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Abstract 

This dissertation applies accurate models of imaging physics, new high-resolution 

imaging hardware, and novel image analysis techniques to benefit quantitative applications 

of x-ray CT in in vivo assessment of bone health. Imaging physics can be used to account 

for nonidealities in image formation and to optimize imaging systems; improved spatial 

resolution enables characterization of fine anatomical structures; novel image analysis 

techniques provide more consistent quantitative biomarkers. We pursue three Aims: 1. 

Characterization of macroscopic joint space morphology, 2. Estimation of bone mineral 

density (BMD), and 3. Visualization of bone microstructure. This work contributes to the 

development of extremity cone-beam CT (CBCT), a compact system for musculoskeletal 

(MSK) imaging. 

Joint space morphology is characterized by a model which draws an analogy 

between the bones of a joint and the plates of a capacitor. Virtual electric field lines 

connecting the two surfaces of the joint are computed as a surrogate measure of joint space 

width, creating a rich, non-degenerate, adaptive map of the joint space. We showed that by 

using such maps, a classifier can outperform radiologist measurements at identifying 

osteoarthritic patients in a set of CBCT scans. 

Quantitative BMD accuracy is achieved by combining a polyenergetic model-based 

iterative reconstruction (MBIR) method with fast Monte Carlo (MC) scatter estimation. On 

a benchtop system emulating extremity CBCT, we validated BMD accuracy and 
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reproducibility via a series of phantom studies involving inserts of known mineral 

concentrations and a cadaver specimen. 

High-resolution imaging is achieved using a complementary metal-oxide 

semiconductor (CMOS)-based x-ray detector featuring small pixel size and low readout 

noise. A cascaded systems model was used to performed task-based optimization to 

determine optimal detector scintillator thickness in nominal extremity CBCT imaging 

conditions. We validated the performance of a prototype scanner incorporating our 

optimization result. Strong correlation was found between bone microstructure metrics 

obtained from the prototype scanner and µCT gold standard for trabecular bone samples 

from a cadaver ulna.  

Additionally, we devised a multiresolution reconstruction scheme allowing fast 

MBIR to be applied to large, high-resolution projection data. To model the full scanned 

volume in the reconstruction forward model, regions outside a finely sampled region-of-

interest (ROI) are downsampled, reducing runtime and cutting memory requirements while 

maintaining image quality in the ROI.
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ROI region-of-interest 

SAD source-axis distance 

SDD source-detector distance 

SNR signal-to-noise ratio 

SPR scatter-to-primary ratio 

SPS separable parabolic surrogates (optimization algorithm) 

SVM support vector machine 

TbSp mean trabecular spacing 

TbTh mean trabecular thickness 

TFT thin film transistor 
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Chapter I 

Cone-Beam Computed Tomography:  

Systems and Models for Quantitative MSK Imaging 

The goal of this thesis is to develop new systems, models, and analysis methods 

that advance the spatial resolution and quantitative imaging capabilities of cone-beam 

computed tomography (CBCT). The work focuses on applications to imaging of the 

musculoskeletal (MSK) extremities to yield rich volumetric characterization of bone 

morphology, accurate determination of bone composition and enable high-resolution 

visualization of bone microstructure. In this chapter, we review the current state-of-the-art 

in dedicated CBCT systems for MSK imaging, the physics underlying the modality, prior 

work on modeling the physics, and algorithms for tomographic reconstruction. 

I.A Quantitative Biomarkers for MSK Imaging 

Development of quantitative MSK imaging is impactful for diagnosis and 

monitoring of many bone infirmities and abnormalities. It is estimated that 52.5 million 

U.S. adults aged ≥ 18 y suffer from some form of arthritis or related rheumatic condition 

[1]. Such prevalence places extensive demand on tools for management and monitoring of 

the disease. In recent years, novel therapeutic agents have emerged to treat arthritis and 

alter the progression of disease in the affected joints. The promise of such disease-

modifying osteoarthritic drugs (DMOADs) [2] and antirheumatic drugs (DMARDs) [3] 

motivates the development of new methodologies to characterize subtle changes in 

biomarkers of joints and bones and provide reliable assessment of therapy response. 
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Prevalence statistics for osteoporosis (OP) is equally compelling. Recent estimates place 

the number of patients with OP and low bone mass at 53.6 million in 2010 [4], accounting 

for 54% of older adults in the US. The increased risk of fragility fractures in this population 

poses a significant healthcare burden. 

On a macroscopic scale, quantitative imaging entails the characterization of bone 

and joint morphology. One example is weight-bearing joint space narrowing in 

osteoarthritis (OA), which correlates with cartilage degeneration and is used for OA 

diagnosis and staging [5]. Measurements of bone composition, specifically bone mineral 

density (BMD), are key for diagnosis of osteoporosis [6], assessment of fracture risk and 

monitoring of fracture healing [7]. On a microscopic scale, evidence suggests that changes 

in trabecular microstructure in OA precedes cartilage loss and the onset of symptoms [8], 

[9], providing a promising window for early diagnosis. 

I.B Dedicated CBCT Systems for MSK Imaging 

Advancements in spatial resolution and quantitative imaging capability introduced 

in this work are based on optimization of new detector technologies and modeling of 

imaging physics. These developments are made in the context of extremity CBCT [10], 

[11]. In this section, we introduce several clinical realizations of the modality and discuss 

the x-ray production and interaction physics underlying their operation. 

I.B.1 Clinical Realizations 

Dedicated x-ray CT systems have recently been developed to provide convenient 

logistics for streamlined orthopedic examinations. Figure 1.1A-C shows several CBCT 

systems for extremities imaging. A key feature for these systems is the ability to provide 
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3D evaluation of weight-bearing joints. Conventionally, such evaluation was only possible 

with 2D radiography [12]–[14]. Applications of weight-bearing imaging include 

assessment of OA, patellar malformation [15] and flatfoot deformity [16]. In this work, 

“extremity CBCT” refers to the Carestream OnSight 3D system shown in Fig 1.1C, unless 

otherwise specifically indicated. The scan dose for the extremity CBCT is 5-15 mGy, the 

field-of-view (FOV) is 20x20x20 cm3, and typical scan time is ~30 s [10]. Spatial 

resolution permits visualization of ~0.25-0.35 mm high-contrast features (frequency at 

which the modulation transfer function (MTF) declines to 10%, f10, is approximately 1.5-

1.8 mm-1). A compact gantry with flexible positioning capability permits both weight-

bearing as well as non-weight-bearing imaging. The extremity CBCT scanner operates in 

a circular orbit, with a source-detector-distance (SDD) of ~56 cm, rigidly rotating around 

the patient extremity in a 210º arc, capturing 420-600 projections. 

 

Figure 1.1 Commercial realizations of dedicated extremities x-ray CT systems [10], [17]–

[20]. 

The SCANCO XtreamCT (Fig 1.1D) is representative of high-resolution peripheral 

quantitative CT (HR-pQCT) systems, which are not considered CBCT systems but are 

well-represented in MSK research. These systems emphasize high-resolution acquisition 
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(~95 um) for bone microstructure analysis but are limited in FOV and scan time. 

Additionally, these systems do not offer weight-bearing configurations. 

I.B.2 X-ray Production and Interaction 

Table 1.1 summarizes particle and photon interactions [21] relevant to diagnostic 

x-ray imaging (20-150 kV). These interactions are the basis of x-ray production, interaction 

with biological tissue, and capture by the detector. In each interaction, radiation (either a 

free moving electron or an x-ray photon) interacts with a target (orbital electrons or 

nucleus), producing freed electrons or emitting x-rays. 

X-rays are produced in x-ray tubes by electrons from the cathode that are 

accelerated in vacuum by an electric field and interact with atomic nuclei of the target 

(anode). In a bremsstrahlung interaction, the cathode electrons are decelerated by the 

electric field of anode nuclei, emitting energy in the form of x-ray photons. The resulting 

spectrum (roughly representing the number of emitted x-rays per energy) linearly decreases 

with energy, with the maximum equal to the accelerating potential. Some low energy 

photons are also absorbed in the tungsten target and in other components in the x-ray tube 

(such as Cu or Al filters) after the interaction, resulting in a unimodal signature 

bremsstrahlung spectra (Fig. 1.2A) [22]. The x-ray spectrum also includes distinct peaks 

due to direct interactions between the electrons impinging the target and orbital electrons 

of the target nuclei. The x-ray beam is attenuated when propagated through biological 

tissue via photoelectric absorption, Compton scatter and Rayleigh scatter, and finally 

absorbed in the detector scintillator (CsI:Tl, see next section) predominately through the 

photoelectric and Compton effects. 
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Name Radiation Target Outcome 

Bremsstrahlung e- Nucleus 
Ionizing EM radiation 

(x-ray) 

Rayleigh 

(Coherent) 

Scatter 

Low E e- cloud Scattered photon ESC=E 

Compton 

(Incoherent) 

Scatter 

E>>BE Valence e- 

Scattered photon and 

ejected e- where E = ESC 

+ KEe- (assume BE 

small) 

Photoelectric 

Absorption 
E≥BE Orbital e- 

Photoelectron with 

EPE=E-BE and 

characteristic x-ray or 

Auger e- 

Table 1.1 Summary of key interactions relevant to diagnostic x-ray imaging. KE-Kinetic 

energy free-moving electron. BE-Binding energy of orbital electron. E-energy of incident 

photon. EM radiation-Electromagnetic radiation. 

X-ray attenuation through an object of uniform material and density is described by 

Beer’s Law: 

𝐼(𝐸) = 𝐼0(E) exp(−𝑙𝜌 (
𝜇

𝜌
)
𝑡𝑜𝑡

(𝐸)) (1.1) 

where E denotes x-ray energy, 𝐼𝑜(E) and 𝐼(E) are the input and output x-ray spectra, 𝑙 is 

the path integral of the x-ray beam through the object [mm], 𝜌 is the density of the object 

[g/mm3], and (
𝜇

𝜌
)
𝑡𝑜𝑡

(𝐸)  is the total mass attenuation of the material [mm2/g]. The 

transmitted beam 𝐼 is also known as the primary beam. The total mass attenuation of a 

material is the sum of contributions of each interaction type: 

(
𝜇

𝜌
)
𝑡𝑜𝑡

(𝐸) = (
𝜇

𝜌
)
𝑃𝐸

(𝐸) + (
𝜇

𝜌
)
𝐶𝑜𝑚𝑝𝑡𝑜𝑛

(𝐸) + (
𝜇

𝜌
)
𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ

(𝐸) (1.2) 

Mass attenuation spectra for soft tissue and bone as well as a typical scintillator 

used in x-ray detectors (x-ray-to-light converter) are plotted in Fig. 1.2 [23]. For biological 
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tissue, attenuation is dominated by the photoelectric effect at low energies and the Compton 

effect at high energies. For CsI:Tl scintillators, since photoelectric absorption accounts for 

almost all of mass attenuation spectra in the diagnostic energy range (with photoelectric 

mass attenuation >2 orders of magnitude higher than that of Compton or Rayleigh). Given 

the polyenergetic attenuation described in Eq. 1.1 and decreasing mass attenuation spectra 

for biological tissue shown in Fig. 1.2CD, the mean energy of the beam increases as it 

propagates through tissue, an effect termed beam hardening. Thus, the same object may 

attenuate the x-ray beam differently depending on its position and surrounding attenuators. 

Knowledge of the output spectra of the x-ray source is important for modeling of 

detector performance as well as for polyenergetic reconstruction algorithms. Throughout 

this work, half-value layer (HVL) measurements of Al and Cu were used to infer the x-ray 

source spectra. As described in IV.B.1, a solid-state exposure diode (Radcal Corp, 

Monrovia, CA, USA) was placed at the detector. The exposure was measured with 

successive layers of Al or Cu placed at the collimator of the x-ray source. The 

measurements were normalized by the exposure in air (without Al and Cu) to a 0-1 range. 

The thickness of Al or Cu which reduces the diode reading by half (HVLAl or HVLCu) was 

found by interpolating the curve of normalized exposure with respect to mm Al or mm Cu 

and finding the intersection with 0.5. For modeling and reconstruction, simulated 

TASMICs spectra were generated via Spektr [24] and filtered with additional Al, Cu and 

W (representing inherent filtration) according to Beer’s law until the HVLs computed from 

the simulated spectra matched that of the physical measurement. In III.B.2.2, the raw 

detector signal and estimated detector absorption spectra were used instead of dose diode 

measurements. 
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Figure 1.2 (A) X-ray tube output spectra in extremity CBCT (90 kVp with intrinsic 

filtration. [24] (B)-(D) Mass attenuation coefficient of CsI:Tl (detector scintillator), soft 

tissue and bone, along with contributions from each interaction type [25]. 

In extremity CBCT, the distance between the patient and the detector (air gap) is 

small. Thus, a significant portion of scattered photons are also captured in addition to the 

primary beam (see Fig. 3.3A). The signal from scattered photons, if uncorrected, leads to 

underestimated attenuation in the final reconstructed image. For a large object with high 

primary attenuation, the scatter-to-primary ratio (SPR) can be >1. Detailed discussion of 

our correction approach can be found in III.B.2.3. 



8 

With respect to the process of x-ray detection using scintillator detectors, we note 

that the mass attenuation spectra for CsI:Tl exhibits several peaks in the diagnostic x-ray 

energy range. This arises from increases in photoelectric attenuation when x-ray energy 

surpasses the binding energy of an orbital shell (K, L, M, …), allowing the x-rays to interact 

with electrons occupying the higher binding-energy, lower-level shell. Characteristic x-

rays can be produced through this interaction. The K-shell energy of Cs is 35.98 keV. The 

characteristic x-ray produced from K-shell interaction is called K-fluorescence. The peak 

in mass attenuation corresponding to this energy is known as the K-edge of Cs. K-edges 

enhance the detection efficiency of the detector, but the emitted K-fluorescence photons 

can disperse laterally within the scintillator and be absorbed remotely, contributing to 

additional blur.  

We do not explicitly consider the effects of electron transport (excitation and 

ionization) downstream of photon interactions, though this has been studied by Hajdok et 

al. [26], [27] in high-energy applications. 

I.C Detector Characterization and Modeling 

A major part of this thesis (Chapter IV) concerns the modeling and optimization of 

new detector technology to improve spatial resolution for bone microstructure 

characterization. Here we review principles underlying our detector modeling. 

I.C.1 Indirect X-ray Detectors 

X-ray detectors can be considered direct or indirect. In the first approach, the 

detector material converts absorbed x-rays directly to electron-hole pairs that are the source 

of the electric signal of the sensor. In indirect detection, x-rays are first absorbed in a 
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scintillator and converted to visible light photons (also known as secondary quanta), which 

are then captured by a photodiode. Most modern CBCT systems utilize a variety of indirect 

digital x-ray flat-panel detectors (FPDs). These sensors offer fine pixel size (150 µm and 

less), enabling high-resolution clinical and preclinical imaging at a level of detail not 

accessible to conventional multidetector CT (MDCT). Shown in Fig. 1.3, in this class of 

detectors, x-rays are first absorbed by a high-density scintillator material, converted to 

visible light which is then absorbed by a photodiode substrate. In contemporary detectors, 

the photodiode is typically hydrogenated amorphous silicon (a-Si:H), charge-coupled 

devices (CCDs) or more recently, complementary metal-oxide-semiconductors (CMOS). 

The scintillator usually consists of Thallium-doped Cesium Iodide (CsI:Tl) or Gadolinium 

oxysulfide (Gd2O2S:Tb), when paired with Si-based photodiodes. Systems shown in Fig 

1.1A-C are all based on amorphous silicon (a-Si:H) digital flat-panel detectors (a-Si:H 

FPD), while Fig 1.1D is based on CCD technology. 

The Carestream OnSight 3D system (Fig 1.1C) uses a Varex PaxScan2530 FPD 

(Varex, Salt Lake City UT) with 0.139 mm pixel pitch and 0.7 mm CsI:Tl scintillator 

thickness. Visible light photons generated in the scintillator can diffuse laterally before 

reaching the photodiode, blurring the output image. One benefit of the columnar needle 

structure of CsI:Tl (Fig. 1.3) is that the diffusion is reduced due to internal reflection within 

the needles. An in-depth discussion of this process can be found in Chapter IV.  
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Figure 1.3 Schematic of an indirect x-ray detector featuring CsI:Tl scintillator and FOP 

[28]. 

In recent years, CMOS detectors has become an attractive option for use in indirect 

x-ray detectors. In contrast to conventional a-Si:H FPDs, CMOS sensors are manufactured 

on wafers of crystalline Si (cSi), which offer higher mobility for charge carriers [29]. 

Electron mobility is around 1400 cm2/Vs for cSi but <1 cm2/Vs for a-Si:H. The rapid 

mobility translates to substantially faster (10x) detector readout speeds for CMOS 

compared to a-Si:H-based sensors. The higher mobility of cSi also leads to smaller 

transistor sizes and smaller pixels (~3 µm), whereas a-Si:H FPD uses thin film transistors 

(TFT) limited to 50 µm. CMOS detectors also exhibit lower noise than conventional a-

Si:H FPDs. During detector readout in a-Si:H FPD, charge is transferred from the pixel to 

the dataline and converted to voltage via charge amplifiers at the end of the dataline. During 

this transfer, pixel noise is amplified by the ratio of dataline capacitance and pixel 

capacitance. This design is referred to as a passive pixel sensor (PPS), resulting in noise of 

1000-2000 e-. CMOS detectors are typically active pixel sensors (APS), with charge 
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amplifiers integrated into each pixel. As a result, voltage is read out on the dataline instead 

of charge, mitigating the noise amplification problem in conventional a-Si:H PPS circuits. 

In some modern CMOS FPDs, the circuitry on the cSi substrate is protected with a 

fiber optic plate (FOP). The FOP is doped with lead and intercepts x-ray photons not 

absorbed in the scintillator. In many cases, the columnar CsI:Tl is directly deposited onto 

the FOP, which is then coupled to the photodiode via an optical adhesive. The FOP is 

typically absent in conventional a-Si:H FPD due to the superior radiation hardness of 

amorphous silicon. 

I.C.2 Detector Characterization and Task-Based Assessment of Performance 

This section discusses how x-ray detectors can be modeled statistically and 

evaluated objectively, using conventional metrics of noise and resolution as well as with 

task-based metrics such as detectability. 

I.C.2.1 Statistical Description of X-ray Detectors 

Image acquisition by an x-ray detector can be described as [30], [31]: 

𝑔 = ℋ𝐷𝑓(𝑥, 𝑦) + 𝑛 (1.3) 

where random variable 𝑔 = [𝑔1 …𝑔𝑀]𝑇 is the vectorized form for a discrete output image 

with M pixels, 𝑥  and 𝑦  are spatial coordinates, 𝑓(𝑥, 𝑦)  is a continuous function 

representing the 2D projection of the object attenuation as the input signal, and 𝑛 =

[𝑛1 …𝑛𝑀]𝑇 is the vectorized form for pixel noise. The imaging operator for the detector 

ℋ𝐷 defines contribution of input signal at point (𝑥, 𝑦) to each output pixel in 𝑔. Note that 

the additive form for noise 𝑛 does not limit our analysis to additive noise, since noise is the 

deviation of an instance of 𝑔 from its expectation 𝑔̅: 
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𝑛 = 𝑔̅ − 𝑔 (1.4) 

Additionally, we also note that randomness in the image 𝑔  results not only from 

measurement noise 𝑛 but also variability of the imaged object 𝑓. However, in this work we 

consider only cases in which 𝑓  is deterministic. This case is referred to as 

signal/background known-exactly (SKE/BKE). 

If ℋ𝐷is linear and shift-invariant, the pixel output can be represented by system 

gain 𝐺 and point spread function (𝑃𝑆𝐹): 

𝑔𝑚 = 𝐺 ∬𝑃𝑆𝐹(𝑥, 𝑦)𝑓(𝑥 + 𝑥𝑚, 𝑦 + 𝑦𝑚)𝑑𝑥𝑑𝑦 + 𝑛𝑚 
(1.5) 

where (𝑥𝑚, 𝑦𝑚)  is the location of output pixel 𝑚 . Additionally, we let 

∬𝑃𝑆𝐹(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 1. Noise 𝑛 is considered stationary if its mean and autocovariance 

are constant throughout the image. Note that the noise term – in particular, noise correlation 

- is typically also affected by PSF acting on the noise distribution of the input signal f. 

The linear shift-invariance assumption greatly simplifies analysis of x-ray detectors 

by allowing the use of Fourier domain metrics. Specifically, blur and noise can be 

described by the modulation transfer function (MTF) and noise power spectrum (NPS), 

respectively. Most detectors are not linear or shift-invariant. For example, nonlinearity may 

occur at signal levels approaching the noise floor or saturation. On some systems, the 

projection of the focal spot of the x-ray source may vary significantly across the detector. 

Despite this, systems can often be approximated as linear and shift invariant in nominal 

operating conditions at the center of FOV. 

The MTF is a frequency-domain decomposition of signal transfer characteristics 

and an indicator of system spatial resolution. The MTF can be derived from the PSF via: 
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𝑀𝑇𝐹(𝑢, 𝑣) = |ℱ{𝑃𝑆𝐹(𝑥, 𝑦)}| (1.6) 

where 𝑢 and 𝑣 are spatial frequencies. The Fourier transform is denoted by ℱ{⋅}. However, 

this prescriptive definition is difficult to determine from measurement, since 𝑃𝑆𝐹(𝑥, 𝑦) is 

the system response to a delta function. In practice, a 1D MTF can be measured from the 

edge spread function (ESF) or line spread function (LSF). The LSF is the Radon transform 

of the PSF. The ESF is the integral of the LSF. Denoting polar coordinates in spatial and 

frequency domains as (𝑥, 𝑦) = (𝑟 cos 𝜃, 𝑟 sin 𝜃) and (𝑢, 𝑣) = (𝜌 cos 𝜃,  𝜌 sin 𝜃), the LSF 

and ESF at an angle 𝜃 are given by: 

𝐿𝑆𝐹𝜃(𝑟) = ∬𝑃𝑆𝐹(𝑥, 𝑦)𝛿(𝑥 cos 𝜃 + 𝑦 sin 𝜃 − 𝑟)𝑑𝑥𝑑𝑦 
(1.7.1) 

𝐿𝑆𝐹𝜃(𝑟) = ∫𝐿𝑆𝐹𝜃(𝑟′)𝑑𝑟

𝑟

−∞

′  
(1.7.2) 

where the 𝛿(⋅) is the Dirac delta function and 𝛿(𝑥 cos 𝜃 + 𝑦 sin 𝜃 − 𝑟) represents a line 

impulse. The 1D MTF corresponding to angle 𝜃 can be computed as: 

𝑀𝑇𝐹1𝐷(𝜌) = |
ℱ{𝐿𝑆𝐹𝜃(𝑟)}

∫ 𝐿𝑆𝐹𝜃(𝑟′)𝑑𝑟′
| 

(1.8) 

The denominator ensures 𝑀𝑇𝐹(0) = 1. The ESF is typically imaged from a sharp edge, 

such as a tungsten plate. When the edge is placed on the detector surface, the detector MTF 

is obtained; when placed elsewhere, the MTF contains magnification effects that may 

include the detector MTF and the x-ray focal spot MTF, the product of which is the system 

MTF for a particular system geometry. A detailed description of the edge method for 

detector MTF measurements can be found in Samei et al [32]. 

The NPS is a frequency-domain decomposition of variance in an image containing 

only stochastic fluctuations, such as image fluctuations owing to the Poisson-distributed 
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variation in the number of photons incident on a given pixel (also known as quantum noise). 

It can be defined as the Fourier transform of the autocovariance and applies to stationary 

noise. Practically, when considering N realizations of zero mean, noise only image 𝑛(𝑥, 𝑦), 

the NPS is computed as: 

where 𝐴 denotes the area in which the NPS is computed. The units of a 2D NPS are 

[signal]2[length]2. For 3D NPS, 𝐴 would take on units of volume. A property of the NPS 

is that the frequency-domain integration results in the variance of the noise-only image: 

In practice, the 2D NPS is computed from ROIs cropped from homogeneous areas of the 

projection image. In some cases, the normalized noise power spectrum (NNPS) is used: 

where 𝑞0  is the input signal at the detector, and G is the system gain. Together, the 

denominator denotes the large area signal. 

Resolution and noise characteristics described by MTF and NPS can be combined 

into the detective quantum efficiency (DQE): 

𝑁𝑃𝑆(𝑢, 𝑣) =   
1

𝑁𝐴
∑| ℱ{𝑛(𝑥, 𝑦)} |2 

𝑁

 
(1.9) 

∬𝑁𝑃𝑆(𝑢, 𝑣)𝑑𝑢𝑑𝑣  =   𝜎2 
(1.10) 

𝑁𝑁𝑃𝑆(𝑢, 𝑣) =
𝑁𝑃𝑆(𝑢, 𝑣)

(𝑞0𝐺)2
 

(1.11) 

𝐷𝑄𝐸 =
(𝑆𝑁𝑅)𝑜𝑢𝑡

2

(𝑆𝑁𝑅)𝑖𝑛
2 =

𝑞0
2𝐺2𝑀𝑇𝐹2

𝑁𝑃𝑆
𝑞0

=
𝑀𝑇𝐹2

𝑞0𝑁𝑁𝑃𝑆
 

(1.12) 
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where 𝑆𝑁𝑅𝑖𝑛 and 𝑆𝑁𝑅𝑜𝑢𝑡 are signal-to-noise ratios of the input and outputs. This equation 

assumes that incident photons are Poisson-distributed (𝑆𝑁𝑅𝑖𝑛 = √𝑞0). Note that DQE is 

dimensionless and bounded between 0 and 1 

I.C.2.2 Task-based Figures of Merit 

Objective assessment of detector performance requires definition of imaging tasks 

and observers who perform these tasks, in addition to statistical descriptions of systems 

and images. While DQE represents frequency-dependent modulation in SNR, it does not 

describe performance relative to a specific imaging task. A task is the intended use of an 

image. In this work, we consider tasks as binary classification problems, in which an 

observer needs to decide between two hypotheses 𝑓0  and 𝑓1  based on image 𝑔 . In 

frequency-domain, the task can be represented as a task-function: 

The two hypotheses may represent, for example, tumor-absent vs tumor-present. In 

this work, the two hypotheses take the form of small-feature vs large-feature. A detailed 

discussion of the task functions used in this work is described in section IV.B.1.  

Two simple models of observer performance include the prewhitening (PW) and 

the nonprewhitening (NPW) model. Though these models do not rely on the assumption 

of linearity and shift-invariance, they have convenient representations using Fourier 

domain metrics: 

𝑊𝑡𝑎𝑠𝑘 = |ℱ{𝑓1 − 𝑓0}| (1.13) 

𝑑𝑃𝑊
′2 = ∬

𝑀𝑇𝐹2𝑊𝑡𝑎𝑠𝑘
2

𝑁𝑁𝑃𝑆
𝑑𝑢𝑑𝑣 

(1.14) 

𝑑𝑁𝑃𝑊
′2 =

(∬𝑀𝑇𝐹2𝑊𝑡𝑎𝑠𝑘
2 𝑑𝑢𝑑𝑣 )2

∬𝑀𝑇𝐹2𝑊𝑡𝑎𝑠𝑘
2 𝑁𝑁𝑃𝑆𝑑𝑢𝑑𝑣 

 
(1.15) 
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Derivations for these indices can be found in ICRU report 54 [33] and the work of 

Wagner [34]. In the prewhitening model, division by NNPS decorrelates the noise. The 

two models are equivalent when the image contains only white noise. Other observers build 

upon these models to incorporate anatomical noise and models of human vision [35], [36]. 

 

I.C.2.3 Cascaded Systems Modeling 

Signal and noise transfer through an imaging system can be described by cascaded 

systems analysis (CSA) [37]. In CSA, the image formation process is abstracted into 

various stages [38]. Each stage has a unique resolution and noise transfer characteristic. 

These stages are combined sequentially or in parallel to obtain aggregate gain and MTF for 

the imaging system as well as the output NPS. 

The basic stages are summarized in Table 1.2. For clarity, the MTF for each stage 

is denoted 𝑇𝑖 . The input and output image NPS for each stage are denoted 𝑆𝑖  and 𝑆𝑜 , 

respectively. Gain associated with each stage is denoted 𝑔. Mean and variance of gain are 

denoted 𝑔̅ and 𝜎𝑔
2, respectively. Mean input fluence is 𝑞̅𝑖. 

Stage Type Noise Transfer 

Gain 𝑆𝑜 = 𝑔̅𝑆𝑖 + 𝜎𝑔
2𝑞̅𝑖 

Deterministic Spread 𝑆𝑜 = 𝑆𝑖𝑇𝑖
2 

Stochastic Spread 𝑆𝑜 = (𝑆𝑖 − 𝑞̅𝑖)𝑇𝑖
2 + 𝑞̅𝑖 

Sampling 𝑆𝑜 = 𝑆𝑖 ∗ 𝐼𝐼𝐼𝑖 

Table 1.2 Noise transfer properties for common stages in cascaded systems analysis. 

Similar to spread stages, gain stages can be either stochastic or deterministic 

depending on 𝜎𝑔. A deterministic gain stage would require 𝜎𝑔
2 = 0; a Poisson-distributed 
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gain stage would have 𝜎𝑔
2 = 𝑔̅; a gain stage corresponding to binomial selection would 

possess 𝜎𝑔
2 = 𝑔̅(1 − 𝑔̅). 

The frequency comb function 𝐼𝐼𝐼 referenced in the sampling stage has the form: 

where 𝛿 is the Dirac delta function, 𝑎𝑥 and 𝑎𝑦 are sampling intervals in spatial domain. 

From linear systems theory, MTF for sequential stages are multiplied, while MTF for 

stages connected in parallel are linearly combined, weighted by signal of the respective 

branches. 

A CSA model of a-Si:H FPD is described by Siewerdsen et al [39]. This is a 7-

stage model incorporating physical parameters of the detector, yielding detector gain and 

MTF as well as output NPS given Poisson-distributed x-ray photons as input. The 7 stages 

are connected sequentially. This model is summarized in Table 1.3: 

𝐼𝐼𝐼(𝑢, 𝑣) = ∑ 𝛿(𝑢 −
𝑖

𝑎𝑥
, 𝑣 −

𝑗

𝑎𝑦
)

∞

𝑖,𝑗=−∞

 
(1.16) 
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Stage Stage Type Description 

Poisson Input 𝑞0 
Poisson-Distributed 

X-rays at Detector 

Poisson-distributed photons from 

x-ray tube attenuated via 

binomial selection in the patient 

Quantum Detection 

Efficiency (QDE) 𝑔1 
Binomial Selection 

Fraction of x-ray photons 

absorbed in scintillator 

Quantum Gain 𝑔2 Stochastic Gain 
Optical photons generated per x-

ray photon interacting 

Scintillator Blur 𝑇3 Stochastic Spread 
Optical photon spread in 

scintillator 

Coupling Efficiency 𝑔4 Deterministic Gain 
Fraction of optical photons lost 

from scintillator to photodiode 

Pixel Aperture 𝑇5 Deterministic Spread 
Integration of optical photons on 

pixel photodiode 

Pixel Sampling 𝐼𝐼𝐼6 Sampling 
Sampling - results in NPS 

aliasing  

Readout Noise 𝑆𝑎𝑑𝑑 Additive Noise Noise from readout circuitry 

Table 1.3 Summary of a 7-stage cascaded systems model for flat-panel x-ray detectors. 

Stages 𝑔1 - 𝑇3  describe the scintillator while stages 𝑇5 − 𝑆𝑎𝑑𝑑  characterize the 

photodiode, with 𝑔4 at the interface between the two components. The readout noise 𝑆𝑎𝑑𝑑 

also includes transistor and readout electronics (including amplifier and ADC) in addition 

to the photodiode. We assume the input to the detector is Poisson-distributed x-ray photons 

with mean fluence 𝑞̅0 [x-rays/mm2] as well as variance 𝑞̅0 [(x-rays/mm2)2] (note that units 

of variance is mean signal squared). Carrying out the algebra of CSA according the transfer 

characteristics of each stage, we arrive at the system gain 𝐺, MTF, output image NPS and 

DQE: 
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where 𝑎𝑝𝑑 is the dimension of active photodiode within a pixel. The quantum gain stage 

𝑔2 is defined by a Poisson excess 𝜖𝑔2
 parameter: 𝜎𝑔2

2 = 𝑔̅2(𝜖𝑔2
− 1), which can be 

interpreted as deviation from Poisson-distribution. 

An equivalent representation for Poisson excess is the Swank factor [40], 

conventionally denoted by 𝐼: 

𝐼 =
𝑀1

𝑀0𝑀2
=

1

1 +
𝜖𝑔2

+ 1
𝑔̅2

 

 
(1.18) 

where 𝑀0 = 1,𝑀1 = 𝑔̅2 and 𝑀2 = 𝑔̅2
2 + 𝜎𝑔2

2  are the zeroth, first, and second moments of 

𝑔2 . Detailed discussion of Swank factors for CsI:Tl scintillators can be found in the 

works of Zhao et al. [41] and Lubinski et al. [42]. In the absence of additive noise (𝑆𝑎𝑑𝑑) 

and blurring (𝑇3, 𝑇5 = 1) also assuming perfect x-ray absorption (𝑔1 = 1) and pixel 

sampling (no aliasing), the analytical form of DQE shown in Eq. 1.17.4 reduces to the 

Swank factor, corresponding to Swank’s original interpretation. 

The cascaded systems model was extended by Yao and Cunningham [43] to 

describe K-fluorescence in the scintillator via parallel cascades. Vedantham et al. [44] later 

reformulated the first two stages 𝑔1 and 𝑔2 to consider depth-dependent optical photon loss 

within the scintillator. We base our analysis of CMOS detectors on this updated model, 

described in detail in Chapter IV. Tward et al.[45] further extended the cascaded systems 

𝐺 = 𝑎𝑝𝑑
2 𝑔̅1𝑔̅2𝑔̅4  (1.17.1) 

𝑀𝑇𝐹 = 𝑇3𝑇5  (1.17.2) 

𝑁𝑃𝑆 = 𝑎𝑝𝑑
4 𝑞̅0𝑔̅1𝑔̅2𝑔̅4(1 + 𝑔̅4(𝑔̅2 + 𝜖𝑔2

)𝑇3
2)𝑇5

2 ∗ 𝐼𝐼𝐼 + 𝑆𝑎𝑑𝑑  (1.17.3) 

𝐷𝑄𝐸 =
𝑎𝑝𝑑

4 𝑞̅0𝑔̅1
2𝑔̅2

2𝑔̅4
2𝑇3

2𝑇5
2

𝑎𝑝𝑑
4 𝑞̅0𝑔̅1𝑔̅2𝑔̅4(1+𝑔̅4(𝑔̅2+𝜖𝑔2)𝑇3

2)𝑇5
2∗𝐼𝐼𝐼+𝑆𝑎𝑑𝑑

  
(1.17.4) 
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model to 3D image reconstruction by filtered backprojection, but this is not considered in 

this work. 

I.D Tomographic Reconstruction 

The previous section described how projection data are acquired. In this section, 

we discuss algorithms for image reconstruction. 

I.D.1 Tomographic Reconstruction as an Inverse Problem 

Tomographic reconstruction methods are generally classified as analytical or 

iterative, beginning with filtered backprojection (FBP) [46] and algebraic reconstruction 

technique (ART) [47], respectively. Both were developed in parallel starting from the 

1970s. Due to speed considerations, FBP is still a workhorse in commercial CT systems. 

However, whereas analytical reconstruction typically relies on idealized mathematical 

models for image formation, models of imaging physics are more easily incorporated into 

iterative methods. Physical models may include nonidealities such as system blur, spectral 

effects, non-standard geometries, etc. Iterative methods incorporating these models are 

often termed statistical iterative reconstruction (SIR) or MBIR. This section focuses on 

MBIR algorithms. 

To describe the reconstruction problem, we extend the statistical description of x-

ray detectors (Eq 1.3) to also consider the physics associated with x-ray projections of a 

3D object: 

𝑔 = ℋ𝑓 + 𝑛 (1.20) 

As before, 𝑔 = [𝑔1 …𝑔𝑀]𝑇  is a vectorized representation of projection data (e.g. pixel 

values on x-ray detector); 𝑓 = [𝑓1 …𝑓𝑁]𝑇  is a vectorized discrete representation of the 
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imaged object (3D distribution of x-ray attenuation or material density); 𝑛 = [𝑛1 …𝑛𝑀]𝑇 

is the noise vector, and ℋ is the imaging operator. In this work, 𝑓 is always assumed to be 

parametrized by voxels, though many other basis representations are proposed, such as 

wavelets and spherical elements [48]. The noise model is the distribution of noise vector 

𝑛, and as mentioned in I.C.2, is not limited to additive noise. The forward model describes 

how object 𝑓 produces measurement 𝑔, this includes a model of the imaging operator ℋ 

and the noise model. Tomographic reconstruction is the inverse problem of estimating the 

object 𝑓  from measurement 𝑔 . All reconstruction algorithms, analytical or iterative, 

assume some form of forward model and noise model, either implicitly or explicitly.  

I.D.2 Analytical Reconstruction 

We give a brief description of the idealized model used for analytical reconstruction 

in 2D. Consider a continuous 2D axial attenuation image 𝜇(𝑥, 𝑦) with (𝑥, 𝑦) ∈ ℝ2 and a 

set of line integral measurements 𝑙(𝑠, 𝜃) related by: 

𝑙(𝑠, 𝜃) = ∬ 𝜇(𝑥, 𝑦)𝛿(𝑥 cos 𝜃 + 𝑦 sin 𝜃 − 𝑠)𝑑𝑥𝑑𝑦

+∞

−∞

 (1.23) 

where 𝑠 and 𝜃 denote position on the detector and projection angle, respectively. The Dirac 

Delta function 𝛿(⋅) is applied to integrate attenuation values in 𝜇(𝑥, 𝑦) along the line 𝑠 =

𝑥 cos 𝜃 + 𝑦 sin 𝜃. According to the Fourier slice theorem [49], the Fourier transform of the 

line integral measurement at 𝜃  equals the 1D slice of the Fourier transform of the 

attenuation image: 

ℱ𝑠{𝑙(𝑠, 𝜃)} =  ℱ𝑥𝑦{𝜇}(𝑟 cos 𝜃, 𝑟 sin 𝜃) (1.24) 
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where ℱ𝑠  denotes the 1D Fourier transform along 𝑠 , ℱ𝑥𝑦{𝜇}  denotes the 2D Fourier 

transform of attenuation image 𝜇(𝑥, 𝑦), 𝑟 denotes the radial coordinates in spatial domain 

along angle 𝜃 . Thus, if a sufficient number and angular distribution of line integral 

measurements are known, then according to (1.24), the image 𝜇  can be obtained by 

reconstructing ℱ𝑥𝑦{𝜇}  from a series of slices and applying the 2D inverse Fourier 

transform.  

This is the basis of the filtered backprojection algorithm, where the line integral 

measurements are filtered by a ramp |𝑟|: 

𝜇(𝑥, 𝑦) = ∫ ∫ ℱ𝑥𝑦{𝜇}(𝑟 cos 𝜃, 𝑟 sin 𝜃)𝑒2𝜋𝑗𝑟(𝑥 cos𝜃+𝑦 sin𝜃)𝑟𝑑𝑟𝑑𝜃

∞

0

2𝜋

0

 (1.25a) 

                  = ∫ ∫ ℱ𝑠{𝑙(𝑠, 𝜃)}|𝑟|𝑒2𝜋𝑗𝑟(𝑥 cos𝜃+𝑦 sin𝜃)𝑑𝑟𝑑𝜃

+∞

−∞

𝜋

0

 (1.25b) 

In practice, the ramp filter is multiplied by a low-pass apodization filter to reduce high-

frequency noise. An analogue for volumetric reconstruction from 2D projections is the 

Feldkamp, Davis and Kress (FDK) algorithm [50], which contains additional weights to 

account for fan and cone angles. FDK provides fast baseline reconstructions with well-

defined noise and resolution properties and is used in Chapter V. The algorithm implements 

row-wise ramp filtering, with added Hann apodization to control noise-resolution trade-

off. Additionally, Parker weighting [51] was introduced to account for short scans (210º 

arc) generated by extremity CBCT prototypes. 
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I.D.3 Model-Based Iterative Reconstruction 

Generally, MBIR is formulated as a maximum a posteriori estimation problem [52], 

[53]: 

𝑓 =  arg max
𝑓

𝑃(𝑓|𝑔) (1.26.1) 

= argmax
𝑓

𝑃(𝑔|𝑓)𝑃(𝑓) (1.26.2) 

with 𝑓 and 𝑔 defined in Eq. 1.20. Bayes’ Theorem is used to derive Eq. 1.26.2 from Eq. 

1.26.1, discarding the marginal likelihood (independent of 𝑓). Distribution 𝑃(𝑓|𝑔) is the 

posterior. Distribution 𝑃(𝑔|𝑓)  is the likelihood function (denoted by 𝐿(𝑦|𝜇)  in the 

examples below) and 𝑃(𝑓) is the image prior. The forward model and noise model are 

described by the likelihood function, thus the expression associated with the likelihood is 

also called the data fidelity term. In this work, the prior always takes the form of 

regularization (denoted by 𝑅(𝜇)). However, one could incorporate other information about 

patient anatomy such as a prior image [54]. For simplicity, the examples throughout this 

section assume a monoenergetic case, in which the object 𝑓  is a distribution of linear 

attenuation coefficients 𝜇 = [𝜇1 …𝜇𝑀]𝑇 . Also, by convention, projection measurements 

are denoted as 𝑦 instead of 𝑔. 

I.D.3.1 Data Fidelity 

In the forward model, the geometry of x-ray projection is described by the system 

matrix 𝐴 [𝑀 × 𝑁], also referred to as the forward projection operator or projector. The 

elements of 𝐴, 𝑎𝑖𝑗, describe the contribution of attenuation voxel 𝜇𝑗 to its projected line 

integral 𝑙𝑖: 
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𝑙 = 𝐴𝜇 (1.21) 

According to Beer’s law, the mean measurement on the detector is given by: 

𝑦̅(𝜇) = 𝐼 exp(−𝐴𝜇) (1.22) 

where 𝐼 is the intensity of ray without attenuation by the object. The transpose of the system 

matrix, 𝐴𝑇, is called the backprojection operator or backprojector. In practice, the system 

matrix is often too large to store in memory and is computed on the fly. Many methods for 

computation of 𝐴 and 𝐴𝑇  were proposed [55]–[58], with various tradeoffs of speed vs 

accuracy. Throughout this work, the separable footprints (SF) forward projector and the 

corresponding backprojector are used [58] for MBIR. In SF, projection of a voxel on the 

detector (“voxel footprint”) is approximated as a separable 2D trapezoid function. This 

approximation is relatively accurate compared to the previously cited alternatives, while 

separability allows integration of the footprint on the detector to be carried out efficiently. 

The projectors were implemented on graphical processing units (GPUs) using CUDA.  

A commonly used noise model is the Poisson distribution with independent 

measurements: 

𝑦~𝑃𝑜𝑖𝑠𝑠𝑜𝑛{𝑦̅} (1.27) 

The likelihood term 𝐿 based on the Poisson noise model is: 

𝐿(𝑦|𝜇) = ∏
exp(𝑦̅𝑖) 𝑦𝑖̅

𝑦𝑖  

𝑦𝑖!
𝑖=1…𝑀

 (1.28) 

Since 𝐿  is difficult to compute, instead of maximizing 𝐿(𝑦|𝜇), the Poisson likelihood 

objective seeks to minimize −𝑙𝑜𝑔𝐿(𝑦|𝜇): 

𝜇̂ =  arg min
𝜇

−𝑙𝑜𝑔𝐿(𝑦|𝜇) (1.29.1) 
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= arg min
𝜇

∑ −𝑦𝑖𝑙𝑜𝑔𝑦𝑖̅(𝜇) + 𝑦𝑖̅(𝜇)

𝑖=1…𝑀

 
(1.29.2) 

Here the term 𝑦𝑖! is omitted since it is independent of 𝜇. 

Another useful noise model [59] assumes line integrals (note that this is different 

from the Poisson model above, which concerned detector intensity measurements) are 

Gaussian-distributed with diagonal covariance matrix of inverse projection measurements: 

𝑙𝑖~𝒩(𝑙𝑖̅ ,
1

𝑦𝑖
) 

(1.30) 

Following the same derivation as above, the objective is: 

𝜇̂ =  arg min
𝜇

−𝑙𝑜𝑔𝐿(𝑙|𝜇) (1.31.1) 

= arg min
𝜇

‖𝑙 − 𝐴𝜇‖𝑦
2  (1.31.2) 

Note that least squares are weighted by the projection data 𝑦, thus the objective is also 

called weighted-least-squares (WLS). 

If the least squares are not weighted by projection data 𝑦, the solution is equivalent 

to the analytical Feldkamp-David-Kress (FDK) method [50] described above.  

 

I.D.3.2 Regularization 

Minimization of these objectives mentioned above will typically yield noisy 

images. This is because tomographic reconstruction is highly ill-conditioned. A standard 

technique is to apply regularization (an image prior in the formulation of Eq. 1.26) to 

enforce a desired texture in the final reconstruction. In this work, we only consider 

smoothness penalty terms in the form of: 
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𝑅(𝑥) =
1

2
𝛽 ∑ ∑ 𝜔𝑗𝑘𝜓(𝑥𝑗 − 𝑥𝑘)

𝑘∈𝒩𝑗𝑗∈1…𝑁

 (1.32) 

where 𝛽 controls regularization strength, k is the index of neighboring voxels of 𝑥𝑗, 𝜔𝑗𝑘 

weights the contribution of the kth neighbor to j, and 𝜓 is a potential function. In this work, 

𝒩𝑗  always refers to the 6-connected neighborhood in 3D, with 𝜔𝑗𝑘 = 1. Two potential 

functions are used in this work. The first is a quadratic penalty (used in Chapter V): 

𝜓(𝑥) =
1

2
𝑥2 (1.33) 

The second is the Huber penalty [60] (used in Chapter III) 

𝜓(𝑥) = {
𝑥2/2𝛿,

|𝑥| − 𝛿/2,
         

|𝑥| ≤ 𝛿

|𝑥| > 𝛿
 (1.34) 

where the penalty is quadratic within [−𝛿, 𝛿], and linear elsewhere. Since a quadratic 

function penalizes large differences asymptotically more than a linear function, the Huber 

penalty enhances edge preservation for |𝑥| > 𝛿.  

I.D.4 Application of MBIR in Quantitative Imaging 

Despite different image parametrizations, forward models, noise models and 

penalties used throughout this work, MBIR objectives in this dissertation have the form of: 

𝑓 = argmin
𝑓

− log(𝑃(𝑔|𝑓)𝑃(𝑓))  (1.35.1) 

    = argmin
𝜇

−𝑙𝑜𝑔𝐿(𝑦|𝜇) + 𝑅(𝜇) (1.35.2) 

In this subsection, we review several applications of MBIR to quantitative imaging. 

As described in Section I.B.2, CBCT images can be marred by beam hardening and 

scatter artifacts. In Chapter III, we apply the Poisson noise model (Eq. 1.27) with a forward 
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model incorporating basis material densities (which we call polyPL) [61], [62] for 

estimation of BMD. The forward model for polyPL is: 

𝑦̅(𝜌) = ∫ 𝐼0 (E)exp(− ∑ 𝐴(
𝜇

𝜌
)
𝑘

𝑓𝑘(𝜌)𝜌

𝑘=1…𝐾

)𝑑𝐸 + 𝑟 (1.36) 

where the unknown vector 𝜌 describes the total density for each voxel, vector 𝑓𝑘 describes 

the material fraction of the kth basis material for each voxel and (
𝜇

𝜌
)
𝑘
(𝐸)  the mass 

attenuation of the kth basis material, 𝑟 is x-ray scatter. Note that this forward model is 

parametrized with respect to density 𝜌 instead of linear attenuation coefficient 𝜇. Beam 

hardening artifacts are effectively mitigated if a suitable set of basis materials and material 

fraction functions 𝑓𝑘 are selected. In Chapter III, we show that this forward model results 

in accurate and reproducible BMD in phantoms and cadaver scans. 

It is worth noting that neither noise models mentioned in I.D.3.1 are physically 

accurate, despite their success in many reconstruction applications. As evident in our 

detector modeling work (Section I.C.2), the actual noise properties, just from the noise 

transfer characteristics of the detector alone, can be more complex than described above. 

Moreover, noise is also dependent on the object attenuating the beam. More sophisticated 

models, such as ones with correlated noise [63], [64], have been shown to further improve 

image quality at the cost of added computational complexity. 

In Chapter V, we address issues in applying MBIR to high-resolution imaging 

systems such as CBCT incorporating CMOS detectors. In these cases, MBIR may not be 

feasible owing to slow projection/backprojection operators involving large system 

matrices. In addition, reconstruction may be hampered by limited memory. This is because 

MBIR requires the full support of the object to be modeled, not only the region-of-interest. 
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This is resolved by using a multiresolution scheme for the forward model and volume 

parametrization. High-resolution features such as trabecular bone are parametrized with 

fine voxels while the rest of the image is downsampled from native resolution to a level 

suitable for fast MBIR. Though PWLS is used in the chapter, multiresolution 

reconstruction is not limited to any specific forward model, noise model or penalty. 

The multiresolution scheme can be particularly useful for high-fidelity forward 

models with added computational complexity. One example is a model incorporating shift-

variant focal spot by Tilley et al. [64] mentioned previously. This is implemented with 

specialized projectors (e.g. “sourcelets”) which are more compute-intensive than standard 

SF projectors. For high-resolution data, multiresolution scheme could be applied such that 

only a selected ROI is modeled with these specialized projectors, reducing reconstruction 

time [65]. 

I.E Quantitative Image Analysis 

The previous sections introduced imaging physics, detector modeling and 

reconstruction algorithms. To conclude this chapter, we introduce three examples of how 

high-resolution, weight-bearing CBCT and model-based reconstruction algorithms can 

enhance image analysis and improve estimation of biomarkers. These examples are 

developed and used in Chapters II, III and IV. 

The first is characterization of weight-bearing joint space morphology (Fig. 1.4), a 

key biomarker for diagnosis and staging in OA indicative of articular cartilage loss. The 

measurement concerns the distance between the medial femoral condyle and medial tibial 

plateaus. A comparison of such a measurement in weight-bearing radiograph and extremity 

CBCT is shown below. A volumetric analysis provided by extremity CBCT should be able 
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to better delineate cortical bone surfaces by removing superpositioned anatomy. In 

addition, the reconstructed image in CBCT is not affected by perspective distortion, 

possibly making the measurement more consistent between operators. However, 

measurement of joint space in 3D is still a challenging problem. Due to the complex 

morphology of the tibial and femoral plateaus, degenerate points and asymmetric 

measurements are created when the closest-distance metric is applied from one surface to 

the other. When considering a projected distance along an axis, the selection of a consistent 

axis is difficult. 
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Figure 1.4 Example of joint space width measurement in weight-bearing radiograph and 

extremity CBCT. Two possible joint space width estimates are shown in each image 

indicating the need for a more consistent measurement methodology. 

A second example is the estimation of BMD, pertinent to diagnosis and monitoring 

of osteoarthritis (OA) [66], osteoporosis (OP) [67] and bone healing. Conventionally, 

BMD is assessed via dual energy x-ray absorptiometry (DXA) or quantitative CT (qCT) 

[68], [69]. DXA is a 2D modality that measures areal BMD from low dose x-ray projections 

at two energy levels. Because of tissue superposition in radiographic views, areal BMD is 

dependent on size of the bone and on the composition of the surrounding tissues, and thus 

exhibits poor consistency. In contrast, qCT provides a 3D measurement derived from 

MDCT. This yields volumetric BMD, which are based on Hounsfield (HU) units calibrated 

with hydroxyapatite reference phantoms placed closed to the patient. These calibrations 
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are patient and position-dependent due to physical artifacts caused by beam-hardening and 

scatter. In CBCT, HU values from such calibrations are less reproducible than in qCT 

primarily due to enhanced scatter. 

 

Figure 1.5 Examples of BMD measurements of lumbar spine with (A) DXA [70] and (B) 

qCT [71]. 

A third example is characterization of trabecular microstructure, which requires the 

capability to visualize features <100 µm. This resolution is beyond most conventional 

MDCT systems. The gold standard for imaging of bone microstructure is microCT (µCT), 

which is limited to ex vivo applications. The figure below shows derivation of trabecular 

spacing and trabecular thickness maps, which are two examples of microstructure metrics. 

An ROI is first cropped from the reconstructed image and the bone is segmented. For 

trabecular spacing, maximal spheres are fit between trabecular bone, each voxel is assigned 

the diameter of the maximal fitting sphere that includes it. Mean trabecular spacing (TbSp) 

is the average trabecular spacing over all non-trabecular bone voxels [72]. Mean trabecular 

thickness (TbTh) derived in the same way on the complementary volume. A simplified 2D 

case is illustrated in Fig. 1.6B, in which both the yellow and blue circles are the maximum 

fitting circles in the marrow and in the trabecular bone with radius 𝑇𝑏𝑠  and 𝑇𝑏𝑡 , 
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respectively. In this 2D case, all pixels inside the yellow circle are assigned trabecular 

spacing of 𝑇𝑏𝑠 and the pixels inside the blue circle are assigned trabecular thickness of 

𝑇𝑏𝑡 . Maps shown in Fig. 1.6CD are computed volumetrically, with fitting of maximal 

spheres instead of circles. Currently, the ability to perform absolute measurements of 

microstructure parameters in vivo is hindered by noise and resolution limitations of CT 

systems. However, it is possible to achieve adequate correlation of CBCT-derived 

trabecular metrics with µCT gold standard [73], [74]. Further improvement to the 

microstructure imaging capability of extremity CBCT will offer unique insights into bone 

remodeling and is key to understanding OA and OP. 

 

Figure 1.6 Examples of trabecular metric maps derived from a µCT image ROI of an ulna 

biopsy sample. (A) The reconstructed image, (B) segmentation, (C) trabecular spacing map 

and (D) trabecular thickness map.  
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I.F Thesis Outline 

Chapter II describes a novel physics-inspired method for characterizing joint 

space morphology with 3D image data obtained from extremities CBCT. A version of this 

chapter is published in: 

• Cao, Q., Thawait, G., Gang, G., Zbijewski, W., Riegel, T., Brown, T., Corner, B., 

Shadpour, D.,Siewerdsen, J.H. (2015). Characterization of 3D joint space 

morphology using an electrostatic model (with application to osteoarthritis). 

Physics in Medicine and Biology, 60, 947–960. 

Chapter III demonstrates how BMD can be accurately and reproducibly estimated 

in extremity CBCT by integrating MBIR with additional artifact correction to account for 

imaging physics and system imperfections involved in image acquisition. The contents of 

this chapter can be found in: 

• Cao, Q., Stayman, J. W., Siewerdsen, J. H., Zbijewski, W. (2020). Reproducible 

Bone Mineral Density Estimation in Extremity Cone-beam CT using 

Polyenergetic Model-based Reconstruction. (in preparation). 

• Cao, Q., Sisniega, A., Stayman, J. W., Yorkston, J., Siewerdsen, J. H., Zbijewski, 

W. (2019). Quantitative cone-beam CT of bone mineral density using model-

based reconstruction. Proc. SPIE, 10948. 

Chapter IV shows how high-resolution imaging of bone microarchitecture can be 

achieved with the adoption of a custom CMOS detector resulting from task-based 

optimization incorporating a thin scintillator. This chapter assembles: 

• Cao, Q., Sisniega, A., Brehler, M., Stayman, J. W., Yorkston, J., Siewerdsen, J. 

H., Zbijewski, W. (2018). Modeling and evaluation of a high-resolution CMOS 

detector for cone-beam CT of the extremities. Medical Physics, 45(1), 114–130. 

• Cao, Q., Brehler, M., Sisniega, A., Tilley, S., Shiraz Bhurwani, M. M., Stayman, 

J. W. Zbijewski, W. (2018). High-resolution extremity cone-beam CT with a 

CMOS detector: Evaluation of a clinical prototype in quantitative assessment of 

bone microarchitecture. Proc. SPIE, 10573. Houston. 
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Chapter V highlights challenges associated with reconstructing high-resolution 

data and proposes a multiresolution scheme for model-based iterative reconstruction. This 

chapter is based on the publication: 

• Cao, Q., Zbijewski, W., Sisniega, A., Yorkston, J., Siewerdsen, J. H., Stayman, J. 

W. (2016). Multiresolution iterative reconstruction in high-resolution extremity 

cone-beam CT. Physics in Medicine and Biology, 61, 7263–7281.  
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Chapter II 

An Electrostatics-Inspired Model 

for Quantification and Analysis of Joint Macrostructure 

This chapter describes a novel method for producing joint space maps using 

volumetric imaging data. The method models the bones of a joint as plates of a capacitor, 

using the length of simulated electrostatic field lines between the articular bone surfaces as 

surrogate metric of joint space width. The result is a consistent, parameter-free method that 

fully samples both articular bone surfaces symmetrically. The method is shown to provide 

a potentially valuable quantitative predictor of OA. 

II.A Introduction 

Joint morphology is an important aspect of image-based diagnosis and management 

of osteoarthritis. Traditional semi-quantitative image-based measures include the Sharp-

Larsen score [75], which grades the integrity of the joint space and presence or absence of 

erosions evident in a plain radiograph. In assessment of knee osteoarthritis, the joint space 

width (JSW) (i.e., distance between the femur and tibia) is a quantitative measure used by 

clinicians in diagnosis of degenerative disease. Accordingly, narrowing of JSW 

demonstrated in weight-bearing radiography can be used to assess the severity and 

progression of degenerative diseases of the knee. However, such measures carry a basic 

limitation associated with radiographic imaging (i.e., reducing 3D information to a plane) 

and are subject to variations in both patient setup and reader repeatability [76]. 
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Modern 3D imaging techniques (including ultrasound, MR, CT, and 

tomosynthesis) enable more refined tomographic measures of joint space narrowing, such 

as a joint space map (JSM) [77], which characterizes the JSW across the articular surface. 

The high isotropic spatial resolution of extremities CBCT presents an opportunity for 

quantitative characterization of 3D joint space morphology beyond that of conventional 

measures and potentially more sensitive to subtle disease or treatment response. Possible 

methods to compute JSMs from such images include projection along a longitudinal axis 

(LA) of the joint (Fig. 2.1A) or the distance between closest points (CP) on articular 

surfaces (Fig. 2.1B). However, each of these methods entails a potential limitation: in the 

former, the definition of a LA is somewhat arbitrary (dependent on patient orientation) and 

is difficult to extend to multi-axis joints; in the latter, the measurement undersamples the 

surfaces at protrusions and concavities and is asymmetric from one articular surface to the 

other and vice versa. Unless otherwise stated, in the following sections, JSM refers to the 

electrostatic JSM resulting from the electrostatic model of section II.B.1. The maps 

resulting from the alternative LA and CP methods are denoted LA-JSM and CP-JSM, 

respectively. 

 
Figure 2.1 Conventional methods of joint space analysis: (A) Distance along a longitudinal 

axis. (B) Distance to closest point on articulating surface. 

In this work, we describe a method for characterization of 3D joint space 

morphology that overcomes many of the basic limitations of the measures noted above. 
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The method is similar to that previously proposed to measure the thickness of tissues in the 

brain [78]. As detailed below, the method envisions the joint as an electrostatic capacitor 

bounded by equipotential surfaces (two or more bones). Elementary electrostatics yields a 

unique solution to the electric field lines within the capacitor (the intra-articular space) and 

a robust measure of joint space morphology. As a test case, we apply the method to the 

task of discriminating normal and OA subjects based on CBCT images of their weight-

bearing knee. 

II.B Methods 

II.B.1 The Electrostatic Model for Joint Space Analysis 

In the electrostatic model, articular surfaces of a synovial joint are conceptualized 

as conductors with different uniform charge densities, resulting in an electric potential at 

each boundary, analogous to the plates of a capacitor. Rather than using the Euclidean 

distance defined along an axis [LA in Fig. 2.1(A)] or closest point pairs [CP in Fig. 2.1(B)], 

the lengths of electric field lines between the two surfaces are used as a surrogate JSW 

within an unambiguous, non-degenerate curvilinear space defined by the joint space 

morphology. This method has a number of potential advantages: (i) it does not depend on 

an arbitrary axis as a reference direction; (ii) it is symmetric with respect to each of the 

articulating surfaces; and (iii) it densely samples each point on all surfaces. 

Computationally, JSMs can be obtained by first finding the electric potential 

distribution within a ROI containing the joint space, taking its gradient to find the electric 

field, and computing the line integral along the field lines. We denote the volumetric ROI 

about the joint space as Ω ⊂ ℝ2, ℝ3  and assume 𝑛  articulating surfaces 
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denoted  𝜕1Ω,…𝜕𝑛Ω . The electric field and electric potential in  Ω  are  𝐸⃗  and  Φ , with 

properties defined by elementary electrostatics: 

E⃗⃗ = −∇Φ (2.1) 

and Gauss’ law: 

∇ ⋅ E⃗⃗ =
ρ

ϵ0
 (2.2) 

Conventionally,  𝜖0 denotes the permittivity of free space and 𝜌 the charge density. 

Each surface 𝜕0Ω, 𝜕1Ω,…𝜕𝑛Ω  is assigned a different charge density  𝜌0, 𝜌1, … , 𝜌𝑛 , 

respectively. Alternatively, a particular surface of interest can be assigned charge density 

𝜌1and all others 𝜌0. Substitution of (2.1) into (2.2) gives the Laplace equation  

∇2Φ = 0 (2.3) 

Equation (2.3) can be solved subject to boundary conditions  Φ(𝜕0Ω) =

𝑉0, …  Φ(𝜕𝑛Ω) = 𝑉𝑛, which are the electric potentials arising from the assigned charges. 

Finding Φ is a Dirichlet problem that has numerous well-documented solutions [79]. Once 

Φ is determined on Ω, 𝐸⃗  can be found from (2.1), and the field line lengths are analyzed 

by line integrals between points on the boundaries 𝜕0Ω ∪ …∪ 𝜕𝑛Ω.  

As shown in Fig. 2.2(A), we assigned Φ(𝜕1Ω) = 𝑉1  and Φ(𝜕2Ω) = 𝑉2  as the 

potential on two articulating surfaces of the knee (femur and tibia, respectively) and 

introduced Φ(𝜕0Ω) = 𝑉0 on the boundary of the ROI so that Ω has compact support. The 

model is capable of handling multi-axis joints with any number of articulating surfaces, 

such as the wrist or ankle, by assigning a unique charge density to each surface and treating 

as a multi-conductor system, or by assigning one bone of interest (e.g., the scaphoid) a 

different charge from all other bones of the joint. 
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Figure 2.2 Electrostatic joint space model. (a) Shows setup of the boundary value problem 

as well as the resulting field lines. (b) Lengths of field lines mapped onto the tibial surface. 

The electric potential Φ in the joint space Ω can be approximated using the Jacobi 

method over the Cartesian grid with nodes corresponding to the center of voxels. The basic 

formulation of the Jacobi method involves representing the partial differential equation 

(PDE) as a diffusion problem. In our case, the Laplace equation (2.3) can be solved for Φ 

by writing: 

∂Φ

∂t
= ∇2Φ 

(2.4) 

where time, t, is analogous to the number of iterations. The boundary conditions, here also 

used as the initial condition, are set to the respective charges on 𝜕1Ω and 𝜕2Ω. As 𝑡 → ∞, 

the initial conditions relax to the equilibrium solution satisfying  
𝜕Φ

𝜕𝑡
= 0, yielding the 

solution Φ. According to the forward-time central-space (FTCS) scheme, equation (4) can 

be discretized as: 

Φ(x,y,z)
n+1 − Φ(x,y,z)

n = v(ΔΦ(x,y,z)
n ) (2.5) 

where n is the number of iterations and ΔΦ(x,y,z) is the discrete Laplacian: 

ΔΦ(x,y,z) = Φ(𝑥+1,𝑦,𝑧) + Φ(𝑥−1,𝑦,𝑧) + Φ(𝑥,𝑦+1,𝑧) + Φ(𝑥,𝑦−1,𝑧) + Φ(𝑥,𝑦,𝑧+1)

+ Φ(𝑥,𝑦,𝑧−1) − 6Φ(𝑥,𝑦,𝑧) 

(2.6) 
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The parameter 𝑣  governs the rate of relaxation, in this work set to  
1

6
, which is 

theoretically the maximum step size that yields a stable solution [80]. The resulting discrete 

form for (2.5) is the iterative relation: 

Φ(𝑥,𝑦,𝑧)
n+1

=
Φ(𝑥+1,𝑦,𝑧)

n + Φ(𝑥−1,𝑦,𝑧)
n + Φ(𝑥,𝑦+1,𝑧)

n + Φ(𝑥,𝑦−1,𝑧)
n + Φ(𝑥,𝑦,𝑧+1)

n + Φ(𝑥,𝑦,𝑧−1)
n

6
 

(2.7) 

According to equation (2.7), each voxel in the next iteration is the mean of its 

neighboring voxels in the current iteration. This form can be conveniently implemented as 

a convolution of a mean filter with the entire segmented image and resetting boundary 

conditions after each iteration. For the knee model in Fig. 2.2, voxels on 𝜕1Ω and 𝜕2Ω were 

assigned to +1 V and -1 V, respectively. Since approximating (nearly) infinite boundary 

conditions carries a large computational load (with little effect within the ROI of the joint 

space), we assume that the ROI of the joint space is far from the image border (𝜕0Ω), so 

the potential field can be approximated accurately by zero padding.  

From the resulting Φ, the electric field, 𝐸⃗ , is solved via equation (2.1). The origin 

of each field line is arbitrary and nominally taken to be the voxels on surfaces 𝜕1Ω and 𝜕2Ω. 

The length of each field line is then computed using Euler’s method with linear 

interpolation between voxels from 𝜕1Ω  to 𝜕2Ω at fixed step size 𝑑: 

𝑙 (𝑠𝑖+1) = 𝑙 (𝑠𝑖) + 𝑑 ⋅
𝐸⃗ (𝑙 (𝑠𝑖))

|𝐸⃗ (𝑙 (𝑠𝑖))|
 

(2.8) 

for 𝑖 = 0, 1, … , 𝑁, 𝑙 (𝑠𝑖) is a vector within the space Ω along the electric field at point 𝑠𝑖, 

and 𝑠0and 𝑠𝑁are points on the articulating surfaces. The JSM is then represented as a matrix 

with each element corresponding to the field line length. 
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The convergence of the solution was analyzed in terms of the RMSE of the map at 

the 𝑘th iteration (𝐽𝑆𝑀𝑘) from the converged JSM (𝐽𝑆𝑀𝑐), where 𝐽𝑆𝑀𝑐 was defined as the 

map computed from a very large number of iterations (25,000) in which field line lengths 

were changing negligibly (much less than the voxel size) with further iterations The error 

at the kth iteration was computed as: 

𝐸𝑟𝑟𝑜𝑟 (𝑘) = √
∑ (𝐽𝑆𝑀𝑘(𝑥) − 𝐽𝑆𝑀𝑐(𝑥))2𝑥∈𝐽𝑆𝑀𝑘∩𝐽𝑆𝑀𝑐

𝑑𝑖𝑚(𝐽𝑆𝑀𝑘 ∩ 𝐽𝑆𝑀𝑐)
 

(2.9) 

where 𝑥 ∈ 𝐽𝑆𝑀𝑘 ∩ 𝐽𝑆𝑀𝑐 denotes voxels common to both the kth and cth iteration, and dim 

is the number of voxels in that intersecting set. 

II.B.2 Application to Knee Joint Morphology 

The electrostatic model was employed to study knee joint morphology in images 

acquired using the extremity CBCT scanner as in Fig. 2.1. As detailed below and illustrated 

in Fig. 2.3, the process included steps associated with cropping to a ROI about the joint 

space, semiautomatic bone segmentation, calculation of the electric field using the Jacobi 

method and Gauss’ Law, and calculation of field line lengths via Euler’s method to yield a 

dense 3D point cloud labeling the JSW at each point on each surface.  



42 

 
Figure 2.3 Flowchart illustration of the process for JSM calculation from CBCT scans. 

The CBCT knee images were segmented in a semi-automatic pipeline to define the 

cortical bone surfaces. Each image was cropped to 256x256x128 voxels roughly centered 

about the intercondylar notch. Soft tissue was then subtracted from the image slice-by-slice 

by grayscale morphological opening and closing [81]. Bones were then segmented by local 

thresholding [82] based on the intensity range in a 3 × 3 neighborhood, and holes in the 

segmentation were filled by morphological closing. In instances of physical impingement 

of the femur and tibia (i.e., a “short circuit,” evident in 4/39 cases described below), the 

femur and tibia components were manually separated by one voxel. The femur and tibia 

were then identified as the two largest components in a connected component analysis.  

Calculation of the electric potential and field lines was performed using the method 

in section II.B.1 carried out on a GPU (NVIDIA GTX470) using the gpuArray object in 

MATLAB (The Mathworks, Natick MA) for improved parallelization. The electric field at 

the 𝜕0Ω boundary of the image was calculated with forward and backward differences, and 
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the field at interior voxels was computed using the central difference. Field line lengths 

were computed using MATLAB’s 𝑠𝑡𝑟𝑒𝑎𝑚3𝑐  function modified to Euler’s method as 

described above with a step size of d = 0.1 voxels. Field lines terminating at the image 

border or with length greater than 3.6 cm were discarded, since the trajectories of these 

field lines were well outside the region of interest and no longer relevant to the JSW. 

Convergence of the solution was assessed in terms of equation (2.9). The JSM was 

represented as a colormap superimposed on the tibial plateau, which presented a simpler 

(flatter) surface than the femur and fairly intuitive visualization of the result. 

II.B.3 Characterization of Knee Osteoarthritis 

A study was conducted under an approved IRB protocol in which a total of N=39 

(24 male, 15 female; 29-78 yo, mean 47 yo) subjects were recruited under informed 

consent, including 21 subjects presenting with OA and 18 subjects with no known 

symptoms or history of OA. All images were acquired using a scan protocol of 80 kV and 

108 mA (~10 mGy dose to water at the center of a 14 cm water cylinderas described in 

[10]). A scan of the dominant knee was acquired for each subject in the standing position 

(Fig. 2.1) with their weight evenly distributed between both legs. Images were 

reconstructed by 3D filtered backprojection with a Hann kernel and a volume 

encompassing a 20 x 20 x 20 cm3 FOV about the knee joint at isotropic voxel size of 0.52 

mm. The OA population consisted of subjects diagnosed according to the current standard 

of clinical care based on symptoms, physical examination by an orthopedic specialist, and 

assessment by an MSK radiologist (independent of the JSM analysis herein) of joint space 

narrowing, osteophytes, effusion, and other established radiographic biomarkers of OA. 
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JSM features were analyzed to investigate whether the method could provide 

quantitative characterization of joint space morphology and possible discrimination of 

normal and OA knees. First, each point cloud was rigidly registered, and the coordinates 

of corresponding points identified using the coherent-point drift (CPD) algorithm [83] were 

averaged to yield a mean shape [84]. The registration yielded an  𝑛 × 𝑝  (𝑛 = 39, 𝑝 =

15934 ) matrix 𝑀 = (𝑚1⃗⃗ ⃗⃗  ⃗ … 𝑚𝑛⃗⃗⃗⃗⃗⃗ )𝑇  where p-dimensional column vectors 𝑚1⃗⃗ ⃗⃗  ⃗, … ,𝑚𝑛⃗⃗⃗⃗⃗⃗  

denote the JSW at p corresponding points in a collection of n registered JSMs. 

The centered data was 𝑀𝐶 = (𝑚1⃗⃗ ⃗⃗  ⃗ − 𝑚𝑎𝑣𝑔⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  … 𝑚𝑛⃗⃗⃗⃗⃗⃗ − 𝑚𝑎𝑣𝑔⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) , where 𝑚𝑎𝑣𝑔⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =

1

𝑛
(𝑚1⃗⃗ ⃗⃗  ⃗ + ⋯+ 𝑚𝑛⃗⃗⃗⃗⃗⃗ ). Principal component analysis (PCA) was performed on the centered 

data to more fully analyze the spatial information conveyed by the JSM. The maps were 

decomposed into components characterizing the key features of variance between the 

registered maps using the 𝑝𝑐𝑎 function in MATLAB, returning a matrix 𝑈𝑝×(𝑛−1) with 

columns corresponding to eigenvectors and a matrix 𝑆𝑛×(𝑛−1) with rows corresponding to 

the weights of the principal components in descending order of variance, where 𝑀𝐶 =

𝑆𝑈𝑇.  

To assess how well these principal component weights could be used to correctly 

classify normal and OA knees, truncated vectors  𝑠1
′⃗⃗  ⃗ … 𝑠𝑛

′⃗⃗  ⃗  from matrix 𝑆 =

(𝑠1⃗⃗  ⃗ … 𝑠𝑛⃗⃗  ⃗)𝑇 were chosen as input to a support vector machine (SVM) [85] following a 

leave-one-out scheme — treating each vector as testing data while using the others for 

training. A varying number of principal components [1-20, shown in Fig. 2.8, 

corresponding to different degrees of truncation] are considered. The SVM is a binary 

classifier that finds the hyperplane 𝑤⃗⃗ 𝑇𝑧 + 𝑏⃗ = 0 that maximizes the margin 
1

‖𝑤⃗⃗ ‖
 separating 
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the training data (𝑧𝑘⃗⃗  ⃗, 𝑦𝑘), where 𝑦𝑘 ∈ {+1,−1} is a binary label, and 𝑧𝑘⃗⃗  ⃗ is the input vector 

under transformation of the radial basis function (RBF) kernel  𝐾 (𝑠𝑘
′⃗⃗  ⃗, 𝑠𝑙

′⃗⃗⃗  ) = 𝑧𝑘⃗⃗  ⃗
𝑇
𝑧𝑙⃗⃗⃗  =

exp (−
1

2𝜎2 ‖𝑠𝑘
′⃗⃗  ⃗ − 𝑠𝑙

′⃗⃗⃗  ‖). The MATLAB functions 𝑠𝑣𝑚𝑡𝑟𝑎𝑖𝑛 and 𝑠𝑣𝑚𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦 were used 

to train input vectors and classify test data, respectively. For this study, the L1-soft margin 

classifier was used: 

𝑎𝑟𝑔𝑚𝑖𝑛𝑤,𝑏,𝜉(𝑤⃗⃗ 
𝑇𝑤⃗⃗ + 𝐶 ∑ ξk

𝑁

𝑘=1

) 

subject to the constraints 𝑦𝑘(𝑤⃗⃗ 
𝑇 𝑧𝑘⃗⃗  ⃗ + 𝑏) > 1 − 𝜉𝑘 and 𝜉𝑘 > 0. The soft margin parameter, 

𝐶 , reflects the degree of error allowed in the training sample and reduces overfitting, 

empirically set to a value of 𝐶 = 100. For each leave-one-out experiment conducted using 

a different number of input principal components, the RBF kernel 𝜎 was perturbed from 0 

to 30, yielding sensitivity and specificity analogous to a receiver operating characteristic 

(ROC) curve. The JSMs from the electrostatic model were also compared with those 

derived from the LA and CP methods and analyzed with the same PCA, SVM, and leave-

one-out training paradigm. For the LA method, the longitudinal axis was defined as the z-

axis of the reconstruction, coinciding approximately with the long axis of the leg. For the 

CP method, closest points between the tibial and femoral surfaces were computed (down-

sampled by a factor of 2 due to the large number of nearest-neighbor searches involved). 

The classification accuracy resulting from these JSM features was compared to that 

associated with the JSW measured by three expert MSK radiologists using methods 

common in current diagnostic practice. Specifically, the closest distance between the femur 

and tibia in the medial compartment was assessed visually in triplanar views and measured 

with a digital ruler on a VuePACS 3D workstation (Carestream Health, Rochester NY). To 
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test the statistical significance in the difference between area-under-curve (AUC) values 

measured using JSMs and the radiologist JSW measurements, an unpaired heteroscedastic 

t-test was performed. The AUC for each radiologist was considered separately. For the 

various JSM methods, an ensemble of AUC measurements was formed from the 11 

measurements about the peak performing number of principal components (shown in Fig. 

2.8), better allowing for noise in the JSM classification results and providing a conservative 

estimate with respect to the optimal number of principal components. For the electrostatic 

JSM method, the optimal number of principal components was 10, giving an ensemble of 

AUC measurements resulting from 5-15 components; similarly for the LA-JSM and CP-

JSM methods, the ensemble about the optimum included AUC measurements resulting 

from the first 10-20 components and 5-15 components, respectively. 

II.C Results 

II.C.1 Algorithm Performance 

The JSM calculation was fully converged for all cases by 25,000 iterations, with no 

change in JSM values for further iterations. Calculation of the electric potential was the 

most computationally intensive aspect of the method (approximately 20 iterations per 

second in MATLAB code on the mid-range GPU used in this work, requiring ~20 minutes 

per case); however, a reasonably stable solution could be obtained with fewer iterations, as 

shown in Fig. 2.4. For example: RMSE less than the voxel size (0.52 mm) could be 

obtained in the first ~1000 iterations (1 min) and RMSE less than the step size (d = 0.052 

mm) at 10,000 iterations (~8 min). Accelerating the computation time was not a focus of 

the current work, and there are numerous hardware (faster GPU) and software (compiled 
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C++ / CUDA code) solutions to be investigated in future work. The time required for field 

line length analysis was small by comparison (~45 s). 

 
Figure 2.4 Convergence of the JSM calculation as a function of iterations. The box-and-

whisker plots show the median, quartiles, and range in RMSE for all JSMs computed over 

all 39 cases in the clinical study. 

II.C.2 Joint Space Maps 

Osteoarthritis of the knee tends to present with narrowing of the joint space, with 

varying degrees in the medial and lateral compartment [86]–a pattern consistent overall 

with the JSM results presented in Fig. 2.5 for the 39 subjects in the clinical study. Some 

notable exceptions are apparent, such as subjects P23 and P38, which qualitatively 

demonstrate JSMs similar to the normal group; however, close inspection (and feature 

analysis below) reveals characteristics of the joint space morphology that are distinct. For 

example, P23 exhibits narrowing in the anterior medial aspect, and P38 demonstrates 

reduction of the intercondylar notch due to osteophyte growth. Such qualitative differences 

are investigated quantitatively below. 
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Figure 2.5 Joint space maps computed using the electrostatic model for 39 subjects in the 

clinical study, grouped as normal and OA. The JSM is displayed as a heat map projected 

onto surface of the tibial plateau. 

II.C.3 Quantitative Analysis 

Fig. 2.6 shows a simple analysis of the JSM in terms of the histogram of JSW values 

in each of the 39 subjects. Also shown are the radiologists’ measurement of minimum 

distance in the medial compartment as in clinical diagnosis. Overall, the radiologist 

readings are similar to the minimum distance in the electrostatic JSM [denoted 𝑚𝑖𝑛(𝐽𝑆𝑀)], 

but there are notable exceptions in which 𝑚𝑖𝑛(𝐽𝑆𝑀) is smaller than the radiologist reading 

(attributable to a minimum distance detected elsewhere than the medial compartment – 

e.g., in the intercondylar notch) and several in which 𝑚𝑖𝑛(𝐽𝑆𝑀)  is greater than the 

radiologist reading (attributable either to reader error or segmentation error). Of course, 
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equivalence between the two measures is not expected, since the field lines curve according 

to the electric potential, typically resulting in a longer distance within the curved space of 

the electrostatic model. Overall, the radiologist reading in the medial compartment was a 

good discriminator of normal and OA knees, yielding an overall area under the ROC curve 

(AUC) of 0.87. The 𝑚𝑖𝑛(𝐽𝑆𝑀) value exhibited slightly better performance (AUC = 0.92), 

but the difference was not statistically significant (p = 0.649 via paired t-test on 

measurement data).  

 
Figure 2.6 Distribution of JSW as measured by the electrostatic JSM method, with box-

and-whisker plots showing the median, first and third quartiles, and range in JSM for each 

subject. Also shown (asterisk) is the minimum distance in the medial compartment as 

measured by 3 MSK radiologists.  

Input for Classification Mean AUC p-value 

Electrostatic JSM 0.98 0.008 

CP-JSM 0.90 0.071 

LA-JSM 0.76 0.007 

Radiologist Reading 0.87 ~ 

Table 2.1 Comparison of diagnostic accuracy (AUC) in discriminating normal and OA 

subjects. Radiologist reading corresponds to classification based on their manual 

measurement of the minimum distance in the medial compartment. The second columns 

shows the mean AUC in the region (±5 principal components) about the optimal number 

of principal components for the three JSM methods. The p-value is that resulting from an 

unpaired heteroscedastic t-test comparing a given JSM method to the Radiologist Reading. 

For example, the improved mean AUC measured for the electrostatic JSM method was 

statistically significant (p = 0.008), but that for the CP-JSM method was not (p = 0.071). 
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Analysis of the principal components of the spatial distribution evident in the 

electrostatic JSMs [illustrated in Fig. 2.7] yielded improved classification performance. 

Overall, the electrostatic JSMs for the OA group exhibited stronger variability in principal 

component weights than the normal group. Fig. 2.8 plots the AUC resulting from PCA of 

the JSMs as a function of the number of principal components included, yielding an AUC 

> 0.98 over a range of the first 10 to 15 principal components. The number of support 

vectors was in the range 10-15, which was below 50% of the sample size and is consistent 

with a modest fitting (i.e., not overfitting) in the SVM. Increasing the number of principal 

components reduced the classification accuracy in a manner attributed to noise in the JSM. 

Fig. 2.9 shows the sensitivity and specificity associated with the four tests considered: 

Radiologist Reading of the medial compartment; electrostatic JSM (using the first 10 

principal components); CP-JSM (using the first 10 principal components); and LA-JSM 

(using the first 15 principal components). The LA-JSM method performed least favorably, 

consistent with the hypothesis described above regarding the arbitrariness in definition of 

the longitudinal axis. The CP-JSM method performed comparably to the Radiologist 

Reading method, which is sensible in that each method involves assessment of the closest 

distance between surfaces. The electrostatic JSM method performed best (mean AUC = 

0.98) and the improvement with respect to the Radiologist Reading was statistically 

significant (p = 0.008). 
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Figure 2.7 Principal component weight for the first 24 components analyzed using the 

electrostatic JSM method. 

 

Figure 2.8 AUC in discriminating normal and OA subjects based on PCA of the JSM, 

analyzed as a function of the number of principal components. Curves are a simple 

polynomial fit to guide the eye. The Radiologist reading performance is marked by the 

mean and range (in gray). 
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Figure 2.9 Sensitivity and specificity curves comparing classification accuracy for the 

mean radiologist reading of the medial compartment and PCA of the electrostatic JSM, 

CP-JSM, and LA-JSM using the peak number of principal components from Figure 2.7. 

For ease of visualization, the points were fitted with ROC curves based on the assumption 

of binormal distribution [87]. 

II.D Discussion and Conclusion 

In summary, we have developed a method for morphological analysis of joints 

based on an abstraction of elementary electrostatics, envisioning the articular surfaces as 

conductors in a capacitor and characterizing the intra-articular space according to the 

distance along electric field lines. This method takes advantage of the isotropic 3D spatial 

resolution of CBCT extremity imaging and yields a unique, non-degenerate, symmetric, 

and dense characterization of the joint space in a manner that overcomes some of the 

limitations of other simple methods (e.g., distance along a longitudinal axis or distance 

between closest points). The method is also applicable to complex, multi-component joints 

and yields a rich “map” of the joint space. Simple analysis of the JSM (e.g., 𝑀𝑖𝑛(𝐽𝑆𝑀)) 

was comparable in knee OA classification performance to conventional clinical reading of 
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the medial compartment, and more sophisticated PCA of the map spatial distribution 

provided improved performance (nearly perfect in the limited sample of 39 subjects).  

The current bottlenecks in applying such analysis of the joint space are the 

segmentation process and the iterative algorithm for solving the electrical potential. The 

first relies on a semiautomatic process for delineating the bones and required manual 

intervention to ensure smooth, well connected segmentations and to resolve impingements. 

We did not investigate more sophisticated segmentation methods such as active contour 

[88] or atlas-based [89] approaches that could alleviate the bottleneck and could perform 

well in segmenting high-contrast bone. The latter bottleneck is a product of the numerical 

method employed in the current work (i.e., the Jacobi approximation to the electric 

potential) and unoptimized implementation in MATLAB. Methods with faster 

convergence properties are the subject of future work as is implementation of the algorithm 

in C++ / CUDA better optimized for calculation on GPU. 

The current study involves a variety of limitations. First, with respect to the task of 

discriminating normal and OA subjects, the method examined only the spatial relationship 

between the femur and the tibia and did not include other possible morphological 

characteristics (e.g., association with the patella or soft tissues, such as cartilage and 

meniscus) or material characteristics (e.g., bone mineral density). It may therefore be 

beneficial to complement the JSM with other measures that can also be derived from the 

CBCT image (e.g., soft tissue visibility [10] and bone mineral density [90]). Secondly, it 

is difficult to determine whether the SVM was overfitted for the current dataset and 

requires cross-validation in an expanded study beyond the fairly limited sample of 39 

subjects before generalizing the results presented here to a larger population. Finally, to 
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compare the performance of CP-JSM and LA-JSM, although more sophisticated variations 

of these methods could be envisioned (e.g., for LA, computing the best fit to the tibial 

and/or femoral axis as the longitudinal axis), such is beyond the scope of this paper, which 

focuses on the concept of electrostatics as a model for morphological characterization. 

Moreover, the LA and CP methods exhibit some basic limitations even in more 

sophisticated forms: the former is limited to simple two-component joints (e.g., the knee), 

and the latter is subject to undersampling and yields a different answer depending on which 

surface is selected as the reference. The electrostatic method is free of these limitations and 

could be applied to complex joints (e.g., the wrist or ankle) and yields a unique solution. 

Analysis of joint space morphology in terms of PCA of the JSMs computed from 

the electrostatic model appeared to yield a high level of classification accuracy in normal 

and OA knees. More sophisticated decomposition and classification methods can be 

envisioned, which might further improve the accuracy and sensitivity of morphological 

analysis. Future work also includes extension of the model to more complex, multi-

component joints and application to other pathologies that could benefit from improved 

quantitative image analysis of joint morphology associated with disease progression or 

therapy response, including OA of the hand and wrist, rheumatoid arthritis, and the post-

traumatic load-bearing ankle. 
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Chapter III 

Polyenergetic MBIR for Improved Quantification of Bone Composition 

This chapter describes the integration of polyenergetic MBIR, MC scatter 

simulation and glare correction for estimation of BMD in CBCT. The polyenergetic MBIR 

algorithm is parametrized with a mixture model for bone and water, achieving accurate and 

reproducible estimates of BMD. 

III.A Introduction 

Reconstructed attenuation values (Hounsfield Units, HU) suffer a variety of sources 

of inaccuracy in CBCT, primarily due to high SPR. Additionally, system blur resulting 

from finite focal spot, off-focal radiation [91], detector blur and veiling glare [92] may also 

affect HU accuracy. Though some of these factors have been addressed in the recent 

literature [64], [93], these corrections need to be combined with an efficient beam 

hardening artifact reduction scheme to achieve quantitative BMD characterization from 

polyenergetic data acquired with a single x-ray tube potential. (This work does not consider 

dual-energy imaging, which requires either specialized hardware - e.g. fast kV switching 

[94], photon counting detectors [95], dual layer detectors [96], multi-source system 

configurations [97] - or double scanning [98].)  

Conventionally, beam hardening is addressed through linearization of the measured 

line integrals, followed by bone correction, typically involving an approach similar to that 

proposed by Joseph and Spital [99]. In Joseph-Spital (JS) correction, an initial 
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reconstruction is segmented into water and bone voxels. A reprojection is then performed 

to obtain the total amount of bone and water along each ray. A precomputed table is then 

used to correct the projection data given the amount of bone and water, replacing 

contribution of bone attenuation with equivalent attenuation by water. The corrected 

projections are backprojected to obtain the final reconstruction. However, for extremities 

imaging, the initial segmentation is often difficult in areas of trabecular bone, where voxels 

typically contain a mixture of marrow and bone. Secondly, material substitution (of bone 

by water, for example) does not fully model polyenergetic attenuation for bone. Thus, even 

with JS correction, interpolated BMD values obtained from an in-scan calibration phantom 

may still be biased by residual beam hardening artifacts.  

Several MBIR algorithms have been developed to address beam hardening. These 

algorithms are typically formulated as optimization of the PL objective with respect to the 

image [100]. The primary challenge in adapting the PL framework to polyenergetic object 

models is that the number of unknowns (voxels times number of basis materials) exceeds 

the measured projection data. A common approach to address this difficulty is to 

parametrize each voxel with a single unknown and pose a physical model relating material 

composition of a voxel to its total attenuation. A notable example is IMPACT [101], in 

which the likelihood objective is expressed as a function of monochromatic linear 

attenuation for each voxel. In the forward model, a table look-up is performed to convert 

monochromatic attenuation into photoelectric and Compton attenuation components, 

which together constitute total attenuation along a line integral. Another example is 

polyquant [102], [103], which takes a similar approach to IMPACT but crafts the likelihood 

as function of electron density instead of monochromatic attenuation and incorporates a 
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kernel-based Compton scatter estimate. A third example is a polyenergetic penalized 

likelihood (polyPL) reconstruction framework introduced by Elbakri et al [61], [62], in 

which the likelihood is a function of total density. A fundamental assumption in this 

method is that material composition in biological tissue correlates with total density. A 

high-density voxel may consist of bone and water while a low-density voxel may be 

considered water-like. This is described by an object model, a function of material fractions 

of the basis materials with respect to total density.  

We investigate whether a polyenergetic MBIR algorithm combined with an 

advanced, CBCT-specific artifact correction pipeline can enable accurate and reproducible 

measurements of BMD on an extremity CBCT system. Reproducibility is an essential 

aspect of any quantitative imaging biomarker [104]. Similar to prior studies of other 

densitometric biomarkers  [105], [106], we have therefore evaluated the variability of BMD 

measurements of standardized test inserts obtained from CBCT images acquired under a 

variety of conditions, such as perturbations in object position, orientation, size and 

composition. To the best of our knowledge, this work is the first to provide such analysis 

for CBCT implementing polyenergetic MBIR and advanced artifact corrections. 

We used the polyPL algorithm as the basis for the development of the BMD 

measurement capability. Compared to other similar iterative polyeneregtic algorithms 

mentioned above, the object model in polyPL is formulated in terms of base materials 

instead of interaction cross-sections or electron densities as in other polyenergetic MBIR 

methods, and therefore can be conveniently adapted to yield direct estimation of bone 

mineral concentration. To this end, we propose to augment polyPL with a new ideal 

mixture object model. This modified polyPL is deployed in concert with accelerated MC-



58 

based scatter correction [93] and deconvolution-based glare correction [92]. We developed 

a procedure to calibrate the key parameters of the resulting quantitative imaging pipeline 

to a specific CBCT system. Accuracy and reproducibility are validated through 

experimental studies of quantitative phantoms imaged in multiple configurations on a 

benchtop system emulating extremity CBCT. 

We note that the goal of this work is not to compare the quality of reconstruction 

across different algorithms but rather on reproducibility of BMD values across the all 

phantoms imaged in all configurations with polyPL and the added correction pipeline.  

III.B. Methods 

III.B.1 Experimental Setup 

All projection data were acquired on a benchtop system consisting an FPD 

(4030CB, Varex, USA) and a rotating anode x-ray source (DU694, Philips, Netherlands), 

shown in Fig. 3.1. The test bench was set up to reflect geometry of extremity CBCT with 

source-axis distance (SAD) of 43 cm and source-detector distance (SDD) of 56 cm). Scans 

of 420 frames were acquired over 210o at 90 kV and 0.2 mAs/frame, resulting in total scan 

dose comparable to a typical extremity CBCT scan at 15 mGy. Image acquisition was 

performed in 2x2 detector binning mode, with effective pixel size of 0.388 mm. Fig. 3.1 

also shows an example phantom used in the validation studies. It consists of Ca inserts in 

a water cylinder. The inserts range from 50-500 mg/cm3 Ca (Gammex 472 DE TMM, Sun 

Nuclear, Melbourne, FL) and are designed to mimic a mixture of CaCO3 in solid water. 

Further detailed description of the phantoms and validation experiments is given in section 

II.C. 
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Figure 3.1 Top-down view of a benchtop CBCT system emulating extremity CBCT. A 

water phantom (W5) is shown on the motion stage. The magenta box highlights the 

collection of Ca inserts used in this reproducibility study. 

III.B.2 Polyenergetic PL 

III.B.2.1 Object Model 

In polyPL [61], [62], the objective function with respect to total density 𝜌 =

[𝜌1 …𝜌𝑃]
𝑇 is defined by the likelihood term 𝐿(𝜌) and smoothness penalty 𝑅(𝜌): 

𝜙(𝜌) = −𝐿(𝜌) + 𝑅(𝜌) (3.1) 

The polyenergetic likelihood objective 𝐿(𝜌) is given by: 

−𝐿(𝜌) = ∑ℎ𝑖  (𝑌̅𝑖(𝜌))

𝑁

𝑖=1

+ 𝑟(𝜌) (3.2.1) 
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𝑌̅𝑖 = ∫𝐼(𝐸) exp (∑−(
𝜇

𝜌
)
𝑘,𝐸

𝑠𝑖𝑘

𝐾

𝑘

)𝑑𝐸 (3.2.2) 

𝑠𝑖𝑘 = ∑𝑎𝑖𝑗𝜌𝑗𝑓𝑘(𝜌𝑗)

𝑃

𝑗

 (3.2.3) 

where hi(t) = -Yi log(t) + t  is the Poisson negative-log-likelihood function, 𝐼(𝐸)  the 

source spectrum weighted by detector response, (
𝜇

𝜌
)
𝑘,𝐸

 is the energy-dependent mass 

attenuation of the kth base material, and sik is the density integral for material k.  

In order to compute 𝑠𝑖𝑘  we use an object model 𝑓𝑘  that gives the fractional 

contribution of the kth base material to the attenuation of the jth voxel as a function of the 

total density of the voxel ρj. We assume ∑ fk(ρ)
K
k=1 = 1; 𝑎𝑖𝑗  is the system matrix term 

corresponding to jth voxel and ith measurement. In this objective, a given total density 

value uniquely identifies a mixture of basis materials to compute the polyenergetic forward 

projection.   

We adopt the ideal mixture as the model for 𝑓𝑘: 

1

𝜌
= ∑

𝑚𝑘

𝑚
⋅
𝑉𝑘

𝑚𝑘
𝐾

= ∑
𝑓𝑘
𝜌𝑘

𝐾

 (3.3) 

where 𝜌𝑘 denotes the pure densities of each base material, 𝑚 the total mass, and 𝑚𝑘, 𝑉𝑘 

are the partial mass and volume of the kth base material, respectively. Specifically, we 

assume a binary mixture of water (denoted with subscript k=1) and Calcium Carbonate 

(CaCO3, k=2). In this formulation, BMD is computed from the CaCO3 fraction as 

𝜌𝑓2(𝜌)
𝑤𝐶𝑎

𝑤𝐶𝑎𝐶𝑂3

, where 𝑤𝐶𝑎 and 𝑤𝐶𝑎𝐶𝑂3
 denote molecular masses. As will be shown below, 

the pure densities of the base materials in Eq. 3.3 can be adjusted to match the spectral 

characteristics of the model to those of realistic human tissues, even though those tissues 

might contain small amounts of materials other than water and CaCO3.  
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Fig. 3.2 illustrates the proposed object model in application to the Ca inserts used 

in the experimental validation studies (Sec. III.B). The density and mass attenuation of 

each insert (denoted (
𝜇

𝜌
)
𝑖𝑛𝑠𝑒𝑟𝑡

)were computed from its known elemental composition 

[107]. We then found the base material fractions 𝑓1  and 𝑓2  that yielded a binary water-

CaCO3 mixture with mass attenuation that best matched that of the inserts: 

𝑓2 = argmin
𝑓̃2

∫((1 − 𝑓2) (
𝜇

𝜌
)
1

+ 𝑓2 (
𝜇

𝜌
)
2

− (
𝜇

𝜌
)
𝑘

) 𝐼(𝐸)𝑑𝐸 
(3.4) 

where the matching term was weighted by the spectral response of the system I(E) (defined 

as the product of the x-ray spectrum and detector absorption efficiency).  

We note that the BMD values estimated by this approach differ from the nominal 

Ca concentrations provided for the calibration inserts. We denote the BMDs obtained from 

the binary model as apparent densities. Apparent densities for the 50, 100, 200, 300, 400 

and 500 mg/cm3 Ca inserts were 23, 74, 178, 280, 383 and 485 mg/cm3, respectively. Those 

values are consistent across energy levels (90-120 kV) in the 𝐼(𝐸) model.  

The discrepancy between the apparent and nominal BMD values is likely due to a 

mismatch between the binary mixture of basis materials and the true composition of the 

inserts, which are formulated with solid water. Solid water contains significant amount of 

carbon (65-70%) and a small fraction of N, Mg and Ca. Despite this discrepancy, the binary 

mixture captures the attenuation properties of the inserts very well. At the effective energy 

of 52 keV, the mismatch between monochromatic mass attenuation of the insert (
𝜇

𝜌
)
𝑘,52 𝑘𝑒𝑉

 

and that of their bases approximations (𝑓1 (
𝜇

𝜌
)
1,52 𝑘𝑒𝑉

+ 𝑓2 (
𝜇

𝜌
)
2,52 𝑘𝑒𝑉

) was <0.41% with 

mean error of 0.18%. Furthermore, the CaCO3 fractions obtained with the water-CaCO3 
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model for the Ca inserts and for common tissue types encountered in orthopedic imaging 

[108] follow the 𝑓𝑘(𝜌) curve of an ideal mixture under reasonable assumptions for the pure 

base material densities 𝜌1 and 𝜌2. This is demonstrated below. 

Because polyPL only considers the apparent value in its forward model, evaluation 

of BMD accuracy in reconstructed images was based on apparent densities instead of 

nominal values (e.g. 50, 100, and 200 mg/cm3 Ca).  

 

Figure 3.2 Object model for the water-CaCO3 binary mixture. Data points represent 

apparent CaCO3 fraction for the phantom inserts and common tissue types in extremity 

CBCT. 

III.B.2.2 Model Calibration 

Detector response, and attenuation spectra of basis materials were calculated from 

Spektr 3.0 [24]. The source spectrum was generated from Spektr and calibrated with HVL 

measurements at 90 kV by varying source filtration in the form of Cu, Al and W 
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thicknesses. Total filtration was estimated to be 0.25 mm Cu, 2 mm Al. The spectral 

response 𝐼(𝐸) was computed as: 

𝐼(𝐸) = 𝑞(𝐸) [1 − exp (𝑡𝐶𝑠𝐼𝜌𝐶𝑠𝐼 (
𝜇

𝜌
)
𝐶𝑠𝐼

)] (3.5.1) 

𝐼(𝐸) =
𝐼(𝐸)

∫ 𝐼(𝐸)𝑑𝐸
𝐼0 (3.5.2) 

where 𝑞(𝐸) is the calibrated source spectrum, 𝜌𝐶𝑠𝐼 the density of CsI:Tl scintillator (4.51 

g/cm3) and (
𝜇

𝜌
)
𝐶𝑠𝐼

 the mass attenuation spectra.  

Prior to reconstruction, the projections were processed using a conventional 

deconvolution-based glare correction. We adopted an analytical form of the glare 

correction kernel [92], [93]: 

𝑃𝑆𝐹(𝑟, 𝑎, 𝑏) =
𝑎

2𝜋𝑏2

1

(1 +
𝑟2

𝑏2)
3/2

 
(3.6) 

where r denotes the radius from the center. One possible way to derive this kernel is to 

apply inverse Fourier transform on a measured MTF. The MTF can be obtained from the 

LSF measured from an oversampled W edge positioned on the detector [109]. We opted to 

calibrate in the reconstruction domain since projection consistency is also impacted by 

long-range glare (off-focal radiation, etc) in addition to high frequency detector blur (>0.1 

lp/mm). 

We used one scan of an 11.7 cm water phantom with the 200, 300 and 400 mg/cm3 

Ca inserts (phantom W5 in Sec. II.C) to calibrate the parameters of the ideal mixture model 

(the pure material densities 𝜌1  and 𝜌2), and of the glare response function used in the 

deconvolution-based correction. 
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The calibration of the ideal mixture model involved  varying parameters 𝜌1 from 

0.95 to 1.2 g/cm3 and  𝜌2 from 1.8 to 3.2 g/cm3 in polyPL reconstructions generated with 

scatter correction (Sec. III.B.2.3) using glare kernels from prior work performed on the 

same detector [93]. We then found the RMSE of the reconstructed insert densities 

compared to the apparent densities obtained from Eq. (3.4). The solid line in Fig. 3.2 

represents the ideal mixture model 𝑓2(𝜌)  obtained from this calibration and used 

throughout this work. Note the smooth transition from water to the water-CaCO3 mixture 

at 𝜌1 (1.1 g/cm3). A polynomial was introduced in 𝑓2(𝜌)  over a small interval surrounding 

𝜌1 to ensure first-order differentiability of the objective function of Eq. 3.2.1–3.2.3, as 

required by the polyPL optimization algorithm (ordered-subsets separable parabolic 

surrogates (OS-SPS) algorithm with De Pierro’s additive convexity trick for Hessian 

separability [110], [111]).  

A range of glare parameters (𝑎, 𝑏)  were used to perform polyPL. BMD 

(reconstructed vs. apparent density) was computed in ROIs at the centers of the 200, 300 

and 400 mg/cm3 inserts. For each insert, the error was interpolated over the range of 𝑎 and 

𝑏 using a cubic kernel. Parameters 𝑎 and 𝑏 were then selected to minimize the RMSE of 

all inserts yielding 0.084 and 3.105 for 𝑎 and 𝑏, respectively. 

The settings of the ideal mixture model and the glare model identified through this 

calibration were used in the processing of all other phantoms and configurations. 

III.B.2.3 Reconstruction Workflow 

Throughout the entire reconstruction pipeline, the voxel size was 0.4x0.4x0.4 mm3. 

Each dataset was first reconstructed with FDK using Hann filter with 0.8x Nyquist cutoff. 
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Prior to FDK, the projections were linearized assuming that all materials are water-like 

(“water correction”) [99].  

The attenuation volumes obtained from FDK needed to be converted to density to 

perform MC scatter correction, and, subsequently, to be used as initialization for polyPL. 

To achieve this conversion, we assumed that the output of FDK was consistent with the 

effective attenuation defined by [112] and applied the ideal mixture object model of Eq. 

3.3: 

𝜇(𝜌) =

∫ ((
𝜇
𝜌
)
1
𝜌𝑓1(𝜌) + (

𝜇
𝜌
)
2
𝜌𝑓2(𝜌)) 𝐼(𝐸)𝑑𝐸

∫ 𝐼(𝐸)𝑑𝐸
 

(3.7) 

The 𝜌 for each FDK voxel was found by interpolation in a table of 𝜇 values obtained by 

computing Eq. 3.9 over a range of 𝑓1 and 𝑓2 values.  

Scatter distributions were computed with MC for every 10 projections in the 

acquisition (5ᵒ angular increment), with 108 photons/projection. For simplicity, the MC 

material models did not account for mixtures. Instead, voxels containing the water-bone 

mixture (𝜌1 < 𝜌) were simulated using CaCO3 interaction cross-sections, but assuming a 

reduced density that was chosen to yield effective attenuation that matched the attenuation 

of the voxels’ mixture: 

𝜌2,𝑀𝐶 = argmin
𝜌2,𝑀𝐶

∫(𝜌𝑓1 (
𝜇

𝜌
)
1

+ 𝜌𝑓2 (
𝜇

𝜌
)
2

− 𝜌2,𝑀𝐶 (
𝜇

𝜌
)
2

) 𝐼(𝐸)𝑑𝐸 (3.8) 

A Gaussian kernel was used to smooth and interpolate the resulting scatter 

projections and to generate noiseless scatter projections for all 420 views (𝑟(𝜌) in Eq. 

3.2.1). A volume downsampling of 2 (with voxel size of 0.8x0.8x0.8 mm3) was used to 

speed up simulations. Fig. 3.3(A)(B) shows an example of the smoothed scatter distribution 
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along with the corresponding SPR for the same projection. The scatter distribution was 

subtracted from the measured projections to obtain a new FDK reconstruction.  

After 3 iterations of FDK-MC, the resulting density image was used to initialize 

polyPL. For polyPL, the noise-equivalent photon fluence 𝐼0 was set to 105 photons/pixel, 

assumed to correspond to 80% detector saturation for the detector. We also implemented 

Nesterov updates to speed up convergence [113], [114]. Regularization strength 𝛽 was 

105.5 and Huber 𝛿 was set to 10-4 g/mm3. The Huber penalty was used for 𝑅(𝜌) throughout 

this work. Optimization was terminated at 200 iterations with 6 subsets per iteration, when 

updates between iterations were verified to become negligible. MC scatter estimate was 

updated every 25 iterations.  

Fig. 3.3C-E compares polyPL reconstructions of the calibration phantom for three 

scenarios: (C) without scatter correction but with glare correction, (D) with scatter 

correction but without glare correction, (E) with full suite of corrections. In C-D, polyPL 

compensates for projection inconsistencies but with limited success, resulting in residual 

cupping and streaking. This suggests that even though quantitative accuracy is most-

impacted by scatter, the effect of glare correction is still noticeable, especially for parts of 

the image with sharp gradients (such as insert-water interfaces). 

In terms of implementation, most operations were accelerated using precomputed 

tables and fast table-lookups (linear interpolation). This includes integration over energy 

bins (Eq. 3.2.2), which were computed as linear interpolation over a table of log attenuation 

values with respect to material density integrals. Additionally, the object model functions 

𝑓1(𝜌) and 𝑓2(𝜌) were evaluated in parallel on each voxel using CUDA kernels. This cuts 

down on intermediate volumes for masking and minimizes host-GPU data transfer. 
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Figure 3.3 (A) MC scatter profile and (B) SPR for the same projection of the calibration 

phantom shown in (C-E). Bottom row, polyPL reconstructions with (C) no scatter 

correction and (D) no glare correction. (E) full correction. 

III.B.3 Reproducibility Study 

III.B.3.1 Water-Ca Phantom 

To assess reproducibility and accuracy of polyPL at recovering BMD values, a 

family of phantoms consisting of Ca inserts in water cylinders were imaged on a test bench 

in extremity CBCT configuration (Fig. 3.2). Table 3.1 describes 5 water phantoms used in 

the study: Each phantom was scanned 4 times in different positions within the FOV, 2-4 

cm apart, with rotation of 0-30 degrees. An array of 27 ROIs (3x3x3, each 6x6x6 mm3) 

were extracted from each insert image. This yields 20 scans, 60 insert realizations and 1620 

ROIs. Mean BMD values of the ROIs were used for analysis. The ROIs were sorted by 

their nominal BMD values (50, 100, 200, etc mg/cm3 Ca). To assess BMD accuracy with 
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polyPL, mean BMD of each ROI is computed and compared with the apparent density of 

each insert. The coefficient of variation (CV) was computed as standard deviation 

normalized by mean. 

Phantom Inserts (mg/cm3 Ca) Water Diameter 

W1 50, 100, 200, 300 15.6 cm 

W2 200, 400, 500 - 

W3 200, 500 11.7 cm 

W4 50, 100, 200 - 

W5 200, 300, 400 (calibration) - 

Table 3.1 Summary of water phantom configurations. 

III.B.3.2 Cadaver Specimen 

A fresh cadaver knee specimen (Maryland Anatomy Board) was scanned in a 

plastic container with added attenuators positioned near the knee joint, fixed in position 

with foam. The attenuators consisted of Gammex CaCO3 inserts in the previous section as 

well as water inserts. After each scan, a new set of attenuators were put in. The position 

and flexion of the knee were also adjusted in between scans. A detailed listing of the 

configurations is shown in Table 3.2. 
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Phantom Attenuators (mg/cm3 Ca & water) 

C1 100, 200, water 

C2 50, 300, water 

C3 200 x2, water 

C4 100, 300 

C5 No additional attenuators 

Table 3.2 Summary of cadaver phantom configurations. 

The cadaver datasets were also reconstructed using the pipeline of Sec. III.B. For 

analysis, we chose one of the datasets as the reference volume. The tibias of all other 

reconstructions were rigidly registered to the tibia of the reference volume[115]. A mask 

of the tibia was constructed using thresholding, morphological closing and hole-filling. An 

additional cortical ROI was derived via morphological erosion of the tibiae mask with 

radius 2.2 mm. The trabecular ROI was defined as the complement of the cortical ROI 

within the tibial mask. Within the trabecular bone ROI, some voxels contained negligible 

BMD, these voxels were removed from the analysis. To minimize the impact of 

reconstruction noise and possible registration errors on the analysis of reproducibility, we 

measured the average BMD values in 2.8 mm3 neighborhoods centered on each voxel of 

the trabecular and cortical ROI. For each voxel, the local reproducibility was then obtained 

as the standard deviation of the ROI-averaged BMD values, computed across all registered 

reconstructions.  

III.C Results 
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III.C.1 Water-Ca Phantom 

PolyPL reconstructions and FDK initialization for a configuration sampled from 

each water phantom are shown in Fig. 3.4A. The total density (in grayscale) is windowed 

to soft tissue (0.8-1.2 g/cm3) and overlaid with reconstructed BMD values from 0 to 500 

mg/cm3. Visually, cupping effects from scatter and beam hardening typically seen in 

uncorrected CBCT images are absent. Additionally, the BMD insert profiles appear 

uniform with consistent values across all configurations. The mean BMD values for the 

200 mg/cm3 insert in all configurations are shown in Fig. 3.4B. In the boxplot, each bar 

represents a configuration (4 per phantom) and error bars denote distribution of mean BMD 

values of 27 ROIs extracted from the 200 mg/cm3 insert. Though some phantom-dependent 

fluctuations in BMD values persist, the mean error throughout all ROIs was 4.4 mg/cm3 

relative to apparent BMD with standard deviation of all ROI means at 5.49 mg/cm3. The 

CV across the 200 mg/cm3 inserts were 1.84%. 

 

Figure 3.4 (A) Example reconstructions with FDK initialization (with scaled BMD values) 

and PolyPL. Yellow squares in W1 FDK image (top left) shows approximate locations of 

ROIs sampled for analysis. (B) Distribution of percent BMD error with apparent values in 

ROIs of the 200 mg/cm3 insert across all configurations.  
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Figure 3.5 shows a similar analysis across all nominal insert densities. Each bar 

shows the mean BMD values from all configurations of the same insert. The reconstructed 

BMD is plotted against the apparent density, with dashed identity line indicating perfect 

reconstruction accuracy. Reconstruction error is highest for lower-density inserts, at ~6% 

for 50 mg/cm3, 4% for 100 mg/cm3 inserts and <0.3% from 2 to 500 mg/cm3. In terms of 

reproducibility, from the 50 mg/cm3 to the 500 mg/cm3 insert, standard deviations of mean 

ROI values for each insert across all configurations increase from 1.66 to 11.19 mg/cm3, 

respectively. This results in CV from ~7.2% at 50 mg/cm3 to ~2.3% at 500 mg/cm3. 

 

Figure 3.5 Distribution of BMD values of Ca insert ROIs (1620 total ROIs) vs apparent 

BMD, mean is marked by circles, error bars indicate 2x standard deviation from the mean. 

Dashed lines indicate apparent densities expected from spectral calibration and represents 

perfect accuracy. 
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III.C.2 Cadaver Specimen 

Axial and coronal views of reconstructions of 2 cadaver phantom configurations 

overlaid with BMD are shown in Fig. 3.6. All reconstructions were registered to the tibia. 

Despite positioning of attenuators and deformations in surrounding soft tissue, 

reconstructed BMD appear similar across all imaging configurations. In the trabecular bone 

regions within both the tibia and femur, reconstructed BMD was ~209 mg/cm3, which is 

consistent with apparent densities derived from tissue composition in Fig. 3.2B, where 

inner bone and spongiosa amounted to 160 and 210 mg/cm3, respectively. None of the 

voxels in the reconstructed image approached the apparent density of cortical bone (1.9 

g/cm3). This is likely due to linear partial volume effects. Since this effect is modeled by 

the ideal mixture, no visible streaking is observed. On the contrary, the interface of Ca 

inserts and the water insert in C1 generated some streaking artifacts. This is expected since 

the interface contains a 3-material mixture of air, water and Ca, which is not modeled by 

the 2-material ideal mixture model. Additionally, the Huber penalty was not designed to 

handle the sharp gradients at the interface of the inserts in air. Moreover, streaking is 

localized to the water insert and the tibia ROI was unaffected.  
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Figure 3.6 Sample of 2 configurations in the cadaveric knee phantom. C1 contains 

additional attenuators while C5 does not. The two BMD distributions are visibly similar. 

Fig. 3.7 shows voxel-wise standard deviation between the configurations, along 

with a mask delineating tibial ROI (in dashed cyan). We restrict our analysis to the tibial 

ROI, which is partitioned into cortical and trabecular ROIs. Regions of high variation are 

visibly distributed around edges of cortical bone. This is consistent with the level of 

variability achieved in our water phantom study. Mean cortical bone BMD was 856 

mg/cm3, with average standard deviation of 5.3 mg/cm3; mean trabecular bone BMD was 

209 mg/cm3, with average standard deviation of 2.5 mg/cm3. The mean standard deviation 
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for all tibial voxels were 4.0 mg/cc with mean BMD of 557 mg/cm3, suggesting high 

reproducibility of BMD.  

 

Figure 3.7 Distribution of voxel-wise standard deviation across 5 cadaver phantoms in a 

tibial ROI, with all phantoms were registered to the ROI. 

III.D Discussion 

We showed that apparent BMD can be reconstructed reproducibly with our polyPL-

correction workflow across multiple families of phantoms. For all reconstructions, 

convergence was achieved at ~150 iterations, when image updates per iteration became 

trivially small and MC simulations returned stable, constant scatter profiles for every 25 

iterations of polyPL.  

Elbakri and Fessler proposed two object models with polyPL[62]. The first model 

is the displacement model, in which water/bone fractions for biological tissue were fit to 

their total densities with third-order polynomials. Since the model incorporates pure 

densities for bone, water and other biological tissues, the authors described it as suitable 
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for materials occupying distinct well-defined regions, such as cortical bone and soft tissue. 

Though a polynomial fit between the pure materials was used to provide convenient 

derivatives for optimization, the authors acknowledged that the model can be refined for 

quantitative accuracy. The second model the solution model, which describes solute in 

solvent (for example, KHPO4 in water). The authors noted that this model is more useful 

when bone is not dense and exists in a water-bone mixture state. The interpretation of our 

ideal mixture model is similar to the displacement model, in which we assume anatomical 

structures are distinct and not physically mixed at a microscopic scale (e.g. lattice of 

trabecular bone in marrow). In this case, the volume of a voxel is the sum of the volumes 

of its components. By setting 𝜌2 to infinity, our ideal mixture model also simplifies to 

Elbakri’s solution model. This suggests that properties of the ideal mixture are applicable 

to both of Elbakri’s mixture interpretations, given different parametrizations. In both our 

phantom and cadaver study, use of the solution model achieved artifact reduction and 

quantitative reproducibility.  

In terms of performance, the bottleneck remains forward and backprojection 

operators. On an RTX 2080 (Nvidia, Santa Clara) graphics card, each iteration takes ~15s 

using our current optimizer and parameters. In practice this may be further optimized, 

either with more subsets or changing the weights in the Nesterov momentum term. One 

notable observation is that the two acceleration techniques are sometimes incompatible 

[114]. When the projection data is broken into 15 subsets or more, the momentum-driven 

image updates became unstable. The instability manifests in large updates to the density 

image, creating patches of hyperdense BMD as well as streaking surrounding these 

patches. Though some instable patches gradually converge with more iterations, others 
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persist even after reaching the high number of prescribed iterations. The specific number 

of ordered subsets to use as well as whether Nesterov acceleration is helpful for a given 

number of subsets warrants further investigation but is outside thescope of this proof-of-

principle study. MC scatter simulation takes ~40s per volume.  

We note several subtle aspects with our approach in its current form. First, our 

model allows for some ambiguity between dense soft tissue and sparse trabecular bone. 

For example, a voxel containing muscle may be as dense as a mixture of trabecular bone 

and marrow. This is difficult to distinguish without multi-energy scans or prior knowledge 

of gross anatomy. Fortunately, in practice, these tissues are spectrally similar (to water) 

and sufficiently low in density such that no visible streaks result from data consistency 

issues. However, this warrants careful interpretation of reconstructed density and making 

the distinction between apparent and absolute BMD. Another source of error results from 

the basis material approximation itself, described in section III.A. This is evident with our 

Ca inserts, where average error between actual mass attenuation and the best-fitting water-

CaCO3 approximation is 0.34% (Eq. 3.4). In biological tissue, the error may be higher, as 

composition is expected to be more varied, with additional elements such as P, N and Mg. 

This is also a contributor to the discrepancy between apparent and absolute values. 

Secondly, we conclude that where glare [92] has not been accounted for, material 

density will be compromised. Not only does the glare correction impact sharpness of edge 

profiles in the final reconstruction, but also it affects reconstructed density in homogeneous 

areas via a low-frequency component, as demonstrated in Fig. 3.3(D)(E). This low 

frequency component is sometimes discarded in detector characterization literature by 

subtracting a linear fit to the tails of the LSF [109]. Nevertheless, we found it impactful for 
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quantitative reconstruction acting similar to that of scatter. The effects of glare are also 

evident in projection data containing high attenuating objects with sharp gradients, such as 

imaging in presence of metal implants, the inclusion of a well-tuned glare kernel may be 

very impactful. Unfortunately, this effect is dependent on collimation and the imaged 

object. However, we demonstrated that a reasonably simple calibration of glare could 

generate reproducible reconstructions for a wide range of phantoms without introducing 

significant streaking artifacts. The exact calibration techniques can be changed according 

to needs of the reader. The glare model we used is shift-invariant. However, we 

acknowledge that advanced blur models, such as shift-variant focal spot blur [64], may be 

important for high-resolution applications and specialized imaging geometries with high 

magnification. 

Third, our MC scatter simulation does not consider material mixtures in its forward 

projection. Despite matching total effective attenuation to the object model used in polyPL, 

Compton scatter may be underestimated. This may account for residual streaking in 

phantom W2, where large water cylinder and high attenuation inserts resulted in high SPR 

of >1. However, in realistic scans of the proximal extremities without implants, our 

simplified simulation should suffice.  

In summary, artifact suppression and reproducibility rely on improving the 

consistency between reconstructed image and projection data. One way to facilitate this 

consistency is by augmenting the projection data to correct for physical imperfections in 

acquisition, such as in the case of glare and scatter. Another way is to improve the forward 

model to better account for how projections are generated by a given image, such as using 

a realistic object model for tissue composition in polyPL. We showed that by properly 
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accounting for the imaging physics, reproducibility can be achieved even without 

additional in-scan calibration phantoms, as done in conventional qCT. This should inform 

future work on quantitative reconstruction. For example, in the case of scans including 

orthopedic implants, the forward model could be revised such that voxels surrounding the 

implant could be parametrized with water-steel mixtures, while conventional water-bone 

mixture is used for surround tissue [116]. 

III.E Conclusion 

We showed that extremity CBCT could be used for measuring BMD accurately and 

reproducibly. This was achieved using a polyenergetic forward model, an explicit object 

model for biological tissue composition, deconvolution-based glare correction, and MC 

scatter simulation. Quantitation was validated in the paradigm of a classic reproducibility 

study, with benchtop scans of phantoms containing Ca inserts of known concentration and 

cadaveric knee specimen in multiple configurations. 
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Chapter IV 

Improving System Spatial Resolution  

for Quantification of Trabecular Microstructure 

This chapter describes a task-based optimization of CMOS FPDs for visualization 

of bone microstructure. The optimization leverages noise-resolution tradeoff associated 

with scintillator thickness, given the small-pixel, low-noise characteristics of the CMOS 

sensor. The resulting detector configuration is incorporated into a prototype CMOS CBCT, 

which demonstrates improved correlation of bone microstructure metrics with that of gold 

standard (µCT). 

IV.A Introduction 

Trabecular and cortical microarchitecture [90], [117]–[120]  are biomarkers of bone 

health, with indices of bone microstructure found to improve prediction of fracture risk in 

OP [73], [74], [90], [121]–[127] compared to BMD. In OA, alterations in trabecular 

microarchitecture of subchondral bone often precede cartilage degeneration, [128]–[130]  

motivating investigation of structural metrics as an early biomarker of disease. However, 

trabecular features typically measure 0.05-0.2 mm, [131] so ultra-high–resolution pre-

clinical micro-CT [132] remains the gold standard for bone morphometry. To enable in 

vivo measurements of microstructure in patients, a dedicated high-resolution peripheral 

quantitative CT (HR-pQCT) system has been developed [133], [134] for use in distal radius 

and ulna. Applications of HR-pQCT in more attenuating body sites, such as the knee, 
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require long scan times (~20 min) and have limited axial field-of-view (FOV) of ~6 cm 

[135]. Accurate characterization of bone morphometry via MDCT, CBCT, and/or MRI 

could greatly enhance the clinical utilization of such quantitative biomarkers. 

Despite their limited spatial resolution, conventional MDCT and a-Si:H FPD 

CBCT systems have been shown to achieve statistically significant correlation with gold 

standard micro-CT for a variety of trabecular metrics.[73], [74], [126] In extremity CBCT, 

Pearson R-coefficient of 0.9 for Bone Volume (BV/TV), 0.66 for Trabecular Thickness 

(Tb.Th) and 0.68 for Trabecular Spacing (Tb.Sp) were found in comparison to micro-CT. 

[119] While promising, this result suggests that application of CBCT in quantitative bone 

imaging would benefit from further improvement in spatial resolution. Complementary 

metal-oxide semiconductor (CMOS) x-ray detectors offer a compelling alternative to a-

Si:H FPDs for such high-resolution applications, owing to their higher readout speed, up 

to 10x lower electronic noise, and finer pixel pitch (~0.05-0.1 mm) [29], [136]–[138]. 

In the recent years, CMOS detectors emerged as an attractive option for indirect 

detection x-ray detectors. Early interest in medical applications of CMOS sensors has been 

primarily focused on breast imaging. In digital breast tomosynthesis (DBT), Choi et al 

[139] and Patel et al. [140] showed that the low electronic noise of CMOS detectors enables 

improved angular sampling by lowering the required dose per frame. In breast CBCT, Gazi 

et al [141] and Shen et al [138] demonstrated 125% increase in system limiting resolution 

and 45% enhancement in visibility of microcalcifications, respectively, compared to 

conventional a-Si:H FPDs. A model by Zhao et al [142] found that a commercial CMOS 

sensor operated in a low capacity, low noise mode can improve contrast-to-noise ratio 

(CNR) of small microcalcifications (<0.2 mm) at lower mean glandular dose levels 
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compared to an existing commercial DBT system. This analysis was extended to include 

models of DBT image reconstruction, image display and human observer performance. 

[143] Vedantham et al [144] used task-based modelling to investigate the tradeoffs 

between pixel size and scintillator thickness in breast CBCT and determined that a 0.525 

mm thick CsI:Tl scintillator (somewhat thinner than the 0.6-0.7 mm CsI:Tl typically used 

in FPDs) is optimal for detecting 0.22 mm microcalcifications. 

Results of modeling and optimization studies in breast imaging are not directly 

applicable to extremity CBCT due to differences in x-ray spectrum (~90 kV in extremity 

CBCT compared to ~30 kV in DBT), object composition, and system geometry. We use a 

cascaded systems model developed for CMOS-based extremity CBCT to evaluate 

performance in high-resolution applications using task-based detectability index 

framework [118], [145]. In particular, we investigate the potential benefits of reducing the 

thickness of the CsI:Tl scintillator below 0.6-0.7 mm as currently used in a-Si:H FPDs and 

CMOS sensors for CBCT. Thinner CsI:Tl reduces scintillator blur (potentially better 

matching the blur associated with the finer pixel aperture), but leads to increased noise due 

to diminished x-ray absorption, especially for the relatively high x-ray energies used in 

extremity imaging. For high-frequency tasks, however, the benefits of enhanced spatial 

resolution may outweigh the impact of elevated noise, resulting in improved detectability. 

Preliminary results [120] indicate that the visibility of trabeculae can indeed be improved 

using a 0.4 mm scintillator compared to the standard 0.7 mm thickness. 

The work reported below extends the simulation and experimental studies reported 

in Ref. 15 to provide a more detailed analysis of CMOS detector performance across a 

broader scope of system parameters and imaging geometries using a new, continuously 
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tunable spectrum of imaging tasks representative of trabecular bone morphometry. The 

main contributions of this work include: (a) a model of a CMOS x-ray sensor that 

incorporates the effects of scintillator thickness; (b) a study of detectability in extremity 

CBCT as a function of feature size, pixel size, electronic noise, CsI:Tl thickness, focal spot 

size, dose, and system magnification; and (c) experimental validation in phantom and 

cadaver studies using two CMOS detectors, one with the current standard CsI:Tl 

thicknesses of 0.7 mm (denoted C700), and one (C400) custom-made with 0.4 mm thick 

CsI:Tl. This direct experimental comparison provides new insight into the tradeoffs 

between resolution, noise, and imaging task that govern the choice of scintillator thickness 

for high-resolution applications of CMOS sensors. The results motivated implementation 

of a CMOS detector on a prototype high-resolution extremity CBCT system. 

IV.B Methods 

IV.B.1 Task-Based Evaluation of CMOS Detectors 

The performance of CMOS detectors in extremity CBCT imaging was investigated 

in terms of MTF, NPS, DQE, and detectability index (1.15): 

𝑑 
′2 =

(∫ ∫ 𝑇𝑠𝑦𝑠𝑡𝑒𝑚
2 𝑊𝑡𝑎𝑠𝑘

2 𝑑𝑢𝑑𝑣)
2

∫ ∫ 𝑁𝑁𝑃𝑆 ⋅ 𝑇𝑠𝑦𝑠𝑡𝑒𝑚
2 𝑊𝑡𝑎𝑠𝑘

2 𝑑𝑢𝑑𝑣
 (4.1) 

The NPW observer model (Eq. 4.1) has been shown to agree reasonably well with 

human observer performance in CBCT for a wide range of simple imaging tasks [146]. The 

task function, 𝑊𝑡𝑎𝑠𝑘, is a frequency-domain specification of the feature(s) of interest in 

detection or discrimination. The 𝑁𝑁𝑃𝑆 is the normalized NPS, and 𝑇𝑠𝑦𝑠𝑡𝑒𝑚 is the MTF of 
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the system. The NPS and MTF were obtained from cascaded systems analysis of CMOS 

x-ray sensors, as described below. Since the focus of the current study is on the effects of 

detector design on imaging performance, the modeling was performed in the 2D projection 

domain and did not include signal and noise propagation in the 3D reconstruction cascade 

[147], [148]. The NPS in the denominator of Eq. (4.1) is normalized by the mean detector 

signal squared. As shown by Tward et al [147], the resulting NNPS is equivalent to the 

NPS of log-corrected projection data. The form in Eq. (4.1) therefore represents a detection 

task in log-corrected projection data. The detectability index was investigated as a function 

of scintillator thickness, pixel size, electronic noise, scan dose, focal spot size, and imaging 

task. 

The description of theoretical methods is organized as follows: Sec. IV.B.1.1 

introduces the basic cascaded systems model and defines fixed system parameters and key 

variables. Sec. IV.B.1.2 describes the modeling of scintillator thickness-dependent system 

gain, including quantum detection efficiency, generation of optical photons in the 

scintillator, depth-dependent scintillator escape fraction, and coupling efficiency. Models 

of thickness-dependent scintillator blur, focal spot blur, and system MTF are discussed in 

Sec. IV.B.1.3. Sec. IV.B.1.4 concerns the NPS and includes discussion of Swank factor 

and assumptions regarding Lubberts effect. Sec. IV.B.1.5 introduces task functions 

pertinent to high-resolution extremity imaging, and Sec. IV.B.1.6 outlines the simulation 

studies evaluating task-based detectability. The cascaded systems model is consistent with 

a significant body of previous work modeling a-Si:H FPDs [145], [149]–[152] and more 

recently CMOS systems [142], [153] with details below emphasizing aspects of the model 

related to scintillator thickness and pixel size. 
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IV.B.1.1 Cascaded Systems Model 

The analytical detector model consisted of the following 7 stages: [145] (1) x-ray 

absorption in the scintillator (QDE), (2) generation of light quanta (quantum gain), (3) light 

spread in the scintillator (including the spread of K-fluorescence photons [154]), (4) 

coupling to the photodiode, (5) integration by pixel aperture, (6) sampling, and (7) readout 

with additive noise. Effects of scatter were not considered in the model. For input-quantum-

limited conditions, scatter imparts a scaling of the NPS by a factor of (1+SPR) [155]. In 

the majority of studies performed here, various detector configurations are compared at the 

same system geometry and thus the same SPR. Consequently, it is assumed that the 

omission of scatter from the model has only minor impact on the metrics of relative detector 

performance investigated in this study. The parameters of the model are listed in Table 

4.1A and 4.1B, with nominal values reflecting two Xineos-3030HR CMOS detectors 

(Teledyne DALSA) with CsI:Tl thicknesses of 0.4 mm and 0.7 mm used in experimental 

studies (Sec. IV.B.2).  
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Constants Notation Value Ref. 

Beam energy 𝐸𝑚𝑎𝑥 90 kV [151] 

Fluence per exposure 

pre-object 
𝑞0̅̅ ̅/𝑋 

2.58 x105 x-

rays/mR/mm2 
[24] 

Source-detector 

distance 
SDD 560 mm 

[152] 

Source-axis distance SAD 431 mm 

Total filtration (inh. 

+ added) 
 

3.4 mm Al+0.2 mm 

Cu 

[25] 

Object - 

8 cm water + 7.3 cm 

spongiosa + 0.4 cm 

cortical bone 

CsI:Tl density 𝜌𝐶𝑠𝐼 4.51 g/cm3 - 

Packing fraction  𝑓𝐶𝑠𝐼 0.7 - 

K-edge energy 𝐸𝐾 35 keV  

K-fluorescence 

probability 
𝜉 0.83 

[156] 

K-fluorescence yield 𝜔 0.87 

Work function 𝑊 
55.6 optical 

photons/keV 
 

Coupling efficiency 

(e-/photon) 
𝑔4̅̅ ̅ 0.59 - 

Fill factor 𝑓𝑝𝑖𝑥 0.85 

- Electronics noise 𝑎𝑑𝑑 390 e- 

Conversion gain  𝑘 139 e-/ADU 

Table 4.1A Glossary of terms and symbols in the cascaded systems model. Model 

constants include fundamental physical quantities, geometry and typical operating 

parameters of the extremity CBCT system, and detector parameters that are independent 

of CsI:Tl thickness.  
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Key Variables Notation Range (nominal value) Ref. 

Dose (mGy) 𝐷 15-40 (15)  - 

Focal spot size (mm) 𝑎𝑠𝑝𝑜𝑡 0.05-0.7 (0.5) - 

CsI:Tl thickness (mm) 𝑡𝐶𝑠𝐼 0.35-0.75 (0.7) - 

Pixel size (mm) 𝑎𝑝𝑖𝑥 0.05-0.4 (0.099) - 

Magnification 𝑀 1.1-2.1 (1.3) - 

    

Derived Quantities Notation 
Nominal Values  

(at 𝑎𝑝𝑖𝑥=0.099 mm) 
Ref. 

  @𝑡𝐶𝑠𝐼 = 0.4 mm  @ 𝑡𝐶𝑠𝐼 = 0.7 mm  

Focal spot blur 𝑇𝑠𝑝𝑜𝑡      Eq. (4.10)  - 

Quantum detection 

efficiency 
𝑔1̅̅ ̅ 0.58 0.75  

K-fluorescence reabsorption 𝑓𝐾 0.66 0.77 - 

Escape fraction 𝜂𝑒𝑠𝑐 0.40 0.37 [157] 

Quantum gain  

(photons/X-ray) 
𝑔2̅̅ ̅ 798 734 - 

Photodiode aperture (mm) 𝑎𝑝𝑑  0.0913  - 

Gain  

(mm3 e-/photon) 
𝐺 2.28 2.71  

Scintillator blur 𝑇3  Eq. (4.8) - - 

Total K-fluor. blur 𝑇𝐾𝑡𝑜𝑡  Eq. (4.9) - 

Pixel aperture 𝑇5 - - 

Sampling function 𝐼𝐼𝐼6 - - 

Table 4.1B CMOS detector performance was analyzed as a function of quantities 

denoted as key variables. The derived quantities are functions of the model constants and 

key variables; their nominal values are given at two detector thicknesses corresponding to 

the CMOS sensors used in experimental studies, assuming all other parameters are at 

their nominal value.  
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IV.B.1.2 System Gain  

Using the definitions in Table 4.1AB, the system gain 𝐺 (mm3 e-/photon) is given by: 

𝐺(𝑡𝐶𝑠𝐼) = 𝑎𝑝𝑑
2 𝑔1̅̅ ̅(𝑡𝐶𝑠𝐼)𝑔2(𝑡𝐶𝑠𝐼)𝑔4̅̅ ̅  (4.2) 

where 𝑡𝐶𝑠𝐼 is scintillator thickness. The mean quantum detection efficiency, 𝑔
1
( 𝑡𝐶𝑠𝐼), is 

calculated by dividing the scintillator into a series of 200 slabs (thickness denoted Δ𝑧) and 

integrating over the slab depth (z) measured from the incident surface [150]: 

𝑔1(𝐸, 𝑧) = 𝑒
−𝑧⋅𝜌𝐶𝑠𝐼⋅𝑓𝐶𝑠𝐼⋅(

𝜇
𝜌)

𝐶𝑠𝐼
(𝐸)

(1 − 𝑒
−Δ𝑧⋅𝜌𝐶𝑠𝐼⋅𝑓𝐶𝑠𝐼⋅(

𝜇
𝜌)

𝐶𝑠𝐼
(𝐸)

) 
 

(4.3a) 

𝑔1(𝐸, 𝑡𝐶𝑠𝐼) = ∫ 𝑔1(𝐸, 𝑧)𝑑𝑧
𝑡𝐶𝑠𝐼

0

  
 

(4.3b) 

𝑔1̅̅ ̅(𝑡𝐶𝑠𝐼) =
∫ 𝑞𝑑𝑒𝑡(𝐸)

𝐸𝑚𝑎𝑥

0
𝑔1(𝐸, 𝑡𝐶𝑠𝐼)𝑑𝐸

∫ 𝑞𝑑𝑒𝑡(𝐸)
𝐸𝑚𝑎𝑥

0
𝑑𝐸

 
 

(4.3c) 

where (
𝜇

𝜌
)
𝐶𝑠𝐼

(𝐸) is the mass attenuation coefficient of CsI:Tl and 𝑞𝑑𝑒𝑡(𝐸) is the spectrum 

at the detector (input spectrum 𝑞0(𝐸) attenuated by the object). Within each slab, three 

parallel pathways for the quantum gain  𝑔2  are considered: pathway A (gain denoted 

by 𝑔2𝐴̅̅ ̅̅ ̅) describes local absorption of an X-ray photon without K-fluorescence; pathway B 

(𝑔2𝐵̅̅ ̅̅ ̅ ) accounts for locally absorbed energy resulting from K-fluorescent events; and 

pathway C (𝑔2𝐶̅̅ ̅̅ ̅) involves K-fluorescence x-ray photons produced locally but absorbed at 

a remote site, with the associated MTF denoted 𝑇𝐾 [154]: 

𝑔2𝐴(𝑡𝐶𝑠𝐼) =
∫ 𝑞𝑑𝑒𝑡 (𝐸) ∫ 𝑔1(𝐸, 𝑧)𝜂𝑒𝑠𝑐(𝑡𝐶𝑠𝐼 , 𝑧)(1 − 𝜉𝜔)𝐸𝑊𝑑𝑧

𝑡𝐶𝑠𝐼

0
𝑑𝐸

𝐸𝑚𝑎𝑥

0

∫ 𝑞𝑑𝑒𝑡(𝐸)𝑔1(𝐸, 𝑡𝐶𝑠𝐼)(1 − 𝜉𝜔)𝑑𝐸
𝐸𝑚𝑎𝑥

0

 (4.4a) 
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𝑔2𝐵̅̅ ̅̅ ̅(𝑡𝐶𝑠𝐼) =
∫ 𝑞𝑑𝑒𝑡 (𝐸) ∫ 𝑔1(𝐸, 𝑧)𝜂𝑒𝑠𝑐(𝑡𝐶𝑠𝐼 , 𝑧)𝜉𝜔(𝐸 − 𝐸𝐾)𝑊𝑑𝑧

𝑡𝐶𝑠𝐼

0
𝑑𝐸

𝐸𝑚𝑎𝑥

0

∫ 𝑞𝑑𝑒𝑡(𝐸)𝑔1(𝐸, 𝑡𝐶𝑠𝐼)𝜉𝜔𝑑𝐸
𝐸𝑚𝑎𝑥

0

 (4.4b) 

𝑔2𝐶̅̅ ̅̅ ̅(𝑡𝐶𝑠𝐼) =
∫ 𝑞𝑑𝑒𝑡 (𝐸) ∫ 𝑔1(𝐸, 𝑧)𝜂𝑒𝑠𝑐(𝑡𝐶𝑠𝐼, 𝑧)𝜉𝜔𝑓𝐾(𝑡𝐶𝑠𝐼)𝐸𝐾𝑊𝑑𝑧

𝑡𝐶𝑠𝐼

0
𝑑𝐸

𝐸𝑚𝑎𝑥

0

∫ 𝑞𝑑𝑒𝑡(𝐸)𝑔1(𝐸, 𝑡𝐶𝑠𝐼)𝜉𝜔𝑑𝐸
𝐸𝑚𝑎𝑥

0

 (4.4c) 

The escape fraction 𝜂𝑒𝑠𝑐(𝑡𝐶𝑠𝐼 , 𝑧) refers to the fraction of optical photons that reach the 

scintillator exit surface and are subsequently coupled to the photodiode with efficiency 𝑔4̅̅ ̅. 

An linear fit to escape fraction estimated by Howansky et al. [157] for a scintillator with 

reflective backing was used to compute 𝜂𝑒𝑠𝑐: 

𝜂𝑒𝑠𝑐(𝑡𝐶𝑠𝐼 , 𝑧) = −0.185(𝑡𝐶𝑠𝐼 − 𝑧) + 0.312 (4.5) 

The quantum gain for each parallel pathway  𝑔2𝐴̅̅ ̅̅ ̅(𝑡𝐶𝑠𝐼) , 𝑔2𝐵̅̅ ̅̅ ̅(𝑡𝐶𝑠𝐼)  and 𝑔2𝐶̅̅ ̅̅ ̅(𝑡𝐶𝑠𝐼)  are 

combined to form the total gain 𝑔2̅̅ ̅(𝑡𝐶𝑠𝐼) [154]: 

𝑔2̅̅ ̅(𝑡𝐶𝑠𝐼) = (1 − 𝜉𝜔)𝑔2𝑎̅̅ ̅̅ ̅(𝑡𝐶𝑠𝐼) + 𝜉𝜔𝑔2𝑏̅̅ ̅̅̅(𝑡𝐶𝑠𝐼) + 𝜉𝜔𝑓𝐾𝑔2𝑐̅̅ ̅̅ (𝑡𝐶𝑠𝐼) (4.6) 

The loss of photons in the FOP between the scintillator exit surface and the photodiode 

(e.g. due to FOP and optical glue) and the conversion efficiency from optical photons to 

electrons are described together by the optical coupling efficiency 𝑔4̅̅ ̅ . The coupling 

efficiency was treated as a constant across all detector configurations. The value of 𝑔4 ̅̅ ̅̅  was 

determined empirically to yield a good match between the model and measurements of 

system gain and noise power spectra (Sec. IV.B.2). It was found that the estimates of the 

coupling efficiency were different for the two detectors:  𝑔4̅̅ ̅ = 0.7 for C400 and 𝑔4̅̅ ̅ = 0.48 

for C700. This discrepancy is likely due to variations in CsI:Tl deposition techniques and 

in the quality of the interface between the CMOS and scintillator. Such variability 

represents differences in the manufacturing process rather than true dependence of 𝑔4̅̅ ̅ on 
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scintillator thickness. Therefore, the mean of the two empirical estimates (𝑔4̅̅ ̅ = 0.59) was 

used in the detector model to approximate an average coupling efficiency of a CMOS 

detector of the type used in the experimental studies. The coupling efficiency values found 

for the two detectors were lower than those reported for a-Si:H FPDs (𝑔4̅̅ ̅ ≈ 0.8), likely 

due to light losses in the FOP, which is not used in a-Si:H FPDs. 

Fig 4.1A illustrates the thickness-dependent QDE (black line), escape fraction 𝜂𝑒𝑠𝑐̅̅ ̅̅ ̅ =

∫ 𝜂𝑒𝑠𝑐(𝑡𝐶𝑠𝐼, 𝑧)𝑑𝑧
𝑡𝐶𝑠𝐼

0
 (dashed black line), and quantum gain (gray line) as functions of 

CsI:Tl thickness. As anticipated, QDE increases with increasing thickness; however, 

quantum gain decreases for thicker CsI:Tl because of reduced escape efficiency. Overall, 

the 𝑔1̅̅ ̅ 𝑔2̅̅ ̅ product is ~20% higher for 0.7 mm CsI:Tl than 0.4 mm CsI:Tl. 

 
Figure 4.1 (A) Quantum detection efficiency, escape efficiency (left vertical axis, black 

lines), and scintillator gain (right vertical axis, gray line) computed as a function of 

scintillator thickness. (B) Zero-frequency PK and integral of detector NNPS over the 

Nyquist frequency range (gray line) as a function of CsI:Tl thickness. (C) Examples of task 

functions (Eq. 4.14, assuming C=1) for three feature sizes: 0.05 mm (solid black line), 0.1 

mm (solid dark gray line), and 0.2 mm (solid light gray line). The tasks emphasize distinct 

frequency bands depending on the underlying feature size. 

IV.B.1.3 System MTF, Detector Blur, and Focal Spot Blur 
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System MTF is defined as the product of detector and focal spot MTFs: 

𝑇𝑠𝑦𝑠𝑡𝑒𝑚(𝑢, 𝑣; 𝑡𝐶𝑠𝐼 , 𝑎𝑠𝑝𝑜𝑡) = 𝑇𝑑𝑒𝑡(𝑢, 𝑣; 𝑡𝐶𝑠𝐼 , ) ⋅ 𝑇𝑠𝑝𝑜𝑡(𝑢, 𝑣; 𝑎𝑠𝑝𝑜𝑡). The detector MTF, 𝑇𝑑𝑒𝑡, 

is given by: 

𝑇𝑑𝑒𝑡(𝑢, 𝑣; 𝑡𝐶𝑠𝐼) = 𝑇3(𝑢, 𝑣;  𝑡𝐶𝑠𝐼)𝑇𝐾𝑡𝑜𝑡(𝑢, 𝑣; 𝑡𝐶𝑠𝐼)𝑇5(𝑢, 𝑣) (4.7) 

where 𝑇3  denotes scintillator blur, 𝑇𝐾𝑡𝑜𝑡  is the blur associated with the spread of K-

fluorescence photons, and 𝑇5  is the aperture function 𝑇5(𝑢, 𝑣) =

|𝑠𝑖𝑛𝑐(𝑎𝑝𝑑𝑢)𝑠𝑖𝑛𝑐(𝑎𝑝𝑑𝑣)|. Both 𝑇3 and 𝑇𝐾𝑡𝑜𝑡 are affected by scintillator thickness 𝑡𝐶𝑠𝐼. The 

scintillator blur is modeled using a two-component form that consists of an exponential 

term to account for a homogeneous, unstructured layer of CsI:Tl deposited on the surface 

of the scintillator, and a Lorentzian term describing the blur in the structured, columnar 

CsI:Tl layer [41]: 

𝑇3(𝑢, 𝑣; 𝑡𝐶𝑠𝐼) = 𝐴𝑒−|√𝑢2+𝑣2|/𝐵 +
1 − 𝐴

1 + 𝐻(𝑡𝐶𝑠𝐼) ⋅ (𝑢2 + 𝑣2)
  (4.8) 

where the terms A and B are independent of CsI:Tl thickness, and 𝐻(𝑡𝐶𝑠𝐼) is a polynomial 

function of scintillator thickness. Each parameter was obtained from an empirical fit to 

measured presampling MTFs of CMOS detectors with 0.4 mm and 0.7 mm CsI:Tl (Sec. 

IV.B.1.3). 

The total K-fluorescence blur, 𝑇𝐾𝑡𝑜𝑡 , weighs the K-fluorescence blur 𝑇𝐾  by the 

gains of the individual pathways of 𝑔2 [149]: 

𝑇𝐾𝑡𝑜𝑡(𝑢, 𝑣 ; 𝑡𝐶𝑠𝐼) =
(1 − 𝜉𝜔)𝑔2𝑎̅̅ ̅̅ ̅ + 𝜉𝜔𝑔2𝑏̅̅ ̅̅̅ + 𝜉𝜔𝑔2𝑐̅̅ ̅̅ 𝑓𝐾(𝑡𝐶𝑠𝐼)𝑇𝐾(𝑢, 𝑣 ; 𝑡𝐶𝑠𝐼)

𝑔2̅̅ ̅
 (4.9) 
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where 𝑓𝐾(𝑡𝐶𝑠𝐼) is the probability of remote absorption for an K-fluorescence photon, and 

𝑇𝐾(𝑡𝐶𝑠𝐼) is the spread associated with that absorption. Both 𝑓𝐾(𝑡𝐶𝑠𝐼) and 𝑇𝐾(𝑢, 𝑣;  𝑡𝐶𝑠𝐼) 

were computed from analytical models of Chan et al. and Que et al.[158], [159]. 

Similar to previous cascaded systems studies of extremity CBCT, a simplified 

Gaussian model of focal spot blur 𝑇𝑠𝑝𝑜𝑡 was adopted [151], [160]: 

𝑇𝑠𝑝𝑜𝑡(𝑢, 𝑣; 𝑎𝑠𝑝𝑜𝑡) = exp(−𝜋(𝑀 − 1)2𝑎𝑠𝑝𝑜𝑡
2 (𝑢2 + 𝑣2)) (4.10) 

where 𝑀 = 𝑆𝐷𝐷/𝑆𝐴𝐷 and the nominal value of parameter 𝑎𝑠𝑝𝑜𝑡 was set to 0.5 mm. Note 

that while the 𝑎𝑠𝑝𝑜𝑡  parameter in the simulations has a unit of mm, the x-ray source 

employed in the experiments is characterized using the focal spot index (IEC 336 standard, 

denoted FS), representing a range of focal spot size. 

IV.B.1.4 Noise Power Spectrum in Projection Images 

Using the gain and blur terms defined above, the NPS of a 2D projection image is: 

𝑆𝑑𝑒𝑡 = 𝑞0̅̅ ̅𝑎𝑝𝑑
4  𝑔1̅̅ ̅ 𝑔2̅̅ ̅ 𝑔4̅̅ ̅ (1 + 𝑔4̅̅ ̅ 𝑃𝐾𝑇3

2) 𝑇5
2 ∗∗ 𝐼𝐼𝐼6 + 𝑆𝑎𝑑𝑑 (4.11) 

where the functional parameters were omitted for simplicity and  𝑎𝑝𝑑 = √𝑓𝑝𝑖𝑥𝑎𝑝𝑖𝑥 is the 

active pixel area. Convolution with the comb function   𝐼𝐼𝐼6 = ∑ 𝛿(𝑁/𝑎𝑝𝑖𝑥)𝑁  represents 

aliasing of quantum noise due to pixel sampling. 𝑆𝑎𝑑𝑑 is the power spectrum of additive 

noise (𝜎𝑎𝑑𝑑
2 𝑎𝑝𝑖𝑥

2 ). 𝑃𝐾 is a noise term associated with quantum gain as described by Richard 

et al. [161]. In the case of no K-fluorescence, 𝑃𝐾 = 𝑔2𝐴̅̅ ̅̅ ̅ + 𝜀𝑔2𝐴
, where 𝜀𝑔2𝐴

is the Poisson 

excess associated with local x-ray absorption. Considering K-fluorescence, 𝑃𝐾 combines 

the gain and Poisson excess for the three parallel cascades of 𝑔2̅̅ ̅ (Eq. 4.4), as well as a cross 

term in noise between pathways B and C. The Poisson excess in each path is computed 

from the gain (Eq. 4.4) and the path-specific Swank factor. Each path-specific Swank factor 
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is computed as the product of a radiological Swank factor and an optical Swank factor. The 

CsI:Tl thickness-dependent radiological component is associated with polyenergetic 

absorption and was computed from the result of Zhao et al. [41] The optical component is 

due to light losses in the scintillator. For simplicity, it is assumed to be independent of 

CsI:Tl thickness and equal to 0.95, giving good agreement with the measured NPS on the 

C400 and C700 CMOS detectors. This value also agrees fairly well with an approximate 

estimate of the optical Swank factor Iopt given by the following equation from Lubinsky et 

al [42]: 

𝐼𝑂𝑃𝑇(𝑡𝐶𝑠𝐼) =
⟨𝜂𝑒𝑠𝑐(𝑡𝐶𝑠𝐼 , 𝑧)⟩

2

⟨𝜂𝑒𝑠𝑐(𝑡𝐶𝑠𝐼 , 𝑧)
2⟩

 (4.12) 

This formula yields Iopt = 0.98 for 0.7 mm CsI:Tl and Iopt = 0.99 for 0.4 mm CsI:Tl. 

While the above equation is approximate and was derived under certain simplifying 

assumptions, it further justifies modeling Iopt as largely independent of 𝑡𝐶𝑠𝐼 and supports 

the empirical value of 0.95 used in this study. 

 With the above definitions, the normalized NPS (NNPS) in Eq. 4.1 is given by: 

𝑁𝑁𝑃𝑆 =  𝑆𝑑𝑒𝑡/(𝑎𝑝𝑑
2  𝑞0̅̅ ̅ 𝑔1̅̅ ̅ 𝑔2̅̅ ̅ 𝑔4̅̅ ̅)

2
 (4.13) 

The noise model accounts for the effects of scintillator thickness on detector gain and MTF. 

However, the Lubberts effect [162], [163] (i.e., noise amplification due to the depth-

dependent light spread from individual scintillation events) is assumed to be negligible. 

This assumption is supported by experimental results for columnar CsI:Tl scintillators 

[164], showing negligible contribution from the Lubberts effect (ratio of the square of 

detector MTF to NNPS very close to unity) over a broad range of scintillator thickness 

(~0.2 mm to ~0.6 mm). 
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The dashed gray line in Fig. 4.1B shows the integral of NNPS over the Nyquist 

frequency range as a function of scintillator thickness at an exposure of 0.126 mAs. Despite 

the increased escape fraction that partly compensates for the reduced QDE of thin 

scintillators (Fig. 4.1A) in mean signal, the projection noise substantially increases with 

decreasing CsI:Tl thickness. The plot of the zero-frequency 𝑃𝐾 (black line) in Fig. 4.1B 

explains this behavior: the improved 𝑔2̅̅ ̅ of thin scintillators leads to increasing contribution 

of the associated conversion noise encapsulated by 𝑃𝐾. 

IV.B.1.5 Imaging Task 

We considered task functions representing discrimination of two Gaussian stimuli 

of different widths, defined in the detector plane as: 

𝑊𝑡𝑎𝑠𝑘(𝑢, 𝑣) = 𝐶𝑀2 [𝑒−2𝜋2(𝑘𝑀𝑎𝑜𝑏𝑗)
2
(𝑢2+𝑣2) − 𝑒−2𝜋2(𝑀𝑎𝑜𝑏𝑗)

2
(𝑢2+𝑣2) ] (4.14) 

where C is a contrast term, 𝑀 is the system magnification, 𝑎𝑜𝑏𝑗 is the feature size measured 

in the object plane, and 𝑘 is a parameter that determines the relative width of the Gaussian 

stimuli. Here, 𝑘 was set at 0.8, and 𝑎𝑜𝑏𝑗  was varied to simulate a range of anatomical 

feature sizes and associated spatial frequency bands (Fig. 4.1C). In the context of trabecular 

bone imaging, an increase in detectability of the task in Eq. (4.14) indicates improved 

ability to discriminate trabeculae (or trabecular cavities) that differ in size by 20% and 

could thus indicate improved assessment of change in trabecular thickness (or trabecular 

spacing). 

Holding other parameters of Eq. (4.14) fixed, a change in feature size, 𝑎𝑜𝑏𝑗, implies 

a change in the area under 𝑊𝑡𝑎𝑠𝑘
2  - i.e., signal power. To account for this scaling, the results 

below are reported in terms of relative d’2, where the detectability for a given feature size 

is normalized to a reference value (e.g., the value at nominal system parameters) for the 
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same feature size. Detector performance for various tasks (feature sizes) is then compared 

in terms of this relative detectability, and the contrast term C cancels out for all cases (can 

be ignored) and was set to unity. 

IV.B.1.6 Simulation Studies 

Detectability for the task function of Eq. (4.14) for feature sizes ranging from 0.03 

to 0.2 mm [131] was studied in relation to five system parameters (Table 4.1, Key 

Variables): pixel size ( 𝑎𝑝𝑖𝑥 ), scintillator thickness ( 𝑡𝐶𝑠𝐼 ), focal spot blur ( 𝑎𝑠𝑝𝑜𝑡 ), 

magnification (𝑀) and bare-beam x-ray exposure. 

The x-ray spectrum (𝑞0(𝐸)) was obtained using the Spektr 3.0 [24] implementation 

of TASMICS [22] for a beam energy of 90 kV. Tube inherent filtration was found 

experimentally by estimating Al thickness that achieved best match of detector entrance 

dose between Spektr simulations and measurements on the benchtop x-ray source (Sec. 

2.2) performed with a Si diode (AccuDose, RadCal Corp., Monrovia, CA) for 70, 80, 90, 

and 100 kV beams. The added filtration (Table 4.1) was the same as the filters applied in 

the experimental setup. Additionally, differences in tube output (mGy/mAs) between the 

Spektr 3.0 model and the source used in the experiments were accounted for by fitting a 

constant scale factor. 

The nominal SDD was set to 560 mm and nominal magnification was set to 1.3 to 

emulate the extremity CBCT scanner [151] and test bench setup. The x-ray spectrum at the 

detector, 𝑞𝑑𝑒𝑡(𝐸), was obtained from the input spectrum, 𝑞0(𝐸), attenuated by material 

approximating a human knee: 8 cm water, 7.6 cm spongiosa and 0.4 cm cortical bone. To 

investigate the effects of system geometry in hypothetical future system designs, additional 

geometries with varying magnification were simulated by holding SAD fixed and varying 
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SDD. Tube output was kept the same in all configurations so that the patient dose was 

constant. 

IV.B.2 Benchtop Experimental Setup 

Experimental evaluation of CMOS-based extremity CBCT was performed on an 

imaging test bench (Fig. 4.2). Two CMOS detectors (Xineos-3030HR, Teledyne DALSA, 

Eindhoven, NL) were tested, one with CsI:Tl thickness of 0.4 mm (C400) and one with 

thickness of 0.7 mm (C700). The detectors have a 30 x 30 cm2 FOV, pixel size of 0.099 x 

0.099 mm2, 14-bit digitization, and frame rate of up to 30 fps for full resolution readout. 

The scintillators are deposited on FOP made with leaded glass. The same set of experiments 

was performed with both detectors, keeping the geometric configuration and acquisition 

parameters fixed to provide head-to-head performance comparison for two CsI:Tl 

thicknesses. The detectors were operated in high-full-well sensitivity mode. 

The test bench employed an IMD RTM 37 rotating anode x-ray source (IMD, 

Grassobbio, IT) with 3 kW power and nominal focal spot of 0.3 FS (IEC336). The beam 

energy in all experiments was 90 kV (0.2 mm Cu + 2 mm Al added filtration). The SDD 

was fixed at ~560 mm and the SAD was ~430 mm, consistent with the geometry of a 

clinical extremity CBCT developed at our institution.[165] The object to be imaged was 

rotated using a Velmex B4800 rotation stage (Velmex, Bloomfield, NY), and projections 

were obtained in a step-and-shoot mode of x-ray pulses synchronized with detector readout. 

We observed evidence of possible direct x-ray interaction in the crystalline Si (due 

to the small fraction of x-rays that were not absorbed in the lead glass of the FOP) as bright, 

single-pixel outliers (“speckles”) apparent after gain and offset corrections. The speckles 

were isolated by applying a Laplacian filter to select pixels that deviated from the mean of 
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the filtered frame by more than 2 standard deviations. Such speckles identified by filtering 

(typically accounting for <2% of total pixels) were corrected by linear interpolation of 

nearest neighbors. 

 

Figure 4.2 CBCT test-bench used in experimental studies. The bench was configured with 

two CMOS sensors, one with CsI:Tl thickness of 0.4 mm (C400) and one with thickness 

of 0.7 mm (C700). 

IV.B.2.1 Measurement of Detector MTF, NPS, and Scan Dose 

Measurements of detector MTF and NPS were performed with additional 2.5 mm 

Cu and 2 mm Al placed in the beam to simulate attenuation by 15 cm of water. Detector 

MTF was measured using a tungsten edge placed on the detector surface and imaged at 

~15o angle to the pixel matrix. The exposure was set to deliver ~90% detector saturation 

and 100 frames were acquired, gain and offset corrected, and averaged. An oversampled 

ESF was obtained from the projection of the tilted tungsten edge following Samei et al. 

[109]. The ESF was oversampled at 20 m intervals via bilinear interpolation, and the LSF 

was computed by numerical differentiation of the ESF. The presampling detector MTF was 
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obtained as the absolute value of a Fourier transform of the LSF, divided by a sinc function 

corresponding to the 20 m binning.  

The parameters of the scintillator blur model 𝑇3(𝑢, 𝑣;  𝑡𝐶𝑠𝐼)  in Eq. (4.8) were 

estimated by a least-squares fit to the measured MTFs of the two detectors (denoted 

𝑀𝑇𝐹𝐶400 for the C400 sensor and 𝑀𝑇𝐹𝐶700 for the C700 sensor):  

(𝐴∗, 𝐵∗, 𝐻400
∗ , 𝐻700

∗ )

= arg min
𝐴,𝐵,𝐻1,𝐻2

[(𝑇3|𝐴,𝐵,𝐻400
−

𝑀𝑇𝐹𝐶400

𝑇5𝑇𝐾𝑡𝑜𝑡400

)

2

+ (𝑇3|𝐴,𝐵,𝐻700
−

𝑀𝑇𝐹𝐶700

𝑇5𝑇𝐾𝑡𝑜𝑡700

)

2

] 

(4.15) 

where 𝑇𝐾𝑡𝑜𝑡400
 and 𝑇𝐾𝑡𝑜𝑡700

 are the K-fluorescence blur functions for the two CsI:Tl 

thicknesses computed from Eq. (4.9). The dependence of T3  on CsI:Tl thickness is 

encapsulated in the function 𝐻(𝑡𝐶𝑠𝐼) in Eq. (4.8), assumed to follow a polynomial of the 

form 𝐻(𝑡𝐶𝑠𝐼) = ℎ1 ∙ 𝑡𝐶𝑠𝐼
2 + ℎ2∙𝑡𝐶𝑠𝐼 . The values of the function 𝐻(𝑡𝐶𝑠𝐼) at the CsI:Tl 

thicknesses of the two detectors, H400 and H700, were obtained through the fit in Eq. (4.15). 

The parameters of the polynomial model ℎ1 and ℎ2 were estimated from H400 and H700
 by 

an additional fitting step, resulting in the thickness-dependent  𝐻(𝑡𝐶𝑠𝐼) =  0.35𝑡𝐶𝑠𝐼
2 +

0.18𝑡𝐶𝑠𝐼 . The factors  𝐴∗  and 𝐵∗  were found to be 0.20 (unit-less) and 1.42 mm-1, 

respectively. 

NNPS was computed for detector exposure ranging from 0.019-0.15 mAs/frame 

(from 3 ms/fame to 24 ms/frame at 6.3 mA). One hundred projections were obtained at 

each exposure, offset-corrected using a mean of 50 dark images and normalized by the 

mean of all air projections. Ninety-nine difference images (denoted Δ) were then obtained 
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from pairs of consecutive frames to remove residual structure or low-frequency trends. 

Effects of detector lag were assumed negligible based on manufacturer specification of 1st 

frame lag of 0.1%. [166] In each difference image, 144 non-overlapping regions of interest 

(ROIs) of 81x81 pixels were drawn. The NNPS was given by: 

𝑁𝑁𝑃𝑆(𝑢, 𝑣) =
𝑎𝑝𝑖𝑥

2

2𝑛2𝑁
∑| 𝐹𝐹𝑇[Δ(x, y) ] |2 

𝑁

 (4.16) 

where 𝑛 is the side-length of each ROI, N is the total number of ROIs across all difference 

images, and the factor of 2 accounts for the use of difference images. DQE was computed 

as: 

𝐷𝑄𝐸 =
𝑀𝑇𝐹2

qdet̅̅ ̅̅ ̅ ⋅ 𝑁𝑁𝑃𝑆
 (4.17) 

The x-ray fluence qdet̅̅ ̅̅ ̅ was obtained from Spektr simulation using the source model 

described in Sec. IV.B.1.  

Dose measurements were performed using three 16 cm diameter CTDI phantoms 

stacked to cover the longitudinal FOV of the benchtop CBCT. A Farmer chamber 

(AccuDose, Radcal Corp., Monrovia CA) was placed at the center of the x-ray beam in the 

central hole of the CTDI phantom. The central CTDI dose per projection was obtained by 

averaging 110 exposures of the CTDI phantom for x-ray techniques ranging 0.032-0.16 

mAs/exposure (from 5 ms/fame to 25 ms/frame at 6.3 mA). 

IV.B.2.2 Cadaver Study 

CBCT scans of a cadaver knee were acquired using 420 projections evenly 

distributed over 220ᵒ (equal to 180o + fan angle and thus providing complete sampling). 

The x-ray technique was varied from 0.038–0.15 mAs/frame (from 6 ms/fame to 24 

ms/frame at 6.3 mA). Image reconstruction used the FDK algorithm with a Hann-apodized 
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filter and Parker short scan weights [51], [167]. For high-resolution bone reconstruction, 

the filter cutoff was 0.9 of the Nyquist frequency (fNyq) and voxel size was 0.025 mm. Soft 

tissue reconstruction involved 4x4 software projection binning, filter cutoff at 0.8 x fNyq, 

and 0.3 mm voxel size. Scatter correction was performed assuming that the scatter in each 

projection view is uniform and equal to a fraction of the mean projection value (empirically 

set to 0.4) in a 5x5 pixel ROI at the center of the projection.  

IV.B.3 Bone Microstructure Imaging on a Prototype CMOS-based CBCT 

IV.B.3.1 A Prototype CMOS-Based Extremity CBCT Scanner 

The CMOS-based extremity CBCT scanner was built on a gantry that is largely 

identical to a commercially available a-Si:H FPD extremity scanner (OnSight3D, 

Carestream Health, Rochester NY). Both are shown in Fig. 4.3(A). The gantry allows 

weight-bearing and non-weight-bearing imaging of the extremities and provides a compact 

geometry with source-detector distance of 560 mm and magnification of 1.3. The CMOS-

based scanner utilizes a compact rotating anode source with 0.3 FS focal spot (IMD RTM 

37) and a Dalsa Xineos3030 CMOS detector with 99 µm pixel size and a custom 400 µm 

thick CsI:Tl scintillator, selected in task-based optimization to maximize detectability in 

high-resolution imaging [7]. The imaging protocol involved 90 kV beam energy, 420 

frames over a 210ᵒ short scan trajectory, and dose of ~15 mGy (central dose in a 16 cm 

CTDI phantom). The CMOS-based extremity CBCT was compared to an a-Si:H FPD 

CBCT (prototype OnSight3D system) using a Varian PaxScan2530 detector with pixel size 

of 0.137 mm and CsI:Tl scintillator thickness of 0.7 mm, and a stationary anode x-ray 

source with 0.5 FS focal spot. The imaging protocol also involved 420 frames and a 90 kV 
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beam. The dose measured from an ion chamber at the center of a CTDI phantom was 12 

mGy.  

 

Figure 4.3 (A) CMOS-based extremity CBCT system along with details of the CMOS 

CBCT gantry. (B) Key system and scan parameters for CMOS CBCT and a-Si:H FPD 

CBCT. 

The CBCT scans for both systems were acquired at the native pixel size of their 

detectors. This acquisition mode is not commonly used in clinical imaging on the a-Si:H 
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FPD system, where 2x2 binning is typically employed to reduce scan time. As shown in 

Fig. 4.3B, the higher frame rate of the CMOS detector results in dramatic reduction in scan 

time, from ~60 sec for a-Si:H FPD CBCT to ~17 seconds for CMOS CBCT. 

IV.B.3.2 Performance Evaluation 

The spatial resolution of the prototype CMOS system was evaluated in comparison 

to the a-Si:H FPD CBCT in both projection and 3D reconstruction domains. Detector MTF 

was measured for both systems using a tungsten edge placed at the center of the detector 

surface at a tilt of ~2ᵒ and imaged for 100 frames with the gantry held stationary. An 

oversampled edge-spread profile was obtained to derive the line-spread functions and 

MTFs. The detector presampling MTF was then obtained by dividing out a sinc function 

corresponding to the bin size of the oversampled edge. For characterization of 3D 

resolution, a ~127 µm tungsten wire tensioned within a hollow plastic cylinder was scanned 

at the center of FOV of both systems and reconstructed with a ramp filter with Nyquist 

cutoff frequency at a fine voxel size of 25 µm. 

Visual evaluation of image quality for the two systems was performed by an MSK 

radiologist in scans of a cadaveric ankle. The high-resolution reconstruction protocols used 

the Feldkamp algorithm and 25 µm voxel grid. The reconstruction filter was a Hann-

apodized ramp. The cutoff frequency was the same for both systems and equal to ~3.3 mm-

1. The high-contrast reconstruction protocol involved binning of the projection data on each 

system to ~0.3 mm pixel size (2x2 binning on a-Si:H FPD CBCT, identical to the current 

clinical extremity CBCT protocol, and 3x3 binning on CMOS CBCT). The high-contrast 

reconstructions also utilized a Hann filter. The cutoffs were ~1.7 mm-1 and the voxel size 

was 200 µm. The images from the two scanners were registered to facilitate visual 
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comparison. First, a rigid image-domain pre-registration was performed using initial 

reconstructions. Next, the transform found in the pre-registration was applied to image 

coordinate system during backprojection to match the position of the two reconstructed 

volumes with respect to anatomy. This approach avoids interpolation and blurring that 

would be present if the coordinate transform was applied directly to the reconstructed 

volume. 

Finally, the performance of the two CBCT systems was compared in the following 

metrics of trabecular microarchitecture: BvTv, TbTh and TbSp. As mentioned in Chapter 

I, mean thickness is computed from assigning each voxel of the corresponding 

segmentation the diameter of the maximum fitting sphere (to either trabecular ridges or 

spacing) that includes it. An excised human ulna was scanned on a µCT system 

(Skyscan1176, Bruker, BE) to obtain a gold standard characterization of trabecular detail 

at 28 µm voxel size. The ulna was then imaged on the a-Si:H FPD extremity CBCT and on 

the CMOS-based extremity CBCT prototype. High-resolution CBCT reconstructions using 

28 µm voxels and Hann filters with cutoffs set at the Nyquist frequency of each system 

were obtained. The coordinate transform method described above was applied to obtain 

mutually registered CBCT and µCT volumes without interpolation.  

Trabecular analysis was performed in 16 corresponding ROIs (4x4x4 mm3) 

randomly selected in the CBCT and µCT images. To segment bone voxels for the analysis, 

global thresholding (0.2 of max-min-normalized intensity for the entire image) followed 

by morphological closing (in a 5x5x5 neighborhood) was applied to µCT ROIs. CBCT 

ROIs were segmented by sweeping the threshold level for each ROI to find a value that 

gave maximal Dice similarity index with the µCT segmentation of the same ROI. This 
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approach uses a fairly simple segmentation algorithm to focus the comparison on the 

effects of baseline imaging performance of the two systems. Metric values were derived 

from the ROI segmentations and the correlation between CBCT and µCT was assessed 

using Pearson's coefficient.  

IV.C Results 

IV.C.1 Detectability Index for Extremity CBCT 

Fig. 4.4 presents the evaluation of task-based detectability with respect to detector 

pixel size, electronic noise, and scintillator thickness. The nominal extremity CBCT 

scanner geometry was assumed. Recognizing the multi-dimensional character of this 

evaluation, a set of two-dimensional optimizations holding other parameters fixed at 

nominal values was chosen to summarize key findings. The simulated bare-beam x-ray 

exposure was 0.126 mAs / projection. Based on Farmer chamber measurements (Sec. 

IV.B.2.1), the dose measured at the center of a CTDI phantom D for this exposure is 

estimated to be 15 mGy (assuming 420 projections/scan). This value is within the typical 

dose range for scan protocols in FPD-based extremity CBCT [10]. 

Fig. 4.4A shows relative detectability for a CMOS detector with 𝑡𝐶𝑠𝐼 = 0.7 mm as 

a function of detector pixel size and task. For each task, detectability was normalized by 

the maximum detectability for that task across all values of 𝑎𝑝𝑖𝑥. The model of focal spot 

blur was not included in this analysis to elucidate the impact of detector parameters. The 

optimal pixel size, indicated with a dashed line in Fig. 4.5A, varies from 0.07-0.11 mm 
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across the investigated range of 𝑎𝑜𝑏𝑗  (0.03-0.2 mm), with smaller feature size favoring 

smaller 𝑎𝑝𝑖𝑥. 

Fig. 4.4B shows the performance of a hypothetical a-Si:H FPD assumed identical 

to the CMOS detector except for 5x increased electronic noise. At each value of 𝑎𝑜𝑏𝑗, the 

detectability values across all values of 𝑎𝑝𝑖𝑥 were normalized by the maximum 

detectability attained by the CMOS detector for the same task. The optimal pixel size for 

any feature size is larger for the a-Si:H FPD than for CMOS, compensating the increased 

contribution of electronic noise. For coarse features, this increased 𝑎𝑝𝑖𝑥 has only a minor 

effect on the maximum detectability, which is comparable to that achieved with the CMOS. 

However, for small feature sizes corresponding to imaging tasks in trabecular bone (0.05-

0.1 mm), the maximum detectability of the a-Si:H FPD is only 20%-60% of the maximum 

d’2 of the CMOS. Due to its lower electronic noise, a CMOS detector is able to better 

exploit the increased Nyquist frequency and the improved aperture MTF (𝑇5) associated 

with reduced pixel size, resulting in better performance in high-resolution tasks.  

Based on Fig. 4.4A, the pixel size of the CMOS sensor used in the experimental 

studies (𝑎𝑝𝑖𝑥 = 0.099 mm) is seen to provide optimal or nearly optimal performance for a 

broad range of feature sizes. In Fig. 4.4C, the pixel size was thus fixed at 0.099 mm to 

investigate the effects of scintillator thickness. The detectability for each 𝑎𝑜𝑏𝑗  was 

normalized by their maximum value across the investigated range of 𝑡𝐶𝑠𝐼. For small feature 

size, the improvement in spatial resolution provided by a thin scintillator compensates for 

the increase in quantum noise resulting from reduced QDE (see Sec. IV.B.1.2 and Fig. 4.1), 

and optimal d’2 is achieved at CsI:Tl thickness of ~0.4 mm for 𝑎𝑜𝑏𝑗  of ~0.07 mm. As the 

feature size increases, there is less benefit to the improved MTF provided by thin 𝑡𝐶𝑠𝐼, and 
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the optimal d’2 shifts toward thicker CsI:Tl to minimize quantum noise (increase QDE). 

Detectability at 𝑎𝑜𝑏𝑗 of ~0.13 mm is optimized for CsI:Tl thickness of ~0.7 mm, typical 

for current FPD and CMOS detectors for CBCT applications. This scintillator thickness 

delivers a balanced performance over a broad range of feature size, achieving d’2 within 

~10% of its maximum value (obtained at optimized 𝑡𝐶𝑠𝐼) for 𝑎𝑜𝑏𝑗 from 0.08 – 0.2 mm. 

Using a thin scintillator benefits high-frequency tasks, but results in a relatively steep 

decline in detectability for coarse features (~20% reduction compared to the value at 

optimized thickness). This effect, however, can be partly mitigated by additional projection 

binning and filtering to generate a lower resolution “soft-tissue” image separate from the 

full resolution “bone” reconstruction. 

In Fig. 4.4D, the detectability for fine feature size (𝑎𝑜𝑏𝑗  = 0.06 mm) consistent with 

visualization of trabecular bone is analyzed as a function of 𝑡𝐶𝑠𝐼 and 𝑎𝑝𝑖𝑥. Recognizing that 

different diagnostic tasks may be sensitive to features of different size, we chose 0.06 mm 

(as measured in the object domain in the nominal extremity CBCT geometry) as 

representative of the lower range of typical human trabeculae [168] (0.05 mm – 0.2 mm 

thick). The values of d’2 are normalized to the maximum over the investigated range of 

𝑡𝐶𝑠𝐼 and 𝑎𝑝𝑖𝑥, achieved at ~0.075 mm detector pixel size and ~0.35 mm CsI:Tl thickness. 

The dashed line marks the optimal scintillator thickness for each 𝑎𝑝𝑖𝑥. Consistent with Fig. 

4.4A, a pixel size of 0.05-0.1 mm is favored across the entire range of 𝑡𝐶𝑠𝐼, providing an 

optimal tradeoff between noise (increasing for smaller pixels) and aperture size and 

Nyquist frequency (improving with smaller pixels). There is a sharp drop in detectability 

at pixel size >0.1 mm, approximately corresponding to the magnified feature size. The 

relative benefit of using small 𝑎𝑝𝑖𝑥 is diminished for thicker 𝑡𝐶𝑠𝐼, where scintillator blur 
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dominates the MTF. For the pixel size of current CMOS sensors (0.05-0.1 mm), the 

detectability for 0.06 mm feature size is maximized using CsI:Tl thicknesses of ~0.4 mm. 

The optimal thickness is relatively constant for pixels in the 0.05-0.1 mm range (despite 

the 2-fold change in 𝑎𝑝𝑖𝑥) , indicating diminishing benefits of improved scintillator 

sharpness compared to the increase in quantum noise (reduction in QDE). For the CMOS 

detector used in the experimental studies (𝑎𝑝𝑖𝑥 = 0.099 mm), a ~20% improvement in d’2 

is anticipated at the optimal CsI:Tl thickness of ~0.35 mm compared to the commonly 

employed ~0.7 mm CsI:Tl. Beyond 𝑎𝑝𝑖𝑥  of ~0.1 mm, the optimal 𝑡𝐶𝑠𝐼  changes almost 

linearly with pixel size, indicating that once the system resolution drops below this value, 

the optimization of d’2 is driven primarily by reduction of projection quantum noise 

attained using thicker scintillators.  
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Figure 4.4 Task-based evaluation of CMOS detector performance in extremity CBCT. (A) 

Relative detectability for a range of feature sizes (vertical axis) as a function of pixel size. 

Scintillator thickness is assumed constant and equal to 0.7 mm. Detectability is normalized 

to the maximum value for each 𝑎𝑜𝑏𝑗 . Dashed lines indicate maximum d’ for each feature 

size. (B) Ratio of d’2 achieved with the same scintillator as (A), but at increased electronic 

noise consistent with an a-Si:H FPD, to maximum d’2 attained for each 𝑎𝑜𝑏𝑗  by the low-

noise CMOS detector of (A) . (C) Relative detectability of the CMOS detector as a function 

of scintillator thickness and imaging task, normalized by maximum detectability achieved 

for each 𝑎𝑜𝑏𝑗 across the range of 𝑡𝐶𝑠𝐼. Pixel size is 0.099 mm. (D) Joint optimization of 

pixel size and scintillator thickness for a "trabecular" imaging task with feature size of 0.06 

mm. The graph shows detectability of a CMOS detector (normalized by the maximum). 
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Fig. 4.5 uses the theoretical system model of Sec. IV.B.1.1 to investigate effects of 

imaging dose, focal spot size, and system geometry in CMOS-based extremity CBCT. The 

ratio of d’2 of a CMOS detector with 0.099 mm pixels and 𝑡𝐶𝑠𝐼 = 0.4 mm (C400) to d’2 of 

the same detector with 𝑡𝐶𝑠𝐼 = 0.7 mm (C700) is shown in Figure 4.5A for the nominal 

extremity CBCT system geometry. A dose range typical of extremity imaging is considered 

(5 - 30 mGy central CTDI scan dose). The d’2 ratio is fairly independent of dose over a 

broad range. A thin scintillator is preferred for feature size < 0.1 mm, and a slight change 

in relative detectability of the two detectors occurs at very low dose (likely below practical 

imaging dose levels) and is due to the effects of electronic noise. At such low dose, the 

electronic noise terms favor the detector with an even thinner scintillator.  
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Figure 4.5. (A) Ratio of detectability achieved with the C400 detector to that of C700 as a 

function of imaging task and imaging dose for the nominal extremity CBCT geometry. Top 

horizontal axis represents detector entrance dose (after attenuation by a simulated knee), 

and the bottom horizontal axis gives the corresponding measured central CTDI dose in a 

CBCT scan. (B) Detectability for the trabecular imaging task (𝑎𝑜𝑏𝑗=0.06 mm) as a function 

of focal spot size and pixel size, normalized by the detectability achieved for each 𝑎𝑜𝑏𝑗 

using a 0.5 mm focal spot. C700 detector and nominal extremity CBCT geometry are 

assumed. (C) Pixel size and scintillator thickness yielding optimal detectability for the 

trabecular imaging task (𝑎𝑜𝑏𝑗=0.06 mm) as a function of magnification and focal spot size. 

(D) Relative detectability values (normalized to detectability at the nominal CBCT 

geometry and 𝑎𝑠𝑝𝑜𝑡 = 0.3 mm) at the optimal detector configurations found in (C). 
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The current FPD-based extremity CBCT scanner implements a stationary anode x-

ray source with a 0.5 FS (IEC336). Clinical protocols use 2x2 detector binning with 0.388 

mm pixels to maintain a ~30 sec scan time. In this configuration, there is little benefit from 

using a smaller focal spot, since detector blur associated with relatively large pixels then 

dominate the system MTF [151]. A CMOS detector provides finer pixels (with similar or 

faster scan time), motivating reconsideration of the optimal x-ray focal spot size. Fig. 4.5B 

shows the detectability for a 0.06 mm feature size as a function of pixel size and focal spot 

size. To enable comparison with the current system, CsI:Tl thickness of 0.7 mm was 

assumed (as in the a-Si:H FPD sensor) and d’2 at each 𝑎𝑝𝑖𝑥 was normalized by the value at 

𝑎𝑠𝑝𝑜𝑡=0.5 mm. For 𝑎𝑝𝑖𝑥 = 0.1 mm, the system MTF is dominated by source blur at 𝑎𝑠𝑝𝑜𝑡= 

0.5 mm, and a 2x – 2.5x improvement in d’2 can be achieved by adopting an x-ray source 

with a focal spot of 0.2 – 0.3 mm. The benefits of smaller 𝑎𝑠𝑝𝑜𝑡 are less pronounced for 

pixel size >0.25 mm used in the current extremity CBCT (typically 0.139 mm pixel size).  

The selection of the x-ray source for benchtop experimentation and implementation 

on the CMOS-based prototype balanced the need for small focal spot against design 

requirements such as x-ray power (≥ 1 kW) and the size of the x-ray unit able to fit inside 

the CBCT gantry. Based on these considerations, the compact (~40x20x30 cm3) rotating 

anode IMD RTM 37 tube with 0.3 FS (IEC336) was chosen after survey of commercially 

available systems.  

Fig. 4.5C expands the investigation of CMOS detector configurations to 

hypothetical system geometries that differ from the current extremity CBCT system in 

terms of system magnification. Pixel size and scintillator thicknesses yielding optimal d’2 

for a 0.06 mm feature size are shown for a range of focal spot sizes (each 𝑎𝑠𝑝𝑜𝑡is one line) 
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and magnifications (each M is a marked as a data point). Since the x-ray exposure was kept 

constant at 0.126 mAs/projection (as in Fig. 4.3), the fluence on the detector decreases with 

M. At M=1.1, the impact of source blur is minimized and the detector fluence is high, and 

thus the optimization is primarily driven by detector resolution. This results in the same 

optimal configuration with 𝑡𝐶𝑠𝐼 of ~0.3 mm and 𝑎𝑝𝑖𝑥of ~0.65 mm for all focal spot sizes. 

As the magnification increases, the detector input dose decreases, but the resolution 

requirements for the task diminish because the feature is magnified. The net result is that 

detector MTF becomes less of a factor at higher magnifications and the optimization shifts 

towards thicker CsI:Tl and larger pixel sizes to counteract the loss of input quanta. This 

effect is most noticeable for the focal spot of 0.5 mm (dash-dot line), where source blur 

dominates at high magnifications and d’2 is primarily driven by reduction in quantum noise 

with thicker scintillators and larger pixels. For  𝑎𝑠𝑝𝑜𝑡 of 0.2 mm (solid line), on the other 

hand, system MTF is not as strongly affected by focal spot blur. The optimal detector 

configuration appears to be still partly driven by system resolution, favoring thinner CsI:Tl 

than for larger focal spots. Configurations with 𝑎𝑠𝑝𝑜𝑡 of 0.3 mm (dashed line consistent 

with the source used in experimental studies) represent a somewhat intermediate case. For 

magnifications of up to 1.3, the optimal 𝑎𝑝𝑖𝑥 and 𝑡𝐶𝑠𝐼 are similar to those for focal spot of 

0.2 mm. At those magnifications, the system MTF is dominated by detector blur for both 

x-ray focal spots. (Note that the optimal configurations at M=1.3 agree well with the 

optimum in Fig. 4.4D, where source blur was not included in the simulation). As M 

increases above 1.3, source blur becomes more prominent and the optimization switches 

toward using thicker scintillator and larger pixels to improve the noise component of d’2. 

In all cases, the diminishing need for high spatial resolution due to magnification of the 
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feature of interest allows for substantial increase in optimal 𝑎𝑝𝑖𝑥 and 𝑡𝐶𝑠𝐼 at high values of 

M. 

Figure 4.5D shows the detectability as a function of M and 𝑡𝐶𝑠𝐼  for the optimal 

detector configurations identified in Fig. 4C. The detectabilities are normalized by the 

optimal value at the nominal CBCT configuration and 𝑎𝑠𝑝𝑜𝑡 of 0.3 mm. Consistent with 

Fig. 4.6B, d’2 generally improves with decreasing focal spot size. However, the 

detectability at optimal detector configuration decreases with increasing M. Despite the 

diminishing resolution requirements at high magnifications, the increase in optimal 

𝑎𝑝𝑖𝑥 and 𝑡𝐶𝑠𝐼  required to compensate for the loss of input quanta associated with long 

SDDs leads to an unfavorable tradeoff between system MTF and NNPS. The resulting 

decrease in d’2 is especially pronounced at 𝑎𝑠𝑝𝑜𝑡 of 0.5 mm, where system resolution is 

increasingly dominated by source blur at high values of M. For fixed source output and 

patient dose, configurations with smaller magnification and thus improved detector input 

fluence are preferred for the high-resolution tasks considered in this work. 

IV.C.2 Benchtop Experimental Studies 

IV.C.2.1 Measured MTF and DQE 

Figure 4.6A shows MTF measurements for the C400 and C700 configurations. The 

frequency at 50% modulation (f50) is ~1.4x higher for the detector with thinner scintillator. 

Solid lines indicate empirical fits to detector MTF used in the cascaded systems model 

(Eqs. 4.7, 4.8 and 4.15). The parameterization of T3 in Eqs. 4.8 and 4.15 appears to 

adequately capture the thickness-dependent component of scintillator blur, as indicated by 

good quality of the fit for both configurations. Superior spatial resolution of the C400 is 
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confirmed in Fig. 4.6B, which show images of a Gammex 91437 (Gammex, WI) radial 

resolution gauge placed on the surface of each detector (mean of 50 frames acquired at 6.3 

mA and 20 ms). Compared to C700 (left panel), C400 (right panel) maintains modulation 

of the line pattern (i.e., is free from signal aliasing) up to higher spatial frequencies. 

 

Figure 4.6 (A) Experimental measurements of detector MTF for CMOS sensors with 0.7 

mm CsI:Tl (open circles) and 0.4 mm CsI:Tl (closed circles). Lines represent MTFs 

computed using the cascaded systems model. (B) Contact images of the GAMMEX 91437 

resolution gauge obtained with 0.7 mm CsI:Tl (left) and 0.4 mm CsI:Tl (right).  

Fig. 4.7 shows measured DQE for the two detectors (points) along with simulated 

DQE obtained from the cascaded systems model (lines). DQE is presented for two values 

of detector entrance dose in the quantum-limited range and at a low entrance dose of ~0.5 

mGy/frame, where the impact of electronic noise becomes visible at high frequencies. (All 

doses were measured behind additional filtration emulating attenuation by 15 cm water; 

see Sec. IV.B.2.1). The C700 outperforms C400 for spatial frequencies up to ~3 mm-1, 

where the DQE of both detectors begins to converge, indicating a regime where the 

improved MTF of the C400 detector overcomes the elevated noise (reduced QDE) 

associated with the thinner scintillator. Near the Nyquist frequency, C400 achieves better 

DQE than C700 for all considered dose levels (0.127 for C400 vs 0.069 for C700 at 0.470 

µGy/frame; 0.117 vs 0.057 at 0.293 µGy/frame; 0.049 vs 0.017 at 0.045 µGy/frame). The 
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noise-equivalent dose, the dose at which quantum noise reaches the same magnitude as 

electronics noise [169], is ~0.03 µGy/frame. 

We observed fair agreement between simulated and measured DQE. Most 

significant discrepancies were observed at low frequencies for the C700 detector, likely 

due to inaccuracies in estimation of packing fraction 𝑓𝐶𝑠𝐼 and K-fluorescence reabsorption 

blur 𝑇𝐾 . Since direct measurements of those parameters for the two sensors were not 

available, their implementation in the model were based on approximations, namely: the 

same value of 𝑓𝐶𝑠𝐼 was used for C400 and C700, chosen empirically to yield fair agreement 

with measured NNPS(0) for both detectors; however, a better overall fit in DQE could be 

potentially achieved by adjusting the packing fraction individually for each detector. With 

respect to 𝑇𝐾, the model uses an analytical formula adapted from the work of Que et al. 

[159] The impact of 𝑇𝐾  in the total K-fluorescence MTF 𝑇𝐾𝑡𝑜𝑡  (Eq. 4.9) becomes 

negligible at ~3 mm-1, reflecting the relatively long range of K-fluorescence photons. This 

implies that potential inaccuracies in the analytical estimate of 𝑇𝐾 (originally derived for 

amorphous selenium) are most likely to affect low- to mid- frequency DQE. Further 

refinement of the estimates of 𝑓𝐶𝑠𝐼 and 𝑇𝐾 requires dedicated experimental techniques and 

more sophisticated scintillator models (e.g., MC simulations [170], [171]) that are beyond 

the scope of this study. In the present work, the impact of these approximations is limited 

because we are primarily concerned with tasks emphasizing mid- to high-frequencies (>2 

mm-1), where the simulation agrees well with measurements. 
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Figure 4.7. Measured (points) and simulated (lines) DQE for a range of dose levels for the 

CMOS detector with (A) 0.7 mm thick scintillator and (B) 0.4 mm scintillator.  

IV.C.2.2 Cadaver Imaging 

Reconstructions of a cadaveric knee obtained using the C400 and C700 

configurations are shown in Fig. 4.8. The central CTDI dose was 15 mGy in both scans.  

Fig. 4.8A shows details of two trabecular regions in high-resolution bone 

reconstructions of the knee. The images in the top row of were generated using the high-

resolution reconstruction protocol, but after digital 2x2 pixel binning of C700 projections 

to mimic the ~0.2 mm pixels of a-Si:H FPDs operated at full resolution. Comparison with 

images obtained using C700 and the native pixel size of 0.1 mm in the center row reveals 

the improvement in visualization of trabecular detail enabled by the fine pixel size of 

CMOS detectors. 

Bone protocol reconstruction of projections acquired using the custom CMOS with 

0.4 mm CsI:Tl are presented in the bottom row of Figs. 4.8A (trabecular ROI) and 4.8B 

(complete axial slice). Adoption of a thin scintillator further enhances the visibility of the 

trabecular pattern compared to C700. As expected, based on the simulation studies, where 

the increase in d’2 with C400 was ~10-20%, the improvement in visualization of high 
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frequency detail is perceptible, but modest, and accompanied by slightly increased noise. 

This increased noise might affect visualization of low contrast soft-tissue structures. 

However, since very high spatial resolution is not essential in soft tissue evaluation, the 

impact of elevated noise can be mitigated at least in part by binning the projections, using 

larger voxels and adjusting the reconstruction filter. As shown in Fig. 4.8C, soft-tissue 

reconstructions obtained using C400 and the soft-tissue protocol with 4x4 digital binning 

(Sec. IV.B.2.2) achieve adequate visualization of soft-tissues.   
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Figure 4.8. (A) Magnified views of two trabecular regions in the subchondral bone of a 

cadaver knee imaged using CMOS detectors with different pixel sizes and scintillator 

thicknesses. High-resolution bone reconstruction was used. (A, top) Reconstructions of 

2x2 binned C700 projections, mimicking the pixel size of current a-Si:H FPDs. (A, middle) 

Reconstructions of C700 projections in 1x1 binning, showing the benefits of reduced pixel 

size provided by CMOS. (A, bottom) Images acquired with C400 in 1x1 binning, 

illustrating the visualization of trabecular detail using a thin scintillator. (B) A complete 

axial slice of C400 reconstruction obtained using high-resolution protocol (C) A C400 

reconstruction obtained using a soft-tissue protocol with 4x4 pixel binning. 
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IV.C.3 Bone Microstructure Imaging on a Prototype 

Fig. 4.9A compares the detector MTF for a-Si:H FPD and CMOS CBCT systems. 

In addition to extended Nyquist frequency, the frequency at 20% modulation for the CMOS 

detector is ~1 lp/mm larger than that of the a-Si:H FPD. Fig. 4.9B shows the highest 

possible resolution reconstruction (ramp filter, Nyquist cutoff) of the 127 µm tungsten 

wire, with the FWHM for the CMOS system ~0.1 mm smaller than that of the a-Si:H FPD 

system. 

 

Figure 4.9 (A) Detector MTF measurements. (B) Line profile through FBP reconstructions 

of a tungsten wire. 

CMOS and a-Si:H FPD systems are compared in a realistic clinical scenario in Fig. 

4.10A using high-resolution reconstructions of the cadaveric ankle obtained at approx. 

equal dose. A modest but perceptible improvement in delineation of bony detail with a 

CMOS detector is apparent, especially in the improved modulation for fine trabecular 

features in the enlarged view of the calcaneus. Fig. 4.10B shows high-contrast 

reconstructions of the ankle. Despite the smaller pixel size and thinner scintillator, the 

CMOS image maintains sufficient contrast-to-noise performance to achieve comparable 

visualization of soft-tissue structures to the a-Si:H FPD system. 
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Figure 4.10 Reconstructions of a cadaveric ankle on a-Si:H FPD and CMOS CBCT 

systems in (A) high-resolution protocol and  (B) high-contrast protocol.  

As shown in Figs. 4.11 and 4.12, the intrinsic resolution advantage of CMOS CBCT 

leads to improved performance in quantitative evaluation of trabecular microstructure. 

Visual analysis of sample ROIs reveals that CMOS-CBCT yields a segmentation that better 

preserves the topology of trabecular microstructure compared to the a-Si:H FPD. This is 

supported by the 10% improvement in the mean Dice value of the ROIs in Fig. 4.11. This 

improved segmentation leads to better correlation of the trabecular metrics with gold 

standard µCT (Fig. 4.12B-D). Both systems achieve >0.9 correlation coefficient for TbSp 

and BvTv, where the CMOS detector provides ~10% improvement over a-Si:H FPD. The 

benefit of CMOS is more pronounced for TbTh, where the correlation coefficient is 
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increased from 0.49 to 0.74. Trabecular “ridges” are typically thinner than the spaces that 

separate them and thus TbTh is most sensitive to improved spatial resolution.  

 

Figure 4.11 Reconstructions of the ulna (1st column) and sample trabecular ROIs with 

overlaid segmentations. 

a-Si:H FPD CBCT

CMOS CBCT

µCT
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Figure 4.12 (A) Distribution of Dice coefficient between the CBCTs and µCT ROI 

segmentations and (B)(C)(D) correlation of trabecular metrics obtained with CBCT and 

µCT. Dashed opaque lines denote confidence interval corresponding to α=0.05. Grey solid 

line has unit slope and zero intercept (equivalence line representing absolute agreement). 

IV.D Discussion and Conclusion 

Analysis of task-based detectability points to the benefits of CMOS detectors in 

high-resolution applications of extremity CBCT. A CMOS detector was found to achieve 

~4x better detectability (d’2) for 0.06 mm features compared to an otherwise identical 

detector (𝑎𝑝𝑖𝑥 = 0.1 mm) that exhibited electronic noise comparable to an a-Si:H FPD. 

This is because the low electronic noise of CMOS detectors allows the system to take 

advantage of smaller apertures and improved sampling associated with fine detector pixels. 

(A) (B)

(C) (D)

r a-Si:H FPD CBCT = 0.93
r CMOS CBCT    = 0.98

r a-Si:H FPD CBCT = 0.90
r CMOS CBCT    = 0.96

r a-Si:H FPD CBCT = 0.49
r CMOS CBCT    = 0.74
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Pixel size <0.1 mm was preferred for all tasks considered (𝑎𝑜𝑏𝑗 = 0.03 to 0.2  mm). In 

addition to higher spatial resolution, CMOS detectors offer 3-4x faster frame rate than a-

Si:H FPDs. Scan times of 20-30 sec are anticipated for CMOS-based extremity CBCT 

operated at full detector resolution, reducing the risk of patient motion during acquisition. 

Since the optimal pixel size for high-frequency tasks is smaller for CMOS detectors 

compared to a-Si:H FPDs, such applications also benefit from using a scintillator that is 

thinner than the 0.6-0.7 mm CsI:Tl that is commonly employed. In simulation studies, a 

~0.4 mm scintillator was shown to provide 10-20% better detectability for high-frequency 

tasks compared to a 0.7 mm scintillator for conditions typical of extremity CBCT. DQE 

measurements of CMOS detectors with 0.4 mm CsI:Tl (C400) and 0.7 mm CsI:Tl (C700) 

showed that while C700 showed better DQE at low frequencies, C400 provided improved 

DQE at frequencies >3 lp/mm. CBCT imaging of a cadaveric knee confirmed a modest but 

perceptible improvement in delineation of trabecular detail with the custom CMOS 

detector with 0.4 mm CsI:Tl.  

The decrease in DQE and detectability for low-frequency tasks may hamper soft-

tissue imaging in a system based on a detector with thin scintillator. However, software 

binning of projection data obtained with C400 at imaging dose of 15 mGy yielded adequate 

delineation of soft tissue (muscles, tendons, and fat). Overall, the prototype CMOS detector 

with 0.4 mm scintillator provided improved performance in imaging of trabecular bone 

compared to a conventional screen without major detriment to soft-tissue visualization.  

The results discussed above were obtained assuming the geometry of current 

generation extremity CBCT. This compact configuration was developed specifically to 

enable weight bearing imaging of a single extremity. The primary constraint resulting from 



123 

this consideration is that the detector needs to rotate between the legs of the subject, 

limiting system magnification. It is interesting to consider potential benefits of other system 

configurations, free of this restriction. To this end, additional study was performed to 

analyze the impact of altering the magnification by increasing the SDD and keeping the 

SAD constant. The current value of SAD (~400 mm) cannot be significantly shortened in 

a realistic system configuration considering spatial constraints (size of the extremity and 

the collimator box) and the available x-ray source cone angles. When x-ray source output 

and patient dose are kept constant and SDD (and thus magnification) is increased, the 

detectability is generally maximized at thicker CsI:Tl and larger pixel sizes. This is partly 

because larger magnifications exhibit somewhat reduced demands on detector resolution, 

allowing the optimization to be driven by noise reduction. However, the detectability at 

optimal detector configurations decreases with M, indicating that the overall tradeoff 

between system MTF and NPS still favors configurations with high enough input fluence 

to allow using thin scintillators and small pixels to minimize detector blur. 

The tradeoffs associated with system magnification would be different in a study 

where the source output was adjusted to yield constant detector input fluence across all 

detector configurations. Under such conditions, systems with higher magnification would 

likely be favored since the optimization would not contend with the loss in input quanta. 

However, the constraint of fixed source output is a reasonable starting point with respect 

to fixing the dose to the patient. This is not only due to patient safety considerations, but 

also because of the limited power available in x-ray tubes with focal spot sizes small 

enough (≤0.2 mm) not to dominate system resolution at high magnifications. 
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There are recognized limitations of the CMOS detector model. A slight discrepancy 

between simulated and measured DQE was attributed primarily to inaccuracy in the model 

of K-fluorescence blur [159]. This discrepancy is unlikely to influence the general 

conclusions, in particular with respect to medium and high-frequency tasks where there 

was good agreement between simulation and measurement. Furthermore, the thickness-

dependent model of scintillator MTF was parameterized based on measurements on C400 

and C700. This parameterization may include effects unrelated to scintillator blur, such as 

differences in optical coupling between the two sensors. The thickness of the scintillators 

is also not exactly known and subject to manufacturing tolerances. Nevertheless, we 

believe that the model properly captures general trends associated with reduced scintillator 

thickness, as confirmed in experimental studies with the two detectors. 

The task model in the current work represents discrimination of two stimuli by an 

NPW observer. It is recognized that this choice may not exactly represent the performance 

of a computer algorithm in quantitative analysis of bone quality. Rather, it is intended as a 

reasonable approximation of the fundamental capability of the system to resolve high-

resolution details, under an assumption that any improvement in this capability will likely 

benefit the analysis of trabecular microstructure. Conventionally, such analysis involves 

thresholding and binarization to extract the bone voxels and measure structural indices 

[172], which may be more closely related to estimation tasks than detection / discrimination 

tasks [173]. It is anticipated that improved system performance in the discrimination task 

will translate also to improved performance in the threshold-based quantitative 

measurements. A potentially more challenging extension of this work might involve 

predicting the performance of a texture classification algorithm applied to trabecular 
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regions [174]–[177]. The investigation of textural biomarkers of bone quality is still in 

early stages and there is no consensus yet as to which of the textural features are best suited 

for diagnostic applications. For some features, such as those based on the grey-level co-

occurrence matrix [178], improved conspicuity of fine trabecular detail may improve the 

sensitivity of classification. However, it is possible that other textural features may be less 

sensitive to this aspect of system design. Overall, new task functions and observer models 

specific to the features of interest will need to be developed to enable task-based analysis 

of textural biomarkers. Such development is beyond the scope of this work. 

Finally, the optimization studies were performed in projection domain to focus the 

analysis on the fundamental aspects of imaging performance. Achieving best possible 

baseline imaging capability, as reflected in the 2D metrics evaluated in this work, is an 

essential first step in the development of the new capability for high-resolution analysis of 

bone microstructure. Numerous practical design considerations, more amendable to 

analysis using models of 3D imaging performance, were not investigated. Such 

considerations include x-ray scatter, shift-variant x-ray source blur, blur due to gantry 

motion in continuous pulsed acquisition and reconstruction algorithm. 

The current generation extremity CBCT relies on algorithmic scatter correction 

methods [93], [179], [180] to achieve adequate soft tissue contrast despite the relatively 

high SPR of ~0.5-1 [180]. Previous work indicated a modest benefit in CNR from an anti-

scatter grid in extremity CBCT geometry [180]. Ongoing work on a prototype CMOS-

based system will determine whether the improvement in CNR due to a grid translates to 

improvement in quantitative metrics of bone microstructure and whether such benefit 

outweighs potential practical challenges in calibration and grid line artifact correction. 
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A fairly general, simplified model of x-ray focal spot was used in this work. This 

model was not intended to simulate any particular x-ray tube, but to provide an adjustable 

model to investigate “first-order” effects of source blur. This approach assumes that the 

blur is isotropic and shift-invariant. In practice, neither of those assumptions is perfectly 

satisfied. Pinhole measurements [181] of the focal spot on the RTM37 tube used in this 

work revealed a complex, non-isotropic shape with full width at half maximum (FWHM) 

of ~0.2 mm in the cathode-anode  direction, close to the stated nominal value. In systems 

that are not dominated by focal spot blur, such as the proposed CMOS CBCT using ~0.1 

mm detector pixels, the shape of the focal spot is unlikely to have substantial impact on 

system resolution. A potentially more significant effect is the variation in the apparent focal 

spot size seen in different areas of the detector. For the extremity CBCT geometry, the 

apparent focal spot width for a 0.3 mm x-ray source is ~0.16 mm at the edge of the 300 

mm detector on the cathode side of the source, ~0.1 mm at the center and ~0.025 mm on 

the anode side. Inside a projection view of ~100 mm diameter object (e.g. human tibia), 

the apparent focal spot varies from ~0.12 mm on the cathode side to ~0.06 mm on the 

anode side. In 3D imaging, magnification changes throughout the FOV, resulting in even 

more complex combination of shift variant source and detector blurs, additionally affected 

by angular sampling and the imaging orbit (short or full scan). A study evaluating local 3D 

imaging performance in the presence of shift variant blurs was recently reported [181]. An 

extremities CBCT system with 0.3 mm focal spot size, 0.1 mm detector pixels, and short 

scan acquisition was simulated using a geometric forward projection model. The FDK 

reconstructions for the trabecular bone phantom was assessed throughout the FOV using 

RMSE. There was a ~7% change in RMSE between the best and worst values. 
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Interestingly, the short scan orbit provided a potential advantage over a full scan in that a 

region of the FOV was sampled primarily by the cathode side of the source, thereby 

improving local resolution. Overall, however, the fidelity of the reconstruction was only 

slightly affected by the shift variant source blur, likely because scintillator blur dominates 

in this system geometry. 

Another practical consideration not investigated in this study is the effect of 

continuous gantry rotation. The Xineos3030 detector operates at 30 fps, resulting in total 

scan time ~17 seconds for a 210o trajectory. For 5 ms x-ray pulse length (attainable by the 

RTM37 tube used here), the distance travelled by an object at the radius of 50 mm from 

the axis of rotation is 0.055 mm/pulse. After considering system magnification, this 

distance is less than the pixel size. The resulting motion blur is thus minimal, but detailed 

investigation of this effect is left to future experimental studies. 

Based on findings of the benchtop study, the custom CMOS detector with 0.4 mm 

scintillator and the compact rotating anode x-ray source with 0.3 mm focal spot have been 

translated to the gantry of an extremity CBCT system (OnSight 3D) to develop a prototype 

high-resolution scanner for clinical studies. Parallel work involves development of motion 

correction [182], [183] and advanced reconstruction algorithms with model-based 

deburring to further enhance system resolution discussed above [184]. Evaluation against 

gold-standard micro-CT in metrics of bone microstructure using bone core samples is 

ongoing. A clinical pilot study of test-retest reproducibility in bone morphometry in OA 

patients is in preparation. It is anticipated that the improved performance in high-frequency 

imaging tasks provided by the CMOS detector will enable robust measurements of bone 
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microarchitecture in vivo, benefiting image-based assessment of osteoporosis, 

osteoarthritis, and monitoring of fracture healing. 

The prototype CMOS CBCT system achieved ~40% improved spatial resolution, 

better visualization of bony detail at equal scan dose, and improved correlation with µCT 

in metrics of bone microarchitecture compared to the system with conventional a-Si:H 

FPD. Moreover, the scan time in high-resolution mode is ~3x shorter using CMOS than 

with the a-Si:H FPD operated in 1x1 binning, greatly mitigating the risk of patient motion. 

Overall, the CMOS-based scanner delivers promising performance in quantitative 

trabecular imaging.  
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Chapter V 

A Multiresolution Model for High-Resolution MBIR in CBCT 

This chapter describes how MBIR can be performed for high-resolution data, given 

the limitation that an object always needs to be reconstructed in its entirety for MBIR. The 

multiresolution solution presented here reparametrizes the image and projection data into 

course and fine ROIs, modeling the complete support of the reconstructed object, resulting 

consistent forward projections while achieving native-spatial resolution in the fine ROI. 

V.A Introduction 

Images of bone microstructures in the previous chapter are reconstructed from 

analytical reconstruction. Application of MBIR to high-resolution CBCT imaging is 

challenged by the computational burden of iterative algorithms. Whereas analytical 

methods typically require only one backprojection operation, each iteration of MBIR 

generally requires at least one forward and one backprojection. Furthermore, since MBIR 

relies on a data fidelity term that matches image estimates to the measured data, a complete 

transaxial region of support for the image volume must be reconstructed to capture all 

contributions from the object for each ray path. Thus, ROI reconstructions that are often 

straightforward to implement using analytical methods cannot be realized in standard 

iterative algorithms. The requirement to reconstruct the entire FOV, typically as large as 

20x20x20 cm3, using very fine voxels (≤ 75 𝜇𝑚), can make the application of MBIR to 
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high-resolution imaging prohibitively slow because the speed of the projection and 

backprojection operators is generally proportional to the number of voxels.  

Projection operators can be accelerated by optimized implementation on parallel 

hardware using GPUs [185]–[188] or distributed computing [189]. However, for large-

FOV high-resolution CBCT data, both approaches suffer from latency of data transfer – 

either between host computer and GPU or between computational nodes in a distributed 

network. Furthermore, while such methods improve the baseline speed of the projection 

operator, the performance gains remain dependent on the size of the FOV and resolution. 

The benefits of parallelization diminish when the number of required processes exceeds 

the number of available computational nodes due to very fine discretization of the FOV. 

One approach to overcome the decreased performance of MBIR in high-resolution 

applications relies on the observation that while iterative reconstruction of an isolated high-

resolution ROI is not possible, the model of the volume can be altered so that a fine 

parameterization is only used in the ROI. Some versions of such multiresolution schemes 

forego the traditional square voxel basis functions and employ a sparse representation of 

the volume using heterogeneous voxels, wavelets [190], [191] or meshes [192], [193]. Here 

we will focus on traditional voxel bases, where multiresolution reconstruction can be 

realized by using voxels of different size to parameterize different subvolumes (i.e. coarse 

grid regions and fine grid regions) in the image. These bases are straightforward and map 

well to physical memory in computing hardware.  

Early examples of multiresolution methods include those that enable application of 

the iterative algorithm to a limited internal high-resolution ROI and use an analytical 

method for the surrounding volume. The full FOV is first reconstructed with an analytical 
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method. The ROI subvolume is set to zero and the surrounding volume is reprojected. The 

resulting sinogram is subsequently subtracted from the measured data to isolate the line 

integrals through the ROI. The line integrals of the ROI are then iteratively reconstructed 

[194], [195]. An additional step consisting of smoothing of the reprojected coarse grid line 

integrals was found to yield reduced noise in the ROI reconstruction [196]. However, 

artifacts attributable to  edge degradation and beam-hardening artifacts in the initial FBP 

were found in the iteratively reconstructed ROI obtained using this general approach [197].  

A multiresolution approach where subvolumes with different levels of 

discretization are reconstructed using an iterative algorithm was proposed in [198]. The 

fine and coarse grids are jointly reconstructed using a maximum-likelihood (ML) algorithm 

applied in an alternating scheme, updating one grid while holding the other fixed. In 

contrast to this alternating optimization, simultaneous optimization of both coarse and fine 

grids using general purpose optimization algorithms was developed in [199], [200]. Similar 

to our work, this approach relies on a natural factorization of the line integrals into the 

projections of the fine and coarse grids, yielding a joint objective function for the entire 

volume. This formulation was also applied to reduce metal artifacts by applying high 

fidelity forward models (finer parameterization of metallic edges and polychromatic beam 

modeling) only in ROIs containing metallic objects  [201], [202]. 

This work investigates the application of multiresolution reconstruction in the 

context of extremity CBCT, in particular for visualization and quantitative assessment of 

bone microarchitecture. In this application, the fine trabecular detail (≤ 75 𝜇𝑚) needs to 

be reconstructed at very high-resolution only over a relatively small ROI, covering the 

subchondral bone in the knee joint. The surrounding anatomy (cartilage, ligaments, muscle, 
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fat, etc.) can be reconstructed at lower resolution over the larger FOV. We introduce a new 

multiresolution MBIR algorithm based on the PWLS framework [59] with a SPS optimizer 

[61], [203]. We propose a penalty function specifically designed to provide regularization 

across the boundaries between fine and coarse voxel grids. We extend the multiresolution 

framework to include the possibility of regional binning of the projection images, resulting 

in variable pixel size in addition to the variable voxel size.  We focus our evaluation on the 

tradeoffs between artifacts in the fine grid ROI and voxel size and regularization applied 

in the surrounding coarse grid region. 

V.B Methods 

V.B.1 Multiresolution PWLS 

The conventional forward model for a transmission tomography system, assuming 

a voxelized object representation, is given by: 

where 𝑦𝑖̅ denotes the mean of the ith measurement, 𝑔𝑖 represents the system gain (including 

bare beam fluence and detector sensitivity for measurement i), 𝜇  is a vector of voxel 

attenuation values, and 𝑨 is the forward projection operator. To formulate an objective 

function for model-based reconstruction, a noise model needs to be chosen. For quantum-

limited projection data with negligible contribution of electronic noise, Poisson noise is 

often assumed. For systems with non-negligible contributions of electronic noise (such as 

the FPDs used in extremity CBCT) and when the projection data is post-processed with 

artifact correction algorithms prior to reconstruction (e.g. beam hardening and scatter 

𝑦𝑖̅ = 𝑔𝑖  exp(−[𝑨𝜇]𝒊) (5.1) 
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correction), a more general Gaussian noise model is often more appropriate, leading to a 

weighted-least-squares objective. We adopt the Gaussian model and PWLS in this work as 

better suited for the statistics of FPD CBCT projection data. However, the multiresolution 

methodology presented here could be incorporated into any forward model and easily 

generalized to MBIR algorithms based on the Poisson noise model. PWLS reconstruction 

[59] employs the following objective function: 

where 𝑙 denotes the vector of line integrals 𝑙𝑖 = −𝑙𝑜𝑔 𝑦𝑖/ 𝑔𝑖. The traditional choice for 𝑾 

is a diagonal weighting by the inverse variance, approximated using the 

measurements: 𝑤𝑖 = 𝑦𝑖. The second term (𝑅) is a roughness penalty specified by the finite 

differencing operator 𝑪 [204] and the potential function 𝜓. Here, 𝑪 is a matrix and applies 

the 6 nearest-neighbor pairwise voxel difference (excluding diagonal neighbors). K is the 

total number of pairwise differences in the volume (K ~6 x number of voxels) and 𝜓 is the 

quadratic penalty. 

The above system model and reconstruction objective is general and permits many 

options for the parameterization of the image volume. We will use this framework and 

define forward projection and differencing operators for a multiresolution representation 

of the object. Specifically, we choose to represent the total volume 𝜇 as a union of a set of 

fine grid voxels 𝜇𝐹 and a set of coarse grid voxels 𝜇𝐶: 

𝜇̂𝑃𝑊𝐿𝑆 = argmin
𝜇>0

1

2
‖𝑨𝜇 − 𝑙‖𝑾

2 + 𝛽𝑅(𝜇) 

                              = argmin
𝜇>0

1

2
‖𝑨𝜇 − 𝑙‖𝑾

2 + 𝛽 ∑ 𝜓([𝑪𝜇]𝑘)

𝑘∈𝐾

 

(5.2) 

𝜇 = [
𝜇𝐶

𝜇𝐹
] (5.3) 
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The ratio of the coarse grid voxel size to the fine grid voxel size defines a 

downsampling factor 𝜂𝜇. The linearity of the forward projection operator permits definition 

of the following multiresolution projector  𝑨 , consisting of coarse and fine forward 

projectors 𝑨𝐶 and 𝑨𝐹: 

Integrating (3) and (4) into (1), we may rewrite the forward model as: 

where operator ∘ denotes the Hadamard (elementwise) matrix product. This forward model 

provides a convenient mathematical form for the development of iterative reconstruction 

algorithms that treat the reconstructed volume as a sum of non-overlapping regions, each 

with its own distinct forward model. In this work, we focus on forward models with 

different discretization of the image volume; however, this kind of decomposition has also 

been used in reconstruction methods that parameterize the object into known foreground 

components and an unknown background [205] for reconstruction in the presence of 

objects known to be in the FOV (eg, high-density surgical implants). 

In addition to the large memory footprint of the reconstructed volume, projection 

datasets acquired with high-resolution FPD can also be prohibitively large (up to 

~3000x3000 pixels and ~1000 projections). Thus, we extend the multiresolution approach 

to include multiresolution binning of projection data. The binning ratio 
𝑦

 is defined as the 

ratio of the coarse pixel size to fine pixel size. As illustrated in Fig. 5.1, we assume that the 

binning is applied (via appropriate pre-processing) in such a manner that the fine grid 

regions of the volume are projected entirely onto the fine, natively sampled (unbinned) 

𝑨𝜇 = [𝑨𝐶 𝑨𝐹] [
𝜇𝐶

𝜇𝐹
] (5.4) 

𝑦̅ = 𝑔 ∘ exp(−𝑨𝝁) = 𝑔 ∘ exp(−𝑨𝐶𝜇𝐶) ∘ exp(−𝑨𝐹𝜇𝐹) (5.5) 
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regions of the projection image. The forward projector now comprises 𝑨𝑭𝑵  (fine grid 

voxels to native pixels), 𝑨𝑪𝑵 (coarse gird voxels to native pixels) and 𝑨𝑪𝑩 (coarse grid 

voxels to binned pixels): 

 

Figure 5.1 Schematic of multiresolution forward projection with detector binning. The 

estimated bone region parameterized using fine grid voxels (𝜇̂𝐹) is marked with a black 

dashed line. This region is projected onto native detector pixels (marked with 𝑙𝑁) using 

projection operator 𝑨𝑭𝑵. The line integrals captured by the native projection pixels also 

include contributions from a subset of coarse voxels (𝜇̂𝐶), denoted by projection operator 

𝑨𝑪𝑵 . Line integrals for binned projection pixels (marked as 𝑙𝐵 ) traverse only through 

coarse grid voxels, computed using projector operator 𝑨𝑪𝑩.  

Using the above multiresolution definitions, the data fidelity term in Eq. 5.2 is 

nearly complete. It remains to define the weighting matrix: 

with the corresponding diagonal inverse variance weights, 𝑾𝐵 and 𝑾𝑁,which represent 

the measurement weights of the binned and native pixels, respectively. Such weighting can 

accommodate, for example, reduced noise in the binned measurements. 

𝑙 = [
𝑙𝐵
𝑙𝑁

] = 𝑨𝜇̂ = [
𝑨𝐶𝐵 0
𝑨𝐶𝑁 𝑨𝐹𝑁

] [
𝜇̂𝐶

𝜇̂𝐹
] (5.6) 

where lN and lB denote the line integrals associated with native and binned 

pixels, respectively.  

 

𝑾 = [
𝑾𝐵 0
0 𝑾𝑁

] (5.7) 
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Implementation of the regularization term in the multiresolution PWLS of Eq. 5.2 

requires specification of how the differencing operator 𝑪 acts across the boundary between 

fine and coarse grid voxels. We propose the following general multiresolution penalty: 

where we have defined augmented coarse and fine image vectors, 𝜇̃𝑐  and 𝜇̃𝐹 , 

respectively. These vectors include boundary voxel values from the adjacent ROI that have 

been resampled to the appropriate voxel grid. That is, we use 𝑫, an interpolating operator 

that downsamples fine grid voxels neighboring the 𝜇𝐹/𝜇𝐶 boundary to coarse grid voxels, 

to allow application of a coarse pairwise voxel difference operator [204], Cc , across the 

boundary of the coarse and fine ROIs (Fig. 5.2). Alternately, we use 𝑼, an operator that 

upsamples the coarse grid voxels on the 𝜇𝐹/𝜇𝐶   interface, to apply a fine pairwise voxel 

difference operator, CF, across the ROI boundary in the opposite direction. In this work, we 

choose 𝑫 to be a binning operation that computes the mean over fine voxels, and 𝑼 to 

upsample from coarse to fine voxels using linear interpolation. We have two regularization 

parameters, 𝛽𝐹 and 𝛽𝐶, that control the penalty strengths for the fine and coarse grid ROIs, 

respectively. The sets, 𝐾𝐶  and 𝐾𝐹 , are rows of 𝐶̃𝜇̂  which enumerate all pairwise voxel 

differences contributing to the penalty terms for the coarse and fine ROIs, respectively.  

Eq. 5.8 amounts to applying the conventional penalty to a region (fine or coarse 

grid) that was virtually expanded to include boundary voxels from the other region, which 

were appropriately resampled using interpolation. This procedure is general and can be 

𝜇̃𝑐 = [
𝜇𝐶

𝑫𝜇𝐹
]                      𝜇̃𝐹 = [

𝑼𝜇𝐶

𝜇𝐹
] 

𝑅(𝜇) = 𝛽𝐶 ∑ 𝜓 ([𝑪𝑪𝜇̃𝑐]𝑘)

𝑘∈𝐾𝐶

+ 𝛽𝐹 ∑ 𝜓 ([𝑪𝑭𝜇̃𝐹]𝑘)

𝑘∈𝐾𝐹

= 𝛽𝐶𝑅𝐶 + 𝛽𝐹𝑅𝐹  

(5.8) 



137 

applied to arbitrary boundaries, except perhaps for highly degenerate cases were 

interpolation is not applicable (e.g. ROIs consisting of a single voxel). 

 

Figure 5.2 Schematic of multiresolution regularization scheme illustrating how the 

regularization over boundaries between the fine and coarse voxel grids is performed using 

interpolation operators. 

The objective function shown in Eq. 5.2 can be optimized using the SPS approach 

[61], [203]. We note that the same data-fit surrogate as in Eq. 5.17 of Elbakri and Fessler 

(2002) can be used here, with the standard projector operator replaced by the 

multiresolution projector. Crucially, the surrogate in the SPS algorithm is separable across 

voxels, i.e. the update for each voxel depends on the surrounding volume only through the 

line integrals of the previous iterate of the reconstruction. This yields a multiresolution 

algorithm that allows independent updates of the fine- and coarse-grid ROIs, as detailed in 

Table 1. Similarly, the separable surrogate for the penalty of [206] can be applied directly 

to the multiresolution objective, as the construction of the surrogate is independent of 
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discretization. The algorithm presented in Table 1 can be easily generalized to an ordered 

subset form in a manner analogous to [203]. 

Definitions 

l̂B, l̂𝑁 forward-projected line integrals onto binned and native detector pixels 

lB, lN binned and native preprocessed line integral data 

wB, 

w𝑁 

diagonal entries in weighting matrices 𝑾𝐵 and 𝑾𝑁. 

𝑐  precomputed PWLS curvature, 𝑐 =  [𝐖]+ 

𝟏  volume covering the entire reconstruction FOV of all 1’s. 

L̇C, L̇F derivatives of data-fit surrogates for voxels of 𝜇̂𝐶 and 𝜇̂𝐹. 

dC, dF curvatures of data-fit surrogates for voxels of 𝜇̂𝐶 and 𝜇̂𝐹. 

ψ̇, 

ωψk
 

gradient and curvature of the penalty function ψ. 

ṘC, ṘF derivatives of penalty surrogates for voxels of 𝜇̂𝐶 and 𝜇̂𝐹. 

rC, rF curvatures of penalty surrogates for voxels of  𝜇̂𝐶 and 𝜇̂𝐹. 

Algorithm 

Precompute dC = ACB
T [Ã𝟏 ∘ c]

B
+ ACN

T [Ã𝟏 ∘ c]
N

       dF = AFN
T [Ã𝟏 ∘ c]

N
 

for iteration n=1, ..., N 

 

Coarse Grid Update  

(𝑗 ∈ coarse voxels) 

l̂𝐵 = 𝐴𝐶𝐵μ̂𝐶 

ḣB = wB ∘ (l̂B−lB) 

L̇C = ACB
T  ḣB + ACN

T ḣN 

ṘCj
= ∑ ckjψ̇([C̃μ̂]

k
)

k∈KC

 

rCj
= ∑ ckj

2 ωψk
([C̃μ̂]

k
)

k∈KC

 

 ûC = max (ûC −
L̇C + βCṘC

dC + βCrC
, 0) 

Fine Grid Update 

(𝑖 ∈ fine voxels) 

l̂𝑁 = 𝐴𝐶𝑁μ̂𝐶 + 𝐴𝐹𝑁μ̂𝐹 

ḣN = wN ∘ (l̂N − lN) 

L̇F = AFN
T ḣN 

ṘFi
= ∑ ckiψ̇([C̃μ̂]

k
)

k∈KF

 

rFi
= ∑ cki

2 ωψk
([C̃μ̂]

k
)

k∈KF

 

ûF = max (ûF −
L̇F + βFṘF

dF + βFrF
, 0) 

end 

Table 5.1 Glossary of terms and pseudocode of SPS optimization method for 

multiresolution PWLS. Ordered subsets are omitted for simplification. 

V.B.2 Experimental Setup for Simulation Studies 

The proposed multiresolution approach was evaluated in a simulation study. The 

primary goal of the study was to evaluate the impact of different coarse voxel 
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downsampling factors and the effect of regularization strength in the coarse and fine grid 

volumes on image artifacts in the fine grid region. Figure 5.3 shows the digital phantom 

used in simulations. The phantom included soft tissues (emulating fat and muscle) and two 

bone regions. The bones consisted of a cortical shell and fine trabecular features based on 

a segmented micro-CT image. The attenuation values of the simulated tissues corresponded 

to effective beam energy of 60 keV, which approximates that of the 90 kV (4 mm Al, 0.3 

mm Cu added filtration) spectrum of a dedicated extremity CBCT at our institution [165], 

[207]. The digital phantom used 0.075 mm voxels and simulated projections were 

generated on a 0.194 mm pixel grid. A bare beam fluence of 105 photons per detector pixel 

was assumed and Poisson noise was added to the projections. Simulated detector pixels 

had 100% efficiency. System geometry emulated the extremities CBCT scanner: SAD of 

436 mm and SDD of 560 mm.  
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Figure 5.3 Schematic of digital bone phantom with the boundary of a central fine voxel 

grid region marked with a thick dashed line. The ROIs used for measurement of artifacts 

in the fine grid region (𝜇𝑎𝑟𝑡) and noise (𝜇𝑛𝑜𝑖𝑠𝑒) in the coarse grid region are indicated with 

boxes. 

In the multiresolution reconstruction, the regularization strength of the interior fine 

grid ROI 𝛽𝐹 was fixed at 103 based on visual assessment of spatial resolution. 60 subsets 

were used. The reconstructed voxel size in the fine grid ROI was 0.15 mm, whereas the 

voxel size in the coarse grid region was varied by changing the downsampling factor  

from 1 (i.e., the same voxel size for 𝜇𝐹and 𝜇𝐶) to 10 (i.e., 10x larger voxels for 𝜇𝐶). In 

cases where detector binning was considered in addition to a multiresolution volume 

representation, the binning factor (y) applied to the simulated projections was kept equal 

to the volume downsampling factor. The forward and back-projection operators in the 

simulation and reconstruction used an in-house GPU implementation of separable 
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footprints algorithm using trapezoidal functions [58]. The separable footprint algorithm is 

voxel-driven and thus can easily accommodate arbitrary ROI shapes. However, our current 

implementation of the projector relies on GPU texture memory and thus only handles 

rectangular volumes. Non-rectangular fine grid ROIs were simulated using a minimum 

bounding box and masking operations.  

In addition to varying the coarse voxel size, the regularization strength 𝛽𝐶  in the 

coarse region was also varied. Since image downsampling imparts a degree of smoothing, 

the effect of a specific 𝛽𝐶  value will differ between reconstructions with different coarse 

voxel sizes. To facilitate comparison of the effects of regularization across a range of voxel 

sizes (downsampling factors), a normalization that accounts for the effects of sampling was 

applied to the quadratic penalty [208]. Following the derivation by Yu, for quadratic 

penalties: 

where ∆𝑘𝑖 is the distance between neighboring voxels k and i. Eq. (5.9) implies that within 

a neighborhood where the change in underlying attenuation volume is smooth, the action 

of the penalty (for a fixed penalty strength) scales approximately as square of the voxel 

size or, equivalently, as square of . Henceforth, reconstructions are compared across a 

range of  in a manner that accounts for additional blur due to downsampling by using 

the following normalized penalty strength, denoted as 𝛽:  

In our studies we varied 𝛽 from 0 (no regularization) to 108 for each value of .  

𝜓 =
𝑡2

2
=

(𝜇𝑖 − 𝜇𝑘)
2

2
≈

[𝛻𝜇 ⋅ ∆𝑘𝑖]
2

2
= ∆𝑘𝑖

2 𝛻𝜇2

2
 (5.9) 

𝛽 = (1/𝜂𝜇
2)𝛽𝐶   (5.10) 
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To assess the artifacts in the fine grid region, a small (3 mm x 3.8 mm) ROI, 𝜇𝑎𝑟𝑡, 

was selected in a uniform area of soft tissue adjacent to two bone edges (Fig. 5.3), where 

initial evaluation indicated pronounced streaking in reconstructions with high 

downsampling and regularization of the coarse grid region. To quantify artifacts, 

reconstruction of noiseless projection data were generated for each set of parameters of the 

multiresolution reconstruction. RMSE was calculated in the ROI between the noiseless 

multiresolution reconstruction and a truth image that was obtained by downsampling the 

digital phantom (0.075 mm voxels) to the voxel size of the fine grid region (0.15 mm):  

where 𝜇̂𝑎𝑟𝑡𝑗
 are voxels in the artifact ROI of the noiseless multiresolution reconstruction, 

𝜇𝑎𝑟𝑡𝑗
 are the corresponding voxels in the downsampled digital phantom and 𝑁 is the total 

number of voxels in 𝜇𝑎𝑟𝑡. 

Increase in regularization strength and increase in voxel downsampling both impart 

resolution loss and noise reduction in the coarse grid region. The noise in 𝜇𝐶  

(denoted as SDc) was used as a metric quantifying the cumulative effect of coarse 

discretization and regularization. The noise was measured as RMSE between a flat region 

in the coarse grid subvolume of a noisy reconstruction, denoted as 𝜇𝑛𝑜𝑖𝑠𝑒  (Fig. 5.3), and 

the same region in the truth image. 

V.B.3 Benchtop Study of Anthropomorphic Knee Phantom 

An anthropomorphic lower extremity phantom was scanned on a CBCT test bench 

[209] simulating a dedicated extremity CBCT (SAD=435.7 mm, SDD=559.2 mm). The 

𝑅𝑀𝑆𝐸 =
√∑ (𝜇̂𝑎𝑟𝑡𝑗

− 𝜇𝑎𝑟𝑡𝑗
)
2

𝑗

𝑁
 

(5.11) 
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detector was a PaxScan4030CB (Varian, Palo Alto, CA) operated at 1.5 fps and 0.194 mm 

pixel size. The x-ray source was a rotating anode DU694 x-ray tube with 14° anode angle, 

enclosed in EA10 housing (Dunlee, Aurora, IL). The scan consisted of 360 projections 

acquired over 360o at 90 kV (+0.2 mm Cu, 2 mm Al), with 0.4 mAs per projection.  

The total reconstructed volume was 18x18x18 cm3. The irregularly shaped fine grid 

ROI contained a region of subchondral bone identified using an initial Feldkamp-Davis-

Kress (FDK) analytical reconstruction and consisted of 31,623,168 voxels of 0.15 mm size. 

There were 26,505,888 voxels of 0.6 mm size in the coarse grid region (

= 4) . 

Multiresolution detector binning with 
𝑦

= 4 was applied, with the region of fine pixels in 

each view matching a forward projection of the subchondral bone mask. Regularization 

strengths were set to 𝛽𝐹 = 10−0.5 and 𝛽𝐶 = 104.  

V.B.4 Analysis of Runtime and Memory Footprint 

To estimate the savings in computation time and memory consumption provided by the 

multiresolution method, benchmarking was performed for a 12x12x12 cm3 volume. This 

volume is smaller than the one used in the anthropomorphic phantom experiments of Sec. 

V.B.3. This is because a fine grid reconstruction of the entire grid was needed for 

benchmarking. The memory available on the GPU used in the experiments was not 

sufficient to fit a fine voxel grid larger than 12x12x12 cm3. Note however that this size of 

the volume is sufficient to cover a typical knee joint on the extremity CBCT system. 

Fine grid ROIs with 0.15 mm voxels and varying volume (5x5x5 cm3 to 12x12x12 cm3) 

were considered. For each fine grid ROI, the remainder of the FOV was parameterized 

using a coarse grid over a range of upsampling factors (𝜂𝜇 = 1, 2, 4). Since computation 
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times for projection and backprojection vary and can be dependent on implementation, we 

considered the computational cost associated with projection-backprojection pairs. 

Average total projection-backprojection times were obtained separately for each fine grid 

volume (denoted as tf) and for coarse grid volumes covering the entire FOV (tc) at the 

various coarse grid voxel sizes. Furthermore, for each fine grid ROI, the projection-

backprojection time for a volume equal in size to the fine grid ROI, but parameterized using 

coarse voxels, was measured (t). The coarse grid projection-backprojection times were 

computed with and without projection binning. The estimate of projection-backprojection 

time for a given multiresolution parameterization (defined by a combination of fine grid 

volume size and upsampling factor) is 𝑡𝑓  + 𝑡𝑐 − 𝑡Δ , assuming that projection and 

backprojection times are linear with the number of voxels. The validity of this assumption 

was confirmed for the range of volume discretizations considered here for both projection 

and backprojection operations. The reconstruction speedup was computed as the ratio of 

the average measured time for a projection-backprojection pair of our multiresolution 

implementation to the same average measured time using only the fine grid (𝜂𝜇 = 1).  

Each PWLS iteration requires storing the following variables: the current image  𝜇 , 

derivatives of data fit and regularization surrogates, 𝐿̇ and 𝑅̇, the curvatures of data fit and 

regularization surrogates, 𝑑𝑗  and  𝑟 , and the measured projections. (Here we ignored 

potential memory savings due to ordered subsets that may be offset by increased memory 

transfer times.) Memory footprint was thus calculated as the size of the projection dataset 

plus five times the size of the image volume, assuming all volumes are kept in memory. 

The memory footprint could be reduced by reusing the arrays associated with some of the 

variables, however at the expense of increased data transfer latency. 
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V.C Results 

V.C.1 Digital Phantom Study 

Fig. 5.4 illustrates the convergence properties of multiresolution PWLS 

reconstruction as a function of the downsampling factor. For each value of 𝜂𝜇 , we 

computed root-mean-square difference (RMSD) between the volume estimate at the nth 

iteration and a nearly converged estimate (approximated by the solution after 200 

iterations). RMSD computed within the fine grid ROI (dashed line) and within the coarse 

grid ROI (solid lines) are shown separately. 50 iterations of multiresolution PWLS were 

sufficient to achieve an RMSD of less than 10-4 mm−1 with this stable solution in both 

ROIs and across all values of 𝜂𝜇 . The RMSD behavior in  𝜇𝐹  was the same across all 

downsampling factors. Convergence was generally faster in  𝜇𝐶 than in  𝜇𝐹, even at 𝜂𝜇 =

1  (equal voxel size in both grids), likely because the phantom contains fewer high-

frequency structures in the coarse grid ROI. The convergence rate in  𝜇𝐶  increases with 

higher downsampling. This behavior is intuitive since coarser grids (with fewer parameters 

to estimate) generally have better condition numbers, leading to faster convergence. 

Overall, the number of iterations needed to arrive at a stable solution in multiresolution 

PWLS is determined by the convergence rate in fine grid ROI and is thus independent of 

𝜂𝜇. The crucial advantage of using higher downsampling is in improved time per iteration. 

Based on this analysis, 50 iterations of multiresolution PWLS were used throughout this 

study. 
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Figure 5.4 Convergence profile measured in reconstructions of the digital phantom. The 

estimate at the current iteration is compared with a converged image at 200 iterations. 𝛽𝐹 =
103.5; 𝛽𝐶 = 104.5. The RMSD curves for the fine grid region (dashed line) overlap for all 

values of 𝜂𝜇. 

Fig. 5.5 shows a comparison of multiresolution PWLS reconstructions (without 

projection binning in (A) and with projection binning in (B)) across a range of 

downsampling factors and normalized regularization strengths. Note that reconstructions 

with matched 𝛽 but unmatched 𝜂𝜇 use different 𝛽𝐶, as given by Eq. 5.12. The case of 𝜂𝜇 =

1  corresponds to the same voxel size in  𝜇𝐹 and 𝜇𝐶, but different values of 𝛽𝐹 and 𝛽𝐶. A 

zoomed ROI is shown for each reconstruction that covers the fine grid ROI. Note that an 

increase in coarse grid regularization increases streak artifacts in the fine grid region. The 

artifacts become pronounced at large values of the downsampling factor. Additionally, 

when detector pixels are binned (Fig. 5.5B), noticeable streak artifacts are apparent in the 

coarse grid near the ROI boundary in the case where 𝜂𝜇 = 10. The right-most column in 

Fig. 5.5AB shows a difference image computed between the case of 𝜂𝜇 = 10  and a 

reference image at  𝜂𝜇 = 1 (for this computation, the coarse grid voxels for 𝜂𝜇 = 10 were 

upsampled using nearest neighbor interpolation). Even for this high downsampling factor, 
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there is no distortion in the trabecular features contained in the fine grid ROI 𝜇𝐹 (note that 

the same fine grid regularization strength 𝛽𝐹  is applied in the downsampled and reference 

reconstructions). 
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Figure 5.5 Multiresolution PWLS reconstructions for different downsampling factors and 

coarse grid regularization values. A central region of the digital phantom is shown for 

PWLS without detector binning  (A) and with detector binning (B). The last column in 

each subfigure is a difference image between the case with maximal downsampling (𝜂𝜇 =

10) and the case of no downsampling (𝜂𝜇 = 1). Arrows indicate artifacts due to strong 

coarse grid downsampling and regularization. 
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Fig. 5.6A investigates the trade-off between the strength of artifacts in 𝜇𝐹 , 

measured using Eq. 5.11, and the cumulative effect of regularization and downsampling in 

𝜇𝐶, represented by the level of noise in the coarse grid region. The results are very similar 

for cases with and without detector binning; for clarity, results are shown only for 

reconstructions with detector binning. 

For all downsampling levels, the artifact metric exhibits a plateau accross a range 

of low-to-moderate noise levels (standard deviations of 10-4 to 10-3 mm-1 compared to 

muscle attenuation value of ~2x10-2  mm-1). In this regime, regularization strength in 𝜇𝐶 

can be adjusted without introducing significant artifacts in the fine grid ROI. The RMSE 

rapidly increases at lower noise levels, corresponding to increased smoothing in 𝜇𝐶. The 

graphs in Figure 5.6A are largely overlapping, indicating that the magnitude of the artifacts 

is a function of the overall blur in the coarse grid ROI, regardless of whether the blur results 

from downasampling or regularization. Consequently, when a lower value of the 

downsampling factor is used, there is more room to adjust the regularization in the corase 

grid ROI, i.e. 𝛽𝐶  can be varied over a broader range of values without introducing artifacts 

in the fine grid region. If the corase grid region is of clinical interest, this ablity to tune the 

resolution-noise tradeoff in 𝜇𝐶  when the downsapling factor is relatively low may be 

relevant for optimizing the performance of the reconstruction.  

Figure 5.6B illustrates the artifacts in the fine grid region using a zoom on the 

artifact ROI (art). As the normalized penalty strength (𝛽 ) and 𝜂𝜇  increase, streaking 

becomes apparent. The more downsampling, the lower the value of normalized 𝛽 where 

the streaking becomes pronounced.  
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Further examination of Figure 5.6A reveals a slight increase in RMSE at the lowest 

regularizations (highest noise levels) in the presence of downsampling (𝜂𝜇 ≥ 4). This is 

attributed to bias in the forward projection of 𝜇𝐶  introduced by sharp edges in the coarse 

discretization of fat-muscle interfaces of the phantom. This effect is diminished when 

sufficiently high levels of regularization are applied in the coarse grid region, blurring the 

discretization-induced sharp intensity transitions. The artifact due to sharp edges in weakly 

regularized 𝜇𝐶  is visible as a pronounced cross-hatch pattern at 𝜂𝜇 ≥ 4 and low 𝛽 values 

in Figure 5.6B. Note that a similar, but much less conspicuous pattern is visible at 𝜂𝜇 =

1, where it is likely to represent a combination of various discretization artifacts that are 

often present in noiseless reconstruction of digital phantoms with sharp edges.  

 

Figure 5.6 (A) Magnitude of the artifact in fine grid ROI (RMSE of 𝜇𝑎𝑟𝑡 in Fig. 5.3, given 

by Eq. 5.11) as a function of noise in the coarse grid region. The noise metric quantifies 

the cumulative effect of regularization and voxel downsampling in 𝜇𝐶  . (B) The artifact 

ROI (art) in the fine grid region for a range of downsampling factors (rows) and 

normalized coarse grid regularization strengths 𝛽 (columns). 

V.C.2 Effect of the Location of the Fine Grid ROI 

Examination of Fig. 5.5 suggests that the most pronounced artifacts in the fine grid 

ROI emerge from areas where the interface between 𝜇𝐹  and 𝜇𝐶crosses regions of high 
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contrast and sharp intensity transitions. The appearance and magnitude of the artifacts will 

depend on the location of the fine and coarse grid ROIs, as illustrated in Fig. 5.7 for a case 

with both voxel downsampling and projection binning. Here, the boundaries of 𝜇𝐹 (marked 

with an orange dashed line) were designed to avoid cortical bone boundaries and other high 

contrast gradients. The downsampling factor was set to 10, which leads to severe artifacts 

in the reconstructions of Fig. 5.5 (5th column). With the fine grid ROI conforming to the 

bone boundaries, however, no streaking artifacts are visible in the space between the two 

bones. A strong mismatch in the magnitude of noise in 𝜇𝐶 and 𝜇𝐹 is apparent at higher 

values of normalized regularization strength. Similar to Fig. 5.5, the right-most column of 

Fig. 5.7 investigates a difference image between the downsampled case and the reference 

image at 𝜂𝜇 = 1 (equal voxel size in the coarse and fine grids). No visible distortions in 

the trabecular structure were introduced using multiresolution reconstruction.  

 

Figure 5.7 Multiresolution PWLS with fine grid ROI conforming to bone boundaries 

(marked with dashed line in the leftmost mage) for three values of the normalized penalty 

strength 𝛽. The downsampling factor 𝜂𝜇  is set to 10. The right-most subfigure shows a 

difference image between the downsampled case ( 𝛽 = 106.5 ) and the reference 

reconstruction with no downsampling. Projection binning is included. 

V.C.3 Reconstruction of an Anthropomorphic Knee Phantom 

Figure 5.8 shows a reconstruction of an anthropomorphic knee phantom acquired 

on the CBCT test bench. Fig. 5.8A illustrates the boundaries of the fine grid ROI. Four-
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fold downsampling of the volume and projections was employed. The multiresolution 

PWLS used 3.36% of the number of voxels and 17.7% of the number of detector pixels 

compared to a full FOV fine grid reconstruction. No artifacts arise from downsampling, 

and high-resolution trabecular features are visible in the fine grid ROI [outlined with 

orange dashed line in Fig. 5.8B-D]. The resulting multiresolution image can be stored in 

less than 0.5 GB, whereas for the full-field fine grid image, approximately 7 GB would be 

required. 

 

Figure 5.8 Multiresolution PWLS reconstruction of an anthropomorphic knee phantom 

acquired on a CBCT benchtop. Fine and coarse grid regions are delineated in A. B-D shows 

details of the high-resolution trabecular ROI in the sagittal, axial, and coronal planes. 

Boundaries of the ROI are marked with a dashed line. 

V.C.4 Computational Cost of Multiresolution PWLS 

Fig. 5.9 summarizes the investigation of computational savings provided by 

multiresolution PWLS. As expected, the speedup factor (compared to reconstruction using 
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fine grid voxels throughout the entire FOV) can be as high as a 5x - 10x when the fine grid 

ROI is a relatively small fraction of the total size of the FOV. Most of the speedup is from 

image downsampling, rather than detector binning, which is to be expected with the voxel-

driven forward projection method used here.  

Fig. 5.9B examines the reduction in memory footprint provided by multiresolution 

PWLS. As anticipated, the memory savings are enhanced when projection binning is used 

in conjunction with volume downsampling. For a fine grid ROI of a similar size as the one 

used in the anthropomorphic knee phantom of Sec. V.C.3, the memory footprint reduction 

is approximately 20% compared to reconstruction using only the fine grid voxels. 

 

Figure 5.9 (A) Measured reconstruction speedup of multiresolution PWLS as a function 

of the size of fine grid FOV (for total volume size of 120x120x120 mm3). (B) Total 

memory consumption of downsampled cases compared to fine grid cases.  

V.D Discussion and Conclusions 

We developed a PWLS reconstruction algorithm implementing a multiresolution 

voxelized parameterization of the object. The algorithm was evaluated for application in 

accelerated iterative reconstruction of finely sampled ROIs (voxel sizes <100 m) from 

high-resolution extremity CBCT projection data. It was assumed that the fine grid region 
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is of the primary clinical interest and thus the investigation was focused on mitigation of 

artifacts in the fine grid region and quantification of the reconstruction speedup.  

Streaking artifacts found in the fine grid ROI are likely caused by inconsistencies 

between the simulated forward projections of the coarsely and finely sampled ROIs. 

Artifact magnitude is thus a function of the cumulative blur due to downsampling and 

regularization of the coarse grid region. For example, downsampling factors as high as 10x 

were used without introducing visible streaking in the fine grid region by applying a 

relatively weak regularization in the coarsely sampled sub-volume. However, the tradeoff 

was that the 𝜇𝐶 exhibited a “blocky” appearance, which could limit the diagnostic utility 

of the coarsely sampled region. This may however be acceptable if the clinical interest is 

primarily in the fine grid ROI and achieving maximal speedup is a priority (and the coarsely 

sampled region may be reconstructed separately by other means using parameters suitable 

to soft-tissue visualization). 

Additional memory savings can be attained when the multiresolution representation 

is augmented with binning of projection data. This work evaluated a scenario where 

projection binning was applied to pixels receiving the line integrals that traversed only 

through 𝜇𝐶. This approach results in similar performance with respect to artifacts in the 

fine grid region as the method using only volume downsampling. In the coarse grid region, 

however, streaks tangential to the ROI boundary were found when using high levels of 

projection binning (𝜂𝑦 = 10) in conjunction with volume downsampling. The artifacts are 

hypothesized to emerge from mismatches in simulated projections of some of the coarse 

grid voxels located close to the ROI boundary. Such voxels are projected both on the binned 

and native pixels, depending on whether a given line integral traverses through 𝜇𝐹 for each 
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projection angle. Since this inconsistency is not present for  𝜇𝐹voxels, the fine grid ROI 

was unaffected. 

The simulation study of Sec. V.C.1 involves an ROI boundary that crosses through 

high contrast bone regions, resulting in a challenging scenario for multiresolution PWLS. 

Sec. 3.2 illustrates that both types of streaking artifacts discussed above can be effectively 

mitigated using a fine grid ROI that conforms to high contrast edges. 

Overall, the optimal value of the downsampling factor will depend on the location 

of the fine and coarse grid regions and on the clinical application (i.e. whether both ROIs 

are of clinical interest, or only the finely sampled sub-volume). The results indicate that 

downsampling factors of ~4x are possible without perceptible artifacts in either of the 

ROIs. At this level of 𝜂𝜇, the regularization strength in the coarsely sampled sub-volume 

can be adjusted over a relatively broad range without adversely affecting the fine grid 

region. For a typical knee volume, this downsampling corresponds to more than 5-fold 

acceleration of the iterative reconstruction. The current execution time for the 

multiresolution reconstruction of the knee phantom of Figure 8, obtained with 𝜂𝜇= 4, is ~2 

min per iteration (or ~100 min for the complete reconstruction of 50 iterations) using an 

un-optimized MATLAB-CUDA implementation. A naïve approach utilizing fine voxels 

throughout the whole volume would take ~10 hours for the reconstruction to complete and 

require ~15x more memory, and thus the multiresolution algorithm provided a significant 

step towards achieving clinically practical runtimes for iterative reconstruction of the 

trabecular detail in human studies. We anticipate that an additional 5x acceleration over 

the execution time stated here will be possible with an optimized implementation using a 

compiled executable with improved memory management on a multi-GPU workstation. 
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For certain configurations of the coarse and fine grid regions, downsampling factors 

as high as 10x can be used. For the typical knee CBCT (e.g. the sample reconstruction in 

Fig. 5.8), the 10x downsampling should yield ~52x speedup in PWLS, assuming a 

projection time that scales linearly with number of voxels. The acceleration factor will 

increase if the high-resolution ROI is a smaller fraction of the total volume.  

Similar to the selection of the downsampling factor, the location, shape and the 

procedure for delineating the fine grid ROI will depend on the clinical application. The 

knee phantom reconstruction in Figure 8 represents a scenario where the scan parameters 

were selected to yield projection data that supports high-resolution reconstruction of the 

entire knee joint. In this case, a high fidelity FDK reconstruction could be obtained using 

the same projection data (thus at no additional dose), enabling precise definition of the fine 

grid ROI. However, such close adherence to bony boundaries is not always necessary. As 

shown in Fig. 5.7, image artifacts due to downsampling will be minimized as long as the 

boundaries of the fine grid ROI do not cross high contrast edges. Detection of such high-

contrast edges will typically be possible in an initial FDK reconstruction even if the 

projection data is noisy or sparsely sampled, as in low-dose imaging protocols intended for 

use with iterative reconstruction algorithms. In such cases, the initial analytical 

reconstruction may be non-diagnostic, but will likely be sufficient to delineate the fine grid 

ROI for the iterative algorithm. Furthermore, while the use of precisely defined fine grid 

ROIs (conforming with the object of interest) optimizes reconstruction time by minimizing 

the volume parameterized with fine voxels, the low dose applications are unlikely to yield 

data supporting reconstructions on very fine voxels. The use of sub-optimal fine grid ROIs 
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(e.g. slightly larger than the object of interest) for low dose data will thus not be as 

detrimental for reconstruction performance as in the case of high-resolution imaging.  

Other factors to be considered in choosing the shape of the fine grid ROI involve 

computational burden and ease of implementation. In principle, the shape of the ROIs is 

only limited by the requirement that the fine grid voxel size must be an integer fraction of 

the coarse voxel size to ensure complete coverage of the volume. A fine grid ROI that is 

tightly matched to the shape of area of high-resolution reconstruction has the advantage of 

minimizing the memory usage. At the same time, the execution speed may be hampered 

by non-contiguous memory access patterns that are likely to emerge when the fine grid 

ROI consists of multiple disjoint patches. Rectangular ROIs are easier to map to contiguous 

memory blocks and may thus yield improved computation speed compared to more 

complex ROI shapes when executed using general purpose software. In practice, the use 

of regular, rectangular or cylindrical fine grid ROIs loosely following the boundaries of the 

objects of interest and avoiding sharp tissue boundaries, combined with downsampling 

factors of 4-5, is likely to yield robust performance in typical clinical applications of 

multiresolution PWLS. 

In conclusion, the proposed multiresolution algorithm for PWLS was tested in 

application to extremity CBCT. Artifact-free reconstructions of finely sampled ROIs were 

achieved at computation times that are 5x - 10x shorter compared to a brute force solution 

that applies fine voxel parameterization to the entire volume. The multiresolution 

framework can be further expanded to support other applications where computationally 

expensive forward models (for example, models with modeling of detector blur [184]) are 

applied only to a sub-region of the field-of-view. The algorithm permits application of 
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different regularization strengths in the regions of coarse and fine grid, enabling 

reconstructions in which the sampling and regularization are individually optimized 

depending on the clinical task in each image region.
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Chapter VI. Future Work 

Chapters of this dissertation span the development of new systems (high-resolution 

CMOS detectors), models (imaging system models for advanced reconstruction methods 

and evaluation of image quality), and analysis techniques (quantitative evaluation of bone 

microstructure, density, and joint space morphology). Each of these developments helped 

advance CBCT spatial resolution and quantitative imaging capability, focusing specifically 

on application to MSK imaging. 

One of the most difficult bottlenecks for implementing the electrostatic model 

described in Chapter II is the accurate segmentation of the femur and tibia. This process is 

especially difficult for patients with severe cartilage degradation or significant osteophyte 

growth, where parts of the femoral and tibial surfaces are <1 pixel apart and must be 

manually segmented. Since the publication of this work, deep-learning models have 

emerged that could provide accurate segmentations various anatomical structures [210], 

[211]. These models could potentially be applied for automatic segmentation in 

challenging cases. 

The polyPL algorithm in Chapter III can be extended for quantitative imaging in 

the presence of Ti/Stainless Steel implants for fracture healing applications. This can be 

achieved by varying the basis material and material fraction functions of voxels in the 

vicinity of the implant. Preliminary results using Ti implants showed significant artifact 

reduction using polyPL [116]. One interesting observation is that artifact reduction in this 

case is strongly dependent on the glare correction kernel, especially terms associated with 
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high-frequency blur. This may suggest potential benefits from incorporating more 

sophisticated models of blur and glare into polyPL [64] for reconstruction of highly 

attenuating objects. These more sophisticated models could be implemented with 

multiresolution reconstruction described in Chapter V to maintain competitive 

reconstruction time. Additionally, there are artifacts not corrected in the current workflow, 

notably patient motion. More work is needed to integrate polyPL with existing motion-

correction algorithms for extremity CBCT [183]. Finally, quantitative accuracy was 

calculated on an ROI on the order of few millimeters. It may be of interest to perform 

quantitative BMD measurements of bone microstructure on high-resolution images, such 

as ones obtainable on a CMOS detector (Chapter IV). In this case, quantitation may be 

impacted by noise, and regularization design will be important. 

Chapter IV addressed the optimization and integration of CMOS technology in a 

dedicated CBCT extremity scanner to achieve high-resolution acquisition and enhanced 

visualization of bone microstructure. We constructed a cascaded systems model of the 

detector and performed task-based optimization of its scintillator thickness, leveraging the 

trade-off between resolution and detection efficiency. At the time of writing this 

dissertation, efforts have been made to laser-machine a finely-pixelated structure (~90 µm) 

in CsI:Tl scintillators to further restrict lateral spread of optical photons [212]. Despite 

decreased packing fraction from pixilation, the net gain in spatial resolution may yield 

better detectability for trabecular bone than optimizing CsI:Tl thickness alone. 

Additionally, the high-resolution capability offered by CMOS extremity CBCT 

may be beneficial for inferring biomechanical properties of bone. The concept of 

combining CT with finite element modeling (FEM) of bone is not new [213], [214]. 
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However, due to limited spatial resolution of conventional MDCT, prior literature has 

mostly regarded trabecular bone as an isotropic material. Visualization of trabecular 

features may be helpful in performing more accurate anisotropic FEM. 

Data-driven methods with models such as encoders-decoders [215] and generative 

adversarial networks (GAN) [216] incorporating convolutional layers [217], [218] have 

already been applied to image reconstruction problems. These models make use of large 

sets of training data by propagating training-input into the model and finding model 

parameters that minimize error with training-output (training phase). Once trained, 

projection measurements are propagated through the model to generate a reconstructed 

output (inference phase). In contrast to MBIR, sophisticated knowledge of patient anatomy 

and physics is encoded implicitly into the model through training. Due to extensive use of 

priors, acquisition could be very sparse (a few projections in the case of CBCT), reducing 

patient dose and mitigating motion artifacts. Given sufficient training data and model 

capacity (# of parameters), even a simple data-driven model (for example, perceptrons) can 

theoretically approximate any arbitrary function that describes the reconstruction problem 

[219]. In addition, data-driven models often result in a faster solution, due to efficient 

hardware-accelerated propagation of input through the model.  

In practice, whether sufficient training data is attained to achieve a generalizable 

inverse transform is often questioned. Moreover, the abundance of parameters in the model 

obfuscates first-principle physics inherent in image formation, making such models 

difficult to interpret. Finally, the limitations of these method are not well-studied and there 

are concerns such models are not generalizable, and may generate additional artifacts 

pertinent to clinical diagnosis [220]. For simple quantitative measurements such as 
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volumetric joint space width described in Chapter II, sparse reconstruction leveraging data-

driven models of bone morphology may suffice. However, sparse reconstruction for high-

resolution characterization of bone microarchitecture is more challenging, given 

information-theoretic limits and patient variability.  
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