant cell phenotypes can model the effect of PD-1 

blockade in vitro, we first assessed IFN-γ release from CD8+ T cells in response to anti-

PD-1 mAb alone. 8-day activated PD-1hi 2C CD8+ T cells and 48 hour treated PD-L1hi 

B16-SIY cells were co-incubated at a 1:1 ratio in the presence or absence of 10 g/ml 

anti-PD-1 mAb or isotype control antibody. IFN-γ secretion, a marker of T cell 

activation, was 2.5-fold higher in the presence of anti-PD-1 mAb (Figure 4.2D).  

Importantly, anti-PD-1 mAb did not stimulate CD8+ T cells in the absence of a cognate 

Signal 1, indicated by co-incubation with noncognate B16-F10 cells.  These results 

demonstrate that this model can assess synergy between anti-PD-1 mAb and aAPC-based 

CD8+ T cell activation in vitro. 

Next, we sought to investigate the combinatorial power of aAPC and anti-PD-1 

mAb treatment in vitro.  We hypothesized that this two-hit approach would disrupt the 

inhibitory PD-1/PD-L1 pathway which is upregulated during stimulation and therefore 

lead to greater CD8+ T cell activation by aAPC. 2C CD8+ T cells were stimulated for 

five days with cognate aAPC and B16-SIY cells were primed with IFN-γ as previously 

described. CD8+ T cells and B16 cells were co-incubated at a 1:1 ratio in the presence of 

titrating amounts of cognate PLGA aAPC and anti-PD-1 mAb alone or in combination, 

and response was quantified by IFN-γ release (schematic, Figure 4.2A).  While CD8+ T 

cells secreted minimal levels of IFN-γ with no aAPC or anti-PD-1 mAb treatment, and 
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either treatment alone increased activation in a dose-responsive manner (Figure 4.2E), 

the combination of aAPC and anti-PD-1 mAb resulted in the greatest activation – over 

3.5-fold more IFN-γ secretion over no treatment.  No further increase in IFN-γ release 

was seen with higher anti-PD-1 mAb doses.  

4.3.4 PLGA aAPC biodistribution 

We next sought to demonstrate the biodistribution of aAPC with and without 

adoptively transferred CD8+ T cells.  PLGA aAPC particles encapsulating a near infrared 

dye were injected intravenously into C57BL/6 mice.  Particles were injected either alone 

or after a co-incubation with cognate CD8+ T cells to assess their impact on particle 

distribution.  We serially collected blood and imaged the samples to track fluorescence of 

the particles (Figure 3a).  There was a noticeably faster elimination of the particles in the 

presence of cells compared to particles alone.  A single exponential decay curve was fit to 

each data set, and it was determined that the effective half-life of the aAPC alone was 

11.6 min and aAPC in the presence of cells was 2.8 min.  Thus, by 40 min, multiple half-

lives occurred, sufficient for the majority of the particles to clear the blood and sufficient 

to calculate the respective half-lives.  At 30 and 40 minutes post injection, there were 

significantly more aAPC particles still in circulation when particles were injected alone 

as compared to particles co-injected with cells (Figure 4.3A).  The particles were not 

designed to have long circulation in the blood and we anticipated that they would be 

readily cleared within 40 min from the blood to these organs of interest. 

24 hours post administration, the animals were sacrificed and the spleen, liver, 

kidney, heart, and lung were harvested for fluorescence quantification (Figure 4.3B).  In 

both the aAPC alone and the aAPC with cells groups the major organs for accumulation 
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were the spleen and the liver.  The aAPC in the presence of cells potentially had 60.1% 

greater accumulation in the spleen than the aAPC alone.  With regard to the lung 

(p<0.05) and heart (p<0.01) it was concluded that there were fewer aAPC particles 

trapped in these tissues when the aAPC were in the presence of cells compared to aAPC 

alone.  Thus, it was concluded that aAPC and CD8+ T cells should be co-injected for 

optimal localization to lymphoid organs.  

This biodistribution study also demonstrated that systemic injection of the aAPC 

particles with or without cells did not cause an acute safety risk such as embolism.  

Systemic injection of these micron-scale biomimetic aAPC is a new administration route 

as we have previously used similar aAPC particles only subcutaneously.4  We found the 

intravenous injections to be well tolerated in all animals.  This approach used for the 

biodistribution studies also highlights another potential advantage of these particular 

PLGA aAPC biomaterials as it validates that they are capable of co-encapsulating 

imaging or other agents internally, while orthogonally allowing presentation of 

biomolecules from their surfaces.   

Our studies also suggest a trend that the aAPCs + CD8+ T cells resisted the first 

pass off-target clearance tissue (lung) to accumulate more at the on target immune tissue 

(spleen).  This observed biodistribution to the spleen may help explain the therapeutic 

outcome.  By investigating the interaction and biodistribution of the aAPC biomaterial in 

vivo for the first time, we observed that co-administration with T cells does make a 

difference.  This is a novel approach to T cell immunotherapy as T cells are commonly 

activated ex vivo and then separated from their agonists prior to in vivo administration.    
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4.3.5 Anti-PD-1 mAb synergizes with biodegradable aAPC in vivo to delay tumor 

growth and extend survival 

 To evaluate the therapeutic potential of combination biodegradable aAPC and 

anti-PD-1 mAb therapies, we assessed their efficacy alone or in combination in an 

adoptive immunotherapy melanoma tumor treatment model.  Thy1.2+ C5BL/6 mice were 

inoculated subcutaneously in the right flank with B16-F10 murine melanoma cells 

(schematic, Figure 4.4A).  Three days later, all mice were irradiated with a sub-lethal 

dose of radiation to induce transient lymphopenia.  On the following day, naïve cognate 

Thy1.1+ PMEL CD8+ T cells alone or co-incubated with PLGA aAPC were injected 

intravenously into treated mice. Anti-PD-1 mAb was given intraperitoneally on the same 

day and the day after aAPC and CD8+ T cell treatment, as per standard anti-PD-1 mAb 

treatment.33 Likewise, PD-1 expression was shown to be upregulated by the CD8+ T cells 

within 7-24 hours of aAPC activation, and early anti-PD-1 mAb treatment ensured an 

effect on the stimulated cells.  Peripheral blood samples were taken from the mice to 

evaluate antigen specific CD8+ T cell proliferation of the adoptively transferred cells, 

and tumor size was measured every other day (see Materials and Methods, 4.2.7).  

 Analysis of the circulating CD8+ T cell population revealed a proliferative 

advantage of the adoptively transferred cells in the dual treatment group (Figure 4.4B).  

Significantly higher percentages of Thy1.1+ antigen specific CD8+ T cells were seen in 

the periphery of mice treated with the combined aAPC and anti-PD-1 mAb treatment as 

opposed to aAPC or anti-PD-1 mAb alone (p<0.001 on days 10 and 13).  There was on 

average a 4-fold increase in proliferation of CD8+ T cells in the combination treatment 
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group over the anti-PD-1 mAb alone group and a 2-fold proliferative advantage of the 

combination treatment group over the aAPC alone group.   

A therapeutic benefit of the combination treatment was also seen as determined 

by inhibition of tumor growth and prolonged survival (Figure 4.4C-E).  There was a 

statistically significant reduction in tumor burden for the combination treatment group 

compared to all other groups past day 15 (Figure 4.4C).  No single treatment 

significantly delayed tumor growth.  By day 15, the combination treatment group had an 

average tumor size of 140 mm2 – over a 30% reduction in tumor size from the no 

treatment and single treatment groups with all p values being less than 0.05.   

Additionally, the survival of the animals was extended only in the combination treatment 

group (p<0.05) (Figure 4.4D).  No mice in the non-treated and single treatment groups 

survived past day 20, whereas 45% of mice in the dual treatment group survived past this 

time point.  This survival advantage was statistically significant compared to all other 

groups.  

4.3.6 Dual anti-PD-1 mAb and aAPC treatment results in superior tumor-specific 

CD8+ T cells in vivo 

To understand mechanistically how the combination of aAPC and anti-PD-1 mAb 

treatment affects tumor-specific CD8+ T cells in vivo, we analyzed phenotypic and 

functional changes in adoptively transferred CD8+ T cells in the various treatment 

groups.  Thy1.2+ C5BL/6 mice were inoculated subcutaneously in the right flank with 

B16-F10 murine melanoma cells and sublethally irradiated after three days.  Mice 

received either Thy1.1+ PMEL CD8+ T cells alone or co-incubated with aAPC, and were 

treated with anti-PD-1 mAb as described above.  Eleven days after treatment, tumor 
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infiltrating lymphocytes (TILs) and splenocytes were harvested and adoptively 

transferred cells were identified by the presence of Thy1.1+ on the cell surface (see 

Materials and Methods, 4.2.8).  

Thy1.1+ CD8+ adoptively transferred PMEL T cells in the TILs expressed 

significantly higher levels of the immunosuppressive PD-1 molecule in the absence of 

anti-PD-1 treatment (Figure 4.5A).  A similar trend was evident in the spleen, where 

adoptively transferred cells expressed higher PD-1 levels in the absence of any additional 

treatment (Figure 4.5B).  PD-1 expression was decreased to a greater extent within TILs 

as compared to the spleen, approximately 2-fold and 6-fold, respectively, likely because 

these cells are more immunosuppressed and thus express higher levels of PD-1 in the 

absence of treatment.  Additionally, there was about half the percentage of Thy1.1+ 

CD8+ T cells in the spleen of mice lacking aAPC treatment as compared to dual treated 

mice (Figure 4.5C).  

To investigate the functional capacity of the tumor-specific cells, we studied their 

ability to expand in response to re-stimulation.  Isolated splenocytes from each mouse 

were stained with a CFSE dye and re-stimulated in vitro with aAPC expressing cognate 

Db-GP100 pMHC and anti-CD28 mAb to expand only tumor-specific cells.  After three 

days, CFSE dilution was assessed by flow cytometry and expanded cells identified. 

CD8+ T cells from dual treated mice expanded about 2-3 fold more in response to 

antigen-specific re-stimulation than compared to non-treated and anti-PD-1 mAb only 

treated mice (Figure 4.5D).  Together, this data shows that dual aAPC and anti-PD-1 

mAb treatment leads to a change in expression of checkpoint molecules and increases the 

proliferative capacity of CD8+ T cells both within the tumor microenvironment and 
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secondary lymphoid tissue.  PD-1 blockade reduces CD8+ T cell PD-1 expression and 

aAPC treatment increases tumor-specific CD8+ T cell expansion and re-activation 

potential.  Thus, combination therapy leads to a superior CD8+ T cell population by 

facilitating both lower expression of the immunosuppressive PD-1 molecule and 

increased proliferative and functional capacity. 

4.3.7 Discussion 

Stimulating a tumor-specific cytotoxic CD8+ T cell response is a promising 

approach in cancer immunotherapy, although several hurdles still exist in generating a 

population of cells that is both optimally effective and persistent.  Often, very large 

numbers of activated T cells, up to 1011,12 are necessary for an objective response. 

Advancements in biomimetic and biodegradable aAPC have made robust activation for 

clinical therapy possible, although strong activation upregulates immunosuppressive 

surface molecules on the CD8+ T cells such as PD-1.  As progress is made in the field of 

biomaterials for robust T cell activation, it is likewise necessary to understand their 

interaction with other conventional immunotherapeutics, including new clinical standards 

of care, to counterbalance the resultant inhibitory phenotype. 

Here, we have characterized the synergistic interaction between biodegradable 

PLGA aAPC and PD-1 checkpoint blockade for murine tumor control in an adoptive 

transfer model. PLGA-based aAPC were chosen as they are effective T cell stimulators, 

and, due to well-known experience with PLGA particles in the body, offer translational 

potential for tumor-specific CD8+ T cell expansion in vivo.  We showed antigen-specific 

stimulation of CD8+ T cells in response to PLGA aAPC conjugated with two different 
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peptide-MHC complexes. The aAPC are able to induce robust expansion in each of the 

tested cell types.   

However, the immune system has developed ways to self-regulate itself by 

upregulating immunosuppressive molecules in response to activation. In this nature, 

activated CD8+ T cells express high levels of PD-1 which is important biologically to 

control autoimmunity, but detrimental in cancer immunotherapy where a strong anti-

tumor response is desired.  Tumors take advantage of this biological process and express 

the ligand for PD-1, PD-L1, to inhibit an anti-tumor CD8+ T cell response.  Our in vitro 

model of PD-1hi CD8+ T cells and PD-L1hi tumor cells, mimicking those that would be 

found within the tumor microenvironment of a patient, showed increased CD8+ T cell 

activation in response to the combination of aAPC stimulation and PD-1 blockade.  

While both therapeutics alone increased activation, the combination was able to stimulate 

CD8+ T cells while turning off their “rheostat” and led to a further enhanced antigen-

specific response.  

Finally, we sought to study the effectiveness of combination treatment in vivo 

since the dynamics of the tumor microenvironment can play a significant role in the 

response.  The aAPC were first demonstrated to circulate systemically, both with and 

without a co-injection of cognate CD8+ T cells.  When aAPC were co-injected with 

CD8+ T cells, they spent less time in circulation and accumulated less in off-target sites 

such as the lung and heart.  This comparison is both interesting and important, as the 

intrinsic honing capabilities of CD8+ T cells may cause accumulation of aAPC in 

immune-dense sites. Indeed, we did see a trend towards higher aAPC accumulation in 

secondary lymphoid tissue - the spleen.  While this >50% change in distribution was not 
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significant under the conditions studied, it may help to explain the statistically shorter 

circulation half-life of particles co-injected with cells along with the greater accumulation 

of tumor-specific CD8+ T cells in the spleens of mice treated with particles and cells in 

vivo.  

Combination of aAPC expressing tumor antigens and anti-PD-1 mAb treatment 

resulted in delayed tumor growth and extended survival in vivo in an adoptive transfer 

model of naïve tumor specific cells.  While many adoptive immunotherapy approaches 

begin with pre-activated CD8+ T cells, our approach demonstrates significant anti-tumor 

activity in the absence of prior stimulation and thus reduces the time, cost, and technical 

hurdles associated with ex vivo cell culture.  Importantly, this is the first time this PLGA 

aAPC-based therapeutic was effective in a therapeutic rather than prophylactic tumor 

model as well as the first time that it has been evaluated following systemic 

administration.4 The therapeutic effect was shown to be due to increased proliferation of 

the adoptively transferred tumor-specific cells both in the peripheral blood and spleen in 

response to aAPC transfer, as well as decreased PD-1 expression by these cells in the 

spleen and tumor in response to anti-PD-1 mAb treatment.  Despite only two anti-PD-1 

mAb treatments on days 0 and 1, there was still a significant nearly 6-fold decrease in 

CD8+ T cell PD-1 expression 10 days after the last anti-PD-1 administration. 

Importantly, this strong stimulation of the tumor-specific CD8+ T cells did not lead to 

unresponsiveness—CD8+ T cells from the spleen of the dual treatment group also 

expanded the greatest amount upon re-stimulation ex vivo.  

In summary, anti-PD-1 immunotherapy unleashes more of the aAPC-activated 

CD8+ T cells to perform effector function whereas without anti-PD-1 mAb therapy more 
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aAPC-activated CD8+ T cells were ineffective due to the immunosuppressive tumor cells 

expressing PD-L1.  Furthermore, aAPC activate and increase the number of CD8+ T cells 

that anti-PD1 therapy can target and affect. CD8+ T cells not activated by aAPC do not 

proliferate as much or upregulate PD1, thus decreasing the total effect of the checkpoint 

blockade immunotherapy.  Therefore, both therapies complement and synergize to 

provide a more potent tumor immunotherapy. 

4.4 Conclusions 

 Here we have developed a biomaterial-based combinatorial cancer 

immunotherapy.  This therapeutic simultaneously activates cytotoxic CD8+ T cells while 

reducing the immune dampening effects of the tumor microenvironment.  We have 

developed a biomimetic PLGA-based aAPC that can, in an antigen specific fashion, 

stimulate cancer-targeting CD8+ T cells and synergize with PD-1 checkpoint blockade.  

The aAPC particles generate a cytotoxic response against melanoma cells in vitro and, for 

the first time, these aAPC have been shown effective in an in vivo tumor treatment model 

following a single intravenous injection.  The combined therapy was able to mediate a 

reduction in tumor burden and increase median survival time.  As the aAPC are 

composed of PLGA, a biodegradable material that has a track-record of safe use in the 

clinic with related technologies, these advanced immunostimulatory materials may be 

promising for combination treatment in the clinical application of cancer immunotherapy.   
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4.5 Figures 

 

Figure 4.1: aAPC characterization and functional assessment. (a) SEM micrographs of 
conjugated aAPC microparticles. (b) Particle size distribution of conjugated aAPC 
microparticles as evaluated by image analysis of SEM micrographs. (c) Particle protein 
content on aAPC microparticles as evaluated by fluorescent antibody staining of the 
particles and measured by a fluorescent plate reader. Conjugation efficiency is defined in 
Materials and Methods. (d) Antigen specific CD8+ T cell stimulation capabilities of 
aAPC microparticles.  CFSE dilution of CD8+ T cells from either PMEL or 2C TCR 
transgenic mice incubated for 3 days with indicated dose of particles (1 mg, 0.1 mg, 0.01 
mg) functionalized with the indicated antigen, GP100 or SIY peptide. (e) Generation 
analysis of CFSE dilution data in (d) indicates antigen specific proliferation of PMEL and 
2C CD8+ T cells in response to stimulation by Db-GP100 (left) or Kb-SIY (right) aAPC 
microparticles. (f) Fold proliferation calculated by day 7 cell counts after stimulation with 
the Db-GP100 (left) or Kb-SIY (right) aAPC microparticles indicates antigen specific 
proliferation of CD8+ T cells.  Error bars are SEM of n=3 replicates.  
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Figure 4.2: aAPC and anti-PD-1 mAb show greater CD8+ T cell activation in 
combination. (a) Schematic of in vitro tumor microenvironment model system. 2C CD8+ 
T cells were isolated and stimulated with a 1:1 cell:aAPC ratio and B16-SIY and B16-
F10 cells were incubated with 20 ng/ml IFN-γ. Activated 2C CD8+ T cells and B16 cells 
were purified from aAPC and IFN-γ, respectively, and combined at a 1:1 effector to 
target ratio with additional aAPC in the presence or absence of anti-PD-1 mAb. IFN-γ 
release was measured by ELISA after 18 hours. (b) CD8+ T cells are PD-1hi after dual 
aAPC activation (black), compared to expression on naive cells (dotted) and isotype 
(grey). (c) B16-SIY (left) and B16-F10 (right) are PD-L1hi after IFN-γ treatment (black) 
as compared to untreated cells (dotted) and isotype (grey). (d) PD-1hi 2C CD8+ T cells 
and target PD-L1hi B16-SIY (cognate; cog) or B16-F10 (noncognate; noncog) were co-
incubated at a 1:1 ratio in the presence of 10 ug/ml anti-PD1 mAb or isotype control 
(iso). Anti-PD-1 mAb increased CD8+ T cell IFN-γ release as compared to isotype. No 
IFN-γ release was measured in response to CD8+ T cells and noncognate B16-F10 cells 
incubated with anti-PD-1 mAb. Significance was measured by one-way ANOVA with 
Dunnett’s post-test. (e) CD8+ T cells secrete more IFN-γ in response to increasing doses 
of both aAPC and anti-PD-1 mAb.  Error bars represent SEM, and significance compared 
to no treatment (i.e. no aAPC, anti-PD-1) is shown (* = p<0.05, ** = p<0.01, *** = 
p<0.001). Both aAPC and anti-PD-1 significantly affect IFN- γ (p<0.001; F3,40=226.4 and 
F3,40=88.32, respectively) by two-way ANOVA. 
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Figure 4.3: Co-administration of aAPC with CD8+ T cells impacts aAPC biodistribution.  
(a) Blood was collected retroorbitally following intravenous administration of IR 
fluorescence labeled particles alone or incubated with cells.  Blood was imaged and 
fluorescence was quantified and normalized to the first time point collected. Asterisk 
indicates time points at which normalized data was significantly different between the 
two groups.  Lines through the points denote first order exponential decay curves fit to 
the data.  In the presence of cells, the aAPC particles are eliminated faster than without 
cells.  (b) At 24 hrs post-aAPC administration, the organs were dissected out, imaged, 
and quantified for fluorescence.  In the presence of cells, the aAPC particles resist getting 
trapped in the lungs (p<0.05) or the heart (p<0.01), and trend towards accumulating more 
in the spleen (p=0.1). Error bars are SEM of n=3 replicates. (*=p<0.05, **=p<0.01)  

 

 

 

 

 

 

 

 

 

 

 

 



152 
 

 

Figure 4.4: Anti-PD1 mAb and aAPC synergize to mediate anti-tumor activity in vivo. 
(a) Schematic of the adoptive transfer experiment. Blue arrows indicate anti-PD-1 mAb 
treatment, green arrows indicate blood sampling days.  (b) Percent of CD8+ T cells in 
peripheral blood that are Thy1.1+.  Anti-PD1 mAb and aAPC dual therapy mediated the 
best proliferation of antigen-specific CD8+ T cells in vivo. Significance evaluated with 
one-way ANOVA with Tukey’s post-test. All treatment groups were significantly 
different from no treatment at all time points.  (c) Tumor measurements indicate an anti-
tumor response was mediated by the dual therapy group. Significance measured by one-
way ANOVA with Tukey’s post-test.  (d) Kaplan-Meier survival plots indicate that dual 
therapy mediates the best survival. Only combination treatment resulted in significantly 
extended survival compared to no treatment by log-rank test (p<0.05). Error bars 
represent the standard error of n=8-12 mice/group. Results from two independent 
experiments are pooled. (*p<0.05, **p<0.01, ***p<0.001) 
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Figure 4.5: Anti-PD-1 mAb and aAPC combination therapy decreases PD-1 expression 
and increases expansion of tumor-specific CD8+ T cells. C57BL/6 mice were inoculated 
with B16-F10 tumors on day -4 and sublethally irradiated on day -1. On day 0, mice 
received an IV injection of PMEL Thy1.1+ CD8+ T cells either alone or co-incubated 
with cognate aAPC. Two of the groups also received an IP injection of anti-PD-1 mAb on 
days 0 and 1. Splenocytes and TILs were harvested on day 11. (a) Thy1.1+ TILs of mice 
not treated with anti-PD-1 mAb had significantly elevated PD-1 expression as compared 
to dual treated mice. (b) Thy1.1+ cells in the spleen of non-treated mice also had 
significantly elevated PD-1 expression as compared to dual treatment. (c) CD8+ T cells 
within the spleen of mice not treated with aAPC had a significantly lower percentage of 
Thy1.1+ tumor-specific cells as compared to dual treatment. (d) Splenocytes were CFSE 
stained and re-stimulated with Db-GP100/anti-CD28 mAb aAPC, and CFSE dilution was 
assessed after 3 days. There was significantly less expansion of tumor-specific CD8+ T 
cells in mice not treated with aAPC. Significance measured by one-way ANOVA with 
Dunnett’s post-test comparing all groups to dual treatment. (*p<0.05, **p<0.01, 
***p<0.001) 
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Chapter 5: Biodegradable Nanoellipsoidal Artificial Antigen Presenting 

Cells for Antigen Specific T-Cell Activation 4 

5.1 Introduction 

 Biomimetic artificial antigen presenting cells (aAPCs) have shown substantial 

promise as a platform for immune system activation and modulation.  Antigen specific 

aAPCs reconstitute the critical T-Cell recognition (“signal 1”) and activation (“signal 2”) 

signals presented at the surface of APCs by presenting peptide-in-MHC and positive 

costimulatory molecules such as anti-CD28 antibody on the surface of the particle. 

Classically, aAPCs are cell sized (2-10 µm), spherical particles, and have been made 

using a variety of materials, from liposomes1,2 to magnetic beads,3-7 to non-degradable8 

and degradable polymeric microparticles.9-11 Despite the extensive in vitro data 

supporting the efficacy of these particles in vitro, in vivo translation has been limited due 

to the poor bioavailability and activity of spherical micron sized particles.  Nanoparticle 

systems offer an attractive alternative to micron sized particles as drug delivery vehicles 

for the aAPC platform.  Recently, nanoparticles have been utilized for various therapeutic 

and diagnostic applications, such as tumor targeting and imaging.12-16 Biodistribution of 

these drug carriers has been of special interest in the past few years, as efforts have been 

made to engineer nanoparticles that simultaneously target the region of interest and can 

be eliminated efficiently to avoid toxicity.17-20  

                                                 
This chapter contains material modified from the following article previously published as: 
Meyer RA, Sunshine JC, Perica K, Kosmides AK, Aje K, Schneck JP, Green JJ.. Biodegradable 
nanoellipsoidal artificial antigen presenting cells for antigen specific T-Cell activation. Small. 
2015;11(13):1519-25.  
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 One major issue with attempting to translate the aAPC technology onto the 

nanoscale is that the literature strongly supports the concept that receptor occupancy over 

a large surface area of contact is a critical determinant for activation; for aAPCs, 4-5 µm 

particles were found to be superior to 1 µm particles, and the difference could not be 

made up simply by increasing the particle dose.8 However, these systems use spherical 

particles as the core of the construct which, for a given volume, provide the minimum 

surface area of contact between a T-Cell and aAPC. 

 Non-spherical, anisotropic nanoparticles have recently gained increasing attention 

within the biomaterials community for a numerous reasons.  A wide variety of shapes 

have been synthesized by bottom-up and top-down approaches.21,22 Nanoparticles with 

altered shape offer potential improvements in intracellular particle delivery and in vivo 

circulation time by aligning with blood flow and reducing phagocytosis,23,24 enhanced 

targeting of diseased microvasculature,25 reduction of non-specific particle uptake,26 and 

improved specific particle uptake and cancer cell killing.27 In particular, prolate ellipsoids 

(semi-axes:  a>b=c) showed the most efficient particle attachment with lowest in vitro 

internalization rates when compared to oblate ellipsoids (semi-axes: a=b>c) or spherical 

particles.28 Non-spherical prolate nanoellipsoids have shown enhanced tissue targeting of 

brain and lung endothelium.29 With regard to immune stimulation, we have recently 

shown that non-spherical microparticles were much more successful at functioning as 

aAPCs compared to spherical microparticle aAPCs, inducing stronger, and more 

efficient, antigen specific T-Cell responses.30  

 For nanoscale aAPCs (naAPCs), altering the particle shape could allow for an 

interfacial geometry (at the interface between the aAPC and the T-Cell) that is more 
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similar to successful microparticulate systems, including a microscale radius of curvature 

for the long axis.  In addition, non-spherical naAPCs have the potential for improved in 

vivo biodistribution as compared to microparticles due to easy access to draining lymph 

nodes and suitability for intravenous injection.  Non-spherical naAPCs can also take 

advantage of a shape-dependent reduction in non-specific uptake and improved 

circulation time through avoidance of the RES system.  Based upon these proposed 

benefits, we elected to study how shape might affect naAPC function and in vivo 

biodistribution.  In addition, while aAPCs are often constructed of nondegradable 

materials for ex vivo use, we wished to construct effective biodegradable nanoscale 

aAPCs for the first time to make them more amenable for in vivo therapeutic use. 

5.2 Materials and Methods 

5.2.1 Nanoparticle preparation 

 Acid terminated poly (lactic-co-glycolic acid) (PLGA 50:50 lactic acid to glycolic 

acid ratio, MW 34,000-58,000 Da) was purchased commercially (Sigma Aldrich; St. 

Louis, MO).  200 mg of PLGA was dissolved in 5 mL dichloromethane and sonicated 

into 50 mL 1% poly vinyl alcohol (PVA) solution by  Misonix S-4000 probe sonicator 

operating at 12 W of power (Qsonica; Newtown, CT).  The resulting emulsification was 

then added to 100 mL of 0.5% PVA solution.  The solution was agitated by magnetic 

stirbar and the dichloromethane was allowed to evaporate over the course of 4 hrs.  The 

solution was then centrifuged at 3000 g for 5 min to pellet out any non nanodimensional 

materials.  The supernatant was removed and ultracentrifuged three times at 17,000 g for 

15 min to wash away the PVA.  The resulting nanoparticle solution was flash frozen in 

liquid nitrogen and lyophilized for 2 days prior to characterization and use. 
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5.2.2 Thin film stretching and nonspherical particle preparation 

 Lyophilized PLGA nano particles were dissolved in a 10% PVA and 2% glycerol 

solution at a concentration of 5 mg/mL and 5 mL of this solution was deposited into 5 cm 

x 7 cm rectangular petri dishes (VWR; Radnor, PA) to dry overnight.  The resulting film 

was cut to size and loaded in between two aluminum mounts and heated up to 90 ºC.  The 

film length was measured and the film was stretched slowly to produce the desired fold 

of stretch (e.g. 2 fold stretched ellipsoidal particles).  The film was then allowed to cool 

down to room temperature and was removed from the aluminum blocks.  The PVA film 

was dissolved in water and the resulting particle suspension was washed 3x by 

ultracentrifugation at 40,000g.  The particles were lyophilized prior to use. 

5.2.3 Protein conjugation and naAPC formation 

Lyophilized spherical or non-spherical particles were dissolved in 0.1 M MES 

buffer at pH 6.0 at a concentration of 2 mg/mL 100 µL of EDC/NHS (Sigma Aldrich; St. 

Louis, MO) stock solution at 40 mg/mL and 48 mg/mL respectively were added to each 

sample and the particles were activated for 30 min.  The resulting surface activated 

particles were washed by centrifugation at 16,000 g.  The particles were resuspended in 

1x PBS at 2 mg/mL.  8 µg MHC IgG Db dimer loaded with gp100 and 10 µg biotin anti-

CD28 (BD Biosciences; San Jose, CA) was added to each sample and the particles were 

allowed to react with the proteins overnight at 4 ºC.  The resulting naAPCs were washed 

3x by centrifugation at 16,000 g and then dissolved in 400 µL of 100 mg/mL endotoxin 

free sucrose.  The resulting suspension was then lyophilized overnight. 

5.2.4 Characterization of the naAPC 
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 To confirm the formation of non-spherical particles, we imaged the samples under 

a Hitachi 7600 TEM (Hitachi High-Tech; Tokyo, Japan).  The particle samples to be 

imaged were transferred to a parlodion grid for 5 min and then stained in 1% urainyl 

acetate for 1 min.  The grids were dried and imaged under the TEM.  To determine 

particle size we utilized a NanoSight NS500 (Malvern Instruments; Westborough, MA) 

for nano tracking analysis (NTA) following the manufacturer’s protocols.  Protein surface 

quantification was accomplished through the use of AlexaFluor 488 labeled dimers and 

APC conjugated anti CD28.  The proteins were conjugated by EDC/NHS chemistry 

under the conditions described above, and then fluorescence readings were taken utilizing 

a BioTek Synergy 2 plate reader (Biotek; Winooski, VT).  The resulting fluorescent 

signal was correlated back to a mass of protein by a standard curve to derive conjugation 

efficiency.  To track particle surface release, we suspended particles conjugated to 

fluorescently labeled dimers and anti-CD28 in PBS at 37 ºC.  The resulting suspension 

was spun down at the indicated time points and the supernatant was removed to analyze 

fluorescence.  The amount of fluorescence was correlated to the amount of protein 

released from the surface of the particles by standard curve.   

5.2.5 In Vitro T-Cell Stimulation 

 To evaluate aAPC immune induction potential we utilized an in vitro T-Cell 

stimulation assay.  Particles were prepared as described above at different stretch folds.  

Primary splenocytes were isolated from fresh PMEL mouse (Jackson Labs; Bar Harbor, 

ME) spleens through cell straining.  The splenocytes were treated with 4 mL of ACK 

lysis buffer for 1 minute to lyse the red blood cells.  CD8+ T-Cells were isolated from the 

splenocyte mixture utilizing the Miltenyi CD8a+ Cell Isolation Kit IIa following the 



162 
 

manufacturer’s protocol (Miltenyi; Auburn, CA).  The CD8+ cells were then stained with 

Vybrant carboxyfluorescein succinyl ester (CFSE) (Life Technologies; Grand Island, 

NY) for 15 min followed by washing and a 1 hr. incubation time.  100,000 labeled CD8+ 

T-Cells were then mixed with either 1 mg, 0.1 mg, or 0.01 mg of the appropriate naAPC 

sample and then cultured in RPMI supplemented with L-glutamine, non essential amino 

acids, vitamin solution, sodium pyruvate, β-mercaptoethanol, 10% FBS, ciprofloxacin, 

and a cocktail of T-Cell growth factors.  Three days post stimulation, half of the CD8+ T-

Cells were pooled and analyzed by flow cytometry for CFSE dilution.  Seven days post 

stimulation, the cells were stained with trypan blue and manually counted (excluding 

stained cells) to determine proliferation fold over the initial input of cells.   

5.2.6 Nanoparticle Cell Uptake 

 Nanoparticles were fabricated as described above except the initial DCM solution 

contained 2 mg of TAMRA in addition to the PLGA.  The resulting labeled particles 

were stretched as described above and lyophilized prior to use.  As a model of non-

specific endothelial cell uptake, we utilized human umbilical vein endothelial cells 

(HUVECs).  HUVECs were cultured in EGM-2 media with the added bullet kit of 

supplements (Lonza; Basel, Switzerland).  As a model of phagocytic particle clearance, 

we utilized RAW 264.7 murine macrophages.  RAW 264.7 macrophages were cultured in 

Dulbecco’s Modified Eagle Medium (Life Technologies; Grand Island, NY) 

supplemented with 10% FBS and penicillin/streptomycin.  Cells were seeded at a density 

of 15,000 cells per well on a 96 well plate.  For dosing experiments, the media was 

withdrawn, and media containing the noted amount of particles was added and the cells 

were incubated for 24 hrs.  For time course experiments, 0.1 mg of particles was added in 
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media to each sample and incubated for the times noted.  At the end of the incubation, the 

cells were washed 3x with PBS and either trypsinized off (HUVECs) or triturated off 

(RAW 264.7 macrophages).  The cells were then analyzed by flow cytometry on an 

Accuri C6 Flow Cytometer (BD Biosciences; San Jose, CA) for particle uptake.  

Confocal micrographs were obtained by fixing the cells, staining with AlexaFluor 488 

phalloidin (Life Technologies; Grand Island, NY) and DAPI, and imaging under a Zeiss 

710 LSM (Carl Zeiss Microscopy; Jena, Germany). 

5.2.7 In Vivo Biodistribution Experiments 

 Spherical and non-spherical naAPCs were fabricated as described above except 1 

mg of a custom synthesized near IR 800 nm hydrophobic fluorophore (LICOR 

Biosciences; Lincoln, NE) was added to the DCM mixture to label the particles for in 

vivo imaging.  In addition, stretching was conducted at 75 ºC as the dye was determined 

to be heat sensitive.  For animal studies, nude SCID mice supplied by Jackson Labs 

(Jackson Laboratories; Bar Harbor, ME) were utilized.  Prior to intravenous injection of 

the aAPCs, the particles were suspended in PBS and analyzed under the plate reader 

(Biotek; Winooski, VA) to determine the near IR fluorescence and the injectate per 

mouse was adjusted to 100,000 fluorescent units.  After intravenous tail vein injection, 

blood was collected retroorbitally at 10 min, 20 min, 30 min, and 40 min post injection 

utilizing Micro-Hematocrit Capillary Tubes (Fisherbrand; Pittsburgh, PA).  The whole 

animal was imaged at 1 hr., 2 hr., and 4 hr. timepoints utilizing a LICOR Pearl Impulse 

Imaging system (LICOR Biosciences; Lincoln, NE).  Blood was also imaged upon 

collection in order to quantify fluorescence from the particles.  To quantify the dispersion 

of the naAPC, we quantified the fluorescence in the regions of the image corresponding 



164 
 

to the liver and spleen (Fliver+spleen) as well as the entire animal (Fentire animal) and computed 

the dispersion fraction as: 

𝐷𝐹 = 1 −
𝐹𝑙𝑖𝑣𝑒𝑟 𝑎𝑛𝑑 𝑠𝑝𝑙𝑒𝑒𝑛

𝐹𝑤ℎ𝑜𝑙𝑒 𝑎𝑛𝑖𝑚𝑎𝑙
 

At the end of the 4 hr. timepoint, the animals were sacrificed and the organs were 

dissected out and imaged.  The fluorescence was quantified to determine the distribution 

of the naAPC across the spleen, liver, kidney, and lung. 

5.2.8 In Vivo T-Cell Stimulation Experiment 

 IV injected particles were assessed for their ability to stimulate adoptively 

transferred T cells in vivo.  Spherical and non-spherical particles were fabricated as 

above. One day prior to adoptive transfer, transient lymphopenia was induced in 

C57BL/6 mice (Jackson Labs; Bar Harbor, ME) by sublethal irradiation (500 cGy) using 

an MSD Nordion Gammacell with dual Cs137 source (Johns Hopkins Molecular Imaging 

Center).  The following day, CD8+ T-cells were isolated from Thy1.1+ PMEL mouse 

spleens, as described above.  CD8 T-cells were washed and resuspended in PBS. T cells 

were then co-incubated with spherical, non-spherical, or no particles (2 mg per 106 cells) 

for 1 hour at 4 ºC.  Recipient Thy1.2+ C57/BL6 mice tail veins were intravenously 

injected with 1 x 106 PMEL T cells with or without particles (n=3-5 per group).  Percent 

Thy1.1+ CD8 cells in peripheral blood was measured on days 6, 8, and 10 post IV 

injection.  Blood was collected retroorbitally as described above, and red blood cells were 

lysed with ACK lysis buffer for 1 minute.  Cells were stained with anti-Thy1.1-Alexa 

Fluor 488 (BioLegend) and anti-CD8a-APC (BD Biosciences; San Jose, CA) for 30 

minutes and analyzed using a BD FacsCalibur.  On day 10, spleens and inguinal, cervical, 

and axillary lymph nodes were harvested and were broken up to a single cell suspension. 
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Spleens were treated with ACK lysing buffer for 1 minute to lyse red blood cells.  Spleen 

and lymph node samples were then stained with anti-Thy1.1-Alexa Fluor 488 

(BioLegend; San Diego, CA) and anti-CD8a-APC (BD Biosciences; San Jose, CA) for 30 

minutes and analyzed using a BD FacsCalibur and FlowJo software. 

5.2.9 In Vivo Tumor Treatment Experiment 

 In order to analyze the tumor treatment efficacy we utilized the model that was 

developed in Chapter 4 for the evaluation of aAPC activity in the context of the immune 

checkpoint blockade anti PD-1.  Briefly, 3*105 B16-F10 melanoma cells were injected 

into the right flank of Black 6 mice.  3 days following tumor implantation, the mice were 

irradiated with a sublethal dose of 500 cGy to induce transient lymphopenia.  The 

following day, the mice were given one of the following treatments: 1*106 PMEL T-Cells 

i.v., 1*106 PMEL T-Cells i.v. with 200 µg i.p. anti PD-1, 1*106 PMEL T-Cells i.v. with 

200 µg anti PD-1 i.p. and 2 mg of spherical nano aAPC i.v., or 1*106 PMEL T-Cells i.v. 

with 200 µg anti PD-1 i.p. and 2 mg of ellipsoidal nano aAPC i.v.  The following day the 

mice that received the 200 µg dose of anti PD-1 received a follow up dose of 100 µg of 

anti PD-1.  Seven days following the initial treatment the tumor areas were measured and 

recorded every other day until the areas reached 200 mm2 at which point the mouse was 

sacrificed.     

5.2.10 Image Analysis and Statistics 

 All image analyses and quantifications were done utilizing ImageJ software.  

Statistics for T-Cell proliferation results and in vivo T-Cell stimulation were computed in 

GraphPad Prism (GraphPad Software; La Jolla, CA) as one way ANOVA with Dunnet’s 

posttest comparing to the indicated control. Statistics for nanoparticle uptake and 
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biodistribution were computed as a one tailed unpaired t-test assuming unequal variances 

comparing spherical to ellipsoidal.  Statistical significance was assumed if p < 0.05 for all 

tests conducted.  

5.3 Results and Discussion 

5.3.1 Characterization of non-spherical nano aAPCs 

 To study the utility of non-spherical naAPCs for antigen-specific T-cell 

activation, we adapted a film stretching technique originally developed by Ho et. al.31 and 

more recently adapted to generate polymeric micro- and nanoparticles of varied shape.32 

To ensure biodegradability of the naAPCs, we synthesized PLGA nanoparticles using a 

single-emulsion with sonication method (see supplemental methods for details). We then 

cast them in a thin PVA film, and either stretched the film at 90ºC or not (to fabricate 

ellipsoid or spheroid particles respectively), and then removed the nanoparticles by 

dissolution (Figure 5.1A). We applied different amounts of stretch extent to the film to 

generate a range of nanoparticle aspect ratios.  Generation of prolate ellipsoids from 

spherical nanoparticles yields high aspect ratio and large radius of curvature particles 

with minimal change to overall particle surface area (see Table 5.1 for more details).  For 

example, a 2-fold stretch of a 200 nm spherical particle produces a prolate ellipsoid with 

an aspect ratio of 2.8, a radius of curvature along the long axis of 1.14 µm, and a modest 

surface area gain of 16%.  Thus with an ellipsoidal aAPC, we can mimic the more 

effective microparticle based aAPC radius of curvature.  We then fabricated the spherical 

and ellipsoidal nanoparticles into aAPCs by adding peptide loaded MHC-IgG dimers 

(pMHC-dimers) and anti-CD28 mAb to their surface via EDC/NHS chemistry to 

conjugate to the acid terminated PLGA polymer (Figure 5.1A). 
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The generated PLGA nanoparticles were 225 nm in diameter with a slightly net 

negative charge (-2.9±0.8 mV in PBS); stretching the particles resulted in ellipsoidal 

nanoparticles with the same volume that were also similarly slightly negatively charged (-

2.2±0.2 mV in PBS).  Stretching was confirmed by TEM analysis utilizing a negative 

stain of 1% uranyl acetate (Figure 5.1B-E). We conjugated fluorophore-labeled MHC-

IgG dimer (labeled with Alexa 488) and labeled anti-CD28 mAb (labeled with APC) to 

the surface of spherical and ellipsoidal nanoparticles and quantified the total fluorescence 

on the particles by plate reader. Spherical and ellipsoidal nanoparticles showed similar 

levels of MHC-IgG dimer and anti-CD28 mAb conjugation.  In addition, increasing 

amounts of MHC-IgG dimer and anti-CD28 in synthesis lead to an increased amount of 

protein conjugated to the particle surface, indicating that aAPC synthesis was 

concentration dependent over the range tested (Figure 5.1F-G). We also examined 

particle stability by conjugating fluorescently-labeled MHC-IgG dimer and anti-CD28 to 

the surface of the particles, incubating the particles in physiological conditions (1x PBS 

at 37 ºC), and analyzing particle stability at various points in time.  As shown, the 

spherical particles and ellipsoidal particles exhibited similar stability in vitro and more 

than 50% of the proteins were still conjugated to particles after incubation for 7 days 

(Figure 5.2). 

5.3.2 Evaluation of immune stimulatory capacity of non-spherical nano aAPCs 

 To examine whether these functionalized naAPCs could generate antigen specific 

CD8+ T-Cell responses, we coupled gp100-loaded MHC-Ig dimer (or non-cognate 

peptide loaded dimer) and anti-CD28 monoclonal antibody (mAb) to the surface of 

spherical and ellipsoidal nanoparticles.  Since optimal particle dosing was unknown, and 
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particle/antigen dose has been previously shown to be a critical parameter in activation of 

T-Cells by other aAPC systems, we performed a dose titration.  T-Cells were exposed in 

vitro to 1 mg, 0.1 mg, and 0.01 mg PLGA naAPC / 100,000 cells, and antigen specific T-

Cell expansion was evaluated via CFSE dilution (3 days post stimulation) and total T-

Cell proliferation (7 days post stimulation). 

 CFSE dilution analysis of the non-spherical 2-fold stretched naAPCs vs. the 

spherical naAPCs revealed a clear shape dependency on initial proliferation rates (Figure 

5.3A-B).  This effect was noted to be most profound at the middle dose of 0.1 

mg/100,000 T-Cells (Figure 5.3B).  The lowest dose of 0.01 mg/100,000 cells appeared 

to have little effect on T-Cell proliferation for either spherical or nonspherical aAPC 

(Figure 5.3A).  At the highest dose of 1 mg /100,000 cells both spherical and non-

spherical naAPCs were effective at stimulating T-Cells (Figure 5.3C).  Based on these 

results we decided to probe the effect of shape further by analyzing the effect of different 

degrees of stretch (1.5, 2, 2.5, 3, 3.5-fold) on the naAPC activation of CD8+ T-Cells.  

Generation analysis of CFSE data revealed that naAPCs were not effective at the low 

dose of 0.01 mg/100,000 T-Cells (Figure 5.3D).  In addition, all naAPC formulations 

were able to generate > 10-fold antigen-specific T-Cell proliferation at a saturating dose 

of 1 mg/100,000 T-Cells (Figure 5.3F).  However, at the mid-range dose of 0.1 mg / 

100,000 cells, there was a marked difference at aAPC stimulation of the spherical and 

non-spherical naAPCs (Figure 5.3E). 

T-Cell proliferation counts reflected the trends demonstrated in the CFSE 

generation data.  At the lowest dose of naAPC stimulation (Figure 5.3G), there was little 

stimulation of all particle shapes tested except for 2.5-fold stretched naAPC, which 
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demonstrated a significant (p < 0.05) increase in proliferation (3-fold) compared to 

spherical naAPC (1-fold).  The clearest shape dependency was demonstrated at the mid-

range dose (Figure 5.3H).  All ellipsoidal naAPC significantly outperformed the 

spherical naAPC (p < 0.05).  As an example, the 2-fold stretched naAPC induced a 15-

fold expansion of the T-Cells compared to the spherical particles which induced a 3-fold 

expansion.  The benefit of the non-spherical shape was apparent at the high dose (Figure 

5.3I), and significant (p <0.05) for the 2.5-fold and 3.5-fold stretched naAPC.  To 

simplify experimental comparison, all subsequent studies in this work were conducted 

with the spherical and the 2-fold stretched ellipsoidal particles. 

5.3.3 Evaluation of cellular uptake of non-spherical nano aAPC 

 In addition to offering a functional benefit to T-Cell stimulation, another potential 

advantage of ellipsoidal naAPC is that they may offer improved in vivo drug delivery 

properties, such as a reduction in non-specific cell uptake.28 To that end, we investigated 

whether nanoparticle uptake was shape dependent. By loading PLGA nanoparticles with 

a fluorescent dye (TAMRA), we were able to examine the impact of particle shape on 

uptake by confocal microscopy and flow cytometry.  We modeled two different modes of 

uptake. For phagocytic cells present in the reticuloendothelial system (RES), RAW 264.7 

macrophages were used as a model. Confocal analysis of the macrophages treated with 

0.1 mg of particles / 15,000 cells demonstrated a clear preference for spherical particles 

(Figure 5.4A) vs. non-spherical particles (Figure 5.4B).  Flow cytometry analysis 

reflected this difference across a variety of doses (Figure 5.4C) and incubation times 

(Figure 5.4E).  Maximal dose-dependent uptake was determined to be 78% for the 

spherical particles and 14% for the ellipsoidal particles.  Over the course of 72 hours, the 
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uptake percentages equilibrated between the spherical and ellipsoidal groups 

demonstrating the capability of the ellipsoidal particles to resist uptake.   

 As a model of non-specific uptake by endocytosis in vascular cells, we looked at 

particle uptake in primary human umbilical vein endothelial (HUVEC) cells in vitro. 

Spherical particles were taken up by up to 10% of the HUVEC cells during a 24 hour 

incubation period, with increasing frequency given an increased particle concentration 

(Figure 5.4D).  In addition, the amount of particles taken up by the cells was noted to 

increase over longer incubation times (Figure 5.4F).  We saw no significant ellipsoidal 

particle uptake at any particle dose or at any time point in the HUVECs.  Representative 

gated flow cytometry plots show spherical particle uptake for the HUVECs and 

macrophages (Figure 5.5).  Viability of RAW macrophages was similar between the 

spherical and nonspherical particle groups at all doses (Figure 5.6).  

5.3.4 In vivo biodistribution of non-spherical nano aAPC 

 Next, we sought to validate the in vitro shape dependent uptake seen with 

HUVECs and macrophages in vivo by performing a biodistribution experiment to 

evaluate the circulation half-life and overall distribution characteristics of the ellipsoidal 

naAPCs compared to the spherical naAPCs.  Biodistribution of spherical and ellipsoidal 

naAPCs were examined in nude SCID mice over a four-hour period.  naAPCs for 

biodistribution were synthesized encapsulating a custom made hydrophobic 800nm near 

IR dye (LI-COR Bioservices) in the interior of the naAPCs and conjugating MHC-IgG 

dimer and mouse anti-CD28 mAb to the naAPC surface.  Two groups of nude mice 

received 100,000 fluorescent units of spherical or ellipsoidal naAPC via tail vein 

injections.  Retroorbital bleeding was conducted at 10, 20, 30 and 40 minute intervals 
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after injections of naAPC to determine blood clearance.  Mice were then imaged with a 

LI-COR Pearl Impulse at 1, 2 and 4 hours post injection to evaluate biodistribution.  

After the 4 hour time point of imaging, mice were sacrificed to image spleen, liver, 

kidney and lung.     

 Ellipsoidal naAPCs demonstrated superior pharmacokinetic profiles compared to 

the spherical naAPCs.  Live whole animal imaging analysis revealed that the ellipsoidal 

naAPCs remained in the periphery for longer periods of time, as evidenced by the greater 

signal distributed throughout the animal (compare Figure 5.7A and 5.7B).  Images of the 

blood collected were analyzed by Image J to quantitatively examine the elimination from 

the blood over the first hour of the experiment.  Results indicate that ellipsoidal naAPCs 

maintained a higher concentration in the bloodstream than spherical naAPCs, sustained 

over 40 min (Figure 5.7C).  By fitting a first-order exponential decay curve we extracted 

the time constants for blood elimination and calculated the half-life.  Ellipsoidal naAPCs 

exhibited a significantly (p < 0.05) longer half-life at 34.8 min +/- 0.8 min than the 

spherical naAPCs at 25.2 min +/- 2.8 min (Figure 5.7D).  In order to further characterize 

resistance to uptake by the RES, we quantified the signal obtained from the regions 

corresponding to the liver and spleen and subtracted it from the signal obtained from the 

entire animal.  This value was then normalized to the signal measured over the entire 

region of the animal to obtain a parameter termed the dispersion fraction.  The higher 

nanoellipsoidal circulation concentration was reflected in the dispersion fraction at the 1 

hour time point (Figure 5.7E), further validating the finding that the ellipsoidal naAPCs 

could resist RES uptake compared to spherical naAPCs.  No significant difference was 

noted at the longer 2 hour and 4 hour timepoints, which was expected due to the particle 
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half-lives.  Spleen and liver accumulation of the naAPC was similar based on image 

analysis of the 1 hour, 2 hour, and 4 hour timepoints (Figure 5.8).  Organ distribution 

analysis demonstrated similar endpoint distributions for the spherical and non-spherical 

naAPC (Figure 5.9).  

5.3.5 In vivo T-Cell stimulation capacity of non-spherical nano aAPCs 

 Given the advantages of the ellipsoidal aAPC compared to the spherical aAPC 

seen in vitro, including superior T-Cell stimulation, reduced non-specific cell uptake, and 

better half-life/distribution upon systemic injection, we were interested to evaluate the in 

vivo T-Cell stimulatory capabilities of the ellipsoidal naAPC versus the spherical naAPC.  

To this end, we utilized an adoptive immunotherapy murine model.  We irradiated Thy 

1.2+ C57BL/6 mice with a sublethal dose of radiation and then administered the antigen 

specific aAPC and Thy 1.1+ PMEL T-cells simultaneously via intravenous tail vein 

injection.  Mice received either the 2-fold stretched ellipsoidal aAPC with T-Cells, the 

spherical aAPC with T-Cells, or T-Cells alone.  On days 6, 8, and 10 post injection, the 

mice were bled retroorbitally and the blood was analyzed for PMEL T-Cell expansion 

through the use of labeled anti-CD8 and anti-Thy 1.1 antibodies and flow cytometry.  At 

the end of 10 days, the mice were sacrificed, and the spleen and lymph nodes were 

dissected and analyzed for PMEL T-Cell expansion. 

Ellipsoidal naAPCs mediated significantly higher PMEL CD8+ T-Cell expansion 

in vivo compared to spherical naAPCs over the course of the experiment as evidenced by 

blood analysis of PMEL T-Cell content (Figure 5.10A).  On both day 6 and day 8, there 

was a statistically significant increase in ellipsoidal aAPC mediated T-Cell expansion 

compared to both spherical mediated T-Cell expansion and no aAPC treatment.  On day 
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10, there was a statistically significant increase of the ellipsoidal aAPC mediated 

expansion of PMEL T-Cells compared to control.  However, the spherical naAPC could 

not mediate a statistically significant increase in T-Cell proliferation compared to the 

control groups on any of the days measured.  The ellipsoidal aAPC induced nearly a 3-

fold greater expansion over the no treatment group and a 2-fold greater expansion over 

the spherical aAPC group.  Analysis of the dissected spleen (Figure 5.10B) and lymph 

nodes (Figure 5.10C) supported the observations seen in the blood with an overall 

greater increase in PMEL T-Cell content of the ellipsoidal aAPC compared to the 

spherical aAPC and the no treatment groups.  This difference was statistically significant 

between the ellipsoidal and no treatment groups only.      

5.3.6 In vivo tumor treatment mediated by non-spherical nano aAPCs 

 Finally, in order to evaluate the potential cancer immunotherapy applications of 

the non-spherical nano aAPC compared to the spherical nano aAPC, we utilized a murine 

melanoma model developed in Chapter 4 to evaluate the efficacy of aAPC in the context 

of immune checkpoint blockade.  As expected, the anti PD-1 in the context of cognate T-

Cells could not mediate any substantial reduction in tumor burden compared to the 

control of cognate T-Cell administration alone.  The addition of spherical nano aAPC 

also could not mediate a significant effect vs. the controls.  However, the inclusion of the 

ellipsoidal nano aAPC resulted in a stark effect on tumor measurements that was 

statistically significant compared to all other groups almost every day the measurements 

were taken.  For example, 15 days post treatment all groups, including the spherical nano 

aAPC group were measured in the range of 150 mm2.  The ellipsoidal nano aAPC group, 

however, had a tumor burden in the range of only 50 mm2, a 66% reduction compared to 
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controls (Figure 5.11A).  The decreased tumor burden translated to an increased survival 

benefit in the ellipsoidal nano aAPC group only (Figure 5.11B).  The median survival 

was increased from 17 days post-treatment (observed for all other groups including 

spherical nano aAPCs) to 24 days post-treatment.  Taken together, this data demonstrates 

the ellipsoidal nano aAPC is significantly more effective at mediating an immunological 

anti-tumor effect in vivo, thus validating it as an important improvement over traditional 

spherical aAPC technology.     

5.4 Conclusions 

Nanoellipsoidal aAPCs offer multiple advantages over traditional spherical 

aAPCs.  We demonstrated that, under the same synthesis conditions and particle surface 

protein content, non-spherical naAPCs are more effective at antigen specific induction of 

CTLs than spherical naAPCs.  In addition, these non-spherical naAPCs demonstrated 

stronger in vivo stimulation of immune cells and enhanced pharmacokinetic properties.  

Previous studies of nano aAPCs focused on the use of quantum dots, spherical PLGA 

particles, and magnetic iron dextran particles.7,10,33  We showed for the first time that the 

efficacy of biodegradable nanoscale aAPCs can be enhanced by modulating shape in 

synthesis.  By utilizing a non-spherical biodegradable nanoparticle, ellipsoidal naAPCs 

achieved T-Cell activation and proliferation comparable to previously reported nano 

aAPCs at a reduced overall protein dose.7 In addition to offering an efficiency advantage, 

ellipsoidal nanoparticles offer reduced cellular uptake by macrophages and endothelial 

cells in vitro  and resist hepatic and splenic elimination in vivo.  Finally, the ellipsoidal 

nano aAPC demonstrated enhanced capacity to stimulate cognate T-Cells in vivo, as well 

as mediate an anti-tumor effect in a melanoma immunotherapy model.  Taken together, 
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the enhanced immune stimulatory capabilities and systemic biodistribution of ellipsoidal 

naAPCs make them a promising platform for “off the shelf” immunotherapy and 

nanomedicine. 
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5.5 Tables 

Table 5.1: Nanoparticle parameters altered by the thin film stretching procedure.  Stretch 
= Fold stretch for the film in the stretching procedure.  AR = Calculated aspect ratio. Rel. 
SA = Normalized surface area to the spherical particle. Eq Ra = Equivalent radius of 
curvature along the short axis of the prolate ellipsoid for a stretched 200 nm particle.  
EqRb = Equivalent radius of curvature along the long axis for a stretched 200 nm particle.  
Calculations were completed following the model presented in Ref 1. 
 

Stretch AR Rel SA EqRa (nm) EqRb (nm) 

Sphere 1 1 200 200 
1.5 1.84 1.06 88 560 
2 2.83 1.16 50 1140 

2.5 3.95 1.27 32 1980 
3 5.20 1.38 22 3200 

3.5 6.55 1.48 16 4600 
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5.6 Figures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.1: Non-spherical and spherical nanodimensional artificial antigen presenting 
cell (naAPC) characterization.  (a) PLGA nanoparticles were synthesized by single 
emulsion and elongated utilizing the film stretching method. Conjugation of MHC Db Ig 
Dimer and anti CD-28 mediated by EDC/NHS chemistry resulted in naAPCs.  (b,c,d) 
TEM images of (b) non-stretched spherical particles (c) 2-fold stretched particles, and (d) 
3-fold stretched particles.  Scale bars are 500 nm.  (e) Particles were sized by 
Nanoparticle Tracking Analysis and determined to be 224 nm in size.  The particle 
protein conjugation efficiency on spherical and 2-fold stretched ellipsoids for (f) MHC 
Db Ig dimer and (g) anti CD-28 was analyzed by conjugation of fluorescent protein.  
Conjugation results demonstrate similar amounts of protein bound to each particle shape.  
Error bars represent standard errors of >3 trials. 
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Figure 5.2: 2-fold stretched ellipsoidal and spherical nano aAPC exhibit similar 
stabilities in aqueous media.  Particles were conjugated to fluorescently labeled gp100 
MHC Db Ig dimer and were incubated at physiological conditions (37 ºC in PBS).  At 
indicated time points, the particles were centrifuged out of solution and the supernatant 
was analyzed for fluorescent protein content.  Error bars represent standard errors of 3 
replicates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



179 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3:   Representative flow cytometry gating for nanoparticle uptake experiments. 
(a,c) HUVECs or (b,d) RAW macrophages were incubated with 0.1 mg (a,b) spherical 
nanoparticles or (c,d) 2-fold stretched non spherical nanoparticles per 15,000 cells.  Cells 
incubated for 24 hours and then washed 3x with PBS prior to flow cytometry analysis.  
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Figure 5.4: Non-spherical naAPCs stimulate T-Cells more effectively than spherical 
naAPCs in vitro.  PMEL transgenic CD8+ T-Cells were incubated with (a,d,g) 0.01 mg , 
(b,e,h) 0.1 mg, (c,f,g) 1 mg of spherical (black/white) and 2-fold stretched, ellipsoidal 
(red) naAPCs of various aspect ratios.  Cells were stained with CFSE and evaluated by 
flow cytometry for proliferation after 3 days of incubation with aAPCs (a-c).  Generation 
analysis of CFSE flow cytometry data demonstrates increased proliferation of cells in 
non-spherical aAPC groups (d-f).  Cells were also evaluated after 7 days of incubation by 
manual counting and normalizing cell titers to an untreated condition (g-i).  Results 
indicate ellipsoidal nanoparticles of higher aspect ratios stimulate CD8+ T-Cells more 
effectively than their spherical counterparts (* = p < 0.05, ** = p < 0.01, *** = p < 0.001 
compared to spherical).  Error bars represent standard errors > 3 replicates. 
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Figure 5.5: Nanoparticle uptake is shape dependent.  RAW macrophages were incubated 
with 0.5 mg (a) nanospherical and (b) 2-fold stretched nanoellipsoidal particles 
encapsulating TAMRA per 15,000 cells for 24 hours.  Confocal micrographs show clear 
uptake of spherical particles compared to ellipsoidal aAPCs (Blue = DAPI, Green = 
Actin, Red = Particles).  RAW macrophages were incubated with nanospherical and 2-
fold stretched nanoellipsoidal particles at varying (c) doses or (e) times.  Macrophages 
showed clear preference for spherical nanoparticle uptake which was maintained through 
2 days and up to 200 µg/15,000 cells.  Similar experiments were repeated with HUVECs 
with varying (d) dose and (f) time.  Results indicate that HUVECs had near complete 
preference for spherical nanoparticles over 2-fold stretched ellipsoidal nanoparticles.  
Error bars represent standard error of the mean with n>3 for all experiments. 

 

 

 

 

 

 



182 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Viability of RAW macrophages is not affected at high doses of PLGA 
nanoparticles.  Live and dead cells were distinguished by 7-AAD staining and flow 
cytometry analysis.  White = Spherical nanoparticles, Red = 2-fold stretched ellipsoidal 
nanoparticles. 
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Figure 5.7: Non-spherical nanoellipsoidal aAPCs have superior pharmacokinetics over 
nanospherical aAPCs.  Conjugated (a) spherical and (b) 2-fold stretched ellipsoidal 
naAPC particles encapsulating a near IR fluorophore were injected intravenously into 
nude mice.  Animals were imaged at 1 hour (left), 2 hours (middle), and 4 hours (right).  
(c) Blood collected retroorbitally at 10 min intervals was imaged and quantified for 
fluorescence over the first hour post injection.  Results show the nanoellipsoidal aAPCs 
circulate at higher concentrations over the time periods examined, and (d) have a longer 
half-life (* = p < 0.05).  (e) Two regions of interest from (a) and (b) were quantified: The 
entire animal, and the entire animal minus the region of the spleen and liver.  The ratio of 
these values was computed to give the distribution throughout the animal.  
Nanoellipsoidal aAPCs demonstrated greater dispersion throughout the animal at the 1 
hour time point (* = p < 0.05).  Error bars represent standard error of the mean with n = 3 
for all experiments. 
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Figure 5.8: Spleen and liver signals from dispersion fraction analysis are similar between 
spherical and 2-fold stretched ellipsoidal nano aAPCs.  Mice were imaged at 1, 2, and 4 
hr. post injection with near IR labeled naAPCs.  The animals were then imaged rom the 
left side and the fluorescence from the region of interest corresponding to the spleen and 
liver were quantified and compared across the different timepoints.   
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Figure 5.9: Organ distribution is similar for 2-fold stretched and spherical nano aAPCs.  
Organs were dissected at the 4 hours post intravenous injection of near IR labeled nano 
aAPCs.  Organs were then imaged and fluorescence intensity analyzed by Image J to give 
a raw signal quantification for each organ (a).  Subsequent normalization to the total 
signal analyzed from the set of organs in each group gave the percent distribution within 
the spleen, liver, kidney, and lung.  Analysis reveals spleen and liver to be major centers 
of nanoparticle accumulation for both ellipsoidal and spherical nano aAPCs.   
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Figure 5.10: 2-fold stretched ellipsoidal nano aAPCs stimulate T-Cells superiorly to 

spherical nano aAPCs.  Ellipsoidal and spherical aAPCs were injected intravenously into 

irradiated mice accompanied by 106 antigen specific CD8+ T-Cells bearing the marker Thy 

1.1.  “No treatment” groups received T-Cells only.  (a) Blood was collected retroorbitally 

on day 6, 8, and 10 post injection and analyzed for the percent of CD8+ cells that were also 

Thy 1.1 positive.  Results indicate a statistically significant increase in the percentage of 

antigen specific T-Cells stimulated in vivo by ellipsoidal aAPCs compared to spherical 

aAPCs on day 6 and 8 post injection and no aAPC control groups on all days analyzed.  

The mice were killed on day 10 post injection and the spleen and lymph nodes were 

dissected and analyzed for percent CD8+ cells that were also Thy 1.1 positive.  Results 

show that for both (b) spleens and (c) lymph nodes, there was an increase in the Thy 1.1 

positive cells in the ellipsoidal groups compared to spherical, and statistically significant 

increase of ellipsoidal over no-treatment.  Error bars indicate the SEM of n = 3 to 5 mice 

per group.  (* = p<0.05, ** = p<0.01, *** = p<0.001). 
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Figure 5.11: Non-spherical nano aAPC mediate a superior anti-tumor effect in an in vivo 
tumor treatment model. (A) Tumor area measurements indicate that the ellipsoidal nano-
aAPC mediate a reduced tumor burden compared to all controls and the spherical nano 
aAPC (*=p<0.05, **=p<0.01, ***=p<0.001 by daily one way ANOVA followed by 
Tukey’s post test).  (B) Decreased tumor burden resulted in increased survival of tumor 
bearing mice.  The median survival increased from 17 days to 24 days for the Str2 
(ellipsoidal) nano aAPC group.  Survival effect was significant based on a log-rank test 
with p<0.01 for ellipsoidal vs. all controls and the spherical nano aAPC group.  
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Chapter 6: Biodegradable Cationic Polymer Blends for Fabrication of 

Enhanced Artificial Antigen Presenting Cells and Acellular “Off-The-

Shelf” Cancer Immunotherapy 

6.1 Introduction 

 Biotechnologies to harness and modulate the immune system have increasingly 

been shown promise in diseases ranging from cancer1 and infectious diseases2 to 

transplantation3 and autoimmune diseases.4  Biomimicry is a fascinating area of materials 

research where bio-inspired forms enable new functionality for maintaining health and 

treating disease.5  A particularly promising approach in immune engineering is the use of 

biodegradable particulate systems, ranging from the size of a virus to the size of a cell, 

and mimicking the surfaces of the natural biologic materials, as agents of cellular 

programming.  Such therapeutic agents have the potential to be used “off-the-shelf” as 

biological, but non-cellular, therapies with greatly reduced costs, manufacturing 

challenges, and regulatory hurdles compared to cellular therapies.     

In particular, biomimetic artificial antigen presenting cells (aAPC) have shown 

increasing promise to serve as a cancer immunotherapy.6  From a minimalist standpoint, 

the aAPC technology consists of three components: a biocompatible core material, a 

protein to serve as “Signal 1” or antigen recognition signal, and a protein to serve as 

“Signal 2” or effector direction signal.7  The two proteins must be conjugated to the 

surface of the particle in such a way that a T-Cell can interact with the particle as it would 

a normal antigen presenting cell.  In the past decade, there have been great strides in the 

advancement of aAPC technology and engineering surfaces for T-Cell activation.8  

Multiple platforms have been developed to enhance this stimulation including controlled 
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release of a “Signal 3” protein to direct the T-Cell response,9,10 incorporation of 

magnetite to enable magnetic isolation of aAPC from T-Cells to for therapeutic use,11 use 

of magnetite as the core material to enable magnetic clustering of T-Cell receptors,12-14 

and modulation of the surface area available for T-Cell activation through modification of 

particle shape15 or surface roughness.16  Many of these innovations have significantly 

increased aAPC efficacy.  However, the promise of aAPC translation to the clinic has 

been hampered by the requirement of ex vivo manipulation of antigen specific T-Cells to 

achieve an effect. Although ex vivo manipulation of cells for cell based therapies is 

possible from a translational and commercial standpoint,17 in many cases translation to 

the clinic is prohibitively expensive.  An “off-the-shelf” enhanced aAPC (eaAPC) 

therapy could circumvent these difficulties but has thus far been difficult to implement as 

a standalone therapeutic. (Figure 6.1)   

 One promising area of research that has been recently investigated is the use of 

different biodegradable polymers for the plastic core of the aAPC.  Primarily, these aAPC 

particles cores have been composed of poly(lactic-co-glycolic acid) (PLGA),9,10,15,18  a 

hydrolytically biodegradable polymer that has also been used in the construction of 

multiple FDA-approved devices.19  Although PLGA has been well characterized for 

various applications, other biodegradable materials may possess beneficial properties for 

the construction of aAPCs.  For example, it has been shown that the elastic modulus of a 

polymeric substrate for T-Cell activation can have a significant effect on T-Cell 

activation and subsequent phenotype.20  In addition, lateral rigidity of the surface proteins 

has been shown to impact the magnitude and direction of an artificially directed T-Cell 

response.21  In both cases, softer, more pliable materials have been found to be more 
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beneficial than PLGA.  In conjunction with the type of material, the surface density of 

signal proteins has been found to be an important parameter governing T-Cell 

activation.15  Ligand spacing has been found to be optimal when they are spaced closely 

together as opposed to farther apart.22 

 In addition to specific mechanisms of increasing T-Cell stimulation, materials can 

have a non-specific adjuvant effect during a biomaterials/immune cell interaction.  One 

study utilized a blend of PLGA and poly(β-amino ester) microparticles for intracellular 

delivery of nucleic acid vaccines to immune cells.23  The PLGA/PBAE particle 

simultaneously provided structural support for the encapsulation of the vaccine material 

and imparted intracellular drug delivery function to the particle.  Furthermore, 

encapsulation of small immunostimulatory molecules within PBAE nanoparticles can 

enhance their intracellular delivery and anti-cancer activity.24 PBAEs particles have also 

been shown to be able to act directly as immunostimulatory, although this effect is 

attenuated as the material breaks down into lower molecular weight and free polymer.25  

Finally, by incorporating cationic polymer into aAPC particles there is the potential to 

increase protein binding to the surface of the particles, increasing ligand density for 

interactions with T-cells.  Thus, a blend of PLGA/PBAE as a core material for next 

generation aAPCs could potentially have enhanced biological efficacy. 

 In this study, we have developed a hybrid PLGA/PBAE based aAPC for cancer 

immunotherapy.  We have found that the particles made from this dual polymeric blend 

offer significantly superior immune stimulation in vitro and in vivo compared to 

traditional PLGA.  This extra immune stimulatory capacity is correlated to an increase in 

signal protein density on the surface of the particle compared to the PLGA particle.  The 
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enhanced in vitro activity also translated to a tumor treatment effect in a murine 

melanoma model, in the absence of adoptively transferred or ex vivo manipulated T-

Cells.  Taken together, these results highlight the potential to use PLGA/PBAE aAPC as 

a standalone therapy for melanoma and other forms of untreatable cancer.           

6.2 Materials and Methods 

6.2.1 PBAE Synthesis 

 Poly (lactic-co-glycolic acid) (MW = 38-54 kDa, L:G = 50:50, acid-terminated) 

(PLGA) was purchased commercially (Sigma Aldrich; St. Louis, MO). Poly (β-amino 

ester) (PBAE) was synthesized from commercially available monomers using a 

previously established protocol26 (Figure 6.2).  Briefly 1,4 butanediol diacrylate (Alfa 

Aesar; Ward Hill, MA) and 4, 4’ trimethylenedipiperidine (Sigma Aldrich; St. Louis, 

MO) were heated to 90 °C for 30 min to melt the reagents.  The two were then mixed in a 

1.2:1 molar ratio (diacrylate:amine) in 5 g aliquots.  A stirbar was added to ensure 

homogenous distribution of the monomers.  The mixture was maintained at 90 °C for 24 

hr.  At the end of the reaction, the polymer was cooled to room temperature and dissolved 

in 20 mL of dichloromethane.  1-(3-Aminopropyl)-4-methylpiperazine (Alfa Aesar; Ward 

Hill, MA) was then added in a 10 fold molar excess (assuming 2 end groups per polymer 

and a molecular weight of 10 kDa).  The endcapping reaction then proceeded for 1 hr.  

and at the end of the reaction, the polymer was purified via the addition of hexane to the 

reaction mixture in a 4:1 hexane:DCM ratio.  The purification procedure was repeated 

twice.  After purification and decantation of the organic solvent, the polymer was dried 

for 24 hr. on a desiccator and then stored at -20 °C under a nitrogen seal. 

6.2.2 Microparticle and aAPC Synthesis 
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 To synthesize the microparticles used in this study, an emulsification procedure 

was utilized similar to the procedure given in Chapter 3 (Figure 6.3).  The PLGA was 

dissolved by itself in DCM at a concentration of 20 mg/mL for PLGA microparticles and 

the PLGA/PBAE was dissolved in dichloromethane at a 75:25 ratio with a final polymer 

concentration of 20 mg/mL.  5 mL of the polymer solution was then emulsified into 50 

mL of 1% PVA solution for 1 min using an IKA T-25 homogenizer set to 1500 rpm.  The 

50 mL emulsification was then poured into 100 mL of a 0.5% PVA solution, agitated by 

a stir bar, and the particles were allowed to harden overnight.  After hardening, the 

particles were washed with deionized water three times through centrifugation of 

particles at 1000 g and subsequent decantation of the supernatant.  The particles were 

then frozen and lyophilized for future use. 

 For size and morphology analysis, the particles were imaged with a Leo FESEM.  

To prepare the samples for analysis, the particle powder was mounted onto carbon tape 

(Nisshin EM Co.; Tokyo, Japan) and placed upon aluminum tacks (Electron Microscopy 

Services; Hatfield, PA).  The particles were then sputter coated with 20 nm of a gold-

palladium alloy and imaged a 1000x magnification.  Size was determined through ImageJ 

analysis of the particles in the pictures. 

 In order to synthesize aAPC from the PLGA or PLGA/PBAE microparticles, 

protein was conjugated to the surface similar to the procedure given in Chapter 4.  The 

lyophilized particles were reconstituted in 0.1 M MES buffer titrated to a pH of 6.0 at a 

concentration of 2 mg/mL.  100 µL of EDC/NHS (Sigma Aldrich; St. Louis, MO) freshly 

prepared stock solution at 40 mg/mL and 48 mg/mL respectively were added to 1 mL of 

each particle sample and the particles were activated for 30 min. using these reagents.  
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The particles were then washed by centrifugation (5000 g for 5 min) and then 

resuspended in 1 mL of PBS.  8 µg of the MHC Class 1 IgG dimer loaded with gp100 of 

SIY and 10 µg of anti-CD28 monoclonal antibody (BD Biosciences; San Jose, CA) were 

then added to each particle sample and the particles were able to conjugate to the protein 

overnight.  For evaluation of conjugation efficacy, fluorescent analogues of the proteins 

were utilized in conjugation as described in Chapter 4. After conjugation, the particles 

were washed three times with PBS and then resuspended in 200 µL of 100 µg/mL 

endotoxin-free sucrose.  The particles were then frozen and lyophilized.    

6.2.3 In Vitro Evaluation of Functional Efficacy 

 In order to compare the efficacy of the PLGA/PBAE eaAPC with the standard 

PLGA aAPC,  we used a similar in vitro functional efficacy assay as was given in 

Chapter 4.  2C CD8+ T-Cells were isolated from mouse spleens using a Miltenyi CD8a+ 

Isolation Kit (Miltenyi; Auburn, CA).  The cells were stained with Vybrant Cell Tracker 

carboxyfluorescein succinyl ester (CFSE) dye (Life Technologies; Grand Island, NY) 

following the manufacturers protocol.  CFSE stained cells were then incubated with 

various doses of aAPC in RPMI based growth media supplemented as described in 

Chapter 4.  CFSE dilution as an indicator of proliferation was then assessed 3 days after 

stimulation using a BD FACScalibur flow cytometer.  Total proliferation was assessed 

through manual counting of the cell sample 7 days after stimulation using trypan blue to 

visually isolate viable cells.   

6.2.4 In Vitro Evaluation of T-Cell Binding 

 To assess the interaction of the PLGA and PLGA/PBAE aAPC with T-Cells, we 

used a confocal imaging assay similar to previously described work with non-spherical 
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aAPC.15  The aAPC were synthesized as described in section 6.2.1 except Nile Red was 

added to the polymer solution at a concentration of 20 µg/mL in order to visualize the 

particles under confocal microscopy.  2C or PMEL T-Cells were isolated from mouse 

spleens using the Miltenyi CD8a+ T-Cell Isolation Kit and the cells were stained with 

CFSE as described in section 6.2.2.  The cells and the particles were then incubated at 37 

°C for 1 hr. at a ratio of 1 mg of particles to 500,000 T-Cells in a volume of 100 µL.  The 

mixture was then imaged under confocal microscopy and the images were analyzed by 

ImageJ to determine qualitatively assess binding events.  To quantitatively assess binding 

events the samples were then run on a BD FACScalibur and double-positive fluorescent 

events were considered as a positive binding event.  

6.2.5 In Vivo aAPC Functional Efficacy 

 In order to assess enhanced aAPC activity as a potential standalone cancer 

immunotherapy, we utilized a modified version of the melanoma tumor treatment model 

as described in Chapter 4.  Black 6 mice were inoculated with 3*105 B16-F10 melanoma 

cells subcutaneously on the right flank.  Four days after tumor inoculation, the eaAPC 

were administered intravenously in half of the mice, and the other half received no 

treatment.  Anti-PD1 clone RMP-14 (BioXCell; West Lebanon, NH) was administered 

intraperitoneally at 200 µg on the day of particle treatment and 100 µg on the day 

following. Eleven days after tumor inoculation, tumor size was assessed with digital 

calipers every other day until the tumor size reached 200 mm2.  After the tumor reach this 

size, the mice were sacrificed by CO2 asphyxiation and cervical dislocation.   

6.3 Results and Discussion 

6.3.1 Characterization of aAPC Size and Conjugation Efficiency 
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 PLGA and PLGA/PBAE particles were synthesized by single emulsion using 

identical chemical and physical parameters.  The resultant particles from a size and 

morphology standpoint were nearly identical as determined by SEM imaging and 

subsequent Image J analysis.  The morphology of the PLGA and PLGA/PBAE particles 

was spherical and was similar between the two samples (Figure 6.4A-B).  Upon sizing 

by ImageJ, it was found that the PLGA particles 1.1 µm +/- 0.3 µm and the PLGA/PBAE 

particles were 1.3 µm +/- 0.3 µm thus confirming the particle sizes were within 1 

standard deviation of each other.  This size was determined to be sufficient for T-Cell 

activation based on previous results with aAPC technology.27,28  In addition, based on our 

previous work it was found that the particles would be safe to administer intravenously as 

larger particles were determined to be safe from a pharmacokinetic standpoint.18  

Regardless it will be necessary to thoroughly compare the pharmacokinetic profile of 

both the PLGA/PBAE particles and the PLGA particle prior to therapeutic use. 

 Despite the relatively similar physical properties, from a surface chemistry 

standpoint the PLGA/PBAE particles were found to have a dramatic improvement on 

protein conjugation efficiency.  It was found that the PLGA/PBAE particles conjugated 

protein 10-20 times more efficiently than the PLGA particles (Figure 6.5).  The protein 

efficiency was characterized for the Signal 1 protein as representative as we have 

previously found that the Signal 2 anti-CD28 and Signal 1 dimer follow similar dose 

based trends in conjugation efficiency studies.15,29  From an aAPC efficacy standpoint, 

this increased conjugation efficiency can be critical to aAPC activity.  It has previously 

been found that the surface density of proteins on the surface of aAPCs is a critical 

parameter in T-Cell activation and must be optimized.22  Further conjugation 
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optimization of PLGA/PBAE particles to increase ligand surface density may further 

improve biological activity.  

 Based on observational analysis of the particles during the washing steps, it was 

determined that the PLGA/PBAE particles were more difficult to resuspend than the 

PLGA particles, suggesting an increase in the non-specific hydrophobic interactions 

between the particles.  The PLGA/PBAE particles were able to conjugate significant 

levels of protein without the EDC/NHS conjugation reagents and with higher efficiency 

than the PLGA particles with the EDC/NHS conjugation (Figure 6.5). It has previously 

been shown that proteins can conjugate to the surface of hydrophobic polystyrene 

particles in the absence of any other chemically active reagent.30  The increase in protein 

efficiency could be attributed to a more hydrophobic and/or cationic surface mediated by 

the incorporation of the PBAE into the particle formulation.   

6.3.2 In Vitro Functional T-Cell Stimulation 

 Upon analysis of the T-Cell stimulation results it was found that the PLGA/PBAE 

aAPC dramatically outperformed the PLGA based aAPC (Figure 6.6).  It was found by 

CFSE dilution analysis that there was near complete activation of the T-Cells by the 

PLGA/PBAE at a dose of 1 µg per 100,000 T-Cells compared to 100 µg per 100,000 T-

Cells for PLGA.  Furthermore, the limiting dose of activation was found to be 0.01 µg for 

PLGA/PBAE compared to 1 µg for PLGA.  The manual proliferation counts reinforced 

this result with similar parameters for activation and dose-limiting stimulation.  The 

PLGA aAPC stimulation of the T-Cells was similar in potency to our previously reported 

results.15,18  The PLGA/PBAE aAPC, however was just as effective as the PLGA aAPC 

at a 100-fold lower dose.  There was also no adverse effect on the viability based on 
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trypan blue analysis.  These results suggest that the PLGA/PBAE aAPC are significantly 

stronger than the PLGA aAPC for immune stimulation and could be used as an enhanced 

aAPC for standalone immunotherapy. 

6.3.3 In Vitro T-Cell Binding Analysis 

 In order to characterize further the potential mechanism of the PLGA/PBAE 

enhanced efficacy, we conducted an analysis of aAPC binding to the T-Cells by confocal 

microscopy and flow cytometry.  The confocal imaging analysis of T-Cell particle 

binding revealed results that reinforced the idea that the PLGA/PBAE particles have 

enhanced interaction with T-Cells (Figure 6.7A-D).  For the non-cognate condition, both 

the PLGA and PLGA/PBAE particles had minimal interaction with the T-Cells as 

evidenced by few to no binding events determined by ImageJ analysis. This suggests that 

both particles have minimal interaction with non-cognate T-Cells thus directing the 

antigen specificity of the immune stimulation, an important factor in aAPC 

technology.7,31  The cognate aAPC for both the PLGA and PLGA/PBAE aAPC exhibited 

increased interaction with the T-Cells compared to the non-cognate aAPC, and the 

PLGA/PBAE had significantly more interaction with cognate T-Cells than the PLGA 

particles.  This trend was reinforced by quantitative flow cytometry results (Figure 

6.7E).  The PLGA cognate aAPC exhibited minimal increase in double positive events 

suggesting a weak targeted interaction of the biomaterial and the particle.  However, the 

PLGA/PBAE aAPC exhibited near 100-fold increase in double positive events compared 

to the non-cognate control suggesting an enhanced interaction of the aAPC with the T-

Cells as supported by the confocal imaging results.  This directed targeted interaction has 

been found to be correlated with increased aAPC activity and enhanced particle 
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binding.15,32  Furthermore, it has been found that increased density of targeting protein 

correlates to increased binding and subsequently increased immune stimulation.33  

Therefore these results are promising as a correlative indicator to explain the increased T-

Cell activation by the PLGA/PBAE particles.       

6.3.4 In Vivo Tumor Treatment Efficacy 

 An ideal aAPC technology would be capable of standalone , acellular therapy that 

could be mass produced and stably stored over a long periods of time.  This is in contrast 

to cell-based therapies which, though promising, are expensive to manufacture and have 

limited availability due to costs and the personalized nature of the therapeutic.34  

Therefore, we wanted to improve the efficacy of PLGA-based aAPCs beyond previous 

capacities that required adoptive transfer.18  We hypothesized that by reformulating the 

aAPC particle core material with PBAE and also combining the aAPCs with a 

background of anti-PD1 antibody, biological activity could be enhanced and  

PLGA/PBAE aAPCs could stimulate endogenous anti-tumor T-Cells.  Therefore, we 

utilized the model developed in Chapter 4 for evaluation of aAPC efficacy except without 

the adoptive transfer component (Figure 6.8A).  We compared the PLGA/PBAE aAPC 

to a sham PBS treatment to evaluate the capability of the new eaAPC to mediate anti-

tumor treatment.  Throughout the experiment, the tumor in the PLGA/PBAE treated case 

was smaller than the untreated case.  This effect was statistically significant 13 days after 

the particle treatment (Figure 6.8B) and the tumors were 33% smaller 13 days after the 

particle treatment compared to the no treatment control.  This translated into an increase 

in median survival of the mice from 13 days post treatment to 17 days post treatment, and 

this difference was statistically significant (Figure 6.8C).  This result is significant for 
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the development aAPC technology as it has never been shown that this biodegradable 

particle, cell-free therapy can be used as a stand-alone in vivo treatment for melanoma.  

Additionally, the B16-F10 melanoma model is very immunosuppressive and it typically 

requires multiple particle injections35 or requires multiple biologically engineered 

therapies to treat effectively.36  Here, we have shown that a single injection of the 

PLGA/PBAE particles in context of an immune checkpoint blockade can significantly 

increase the survival in a murine melanoma model, thus validating the PLGA/PBAE 

particle as an enhanced aAPC for “off-the-shelf” immunotherapy.     

6.4 Conclusions 

 In this study, we have developed a novel biomaterials platform for an enhanced 

aAPC for standalone cancer immunotherapy.  The new PLGA/PBAE aAPC particles 

have similar physical properties to the PLGA aAPC particles from the standpoint of size 

and morphology.  However, the PLGA/PBAE particles have a more hydrophobic and 

cationic surface that is much more efficient at conjugating the required signal proteins for 

aAPC efficacy.  This resulted in significantly higher binding efficiency of the 

PLGA/PBAE particles to T-cells compared to the PLGA particles.  This in turn was led 

to a significant increase in PLGA/PBAE particle immune stimulation efficacy as 

evidenced by T-Cell proliferation in vitro and in vivo. This was especially significant as 

the new PLGA/PBAE biomaterial could be used as a new platform for the enhanced 

effect of targeted drug delivery therapeutics.  We have shown the promise of the 

PLGA/PBAE aAPC to serve as a standalone melanoma immunotherapy through a murine 

tumor treatment model.  These new eaAPC could enable the aAPC technology to become 

cost-efficient and more readily available for translation to the clinic and accessible to a 
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broader patient population.  Subsequently this could fulfill the goal of aAPC technology 

and allow for truly “off-the-shelf” aAPC immunotherapy.  
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6.5 Figures 

 

Figure 6.1: Schematic of the principle of augmented aAPC activity.  The left diagram 
demonstrates the current standard for aAPC treatment within the context of adoptive 
immunotherapy in which the T-Cells must be stimulated ex vivo in the context of aAPC.  
The right diagram demonstrates the goal of the study in which an enhanced aAPC 
(eaAPC) is administered without T-Cells as a standalone immunotherapy. 
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Figure 6.2: Chemical drawings of the two materials used to synthesize the eaAPC.  (a) 
Poly (lactic-co-glycolic acid) is used as the core material and (b) poly (β-amino ester) is 
used as a material to enhance aAPC activity.  The two are blended in a 75:25 ratio for the 
synthesis of the eaAPC.  
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Figure 6.3: Schematic of the synthesis strategy for PLGA and PLGA/PBAE aAPC.  
PLGA or PLGA/PBAE blend (75:25) were dissolved in dichloromethane and emulsified 
into a PVA solution.  The dichloromethane evaporated leaving hardened PLGA or 
PLGA/PBAE hybrid polymer particles.  The Signal 1 and Signal 2 proteins were then 
conjugated to the surface of the particles to make PLGA based aAPC and PLGA/PBAE 
based eaAPC. 
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Figure 6.4: Size and morphology of PLGA and PLGA/PBAE particles.  SEM images of 
(a) PLGA and (b) PLGA/PBAE particles.  The particles were then sized manually by 
Image J to yield (c) average particle sizes (error bars are SD of 100 particle replicates) 
and (d) particle size distributions.   
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Figure 6.5: Protein conjugation efficiency of PLGA and PLGA/PBAE particles to make 
enhanced aAPC.  (a) Total amount of Signal 1 protein on the surface and (b) percent 
conjugation efficiency of both types of particles with and without conjugation reagents.  
The PLGA/PBAE particles bound significantly more protein than the PLGA particles 
with and without the conjugation reagents (error bars are SEM of three replicates). 
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Figure 6.6: In vitro T-Cell activation efficacy of aAPC and eaAPC.  CFSE dilution 
analysis of cognate T-Cells yielded (a) percent divided of the initial T-Cell population 
three days after the initial stimulation.  (b) Manual proliferation counts seven days after 
the initial stimulation to discover fold stimulation.  In both assays the PLGA/PBAE based 
eaAPC significantly outperformed the PLGA based aAPC. 
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Figure 6.7: In vitro analysis of T-Cell/eaAPC interaction.  Confocal imaging was 
completed of T-Cells (green) interacting with (a) non-cognate PLGA, (b) non-cognate 
PLGA/PBAE, (c) cognate PLGA, and (d) cognate PLGA/PBAE based aAPC following 1 
hr. of incubation.  The images illustrate a greater frequency of binding between the T-
Cells and the particles in the cognate PLGA/PBAE case compared to all others 
(illustrated by the blue arrows).  (e) Flow cytometry analysis of samples from (a-d) 
indicates significantly higher levels of binding in the PLGA cognate case compared to all 
others. 
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Figure 6.8: In vivo functional efficacy of the eaAPC.  (a) Schematic of the in vivo tumor 
treatment experiment.  Mice were inoculated with B16-F10 melanoma and upon the 
establishment of tumors, they were administered the aAPC or no treatment along with 
anti-PD1.  The mice were then evaluated for tumor burden starting seven days after 
treatment.  (b) On D13 the tumor burden in the PLGA/PBAE group was significantly 
lower than that in the no treatment group.  (*=p<0.05 by t-test)  (c) This translated into an 
increased survival benefit for the mice with PLGA/PBAE aAPC treatment (*=p<0.05 by 
log-rank test). 
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Chapter 7: Anisotropic Biodegradable Lipid Coated Particles for 

Spatially Dynamic Protein Presentation5 

7.1 Introduction 

Lipid polymer hybrid particles, that combine the biomimetic cellular surface 

features of a liposome with the structural support and stability of a polymeric particle, 

have been of great interest to the biomaterials community in recent years.   Generally, 

these constructs are of core-shell design with the polymer encapsulating various 

therapeutics in the core, and naturally or synthetically derived lipids forming a shell.  By 

fusing a preformed lipid vesicle to a polymeric particle1 or taking advantage of self-

assembling lipid bilayers during particle synthesis,2 these particles can be fabricated with 

a variety of different strategies depending on the desired application. 

The lipid polymer hybrid particle technology holds tremendous promise and has 

already been demonstrated in several applications3 including drug delivery,4 diagnostic 

imaging,5 and gene delivery.6,7  Furthermore, this lipid coating strategy has been extended 

to the synthesis of polymeric nanoparticles containing membranes derived from red blood 

cells,8 platelets,9 and cancer cells.10  Polymeric particles with naturally derived 

membranes have been shown to be useful for many other applications including 

adsorption of hemolytic toxins,11 pathogen binding,9 and cancer cell antigen delivery for 

vaccines.10 

                                                 
This chapter contains material modified from the following article previously published as: 
Meyer RA, Mathew MP, Ben-Akiva E, Sunshine JC, Shmueli RB, Ren Q, Yarema KJ, Green JJ. 
Anisotropic biodegradable lipid coated particles for spatially dynamic protein presentation. Acta 
Biomaterialia. 2018;72:228-38. 
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One particle design limitation of this approach, however, has been that, up to 

now, almost all lipid coated particles have been of isotropic, spherical shape.  Yet, 

emerging evidence suggests that that non-spherical micro- and nanoparticles possess 

several key advantages over traditional spherical particles which include inhibited non-

specific cellular uptake12 and simultaneously potential enhanced target-specific binding 

and cell uptake.13  As a result, anisotropic particles have been appropriated for several 

recent biological applications such as anti-cancer drug delivery,14,15 gene delivery in vitro 

and in vivo,6,16,17 and immunoengineering to stimulate T-Cells against tumor associated 

antigens.18,19 In all of these applications, the non-spherical anisotropic particle has been 

shown to be superior to the isotropic spherical particle. 

To investigate the feasibility of combining these previously separate particle 

technologies—the use of anisotropic shapes in particle core design and the hybridization 

of lipids on polymeric particles for dynamic surfaces—we developed a procedure to 

reproducibly generate non-spherical, ellipsoidal lipid coated particles with a 

biodegradable polymer support. The process includes generating non-spherical particles, 

which can be manufactured from both top-down13 and bottom-up methods.20  In the 

current work, we utilized (as outlined in Figure 7.1) a thin film stretching method 

developed by Ho et. al.21 that we recently automated22 with an electromechanical 

stretching device to robustly generate ellipsoidal anisotropic microparticles to serve as 

the support for the lipids.  Next, the ellipsoidal lipid coated particles were generated by 

fusing 200 nm liposomes to these particles under sonication.  Subsequently, the lipid 

surfaces were functionalized in a flexible manner through the use of biotinylated 

biomolecules as outlined in Figure 7.2.  These new biomaterials, anisotropic 
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biodegradable particles that exhibit resistance to non-specific cellular internalization and 

enable spatially dynamic protein presentation from their surfaces, are promising as 

biotechnology devices for delivery and diagnostic applications.    

7.2 Materials and Methods 

7.2.1 Particle preparation and characterization 

Acid terminated poly(lactic-co-glycolic acid) (PLGA- 85:15 L:G ratio, MW 

45,000 Da – 55,000 Da) (Akina Inc.; West Lafayette, IN) was dissolved in 5 mL of 

dichloromethane (DCM) at a concentration of 20 mg/mL.  In order to visualize particles 

under fluorescence microscopy, 7-amino-4-methyl coumarin (7-AMC- Sigma-Aldrich; 

St. Louis, MO) or Nile Red (Life Technologies; Grand Island, NY) were added to the 

DCM solution at a 1% w/w ratio to the polymer.  The resulting solution was 

homogenized by a T-25 digital ULTRA-TURRAX IKA tissue homogenizer at 5,000 rpm 

for 1 min in 50 mL of 1% poly(vinyl alcohol) (PVA) solution (IKA Works; Wilmington, 

NC).  The subsequent emulsion was then transferred to 100 mL of 0.5% PVA solution 

agitated by magnetic stir bar and the DCM was allowed to evaporate over the course of 4 

h.  The suspended particles were centrifuged out of solution at 3000g for 5 min and 

washed 3 times with water.  The resulting particles were flash frozen in liquid nitrogen 

and lyophilized prior to use. 

 To synthesize non-spherical ellipsoidal particles, we utilized the thin film 

stretching method developed by Ho et. al.21  Spherical particles synthesized by emulsion 

were suspended into a solution of 10% PVA and 2% glycerol at a concentration of 5 

mg/mL and 10 mL of this solution was deposited into a rectangular petri dish.  The film 

was allowed to dry overnight, and the next day the film was cut to size and mounted onto 
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an automated thin film stretching device.22  The entire apparatus was heated up to 90 ˚C 

and the film was stretched 2-fold in one direction to produce ellipsoidal particles with a 

major axis roughly 2 times the original particle diameter and a minor axis roughly 0.7 

times the original particle diameter.  After stretching, the film was allowed to cool back 

down to room temperature and then was dissolved in water.  Particles were washed and 

subsequently lyophilized prior to use and characterization.  

 Particle characterization was conducted using scanning electron microscopy (Leo 

FESEM).  Lyophilized particles were mounted onto an aluminum tack (Electron 

Microscopy Services; Hatfield, PA) using carbon tape (Nisshin EM Co.; Tokyo, Japan).  

The particles were then sputter coated with 30 nm of gold-palladium alloy.  After sputter 

coating, the particles were imaged by SEM.  Particle size and aspect ratio data were 

obtained by ImageJ analysis of the subsequent SEM images. 

7.2.2 Lipid coated particle preparation and imaging 

Non-spherical lipid coated particles were prepared utilizing a two-step method 

similar in concept to what has previously described for spherical particles.23  1,2-

dioleoyl-sn-glycero-3-phosphocholine (DOPC) and cholesterol (Avanti Polar Lipids; 

Alabaster, AL) were mixed into a 70:30 w/w ratio.  For fluorescent lipid imaging studies, 

rhodamine conjugated DOPC (Avanti Polar Lipids; Alabaster, AL) was mixed with 

DOPC, and cholesterol in a 1:69:30 w/w ratio.  For surface functionalization, 1,2-

dioleoyl-sn-glycero-3-phosphoethanolamine-N-[4-(p-maleimidomethyl)cyclohexane-

carboxamide] (MCC-DOPC) (Avanti Polar Lipids; Alabaster, AL), DOPC, and 

cholesterol were mixed in a 35:35:30 w/w ratio.  A total of 1 mg of the lipids was 

aliquoted and left to dry into a thin film overnight under a vacuum.  The lipids were then 
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hydrated in 1 mL of water.  The lipids were heated to 60 ˚C and extruded through a 200 

nm filter (Avanti Polar Lipids; Alabaster, AL).  Liposome formation was verified with 

sizing at 200 nm using dynamic light scattering (Malvern Instruments; Westborough, 

MA).  The liposomes were then mixed with spherical or non-spherical particles (in a 33.4 

µg liposome to 1 mg particle ratio) and sonicated for 30 s at 2 W power in a 1.5 mL 

Eppendorf tube. Temperature was maintained at 4 °C with an aluminum cooling block 

(Light Labs; Dallas, TX).  The subsequent lipid coated particles were purified from 

solution through centrifugation at 4 ˚C for 5 min at 300g.  After three washes, the lipid 

coated particles were stored at 4 ˚C until further use.     

 To analyze the formation of lipid constructs on the particle surface, confocal 

imaging of PLGA particles encapsulating 7-AMC were coated with rhodamine lipid 

containing liposomes.  Confocal image acquisition was completed with a Zeiss 780 FCS 

Confocal Microscope.  To derive profile information, we used the ImageJ profile 

measurement tool and drew a line through the particle to determine relative fluorescence 

information.   

7.2.3 Cellular uptake studies 

RAW 264.7 (ATCC) macrophages were cultured in T-175 flasks in Dulbecco’s 

Minimal Essential Media (Life Technologies; Grand Island, NY) supplemented with 10% 

fetal bovine serum and penicillin/streptomycin.  For flow cytometry studies, cells were 

harvested through the gentle use of a cell scraper (to prevent excessive cell damage) and 

seeded into 96-well plates at a density of 30,000 cells/well.  After cell adherence, the 

cells were stained with Vybrant CFDA-SE Cell Tracer Kit following the manufacturer’s 

protocol (Life Technologies; Grand Island, NY) as a counterstain to identify live cells in 
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flow cytometry.  The cell media was removed and replaced with 500 µL of cell media 

containing either spherical or ellipsoidal particles encapsulating 5(6)-carboxy-

tetramethyl-rhodamine (Merck KGaA; Darmstadt, GE) in a 2-fold dilution series starting 

at 0.5 mg particles/mL.  The cells were then incubated for 4 hr at 37 ºC for uptake studies 

and 4 ºC for binding studies and washed 3x with PBS to remove free particles.  The cells 

were dissociated from the plate by vigorous trituration prior to analysis by flow 

cytometry.  Cell viability was evaluated after 24 and 48 hr in separate but identical 

experimental setups incubation using a cell titer kit (Promega; Madison, WI) following 

the manufacturer’s protocol.  The cells were incubated with the cell titer reagent for 1 hr 

and assessment of viability was conducted via relative absorbance measurements. 

 For confocal imaging, cells were seeded at the same concentration and incubated 

with 0.125 mg particles/mL of fluorescently labeled particles (corresponding roughly to 

10 particles/cell), except the incubation was conducted in LabTek Chamber slides (Fisher 

Scientific; Pittsburgh, PA).  The cells were washed 3x with PBS and then fixed in 10% 

formalin stabilized with methanol for 15 min (Sigma-Aldrich; St. Louis, MO).  After 

fixing, actin was stained with Alexa 488 Phalloidin (Life Technologies; Grand Island, 

NY) and the nucleus was visualized with DAPI stain (BioChemica; Darmstadt, 

Germany), both following the manufacturer’s protocol.  The cells were then visualized 

using confocal microscopy on a Zeiss 780 FCS.   

7.2.4 Surface protein conjugation and characterization 

In order to functionalize the lipid coated particles to be receptive to protein 

conjugation, we first functionalized the surface with thiolated avidin (Protein Mods; 

Madison, WI).  We first were interested in whether or not the avidin could conjugate to 
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the surface of the maleimide activated particle.  We pre-conjugated biotinylated 

fluorescein (Sigma- Aldrich; St. Louis, MO) with the avidin and then dialyzed overnight 

with a 10 kDa MWCO dialysis bag (Life Technologies; Grand Island, NY).  The particles 

were then reacted overnight with various amounts of fluorescent avidin and washed three 

times.  Fluorescence intensity was measured under a plate reader and correlated to the 

amount of fluorescent avidin on the surface of the particle.   

 To evaluate our capabilities to conjugate a target biotinylated protein to the 

surface of our lipid coated particles, we formed the lipid coated particles of ellipsoidal 

and spherical shape and conjugated them to the thiolated avidin overnight at 4 ˚C at a 4 

µg avidin/mg PLGA ratio.  We then conjugated Cy5-biotin (Click Chemistry Tools; 

Scottsdale, AZ) at a concentration of 4 µg Cy5-biotin/mg PLGA ratio for 1 h at room 

temperature.  After washing 3 times at 4 ˚C, we evaluated the conjugation through 

confocal imaging of the particles. 

 To confirm that this method would work for a bioactive protein, we utilized 

biotinylated anti-CD28 as a model protein for particle surface capture.  Avidin 

functionalized lipid coated particles were prepared as previously, but instead of a 

fluorophore, we added the protein at various concentrations to test reaction efficiency.  

To quantitate the amount of protein bound to the surface, we washed the particles 3 

times, collected the supernatants, and analyzed them for a reduction in protein content 

utilizing an Octet Red system (Forte Bio; Menlo Park, CA).  Reduction in protein content 

in the supernatant was then converted to protein immobilized on the surface through 

subtraction from the total amount of protein added into the system. 

7.2.5 Targeted anisotropic lipid coated particle binding 
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 In order to evaluate the capability of anisotropic lipid coated particles to mediate 

enhanced targeted cell binding compared to spherical lipid coated particles, we prepared 

TAMRA loaded spherical and prolate ellipsoidal microparticles coated with MCC-lipids 

were synthesized as described in Section 2.1 and 2.2.  Particles were then conjugated to 

anti-CD3 (OKT3 clone) as described in Section 2.4.  Jurkat T-Cells were labeled with 

Vybrant CFDA SE Cell Tracer Kit (CFSE) (Life Technologies; Grand Island, NY) 

following the manufacturer’s protocol.  The particles were then incubated at a 

concentration of 0.1 mg/mL with 100,000 Jurkat T-Cells in 100 uL of T-Cell culture 

media formulated as described previously18 for 1 hr.  To evaluate binding the samples 

were then imaged by confocal microscopy on a Zeiss 800 FCS Confocal Microscope.  A 

total of 10 images were taken per sample and analyzed for binding frequency and area of 

contact between particles and cells using Image J. 

7.2.6 FRAP Analysis 

In order to confirm the fluidic character of the spherical and ellipsoidal lipid 

coated particles, diffusivity was evaluated utilizing the fluorescence recovery after 

photobleaching technique (FRAP).  The fluorescent signal was supplied by the Cy5 

immobilized to the lipid coated particles.  Particles were suspended in 1x PBS and 

incubated at 37 ˚C for the duration of the FRAP experiments. Using a Zeiss 780 FCS 

Confocal Microscope rectangular regions of interest were selected on a number of 

particles, these regions were bleached, following which the fluorescent recovery in the 

selected regions was tracked over time. The fluorescent intensity measured at each time 

point (I(t)) was then converted to a normalized fluorescent intensity (NFI(t)) using the 

following equation: 
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𝑁𝐹𝐼(𝑡) =
𝐼(𝑡) − 𝐼𝑝𝑜𝑠𝑡 𝑏𝑙𝑒𝑎𝑐ℎ

𝐼𝑝𝑟𝑒 𝑏𝑙𝑒𝑎𝑐ℎ ∗ 𝐼𝑝𝑜𝑠𝑡 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦
 

The NFI was then plotted against time and fit to a one phase exponential association 

curve using GraphPad Prism 7 (GraphPad Software, Inc.; La Jolla, CA).  From the fit of 

the curves, time constants for half recovery were derived (t0.5).  In order to determine 

diffusion constants, we assumed a circular bleaching region in the spherical particles with 

a radius determined from ImageJ analysis the 2D images of post bleached particles 

(rbleach).  To account for the differences in surface area bleached in the spherical vs. 

ellipsoidal particles, we assumed the area bleached in the ellipsoidal particles was an 

ellipse as opposed to a circle.  The characteristic length was then taken to be the minor 

axis of the ellipse which was computed from measuring the major axis of the bleaching 

area by ImageJ in the 2D images and using an aspect ratio of 2.8 for the 2-fold stretched 

particles.18   These values were then applied to the model set forth by Kang et al.24 for 

derivation of lipid diffusion constants from FRAP: 

𝐷𝑙𝑖𝑝𝑖𝑑 =
𝑟𝑏𝑙𝑒𝑎𝑐ℎ

2

4 ∗ 𝑡0.5
 

Diffusion constants for 10 particles for both shapes were computed with this model and 

compared. 

7.2.7 Statistical analysis 

All statistics were completed using statistical analysis software modules in GraphPad 

Prism 7 (GraphPad Software, Inc.; La Jolla, CA).  For cellular uptake studies, the percent 

uptake positive and percent binding positive replicates were compared between shapes at 

each individual dose using a t-test.  Significance was assumed if the p value of this test 

was less than 0.05.  For avidin immobilization on particles and protein bound to the 
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particles, a two-way ANOVA test was performed considering dose and shape as variables 

with interactions considered to be significant if the p value of the test was less than 0.05.  

Bonferroni’s post-test was performed to analyze differences between shapes at the 

various doses and the difference was considered significant with a p value less than 0.05.  

For cellular binding studies, the percent bound replicates were compared across the 

spherical and non-spherical shapes with and without anti-CD3 functionalization using a 

one way ANOVA with Tukey’s post test to compare across groups.  Significance was 

taken if the p value of this test was less than 0.05.  The length of contact was compared 

between anti-CD3 functionalized and non-functionalized particles by a t-test and 

significance was assumed if the p value of the test was less than 0.05.  Lateral diffusion 

coefficients extracted from FRAP recovery curves were compared between particle 

shapes using a t-test and significance was assumed if the p value of the test was less than 

0.05. 

7.3 Results and Discussion 
7.3.1 Lipid coated particle preparation and characterization 

Spherical microparticles were generated (by homogenization of a PLGA in 

dichloromethane solution into a solution of 1% poly(vinyl alcohol)) and their size was 

measured by Image J analysis of scanning electron microscopy (SEM) micrographs 

(Figure 7.3A-B) and determined to be 3.2 µm +/- 1.2 µm in diameter (Figure 7.3C).  We 

confirmed the maintenance of particle shape during the fabrication process by aspect ratio 

analysis of SEM micrographs of non-spherical particles coated with lipids (Figure 7.3D).  

The aspect ratio of the ellipsoidal particles was measured to be 3.3 +/- 0.6 (Figure 7.3D).  

Confocal imaging of a representative batch of lipids on particles revealed that the 7-AMC 

fluorescence was confined to the interior of the particles for both spherical (Figure 7.4A) 
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and ellipsoidal (Figure 7.4B) lipid coated particles, whereas the lipid-rhodamine signal 

was localized to the exterior of the particles in both cases.  Profile analysis of each 

sample revealed that for both the spherical (Figure 7.4C) and the ellipsoidal particles 

(Figure 7.4D) that the maximum signal from the lipid-rhodamine conjugate was 

localized to the exterior of the particle utilizing the 7-AMC signal as a reference point.  

7.3.2 Macrophage uptake of lipid coated particles     

Particles, which were formulated encapsulating a fluorescent dye, were coated 

with lipids and conjugated to avidin via thiol/maleimide chemistry.  The lipid coated 

particles were incubated with macrophages for four hours to permit phagocytosis to 

occur.  Viability of the macrophages was unaltered during this incubation, as evidenced 

by a cell titer assay of both the spherical and ellipsoidal lipid coated particles at the end 

of 24 and 48 hrs. (Figure 7.5).  At the conclusion of four hours, the macrophages were 

either fixed and stained for confocal imaging or removed from the plate by trituration for 

flow cytometry analysis.   

Confocal imaging analysis yielded a qualitative comparison of spherical vs 

ellipsoidal lipid coated particle phagocytosis (Figure 7.6A vs. Figure 7.6B).  In all cases 

examined by microscopy, spherical particles were phagocytosed at a higher rate and in 

greater number compared to the ellipsoidal particles.  Quantitative flow cytometry 

analysis of the cells after four hours of particle treatment at 37 ºC showed statistically 

significant inhibition of particle uptake with ellipsoidal shape compared to spherical 

shape at doses ranging from 7.8 g particles per well (9.7% vs. 17.7% uptake) to 500 g 

particles per well (43.1% vs. 61.2% uptake) in 96-well plates (Figure 7.6C).  For cells 
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incubated at 4 ºC, there was a significant reduction in observed binding for the spherical 

particles compared to the ellipsoidal particles at the 500 µg and 250 µg dose.   

7.3.3 Functionalization of lipid coated particles 

To establish interchangeable functionalization of these particles, we employed a 

two-step coupling strategy.  We first utilized a maleimide based conjugation to attach 

thiolated avidin to the surfaces of the particles followed by capture of biotinylated target 

biomolecules through the biotin-avidin interaction.  In this manner, there is flexibility to 

attach any molecule to the surface that can be biotinylated, such as proteins or imaging 

agents. As proof of principle, we first functionalized the particles with biotinylated dye, 

biotinylated-Cy5.  We independently confirmed that the avidin thiol was binding to the 

surface of the particles through incubating the particles with pre-fluorophore labeled 

avidin and assessing avidin content on the particles through fluorescence (Figure 7.7).  

As shown in the confocal micrographs of these spherical (Figure 7.8A) and ellipsoidal 

(Figure 7.8B) particles, the Cy5 signal was localized to the exterior of the particles using 

7-AMC as a reference to denote the interior of the particles.  We confirmed that the 

coupling of the biotinylated molecule is avidin specific by incubating particles with Cy-5 

biotin but no avidin thiol.  Confocal images demonstrate that the particles did not 

conjugate Cy5-biotin (Figure 7.9).  Stability of the lipid coated particle to lyophilization 

(Figure 7.10) and extended exposure to 25 °C or 37 °C temperatures over a 7 day period 

(Figure 7.11) were evaluated and the particles experienced no measurable degradation in 

either case, demonstrating robustness of the fabrication of the anisotropic particles and 

their surface modification. 
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After verifying the reproducible capture of a biotinylated fluorophore by avidin 

conjugated to the surface of the lipid coated particles, we next evaluated the capture of a 

biotinylated antibody for murine CD28, an important costimulatory surface protein in the 

activation of lymphocytes.  Through analysis of protein content in the supernatant of the 

wash steps, it was determined that the biotinylated antibody was captured on the surface 

of the particle and the conjugation procedure was dose dependent (Figure 7.8C).  In 

addition, the efficiency of conjugation was evaluated to be 50-70%, across the doses of 

protein in synthesis (Figure 7.8D). These experiments demonstrate the flexibility and 

efficiency of incorporating target biomolecules onto the surfaces of these anisotropic 

particles by simple mixing at room temperature. 

7.3.4 Cellular binding of lipid coated particles 

 To determine the capability of ellipsoidal microparticles to bind to cells in a 

targeted manner, we incubated the anti-CD3 conjugated microparticles loaded with 

TAMRA with Jurkat T-Cells labeled with CFSE.  Confocal imaging of the particle 

samples revealed the presence of conjugates between the particles and cells only in the 

presence of anti-CD3 (Figure 7.12A-D).  Moreover the ellipsoidal particles visually 

appeared to interact with cells along the long axis of the ellipsoidal particles (Figure 

7.12D).  Multiple confocal images were taken of the samples and using ImageJ, the 

number of conjugates per number of cells was determined for all four samples.  This 

percentage was found to be significantly higher in the ellipsoidal lipid coated particle 

with anti-CD3 compared to the spherical with anti-CD3 and both shapes not coated with 

antibody (Figure 7.12E).  Furthermore, using ImageJ to measure the length of contact 

between the particle and the cell, it was found that the ellipsoidal lipid coated particles 
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with anti-CD3 had a significantly higher length of contact with the cells than the 

spherical particles with anti-CD3 (Figure 7.12F).   

7.3.5 Lateral membrane fluidity of particle supported lipids 

To assess particle surface fluidity, we utilized fluorescence recovery after 

photobleaching (FRAP).  Briefly, a particle was first located under confocal microscopy 

and a small circular region of the lipid layer approximately 1 μm in diameter was 

identified and bleached as described in the Methods section.  The resulting bleached 

region was monitored over time and the recovery of the fluorescence signal was 

measured as labeled lipids diffused into the photobleached zone.  Both spherical (Figure 

7.13A) and ellipsoidal (Figure 7.13B) particles showed close to complete recovery of 

fluorescence within 150 s, using this data.  Diffusion constants were determined by a 

normalization and fit of the signal recovery data (Figure 7.13C).  Both spherical and 

ellipsoidal particles had statistically similar diffusion constants that were also on the same 

order of magnitude (10-10 cm2s-1) as those observed for proteins on natural, biological 

membranes.25  This value of surface diffusivity is important for applications where 

mimicry of biological membranes is desired, such as to emulate the diffusion and 

clustering of receptors found on natural cellular surfaces. 

7.3.5 Discussion 

Validation of our ability to generate ellipsoidal and spherical lipid coated particles 

utilizing poly(lactic-co-glycolic) acid (PLGA) for polymeric structural support is 

provided in Figure 7.3.  As determined by aspect ratio analysis, our average aspect ratio 

was 3.3 for the stretched particles.  This is near the predicted value of 2.8 as computed for 

a spherical particle that is stretched two-fold in a thin film.18  To confirm the fabrication 

of lipid coated particles, and the ability to encapsulate cargo within the particles as well 
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as coupled to the lipid surface, PLGA microparticles encapsulating 7-amino-4-methyl 

coumarin (7-AMC) were first made to visualize the core of the lipid polymer hybrid 

particle.  After thin film stretching, the particles were coated with fluorescent liposomes 

containing rhodamine and imaged using confocal microscopy. We could visualize an 

enrichment of rhodamine signal around the outside of the particle.  Furthermore, the 

encapsulated dye was also visible and determined to be localized to the center.  This 

demonstrates that our spherical or ellipsoidal lipid coated particle platform has the ability 

to be used in the delivery of small hydrophobic drugs or contrast agents as has been 

demonstrated previously in other biodegradable particle platforms.26,27  

The biomimetic properties of lipid coated non-spheroidal particles may have 

precluded a hypothesized advantage of the ellipsoidal lipid coated particle constructs, 

namely their capability to reduce non-specific uptake compared to spherical particles of 

the same volume and mass. Therefore, upon validation of non-spheroidal lipid coated 

particle synthesis, the next goal was to investigate non-specific uptake of the ellipsoidal 

lipid coated particles. As demonstrated with confocal imaging, both spherical and 

ellipsoidal particles were capable of being internalized.  However, there was a noted 

difference between the spherical and ellipsoidal samples.  Across multiple doses of 

particles administered to the cells, there was a statistically significant decrease in 

internalization rate of ellipsoidal lipid coated particles compared to spherical lipid coated 

particles.  Furthermore, the binding of particles was significantly reduced in the spherical 

compared to the ellipsoidal lipid coated particles suggesting this observed uptake 

difference was from differences in quantities of internalized particles, not non-specific 

adherence of the particles to the cell membranes.  This trend, which has previously been 
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described in the literature for non-lipid coated polymeric particles with varied shape12 

confirms that our newly developed ellipsoidal lipid coated particles maintain the 

advantageous biological properties of non-spherical anisotropic particles.28 Viability of 

the macrophages was unaltered during this incubation, as evidenced by a cell titer assay 

of both the spherical and ellipsoidal lipid coated particles, indicating that these lipid 

coated particles do not exhibit non-specific cytotoxic effects.   

Upon confirmation that the lipid coating did not negate the key advantage of 

reduced non-specific uptake, we next demonstrated that our technique was compatible 

with a flexible conjugation strategy of attaching biomolecules such as protein to the 

surface of the anisotropic lipid coated particles under gentle conditions.  For many 

applications, such as cell type-specific targeting, this approach involves the conjugation 

of antibodies that recognize tumor-associated antigens (TAAs) to the supported lipids.  In 

other cases, fluorescent moieties are conjugated to the particle to assist in the 

visualization and imaging of the particle or to study the fluidic properties of the lipid 

coating.  To achieve a robust and versatile platform for the presentation of any target 

protein or small molecule for applications such as drug delivery, gene delivery, and 

immunoengineering, we utilized maleimide functionalized lipids during the liposome 

synthesis and then conjugated thiolated avidin (that had been pre-bound to biotinylated 

fluorescein) to the surface of the lipid coated particles.  Once lipids are functionalized 

with avidin, they become a versatile platform for conjugation of any biotinylated moiety, 

which we demonstrated using biotinylated Cy5 fluorophore and a biotinylated 

immunologically relevant antibody (anti-CD28).  We did not note a plateau in the amount 
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of protein immobilized on the surface, however the amount that could be conjugated is 

significantly high enough to elicit a physiological response from T-Cells.18 

One of the key advantages of ellipsoidal micro and nanoparticles compared to their 

spherical equivalents is the ability to bind more efficiently in a targeted fashion.  This has 

been attributed to the higher radius of curvature of ellipsoidal particles compared to 

spherical particles and subsequently more surface area available for interaction with the 

cell.29 This has been shown both in vitro and in vivo to enhance the accumulation of 

ellipsoidal particles at targeted binding sites compared to spherical particles.30 We have 

demonstrated in this study that this highly advantageous shape mediated targeting 

property is preserved with the anisotropic lipid coated particle system. We utilized anti-

CD3, an immunostimulatory ligand, to target the binding of the spherical and ellipsoidal 

lipid coated particles to T-Cells.  Both the amount of cells bound to particles and the 

length of contact between particles and cells were enhanced with the ellipsoidal lipid 

coated particles compared to the spherical lipid coated particles.  This trend has been 

reported in the literature with similar sized particles and was found to be correlated with a 

significant increase in antigen specific immune stimulation.18 

An important biomimetic feature of the supported lipids is their membrane 

fluidity.  One instance where this has been determined to be important is in the 

presentation of immunostimulatory ligands by artificial antigen presenting cells.  Natural 

antigen presenting cells undergo dynamic rearrangement of their surface receptors upon 

engagement with a cognate T-Cell, and the lateral fluidity of these T-Cells has been 

deemed important for T-Cell activation.5 To that end we were interested in evaluating the 

fluidity of the new spherical and ellipsoidal lipid coated particles utilizing an established 
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fluorescence recovery after photobleaching technique (FRAP).2 Both spherical and 

ellipsoidal particles had statistically similar diffusion constants that were also on the same 

order of magnitude (10-10 cm2s-1) as those observed for proteins on natural, biological 

membranes.25  For a supported lipid bilayer on glass, this diffusion constant is 

significantly lower than the average of 10-8 cm2s-1.  However, it is worth noting that 

diffusion constants for supported lipid bilayers on non-glass substrates are typically lower 

than this number.  For example, Sterling et. al. demonstrated that lipids deposited on actin 

coated glass slides had diffusion coefficients 50% lower than lipids on uncoated glass.31  

Furthermore, Scomparin et. al. compared lipids deposited on glass and mica and noted an 

order of magnitude drop in the diffusion constant for lipids coated on mica compared to 

glass.32  Some of these reported diffusion constants were also in the range of our finding 

of 10-10 cm2s-1. This is significant as through these studies, these new anisotropic, 

synthetic biodegradable particles, are now demonstrated to mimic natural biological cells 

in four important ways:  1) Biological micron length-scale size, 2) Anisotropic shape and 

(via the automated stretching device) tunable radius of curvature, 3) Fluid lipid surface 

(with biomimetic diffusivity), and 4) facile incorporation/presentation of protein from the 

lipid surface.  These artificial biomimetic particles as a biomaterial may be useful for 

varied biomedical applications.   

7.4 Conclusions 

In conclusion, we have successfully developed a procedure to synthesize 

biomimetic anisotropic lipid coated particles.  By combining fabrication procedures for 

biodegradable particle synthesis, thin film stretching, lipid coating, and flexible 

biomolecular conjugation, we have enabled the capability for modular surface 
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presentation of biologically relevant proteins on a fluidic synthetic lipid membrane of 

defined anisotropic geometry. Critically, we have verified that this platform maintains the 

advantageous aspects of the non-spherical particle, specifically the capability to resist 

macrophage phagocytosis. In addition, this protein presentation reproduces the dynamic 

membrane properties of living cells and can be supported by particles of different shapes 

and tunable radius of curvature.  This biotechnology can allow for more accurate mimicry 

of natural cells through the presentation of laterally mobile proteins on the surface of 

anisotropic biodegradable particles, while enabling independent control of the geometry 

of the particle, and enabling encapsulation of biological cargos.  Therefore, this 

biomaterial platform may be of great benefit for varied applications including imaging 

and therapy. 
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7.5 Figures 

 

Figure 7.1: Schematic representation of ellipsoidal and spherical lipid coated particle 
synthesis.  (a) Ellipsoidal microparticles were prepared utilizing a thin film stretching 
method starting from spherical PLGA microparticles prepared by single emulsion.  (b) 
Liposomes that ~200 nm in size were prepared by extrusion and then sonicated in the 
presence of microparticles to yield lipid coated particles with shape specified by the 
initial particle template. 
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Figure 7.2: Functionalization strategy for lipid coated particles.  (a) Lipid coated 
particles were synthesized on both spherical and ellipsoidal microparticles containing 
maleimide activated lipids.  These maleimide lipids were reacted overnight at 4 ˚C with 
thiolated avidin to produce (b) lipid coated particles with avidin on the surface.  These 
avidin functionalized lipids were then reacted with biotinylated molecules (either a 
fluorophore or protein) to produce (c) the final functional product.  
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Figure 7.3: Spherical and non-spherical particles utilized for the synthesis of lipid coated 
particles.  SEM images of (a) spherical and (b) ellipsoidal microparticles utilized as 
templates for the support of the lipids. (c) Size of spherical particles and (d) measured 
aspect ratio of spherical and ellipsoidal particles. 
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Figure 7.4: Ellipsoidal and spherical lipid coated particles can be synthesized utilizing a 
pre-formed particle template.  Confocal micrographs of (a) spherical and (b) ellipsoidal 
particles encapsulating 7-AMC (blue) coated with a fluorescent lipids (red).  
Representative profile of the two fluorescence channels across the (c) center of the sphere 
and the (d) long axis of the ellipsoid.  Green arrows on (a) and (b) denote where the 
profile was taken. 
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Figure 7.5: Viability of macrophages during cell uptake experiments is not statistically 
reduced by the presence of lipid coated particles.  Macrophages were incubated for (a) 24 
hrs. or (b) 48 hrs. with the indicated concentration of particles and viability was 
established by cell titer assay and normalization to the untreated control. Error bars 
represent standard deviation of four replicates. 
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Figure 7.6: Macrophage uptake is shape dependent for spherical and ellipsoidal lipid 
coated particles.  Confocal micrographs of non-specific uptake of (a) spherical and (b) 
ellipsoidal lipid coated particles (red) by macrophages (green = actin, blue = DAPI) 
demonstrates that ellipsoids resist non-specific cell uptake.  Flow cytometry of 
macrophages treated with lipid coated particles at (c) 37 ºC and (d) 4 ºC of spherical and 
ellipsoidal shape reinforce the conclusion that ellipsoidal lipid coated particles resist 
cellular uptake. (* = p<0.05, ** = p <0.01, *** = p<0.001, **** = p<0.0001) 
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Figure 7.7: (a) Total protein conjugation amount of fluorescent avidin to spherical and 
ellipsoidal supported lipid bilayers.  (b) Efficiency of conjugation for various ratios of 
avidin to mass of particles in synthesis.  A two way ANOVA was performed to analyze 
statistical differences in the efficiency data set: p = 0.0303 for shape/dose interaction, p = 
0.0057 for shape impact on results, and p =0.0013 for dose impact on results.  There was 
no significant difference between shapes at any dose tested as evaluated by Bonferroni’s 
post test (p>0.05) except for at 1 μg avidin/mg PLGA (p<0.01). 
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Figure 7.8: Interchangeable protein surface conjugation to spherical and non-spherical 
lipid coated particles.  (a) Spherical and (b) ellipsoidal lipid coated particles 
encapsulating 7-AMC (blue) conjugated to avidin-biotin-fluorophore (magenta) 
conjugated on the surface.  (c) Total protein captured by particles exhibits dependency on 
the amount of protein dosed in synthesis.  (d) Efficiency of conjugation between spherical 
and non-spherical lipid coated particles at various doses is similar.  Error bars represent 
SEM of 3 replicates. 
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Figure 7.9: Biotinylated molecules do not adhere to the lipid coated particles without 
avidin intermediate protein.  (a) Spherical and (b) ellipsoidal lipid coated particles were 
prepared in the absence of avidin thiol and then incubated with Cy5-biotin.  Particles 
(blue) and Cy5-biotin (red) were then imaged using confocal microscopy. 
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Figure 7.10: (a)/(c) Spherical and (b)/(d) ellipsoidal protein conjugated lipid bilayers are 
stable (a)/(b) before and (c)/(d) after lyophilization. 
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Figure 7.11: (a) Spherical and (b) ellipsoidal SLBs with Cy5 biotin conjugated to the 
surface were incubated at the indicated temperature for the indicated amount of time to 
assess stability of lipid coats.  Confocal image analysis demonstrates stable presentation 
of surface ligands over all time points and conditions tested. 
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Figure 7.12: Targeted cell binding is shape dependent for lipid coated particles.  Jurkat 
T-Cells were incubated with spherical or ellipsoidal anti-CD3 conjugated lipid coated 
particles or unconjugated lipid coated particles.  Confocal images of (a) anti-CD3 
spherical, (b) anti-CD3 ellipsoidal, (c) blank spherical, and (d) blank ellipsoidal particles 
demonstrate enhanced binding of ellipsoidal anti-CD3 lipid coated microparticles (red 
arrows denote instances of binding).  Images were quantified by ImageJ for (e) frequency 
of cells bound to particles and (f) length of contact between particles and cells.  
Ellipsoidal anti-CD3 outperformed other conditions in both of these analyses.  Error bars 
represent SEM of 10 image analyses. (**** = p<0.0001 )  
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Figure 7.13: Lipid coated particles bearing conjugated molecules demonstrate fluidity. 
(a) Spherical lipid coated particles and (b) ellipsoidal lipid coated particles were 
subjected to region specific bleaching under confocal microscopy and subsequently 
imaged to measure recovery of fluorescence.  From an exponential fit of the recovery of 
the lipid signal, (c) lateral diffusion constants were derived for the spherical and 
ellipsoidal lipid coated particles and were determined to be equivalent.  The dotted line 
represents a reported lateral diffusion coefficient value for membrane bound proteins in a 
natural cell.  
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Chapter 8: Anisotropic Biodegradable Particles Coated with Naturally 

Derived Red Blood Cell Membranes for Enhanced Drug Delivery6  

8.1 Introduction 

 In recent years, there has been growing interest in pioneering bio-inspired 

engineering criteria for biomaterials based therapeutics.1 Biomimetic strategies for the 

design of micro- and nanotherapeutics have been successfully leveraged to achieve 

enhanced effects in drug delivery,2 tissue engineering,3 and immunoengineering 

applications.4  Some of the most successful platforms to date rely on biomimicry of 

physical and chemical properties of cells to achieved their desired goals.  Examples of 

this include modulation of particle mechanic characteristics,5 surface chemistry,6 

geometry,7 and response to stimuli.8  Two specifically promising engineering approaches 

to the biomimetic augmentation of particle efficacy include biointerfacing through 

coating with naturally derived cell membranes and deformation of particle shape to 

mimic the complex cell membrane structure9 and overall cell morphology10 respectively. 

 Nanoparticle coating with naturally derived cell membranes has recently been 

employed to confer novel properties to these constructs for therapeutic applications.  

Although many platforms have been engineered with synthetic components to mimic 

certain aspects of the cell membrane,11,12 it is very difficult to encompass every 

conceivable property of the cell membrane in a bioengineered design.  Incorporation of 

naturally derived cell membranes have successfully circumvented this difficulty as a top-

down design approach and confer a desired function.  For example, red blood cell 

                                                 
6 This chapter contains material that is intended for publication in the following article: Ben-Akiva E, 
Meyer RA, and Green JJ, Anisotropic Biodegradable Particles Coated with Naturally Derived Red Blood 
Cell Membranes for Enhanced Drug Delivery. In preparation. 
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membranes have been coated onto polymeric nanoparticles13 to achieve enhanced 

pharmacokinetic properties and to engineer detoxifying nanosponges for sepsis 

treatment.14 In addition, platelet membranes have been utilized to enable enhanced 

targeting of diseased and inflamed tissue such as the site of an infection or a tumor.15 

Leukocyte membranes have also been used to recapitulate various functions of these cells 

including avoiding elimination by the immune system and artificial diapedesis.16 Cancer 

cell membranes have also been employed to mediate enhanced delivery of antigenic 

material to antigen presenting cells for cancer immunotherapy.17  Nanoghosts derived 

from mesenchymal stem cells have been found to enhance tumor targeting capabilities 

and allow for more effective drug delivery.18 The application of naturally derived 

membranes for particle bio-interfacing have indeed been numerous and varied. Yet, in 

many of these cases mimicry has been restricted to the surface modulation thus limiting 

potential enhancement of the particle therapeutic. 

 One important parameter which could synergize well with these biomimetic 

naturally derived membrane coatings is particle shape.  Anisotropic particles have been 

determined to be superior to spherical particles with respect to two features that could 

make them attractive candidates for a combination strategy.  The first property is the 

resistance to non-specific cellular elimination upon systemic administration.19 This has 

been found to be due in part to the impact of angle of approach to the cell membrane, 

which is only applicable to a particle of anisotropic shape.20 This would theoretically 

synergize well with the stealth nature of particle coated with a naturally derived 

membrane in avoidance of immune clearance.  The second advantageous characteristic of 

an anisotropic particle is that it is able to have enhanced targeted interactions with 
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biological cells for drug delivery21 and immunoengineering applications.7  This has been 

found to be due to the higher surface area to volume ratio that is afforded by anisotropic 

shape.  Theoretically, this would also synergize well with the targeting capabilities that 

are conferred by a naturally derived cell membrane coat that would be augmented by the 

higher surface area of contact with the target of the particle therapeutic.  Furthermore, 

there exist a variety of methods for the simple and controllable synthesis of anisotropic 

polymeric particles that are completely amenable to protocols for coating spherical 

particles with naturally derived cell membranes due to the preservation of core material 

properties in the deformation process.22  

 In this study, we have developed anisotropic polymeric micro- and nanoparticles 

coated with red blood cell membranes which have a biomimetic shape and surface 

composition.  We synthesized spherical, prolate ellipsoidal, and oblate ellipsoidal micro- 

and nanoparticles and coated them with red blood cell membranes using previously 

established protocols for spherical particles.13 We demonstrate that these particles have 

biomimetic surface features such as lateral lipid fluidity and membrane bound ligand 

presentation.  Furthermore, we determined that these anisotropic shape and membrane 

coating are able to synergize with respect to in vitro resistance to cellular uptake and in 

vivo reduction of clearance rate upon systemic administration.  Finally, we have 

demonstrated the drug delivery utility of these novel constructs through the augmentation 

of nanosponge activity in a sepsis detoxification model.  Continued investigation into the 

combinations of biomimetic paradigms such as surface chemistry and morphology will 

undoubtedly yield optimal particle formulations for enhanced biomedical therapeutics.      

8.2 Materials and Methods 
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8.2.1 Anisotropic Micro- and Nanoparticle Synthesis 

 Polymeric microparticles and nanoparticles were synthesized using single 

emulsion techniques as we have previously described.23,24  Poly (lactic-co-glycolic acid) 

acid terminated (38-54 kDa, 50:50 L:G ratio) (PLGA, Sigma Aldrich; St. Louis, MO) 

was used as the core material for particle synthesis.  In order to visualize the 

microparticles under confocal microscopy, the particles were loaded with 7-amino-4-

methyl coumarin (7-AMC, Sigma Aldrich; St. Louis, MO) or 1,1’-dioctadecyl-3,3,3’,3’-

tetramethylindodicarbocyanine perchlorate (DiD, Thermo Fisher; Waltham, MA) were 

encapsulated at a 1% wt/wt ratio and a 0.1% wt/wt ratio, respectively, to the polymer.  

The PLGA was dissolved at 20 mg/mL in dichloromethane (DCM) and 5 mL of the 

polymer solution was emulsified in 50 mL of 1% PVA solution using an IKA T-25 

homogenizer (IKA Works; Wilmington, NC) set to 5000 rpm or a VCX 750 sonicator 

(Sonics & Materials Inc.; Newtown, CT) set to 60% amplitude.  The resulting 

emulsification was poured into 100 mL of a 0.5% PVA solution and the particles were 

allowed to harden for 4 hrs.  Afterward, the particles were washed three times (@3000 g 

for 5 min for microparticles or 40000 g for 15 min for nanoparticles), frozen and 

lyophilized.   

 Lyophilized micro- or nanoparticles were deformed into prolate or oblate 

ellipsoidal particles using the thin film stretching methods as has been previously 

reported.25  Particles were dissolved at a concentration of 2.5 mg/mL in a 10% PVA and 

2% glycerol solution.  The dissolved particles were then deposited into rectangular or 

square petri dishes to deform the particle in 1D or 2D to make prolate ellipsoidal or 

oblate ellipsoidal particles respectively.  The films were then loaded onto an automated 
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thin film stretcher that has previously been designed26 and the films were stretched in one 

direction at 90 °C for prolate ellipsoidal particles or in two directions for biconcave 

discoid red-blood cell shaped particles.  The films were then cooled at room temperature, 

and the films were removed from the stretcher.  The films were then dissolved in water 

via vortexing and the anisotropic particles were washed three times with water and 

lyophilized prior to use.    

 Anisotropic microparticles were analyzed by scanning electron microscopy for 

size and morphology analysis (Leo FESEM). Lyophilized particles were mounted on the 

aluminum tack (Electron Microscopy Services; Hatfield, PA) coated with carbon tape 

(Nisshin EM Co.; Tokyo, Japan).  Particle images were analyzed by ImageJ to determine 

size and aspect ratio of the anisotropic particles.  

8.2.2 RBC Coating of Anisotropic Particles 

 Anisotropic micro- and nanoparticles were coated with red blood cell membranes 

using a combination of previously developed protocols.6,13  Pathogen-free whole CD1 (in 

vitro characterization) or B6 (in vivo characterization) mouse blood was purchased from 

Innovative Research (Innovative Research; Novi, MI). 1 mL of whole blood was 

centrifuged twice at 800g to separate the packed RBCs from the serum and the white 

blood cells.  The RBCs were then suspended in 1 mL of a hypotonic lysis buffer of 0.25x 

PBS and chilled to 4 °C.  The lysis proceeded for 20 min, and then the resultant RBC 

ghosts were centrifuged twice at 17,000g for five min and resuspended in 1x PBS.  In 

order to visualize the RBC membrane, we fused the RBC ghosts with rhodamine labeled 

liposomes.  The rhodamine liposomes were formed by mixing 50 µg of a rhodamine 

labeled DSPE lipid and 50 µg of a PEGylated DSPE lipid (Avanti Polar Lipids; 
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Alabaster, AL) in a glass vial and the organic solvent was removed under a vacuum and 

the lipids were then hydrated in 1x PBS.  The liposome mixture was then mixed with the 

RBCs and incubated for 1 hr. at 37 °C.  After this incubation, the ghosts were washed 3x 

in 1x PBS at 1000g.   The RBC ghosts were then sonicated in a VCX 750 sonicator with 

a cup attachment in a glass vial at 50% amplitude for 2 min. to prepare vesicles that were 

sub-200 nm in size.  The vesicles were then mixed with 2 mg of micro- or nanoparticles 

and sonicated again at 50% amplitude for 2 min. The particles were then centrifuged at 

1000g for microparticles and 17,000g for nanoparticles and washed three times and 

resuspended via vortexing and trituration for nanoparticles to prevent dissociation of the 

RBC coat from the particle.  The resultant RBC coated particles were then imaged or 

used for functional assessment.      

8.2.3 Confocal Imaging and Evaluation of Lateral Fluidity 

 To evaluate the physical properties of the membrane coating on the particle, we 

used a Zeiss 780 FCS microscope to image and characterize the labeled RBC lipid 

membrane on the surface of the particle.  Images were acquired with a 40x objective in a 

37 °C incubation chamber to attain a biomimetic temperature for membrane 

characterization. 

 For evaluation of lateral membrane fluidity, we used a similar fluorescence 

recovery after photobleaching (FRAP) technique as was given in Chapter 7 for the 

evaluation of synthetic membrane fluidity.  A region of interest was identified under the 

microscope and the fluorescence of the membrane was bleached using the highest power 

setting of the laser.  The region of interest was tracked over time for the recovery of 

fluorescent signal and a second region of interest on another particle in the image was 
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tracked to control for bleaching during imaging.  The raw fluorescence I(t) values were 

then normalized to NFI(t) using the following equation: 

𝑁𝐹𝐼(𝑡) =
𝐼(𝑡) − 𝐼𝑝𝑜𝑠𝑡 𝑏𝑙𝑒𝑎𝑐ℎ

𝐼𝑝𝑟𝑒 𝑏𝑙𝑒𝑎𝑐ℎ ∗ 𝐼𝑝𝑜𝑠𝑡 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦
 

The normalized fluorescence intensity vs. time was then fit to a single exponential 

recovery curve as a model for FRAP signal recovery using GraphPad Prism 7 (GraphPad 

Software, Inc.; La Jolla, CA).  The time constants of half recovery were extracted (t0.5) 

from the model and the characteristic length (rbleach) of the recovery region was 

determined by ImageJ analysis of the confocal images during the recovery.  These two 

values were then used to compute the lateral diffusion constants of the lipids in the RBC 

membranes using the following model set forth by Kang et. al.27: 

𝐷𝑙𝑖𝑝𝑖𝑑 =
𝑟𝑏𝑙𝑒𝑎𝑐ℎ

2

4 ∗ 𝑡0.5
 

8.2.4 Characterization of RBC Coated Anisotropic Nanoparticles 

 Nanoparticles coated with RBC membranes were characterized by transmission 

electron microscopy FEI Tecnai 12 TWIN TEM.  The membrane coated nanoparticles 

were stained in 1% uranyl formate as a negative stan in order to visualize the particle 

morphology and membrane structure on the surface of the particle.  The particles were 

also characterized by dynamic light scattering using a Malvern ZetaSizer (Malvern 

Instruments; Westborough, MA).  The particles were suspended at a concentration of 0.1 

mg/mL and sized in a low volume disposable cuvette using recommended machine 

settings.  The z-average size of the coated and uncoated nanoparticles were then 

compared for evidence of increased size due to membrane coating.  In order to evaluate 

the presence of CD47 on the surface of the particle, we used an APC labeled anti-CD47 
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(BioLegend; San Diego, CA).. Coated and uncoated particles were incubated with a 

1:100 dilution of the antibody for 1 hr. at 4 °C in PBS.  Following incubation, the 

particles were washed three times in 1x PBS and were read on a BioTek Synergy 2 

(Biotek; Winooski, VT) plate reader.  The coated particle fluorescence readings were 

then normalized to the uncoated fluorescence readings to determine the fold increase in 

antibody staining to demonstrate the presence of CD47 on the surface of the particles.    

8.2.5 Evaluation of In Vitro Macrophage Uptake 

 To assess potential synergy of the RBC membrane and the anisotropic shape for 

drug delivery applications, we modeled the elimination of the nanoparticles from body 

with an in vitro macrophage uptake experiment.  We used RAW 264.7 (ATCC) murine 

macrophages as a model cell for phagocytic elimination.  The cells were cultured in 

Dulbecco’s Minimal Essential Media (Life Technologies; Grand Island, NY) 

supplemented with 10% fetal bovine serum and penicillin/streptomycin.  Uptake was 

evaluated qualitatively with confocal imaging and quantitatively with flow cytometry.  

For flow cytometry studies, macrophages were seeded at a density of 30,000 cells/well.  

Particles of different shapes and membrane coatings were added to the macrophages and 

the cells incubated with the particles labeled with DiD dye.  After the incubation, the 

cells were washed gently 3x with PBS.  The cells and particles were then fixed in 10% 

formalin stabilized with methanol (Sigma Aldrich; St. Louis, MO) for 15 min.  The cells 

were then washed three times with PBS and were stained with Alexa 488 Phalloidin (Life 

Technologies; Grand Island, NY) for actin in the cytosol and DAPI for the nucleus 

(BioChemica; Darmstadt, Germany) following the manufacturer’s protocol. The fixed 

samples were then visualized using confocal microscopy using a Zeiss 780 FCS.  
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8.2.6 Evaluation of In Vivo Pharmacokinetics of RBC Coated Particles 

 To assess the potential pharmacokinetic benefits the union of anisotropic particles 

and biomimetic membrane coatings could realize, we evaluated the biodistribution of the 

coated and uncoated spherical, prolate ellipsoidal, and oblate ellipsoidal nanoparticles (n 

= 3 mice/group).  To visualize the particles in vivo we encapsulated a custom synthesized 

hydrophobic dye with a 770ex/800em fluorescence profile. (LICOR Biosciences; 

Lincoln, NE).  2 mg of the nanoparticle solution suspended in 100 µL of sterile PBS was 

injected retroorbitally into the right eye.  Blood samples were then collected retroorbitally 

at 15 min, 30 min, 45 min, 2 hr, 4 hr, and 24 hr following particle administration from the 

left eye.  The blood samples were then read on the BioTek Synergy 2 plate reader and the 

sample fluorescence was normalized to the initial 15 min time point to control for 

variability in the injection.  The fluorescence readings were then normalized to a single 

phase exponential decay curve in GraphPad 7 Prism and half-lives were derived from the 

best fit equations.  At 72 hr post administration, the animals were sacrificed and the liver, 

spleen, kidney, heart, and lung were dissected out and imaged on a LICOR Pearl Impulse 

Imager.  A region of interest was drawn around the area of the organ in the image and the 

mean gray value was evaluated in Image J.  These values were then normalized to the 

total sum of fluorescence signal from all animals combined to derive percent distribution 

information at 72 hr post particle administration. 

8.2.7 Evaluation of In Vivo Activity of the Anisotropic Nanosponge 

 As a proof of principle of the drug delivery capabilities of anisotropic red blood 

cell membrane coated nanoparticles, we used an in vitro and in vivo alpha toxin 

neutralization assay developed by Hu et. al.14  In this model, the RBC membrane itself 
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serves as the drug to be delivered as it acts as a decoy nanosponge to absorb the 

hemolytic alpha toxin and spare the host’s red blood cells.   

 For in vitro evaluation of nanoparticle activity, we mixed 1.5 µg of alpha toxin 

(Sigma Aldrich; St. Louis, MO) with 100 µL of the RBC membrane coated spherical, 

prolate ellipsoidal, or oblate ellipsoidal nanoparticles at 2 mg/mL for 30 min. Mouse 

RBCs were centrifuged at 800 g and resuspended in 1x PBS to remove hemoglobin from 

the RBC suspension. Following this incubation, 900 µL of 5% mouse RBCs were added 

to the particle/toxin mixture and the mixture was incubated for an additional 30 min.  

Following the 30 min, the particles were centrifuged at 17000 g for 5 min.  The 

absorbance of the supernatant at 540 nm was read by plate reader to assess the hemolysis 

present in the sample.  The absorbance readings were normalized to a sample that did not 

have particles to neutralize the toxin. 

 For in vivo evaluation of anisotropic nanosponge activity, we administered a 

lethal dose of alpha toxin systemically through retroorbital injection (2.5 µg/mouse).  The 

treatments were administered 2 min later and consisted of either no treatment, uncoated 

nanoparticles, coated spherical nanoparticles, coated prolate ellipsoidal nanoparticles, and 

coated oblate ellipsoidal nanoparticles (n = 6 mice/group, 3 mg/particle injection).  The 

animals were monitored for survival every 30 min for 8 hours following particle injection 

and every 24 hrs. thereafter.  Animals that survived past 24 hrs. were taken to be long-

term survivors and were found to be healthy 1 week following the start of the experiment.      

8.3 Results and Discussion 

8.3.1 Characterization of RBC Coated Microparticles 
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 For the purposes of initial membrane coating experiments and lipid fluidity 

measurements, we opted to use microparticles as a model system prior to nanoparticles.  

The general overview of the coating procedure that was used for microparticle and 

nanoparticle coating is given in Figure 8.1.  Spherical particles were synthesized by 

single emulsion and then stretched using the thin film stretching protocol that our lab has 

recently optimized.26  Following retrieval of the particles from the thin films, the particles 

were fused with processed nanovesicles from fresh RBC membranes to yield a 

biomimetic lipid membrane on the surface of the particle that is derived from a natural 

cell plasma membrane.  This core-shell particle design offers the advantages of being 

able to encapsulate a therapeutic cargo in the polymeric core, along with a biomimetic 

surface that could be used in stealth applications for avoidance of reticuloendothelial 

system (RES) clearance.28 

 We initially characterized the anisotropic particle surface using SEM imaging of 

the particle samples followed by subsequent analysis of the particle sample with Image J 

(Figure 8.2A-C).  The size of the microparticles used in this study was determined to be 

approximately 5 µm in size with a standard deviation of approximately 2 µm (Figure 

8.2D).  Although used as a model system, this size would acceptable for systemic 

administration based on our previous work.23 Upon stretching, the prolate ellipsoidal 

particles are predicted to have an aspect ratio of 2.8 for the 2-fold stretching method used 

in this study.7 The oblate ellipsoidal particles would be predicted to maintain an aspect 

ratio of 1 while lying on their flat surface as the particles were stretched 1.5 fold in each 

direction.  These predicted aspect ratios were close to the measured values at an average 

near 3 for the prolate ellipsoidal particles and an average near 1 for the oblate ellipsoidal 
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particles (Figure 8.2E).  There was a distribution of the aspect ratios in the ellipsoidal 

particles, however this could potentially be partially attributed to the particles not laying 

perfectly flat during SEM imaging.  Aspect ratio control such as this is important for the 

manifestation of anisotropic properties, as the aspect ratio has been shown to impact cell 

uptake,29,30 intracellular drug delivery,31,32 and biodistribution.33   

Upon coating the particles with RBC membranes, the samples were then imaged 

under confocal microscopy to determine the localization of the membrane fluorescent 

signal with respect to the particle fluorescent signal.  Imaging revealed a halo of RBC 

membrane fluorescence around the spherical particles that coated the entire particle 

(Figure 8.3A).  Upon drawing a line through the center of the particle and analyzing the 

fluorescence intensity through the particle core, we found localization of the membrane 

signal on the exterior of the particle (Figure 8.3B).  Regardless of where the line was 

drawn through the particle, the same result was achieved.  The prolate ellipsoidal particle 

images revealed similar fluorescent signal localizations (Figure 8.3C-D) indicating 

successful coating of 1-D stretched particles.  The oblate biconcave discoid particles also 

exhibited similar patterns of fluorescence including within the dimple of the particle as 

indicating complete coverage (Figure 8.3E-F).  This coverage with fluorescent 

membranes is similar to our previous work with synthetic lipids6 as well as previously 

reported work investigating surface membrane functionalization of PLGA microparticles 

with lipid membranes.34 

 To assess the stability of the microparticles, we subjected coated samples to 

lyophilization and incubation at 37 °C.  Particles that had been lyophilized demonstrated 

similar levels of membrane coverage to pre and post lyophilization (compare Figure 8.3 
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to Figure 8.4).  This confirms that the membrane coating is stable during freeze-drying 

and that the particles could be stably stored at room temperature for long periods of time 

as had been demonstrated with similar biomaterials for drug delivery.35  Incubation of the 

particles revealed that all shapes coated with fluorescent red blood cell membranes were 

stable at 37 °C for 1 day and 7 days indicating that the particles could be therapeutically 

active on the time scale of progression of many diseases such as sepsis.36   

 One important property of the RBC coated microparticles that was also assessed 

was the lateral membrane fluidity of the lipids coating the particles.  We and other groups 

have previously shown that therapeutically relevant biomaterials coated with these 

membranes maintain this important biomimetic property.26,37  FRAP recovery curves 

demonstrate that this membrane fluidity remains intact for all particle samples that were 

coated with RBC derived membrane vesicles (Figure 8.6A-C).  In addition, the 

membrane fluidity recovery curves were successfully fit to a single exponential recovery 

model.  Using the model set forth by Kang et. al.27 we found that the lateral diffusion 

coefficients for all particle samples tested was on the order of 10-10 cm2/s (Figure 8.6D).  

This estimated lateral diffusion constant was similar across all particle shapes tested.  

Furthermore, this lateral diffusion constant is within the range of diffusion constants for 

lipids in natural cell membranes38 indicating successful biomimicry of this parameter on 

the surface of the polymeric particles.  Such a characteristic would be important for many 

applications such as recapitulation of the immunological synapse on artificial antigen 

presenting cell technology.39  Upon engagement of an antigen presenting cell with its 

target, there is a dynamic spatial rearrangement of signaling receptors on the cell 

surface.40 This IS has been successfully recapitulated by supported lipid bilayers41 and it 
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has been found that membrane fluidity is an important parameter governing immune cell 

activation.       

8.3.2 Characterization of RBC Coated Nanoparticles 

 Although a significant amount of work has been completed investigating 

microparticles as a potential platform for biomimetic membrane coating,42 nanoparticles 

offer distinct advantages for drug delivery, particularly from a pharmacokinetic 

standpoint.  Nanoparticles typically have superior biodistribution compared to their 

microparticle counterparts43 and this would theoretically translate to more effective drug 

delivery for the anisotropic RBC membrane coated nanoparticles.  Therefore, we elected 

to apply the coating procedure to anisotropic PLGA nanoparticles.  Upon coating of the 

particles with the RBC membrane, we imaged the samples under TEM to determine 

morphologically the structure of the coating on the surface of the particle (Figure 8.7A-

C).  We found that the particles were successfully deformed into non-spherical shapes as 

has been previously shown in our work and that the synthesized particles were 

approximately 220 nm in size.24  However, we noticed that the nanoparticles had a halo 

around the surface of the particle that approximately matched the thickness of a cellular 

membrane at 10 nm.13  Comparing the images of coated nanoparticles to equivalent non-

coated nanoparticles we found that the membrane halo was not present on the non-coated 

samples (Figure 8.7D-F).  This is similar to the results reported which demonstrated the 

presence of a membrane halo around the surface of the particle upon RBC membrane 

coating.13   

To further confirm the presence of an RBC membrane coat on the anisotropic 

nanoparticles we sized the spherical nanoparticles before and after coating by DLS 
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(Figure 8.7G).  We noted that the coated nanoparticles exhibited an increase in size of 

approximately 20 nm, which is consistent with what would be expected for a ~10 nm 

membrane coat on both sides of the particle.  We were also interested in confirming the 

presence of CD47 on the surface of the particle for assessment of functional potential.  

CD47 has recently been referred to as the “don’t eat me” signal on the surface of RBCs 

that allows them to escape elimination by macrophages in the RES.44 Furthermore, 

synthetic CD47 based peptides have been found to enhance biodistribution of 

systemically administered biomaterials by inhibiting phagocytosis.45  We stained the 

particles with a fluorescent antibody against CD47 and found that relative to uncoated 

controls, there was a 6-fold increase in CD47 antibody signal (Figure 8.7H).  Taken 

together, this evidence indicates that we were successfully able to coat the spherical and 

non-spherical nanoparticles with biomimetic RBC derived membranes. 

8.3.3 In Vitro Macrophage Uptake of Anisotropic RBC Coated Nanoparticles 

 An important characteristic of systemically administered biomaterials is the 

capability to avoid immediate clearance from the bloodstream and persist for longer 

periods of time in circulation.  Typically this is achieved through a biocompatible 

material on the surface of the particle that can enable it to stealthily avoid the host’s 

immune system such as poly ethylene glycol.46  It has also been shown that non-spherical 

particles can successfully evade elimination, contributing to longer circulation times and 

enhanced therapeutic efficacy.24 We hypothesized based on these previous studies that 

the anisotropic shaped nanoparticle could synergize with the biomimetic RBC membrane 

coating to achieve a more favorable pharmacokinetic profile.  As an in vitro model of 

RES clearance, we evaluated phagocytic uptake of the coated and uncoated nanoparticles 
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by murine macrophages (RAW 264.7).  We evaluated nanoparticle uptake qualitatively 

by confocal microscopy and quantitatively by flow cytometry.  We found that altering the 

nanoparticle shape and imparting a biomimetic RBC membrane surface to the particle 

both reduced cellular uptake by macrophages (Figure 8.8A compare magenta signal 

across different shapes and coatings).  This apparent difference in cellular uptake was 

confirmed by flow cytometry analysis of macrophages that had been incubated with the 

particles. We found that the membrane coating resulted in a 30-50% reduction in cellular 

uptake compared to uncoated particles (Figure 8.8B).  In addition, we found that there 

was an additional 30-40% reduction in cellular uptake attributed to the anisotropic shape 

of the nanoparticle.  Combined, these two parameters resulted in a 50-60% reduction in 

cellular uptake of anisotropic coated nanoparticles, compared to isotropic uncoated 

nanoparticles.  Furthermore, this trend of both parameters working together to achieve 

cell uptake reduction was apparent across multiple doses of particles tested with the 

macrophages.  It has been previously found that both shape47 and membrane coating15 

can reduce cellular uptake individually, however we have shown in this experiment that 

the two can synergize to achieve a superior resistance to macrophage elimination that 

either characteristic can mediate on its own.   

8.3.4 In Vivo Pharmacokinetic Analysis of RBC Coated Anisotropic Nanoparticles 

 Next, we wanted to evaluate in vivo the potential for more favorable 

biodistribution of anisotropic nanoparticles coated with a biomimetic RBC membrane.  

Following the in vitro finding of reduced non-specific cellular elimination of anisotropic 

coated particles, we expected that this result could translate in vivo and that both the non-
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spherical shape and the biomimetic RBC membrane coating could contribute to 

enhancement of nanoparticle pharmacokinetics.   

We synthesized particles of spherical, prolate ellipsoidal, and oblate ellipsoidal 

shape and encapsulated a hydrophobic near IR fluorophore in the core for fluorescence 

analysis of nanoparticles in the bloodstream.  The particles, with or without a biomimetic 

RBC coat, were injected intravenously and blood was sampled 15 min, 30 min, 45 min, 2 

hr, 4 hr, and 24 hr post particle administration to evaluate systemic nanoparticle 

concentration.  We found that all particle concentrations decayed over time exponentially 

as expected (Figure 8.9A).  However, we found that for all particle shapes, incorporation 

of the RBC membrane resulted in a slower exponential decay compared to respective 

uncoated controls (Figure 8.9A compare light colors to respective dark colors).  We fit 

the experimental data to a single-phase exponential decay curve in order to derive 

systemic half-life information for the particle samples.  We found that the half-life of the 

coated nanoparticles significantly exceeded that of the uncoated particles (Figure 8.9B). 

For example, the uncoated spherical nanoparticles had an average half-life of 24.6 min 

whereas the coated spherical nanoparticles had an average half-life of 64.8 min, a 163% 

increase.  Furthermore, we noted that the prolate ellipsoidal shape resulted in a superior 

half-life compared to both the spherical and oblate ellipsoidal shapes with coated prolate 

ellipsoidal nanoparticles having a half-life of 171.6 min compared to 82.0 min for coated 

oblate ellipsoidal particles and 64.8 min for coated spherical particles.  Taken together, 

this data suggests that combination of anisotropic prolate ellipsoidal shape and coating 

could result in a near 6-fold increase in half-life with both parameters synergizing.  With 

respect to the oblate ellipsoidal particles, although in vitro results were favorable with 
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respect to resistance to cellular elimination, the in vivo effect was not as dramatic as 

expected.  This could partially be attributed to the fact that prolate ellipsoidal particles are 

more hydrodynamically efficient than the spherical or oblate ellipsoidal particles.  This 

effect has been demonstrated in a microfluidic system as of recently48 and would be 

expected to be translated to the dynamic system of fluid flow in the bloodstream.                

 At 24 hr. post administration, we dissected out the major non-bowel organs 

(spleen, kidney, liver, lung, and heart) to analyze fluorescent content and determine the 

ultimate distribution of the particles following systemic administration.  We found that 

the major centers of accumulation of the particles were the spleen and liver (Figure 

8.10), as expected based of previous trials with particle distribution experiments.24  

Moreover, there was no noted statistical difference in the organ distribution at 24 hr post 

administration indicating that despite the apparent difference in particle half-life, there is 

no difference in the ultimate destination.  This was also expected based on previous 

results using non-spherically shaped nanoparticles conjugated to targeting antibodies 

which showed minimal changes in the biodistribution for non-targeted particles.48  Based 

on previous results demonstrating that it is possible to incorporate a targeting moiety into 

the naturally derived membrane28, it would be possible to leverage the slower systemic 

elimination to target the nanoparticles to a desired site, such as a tumor for cancer drug 

delivery.  

8.3.5 In Vitro and In Vivo Anisotropic Nanosponge Activity 

 Finally, we were interested in the potential enhancement of drug delivery that the 

combination of anisotropic shape and RBC mimetic coating could achieve.  As a proof of 

principle we opted to use the RBC membrane itself as the drug to be delivered in a 
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bacterial alpha toxin absorption assay (Figure 8.11A).  In this system, the membrane 

coated nanoparticles function as a decoy to absorb the hemolytic toxin from the systemic 

circulation before it can cause irreversible damage to the host’s RBCs.  This model had 

previously been used as a biomimetic nanosponge of spherical nanoparticles14 and we 

were interested to assess how the anisotropic particle shape could influence alpha toxin 

absorption capabilities. 

 In order to assess the impact of shape alone (without the complicating factor of in 

vivo pharmacokinetics) we utilized an in vitro model of alpha toxin absorption.  Particles 

and toxin were coincubated for 30 min, and fresh RBCs were then added to determine the 

toxicity of the mixture by absorption based measurements of hemolysis.  We found there 

was a significantly lower rate of hemolysis in the coated anisotropic particle samples 

compared to the spherical nanoparticles (85% for spherical particles compared to 20-30% 

for anisotropic particles) (Figure 8.11B).  This could be partly due to the fact that during 

the stretching process, the particles attain a higher surface area to volume ratio.7  With 

greater surface area, there would be more available RBC membrane to serve as a decoy to 

absorb the alpha toxin.  Therefore, there would be insufficient alpha toxin to mediate a 

large amount of hemolysis that could be detected in vitro. 

 Following these favorable in vitro results, and considering the enhanced 

pharmacokinetic profile of the anisotropic, coated nanoparticles compared to the 

spherical, coated nanoparticles, we were interested to evaluate the detoxification potential 

of the anisotropic nanoparticles in vivo.  In order to accomplish this, we systemically 

administered a lethal dose of alpha toxin to mice.  After a delay, we then administered 

coated nanoparticles of spherical, prolate ellipsoidal, or oblate ellipsoidal shape, as well 
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as an uncoated spherical particle control or no particle treatment (n = 6 mice/group).  We 

then tracked survival over the course of 24 hours to determine detoxification capabilities 

of the nanoparticles.  We found that the mice in the control group had a median survival 

of 2.75 hr and that there was no statistical improvement of the particles alone or the 

spherical coated particles (Figure 8.11C).  However, there was a dramatic and 

statistically significant improvement in survival with administration of the anisotropic 

nanoparticles, both oblate and prolate ellipsoidal.  In addition, approximately 50% of the 

prolate ellipsoidal treated and 33% of the oblate ellipsoidal treated mice were found to be 

healthy at the end of 1 week post particle administration.  This result aligns with our in 

vitro test for alpha toxin absorption which could have potentially been enhanced by the 

reduced systemic elimination of the anisotropic, coated nanoparticles.  Thus, the 

anisotropic RBC membrane coated nanoparticle has been validated as a potentially 

stronger treatment than equivalent spherical coated nanoparticles for detoxification of 

sepsis patients49 and also useful for drug delivery in general.     

8.4 Conclusions 

 In this study, we have successfully demonstrated the utility of biomimetic 

anisotropic nanoparticles coated with naturally derived RBC membranes.  Through 

mimicry of both the shape and the surface membrane of blood cells, we have determined 

that combination of these two features achieves an enhancement of drug delivery efficacy 

that neither parameter can successfully attain on its own.  The anisotropic nanoparticles 

coated with red blood cell membranes are able to superiorly evade elimination by 

macrophages compared to their spherical, uncoated counterparts.  Furthermore, prolate 

ellipsoidal, coated nanoparticles exhibit reduced rates of systemic elimination upon 
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intravenous administration compared to other particle shapes tested in this study.  Finally, 

the enhanced pharmacokinetic properties of the anisotropic, coated particle, in 

conjunction with the increased surface area due to anisotropic shape, resulted in a 

stronger capability to mediate detoxification of systemically administered bacterial toxin.  

These studies also revealed that changes to morphology can be a double-edged sword as 

the oblate, 2-D stretched particles had higher surface area good for clearing toxin, but 

inferior biodistribution properties compared to prolate, 1-D stretched particles.  The 

prolate particles proved superior in vivo even though they were not clearly superior from 

in vitro testing, highlighting the importance of in vivo properties when designing particle 

shape. Further investigations into the utility of biointerfacing through biomimetic particle 

engineering will allow for the realization of next generation drug delivery vehicles and 

the implementation of novel, robust biomedical technologies in modern medicine.         
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8.5 Figures 

 

Figure 8.1: Schematic of the red blood cell coating procedure.  (a) Particles were 
deformed into prolate and oblate ellipsoidal polymeric particles using the thin film 
stretching method.  (b) Red blood cells were processed into 200 nm vesicles using 
hypotonic lysis and sonication based disruption of the RBC ghost membranes.  The 
vesicles were then sonicated in the presence of the anisotropic particles to coat them with 
the RBC derived membranes. 
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Figure 8.2: Physical characterization of the anisotropic microparticles.  (a) Spherical, (b) 
prolate ellipsoidal, and (c) oblate ellipsoidal microparticles were imaged by SEM. Scale 
bars are 10 µm (d) The spherical particles were sized by ImageJ and the size distribution 
was determined.  (e) Aspect ratio distribution was measured for each particle type using 
Image J. 
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Figure 8.3: Confocal analysis of red blood cell membrane coated microparticles.  (a) 
Spherical, (c) prolate ellipsoidal, (e) oblate ellipsoidal microparticles loaded with 7-AMC 
(blue) were coated with RBC membranes (red) and imaged under confocal to determine 
localization of the two signals.  Linear fluorescent profile analysis through the center of 
the particle of (b) spherical, (d) prolate ellipsoidal, and (e) oblate ellipsoidal particles 
demonstrated localization of the RBC membrane signal on the exterior of the particle 
using the encapsulated 7-AMC dye as a reference point. 
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Figure 8.4: Stability of the particles after lyophilization.  Particles samples from Figure 
8.3 were lyophilized in 10% endotoxin free sucrose.  Following reconstitution, they were 
imaged using confocal microscopy.  Membrane coatings were of similar quality to pre-
lyophilized samples. 
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Figure 8.5: Non-spherical particles were coated as in Figure 8.3 and then incubated at 37 
°C for the indicated amount of time on the left of the image set. For the duration of the 
incubation for all particle types, the membrane coating remained stable on the surface. 
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Figure 8.6: Determination of lateral rigidity of membrane coating by fluorescence 
recovery after photobleaching.  (a) Spherical, (b) Prolate ellipsoidal, and (c) Oblate 
ellipsoidal microparticles were analyzed by FRAP for fluorescence recovery over time 
(dots) and fit to a one-exponential recovery model (lines).  (d) From the FRAP recovery 
curves, lateral diffusion coefficients were derived and found to be on the order of lipid 
lateral diffusion coefficients in naturally derived membranes for all particle types.  Error 
bars represent the SEM of 10 individual particle replicates. 
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Figure 8.7: Physical and chemical characterization of RBC membrane coated anisotropic 
nanoparticles.  TEM images of coated (a) spherical, (b) prolate ellipsoidal, (c) and oblate 
ellipsoidal nanoparticles reveal a 10 nm coating on the surface that is not present on the 
surface of the uncoated (d) spherical, (e) prolate ellipsoidal, and (f) oblate ellipsoidal 
nanoparticles.  (g) DLS analysis of coated vs. uncoated nanoparticles indicates a slight 
increase in size of coated nanoparticles on the order of what would be expected for a 
membrane coating.  (h) Fluorescent antibody stain for CD47 on the surface of RBC 
membrane coated particles demonstrates functional potential of the RBC coated 
nanoparticles.  Error bars represent the SEM of 3 individual staining replicates.    
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Figure 8.8: In vitro model of coated nanoparticle elimination by macrophages.  
Nanoparticles encapsulating DiD dye were incubated with macrophages for 4 hr. and 
uptake was analyzed by confocal microscopy (green = actin, blue = DAPI, magenta = 
particles) and flow cytometry.  (a) Confocal images reveal that both the coating of the 
nanoparticles, and the deformed shape reduced nanoparticle uptake by macrophages as 
evidenced by reduced incidence of the magenta signal.  (b) Flow cytometry analysis of 
cell fluorescence reveals quantitatively the reduction in nanoparticle uptake by 
macrophages.  Error bars represent the SEM of three experimental replicates.  (*=p<0.05, 
***=p<0.001 by one way ANOVA with Tukey’s post-test)     
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Figure 8.9: In vivo pharmacokinetics of red blood cell membrane coated nanoparticles.  
(a) Blood elimination of nanoparticles following intravenous administration as assessed 
by fluorescence readings of the blood sample (dots) and fit to a single exponential decay 
model (lines).  (b) Particle bloodstream half-life was derived from the exponential fit of 
blood decay curves and found to be augmented in the presence of the particle coating as 
well as if the particle was deformed into a prolate ellipsoidal shape. Error bars represent 
the SEM of 3 individual mouse replicates. (*=p<0.05, ***=p<0.001 by one-way 
ANOVA with Tukey’s post-test).  
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Figure 8.10: Organ distribution at 24 hr. of RBC coated anisotropic nanoparticles is 
similar across the different shapes with no significant statistical comparisons by one-way 
ANOVA with Tukey’s post-test. 
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Figure 8.11: In vivo anisotropic biomimetic toxin nanosponge absorption capabilities.  
(a) Schematic of the principle of nanosponge principle.  With no treatment, RBCs would 
absorb the lytic toxin and be detrimental to the host.  With the administration of RBC 
coated nanoparticles, the particles would serve as a decoy, absorbing the toxin and 
leaving the RBCs unharmed.  (b) In vitro evaluation of hemolytic toxin absorption by the 
anisotropic nanosponge.  The anisotropic nanosponges were able to absorb significantly 
more alpha toxin as evidenced by reduction in relative lysis. Error bars represent the 
SEM of 3 experimental replicates. (***=p<0.001 by one-way ANOVA with Tukey’s 
post-test)  (c) Survival following intravenous alpha toxin administration followed by 
nanosponge administration.  Mice receiving anisotropic nanosponges had a significant 
long-term survival benefit compared to spherical nanosponges or uncoated particles (n = 
5).  
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Chapter 9: Entanglement-Based Thermoplastic Shape Memory 

Particles with Photothermal Actuation for Biomedical Applications7 

9.1 Introduction 

Entropy elasticity has been widely applied to empower polymers with shape-

memory functionality for various applications such as actuators, sensors and biomedical 

devices.1-3  Shape memory polymers (SMPs) can exhibit an entropy-driven shape 

memory effect (SME) through recovering from a temporary, deformed shape at a low 

entropy state to a permanent, equilibrium shape at an entropically more favorable state by 

an external stimulus.4  The application of SMPs for therapeutic purposes, however, has 

been dampened by the lack of controllability of SME under restrictive clinical 

requirements.  Most SMPs can be thermally induced to undergo SME through an external 

application of heat or other actuation methods such as light, microwave or magnetic 

field.5-7  Generally these materials are deformed under a mechanical stress and then 

triggered to revert back to their original form through bulk heating past the transition 

temperature (Tt) of the material.8  Clinical hyperthermia treatments are performed at a 

maximum of 45 ˚C for less than 30 min to prevent thermal injury and significant cell 

death.9  Maintaining SMP shapes at 37 ˚C but only triggering SME at a narrow 

temperature range (37 ˚C < T < 45 ˚C) with a proper speed for clinical applications has 

been extremely challenging.  Although SMPs with transition temperatures near body 

temperature have been reported, no systems presented controllability under clinical 

                                                 
This chapter contains material modified from the following article previously published as: 
Guo Q, Bishop CJ, Meyer RA, Wilson DR, Olasov L, Schlesinger DE, Mather PT, Spicer JB, Elisseeff JH, 
Green JJ. Entanglement-based thermoplastic shape memory polymeric particles with photothermal 
actuation for biomedical application. ACS Applied Materials and Interfacesl. 2018;10(16):13333-41.  
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hyperthermia conditions at a suitable speed.10-14  As a result, the development of an SMP 

platform with a Tt in the optimal biocompatible range and the ability to be rapidly 

controlled in shapes is highly desirable to analyze the potential application of SME in 

biomedical therapeutics.   

The development of shape memory polymeric systems down to micron/submicron 

scales had been challenging until a film-stretching method recently enabled the facile 

programming of shape-memory functionality at such small scales.15-20  Most often SMPs 

of small sizes require either chemical crosslinks21 or an additional set of polymer 

domains serving as physical netpoints22 that determine the permanent shape of the 

material.  Polymer entanglements, a universal property of polymers with sufficient 

molecular weight, can also act as efficient physical netpoints.5,23  On the macroscale, 

entanglement-based shape memory has been well-recognized and used industrially to 

produce shrink films.  The use of polymer entanglements can potentially open a door for 

a broader selection of thermoplastic polymers in shape memory systems for a variety of 

applications such as biomedical applications with restrictive requirements in chemistry or 

materials modification.24  Yet no study to date has successfully implemented such a 

strategy in miniature shape memory systems probably due to processing and handling 

difficulties.     

One therapeutic application that could benefit from small-scale SMPs is the use of 

micro- and nanoparticles for drug delivery.  Recently, there has been great interest in the 

use of non-spherical micro-/nanoparticles for drug delivery applications.25,26  This is due 

to two beneficial properties exhibited by non-spherical shaped compared to spherical 

shaped particles.  The first is reduced non-specific cellular uptake.  This has been found 
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to be linked to the interaction of the particle with the cell membrane, namely the angle of 

approach.15  It has been repeatedly demonstrated that non-spherical ellipsoidal micro- and 

nanoparticles can avoid cellular uptake and phagocytosis compared to their spherical 

counterparts.16,27  The second advantageous property is the feature of increased targeted 

binding.  This is mediated by the increased surface area and radius of curvature available 

for interaction with biological surfaces.28  This feature was exploited to direct the targeted 

accumulation of nanoparticles in the lung and brain endothelium compared to spherical 

particles.18  Furthermore, it has been found that the increased targeted binding of non-

spherical artificial antigen presenting cells to T-Cells enhances the activity of the 

particles for immunomodulation.29 Reversion of an ellipsoidal to a spherical 

microparticle has been shown to increase the phagocytic rate by macrophages, but this 

particular material took hours to undergo a surface-tension driven shape switch instead of 

entropy-driven shape memory response with controls in the shapes at specific 

temperatures.17   

There is a need for new biomedical systems that can exhibit externally triggered 

changes to their physical and biological properties in a spatiotemporally controlled 

manner.  One strategy to enable spatiotemporal control over SME is through the use of a 

photothermal converter such as gold nanoparticles (AuNPs).30  AuNPs have been utilized 

in a wide variety of applications including image contrast,31 gene therapy (for co-delivery 

of DNA/siRNA32 and to assert control over expression kinetics33), and photothermal 

treatment of tumors.34  Typically, the photothermal heating process happens when free 

electrons of AuNPs are photo-excited via surface plasmon resonance and release their 

energy first through electron-phonon interactions to the gold lattice inside the AuNPs and 
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then through phonon-phonon interactions to the surrounding medium.35-37  Zhao et 

al.30,37,38 and other groups22,39,40 have recently reported that, although gold does not 

exhibit SME, it could be distributed in colloidal form throughout an SMP for 

photothermal conversion, to couple the spatiotemporally precise application of laser 

energy to trigger SME.  Nevertheless, it was unclear if such a AuNP-based photothermal 

trigger could be applied to SMP in small scales.   

In this study, we hypothesized that the AuNPs embedded in shape memory 

particles could be plasmonically heated under continuous wave laser irradiation and then 

transfer their thermal energy to their surrounding PDLLA matrix, which could 

subsequently result in a shape memory response of the particles when the temperature of 

the PDLLA matrix increased beyond Tt.  The main objective of this study was to develop 

a micron-scale biocompatible shape memory system with both an optimal Tt within the 

human body-tolerable temperature range and a spatiotemporally controlled trigger for 

induction of SME for biomedical applications.   

9.2 Materials and Methods 

9.2.1 Hydrophobic Gold Nanoparticle Synthesis   

A modified version of Chatterjee et al.9 was used to synthesize hydrophobic gold 

nanoparticles.  More specifically, lyophilized 1,2-dioleoyl-sn-glycero-3-phosphocholine 

(Avanti Polar Lipids; DOPC) was reconstituted at 25 mg/mL in chloroform and mixed 

with toluene, forming a 250 µg/mL solution (33 mL) which was vortexed for about 10 

seconds. 5 mL of this solution put into 6 different 20 mL scintillation vials (underlying 

metal cap insert was extracted and discarded out of each cap to not reduce Au3+. 

Tetrachloroauric acid trihydrate (HAuCl4) was reconstituted in ultrapure distilled water to 
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100 mg/mL and served as a stock. 250 µL of the stock HAuCl4 solution was mixed with 

24.75 mL of ultra-pure distilled water forming a 1 mg/mL solution of HAuCl4. 2 mL of 

this 1 mg/mL solution was added to each of the 6 20 mL scintillation vials already 

containing 5 mL of the 250 µg/mL DOPC solution in toluene.  Each vial also contained a 

VWR magnetic stir bar.  Prior to placing the scintillation vials on a multi-position stir 

plate, each vial was vortexed to produce a non-transparent, and to the extent possible, a 

homogenous mixture of the aqueous and organic phases prior to adding 1 mL of sodium 

citrate tribasic dihydrate at 10 mg/mL drop-wise.  The stirring was continued for 

approximately 18 hours.  Once completed, the organic and aqueous phases were allowed 

to sufficiently separate over a few minutes and the organic toluene phases were extracted, 

mixed, and placed into a new scintillation vial.  All aqueous solvent was again taken out 

of the organic phase if phase separation occurred.  

To encapsulate the lipid-coated gold nanoparticles into the PDLLA 

microparticles, the gold nanoparticles (1 mL of gold nanoparticles in toluene in 1.5 mL 

tubes; total of 5 mL) were centrifuged at 16,000g.  All but the pellets were aspirated (975 

µL) and replaced with an equal volume of dichloromethane (DCM).  The gold 

nanoparticles were sonicated (Misonix) to become a homogenous mixture in the DCM. 

The 5 mL of gold nanoparticles in DCM were used directly in the single-emulsion 

encapsulation during PDLLA microparticle formation. 

9.2.2 PDLLA Anisotropic Microparticle Synthesis and Characterization   

PDLLA with ester endcap (Mn = 70.2 kDa, PDI = 1.95) was purchased from 

PolySciTech (Akina Inc.).  A larger molecular weight polydispersity is helpful to better 

entangle polymer chains and contribute to the shape memory effect.  Two solutions of 
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polyvinyl alcohol were made (PVA1 = 1% PVA; PVA0.5 = 0.5% PVA) in deionized 

MilliQ water. 200 mL of PVA0.5 was dispensed into a beaker with a VWR stir bar 

(spinning at 450 RPM). 100 mg of PDLLA was dissolved in 5 mL of DCM containing 

gold nanoparticles and poured into 50 mL of PVA1 while being homogenized (5000 

rpm).  For fluorescent visualization of the particles, 1 mg of Nile Red or 7-amino-4-

methyl coumarin was added to the DCM mixture.  The microparticle solution 

encapsulating gold nanoparticles was poured into the stirring PVA0.5 and stirred for an 

additional 4 hours to evaporate the organic solvent.  Subsequently, we washed the 

microparticles 3x by centrifugation at 4 °C (3000 g; 5 minutes) to remove PVA. After the 

3rd wash, the microparticles were resuspended in 1 mL of deionized water, triturated to 

avoid clumping, snap frozen in liquid nitrogen, lyophilized, and then stored dry at 4 °C or 

below until further use.   

The particles were deformed into anisotropic shapes by an automated thin film 

stretching procedure as described in Meyer et. al.20  Briefly, the particles were 

lyophilized, suspended in a solution containing 10% w/w PVA and 2% w/w glycerol, and 

then cast into a PVA film.  The film was allowed to dry overnight and mounted on 

customized aluminum blocks.  After 10 min of heating at a predetermined temperature, 

the film was loaded for 1-D stretching with stepper motors set at a strain rate of 0.2 min-1.  

The stretched film was immediately cooled at room temperature for one hour, cut from 

the grips, and dissolved in water.  The resulting particle suspension was then washed 3 

times and lyophilized prior to use. 

To characterize the microparticle size and shape, scanning electron microscopy 

was utilized.  Lyophilized particle samples were spread onto carbon tape mounted to 
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aluminum tacks.  The particles were then sputter coated with 30 nm of a gold-chromium 

alloy and imaged with a LeoFESEM.  Size was determined by ImageJ analysis of the 

resulting SEM micrographs.  Aspect ratio throughout all of the studies was determined 

through analysis of the particles and taking the ratio of the longer axis to the shorter axis.  

For the fluorescent particle image analysis, confocal imaging was completed using a 

Zeiss 780 FCS confocal microscope.   

Differential scanning calorimetry (DSC) was carried out using a DSC 8000 

(Perkin Elmer, Waltham, MA) to determine the glass transition of PDLLA particles.  The 

particles incubated in water was sealed in an aluminum pan. The DSC tests were 

performed by heating-cooling-heating between 10 °C and 90 °C at 10 °C/min.  The 

second heating trace was analyzed by Pyris Series software (Perkin Elmer) to determine 

the glass transition temperature and glass transition breadth. 

Polarized light optical microscopy (POM) was utilized to monitor polymer 

alignment in stretched microparticles.  POM studies were performed in an Olympus 

BX51 microscope equipped with 90° crossed polarizers, a HCS402 hot stage (Instec Inc.) 

and a CCD camera (QImaging).  Images were acquired using QCapture Pro software 

(QImaging) at various angles of the sample stage (i.e. 0°, 45°, 90°, 135°, 180°, 225°, 270° 

and 315°).  Shape recovery of 65 °C stretched microparticles was monitored in the hot 

stage set at 45 °C.   

9.2.3 Characterization of Gold Nanoparticles in PDLLA Microparticles 

In order to quantify the number of AuNPs within the microparticles, a standard 

curve was created; the AuNPs’ stock concentration was assessed using Beer-Lambert’s 

law41 using an extinction coefficient of 3.189 × 1010 M-1cm-1.  A standard curve was 
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created using various dilutions of the AuNPs in toluene (1 mL) with 5 mg of pure 

PDLLA microparticles solvated in 400 µL of dimethyl sulfoxide (DMSO); 1 µL of the 

total volume of 1400 µL was used to assess the absorbance via NanoDrop (Thermo 

Scientific).  When quantifying how many AuNPs there were per mg of particle, 5 mg of 4 

unknown samples were solvated in 1 mL of toluene and 400 µL of DMSO. The number 

of AuNPs/ µL of sample was interpolated with the standard curve and multiplied by 1400 

(total volume in µL) and divided by 5 mg. 

9.2.4 Laser Triggering of Shape Memory Effect   

For analysis of the temporal control of the shape memory effect, the particles 

were irradiated with a 532 nm laser at a power of 2 W distributed across a 5 mm diameter 

circular spot.  The particles were irradiated at a concentration of 4*107 particles/mL in a 

glass cuvette.  Temperature was assessed with a Fluke thermocoupling device.  After 

irradiation for the indicated period of time in the experiment, the particles were collected 

and imaged under SEM for evaluation of aspect ratio.  The measured aspect ratio (ARm) 

was then normalized to the initial aspect ratio (ARo) to give percent shape reversion 

according to the following formula: 

(𝐴𝑅𝑚 − 𝐴𝑅𝑜)

1 − 𝐴𝑅𝑜
× 100% 

 Characterization of the spatial selectivity of the shape memory effect was 

achieved through immobilization of the particles in a PEG hydrogel at a concentration of 

2*105 particles/mL PEG gel.  The hydrogel was then mounted to the laser and irradiated 

at a single circular spot approximately 5 mm in diameter for 5 minutes.  Heating of PEG 

hydrogel was tracked by imaging with an FL-IR camera.  After laser irradiation, the gel 

was imaged under confocal microscopy and individual images 200 µm in width were 
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generated and stitched together for the length of the hydrogel.  Aspect ratio was then 

quantified across the image to analyze the spatial dependence of the shape memory effect 

on the laser spot size.   

9.2.5 Cell Uptake Experiments   

Cell uptake of the particles triggered to undergo the shape memory effect was 

assessed using RAW 264.7 macrophages.  Cell uptake was evaluated using flow 

cytometry and confocal microscopy.  For flow cytometry, the cells were seeded onto a 

96-well plate at a density of 30,000 cells/well two days prior to the start of the 

experiment.  On the day of the experiment, the medium was aspirated, and medium 

containing the particles at the indicated dose was added.  Following an incubation of 4 

hours at 37 ºC the cells were washed 3 times with 1x PBS and prepared for flow 

cytometry or confocal microscopy.  For distinction of particles from cells, cells were then 

stained with carboxyfluorescein succinyl ester (CFSE) according to the manufacturer’s 

protocol.  CFSE stained cells were then removed from the plate with vigorous trituration 

and were analyzed by flow cytometry. Flow cytometry was performed using a BD Accuri 

C6 (BD Biosciences, San Jose, CA) flow cytometer with two lasers (488 and 633 nm) 

with four channels corresponding to green, yellow, red and far-red fluorescence (FL1 at 

530±15 nm, FL2 at 565±10 nm, FL3 at 610±10 nm, and FL4 at 675±12.5 nm 

respectively) in combination with a Hypercyt autosampler (Intellicyt, Albuquerque, NM).  

For confocal microscopy, the cells were cultured on a LabTek chamber slide at a 

density of 30,000 cells per well.  After 4 hours incubation time with the particles, the 

excess particles were washed away with 3 washes of 1x PBS and then the cells were 

fixed with 10% formalin for 15 minutes at room temperature.  Following fixation and 
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washing, the cells were stained with Alexa 647 phalloidin for actin visualization and 

DAPI for nuclear visualization following manufacturer protocols.  The cells were then 

imaged using a Zeiss FCS 780 confocal microscope.  Cell viability was evaluated using 

an MTS Celltiter 96 Aqueous One (Promegra, Madison, WI) cell proliferation assay 

following the manufacturer’s protocol. 

9.3 Results and Discussion 

9.3.1 Fabrication and Characterizations of Shape Memory Microparticles   

We developed a shape memory micro-system based on high molecular weight 

purely amorphous polymer, i.e. poly(D,L-lactic acid) (PDLLA), which was expected to 

only have polymer entanglements serving as physical netpoints for shape memory 

actuation.  Recently, Petisco-Ferrero et al. systematically tested the rheological properties 

of PDLLA of multiple molecular weights and observed the rubbery plateau of the 

material that confirms the entanglements of the polymer with an entanglement molecular 

weight of 5200 g/mol.42  We purposely applied this widely used biocompatible polymer 

without any chemical modifications in our shape memory system because of its having 

already been proved safety to human body for clinical translation.24  This shape memory 

system encapsulated a hydrophobically stabilized AuNP formulation as a photothermal 

trigger. 

Through stretching at low temperatures (e.g. 65 ˚C) we expected the physical 

crosslinks to remain intact and drive the SME upon heating past the transition 

temperature.  On the other hand, we hypothesized that stretching at high temperatures 

(e.g. 90 ˚C) would erase this polymer entanglement and thus the SME.  To confirm the 

presence of polymer alignment and the entropy driven mechanism of the SME, 
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microparticles stretched at either 65 ˚C or 90 ˚C were analyzed by polarized light optical 

microscopy (POM) (Figure 9.1B).  As shown in the images, the particles stretched at 65 

˚C showed strong birefringence under crossed polarizers, indicating polymer alignment 

inside the particles. In contrast, the particles stretched at 90 ˚C only exhibited light 

reflection from the particle surface, suggesting random orientation of polymer chains.  

This confirmed our theory that low temperatures would preserve the polymer 

entanglements of the particles whereas high temperatures would erase them.  

As part of the characterization process we evaluated the properties of the colloidal 

gold immobilized in the polymer matrix.  UV-Vis spectroscopy indicated that the AuNPs 

maintained their absorption peak at 530 nm even after encapsulation (Figure 9.4A).  We 

calculated the concentration of nanoparticles through analysis of absorbance and were 

able to derive a standard curve of gold nanoparticle concentration vs. absorbance (Figure 

9.4B).  Using this standard we determined the concentration of the gold in the 

microparticles to be 1.63x1010 AuNPs per mg of loaded PDLLA microparticles.  We 

further characterized the gold content of the microparticles through transmission electron 

microscopy (TEM) (Figure 9.5).  There were approximately 0.58 ng of AuNPs per mg of 

PDLLA.  Each AuNP and PDLLA microparticle had a mass of approximately 25 

attograms (x10-18) and 98 pg, respectively, constituting approximately 0.041% of AuNPs 

by mass.  Each PDLLA microparticle contained approximately 1.6x103 AuNPs.  The 

lower magnification images (Figure 9.6A-B) were unable to distinguish AuNP 

encapsulation compared to PDLLA microparticles without AuNPs (Figure 9.7) which 

were used to prepare the UV-Vis standard curve (Figure 9.4B).  However, the higher 

magnification images made it possible to identify individual AuNPs in the microparticles 
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(Figure 9.6C-D, red arrows).  As expected, the diameters of the encapsulated AuNPs 

within the PDLLA microparticles were not as apparent and difficult to distinguish in 

comparison to Figure 9.5 which lead to a slight increase in the calculated diameters from 

14 ± 6 nm (Figure 9.5) to 15 ± 3 nm (Figure 9.6A-B) via ImageJ (Fiji).  These 

experiments confirmed that we could successfully encapsulate absorptive colloidal gold 

at high concentrations in our particles without significant aggregation. 

9.3.2 Direct Thermal Actuation of Shape Memory Microparticles   

Upon successful synthesis and characterization of the shape memory materials, 

we next turned to analyze the entropy-driven SME property of the particles.  We first 

assessed the SME through bulk heating of the media to determine the window of trigger 

temperatures before the surface tension effects drive the particles back to spheres.  As 

illustrated by aspect ratio analysis vs. time (Figure 9.8) for different bulk heating 

temperatures, the low temperature stretched particles maintained their shapes at 37 ˚C 

over 24 h and completely recovered their shapes at all temperatures tested above 37 ˚C 

(i.e. 40 ˚C, 45 ˚C, and 50 ˚C) within 30 min.  Therefore, these particles could rapidly 

undergo SME even at a temperature slightly below Tg (i.e. 41.3 ˚C).  This can be 

explained by the small-sized shape memory system in micron scale and the shape 

recovery temperature still above the initiation temperature of glass transition (i.e. 39 ˚C).  

Furthermore, we observed that the birefringence of these particles gradually decreased 

with time during shape recovery process, which confirms our hypothesis of polymer 

alignment as the driving force for SME.  However, the high temperature stretched 

particles did not begin to revert until longer incubations at 45 ˚C and 50 ˚C.  This 

provided us with an optimal transition temperature range for entropy-driven shape 
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memory that is within the biocompatible temperature range.  Of note, while the high 

temperature stretched particles not showing a shape memory effect could naturally 

deform back to spheres over longer time scales of days due to surface tension, the shape 

memory effect remarkably increased the shape recovery rate at a relevant switch-like 

speed within the body-compatible temperature range. This shape change to the 

thermodynamically favored sphere obviates challenges with fixity and recovery that are 

typically present in macroscopic shape memory systems. 

9.3.3 Photothermal Actuation of Shape Memory Microparticles   

With verification of the predicted SME in a bulk heating scenario, we then 

evaluated the capability for the laser to trigger the shape memory effect through 

photothermal heating of the gold laden microparticles in bulk media.  In order to verify 

entropy driven SME, we compared the 65 ˚C low temperature stretched and the 90 ˚C 

high temperature stretched microparticles for analysis of SME by photothermal heating.  

We irradiated the particles for 1-5 min using the 532 nm laser at 2 W focused on a 

circular spot, 5 mm in diameter (Figure 9.9A-H).  As shown in the SEM images of the 

irradiated particles, the low temperature stretched particles underwent visibly significant 

SME within 3 min of the start of laser irradiation (Figure 9.9A-D).  However, there was 

almost no shape change or SME observed in the high temperature stretched particles for 

that same time period as well as throughout the entire 5 min experiment (Figure 9.9E-H).  

We further characterized this SME through aspect ratio analysis of the irradiated 

particles.  As shown in Figure 9.9I, the low temperature stretched particles showed near 

complete reversion to an aspect ratio of 1 (spherical), whereas the high temperature 

stretched particles maintained a high aspect ratio (>3) throughout the duration of the 
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heating.  Following a percent reversion normalization equation we determined that the 

low temperature particles reverted nearly 100% back to their spherical form whereas the 

high temperature stretched particles showed approximately 10-20% reversion over the 

duration of the experiment (Figure 9.9J).  In order to verify this difference was not due 

to differential photothermal heating of the particles stretched at different temperatures, 

we tracked the bulk media temperature during the experiment and found the temperatures 

for the two particle sets to be identical with respect to time of irradiation (Figure 9.9K). 

9.3.4 Spatiotemporal Control of Shape Memory Recovery   

Upon verification that SME could be triggered by photothermal heating, we then 

sought to characterize the spatial resolution of the SME with respect to the laser 

irradiation spot.  To accomplish this goal, we formulated the gold laden microparticles 

with a fluorophore, stretched them at a low temperature, and immobilized them in an 

artificial extracellular matrix made of a poly(ethylene glycol) (PEG) hydrogel.  The gel 

was subsequently irradiated and determined to undergo successful heating based on IR 

imaging of the matrix (Figure 9.10A). After irradiation for 5 min, we imaged the gel 

under confocal microscopy to analyze the aspect ratio of the particles with respect to the 

spatial dimension.  We found that the region of the gel directly irradiated with the laser 

successfully exhibited SME as evidenced by reversion back to spherical form (Figure 

9.10B).  Immediately outside of the irradiation region, there was partial SME observed in 

a 1 mm region on either side, however the reversion to spherical form was not complete 

most likely suggesting this was the result of the thermal conductivity of the matrix.  

Outside of this small 1 mm region, there was little or no SME observed suggesting the 

laser spot size specifies the spatial resolution of the SME.  This is also illustrated in 
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Figure 3c.  As shown in these confocal micrographs, there was a clear visual transition 

from the region that was not irradiated (yielding only high aspect ratio particles) and the 

region that was irradiated (yielding only spherical particles).  This confirms that not only 

is the SME able to be triggered by a laser in the biocompatible temperature range, but 

also the SME is restricted (with 1 mm resolution) to the irradiated area of the laser.  

9.3.5 Shape Memory Response Impacts Macrophage Phagocytosis   

One of the advantageous properties of an anisotropic over a spherical equivalent 

is that due to the entropic interaction of the particle with the cell membrane, there is less 

non-specific endocytosis and phagocytosis of ellipsoidal particles compared to spherical 

particles and hence, slower elimination from the body.27  This was recently exploited in 

shape-switching particles that are triggered to revert back to spherical form to enable 

more rapid phagocytosis of the particles.17  We wanted to determine if the thermally 

triggered SME in the gold laden microparticles could render the particles more 

susceptible to phagocytosis by macrophages.  To confirm that SME could be observed in 

the fluorophore loaded particles, we did confocal imaging of bulk heated particles 

stretched at either low or high temperatures to confirm SME.  As shown in Figure 

9.11A-B, the low temperature stretched particles exhibited complete reversion to 

spherical form whereas the high temperature stretched particles had no reversion (for full 

time course, see Figure 9.12).  Upon addition of the particles to the macrophages, we 

triggered the SME through short term (15 min) bulk heating of the cells to 45 ˚C.  As 

shown in the confocal micrographs of cells with low temperature stretched particles, this 

heating resulted in spherical particles that could be more readily phagocytosed than the 

ellipsoidal high temperature stretched particles (Figure 9.11C-D).  This was 
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quantitatively assessed using flow cytometry to determine the percent uptake of the 

particles (Figure 9.11E) and the geometric fluorescent signal mean for comparison of 

how many particles were taken up per cell (Figure 9.11F).  As shown, there was 

statistically significant reduction in both the percent uptake positive and geometric mean 

for high temperature stretched, ellipsoidal microparticles compared to the SME triggered 

low temperature stretched particles.  Both bulk heated and laser triggered shape memory 

microparticles demonstrated similar effect in controlling macrophage response.  This 

observed trend was significant for a variety of doses ranging from 3.75 - 25 μg 

particles/30,000 cells.  We also assessed the viability of the macrophages to determine if 

the particles exerted any toxicity on the cells.  As shown in Figure 9.13, the viability was 

unaltered over a wide range of doses compared to a no treatment control. 

9.4 Conclusions 

In this study, we have developed a novel shape memory system with entropy-

driven SME that can be triggered at biocompatible temperatures in a spatiotemporally 

controlled manner.  To our knowledge, this is the first instance of a material bearing all of 

these properties and this biotechnology could enable applications ranging from precise 

triggered drug delivery to switchable biomedical microdevices.  We have verified that 

these particles possess physical polymeric alignment, driving the entropy based SME.  

The particles can be triggered to change shape upon irradiation and photothermal heating 

of encapsulated AuNPs.  This triggering is both specific to the spot of irradiation, and the 

time of irradiation thus establishing spatiotemporal control over the SME.  Furthermore, 

this material exhibits SME when the bulk media temperature is 40 ˚C.  This is 

significantly below temperatures at which thermal injury occurs, rendering these particles 
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fully biocompatible.  This technology and related platforms can enable the once elusive 

union of shape memory materials and biomedical applications.               
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9.5 Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.1: Polymeric particle entropy-driven shape memory effect. (A) Poly (D,L lactic 
acid) particles were fabricated encapsulating hydrophobic lipid stabilized gold 
nanoparticles.  Due to high molecular weight of the polymer in use, physical crosslinks of 
the polymer were present in the sample.  Polymeric particles are stretched to anisotropic 
shapes under low or high temperatures and then the entropy driven shape memory effect 
was triggered by thermal means.  Low temperature stretched particles assumed their 
original shape whereas high temperature stretched particles did not. (B) Polymer 
alignment was observed in POM images of 65 ºC stretched particles to a higher degree as 
opposed to 90 ºC stretched particles.  This indicates that polymer orientation between 
polymer entanglements maintained in the low-temperature stretched particles, which can 
serve as driving force to trigger shape memory effect, while disentanglement of polymers 
happened and polymer orientation were lost in the high-temperature stretched particles. 
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Figure 9.2: SEM characterization of (A) Spherical and (B) Non-spherical particles. (C) 
Size characterization of the spherical particles demonstrates a mean size of approximately 
5 μm.  
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Figure 9.3: DSC second heating curve of PDLLA particles incubated in water. 
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Figure 9.4: (A) Absorbance spectrum and (B) and standard curve of AuNPs (various 
concentrations in 1 mL of toluene) in the presence of pure PDLLA microparticles (5 mg 
in 400 µL of DMSO). The gold nanoparticles were present at 1.63x1010 particles/mg of 
PDLLA microparticles (including the mass of AuNPs loaded) and the absorbance peak 
was 530 nm. 
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Figure 9.5: TEM characterization of DOPC AuNPs (left) and histogram (right) of 
diameters observed (14 ± 6 nm). 
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Figure 9.6: (A) Spherical and (B) non-spherical PDLLA microparticles encapsulating 
gold nanoparticles were imaged under TEM to analyze the presence of gold 
nanoparticles.  Zoomed in pictures of the edges (area of minimal polymer TEM image 
interference) of (C) Spherical and (D) Stretched microparticles demonstrate the presence 
of gold nanoparticles (red arrows) encapsulated within the polymeric microparticles.  
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Figure 9.7: PDLLA microparticles without encapsulated AuNPs used for the background 
in the calibration curve. 
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Figure 9.8: Aspect ratio analysis from SEM of particles stretched at 65 ˚C or 90 ˚C 
heated at (A) 40 ˚C, (B) 45 ˚C or (C) 50 ˚C for the indicated time points demonstrates 
preferential reversion back to spherical form by the particles stretched at a lower 
temperature.  Error bars are the standard error of 20 particle replicates.  
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Figure 9.9: Thermoplastic shape memory effect can be thermally triggered by light in a 
temporally controlled fashion.  Particles were loaded with hydrophobic gold 
nanoparticles and stretched at either (A-D) 65 ˚C or (E-H) 90 ˚C to generate ellipsoidal 
microparticles.  The particles were then triggered using laser light at 532 nm for (A, E) 1 
min, (B, F) 2 min, (C, G) 3 min, or (D, H) 5 min.  The particles deformed at 65 ˚C 
exhibited full shape reversion to spherical forms whereas the particles stretched at 90 ˚C 
did not.  (I) Aspect ratio analysis and (J) percent reversion of SEM images demonstrate 
quantitatively the shape memory effect observed only in particles stretched at 65 ˚C.  (K) 
The temperature for both 65 ˚C and 90 ˚C stretched particle media during laser heating 
was identical.  Error bars represent the standard error of 20 individual particle replicates. 
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Figure 9.10: Shape memory is spatiotemporally controlled by laser irradiation.  
Ellipsoidal microparticles encapsulating gold nanoparticles were immobilized in a PEG 
hydrogel and irradiated with a laser at 532 nm.  (A) The PEG hydrogel exhibited heating 
during the laser irradiation process as evidenced by IR imaging.  The temperature 
measured at the center of the crosshairs was 40 ˚C.  (B) Particles were subsequently 
imaged by confocal microscopy and aspect ratio analysis was conducted across the width 
of the laser irradiation spot.  Aspect ratio reversion was detected only within the 5 mm 
diameter of the laser spot with a 1 mm transition zone on either side.  (C) Confocal 
images of (1) particles not irradiated, (2) particles in transition zone, (3) particles in 
irradiation zone, (4) zoomed out transition zone illustrate qualitatively the phenomenon 
illustrated in (B).  Error bars represent the standard error of 20 individual particle 
replicates. Scale bars are 20 μm for images (C1-C3) and 100 μm for image (C4). 
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Figure 9.11: Phagocytic cells demonstrate different responses to differentially stretched 
particles that are triggered by the laser.  Confocal images of a mixed population of bulk 
microparticles heated at 45 ˚C for (A) 0 min and (B) 15 min.  For full time course, see 
Figure S8.  65 ˚C stretched particles (blue) demonstrate full reversion over the heating 
whereas 90 ˚C stretched particles (magenta) demonstrate no reversion to their spherical 
form.  (C) 65 ˚C stretched and (D) 90 ˚C stretched particles were cultured with 
macrophages first heated at 42 ˚C for 15 min to trigger SME and then incubated at 37 ˚C 
for 4 hours.  Confocal imaging demonstrates that there is a preference of macrophages to 
phagocytically take up spherical particles in high quantities compared to non-spherical 
particles.  Blue = DAPI, Red = Actin, Green = Particles.  (E) Percent positive uptake and 
(F) particle fluorescence geometric mean as analyzed by flow cytometry demonstrates 
that the 65 ºC stretched laser triggered shape memory particles were taken up at a higher 
percentage of the course of 4 hours.  Error bars are standard error of n = 4 replicates. 
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Figure 9.12: Time course images taken of mixed particles heated at 45 ˚C for the 
indicated times.  Blue particles were stretched at 65 ˚C and magenta particles were 
stretched at 90 ˚C.  Images show complete reversion to spherical form over the 30 min 
period of heating for the 65 ˚C stretched particles, and no reversion of shape for the 90 ˚C 
stretched particles.   
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Figure 9.13:  Cell viability is not altered by exposure of the cell to various doses.  Cell 
metabolic rate was assessed after 4 hr. of exposure to the particles by MTS assay.  The 
rates were then normalized to untreated cells to give percent metabolic activity.  No 
significant reduction was noted.  Error bars are standard error of n = 4 replicates.  
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Chapter 10: Noninvasive Targeted Transcranial Neuromodulation via 

Focused Ultrasound Gated Drug Release from Nanoemulsions 8 

10.1 Introduction 

A long sought after goal of both clinical and basic neuroscience is the ability to 

focally modulate the activity of a spatially-delimited region of the brain, noninvasively, 

and in a safe and reversible manner.1 Recent advances in MR-guided focused ultrasound 

(MRgFUS) suggest that this modality could meet this challenge and enable clinically 

translatable neuromodulation.2-5 However, the mechanism by which focused ultrasound 

(FUS) may directly induce changes in neural activity is unknown and is a matter of 

debate.5 Additionally, different studies describe divergent effects of FUS on neural 

activity with some describing net stimulatory effects3 and others describing net inhibitory 

effects.2,4 Despite the excellent robustness and reliability of focused ultrasound 

techniques it is unclear how FUS alone impacts neural activity. 

We propose an alternate strategy for FUS-mediated neuromodulation via FUS-

gated drug delivery to the brain.  This would combine the predictability of the FUS-

induced pressure field with the robustness of pharmacology.  Recent application of FUS 

for central nervous system (CNS) drug delivery has enabled advances in the local 

delivery of nanoparticle-based therapeutics for varied applications including glioma 

treatment,6 neurological disorders,7 and neuroregeneration.8 Although promising, all of 

these prior nanoparticle-based strategies depend on the transient physical opening of the 

                                                 
This chapter contains material modified from the following article previously published as: 
Airan RD, Meyer RA, Ellens NPK, Rhodes KR, Farahani K, Pomper MG, Kadam SD, Green JJ. 
Noninvasive targeted transcranial neuromodulation via focused ultrasound gated drug release from 
nanoemulsions. Nano Lett. 2017:17(2);652-9.  
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blood-brain barrier (BBB) via ultrasound-induced cavitation of microbubbles. 

Additionally, a recent set of studies has tried to enable robust pharmacological 

neuromodulation via FUS-mediated BBB opening.7  The BBB is a crucial component of 

the CNS as it maintains the optimal microenvironment for neuronal activity and protects 

the neurons from many endogenous and exogenous neurotoxins that are commonly found 

in circulation.9-11 

We therefore focus on delivery of agents that may readily cross the blood-brain 

barrier, and propose to use focused ultrasound-mediated drug uncaging from nanoparticle 

carriers, with the ultrasound focusing providing a limit on the spatial extent of the drug-

based neuromodulation.  We then rely upon metabolism and redistribution of the drug to 

limit the temporal extent of this activity.  While this limits us to small molecule lipophilic 

agents that are known to cross the blood brain barrier passively without the need for 

disruption,11 many if not most drugs of neurological and psychiatric interest fall under 

this umbrella.  In practice, after an intravenous infusion of the nanoparticles inertly labels 

the blood pool of the subject, FUS application releases the drug in the vascular bed of the 

tissue of interest, in a region that is spatially limited by the size of the ultrasound focus. 

The drug would then cross the intact blood-brain barrier and act upon the brain 

parenchyma during a first-pass of perfusion.  Given the availability of FDA-approved 

clinical MRgFUS systems that allow noninvasive transcranial focal sonication of 

millimeter sized regions of the brain,12,13 this strategy could potentially allow focal, 

noninvasive, and safe neuromodulation with an immediate path towards clinical 

translation.  
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 We have generated ultrasound-gated nanoparticle carriers of the small molecule 

anesthetic propofol.  These particles are modified forms of prior described ultrasound-

gated “phase-change” particles that were originally designed for chemotherapeutic 

delivery.14 These particles are made of a biodegradable, biocompatible polyethylene 

glycol-b-polycaprolactone block copolymer matrix encapsulating a liquid 

perfluorocarbon core and the drug of interest.  Under sonication, the perfluorocarbon core 

undergoes a liquid to gas phase transition, thereby releasing the drug cargo (Figure 10.1). 

Perfluoropentane was chosen for the perfluorocarbon core given its relatively high 

boiling point while encapsulated that would prevent spontaneous phase change.15 This 

amphiphilic polyester block co-polymer was chosen for the emulsifying agent as polymer 

perfluorocarbon nanoemulsions have been demonstrated to be more stable in general than 

analogous lipid nanoemulsions.16 We have established the efficacy of drug release from 

these particles in vitro, as well as the in vivo biodistribution and clearance kinetics of the 

nanoparticles. As a proof-of-principle, we have further demonstrated the potency of the 

nanoparticles to modulate neural activity in vivo by using them to inducibly silence 

seizure activity in an acute rat seizure model.  We have then demonstrated the safety of 

this technique by observing no appreciable injury nor BBB opening within the sonicated 

brain.  As the components of these particles have been regarded as safe when utilized in 

other clinical applications,17 these particles may be able to be readily combined with 

existent clinical transcranial MRgFUS systems12,13 to enable clinical translation.  Overall, 

this strategy provides a neuromodulation approach that has an immediate pathway to 

clinical translation; has a well-defined mechanism of action via the drug being delivered; 

does not rely upon invasive neurosurgery, gene therapy, or a deleterious action upon the 
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brain; and is generalizable for neuromodulation via any drug that these particles could 

encapsulate.  Indeed, this approach provides a pathway for clinical neuromodulation that 

is noninvasive, image-guided, and targeted to spatially compact regions of the brain, with 

the patient otherwise able to participate in a neuropsychological assessment. 

10.2 Materials and Methods 

10.2.1 Nanoparticle formulation and characterization  

Adapting methods of prior reports of phase change nanoparticles,14,18 micelles of 

polymer (50 mg; polyethylene glycol-b-polycaprolactone, PEG-PCL; MW 2000:2000 Da 

) and propofol (5 mg) were made by dissolving each into 1 mL of anhydrous 

tetrohydrofuran (THF), then adding 1 mL of PBS, mixing, and then vacuum evaporation 

of the THF overnight.  Micelles were then diluted 3:10 in PBS and perfluoropentane 

(PFP) was added to a net 1:4 polymer:PFP (w/v) ratio.  To emulsify the PFP, the mixture 

was sonicated in 1 mL volumes with an immersion micro-tip sonicator operating at 20 

kHz center frequency (Model VCX500, Sonics and Materials Inc.; Newton, CT) operated 

at 30% maximum amplitude for 30 sec.  Free polymer and propofol were then removed 

via centrifugation at 5,000 rcf for 5 min, then removal of the supernatant, and then 

resuspension in fresh PBS.  Centrifugation/resuspension was completed twice with the 

final resuspension at 700 µL.  Then mixture was then mixed with an equivalent volume 

of hexane to extract residual free propofol, and 650 µL of the aqueous phase was 

collected and diluted with an additional 350 µL PBS.  Particle size was determined with 

nanoparticle tracking analysis via NanoSight (Malvern Instruments, Worcestershire, UK). 

For in vivo animal experiments, the above process was completed using sterile technique 

in cell culture hoods, with sterile reagents.  For biodistribution experiments, 1 mg of a 
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custom hydrophobic infrared fluorescent dye (IR800, LICOR Biosciences, Lincoln, NE) 

was included in the original micelle mixture (50:1 polymer:dye ratio w/w).  To evaluate 

the drug content in the nanoparticles, 100 µL of the nanoparticles were added to 900 µL 

of dimethyl sulfoxide (DMSO) to dissolve the polymer, PFP, and drug.  The sample was 

then evaluated for fluorescence at 280 ex/310 em on a BioTek Synergy 2 plate reader 

(BioTek; Winooshi, VT), and quantified for propofol using a standard curve of propofol 

in DMSO.  This concentration of drug/mL of nanoparticles was then normalized to the 

amount of drug initially added to the PFP/micelle mixture to derive the percent 

encapsulation efficiency.  

To test particle release efficacy in vitro, the particles were sonicated by loading 

into a custom designed chamber and sonicated using a focused ultrasound transducer (1 

MHz center frequency; RK-300, FUS Instruments, Toronto, CA) with 10, 50, 100, or 150 

ms bursts at 0.5 Hz burst frequency for 2 min (60 bursts) at either 0.5, 1.0, or 1.5 MPa 

estimated peak in situ pressure.  Samples were loaded as 200 µL with a layer of 100 µL 

of hexane placed on top of the aqueous phase to simulate the lipophilic sink of the brain 

parenchyma. Following FUS, 50 µL of the hexane phase was removed without disturbing 

the aqueous layer, and this was diluted by 100 µL hexane.  The propofol concentration 

was quantified by UV fluorescence at 280 ex/310 em and compared to a standard curve 

of propofol in hexane.   

10.2.2 Animals  

All procedures included in this study were approved by the Johns Hopkins 

IACUC. Male Fischer 344 rats (150-200 gm weight; Charles River Laboratories, 

Wilmington, MA) were used throughout these experiments.   
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10.2.3 Biodistribution  

For biodistribution experiments, propofol-loaded particles doped with an infrared  

fluorescent dye with maximum excitation of 770 nm and emission at 800 nm (LICOR 

Biosciences; Lincoln, NE) were prepared as described above under sterile conditions. 

These particles were administered intravenously via a 24 g tail vein catheter to rats (N=4) 

in a total volume of 1 ml.  

Timed retro-orbital blood samples were acquired in capillary tubes at 10 min, 20 

min, 30 min, 40 min, 2 hr, 4 hr, and 8 hr. and split into two volumes.  Whole blood 

sample fluorescence was assessed using a LICOR Pearl Impulse Imager (LICOR 

Biosciences; Lincoln, NE) and quantification was completed using regions of interest of 

the same size across samples, drawn to be within the capillary tube.  As second volume of 

each sample was centrifuged in a microcentrifuge for a total of 10 min.  The serum 

fraction from these samples were then collected and their fluorescence was quantified 

similar to the whole-blood samples.  After the 24 h blood sample timepoint, animals were 

euthanized while under isoflurane anesthesia via cervical dislocation, and the major non-

bowel organs were harvested.  Organ fluorescence was also assessed via the LICOR Pearl 

Impulse Imager and quantified using regions of interest of the same size drawn to be 

within the image of each organ.   

10.2.4 Seizure model, EEG acquisition and analysis  

Rats were weighed and administered ketamine/xylazine (85/13 mg/kg) 

intraperitoneally (IP) for anesthesia.  A 24 g tail vein cannula was placed. The dorsal fur 

was removed via electrical clipper and then a chemical depilatory (Veet, RB Inc, 

purchased through Amazon).  This skin was then washed with saline and isopropanol. 
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Three subdermal silver EEG electrodes (1 recording, 1 reference, and 1 ground) were 

placed overlying the parietal cortex with bregma as a reference.  The silver electrodes 

(IVES EEG; Model # SWE-L25 – MA, USA) were implanted and subdermally fixed 

with minimal adhesive.   

The animal was placed supine on the bed of a focused ultrasound transducer (1 

MHz center frequency; RK300, FUS Instruments, Toronto, CA), with ultrasound gel used 

to couple the dorsal scalp to a Kapton membrane pad containing degassed water, which 

was itself coupled to the ultrasound transducer with degassed water.  The head orientation 

and position was fixed with a vendor provided bite bar and nose cone integrated with the 

transducer bed, via which supplemental oxygen was provided at 2 L/min.  The sub-

dermal electrodes were then connected to a tethered preamplifier and commutator.  The 

lead wires were placed to ensure that they did not cross the central dorsal scalp to allow 

for ultrasound transmission.  EEG recordings and synchronous video data were acquired 

using Sirenia Acquisition software (Pinnacle Technology Inc. Kansas, USA) according to 

previously established protocols.19,20 EEG files were recorded in the EDF format.  Data 

were sampled at 400 Hz with pre-amplifier gain of 100 and bandpass filtered filters 

between 1-60 Hz to remove ambient noise.   

Following acquisition of an EEG baseline of 5-10 min, animals were administered 

the chemoconvulsant pentylenetetrazole (PTZ) 45 mg/kg IP.21 Animals were monitored 

via real-time EEG and visual inspection for evidence of convulsive and seizure activity. 

Repeat administration of 45 mg/kg IP doses of PTZ were administered until clear seizure 

activity was noted by both visual inspection (clear tonic-clonic limb twitching) and real-

time EEG, within 5 min of the last PTZ dose.  Animals required 2-4 doses of 45mg/kg 
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PTZ to achieve this state in this study.  Animals were then administered the indicated 

sterile particles in 1 mL total volume intravenously as a slow bolus with a 100 µL sterile 

saline flush.  After several minutes to allow for stabilization of the EEG trace following 

any handling-related seizure activity and post-ictal depression, at least 5 min of a new 

EEG baseline was acquired.  Focused ultrasound was then applied with 1.0 MPa 

estimated peak in situ pressure (estimated as in O’Reilly et al.22) in 50 ms bursts 

delivered every 1 sec for a total of 1 min (60 bursts) delivered to each of two points 2.5 

mm to the left and right of midline, 15 mm caudal to the eyes, which translates to 

approximately 5 mm caudal to bregma.  10 min of EEG traces were then acquired. Then, 

if convulsive/seizure activity persisted, FUS was applied as above except with 1.5 MPa 

of estimated peak in situ pressure.  Two animals that received propofol particles did not 

have appreciable seizure activity after the first FUS application at 1.0 MPa and did not 

receive FUS at 1.5 MPa peak in situ pressure.  After 10 min more of EEG trace 

acquisition, an adequate depth of anesthesia was confirmed and the animal was 

euthanized via perfusion fixation or cervical dislocation.  Perfused animal brains were 

then harvested.  Throughout this procedure, ketamine/xylazine anesthesia depth was 

confirmed via toe pinch, and if a visible toe pinch response was present then a repeat 

dose of the same amount of ketamine/xylazine was given.  However, if seizure induction 

with PTZ had been completed, and the animal was evidently waking from anesthesia, the 

animal was excluded from further experimentation.  An electrical artifact from 

unshielded components of the FUS system precluded EEG analysis during FUS 

applications.  
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For EEG analysis, using Sirenia Sleep software (Pinnacle Technology Inc. 

Kansas, USA), automated spectral analysis was completed with total and theta band (6-12 

Hz) EEG power calculated in 10 s bins of the raw EEG trace.  Power values greater than 

10 S.D. beyond the mean trace values were considered artefactual outliers and removed 

from subsequent analysis.  Each power time course was normalized by its average power 

within the three minutes prior to FUS application.  Raw, not normalized total baseline 

power prior to FUS administration was 586.8 +/- 174.4 µV2/s (mean +/- s.e.m.) for 

propofol and 495.3 +/- 141.0 µV2/s for blank animals, with no statistical significance for 

this comparison.  Normalized total power values over a 5-minute period prior to FUS 

application were 1.037 +/- 0.054 for propofol and 1.014 +/- 0.061 for blank animals, with 

no statistical significance for this comparison.  

10.2.5 Ex vivo MRI  

Fixed brains harvested following EEG/FUS experiments were scanned while 

submerged in fixative on a 17.6 T MRI (Bruker 750 MHz; Billerica, MA) in axial and 

coronal planes covering the whole brain using flip angle = 180, effective 

TE/TR=12.8/5000 ms, RARE factor=4, matrix = 128 x 128, FOV = 20 x 20 mm, slice 

thickness = 1 mm.  All MRI studies were reviewed by a board certified radiologist for 

evidence of parenchymal damage.  

10.2.6 Histology  

Following ex vivo MRI, fixed brains were transferred to a 15% sucrose solution 

for 3 days, then a 30% sucrose solution for 2 days and then flash frozen with dry ice and 

stored at -80 ºC.  Brains were then sectioned in the coronal plane at 40 µm thickness 

using a cryotome (Leica, Buffalo Grove, IL) over a 2 mm span centered at the expected 
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FUS sonication site.  Fixed frozen sections were mounted on Super Frost Plus glass slides 

(VWR, Radnor, PA).  Slides were stained with Cresyl Violet and imaged under bright 

field and fluorescence on a MCID 7.0 Elite (InterFocus Imaging, Ltd., Cambridge, UK) 

at coordinates matching the in vivo FUS targets.  All acquired sections were reviewed for 

evidence of damage within the parenchyma that would suggest FUS or particle mediated 

injury.  

10.2.7 In vivo MRI and Serum Propofol Quantification  

In a separate cohort, a tail vein catheter was placed, ketamine/xylazine anesthesia 

was induced, supplemental oxygen was provided, and propofol-loaded particles were 

administered intravenously. Using a 11.7T MRI (Bruker, N Billerica, MA), T2-weighted 

and T1-weighted scans were completed.  Parameters for T2 scans were flip angle = 90, 

effective TE/TR=30/2500 ms, RARE factor=8, matrix = 128 x 128, FOV = 35 x 35 mm, 

slice thickness = 1 mm.  Parameters for T1 scans were flip angle = 90, effective 

TE/TR=5.5/1500 ms, RARE factor=4, matrix = 256 x 256, FOV = 35 x 35 mm, slice 

thickness = 1 mm.  Then sonication was delivered to the same targets as the EEG 

experiments using 1.0 MPa estimated in situ pressure, delivered in 50 ms bursts, 1 burst 

per focus at 1 Hz burst frequency for 60 sec. Magnevist (0.2 µl/gm; Bayer, Whippany, 

NJ) was administered intravenously.  The T1-weighted MRI was repeated post contrast 

administration to assess for BBB opening.  All MRI images were reviewed by a board-

certified radiologist for evidence of parenchymal damage.  

To quantify residual propofol in the bloodstream of the rats after particle and FUS  

administration, timed retro-orbital blood samples were collected from rats into 

heparinized tubes 1 minute after particle injection, 1 minute after sonication, and 10 
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minutes after sonication.  Blood was centrifuged at 5,000 rcf for 5 minutes to separate out 

the serum.  Propofol concentration in serum was then quantified following the method 

reported in Cussonneau et. al. with some modification.23  Serum samples were mixed 

with an equal volume of a 600mg/L solution of thymol in acetonitrile and centrifuged at 

2,000 rcf for 10 minutes.  100 µL of the supernatants were taken for HPLC.  Separation 

and propofol quantification was performed using a Waters 600 HPLC System (Waters; 

Milford, MA).  The stationary phase consisted of an HC-C18(2) (250 mm × 4.6 mm, 5 

um) column (Agilent Technologies; Santa Clara, CA), and the mobile phase utilized a 

ratio of 65:35 (v/v) acetonitrile to water.  Thymol was used as an internal standard.  A 10 

µL injection volume, 1 mL/min flow rate, and 25 minute separation time were used for 

sample separation.  

Propofol standards were prepared by diluting propofol in serum and mixing with 

an equal volume of 600 mg/L thymol in acetonitrile.  The standard curve was generated 

by plotting the peak area ratio of propofol to thymol as a function of propofol 

concentration at an absorbance wavelength of 270 nm.  The propofol concentration in the 

bloodstream at the time points was quantified using the standard curve.   

10.3 Results and Discussion 

10.3.1 In Vitro Characterization of Nanoemulsion Properties 

Particles that encapsulated propofol with a liquid perfluorocarbon core and a 

biodegradable, biocompatible polymer coating were produced (Figure 10.1) and sized 

via nanoparticle tracking analysis (Figure 10.2C).  There was a single nano-scale peak of 

320 +/- 150 nm (mean +/- S.D).  Encapsulation efficiency of the propofol was 11.8% +/- 

1.2% (mean +/- S.D) yielding an encapsulated 177 µg +/- 19 µg propofol per mL of 
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particles.  In vitro particle release efficacy was assessed by focused ultrasound applied at 

1 MHz center frequency in short continuous bursts with 0.5 Hz burst frequency for a total 

of 2 min, with varying peak in situ pressure and the individual burst length – the short 

amount of time that sonication is applied continuously.  The amount of released propofol 

was assessed by extraction into a hexane sink (Figure 10.2A) and quantified via UV 

fluorescence.  There was a dose response evident for propofol release with peak in situ 

pressures past a threshold of 0.5 MPa.  For burst length, a release threshold of 10 ms was 

present, with saturation of a dose response between 50-100 ms (Figure 10.2B). Particles 

kept in storage and in vivo-like conditions for two hours followed by sonication at room 

temperature showed intact release ability, although release efficacy was reduced after two 

hours of incubation at room and in vivo temperatures (Figure 10.2D), possibly due to 

diffusion of the perfluoropentane (PFP) from the core of the particles with higher 

temperature incubation. 

10.3.2 In Vivo Pharmacokinetics of the Nanoemulsions   

To evaluate the in vivo biodistribution and intra-vascular residence time of the 

nanoparticles, the particles were initially doped with a custom synthesized hydrophobic 

dye.  Following intravenous administration of these doped nanoparticles, timed blood 

samples demonstrated that the whole-blood fluorescence has a decay profile that is 

faithfully characterized with a double exponential decay model (Figure 10.3A).  The 

initial phase decay half-life was 8.8 min and the second phase decay half-life was 270 

min.  Notably, the whole blood samples were expected to contain both intact particles and 

free and micelle-bound portions of the dye.  The serum of these samples, which would 

contain free dye or potentially PEG-PCL micelle-bound dye after high-speed 
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centrifugation pellets the cellular and nanoparticle constituents, showed a markedly lower 

fluorescence and cleared more rapidly than the whole-blood fluorescence signal, with no 

appreciable serum fluorescence by 2 hours.  The serum sample fluorescence decayed 

with a monoexponential profile with a half-life calculated as 8 min – notably similar to 

the short half-life component of the whole blood samples.  After 24 hours from particle 

administration, there was no remnant intra-vascular signal above background. End organ 

fluorescence demonstrated no evidence of nonspecific particle binding to the brain 

(Figure 10.3B-C). Instead, the nanoparticles were principally taken up by the liver, 

spleen, and to a lesser extent the lungs, with minimal amounts in the kidney and heart. 

10.3.3 In Vivo Functional Efficacy of the Nanoemulsions  

To demonstrate and assess the functional potency of particle release in vivo, an 

acute pentylenetetrazol (PTZ)-induced status epilepticus protocol21 was developed for 

adult male Fischer 344 rats (Figure 10.4A-B).  We specifically chose this protocol and 

preparation as prior groups have used this system to assess the degree to which FUS may 

directly modulate neural activity.24 Following seizure induction and particle 

administration, there was no significant difference in baseline EEG power between 

animals receiving propofol-loaded particles and particles generated with no drug 

(‘Blank’; see Materials and Methods).  Importantly, following FUS administration first at 

1.0 MPa estimated peak in situ pressure, and then at 1.5 MPa, immediate statistically 

significant declines of total and theta band EEG power were seen in the animals receiving 

propofol-loaded particles, but not in the animals receiving blank particles (Figure 10.4C-

F).    

10.3.4 Ex Vivo Safety Profile of the Nanoemulsions 
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 Ex vivo 17.6 T MRI, in vivo 11.7 T MRI, and histology confirmed that no 

deleterious effect of FUS and particle administration was visible (Figure 10.5). In 

particular, given the high susceptibility dependence of the MRI protocol used here (note 

the blooming artifact from microscopic air bubbles along the brain periphery in Figure 

10.5A), the lack of any noted susceptibility artifact or brain parenchymal signal change 

within the sonicated region confirms the lack of petechial hemorrhage or other cavitation 

induced damage to the brain parenchyma.  Notably, the 17.6 T MRI evaluation covered 

the entire brain in both axial and coronal planes, without inter-slice gaps, ensuring that a 

complete evaluation of the parenchyma was completed for each brain.  All MRI images 

were reviewed by a board-certified neuroradiologist.  In vivo MRI also confirmed no 

damage to the brain parenchyma of particle administration and sonication, and no 

evidence of blood-brain barrier opening with this technique (Figure 10.5B).  Whole-

brain histological sections, and more focused evaluation of the sonicated dorsal dentate 

gyrus in comparison with the non-sonicated ventral dentate gyrus showed no evidence of 

parenchymal damage, and certainly no damage that could be attributed to sonication 

(Figure 10.5C). 

10.3.5 Discussion 

We have therefore described nanoparticles that allow focused ultrasound-induced 

uncaging of the small molecule anesthetic agent propofol (Figure 10.1), and 

demonstrated the in vitro and in vivo efficacy of the nanoparticles as a proof-of-principle. 

Given that these particles have a hydrodynamic diameter of approximately 320 nm, and 

that similar perfluorocarbon-based phase-change particles have been shown to increase 

diameter up to 5-6x during sonication14,18 the maximal diameter of these particles after 
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activation would be <2 µm, suggesting no substantial risk of embolization of capillaries 

with these nanoparticles and their use.  These particles release their drug cargo with dose 

responses with both peak in situ pressure and with sonication burst length (Figure 10.2). 

The threshold peak in situ pressure of 0.5 MPa and the maximal pressure of 1.5 MPa that 

were used here are both achievable by current clinical transcranial MRgFUS systems.12,13 

Additionally, the dynamic range of the burst length dose response between 10 ms and 50-

100 ms is also achievable with these clinical transcranial MRgFUS systems.  These burst 

lengths and duty cycles are unlikely to induce substantial heating of the brain 

parenchyma, especially given heat dissipation by cerebral perfusion. 

 We were able to use particles doped with an IR fluorescent dye as a surrogate 

marker of particle intravascular residence and distribution (Figure 10.3).  The serum 

fluorescence, which would contain the unbound free dye fraction, showed a much more 

rapid clearance from the blood pool than the whole-blood samples that represent both the 

particle-bound and unbound fractions.  The whole-blood fluorescence particle elimination 

profile showed two phases: an initial rapid (9 min half-life) phase that likely corresponds 

to the unbound dye fraction of the sample, and a slower (270 min half-life) phase that 

more represents the particle decay profile itself (Figure 10.3A).  This half-life would 

allow enough time for a clinically relevant intervention with these particles, but not so 

long of a particle vascular residence time that it would preclude repeat particle 

administration or would suggest a potential toxicity of extended particle residence in the 

body. The lack of particle uptake in the brain (Figure 10.3B-C) confirms that our results 

are unlikely to be due to particle crossing of the blood brain barrier, particle binding to 

the brain, or some other nonspecific action of the particles upon the brain. The finding 
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that the liver and spleen primarily take up these particles is expected as the 

reticuloendothelial system generally sequesters nano-scale material.25 

The ability of focused ultrasound to activate the intravascular propofol-loaded 

particles and yield silencing of seizure activity in vivo (Figure 10.4) indicates that these 

particles indeed can enable a potent neuromodulatory effect upon focused ultrasound 

application.  Crucially, given that there was no significant effect of sonication in rats 

receiving the blank particles, and seeing as the blank particles were otherwise constructed 

exactly the same as the propofol-loaded particles, the effects seen here are specifically 

related to the release of propofol in this system, and not a nonspecific effect of ultrasound 

or particle interaction with neural tissue, or of the individual polymer or perfluorocarbon 

particle constituents.  Given that our total encapsulation efficiency of 177 µg/ml 

translates to ~1 mg/kg in these experiments, and that a normal loading dose for anesthetic 

effect in rats is an order of magnitude higher at 10 mg/kg, it is unlikely that our results 

are due to a nonspecific leak of the propofol from the particles.  Indeed, serum propofol 

concentrations taken immediately and 10 min after sonication showed no appreciable 

propofol above the background (Figure 10.4F), indicating that this propofol release was 

likely limited to the brain, without nonspecific systemic delivery.  The detectable serum 

propofol seen immediately following particle administration likely reflects a small 

amount of free propofol in the particle batch given our method of production – although 

this level of ~0.6 µg/ml is an order of magnitude less than the typical serum 

concentrations of propofol thought to be necessary for an anesthetic effect.  Taken 

together, these results suggest that these particles indeed yield a higher local drug 

concentration in the brain following FUS application than might be suggested by the raw 
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total amount of drug delivered in the bolus intravenous dose.  Additionally, given the 

fast, 2-3 min distribution half-life of propofol from the blood-pool,26 that we waited 5-10 

min from particle administration to FUS application, and that we did not see significant 

differences in the baseline EEG power between propofol and blank treated rats, it is 

unlikely that free or loosely bound propofol in the particle solution could have 

substantially contributed to our results.  Notably, the EEG power was seen to decrease 

immediately following FUS application suggesting that the kinetics of this 

neuromodulatory effect are rapid (Figure 10.4D).  Additionally, we did not observe any 

deleterious consequence to the brains with ex vivo MRI, in vivo MRI, or post hoc 

histology (Figure 10.5), suggesting that these effects are not due a nonspecific damage of 

the brain parenchyma.  Indeed, the lack of blood-brain barrier opening with this 

technique (Figure 10.5B) confirms the safety of this technique and the distinction of this 

technique to other proposed methods of FUS-mediated neuromodulation.24,27 

In this study, we have not directly visualized the particle activation in vivo to 

assess the effective spatial resolution of this technique.  Additionally, the volume 

conduction effect of EEG signals, particularly for subdermal EEG, and the nature of the 

generalized status epilepticus model used for this study limits our ability to spatially 

resolve this signal in this in vivo preparation.  Similarly, given the acute nature of PTZ-

induced seizures that may not recur substantially once they are aborted, this study 

protocol is limited in ability to determine over what time interval the action of the gated 

propofol persists.  Those limitations said, the in situ ultrasound focus induced by the 

particular ultrasound transducer used in this study is known to have a FWHM of ~1.5 mm 

transaxially and ~5 mm longitudinally at 1 MHz (personal communication with the 
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vendor, FUS Instruments, Toronto, CA), providing an effective initial spatial extent for 

the action of the particles in this preparation.  Additionally, we saw no substantial 

systemic propofol load with sonication (Figure 10.4F), confirming that the propofol 

release was likely limited to the brain.  While groups have shown that activated 

perfluorocarbon particles may induce further activation of unsonicated particles in static 

solutions,14 we would expect cerebral perfusion to rapidly clear the activated particles 

from the sonication field, especially given the lack of particle binding to the brain 

(Figure 10.3), thereby limiting this potential confound.  Additionally, the temporal 

residence of propofol in the brain and its time of action is known to be rapid on the order 

of minutes or even tens of seconds28 and similar to the time-scales used in this 

experiment.  This time of action would be clinically practical for neuropsychological 

assessment, as evidenced by the current protocol of the Wada test,29 which is used for 

clinical mapping of the laterality of brain functions.  Given the size of the rat cerebrum 

(~15 x 15 x 10 mm) and the technical limitations of signal volume conduction in 

subdermal EEG, further characterization of the spatial and temporal resolution of this 

technique will necessitate experiments that assess baseline non-seizure neural activity, 

likely in larger animal models, and potentially with a different measure of neural activity, 

such as fMRI or PET.  Nonetheless, our results provide a proof-of-principle that these 

nanoparticles yield potent inducible neuromodulation using noninvasive focused 

ultrasound and that this approach has the potential to enable precise spatial (mm) and 

temporal (min) control of brain activity, with a pathway to clinical translation.  

10.4 Conclusions 
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In this study we have successfully designed nanoemulsions loaded with propofol 

and demonstrated they could be used for transcranial focused ultrasound mediated 

suppression of neural activity.  With regard to clinical translation, each component of 

these particles has been previously approved for clinical use in different contexts.17 

Additionally, the sonication pressures and burst lengths used in this study are well 

achievable by FDA-approved transcranial MRgFUS systems that are currently in clinical 

use.12 Taken together, this provides a pathway towards clinical translation that is 

otherwise unavailable to other targeted molecular neuromodulation strategies.  Further, 

the chemistry that enables these particles to encapsulate a given drug relies mainly upon 

the lipophilicity of the drug in question, so that it may bind the hydrophobic domains of 

the encapsulating block copolymer and the hydrophobic polymer-perfluorocarbon 

interface.  Given that most molecules that passively cross the blood-brain barrier are 

highly lipophilic, this suggests that the nanotechnology strategy presented here could be 

adapted for focal and targeted delivery of most any small molecule that naturally crosses 

the blood-brain barrier, including imaging agents as well as compounds that act directly 

upon the adrenergic, serotonergic, or dopaminergic systems – in addition to the 

excitation/inhibition axis that propofol modulates.  This opens the door to a wide variety 

of potential nanotechnological tools for targeted clinical modulation of brain activity. 
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10.5 Figures 

 

Figure 10.1: Schematic of focused ultrasound-gated drug delivery nanoparticles 
preparation and use. (A) To produce the propofol loaded nanoemulsions, first the block 
co-polymer (yellow and blue lines) and drug (red circles) are dissolved into THF, which 
is followed by a solvent extraction into PBS to produce propofol-loaded polymeric 
micelles.  These micelles then emulsify liquid perfluoropentane (PFP; light blue) through 
sonication at 20 kHz. (B) In use, the propofol loaded nanoemulsions with a liquid PFP 
core are sonicated at a higher frequency such as 1 MHz in these experiments.  That 
sonication induces a liquid to gas phase transition of the PFP which thins the encoating 
drug-loaded polymer shell, inducing drug release. 
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Figure 10.2: Schematic and in vitro characterization of nanoparticles enabling 
ultrasound-gated release of propofol for targeted neuromodulation (A) Schematic of in 
vitro testing apparatus.  A PCR tube containing the aqueous particle sample (green) was 
held at the focal spot of the FUS transducer.  A layer of hexane was applied on top of the 
sample (yellow) to serve as a chemical sink for the released propofol. (B) Sonication 
induces release of propofol from particles into the medium with a dose response after a 
threshold peak in situ pressure of 0.5 MPa (left); and after a threshold burst length of 10 
ms (middle).  The response to burst length saturates at 50-100 ms.  N=3-4 samples/group 
(C) Histogram of particle sizes assessed by direct particle tracking demonstrates a single 
nano-scale peak centered at 317.6 +/- 148.2 nm (mean +/- S.D). (D) After two hours of 
incubation, particles were tested for release with 1.5 MPa peak in situ pressure and 50 ms 
burst lengths (N=4 samples/group).  There was intact release ability after incubation, 
although release efficacy is relatively reduced at room (25 ºC) and in vivo (37 ºC) 
temperatures. 
 

 



340 
 

 

Figure 10.3: Biodistribution and clearance in vivo of the propofol-loaded nanoparticles. 
(A) Time course of the amount of an initial bolus of particles found in the intravascular 
space, as assessed by fluorescence of timed whole-blood samples after administrated of 
propofol-loaded particles doped with an infrared fluorescent dye, compared to assessment 
of the serum fluorescence to determine the unbound dye kinetics.  Presented are mean +/- 
S.D., normalized by the initial whole-blood sample fluorescence (N = 4 rats). (B) Organ 
distribution of particle uptake at 24 hours (mean +/- S.D. for 4 rats) show that particles 
are sequestered in expected organs such as liver, spleen, and lung, with minimal amounts 
seen in kidney and heart that may represent blood pool activity.  No significant uptake is 
seen in the brain.  Values are presented as their percentage of the total fluorescence 
across the harvested organs. (C) Sample bright field (left), fluorescence (middle), and 
bright field/fluorescence merged (right) images for the spleen (S), kidney (K), liver (Li), 
heart (H), lung (Lu), and brain (B) after harvest from a single rat.  
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Figure 10.4: Focused ultrasound-gated propofol release is potent enough to silence 
seizure activity. (A) Schematic of rat positioning for this demonstration of in vivo 
efficacy. After removal of the dorsal scalp fur, rats were placed supine on the bed of a 
focused ultrasound transducer, coupled to the transducer via degassed water (light blue), 
a Kapton membrane filled with degassed water (orange-brown), and ultrasound gel (not 
pictured).  Rats underwent seizure induction using the chemoconvulsant pentylenetetrazol 
(PTZ). A sonication focus (red ellipse) was developed at one target within each 
hemisphere, 2.5 mm lateral to midline, and 15 mm caudal to the eye center, which equals 
~5 mm caudal to bregma.  Expected location of the two sonication foci are overlaid onto 
ex vivo MRI images, with the red ellipse indicating the FWHM of the sonication focus.  
(B) Schematic of experiment timing for seizure induction, particle administration, and 
FUS application. (C) Sample traces of EEG voltage from one rat receiving propofol-
loaded particles before and after seizure-induction and focused ultrasound application at 
the indicated pressures. (D) Total EEG power normalized by baseline averaged across 
rats receiving particles loaded with either propofol (blue) or no drug (Blank, red) across 
experiment time (N = 7 propofol, 5 blank).  Gray bars indicate time of focused ultrasound 
(FUS) application at the indicated estimated in situ peak pressures, in 50 ms bursts 
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applied every 1 sec for 60 sec.  An electrical artifact precluded EEG analysis during FUS 
applications. (E) Mean +/- S.D. of normalized total (left) and theta band (right) EEG 
power in the indicated time period across rats receiving propofol-loaded particles or 
blank particles (N = 7 propofol, 5 blank).  Two-way ANOVA across animals receiving 
both FUS treatments demonstrates significant differences with FUS application (p < 
0.01) and with particle content (p < 0.05).  Post-hoc multiple comparison corrected tests 
show significant (p < 0.01) differences of EEG power between baseline and each of the 
post FUS application periods for the propofol particle treated rats only.  (F) Mean +/- 
S.D. of the HPLC-quantified serum propofol concentration of samples from N=4 rats 
taken immediately after propofol-loaded particle administration, immediately after 
sonication, and 10 min post sonication, compared to a blank serum sample.  There was no 
appreciable serum propofol peak for the post sonication samples.  
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Figure 10.5: MRI and histological evaluation of brains following focused-ultrasound 
gated propofol release. (A) Sample whole-brain ex vivo 17.6 T MRI of rats treated with 
either propofol loaded particles or blank particles, and which underwent the seizure 
model and FUS application of Figure 4.  Red ellipses in the left images indicate the 
expected location and FWHM of the sonication foci, overlaid onto the ‘Blank’ images. 
Black spots at the periphery of the brain on the MRI images are microscopic air bubbles 
that show a susceptibility related blooming artifact.  Notably no such findings are present 
near the expected sonication field to indicate tissue damage due to either particle 
administration or sonication. (B) 11.7T in vivo MRI images taken pre-sonication (T2 and 
T1-weighted images left and center) and post-particle administration, post-sonication, 
and post-contrast administration (right) show no evidence of parenchymal damage or 
blood-brain barrier opening due to particle administration and sonication. (C) Cresyl 
violet histology shows no evidence of parenchymal damage on either wide-field views 
(top, 4x) or magnified views (bottom, scale bar 40 µm) for either propofol-loaded or 
blank particle treated animals that received the full sonication protocol of Figure 4. The 
more medial dorsal dentate gyrus (DG) was within the sonication trajectory.  The more 
lateral ventral dentate gyrus was not within the sonication trajectory and serves as a 
negative control for assessment of damage.  
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Chapter 11: Future Directions9  

11.1 Introduction  

 Throughout this thesis micro- and nanoparticle systems that possess biomimetic 

traits have been successfully developed.  Within the three paradigms of particle shape, 

particle surface chemistry, and particle stimulus controlled drug release, multiple particle 

platforms have been developed for future therapeutic use.  Despite the work completed as 

part of this thesis, these studies merely represent the tip of the iceberg with respect to 

unlocking the full potential that bio-inspired design has for biomedical therapeutics.  In 

this chapter, we describe future directions for several of the projects detailed in the thesis, 

that will contribute to the development and implementation of biomimetic particles for 

biomedical therapeutics. 

 This chapter is broken up into four sections, based on the broad area of research 

covered in this thesis.  The first section details the next steps for the development of 

anisotropic aAPC technology.  We detail the state of the art, continuous microfluidic 

synthesis platform we have developed to allow for precise control over particle size.  This 

platform was subsequently appropriated for the design of monodisperse anisotropic aAPC 

for cancer therapy.  In addition, we summarize the potential for the use of oblate 

ellipsoidal aAPC for cancer immunotherapy.  Oblate ellipsoids possess a significantly 

higher surface area than prolate ellipsoidal particles and thus could serve as a novel 

enhancement of aAPC technology. 

                                                 
This chapter contains material modified from the following article previously published as: 
Meyer RA, Green JJ. Biodegradable polymer iron oxide nanocomposites: the future of biocompatible 
magnetism. Nanomed. Fut. Med. 2015:10(23);3421-25. 
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 The second section describes the potential for the use of PBAE polymers for new 

immunotherapeutic strategies.  We describe how the PLGA/PBAE particle platform can 

be used not just to activate T-Cells for immunotherapy, but also to induce regulatory T-

Cells for targeted immunosuppression as would be required for transplant tolerance and 

autoimmune disease.  We also describe how the PLGA/PBAE particles can be used to 

induce and activate natural killer cells for a supplement to more traditional T-Cell based 

cancer immunotherapies.  In both cases, the PLGA/PBAE particles significantly 

outperform their PBAE counterparts.  Finally, we demonstrate how PBAEs can be used 

as a standalone gene therapy vector for the redirection of the cancer cell/immune cell 

interaction.  Through transfection with immunostimulatory ligands, we successfully 

converted the tumor cell into a tumor-derived aAPC (taAPC) to enhance cancer 

immunotherapy. 

 The third section describes our recent efforts to enhance the surface mimicry of 

the anisotropic polymeric particle.  Specifically, we detail the efforts to coat the particles 

with platelet derived membranes.  Platelets exhibit interesting therapeutic properties, 

including tumor localization, inflammation localization, and binding to circulating tumor 

cells.1  Furthermore, we describe the efforts to coat the particles with activated dendritic 

cell membranes to allow for the development of a truly biomimetic aAPC.  This particle 

would possess all of the characteristics on the surface of a natural aAPC, without the 

potential for cell-based immune suppression.  Finally, we describe the potential aspect of 

a functionalized supported lipid bilayer (SLB) nanoparticle designed to click to the 

surface of cancer cell overexpressing sialic acid analogues.  Such a platform could 
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leverage the SLB technology to synthesize a lipid-polymer hybrid particle that could 

allow for effective, universal drug delivery platform for cancer. 

 The fourth and final section details the most recent advances in biomimetic 

technology for stimulus controlled drug release and therapeutic action.  First we describe 

efforts to develop a photothermally controlled anisotropic microparticle system for 

precise controlled release of a therapeutic, specified by the firing of a laser.  Next we 

detail the advances in focused ultrasound triggered drug release for the potential 

controlled release of anti-cancer therapeutics for retinoblastoma.  Finally, we document 

the new polymeric particle platform that uses encapsulated magnetic nanoparticles to 

confer a superparamagnetic nature to the polymeric micro-and nanoparticles.  Such a 

platform could be used as a diagnostic contrast tool in magnetic resonance imaging, or a 

therapeutic platform for magnetic hyperthermia based treatment of solid tumors.  

Continued work on these projects will allow for the next step in the realization of 

clinically translatable biomimetic particle technologies. 

11.2 Future Directions for Anisotropic aAPC Particles 

11.2.1 Synthesis of Anisotropic Monodisperse Particles 

Anisotropic particles have been gaining popularity due to their useful properties 

in drug delivery applications.2 Recently it has been shown that prolate ellipsoidal 

particles can serve as a platform for artificial antigen presenting cells (aAPCs).3 By 

conjugating a biomimetic Signal 1 protein and Signal 2 protein it has been shown that 

these prolate ellipsoidal aAPCs can more effectively stimulate T-Cells than spherical 

counterparts.  Despite these studies, it has been difficult to fully evaluate this T-

Cell/particle interaction owing to the polydisperse nature of synthesized particles as well 
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as the limited repertoire of shapes considered.  The goal of this study was to develop a 

monodisperse, biodegradable, anisotropic particle synthesis platform for aAPC 

technology.     

Monodisperse poly (lactic-co-glycolic acid) (PLGA) microparticles were 

synthesized utilizing a flow-focusing microfluidic device adapted from a previous study.4  

Poly vinyl alcohol was appropriated as the continuous phase and PLGA dissolved in 

dichloromethane was the focused dispersed phase.  The subsequent monodisperse 

particles were converted to oblate ellipsoidal, prolate ellipsoidal, or biconvave discoid 

particles using a thin film stretching method described previously.5 

Monodisperse spherical PLGA microparticles were successfully synthesized 

using a microfluidic flow focusing device (Figure 11.1A).  Particles were imaged by 

brightfield microscopy (Figure 11.1B) and SEM (Figure 11.1C)  The average size of the 

microparticles synthesized using the method described above was 14.36 μm (Figure 

11.1D).  The polydispersity index of the microparticles was 1.05 indicating a nearly 

uniform population which was significantly more monodisperse than particles 

synthesized by bulk emulsion (Figure 11.1D).  The monodisperse spherical particles 

were loaded with a fluorophore (Figure 11.1E) and successfully stretched into prolate 

ellipsoidal particles (Figure 11.1F).  

We have developed a platform for the synthesis of monodisperse, anisotropic, 

biodegradable artificial antigen presenting cells.  Using flow focusing technology, we 

have reproducibly produced anisotropic particles of defined size and shape in a process 

that is amenable to scaling up for translational applications.  Investigation into the role of 
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particle shape in the development of aAPCs will be beneficial for therapeutic application 

of these constructs in immune system modulation.   

11.2.2 Oblate Ellipsoidal aAPC for Cancer Immunotherapy 

 Biomimetic aAPC hold promise to serve as a “off-the-shelf” immunotherapy to 

treat cancer and infectious disease.6 Although effective in vitro as a standalone 

immunostimulatory platform, the efficacy in vivo has been less than sufficient to act in 

the absence of adoptively transferred T-Cells.  Therefore, new strategies are required to 

augment aAPC activity to enable their use as an “off-the shelf” therapeutic.  One 

potential aAPC parameter that has been shown to enhance T-Cell activity is particle 

shape.  We have previously shown that the prolate ellipsoidal aAPC can induce T-cell 

activation significantly more effectively than the spherical particle.3 In this study, we 

studied the utility of oblate ellipsoidal and biconcave discoid particles as the core particle 

material for enhanced aAPC activity. 

 Anisotropic polymeric microparticles of spherical, prolate ellipsoidal, oblate 

ellipsoidal, and biconcave discoid shape were synthetized by single emulsion and thin 

film stretching as described in Chapter 3.  The particles were conjugated to the MHC 

Class 1 IgG dimer as Signal 1 and an agonistic antibody for Signal 2 as described 

previously.7  Primary PMEL CD8+ T-Cells were isolated from mouse spleens and 

labeled with CFSE for proliferation analysis.  The particles were then incubated with the 

T-Cells to evaluate immune stimulation.  After three days of incubation, the T-Cells were 

analyzed by flow cytometry to evaluate proliferation and after seven days the cells were 

manually counted to determine proliferation fold. 
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 Oblate ellipsoidal aAPC demonstrated significantly enhanced T-Cell stimulation 

compared to prolate ellipsoidal and biconcave discoids, which in turn were superior to 

spherical microparticles.  As evaluated by CFSE dilution, there was a significant increase 

in the magnitude of the proliferation peaks of the oblate ellipsoidal, compared to the other 

shapes (Figure 11.2A).  Furthermore, the manual proliferation counts supported this 

trend.  At limiting doses of 0.01 mg aAPC/100,000 T-Cells and 0.005 mg aAPC/100,000 

T-Cells, there was a higher amount of T-Cells counted at both doses for the oblate 

ellipsoidal particles compared to other shapes.  The prolate ellipsoidal particles and 

spherical particles exhibited stronger proliferation than the spherical particles, but this 

was not shown to be higher than that of the oblate ellipsoidal particles. (Figure 11.2B)  

Taken together, this suggests the oblate ellipsoidal aAPC are the superior platform for T-

Cell activation. 

 In this study, we have developed aAPC of spherical, prolate ellipsoidal, oblate 

ellipsoidal, and biconcave discoidal shape and compared their relative influence on T-

Cell activation.  We found that the oblate ellipsoidal aAPC performs stronger than that of 

the other shapes, and that the prolate ellipsoidal and biconcave discoidal outperform the 

spherical.  Taken together these results shed new light on the role of shape on aAPC 

design and shed light on potential enhancements to be made to enable aAPC to function 

as a standalone therapy.     

11.3 Future Directions for PLGA/PBAE Cationic Polymer Blended 

Particles 

11.3.1 PLGA/PBAE aAPC for Regulatory T-Cell Induction 
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 Modulation of regulatory T-Cells hold promise to treat a variety of diseases where 

immunosuppression is the intended therapeutic outcome such as in the case of transplant 

tolerance8 and autoimmune disease.9  Although there has been significant research in the 

induction of regulatory T-Cells for this purpose,10 the promise of antigen-specific T-Reg 

induction in vivo remains elusive.  Here we demonstrate the potential for the 

PLGA/PBAE aAPC to serve as a potential platform for “off-the-shelf” T-Reg induction.  

Such a construct would enable antigen targeted suppression of the immune systems in 

situations such as transplant tolerance and autoimmune disease. 

 PLGA/PBAE microparticles were synthesized by a single emulsion technique 

using a blend of custom synthesized PBAE and commercially purchase PLGA as 

described in Chapter 6.  The particles were conjugated to anti-CD3 to serve as the Signal 

1 and anti-CD28 to serve as the Signal 2.  Naïve mouse helper T-Cells were isolated a 

selection protocol for CD4+ and against CD25+ cells as previously described.11  

PLGA/PBAE aAPC or PLGA aAPC were incubated with the naïve mouse T-Cells for 

five days in the presence of IL-2 and TGF-β to direct T-Cell phenotype towards the 

regulation.  After five days, the cells were stained for CD4 and Foxp3 to evaluate 

regulatory T-Cell induction. 

 PLGA/PBAE aAPC were able to mediate a significant increase in percent 

induction of regulatory T-Cells compared to PLGA aAPC (Figure 11.3).  The 

PLGA/PBAE particles and PLGA particles were tested at low, mid, and high doses of 

surface protein administered on various particle doses.  At the low and mid-range protein 

dose, the PLGA/PBAE aAPC demonstrated significantly higher levels of T-Reg 

induction compared to PLGA aAPC at all particle doses tested (Figure 11.3A-B).  At the 
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high dose, there was a significant increase in T-Reg induction, however the effect was not 

as significant, indicating a potential protein saturation effect observed for both particle 

types. (Figure 11.3C) 

 In this study, we have developed an enhanced aAPC for T-Reg induction.  The 

PLGA/PBAE platform serves as a stronger core material for surface protein presentation 

compared to the PLGA particle.  Future incorporation of an MHC Class II tetramer, 

loaded with the antigen of choice could lead to this novel particle based platform for 

antigen specific T-Reg induction.   Such an advancement in aAPC technology would 

allow for new frontiers to be achieved in targeted immunosuppression for transplant 

tolerance and autoimmune disease.         

11.3.2 PLGA/PBAE aAPC for Natural Killer Cell Activation 
 

Natural killer (NK) cells’ ability to selectively destroy tumor cells without 

requiring antigen specificity makes them a valuable weapon that can be harnessed for 

cancer immunotherapy.  However, immunosuppressive cues in the tumor 

microenvironment decrease the activity of NK cells, limiting their ability to recognize 

and destroy cancerous cells.12 This problem is being addressed with therapies that target 

NK cells and restore their cytotoxic abilities.  Adoptive NK cell therapies have shown 

success in a variety of murine cancer models, but these therapies can be costly and 

limited in scalability.  As an alternative strategy, we have developed a microparticle-

based system with the ability to expand NK cell populations in vitro. 

Microparticles were synthesized from poly (lactic-co-glycolic acid) (PLGA) or a 

blend of PLGA and poly (beta-amino ester) (PLGA/PBAE) using a single emulsion 

technique.  The particles were functionalized with anti-CD134 (OX40), anti-CD137 (4-
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1BB), or a combination of both (4-1BB+OX40) monoclonal antibodies through 

EDC/NHS chemistry.  To evaluate the ability of different surface-conjugated proteins to 

stimulate NK cells in vitro, we isolated NK cells from B6 mice and incubated them with 

4-1BB, OX40, or 4-1BB+OX40 microparticles in the presence of IL-2. After 7 days, NK 

cells were counted manually to assess proliferation.  To investigate the effects of polymer 

type on the ability of particles to expand NK cell populations we isolated and cultured 

NK cells with PLGA and PLGA/PBAE microparticles conjugated with anti-4-1BB in the 

presence of various IL-2 concentrations.  At the end of 3 days, NK cell proliferation was 

assessed. 

Following synthesis, scanning electron microscopy was used to image PLGA 

(Figure 11.4A) and PLGA/PBAE (Figure 11.4B) microparticles and confirm their size 

and morphology.  After seven days in culture, 4-1BB particles led to stronger NK cell 

proliferation in a dose-dependent manner compared to OX40 or 4-1BB+OX40 particles 

(Figure 11.4C).  PLGA/PBAE microparticles conjugated with anti-4-1BB led to an 

approximately 50-fold increase in proliferation over PLGA particles (Figure 11.4D). 

Varying the concentration of soluble IL2 from 50 to 1000 U/mL did not significantly 

affect NK cell proliferation. 

We have developed a novel particle-based method using 4-1BB-conjugated 

PLGA/PBAE microparticles to effectively expand NK cell populations in vivo.  These 

particles show potential as a platform for natural killer cell-mediated cancer 

immunotherapy. 

11.3.3 Redirection PBAE Transfection Nanoparticles for Cancer Immunotherapy 

Advances in cancer immunotherapy have great potential for combatting tumors 

that are refractory to conventional treatments.13 T-cells can be primed to kill cancer cells 
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by antigen-presenting cells (APCs), which present three crucial signals: Signal 1, major 

histocompatibility complex (MHC) I with a tumor antigen (Ag) peptide; Signal 2, a co-

stimulatory molecule; and Signal 3, secreted cytokines that promote T-cell recruitment, 

growth, and differentiation.14,15 Here, we use synthetic nanoparticles (NPs) to transfect 

melanoma cells with DNA encoding a Signal 2 co-stimulatory molecule and Signal 3 

cytokine, effectively reprogramming these cells into tumor-derived APCs (tAPCs). In 

vitro assays show T-cell stimulation by melanoma tAPCs, and intratumoral injection of 

NPs into a murine B16-F10 melanoma shows significantly slowed tumor growth.  This 

reprogramming approach represents a novel strategy for immunotherapy that could have 

potentially broad impact on many types of hard-to-treat cancer. 

A poly(beta-amino ester) (PBAE) for non-viral gene delivery was synthesized by 

Michael addition and used to transfect B16-F10 melanoma cells in vitro as previously 

described, using red fluorescent protein (RFP) to optimize NP formulation.16 Cells were 

then transfected with 4-1BBL (Signal 2) and IL-2 (Signal 3) plasmids and co-cultured 

with antigen-specific CD8+ T-cells in vitro.  T-cell activation was assessed by IFN- 

secretion. For in vivo efficacy, C57BL/6 mice with subcutaneous B16-F10 tumors were 

injected once intratumorally (i.t.) with PBAE/DNA NPs encoding either 4-1BBL or a 

control gene, and tumor size was assessed over time using calipers. 

B16-F10 melanoma cells can be transfected with high (>90%) efficacy using 

PBAEs.  Cells can also be co-transfected with signal 2 (4-1BBL) and 3 (IL-2). Surface 4-

1BBL expression was measured by flow cytometry, and secreted IL-2 was measured by 

ELISA (Figure 11.5A-B).  The relative expression of each can be tailored by the ratio of 

plasmids used in transfection.  Transfected B16-F10 tAPCs induced significantly greater 
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(p<0.05) IFN- secretion by CD8+ T-cells after co-culture, indicating their ability to 

activate T-cells.  Crucially, injection of PBAE/DNA NPs into a tumor resulted in 

substantially slowed tumor growth (Figure 11.5C) in an aggressive murine melanoma 

model that is generally known to have low immunogenicity. 

PBAE NPs can transfect tumor cells with co-stimulatory molecules and 

immunostimulatory cytokines to reprogram them, leading to decreased tumor growth. 

Importantly, by hijacking the intrinsic expression of Signal 1 by tumor cells, this 

acellular, off-the-shelf immunotherapy is antigen-agnostic and has the potential to be 

broadly applicable to multiple types of hard-to-treat tumors across patients. 

11.4 Future Directions for Biomimetic Particle Membrane Coating 

11.4.1 Platelet Membrane Coated Anisotropic Microparticles 

There is growing interest in engineering biomimetic particles that are coated with 

naturally derived cell membranes to extend half-life in vivo and mimic the functionality 

of different cell types.  Particles have been coated with the cell membranes from red 

blood cells, platelets, leukocytes, cancer cells, etc. and have promising therapeutic 

potential.1,17 However, all previous work has used spherical particles.  Particle shape is an 

important aspect of cellular biomimicry and has been shown to have a large impact on the 

drug delivery properties of particle therapeutics.17 Here, we have fused vesicles derived 

from platelets with anisotropic poly(lactic-co-glycolic acid) (PLGA) microparticles to 

enhance the stealth properties of these particles for drug delivery purposes and to develop 

a novel wound healing therapy. 

Nonspherical platelet shaped (discoid shaped) and ellipsoidal microparticles that 

mimicked the size of platelets (approximately 1 μm in diameter) were synthesized by 
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emulsion methods followed by thin film stretching in two dimensions or one dimension, 

respectively.5 Particles were imaged using scanning electron microscopy (SEM) to 

confirm shape and size.  Human platelets were activated using adenosine 5’-diphosphate 

(ADP) in the presence of ethylenediaminetetraacetic acid (EDTA) to prevent aggregation. 

Activated platelets were snap frozen and then thawed at room temperature.  Platelets 

were then processed into 200 nm-sized vesicles through sonication, and vesicles were 

subsequently coated on PLGA particles under sonication.  Vesicles were fused with a 

fluorescent lipid mediated by a PEGylated accessory lipid in order to visualize the 

membranes under confocal microscopy.  Anisotropic nanoparticles were generated and 

coated with cell membranes using a similar protocol and stained with fluorescent anti-

CD47 to verify coating. 

We visualized the coated microparticles using confocal microscopy and found 

that there was a clear enrichment of the fluorescent membrane signal on the surface of the 

spherical, ellipsoidal, and platelet-shaped particles indicating successful coating with 

activated (Figure 11.6).  We confirmed the presence of CD47 on coated spherical and 

anisotropic nanoparticles, verifying successful coating. CD47 prevents phagocytosis by 

macrophages.  Thus, the presence of this protein on the particles may prevent uptake and 

clearance by the mononuclear phagocyte system, prolonging circulation in the blood.  We 

are currently developing a microfluidic device vasculature model that will assess the 

functionality of the platelet-coated particles.  The device is coated with factors, such as 

collagen and von Willebrand factor, that are typically found in the subendothelial space 

exposed in the formation of a wound.  This device will be used with the platelet-coated 



358 
 

particles to determine their ability to bind these factors and aggregate with each other and 

the body’s own platelets under physiological shear flow. 

We have successfully engineered activated platelet coated particles with the 

potential to evade clearance in vivo by mimicking the shape, membrane content, and 

fluidity of natural cells.  This platform could provide a modular and versatile technology 

for enhancing drug delivery that can be applied to many different cell types and 

functions.  Additionally, we are investigating the potential for using the platelet-coated 

particles as biodegradable artificial platelets for wound healing applications.  

11.4.2 Dendritic Membrane Coated Microparticles 

 Artificial antigen presenting cells that have been developed in the past are 

typically engineered from a minimalist standpoint with two proteins serving as a Signal 1 

and Signal 2.  Although effective for T-Cell stimulation, this strategy represents the bare 

minimum of signals to adequately direct and modulate T-Cell activity as is done in vivo.18  

Therefore, we propose an alternative approach in which the antigen presenting cell 

membrane itself is directly immobilized onto the surface of the particle.  This would 

allow for optimal presentation of all required surface ligands for T-Cell activation, 

without the potential for immunosuppression of the antigen presentation system.  In this 

study, we have demonstrated that the polymeric microparticle can be successfully coated 

with dendritic cell membrane derived vesicles. 

Dendritic cell membrane vesicles were prepared in a similar fashion to a 

procedure previously reported.19 Briefly a confluent T-175 flask of the dendritic cell line 

DC 2.4 was detached from a flask and washed 3 times with PBS.  The cells were then 

suspended in 1 mL ACK lysis buffer and homogenized with a 2mL Dounce homogenizer 
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using a tight- fitting pistil.  The cell lysate was spun at 3200 g for 5 min to remove intact 

cellular and nuclear material and the supernatant was reserved.  Then the pellet was 

resuspended in 1 mL ACK lysis buffer and homogenized again.  The second cell lysate 

was spun out again and the supernatant was pooled with the supernatant collected from 

the previous spin.  The pooled supernatants were then spun out at 17000 g for 20 min to 

remove subcellular organelles.  The supernatants of this spin were then collected and 

spun once more at 100,000g for 1 hr. to remove the membrane vesicle fraction.  These 

vesicles were then resuspended in PBS and mixed with 1 mg of PLGA for the membrane 

coating.     

 To analyze the formation of supported biomimetic dendritic cell membranes, 

confocal imaging of PLGA particles encapsulating 7-AMC were coated with rhodamine 

containing membrane derived vesicles.  Confocal image acquisition was completed with 

a Zeiss 780 FCS Confocal Microscope.  Acquired images demonstrated a clear increase 

in fluorescence of the dendritic cell membrane derived vesicle, compared to the dye in 

the particle core (Figure 11.7).  Furthermore, this fluorescence was localized to the 

outside of the particle as has been exhibited recently with lipid coated polymeric particles 

that were deemed functional by in vitro and in vivo functional assays (see Chapter 8).    

 In this study, we have shown that polymeric microparticles can successfully be 

coated with antigen presenting cell membranes for a truly biomimetic surface to enhance 

aAPC technology.  The activity of the cell membrane itself in stimulating immune cells 

for cancer immunotherapy would not be altered by tumor derived suppression 

mechanisms.  This result represents another step forward in the translation of highly 

biomimetic therapeutics for cancer immunotherapies. 
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11.4.3 Functionalized Membrane Coating for Sugar Analog Based Cancer 

Therapeutics 

Delivery of anti-cancer drugs through actively targeted nanoparticles has been a 

subject of great recent interest.20 Through encapsulation of a therapeutic molecule and 

immobilization of targeting ligand, these platforms have had success in treating 

malignant tumors in various contexts.21 One challenge that is prevalent in these targeting 

ligand approaches is the heterogeneity of cancer cells.  A more effective strategy would 

be one that exploits a universal feature of cancer for directed localization of drug loaded 

nanoparticles to target cell membranes.  Taking advantage of the upregulation of sialic 

acid presentation on cancer cell membranes,22 unnatural azido sialic acid analogues can 

be employed to allow nanoparticle accumulation to a cancer cell membrane through 

copper-free click chemistry.23 In this study, we developed a dibenzocycoloctyne (DBCO) 

functionalized lipid-polymer hybrid nanoparticle for directed delivery of anti-cancer 

therapeutics.           

DBCO functionalized nanoparticles were synthesized via single emulsion of a 

mixture of poly(lactic-co-glycolic acid) 4% w/w lipids containing DBCO and rhodamine 

for imaging.  The analogue used was 1,3,4 Bu3ManNAz and synthesized as previously 

described.24 To establish the general applicability of this therapeutic approach we 

evaluated nanoparticle accumulation on the SW1990 (pancreatic), PANC1 (pancreatic), 

BXPC3 (pancreatic), GB319 (brain), MDA MB 231 (breast) cancer cell lines and the 

non-cancerous MCF10A breast epithelial cell line.  Cells were incubated with 50 μM of 

sugar analogue for 72 hours and then with DBCO functionalized nanoparticles for 1 hour.  
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Cells were subsequently imaged by fluorescence microscopy for evaluation of 

nanoparticle accumulation. 

Nanoparticles were successfully synthesized and determined to be approximately 

200 nm in size.  DBCO functionality was confirmed through the successful capture of an 

azide bearing fluorophore.  The nanoparticles were shown to specifically accumulate at 

MDA MB 231 cell membranes following treatment with the sugar analogue and DBCO 

containing nanoparticles (Figure 11.8A-C).  In addition, this accumulation was 

determined to be specific to cancer cell lines as the healthy cell line tested exhibited no 

significant accumulation of nanoparticles compared to a no-treatment control (Figure 

11.8D).  For various cancer cell lines, this accumulation was determined to be 3-8 fold 

over the no-treatment control.  

In this study, we have successfully developed DBCO functionalized lipid/polymer 

hybrid nanoparticles to enable cancer targeted drug delivery.  These nanoparticles were 

shown to specifically associate with a variety of cancer cells, while not associating with a 

healthy cell line.  Further development of universal targeting strategies such as this one 

may have great potential for translational cancer therapies.   

11.5 Future Directions for Stimulus Controlled Therapeutics 

11.5.1 Photothermally Triggered Drug Release from Anisotropic Particles 

 There has been recent interest in the development of spatiotemporally controlled 

drug release systems for various biomedical applications, including for treating cancer.25 

One promising platform achieve this goal is through the use of photothermal conversion 

of light energy into thermal energy for hyperthermia and glass transition temperature 

controlled drug release through the use of thermoplastic polymers and gold 
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nanoparticles.26  Although photothermal therapy is promising from a theoretical 

standpoint, the gold nanoparticles achieve extreme temperatures that could potentially be 

damaging to healthy tissues.27  We propose to encapsulate hydrophobically stabilized 

gold nanorods in polymeric particles to enable a thermal diffusion controlled heat source 

for photothermal therapy.  Moreover, the polymers can be loaded with anti-cancer 

therapeutics for the glass transition temperature controlled release of the drug during the 

photothermal hyperthermia therapy.  Such a platform would allow for spatiotemporally 

controlled release of heat and drug for localized cancer therapy. 

 We synthesized hydrophilic gold nanorods using a seed growth process as 

previously described.28  Through a capping ligand exchange process and a subsequent 

solvent exchange process, we generated stable gold nanorods that can be dispersed in a 

organic solvent for encapsulation in polymeric particles.  The gold nanorods were then 

evaluated upon encapsulation to determine absorbance properties for photothermal 

therapy.  In a separate experiment, we also evaluated thermally controlled drug release 

from two polymer candidates (PLGA and PDLLA) with glass transition temperatures in 

the acceptable range for photothermal hyperthermia. 

 Gold nanorods were successfully synthesized using a seed growth technique 

(Figure 11.9A).  Through modulation of the silver content in the crystal growth media, 

we were able to synthesize nanorods with an aspect ratio to yield an absorbance peak of 

800 nm (Figure 11.9B).  This wavelength is in the near IR range to allow for sufficient 

penetration of biological tissue to achieve photothermal activation of the nanorods in 

vivo.  Upon TEM analysis of the particles encapsulating gold nanorods, we found that the 

gold nanorods were intact and did not aggregate extensively (Figure 11.9C-D).  The 
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thermally controlled drug release experiment determined that PLGA has a doxorubicin 

release in a switch-like response once the temperature exceeds that of the polymer glass-

transition temperature (~45 °C).  Significant drug release was not observed with the 

PDLLA for the duration of the heating (4 hrs.). 

 In this study, we have successfully developed gold nanorod polymer composites 

that can be used for safe photothermal hyperthermia as well as thermally controlled drug 

release.  The gold nanorods do not substantially aggregate during the encapsulation 

process and maintain their absorptive properties for photothermal conversion.  

Furthermore, the PLGA polymer used had a switch-like drug release response between 

37 °C and 60 °C, suggesting this as a potential candidate for a combined platform for 

hyperthermia and chemotherapy of localized tumors.  Continued development of this 

platform could allow for spatiotemporally controlled treatment of cancer through dual 

localized heat and drug therapy.   

11.5.2 Focused Ultrasound Triggered Release of Doxorubicin for Retinoblastoma 

Therapy 

 Retinoblastoma is a major cause of cancer in young children of less than 3 years 

of age.29  Although treatment is usually successful with radiation and chemotherapies, 

typically the patient loses vision in the eye or eyes that the tumor has manifested.30  

Therefore, there is a need to design more effective localized chemotherapies that can treat 

the tumor without adverse systemic toxic effects.  Nanoparticulate controlled release 

platforms offer an alternative to systemic treatment and it has been found that these 

particles can maintain a therapeutic concentration of chemotherapies in the eye, without 

the adverse toxic events associated with systemic administration.31  We propose to use a 
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recently developed nanoemulsion system32 with focused ultrasound triggered release of a 

chemotherapeutic.  In this manner, precise spatiotemporal control can be appropriated for 

the local treatment of the retinoblastoma, potentially sparing the patient’s vision. 

 We developed a focused ultrasound triggered release platform for doxorubicin to 

treat retinoblastoma.  The nanoemulsions are based on a formulation we described 

previously in Chapter 10 for focused ultrasound mediated delivery of propofol.  Micelles 

of an amphiphilic block copolymer were formed, encapsulating doxorubicin using 

solvent extraction.  The micelles were then used to emulsify perfluoropentane to for 

doxorubicin loaded polymeric nanoemulsions.  The nanoemulsions were then evaluated 

for their release of doxorubicin through tip sonication at 20 kHz at various amplitudes 

and burst lengths followed by fluorescence analysis of the supernatant to evaluate drug 

release in response to the ultrasound. 

 Polymeric nanoemulsions encapsulating doxorubicin were successfully formed 

and had a size of approximately 400-500 nm.  The nanoemulsions were evaluated for 

ultrasound triggered release of doxorubicin vs. spontaneous release over time to 

determine the control over the release effect (Figure 11.10).  We found that the 

nanoemulsions released doxorubicin in proportion to the amplitude of the ultrasound and 

time of sonication thus indicating a dose response and control of the release rate.  

Furthermore, we found that the nanoemulsions released drug 600% faster when in the 

presence of the ultrasound thus demonstrating the ability for controlled acceleration of 

the drug release rate for localized administration in retinoblastoma patients. 

 In this study, we have developed a novel doxorubicin loaded perfluoropentane 

nanoemulsion for the focused ultrasound triggered release of chemotherapy for 
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retinoblastoma.  Further optimizations into the particle design and stability of the 

nanoemulsions will allow for enhanced spatiotemporal control over the delivery of this 

therapeutic for ocular oncology applications.   

11.5.3 Anisotropic Magnetic Particles for Enhanced Biomedical Therapeutics 

Superparamagnetic iron oxide nanoparticles (SPIONs) have become increasingly 

popular for various biomedical applications.  The superparamagnetic properties of these 

nanoparticles enable their magnetic manipulation of biological targets such as cells, 

proteins, and nucleic acids.  In addition, SPIONs allow for magnetic resonance imaging 

(MRI) contrast for cells and tissues.  Although generally nontoxic, these particles on their 

own are not sufficiently biocompatible due to their inorganic nature.  One strategy to 

circumvent this compatibility issue is to coat the SPIONs with a biocompatible polymer.  

Although polymer coating is effective at mitigating potential complications at the 

SPION/biological interface, this only scratches the surface of the functionality that can be 

enabled by polymer-SPION nanocomposites.  For example, polymeric nanostructures can 

have multifunctional drug delivery abilities, including control of the delivery of 

biological payloads in both space and time.  An emerging strategy is to combine the 

advantages of inorganic SPIONs with the drug delivery capabilities of biodegradable 

polymeric particles to create multifunctional theranostic polymer-SPION 

nanocomposites.  By treating the SPIONs as a cargo to be loaded into larger 

biodegradable polymeric nanostructures, new nanocomposites can be created to unite the 

beneficial features of paramagnetism and controlled drug release into one single 

nanoparticle.  Biodegradable polymer iron oxide nanoparticles are promising for 

applications to many areas of medicine 
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Incorporation of SPIONs into a nanocomposite confers all of the 

superparamagnetic related properties of SPIONs to the entire nanocomposite.  In 

addition, these biodegradable polymer SPION nanocomposites can be loaded with other 

entities as well such as drug payloads and quantum dots for functionality as therapeutics 

and multimodal imaging agents respectively.33  These encapsulated SPIONs have been 

shown not to interfere with particle physical properties such as size and shape, while at 

the same time maintaining sufficient magnetic susceptibility to allow them to be used in 

varied biological applications.34  

 Generally, these nanocomposites are synthesized via modified emulsion or 

precipitation methods that are commonplace in particle fabrication techniques.  The 

surface character of the SPION dictates whether single emulsion or double emulsion is 

appropriate.  For hydrophobic SPIONs, synthesized by thermal decomposition of organic 

iron precursors or co-precipitation followed by organic ligand capping, the iron oxide can 

be co-dissolved directly into the organic phase with any other hydrophobic drugs or 

molecules, and subsequently be emulsified to generate nanocomposites.  Such procedures 

have shown to yield excellent SPION loading into poly(lactic-co-glycolic acid) (PLGA) 

nanoparticles.35  

 We have successfully replicated this procedure to synthesize PLGA 

microparticles loaded with hydrophobic magnetic nanoparticles.  The PLGA particles 

aggregate when brought in proximity to a magnet and subsequently disperse when they 

are removed from the magnet (Figure 11.11A).  We also conducted a T2 weighted scan 

of the microparticles in an MRI (Figure 11.11B).  We found that the magnetic PLGA 

microparticles can provide sufficient contrast at a limiting dose of 10 µg/mL (Figure 
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11.11C).  Furthermore, we found that the encapsulation of the magnetite did not interfere 

with the ability to deform the particles into anisotropic shapes using the thin film 

stretching method or the magnetic properties of the SPIONs. 

 In this study, we have successfully adapted a protocol to encapsulate 

hydrophobically labeled SPIONs in anisotropic polymeric microparticles.  The 

microparticles encapsulating nanoparticles exhibit superparamagnetic properties and MRI 

contrast to a limiting dose.  Combining the properties of superparamagnetism with the 

ability of anisotropic particles to resist non-specific elimination and enhance targeted 

binding, this approach could lead more effective magnetic field based therapies for tumor 

hyperthermia and diagnostic contrast.  

11.6 Conclusions 

 In this chapter, we have summarized the relevant future directions for the 

biomimetic and bio-inspired micro- and nanoparticulate systems described in this thesis.  

For anisotropic aAPC cancer immunotherapy, synthesis of oblate ellipsoidal particle 

through a continuous, scaled microfluidic process may yield a translatable product that 

can be used as an “off-the-shelf” therapeutic.  The use of PLGA/PBAE particles to 

modulate different functions of the immune system including T-Reg induction, natural 

killer cell activation, or tumor immunosuppression could expand the concept of aAPC 

technology to different therapeutic scenarios.  Further research into bio-interfacing 

micro- and nanoparticles through the use of platelet or dendritic cell membranes, or 

through the use of sugar analogues for universal cancer therapy can accelerated their 

clinical translation for a variety of drug delivery applications.  Finally, the use of stimulus 

controlled drug techniques such as photothermal conversion by gold nanorods, focused 
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ultrasound triggered vaporization of a volatile solvent, or magnetically activated and 

polymerically encapsulated SPIONs could allow for spatiotemporally controlled, local 

release of chemotherapeutics for various cancers or enhanced MRI based diagnostics.  

The potential of biomimetic particle technologies for biomedical applications is indeed 

being realized through these and many other projects using bio-inspired designs.  With 

these criteria, the future of micro- and nanoparticle biological interfacing is now and the 

imminent translation of these materials will revolutionize biomedical therapeutics.   
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11.7 Figures 

 

Figure 11.1: Synthesis of monodisperse anisotropic microparticles.  (a) Schematic of the 
flow-focusing microfluidic device for the synthesis of monodisperse microparticles.  The 
polymer solution forms the dispersed phase in the flow focusing device and the aqueous 
emulsifying solution forms the continuous phase.  (a) Brightfield image of monodisperse 
particles demonstrates highly uniform crystalline like structure in aqueous solution.  (c) 
SEM images of microparticles synthesized by microfluidic device that were used to 
derive particle size information.  (d) Size distribution of monodisperse microparticles 
indicates significantly lower polydispersity than the particles synthesized by bulk 
emulsion.  (e) Spherical particles encapsulating fluorophores were (f) Stretched by the 
thin film stretching method to generate monodisperse prolate ellipsoidal microparticles. 
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Figure 11.2: Oblate ellipsoidal microparticles outperform prolate ellipsoidal, biconcave 
discoid, and spherical particles in a T-Cell proliferation assay. (a) Oblate ellipsoidal 
particles resulted in more proliferating as evidenced by CFSE dilution analysis three days 
post stimulation.  (b) Manual proliferation counts T-Cells stimulated with particles of 
different shapes reveals similar enhanced proliferation by the oblate ellipsoidal particles. 
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Figure 11.3: PLGA/PBAE aAPC successfully induce high levels of regulatory T-Cells.  
PLGA or PLGA/PBAE microparticles were synthesized with (a) low, (b) medium, and 
(c) high levels of signal proteins, and incubated with naïve T-Cells in the presence of 
TGF-β.  Percent Foxp3+ T-Cells across multiple doses were higher for PLGA/PBAE vs 
PLGA alone. (** = p < 0.01, *** = p < 0.001, and **** = p < 0.0001 by two-way 
ANOVA with Bonferroni’s post-test). 
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Figure 11.4: Natural killer cell activation is enhanced by the use of PLGA/PBAE 
particles.  SEM images of (A) PLGA and (B) PLGA/PBAE microparticles. (C) In vitro 
NK cell proliferation mediated by 4-1BB particles is stronger than OX40 and 4-
1BB+OX40 particles. (D) PLGA/PBAE microparticles lead to higher NK cell 
proliferation compared to PLGA microparticles.   
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Figure 11.5: PBAE based transfection of immunostimulatory genes in B16 melanoma 
cells results in enhanced cancer immunotherapy.  (a) B16 melanoma cells were 
transfected with a plasmid containing either 41BBL or IL-2.  (left) Measured IL-2 
secretion following melanoma cell transfection and (right) measured surface presented 
41BBL.  (b) Tumor bearing mice were injected intratumorally with transfection 
nanoparticles as well as intraperitoneally with an immune checkpoint blockade.  The 
transfection with immunostimulatory ligands resulted in delayed tumor growth over time.  
Error bars represent the SEM of 5 animal replicates. 
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Figure 11.6: Anisotropic particles can be successfully coated with platelet membranes.  
(a) Spherical, (b) Prolate ellipsoidal, and (c) Oblate ellipsoidal microparticles were 
synthesized with a dye in the core (blue) and fluorophore labeled platelet membranes 
(yellow).  Confocal imaging and fluorescence profile analysis of the particles through the 
center of the (d) Spherical, (e) prolate ellipsoidal, and (f) oblate ellipsoidal microparticles 
demonstrate successful membrane coating.  
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Figure 11.7: Dendritic cell membranes can be coated on the surface of spherical 
microparticles.  (a) Coated and (b) uncoated particles with dendritic cell isolated 
membranes. Images show enrichment of dendritic cell membrane material on the surface 
of the coated particles only. 
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Figure 11.8: (a-c) DBCO functionalized nanoparticles accumulate at sialic acid 
overexpressing breast cancer cells (MDA MB 231).  Cells receive the indicated treatment 
in the left column and were analyzed for fluorescence on the channel indicated on the top 
row. (d) DBCO functionalized nanoparticles accumulate on cancer cells.  Particle channel 
fluorescence was quantified and normalized to a no nanoparticle treatment control.  All 
analogue treated cancer cell lines had an increase in functional particle accumulation 
(Treated DBCO) compared to non-functional nanoparticles (Treated DOPC) and non-
treated cells (Control DBCO).  The healthy cell line did not exhibit this nanoparticle 
accumulation.  
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Figure 11.9: Polymeric microparticles can successfully encapsulated gold nanorods for 
photothermal drug release.  (a) TEM images of gold nanorods that were hydrophobically 
functionalized and subsequently maintained their (b) absorbance peak at 810 nm.  Gold 
nanorods encapsulated in polymeric microparticles can be visualized by TEM shows 
minimal aggregation of the rods during the encapsulation process (c) scale bar = 500 nm, 
(d) scale bar = 100 nm.  (e) Thermally dependent release of doxorubicin from polymeric 
microparticles demonstrates minimal release below each material’s glass transition 
temperature but significant release upon heating past it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



378 
 

 

 

 

 

 

 

 

 

 

 

Figure 11.10: Doxorubicin release from ultrasound triggered nanoemulsions for cancer 
drug delivery.  Doxorubicin release was analyzed by the fluorescence of the supernatant 
following sonication.  Data demonstrates dose dependent release of doxorubicin based on 
sonication time.  Error bars represent the SEM of 4 replicates. 
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Figure 11.11: Polymeric microparticles can successfully encapsulate magnetic polymeric 
nanoparticles for conference of superparamagnetic properties to anisotropic particles.  (a) 
Polymeric microparticles accumulate under the influence of a magnet and disperse when 
the magnet is removed.  (b) MRI image of microparticles encapsulating magnetite 
indicate the potential for magnetic contrast at as low as (c) 10 µg/mL based on 
quantification of the signal from the MRI images. 
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3. Meyer RA, Hope KM, and Casey JW. Investigation of Viral Hemorrhagic Septicemia 
Shedding Utilizing a Zebrafish Model. Cornell Undergraduate Research Board Forum, 
2010. 

2010 

 

Poster Presentations 

National/International Meetings 

1. Schlesinger DE, Guo Q, Bishop CJ, Meyer RA, Wilson DR, Olasov L, Spicer JB, 
Elisseeff JH, Green JJ. Entanglement-based thermoplastic shape memory polymeric 
particles with photothermal actuation for biomedical applications. Tissue Engineering 
and Regenerative Medicine Society Annual Meeting. 2017 
 

2017 

2. Meyer RA, Mathew MP, Ren Q, Yarema KJ, and Green JJ. Cancer-specific 
nanoparticle binding by click chemistry to membrane bound sialic acid analogues, 
Controlled Release Society Annual Meeting, 2017 

2017 
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3. Meyer RA, Kosmides AK, Hickey JW, Aje K, Cheung Ka Ho, Schneck JP, Green JJ. 

Biomimetic Artificial Antigen Presenting Cells Synergize with Anti-PD1 in the Treatment 
of Melanoma. American Society for Gene and Cell Therapy. 2017 
 

2017 

4. Meyer RA, Hickey JW, Kosmides AK, Rhodes KR, Sunshine JC, Perica K, Schneck JP, 
Green JJ. Enhanced Tumor Immunotherapy Mediated by Nanoellispoidal Artificial 
Antigen Presenting Cells. Society for Biomaterials. 2017 
 

2017 

5. Meyer RA, Meyer RS, Green JJ. An Automated Thin Film Stretching Device for the 
Generation of Anisotropic Polymeric Micro- and Nanoparticles. NanoDDS. 2016 
 

2016 

6. Ren Q, Meyer RA, Mathew MP, Yarema KJ, and Green JJ. Lipid coated nanoparticles 
for targeted delivery to cancer cells using copper-free click chemistry, Biomedical 
Engineering Society Annual Meeting, 2015 
 

2015 

7. Meyer RA, Mathew MP, Sunshine JC, Shmueli RB, Ren Q, Yarema KJ, and Green JJ. 
Anisotropic Supported Lipid Bilayers for Spatially Dynamic Surface Protein 
Presentation. Society for Biomaterials Annual Meeting, 2015.   

 

2015 

8. Sunshine JC, Perica K, Meyer RA, Schneck JP, and Green JJ. Antigen-Specific CD8+ 
T-Cell Activation with Non-Spherical Micro- and Nano- Artificial Antigen Presenting 
Cells (aAPC). US-Japan Symposium on Drug Delivery Systems, 2013. 

2013 

 

Local/Regional Meetings 

1. Meyer RA, Airan RD, Ellens NK, Farahani K, Pomper MG, Green JJ. Focused 
Ultrasound Mediated Drug Delivery from Polymeric Perfluorocarbon Nanoemulsions for 
Noninvasive Neuromodulation. Institute for Nanobiotechnology Spring Forum, 2017 
 

2017 

2. Meyer RA, Sunshine JC, Perica K, Aje K, Schneck JP, and Green JJ. Biodegradable 
Nanoellipsoidal Artificial Antigen Presenting Cells for Cancer Immunotherapy. Institute 
for Nanobiotechnology Spring Forum, 2016. 
 

2016 

3. Meyer RA, Meyer RS, and Green JJ. An automated multidimensional thin film 
stretching device for the generation of anisotropic polymeric micro- and nanoparticles.  
Institute for Nanobiotechnology Spring Forum, 2015. 

 

2015 

4. Meyer RA, Sunshine JC, Perica K, Aje K, Schneck JP, and Green JJ. Biodegradable 
Nanoellipsoidal Artificial Antigen Presenting Cells for Cancer Immunotherapy. Institute 
for Nanobiotechnology Spring Forum, 2014. 

 

2014 

5. Sunshine JC, Perica K, Meyer RA, Schneck JP, and Green JJ. Antigen-Specific T-Cell 
Activation with Non-Spherical Micro- and Nano- Artificial Antigen Presenting Cells 
(aAPC). Institute for Nanobiotechnology Spring Forum, 2013 

 

2013 

6. Meyer RA, Casey R, Emmeneger E, Bowser P, and Casey JW. Development of a qRT-
PCR Assay for the Detection of Spring Viremia of Carp Virus and Application to a 2010 
Great Lakes Survey. Cornell Undergraduate Research Board Forum, 2012. 

 

2012 

7. Meyer RA, Hope KM, and Casey JW. Investigation of Viral Hemorrhagic Septicemia 
Virus Shedding and Transmission Utilizing a Zebrafish Model. Cornell Undergraduate 
Research Board Forum, 2011. 

2011 

 

Patents and Technology Transfer 
1. Green JJ, Schneck JP, Meyer RA, Kosmides AK, Rhodes KR, Hickey JW. 2017 

Biodegradable Biomimetic Particles. Provisional Patent Filed on October 10, 2017 
Application No. 62/570,249. 
 

2017 
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2. Airan RD, Green JJ, Meyer RA. 2016 Particulate Drug Delivery System to Enable 
Targeted Ultrasound-Gated Release of Neuromodulatory Agents, Provisional Patent 
Application filed on May 20, 2016. JHU Case #C13913.  
 

2016 

3. Green JJ, Ben-Akiva E, Meyer RA. Biomimetic Anisotropic Polymeric Particles with 
Naturally Derived Cell Membranes for Enhanced Drug Delivery. JHU Case #C13853. 
 

2016 

4. Green JJ, Semenza G, Meyer RA, Guo Q, Bishnop C. Polymeric Nanoparticles 
Containing Inhibitors of Hypoxia-Inducible Factors.” JHU Case #C13843. 
 

2016 

5. Bishop CJ, Green JJ, Guo Q, Kumar A, Meyer RA. 2015 Shape Memory Particles for 
Biomedical Uses, Provisional Patent Application filed on April 6, 2016 JHU Case 
#C13505. 

 

2016 

6. Green JJ, Mathew MP, Meyer RA, Shmueli RB, Sunshine JC, Yarema KJ. 2015 
Biomimetic Artificial Cells: Anisotropic Supported Lipid Bilayers on Biodegradable Micro 
and Nanoparticles for Spatially Dynamic Surface Protein Presentation. Provisional 
Patent Application no. 62/138,707. JHU Case #C13425 

2015 

 

Leadership and Service Activities 
BME EDGE Director of Professional Development: Served as a member of the BME 
EDGE student committee.  Tasked with promoting development of professional skills in 
the BME community as well as organizing professional development seminars for BME 
students, staff, and faculty.  Co-led the planning of a professional headshot day for 
graduate students. 
 

2016-2017 

Translational Tissue Engineering Center Student Representative: Served as a faculty-
student liaison to for the Translational Tissue Engineering Center.  Worked to plan 
social and professional events for the center.  
 

2016-Present 

BME PhD. Council Co-President: Served as the leader of the BME PhD council, the 
student organization tasked with representing the BME PhD student community.  
Planned social events for students as well as led the planning of the BME new student 
recruitment initiative.  Served as a liaison for the students and BME faculty and worked 
to plan the annual BME retreat. 
 

2013-2014 

BME EDGE Director of Engagement: Served as a member of the BME EDGE student 
committee.  Tasked with promoting faculty participation in EDGE activities and 
promoting EDGE internship opportunities to students. 
 

2013-2014 
 

Ithaca Science Museum Student Volunteer: Acted as a student volunteer for individual 
science days at the museum.  Partook in the planning and presentation of scientific 
demonstrations for local children.  Taught concepts related to nanotechnology and 
materials science to museum visitors. 
 

2010-2012 

Phi Sigma Pi Honor Fraternity: Served as the fundraising chair, tasked with raising 
sufficient funding on an annual basis to ensure self-sufficiency in the fraternity.  Initiated 
novel fundraising events to bring in outside money and interest in the fraternity.  
 

2010-2012 
 

Into the Streets Lead Member: Served as a student volunteer tasked with organizing an 
initiative to clean up trash in the local parks.  Acted as a coordinator between the 
students and the event officials to plan the day-long cleaning.  
 

2010 

Educational Activities 
Graduate Student Course Instructor: Designed, implemented and taught a course 
during Intersession at Johns Hopkins University on the topic of immunoengineering. 
 

2017 

Graduate Student Teaching Assistant for Systems Bioengineering Laboratory II: 
Conduct laboratory sessions, grade papers, and assist in course management 

2016 
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Graduate Student Teaching Assistant for Cell Engineering: Conduct office hours/review 
sessions, grade papers, and assist in course management. 
 

2014 

Undergraduate Student Teaching Assistant for Fluid Mechanics: Graded testing 
materials and assignments for comprehensive course, designed new assignments. 
 

2011 

Undergraduate Student Teaching Assistant for Biochemistry: Conducted office hours 
and graded testing materials for comprehensive auto-tutorial course. 
 

2011-2012 

Undergraduate Student Teaching Assistant for Principles of Biological Engineering: 
Designed and evaluated new assignments for the upcoming semester. 
 

2010 

Undergraduate Student Teaching Assistant for Introduction to Computer Programming: 
Conducted lab sessions, held office hours, graded exams and student assignments. 

2009 

 

Mentored Individuals 
Qiuyin Ren: Mentored student on various projects surrounding gene delivery, targeted 
drug delivery, and immunoengineering.  The student was included on 2 professional 
abstracts as well as a peer reviewed publication for contributions to the laboratory.  The 
student also attended the national BMES conference under the mentorship.  In 
addition, the student won the Provost’s Undergraduate Research Award from Johns 
Hopkins University under the mentorship. 
 

2013-2017 

Daphne Schlesinger: Mentored student on several projects surround biomaterials 
properties, microfabrication, and immunoengineering.  The student was included on 2 
professional abstracts as well as a peer-reviewed publication for contributions to the 
laboratory. The student also attended the national NanoDDS conference under the 
mentorship.  In addition, the student won the Provost’s Undergraduate Research Award 
from Johns Hopkins University under the mentorship.  
 

2014-2018 

Ka Ho Nicholas Cheung: Mentored student on various projects surrounding 
immunoengineering and controlled drug release.  The student was included on 2 
professional abstracts as well as a peer reviewed publication for contributions to the 
laboratory.   
 

2014-2016 

Callie Deng: Mentored the student on multiple projects including the fabrication of 
biodegradable, magnetic particles and the use of focused ultrasound for targeted drug 
release.  The student was included on a professional abstract for contributions to the 
laboratory. 
 

2014-2015 

Alison Bartkowski: Mentored the student on the design of artificial antigen presenting 
cells for cancer immunotherapy.  The student was included on a professional abstract 
for contributions to the laboratory. 
 

2016-Present 

Austin Petronak: Mentored the student on the development of biomimetic materials with 
naturally derived cell membrane coats and development of particles for use as artificial 
antigen presenting cells. 
 

2016-2017 

Jenna Ballard: Mentored the student on the use of various biomaterials for the design 
of artificial antigen presenting cells as well as investigation on the role of shape in the 
design of these particles. 

2016-2017 

 

Professional Memberships 

 
Society for Biomaterials Student Member 
 

2015-Present 
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Tissue Engineering and Regenerative Medicine International Society 
 

2014-Present 

Biomedical Engineering Society Student Member 
 

2014- Present 

Golden Key International Honor Society  
 

2011-2012 

Tau Beta Pi Honor Society 
 

2010-2012 
 

Alpha Epsilon: Food, Agriculture, and Biological Engineering Honors Fraternity 
 

2010-2012 
 

 

 

 

 


