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Abstract

The field of exoplanets has grown rapidly over the last 10 years, especially with

technological advances in radial velocity and transit photometry methods of discovery.

While direct imaging is behind in discovery tallies it is still competitive in charac-

terization of discovered exoplanets. Direct imaging from the ground is sensitive to

a younger population of planets that are still glowing from the heat of formation.

Probing planet formation with high angular resolution methods complements coron-

agraphic surveys from both the ground and space. Combining direct imaging designs

with state of the art wavefront control and downstream instrumentation for, e.g.,

spectroscopy and polarimetry is essential for understanding planet formation and

evolution processes. Ground-based instrumentation sets the stage for flying mature

high contrast technologies on future space telescopes to obtain the most scientific

yield.

I present my contributions to the current direct imaging revolution, both for

ground based instrumentation as well as preparing for the upcoming JWST mis-

sion. I will begin by describing an image-based algorithm for reducing interferometric
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data, and outline the factors that limit contrast for binary detection. I will present

the results from commissioning and characterizing the Gemini Planet Imager’s non-

redundant mask, outlining the search space for high resolution observations with GPI.

I will also discuss how new post-processing methods can remove biases from planet

signals close-in that are buried under speckle noise. Lastly, I will show how interfero-

metric methods contribute to wavefront sensing, which can serve as a backup mirror

phasing method for JWST and which will be an essential component of future large

space telescopes aimed at imaging exo-earths.

Primary Reader: Anand Sivaramakrishnan

Secondary Reader: Tobias Marriage
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Chapter 1

Introduction

1.1 Planet formation – state of the art

The discovery of vast numbers of extra-solar planets (exoplanets) by the prevail-

ing transit and radial velocity surveys, which both favor older, less active host stars,

have revealed just some of the rich variety in the population of exoplanets. The slowly

growing view of exoplanet demographics brings up new questions of how planets form

from the proto-stellar disk, and how planetary architectures come to look the way

we observe them in these (mostly) older systems. Direct imaging, while challenging

provides the opportunity to image planets and circumstellar disks separate from their

host stars. With current technology combining coronagraphs with extreme adaptive

optics (ExAO – an adaptive optics system using of the order of a thousand or more

actuators in the deformable mirror) direct imaging probes complementary science
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compared with indirect methods of detection. Directly imaged low-mass detections

(including both confirmed planets and low mass brown dwarfs), shown in the red cir-

cles in Figure 1.1 demonstrate the bias toward wider orbits and brighter companions.

The less obvious bias is the sensitivity to younger ages, where planets are intrinsi-

cally bright. At very young ages (a few to 10s of Myr) planetary companions are still

glowing from the heat of formation. Direct imaging surveys target these self-emitting

object in infrared light, where their blackbody emission typically peaks. The chal-

lenges of ground based infrared observations have motivated space-based missions,

notably Spitzer, Herschel, and the upcoming James Webb Space Telescope (JWST ).

JWST ’s large aperture will provide not only high precision photometry at infrared

wavelengths, but also higher resolution than previous infrared space missions.

While the number of directly imaged planets is small, various ground and space-

based facilities have imaged a large number of circumstellar disks in both thermal

and scattered light. The detection of disks around a variety of host stars provides

another view of the environment of extra-solar system evolution. Space-based in-

frared and optical light instruments have imaged a gallery of disks, while ground-

based instruments equipped with polarimeters have captured the scattered light in

polarization. For ground-based mm and sub-mm observations the Atacama Large

Millimeter/submillimeter Array (ALMA) achieves resolutions competitive and some-

times exceeding optical and infrared planet imagers, providing a complementary view

of young disks sensitive to gas and mm-size dust emission.1 Recent observations with

2
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ALMA show ordered structure in a nearby protoplanetary disk TW Hya, a possible

sign of planet formation around ∼ 1AU.2 Together these various imaging methods

provide a multiwavelength view of the planet formation environment, probing scat-

tered light and thermal emission from dust grains of different sizes and measuring the

presence and location of gas at various stages of evolution.
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Subset of Discovered Exoplanets and Brown Dwarfs by Separation and Mass

Figure 1.1: A selection of exoplanets and brown dwarfs discovered through Transit
(blue triangles), RV (green squares), Direct Imaging (red circles), and Microlensing
(magenta stars) techniques. The data are from the exoplanets.eu archive. Many of
the direct imaging targets shown here have masses exceeding 13Mjup, so are more
likely brown dwarfs.
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1.1.1 Relevant scales of planet formation

Current state of the art imagers using Ex-AO are digging down to 0.15 arcsec inner

working angles with their coronagraphs and down to the diffraction limit through

non-occulted imaging. Direct imaging surveys target youngs stars, often identified

by their moving groups. Meanwhile the lessons learned on current ground and space-

based instruments will help prepare for next generation space telescopes (e.g., High

Definition Space Telescope3 concepts) that will attempt to reach exo-earths with

superb quality imaging from space with large apertures.

In order to overcome the stellar light to image planets down to a contrast of

∼ 10−6, state of the art imagers employ coronagraphs coupled with an extreme-AO

subsystem. These latest imagers (e.g. GPI,4 SPHERE,5 etc.) push towards 0.1

arcsec inner working angle around the host star, using the host star itself to correct

the wavefront. For a star 100pc away (as e.g., Sco-Cen star-forming region members)

0.1 arcsec is 10 AU from the star. In our own solar system 10 AU is beyond the orbits

of Jupiter and Saturn, our gas giant planets.

Extrapolations from radial velocity surveys led to the prediction of a significant

fraction of gas giant planets inside 20 AU.6 The dearth of such objects in the latest

exoplanet surveys so far brings to question assumptions made in yield predictions

for direct imaging surveys. Evolutionary models that predict luminosity of low-mass

objects are put to the test in this region and require some knowledge of the age of

the system as well. High resolution methods probing 1-10 AU around the host star

4
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expand the search space of direct imaging instruments and can either provide upper

limits on the presence of low-mass companions, or reveal structure unavailable to

ground- and space-based coronagraphs.

Non-redundant masking achieves interferometric resolution of λ/2D, complement-

ing coronagraphic instruments. For example the Gemini Planet Imager’s NRM is

sensitive to ∼ 30 mas scales in H-band (∼ 1.5 − 1.8µm), or 3AU for stars 100pc

away. Many coronagraphic survey instruments have one or more aperture mask.7–10

Many of the newer facilities combine NRM with spectroscopy and/or polarimetry,

increasing detection sensitivity.

1.1.2 Current questions of planet formation

Direct imaging provides planet photometry and, if followed up over multiple

epochs, can provide an estimate of the orbit on sky. Multi-wavelength observing

can help estimate effective temperatures and measure atmospheric compositions of

giant planets. The luminosities of these giant planets can provide insight on mecha-

nism of formation, depending on their age and mass. Direct imaging combined with

radial velocity or astrometry measurements can also provide a direct measurement of

mass.

For example, giant planets that form very rapidly due to gravitational instability

in the disk are expected to be very bright at young ages (hot start). Giant planets

that form through core accretion – first accumulating small bodies until they are large

5
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enough to accrete gas rapidly – are expected to be cooler and smaller at young ages.11

Inferring the formation mechanism from luminosity does depend on well-constrained

age and mass.

Both models of formation face major challenges and distinguishing between the

two mechanisms can only be resolved by many more observations. Directly imaged

exoplanets to date are mostly too bright to be consistent with the cold start model.

Another major challenge to this model is that the time scale needed to assemble

enough material to undergo rapid accretion is longer than the dissipation timescale

of gas in the disk.12–14 Bodies formed through gravitational instability (that would

lead to hot start conditions) are expected to be generally more massive than planets

and at large separations.15 A lack of substellar objects at ≳ 20AU16 separations calls

gravitational instability into question. Observing a large number of young giant plan-

ets at a range of early ages can help distinguish their formation mechanism. Direct

imaging at multiple infrared bands can help narrow down the formation mechanism

of a given planet or sub-stellar object.

Planets form in the circumstellar disk environment making disks with large gaps

popular targets for planet searches. The timescales and conditions of planet formation

are directly linked to the disks they inhabit. There a number of possibilities for how

clearings form in protoplanetary disks, including interactions with planetary mass

or larger companions. Whether planet/low-mass binary formation and dynamical

evolution can explain the transitional disk period remains an outstanding question.

6
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Spectroscopic observations can help estimate effective temperatures and accretion

properties of disk gap companions, while polarimetry can probe the disk structures

close in. Stable space instruments can push contrast limits at close inner working

angles to either discover new companions or rule out their presence above a certain

mass, as well as better characterize known cool companions’ infrared colors. To

date, many of the few low mass companions found inside disk gaps do not appear

massive enough to open up the very large disk gaps and holes they inhabit. One

explanation for massive disk gaps is that multiple unseen planets dynamically shape

the circumstellar environment.17 Deeper contrast imaging of the inner regions of disks

will either uncover these additional companions or place limits on their presence.

Coronagraphic instruments push extreme contrasts and can characterize planet-

mass companions spectroscopically from the ground but struggle to reach small inner

working angles. At close separations direct imaging can overlap radial velocity sen-

sitivity, especially for more massive companions. Complementary studies of young,

low mass binaries can help break age-mass degeneracies and test luminosity predic-

tions. Aperture masking on ground-based 8-10m class telescopes push the smallest

inner working angles, which can for example be used to measure dynamical masses of

young stellar binaries.18 Aperture masking on NIRISS will have the be able to observe

fainter targets and high precision astrometry of companions to low mass primaries

(e.g., M dwarfs) at less extreme contrasts.19 High resolution observations, especially

on NIRISS, will help collect more direct mass measurements to test evolutionary mod-
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els. Non-redundant masking is an excellent tool for studying close-in binaries and the

inner regions of disks, probing moderate contrasts on high resolution ground-based

near-IR imagers, and will reach deeper contrasts with high photometric precision on

JWST’s NIRISS.

1.2 Non-redundant masking for high res-

olution, high dynamic range imaging

While aperture masking Fizeau interferometry was demonstrated on sky as early

as 1986,20 the first major scientific result came at the turn of the millennium on the

Keck Telescope.21 Before adaptive optics, aperture masking was a way to beat atmo-

spheric noise by splitting the pupil into a set of unique vector hole pairs (or in some

cases a partially redundant pupil). These observations required very fast exposures

to remove or reduce blurring of fringes and “freeze” the atmosphere, and therefore

required very bright targets. AO stablizes the wavefront over the holes and enables

exposure times longer than the characteristic timescale of atmospheric turbulence.

Coupled to adaptive optics systems aperture masking has detected accreting proto-

planetary material,22,23 disks around young stars,24–26 and has studied the distribution

of brown dwarf companions to stars,27–32 among other exciting studies.

8
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1.2.1 Basic Fourier Principles

Every imaging system is an interferometer, where every pair of points in the pupil

interfere. In a filled pupil, there is a large degree of redundancy so that individual

spatial frequencies cannot be tracked back to one pair of points in the pupil. A non-

redundant mask breaks the pupil redundancy by having only a set of unique hole-

to-hole vector spacings, at the cost of reduced throughput. Each spatial frequency

present in the image can be mapped back to a specific set of holes in the pupil.

1.2.2 Fringe Observables

NRM images are generally analyzed by Fourier methods, with a numerical Fourier

transform. In Chapter 2 We present an alternative approach, using an analytic

Fourier transform sampled onto detector-scale pixels. For a mask of N holes there

are N(N − 1)/2 complex observables – a phase and amplitude for each hole pair.

Fringe amplitude variations probe symmetric structure, while fringe phase probes

asymmetric structure.

On the ground, even behind an adaptive optics system, fringe phases are corrupted

by large or small variations in the atmosphere and imperfections in the instrument.

Changing atmospheric aberrations can obscure the phase signal from a faint compan-

ion, for example. In practice, the primary observable in ground-based binary searches

with NRM is the closure phase, sets of 3 fringe phases that form a closed triangle. For

9
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closure triangles, hole-based phase errors (e.g. from atmosphere/instrumental effects)

calibrate out. Systematic non-zero closure phases can be calibrated by observing a

single-star (point source) calibration target and subtracting their measured closure

phases.

Squared visibilities also provide information about the extent of a resolved object

but can be challenging to measure with high fidelity from the ground. Differential

polarimetry provides a calibrated squared visibility observable by using orthogonal

polarizations and half wave plate angle rotations to calibrate out variations due to in-

strument noise. Differential polarimetry is discussed in detail in § 3.2.2, implemented

on the Gemini Planet Imager.
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Chapter 2

Raw contrast on JWST-NIRISS’s

non-redundant mask

This chapter presents work published in the Astrophysical Journal in Jan 2015.33

2.1 Context

Recent direct detections of exoplanets open a spectroscopic window into the at-

mosphere and physics of young and adolescent exoplanets. They are an important

component for piecing together a complete picture of exoplanetary formation and

evolution, and are complementary to indirect detections methods. Young and nearby

stars have already been surveyed from a few Astronomical Units of physical separation

outwards with direct imaging and coronagraphs on eight meter class telescopes34–37
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and are being surveyed at even higher contrast with current38–41 instrument surveys

utilizing extreme adaptive optics (ExAO). However, the close environs of young sys-

tems in stellar formation regions are only accessible to ExAO systems using interfero-

metric techniques such as non-redundant mask (NRM) interferometry.22,24,42,43 NRM

imaging is fundamentally limited by photon noise, so it yields moderate contrast. By

comparison, coronagraphs (which suppress light from the bright central object) are

capable of delivering higher contrast than NRM, but their search area does not reach

as close in as that of NRM. The two techniques are complementary.

NRM was first used to improve the angular resolution of filled-aperture tele-

scopes.20,21,44 Its improved dynamic range helped to probe the physics of binaries

at moderate contrast ratios.27,45–48 More recently, NRM observations of star form-

ing regions have discovered structures associated with the birth of exoplanets.22,24,43

Routine ground contrast ratio limits for NRM are 102 − 103 with the deepest con-

trast being ∆L′=7.99.49 Today instruments combine NRM with ExAO systems.50–52

These facilities, together with wide bandpass polarization or integral field unit spec-

troscopy (IFS) in the YJHK bands on the 8 m Gemini South telescope4 as well as

2.5–5 µm NRM on the 40 K James Webb Space Telescope’s Near Infrared Imager

and Slitless Spectrograph (JWST NIRISS),50,53–55 promise to extend planet forma-

tion science by enabling deeper dust penetration at longer wavelengths. These new

systems will enable detection of very young (e.g. Taurus-Auriga star forming region),

possibly accreting, gas giant planets at small separations.56

12



CHAPTER 2. RAW CONTRAST ON JWST-NIRISS’S NON-REDUNDANT
MASK

In spite of the wealth of recent observational results from NRM, the literature does

not include extensive discussion of the fundamental and practical limits associated

with the technique. Lacour et al. (2011)42 discussed empirical sensitivity limits of

VLT NACO Sparse Aperture Masking (SAM), based on experiments with the image

plane fitting routine that we study here. Martinache (2010)57 showed how NRM

can be generalized to full aperture imaging in the high Strehl ratio regime. Ireland

(2013)58 discussed some of the limiting factors of high contrast NRM observations,

and Hinkley et al. (2011)49 conducted deep NRM observations of the known multiple

planetary system HR 8799.

The focus of this chapter is two-fold. First, we continue the development of

the image plane approach to analyzing NRM data. We address field of view, pixel

sampling, plate scale and pupil magnification stability, and some detector properties.

We show that this method typically confirms the photon noise and flat field accuracy

limits presented by Ireland (2013).58 In addition, we study other factors that limit

NRM contrast — requirements on the spectral type match between a target and its

calibrator star, and the effect a finite spectral bandpass has on closure phase errors.

Second, we highlight factors that limit JWST NIRISS NRM, which fields a 7-hole

NRM.54 NIRISS has the best pupil image quality of all the JWST instruments,59

which makes it JWST’s best-suited instrument for aperture masking interferometry.

In addition, NIRISS’s homogenous aluminum bench and optics should help achieve

uniform contraction of mechanical and optical surfaces as the instrument cools to its
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operating temperature of about 40 K. NIRISS’s all-reflective design philosophy also

mitigates against chromatic effects, which can be exacerbated by cryogenic conditions.

Finally, some relevant properties of NIRISS NRM are described in the Appendix.

2.2 Background

A non-redundant mask (e.g., Figure 2.2) is a pupil plane mask typically located at

a re-imaged pupil plane. It possesses several usually identical holes arranged so that no

two hole-to-hole vectors are repeated (thus providing a non-redundant set of baselines

in the pupil). If its holes are circular, with diameter d when projected back to the

primary mirror, at a wavelength λ its point-spread function (PSF) or interferogram

is contained in an Airy pattern envelope with a first dark ring of diameter 2.44 λ/d

(Figure 2.1). This envelope is modulated by fringes with half period θ = λ/2B for

each baseline. Here B is the hole separation. Figure 2.2 shows the JWST NIRISS

mask with seven hexagonal holes, and its PSF.

The Fourier transform of the detected in-focus two-dimensional image intensity

array is the array of complex visibility, V . Because of the baselines’ non-redundancy,

the fringe amplitude and phase for each baseline or “two hole interferometer” compo-

nent in the NRM can be measured unambiguously. The array of complex visibilities

for a point source through unaberrated optics is the autocorrelation of the pupil mask.

The resulting array of complex visibilities form localized splodges27 of signal in the
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~2.44 λ/D core

Pupil, diameter D

λ/2B fringe spacing

            Interferogram

Baseline B

Pupil Plane

Three-hole NRM

Figure 2.1: Pupil masks and their interferograms. Small holes produce a large
PSF envelope, fringed by interference through multiple holes. The longest baselines
provides finer resolution than a full aperture. The three hole pupil at right can provide
a closure phase measurement of a celestial object.

Figure 2.2: Non-redundant mask for JWST’s NIRISS pupil wheel60 and its PSF
(or interferogram) with NIRISS F430M from cryogenic vacuum tests in November
2013.61 The interferogram’s fine structure is due to the 21 baselines generated by the
7 holes. The PSF envelope reflects the hexagonal hole shape. Each hexagonal hole
maps onto one of the JWST primary mirror segments.
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transform domain (e.g., Figure 3.2–bottom) — conceptually one independent splodge

(or a splodge and its dependent, Hermitian “mirror splodge”) per baseline. Numerical

Fourier data analysis approaches measure fringe phases and fringe amplitudes, often

at the peak of each splodge amplitude.21,27 When using a finite bandwidth filter, se-

lecting a single amplitude and phase to characterize a polychromatic fringe implicitly

averages over the bandpass. Furthermore, since windowing in the image plane leads

to convolution in the Fourier domain, this induces a second form of averaging within

a splodge. Our image plane approach avoids this second form of averaging, but it

does perform a conceptually similar averaging over the bandpass. In the absence of

wavefront aberration, fringe phases for an on-axis point source are zero. Information

on source structure is contained in the fringes that are extracted from the image.

The non-redundancy of baselines in the pupil leads to constraints on the complex

fringe visibilities. A closure phase (the cyclic sum of fringe phases around the baselines

formed by three holes (top right, 2.1)) is insensitive to constant wavefront delays

(pistons) over the holes. The fringe formed by interference of holes i and j has a fringe

phase ϕi,j which is proportional to the wavefront delay between holes ϕi,j ≡ ϕj − ϕi.

For a point source (in the absence of higher order aberrations):62

∆ϕ1,2 +∆ϕ2,3 +∆ϕ3,1 =

(ϕ1 − ϕ2) + (ϕ2 − ϕ3) + (ϕ3 − ϕ1) = 0 (2.1)
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Full-aperture images do not yield closure phases, but sufficiently high Strehl ratio

images possess certain constrained linear combinations of phases of the Fourier trans-

form of the image.57,63 These combinations, or kernel phases, are useful for model

fitting data when wavefront aberrations are below ∼ 1 radian.57,58,64

An N -hole mask has N(N − 1)/2 baselines, N(N − 1)(N − 2)/6 closure phases,

and (N − 1)(N − 2)/2 independent closure phases. Empirically, achievable dynamic

range is approximately the inverse of the standard deviation of closure phase error,

1/σCP .
42

Closure phases of centro-symmetric sky brightness distributions are zero. Binary

or multiple point source models are fit to closure phase data to provide information on

structure as fine as λ/2B. Instrumental contributions to closure phases are measured

(in principle) by observing a point source. These contributions are then subtracted

from a target’s closure phases. Instrument stability between target and calibrator

leads to improved NRM performance. In addition to fringe phases, a space telescope

is likely to provide stable fringe amplitudes. Closure amplitudes (a ratio of amplitudes

of fringes formed by four holes65) are useful in simple model fitting using space-

based NRM data, thereby extending NRM model fitting to include centro-symmetric

structure such as circular disks. However, Ford et al. (2014)66 use simulated noisy

NIRISS NRM data to extract the fringe amplitudes and phases which they then use

to recreate the input target scene with interferometric resolution. They found that

enforcing closure quantities on image plane data leads to an increase in spurious image
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artifacts.

Currently numerical Fourier methods are the most common approach to NRM

data analysis.21,22,45,67 This is suited to fields of view that encompass the first few

Airy rings of the NRM PSF’s “primary beam” (the diffraction pattern of a single hole),

and pixel scales that are significantly finer than λ/2D. Palomar Hale’s PHARO, Keck-

NIRC2, and VLT’s NACO all possess 3-5 pixels per resolution element.21,68,69,69,70

With such super-Nyquist fine pixellation, Fourier methods easily identify and inter-

polate over isolated bad pixels.58

Diffraction-limited exoplanet imagers deploying state-of-the-art ExAO systems

now feed IFSs.4,5, 38 These imaging spectrographs typically have limited fields of view

since several detector pixels are required for each image plane pixel spectrum, and

the angular extent of each image plane lenslet is at or below the diffraction limit

of the telescope, so the instruments are often limited by the number of available

detector pixels. NRM on these hyperspectral imagers — Palomar’s P164051,52 and

Gemini Planet Imager8,50 — must deal with this limitation. An image plane based

approach42,55,71 is insensitive to these restrictions on the field of view.

Future space-based NRM on JWST NIRISS54,55,60,72,73 is implemented on coarse

pixel scales. Under these conditions a numerical Fourier data reduction approach

may require more data in order to reduce contamination by bad pixels. This is more

relevant to coarse — barely or sub-Nyquist — pixel scales. Dithering to fill the image

plane pixels with valid data decreases observing efficiency and complicates estimates
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of noise. An image plane based approach sidesteps the requirement of knowing every

pixel value in the image. The image plane approach is also robust to detector non-

linearities that may occur at the centers of NRM images, since suspect pixel data can

be discarded. JWST NIRISS’s coarse pixel scales also increase its sensitivity to non-

uniform sensitivity within a pixel (intra-pixel sensitivity, or IPS), and pixel-to-pixel

variations in IPS.74 Image plane data reduction can take IPS into account, with a

map of measured variations or a model of the pixel sensitivities.55

2.3 Image Plane Modeling

We assume the image plane complex amplitude induced by a point source at

infinity is described by the Fourier transform of the aperture transmission function

(i.e., the Fraunhofer approximation). If functions F and f are a Fourier transform

pair, we write F
F.T.
⇌ f . We develop a polychromatic image plane model tailored

to JWST NIRISS’s seven hole NRM (2.2). Each hole is a hexagon, which, when

projected to the JWST primary mirror, has a flat-to-flat distance of approximately

0.8 m. Our model can be adapted to arbitrary hole locations and polygonal hole

shapes.8 Here we treat circular holes with diameter d or hexagonal holes with flat-to-

flat distance D (2.3), utilizing a closed form for the Fourier transform of a hexagon,75

while noting that other more specialized derivations for this exist in the literature.76

We extend the work of Sabatke et al. (2005)75 to include limiting values for the
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analytical expression’s three singular lines and singular central point.

We calculate the monochromatic NRM PSF at a wavelength λ analytically, and

construct polychromatic PSFs by summing appropriately weighted monochromatic

PSFs on a finely sampled numerical grid. We then bin this finely sampled image to

the detector pixel scale to simulate a pixelated noiseless NRM PSF.

We denote the pupil transmission function by A(x). A hole with a transmission

function Ah(x) produces an image plane complex amplitude ah(k) (where ah
F.T.
⇌ Ah)

and a PSF P = ah a
∗
h (where ∗ indicates complex conjugation). If the pupil plane

vector x = (x, y) is in units of the wavelength of the monochromatic light, the image

plane (or spatial frequency) vector k = (kx, ky) is in cycles across the pupil. P (k) is

the primary beam, by analogy with radio interferometry, and is the envelope of the

NRM PSF. Vector baselines create the finer scale fringing in the NRM PSF.

2.3.1 Circular mask holes

A circular aperture’s transmission function is

2
∏

(x) =

⎧⎪⎪⎨⎪⎪⎩
1 , r < 1

2

0 , r ≥ 1
2

(2.2)
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where r =
√
x2 + y2. The transmission function of a mask with N identical circular

holes centered at {xi, i = 1, ..., N} is

A(x) =
N∑
i=1

2
∏

(
x− xi

dλ
) (2.3)

(where dλ ≡ d/λ). The image plane complex amplitude of an on-axis monochromatic

point source observed through this mask is

a(k)
F.T.
⇌ A(x). (2.4)

Following the nomenclature of phase retrieval work on the Hubble Space Telescope,

we call a(k) the amplitude spread function (ASF).

Invoking Fourier shift and scaling theorems,

2
∏

(
x− x0

dλ
)
F.T.
⇌ (dλ)

2Jinc(kdλ)e
−ik·x0 (2.5)

where Jinc(k) ≡ J1(πk)/2k is the transform of the circular transmission function.

Here J1 is the Bessel function of the first kind, of order 1. The phase gradient term

e−ik·x0 reflects the shift of the hole’s origin to x0.
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D

h(x,y)

h(x,−y)

Figure 2.3: We use the convention from Sabatke et al. (2005),75 where D is the
flat-to-flat distance. The hexagon is split into two symmetric parts, ahex(x, y) and
ahex(x,−y), whose transforms, g(kx, ky) and g(kx,−ky) are computed analytically
(2.6).

2.3.2 Hexagonal mask holes

We denote the hexagonal hole Fourier transform by ahex(k). Following,
75 g(kx, ky)

is the Fourier transform of one half of a hexagon that is bisected from one corner to

it diametrically opposite corner (2.3):

g(kx, ky) =
exp[−iπD(2kx√

3
+ ky)]

4π2(k3x − 3kxk3y)
(
√
3kx − 3ky)

× ({exp(iπD
√
3kx)− exp[iπD(

4√
3
kx + ky)]}

+ (
√
3kx + 3ky)[exp(iπDkx/

√
3)− exp(iπDky)])

ahex(ky, kx) = g(kx, ky) + g(kx,−ky). (2.6)

The function g has numerical singularities along three lines, kx = 0 and kx = ±
√
3ky.

The limiting behavior along kx = 0 and at the origin is:
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g (0, ky) =
e−iDπky

2
√
3π2k2y

×

(−1 + iDπky + eiDπky − 2iDπkye
iDπky) (2.7)

g (0, 0) =

√
3D2

4
. (2.8)

Values along the other two lines can be found by invoking symmetry arguments, and

replacement with the appropriate limiting value taken from the kx = 0 line.

2.3.3 Interference between holes

In the absence of wavefront error the ASF of a mask withN identical holes centered

at {xi, i = 1, ..., N} is

N∑
i=1

A(x− xi)
F.T.
⇌ a(k) = ah(k)

N∑
i=1

e−ik·xi (2.9)

(ah(k) is a single hole ASF). The mask’s point spread function is

p(k) = a(k)a∗(k) = P (k)
N∑
i=1

N∑
j=1

e−ik·(xi−xj) (2.10)
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or

p(k) = P (k){N + e−ik·(x1−x2) + eik·(x1−x2).

+e−ik·(x1−x3) + eik·(x1−x3) + ...}

(which is real and nonnegative for any k). The flux in this image is the two-

dimensional integral
∫
NP (k)dk, taken over the entire k plane. We rewrite the PSF as

p(k) = P (k){N +
∑
i<j

2 cos (k · (xi − xj))} (2.11)

which shows the separate roles the vector baselines and the primary beam play in the

morphology of a point source’s interferogram.

Wavefront errors {ϕi, i = 1, ..., N} that are constant within each of the apertures

decenter each fringe by (ϕi−ϕj). Such errors are termed pistons. Pistons do not move

the image centroid, since the intensity centroid is the mean of the phase gradient over

the (uniformly illuminated) pupil forming an in-focus image,77 and piston errors do

not change the mean wavefront slope. A piston difference between two holes shifts

the fringe away from the image centroid (or pointing center) by an angle, the fringe

phase. A shift from one fringe maximum to the next is interpreted as an angle of

2π. Given JWST NIRISS’ anticipated image quality during normal operations, we

expect fringe phases of point source NRM images to lie well inside the half-open

interval (−π, π]. This removes any technical difficultes associated with a fringe phase
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wrapping around 2π. We stress that fringe phases are not the argument of a ‘phasor’

associated with the complex amplitude of an electromagnetic wave. The expression

for the interferometric PSF in the presence of only piston errors is

p(k) = P (k)
N∑
i=1

N∑
j=1

e−ik·(xi−xj)+i(ϕi−ϕj)

= P (k)
{
N +

∑
i<j

2 cos (k · (xi − xj) + (ϕi − ϕj))
}

= P (k)
{
N +

∑
i<j

2
(
cos (k · (xi − xj)) cos (ϕi − ϕj)

− sin (k · (xi − xj)) sin (ϕi − ϕj)
)}
. (2.12)

2.3.4 The JWST NRM PSF

For JWST NIRISS’s 7-hole hexagonal mask, (2.12) gives

p(k) = P (k)
{
7 + 2 cos (k · (x1 − x2)) cos (∆ϕ1,2)

−2 sin (k · (x1 − x2)) sin (∆ϕ1,2)

+2 cos (k · (x1 − x3)) cos (∆ϕ1,3)

−2 sin (k · (x1 − x3)) sin (∆ϕ1,3)

+...
}
. (2.13)

With this closed form rapid calculation of monochromatic and polychromatic PSFs
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on a fine scale is straightforward.

2.3.5 Linear fit

Piston differences enter into 2.13 as coefficients of the sines and cosines describ-

ing the baselines’ fringes. NIRISS’s 7-hole mask has 42 such fringe coefficients—

cos∆ϕi,j’s and sin∆ϕi,j’s, which we rename aij’s and bij’s, respectively. Two addi-

tional parameters are required to match the model to data: the average flux per hole,

F , and a DC offset C:

F P (k) {N +

∑
i<j 2[cos (k · (xi − xj)) cos(∆ϕi,j)

− sin (k · (xi − xj)) sin(∆ϕi,j)]}+ C. (2.14)

These 44 parameters can be estimated from image plane pixel data by using an

unweighted linear least squares minimization of the quantity

||data−model(aij, bij, F, C)||,

and performing a matrix inversion to recover the parameters. We did not detect

significant improvent of a noise-weighted fit over an equally weighted fit, so we use
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the latter. The piston differences, or fringe phases, are found with

∆ϕij = arctan(bij/aij). (2.15)

For uniformly transmissive optics throughput, no scattered light, no significant high

spatial frequency wavefront errors, and perfect detectors we expect the trigonometric

identity

b2ij + a2ij = 1

to hold when imaging a point source. Model parameters derived from fitting real data

rarely obey this identity. Instead, we obtain the square of the ijth fringe visibility:

b2ij + a2ij = VijV∗
ij. (2.16)

Target structure further reduces fringe visibility. We calculate fringe visibilities in our

simulated data sets by measuring coefficients {aij, bij}. We calculate all 35 possible

closure phases in NIRISS’s 7-hole NRM. Only 15 of these are independent measure-

ments.

We evaluate our model PSF on a 3× 3 sub-pixel grid (unless otherwise noted) so

we can study sub-pixel effects, and then bin the array to the detector pixel scale. A

full pupil distortion model was not used in this study, although real data will require

detailed knowledge of the NRM-to-primary mapping.
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A polychromatic model is generated with an appropriately weighted sum of each

monochromatic fringe model, given the bandpass profile.

model =
∑
λ

Fλ P (kλ) {N+∑
i<j

2[cos(kλ · (xi − xj)) cos(∆ϕi,j)

− sin(kλ · (xi − xj)) sin(∆ϕi,j)]}. (2.17)

In the presence of non-zero piston error the model in 2.14 does not fit polychromatic

data perfectly, because piston error scales inversely with wavelength. This means that

the fringes’ coefficients, cos(∆ϕi,j) and sin(∆ϕi,j), themselves vary with wavelength,

but our fit keeps these coefficients constant over the bandpass. The narrower the

fractional bandwidth of the filter, the smaller the variation of these coefficients. This

problem is common to both the image plane as well as the numerical Fourier approach

to NRM data analysis. The least squares solution (2.15 and 2.16) produces an esti-

mate of fringe phase and amplitude that describes some average over the bandpass.

We use this estimate in our polychromatic studies.

2.3.6 Applicability of the model

NRM is suited to wavefronts that are smooth over each hole in the mask. Our

model assumes flat wavefronts over each hole, which averages over fine wavefront

structure in some manner. A Fourier approach windows image data, which also aver-
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Filter Name λc δλ/λ λ/2D

F480M 4.8 0.08 76

F430M 4.3 0.05 68

F380M 3.8 0.05 60

F277W 2.7 0.25 44

Table 2.1: λC is the filter central wavelength, and δλ is the half-power width of the
filter. The Nyquist pixel scale λ/2D uses the nominal equivalent area JWST mirror
diameter D = 6.5. NIRISS’s pixel scale is 65 mas.

ages phase and visibility information (since image plane windowing is a convolution

in the Fourier domain). However, the two approaches propagate image plane noise

differently. We discuss the effects of high spatial frequency wavefront error in § 2.6.

Table 2.1 describes NIRISS NRM filters relevant to exoplanet studies. We study

filter bandpass, source temperature, and spectral type effects using our polychromatic

PSF model. When using F277W and F380M, NIRISS’ 65 mas square detector pixels

are coarser than Nyquist-sampled.

2.4 Photon noise, flat field error, and intra-

pixel sensitivity

We inserted piston wavefront errors over the holes (Figures 2.2 and 2.4) to examine

their effects on simulated monochromatic images. Our pistons are all smaller than

λ/4, which avoids phase wrapping.

We generate monochromatic 4.3 µm images either 3 or 5 times finer than the
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Figure 2.4: Asserting the static pistons from 2.2 in this simulated PSF produce
asymmetric features.

Piston in waves at 4.3 µm

+0.02884
−0.06150
+0.12400
−0.02040
+0.01660
−0.03960
−0.04780

Table 2.2: Our simulations use a set of uniformly distributed, random static pistons
with a mean of zero and standard deviation 0.06 waves. Anticipated JWST NIRISS
rms wavefront error at 4.3 µm is approximately λ/30.
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Figure 2.5: Closure triangles: The set of 15 independent closure triangles corre-
sponding to the x-axes in closure triangle behavior inset plots in figures in § 2.4, 2.5,
and 2.6, ordered by increasing perimeter length.

NIRISS pixel scale prior to binning to its detector scale and performing a least squares

determination of the 44 model parameters. We measure closure phase standard de-

viation for different noise parameters for a set of 15 independent closure triangles

(2.5). In the absence of added noise our measured closure phases were numerically

indistinguishable from zero.

We find that the quality of the fit does not change significantly with field of view

(i.e. the number of pixels used). We used data within the first dark Airy ring of the

primary beam in all simulations.

We distinguish between two types of closure triangle response to different sources

of noise or error:

• Baseline-independent behavior limits contrast at all spatial frequencies similarly.

• Baseline-dependent behavior varies with baseline length and therefore closure
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triangle. This behavior preferentially limits contrast at higher frequencies, or

smaller angular resolution.

2.4.1 Photon noise limit

We investigate a range of exposures, from 104 to 1011 photoelectron counts (as-

suming coadding of multiple exposures regardless of pixel well depth). We calculate

the standard deviation of each of the 35 closure phases over 25 independent realiza-

tions, and plot the mean of these standard deviations, σCP , as the solid line in 2.6.

Our results are consistent with the58 result

σCP =
√
1.5

Nholes√
Nphot

indicated by the dotted line. The inset plot in 2.6 displays the behavior of the

closure phases plotted in order of increasing closure triangle perimeter. Photon noise

contributes baseline-independent error.

2.4.2 Flat field error

We simulated multiplicative flat field error with an arrays of uncorrelated pixel-

to-pixel noise drawn from a Gaussian distribution. The standard deviation of the

Gaussian distributions range from 0.03% to 3%. 2.7 shows our simulation alongside
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Figure 2.6: Exposure time (monochromatic): The mean closure phase standard
deviation for a range of exposure. The solid red line shows our simulation results;
the dotted black line displays the noise limit of Ireland (2013).58 The inset shows one
example of σCP for each of the 15 triangles in 2.5 for an exposure with 109 photons.
Photon noise induces baseline-independent errors.
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Figure 2.7: Flat field error (monochromatic): σCP , averaged over closure
triangles, is compared to varying uncertainty in flat field, σFF . The solid red line
shows our simulation results. The dotted black line displays a similar numerical result
from Ireland (2013).58 Uncorrelated flat fielding error induces baseline-independent
errors.

the Ireland (2013)58 result:

σCP ≲ 0.3σF .

The small offset between the two results may be a difference in number of pixels used

or in the way error is modeled. Both results show the same trend. Flat field error is

a baseline-independent effect.
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2.4.3 Pixel-to-pixel variations in intra-pixel sensi-

tivity

We use a data-based model of the NIRISS detector’s intra-pixel sensitivity.74 The

pixel has maximum sensitivity at its center, but the sensitivity drops smoothly to

80% ± 5% of its peak at the pixel corners (2.8B–left). We implement a parabolic

drop-off of sensitivity within a pixel.

78 describes a single image (integrated over each pixel) on a detector as

I(x, y) = O(x, y) ∗ P (x, y)(III(x, y) ∗R(x, y)) (2.18)

where the image is a convolution of the object, O(x, y) and the PSF P (x, y) multiplied

by a sampling function convolved with the intra-pixel response, R(x, y). If R(x, y) is

symmetric it will not contribute phase to the transform of the image. However, the

intra-pixel sensitivity is not the same for all pixels, and/or is not symmetric, so is

likely to contribute fringe phase error.

Uncharacterized IPS variations are prone to have a larger effect on coarsely sam-

pled images than finely sampled ones. 2.8 compares the effects of sampling frequency

when IPS varies from pixel to pixel. We compare the sampling in NIRISS F277W

and F430M bands, and GPI H and K bands as illustrative examples.

Here we assume that flat fields are known perfectly, so we use uniform and sym-

metric pixel-to-pixel weighting in our model (2.8B–left) and fit data with many re-
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alizations of IPS drawn from the model we describe above (e.g., 2.8B–right). We

renormalize the total pixel efficiency to maintain a constant net sensitivity of each

pixel to avoid confounding flat-fielding error with IPS effects. 2.9 shows increasing

closure phase error for increased coarseness in pixel scale. Although NIRISS’ F277W

suffers most from IPS variation, we can still achieve below 10−3 radians in closure

phase error with the 5% uncertainty in IPS. Fine scale dithering79 and careful in-

dividual pixel IPS calibration could mitigate our sensitivity to worse-than-Nyquist

pixel scales. We note in passing that the NIRISS F277W filter presents an interesting

science opportunity for faint companion imaging. F277W covers an H2O absorption

feature that could help constrain planet chemistry and dust grain models.80–82

IPS modeling can also help determine fractional-pixel positioning of objects on

the detector, by cross-correlating image data with analytically generated reference

PSFs at different sub-pixel centerings.55

2.5 PSF magnification and spectral through-

put

Uncertainty in the coordinate scaling of the PSF affects our linear fit. Scaling

errors could arise from hole size or central wavelength uncertainty. Coordinate scaling

magnifies the PSF envelope and contributes errors, particularly to longer baselines.

The PSF magnification in the data can be determined by cross-correlating the power
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Figure 2.8: Intra-pixel sensitivity: A comparison between uniform IPS and
pixel-to-pixel IPS variations74 on detectors with sub- and super-Nyquist pixellation.
A. Top left panel shows the sub-pixel sensitivity variation of two rows of 11 pixels,
one with uniform IPS and the other with IPS realizations drawn from the statistical
model. B. A single pixel whose sensitivity drops quadratically to 80% at its corners,
and an oversampled map of 11 × 11 pixels drawns from the statistical IPS model.
C. On the left, a finely sampled fringes (5× finer than the detector sampling) with
varying IPS. On the right, the same response binned to the detector scale. At 2.77
µm the sampling is too coarse to detect the fringe peaks, which are aliased — only
one peak is visible, though there are actually three. D. The difference between image
pixel counts for simulated detectors with uniform pixels and varying IPS. F430M (just
Nyquist sampled) and F277W (about half Nyquist) show the largest errors. The two
well-sampled GPI H and K2 bandpasses show much smaller errors. 2.9 quantifies
closure phase errors in these situations.
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Figure 2.9: Varied intra-pixel sensitivity (monochromatic): Closure phase
errors resulting from a range of distributions of IPS. The relative edge sensitivity is
varied, while maintaining a uniform net pixel quantum efficiency (see text). NIRISS
detector sampling at 2.77 µm and 4.3 µm, and GPI sampling at K2 (2.3 µm) are
shown.
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spectrum of the data with power spectra of model PSFs created using a range of

pupil scales. An NRM can be used to determine plate scale of IFS data cubes, thus

providing an independent check of either plate scale or wavelength calibration in the

hyperspectral data cubes.8

Mask geometry or mask scale uncertainties will contribute errors in the closure

phase when there are static pistons. Without static phase errors (i.e., with a sym-

metric PSF) there should be no error in closure phase. An asymmetric PSF (resulting

from static piston error), however, will produce baseline-dependent closure phase er-

rors, even when the model perfectly matches the data. We demonstrate that random

static phases produce baseline-dependent closure phase error when fitting a polychro-

matic image, regardless of whether the model is monochromatic or polychromatic.

Below about λ/10 waves (at the central wavelength) rms piston error the closure

phase error scales with piston error. The effect is negligible when piston is below

small fractions of a wave, when the PSF is sufficiently symmetric. In this section we

use pistons that are uniformly distributed with an rms piston of 0.06 waves and zero

mean (2.2).

2.5.1 Hole size tolerance

The mask geometry must be known well to fit the diffractive image model to data.

We simulate masks with 7 identical holes. We used a Gaussian distribution of mask

hole sizes with varied uncertainties and mean hole diameter d, the NRM hole size
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Figure 2.10: Hole size errors (monochromatic): We calculate σCP with a range
of errors in hole diameter. Hole size only affects PSF envelope scaling, which is easily
measured in the Fourier plane. Wavelength scales the entire PSF.

for NIRISS. 2.10 compares hole size error σd to σCP . Contrast drops steeply with

uncertainty in hole size in the presence of piston errors.

2.5.2 Fitting medium- and wide-band data

NIRISS has three medium-band (5 − 8% fractional bandwidth) filters intended

for exoplanet science with NRM. Additionally, the wide-band F277W filter (25%

fractional bandwidth) may also be scientifically interesting, despite its coarse sam-

pling. 2.11 demonstrates that a polychromatic model matches the data better than
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Figure 2.11: Fitting finite bandwidth data: Using a monochromatic model
to fit finite bandwidth data achieves our required contrast only when the fractional
bandwidth is ≲ 1%. Using a polychromatic model improves contrast by an order of
magnitude. These closure phase errors are baseline-dependent, and are highly sensitive
to the particular configuration of holes and pistons.

a monochromatic model, by about an order of magnitude. Closure phase errors for

finite-bandwidth images with pistons are highly baseline-dependent. The errors vary

by orders of magnitude between different closure triangles. Closure phase errors also

depend on the shape of the bandpass for a given realization of piston errors, when fit-

ting with a polychromatic model. 2.11 suggests that mismatch in central wavelength

can introduce large errors in closure phase.

Unless otherwise noted, we use the pistons described in 2.2 in these simulations.

When there are no pistons in the pupil, error in the source spectrum should not

contribute closure phase errors because the PSF remains symmetric. To explore how

much piston affects closure phase error for polychromatic data fit with the model
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Figure 2.12: Spectrum errors and static piston in the pupil: We measure
closure phase for polychromatic data with different levels of piston simulated with
NIRISS’s F430M filter and fit with a polychromatic model. The dependence is roughly
linear when the pistons are below λ/10 at the central wavelength λc = 4.3µm.

described in 2.17, we simulated data with piston at small fractions of a wave and

measured the resulting closure phase. The set of pistons in 2.2 were scaled uniformly

to preserve the character of the errors while changing the size of the error. Closure

phase error scales with the level of static piston up until an rms piston of about λ/10

(2.12).

Fitting polychromatic data with a polychromatic model will only introduce closure

phase errors when there are non-zero pistons in the pupil and the PSF has asymme-

tries. The gross characteristics of the net throughput (filter × source spectrum) sets a

floor on raw contrast (2.13). This is likely because of the piston averaging mentioned

in § 2.3.5. Polychromatic fitting is robust to smaller differences in throughput (e.g.

slope) between the model and data.
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Figure 2.13: Bandpass shape: We fit noiseless polychromatic data generated
with bandpasses of positive or negative slopes (difference in counts between the edges
of the bandpass) with both a monochromatic model (4.3µm), and a polychromatic
model (λc = 4.3µm) matching the bandpass. Surprisingly, the data are not fit best at
zero slope with a polychromatic model. The shape of the bandpass can add small but
significant errors because of averaging discussed in 2.3.5. Bandpass shape introduces
baseline-dependent errors.
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Figure 2.14: Spectrum error (polychromatic): A. Left: Transmission profiles
for F430M and F277W NIRISS filters. Right: Spectral profiles seen through the
two NIRISS filters: blackbody spectra from Teff=12000K to Teff=200K (subplot B)
and stellar-type spectra83 from M0V to O3V (subplot C ). Large changes in spectral
type do not strongly affect the slope of the spectrum. B. The closure phase error
(standard deviation over triangles in solid) plotted against blackbody temperature of
simulated polychromatic data. The model temperature is Teff=12000K. Dashed lines
represent individual closure triangles. C. Closure phase is plotted against mismatch
in stellar-type between the model created with an O3V stellar spectrum at a central
wavelength λc=4.3µm for 5% (blue) and 20% (green) bandpasses. Closure phases for
all of 15 triangles are in dotted lines and their standard deviation in solid.
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JWST is anticipated to have 80% Strehl Ratio at 2 µm. If its all wavefront error

is in piston, piston standard deviation should be about 0.035 waves at 4.3 µm. These

values fall below λ/10 for the F430M filter. We assume that the filter is well known

but the source spectrum is not. We investigate mismatch in blackbody spectrum

(i.e., temperature) as well as an incorrect choice of stellar spectral type. We generate

point source images for NIRISS F430M and F277W at a range of temperatures and

stellar spectra, and fit each to either a T = 12000K blackbody or an O3V star model.

2.14A displays the F430M and F277W filter transmissions and range of blackbody

curves, from our modeled spectrum at T=12000K down to T=200K. 2.14B displays

raw closure phases for all of the 15 independent baselines and their standard deviation

from fitting an incorrect blackbody model (T=12000K) to data simulated at our range

of temperatures. Similar to the bandpass shape simulation in 2.13, there is an overall

throughput shape that yields best sensitivity, though this behavior varies depending

on baseline. The polychromatic image plane model is robust to a large error in

blackbody temperature, up until the blackbody slope turns over for extremely cool

objects (e.g., cooler than 670K at 4.3 µm).

We repeat the same procedure with a range of stellar photosphere models from83

to examine the effect of stellar type mismatch on closure phase sensitivity. 2.14A

shows that the range of stellar spectra from O3V to M0V stars in the two JWST

filters do no differ much by slope. We model a flat bandpass centered at λc=4.3µm

at 5% and 20% to introduce the same rms piston. 2.14C shows the raw closure phase
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error when the two models (using stellar type O3V) are fit to this range of spectra.

The polychromatic image plane model shows similar robustness to poor knowledge of

the stellar spectral type.

Polychromatic model fitting will not be a limiting factor on raw contrast for the

narrowest filters with less than 0.06 waves rms piston, but becomes more of a concern

for wide-band images, especially at shorter wavelengths. For small piston WFE, raw

contrast for NRM with the F277W filter is not limited by the size of the bandpass

compared to the effect of intrapixel sensitivity or flat field errors.

2.6 Higher Spatial Frequency Wavefront

Error

Wavefront errors can introduce both amplitude and phase aberration in an image.

NRM is most effective in the low spatial frequency wavefront error regime; closure

phases are insensitive, to first and second order, to piston wavefront error.58 Wave-

front errors on mirror segments often span a range of spatial frequencies. We used

WebbPSF84 to simulate NIRISS NRM PSFs with low to mid spatial frequency wave-

front errors, including segment tip and tilt, and figure errors on the segments and

instrument optics.

We first explore the contribution of tip/tilt error by introducing randomly oriented

tilts on simulated JWST mirrors. In 2.15 each trial has a fixed tilt magnitude, which
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we place on 6 mirrors. We require a mean tilt of zero by constraining the last mirror

so that we do not actually shift the centering of the PSF. Closure phase errors of 10−4

result from segment tilts of the order of half a resolution element.

We also calculated closure phases for 10 different PSF realizations of ∼ 140 nm

rms optical path delay (OPD) on the JWST primary85 using WebbPSF (2.15). These

sample OPDs do not contain significant segment tilt or global focus. Fitting simulated

data with this WFE yields σCP = 10−3.5.

2.7 Detecting the companion around LkCa15

with JWST NIRISS

We consider the case of LkCa 15, which has a detected companion inside its disk

gap, to compare simulated NIRISS NRM to current ground-based NRM. In 2.16 we

plot the theoretical binary closure phase signal for the mask on NIRISS at 4.3 µm and

2.77µm for two flux ratios: 10−2 and 10−3. The red stars mark the Keck Telescope

K ′ and L′ detections of companion structure around LkCa15, a transitional disk with

potential planet-forming bodies.22 The LkCa15 detections fall between 0.5λ/D and

λ/D for 2.77 µm (D referring to longest baseline), and are detectable with contrast

better than 10−3.

The F277W filter, at shorter wavelength, will access smaller inner working angles,

relevant to following up close companions detected with large apertures on the ground.
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Figure 2.15: Tilts and higher order wavefront error: Top: We measure σCP

from 100 different tilt error simulations of various sizes of tilt. An instance of tilt over
each hole is inset in the top panel. Bottom: σCP from fitting 10 different ∼ 140 nm
rms JWST NIRISS wavefront realizations containing higher order wavefront error.85

PSFs were generated with WebbPSF software.84
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Figure 2.16: LkCa15 with JWST NIRISS: The theoretical closure phases for
a single binary companion predict a required contrast ≈ 1/σCP empirically. The plot
shows σCP over all possible triangles through NIRISS F277W and F430M filters. If
F277W observations can reliably measure closure phase below 10−3, they could detect
theK ′ signal of the companion structure around LkCa15, according to.22 Two of their
three companion sources lie between λ/2D and λ/D at 2.77 µm.
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Following our analysis in 2.4–2.6, we conclude that F277W would be able to achieve

raw contrast of 10−3 with good flat field measurements and IPS characterization.

With this performance NIRISS would be able to detect the LkCa15 companion signal

in a routine observation.

At 2.77µm, λ/2B ∼ 88 mas for NIRISS NRM. Detections this close to the diffrac-

tion limit maybe challenging from a modeling perspective. The anticipated stability

of NIRISS NRM’s visibility amplitudes may help in breaking contrast-separation de-

generacies more securely than in similar ground-based data. Multi-band observations

may also help resolve degeneracies between separation and contrast. While the an-

gular separation LkCa15’s companions may still pose a challenge, NIRISS will likely

achieve better contrast than ground-based NRM.

2.8 Discussion and Recommendations

Our analysis of the limits on raw contrast helps develop instrument tests, calibra-

tion needs, and observing strategies for JWST NIRISS. We applied our analytic model

to NIRISS’ cryogenic test data.61 The necessary conditions for 10−4 closure phase er-

ror with NIRISS NRM depend strongly on detector behavior and other instrument

and telescope details. Instrument characterization and accurate pointing and dither-

ing, coupled with point source calibration of science target data could help achieve

this contrast goal for routine NIRISS observations. Because of thermal drift and the
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planned occasional wavefront control activity in flight,86–88 near-contemporaneous ac-

quisition of target and point source calibrator data is desirable. Since NIRISS point

source calibration involves system-wide complexities we defer study of it here. NRM

paired with the sub-Nyquist sampled F277W filter should provide about 7.5 magni-

tude raw contrast, which could be useful for probing water absorption features.

Identifying outlying image pixels is straightforward with our analytical model fit.

Our algorithm also makes for more efficient observing strategies since missing pixel

data do not need to be filled in with dithered observations. Pixel-to-pixel variation

in sub-pixel scale differences is easily incorporated in a statistical or detailed manner

in our model fit approach, and saturated pixels can be ignored in the fit. This is

relevant to NIRISS, with its barely-Nyquist pixel scale and JWST’s limited lifetime.

Flat field errors of 0.1% limit raw monochromatic contrast to a few ×10−4. Precise

positioning of the target and calibrator on the same pixel will reduce the effect of flat

field errors.72 Knowledge of intra-pixel sensitivity can be used to improve astrometry

and reduce fringe phase measurement errors.55 Intra-pixel sensitivity (IPS) varia-

tions over the detector limit contrast, especially for the shorter wavelength NIRISS

F277W and F380M filters. However, knowledge of the IPS can ameliorate this. We

demonstrated that a statistical understanding of IPS variations can help markedly.

As with flat field errors, repeated placement of targets to sub-pixel accuracy will

benefit NIRISS NRM’s contrast.

Small scaling errors may introduce closure phase errors when there are static piston
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in the pupil. Matching magnification between data and model is straightforward in

the Fourier domain. For instruments that have IFSs, this technique can be used either

for wavelength or for plate scale calibration of individual hyperspectral cube slices.8

NIRISS NRM data analysis in the image plane will benefit from polychromatic

modeling. The necessary piston averaging at the band’s central wavelength will con-

tribute closure phase errors when there are non-zero pistons in the pupil. However,

the modeled bandpass is fairly robust to errors in source spectrum, as long as the

spectrum slope sign is correct. Raw contrast from F277W observations will be re-

duced because of its wider bandpass, and because F277W will see higher instrument

WFE at its shorter wavelength. However, with the anticipated WFE for JWST, its

bandpass should not be the limiting factor for contrast.

The primary contrast limiting factors are pixel-to-pixel (flat field) variations and

IPS variation for the coarsest sampled F277W filter. In comparison contrast will

be largely unaffectected by uncertainty in source spectrum if the modeled bandpass

roughly matches the data. While these various systematics limit raw contrast, ad-

ditional sensitivity will be possible through point-source calibrations and leveraging

stable closure amplitudes.

Flat field errors can also effect closure phase measurements from IFS images. but

higher order wavefront error from atmospheric effects may be the biggest limiting

factor on the ground. These higher order errors certainly exist on ground-based

instruments like GPI, and may contribute amplitude as well as phase errors. JWST
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NIRISS’ wavefront error is expected to be dominated by low order terms, and stay

below about 160 nm rms. Fitting uncorrelated pistons with our analytic model is

robust to low-order wavefront errors including tip and tilt. A thorough study of the

effects of higher-frequency wavefront error in the NRM PSF is warranted.

Space-based NRM presents opportunities for extended object imaging at high

angular resolution. Centro-symmetric structures require amplitude measurements,

which will be stable in the absence of atmospheric effects. Space-based NRM’s fringe

phase and amplitude measurements provide true imaging, which can benefit AGN and

quasar science 2014ApJ...783...73F, so our image plane model could improve observing

efficiency and data reduction methods for space-based high resolution imaging. An

analytic point source model is a step towards more sophisticated forward-modeling

of NRM data.
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Chapter 3

Commissioning GPI’s

Non-Redundant Mask

3.1 Gemini Planet Imager AO and Opti-

cal Path

Outlining the AO system and optical path of GPI are essential to understand

the subtleties of its NRM performance. Figure 3.1 is a diagram of the light path

through GPI and its wavefront correction stages. Light enters GPI’s AO system,

which consists of two deformable mirrors (DMs) – the woofer that corrects low order

corrugations and the tweeter that corrects the high spatial frequency aberrations.

The light is split part into the sensing leg of the AO system and part into the rest of
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the instrument. GPI’s wavefront sensing is done with a Shack-Hartmann wavefront

sensor, an array of lenslets in front of a visible light CCD camera, looking for offsets

from center in focus of each lenslet. The lenslets map to the actuators on the tweeter

DM. The light that continues through the instrument first passes through the Pupil

Plane Mask (PPM) wheel, which contains the coronagraphic apodizers to truncate

the wavefront, as well as a 10-hole non-redundant mask. The light continues on to

the Focal Plane Mask (FPM) wheel preceding the Calibration (CAL) system. In

coronagraphic mode the FPM is a mirror with a central hole as the occulter. The

light passing through the occulter is sent to a tip/tilt sensor and additional higher

order calibration unit. For NRM mode, no light is sent to the CAL system, so the

NRM mode does not benefit from low-order tip/tilt correction. Following the CAL

system, light enters the Integral Field Unit (IFU) spectrograph or polarimeter, where

an array of lenslets at the focus send the light through either a dispersing prism for

spectroscopy at each image pixel or Wollaston prism to measure polarization at each

image pixel, respectively.

This instrument is designed to work best in coronagraphic modes. The NRM and

direct exposure modes of operation do not benefit from CAL tip/tilt sensor correction

or any high order CAL corrections. The commissioning of the NRM was plagued by a

low order jitter in the image centroid that could not be sensed by the CAL. This, along

with detector overheads of 20s per exposure made the problem difficult to diagnose.

The large number of optics in between the AO system and the science detector
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Figure 3.1: GPI’s Optical Path

introduce non-common path aberrations (NCPA) that cannot be corrected in closed-

loop AO. In Chapter 6 we demonstrate how the NRM and direct modes can be used

to measure NCPA, in order to improve the NRM performance.

3.2 NRM + IFU

The Mask89 operates in both spectral and polarization IFU modes. Given the

default pipeline reduction that yields 37 cube slices for a wavelength dispersed extrac-

tion, each slice is < 1% δλ/λ so a monochromatic approximation is appropriate and

Fourier transform splodges are round. For polarization extractions the bandpasses
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range from roughly 12% to 19% and the transform splodges (complex visibilities) are

radially smeared.

3.2.1 Integral Field Spectroscopy + NRM

GPI has an integral field spectrograph in YHJK bands that splits each image into

wavelength channels across the band with spectral resolution R∼ 35 − 80.90 GPI’s

spectral mode with its NRM is best suited for detection and characterization of binary

companions (whether stellar, sub-stellar or planetary mass). The multiple wavelength

channels provide an extra axis to constrain NRM detections of binary companions.

The J and K bands are windows to spectral features linked to accretion. Accretion

properties with the overall spectral shape over these NIR bands can help constrain

the effective temperatures of these cool bodies.

Spectral Mode

Observational calibration follows the traditional approach of using a point source

calibrator to subtract out instrument effects and leverages the spectral slices to gain

better detection sensitivity. Differential phase has not yet been tested for the May

commissioning data, this analysis is still in progress.

Fitting the data is relatively straight forward, using the analytic solution for a

binary systems of unequal brightness. We use Markov Chain Monte Carlo (MCMC)

to find the best parameters.
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3.2.2 Integral Field Polarimetry + NRM

GPI can also operate with a Wollaston prism, splitting the light at each image

pixel into two orthogonal polarization channels. These polarimetry mode images are

broadband (i.e., YJHK). GPI polarimetry with its NRM is best suited for studying

disks on small angular scales inaccessible to coronagraphs. NRM with polarimetry

produces a unique observable, the differential visibility.9 In GPI, two orthogonal po-

larizations split by the Wollaston prism and 4 half wave plate (HWP) angle rotations.

In this case there are 2 layers of differential calibration. First between orthogonal po-

larization channels and then between orthogonal half waveplate angles (HWPA). In

a typical observation a single sequence will consist of 0, 22.5, 45, 67.5 HWPAs. The

differential observables are as follows:

CPortho−diff = CPchannel1 − CPchannel2

Vortho−diff =
Vchannel1
Vchannel2

(3.1)

Then one proceeds with HWP rotation differential measurements, for example be-

tween HWPAs of 0 and 45 degrees:

CP0−45 = CPdiff−0 − CPdiff−45

V0−45 =
Vdiff−0

Vdiff−45

(3.2)
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The same is repeated for 22.5 and 67.5 HWP angles. These differential measurements

can be compared with models to reconstruct the resolved structure. An unresolved

source should be observe as a reference source.

The modeling for extended sources is less straightforward than for binaries. radia-

tive transfer modeling codes (e.g. MCFOST,91 Hyperion92,93) may be used to simulate

the physical structures resolved by the NRM in an MCMC approach to fitting.

3.3 GPI’s non-redundant mask

The Gemini Planet Imager has one 10-hole non-redundant mask that sits in the

PPM wheel.89 There are N(N−1)
2

baselines formed by the g10s40 configuration.

Table 3.1: Mask hole dimensions measured in mm from center.

X Y
-1.061 -3.882
-0.389 -5.192
2.814 -0.243
3.616 0.995
-4.419 2.676
-1.342 5.077
-4.672 -2.421
4.157 -2.864
5.091 0.920
1.599 4.929

Hole diameter: 0.920 mm
Gemini S outer diameter (OD): 7.770 m (after baffling)
Apodizer OD in this re-imaged pupil plane: 11.68 mm
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Figure 3.2: Labeled Holes and Splodges: Top Left: GPI’s 10-hole NRM.50,94

Top Right: We establish a numbering convention, which helps to keep track of hole
and baseline dependent systematics and aids diagnosis of problems, shown in the
center. Bottom: We plot the splodges, or associated hole-pair baselines (with their
complex conjugate “reverse baselines” in lighter color).
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3.3.1 GPI filters and sampling

The NRM sits in the Pupil Plane Mask (PPM) wheel, which houses the corona-

graphic apodizers, and operates with all Y-K2 filters in either spectral or polarimetry

mode. The longest NRM baseline projected onto the primary is 6.68 m. Assum-

ing a pixel scale of 14.14 mas the mask is Nyquist sampled at 0.92 µm, supporting

well-sampled images throughout nearly the entire spectral range of GPI.

3.3.2 Exposure time calculator

A major goal of commissioning was to pass light through every filter with the

NRM. To estimate the exposure time for future observations, we recorded the peak

value in every raw image. This value should not exceed 16000 counts to remain in

the linear regime for the detector. We adopt 14000 counts as a conservative limit.

There is a known focus error in direct exposures (non-coronagraphic). We note that

focus error can affect the peak counts in the PSF.

We found a lot of variation in peak count value and exposure time. This could be

due to vibrations encountered throughout the night. From the majority of May 2015

observations we formulate the following empirical ETC:

Peakcounts

γ BAND
MODE

(10mag/2.5)
(3.3)

Here γ is an empirically estimated constant, BAND is the relative throughput of
each band, MODE is the relative number of pixels on which the light is dispersed
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for the spectral or polarization modes, and mag is the apparent magnitude in the
observing band. Figure 3.3 shows the measured vs. expected counts for a selection
of observations using this ETC. For this we assigned the following:

gamma = 50000

throughput bands Y, J,H,K1 = 1.0

and K2 = 0.75

MODEPRISM = 5/17

MODEWOLLASTON = 1.0

We place a brightness limit of mag ∼ 2.7 in all bands for the polarization mode

and mag ∼ 1.6 for all bands in spectral mode. This may be modified with data in

better conditions and without the presence of vibrations.

3.4 Pupil positioning

It is important to check that the NRM is not vignetted by GPI’s pupil stop,

and that the holes are evenly illuminated. We determined the mask position in

the pupil with a few custom poke patterns on the MEMS tweeter the deformable

mirror, while illuminating the pupil with the internal source and imaging with the

pupil viewing camera. One asymmetric set of pokes helped determine the rotation

between the the MEMS DM (Figure 3.4) and the pupil to help map the NRM holes

to actuator locations. The rotation between the poke pattern and the as-designed

NRM orientation (with respect to the MEMS DM) is roughly 243.6 degrees counter-

clockwise. Another set confirmed a new aligned position of the mask.

Figure 3.5 shows the NRM in its nominal position from the pupil viewer (a) and
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Figure 3.3: Peak counts in May 2015 observations. We compared measured peak
counts to our empirically determined ETC. Triangles represent polarization mode,
squares represent spectral mode. The variation in measurements could be due to a
range of vibration conditions. The solid line plots 1:1 correspondence between our
ETC and the measured peak flux. Outlying exposures are likely due to increased
vibrations or resolved structure.

Figure 3.4: Left: asymmetric 5-poke pattern on the 48× 48 GPI MEMS actuator
array. Right: The resulting pupil image. The pupil image is vignetted at the top, a
result of miaslignment of the pupil-sensing camera, not the science path. The pupil
viewing camera also shows other features like dust on the camera and bad actuators.
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overlaid on a clear pupil image (b). A few holes appear to be clipped, but since the

pupil viewer optics vignette the on-axis beam it is difficult to determine the edge

location. The secondary obstruction provided a good handle on the pupil center and

which holes were cut off at the edge. We shifted the mask from the nominal position to

lie entirely in the pupil. Figure 3.6 shows a poke pattern of NRM hole centers mapped

to the deformable mirror actuators, and as seen through the mask in the pupil. A set

of NRM-specific pokes (Figure 3.6) confirmed the new hole position mapping to the

MEMS plane and confirmed our alignment. The actuators covered by each hole are

obvious and can be used to track back peculiarities in the AO control. We confirm

that the holes miss spiders and known dead actuator locations, as designed. The dead

actuators are indicated in masked regions at the top of Figure 3.6.

Figure 3.5: Left: The nominal alignment of the NRM seen with the pupil viewing
camera. Holes 4 and 5 look completely cut off, hole 6 partially. Right: Pupil viewer
images of the NRM and overlaid with the clear pupil show vignetting by the pupil
viewing system.
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Figure 3.6: Top: The expected NRM hole centers (white crosses) overlaid on the
bad actuator map of active subapertures (gray). Bottom left: The poke pattern seen
through the mask moved to its new position. Bottom right: The poke pattern seen
through the clear pupil. The NRM hole centers miss known bad actuator locations.

3.5 Early NRM Data

As a demonstration, in December we observed known binary HR 2690 in H band.

We recovered the companion at separation of 88.4 ± 0.5 mas and contrast ratio of

5.94± 0.09. We recovered the companion in 24 minutes of data. Section ?? discusses

a current estimate of detection limits for short exposures.

Despite a few outstanding instabilities, GPI’s NRM is capable of high dynamic

range measurements, competitive with masking modes on older instruments. In long

exposures where pointing jitter smears the data, variations can be calibrated if enough

data are taken. In the most stable conditions on the telescope from the internal source
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Figure 3.7: Perfomance: Closure phase standard deviation from internal source
exposures on the telescope. Phases are very stable and predict raw contrast as low
as several × 103 for similar conditions. On sky in March closure phase error was
roughly an order of magnitude higher, and in May even worse. March and December
had clear conditions while May had thin and thick cirrus. We reject 3 frames showing
visible smearing in the May dataset for this calculation.

(without atmospheric turbulence) closure phase is stable, a median standard deviation

of 0.0046 radians in H band (uncalibrated). In Figure 3.7 we plot the closure phase

error with wavelength for the internal source compared with measurements on sky in

March and May 2014.

In March 2014, short exposures saw relatively stable closure phases that had a

median standard deviation 0.016 radians, uncalibrated. These closure phases roughly

follow the wavelength trend seen in July 2013 lab data95 and in exposures with the

internal source. Observing conditions were worse in May and observations saw in-

creased pointing jitter (Figure 3.8). The median standard deviation in closure phase

was 0.055 radians. This could be an explanation for larger error in the closure phases,

decreased contrast sensitivity. In Figure 3.7 the three most visibly smeared frames

from are not included in analysis.

66



CHAPTER 3. COMMISSIONING GPI’S NON-REDUNDANT MASK

140.0
140.5
141.0
141.5
142.0
142.5
143.0
143.5
144.0

ce
n
tr

o
id

 x
 p

ix
e
l 
p
o
si

ti
o
n

2
3
:4

9
:4

2
.0

2
3
:5

0
:0

1
.0

2
3
:5

0
:1

9
.0

2
3
:5

0
:3

8
.0

2
3
:5

0
:5

7
.0

2
3
:5

1
:1

6
.0

2
3
:5

1
:3

5
.0

2
3
:5

1
:5

5
.0

2
3
:5

2
:1

4
.0

2
3
:5

2
:3

3
.0

2
3
:5

2
:5

2
.0

2
3
:5

3
:1

1
.0

2
3
:5

3
:3

0
.0

2
3
:5

3
:4

9
.0

2
3
:5

4
:0

8
.0

2
3
:5

4
:2

7
.0

2
3
:5

4
:4

6
.0

2
3
:5

5
:0

5
.0

2
3
:5

5
:2

4
.0

2
3
:5

5
:4

3
.0

Local Time

144.0
144.5
145.0
145.5
146.0
146.5
147.0
147.5
148.0

ce
n
tr

o
id

 y
 p

ix
e
l 
p
o
si

ti
o
n

Centroids -- March point source (1.624 um)

139.0
139.5
140.0
140.5
141.0
141.5
142.0
142.5
143.0

ce
n
tr

o
id

 x
 p

ix
e
l 
p
o
si

ti
o
n

2
2
:1

3
:2

3
.7

2
2
:1

3
:4

1
.7

2
2
:1

4
:0

0
.7

2
2
:1

4
:1

9
.7

2
2
:1

4
:3

8
.7

2
2
:1

4
:5

7
.7

2
2
:1

5
:1

6
.7

2
2
:1

5
:3

5
.7

2
2
:1

5
:5

4
.7

2
2
:1

6
:1

2
.7

2
2
:1

6
:3

1
.7

2
2
:1

6
:5

0
.7

2
2
:1

7
:0

9
.7

2
2
:1

7
:2

8
.7

2
2
:1

7
:4

7
.7

2
2
:1

8
:0

6
.7

2
2
:1

8
:2

5
.7

2
2
:1

8
:4

4
.7

2
2
:1

9
:0

3
.7

2
2
:1

9
:2

2
.7

Local Time

145.0
145.5
146.0
146.5
147.0
147.5
148.0
148.5
149.0

ce
n
tr

o
id

 y
 p

ix
e
l 
p
o
si

ti
o
n

Centroids -- May point source (1.624 um)

Figure 3.8: Image centroid position with time: Both March and May 2014
runs looked at the same point source for 1.5 s exposures, approximately 20s apart due
to the integration time of the camera. Both show some jitter in the pointing. The
pointing stability appears worse for the May run, consistent with higher wind speeds
and poorer observing conditions.
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Analyzing the data through the Sydney pipeline, March 2014 short exposure clo-

sure phases had a median standard deviation of 1.57 degrees for each group of 10

frames after calibration, allowing detections of point sources at up to 6.5 magnitudes.

In the 17 exposures in May 2014, calibrating the first 9 frames with the remaining

frames the root-mean-square (rms) of the calibrated closure phases was 1.62 degrees.

This would provide robust detections at up to 6 magnitudes. These results suggest

the current performance of GPI NRM is similar to that obtained routinely with older

instruments such as NIRC2 at Keck and NACO at VLT. However, the extra wave-

length dimension provides more independent data per frame than is obtained with

these instruments, resulting in higher contrast detection limits with the same number

of frames and similar closure phase scatter.

3.6 Vibrations and polarimetry

NRM polarimetry can help resolve close in polarized structure in disks that is

beyond the reach of GPI’s coronagraph. This includes the edges of inner disks in

protoplanetary systems, often inferred by SEDs but not necessarily directly. This

kind of information can shed light on the architecture of planet forming regions and

is especially important in the context of any known or theorized companions. NRM

polarimetry can also be used to study the polarized structures of massive stars that

are shedding their envelopes.96
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The differential visibility is a primary observable that calibrates instrumental and

atmospheric effects. It requires stable images that preserve fine detail produced by

the NRM interferogram. Smearing due to vibration or pointing jitter degrades the

quality of this observable and the sensitivity for measuring polarized structures close

in, as close as ∼50 mas in H band and possibly smaller. For a system at 100pc away

this is structure at ∼5 AU.

In May 2015 we took data in relatively poor conditions (bad seeing and wind).

Data analysis indicated vibrations that we identified to be in the same direction at

previous secondary mirror (M2) 37Hz vibrations. Smearing in the data was also

consistent with the direction of vibrations measured on the tip/tilt stage. We present

our analysis of the May 2015 polarimetry data alongside AO telemetry taking during

that observing run.

We took data again in 2016 after upgrades to the cryocooling system and repair

of the M2 mirror. Results and latest performance of GPI’s NRM polarimetry mode

are presented in §4.3. Here we discuss diagnosis of vibrations in GPI seen through

the NRM.

3.6.1 Vibrations in May 2015

The night of commissioning for the NRM on May 6, 2015 had poor seeing through-

out the night as well as bad wind at times. In addition we noticed a consistent drop

in power for spatial frequencies that corresponded to a particular direction with re-
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spect to the telescope, regardless of sky position. This indicated the presence of some

off-sky vibrations.

Figure 3.9: Top: Measured visibilities of NRM images from on-sky observations at
various positions on the sky. All show varied SW-NE loss indicating vibration along
that axis. Bottom: coronagraphic spectral datacube slice from January 2015 on the
left, with 37Hz vibration, showing the same direction as visibility loss indicated by
circled baselines to the right.

Simulating a tip/tilt vibration at the approximate direction of the vibrations seen

we can convincingly reproduce the long baseline power loss we see in our data (Figure

3.10). The simulations indicate there may have been up to 20 mas vibration, in the
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same direction as the 37 Hz vibrations seen at the beginning of 2015. Therefore a

potential source of these vibrations could have been the same source – the M2 mirror.

Figure 3.10: Left: Power spectra for NRM images with simulated tip/tilt
vibrations. Top to bottom: Y,J,H,K filters. Left to right: 5, 10, 15, 20 mas
vibration. The simulation indicates that as much as 20 mas vibration could contribute
to visibility loss in the NRM images from commissioning.

We looked at AO telemetry from the night taken at various times during different

telescope pointing and conditions. Figure 3.11 shows that the tip/tilt stage showed
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generally more tilt than tip, potentially pointing to a vibration direction that is mostly

aligned with the y-direction on the WFS coordinate grid. On the right of 3.11 we

show the NRM hole positions projected on the WFS. A vibration in the y-direction

will wash out fringes made from combinations of holes 0, 1, 5, and 9. This is in fact

what we see in the data. The telemetry stage tip/tilt rms and NRM power spectra

were consistent.

5 10 15 20 25

RMS tip (mas)

5

10

15

20

25

R
M

S
 t

ilt
 (

m
a
s)

S0885

S0681

S0422

S1036

S0737

S0254

S0855

S0878

S0985

S1006

S0816

RMS Stage Tip/Tilt during NRM Commissioning

Figure 3.11: RMS stage tip/tilt, May 06 2015 observing. Tilt was consis-
tently higher in these datasets. We see that a tilt-dominated vibration (y-direction)
will affect the baselines oriented this way, particularly ones formed with combinations
of 0, 9, 1, and 5. This is consistent with the baseline power loss observed.
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With this level of vibrations it was not possible to obtain stable, well-behaved

differential visibilities. The vibrations were likely made worse by poor on-sky con-

ditions. The cryocooler upgrade significantly improvements to vibrations, but poor

weather conditions can still severely effect the data quality.
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Chapter 4

GPI NRM: Results and

Performance

4.1 Verifying Image Plane Fringe Fitting

Software for GPI

The development of image plane-based data reduction detailed in Chapter 2 has

led to a nearly complete python software package “nrm analysis.” The package gen-

erates community-standard OIFITS interferometry data files and contains a growing

set of analysis tools. The most developed is the binary modeling portion designed

after Sydney University NRM pipeline. To verify the software performance we tested

it on simulated NIRISS data. We chose NIRISS because with only one wavelength
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axis all steps of the analysis run much more quickly; the verification is appropriate

for multiwavelength data as well.

We model a binary signal in the fringe visibilities with the interferometric result:97

ν =
1 + r exp (∆u · α +∆v · δ)

1 + r
(4.1)

Where r is the contrast ratio (for a faint companion, r ≪ 1), ∆u and ∆v are the

baselines formed by mask holes (spatial frequencies), and α and δ are the on-sky

position of the secondary point source.The closure phase for holes 1, 2, and 3 is

defined as CP1,2,3 = Arg(ν1,2 · ν2,3 · ν3,1).

For multiwavelength data, as in the case of GPI-spectral mode, contrast can vary

across the band. For the purposes of detection we fit a single contrast, separation,

and position angle to each full wavelength cube. Once a position and separation are

measured, these can be fixed to measure the variation in contrast across the band

and extract a spectrum of the companion.

We simulated sets of 22 NIRISS exposures containing 106 photons each. Four of

these sets are images of a single star and four are images of a binary with properties

shown in Table 4.1. With a total of ∼ 107 photons we expect the photon noise limit

at a contrast sensitivity around 10−2.5, which is roughly the 3σ detection limit at

separations greater than ∼ λ/D (Figure 4.1). Other sources of noise in the simulated

data include a negligible amount of telescope jitter (an order of magnitude smaller
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Contrast Ratio X position (mas) Y position (mas) Spectrum Model

0.16 78 78 A0V

Table 4.1: Simulated binary parameters (on sky). The position angle is automati-
cally flipped in the analysis.

than the diffraction limit) and 0.1% flat field errors.

Detection limits were generated by adding random errors to model closure phases

drawn from a Gaussian distribution centered on 0, with error equal to σ2
DATA conser-

vatively scaled by the ratio of the total number of closure phases to the number of

independent closure phases. In this case 1000 realizations of noise were simulated at

24 different position angles and the total number of positive detections were counted in

order to estimate 5σ detection limit. A detection was counted when χ2
binary < χ2

single,

where

χ2
binary =

∑ (CPmeasured − CPmodel)
2

σ2
CP

and

χ2
single =

∑ (CPmeasured)
2

σ2
CP

since the null detection should yield zero closure phase. Figure 4.1 displays the

parameters of the simulated binary as a red diamond, well within the detection limits

and also indicates λ/D and λ/2D for the JWST 6.5m primary at 4.3µm.

We can look at a map at χ2 values over a grid of positions at contrasts that have

minimum χ2 for the binary model. A good indication that there is a companion in

the data is a single minimum relative to the whole map, as seen in Figure 4.2. In
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Figure 4.1: The detection limits from a shallow exposure dataset simulated for
NIRISS containing small flat field errors. Dashed lines show λ/D and λ/2D for
the JWST primary mirror at 4.3µm. The red diamond shows our simulated binary
position in separation-contrast space, well above the detection limits.
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Figure 4.2: χ2 map of simulated data fit to binary model. The χ2 is calulated on a
grid of positions and range of contrasts. The minimum χ2 is plotted for each position
in the grid. While this is not enough to make a detection, it provides good evidence
of the presence of a companion.

this case the strong signal is obvious. This procedure provides a good starting guess

for a more sophisticated search to recover the binary parameters. We use the emcee

package for Markov Chain Monte Carlo analysis.98,99

In figure 4.3 we show an example results of fitting our simulated data. We re-

peated this test with four different simulated datasets and find that we recover the

binary parameters within 2σ. Future work for NIRISS will include testing this anal-
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ysis method at a range of contrasts and close-in separations where degeneracies can

arise. For Gemini Planet Imager spectral mode data the procedure is similar but

the data include an extra spectral dimension. For detection, the contrast is assumed

constant to locate the best fit position of the companion. After the position is well-

determined, a unique contrast can be fit in each wavelength channel. In doing so, we

assume that the faint companion position is independent of wavelength. Of course,

extended structure frequently exhibits color-dependent morphology, a caveat that

must be borne in mind when analyzing real data.

4.2 Spectral mode performance

Both commissioning and queue observations using the NRM on GPI were per-

formed in the semesters between the end of 2013 and 2016. Throughout this time

period, both the instrument and telescope facility went through various states of per-

formance. This section will report the binary detection sensitivity of GPI’s NRM as of

the most recent observations at which point the cryocooling system is upgraded and

37Hz vibrations on the telescope secondary mirror have been fixed. We demonstrate

updated performance with data that were taken in May 2016.
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Figure 4.3: An example of MCMC results fitting simulated data with a binary
model (using the python package emcee99). For four different simulations the fits
converged well to their solutions and all answers were in agreement within ∼ 2σ.
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4.2.1 Detection limits - short exposures

In March and May 2014 we observed the bright single star HD 63852 as a cal-

ibration source, with 1.5s exposures (the minimum exposure time). Sky conditions

were better during the March observations, so these two datasets give an impression

of performance through varied conditions. We expect better performance, in general

with short exposures, where the AO system can maintain good correction and vibra-

tions of the instrument have minimal effect. During these two commissioning runs

we noticed some pointing jitter, discussed in §3.5, that appeared to be worse with

poorer conditions.

We can estimate detection limit in each data by calibrating the first half of the

exposures with the second half. We also compare the the detection limits to those

of the internal source (as in Figure 3.7). Internal source exposures show fairly deep

contrast limits that are difficult to reach on sky where atmospheric conditions limit

performance. The March 2014 data demonstrate more reasonable limits in good

sky conditions when observing bright stars. In May, we saw reduced performance,

expected from higher winds and poorer seeing conditions.

4.2.2 Detection limits - long exposures

Long exposures represent the most likely observing scenario for surveying young

moving group stars. In longer exposures vibrations and imperfect AO wavefront
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Internal Source - 2014
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Figure 4.4: Estimating H-band detection limits from 2014A commissioning data
(raw phases shown in Figure 3.7). Results from the internal source demonstrate the
performance limit since the instrument does not have to mitigate on-sky conditions.
Detection limits from March 2014 are more representative of real performance. Poorer
conditions in May reflect reduced contrast sensitivity shown in the bottom panel.
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Figure 4.5: K-band detection limits in contrast and separation calculated by cali-
brating two targets that had non-detections with each other. The limits are slightly
worse than those from March 2014 (Figure 4.4, panel 2), expected from longer expo-
sures on fainter sources.

correction will lead to blurring of fringes that degrades performance.

Two stars were observed in May 2016 as a part of the 2016-Q-23 Gemini program

(PI: Adam Kraus). We did not detect any secondary sources for these targets, but

report upper limits on the existence of companions. The stars in this program present

possible targets harboring protoplanetary material due to the young ages. K-band

observations should be most sensitive to the thermal infrared emission of low-mass

companions around these targets. Upper limits on mass can be estimated from our

detection limits based on an appropriate model.

The two stars presented in this work did not show evidence for companions. We

calibrated one against the other to measure detection limits. First, as described in
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section §4.1 we drew many realizations of binary signal based on our measurement

errors and counted the number detected with a hypothesis test. We show a 5σ

detection limit of ∼ 4 × 10−3 contrast ratio. We note that our two targets were

K∼ 5.8, and ∼ 8.0, respectively. Contrast limits might have been better if the second

target was brighter.

We also show a detection map similar to a common procedure used on Sparse

Aperture Masking (SAM) on the VLT,42,100 setting the detection limit above the

point at which χ2
binary becomes equal to or less than χ2

singlestar +25 where χ2
singlestar is

the null hypothesis. We show our detection map in Figure 4.6. The varying structure

across the map is likely due to incomplete sampling of the holes and the uneven

structures close in are artifacts. According to BCAH15 models101 this preliminary

result sets a mass upper limit of ∼ 0.06M⊙ for any companions around the one of the

stars, and ∼ 0.2M⊙ around the other, assuming ages of ∼ 10Myr.102

4.3 Polarimetry performance

Polarimetry observations of single stars were taken in May 2016 as part of com-

missioning after an upgrade to the cryocooler system, which significantly reduced

vibrations. Table 4.2 has a summary of the observations.

Conditions were poor on May 03 2016 and exposures were taken on only one

source. The AO system reported wavefront errors upwards of 150 nm RMS. Inspect-
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Figure 4.6: A 5σ binary detection map, showing contrast as a function of position.
The map is created by setting a limit where χ2

binary < χ2
singlestar + 25.

Table 4.2: Summary of polarimetry+NRM observations in 2016. All targets are
point sources.

Date Target Band Notes

160503 HR 4860 H Switched to J,Y and returned
J Poor conditions throughout
Y

160504 *nCen H - 1.5s cc80, wfe rms 70 nm (very good)
*iLup H - 1.5s

K1 - 4.5s
HR 3932 H - 1.5s cc80, wfe rms 70 nm
*56Hya H - 1.5s
HD 142695 H - 8.7s Conditions worsened,

visibilities did not calibrate well.
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ing visibility amplitudes (in the Fourier Transform), the data do not seem to show

the systematic loss of power in the same direction as observed in 2015. A number of

exposures did have significant long-baseline power loss in some frames, but in a dif-

ferent orientation than the vibration attributed to the secondary mirror in May 2015.

There was not a lot of field rotation for this dataset so it is still uncertain whether

the source of these reduced vibilities follows the instrument or something on sky

(e.g., wind pattern). However, conditions the following night improved significantly,

producing much higher quality data, with strong signal in long baselines.
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Figure 4.7: Polarimetry performance in 2016 after installation of new ac-
tive dampers - May 03 (poor conditions). Polarimetry datasets were incomplete
due to changing conditions and did not calibrate well. During the various observa-
tions header values for RMS wavefront error remained primarily above 150 nm. We
display the H-band differential visibilities, which should calibrate to V 2 = 1 for a
point source.

On May 04 2016 conditions were much better at times throughout the night, with
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Figure 4.8: Polarimetry performance in 2016 after installation of new ac-
tive dampers - May 04 (good conditions). Polarimetry datasets from May 04
2016 calibrated very well. During the various observations header values for RMS
wavefront error hovered around 100-120 nm. Shown is an example point source cal-
ibration source. The theoretical differential visibilities should calibrate to V 2 = 1,
and the data do to < 1% precision here.

87



CHAPTER 4. GPI NRM: RESULTS AND PERFORMANCE

70 nm rms wavefront error reported. Header values of total wavefront error (keyword

RMSERR) were indeed lower for these data, in general around 110 nm. These data do

not exhibit the power loss in long baselines. Figure 4.8 shows our calibrated visibilities

for two examples, 56Hya in H band, and iLup in K1. The K1 iLup observations had

slightly longer exposures (4.5 compared to 1.5s) and show that even with increased

exposure time the visibilities calibrated very well, to precision of less than 1%. We

were not completely able to test the performance with increased exposure time, as

conditions degraded later in the night when we moved to a fainter target. However

the results we obtained are very promising and definitely set the stage for exciting

science with GPI NRM polarimetry for diffuse polarized source.

4.4 The HD142527 transitional disk sys-

tem with GPI NRM

Investigating how planets form and dynamically evolve is essential to our under-

standing of planet populations. Targeting young systems with disks and companions

can provide a view of early conditions and the planet formation process. Transitional

disks are characterized by a lack of near-IR emission, and often have resolved disk

gaps in sub-mm or IR. Disk gaps can be an indication of young planets sculpting

out their disks, providing an eye into the planet formation process. The dynamics of

accreting bodies inside these gaps is important to understanding how gaps are formed
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in young protoplanetary disks.

An obvious system to observe with GPI’s NRMwas the transitional disk HD142527,

a southern target with a known low-mass companion in its ∼ 130AU103 disk gap, too

close to the star for coronagraphic imaging. The M dwarf companion at ∼ 12AU was

first discovered with aperture masking on VLT NACO104 and later confirmed in Hα

direct (non-coronagraphic) imaging on Magellan-AO.105 The Hα detection indicates

that it is accreting material. Despite the companion’s presence, its estimated mass is

not enough to explain the size of the disk gap. Orbital monitoring of the companion

helps constrain the dynamics of the HD142527B in the context of its disk.

4.4.1 “Scaled Up” View of Planet Formation

While HD142527B is not planetary mass, the system can still provide an under-

standing of planet formation and disk clearing mechanisms. The system represents a

likely scaled up view of the planet formation process, with an Herbig Ae/Be primary

and M-dwarf secondary.104–106 The presence of a planet or secondary mass is one

proposed explanation for the opening of gaps in protoplanetary disks.17 In this case

one or multiple companions can dynamically clear a region of the disk.107–110

Tracking the orbit of HD142527B can help determine whether it has had a role

in sculpting out the large gap in the HD142527 disk. Recent observations with

ALMA112,113 put the inner disk at an inclination of 70◦ relative to the outer disk.

The estimated inclination of HD142527B from the astrometry to date106 is so far
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Table 4.3: Published astrometric measurements of HD142527B and their er-
rors104–106 from NACO’s Sparse Aperture Masking (SAM) mode, Magellan direct
mode, and GPI’s NRM mode. The companion was also observed in polarimetry, but
at an offset in position, possibly due to circumsecondary material,111 so this point
was not included in the most recent orbit fit106 and is not included here.

Instrument Date Separation (mas) Position Angle (◦)
NACO SAM March 11 2012 89.7 ± 2.6 133.1±1.9

March 17 2013 82.0 ± 2.1 126.3 ± 1.6
MagAO continuum April 11 2013 86.3 ±1.9 126.6±1.4
NACO SAM July 14 2013 82.5 ± 1.1 123.8 ±1.2
MagAO Hα April 2014 79.7 ± 5.6 119.5 ± 8.7
GPI NRM May 12 2014 77.2 ± 0.6 116.6 ± 0.5

consistent with the inclination of the inner disk.

4.4.2 Plans for Followup

The orbit of HD 142527B remains unconstrained and it will require continuous

monitoring to narrow down the orbital parameters. It has moved approximately 13

mas in 2 years. Instruments like GPI and SPHERE10 both have aperture masking

modes that can reach the inner working angles necessary to measure the binary signal

from HD142527, and are capable of high precision astrometry. More observations,

especially with higher precision will help remove degeneracies in possible orbits for

HD142527B

Polarimetry mode observations with the NRM in good conditions will be able

to measure a polarization fraction of ∼ 1% or better (Figure 4.8) to measure the

scattered light properties of the dust in the unseen inner disk, its outer radius, and

help confirm its possible relative inclination to the outer disk.112,113
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Figure 4.9: The astrometric points listed in Table 4.3 make up a small fraction of
the full orbit. Many more years of monitoring are necessary to constrain its orbit.

91



Chapter 5

Forward modeling coronagraphic

PSF subtraction

This chapter covers the development of Karhunen-Loève Image Projection (KLIP)

forward modeling (FM) for coronagraphic PSF subtraction. KLIP-FM addresses bi-

ases in flux and position measurements of stellar companion. Section 5.1 will cover a

very basic background of the KLIP algorithm and the forward modeling approxima-

tion that accounts for self- and over-subtraction of the real companion signal. Details

of the algorithm are addressed thoroughly in Pueyo (2016).114 The purpose of this

background is to set the context for applying the algorithm in practice. Section 5.2

summarizes the application of KLIP-FM first on simulated signal, and applied to

observations of the HR8799 planetary system with GPI in K band (1.9-2.4 µm). The

three planets in GPI’s field of view (Hr8799c, d, and e) span a range of regimes in
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relative brightness and separation and provide a good test case for KLIP-FM. The

HR8799e spectrum in K band has not been published by any other study to date.

Finally, section 5.3 relates the development of KLIP and KLIP-FM for future non-

redundant masking data on space telescopes.

5.1 KLIP Forward Modeling

5.1.1 KLIP background

PSF subtractions aims to assemble an appropriate PSF that captures the speckles

in the image to optimally remove the instrument response, leaving only the compan-

ion source signal. KLIP uses the covariance matrix of a reference library of images to

determine the most common speckle features that arise from instrument and atmo-

spheric aberrations. The following recounts the KLIP procedure described in Soum-

mer et al. (2012).115 The KLIP algorithm performs the Karhunen-Loève transform

on a set of reference images to compute the optimal basis set.

ZKL
k (n) =

1√
Λk

K∑
p=1

ck(ψp)Rp(n) (5.1)

This basis set is the product of the mean-subtracted references Rp(n) with the kth

eigenvector ck(ψp) of the covariance matrix
∑Ns

n=1Ri(n)Rj(n) of n reference images

over the region of interest, divided by the kth eigenvalue Λk, summed over KL modes.
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The estimate of the PSF is made by the projection of KL transform ZKL
k (n)k=1...KKLIP

up to a chosen number of modes KKLIP onto the science image. The PSF-subtracted

image is then the target image subtracted from the PSF estimate.

5.1.2 Corruption of the companion signal

Several problems can arise in KLIP subtraction because the companion signal is

projected onto KLIP modes. In general part of the companion signal can be sub-

tracted, underestimating its flux and modifying its morphology. For precise pho-

tometry and spectral characterization this effect will bias the result and must be

modeled. Additionally, not all the features of the PSF will be perfectly captured in

the subtraction, leaving some residual speckle noise.

In the case of RDI (Reference Differential Imaging) where the reference set does

not contain any companion signal (when a large reference library can be built115–117) is

a convenient case to avoid self subtraction of the companion. In this case, corruption

of the companion signal arises from over-subtraction – when speckle features overlap

the astrophysical signal. Another problem arises when the reference library contains

the companion signal. In the case of ADI (Angular Differential Imaging) and SDI

(Spectral Differential Imaging), which take advantage of the movement of speckles

through sky rotation and wavelength respectively, the companion signal lies in the

reference cube, further biasing the measurement of its true flux. Forward modeling

should estimate both over-subtraction and self-subtraction term that result from the
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companion signal in the reference frames.

KLIP-FM approximates the corruption of the companion signal by perturbing

the KLIP basis to account for the signal subtraction when the signal exists in the

reference library. This is done by propagating the companion signal through the

eigenvalue problem of the covariance matrix, yielding perturbed eigenvectors and

values.

Over-subtraction is the subtraction of the companion signal due to the presence

of speckles in the location of the companion. Over-subtraction is a linear process,

given simply by the projection of the companion signal A onto the KL basis over the

region of interest in the image, which can be estimated by projecting a model of the

signal PSF onto the unperturbed KLIP basis.

Kklip∑
k=1

< Amodel, Z
KL
k > ZKL

k (n)

Self-subtraction is the subtraction of the companion signal due to its presence

in the reference library. There are two different forms of self subtraction. Direct

self-subtraction arises from the presence of the signal inside the region of interest

where the subtraction is taking place. Indirect self-subtraction accounts for the cor-

relations between the companion signal and the speckles. Both terms corrupt the

signal recovered from the astrophysical companion. Self subtracted can be estimated

by projecting the image onto the perturbed component of the KLIP basis that models
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the astrophysical signal’s contribution.

5.1.3 Unbiased spectral extraction

This study uses the pyklip118 software. Tunable parameters in the software include

movement, KKLIP , for which we vary in some results to demonstrate their effect

and the stability of the algorithm. Movement determines how many images to use

in the reference library depending on how much the the speckles move relative to

the companion in sky rotation and in spectral dispersion. Close-in companions in

necessarily require a more aggressive reduction (using more images in the sequence, a

smaller movement parameter) since they do not move as far in sky rotation. This puts

more companion flux in the reference library and is an appropriate case for KLIP-

FM. KKLIP determines how many components of the reference library are used for

the assembly of the synthetic PSF. KLIP modes are arranged in descending order

of the eigenvalues so that the first component is the strongest representation of the

library.

For IFU data the forward model is built at each wavelength and should reproduce

the KLIP-subtracted data when multiplied by the correct spectrum. The forward

model can be inverted to calculate the source spectrum. We demonstrate the value

of including the forward model by recovering spectra for 45 synthetic sources injected

into a real IFU dataset. Figure 5.1 demonstrates how the over- and self- subtraction

terms recover the lost flux of the companion in this example.
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Figure 5.1: We simulate many fake point source signals in an existing dataset and
recover the spectrum with and without forward modeling. The large filled circles
show that accounting for over- and self-subtraction terms recovers the true spectrum
(black dashed line) well, while regular KLIP underestimates the flux, especially at
the brightest part of the spectrum.
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5.2 Spectral extraction for HR8799 multi-

planet system

HR8799 is the only directly imaged multi-planet system, containing four giant

planets119,120 that are an unique laboratory for studying planet properties. Since

their discovery, these four planets have become very well studied for dynamical prop-

erties,121–123 atmospheric composition,124–132 and variability,133 among other inter-

esting properties. To date, various instruments have obtained spectroscopy in near

infrared J, H bands of planets b, c, d, and e,124,125,134–136 and K band spectroscopy

has been obtained for planets b, c, and d.136–138

The K band (∼ 1.9− 2.5µm) is sensitive to atmospheric composition (e.g., H2O,

CO, CH4), clouds, and thermal structure. The presence of methane can be a strong

indicator of age, but can also be absent due to non-equilibrium processes in the

atmosphere. A K band spectrum of planet e, compared to the other 3 planets sheds

light on its chemistry and relative composition. Studying the chemistry of all four

planets in the same system reveals the variety of planet properties that could be

linked to where they formed in the circumstellar disk. The relative compositions

of HR8799’s planetary companions help constrain evolutionary models and provides

information on the mechanism of formation.
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5.2.1 Estimating KLIP performance

HR8799 was observed during the verification and commissioning of the Gemini

Planet Imager on November 17 and 18, 2013. Spectra of planets HR8799c and d

were measured using the TLOCI technique139 with Angular Differential Imaging only.

Planet b was outside the field of view of GPI, and planet e was too close-in to recover

a spectrum without bias using this method. The K1 observations on Nov. 17 were

at airmass ∼ 1.65 and median seeing of 0.
′′
97. The K2 observations on Nov. 18

were taken at airmass ∼ 1.63 and seeing of 0.
′′
75. Both sets of observations were

taken at high airmass and moderate to poor seeing conditions, which reduced image

quality. To determine the performance and accuracy of KLIP-FM on this dataset

we simulated fake companions at similar separation as planets c, d, and e with the

spectra for c and d.136 We use the spectrum of d at the separation of e.

We simulated 5 fake companions at 5 different position angles and separations

corresponding to the positions of planets c, d, and e. We simulated spectra using the

shape of published c and d K-band spectra, and assuming an A5V primary. We plan

to repeat this with more fake injections after measuring the e spectrum. To extract the

spectrum we used a small movement of 2 pixels (meaning that the companion must

move 2 pixels relative to the speckles in rotation and spectral dispersion between

consecutive reference slices). A small movement is not necessarily appropriate for

planets c and d since they are so bright. But due to a limited number of exposures and

sky rotation we kept the number small. Future work will include comparing different
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choices of movement and KKLIP for all the fake injections. Extending this analysis to

more fake injections and further exploring KKLIP and movement parameters will help

to both better characterize the KLIP-FM results (i.e. estimate errors appropriately)

and properly extract the spectrum of planet e in the real data.

In Figure 5.2 we show the spectral extraction results for the 5 fake companions we

injected in the HR8799 K1 dataset. Due to throughput loss at band edges we focus

on the middle channels of the band. In general the KLIP-FM extraction is within the

published errorbars for c and d spectrum interpolated over the wavelengths in our

dataset.

As a preliminary step, we measure the real c and d spectra with KLIP-FM at dif-

ferent values of KKLIP and movement and compare these to recent published spectra

for the two planets in K1.136 We normalize both spectra by their sums to compare

the relative shape. Our KLIP-FM spectra look most consistent at small movement

and small KKLIP . In general the agreement is much worse in this case than for our

injected planets, possibly indicating an inconsistency in assumptions (e.g., of the pri-

mary star’s spectrum). The fake injection exercise is self consistent since the spectrum

is simulated. Future work includes checking that all calibration and normalization

steps are accurate. We also plan to extend this work to K2-band data, similarly

checking calibration accuracy. The fake injection results are promising for recovering

an accurate spectrum of planet e in K1 and K2 bands.
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Figure 5.2: 5 fake planets are injected into the K1 and K2 datasets at each of the
c,d,e planet separations, with similar spectra, all at the average contrast of planet e
from Marois et al. 2010.120 For planet e we use the spectrum of planet d since its
K-band spectrum is not known. We extract the spectra KKLIP=1 and movement of
2 pixels displaying the average flux and its error over the 5 injections. Cyan points
represent the K1 band flux at each spectral slice, and red represents those for K2.
We demonstrate the accuracy of the KLIP forward model to recover a spectrum
consistently in this proof of concept. Planets c and d are recovered with relatively
small error, especially in K1 away from band edges, while planet e closer in has larger
error. We expect improved results, especially close in, with observations in better
conditions.
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Figure 5.3: We explore a range of KLIP parameters, KKLIP and movement, to test
spectral extraction on HR8977 planets c and d in normalized contrast to compare the
shape of our spectra to published ones.136 We can see significant decrease in flux at
band edges, a result of low throughput and focus on the center of the spectrum. The
KLIP extraction seems to performs better at small movement, and in general small
KKLIP , though for the most part results are similar with similar KKLIP values.
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5.3 Applying KLIP to inteferometric anal-

ysis

We can draw many parallels between NRM data analysis and coronagraph PSF

subtraction. It can be particularly difficult to define the errors in NRM detection,

when correlations between observations and systematic errors are not well understood.

Challenges and advances in PSF subtraction in signal to noise estimation and flux

conservation can inform procedure in NRM data reduction. Both PSF subtraction and

NRM calibration attempt to subtract the instrumental response from the observable.

In the case of images, this is signal in the pixels. In the case of NRM, this is signal

in the visibility, for example the closure phase. One can construct a similar KLIP

procedure for interferometric phases. Ireland (2013)58 describes a method to measure

statistically independent phases.

This formalism will be particularly important for masking on NIRISS. NIRISS-

AMI will be able to build up a sufficient library of reference stars. On a stable

spacecraft, single stars from all regions of the sky are expected to be appropriate

calibration sources, compared with ground-based practice of choosing a calibrator in

or near the same region of the sky. As in the RDI case in coronagraphic subtrac-

tion, there is no companion signal in the reference library and forward modeling is

straightforward.

Applying the forward modeling procedures described in this chapter towards NRM
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data is less straightforward. ADI and SDI PSF subtraction take into account the

predictable way the speckles move with respect to the astrophysical signal in sky

rotation and wavelength dispersion. In the ADI case one might be able to construct

reference phases from rotations (or “rolls”) of the telescope on a single target. In

the SDI case, phase errors are not all expected to change with wavelength, but the

spectrum of the source is. Methods from optical long baseline interferometry such as

differential phase140,141 could benefit ground-based IFUs.

In general forward modeling will be very important for NIRISS-AMI observations.

With the stability of space observations NIRISS-AMI will observe both multiple-point

sources as well as more complicated structures,60,73 including resolved solar system

bodies142 and the fueling structures of AGN,66 which require both model-based and

blind image reconstruction.
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Wavefront sensing with a

non-redundant mask

6.1 Measuring low-order wavefront errors

with GPI’s NRM

Due to its geometry the non-redundant mask on GPI is sensitive to low frequency

wavefront errors. Phase delays between mask holes (fringe phases) provide infor-

mation about the wavefront at the focal plane, including non-common path errors

relative to the wavefront sensor. In particular focus (e.g. Fig 6.1) and astigmatism

produce fringe phase shifts between mask holes. These are very obvious in the data,

resulting in noticeable PSF asymmetries.
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Figure 6.1: Left: focus aberration in the pupil. Right: Focus seen through GPI’s
10-hole NRM, producing obvious fringe phase shifts in baselines associate with the
inner 3 holes.

6.1.1 Fitting NRM data to low order aberrations

Information from NRM images made with GPI’s internal source can be used to

fit low order Zernike functions to the data. The following procedure details one

approach:

• Remove global tilt from our fringe phase data.

• Simulate fringe phases for a set of low order Zernike modes (e.g. up to coma)

• Fit the appropriate amounts of each zernike to measured fringe phases

The dominant mode we recover is focus. To convert to nm we rely on the wave-

length reported the GPI pipeline, which may not be a perfect match, and the knowl-

edge of the plate scale. Uncertainty in these quantities produce errors in the measured

wavefront error.

The first set of observations were taken on May 6, 2015 in various conditions on sky.
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Changing conditions may account for additional variation in our results. The figure

below displays measurements taken on two sets of data, 10 exposures in H band and

K2 each. The median wavefront error in each Zernike mode was determined rejecting

the band edges, which have low throughput. The K2 data showed lower contributions

but much higher residuals.

This method provides an approximate approach to measuring the wavefront at the

focal plane. Certain Zernike modes can mimic others over the NRM pupil (like coma

and tip/tilt). Concentrating on focus and astigmatism produced the most consistent

results.

6.1.2 Measuring and correcting GPI’s focus

In 2016 we took several sets of exposures using GPI’s NRM with the internal source

to measure focus errors at the detector. Using the procedure described in the previous

section we fit NRM fringe phases to a set of low order Zernike functions and report

the measured focus error. We took exposures across GPI’s Y,J,H, and K1 bandpasses

(with the exception of K2 due to low throughput and high background). We found

the data consistently pointed to a focus offset of 145nm, within measurement error.

The data are summarized in Figure 6.2

107



CHAPTER 6. WAVEFRONT SENSING WITH A NON-REDUNDANT MASK

Figure 6.2: Results from focus measurements using GPI’s non-redundant mask
through GPI’s Y, J, H, and K1 filters. Small differences between bands could represent
uncertainty in either the wavelength solution or the plate scale.
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6.2 Phase retrieval using an NRM

NRM images can be paired with full pupil images to recover the full wavefront

with the Gerchberg Saxton (GS) algorithm. This section presents work published in

OSA Journal Optics Express in June 2016.143

6.2.1 Gerchberg-Saxton Phase Retrieval

Intensity data from far-field or in-focus imagery of a point source is often used

to determine the aberration in an optical system. Sometimes the aberration is an

engineering or calibration quantity, as in the case of the immediately post-launch

Hubble Space Telescope (HST), and sometimes it is interesting of itself, as occurs

in lensless X-ray microscopy. The Gerchberg-Saxton (GS) algorithm144 iteratively

accomplishes an estimation of phase from image intensity and a knowledge of the

pupil geometry, and does typically converge, but it can seem to converge to a spurious

solution that is a local minimum, or converge to either of the two ambiguous solutions

that are global minima. The unconstrained GS algorithm can converge to either the

true pupil field P (x) or its complex conjugate whose argument’s sign is reversed,

P ∗(−x).145 Breaking the two-fold ambiguity can be accomplished in different ways.

A consideration of more data taken with added defocus (or other kinds of phase

diversity) can result in obtaining the true aberration.146,147 Extra data in the form

of pupil diversity can also be used to break the sign ambiguity of the phase. Our
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approach is included amongst the latter class of methods.

The GS phase retrieval method iteratively applies the known pupil transmission

constraint in the pupil domain and the measured image intensity constraint in the

image domain.148 Stepping from one domain to the other is accomplished by a Fourier

transform of pupil plane or image plane complex amplitudes. In the special case where

the aberration is only composed of functions where P (x) = P ∗(−x) (such as purely

tip/tilt or coma) the phase can be recovered unambiguously with the unconstrained

GS algorithm In practice the algorithm can converge to a local minimum rather than

the true pupil phase unless the initial guess at the pupil phase is in some heuristic

sense fairly close to the correct value.

Figure 6.3: JWST NIRISS pupil optics NRM and CLEARP. A life-sized prototype
of the NRM is shown on the left, and the flight mask CLEARP in the NIRISS Pupil
Wheel on the right. The JWST primary mirror is reimaged to a 40 mm diameter
pupil in the plane of the NIRISS Pupil Wheel. The high quality of the image of the
primary in NIRISS’s entrance pupil,149 makes NIRISS well-suited for our wavefront
sensing technique during both commissioning and routine science operations.
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Figure 6.4: An example of true phase aberration, the quantity we are trying to
measure, is shown at the top left. Exposures with the full pupil and the NRM
produce aberrated PSFs. The NRM PSF is used to estimate the phases over each
hole. We assume a known, fixed, pupil support A(x), enforcing the pupil amplitude to
match the known geometry of the pupil in each iteration. In addition, we also replace
phases in the region shown with the average phase measured over each hole ϕNRM(x),
measured from NRM fringe phases (bottom left two panels). We propagate between
pupil and image planes since P (x) ⇌ Eimage(k). In each iteration we replace the image
field amplitude a(k) at the focus by the square root of the PSF intensity (bottom
right). We show an example of the estimated pupil phase at the 20th iteration. In
this study we remove the NRM constraint after a fixed number of iterations (typically
100).
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6.2.2 Practical Motivations for in-focus phase re-

trieval

This section describe a phase retrieval method that uses a pair of in-focus images,

one taken with the full pupil and the other with a non-redundant mask (NRM) in

the pupil. A NRM consists of a set of holes in a mask where no hole-to-hole vector is

repeated (e.g., Fig. 6.3 (left)). Our approach can be backup method for fine wavefront

sensing that may typically be required in order to maintain diffraction-limited 2 µm

image quality on the 6.5 m 18-segment infrared James Webb Space Telescope (JWST),

especially during routine operation and later stages of commissioning. A flight-ready

wavefront sensing scheme using JWST’s Near Infrared Camera (NIRCam) has already

been developed and tested.150 However, JWSTs Near Infrared Imager and Slitless

Spectrograph (NIRISS)53 using its two pupil masks, NRM and CLEARP151 (see Fig.

1) can serve as a backup sensing method. We show that these two pupil masks can

be used to measure the telescopes aberrations without introducing focus diversity

by sweeping the secondary mirror through focus or placing some of NIRCam’s three

weak lenses in the beam.

Our backup method reduces mission risk since it provides a second instrument

that can measure JWST’s wavefront. Using both NIRCam and NIRISS also provide

wavefront measurements at different field points, which could assist with secondary

mirror alignment when commissioning JWST. During routine astronomical observa-
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tions a pair of images taken with the CLEARP and NRM pupil masks in one filter

can provide a full wavefront measurement to interferometric accuracy. Such measure-

ments could also support image deconvolution methods at all wavelengths in NIRISS,

where all powered imaging optics are reflective. Using in-focus imagery and hardware

optimized for science removes the need for dedicated wavefront sensing hardware,

such as weak defocusing lenses, on future space telescopes. Our approach does not

solve the persistent problem of non-common path wavefront aberrations in corona-

graphs between the wavefront sensor and the focal plane mask,152 because we measure

the wavefront at the science detector (rather than at the focal plane containing the

coronagraphic occulter).

This study quantifies the method’s performance when faced with realistic limits of

noise, size of the image (number of resolution elements), and wavefront error expected

during certain commissioning phases of JWST. §6.2.3 motivates our approach and

the design choices of our study. §6.2.4-6.2.5 show examples of how the algorithm

performs under different conditions using both monochromatic and 8% bandwidth

images, matching NIRISS’s F480M filter on a continuous circular pupil. In §6.2.6 we

apply the algorithm to a JWST-like pupil with segment tip, tilt and focus aberrations,

as well as global pupil aberrations. We discuss our results in §6.2.7 in the context of

JWST mirror phasing.
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6.2.3 Methods

We presume that disjoint segments of the pupil have already been brought to a

common pointing, and to near a common focus. This places an upper bound on the

sizes of piston and tilt differences over the pupil (given the optical quality of each

segment). In addition, we assume that every segment in the pupil is well within

the coherence length of the filter bandpass, so that the PSF is somewhat coherent.

Reaching this coarsely-phased stage is possible using JWST’s NIRCam150,153,154 or,

as an alternative, with NIRISS and possibly MIRI.153,154 After the 18 segments of

JWST’s primary mirror are coarsely phased we do not expect any phase wrapping if

we only use NIRISS’ 4.3 µm or 4.8 µm wavelength filters. Our study focuses on the

problem of measuring a wavefront aberration that does not exhibit phase wrapping,

in order to explore algorithmic efficacy rather than address technical complications.

The GS algorithm iterates between pupil plane field P (x) and image plane field

Eimage(k), applying constraints in each domain before returning to the other (by means

of a Fourier Transform, for example). For our image plane constraint we replace the

image plane amplitude by the square-root of the image intensity. We constrain the

pupil plane amplitude by forcing it to be the pupil support function. We modify

initial iterations of the GS algorithm by applying additional constraints in the pupil

plane over the regions of the holes in the NRM.

By analyzing a PSF taken through an N hole NRM we obtain N(N − 1)/2 fringe

phases. Physically, a fringe phase is the piston component of the optical path delay
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(OPD) between two holes in the NRM. We use these fringe phases to calculate the

piston over each hole in the NRM. This can be done uniquely by making the N pistons

possess a zero mean.

We initialize the pupil phase over the mask holes to the NRM PSF-derived OPDs

and assert zero phase in the pupil everywhere else. In each subsequent constrained

iteration the pupil phase over the mask holes is replaced with the NRM-measured

phase piston. Elsewhere in the pupil we use the phase provided by the GS iteration

without interpolation. We then smooth the entire pupil phase by representing it with

a small set of low-order polynomials.

This starts the GS iterations off closer to the true phase, which we show enables

robust and rapid phase retrieval without the need for defocused images. Our pupil

phase estimate approaches the true pupil phase in a just a few iterations, even when

we applied 5% errors to measured piston phases.

During the initial constrained GS iterations the phase over the remainder of the

pupil can drift towards a solution while maintaining agreement with the NRM image

data in selected areas. The basic process is outlined in Fig. 6.4. After this initial

rapid convergence, the NRM-measured pupil phase constraints are lifted, and the

unconstrained GS method converges to the true phase in most of the cases we tested.

Pathological cases where NRM-derived constraints do not contain any information on

the pupil phase can be constructed (e.g., pure segment tilt with zero hole piston).

We chose to constrain the pupil phase by applying the average hole piston over
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the entirety of the mask hole locations rather than over smaller areas (or just a few

points) in the pupil. If the region of replacement is too small it can add artificial high

frequency signal in the reconstructed pupil. In general, unphysical high frequency

(frequencies beyond the limit of the number of resolution elements in the image) phase

will build up during this process, without smoothing. We smooth the pupil phase

each iteration by representing it with the first 15 Zernike155 or Hexike polynomials,156

depending on the shape of the pupil. Choosing an optimal set of basis functions that

are better suited to the actual segment geometry (including obstructions) is beyond

the scope of this study. For this study we add 5% error to zero mean pupil phases

(radians) that would be measured from the NRM image in order to introduce some

measurement error.

We used 250 pixels across our circular pupils, and up to 1024 pixels for compli-

cated obstructed apertures. We have assumed the OPD over each segment (or the

full circular pupil) only contains low spatial frequencies (compared to the Nyquist

frequency of our pupil sampling), so we can represent the pupil phase over a segment

with a few low order polynomials.

6.2.4 Monochromatic Circular Pupil

In this section we apply our constrained GS phase retrieval algorithm to a simple

circular pupil to demonstrate the principle. Using a known input wavefront, con-

structed with a random realization of the first 10 Zernike polynomials, we simulate
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images at the NIRISS pixel scale of 64 mas using a 6.5m diameter pupil at 4.8µm

to match JWST-NIRISS’s F480M filter. NIRISS is Nyquist sampled at ∼4µm. Our

images are slightly finer than Nyquist sampled. The technical complications of sub-

Nyquist image sampling may be addressable using existing techniques.157 Our goal

is to measure this input wavefront. We apply our NRM phase constraint for the first

100 iterations and then remove the constraint, allowing the algorithm to run until it

converges to a state where the solution is stable between consecutive iterations. We

report two relevant quantities, the true error and the convergence. The true error

is the difference between the actual zero-mean wavefront and the pupil phase esti-

mate. We use the true error to evaluate the algorithm performance in this study.

The convergence is the difference between pupil phase in consecutive iterations. The

convergence criterion sets the stopping point of our iterations. We set our numerical

convergence criterion to 10−6 radians difference between iteration i and i − 1. We

chose this criterion to be smaller than the expected true error. In a practical situa-

tion, the size of the true error will have to be estimated beforehand with simulations,

such as ours, and optical testing.

We damp each iteration, computing the pupil phase as 80% of the new solution

and 20% of the solution from the previous iteration. We did not optimize the damping

in this study. Finally we smooth our estimated pupil phase by representing it with

the first 15 Zernike polynomials when using a circular pupil. In the case of hexagonal

mirror segments we use equivalent 15 Hexike polynomials on each segment. The
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difference between iterations that decides the convergence condition is calculated

inside a slightly undersized pupil to avoid any edge effects.

6.2.4.1 Concept: Phase Retrieval With and Without Con-

strained GS (Noiseless Case)

We demonstrate the advantage of our constrained approach compared to pure GS

phase retrieval using a noiseless image made from an unobstructed circular pupil.

Figure 6.5 compares the constrained case (using NRM fringe phases) with the un-

constrained Gerchberg-Saxton algorithm. The initial pupil has 0.62 radians rms of

phase (∼ 460 nm). We convert angular measure to a physical distance assuming a

wavelength of 4.8 µm, the central wavelength of the JWST filter we model. Figure 6.6

displays the true error and convergence for both the constrained and unconstrained

cases. We refer to the true error as residual wavefront henceforth. In the uncon-

strained case the algorithm converges quickly (Fig. 6.6 blue solid line) but to the

wrong solution – the true error increases over time (blue dotted line). The residual

wavefront in this unconstrained case is 0.53 radians (∼400 nm) rms phase, as seen

in the rightmost panel of Fig. 6.5. In the constrained case the residual wavefront

error falls quickly in just a few iterations. The final residual wavefront using the

constrained GS algorithm has 0.1 radians (∼76 nm) (middle panel of Fig. 6.5).

In some cases, after steadily decreasing, the true error between the measured

wavefront and the true aberration, increases a small amount when the constraint is
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PSF: GS + NRM PSF: GS w/o NRMPSF: Input

Figure 6.5: Top: Noiseless monochromatic phase retrieval of input aberration on
the leftmost panel with 0.62 radians rms wavefront error. We display the phase
retrieval with NRM constraint (middle panel) and with out (rightmost panel). With
perfect correction the constrained phase retrieval can sense the wavefront to residual
of 0.10 radians rms phase, while the unconstrained approach produces a residual of
0.53 radians rms phase. At λ = 4.8µm, 0.1 radians corresponds to ∼76 nm of phase.
Bottom: PSFs corresponding the initial PSF in the leftmost panel and the residual
wavefronts in the middle and rightmost panels
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lifted and the algorithm is allowed to “relax,” as shown in the black dotted line in Fig.

6.6. The performance details are most likely due to our specific choices of damping

and smoothing and we anticipate that improvements can be made in the practical

implementation of this approach. For the remaining sections of this study we focus

on the major limiting factors that will guide the observations necessary to measure

the wavefront from in-focus images.
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Figure 6.6: Algorithm convergence, the difference between pupil phase at ni and ni−1

iterations, is shown in the solid curves. The true error, the difference between the true
aberration and the measured phase, is shown in the dashed curves. These reflect the
trials shown in Fig. 6.5. We remove the constraint after 100 iterations (vertical dotted
line) and allow the algorithm to converge. Applying the NRM constraint resolves the
GS degeneracy and allows the algorithm to converge in the correct solution. In the
unconstrained case the algorithm converges quickly to the wrong solution.
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6.2.4.2 Image Size Dependence

The reconstruction performance is ultimately limited by the size of the image used

(in units of the resolution element λ/D). Roughly speaking, by limiting the measured

spatial frequencies in the pupil, the image size governs how well we can correct the

wavefront. This image size dependence applies only to the full pupil image, as the

NRM image contributes only a guiding first estimate. In Fig. 6.7 we compare the

residual error in the measured wavefront with the number of resolution elements in

the PSF. We find that image sizes of ∼ 25λ/D can be used to correct the wavefront

with acceptably small residual wavefront error. For the remaining simulations in

Sections 6.2.4 and 6.2.5 we used an image size of 128 pixels, which corresponds to

∼ 50λ/D. Deep coadded exposures are likely to be needed for the required dynamic

range. In many of the following cases the image size sets the floor for our wavefront

sensing accuracy.

As described in Perrin et al. (2003),158 the direct correspondence between radial

distance from the center of the PSF and the spatial frequency in the pupil plane is

only true for Strehl ratios above about 90%, where the 1st order expansion of the

PSF is a good representation. But for lower Strehl ratios the correspondence is only

an approximation. Higher order PSF expansion terms show cause frequency mixing,

so phase terms with a spatial frequency of eg. M cycles across the pupil can place

speckles at harmonics located at 2M , 3M , . . . resolution elements from the core.

Since we use images with Strehl ratios below 90%, we find image size limits our
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Figure 6.7: We compare reconstruction error with image size (number of resolution
elements in the image). Pupil obstructions introduce more error with increasing
obstruction size.

wavefront sensing precision.

In the presence of pupil obstructions (a single spider in Fig. 6.7) we still find

acceptable, albeit slightly reduced performance; our accuracy improves with increas-

ing image size. The larger obstruction limits the reconstruction accuracy most. We

suspect that a different approach to smoothing each iteration may improve this per-

formance. To mitigate the effects of pupil obstructions, in Section 6.2.6, where we

simulate JWST-like segment gaps and spiders, we use larger image size of 524 pixels,

approximately 70 λ/D.
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6.2.4.3 Capture Range

In the noiseless case (using a 50λ/D image size) we can recover the wavefront with

a standard deviation σ = 10−2 radians residual error between the true aberration and

the estimated wavefront from our algorithm. Our input aberrations do not exceed

2π radians P-V wavefront error because we do not implement any phase unwrapping

in this study. Figure 6.8 displays the residual between the reconstructed wavefront

and the true aberration as a function of P-V wavefront error of the true aberration,

indicating the region above 2π radians where phase wrapping occurs. Incorporating

phase unwrapping procedures may improve performance in this region.
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Figure 6.8: The residual wavefront error with increasing peak to valley input aber-
ration. The inset shows wavefront errors > ±2 radians can be corrected to ∼0.1
radians.

Other in-pupil approaches to wavefront sensing use an interferometric analysis

with an asymmetric pupil159 or the differential optical transfer function (dOTF) using
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a known pupil modification.160 The dOTF approach is similar to ours in that it

does not need to operate in closed control loop, and it also uses two in-focus images.

However, it requires an additional hardware component or specific hardware capability

to produce a small pupil obstruction. We discuss the operational differences between

our approach and the dOTF method further in Section 6.2.7. Similar to our approach,

the asymmetric pupil wavefront sensor (APWFS) can use existing science hardware in

the case of JWST, but it works iteratively in closed loop. Our monochromatic case,

where we have not applied phase unwrapping (e.g. Fig. 6.8), has similar capture

range to APWFS.

Multiwavelength NRM data has been used to resolve phase wrapping ambiguity.153

Since phase unwrapping is routinely used in successful Gerchberg-Saxton methods,147

combining these approaches may work well on continuous pupils. Phase unwrapping

on segmented apertures raises some fundamental issues that are beyond the scope

of this study. Multiwavelength imaging may help resolve some of these issues. The

APWFS works only in the regime where the small angle approximation is valid; when

the wavefront errors are larger than ∼ 1 radians it breaks down.161 Our approach

does not use a small angle approximation. The APWFS operates in a closed control

loop with wavefront correction, whereas our approach provides a wavefront estimate

with just one set of images. We note that the APWFS measurement could be used

to constrain the Gerchberg-Saxton algorithm instead of pistons derived from NRM

fringes, so that our initially constrained approach can be used with other JWST
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Figure 6.9: We compare results in the case of monochromatic images with photon
noise between 1e3 and 1e7 photons. The leftmost panel shows the input pupil phase.
The middle and left panels are the measured wavefront in the case of 103 and 107

photons. In practice on NIRISS 106 photons will be easily acquired on bright stars.

instruments that do not contain an NRM.

6.2.4.4 Photon Noise and Exposure Time

Our procedure requires two exposures, one with the full pupil, one with the NRM.

We can tolerate fewer counts in the NRM images since the fringe phases are only used

to move the estimated pupil phase in the right direction during the first few iterations.

Here we consider the necessary exposure time for the full pupil image in the presence

of photon noise. We find that even in shallow full pupil exposures, we can reconstruct

the wavefront to an accuracy of ∼0.1 radians rms or better (compared to 0.62 radians

rms in the initial aberrated pupil), as summarized in Fig. 6.9. The inset plot shows

125



CHAPTER 6. WAVEFRONT SENSING WITH A NON-REDUNDANT MASK

two examples at 103 and 107 photons. While the residual error is larger for an exposure

of 103 photons, the wavefront is recovered to ∼0.04 radians. Beyond ∼ 105 photons

we reach the reconstruction limit set by our 50 λ/D image size.

Shallow exposure images with the full pupil can be obtained quickly on bright

sources with NIRISS. For example, a 7.5 magnitude star in NIRISS F480M filter will

take of order seconds to reach 107 photons. For the NRM images 106 photons should

be more than sufficient to achieve better than the 5% precision in pupil phases that

we use in these simulations.162 It will take seconds to reach 106 photons on the same

7.5 magnitude star with the NRM.

6.2.5 Finite Bandwith Images matching NIRISS’s

F480M Filter

In reality, images will be chromatic and will contain other sources of noise, such

as from pointing jitter. In this section we extend our analysis to polychromatic

images matching the bandwidth of NIRISS’s 8% F480M filter. We consider constant

transmission across the filter bandwidth centered at 4.8 µm. We additionally add

pointing jitter by convolving the PSF with a Gaussian of standard deviation σ =

pointing jitter.

The algorithm reconstructs phase errors in the wavefront at the central wave-

length. The chromatic effects of our 8% bandwidth images increase the threshold
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Figure 6.10: We analyze the effect of pointing jitter of up to nearly a full pixel on
the rms residual error for 8% bandwidth images that have 106 photons. In this case,
below about a quarter pixel of jitter, reconstruction error is limited by image size,
consistent with the 50 λ/D point in Fig. 6.7. The inset plot shows an example of the
reconstruction when the pointing jitter is 0.25 λ/D. The residual wavefront error in
this case is < 0.1 radians rms compared to 0.62 radians rms before correction).
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reconstruction error. Above ∼0.15 λ/D, jitter is the larger source of error. We sum-

marize these results in Fig. 6.10, and mark the region where the simulation is limited

by other sources of error (image size and chromatic bandwidth). The inset plot shows

an example of our results in the particular case of 0.25λ/D jitter and 106 photons

(data point indicated by a star marker). In our example, which has less than ideal

conditions, we are able to recover the wavefront very well, with a residual wavefront

error of < 0.1 radians rms. We investigated this effect up to about a full pixel of jitter,

0.5 λ/D, where performance is degraded, but still produces a residual wavefront error

of ∼ 0.3 radians rms.

The JWST pointing requirement is 7 mas rms,87 which is ∼0.05 λ/D jitter at

4.8 µm. In our illustrative example we find that our algorithm is limited by the

PSF image size (128 pixels) when the jitter is less than ∼ λ/8D. Up to about a

quarter pixel of jitter is correctable to ∼0.05 radians rms (or ∼40 nm at the 4.8 µm

wavelength). If JWST’s pointing jitter remains at or below requirement, it will not

be a limiting factor to this kind of wavefront reconstruction.

6.2.6 Correctable Wavefront Errors on the JWST

Segmented Mirror

JWST mirror segments have seven actuators. These control the six solid body

degrees of freedom as well as the segment radius of curvature.150 Individual JWST
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mirror segments have been measured to have very small aberrations, and are designed

to be stiff. The commissioning plan is to adjust segment radius of curvature only

during fine phasing,163 so the range of radius of curvature actuation need only be of the

order of ∼ 100 nm at (∼ 0.13 radians at 4.8µm). Prior fine phasing, pupil aberrations

(including global defocus) are expected to be dominated by misplaced primary mirror

segments, and, during early commissioning, from a misaligned secondary.

In this section we consider piston, tilt and focus segment aberrations, errors which

are expected from segment drifts between phasing. We apply our algorithm to im-

ages made with a pupil matching the JWST primary hexagonal segments and mirror

obstructions. For this example we do not consider the central obstruction in the

CLEARP pupil (Fig. 6.3 right). We use the Hexike polynomials implemented in

WebbPSF164,165 for smoothing the measured wavefront each iteration. We do not

assume anything about the particular set of Hexike terms present in the wavefront.

In practice, it may be useful to limit smoothing modes to only piston, tip/tilt, and

focus. In these test cases, we consider images that are sampled three times better

than NIRISS’s F480M filter to focus on the algorithm performance for a segmented

pupil rather than sampling effects. We use images of size 524 pixels (∼ 74λ/D).

6.2.6.1 Segment Tilt

In the special case of pure, random segment tip/tilt with no segment piston or

higher order aberrations, constraining the GS with NRM data (which measures hole
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piston) only supplies zero piston constraint over all holes. In our pure segment tilt

test case the constrained GS did not recover all the segment tilts correctly. Because

this is a special case, we address segment tilt separate from piston and defocus.

Once mixed with any other (symmetric) phase, NRM can break the GS ambiguity.

When we added coma (a global aberration that often arises from secondary mirror

misalignment) the wavefront was retrieved unambiguously (Fig. 6.11). We also mix

tilt with segment piston and focus, and again recover the wavefront (Fig. 6.12).

INPUT RECONSTRUCTED

1 0 1 1 0 1

(radians)

Figure 6.11: Segment tip/tilt is mixed with a global coma. The initial wavefront
errors are 0.35 radians rms and the reconstruction residuals are 0.14 radians rms.

6.2.6.2 Combinations of Segment Piston, Tilt and Focus

In general we may expect a combination of segment-base wavefront errors, of which

piston, tilt and focus are correctable. We split these into pure segement defocus and

pure segment piston as a demonstration of correcting single even functions on the

JWST segmented pupil. Both defocus and piston introduce nonzero fringe phases in
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the NRM image (since the NRM holes are smaller than the segments). In reality,

piston error on a curved segment contributes other aberrations. We then mix seg-

ment piston, tilt, and focus errors (Fig. 6.12-bottom) and can reconstruct both the

symmetric and antisymmetric wavefront error terms unambiguously. While the accu-

racy of wavefront retrieval is reduced at segment edges and obstructions, the general

structure and the sign of the phase is preserved in the reconstruction. Fine tun-

ing this procedure may manage segment edges and obstructions either with different

smoothing function, or by incorporating a gain factor for known discontinuities.

6.2.6.3 Secondary Mirror Misalignment

JWST wavefront sensing has been developed around using NIRCam. NIRCam

uses specialized hardware to determine segment co-phasing, and large and small wave-

front aberrations. All wavefront sensing is initially performed at one field point in

NIRCam. This telescope phasing may result in a sub-optimal positioning of the

secondary mirror due to a degenerate combination of certain primary and secondary

misalignment modes that cannot be sensed at a single field point. In order improve the

wavefront in other JWST instruments, wavefront sensing needs to be performed in the

other imaging instruments, namely NIRISS and JWST’s Mid-Infrared Imager (MIRI).

The most thoroughly tested approach to this Multi-Instrument Multi-Field (MIMF)

wavefront sensing166 involves sweeping through focus with a secondary mirror move

and using a focus-diverse Misell-Gerchberg-Saxton phase retrieval algorithm.144,146
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Figure 6.12: We simulate segment piston, tip/tilt, and focus aberrations on the
JWST pupil simulating the F480M filter bandwidth and ∼ 7 mas jitter. The left
column shows the input and the right the reconstructed wavefront. In the case of pure
segment piston (top) the input wavefront has 0.27 radians rms global wavefront error
and the reconstruction residual has 0.06 radians rms. For the case of pure segment
defocus (middle) the input wavefront produces a global wavefront error of 0.25 radians
rms, while the reconstructed wavefront has residual error of 0.1 radians rms. In the
combined piston, tip/tilt, and focus case the input wavefront has 0.34 radians rms
phase and the reconstruction residual has 0.1 radians rms. At a wavelength of 4.8µm
0.1 radians corresponds to 76nm.
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Using our approach, we can accomplish an unambiguous wavefront measurement by

combining NIRISS’ CLEARP and NRM pupil masks without invoking a secondary

mirror move. This might enable a shorter commissioning period for JWST, since the

secondary mirror focus sweep is a slow exercise.

A mixture of astigmatism and coma are likely to result from the secondary mirror

misalignment. In NIRISS this aberration might be up to 200 nm in size. In Fig. 6.13

we show a simulated measurement of this kind of aberration using our method. From

this single measurement we cannot determine where the aberrations are from (primary

or secondary misalignments), but NIRISS can add an additional field point compared

to NIRCam’s wavefront measurements. Multiple field points are required to determine

the secondary misalignment without moving the secondary.

INPUT RECONSTRUCTED
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Figure 6.13: Unaberrated segments with secondary mirror misalignment
(MIMF).166 Our constrained GS approach will be able to reconstruct low order global
aberrations in the F480M filter on NIRISS, observing with a star of magnitude of 7.5
and an exposure time of < 1s, with ∼ 7 mas jitter. In this test case the initial
wavefront error is 0.22 radians rms and the reconstruction residuals are 0.04 radians
rms.
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6.2.7 Discussion

Our constrained Gerchberg-Saxton approach to phase retrieval provides an effi-

cient way to measure wavefront aberrations on current and future space telescopes

using only in-focus images. The algorithm is suited to both continuous and seg-

mented/obstructed pupils, though segment obstructions appear to limit the perfor-

mance in our simple implementation. We use the first 15 Zernike or Hexike polyno-

mial to smooth the wavefront in the pupil. We smooth over the full pupil in the case

of a continuous pupil, and segment-wise in the case of the segmented pupil, using

the appropriate set of polynomials. Alternative basis functions could handle differ-

ent wavefront errors better. We ignore the edge effects of thin pupil obstructions.

Mitigating the errors introduced by these effects may take more study.

In this section we have discussed our wavefront retrieval approach primarily in

the context of commissioning JWST, although the method could provide wavefront

knowledge during JWST science observations (for example, to support image decon-

volution). On JWST this work may help avoid some secondary mirror focus sweeps

during the commissioning phase of the telescope. We have presented a proof of con-

cept of our method; further optimization of the method can be tailored to individual

cases.

On JWST, two in-focus exposures containing 106 photons each (requiring exposure

times of < 1s full pupil images and seconds in NRM images for a star of 7.5th magni-

tude through the F480M filter) will provide enough signal to measure the wavefront
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errors of ∼ 100 nm, even in the presence of jitter, finite bandwidth and limited image

size. Chromatic smearing, and finite image size are larger sources of error than the

anticipated pointing jitter of JWST. Our method can tolerate up to 16 mas of point-

ing jitter, which is twice as large as JWST’s required pointing accuracy. Frequent

monitoring of mirror segment drift can be measured with our approach on NIRISS

(which contains the 7-hole NRM used in this study) as a part of normal telescope

operations. This provides a complimentary capability to trend wavefront stability

over time in NIRISS alongside the main wavefront sensing monitoring program using

NIRCam.

We have focused on using a non-redundant mask to break the phase degeneracy

in the unconstrained GS algorithm. It may also be possible to accomplish this with

a redundant pupil that possesses asymmetries, using the asymmetric pupil wavefront

sensor (APWFS) method,159 which also uses in-focus images. The APWFS algorithm

could be used on data from other JWST instruments, such as NIRCam or MIRI.

Our method has some key differences compared to the differential optical transfer

function approach to wavefront sensing. The dOTF method similarly requires two

in-focus images, one with a pupil modification, though the modification must be

small. For JWST, Codona160 suggests using small motions of the pupil wheel to

block a portion of the pupil and achieve its required pupil diversity, which is not

possible for MIRI’s rachet-mechanism filter wheel. Our constrained GS approach

uses two standard filter settings on NIRISS. With the possibility of using APWFS
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measurements, a single image could suffice for doing constrained GS wavefront sensing

with MIRI.

Using these methods for both monolithic and segmented future telescopes (such as

the Wide Field Infrared Survey Telescope167 or the High Definition Space Telescope3)

can utilize science hardware for wavefront sensing, which has obvious benefits for

weight, cost, complexity, and scope.

6.3 Preliminary Constrained Gerchberg-

Saxton Laboratory Results

This section builds upon the theoretical work developing a constrained GS algo-

rithm using NIRISS’s NRM and an arbitrary pupil in the previous sections of this

Chapter. We test the algorithm on laboratory data and show some preliminary re-

sults. In Section 6.3.1 we discuss progress with laboratory demonstrations at the

Makidon Optics lab at the Space Telescope Science Institute. In Section 6.3.2 we dis-

cuss future work that can verify our laboratory results and extension of our algorithm

using another interferometric approach to provide the pupil constraint.
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6.3.1 Progress on laboratory tests

Our implementation of the constrained GS procedure in the pupil plane for lab

data is as follows:

• Measure pistons over each hole from NRM data

• Set numerical pupil phase equal to measured pistons over the region of the mask

holes in each iteration

• Keep the phases determined by GS everywhere else.

• Zero mean phase and smooth with a set of low-order polynomials to remove

high frequency noise.

• Set pupil amplitude equal to the pupil support.

We do not interpolate between NRM hole locations letting the phase in these regions

evolve over time. In the image plane we replace the amplitude with the square-root

of the PSF. After the difference in pupil phase between consecutive iterations falls

below 10−2 radians RMS, we remove the constraint.

We assume our laboratory data is dominated by low order aberrations. We smooth

the phase each GS iteration with the first 15 Zernike polynomials. We use 400 pixels

across our numerical pupil in the retrieval.
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6.3.1.1 Bench Setup

Data were taken in the summers of 2014 and 2015 at the STScI Makidon Optics

Laboratory with a simple setup that allows an NRM or circular pupil to be used.

Figure 6.14 shows our basic lab setup. Our two different pupils were placed in the

collimated portion of the beam between the two mirrors. We took exposures using

each pupil and subtracted the dark background. In this experiment we used a glass

microscope slide to add small phase aberrations. We ran sets of exposures both with

(GLASS) and without (CLEAR) the slide in the path of the beam. Our source is

centered at 650nm with a ∼ 1% bandpass.

6.3.1.2 Data cleaning

Before running our phase retrieval algorithm we reduced the data to clean up dark

background, noise, and bad pixels in the camera. First we took the median image

over all source and dark exposures. We subtracted the dark background and cropped

our image down to the portion containing the signal. We treated bad pixels using a

nearest neighbor average1.

We then filtered the data in the Fourier plane by setting signal outside the pupil

support to zero and transforming the data back to the image plane. The pupil support

in this step was chosen by eye and was slightly oversized. This led to slight extra

ringing in the filtered PSF. Our PSF signal is reliable to only about the first 6 or

1Using the bfixpix routine from http://www.lpl.arizona.edu/ ianc/python/nsdata.html
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Figure 6.14: A picture of our bench set up, which included a thermal source, cicular
pupil stop, G7S6 design NRM, two 2-inch mirrors, and an SBIG CCD camera. The
Source was placed one focal length from the first mirror. Pupils were placed in the
path of the collimated beam between the two mirrors. We chose to use a small pupil
roughly the size of the longest baseline on our NRM, and also to take advantage of
the higher quality part of the mirrors, closer to the center
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Figure 6.15: Constraint region (white) overlaid on the full PSF pupil (gray). We use
slightly undersized circular holes that fit entirely within each hexagonal subaperture
for the pupil constraint.

7 Airy rings. These basic steps were sufficient to feed our full pupil PSFs into our

phase retrieval algorithm.

6.3.1.3 Extracting NRM phases

The NRM-derived pupil phases are only a first estimate of the pupil phase and do

not need to be very precise. We measured visibility phases in the Fourier transform of

the data, averaging over each visibility splodge. We then solved for zero mean pupil

phases. Our “full pupil” was slightly undersized compared to the mask holes. We

carefully matched the two pupils in our numeric arrays to reflect their true sizes. We

applied the pupil pistons over circles that fit within each full hexagonal subaperture.

Figure 6.15 shows the region in which we replace NRM-derived pupil phases (in white).
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6.3.1.4 Results

We ran our constrained Gerberg-Saxton algorithm, using the pupil phase estimate

from the NRM images as a starting guess. We applied the NRM-derived constraint

until the difference between pupil phase in consecutive iterations exceeded 10−2 ra-

dians rms. Afterwards, we lifted the constraint and let the algorithm converge so

that the difference between consecutive iterations was below 10−5 radians rms. We

smoothed the pupil phase each iteration with a set of 36 Zernike polynomials. We

performed this procedure on cleaned data with and without the glass slide.

As a first test to verify our results we simulated full-pupil PSFs given the measured

phase errors and compared those to our cleaned data. Our reconstructed PSFs closely

match the data. In Figure 6.16 we show this comparison on the right half of the

figure. The left shows our retrieved phase and the pupil constraint used to start our

GS algorithm. We are working on aligning interferometer measurement of our glass

slide with its position on the testbed, to verify these results.

We also varied the pixel scale by up to ±5.0% to test how sensitive our results

were to a possible mismatch in PSF sampling. We provided a guess for the pixel scale

to start, close to the true value. For the GLASS data we see very little change in our

recovered phase. However, for the CLEAR data we measure a different phase when

the pixel scale is too far from the correct value. In this case the reconstructed PSF

does not match the data, indicating that the solution is incorrect.

Figure 6.17 shows how the results change as we modified the pixel scale. For the
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Figure 6.16: Phase retrieval results for CLEAR on the top, and slide on the bottom.
On the left are the recovered phases with global tilt removed and zero mean. In the
center are the NRM-derived pupil pistons that we used as a constraint in the first
set of GS iterations. On the right are PSFs constructed from the phases on the left
assuming uniform illumination in the pupil.
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Figure 6.17: Varying the pixel scale in our phase retrieval: We calculate
the wavefront in radians on each dataset by running our algorithm with up to ±5%
change in the pixel scale. The results are displayed from −5% to 5% from left to
right, with the recovered wavefront shown above the reconstructed PSF. On top are
the CLEAR data and on the bottom are the GLASS data. Our results indicate that
some mismatch in the pixel scale can be tolerated.

CLEAR data the PSF only matches the data in cases of the nominal pixel scale value

and the +2.5% change (columns 3 and 4, in the top panel). Phase retrieval of the

GLASS data (bottom panel) all show similar structures and all the reconstructed

PSFs match our data (Figure 6.16, rightmost column). These results indicate that

1-2% of error in the pixel scale is tolerable, which agrees with some simple simula-

tions. Pixel scale tolerance may vary with different aberration shapes explaining the

difference between the CLEAR and GLASS reconstructions at large pixel scale errors.
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6.3.2 Future work for the constrained Gerchberg-

Saxton algorithm

This study describes our latest work using a modified Gerchberg-Saxton algorithm

to measure the wavefront of data we obtained in our lab. We use the phase retrieval

results to reconstruct PSFs and compare with our data. This is a first step in verifying

the approach in a lab experiment. Using interferometer measurements of our glass

slide, we plan to compare the measured glass wavefront with our phase retrieval

results. Ongoing work includes aligning the glass slide wavefront measurements with

its setup on our testbed.

This method can be straightforwardly applied to other existing point source im-

ages. NIRISS cryovacuum tests include images using both the NRM and full pupil.

We also plan to use this algorithm on existing GPI data, primarily using its inter-

nal source. Our method could provide a measurement of the wavefront including

non-common path aberrations between the wavefront sensor and the focal plane. In

closed loop on sky, it is possible that enough data could be taken in stable conditions

between NRM and full pupil exposures to make an estimate of GPI’s wavefront, but

it will be challenging. It is also difficult to find a source that is bright enough for the

NRM and faint enough to not saturate the full pupil.

We demonstrate our constrained phase retrieval using phases measured from NRM

data. It is likely that other interferometric approaches like the asymmetric pupil

144



CHAPTER 6. WAVEFRONT SENSING WITH A NON-REDUNDANT MASK

Fourier wavefront sensor? could also be used to start a GS loop in the right direction.

In the case of a future space telescopes that will likely be segmented, or contain spiders

there should already be sufficient asymmetry for this approach to provide a close first

estimate of the phase. Wavefront sensing that combines these two approaches would

only require one in-focus image. This could make our phase retrieval approach more

practical for ground-based AO data. In the context of JWST mirror phasing, this

could expand our method to work both with NIRISS and MIRI images, providing

estimates of the phase at two different parts of the field compared with baseline

wavefront sensing on NIRCam. For future space telescopes this approach enables

wavefront sensing without dedicated hardware, especially if it can be done with one

image.
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Chapter 7

Looking towards the future

The field of planet formation and exoplanet demographics has been extremely

observationally driven, especially in the last decade. The huge demographics of ex-

oplanets discovered through transit and radial velocity measurements predicted the

presence of young gas giant planets within 20AU from their stars that could be ob-

served with sufficient contrast and adaptive optics performance with the new gener-

ation of ground-base planet imagers. The new ground based imagers have begun to

reveal that either fewer planets exist in wider orbit, or they are intrinsically less bright

than previously thought. Upcoming missions, like JWST and WFIRST will expand

the search with improved stability at infrared wavelengths and deeper contrast a short

wavelengths, respectively.

Major questions still remain in putting the direct imaging observations in context.

Ages of directly imaged stars are often assumed from their coeval groups or other
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indicators.168 Since estimated masses of new directly imaged systems depend on the

assumed ages there remains a lot of uncertainty in characterizing the demographics

of young, wide separation giant planets. Testing evolutionary models with low mass

binaries at more moderate contrasts can provide more direct measurements of mass

and dynamics. High resolution is required to overlap radial velocity sensitivity and

resolve msini mass uncertainty. Advancement will come in deeper contrasts at small

inner working angles as well as sensitivity to lower mass primaries that cannot be

observed from the ground due to their faintness. JWST’s infrared instruments will

target companions to M dwarf primaries, which will be intrinsically cooler, but at

moderate contrast.

We investigated limiting systematics for non-redundant masking data analysis,

presenting an image-plane based algorithm for measuring fringe visibilities. Image-

plane methods sidestep bad pixels, can model pixel varied response and undersampled

images, and can potentially manage saturated data. The image plane approach is also

appropriate for ground-based IFU data, which has small fields of view, in general. Our

analysis identified the importance of accurate pointing on JWST-NIRISS in order to

mitigate flat field errors across the detector. Accurate placement of the target object

will help calibrate out any systematic effects coming from pixel variations and other

instrument effects. This work has guided the observing plan for NIRISS-AMI target

acquisition and integration and led to analysis of early JWST-NIRISS test data.61

We presented the results and lessons learned from commissioning the NRM on the
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Gemini Planet Imager. The experience outlines the utility of having an NRM, both for

complementary science at small inner working angles, as well as instrument diagnosis.

There are few stars for which GPI can lock on with the AO system that do not also

saturate the detector, before recent upgrades that added a neutral density filter.

Asymmetry in NRM images were able to diagnose a defocus in direct (non-occulted)

exposures. The NRM also identified bad on-telescope vibrations that were not present

in internal source exposures. While a few science observation early in commissioning

demonstrated the NRM resolution inside the region of the coronagraphic occulter,

recent upgrades to the instrument will allow the best NRM performance yet.

As of May 2016 the NRM is reaching 5σ contrast of a few 103. According to models

of, e.g. Baraffe et al. (2015)169 GPI’s NRM is sensitive to low mass stars and brown

dwarfs around primaries of a range of stellar types and ages 1− 10Myr. At least an

order of magnitude better contrast with NIRISS at 4µm will be able to reach much

smaller companion masses, where their infrared thermal emission will be peaking as

the stellar radiation is falling. An illustrative example of this can come from plotting

black body curves for objects from a range of temperatures. For this example we

use models from Burrows et al. (2001)170 assuming an age of 1 Myr. NRM on an

instrument like GPI, operating at the short end of IR, where the atmosphere is not as

bright, will fall short of planetary mass companions to solar-type stars. At NIRISS

bands the contrast ratios are more moderate and the same contrast begins to probe

planetary masses. An extra order of magnitude better contrast afforded from a stable

148



CHAPTER 7. LOOKING TOWARDS THE FUTURE

10-1 100 101 102

Wavelength (µm)

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

S
ca

le
d
 B

la
ck

b
o
d
y
 F

lu
x

GPI NIRISS

Sun-like star

13 MJ

1.0 MJ

0.3 MJ

Figure 7.1: A simple illustration of the gain in sensitivity toward companion mass
by gaining an order of magnitude better contrast farther into infrared wavelengths.
NIRISS will be able to probe lower, possibly planet mass objects compared to what
is accessible with ground-based NRM. This simple demonstration assumes perfect
blackbody emission and uses mass-temperature relations from Burrows 2001 models
at an age of 1 Myr. The observing bands for GPI and NIRISS are shown in shaded
regions.

space telescope can probe even lower in mass. WFIRST, which will observe in visible

light, all the way to the left of the plot, will target reflected light from planets rather

than thermal emission, which will clearly be too challenging, even for a space-borne

coronagraph. State of the art coronagraphy coupled with wavefront control will allow

WFIRST to detected the reflected light.

High resolution imaging goes hand in hand with coronagraphic instruments, to-

gether sensitive to a larger parameter space in contrast and separation from the
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host star. We presented recent work applying a new forward modeling algorithm for

Karhunen-Loeve Image Projects, a PCA-based approach to PSF subtraction. In the

challenging conditions of angular or spectral differential imaging the reference library

for PSF subtraction necessarily contains the astrophysical signal we are trying to

measure, and so general KLIP can underestimate its flux, especially if the signal is

especially faint or close in to the coronagraphic mask, where more aggressive PSF

subtraction must be done. We demonstrate KLIP-FM in practice accounting for the

missed flux by estimating over-subtraction and self-subtraction of the signal. We ap-

ply this method to a particularly noisy dataset in early GPI commissioning of the

star HR8799 containing 4 directly imaged giant planets, in an attempt to measure

the K-band spectrum of the closest in planet HR8799e.

From the ground, with GPI plan to follow up transitional disks at close in sepa-

rations corresponding to the disk gaps to look for new companions or rule out their

presence above some mass limit. Spectroscopic measurements will help character-

ize known companions and any new discoveries and may help constrain accretion

properties and effective temperatures. Future work includes leveraging the spectral

dimension for differential as is done in Long baseline optical interferometry.140,141

We have demonstrated the < 1% polarization precision of the GPI NRM in po-

larimetry mode, when conditions are appropriate. The remaining test is to observe

young systems with close in disks and detect their polarized signal. Many transi-

tional disks have structures predicted by their spectral energy distributions, possibly
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further characterized by imaging and interferometry. In some cases GPI NRM will

be able to confirm structures probed by instruments like ALMA, and in other cases

GPI NRM will be able to measure new constraints on inner disk structures. The

polarized signal measured in azimuth around the host stars will provide information

on the composition and scattering properties of the grains. Modeling the properties

of these disks will help put these observations in context.

There are many exciting science opportunities to pursue with NIRISS-AMI both

in point sources and extended objects. In the search for new young exoplanets or low

mass companions, NIRISS-AMI will aim to reach contrasts of 104 on the brightest

sources at an inner working angle of∼ 60−70mas. These sources will be bright enough

for ground-based ex-AO imagers, but too bright for the unmasked NIRISS detector.

NIRISS-AMI will aim for moderate contrast around fainter targets, like M dwarf pri-

maries. Low mass companions to these stars will have less severe contrast ratios.

NIRISS-AMI should have many synergies with RV and GAIA astrometry detections

around close (within ∼ 30pc) low mass primaries.171 Monitoring these companions

through both imaging and either radial velocity or astrometry will yield direct mass

and luminosity measurements of low mass objects. The stability of JWST will also en-

able better image reconstruction than ground-based NRM. NIRISS will target young

disks, solar system bodies, and active galactic nuclei, among other possible interesting

possibilities. A combination of forward modeling and image reconstruction will be

necessary.
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There are advantages and drawbacks to masking the NIRISS pupil to remove

redundancy. The major drawback is that a significant fraction of the light is masked

and integration times will be long for faint targets. On the other hand, NRM can look

at very bright targets and reach sub-λ/D resolution. Kernel phase will also play an

important roll on NIRISS and other JWST instruments, as it has been demonstrated

on archival Hubble Space Telescope data.64 Together these two methods will provide

the high spatial resolution imaging available to JWST. For the two similar methods

the accumulation of reference stars will provide enough observations to set up KLIP

for NRM, matching the ALICE project with HST .116

Wavefront sensing and control is an important component of developing next

generation ground and space-based high contrast instruments. We have outlined a

new approach to phase retrieval that does not require any moving mirrors to introduce

defocus for phase diversity. Instead we use an NRM to break the pupil symmetry

and constrain phase retrieval on a full pupil image. This procedure requires only

two images to gain enough information to measure the wavefront. It stands apart

from closed-loop wavefront sensing and is appropriate for active control on space-

based segmented telescopes. Combined with a starting guess from the asymmetric

pupil Fourier wavefront sensor, this approach would only require a single image.

Every science image could also come with a measurement of the wavefront, helping to

monitor the alignment of the optics over time and providing additional image quality

information to the observer.
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