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Abstract

This study focuses on four anatomical features of subcortical structures associated with

schizophrenia: volume, surface area, shape and residual pose. Being a chronic mental

disorder, schizophrenia affects 1% of the local population and is one of the leading causes

of disability around the world. However, the symptoms of schizophrenia appear and

spread gradually, and robust mathematical and statistical models of disease progression

have the capability to help find meaningful biomarkers of schizophrenia, which may aid

researchers and clinicians to develop potentially novel treatments of the disease.

This study used the open-source Schizconnect dataset, and data was automatically seg-

mented by the MRICloud pipeline, following which scans were mapped to a common

surface template using unbiased diffeomorphic mapping. The first part of this study

focuses on global volumetric and local surface analysis of 6 subcortical structures; the

Amygdala, the Hippocampus, the Caudate, the Putamen, the Globus Pallidum, and the

Thalamus. Significant total volume and regional surface area changes are seen in the hip-

pocampus and thalamus, and reduced atrophy is seen in the diseased subjects compared

to the control subjects for the hippocampus, globus pallidum, and thalamus, whereas

increased atrophy is seen for the diseased subjects compared to the control subjects in the

amygdala, caudate and putamen.

This study also develops a mathematical formulation for residual pose analysis, describ-

ing a robust algorithm to obtain residual pose parameters from MR scans using general

orthogonalized Procrustes analysis, and modelling of rigid transformation matrices as Lie

Groups. Cross-sectional and longitudinal analysis is performed on these residual pose
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parameters, and significant differences are seen in the amygdala, hippocampus, caudate

and globus pallidum for the cross-sectional study, whereas significant changes are seen in

the amygdala, hippocampus, and caudate for the longitudinal study.

This study aims to be the first known exploration of residual pose to characterize longitu-

dinal development of schizophrenia and analyze complementary features to traditional

shape analysis that have previously been discarded in the exploration of this disease,

while also developing a robust mathematical formulation for pose analysis, in order to

contribute to further research that has the potential to find biomarkers of disease onset

and progression from non-invasive imaging modalities such as MRI.
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Chapter 1

Introduction

Schizophrenia is a chronic mental health disorder that affects a person’s emotions, memo-

ries and behaviours, resulting in manifestations of false beliefs, delusions, hallucinations

(both auditory and visual), and impaired thinking. Despite being a severe disorder that

affects around 1% of the general population (Kessler et al., 2005) and being one of the top

15 causes of disability in individuals worldwide (Vos et al., 2017), the neuropathology of

schizophrenia remains unknown, and the conclusions from multiple neuropathological

studies have been conflicting (Shenton et al., 2001). Over the years, with the increasing

improvements being made in medical image acquisition and analysis, non-invasive tech-

niques such as CT and MRI have been used to detect possible biomarkers of neuropatho-

logical change in schizophrenia. There have been studies showing that schizophrenia may

be triggered by and affected by both environmental and genetic factors, and there is signif-

icant familial risk in the onset of schizophrenia for first-degree relatives and second-degree

relatives (Patel et al., 2014). There is considerable risk of the development of schizophrenia

in a person with both parents showing symptoms of the disease, however at the same

time, there have been studies showing the dependence of the onset on the disease on pre-

natal developmental conditions, history of drug abuse, and even residential environments

(Siever and Davis, 2004, Womer et al., 2014).
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Several techniques involving the analysis of subcortical brain anatomy have previously

been used in the analysis of schizophrenia, focusing on both raw volumetric and local

morphometric changes in different regions of the brain. Structural MRI measurements

have specifically been shown to be able to detect statistically significant differences be-

tween schizophrenic patients and controls for cortical, subcortical, and regional volumes

and thickness in the brain (Van Rheenen et al., 2017). There have been studies showing

that certain subcortical structures such as the amygdala, thalamus, and hippocampus

decrease in volume in schizophrenia (Prestia et al., 2011), whereas the globus pallidum and

putamen increase in volume (Ellison-Wright and Bullmore, 2010). There have been studies

with differing results on the effect of the disease on the volume and morphometry of the

caudate, with studies showing both an increase in volume for the diseased population

(Ellison-Wright and Bullmore, 2010; Mamah et al., 2007), and a decrease in volume (Watson

et al., 2012; Ebdrup et al., 2010). Despite being a chronic mental disorder, schizophrenia has

a gradual progression from onset in early adulthood to chronic symptoms developing later.

In order to model this longitudinal progression of the disease, there has been significant

research in discovering potential biomarkers of longitudinal change from structural data

measured through non-invasive imaging techniques such as MRI (Heilbronner et al., 2016;

Szöke et al., 2008).

More recently, in the study of Alzheimer’s Disease, there are studies which show that

volume and local morphological changes may not capture certain information about the

progression of disease that may serve as potential biomarkers (Bossa, Zacur, and Olmos,

2011). Previously, there have been a variety of shape features that have been used in

the broad study of both Alzheimer’s Disease and schizophrenia, including landmark

coordinates (Csernansky et al., 2004), radial atrophy maps (Querbes et al., 2009; Thomp-

son et al., 2007), and medial representations (Styner et al., 2004). In all of these studies,

shape features are extracted by first discarding any pose information by aligning scans to
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common atlases. In fact, it is common in shape analysis theory to attribute all geometrical

information about an object invariant to its pose to the shape information. However, there

has been recent work suggesting that pose information of anatomical structures may serve

as complementary features to shape and volume (Rao, Aljabar, and Rueckert, 2008).

Rao et al.’s studies suggest that information about the relative pose of different sub-

cortical structures within a population of subjects contains useful information that may

contribute to the diagnosis, prognosis and monitoring of neurodegenerative diseases such

as Alzheimer’s, and possibly by extension, schizophrenia. The earliest work in pose analy-

sis was performed by creating point distribution models for subcortical nuclei, which were

treated as joint shape and pose descriptors (Rao, Aljabar, and Rueckert, 2008). The first

work in introducing a formal statistical model for pose descriptions was introduced to

model subcortical structures for healthy subjects (Bossa and Olmos, 2006), which was then

extended for the study of Alzheimer’s Disease (Bossa and Olmos, 2007). These statistical

models have also been extended to perform longitudinal studies of autism (Styner et al.,

2006; Gorczowski et al., 2010), and analysis of the pose of the thalamus in preterm neonates

(Lao et al., 2013).

In this study, we perform a comprehensive and complementary analysis of volume,

surface area, relative shape and residual pose information for the purposes of understand-

ing the progression and morphology of schizophrenia, using the open-source Schizconnect

dataset. By analyzing both shape information and relative pose simultaneously, we explore

the correlation between features returned by both methods of analysis. Further, in order

to model the longitudinal progression of schizophrenia and its effects on morphology

and pose in subcortical structures of the human brain, we use an unbiased longitudi-

nal diffeomorphic mapping algorithm, along with generalized mixed-effects models to

study whether there are any statistically significant differences across the healthy and
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diseased groups in the Schizconnect dataset. We first describe the dataset, followed by

the preprocessing pipeline used to process the dataset. We then formalize and develop an

algorithm to perform residual pose analysis with 3D binary segmentations of subcortical

structures, followed by some statistical methods to analyse both residual pose and other

morphological features. For shape and volumetric analysis, we also explore the advan-

tages and drawbacks to using surface templates that are either unique to the left and right

hemispheres, or combined across the two hemispheres of the human brain, and report

results for the same. To our knowledge, relative pose information has not been used to

study the effects of schizophrenia on the human brain, and we hope to find meaningful

sensitive and specific markers of early schizophrenic disease progression, which may

motivate and aid researchers and clinicians to develop potentially novel treatments of the

disease, while being able to non-invasively monitor the effectiveness of these treatments

on brain morphology.
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Chapter 2

Methods and Design

2.1 Scientific Notation

Throughout the following chapters, the following scientific notation has been used, which

is summarized in Table 2.1 for easy reference.

a A scalar (integer or real)
a A vector
A A matrix
I A binary image
S = (V , F) A triangulated surface
T A transformation matrix
φ A diffeomorphism
u, ν Vector fields

Table 2.1: Notation

2.2 Subcortical Segmentation

For the purposes of this study, we used MRICloud to process and segment the structural

MRI data from the Schizconnect Dataset. MRICloud is a high-throughput web-based cloud

service that performs automated segmentation of brain MRI, and subsequent quantification

analysis (Mori et al., 2016). Patient data was obtained from the Schizconnect website in the

form of NifTi files (Schizconnect Website; Wang et al., 2015; Wang et al., 2016). These images

were uploaded to the MRICloud website, where they were automatically segmented into
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286 discrete parcellations of the human brain based on the Multiple Atlas Likelihood

Fusion (MALF) algorithm (Tang et al., 2013; Mori et al., 2016). The MALF algorithm

works by aggregating label information from multiple human atlases to generate the final

segmentation. Multiple atlases are deformed to the target image simultaneously, and for

each atlas, a voxel in the target image is attributed the label with the highest probability

based on the likelihood-fusion algorithm. Finally, based on voxel attributions from each

individual atlas, a global voting is performed to pick the label that is predicted by the most

atlases. Studies have shown that the MALF algorithm works better in practise, compared

to other standard approaches such as STAPLE (Warfield, Zou, and Wells, 2004) and spatial

STAPLE (Asman and Landman, 2012). There has also been work to show that MRICloud

achieves better overall performance in segmenting subcortical structures such as the

hippocampus and amygdala using the MALF algorithm compared to other web-based

segmentation pipelines such as Freesurfer and FSL (Tang et al., 2013). Following automated

binary segmentation by the MRICloud pipeline, we performed manual quality control

by observing the binary segmentations and excluding subjects where any of their scans

were noisy, or had artefacts regarding the segmentation step, resulting in discontinuous

volumes or volumes where the surfaces had high variance. A total of 21 subjects were

excluded after manual quality control, and the demographic information for the remaining

subjects is presented in Table 2.2

Control Strict Schizophrenia
Number of subjects 66 48

Number of scans 157 110

Table 2.2: Demographic information for the Schizconnect dataset

2.3 Surface Triangulation

After obtaining binary segmentations for the subcortical structures, we then perform re-

stricted Delauney triangulation (Shewchuk, Dey, and Cheng, 2016) to obtain triangular
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surface meshes that roughly correspond to the 3D subcortical shape and surface repre-

sented by the binary segmentation. Given a binary voxel segmentation image of a surface

I ∈ {0, 1}K×L×M, where K, L, and M are the dimensions in voxels of the 3D MRI scan,

using restricted Delauney triangulation, we obtain a triangulated surface S = (V , F) with

Nv vertices and N f faces. Here, V ∈ RNv×3 are the 3-dimensional vertices of the surface,

and F ∈ Z+N f ×3 are the triangular faces, ordered as 3-tuples of vertex numbers with

3-dimensional coordinates given in V . The preprocessing pipeline, comprised of the

subcortical segmentation and surface triangulation steps are visualized in Figure 2.1.

Figure 2.1: Preprocessing pipeline comprising of (I) Subcortical Segmentation of a structural
MR Image using MRICloud, followed by (II) Surface Triangulation of binary segmentations of
subcortical structures

2.4 Surface Template Estimation

Performing restricted Delauney triangulation gives us representations of the subcortical

structures as 3D triangulated mesh surfaces (S(i) = (V (i), F(i)) for i = 1, . . . , N). Before

we can perform diffeomorphic image mapping, we need to calculate a surface template

for each subcortical structure, to serve as a base for the diffeomorphic image mapping

algorithm. To estimate a surface template, a statistical model is constructed that models

the generation and observation of random triangular surfaces using a geodesic shooting

approach, following which a mode approximation EM algorithm is used to determine the
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template surface (Ma, Miller, and Younes, 2010).

The MRICloud service provides a surface template estimation tool that uses the above-

mentioned algorithm to automatically calculate a surface template based on a subset of 96

triangulated surfaces from the population, and a hypertemplate surface. We specifically

select 96 surfaces as that is the maximum number of surfaces that MRICloud simultane-

ously calculates surface templates from, based on the memory capacity of the MRICloud

resource. The subset and hypertemplate selection are performed as follows

1. For each subject at their baseline scan, the total volume of all the subcortical structures

is calculated, and the subjects are ordered on the basis of their volumes.

2. The subject with the median total subcortical volume is selected as the hypertemplate

subject.

3. The triangulated surface for this hypertemplate subject is selected as the hypertem-

plate.

4. The 48 surfaces below and above the hypertemplate in the ordering are selected as

the subset of 96 surfaces used for Surface Template Estimation.

Based on the preliminary volume regression analysis performed in section 3.1, it was

seen that there was significant variation in the volume trends across subjects, across the

left and right hemispheres. In order to smooth out variation due to the quality of both the

binary segmentations and the triangulations, and to explore the dependence on down-

stream analysis on the surface template estimation step, two methods of surface template

estimation were used, which are described below, and also graphically represented in

Figure 2.2:

1. Unique surface templates for each hemisphere: In this paradigm of surface tem-

plate estimation, the hypertemplate and the 96 structures chosen as a subset of the

population were kept restricted to either the left or right hemispheres alone. For
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example, 96 surfaces of the left thalamus were chosen along with a left thalamus

hypertemplate to calculate a surface template for the left thalamus specifically. There-

fore, for each subcortical structure, there was an independent surface template for

the left structure and the right structure respectively. For 14 subcortical structures,

this results in 28 surface templates. Subsequent diffeomorphic mapping is then

performed from the left surface template to the left surfaces, and so on.

2. Combined surface template for each subcortical structure: In this paradigm of

surface template estimation, a common surface template was estimated for each

subcortical structure, by combining both the left and right surfaces. For example,

48 surfaces for the left thalamus and 48 surfaces for the right thalamus were chosen

along with a thalamus hypertemplate, to calculate a surface template for the thala-

mus. For 14 subcortical structures, this results in 14 surface templates. Subsequent

diffeomorphic mapping is then performed from the surface template to both the

left surfaces and right surfaces. The advantage of combined STE is that for each

subcortical structure, we obtain a one-to-one mapping across the structures in the left

and right hemispheres, allowing us to perform analysis that is independent of the

hemisphere, and in the process smooth out some variation that may be introduced

by treating the left and right structures as independent entities.

Figure 2.2: Preprocessing steps (III) for Surface Template Estimation with the unique paradigm
(left) and the combined paradigm (right)
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2.5 Diffeomorphic Mapping of Images

After obtaining a surface template for each subcortical structure, a longitudinal diffeomor-

phic algorithm is used to perform an unbiased mapping of each binary segmentation to

the surface template, in order to obtain a one-to-one correspondence between structures

across the population. It has been shown previously that traditional longitudinal mapping

techniques that map a template onto baseline images and then follow-up images tend to

overestimate atrophy rates in subcortical structures such as the entorhinal cortex (Tward

et al., 2017a). In order to remove this source of bias, an algorithm is used where a patient-

specific template is inserted into a time series at a specific point that is estimated form data,

following which a time-varying mapping is calculated connecting each image in the time

series (Tward, Miller, and Initiative, 2017). The details of the algorithm are described below.

2.5.1 Diffeomorphisms and Vector Spaces

In the field of computational anatomy (Grenander and Miller, 1998), the population of

anatomical shapes can be defined as the action of diffeomorphisms on a particular shape

(or template), where these diffeomorphisms are generated by a time dependent flow of

smooth vector fields.

We can formalize this by defining diffeomorphisms φ : Ω ⊂ R3 → Ω, which are generated

from flows of smooth vector fields v : Ω → R3, such that

φ̇ = v(φ), φ0 = Identity (2.1)

To ensure that the vector fields are sufficiently smooth, they are considered to be embedded

in a Hilbert space of smooth functions V, where the inner product in this space is defined
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as

⟨u, v⟩ = ⟨Lu, Lv⟩L2 (2.2)

=
∫

Ω
(L∗Lu)T(x)v(x)dx (2.3)

where L is a differential operator with its’ corresponding adjoint L∗. The form of L is

specified by setting the kernel (or inverse) of the operator L∗L as

K(x, x′) = exp
(
− 1

2σ2
V
|x − x′|2

)
(2.4)

where σV = 6mm. Further, we define a quantity p = L∗Lv called the momentum, which

results in the vector fields being represented as v = K.p. Finally, the norm in this space is

defined as

∥v∥2
V = ⟨v, v⟩V (2.5)

Equivalently, ∥p∥2
V∗ = ∥K.p∥2

V (2.6)

In this space of diffeomorphisms, shortest path trajectories (or geodesics) are expressed in

the form of the following equation

ṗ = −DvT(φ)p (2.7)

2.5.2 Unbiased longitudinal mapping

For unbiased longitudinal mapping, we consider two geodesic trajectories, one that maps

the template onto the time series (determined by p0, and one that passes through the time

series (determined by p1). The corresponding diffeomorphisms are given by

φ0
s , s ∈ [0, 1], φ1

t , t ∈ elapsed time in years (2.8)
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The goal is to map the surface template I0
0 onto the time-series of binary segmentations

Ji that represent subcortical structures, sampled at times ti (elapsed time in years), for

i ∈ {1, . . . , T}. The corresponding cost function to solve for this system of flows is given

by

E =
T

∑
i=1

[ 1
2Tσ2

p0

p0
0

2

V∗
+

1
2σ2

p1

p1
0 (ti − t0)

2

V∗
+

1
2σ2

I

I1
ti
− Ji

2

L2

]
(2.9)

where I1
ti
= exp

(
v1

0 (ti − t0)
)
· exp

(
v0

0
)
· I0

0 . Upon solving this optimization problem, we

obtain diffeomorphic flows that map the surface template onto each binary segmentation.

The unbiased longitudinal mapping algorithm is also represented in Figure 2.3 in terms of

the two geodesics being calculated.

Figure 2.3: Proposed unbiased longitudinal matching method, where the geodesic trajectory
determined by p0 maps the surface template onto the patient-specific template in the patient’s
time-series at t = t0, and the geodesic determined by p1 maps the patient-specific template to
individual scans for the patient. Figure reproduced with permission from the authors ((Tward,
Miller, and Initiative, 2017)
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2.6 Shape Analysis

After performing diffeomorphic image mapping of each surface template to each sub-

cortical structure in the population, we obtain subcortical structures V (i) ∈ RNV×3 for

i = 1, . . . , N with one-to-one correspondence between vertices, that are rigidly aligned to

the surface template. We are now equipped to perform a joint analysis of a set of triangu-

lated meshes that carry shape information about the subcortical structures under study. In

this study, we focus on three forms of structural analysis: (1) a residual pose analysis, (2)

volumetric analysis, and (3) local atrophy analysis. These methods are described in further

detail below:

2.6.1 Residual Pose Analysis

According to theories in shape analysis, the shape of any object is often defined as the

geometric information contained by that object that are invariant to pose, where pose

is defined as information about the location, orientation and size of the object (Bossa,

Zacur, and Olmos, 2011). According to this definition, the entirety of information that

is contained by an object can be characterized by both the pose and shape information,

which are often complementary. The pose itself can be decomposed into a global pose

and a residual pose. Global pose in the context of subcortical shapes measured through

MR images often accounts for the position and orientation of patients within the scanner

and other confounding factors which don’t contain meaningful information. However,

after accounting for global pose, the remaining residual pose information has been shown

to hold useful information for diagnosis, prognosis and monitoring (Rao, Aljabar, and

Rueckert, 2008; Bossa and Olmos, 2006; Bossa and Olmos, 2007).

In this study, we account for global pose confounding factors by aligning MR images

to a reference atlas using 12 degrees of freedom. The residual pose for each subcortical
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structure is calculated using generalized orthogonal Procrustes analysis, which is a rigid

shape analysis technique that uses isomorphic scaling, translation, and rotation to find

the "best" fit between multiple shapes (Ross, 2004). Firstly, a reference Procrustes mean

shape is calculated for the population using an iterative procedure described in subsection

2.6.1.1. After obtaining the Procrustes mean, the relative pose of each shape is calculated

with respect to the Procrustes mean, following which a mean pose is calculated from the

relative poses. Finally, the residual pose of each shape is calculated by subtracting the

mean pose from each relative pose. The details of each individual step are described in

further detail in the subsequent subsections.

2.6.1.1 Procrustes Mean Shape Calculation

The Procrustes mean for a collection of N surfaces with one-to-one point correspondence

is performed in an iterative procedure, which is described in Algorithm 1. A graphical

representation of the algorithm is also depicted in Figure 2.4.

Figure 2.4: Following the procedure described in Figure 2.1 and Figure 2.2 and the unbiased
longitudinal mapping step, we obtain surfaces that are the surface template non-linearly deformed
to match each surface in the population, with one-to-one correspondence. Iterative procedure for
Procrustes Mean Shape calculation is then defined by the above procedure.
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2.6.1.2 Relative Pose Calculation

On obtaining the Procrustes mean shape, we can finally begin performing shape analysis

using the residual poses of shapes across a population. We motivate the subsequent

residual pose analysis by formulating a theory of geometric transformations for pose.

Two geometric objects (or structures) A and B are considered to have the same shape

if there exists a geometric transformation T that maps A onto B, which is equivalent to

T(A) = B. For the purposes of anatomical shapes, we consider similarity transformations

that account for translation, rotation, and scaling effects, as these transformations have the

desirable property of belonging to Lie groups (Bossa, Zacur, and Olmos, 2011). The ad-

vantage of working with Lie groups is that they are Riemannian manifolds, and therefore

this gives us the ability to represent transformation matrices in terms of a vector space,

where the addition and scalar multiplication properties are well defined, which allows

us to calculate a mean transformation matrix (or mean pose). For the Lie Group G, the

tangent space that exists at a point e given by g = TeG is a vector space. Assuming a

vector field v ∈ g, we are specifically interested in a smooth and invertible mapping (or

diffeomorphism) that maps from g to G and its corresponding inverse, in order to map

the transformation matrices into a vector space. For matrix groups, a natural choice is the

exponential map (exp : g → G), and its inverse, the logarithmic map (log : G→ g), as this

mapping, known as the Log-Euclidean framework, contains certain desirable properties

that make performing computations with elements from a Lie group much easier (Arsigny

et al., 2006).

Considering the population of surfaces S(i) = (V (i), F(i)) obtained through the prepro-

cessing pipeline, a similarity transformation can operate on a surface by simply operating

on the matrix of vertices, while keeping the matrix of faces untouched, as that refers
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to the relative ordering of vertices that make up faces, which is invariant to similarity

transformations. Therefore, a similarity transformation is characterized as

T(V) = sRV + b (2.15)

where s ∈ R+ is a uniform scaling across all three dimensions, b = (bx, by, bz)T ∈ R3 is the

translation vector in three dimensions, and R ∈ SO(3) is the orthogonal rotation matrix in

three dimensions, for a total of seven degrees of freedom. The transformation can also be

represented in homogeneous coordinates as the following matrix

T(s, R, b) =
(

sR b
0T 1

)
∈ R4×4 (2.16)

where 0 = (0, 0, 0)T is the null vector.

The transformation matrix T therefore belongs to the Lie group T = (R+ × SO(3)× R3),

and there is a corresponding vector space associated to T, which is given by t. Given a

v = (l, A, b) ∈ t, the exponential map is given by

exp(l, A, b) = (el, eA, b) (2.17)

= (s, R, b) (2.18)

Here, eA is the matrix exponential of A, and since eA = R, A is a skew-symmetric matrix

defined as

A =

⎛⎝ 0 −θz θy
θz 0 −θx
−θy θx 0

⎞⎠ (2.19)

Therefore, for each surface, the pose can be represented as either the homogeneous trans-

formation matrix T, or a collection of the 7 independent parameters (bx, by, bz, θx, θy, θz, s),

and these are both equivalent formulations and we will use them interchangeably.

For the population of surfaces S(i), the relative pose of each surface with respect to the

Procrustes mean shape is calculated as the least-squares solution to the following cost
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function

T(i) = min
T

T(V (i))− V̄
2

(2.20)

Figure 2.5: Procedures to calculate the relative poses (left), and the mean pose through an iterative
procedure (right) upon obtaining the Procrustes mean shape for the population

2.6.1.3 Mean Pose Calculation

Using the Log-Euclidean framework, we can map the pose matrices T(i) onto the vector

space t, which allows us to use the addition and scalar multiplication operations defined

on vector spaces to calculate a mean pose. The mean pose is calculated using the iterative
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procedure described in Algorithm 2 (Pennec, Fillard, and Ayache, 2006) -

Algorithm 2: Algorithm to calculate the mean pose matrix

Data: T(i) ∈ R4×4 for i = 1, . . . , N, V̄
Output: Mean pose T̄
Initialize mean pose as first pose matrix:
T̄ := T(1)

while not converged do
Calculate the new mean pose based on the individual poses :

T̄new = T̄ ◦ exp

(
N

∑
i

log
(

T̄−1 ◦ T(i)
))

(2.21)

if ||T̄new − T̄|| < ϵ then
converged

else
T̄ := T̄new

end
end

2.6.1.4 Residual Pose Calculation

Upon obtaining the mean pose matrix, we can finally calculate the residual pose of each

structure compared to the mean pose, by composing the pose matrix of each structure

with the inverse of the mean pose matrix. This is equivalent to removing the mean pose

transformation from the overall transformation of the structure, and can be written as

T(i)
r = T̄−1 ◦ T(i) (2.22)

=

(
s(i)R(i) b(i)

0T 1

)
(2.23)

The equivalent residual pose parameters p(i)
r can be assembled by noting the below

1. Translation parameters are b(i) = (b(i)x , b(i)y , b(i)z )

2. Scale parameter is s(i)

3. The rotation matrix R(i) can be decomposed into the equivalent Euler angle matrices
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R(i)
x , R(i)

y , and R(i)
z , where each matrix can be written as

R(i)
x =

⎛⎜⎝1 0 0
0 cos(θ(i)x ) − sin(θ(i)x )

0 sin(θ(i)x ) cos(θ(i)x )

⎞⎟⎠ (2.24)

and similarly for R(i)
y and R(i)

z . The rotation parameters are then (θ
(i)
x , θ

(i)
y , θ

(i)
z ).

The residual pose for each structure is given by p(i) = (s(i), b(i)x , b(i)y , b(i)z , θ
(i)
x , θ

(i)
y , θ

(i)
z )T.

2.6.2 Volume and Local Surface Analysis

Following restricted Delauney triangulation of the subcortical structures in question, shape

analysis is performed for two different features: (1) the global volumes of the subcortical

structures, and (2) local surface features on the surfaces of the subcortical structures.

Given a triangulated surface S = (V , F) with NV vertices where the j-th vertex has

coordinates (Vj,x, Vj,y, Vj,z) with respect to the origin, the volume of the triangulated surface

is calculated by summing over the volumes of the individual tetrahedrons that each triangle

makes with the origin. For the i-th tetrahedron with coordinates (0, V1,:, V2,:, V3,:), the

positive volume is given by the equation

v(i)tetrahedron =
1
6
| − V3,xV2,yV1,z + V2,xV3,yV1,z + V3,xV1,yV2,z

− V1,xV3,yV2,z − V2,xV1,yV3,z + V1,xV2,yV3,z|

(2.25)

and therefore, the total area of surface S with NF triangulated faces is given by

v(i) =
NF

∑
j=1

v(i)tetrahedron,j (2.26)

Similarly, we can also define a local surface feature by calculating the surface Jacobian of

each vertex of a subcortical structure, which is defined as the ratio change of the area of the

vertex in the scan with the area of the vertex in the surface template. The surface Jacobian
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therefore gives us an idea of the amount of surface area that changes in each scan w.r.t the

surface template.

The surface Jacobian of vertex j is obtained as follows

Jj =
A(v)

j

A(v)
j,T

(2.27)

where A(v)
j is defined as the vertex area of vertex j, and A(v)

j,T is the vertex area of vertex j

on the surface template of the subcortical structure. Vertex area in general is defined as

A(v)
j =

M

∑
k=1

Aj,k (2.28)

where Aj,k is the area of the k-th face consisting of vertex j, for a total of M faces that

surround vertex j and consist of it.

2.7 Statistical Modelling

2.7.1 Cross-sectional Modelling

2.7.1.1 ANCOVA Analysis

For cross-sectional modelling of group difference between control subjects and subjects

with strict schizophrenia, a general linear model known as the Analysis of covariance

(ANCOVA) is used (Keppel, 1991), which evaluates whether the means of a dependent

variable (DV) are equal across different levels of a categorical independent variable (IV),

while statistically controlling for the effects of other continuous variables that are not of in-

terest in the analysis, which are known as covariates (CV). ANCOVA analysis decomposes

the variance in the DV across variance explained by the CV(s), variance explained by the

categorical IV, and residual variance. The general linear model formulation of ANCOVA
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analysis can be written as

yij = µ + τi + B(xij − x̄) + ϵij (2.29)

Here, the DV, yij is the jth observation in the ith categorical group; the CV, xij is the jth

observation of the covariate under the ith group; µ is the grand mean of the observed data;

and x̄ is the global mean for the covariate x. The fitting variables are τi, the effect of the ith

categorical group, B, the slope of the line, and ϵij, the associated unobserved error term for

the jth observation in the ith group. The following assumptions are also considered to be

true for the ANCOVA model

1. Linearity of Regression: The regression between the dependent variable and the

covariates must be linear

2. Homogeneity of error variances: The error is considered to be a random variable

with conditional zero mean and equal variances for different categories of the inde-

pendent categorical variable.

3. Independence of error terms: The error terms are uncorrelated; or equivalently, the

error covariance matrix is diagonal.

4. Normality of error terms: The error terms are normally distributed, which is to say

that ϵij ∼ N (0, σ2)

5. Homogeneity of regression slopes: The regression lines should be parallel across

the two groups, and therefore the slopes of the regression lines is invariant across the

categories of the independent variable.

6. The effects of the categorical groups τi sum to 0, which is to say ∑i τi = 0.
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2.7.1.2 MANCOVA Analysis

A major restriction of ANCOVA analysis is the fact that there can only be a single depen-

dent variable where the effects are modelled. However, it is easy to extend ANCOVA

analysis to a multivariate analysis, which is known as Multivariate Analysis of Covariance

(MANCOVA). In MANCOVA analysis, the goal is to test for significant difference between

group means for the independent variable controlling for multiple covariate variables, and

looking at more than one dependent variable. MANCOVA analysis also follows the same

assumptions as ANCOVA analysis above (Davis, 2003).

2.7.2 Longitudinal Modelling

Both ANCOVA and MANCOVA analysis make a big assumption, which is the data has

no longitudinal or time-series correlation, which is not accurate for the Schizconnect

dataset, where there are subjects with multiple scans at different time-points. We can also

model residual pose, volumetric and local surface changes across time in order to gauge

a longitudinal progression of schizophrenia over time, in order to determine potential

biomarkers of disease that manifest over the progression of the disease.

For longitudinal modelling of the data, we use a log-linear mixed effects model, in order to

describe data involving multiple subjects, with multiple measurements per subject (Bates

et al., 2014). We consider a model of the following form, looking to model a scalar-valued

observation at each vertex on the triangulated surface, as

Y = Xβ + Zb + ϵ (2.30)

where Y is a N × 1 vector of observations, X is a fixed effects design matrix, Z is a random

effects design matrix, β are the fixed parameters and b are the random effects random

variables, and ϵ is the noise. In this model, the individual terms have the following forms

and assumptions:
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1. We assume ϵ is independent and identically distributed (i.i.d) Gaussian with variance

σ2

2. We assume b is also i.i.d Gaussian with variance σ2θ. b will have one element per

subject for a total of M subjects

3. Z is a binary matrix having one column per subject, with ones indicating which

observations in Y come from that subject. Therefore, Z ∈ {0, 1}N×M.

4. Both X and β describe covariates such as age and gender (in our specific case)

By fitting this model to the data, the goal is to find maximum likelihood estimates of β, σ, θ,

and the expected value of b.

2.7.3 Controlling for familywise error rate

One issue that pops up when performing multiple hypothesis tests at once (such as testing

for significance at each vertex in a triangulated surface), is that the probability of seeing

any false positives goes up, and we therefore need to correct for this error, which is known

as the familywise error rate (FWER). We can formalize the FWER by looking at a collection

of N statistics Hi, i = 1, . . . , N, and supposing that on the first N0 of these statistics, the

null hypothesis holds true. We define a rate of controlling the FWER a by choosing a test

statistic threshold t, which translates to saying

P

[
N0⋃
i=1

Hi ≥ t

]
≤ a (2.31)

For the purposes of this work, we look at two popular methods for controlling for the

FWER, namely the Bonferroni correction, and permutation testing, both of which are

described below
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2.7.3.1 Bonferroni Correction

The most conservative approach to correcting for FWER is known as the Bonferroni

correction, where we divide the usual threshold for statistical significance by N, the

number of hypothesis tests performed (Dunn, 1961). To see why this corrects for FWER

sufficiently, we can use the monotonicity of probability to show that

P

[
N0⋃
i=1

Hi ≥ t

]
≤

N0

∑
i=1

P[Hi ≥ t] (2.32)

By choosing t such that each P[Hi ≥ t] ≤ a/N, we satisfy eq. 2.31.

2.7.3.2 Permutation Testing

In practise, the Bonferroni correction is very conservative and doesn’t take into account

dependence between random variables that affect the outcome of the statistical test, for

example looking at vertices around the vertex the hypothesis test is being performed on.

In order to achieve better statistical power, we look at properties of the maximum statistic.

To motivate this, we observe that atleast one statistic is greater than the threshold t i.f.f the

maximum statistic is greater than the threshold. Therefore,

P

[
N0⋃
i=1

Hi ≥ t

]
= P

[
max

i=1,...,N0
Hi ≥ t

]
≤ P

[
max

i=1,...,N
Hi ≥ t

]
(2.33)

One way of controlling the FWER then is by calculating the distribution of the maximum

statistic, which can be done by resampling methods such as permutation testing (Nichols

and Holmes, 2002; Tward, 2017b).

Supposing we have a random variable X and we observe x. Taking the group of trans-

formations that are permutations P , under the null hypothesis, the distribution of PiX

is the same as the distribution of X, where Pi ∈ P . Further, if we have a test statistic on

X given by H(X) with a rejection threshold t, we wish to control for the FWER under a,
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which translates to P[H(X) ≥ t] ≤ a. Considering the statistic

T(x) =
1
|P| ∑

i
I [H(Pix) ≥ H(x)] (2.34)

where I is the indicator function, and |P| is the number of permutation transformations

being considered. T(x) is thus the proportion of times H(Pix) was bigger than H(x). It

can be shown that, under the null hypothesis, the CDF of T(x) is below the uniform CDF,

which is to say

P[T(X) ≤ u] ≤ u (2.35)

Further, it can be shown that if H(X) is the maximum statistic, the FWER can be controlled

at level a by choosing 1 − u ≤ a. Therefore, if we choose the threshold u ≥ 1 − a, we can

compute the original threshold t as the 1 − u-th quantile of H(Pix).

For this study, in order to perform permutation testing to discriminate between a control

and diseased group for some parameters, we use the family of permutations P to rearrange

the group labels across the dataset. For each permuted group Pi, we calculate the maximum

likelihood estimates for the mixed-effects model described in 2.7.2, and then compute

a test statistic over all the vertices in the surface template, and then find H(Pix) as the

maximum over all the vertices.
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Algorithm 1: Algorithm to calculate the Procrustes mean shape

Data: V (i) ∈ RNV×3 for i = 1, . . . , N
Output: Mean structure V̄
Initialize mean as first structure:
V̄ := V (1)

while not converged do
Center all structures to the origin by subtracting the mean of all vertex
coordinates from each vertex:

V̂
(i)

:= V (i) − 1
NV

NV

∑
j=1

V (i)
j,: (2.10)

Normalize centered structures to have unit-norm by dividing each structure by
its’ L2-norm:

V̌ (i) :=
V̂
(i)

∥V̂
(i)∥

where ∥V̌ (i)∥ = 1 (2.11)

Calculate the least-squares fit rotation matrix Ri that solves the following
minimization equation:

R(i) := min
R

∥V̄ − RV̌ (i)∥2 (2.12)

The solution to above is given by R(i) := WUT, where V̄ TV̌ (i)
= UΣW T is the

singular-value decomposition.
Rotate each surface by this rotation matrix:

Ṽ
(i)

= R(i)V̌ (i) (2.13)

Calculate the new mean as the average of these centered, unit-normalized, and
rotation-aligned surfaces:

V̄new =
1
N

N

∑
i=1

Ṽ
(i)

(2.14)

if ∥V̄new − V̄∥ < ϵ then
converged

else
V̄ := V̄new

end
end
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Chapter 3

Volumetric and Local Surface Analysis

3.1 Volume Regressions over Time

The first analysis we performed on the Schizconnect dataset involved modelling the

volumes of both the binary segmentations and triangulated surfaces for 12 subcortical

structures (6 structures with left and right hemispherical structures) as functions of time,

in order to gain a better idea about the trend of volume change, as well as to ensure that

this trend is preserved after the surface triangulation step of processing. The 6 subcortical

structures considered here are the Amygdala, Hippocampus, Caudate nucleus, Putamen,

Globus Pallidum, and Thalamus, with the left and right hemisphere structures totalling 12

independent structures.

From figures 3.1 and 3.2, we see that the volumes for binary segmentations don’t exactly

follow a monotonic downward trend, and there is significant variation in the distribution

of volume change across subjects, for both controls and the diseased population. For

all the subcortical structures under question, we notice that though there is an overall

downward trend for volumes in subjects with exactly two scans, there are certain subjects

where their subcortical volume tends to increase, which affects the overall volume change

trend. For subjects with exactly 3 scans, even though a large number of subjects have a

monotonic trend in volume (either increasing with time, or decreasing with time), there

are subjects that do not follow this monotonic trend, which is not expected to be seen from
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a biologically plausible perspective.

In order to smooth out variation that may arise from the binary segmentation performed

by the MRICloud pipeline, we also look at volume trends for the triangulated surfaces,

which are smoother approximations of the binary segmented subcortical structures. The

Delauney triangulation process intrinsically smooths out the shapes of the subcortical

structures, since we restrict the number of triangles that each surface can consist of. These

volume trend plots are reported in figures 3.3 and 3.4. We can see, compared to the binary

segmentation volumes, the volume trends here are much smoother and more monotonic,

across all subcortical structures.
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Figure 3.1: Line-plots of binary segmentation volumes for control subjects with 2 scans (top-left)
and 3 scans (bottom-left), and diseased subjects with 2 scans (top-right) and 3 scans (bottom-right),
for the Amygdala, Hippocampus, and Caudate.
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Figure 3.2: Line-plots of binary segmentation volumes for control subjects with 2 scans (top-left)
and 3 scans (bottom-left), and diseased subjects with 2 scans (top-right) and 3 scans (bottom-right),
for the Putamen, Globus Pallidum, and Thalamus.
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Figure 3.3: Line-plots of triangulated surface volumes for control subjects with 2 scans (top-left)
and 3 scans (bottom-left), and diseased subjects with 2 scans (top-right) and 3 scans (bottom-right),
for the Amygdala, Hippocampus, and Caudate.
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Figure 3.4: Line-plots of triangulated surface volumes for control subjects with 2 scans (top-left)
and 3 scans (bottom-left), and diseased subjects with 2 scans (top-right) and 3 scans (bottom-right),
for the Putamen, Globus Pallidum, and Thalamus

In order to further explore the distribution of volume slopes across the control and

diseased populations, we calculate the best-fit lines for each subject’s time-series data.

Given a collection of subjects i = 1, . . . , N with triangulated surface volumes v(i)t for

t = 0, 2, or 4 years, we calculate the slopes of the best-fit lines. For subjects with exactly 2

scans, this is equal to the slope of the line between v(i)0 and v(i)2 . For subjects with exactly
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three scans, this is equal to the slope m(i) of the best-fit line that minimizes the least-squares

error, which is given by

m(i) =
∑t(v

(i)
t − v̄(i))(t − t̄)

∑t(v
(i)
t − v̄(i))2

t = 0, 2, 4 (in years) (3.1)

where v̄(i) is the average of the volumes for subject i across their timepoints, and t̄ =

(0 + 2 + 4)/3 = 2 (in years).

Given the collection of the slopes of the best-fit lines, we can look at the distribution

of slopes across the control and diseased populations, and plot the histograms of slope-

distributions, in order to have a better idea of the trend of volume change, which is seen in

figures 3.5 and 3.6.
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Figure 3.5: Histograms and best-fit probability distribution curves for volume slopes, for the
Amygdala, Hippocampus, and Caudate. Green refers to the control group and red refers to the
diseased group
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Figure 3.6: Histograms and best-fit probability distribution curves for volume slopes, for the
Putamen, Globus Pallidum, and Thalamus. Green refers to the control group and red refers to the
diseased group

From the histograms of slopes of percentage volume changes, we can see that their

is a considerable distribution of subjects where their volume slopes are higher than zero,

35



for both controls and diseased groups. However, looking across all the subcortical struc-

tures, the mean slope of percentage volume slope is less than zero for most cases. For the

amygdala, the slopes for diseased subjects are comparatively lower than the slopes for

controls for the right structure, whereas for the left structure, the overall distributions look

pretty similar, with the controls having a sharper distribution around smaller percentage

change. For the hippocampus, the right structure has comparatively higher negative slopes

for the diseased subjects compared to the controls, whereas the left structure has similar

distributions. For the putamen, both the left and right structures seem to have slightly

smaller negative slopes for the diseased subjects compared the the controls, implying lesser

atrophy in the diseased subjects versus the controls. In the globus pallidum, for the left

structure, the diseased subjects have comparatively higher negative slopes compared to

the controls, whereas the distributions are similar for the right structure. For the thalamus,

for both the left and right structures, the diseased subjects showed a trend to have smaller

negative slopes, and even slightly positive slopes compared to the controls, implying

either smaller atrophy or even a net positive volume increase over time for the diseased

population.

Based on the preliminary analysis performed in section 3.1, we conclude that the distri-

bution of slopes for volume change vary considerably across the dataset, which makes

it difficult to conclude a relevant trend of different atrophy or volume change based on

line regressions alone. In order to further probe group differences for subcortical struc-

ture volumes, and take into account various biases that may pop up in analyses on line

regressions, we perform both cross-sectional and longitudinal analysis in the following

sections
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3.2 Volumetric and Local Surface Analysis

3.2.1 Longitudinal modelling with mixed-effects models

To carry out an unbiased longitudinal modelling for both subcortical volumes and surface

Jacobians over time for subjects in the Schizconnect dataset, we use the mixed-effects

model described in subsection 2.7.2.

Given a subject i with a scan at time-point j, the volume of the triangulated surface

for a specific subcortical structure is estimated as v(i)j . If the surface template for the

corresponding subcortical structure is given as ST = (V T, FT), where V T ∈ RNV×3, then

the surface Jacobians calculated for subject i with a scan at time-point j is given by J(i)j ,

with J(i)j ∈ RNV×1. The mixed-effects model for modelling the subcortical volumes is

log
(

v(i)j

)
= a0 + a1

(
elapsed time (i)

j

)
+ b0

(
age(i)

)
+ b1

(
gender (i)

)
+ group label(i)

[
a2 + a3

(
elapsed time (i)

j

)]
+ e(i) + ϵ

(i)
j

(3.2)

Here, the null hypothesis is that the group of the subjects are interchangeable. Formally,

Null hypothesis H(0) : group is interchangeable

: a2 = a3 = 0

Alternate hypothesis H(A) : group is not interchangeable

: a2 ̸= 0, a3 ̸= 0

Similarly, a mixed-effects model is defined for each vertex in the surface template that has

one-to-one correspondence across the subjects and scans. For a surface template ST with

NV vertices, there will be a total of NV models, where for each vertex k = 1, . . . , NV , the
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model is defined as follows

log
(

J(i)j,k

)
= a0,k + a1,k

(
elapsed time (i)

j

)
+ b0,k

(
age(i)

)
+ b1,k

(
gender (i)

)
+ group label(i)

[
a2,k + a3,k

(
elapsed time (i)

j

)]
+ e(i)k + ϵ

(i)
j,k

(3.3)

where the hypotheses for each vertex k are formalized as

Null hypothesis H(0)
k : group is interchangeable for vertex k

: a2,k = a3,k = 0

Alternate hypothesis H(A)
k : group isn’t interchangeable for vertex k

: a2,k ̸= 0, a3,k ̸= 0

The effective significance for surface Jacobian differences across the two groups is reported

by taking the maximum statistic over the NV vertices in the surface template for a sub-

cortical structure. In order to correct for the FWER, we perform permutation testing by

permuting the group labels for the dataset 20000 times. In these 20000 permutations, if the

test statistic is higher for a permuted group compared to the actual labels more than 1000

times, we declare the group label being statistically significant (p < 0.05). Permutation

testing and mixed-effects modelling is performed for both paradigms of surface template

estimation: (1) Unique STEs for the left and right hemispheres, and (2) Combined STEs,

and these results are reported in tables below
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Subcortical
Structure

w/ Unique STE w/ Combined STE

p-value
(Volumes)

p-value
(s. Jac.)

% of
significant

vertices

p-value
(Volumes)

p-value
(s. Jac.)

% of
significant

vertices
Amyg L 0.10 0.295 11.89 %

0.385 0.780 0.88 %
Amyg R 0.45 0.167 7.46 %
Hippo L 0.02 0.536 11.95 %

0.016 0.049 28.21 %
Hippo R 0.04 0.224 12.47 %
Caud L 0.08 0.584 1.99 %

0.88 0.6015 1.8 %
Caud R 0.32 0.1535 7.37 %
Put L 0.95 0.7605 1.221 %

0.987 0.9465 0.00 %
Put R 0.30 0.8480 1.901 %
GP L 0.29 0.1770 7.149 %

0.2908 0.13 13.63 %
GP R 0.37 0.2260 11.055 %
Thalamus L 0.10 0.1940 3.074 %

0.0486 0.220 18.89 %
Thalamus R 0.04 0.1220 9.7808 %

Table 3.1: Significance values for mixed-effects modelling of log(volume) and log(surface Jacobians)
and percentage ratios of significant vertices, for both unique STEs for left and right hemispheres
(left), and combined STEs (right). p-values below 0.05 are reported in bold

From table 3.1 we can see that of all the subcortical structures, only the hippocampus

and thalamus show statistically significant changes in longitudinal modelling of subcortical

volumes. Comparing the longitudinal models with the two paradigms of surface template

estimates, we can see that there is correlation between the subcortical structures that show

statistical significance when mapped to the unique templates, and when mapped to the

combined template. Both the hippocampus and thalamus have statistically significant

differences in volume across the controls and diseased population, for both the unique STE

model and the combined STE model. We can also see that none of the other subcortical

structures show significantly different volumes.

For the amygdala, we see that volume doesn’t vary significantly for either of the two

paradigms, however both the left and right amygdalas, there is a good proportion of

vertices that are significant in terms of surface Jacobian difference. From figure 3.7, we
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can see these regions plotted on the left and right surface templates, and we can see that

these vertices form contiguous regions. However, on performing the same analysis with

the combined STE, we don’t see any vertices with significantly different surface Jacobian

values, and one reason for this could be that across the left and right hemispheres of the

amygdala, the same spatial regions are not significant. Since the combined surface tem-

plate flips all right volumes and then performs diffeomorphic mapping with the surface

template, there is an implicit symmetry between vertices on the left and right volumes

that is being mapped. Since the regions of significance don’t occur in the same spatially

corresponding regions across the left and right volumes, we can conclude that the regions

of possible atrophy in the amygdala are asymmetric across the left and right hemispheres.

However, there is also a possibility that the effect size of significance in the unique STE

paradigm is small, and is removed when considering a lager number of vertices in the

combined STE paradigm.

For the hippocampus, both the left and right volumes are significantly different in terms

of volume for the unique and combined STE paradigms. We notice that for the individual

hemispheres, the surface Jacobians are not statistically significant, but for the combined

STE, there are a much larger percentage of vertices that show p-values below 0.05, and the

maximum statistic for the combined surface template is statistically signixficant as well.

One way of interpreting this discrepancy across the two STE paradigms is that there are

a lot of common vertices across the left and right hemispheres that have similar surface

Jacobians, and upon performing a statistical analysis on the combined ST, we can see this,

as well as from the plots in figure 3.7, where the tail of the hippocampus has regions of

significant surface Jacobian differences across the two groups for the left, right and the

combined surface templates.

For the caudate and putamen, across both paradigms of STE, we don’t see any statistical
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significance for either the volumes or the surface Jacobians. For the right caudate, there is a

significant proportion of vertices with p-values below 0.05, however this does not translate

to significance on the combined STE, implying that this is asymmetric significance in the

right caudate over the left caudate. For the putamen, there are very few vertices with

statistical significance in either of the two STE paradigms.

The globus pallidum also does not show any statistically significant differences across

the two groups, however for the vertex surface Jacobian values, there is a significant region

of difference, which can also be seen from figure 3.8, where the combined ST shows both

the regions seen on the left ST and the right ST, implying that both these regions are

affected across the hemispheres.

Finally, the thalamus shows statistically significant volumes for the right volume, as

well as for the combined ST. There are also regions of vertices with statistically significant

surface Jacobians, especially in the combined ST, implying that there is potentially signifi-

cant symmetric local surface changes across the left and right thalamus surfaces.

Given the mixed-effects models described by equations 3.2 and 3.3, we can also calculate

global atrophy rates for the subcortical structures. For each subcortical structure, looking

at the fit mixed-effects model, the global atrophy rate in percentage per year for the two

groups, control (0) and diseased (1) is given as

γ = 100(1 − ea1+a3(group label)) (3.4)

Similarly, for each of the mixed-effects models fit to the surface Jacobians at the vertices,

we can calculate local atrophy rates in percentage per year at the vertices as the following

γk = 100(1 − ea1,k+a3,k(group label)) (3.5)
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For each of the mixed-effects models that were fit using maximum-likelihood estimation

above, we report the corresponding global atrophy rates for both the control and diseased

groups, for both the unique STE and combined STE paradigms in table 3.2

Subcortical
Structure

w/ Unique STE w/ Combined STE
Atrophy Rate

in Controls (%)
Atrophy Rate
in Disease (%)

Atrophy Rate
in Controls (%)

Atrophy Rate
in Disease (%)

Amyg L 0.60 -0.14
0.0117 0.088

Amyg R 0.56 0.15
Hippo L -0.41 -0.06

-0.227 -0.046
Hippo R -0.03 0.12
Caud L 0.08 0.68

0.1125 0.2241
Caud R 0.77 0.22
Put L 0.52 0.60

0.520 0.536
Put R 0.65 0.20
GP L 1.04 -0.11

0.264 0.027
GP R 0.28 0.26
Thalamus L 0.48 0.31

0.446 0.357
Thalamus R 0.81 0.34

Table 3.2: Atrophy Rates for the Control and Disease groups in % per year for subcortical structures
for both unique STEs for the left and right hemispheres (left), and combined STEs (right)

From table 3.2 we can see that for most subcortical structures, across the left and right

hemispheres, there is positive global atrophy rate, which corresponds to a reduction in

volume across the longitudinal scans. However, looking at global atrophy rates in the

unique STE paradigm, we can see that there are cases of obtaining negative atrophy rate,

which corresponds to an increase in volume. For example, in the diseased group for

the left amygdala, left hippocampus, and the left globus pallidum, and for the left and

right hippocampi for the control group. There are a few possible explanations for seeing

negative atrophy rates that suggest an increase in volume with time. There have been

studies that have shown an increase in volume for the globus pallidum and putamen for

schizophrenic patients (Ellison-Wright and Bullmore, 2010). At the same time, we also

see increasing volumes for the hippocampi for both the controls and the diseased groups,
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which does not correspond to any known clinical results seen before in the literature, and

we discuss this phenomenon further in the discussion section. Due to irregularities in

the binary segmentations themselves, and as observed from the volume regression plots,

there are subjects that exist in both the control and diseased groups that have subcortical

structures that increase in volume with time, and we believe that this may partially be a

result of suboptimal preprocessing of the data and triangulation of the binary segmenta-

tions. At the same time, negative atrophy rates (corresponding to increasing volume with

time) could also reflect other factors such as subject misidentification, effects of scanner

noise, or subject movement in the scanner, amongst other confounding effects. For this

reason, we look at results for global atrophy with respect to the combined STE paradigm,

as generating a surface template from both left and right hemisphere volumes tended to

smooth out the surface template, and remove some variation in the noise that may affect

the quality of unbiased diffeomorphic mapping. Looking at table 3.2 for the combined STE

paradigm, we see that only the hippocampi report negative global atrophy rates (which

correspond to an increase in subcortical volume), whereas the other subcortical structures

report positive global atrophy rates The caudate, putamen, and hippocampus report higher

volume atrophy for the diseased group versus the control group, whereas the amygdala,

globus pallidum, and thalamus report higher volume atrophy for the control group versus

the diseased group.

Figures 3.7 and 3.8 show triangulated mesh plots of the surface templates for the

subcortical structures under question, with the p-values plotted at each vertex. For vertices

with p-values greater than 0.05, we set the plotted values to 0.05 (shown in yellow), and

for statistically significant vertices, we plot the p-values from 0.05 (yellow) to 0 (blue).
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Figure 3.7: Surface p-value plots showing statistically significant vertices for the left surface
template (left), the right surface template (center), and the combined surface template (right); for
the Amygdala, Hippocampus, and Caudate
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Figure 3.8: Surface p-value plots showing statistically significant vertices for the left surface
template (left), the right surface template (center), and the combined surface template (right); for
the Putamen, Globus Pallidum, and Thalamus
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Chapter 4

Residual Pose Analysis

4.1 Residual Pose analysis

Following the volumetric and local surface analysis, and based on studies showing that the

residual pose of subcortical structures can capture complementary information to shape,

we perform residual pose analysis on 6 subcortical structures, motivated by the methods

and algorithms described in subsection 2.6.1. After calculating a mean structure using

generalized orthogonal Procrustes analysis, the pose transformation matrices (or pose

matrices) are calculated that map each subcortical structure to the mean structure. The

mean transformation matrix (or mean pose) is calculated across the population (Pennec,

Fillard, and Ayache, 2006), which is then subtracted from each individual pose matrix to

obtain the residual pose. Finally, using the decomposition steps described in equations 2.22

and 2.24, we obtain the residual pose features for each scan in the dataset, given by p(i) =

(s(i), b(i)x , b(i)y , b(i)z , θ
(i)
x , θ

(i)
y , θ

(i)
z )T. In the following subsections, we broadly perform cross-

sectional and longitudinal modelling of statistical differences across the pose parameters

p(i), further details of which are described below
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4.1.1 Cross-sectional Analysis

Based on the results seen in chapter 3, we decided to perform a cross-sectional analysis

on the baseline scans for each subject within the Schizconnect dataset, ignoring scans that

occured at later time-points and only keeping scans that occured at t = 0. The reasoning for

this was to see if, across the cross-sectional population, there were statistically significant

differences between the two groups without considering the longitudinal nature of the

data, in order to avoid biasing the cross-sectional analysis by subjects that may have

volume trends that are not necessarily clinically justified, and may be due to preprocessing

artifacts and other issues discussed in the discussion. Table 4.1 reports the p-values for

cross-sectional analysis of residual pose parameters for four different statistical tests, across

the 12 subcortical structures (left and right hemispheres were considered independent).

These 4 statistical tests were

1. Univariate test for scale parameter s, using ANCOVA analysis

2. Multivariate test for rotation parameters (θx, θy, θz), using MANCOVA analysis

3. Multivariate test for translation parameters (bx, by, bz), using MANCOVA analysis

4. Multivariate test for all 7 parameters, using MANCOVA analysis

Also, since we perform 4 comparisons for 12 subcortical structures, we use the Bonferroni

correction to control for the FWER, and therefore a p-value of less than 0.05/(4 × 12) =

0.00104 is considered statistically significant. We report these results for the 12 subcortical

structures in the unique STE paradigm in Table 4.1.
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Subcortical
Structure

s (θx, θy, θz) (bx, by, bz) All 7 parameters

Amyg L 0.000667 0.058000 0.411000 0.120000
Amyg R 0.022804 0.892000 0.000001 0.000014
Hippo L 0.000249 0.071504 0.002394 0.002632
Hippo R 0.000830 0.008528 0.362530 0.102553
Caud L 0.030448 0.194213 0.502452 0.548150
Caud R 0.000076 0.051955 0.044050 0.005975
Put L 0.337230 0.209975 0.015170 0.002111
Put R 0.985837 0.001597 0.262407 0.001445
GP L 0.450223 0.002870 0.014281 0.000063
GP R 0.481363 0.000007 0.001517 0.000027
Thalamus L 0.000196 0.381065 0.082443 0.048614
Thalamus R 0.001689 0.008407 0.972245 0.011869

Table 4.1: Significance values for cross-sectional analysis for residual pose parameters pi. Statisti-
cally significant pose parameters are reported in bold.

From this table, we can see that there are some similarities in significance compared to

volumetric mixed-effects modelling, and some differences as well.

For the amygdala, we see that compared to no statistical significance being observed

in volumetric analysis, here the left amygdala has significantly different scale between

the diseased and controls, and the right amygdala has significantly different translation

between the two groups, as well as a significantly different global pose. These results imply

that the right amygdala is spatially shifted between the two groups even if there aren’t

significant volume changes between the groups, which could point to disease-specific

affects in the regions immediately surrounding the right amygdala. At the same time,

the left amygdala does show significantly different scale, which is a rough correlator of

volumetric difference as well.
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For the hippocampi, we see that both the left and right hippocampus are statistically

different in their scales between the control and diseased groups, which corresponds very

well with the volumetric differences we had seen in the longitudinal volumetric and local

surface analysis as well, as amongst the 7 residual pose parameters, scale corresponds the

most with volumetric change, as a tendency to have higher atrophy in one group over the

other would correspond to that group have a relatively smaller scale compared to the other.

For the caudate and putamen, similar to our previous analysis, we do not see sta-

tistically significant differences in the residual pose parameters across the two groups,

except for a scale difference in the right caudate. For the globus pallidum, we can see that

there are significant differences in the global residual pose, while at the same time the

scale parameters are not significant in the univariate analysis. This correlates well with

the volumetric analysis where we did not see any significant differences in both volume

and local surface changes. However, the fact that globus pallidum has significant global

pose differences points to the fact that both the translation and rotation effects also play a

role in statistically different changes across the control and diseased groups, and this is

complementary information to what can be detected by volumetric analysis alone.

Finally, for the thalamus, we only see a scale difference in the left thalamus, which very

roughly corresponds to the volumetric differences seen in the thalamus in chapter 3. From

the cross-sectional analysis here, we can see that not only do we get results that correspond

to volumetric analysis, but at the same time, for the amygdala and globus pallidum, we

get complementary information in the form of the rotation and translation vectors of the

residual pose parameters, which cannot be directly captures using volumetric or local

surface information. It is important to note that though scale parameters are closely linked

to volumetric features as well, they do not have a one-to-one correspondence, as scale

only models a global rigid transformation in the same shape across two groups, whereas

49



differences in volume exist for similar structures that have different shapes as well.

4.1.2 Longitudinal Analysis

Further, we fit a mixed-effects model similar to the volumetric analysis for the residual

pose parameters as well, defined as

log
(

p(i)
j,k

)
= a0,k + a1,k

(
elapsed time (i)

j

)
+ b0,k

(
age(i)

)
+ b1,k

(
gender (i)

)
+ group label(i)

[
a2,k + a3,k

(
elapsed time (i)

j

)]
+ e(i)k + ϵ

(i)
j,k

(4.1)

for k = 1, . . . , 7. These results are reported below for both the unique STE and the combined

STE paradigms

Subcortical
Structure

x y z θx θy θz s ptotal

Amyg L 0.35 0.44 0.55 0.22 0.39 0.53 0.06 0.13
Amyg R 0.76 0.15 0.03 0.67 0.60 0.28 0.35 0.19
Hippo L 0.66 0.01 0.73 0.75 0.13 0.76 0.09 0.11
Hippo R 0.45 0.87 0.54 0.67 0.11 0.86 0.20 0.59
Caud L 0.76 0.45 0.02 0.15 0.05 0.79 0.01 0.02
Caud R 0.43 0.58 0.17 0.88 0.78 0.21 0.04 0.07
Put L 0.58 0.10 0.41 0.79 0.79 0.43 0.95 0.54
Put R 0.90 0.06 0.92 0.51 0.99 0.18 0.59 0.53
GP L 0.67 0.38 0.20 0.14 0.09 0.23 0.55 0.46
GP R 0.15 0.57 0.70 0.07 0.08 0.17 0.82 0.41
Thalamus L 0.38 0.25 0.09 0.73 0.40 0.06 0.10 0.25
Thalamus R 0.36 0.53 0.95 0.89 0.11 0.24 0.08 0.22

Table 4.2: Significance values for longitudinal mixed-effects modelling of residual pose parameters
for the unique STE paradigm for left and right hemisphere
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Subcortical
Structure

x y z θx θy θz s ptotal

Amyg 0.5405 0.8020 0.3950 0.0495 0.8890 0.7040 0.3610 0.3730
Hippo 0.4379 0.6423 0.6157 0.4225 0.0041 0.1981 0.0420 0.0246
Caud 0.1960 0.5805 0.5545 0.1850 0.8570 0.0170 0.6430 0.2205
Put 0.4283 0.7721 0.8772 0.7233 0.5443 0.5281 0.8629 0.9826
GP 0.5315 0.2170 0.7355 0.1367 0.6203 0.4506 0.9184 0.5835
Thalamus 0.7576 0.1759 0.0834 0.9434 0.8866 0.3957 0.2236 0.4598

Table 4.3: Significance values for longitudinal mixed-effects modelling of residual pose parameters
for the combined STE paradigm

From tables 4.2 and 4.3 we can see that upon fitting mixed-effects models to residual

pose parameters, we lose a lot of the statistical significance that we have seen in the previ-

ous analyses. For the unique STE paradigms, only the caudate is consistently significant in

terms of the scale parameter, and only the left caudate has globally significant residual

pose. The right amygdala and the left hippocampus have statistically different ransla-

tion parameters, in the z and x dimensions respectively. It is interesting to note that the

structures that were significant in the cross-sectional analysis are no longer significant

when modelled by a mixed-effects model, and we discuss this further in the discussion.

One possibility that we attempt to remedy is the possibility that due to irregular binary

segmentation, the longitudinal mapping is not optimal, and therefore we also run the

longitudinal analysis with the combined SET paradigm.

We can see that there is not a lot of correlation between subcortical structures showing

similar statistical significance across the unique and the combined STE paradigms. For

example, on treating the left and right amygdalas independently, only the right amygdala

shows significance in the z-direction, however in the combined STE paradigm, the amyg-

dala only shows significance in the θx variable. Similarly, in the unique STE paradigm, the

left hippocampus varies significantly in the translation along the y-direction, however the

hippocampus combined across the left and right hemispheres shows statistical significance
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across the θy direction, and the scale parameter, which agrees well with both the pose

cross-sectional analysis, and the volumetric and local surface analysis. For the caudate, by

combining the left and right volumes, we lose the global pose significances, which could

be due to a lot of the statistical significance being asymmetric across the hemispheres,

which gets lost when mapping to a common template, or it could also be due to the extra

smoothing that the combined STE paradigm causes.

We also can plot the residual pose parameters roughly across the two groups by taking

the subset of scans that belong to the control group and calculate the mean structure

using general orthogonalized Procrustes analysis, and similarly for the diseased group. By

plotting these two mean structures together, we can roughly see pose changes in rotation

and translation, and these are shown in Figure 4.1 and Figure 4.2.
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Figure 4.1: Superimposed plots of the calculated Procrustes mean shape for the control group
(green) and the diseased group (red); for the Amygdala, Hippocampus, and Caudate
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Figure 4.2: Superimposed plots of the calculated Procrustes mean shape for the control group
(green) and the diseased group (red); for the Putamen, Globus Pallidum, and Thalamus

From Figure 4.1 and Figure 4.2, there are subcortical structures where the entirety of

the structure is not visible, and there is sometimes significant overlap between the control

and diseased mean shapes. In order to represent pose differences in a different way, e also

plot control and diseased mean shapes together, and take their coronal and axial sections,
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in order to show subtler pose changes that are visible in the coronal and axial sections.

These are plotted in Figure 4.3 and Figure 4.4.

Figure 4.3: Superimposed plots of the calculated Procrustes mean shape for the control group
(green) and the diseased group (red) along the axial section
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Figure 4.4: Superimposed plots of the calculated Procrustes mean shape for the control group
(green) and the diseased group (red) along the coronal section
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Chapter 5

Discussion and Conclusion

In this study, we performed a comprehensive and complementary analysis of structural

MR scans of patients from the openly available Schizconnect dataset. We looked at mean-

ingful volume, shape, and pose features that can be extracted from these structural MR

scans, and studied possible sources of statistical difference across healthy subjects and

those with strict schizophrenia. At the same time, by focusing on both shape information

and pose information, we attempted to find parallels between these two paradigms of

subcortical structure analysis, as well as complementary information that may not be

captured individually by either one of the methods of statistical analysis.

From the volume regression plots in chapter 3, we see that the binary segmentation

volumes are not monotonically decreasing for any of the 6 subcortical structures under

question. Though there is a rough overall downward trend for subjects with exactly two

scans, for subjects with three scans, there are cases where subcortical structures do not

follow a perfectly monotonic trend, either for the controls or the diseased populations.

Though there may be clinically significant reasons for the diseased group not following

a perfectly monotonic trend, there is not much support in literature for healthy subject

subcortical structure volumes not decreasing monotonically due to ageing effects. This

leads us to believe that the initial preprocessing and binary segmentation step may not be

57



optimal, and may have noise artefacts in the segmentation of the subcortical structures

under question. We perform rigorous manual quality control on the subcortical structures

that were segmented from the Schizconnect dataset, and even after manually excluding 17

scans where the MRICloud preprocessing pipeline failed in the subcortical segmentation

step, we still see the above results in the volume regression analysis.

In order to smooth out noise and artefacts arising from the binary segmentation step,

we impose additional regularization during the Delauney triangulation step, in order to

constrain the number of vertices that a triangulated surface can consist of, and in general

result in a much smoother polygon, in an attempt to address rough or blocky segmenta-

tions from the structural MRIs. Upon plotting the volume regressions for the triangulated

surfaces, we definitely see an improvement in the monotonicity of the downward volume

trends, for both the control and diseased subjects, for most of the subcortical structures.

The hippocampus is seen to have an overall upward trend in volume over time, and

this is further reflected in the global atrophy analysis done in chapter 3, where the left

and right hippocampi are shown to have negative atrophy rates, which correspond to an

increase in volume over time. We further extend the volume regression analysis on the

triangulated surfaces, by calculating the slopes of the best-fit lines for each volume trend,

and then plotting the histograms of these slope distributions over the control and diseased

groups. For the histograms we see that there is significant variation in the distribution of

slopes, ranging from the negative to the positive. For certain subcortical structures, we can

see that the histograms for the diseased group are skewed to either the left or the right,

implying that over the population, on average, there are differences in volume atrophy

trends between the two groups (right amygdala, right hippocampus, right putamen, left

and right globus pallidum, left and right thalamus). However, at the same time, there are

certain structures that don’t show any differences in the means of the histograms, even

if the distributions have different forms, and it is difficult to say if there are any group
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differences from the histogram plots themselves. However, seeing the high variance in

volume trends alludes to the data having poor preprocessing quality, since atleast for the

controls, according to clinical findings, all subcortical structures would go down in volume

over time due to natural ageing effects. At the same time, we have scans taken 2 years and

4 years apart, and between these scans, there may be enough variance in scan quality and

the preprocessing steps that confund the volume trends. Given that for the atrophy rate,

we observe an effect size less than one percent of the overall volume of each subcortical

structure, across all subcortical structures, the atrophy effects seen in both the controls

and diseased subjects may be due to variation in a variety of factors, emerging across the

timeline of the scans being taken, such as insufficient control of variates in patients on the

day of the scan, the amount of hydration that patients possess on the day of their scan, and

intrinsic scanner variability from year to year.

On performing longitudinal analysis on subcortical volumes and surface Jacobians,

we find only the thalamus and hippocampus have statistically significant changes across

the two groups, and these observations have been reported before in literature (Prestia

et al., 2011). At the same time, we also see that in terms of the atrophy rates, both the

left and right hippocampi seem to be increasing in size for both the controls and the

diseased populations. Though there are some reports of contradictory findings in literature

regarding the effect of schizophrenia on the hippocampus, the fact that the control subjects

are also going up in volume in time point to possible preprocessing issues with the data. In

order to compensate for rough binary segmentations introducing noise to the volume mea-

surements of the data, we also attempted using a combined surface template that pools in

the left and right hemisphere scans in order to achieve higher power and more smoothness

in the surface template mapping, at the cost of losing information about the hemisphere

of the scan. We see that that broadly, the significance in subcortical structures translates

over to the combined STE paradigm, and for both the hippocampus and thalamus, there
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is an effect of combining regions of significant vertices across the left and right volumes,

into a larger, more contiguous region of statistically different surface effects. At the same

time, comparing the number of significant vertices for the left and right surface templates

versus the combined template, we get a sense of which significant vertices were unique to

a specific hemisphere, and which vertices were common across the two, giving us a better

idea of the symmetry (or asymmetry) of the effect of schizophrenia on local surface changes.

Finally, in an attempt to obtain complementary information about subcortical volumes

under question, we also performed residual pose analysis with the 7 dimensions of the

residual pose features. We performed both cross-sectional analysis with the baseline scans,

and longitudinal analysis with the entire dataset. From the cross-sectional analysis, we see

both similarities and differences to the volumetric and local surface mixed-effects mod-

elling. The amygdala and hippocampi especially show difference in the scale parameters,

which correspond well with volumetric differences as well, and the right amygdala has

a further translational difference as well. At the same time, we obtain complementary

information in the globus pallidum, which had not shown any statistical significance for

the volumetric analysis, but has significant global pose differences, which arise due to

rotational and translational changes in the structure of the globus pallidum, which may

correspond to atrophy around the globus pallidum itself.

At the same time, longitudinal analysis with residual pose parameters results in sur-

prisingly low statistical significance across all subcortical structures, for both the unique

STE and combined STE paradigms. There may be a few reasons why this may be the

case. Firstly, it is entirely possible that even though pose varies significantly across the

cross-sectional population, pose parameters don’t change too much over time, as rotational

and translational parameters are global-scale changes on the subcortical structures, and

these global changes may need more than a 4 year timescale to capture. Compared to local
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surface changes and atrophy, a more discrete feature such as pose may not possess enough

discriminative ability over a 4 year timescale, and in order to fully utilize residual pose

analysis, we may either pick a cross-section of the data, or introduce scans from longer

time-periods as well. Secondly, it is possible that changing pose parameters over time

may not be very well modelled by a standard mixed-effects models, due to the depen-

dence between translation and rotation parameters. For example, a certain rotation of a

subcortical structure over time may increase rotation angles in 2 of the 3 dimensions and

reduce it in the third, while also having interactions with translation in the 3 dimensions

as well. To summarize, residual pose analysis may be better suited for cross-sectional

analysis of populations for the study of a neuronal disease such as schizophrenia, and

further research may need to be done on models that better fit the residual pose parameters

by understanding the interplay in the spatial parameters.

5.1 Limitations

There are some limitations to this study as well, which have been briefly mentioned above

in the Results and Discussions section, which we summarize here. From the preliminary

analysis with the volume regression plots, we see that there is significant variation in the

distribution of volume change across subjects, which may arise due to noise and artefacts

in the preprocessing step, as well as noise in the raw structural MRI scans due to scanner

artefacts, patient movement, and patient status during follow-up status etc.

Since we perform morphometric analysis on a schizophrenia dataset, there are several

factors that can contribute to the lack of significantly different changes across the two

groups; the subjects’ medication information is not taken into account when modelling

the longitudinal progression of disease, and brain volume can be affected by the type and
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quantity of medication being taken by the patients, which is not corrected for. Secondly,

the subjects’ handedness information and total intracranial volume information are not

taken as covariates while modelling size parameters and residual pose parameters, and

correcting for these dependent variables could potentially improve statistical modelling

of the dataset. Thirdly, since schizophrenia is an early neurodevelopmental disorder, the

study would be improved by having patients in the early and late adolescence stage as

well, along with subjects with scans over a longer time period, in order to better model the

stages of progression of the disease.

Finally, residual pose analysis has a few limitations as well when it comes to modelling

longitudinal progression of a disease, since pose parameters are very discrete features and

may not show significant differences over a 4 year timescale. Due to the inter-dependence

of rotation, translation and scale parameters, it may not be ideal to model them indepen-

dently, and a more rigorous framework that takes this interplay into account may be more

effective. Residual pose analysis also performs better in cross-sectional analysis, where

we ignore later scans in the dataset, which does reduce the statistical power of further

statistical tests in the cross-sectional analysis, which cannot therefore by compared to a

longitudinal analysis of volume and surface Jacobians, which have a higher statistical

power and a different modelling of confounding factors.

5.2 Future Work

The focus of this study has been on creating a robust, replicable pipeline for residual pose

analysis that can be easily applied to structural MRI data in order to extract meaningful

low-dimensional feature representations of high-dimensional 3D voxel data. The first

step to extend this analysis would be to apply this pose pipeline to further datasets of

schizophrenic and healthy patients, in order to improve the statistical power of both the
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cross-sectional and longitudinal analysis. Secondly, combining structural measurements

of pose and volume could be paired with brain functionality measurements, especially in

probing connecting pathways between the subcortical structures. Further improvements

can also be made on the amount of manual and automated quality control being done to

the dataset after processing through the MRICloud pipeline, in order to understand why

there are fluctuations in volumetric trends in even the control patients processed through

the pipeline.

The residual pose pipeline can also be treated as a highly ontological dimensionality

reduction technique that converts very high-dimensional medical imaging to highly inter-

pretable 7-dimensional feature vectors. One further direction of research could be to probe

the efficacy of this 7-dimensional representation of pose for the task of discrimination

between healthy and schizophrenic patients, or adding these features to currently existing

volume and shape-based discrimination methods in order to augment these feature repre-

sentations with complementary data. By enriching volume and shape descriptors with

pose, the residual pose technique may have the ability to aid in research that improves our

understanding of schizophrenia and other neurodegenerative diseases.
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