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Abstract 

Compartmentalization of cell body from the axon of a neuron is an important aspect 

in studying the influence of microenvironments. Microenvironment is an integral part of 

neuronal studies involving traumatic axonal injuries (TAI). While TAI is one of the 

possible outcomes of various forms of traumatic insults to the central nervous system 

(CNS) and peripheral nervous system (PNS), many of the mechanistic details are still 

unknown, it can be agreed that the level of injury often dictates the functional deficit. This 

motivates the question, what is occurring at both the morphological and biomolecular scale 

in CNS and PNS axons during and throughout the recovery phase after injury? And, are 

there any treatment strategies that could be applied to improve the recovery and 

regeneration of the axons subject to TAI? Motivated by this, I propose to develop novel 

microfluidic platforms as a part of my master’s thesis to allow unprecedented, 

physiologically relevant focal and graded mechanical injury and observation to both CNS 

and PNS axons.  

 

My research for this thesis can be broadly classified into two fold. 1) I examined 

the regenerative effects of the members of the Glial cell line-derived neurotrophic factor 

(GDNF), a family of neurotrophic factors after axotomy. This work resulted in the 

discovery of the fact that GDNF is the most potent neurotrophic factor among the family 

of growth factors for axon regeneration in dorsal root ganglion (DRG) neurons after in 

vitro axotomy. It was also found that GDNF locally applied to cell body better promotes 

axonal regeneration in comparison to when applied locally to axons. 2) Development and 
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refinement of existing axon injury microplatform (AIM) to closely mimic physiological 

conditions during traumatic injury in CNS neurons. This work was my attempt in 

improving already existing microfluidic compression platform. I successfully developed a 

displacement control injury device and demonstrated displacement control as a proof of 

principle. Further development of these microfluidic platforms will significantly contribute 

to the field of basic neuroscience, neurobiology, and biomedical engineering.  
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Chapter 1 
Introduction 

This work is an effort to understand and elucidate few of the molecular and 

structural dynamics of axonal injuries and the subsequent fate of axons post injury: to 

undergo either regeneration or degeneration, and to develop novel microfluidic platforms 

for neuroscience. This work can further be sub-classified into axonal injuries in Central 

Nervous System (CNS) and Peripheral Nervous System (PNS). Evidence from literature 

suggests that axonal regeneration in CNS is non-existent but is a fairly common 

phenomenon in PNS, given the right conditions. Recently it was found that the CNS axons 

do not inherently lack the regeneration abilities; rather, it is the environment that they grow 

and survive in is not conducive of regeneration. This opened new avenues into the research 

on axonal regeneration in CNS. Though axon regeneration in PNS has been established in 

the past, those studies are limited by the highly dynamic nature of the events at molecular 

level in vivo. 

 

In vivo animal models of trauma, either to CNS or PNS permits the study of whole 

organism’s response to a multitude of complex variables and behavioral outcome studies. 

Multiple injury modalities like Instant rotational injury model, Impact acceleration injury 

model, Lateral fluid percussion injury model, Controlled cortical impact model, Nerve 

stretch model [1] etc. exist for in vivo settings. These models facilitate monitoring of 

prognosis, and functional outcome to various treatment strategies. Though extremely 

useful, these models do not shed light on events at single cell and molecular level. To a 
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reductionist, in vivo techniques offer highly complex information leaving with the 

alternative of in vitro techniques. In vitro models on the other hand allow the study of 

biochemical pathways, gene expression levels, and phenotypic changes at single axon 

resolutions. To attain single axon resolutions in vitro, compartmentalization of soma from 

axons is needed. Attempts towards compartmentalization of neurons in vitro started couple 

of decades ago with the use of neurons with long axons like that of PNS. But those 

techniques were limited by the size of neurons and their axons rendering them not useful 

for the study of CNS neurons. Micro electro mechanical device (MEMS) technology 

integrated with biological applications gave raise to bioMEMS and Lab on Chip (LOC) 

devices which facilitated the required compartmentalization of axons from soma in these 

CNS neurons.  

 

1.1 Compartmentalization studies of axons and soma 

While neurons have been cultured and studied in vitro for decades, the idea of 

compartmentalized cultures did not become not mainstream until the late 70’s. The first 

attempt at compartmentalization of neurons with segregation of soma and axon into 

physically distinct and chemically separate compartments was successfully established by 

Campenot [2, 3]. These chambers were made on a Petri dish by coating a layer of grease 

on the bottom of the dish and laying a reusable Teflon layer on top of the existing silicone 

grease layer. The grease layer acts as a hydrophobic barrier which enables the 

establishment of chemically distinct microenvironments for soma and axon of PNS 

neurons. These devices were successfully used for several studies ranging from axonal 

transport to regeneration. Ivins et al. [4] also developed a compartmentalized chamber 
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using coverslip as a physical barrier in separation of soma and axons in culture. These 

devices are not versatile for compartmentalized neuronal studies owing to the complexity 

involved in fabrication and maintenance. Nevertheless, these studies [2-9] pioneered a new 

era of compartmentalized culture systems in neuroscience and neuroengineering. 

 

1.2 Microtechnology in neurobiology and neuroscience 

Effective use of microfluidics in neuroscience started with miniaturization of 

Campenot chambers. This miniaturized version of Campenot chamber is much needed 

because of the complexities involved with its fabrication and application for various studies 

that involve neurons with axons of shorter lengths like in the case of CNS. With an array 

of parallel microfluidic channels connecting two chambers which otherwise are not 

connected is developed by Taylor et al. [10]. Well established photolithography techniques 

widely used for MEMS were used to define a master template in silicon wafers which are 

replica molded in poly(dimethylsiloxane) (PDMS) to make these devices. This started a 

new avenue for research in neurobiology and neuroscience. 

 

The development of a dual chamber microfluidic device for neuroscience research 

by Taylor et al. [10] spawned interests in further developing various kinds of microfluidic 

platforms for neuroscience research. Microfluidic platforms and devices for neuroscience 

can be broadly classified into 1) electrical interfaces, 2) chemical interfaces, 3) physical 

interfaces, and 4) interface integrating any combination of the other three interfaces[11]. 

These platforms are being widely applied to culture neurons, manipulate neurons with the 
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flexibility of manipulating cell body and axons independent of each other, neuronal stem 

cell differentiation, neuropharmacology, neuroelectrophysiology, neuronal biosensors, and 

disease models [12, 13]. These microfluidic platforms are also extensively used in studies 

involving various types of neuronal supporting cells like Schwann cells, astrocytes, 

oligodendrocytes and even microglia. A brief summary of the microfluidic interfaces and 

their applications can be found in table 1.1 and a further emphasis on multicompartment 

chambers can be found in chapter 2. 

Table 1.1: Microfluidic interfaces for neuroscience and neurobiology research 

Interface Applications 

Electrical Interfaces Neuroelectrophysiolgy, Multi electrode arrays, stimulation, 

electro-chemical detection etc.  

Chemical Interfaces Neuropharmacology, disease models, fluidic isolation, soluble 

gradients, chemical guidance etc. 

Physical Interfaces Surface patterning, axon guidance, disease models, stem cell 

differentiation, neuronal co-culture studies, 

compartmentalization studies etc. 

Combined interfaces Neuronal biosensors, neuronal co-culture studies, 

compartmentalization studies, axon regeneration, electrical 

stimulation, disease models etc. 
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With this impetus several LOC platforms were developed. LOC devices provide 

powerful alternatives to existing in vivo and in vitro techniques in studying Traumatic 

Axonal Injuries (TAI). Providing platforms to model and study at single cell resolutions 

with compartmentalization and precise control over cellular microenvironments. They can 

be automated, require little amount of reagents with a scope for multiplexing, and high 

throughput[14]. LOC devices have been developed for neuroscience applications ranging 

from injury settings that can be employed in neuroscience to model and study the injuries 

and regeneration, synaptic connectivity, and complex live neural networks [15-20] as they 

can achieve fluidic isolation of the neuronal cell bodies from their axons. Several kinds of 

microfluidic devices are developed for the applications in neuroscience [12, 21-25].  

 

LOC devices are also broadly employed in neurobiology for neuron cell culture, 

neuron manipulation, neural stem cell differentiation, neuropharmacology, and neuro-

electrophysiology. With respect to axon injury studies, microfluidic platforms are highly 

compatible with different modes of injuries. Broadly classified, the modes of inducing 

injuries in neurons on these platforms are:  I. Physical, II. Chemical, and III. Both I and II. 

Physical modes include employing laser ablation techniques [26-28], valve based 

compression of axons[29], microsurgeries and axotomy. On the other hand chemical 

injuries are mostly caused by neurotoxins with different modes of action. 
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1.2.1 Microfluidic platforms for in vivo injury models 

1.2.1.1 Injury mode: Physical 

LOC platforms, a great tool for reductionist approach are also extensively 

employed to study axon regeneration in vivo. Many model organisms like Aplysia 

californica, Caenorhabditis elegans, Drosophila, and zebrafish are used in the studies of in 

vivo neuron injury and regeneration [26-28, 30-32]. Amongst these, C. elegans is a 

nematode with its genome completely sequenced and with a feasibility of in vivo axotomy, 

offers a powerful model to study in vivo nerve injury and regeneration.  Immobilizing the 

worm and subjecting it to axotomy is a critical step in studying the injury and regeneration. 

Conventional techniques of immobilization employ the use of glue, and anesthetics. 

Though these modes are typical for immobilizing the worm, they have some drawbacks. 

These methods can either have unknown toxic effects that are difficult to evaluate or are 

labor intensive and of low throughput. Microfluidic platforms can be a clever alternative 

to these problems. Choksi et al. [27] has developed microfluidic platforms to immobilize 

single worms on either a short term or long term basis to characterize their on-chip 

behavior.  Chung et al. [26] designed and developed an automated, integrated microfluidic 

system to perform high-throughput cell microsurgery. Their device is capable of processing 

multiple worms in parallel without increase in control complexity. The device can be used 

to simultaneously load worms in one set of channels and perform imaging and laser 

ablation in the other set. Guo et al. [28] has developed a high throughput microfluidic 

platform for in vivo nerve regeneration studies. Their platform enables precise focusing 

and nano surgery of trapped worms and feeding for recovery of the operated worms in two 

different modules. The device also incorporates an adjustable trap for immobilization of 
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worms at various developmental stages. Highly specific laser ablation techniques can be 

used to injure the worms once they are steadily immobilized. Based on the frequency or 

the repetition rate of laser, the gaps created in the axotomy vary. With high frequency lasers 

2-5 µm gaps are created where as low frequency lasers result in precise 1-2 µm gaps[31, 

33]. Other physical modes of causing injury to axons  in vivo involve needles to transect 

individual axons, fluid percussion, microelectrodes etc. [34].  

 

1.2.2 Microfluidic platforms for in vitro injury models 

1.2.2.1 Injury mode: Physical 

Stretch induced injury is one of the many modes of physical injury observed in vivo 

during traumatic insult to axons of CNS and PNS. Several groups have modeled and 

studied these injuries in vitro. Stretch-induced injury model [35] on cortical astrocytes (of 

brain origin) was developed by culturing the cells on deformable membrane which was 

subjected to deformation by a positive rapid pressure. The system enables to study the 

extent and degree of injury with precise control over deformation of membrane by varying 

the amplitude and duration of pressure. Speaking of axons specifically, one of the major 

hurdles for them to undergo regeneration in an injury setting is the enormous lengths that 

they would have to grow to bridge established between the proximal extending axon and 

the distal stump. In bridging these gaps, axons have to circumvent the non-permissive 

substrates for neurite growth. Myelin of oligodendrocytes is a potent inhibitor for neurite 

outgrowth in CNS. In addition to this, glial scar formed at the site of an injury acts as both 

mechanical and biochemical barrier for the growing axons. As the name suggests the scar 

is often comprised of glial cell types like reactive astrocytes, microglia, oligodendrocyte 
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precursors, and fibroblasts. It also contains growth inhibitory factors such as semaphorins, 

ephrins, tenascin and chondroitin sulfate proteoglycans [36]. This non permissiveness can 

be a kind of negative mechanism involved in enhancing the efficiency of surface 

recognition process for selective cell and growth cone migration. The non-permissive 

nature of the myelin and oligodendrocytes can be attributed to membrane proteins of 35 kd 

and 250 kd, which can be extracted from CNS myelin fractions. Antibodies: IN-1 and IN2 

raised against these proteins neutralized the non-permissiveness of the myelin and allowed 

the axon outgrowth[37]. The growth rate of axon also plays a major role in bridging the 

gap in regeneration. One of the several strategies to influence a sustained but rapid growth 

in axons is to apply a continuous mechanical tension. Smith et al. [38] developed a device 

to physically split integrated neuronal cultures into two halves and separate the halves 

progressively further apart using a microstepper motor system. In doing so they achieved 

a growth rate of 1mm/day. Transecting axons to induce axonal injury by laser ablation in 

one of the physical modes [33, 39]. Kim et al. [11] developed a neuro-optial microfluidic 

platform that integrates a microfluidic chip, femtosecond laser for axotomy and mini-

incubator to maintain sterile and appropriate microenvironment for long term monitoring 

of events post injury.  

 

1.2.2.2 Injury mode: Chemical 

Traumatic injuries to axons of CNS and PNS can be induced by chemicals like 

neurotoxins, neurotransmitter in excess (excitotoxicity), and detergents [30, 34]. Injury 

induced by chemicals in microfluidic platforms aid both the qualitative and quantitative 

study, as the concentrations can be varied and localized precisely. Several in vitro axon 
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injury models have been developed to study chemically induced injury. Kilinc et al.[26] 

developed a three compartment (cell body, cenral/proximal, distal compartments) 

microfluidic device to study simultaneous axonal degeneration and death mechanisms of 

axons subject to axotomy, with precise spatiotemporal control. The injury was induced by 

a brief and isolated flux of detergent in the central compartment. They observed rapid 

Wallerian-like degeneration in the distal axons subject to axotomy. Li et al. [22] developed 

an integrated microfulidic platform to chemically induce axonal injury and study the 

recovery and regeneration of axon either in co-culture with glial cells in controllable 

chamber using valves or treatment with monosialoganglioside, a drug aiding neuronal 

regeneration.      

 

Other important aspect of the events post injury are survival, recovery and 

regeneration of the axon. Microfluidic platforms are an excellent choice for studying and 

understanding the mechanisms involved in regeneration or degeneration post injury, 

establishment of neural networks. Several strategies to achieve this in microfluidic devices 

have been devised [40-45]. For example a gradient-generator microfluidic device was 

developed by Bhattacharjee et al. [32]. This device helped to study the neuronal response 

to diffusible gradient. This helps to understand the complex mechanisms of axon growth 

and guidance to chemical gradients. Microfluidic devices have been developed to study 

synapse formations as they provide a suitable platform to analyze the cellular events 

underlying the synapse formation [46]. 
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1.3 Specific Aims 

The specific aims of my research have the following interests. First, I aimed to 

study the role of Glial cell line-derived Neurotrophic Factor (GDNF) in the axonal 

regeneration post injury in simple two chamber microfluidic devices. Second, I aimed at 

improving the existing microfluidic technologies that allows focal and graded axonal injury 

to incorporate three dimensional injury models and novel displacement control injury 

models. Specifically, I have divided the research into the following aims: 

Aim 1. To study the role of GDNF as a neurotrophic factor in axonal regeneration post 

injury of PNS neurons in simple two chambered, open system, microfluidic devices. 

Aim 2. To design and optimize three dimensional microfluidic platforms for a focal and 

graded compressive injury to axons, and to develop microfluidic chambers in a manner 

compatible with high resolution optical microscopy. 

 

1.4 Organization of the Thesis 

This thesis is organized into 5 chapters dealing with the aims presented above. 

Chapter 1 gives a brief introduction about microtechnologies for axonal injury studies in 

various settings. Chapter 2 deals with a review of literature in multichambered microfluidic 

devices in neuroscience with specific applications in axonal injury and regeneration. 

Chapter 3 and chapter 4 describe the experimental working of aims with brief 

introductions, materials and methods, results, discussions and conclusions associated with 

each aim. Chapter 5 consists the conclusions of the work and project some ideas about 

future possibilities and potential areas of development. Finally, an appendix with protocols 
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and other miscellaneous details relevant to the experimental settings are provided in the 

end.  
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Chapter 2 
 

Microfluidic Multi-Compartment Chamber Devices in 

Neuroscience and Neuroengineering 
 

2.1 Introduction 

Neurons are highly polarized cells with a cell body ‘soma’ and processes ‘axon’ 

and ‘dendrites’: axon constitutes the majority of protoplasm in a neuron. By this intrinsic 

nature of polarization, neurons are usually seen extending their axons, often several 

millimeters into varying microenvironments in their niche. These processes constantly 

encounter various guidance cues in varying degrees from the surrounding 

microenvironments in the form of biochemical, and biophysical signals for growth, 

maintenance and remodeling. These microenvironments encountered by axons in their 

process of extension more often than not differ in chemical and physical properties in 

comparison to the microenvironment surrounding soma. Well established and traditional 

in vitro cell culture techniques in petri dish are reliable in elucidating phenomenon 

affecting on a global scale by bathing soma and axons homogenously in a culture media[47, 

48]. But they usually fail about providing invaluable information on much localized 

phenomenon which are equally powerful in advancing our understanding of neurobiology. 

And so, it is only imperative to develop novel in vitro neuronal culture platforms that can 

establish and enable tailoring of these varying microenvironments for successful 

maintenance and study of the cultures in close resemblance to in vivo systems. With the 

advent of and advances in sophisticated photo lithography techniques for semi-conductor 

industry, a field of study integrating mechanical systems with electrical systems called 
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MEMS emerged. MEMS further branched out into biological MEMS (BioMEMS) with 

potential applications in various fields of biology. 

  

BioMEMS integrated with microfluidics emerged as Laboratory-on-a-Chip (LOC) 

platforms: potential and viable alternatives for existing techniques to conduct various 

biological studies at micron scales with precise control over the micro environments. The 

broad spectrum applications of microtechnology has involved engineers[11] in 

collaboration with biologists to develop several novel LOC devices for various studies[11, 

12, 49-53]. These microfluidic systems initiated a new era of studies in biology by 

efficiently reducing the volume of reagents and samples there by the overall cost 

incurred[54], and by facilitating spatiotemporal manipulation of a system at cellular 

dimensions. With the reduction in system size, phenomena like diffusion, surface tension, 

and viscosity play a prominent role counterintuitive to our experiences with the 

macroscopic world [55, 56]. These microscale phenomena can be exploited for several 

practical purposes like establishing and maintaining interfaces, gradients, and even 

manipulation and processing of droplets in real time for biochemical analysis[57]. 

Microtechnology also offers potential and viable platforms for investigations in 

neuroscience. The operation range of neurons fall under the bounds of LOC devices with 

the possibility of incorporation of electrodes for stimulation and recording, microchannels 

and other physical barriers for guidance and tailored interactions with other cell types[58-

60]. 
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Soft lithography in elastomeric polymer PDMS is one of the most sought after 

techniques for fabricating LOC devices. Soft lithography encompasses rapid prototyping 

and replica molding: rapid prototyping of a master template in positive relief is achieved 

by photo lithography (a commonly used microfabrication technique) and a pre polymer of 

PDMS is cast and cured on the master template for replica molding. Using this technique, 

structures and features ranging in sizes from 100 nm to 100 μm can be transferred on to 

PDMS with great fidelity. Many studies involved the development and use of LOC devices 

in PDMS consisting of elements like micro channels, pumps, mixers and valves[61]. 

Several groups have fabricated LOC devices in PDMS for neuroscience studies including 

neuronal cultures, in vitro disease models, and electrophysiology. 

 

We present you in this review, a comprehensive view of recent developments of 

various multi-compartment LOC devices for neuroscience used across studies involving 

neuronal cultures, in vitro disease models, and electrophysiology.  We explore various 

LOC devices in this review by organizing the discussions in the following way: (1) 

Fabrication, and (2) Multi-Compartment Chamber Devices. 

     

2.2 Fabrication 

Microfluidic devices were conceived as early as 1970s in the form of a miniaturized 

gas chromatograms[62] serving as an impetus for present day LOC devices. The initial 

microfluidic devices were developed in silicon and glass, based on then existing technology 

for MEMS. They were commonly applied in chemical analysis, gradually making their 
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impact felt in biological applications with the development of BioMEMS. BioMEMS 

enabled medical and biochemical analysis with increased resolutions, increased density in 

arrays, massive parallelization, high throughput, and decrease in volume of the reagents 

being used. BioMEMS combined with the advances in soft lithography spawned LOC 

devices. The fabrication of these devices is usually done in PDMS elastomer which offers 

several advantages: PDMS as a material of fabrication is a viable choice because of its low 

interfacial energy (can be bonded to most surfaces reversibly), chemical and thermal 

stability (does not react with the surfaces it comes in contact with), permeability to gases 

(allows gaseous exchange to maintain viable cell cultures), optically transparent down to 

230 nm (compatible with imaging), mechanically deformable (for incorporation of valves, 

pumps), tunable interfaces (hydrophobic/hydrophilic), and of most importance is its 

inertness and biocompatibility[63].    

 

2.2.1 Design and Fabrication Techniques 

Limitations like the cost of operation, compatibility with nonplanar surfaces, 

suitability for surface chemical modification, and choice of photoresists render the well-

established photolithography technique not so useful for LOC applications. In contrast, soft 

lithography offers to overcome the limitations that are encountered in conventional 

photolithography. Soft lithography includes photo lithography to create a master template 

in positive relief by rapid prototyping. First a layout of the device design is developed using 

Computer Aided Design (CAD) and this CAD file is used to print a high resolution 

transparency mask (up to a resolution of 5 μm). A 3-4 inch Si wafer is spun with SU8 

photoresist to a desired thickness, exposed with the mask and developed. The features left 
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on the surface of the Si wafer serve as positive relief patterns of the master template in 

downstream processes as illustrated in figure 2.1 A. 

 

The later part of soft lithography involves developing elastomeric PDMS molds 

from the master templates by cast molding. The pre-polymer of PDMS is made available 

in a two part kit comprising of a base and a catalyst/curing agent. The ratio of base to the 

curing agent can be altered to tune desired mechanical properties of the cross-linked 

PDMS. A desired mixture of base and curing agent is prepared, degassed and cast on the 

master template. The cast pre-polymer is then incubated for couple of hours in an incubator 

for the cross linking reaction: hydrosilylation between the vinyl and hydrosilane groups. 

The cast is cooled and peeled off from the master template for next cycle of cast molding 

[64]. The mold produced can be used in various techniques like microcontact printing 

(μCP), replica molding, micro-molding in capillaries (MIMIC) and few others [63-67]. In 

μCP, the relief structures in PDMS are used as stamps in transferring patterns to the surface 

of a substrate by contact, resulting in micro patterns and this method has been used often 

to pattern ECM substrates (figure 2.1). In MIMIC a PDMS mold consisting of parallel 

grooves is used to create empty channels when in contact with the surface of a substrate. 

These empty channels act as capillaries and when a liquid of low viscosity is seeded at one 

end it is taken up across the channels by capillary action. MIMIC is another soft lithography 

technique to pattern surfaces (figure 2.1 B). These techniques in conjunction with LOC 

devices are often used in various neuronal studies. 
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2.2.2 Modeling and Simulations 

The scaling down of neuronal culture system’s dimensions to an order of microns 

not only improves the operation cost and handling, but also allows the precise control of 

microenvironments with a possibility of compartmentalization. The scaling down of 

dimensions to micron orders results in significant changes to the physics of fluids that are 

seldom perceived at macroscopic scales [55-57, 68]. The continuum theory of fluids still 

holds at micron scales for channel dimensions >100 nm. Often cited paradigm to delineate 

Fig 2.1: A. Schematic of photolithography technique and micro contact printing (adapted from [64] 

copyright 2010 Nature Publishing Group), B. Schematic of MIMIC technique (adapted from [67] 

copyright 1996 American Chemical Society). 
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the significant deviations in fundamental physical properties at micron scale is mass 

transport phenomena. Mass transport in microfluidic channels is primarily dominated by 

viscous forces but not by inertial forces, which are almost negligible resulting in laminar 

flow profile in the channels. When the microfluidic channel dimensions are further reduced 

below 100 nm, we enter the regime of nanofluidics. The continuum theory can still be 

applied here by excluding few layers of molecules adjacent to the channel walls. The 

physics of nanofluidics further varies significantly from that of microfluidics and this is 

discussed elsewhere [68-72].  

 

Several non-dimensional numbers are used when describing the physics of 

microfluidics: Reynolds number, Péclet number, Knudsen number, capillary number etc. 

In this review we briefly focus on the first three dimensionless numbers which help in 

understanding the dynamical physical properties of microfluidic neuronal culture systems.  

The culture medium is assumed to be a Newtonian fluid and that it obeys Navier-

Stokes equations of fluid continuum theory. 

𝜌 (
𝜕𝐮

𝜕𝑡
+ 𝐮. ∇𝐮) =  −∇p + η∇2𝐮 + 𝐟 

𝜌 − 𝑑𝑒𝑛𝑠𝑖𝑡𝑦   p − 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒   𝜂 − 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑒𝑖𝑛𝑡 𝑜𝑓 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦    

𝐮 −  𝑓𝑙𝑜𝑤 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑣𝑒𝑐𝑡𝑜𝑟   𝐟 − 𝑏𝑜𝑑𝑦 𝑓𝑜𝑟𝑐𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠    
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Inertial forces in microfluidic systems are of negligible order compared to viscous 

forces. This implies that the non-linear term in Navier-Stokes equation, 𝐮. ∇𝐮  can be 

neglected. Combined with mass conservation yields the incompressibility condition 

∇𝐮 = 𝟎. 

 

The loss of non-linearity in microfluidics results in low Reynolds number (Re) 

which is defined as the ratio of inertial forces to the viscous forces. 

𝑅𝑒 =
𝑓𝑖

𝑓𝑣
=

𝜌𝑢𝐿

𝜂
 

𝑓𝑖 − 𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 𝑑𝑒𝑛𝑠𝑖𝑔𝑦   𝑓𝑣 − 𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 

 

𝜌 − 𝑓𝑙𝑢𝑖𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦   𝑢 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦   𝐿 − 𝑡𝑦𝑝𝑖𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑠𝑐𝑎𝑙𝑒    

𝜂 − 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑒𝑖𝑛𝑡 𝑜𝑓 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦  

Low Re number flows are not common on macroscopic scales but are frequently 

encountered in microfluidics. The low Re number in microfluidic devices results in 

predictable Stokes flow in the channels. The no-slip boundary condition in pressure driven 

flows ensure that the flow velocity of fluid is zero at walls resulting in a parabolic profile 

laminar flow. Because of the low Re in microfluidics the flow is deterministic and can be 

fine-tuned. 
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The second dimensionless number is the Péclet number. Péclet number signifies 

the solute transport: the mixing and maintenance of gradients in microfluidic channels. It 

is defined as the ratio of advective transport to diffusive transport. 

𝑃𝑒 =
𝑈𝑤

𝐷
 

𝑤 − 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑙𝑒𝑛𝑔𝑡ℎ   𝑈 − 𝑓𝑙𝑜𝑤 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦    

𝐷 − 𝑚𝑎𝑠𝑠 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 

Mixing may or may not be desired in the neuronal culture system. In the case of 

compartmentalization, mixing is not usually desired and a steady gradient of solute 

molecules, like growth factors are needed to guide axonal growth. Low Pe number results 

in diffusion dominated mixing which helps maintain a gradient for a long time in culture 

system. 

 

Another dimensionless number is the Knudsen number. Knudsen number is defined 

as the ratio of mean free path of molecules to macroscopic length scale. Knudsen number 

defines the transition of fluid approximation from continuum to discreet molecules. It 

establishes the validity of continuum Navier-Stokes equations.  

𝐾𝑛 =  
𝜆𝑓

𝐿
 

𝜆𝑓 − 𝑚𝑒𝑎𝑛 𝑓𝑟𝑒𝑒 𝑝𝑎𝑡ℎ 𝑓𝑜𝑟 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠   𝐿 − 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠𝑖𝑡𝑖𝑐 𝑙𝑒𝑛𝑔𝑡ℎ 
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The dimensionless numbers mentioned above elucidate the physical phenomena 

operating in microfluidic systems. They define system performance parameters and help 

in developing mathematical models to numerically simulate the system. Numerical 

simulations of microfluidic systems are not only an excellent research tool but also they 

play a vital role in efficient design, prototype development and optimization. Mathematical 

models developed for numerical solutions and simulations can easily incorporate the 

complexities of channel geometry, fluid flow rates, flow profiles, diffusion coefficients, 

dynamic gradients, their spread in space and time, and possible chemical interactions to 

great details. An accurate prediction of the behavior of a particular system can be made 

using the models and simulations which are otherwise elusive on a preliminary 

examination to our intuition. Mathematical modeling and simulations also further our 

theoretical understanding of the physics of microfluidic systems which are otherwise hard 

to realize in experiments and practice. 

 

Mathematical models of these systems are powerful tools or substitute for 

eliminating the need for laborious experiments to determine optimal conditions by 

changing any number of parameters on the performance of the device without actually 

fabricating different devices. But the caveat is that mathematical modeling is an 

approximation of the physical phenomenon in play (often some physical phenomenon are 

not accounted for or left out for the sake of simplicity) and the simulations often fail to 

exactly replicate the experimental observations.  
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Finite Difference (FD) method, Finite Volume (FV) method and Finite Element 

Modeling (FEM) are few approaches commonly used to model microfluidic systems. All 

these methods are relatively similar in that they spatially discretize differential equations 

over a solution domain[73, 74]. FD method is usually employed in the cases of well-

structured grids with simple geometries by converting partial derivatives to numerically 

solvable differential equations[75, 76]. FV method is similar to FD in the sense that the 

system is divided into a series of control volume nodes and each node is treated as an 

independent entity.  A system of differential equations are written out for each node, 

treating the adjacent nodes as unknowns and these equations are numerically integrated 

[77-79]. The arbitrary geometry of the nodes makes FV more generic over FD but 

difficulties often arise in establishing the system of governing differential equations and 

reducing them to a lower order. Also, FV methods are more suitable for systems where 

viscous forces are negligible, but in the realm of microfluidic systems where viscous forces 

play a major role, FV method is rendered complex and not feasible. This leaves us with 

FEM as promising method for simulating microfluidic systems. 

 

Like FV method, FEM has the advantage of dealing with arbitrary and irregular 

node geometries. FEM begins with discretizing the sample space into finite and spatially 

distinct series of interconnecting nodes and elements collectively representing the overall 

geometry of the system. FEM can handle unstructured grids and irregular geometries like 

linear, triangular, parabolic etc. The partial differential equations for each node is set using 

techniques in variational calculus. These partial differential equations are then given 

weights in FEM which are multiplied prior to the integration over the domain. The relative 
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ease and simplicity with which one can establish even weak formulations and apply 

boundary conditions makes FEM one of the best sought after method for modeling in 

microfluidic simulations. Nevertheless, necessary caution is to be taken when applying 

FEM methods as they suffer from cumbersome numerical computations associated with 

the irregular and arbitrary geometries.  FEM has been not only used to model various flows 

(non-uniform surfaces, free surfaces, capillary and immiscible flows), mass transfer and 

mixing (dispersion, gradients), heat transfer (dissipation, gradients), electrophoresis etc., 

in microchannels [73, 80-83] but its significance is being felt and utilized in modeling 

gradients in gels established in microchannels , the characterization and optimization of 

microfluidic device mechanical properties etc. [61, 83, 84] . 

 

2.3 Multi-compartment Chamber devices in Neuroscience and Neuroengineering 

While neurons have been cultured and studied in vitro for decades the idea of 

compartmentalized cultures did not become mainstream until the late 70’s. The first 

attempt at compartmentalization of neurons with segregation of soma and axon into 

physically distinct and chemically separate compartments was successfully established by 

Campenot [2, 3]. These chambers were made on a Petri dish by coating a layer of grease 

on the bottom of the dish and laying a reusable Teflon layer on top of the existing silicone 

grease layer. The grease layer acts as a hydrophobic barrier which enables the 

establishment of chemically distinct microenvironments for soma and axon. These devices 

were successfully used for several studies ranging from axonal transport to regeneration. 

Ivins et al. also developed a compartmentalized chamber using coverslip as a physical 

barrier in separation of soma and axons in culture. These devices are not versatile for 
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compartmentalized neuronal studies owing to the complexity involved in fabrication and 

maintenance. Nevertheless, these studies pioneered a new era of compartmentalized culture 

systems in neuroscience and neuroengineering. 

 

With the development of BioMEMS and LOC devices the compartmentalization of 

neurons in culture has been achieved with a relative ease compared to the traditional 

Campenot and Ivans culture systems. Before we discuss any further on the advancements 

of LOC devices for compartmentalized studies we should address the important question: 

Why do we need the compartmentalization of neurons? The following reasons listed below 

should briefly address this question 

a. The neurons in CNS extend over considerable distances through varying extracellular 

microenvironments to from synapses, the basis of neuronal connectivity. 

b. Etiology of several neurodegenerative diseases and CNS injuries involve axonal 

damage (for example spinal cord injury and Alzheimer Disease). 

c. Campenot chambers were not successful in culturing CNS neurons involved in the 

pathology of most neurodegenerative diseases and injuries (for example, cortical, 

hippocampal, and spinal cord neurons). 

d. Selective isolation of the axonal molecules (for example, axonal mRNA, protein 

machinery etc.) from mammalian CNS neurons, an achievement not possible by either 

in vitro or in vivo methods. (Axonal protein synthesis is important in the development, 

maintenance, and plasticity of synapses) 

e. To model axonal injury: the ability to selectively lesion axons and biochemically 

analyze their somata for immediate early gene expression. 
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f. Co-culture studies of oligodendrocytes with CNS axons to study the myelination as 

well as demyelination diseases like MS. 

g. For selective axonal transport studies. 

 

2.3.1 Multi-compartment Chamber devices for axon guidance  

The complex circuitry of a human brain involves highly intricate yet structured 

architecture of connections between individual neurons enabled through functional 

synapses. The interconnectivity between neurons through functional synapses is often so 

dense that single neurons are seen networking with several neurons, in the order of 

hundreds to thousands both in the vicinity and remote areas. A functional connection 

between two neurons is established via synaptogenesis: a multi-step complex and dynamic 

process which involves several events at cellular and molecular level like elongation and 

polarity of neurites, axon path finding/guidance, target recognition and signaling within 

presynaptic and postsynaptic components. Axon guidance involved in synaptogenesis 

plays an important role in normal and pathogenic brain development as well as in 

neurological regenerative and/or degenerative medicine. Several disorders linked with or 

implicating faulty axon developmental pathways like autism are being discovered and the 

number is growing [85]. Similarly, neurodegenerative diseases like Alzheimer’s, 

Parkinson’s, Huntington’s, and prion diseases are associated with synaptic and neuronal 

dysfunction. Directionality of neuronal pathways in developmental mechanisms of specific 

connections and degeneration of neuronal networks in mature brains has elicited the 

interests of several neurobiologists to pursue explorative studies involving molecular 

processes pertaining to axon guidance, functional synapse formation, maintenance, and 
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plasticity. In vivo methods best preserve the architecture of neuronal connectivity offering 

realistic and physiological insights into axon guidance, synapse formation and remodeling. 

However, the sheer number of connections and the complexity associated with mammalian 

brains serve as road blocks for in vivo methods. Resorting to in vitro culture techniques 

offer alternatives to achieve this feat. Nevertheless, traditional in vitro techniques with two 

dimensional dissociated cultures, even with small number of cells result in random 

connections and three dimensional organotypic culture vary from sample to sample and 

often the connections are severed in slice preparation. Novel LOC microfluidic platforms 

are being developed in the recent years to study axon guidance and synapse formation in 

vitro owing to the several advantages they offer over traditional methods. 

 

Traditional in vitro culture methods lack the sophistication to conduct studies with 

spatial compartmentalization of neuronal signals: they do not offer separation of axons 

from soma to study the local molecular mechanisms involved in axon guidance, and fail to 

preferentially orient neuronal networks with several neuronal subtypes. Also, they suffer 

from the lack of complexity in providing a localized plethora of axon guidance cues like 

canonical guidance cues, morphogens, growth factors, cell adhesion proteins, and the 

extensive cross talk that is often observed between various guidance pathways. These 

hinder elucidation of the underpinnings of phenomena involved in complex axon guidance 

and neuronal networks. With recent technological advancements in microfabrication novel 

and innovative LOC devices for axon guidance and functional synapse formation studies 

are being developed. The guidance cues in these devices can be i. Physical [86-89], ii. 

Chemical [90-93], iii. Or both [86, 92, 93]. Physical cues for guidance often involve 
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microchannels with various shapes and geometries, which act as conduit for axons to grow 

and orient. Physical cues can either maintain or realign the current orientation of axons as 

axons are considered to be stiff and when encountered with barriers they reorient 

themselves with altering growth rates. Chemical cues can either be growth promoting like 

neurotrophic factors or growth inhibiting like scar tissue, myelin etc. In order to act as 

guidance cues these chemical cues are usually presented to the axon growth cone in 

gradients. The gradients can either be soluble or insoluble, and they can be stable over time 

or dynamic i.e. the gradients can be spatiotemporally controlled to guide the axonal growth 

cones.  

 

Takayama et al. [86] developed a LOC platform to form a one-way-structured 

cultured neuronal network that is functionally regulated. Combining microfluidic devices 

with microcontact printing their device consists of U-shaped array structure for cell 

trapping in PDMS which is bonded to a previously patterned glass substrate by 

microcontact printing with areas of cell adhesive and non-adhesive molecules. Once cells 

were trapped in the device, the cells were exposed to chronic medium flow rates (0.5 

μl/min) to study the effects on the direction of neurite elongation. Their study indicates the 

fact that a chronic medium flow could positively affect the direction of neurite development 

and can be useful for forming morphologically and functionally regulated cultured 

neuronal networks. Mahto et al. [87] developed a three compartment microfluidic device 

to study functional synapse formation in vitro. The microfluidic device is made up of three 

parallel compartments, while the middle compartment is narrower and is connected to side 

compartments with microgrooves that define the directionality of neuritis. The functional 
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synapses were established by first culturing cells in the side compartments. Once neurites 

to extend via microgrooves into the middle compartment, fresh cells are seeded into the 

middle compartment which establish a functional network between the two channels. Pirlo 

et al.  [88] a microfluidic system with asymmetric geometries to study neuron-neuron and 

neuron-glia interactions. They developed a laser cell deposition system to selectively seed 

cells into a specific microwells interconnected with channels of asymmetric geometry that 

promote neurite extension and formation of functional synapses. The device geometry 

permits a unidirectional and functional network formation between neurons and also allows 

co-culture studies with glial cells. Peyrin et al. [89] developed a compartmentalized 

microfluidic platform called axon diodes for oriented and unidirectional neuronal networks 

of high complexity. The microfluidic platform consists of two chambers interconnected 

with funnel shaped asymmetric channels called axon diodes that taper down along the 

length which ensures that the axons penetrate only in one direction resulting in the 

unidirectionality of the network established. Functional and highly oriented binary 

neuronal networks between different types of neurons can be easily established with this 

device.  

 

Shi et al. [90] developed a compartmentalized microfluidic chamber with 

multicomponent, protein-micropatterned surfaces to investigate local crosstalk between N-

cadherin and fibroblast growth factor receptor in axon guidance. The chamber design, a 

microchannel barrier overhang on the cell side suits aggregate cultures like explants or 

embryoid bodies better than dissociated cell cultures. Millet et al. [91] developed a 

multicompartment microfluidic device to pattern tunable surfaces for axon guidance. The 
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device design consists of three parallel channels with the middle channel interconnected to 

the two peripheral channels via microchannels, allowing establishment of biologically 

more relevant substrate diffusion gradients in combination with more tunable and dynamic 

fluid-phase laminar flow gradients. Using this device they established differential substrate 

patterns of stable, surface-bound gradients of laminin and Texas Red-conjugated bovine 

serum albumin (TR_BSA) perpendicular to binary FITC-PLL lines for preferential 

neuronal polarity and axon guidance. Kothapalli et al. [92] designed and fabricated a 

microfluidic device to study axon guidance. The device design permits the study of 3D 

neuronal culture closely evoking native cell responses. The microfluidic device is a 

multicompartment device with a T-shaped gel region at the intersection of three 

microfluidic channels: media, cell, and guidance channels. Stable soluble gradients of 

guidance cues were established across the gel, orthogonal to the direction of neurite growth 

in as little as 30 min and maintained stable over a period of 48 hours, impervious to external 

perturbations. Bhattacharjee et al. [93] conceptualized and implemented a neuron-benign 

gradient-generator multicompartment, microdluidic device to study axon guidance. The 

device design incorporates a large, central open reservoir for cells with parallel source and 

sink microchannels on sides, interconnected orthogonally by smaller microchannels called 

microjets. This design ensures negligible flow in the open reservoir resulting in minimal 

shear-stress to the cells and thereby improving the viability of cultures, hence neuro-

benign. Stable gradients of guidance cues are established across the source, reservoir and 

sink by laminar flow of media with a certain concentration guidance cue in the source 

microchannel while the media flowing in sink microchannel carries no guidance cue. Stable 

diffusible surface gradients are established between the two boundary concentrations 
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within 2-5 min and are stable up to 6 hours, the shear-force to which the neurons are 

exposed due to the flow in gradient creation is negligible. 

Fig 2.2: 1a & 1b. In vitro reconstruction of a neuronal network using ‘‘axonal diodes’’ in microfluidic 

culture devices, 1c & 1d. Immunofluorescent images of microfluidic neuronal cultures either on the 

wide or the narrow side, 1e. Quantification axonal growth polarization (adapted from [89] with 

permission from The Royal Society of Chemistry), 2a & 2b. Design of the three-channel microfluidic 

device developed to study neurite turning in 3D scaffolds under a growth factor gradient, 2c, 2d & 2e. 

Neurite guidance of hippocampal neurons by chemoattractants (adapted from [92] with permission 

from The Royal Society of Chemistry), 3a. Schematic of micro-jets device with a central open-surface 

reservoir, 3b & 3c. Neuronal response to netrin (adapted from [93] with permission from The Royal 

Society of Chemistry), and 4a & 4b. Schematic of the channel design used and diffusion through 

microfluidic interconnects, 4c & 4d. Traces of neuronal process in gradients and control (adapted from 

[91] with permission from The Royal Society of Chemistry). 
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2.3.2 Multi-compartment Chamber devices for axonal biochemical analysis and 

assays  

The characteristic polarity of a neuron with soma, dendrites, and an axon(s) enables 

formation of complex circuitry with highly defined directionality in chemical 

communication between neurons, information processing, storage, and retrieval. Earlier, it 

was thought that axons were devoid of protein synthesis machinery for biosynthesis of 

proteins and other molecules, and that the synthesis occurs solely in soma and the finished 

products are translocated either actively or passively to axon [94]. The selective transport 

of synthesized proteins in soma only to axons undergoing synaptic changes is hard to 

explain without local protein synthesis in axons. Recent evidences supporting local protein 

synthesis in axons [95] are increasing in number indicating the necessity to selectively 

study the mechanisms of proteins synthesis and transport in axons with no interference 

from soma. Disruption of axonal transport is observed in pathology of several 

neurodegenerative disorders like Alzheimer’s, Huntington’s, and Parkinson’s. Also, axonal 

degeneration and neuronal apoptosis is closely linked with mitochondrial transport. All 

these evidence points to the fact that the analysis of axonal transport, mRNA pool, protein 

synthesis etc. sans somal counterparts is paramount. 

 

Traditional neuronal culture techniques involved culturing of either dissociated 

neurons or explants in petri dishes. The sense of compartmentalization and fluidic isolation 

is not maintained in these cultures and it was extremely hard to isolate and study the 

biochemical processes in axons. Identified solely by the morphology, axons were randomly 

oriented in all directions and often entangled. Often the sense, i.e. retrograde or anterograde 
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is extremely hard and painstaking to identify in these cultures. They are not high-

throughput, scaling up is labor intensive and often difficult. Microfluidics and LOC devices 

are right up the alley and address several of these issues in neuroscience and 

neuroengineering. The dimensions of these devices are similar to that of neurons in vivo 

and the provide compartmentalization and fluidic isolation. This enables the study of 

localized axonal mechanisms without even the slightest interference from somal 

compartment. Several groups have developed novel LOC devices to study transport, 

protein synthesis and biochemical analysis in axons and functional synaptic junctions [96-

102]. 

 

Millet et al. [97] developed multicompartment microfluidic devices, both with open 

and closed channel systems to study the microenvironments of neurons in culture at low 

densities. Ability to culture neurons at low densities enables one to specifically isolate the 

microenvironments of axons for biochemical analysis. With the option to perfuse, 

collection of samples from the microenvironment is spatiotemporally controlled. Noo Li 

Jeon group [96, 98, 101, 102] developed several variations of multicompartment 

microfluidic devices to study various aspects of axonal transport, axonal mRNA and axonal 

translates. The basic device design consists of two microfluidic compartments one each for 

soma and axon interconnected by microchannels. Hydrostatic pressure driven fluidic 

isolation can be achieved for a period of 48 hours in these devices which permits the 

collection of axonal fraction without and interference from the cell body compartment. In 

some cases, to increase the axonal fraction output, the closed soma chamber was made 

open to achieve high density cultures and the device length was increased 5 fold. Axonal 
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fraction was mainly collected by shear forces: rapid perfusion by micropipette causes 

disruption of axons by huge shear forces. The device design was further modified into a 

three chamber design to study mitochondrial transport in healthy and injured axons and 

integrated with automated tracking system. Shi et al. [99] developed a high-throughput 

microfluidic platform, synapse microarray for ultra-sensitive, large scale assays and 

quantitative screening of synaptic proteins involved in synaptogenesis. The synapse array 

design consists of two compartments one each for soma and axon connected by 

microchannels to isolate axons from soma. Axonal compartment is covered by a PDMS 

membrane (80 µm thick) with a clearance of 3 µm, providing no hindrance to axonal 

outgrowth. The purpose of this membrane is to contain genetically modified cells 

expressing synaptic membrane proteins in microwells defined in the membrane. Cells so 

contained in these microwells are evenly spaced out at defined densities and maintain good 

contact with axons to induce protein synthesis relevant to synaptogenesis in axons. This 

platform is a powerful tool to study molecules involved in synaptogenesis in a high-

throughput fashion with great degree of control in experimental parameters. Taylor et al. 

[100] developed a multicompartment microfluidic platform for visualization, 

manipulation, and biochemical analysis of synapses. The device design consists of three 

parallel chambers, two peripheral chambers for distinct neuronal populations and a middle 

chamber for perfusion. The two peripheral chambers are connected to the middle perfusion 

chamber with microchannels of unequal lengths. This unequal lengths in the design permits 

formation of functional, oriented, and unidirectional synapses between the two populations 

of neurons. The perfusion chamber has three inlets with the two peripheral inlets are for 

fluidic focusing. This fluidic focusing allows for precise collection of either presynaptic or 
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synaptic or post synaptic fractions for biochemical analysis. This device offers collection 

of fractions with a great order of spatiotemporal precision for synaptogenesis analysis.  

 

 

Fig 2.3: 1a. A schematic of the local perfusion chamber with three-inlet wells, 1b. Stable 

microenvironments with perfusion, 1c. Labeled neuron following perfusion (adapted from [100] 

copyright 2010 Elsevier), 2a. Schematic for micropatterning of PLL strip on a substrate and its integration 

with a compartmentalized microfluidic neuron culture device, 2b. Neurons transfected differentially in 

different compartments (adapted from [96] copyright 2012 American Chemical Society), and 3a. 

Schematic of the fabrication of synapse microarray, 3b Synapsin clustering in microwells with HEK293 

cells, and 3c. Enlarged view of the box (adapted from [99] copyright 2011 Nature Publishing Group) 
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2.3.3 Multi-compartment Chamber devices for Co-Culture  

Vertebrate nervous system is made up of several types of cells: neurons, astrocytes, 

oligodendrocytes, microglia in CNS, and neurons, Schwann cell in PNS. To effectively 

study the organization of nervous system, apart from studying individual populations one 

needs to study the interactions between several types of cells that make up the system. It is 

the only way to elucidate the emergent properties of the system which consists of paracrine 

signaling, action potential conduction, and pathologies associated with several 

neurodegenerative diseases like Multiple Sclerosis, Alzheimer’s, Parkinson’s etc. Nervous 

system also exchanges information with several other physiological systems in the body of 

an organism which makes it imperative to study the interactions between different types of 

cells. Typically, a cell co-culture platform should be able to (1) incorporate cells of various 

types in distinct regions, (2) self-sustain and provide optimal culture conditions, (3) 

selectively address, manipulate, and maintain each cell type without influencing the rest, 

(4) and control cell-cell interactions. Microfluidic platforms have the potential to meet all 

these requirements and several groups have taken up this aspect of microfluidics in co-

culture studies for neuroscience. 

 

Park et al. [103] developed a multi-compartment microfluidic platform for co-

culture studies of neurons and glia. The device design consists of an inner circular 

compartment for cell body isolation and an outer concentric circular array of 6 axonal 

compartments that are interspaced evenly at 400 µm. Each axonal compartment is 

connected to the central cell body reservoir by high fluidic resistance microchannels. They 

developed Micro-macro Hybrid Soft-lithography Master fabrication (MMHSM) technique 
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to enable the co-existence of both microscale and macroscale structures in single PDMS 

master molds. They studied parallel and localized biomolecular treatment capability of the 

device and myelination of axons by oligodendrocyte progenitor cells. Majumdar et al. [59] 

developed a microfluidic platform for neuron-glia co-culture which incorporates a valve, 

that when compressed enables complete isolation between the two types of cells acting as 

a physical barrier unlike in other devices where the fluidic isolation is achieved by 

hydrostatic pressure difference. In this device, the incorporation of valve completely 

eliminates interactions of any kind, even the smallest diffusions that may occur in 

hydrostatic fluidic isolation. The device design consists of two chambers one each for each 

cell type: neurons, and glia which are connected by microchannels and completely isolated 

by a pneumatically controlled valve. Gao et al. [60] further modified the device to mimic 

3D cell culture system by using gels sandwiched between the two sides of a modified valve. 

Takeuchi et al. [58] assembled a multielectrode-array with a microfluidic platform to co-

culture cells from different systems: neurological and cardiovascular. Their device enables 

investigation of relations between cardiac fibrillation and sympathetic nervous system.  



37 
 

 

2.3.4 Multi-compartment Chamber device for Injury, Regeneration, and 

Degeneration  

Focal or multifocal abuse to the axons in the white matter tracts of Central Nervous 

System (CNS) during Traumatic Brain Injury (TBI) and or Spinal Cord Injury (SCI) leads 

to Traumatic Axonal Injury (TAI). These injuries often lead to irreversible damage 

Fig 2.4: A. Schematic of the co-culture device for sympathetic neurons and cardiomyocytes, 1b SCG 

neurons in left compartment and 1c. Ventricular myocytes in the right compartment (adapted from [58] 

with permission from The Royal Society of Chemistry), 2a. Schematic of the multi-compartment neuron–

glia co-culture microsystem capable of carrying out multiple localized axon treatments in parallel, 2b, 2c 

& 2d. Depict axon glia co-culture separated by microchannels, and 2e. Depicts the reproducibility (adapted 

from [103] with permission from The Royal Society of Chemistry), 3a & 3b. Schematic of device that 

allows co-culture and separation with valves, 3c & 3d. Neurons in adjacent compartments transfected with 

different vectors (adapted from [59] copyright Elsevier 2010). 
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resulting in permanent loss of function. Modeling studies help to understand the biological 

mechanisms of nerve regeneration and degeneration and play a role in developing new 

therapeutic strategies. There are several modes of experimental setups: in vivo, in vitro, 

and in silico models to study injury. In vivo animal models of trauma permit the study of 

whole organism’s response to a multitude of complex variables and permit behavioral 

outcome studies. Though these models are useful, they are highly complex, of low 

reproducibility, involve large number of parameters, labor intensive, need specific skills, 

very time consuming, and most important of all, in vivo models lack tools to monitor events 

post injury and axonal regeneration in real time. In vitro models on the other hand allow 

the study of biochemical pathways, gene expression levels, and phenotypic changes to the 

level of a single axon. In vitro models also facilitate the study of different types of traumatic 

injuries like transection, compression, stretch, and shear[104].  

 

Microfluidics provide a powerful alternative to the existing in vivo and in vitro 

methods to model and study the axon injuries. They provide platforms: to model and study 

at single cell resolutions, that can be automated, with scope for multiplexing and high 

throughput[14]. Broadly classified, the modes of inducing injuries in neurons on these 

platforms are: (1) Physical, (2) and Chemical. Physical modes include employing laser 

ablation techniques [26-28], valve based compression of axons[61], microsurgeries and 

axotomy, are amongst the several to name. On the other hand chemical injuries are mostly 

caused by neurotoxins with different modes of action [105]. 
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Taylor et al. [106] pioneered in developing a multicompartment microfluidic 

platform to study CNS axon injury, regeneration and transport. The device design consists 

of two identical compartments physically separated by microchannels. Using this device 

platform they successfully isolated CNS axonal mRNA, and studied somal transcription 

activity in response to axotomy by vacuum aspiration in axonal compartment. Hellman et 

al. [107] developed a microfluidic platform integrated with picosecond lasers to study 

axonal injury and regeneration. Microdluidic injury platform combines MIMIC for surface 

patterning: alternating strips of Chondroitin Sulfate Proteoglycans (CSPG) and poly-L-

lysine were laid. The platform enables study of events after a partial or complete transection 

of axon. Kim et al. [108] developed a neuro-optical microfluidic platform integrating 

femtos second laser with microfluidic platform to study single axon injury and 

regeneration. The device model resembles that of Taylor et al. [106] with longer channels 

up to 5 mm in length. Yang et al. [25] developed a compartmentalized open chamber 

microfluidic device to study the toxicity of chemotherapeutic drug paclitaxel.   
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2.3.5 Multi-compartment Chamber device for Electrical Stimulation and 

Recording 

Neuronal organization as complex circuits and networks involve communication 

between neurons via chemical signaling. To determine the state and activity of a circuit or 

network one could either track the real time metabolic activity of each and every neuron 

involved or monitor fluctuations of the extra cellular field potential in the vicinity of the 

Fig 2.5: 1a. Microfluidic-based culture platform with illustrations of laser induced axotomy, 1b. Axotomy 

of 25 µm axon strips with 180 ps laser pulse (adapted from [107] with permission from The Royal Society 

of Chemistry). 2a. Schematic of the microfluidic device to study chemical injury, 2b & 2c. Chemical 

influenced degradation of axons with axonal side application of the chemical (adapted from [25] 

copyright Elsevier 2009), 3a & 3b. Schematic of the microfluidic culture platform for 

compartmentalization and fluidic isolation of axons from cell body (adapted from [106] copyright Nature 

Publishing Group 2005)  
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neurons involved. In a reductionist approach, one is more interested in the activity of a 

single neuron and ion channels involved. Based on the scale that the neurons operate, LOC 

offers great potential for developing novel platforms to record as well as stimulate activity 

in individual neurons. Kathryn et al. [109] developed soft material based PDMS electrode 

arrays to measure activity in individual neurons. These microfabricated soft electrodes are 

highly reproducible and allow high-resistance seal with cell membranes. Ravula et al. [110] 

microfabricated compartmented culture system to study neurons by established fluidic 

isolation. The axon were guided by tracks of collagen on glass substrate containing multi 

electrode arrays. This platform allows studying the effects of drugs on neurons with 

compartmentalization and selectively observe the electrical activity. Peterman et al [111] 

developed the artificial synapse chip, a high-resolution physiological retinal interface 

which incorporates MEMS techniques of micro-patterning of cells, and localized chemical 

stimulations with flexible and biocompatible materials. The incorporation of MEMS 

techniques in developing potential retinal interfaces is an advancement that is welcome in 

addressing issues with exiting interfaces. MEMS can be used for stimulating retinal cells 

at great complexities with maintaining the integrity of a retina. 
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2.3.6 Multi-compartment Chamber devices from our group 

2.3.6.1 Circular Compartmentalized co-culture device for axon-glial interactions 

A circular compartmentalized LOC platform was developed in the lab to co-culture 

neurons with glial cells and study axon-glia interactions[24]. The rationale behind 

developing such a platform is that several neuroinflammatory and neurodegenerative 

Fig 2.6: 1a. Schematic of integrated compartmented culture system, with microfluidic barriers and 

microelectrode array interfacing with cultured neurons. The multicompartment divider is aligned to and 

seated on the microelectrode array. Neurons are then plated in one or more of the compartments, after 

which they grow into adjacent compartments. Stimulation and recording electrodes on the microelectrode 

array interface with somal bundles and their processes in all of the compartments, allowing for 

complicated studies in which both neuronal pharmacology and electrophysiology can be simultaneously 

studied. (Adapted from [110] copyright Elsevier 2006), 1b. Conceptual sketches of the Artificial Synapse 

Chip. With an illustration of a single stimulation site and a multiple pixel device shown interfacing the 

retina. (Adapted from [111] copyright John Wiley and Sons 2003) 
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diseases strongly imply specific interactions between axons and glia [112, 113]. Then 

existing culture techniques did not support precise placement of cells and control of cell 

body and axonal microenvironments; this device is developed to address these issues. The 

developed LOC platform has two concentric arrays of multiple independent compartments 

which are interconnected by several microchannels between the inner circular and outer 

circular compartments in a one on one mapping. The circular geometry of the device allows 

for ready merging of adjacent compartments allowing to maintain independent cell bodies 

or axons in either distinct of uniform microenvironments. The circular geometry of the 

device also enables the enhancement of axonal output through microchannels by 

centrifugation. It also enables use of patterned microstencils to directly place glial cells 

within areas of interest in the axonal compartment. 

 

 

 

 

Fig 2.7: 3D schematic of the PDMS device with compartments and microchannels in the side to aid 

visualization (adapted from [16] with permission from The Royal Society of Chemistry). 
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MATERIALS 

REAGENTS 

Poly-D-lysine (PDL) (100 μg ml-1, Sigma) 

Sodium tetraborate, (99%, 100 g, Sigma) 

Boric acid, (99.5%, 100 g, Sigma) 

PDMS (Sylgard 184, Dow Corning) 

Neurobasal media (Invitrogen) 

Disposable plastic weigh boats for mixing PDMS 

Disposable plastic stir rods  

40 mm glass bottom petri dishes (Willco Wells, Netherlands) 

Razor blades 

Sharpened stainless steel punch 

Transparency mask (CAD/Art service) 

Photoresists, SU-8 2002 and SU-8 3050 (Microchem) 

SU-8 photoresist developer (Microchem) 

4 inch silicon wafer (WRS Materials, CA) 

EQUIPMENT 

Digital balance 

Laboratory oven for curing PDMS 

Vacuum desiccator for degassing PDMS 

Plasma cleaner (Harrick Plasma, NY) 
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REAGENT SETUP 

Neuron culture media: Neurobasal media. 

Borate buffer solution: Prepare 0.1Mborate buffer solution (1.24 g boric acid, 1.9 g sodium 

tetraborate, 400 ml Nanopure water, pH 8.5). 

PDL solution: Dissolve 400mg of PDL (1 mg ml-1) in borate buffer solution by stirring for 

30 min. Sterilize the solution by filtration with 0.2 mm filter. PDL solution can be stored 

at -20 oC for future use. 

PROCEDURE 

Fabrication of master template TIMING 9 h 

1. Dehydration Bake: Clean a 4-inch Si wafer with compressed N2 gas and place it on a 

hot plate set at 200 oC for 10 minutes for dehydration bake. (If the relative humidity is 

>10% you may have to increase the duration of the bake.) 

2. Plasma treatment: Plasma treat the dehydrated Si wafer with O2 plasma at 350 mtorr 

pressure and 250 W power for 3 minutes to clean the wafer surface and improve surface 

roughness for better adhesion to photoresist. 

3. Photo resist coating: Flood SU-8 2002 photoresist on a plasma treated 4-inch Si wafer 

and spin at 1,000 rpm for 30 s (2.5-3 μm thick). 

4. Soft bake: Bake the photo resist coated wafer for 2 min at 95 oC on a leveled hot plate. 

5. Exposure: Expose the soft baked wafer through a high-resolution transparency mask 

(20,000 dpi, CAD/Art, OR) containing a circular array of 1500 microchannels of width 

8-10 μm and length 500 μm evenly spaced at 15-25 μm at 100 mJ/cm2. 

6. Post exposure bake: After exposure, bake the wafer at 95 oC for 4 min on a hot plate. 
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7. Development: Develop with SU-8 developer (photoresist developer) by spraying the 

developer on the wafer until all of the unexposed photoresist is stripped off. 

8. Rinse with isopropyl alcohol two or three times to check the development, if it leaves 

white streaks on the wafer use the developer again. 

9. Spin dry the wafer to remove excess developer and or isopropyl alcohol. 

10. Heat the developed wafer on hot plate at 95 oC for 10 min to remove any residual fluid 

to improve adhesion for the second layer of photo resist on wafer. 

11. Photo resist coating: Spin a second layer of photoresist, SU-8 3050, at 1,000 rpm for 

30 s (150 μm thick). 

12. Soft bake: Bake the second layer of photo resist for 45 min at 95 oC on a leveled hot 

plate. 

13. Mask alignment: Align a high-resolution transparency mask (CAD/Art, OR) containing 

an outer circular array of axon ports (4 mm in diameter) and an inner circular array of 

soma ports (3 mm in diameter) with the alignment cues on the soft baked wafer from 

the first layer of photoresist.  

14. Exposure: Expose the soft baked wafer through the aligned high-resolution 

transparency mask for the second layer at 250 mJ/cm2. 

15. Post exposure bake: After exposure, bake the wafer at 95 oC for 5 min on a hot plate. 

16. Development: Develop with SU-8 developer (photoresist developer) by spraying the 

developer on the wafer until all of the unexposed photoresist is stripped off. 

17. Rinse with isopropyl alcohol two or three times to check the development, if it leaves 

white streaks on the wafer use the developer again. 

18. Spin dry the wafer to remove excess developer and or isopropyl alcohol. 
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19. Hard bake: Bake the wafer at 150 oC on a hot plate at least for 6 hours. 

 

Fabrication of PDMS devices by replica molding TIMING 4 h 

20. Weigh out a 10:1 ratio (50 g + 5 g) of PDMS base to cross-linker into a disposable 

weigh boat and mix thoroughly for 5–10 min. 

CRITICAL STEP: If PDMS is not mixed thoroughly or the amount of catalyst is not 

adequate, PDMS will not cure completely and will make the master mold unusable. 

21. Place the PDMS mixture in a vacuum desiccator and degas the bubbles formed during 

mixing for 30-60 min. 

22. Passivate the Si wafer by silane treatment for 10 – 15 min (usually longer, 45-60 min 

during first use). 

23. Place the master template wafer in a plastic weigh boat and while gently pressing on it 

with a Q-tip slowly pour the PDMS mixture over it to achieve a thickness of 5-7 mm. 

Let the PDMS spread out and settle evenly for 10 min. If there are any bubbles in the 

region of interests pop them with sterile pipette tips or a clean razor blade. 

24. Place the weigh boat in a leveled laboratory oven and cure for 60 min at 80 oC. The 

PDMS mixture will solidify and become transparent when fully cross-linked or cured. 

25. Cut the plastic weigh boat to remove the cured PDMS mold with master. Carefully 

remove the PDMS mold from the master wafer applying gentle pressure in order to not 

to break the wafer. 

26. Using a steel circular punch excise out the devices from the cured PDMS replica of 

master mold. 
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27. Punch out the somal ports using 3 mm biopsy punches and punch out the axonal ports 

using 4 mm biopsy punches with the channel side up. Clean both the surfaces by using 

a Scotch tape to remove any debris resulted during the excision. 

28. Further sonicate the cleaned devices in 100% ethanol for 5 min with feature side down 

to remove any residual debris. Once sonicated, clean the devices with compressed air 

to remove PDMS debris and other surface contaminants. 

 

Cleaning the glass bottoms and bonding with the devices TIMING 30 min 

29. Sonicate the 40 mm glass bottom petri dishes in 100% ethanol for 5 min with the 

bonding side down. Once sonicated, clean the glass bottoms with compressed air to 

remove surface contaminants. 

CRITICAL STEP Debris removal on both the bonding surfaces is paramount for a leak 

free and tight seal. Small particles resulting during punching can act as barriers when 

bonding PDMS to glass substrate.  

30. For a reversible seal bring into contact the cleaned devices (with features side down) 

and cleaned glassed bottoms which seal reversibly upon contact. 

31. For a tighter seal, treat both the device and the glass bottom surfaces with oxygen 

plasma at 45 W for 1 min and bring into contact the feature side surface of the device 

to the glass bottom and gently press on the device against the glass bottom for a tight 

seal.  

CRITICAL STEP: When sealing the PDMS to substrate, do not press around the channels 

region, as they can collapse and may be blocked when excessive pressure is applied. 
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Coating the assembled devices with PDL TIMING 13-14 h 

32. Sterilize the devices with 70% ethanol and wash the device thrice with doubly 

deionized water to remove excess ethanol under a sterile laminar hood. 

33. Coat the devices with PDL by adding PDL only to one of the two ports of the device 

and let the PDL flow. Once the PDL flow is established, top both the ports with PDL 

and set the devices aside for overnight coating at 37 oC in a humidified incubator. 

CRITICAL STEP Make sure that no air bubbles are tapped to ensure uniform coating of 

PDL. 

34. Remove the PDL from all the ports and wash off excess PDL in 3 rinses with doubly 

deionized water.  

35. Add the Neurobasal media in the ports and store the device at 37 oC until needed for 

experimentation. 

Fig 2.8: The device mold was constructed using standard SU-8 photolithography. (A) Beginning with a 

bare silicon wafer, (B) an initial thin-film resist layer (SU-8 2002; height ¼ 2.5 mm) was spun, soft 

baked, and optically exposed. (C) Subsequently, the substrate was post exposure baked and immersed in 

developer to define the circular array of microchannels. (D & E) The thick-film resist (SU-8 3050; height 

¼ 150 mm) was processed similarly to define larger fluidic access ports. After (F) PDMS replication, 

(G) devices were customized through the use of commercially available dermal biopsy punch tools. 

(Reproduced from [16] with permission from The Royal Society of Chemistry) 
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The circular compartmentalized microfluidic neuron culture device offers a novel 

method to integrate large access ports in close proximity to (a) microchannels providing 

straightforward loading of cells near microchannels, (b) increase the cell density near the 

entrance of microchannels with optimized platform geometry so that centrifugal forces can 

be quickly applied to manipulate neuronal cell distribution, (c) manipulate co-culture 

conditions using micropatterning techniques, (d) study axon micro glial interactions, (e) 

study differential microglial response to injured axons, and (f) establish hydrostatic 

pressure to achieve fluidic isolation. The other advantages that the circular geometry of the 

device confers is that the external forces required to enhance cell placement at the end of 

the microchannels are minimal which has a direct implication in maximizing the cell 

viability and perpetuating axon-glial co-culture. This microfluidic device can serve as an 

in vitro model for CNS injury. We utilized this platform to demonstrate preferential 

accumulation of microglia specifically to injure as compared to healthy axons, serving as 

a foundation to elucidate mechanisms of axon–glia interactions in neurological disease 

maintenance and progression. Overall, this novel multi-compartment co-culture platform 

enables distinct modes of axon–glia co-culture and provides experimental versatility to 

investigate axon-specific and axon–glia-specific cellular and molecular events implicated 

in neurobiological disease. 

 

2.3.6.2 Circular Compartmentalized device for microglial phagocytosis of axons 

A novel circular compartmentalized LOC platform was developed in the lab to co-

culture neurons with microglial cells to investigate mechanisms of microglial phagocytosis 

of bundled axons [114]. The rationale behind developing such a platform is that the 
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persistence of endogenous debris in mammalian CNS is one of the foremost barriers to 

regeneration after injury [115, 116]. A critical insight into the microglial debris clearance 

mechanism in CNS opens new avenues for CNS repair strategies. Then existing culture 

techniques did not support precise placement of microglia and control of cell body and 

axonal microenvironments. The current device is developed to address these issues. The 

developed LOC platform uses an extra cellular matrix (ECM) patterning device to create 

25 μm wide tracks of PDL for the axons to grow along and bundle in a circular 

arrangement. These tracks are evenly spaced with a gap of 25 μm in between them 

facilitating the attachment of microglia. Once the ECM tracks are laid a similar circular 

LOC device with microchannels is aligned on the tracks. The ECM patterning facilitates 

that the axon bundles remain spatially distinct and localized from microglia once emerging 

from the microchannels. This spatial demarcation enables quantification of axonal debris 

by microglia. 

MATERIALS 

REAGENTS 

Poly-D-lysine (PDL) (200 μg ml-1, Sigma) 

Sodium tetraborate, (99%, 100 g, Sigma) 

Boric acid, (99.5%, 100 g, Sigma) 

PDMS (Sylgard 184, Dow Corning) 

Neurobasal media (Invitrogen) 

Disposable plastic weigh boats for mixing PDMS 

Disposable plastic stir rods  

40 mm glass bottom petri dishes (Willco Wells, Netherlands) 
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Razor blades 

Sharpened stainless steel punch 

Transparency mask (CAD/Art service) 

Photoresists, SU-8 2002 and SU-8 3050 (Microchem) 

SU-8 photoresist developer (Microchem) 

4 inch silicon wafer (WRS Materials, CA) 

EQUIPMENT 

Digital balance 

Laboratory oven for curing PDMS 

Vacuum desiccator for degassing PDMS 

Plasma cleaner (Harrick Plasma, NY) 

REAGENT SETUP 

Neuron culture media: Neurobasal media. 

Borate buffer solution: Prepare 0.1Mborate buffer solution (1.24 g boric acid, 1.9 g sodium 

tetraborate, 400 ml Nanopure water, pH 8.5). 

PDL solution: Dissolve 400mg of PDL (1 mg ml-1) in borate buffer solution by stirring for 

30 min. Sterilize the solution by filtration with 0.2 mm filter. PDL solution can be stored 

at -20 oC for future use. 

PROCEDURE 

Fabrication of master template TIMING 9 h 

a. The master template of ECM patterning device consists of only one layer of photoresist 

defining the height of channels for ECM tracks. The fabrication of which is similar to 

the one described in the previous section in following steps: 1-10 & 19. 
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b. The master template for the co-culture device consists of two layers of photoresist 

defining the height of channels and the height of chambers. The fabrication of which is 

similar to the one described in previous section in following steps: 1-19  

   

Fabrication of PDMS devices by replica molding TIMING 4 h 

a. Fabrication of ECM patterning device by replica molding is similar to the one described 

in the previous section in following steps: 20-28 

b. Fabrication of co-culture device by replica molding is similar to the one described in 

the previous section in following steps: 20-28 

 

Cleaning the glass bottoms and bonding with the devices TIMING 30 min 

1. Sonicate the 40 mm glass bottom petri dishes in 100% ethanol for 5 min with the 

bonding side down. Once sonicated the glass bottoms are cleaned with compressed air 

to remove surface contaminants. 

CRITICAL STEP Debris removal on both the bonding surfaces is paramount for a leak 

free and tight seal. Small particles resulting during punching can act as barriers when 

bonding PDMS to glass substrate. 

2. For a reversible seal bring into contact the cleaned devices (with features side down) 

and cleaned glassed bottoms which seal reversibly upon contact. 

3. For a tighter seal, treat both the device and the glass bottom surfaces with oxygen 

plasma at 45 W for 1 min and bring into contact the feature side surface of the device 

to the glass bottom and gently press on the device against the glass bottom for a tight 

seal.  
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CRITICAL STEP: When sealing the PDMS to substrate, do not press around the channels 

region, as they can collapse and may be blocked when excessive pressure is applied. 

 

Coating the assembled devices with PDL TIMING 13-14 h 

4. Sterilize the devices with 70% ethanol and wash the device thrice with doubly 

deionized water to remove excess ethanol under a sterile laminar hood. 

5. Coat the devices with PDL by adding PDL only to one of the two ports of the device 

and let the PDL flow. Once the PDL flow is established, top all the ports with PDL and 

set the devices aside for overnight coating at 37 oC in a humidified incubator. 

CRITICAL STEP Make sure that no air bubbles are tapped to ensure uniform coating of 

PDL. 

6. Remove the PDL from both the ports and wash off excess PDL in 3 rinses with doubly 

deionized water.  

7. Add the Neurobasal media in the ports and store the device at 37 oC until needed for 

experimentation. 
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The circular compartmentalized microfluidic neuron culture device offers novel 

methods to integrate large access ports in close proximity to (a) microchannels providing 

straightforward loading of cells near microchannels, (b) increase the cell density near the 

entrance of microchannels with optimized platform geometry so that centrifugal forces can 

be quickly applied to manipulate neuronal cell distribution, (c) manipulate co-culture 

conditions using micropatterning techniques, (d) study axon micro glial interactions, (e) 

study differential microglial response to injured axons, and (f) establish hydrostatic 

pressure to achieve fluidic isolation. The other advantages that the circular geometry of the 

device confers is that the external forces required to enhance cell placement at the end of 

Fig 2.9: Microfluidic platform enables the study of microglial phagocytosis of axons. Ai, A patterning 

process was used to create 25 µm-wide PDL stripes interspersed by 25 µm gaps. Aii, The microfluidic 

coculture device was aligned and bonded. Aiii, Aiv, Neurons cultured within the cell body compartment 

extended axon bundles through the microchannels and into the axon/glial coculture compartment (Aiii) 

where microglia were later cocultured (Aiv).B. The microfluidic platform was modified by creation of a 

third compartment. Before addition of wild type or TRIF knock out mouse microglia, a scalpel was used 

to sever a 10 –20 µm segment of the bundle. (Adapted from [114] copyright 2012 Society For 

Neuroscience) 
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the microchannels are minimal which has a direct implication in maximizing the cell 

viability and perpetuating axon-glial co-culture. This microfluidic device can serve as an 

in vitro model for CNS injury. Hosmane et al. [114] utilized this platform to demonstrate 

preferential accumulation of microglia specifically to injure as compared to healthy axons, 

serving as a foundation to elucidate mechanisms of axon–glia interactions in neurological 

disease maintenance and progression. Overall, this novel multi-compartment co-culture 

platform enables distinct modes of axon–glia co-culture and provides experimental 

versatility to investigate axon-specific and axon–glia-specific cellular and molecular 

events implicated in neurobiological disease. 

 

2.3.6.3 Valve based multi compartmental device for Traumatic Axonal Injuries 

A novel microfluidic compression platform called axon injury micro-compression 

(AIM) platform to study traumatic axonal injuries (TAI) at single axonal resolution was 

developed in the lab [61]. The active component in inflicting a focal and graded injury to 

a single axon is a compressible valve that can be pushed down on to the axons with varying 

forces. This device when combined with time-lapse microscopy allows monitoring the fate 

of axons during the time course of an injury. Existing devices had shortcomings in 

delivering focal and graded compression injuries to the axons, and studying the time course 

of injury [117]. The device design consists of two layers: (1) fluid layer, that contacts glass 

substrate, and (2) control layer, that defines compression and subsequent deflection of 

valve by fluid. Fluid layer in contact with the glass substrate defines three distinct 

compartments: (1) cell body, (2) injury, and (3) axonal. This compartmentalization enable 
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the study of TAI independent from cell bodies and the injured axons can be subject to 

differential treatment with respect to the cell bodies.  

 

MATERIALS 

REAGENTS 

Poly-D-lysine (PDL) (200 μg ml-1, Sigma) 

Sodium tetraborate, (99%, 100 g, Sigma) 

Boric acid, (99.5%, 100 g, Sigma) 

PDMS (Sylgard 184, Dow Corning) 

Neurobasal media (Invitrogen) 

Disposable plastic weigh boats for mixing PDMS 

Disposable plastic stir rods  

Fig 2.10: Schematic of AIM platform with master template on the left and PDMS device on the rice 

(adapted from [61] with permission from The Royal Society of Chemistry). 
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40 mm glass bottom petri dishes (Willco Wells, Netherlands) 

Razor blades 

Sharpened stainless steel punch 

Transparency mask (CAD/Art service) 

Photoresists, SU-8 3005, SU-8 3025, and SU-8 3050 (Microchem) 

SU-8 photoresist developer (Microchem) 

4 inch silicon wafer (WRS Materials, CA) 

EQUIPMENT 

Digital balance 

Laboratory oven for curing PDMS 

Vacuum desiccator for degassing PDMS 

Spin coater 

Plasma cleaner (Harrick Plasma, NY) 

REAGENT SETUP 

Neuron culture media: Neurobasal media. 

Borate buffer solution: Prepare 0.1Mborate buffer solution (1.24 g boric acid, 1.9 g sodium 

tetraborate, 400 ml Nanopure water, pH 8.5). 

PDL solution: Dissolve 400mg of PDL (1 mg ml-1) in borate buffer solution by stirring for 

30 min. Sterilize the solution by filtration with 0.2 mm filter. PDL solution can be stored 

at -20 oC for future use. 

PROCEDURE 

Fabrication of master template TIMING 9 h 
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c. The master template of AIM device consists of three layers of photoresist defining the 

height of channels, clearance for the injury pad, and the chambers respectively. The 

fabrication of which is similar to the one described in the previous section in following 

steps: 1-18 for the first two layers and then 10-19 for the third layer. 

Fabrication of PDMS devices by replica molding TIMING 4 h 

1. Weigh out a 10:1 ratio of PDMS base to cross-linker into a disposable weigh boat and 

mix thoroughly for 5–10 min. 50 g + 5 g for control layer, and 10 g + 1 g flow layer.  

CRITICAL STEP: If PDMS is not mixed thoroughly or the amount of catalyst is 

not adequate, PDMS will not cure completely and will make the master mold 

unusable. 

2. Place the PDMS mixture in a vacuum dessicator and degass the bubbles formed during 

mixing for 30-60 min. 

3. Passivate the Si wafers (control layer and flow layer) by silane treatment for 10 – 15 

min (usually longer, 45-60 min during first use). 

4. For the control layer, place the master template wafer in a plastic weigh boat and while 

gently pressing on it with a Q-tip slowly pour the PDMS mixture over it to achieve a 

thickness of 5-7 mm. Let the PDMS spread out and settle evenly for 10 min. If there 

are any bubbles in the region of interests pop them with sterile pipette tips or a clean 

razor blade. 

For the flow layer, place the master template on a spin coater and hold it in place under 

vacuum. Pour the PDMS over the wafer so that atleast ¼ of the wafer is covered and spin 

at 800 rpm for 1.5 min. 
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5. Place the weigh boats in a leveled laboratory oven and cure for 20 min at 80 oC. The 

PDMS mixture will solidify and become transparent when fully crosslinked or cured. 

CRITICAL STEP The PDMS cross-linking should be controlled in a careful manner to 

establish good bonding between control and flow layer. The curing step should neither be 

too long nor too short. The PDMS should be lightly sticky but not tacky.  

6. Cut the plastic weigh boat to remove the cured PDMS control mold and master. 

Carefully remove the PDMS control mold from the master wafer applying gentle 

pressure in order to not to break the wafer. Punch the gas inlets with sharpened gauge 

# 23 needles in each device and punch out the devices from the mold. Clean the bonding 

surface with scotch tape to remove debris from punching. 

7. Plasma treat both the flow layer and punched control layer devices at 45 W power for 

1 min. Align the control layer devices to flow layer with the help of cues on both the 

layers. Once aligned cure the bonded device at 80 oC overnight in the incubator.  

8. Excise the devices form flow layer master template and punch ports using 3 mm biopsy 

punches. Clean both the surfaces by using a Scotch tape to remove any debris resulted 

during the excision and punching. 

9. Further sonicate the cleaned devices in 100% ethanol for 5 min with feature side down 

to remove any residual debris. Once sonicated clean the devices with compressed air 

to remove PDMS debris and other surface contaminants. 

Cleaning the glass bottoms and bonding with the devices TIMING 30 min 

10. Sonicate the 40 mm glass bottom petri dishes in 100% ethanol for 5 min with the 

bonding side down. Once sonicated, clean the glass bottoms with compressed air to 

remove surface contaminants. 
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CRITICAL STEP Debris removal on both the bonding surfaces is paramount for a leak 

free, and tight seal. Small particles resulting during punching can act as barriers when 

bonding PDMS to glass substrate.  

11. For a reversible seal bring into contact the cleaned devices (with features side down) 

and cleaned glassed bottoms which seal reversibly upon contact. 

12. For a tighter seal, treat both the device and the glass bottom surfaces with oxygen 

plasma at 45 W for 1 min and bring into contact the feature side surface of the device 

to the glass bottom and gently press on the device against the glass bottom for a tight 

seal.  

CRITICAL STEP: When sealing the PDMS to substrate, do not press around the channel 

region, as they can collapse and may be blocked when excessive pressure is applied. 

Coating the assembled devices with PDL TIMING 13-14 h 

13. Sterilize the devices with 70% ethanol and wash the device thrice with doubly 

deionized water to remove excess ethanol under a sterile laminar hood. 

14. Coat the devices with PDL by adding PDL first to one of the two injury ports followed 

by cell body port and distal port on the same side of the device and let the PDL flow. 

Once the PDL flow is established, top all the ports with PDL and set the devices aside 

for overnight coating at 37 oC in a humidified incubator. 

CRITICAL STEP Make sure that no air bubbles are tapped to ensure uniform coating of 

PDL. 

15. Remove the PDL from all the ports and wash off excess PDL in 3 rinses with doubly 

deionized water.  



62 
 

16. Add the Neurobasal media in the ports and store the device at 37 oC until needed for 

experimentation. 

 

With the AIM platform we could successfully establish injury thresholds for 

different axon responses in primary rat embryonic CNS cells and this is for the first time 

that a valve structure was used to injure axons in a microfluidic setting. This AIM platform 

can also be extended to study the secondary injury aspects in a traumatic axonal injury, like 

cytoskeletal changes, transport disruption, calcium fluctuations, mictochondrial fate etc. 

The advantages with this platform is that single axons can be isolated and a focal graded 

injury can be delivered in a controlled way. The time course of injured axon can be easily 

tracked for its fate which further enables one to conduct drug screening studies. 

 

2.4 Discussions & Future Directions 

Several practical issues as delineated earlier with in vivo systems in the study of 

neuroscience prompts one to adopt in vitro approaches. To reiterate, traditional in vitro 

approaches to neuroscience has its own limitations like: (1) Simulating varying 

extracellular microenvironment along the length of neurons, (2) Independent and 

interference free study of axons which has  implications in neurodegenerative diseases, 

injuries, axonal damage , isolation of the axonal biomolecules,  axonal transport studies, 

and (3) Co-culture studies of neurons with various cell types. To address these limitations 

MEMS and microfluidics are being extensively employed. Though the concept of MEMS 

was developed in the 70’s, initially intended for chemical analysis, the presence in biology 

and subsequently neuroscience is being felt in the last decade. This primarily is due to the 
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fact that integration of MEMS technology with biology needed development of technology 

in its infancy to a state where it can address the complex needs of biological systems in 

parallel to the biology and neuroscience itself. People started realizing the potential in 

MEMS and developed several LOC devices for neuroscience ranging from injury studies, 

electrophysiology, co-culture, synaptogenesis, learning and memory, disease and 

therapeutic strategies etc. 

 

Though being applied in a wide spectrum of neurobiological studies, MEMS 

technology is still in its early developmental phase. Majority of the existing LOC platforms 

are 2D systems restricting the study to a plane, and because of this current studies are 

limited to dissociated and organotypic cultures. In their native state, the organization of 

tissues and organs is 3D and neurons are no exception. Cellular organization at tissue and 

organ scale is non homogenous and it implies a necessity for co-culture studies. Though 

there are LOC platforms currently available for co-culture studies they are not sophisticated 

enough to perform network level studies. With the advancement in technology these may 

soon be addressed. 

 

The future of LOC devices for neuroscience can be envisioned as highly modular, 

versatile, and programmable on similar scales of semi-conductor industry. The first 

generation of computers occupied huge spaces and performed limited tasks. Current 

generation of computers are small enough to be carried in pockets and perform a multitude 

of tasks simultaneousl. On a similar note, it is not exaggerating when one imagines a future 



64 
 

of MEMS and LOC devices with highly customizable and modular units which can be 

programmed to a wide and highly specific array of needs in neuroscience. Also the wide 

spread use of LOC platforms will enable their commercialization and use in day to day 

lives of people, requiring limited skills from their end.  
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Chapter 3 

A compartmentalized culture platform to study axon 

regeneration and localized effects of GDNF 

 

3.1 Introduction 

Use of compartmentalized cell culture devices for neuroscience is commonplace 

nowadays. Conceptualized and realized as Campenot chamber in late 1970’s, it is the 

earliest attempt at maintaining compartmentalized neuronal cell cultures. The Campenot 

chamber was used to isolate axons from neuronal cell bodies in studying the role of 

retrograde transport of neurotrophic factors in neuronal cell survival [118].  Owing to 

limitations like low efficiency & throughput, and cumbersome fabrication & maintenance 

of silicone grease barrier led to the replacement of Campenot chamber with better 

alternatives like bioMEMS and LOC devices. MEMS technology is being explored 

extensively for biological applications, part of which deals with neuronal cultures to 

separate somal and axonal compartments with precise control. MEMS technology being 

used in fabrication of LOC devices involves soft lithography for replica molding. 

Polydimethylsilosane (PDMS) is the material widely chosen for several physical properties 

which render it useful for neuronal culture purposes both in CNS and PNS neurons [24, 25, 

119]. These LOC devices have two isolated chambers physically interconnected by array 

of parallel microchannels. This setup enables fluidic isolation between the two chambers 

by establishing hydrostatic pressure differences which is maintained over extended periods 

of time due to high resistance of microchannles [120, 121].  Once the cells are seeded, the 
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proximity to the channels determines the fate of neurons to extend axons through 

microchannels, and application of hydrostatic pressure difference across microchannels 

induces fluidic isolation between axon and neuronal cell body allowing a researcher to 

manipulate each cellular compartment independently of each other. Despite the potential 

for fluidic isolation in LOC devices, no critical appraisal of separation of soluble factors 

has been carried out. 

 

The purpose of this study is twofold: 1) to examine the critical parameters of 

microfluidic device that facilitates stable fluidic separation of somal and axonal 

compartments over extended periods time, and 2) to examine the site of action of three 

neurotrophic factors in an in vitro axotomy model of sensory axonal regeneration. We 

chose to use three members of the Glial cell line-derived neurotrophic factor (GDNF) 

family of neurotrophic factors which are previously known to play important roles in neural 

development and various neurological diseases [122-127]. In particular, they have been 

shown to promote survival and differentiation of dopaminergic neurons, motor neurons 

and dorsal root ganglion (DRG) sensory neurons [128-131]. Due to its therapeutic 

potential, a number of studies have evaluated the role of GDNF in the nervous system in 

the setting of disease and traumatic injury [132-134]. In addition to GDNF, other members 

include neurturin, neublastin, and persephin [135]. In clinical trials and animal 

experiments, GDNF has been shown to enhance myelination [136-138] and enhance 

survival of motor neurons in models of amyotrophic lateral sclerosis [139-141], and 

dopaminergic neurons in models of Parkinson’s disease [142, 143]. Similarly, neurturin 

showed increased survival of motor and dopaminergic neurons [144-146] and neublastin 
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was effective in reducing neuropathic pain [147-149]. In addition, all members of the 

GDNF family showed enhancement of axon outgrowth after axotomy [150-152]. However, 

the biological site of action of GDNF family members in axon regeneration is not well 

characterized. Traditional in vitro settings for neuronal cultures do not facilitate 

compartmentalization of axons from neuronal cell bodies, thus making it difficult to 

delineate axon-specific mechanisms.  Using the compartmentalized microfluidic chamber 

system we examined the parameters critical to diffusion of neurotrophic factors between 

the chambers and tested the regenerative potential of GDNF, neurturin and neublastin. 

Similar to previous publications, GDNF was most potent but its potency was most 

noticeable when the neurotrophic factor was applied to the neuronal cell bodies directly. 

To examine if the regrowth enhancement effect with axon application of GDNF was real, 

we applied a retrograde transport blocker, Cytochalasin D, concurrently with GDNF. We 

demonstrated that this effect is lowered in the presence of a transport blocker, indicating 

that GDNF may need to be transported to the cell body or systemically in order to see 

optimum growth. These results help to further elucidate GDNF’s role in regeneration 

following injury as well allow for further factors for consideration in its potential use as a 

therapeutic treatment. 

 

3.2 Materials and Methods 

3.2.1 Cell preparation  

All experiments involving animals were conducted according to protocols 

approved by the Animal Care and Use Committee of the Johns Hopkins University School 

of Medicine. Unless otherwise noted, tissue culture supplies were obtained from Invitrogen 
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(Carlsbed, CA). Dorsal root ganglia (DRG) neuronal cultures were prepared as previously 

described [136]. Briefly, DRGs were dissected from decapitated embryonic age day 15 

rats. Once obtained, cells were enzymatically dissociated with 0.25% Trypsin in L15 

medium and then suspended in media. The DRGs were maintained in Neurobasal medium 

containing 10% fetal bovine serum, 20% glucose, 1 % penicillin/streptomycin, B-27 

supplement, 2 M L-glutamine, and 10 ng/ml glial derived nerve growth factor (GDNF). 

Two days after seeding cells, neurobasal media containing 10 μM of Cytosine arabinoside 

was added to the cultures in order to decrease the amount of glial cells. 

 

3.2.2 Compartmentalized microfluidic platform (CMP) preparation  

A two-step photolithographic process was utilized to create the master mold. 

Silicon wafers (University Wafer, MA) were coated with SU-8 2002 (Microchem; MA), 

spun, and soft baked using parameters specified by the manufacturer to yield a resist 

thickness of 2.5 µm. An array of microchannels, each with dimensions: width = 10 µm, 

length = 500 µm, were defined by UV light exposure through a high resolution DPI 

transparency (Cad/Art, OR). The exposed substrate was once again baked, to enhance 

polymer cross-linking post exposure, and developed as stated in the resist technical sheet 

to fully define the microchannels. The process was immediately repeated with SU-8 3050 

(Microchem; MA) to define the fluidic reservoirs with dimensions: width = 3 mm, length 

= 13 mm. The master mold was then treated with trichlorosilane (United Chemical 

Technologies; PA) for 30 minutes to create a nonstick surface for subsequent processing. 

Standard soft lithography was performed using Sylgard 184 polydimethylsiloxane (PDMS) 

(Dow Corning, MI) as described previously (Ng, et al., 2003). After curing, the PDMS was 
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carefully removed from the master and access ports were created using a suite of dermal 

biopsy punch tools (8 mm) (Huot Instruments, WI).   

 

3.2.3 Cell loading  

DRG neurons were loaded into the soma side of devices and grown for 5 days to 

allow axons sufficient time to grow through channels and into the axonal side. Using a 

glass pipette, axons were transected at the base of the microchannels and neurotrophic 

factors were applied to axonal or neuronal cell body compartments at a concentration of 

100 ng/ml, a commonly used peak concentration for various neurotrophic factors.  

Regeneration of axons was monitored by daily imaging of the axonal side and measuring 

the length of longest axon coming from each microchannel. A minimum of 10 axons per 

experimental condition was measured and experiments were done in triplicates. 

 

3.3 Results  

3.3.1 Theoretical Profile of Growth Factor Diffusion  

In order to identify whether growth factors can diffuse from the axonal to cell body 

compartment during the treatment of growth factors in the axonal compartment, we 

developed models to simulate this experimental setup. The central idea behind the 

compartmentalized platform is to have fluidic connectivity between microchannel-

connected compartments. If the microchannels contain a small cross-sectional area (< 

30μm2), this device paradigm allows axons to grow from one compartment into another 

but attenuates the diffusion of molecules from the compartment of lower hydrostatic 
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pressure to the compartment of higher. In our experiment a small differential pressure 

gradient was established with a higher pressure in the axonal compartment as compared to 

the cell body compartment. As a result, a low velocity retrograde flow was created in the 

microchannels to prevent molecular anterograde diffusion. We show theoretically, through 

computational simulations, that chemical isolations are achieved when working with the 

aforementioned parameters (Figure 3.1). 

 

 

 

 

 

 

 

Fig. 3.1: Formulation of the diffusion advection problem. 

 

The diffusion of any molecule in a fluid medium is governed by the diffusion-

convection equation. The first term including spatial derivatives of concentration describes 

passive diffusion while the second term including the velocity of the medium describes 

active diffusion (or the convective element). 
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Where  C is the concentration at a point (x,y,z) at time t 

D is the coefficient of diffusion  

x = 0 x = L 
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x  
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v


 is the velocity vector at the point (x,y,z) at time t 

The pressure and concentration gradients driving the dynamics are mainly along the groove 

(x-axis) and hence, this can be approximated as a one-dimensional problem. Steady state 

is achieved when  

dx

dC
u

dx
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D 
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Where u is the x-component of the velocity 

Solving this with appropriate boundary conditions yields the following solution. 
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For pressure (gravity) driven flows, C0 can be expressed as  
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Where Δh is the height difference of water column at inlet and outlet (leading to the 

pressure difference which drives the flow), ρ is the density and η is the viscosity of water 

(saline) and a is the channel height (the most critical dimension for laminar flow). 

Due to the geometry of the system,  

Δh is limited to about 2mm,  
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a is 2.5μm (height of the groove) 

The other constants used are  

g=9.81m/s2,  

η= 0.00089 m2/s 

ρ= 1000 kg/m3 

 

The diffusion coefficient D is calculated indirectly from its inverse dependence on 

the square root of molecular weight of the diffusing species. Doxygen is known to be 2x10-9 

m2/s. The mol. wt. of oxygen (Moxygen) is 16 Daltons.  

orgrowthfact

oxygen

oxygenorgrowthfact
M

M
DD 

 

Table 3.1 shows a list of the growth factors we used along with their molecular weights and the calculated 

diffusion coefficients. 

Name of Growth 

Factor 

Molecular Weight 

(Daltons) 

Calculated Diffusion 

Coefficient (m2/s) 

Human GDNF 21 kDa [153] 5.5x10-11 m2/s 

Rat Neurturin 19.5 kDa [145] 5.7x10-11 m2/s 

Rat Neublastin 4.5 kDa [154] 1.2x10-10 m2/s 

 

It suffices to work with a mol. wt. of 4.5 kDa as it is the smallest molecule we use, 

with the highest tendencies to diffuse. Or, stated otherwise, the amount of growth factor 
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diffusing to the somatic compartment will also be less than the amount of rat neublastin 

diffusing to the somatic compartment. So, considering the diffusion of rat neublastin, 
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Thus, there is negligible diffusion from the axonal compartment to the somatic 

compartment at steady state. Care must be taken that while doing the experiments, the 

height difference in the two compartments must be achieved before adding the growth 

factor to the axonal compartment so that there is always an anterograde flow preventing 

diffusion of species in the retrograde direction. 

 

3.3.2 Computational Simulations to Study Diffusion Patterns of Growth Factors 

Simulations were done in COMSOL Multiphysics (Formerly called FEMLAB; 

COMSOL Inc., MA), a finite element-modeling package. The complex nature of the 

geometry was simplified to study the diffusion pattern in only one of the microchannel 

grooves. Each microchannel has a plane of symmetry passing through the middle (a plane 

going from floor to ceiling all along the length halfway between the two vertical walls). 

Further simplification of the geometry was done using such symmetric considerations and 

only half a microchannel needed to be simulated (Figure. 3.2a). Simulation consisted of 

meshing the architecture into a grid of smaller elements. The aspect ratio of such finite 

elements was tailored to suit the aspect ratio of the microchannel, that is, elements were 

longer along the length (x-axis) than along the width or height (y and z axes respectively). 
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The geometry was first solved for fluidic parameters such as velocity and pressures at all 

points. This was done by solving the continuity and Navier-Stokes equations for the 

microchannel. While all three cases were simulated as described above, we present the 

results of rat neublastin (the smallest molecule we used) diffusion (figure 3.2b). This 

suffices to demonstrate the paucity of small molecule diffusion through a microchannel 

feature. 

 

3.3.3 Restriction of diffusing analytes 

Fluid volumes were modified such that the somal compartment was of lower fluidic 

height than the axonal compartment. By doing so, a hydrostatic pressure was established 

between these microchannel-connected compartments, thereby creating a small flow to 

counteract diffusive forces. A 1 microliter bolus of fluorescein isothiocyanate (FITC; 

Sigma, MO) dye was introduced to the somal compartment and was imaged over the course 

Fig 3.2: a. Handling of the groove geometry for computational simulations. Half the groove is meshed 

for computational solutions of fluid dynamics and diffusion-convection equations. P plot showing the 

concentration drop along the groove from the axonal side (right side) to the somatic side (left side). The 

profile along the middle of the groove shows the profile along one of the edges of the groove, b. 

Computational simulation of diffusion profile of growth factor along microchannel groove. Plot shows 

the concentration drop along the groove from the axonal side (right side) to the somatic side (left side) 

within 100 μm of the 500 μm channel. The profile along the middle of the groove shows the profile along 

one of the edges of the groove. 
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of 24 hrs. Empirically, a fluid height difference ≥ 2 mm was sufficient to prevent the 

diffusion of a low-molecular weight (MW 700 Da) analyte to the axonal compartment for 

at least 24 hrs (Figure 3.3). Continued maintenance of the height differential by adding 5 

microliters of media to the higher volume compartment daily allowed for restriction of 

small analytes.  

 

3.3.4 Axotomy and axonal regeneration by neurotrophic factors  

In order to identify the regrowth of axotomized axons, we allowed neuronal 

processes to grow into the axonal chamber and then transected axons using a glass pipette 

or metal syringe. The representative figure (figure 3.4) to visualize single axons, before 

and after axotomy in a case where the seeding density is low. We observed some retraction 

Fig 3.3: Analyte restriction maintained for 24 hrs. Di↵usion of a small (MW 700) fluorescent analytes 

were examined under high hydrostatic pressures. Microchannels (region between dashed lines) connect 

compartments of unequal fluid height. Establishment of fluid heights >2 mm prevented entry of dye 

(solid white lines) into the compartment of higher fluid height. Scale bar 100 μm. 
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and degeneration of axons when they are cut slightly farther from the microchannel 

opening.  

 

Then, we added recombinant GDNF, neublastin, or neurturin to either axon or cell 

body compartments of cultured DRG neurons for 72hours. Multiple images of the axons 

were captured using phase contrast microscopy and we used ImageJ (NIH; Bethesda, MD) 

Fig 3.4: Representative axotomy. Images of a single axon within axotomy device a. before, and b. after 

injury. 
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to calculate percent changes in axon lengths before and after axotomy in the presence or 

absence of growth factors. In figure. 3.5, we see representative images of the DRGs before 

and after different neurotrophic factor treatments, all taken at the same magnification. In 

these images, we see the axons exiting channels and traversing into the axonal 

compartment on the right. 

 

As summarized in figure 3.6, all of the neurotrophic factors induced enhanced 

axonal regeneration whether they were applied to the axonal or somal compartments but 

GDNF was most potent. Furthermore, there was a slight benefit to applying GDNF to the 

somal compartment. In order to determine if the enhancement effect of adding GDNF to 

the axonal compartment was real, we carried out experiments with concurrent application 

of GDNF and Cytochalasin D. In figure 3.7, we cans see that the results indicate that this 

enhancement is diminished with the application of retrograde transport blocker, indicating 

a need for GDNF to be transported into the cell. 

 

 

 

Fig 3.5: Representative phase contrast images of regenerating axons where neurotrophic factors were 

administered into cell body compartment. Images were taken every 24 hours for 3 days after injury. 
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Fig 3.6: Axonal regeneration by GDNF, neurturin (NT) and neublastin (NB) after the axotomy. Rate of 

axonal regeneration induced by the neurotrophic factors over 3 days. (p < 0.05) 

Fig 3.7: Axon regeneration with axonal GDNF application compared with axonal GDNF 

application concurrently with Cytochalasin D. (p < 0.05) 
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3.4 Discussions 

Compartmentalized microfluidic culture systems have been utilized in a variety of 

neuronal studies, from examining the effects of toxins and neuroprotectants on axons 

versus soma, to enhancing spatial and temporal control of neurons and other cultures, and 

performing axon-glia co-culture studies [25, 155-157]. Several injury systems have been 

incorporated within microfluidic culture devices in order to investigate axon-specific 

mechanisms in injury and regeneration. These systems include simple aspiration of the 

distal compartment, two-photon laser ablation, and hydrodynamic shear based axotomy 

[158, 159]. In the current study, through modification of the device into an open system, 

we were able to transect axons simply and easily by scratching the surface of the glass with 

a sharp glass pipette or metal syringe.  

 

As compartmentalized microfluidic culture devices have become ubiquitous, 

appropriate characterization of the diffusion properties within the devices would not only 

be beneficial but necessary. This study demonstrates a potential pitfall in designing and 

carrying out microfluidic experiments with neuronal cultures. Unless a proper hydrostatic 

pressure is maintained, there is no true fluidic separation of the axonal and neuronal cell 

body compartments. Experiments studying the effects of individual local manipulations of 

axons and neuronal cell bodies will have to take these observations into consideration. This 

is especially true for small molecular manipulations as they are more likely to diffuse 

through the microchannels and confound the findings of an experiment. 
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Neurotrophins have traditionally been known to play integral roles in neuronal 

survival during development, but only relatively recently has their function in regeneration 

been explored. [160] GDNF and its family of growth factors, neurturin, artemin, and 

persephin, represent a class of novel neurotrophic factors. These growth factors signal 

through a two-receptor complex consisting of rearranged during transfection (RET) Trk 

and a glycosylphosphatidylinositol (GPI)-linked GFR-α. The growth factors GDNF, 

neurturin, artemin, and persephin preferentially bind to bind to GFR-α1, GFR-α2, GFR-

α3, and GFR-α4, respectively. GDNF has been shown to provide neuroprotection and 

promote axonal regeneration, but the role of the other family members is not as clear.  

 

Injury to peripheral nerve reactivates its intrinsic growth capacity, and the 

retrograde transport of injury signals has been suggested to be one of the essential 

mechanisms for regeneration [161]. The retrograde transport of GDNF has been postulated 

to act as a positive injury signal for induction of regeneration.[162] The enhancement of 

regeneration by GDNF within our in vitro system is consistent with previous studies. It has 

previously been demonstrated that GDNF selectively promotes regeneration of injury 

primed sensory neurons, both in vitro where GDNF caused enhancement of neurite 

outgrowth in preconditioned DRG neurons, and in vivo where GDNF administered directly 

to cell bodies in lesioned spinal cord facilitated the preconditioning effect and enhanced 

regeneration further. [163] 
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3.5 Conclusions 

In our study we found that GDNF acts as a more potent inducer of regeneration 

than the other GDNF family growth factors (neurturin, neublastin) which we examined. 

GDNF and its receptor GFR-α1 are upregulated in the distal denervated segment of injured 

nerve, suggesting that GDNF may provide trophic support for injured peripheral neurons. 

No analogous upregulation of neurturin, persephin, and artemin or their receptors was 

found following injury [164]. However, it is note-worthy that we do see enhancement of 

regeneration at all if this is the case.  

 

The finding that GDNF administered to cell bodies produced better results than 

GDNF administered to distal axonal compartments is interesting which further led to 

explore the role of retrograde axonal transport/relay of GDNF signal to cell body which 

maybe a reason for the observation. A previous study utilized compartmentalized cell 

culture devices to study the role of GDNF as a retrograde survival factor and its ability to 

promote survival over long distances to cell bodies [165]. In this study, it was found that 

GDNF promoted survival of DRG neurons equally well from either distal axon or cell body 

application. However, this study was not done within an injury model, and the DRG 

neurons were relatively healthy, and thus the reason for this discrepancy in the potency of 

GDNF depending on location of application may be due to the fact that we are using injured 

DRG neurons. It is important to note that the mechanism of action of GDNF may be 

different in these two systems, indicating the need to study the role of growth factors in 

both injury and developmental systems separately. It has been demonstrated that GDNF 

and GFR-α1 are retrogradely transported in peripheral axons, but these studies were also 
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done in relatively healthy neurons.[166] Axonal injury may have an impact on protein 

turnover and retrograde transport, and this may impair some of the retrograde pathways for 

GDNF transport, making the application of GDNF directly to the cell bodies more 

effective. Our experiments comparing axonal GDNF application alone and together with 

Cytochalasin D demonstrate the important role of retrograde transport of GDNF as well as 

indicate that the enhanced regeneration effect may be cell body specific rather than at the 

localized axon.  

 

Neurotrophic factors are a promising area of research for understanding 

regeneration. Their role in providing trophic support during development and in 

maintenance of neurons has long been known, but elucidating their roles in regeneration 

may prove fruitful in the development of therapies for overcoming neural degeneration and 

for enhancing regeneration post injury. Understanding axon specific or cell body specific 

effects of growth factors and being able to distinguish between local effects and retrograde 

signaling will be necessary for any future therapies. Compartmentalized microfluidic 

culture devices may be instrumental in these studies, but caution must be exercised to better 

characterize the devices to ensure true microfluidic separation of chambers. 
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Chapter 4 

A Novel 3-Dimensional In Vitro Platform to Study 

Focal and Repetitive Axonal Injury 

4.1 3D AIM platform 

4.1.1 Introduction 

Traumatic injuries and insults in various modes to Central Nervous System (CNS) 

often transgress as Traumatic Axonal Injuries (TAI). TAI involve focal to multi-focal 

damage of axons within the white matter tracts of the brain, and based on the degree and 

extent of TAI, the effects are often debilitating with a complete loss of function [167]. The 

functional restoration is greatly limited by the fact that CNS environment is not conducive 

of axonal regeneration [168, 169]. In spite of the gravity of TAI, many mechanistic details 

involved remain unknown and the individuals who suffer mild to medium brain injuries 

continue their activities only to succumb to devastating compounded injuries far worse 

than each of their isolated insults.  

 

Primary insult to axons in TAI leads to secondary insults which might be even more 

severe and degenerative than the primary alone. The primary insult can be of various forms: 

mechanical forces arising from stretch, compression, shear or in combination of any of 

these lead to secondary insults. Secondary insults involve changes at morphological and 

biomolecular scales: disruption of cytoskeleton, axonal transport, axonal protein synthesis, 
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mitochondrial structural changes [170-173]. Recent evidence suggests that mild axonal 

trauma, on the other hand, may cause subtle axonal injury that is often reversible.  

However, long-lasting changes may become encoded within the axon- a form of traumatic 

“memory”- rendering the axon far more vulnerable to future traumatic insults predisposing 

them to a more severe secondary insult. Therefore, it is of critical importance to understand 

the mechanisms and consequences of focal axon injury and to correlate injury with the 

degree and nature of forces exerted upon the axon.  

 

The modeling and study of complex dynamics involved in the settings of traumatic 

injuries in CNS and PNS provide valuable mechanistic insights about these injuries that 

are often irreversible resulting in permanent loss of function. The modeling studies help 

understand the biological destiny of injured nerves and axons, regeneration or degeneration 

and play a role in developing new therapeutic strategies. There are several experimental 

setups like in vivo, in vitro, and in silico models to study the injury [1, 26-28, 35]. In vivo 

animal models of trauma enable the study of whole organism’s response to a multitude of 

complex variables and even facilitating behavioral studies. In vivo models encompass 

Instant rotational injury model, Impact acceleration injury model, Lateral fluid percussion 

injury model, Controlled cortical impact model, Nerve stretch model, complete transaction 

model, and complete contusion model [1, 174]. Though in vivo models are useful, they do 

not permit study at single cell resolution, highly complex to operate, low reproducibility, 

large number of parameters to model, labor intensive, need specific set of skills, and are 

very time consuming. Also, they are limited by technological advancements to study time 



85 
 

course of degeneration following an injury, response to graded injuries, and changes in 

biochemical pathways along the time course of an injury challenging. 

 

In vitro models, on the other hand, allow the study of biochemical pathways, gene 

expression levels, and phenotypic changes at single axon resolutions. In vitro models also 

facilitate the study of different types of traumatic injuries like transection, compression, 

stretch, and shear [1, 35, 174]. Microfluidics provides a powerful alternative to the existing 

in vivo and in vitro methods to model and study the axon injuries. They provide platforms: 

to model and study at single cell resolutions, compartmentalization and precise control over 

cellular microenvironments, can be automated, require little amount of reagents, scope for 

multiplexing and high throughput [49, 175, 176]. Several kinds of microfluidic devices are 

developed for the applications in neuroscience as these devices’ settings can be broadly 

employed for neuron cell culture, neuron manipulation, neural stem cell differentiation, 

neuropharmacology, neuro-electrophysiology and neuron biosensors. [11-13, 21, 53, 177]. 

 

Development of microfluidic platforms for neuronal studies is propelled by 

following limitations to traditional in vivo and in vitro studies: (1) like in the case of in 

vivo, compartmentalization of the axon from soma is absent. A detailed investigation of 

sub-cellular events during injury isolated to either axons or soma is desired and hence the 

distinction between axon-specific and cell body-specific events; (2) lack of accuracy and 

precision in delivering spatiotemporally controlled injury to axons; (3) lack of high 

resolution imaging modality pre, during, and post axonal injury, and (4) lack of a tools to 
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measure the magnitude of various forces acting on axons during the injury.  The issue of 

compartmentalization to study axons independent from cell body in peripheral nervous 

system (PNS) is first addressed by developing the Campenot chamber in 70s [3]. This 

chamber uses Teflon partition on a glass petri dish which divides and creates fluidic 

isolation between three chambers by the application of silicon grease. However, Campenot 

chamber is not suitable for CNS applications as the CNS neurons are far smaller in size, 

the reproducibility of silicon grease seal between glass and Teflon is low, and is very 

laborious. To circumvent these existing issues with traditional platforms in several lab-on-

chip (LOC) approaches emerged to the study CNS neuronal cultures [10, 11, 97, 119, 175, 

176, 178-180]  

 

One of key the aspects of TAI is focal and graded axonal injury [117, 167], and 

LOC platforms to study focal and graded TAI in CNS axons were developed [61, 107, 

108]. Hosmane  et al. [61] developed an axonal injury micro-compression (AIM) platform 

with active valve components created from deformable biocompatible elastomeric 

material, poly (dimethylsiloxane) (PDMS). This platform integrates microfluidic valve 

technology with compartmentalization of CNS axons from their neuronal cell bodies. By 

pushing down the valve on an axon segment, a focal and graded compressive injury can be 

imparted. The study revealed a trimodal response to the graded injuries. Though the study 

elucidated new aspects of injury dynamics they do not precisely mimic in vitro conditions: 

(1) axons were subject to injury on a glass substrate which is of several order magnitude 

stiffer compared to biological tissues, and (2) does not combine the study of compression 

and stretch based injuries which are more likely to happen, in combination. 
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Motivated by this, I developed an add-on to the already existing AIM platform to 

substitute the glass substrate with a soft gel substrate whose material stiffness can be tuned. 

The combined novel microfluidic platform allows observation of focal and graded 

mechanical injury to CNS axons as a combination of compression and stretch. Fabrication 

of microfluidic platforms to allow a focal, graded mechanical injury to isolated CNS axons 

in a manner compatible with high resolution optical microscopy and spatiotemporal 

tracking. The developed platform potentially allows: (1) incorporation of a methacrylated 

gelatin gel substrate to allow complex injury modalities mimicking in vivo injury models 

to single CNS axons, (2) development of finite element models to characterize the 

mechanical load applied to the axons during injury setting, (3) experimental identification 

of stress thresholds for modal responses both in the settings of reversible and irreversible 

axonal injuries, and (4) determine sub-cellular spatiotemporal fluctuations of Ca2+ flux and 

cytoskeletal rearrangements at the site of injury, an early indicator of injury severity. 

4.1.2 Materials and Methods 

4.1.2.1 Fabrication of the master template and molds 

The third layer of the assembled device, the substrate layer of AIM device was 

fabricated in PDMS. The master template for the substrate layer was created using single 

layer photolithography process. 4 inch silicon wafers (University Wafer, MA) were spin 

coated with 150 µm thick SU-8 3050 (Microchem, MA) and exposed to UV radiation with 

transparency mask (CAD/Art, OR) to define 4 parallel chambers (figure 4.1) for gel 

substrates. Each of these four chambers runs along the width of three parallel compartments 

in the AIM device. Once the master template is fabricated, substrate layer molds were 

prepared in PDMS. PDMS pre-polymer was mixed in 5:1 ratio (w/w) of base to curing 
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agent so that excess cross-linker results in better bonding with the second (fluid) layer of 

AIM platform. Secondly, the stiffness of the mold can be increased such that a thin, strong 

layer of it could be created to fit the entire 3 layered assembly in a petri dish without any 

contact with the lid there by avoiding potential contaminations. 

 

 

4.1.2.2 Fabrication of the gel substrate and establishment of the gradient 

Methacrylated gelatin gel is a photo-crosslinked hydrogel that is biocompatible. 

Gelatin is chemically modified with the incorporation of methacrylate to amine groups in 

gelatin to form methacrylated gelatin. Methacrylated gelatin was synthesized as described 

previously [181]: Type A porcine skin gelatin was dissolved in Dulbecco’s phosphate 

buffered saline (DPBS) at 60 °C and methacrylic anhydrate was added to this solution in 

required ratio to control the degree of cross-linking. The solution was constantly stirred at 

50 °C and allowed to react for 1 h and lyophilized. Photoinitiator 2-hydroxy-1-(4-

(hydroxyethoxy)phenyl)-2-methyl-1-propanone (Irgacure 2959) was added to the 

Fig 4.1: Master template of ECM layer for the modified AIM platform. 
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macromer in 0.5% (w/v) DPBS. The dissolved solution was injected into the ECM mold 

channels using a pipette and crosslinked via strong UV irradiation for 2 min. 

 

Linear diffusible gradients of glial cell-derived neurotrophic factor (GDNF) were 

generated in methacrylated gelatin hydrogels that were established in channels using a 

surface tension driven, single channel microfluidics gradient generation method previously 

described in [182]. Methacrylated gelatin hydrogels were established in the channels of the 

ECM device and FITC-GDNF in DPBS was placed at the output of the channel as a drop. 

A smaller (in volume) drop of FITC-GDNF was placed at the input. Due to the surface 

tension a forward flow is established and a gradient is created. 

 

4.1.2.3 Assembly of modified device 

Methacrylated gelatin gels were established in the ECM devices using a plain a 

PDMS block for planar surface. The devices were peeled off from the PDMS block and 

cleaned carefully with scotch tape. AIM device fabricated using the method described in 

[61] was plasma treated and was placed on top of the ECM device, aligned and 

bonded.zThe whole assembly was placed in a 30 mm glass bottom petri dish and subjected 

to plasma treatment to flow media in the channels (figure 4.2). 
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4.1.2.4 Cell Preparation and loading 

Devices were coated with 200 µg ml-1 PDL (Sigma, MO) as an extra cellular matrix 

(ECM) layer prior to cell seeding. The devices were left overnight at 37 oC, washed 3X 

next day with ddH2O, and filled with neuro basal/B27 [24] media and stored in standard 

humidified incubator (Thermo Scientific, MA) at 37 oC with 5% CO2 until used. Rat 

embryonic day 17 (E17) primary hippocampal neurons were derived as previously 

mentioned in [183] and used for this studies. E17 cells derived were seeded at low densities 

(150-450 neurons/device) and media was replenished every 3 to 4 days to maintain 

neuronal viability. 

 

4.1.3 Results 

4.1.3.1 Establishment of stable soluble gradients in gels in ECM devices 

ECM layer design of the device incorporates establishment of stable and soluble 

gradients of neurotrophic factors in the methacrylated gelatin gels. The dimensions for each 

of the 4 lanes for gels (one for each injury pad) are chosen such that the cell bodies are not 

exposed to chemical cues in the gels. In doing so, we could essentially study the 

Fig 4.2: Illustration of the device assembly 
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a) b) 

regeneration of axons post injury solely under the influence of growth cone’s response to 

cues in the proximal part of axon. 

 

Methacrylated gelatin solution was first loaded in the channels and cross-linked 

with UV irradiation to form gels in the lanes. Once the gels were formed from cross-linking 

a concentrated drop of fluorescently-labelled GDNF was introduced at the input ports. Due 

to surface tension and capillary action a gradient of GDNF is established in the channels 

(figure 4.3). The initial bump in the concentration of GDNF is due to the fact that there is 

a sudden increase in the cross section between the input ports and the lanes. This step 

change in cross section leads to dead zones at the corners where there is no CGDNF and 

hence low concentration.  

  

 

 

Fig 4.3: a) Fluorescently-labeled GDNF gradients generated simultaneously in four separate channels 

(channels are arranged from top to bottom). b) Quantification of gradients in the four channels 
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4.1.3.2 Compatibility between hydrogels and cells  

Before cultures could be established in the modified platforms the compatibility of 

rat E17 1o hippocampal cells with methacrylated gelatin gels has to be checked. Hence, 

methacrylated gelating gels were established in 96 well culture plates and the gel surfaces 

were modified with various conditions to investigate the compatibility. The gels were 

treated with the conditions mentioned in table 4.1. Inspection of cells under microscope 

right after and an hour into seeding revealed considerable aggregation, an indicator of poor 

health and compatibility of cells with methacrylated gelatin gels. The gels were then doped 

with other ECMs like collagen, laminin, and fibronectin to improve the compatibility with. 

To verify that the ECM coating is proper on the gels, fluorescently-labelled PLL (FITC-

PLL) was used (figure 4.4). Though FITC-PLL revealed proper coating on gels inside the 

wells, no improvement in compatibility was observed. Methacrylate group being acidic, 

we suspected the presence of any uncross-linked residue from synthesis of methacrylated 

gelatin could decrease the pH of hydrogel. Accordingly the gels were washed with either 

HBBS or DPBS 3x times before further ECM coating. All these modifications were futile 

and seemed not to improve the compatibility between methacrylated hydrogels and cells. 

Table 4.1: Experimental conditions the gels were subjected to 

S. 

No 
Experimental Conditions 

Concentration of dopants 

(µg ml-1) 
Notes 

1 Mgelatin + PDL 25, 50, 75, 100, 200 
Media turns 

yellow 

2 Mgelating + Collagen 0.5 
Media turns 

yellow 

3 Mgelatin + Fibronectin 0.5 
Media turns 

yellow 

4 Mgelatin + Laminin 0.5 
Media turns 

yellow 

5 Mgelatin + Fibronectin + Laminin  0.5, 0.5 
Media turns 

yellow 

6 
Mgelatin + PDL + 

Collagen/Laminin/Fibronectin 
75, 0.5 

Media turns 

yellow 
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4.1.3.3 Cultures in the modified injury platforms 

ECM layers were aligned and assembled with the AIM devices to form a single 3D 

TAI compressive injury platform. Methacrylated gels in ECM layer were often not planar 

and this resulted in failure of fluidic isolation between chambers of AIM device. This can 

be due surface tension forces in the hydrogels resulting from rehydration with media. 

Nevertheless, to estimate the initial performance of the device rat E17 1o hippocampal cells 

were used. As seen in the figure, due to the lack of fluidic isolation cell could be seen in 

all the compartments. Also, gels were not compatible to the cells and the cells started 

aggregating as early as 20 min post seeding in the devices. Mice dissociated DRG neurons 

were used instead of rat E17 1o hippocampal cells to check whether they can be limited to 

Fig 4.4: a) Clumping of cells on methacrylated gelatin doped with fibronectin and coated with FITC-PLL 

on day 2, b) clumping of cells on methacrylated gelatin doped with laminin and coated with FITC-PLL 

on day 2, c) clumping of cells on methacrylated gelatin doped with both fibronectin and laminin and 

coated with FITC-PLL on day 2, d) control, e) clumping of cells on methacrylated gelatin washed with 

HBBS and coated with FITC-PLL on day 2, and f) cells on methacrylated gelatin doped with collagen 

and treated with HBBS and coated with FITC-PLL on day 2 (scale bar 50 microns) 
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the cell body chamber due to their size in spite of the lack of fluidic isolation. To eliminate 

the chances of cell dispersion in all chambers cells were seeded directly on top of the gels 

instead of conventional loading through the cell loading ports. Though the DRGs extended 

their axons and remained healthy (figure 4.5), these results could not be reproduced. 

 

4.1.4 Discussions 

TAI occurring in the settings of traumatic brain injury and spinal cord injury can 

be result of insults of various kinds. Amongst those various modes of insults compression 

is one. TAI resulting from compression injury was earlier established and studied in giant 

squid axons. Giant squid axons are rendered easy to handle because of their large size (>0.5 

mm in diameter). Initial experiments with these axons gave insights into the compression 

injuries in axons but these studies cannot shed light on the mechanical characteristics of 

CNS cells. Also, CNS axons are very small in comparison to giant squid axons and very 

delicate to handle with. 

Fig 4.5: a) Dissociated DRG cells seeded in the modified AIM devices can be seen under the channels 

on methacrylated hydrogels due to the loss of fluidic isolation resulting from the concavity of hydrogel 

surface, b) healthy DRG cells with no aggregation in the cell body chamber of AIM devices 10 days in 

culture. (scale bar 50 microns) 
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In order to study compression injury in CNS axons, each axon should be addressed 

individually to track down the post injury cellular sequences. To achieve this techniques 

should be developed to handle each axon independently. Existing techniques like laser 

ablation achieves the job but they are qualitative, they do not present information about the 

stress being directly applied to the axon. It is important to study the stress directly being 

applied to an axon because based on the degree of strain the injury outcome and cellular 

response changes. Current TAI platform is intended to address the issue of obtaining 

quantitative information from the insults to axons. 

 

TAI platform is a LOC device that incorporates MEMS and soft lithography 

technologies to mold a device in PDMS. To quantitatively study the stress on axon the 

device incorporated a valve that deflects under a pressure which can be controlled. Using 

this device previous study found out that axons have a trimodal response post injury based 

on the input pressure to the valve. Though this outcome gave new insights into the extents 

of axonal regeneration after injury the study did not reflect the physiological conditions 

which may be different from what has been observed. In order to improve the device and 

make it closer to mimic physiological conditions the hard glass substrate is exchanged with 

soft ECM layer. 

 

An ECM layer was developed as add on to the existing TAI platform to replace the 

current hard glass substrate with a soft ECM layer molded in PDMS. For ECM 

methacrylated gelatin gels were chosen as the stiffness of the gel can be fine-tuned based 
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on the cross linker in the pre polymer mixture. The whole assembly doesn’t modify design 

and mechanism of TAI platform which eliminates the optimizations usually involved with 

new designs. Though the TAI platform is kept intact the ECM layer has to be optimized.  

Developed ECM layer has optimization issues that are to be worked out before any further 

experiments. First and foremost the compatibility of the gels with rat primary E17 

hippocampal cells has be improved. Currently the gels are acidic as can be seen when 

neurobasal media is added to the gels. The pH indicator turns yellow indicating that the pH 

of gels is acidic which maybe a reason for the incompatibility. Then there is the issue of 

the concavity of gel surfaces that disturb the fluidic isolation meant to be achieved by the 

microchannels. This could be altered by changing the surface tension of the gels or 

modifying gels such that they expand after cross-linking or rehydration to fill the gaps 

established between the gels and microchannels. Once these issues could be optimized the 

stiffness of gels can be varied and gradients can be established. By varying the gel stiffness 

one could study the post injury response of axons to varying stiffness in the gels. 

 

4.1.5 Conclusions 

This study aims at improving the physiological relevance of the TAI device by 

incorporating soft substrate for the axons to grow on and to be injured. This is a very simple 

modification to the existing device by adding a layer of PDMS to incorporate soft 

substrates under the channels. Rat dissociated DRG neurons were successfully cultured in 

the devices but could not be injured due to the lack of fluidic isolation. Rat 1o E17 

hippocampal cells survived on the gels only once amongst several trials. If the gels could 
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be made more compatible the device would give great insights into the post injury axonal 

response based on the stiffness of the substrate.  
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4.2 Displacement control device 

4.2.1 Introduction 

The dynamics of TAI are still elusive and not yet completely deciphered. In the 

settings of a TAI it is the secondary insult, an outcome of the primary injury which is more 

debilitating. The cytoskeletal disruption and reorganization due to these repeated 

secondary insults often do not present any observable symptoms. It has been widely 

accepted that changes to the cytoskeletal structure within axons are the primary means for 

axonal collapse following injury. Actin filaments, intermediate (neuro-) filaments, 

microtubules, and cross-linking proteins collectively are responsible for the structural 

properties of the neuronal axon. While the cytoskeletal network contribution has been 

accepted, the mechanisms by which this structure degrades and the contribution of each 

cytoskeletal components is not understood. Insight into the structural mechanics of these 

alterations will lead to a more complete comprehension of neural axon cellular integrity. 

 

Previous studies of axonal injury in the giant squid axon [184] have yielded 

generalized descriptions of morphological outcomes to graded mechanical loading 

resulting in distinct types of responses including continued maintenance, slow/fast 

retraction, and wallerian degeneration of the axon. The large size (> 1mm) of the giant 

squid axon permits physical manipulation of the tissue, however the far smaller sizes of 

mammalian CNS axons have precluded them from similar experimental manipulations. 

Therefore, to date, there has been little quantitative correlation between applied stress and 

the injury response of CNS axons. Apart from a recent study investigating the mechanical 

role of microtubules in stretch injury to the axon [185], previous studies have either focused 
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on stress application to the whole neuron, thereby masking axon-specific effects, or have 

looked at stress levels that induce complete axon transection [106]. 

 

Importantly, spatiotemporal tracking of cellular and sub-cellular changes in the 

axon has been one of the greatest challenges to understanding the primary and secondary 

injuries in the setting of traumatic insult to the CNS. Our aim is to develop a microfluidic 

platform by utilizing the previously established AIM platform technologies proposed in 

[61] with rigorous computational modeling, we could potentially achieve a fundamental 

understanding of the dynamics of a) axon morphology, b) calcium flux, and c) membrane 

and cytoskeletal rearrangements and “injury memory” as functions of graded compressive 

and tensile strain. In this study, we will seek to understand mechanisms by which forces 

causing mild reversible injury may lead to irreversible axonal damage when applied 

repetitively. We plan to achieve these by modifying the injury pad in AIM device by 

introducing notches along the length of the pad. The notches would permit the compression 

of axon to varying degrees based on the pre-defined clearance heights of the notches from 

the substrate from which the axons grow when compressed. 

 

4.2.2 Material and Methods 

4.2.2.1 Fabrication and assembly of injury platform 

The axon injury micro-compression (AIM) platform previously described in [61] is 

modified in the valve design to incorporate the notches. The earlier design was a three layer 

fabrication process and the current design incorporates an additional layer in between layer 
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2 and layer 3. This additional layer defines the notch clearance from the glass substrate 

below which is usually in sub-micron sizes. This new layer 3 was defined by using SU8 

2000.5 (Microchem, MA). The spinning protocols were followed as given by the 

manufacturer. 

 

4.2.3 Results 

4.2.3.1 Incorporation of the notch layer in master template 

Master template of the device is defined on a 4 inch silicon wafer in positive relief. 

The fabrication of the master template involves 4 layer photolithography process. The 

layers are stacked progressively on top of each other, and each layer is designed in such a 

way that the features of the layer above are projected onto the layer below along with its 

own features. While stacking the layers, the features on the layer that is being stacked are 

always confined within the area of the features defined below. This is to ensure that the 

features do not collapse during replica molding in PDMS. The first layer (bottom to top) 

defines the microchannels for axons, the second layer defines the clearance for the valve, 

the third later defines the height of the notches, and the final layer defines the height of 

compartments. 

 

Thickness of the third layer which defines the height of the notches is less than a 

micron and is at least 20 times less compared to other layers. This submicron thickness 

poses a challenge and the protocol has to be modified in defining this layer. Low viscosity 

of the photoresist and an inhomogeneous surface smoothness (due to the presence of 

exposed areas) results in improper distribution of photoresist during the spin coating of the 
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third layer. This results in the absence of well-defined features and in order to improve the 

adhesion between layer 2 and layer 3, layer 2 is subject to plasma treatment which increases 

surface roughness. Layer 2 is subject to plasma etching for 100 watts and 30 seconds at 

600 mtorr, higher pressure results in lesser etching of the surface. 

 

4.2.3.2 Finite Element Method (FEM) modeling and notch design 

The valve structure defined by Hosmane et.al.[61] was modified to incorporate 

discrete patterns of notches with predefined height clearance from the bottom of the glass 

Fig 4.6: a) On a bare silicon wafer, microchannels were defined in two linear arrays of microchannels, b) 

a second thicker resist is used to define the overall injury pad clearance, c) on top of this layer a submicron 

thick layer was coated to define the notch heights, d) finally on top of this the actual layer for injury pad 

is defined, e & f) depict the top view of the same. (Schematics are not to scale) 
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surface (figure 4.7). The clearance was introduced such that upon compression the axons 

traversing under the notches are subject to partial compression which will alter the fabric 

of cytoskeleton in the axon. The length of notches are defined as gaps and the spacing or 

interspersion between them as pedestals, which actually make the contact with glass 

substrate, when subject to pressure. Starting with an iteration of 200 µm gap and 80 µm 

pedestal lengths, devices were fabricated in PDMS and the valves were subject to 

compression under compressed CO2 gas. The integrity of the modified valve is 

compromised and it started collapsing under pressures 10-20% higher than the minimum 

required for a contact with the glass substrate. The loss of structural integrity in the valve 

defeats the purpose of having a control over the degree of compression of an isolated axon. 

Hence FEM was employed to model and define pedestal and gap lengths to modify the 

structural and mechanical integrity of valve in action. 

 

For FEM analysis, all the modeling parameters were borrowed from the model 

previously defined in [61]. FEM simulations with 200 µm gap length and 80 µm pedestal 

lengths resulted in buckling and collapse of pedestals at pressures as little as 7 psi (figure 

4.8). In order to find optimal gap and pedestal lengths FEM simulations were first run to 

check response at 7 psi and then the degenerate loading response at 55-95 kPa (table 4.2). 

A gap distance of 10 µm and a pedestal distance of 20 µm were found to be optimal with 

a 77 % clearance intact when a notch height of 910 nm was considered. Further FEM 

simulations were run to determine of range of notch heights for the devices. All the 

simulations were performed to study the degenerate loading response (applied load 55-95 
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kPa) at 10 psi. The simulations yielded a minimum height of 400 µm to work with and 

anything below it collapses (table 4.3). 

 

 

Fig 4.8: a) FEM analysis of modified compression pad of notch device under no compression with 200 

µm gap length and 80 µm pedestal length, b) zoomed version of the control condition, c) FEM analysis 

of modified compression pad of notch device under compression at 7 PSI, pressure needed to barely 

contact the glass substrate, d) zoomed in version of the compressed condition where one can clearly 

visualize the buckling 

Fig 4.7: a) Modified compression pads with addition of notches created by gaps of a defined height 

clearance from glass substrate, b) Modified flow layer master template for the fabrication of 

displacement control devices. 
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Table 4.2a FEM simulations to determine the gap length and pedestal length 

Gap length Pedestal length Displacement (µm) Clearance (µm) % Clearance 

10 10 0.21647 0.69353 76.2120879 

10 20 0.208609 0.701391 77.0759341 

10 40 0.212688 0.697312 76.6276923 

20 10 0.452194 0.457806 50.3083516 

20 20 0.423282 0.486718 53.4854945 

20 40 0.37877 0.53123 58.3769231 

40 10 0.91 0 0 

40 20 0.430553 0.479447 52.6864835 

40 40 0.823168 0.086832 9.54197802 

 

Table 4.2b. FEM simulations for degenerative loading for chosen gap and pedestal 

lengths 

psi Clearance (µm) % Clearance STDEV 

7 0.696668 76.5569 0.003569 

8 0.666726 73.2665 0.004040 

10 0.607234 66.7290 0.004954 

12 0.548264 60.2488 0.005831 

14 0.489809 53.8251 0.006674 

 

 

Degenerative loading response at 10 psi (applied load between 55-95kPa) indicated no collapse of the 

modified injury pad for a gap length of 10 µm and pedestal length of 20 µm indicating the choice of 

dimensions for modified injury pad. 

Note: Above simulations in table 4.2 a & b were done assuming a notch height of 910nm and the 

simulations are run at 7 psi, pressure needed to barely make the contact with glass substrate 
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Table 4.3: FEM simulations for various notch clearances for chosen gap and pedestal 

lengths 

 

 

 

 

 

 

4.2.3.3 Valve operation, stability, and notches 

As a proof of principle for sustained compression of axons in the device and to 

evaluate valve performance over extended periods of time we performed experiments using 

FITC conjugated PLL to pattern the gap zones on glass substrates. Devices in PDMS were 

fabricated from master molds with a notch clearance height of 500 nm. The devices were 

assembled, cleaned, plasma treated, and bonded to glass substrates. Bonded devices were 

filled immediately with molecular grade water and stored at 37 oC until used. The inlet 

ports for CO2 gas in control layer were set up and the modified valves were compressed. 

Once the contact with glass substrate was established, the water was exchanged with FITC-

PLL (10 µg/ml) in the chambers.  

 

Notch Height (nm) Clearance (µm) % Clearance STDEV 

100 0.000000 0.000000 0.000000 

200 0.000000 0.000000 0.000000 

300 0.020644 0.068814 0.004872 

400 0.116279 0.290698 0.004006 

500 0.212539 0.425079 0.004519 

600 0.308878 0.514796 0.004942 

700 0.404952 0.578502 0.004965 

800 0.501089 0.626362 0.004903 

900 0.597250 0.663611 0.004919 

1000 0.693818 0.693818 0.005447 

The above table shows the simulation results of clearance between the top of injury pad and glass 

substrate to a degenerative loading response of 10 psi where the notches are for a gap length of 10 µm 

and pedestal length of 20 µm. In the case of 100 nm and 200 nm a total collapse is seen and a minimum 

of 300 nm is needed. Hence 400 nm was chosen as the minimum height required for notches. 
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The valves were subject to compression for a period over 24 hours and prior to 

decompressing them FITC-PLL from all the chambers was aspirated and the chambers 

were washed with molecular grade water thrice. Images were taken both with compressed 

and uncompressed valves (figure 4.9) and a reliable pattern of notches were seen on the 

glass substrate without any loss in the structural and mechanical integrity of the valves. 

This proves that axons could be subject to a constant compression injury to model. 

 

4.2.3.4 Imaging neurofilaments and microtubules 

Cytoskeletal tranport network: neurofilaments (NT) and microtubules (MT) of an 

axon are disrupted during TAI. It is vital to study the disruption of this network during and 

post injury. In order to visualize these proteins under microscope rat E17 1o hippocampal 

neurons were transfected with phosphorylated cytomegalovirus (pCMV)-AC-green 

fluorescent protein (GFP) plasmids with a C-terminal TurboGFP (Origene, Rockville, MD, 

USA), encoding an NF-GFP or MT- associated protein tau (Mapt)-GFP fusion gene. To 

localize the cytoskeletal proteins NT or MT with the membrane of axon CMPTx red cell 

Fig 4.9: a) Uncompressed notch valve: the channels were filled with FITC-PLL and incubated overnight 

to take the images, b) compressed notch valve: valves were compressed prior to flushing the chambers 

with FITC-PLL, incubated overnight and washed before release of valve. One can clearly visualize the 

clear zones where the pedestal made contact with glass substrate for the entire duration of coating. 
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tracker (Gibco Life Technologies) was added prior to imaging with high resolution 

confocal microscopy. MATLAB was used for image processing of the acquired images 

(figure 4.10). The ability to image individual cytoskeletal components during TAI in 

combination with modified AIM device provides a powerful tool to study the time course 

of primary and secondary insults during TAI.  

 

4.2.4. Discussions 

TAI occurring in the settings of traumatic brain injury and spinal cord injury can 

be the result of insults of various kind. Amongst those various modes of insults 

compression is one. In TAI compression can vary from just deformation to complete 

transection of axon. TAI resulting from compression injury was earlier established and 

studied in giant squid axons. Giant squid axons are rendered easy to handle because of their 

large size (>0.5 mm in diameter). Initial experiments with these axons gave insights into 

Fig 4.10: a) Confocal images of GFP tagged microtubules (green) with respect to axonal membrane (red) 

labelled with CMPTx red cell tracker. Microtubules appear to be more localized with in the axon with an 

average diameter around 25nm, b) confocal images of GFP tagged neurofilaments (green) with respect 

to axonal membrane (red) labelled with CMPTx red cell tracker. Neurofilaments appear to be more 

dispersed within the axon with an average diameter around 10-12nm. (Axes scale in nm) 
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the compression injuries in axons but these studies cannot shed light on the mechanical 

characteristics of CNS cells. Also, CNS axons are very small in comparison to giant squid 

axons and very delicate to handle with. It has been widely accepted that changes to the 

cytoskeletal structure within axons are the primary means for axonal collapse following 

injury. Actin filaments, intermediate (neuro-) filaments, microtubules, and cross-linking 

proteins collectively are responsible for the structural properties of the neuronal axon. 

While the cytoskeletal network contribution has been accepted, the mechanisms by which 

this structure degrades and the contribution of each cytoskeletal components is not 

understood. Insight into the structural mechanics of these alterations will lead to a more 

complete comprehension of neural axon cellular integrity. 

 

Not all injuries lead to complete transection of axons. Some compressive injuries 

like carpal tunnel syndrome (CTS) [186] are chronic which result in repeated deformation 

of the axons or nerves under compression. An in vitro microfluidic injury platform to model 

and study repeated compressive injury, with control over the duration of injury being 

delivered, can effectively reproduce biochemical and mechanical events undergoing during 

pathologies like CTS. Such platform would serve as a powerful tool for critical study of 

various pathologies involving repeated compressive injuries. Modification of the injury 

pad in previously developed AIM platform can potentially address this issue. This 

modification can facilitate compression of axons to different degrees via displacement 

control for extended times of up to 16 hours or more. Moreover this method is both 

quantitative and qualitative. Quantitative in studying the relation of degree of displacement 

to axonal response, cytoskeletal response and reorganization, and transport disruptions. 
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The valves designed for TAI platform in AIM device were thus modified to 

incorporate gaps and pedestals. When the valve is compressed under pressure the pedestals 

contact the substrate and the gaps between them form notches under which axons can pass. 

The axons passing through these gaps are compressed to various degrees based on the 

diameter of the axons and notch clearance. In order to make these changes in valve design 

an additional layer is added to the master template between layer 2 and layer 3 which 

defines the notch clearance. 

 

A range of submicron notch height clearance was defined in various master 

templates. But defining these notches on master templates was very tricky. Notch below 

0.75 µm were not observed in master templates. This may be due to adhesion 

incompatibility between SU8 2000.5 (layer 3), SU8 3005 (layer 1, 2), and SU8 3050 (layer 

4) layers. Trail runs in master template fabrication were run with dilutions of SU8 3005 in 

cyclohexanone to achieve solid ratios of the resist comparable to that in SU8 2000.5 to 

improve the adhesion compatibility with other layers but this did not seem to have any 

effect on the formation of notches. The process had to be sufficiently modified by 

increasing the surface roughness of the layers below notches. 

 

Devices created were tested for formation of notches in PDMS. FITC-PLL in the 

devices coated the surfaces under the gaps only and not the pedestals indicating that axons 

can potentially pass under the gap regions and be compressed to various degrees depending 

on the notch clearance when the valve is compressed. Simultaneously, before any 
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experiments could be performed in these devices imaging modalities have to be developed 

or modified. In order to image the sub cellular aspects of axons like cytoskeletal and 

transport components sufficient imaging modalities like spinning confocal microscopy was 

used successfully in the already existing TAI platforms. Over all this device can be further 

integrated with imaging modalities to observe the sub-cellular changes in compressively 

deformed axons at extended time periods in the lab. 

 

4.2.5. Conclusions 

This study aims at modifying existing TAI platform to study chronic and repetitive 

compressive insults to axons and study the changes in cytoskeleton, transport systems, and 

axonal fate. This was planned to achieve by incorporating notches in the existing valves 

using gaps in the valve. Notch heights define the clearance from the substrate on which the 

axons grow which gives insights into the effect of degree of deformation on the fate of 

axons after injury. This is a very simple modification to the existing device by adding an 

additional layer to master template to define notch clearance. Initial experiments show that 

the modified valves are stable over 16 hours of time and would allow for axon deformation.  
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Chapter 5 

Conclusions 

In this chapter I briefly present the results, and contributions resulting from the 

studies reported in chapters 3 and 4 of this thesis. It also includes the future directions that 

these results can lead to in order to advance the science and technology directed at solving 

problems at the heart of the field. 

 

5.1. Contributions from Aim 1:  

5.1.1. Technical and Scientific Achievements 

In chapter 3, which deals with my aim 1, I have descried the study dealing with the 

role of GDNF family neurotrophic factors GDNF, neurturin, and neublastin, in axonal 

regeneration, post injury. To study was conducted on rat DRG neurons in simple two 

chambered, open system microfluidic devices. The open system architecture of the 

microfluidic device supports better gaseous exchange compared to its closed system 

counterparts. Open system also supports the reduction in shear forces associated with 

media exchange/replenishment. To study the influence of microenvironment in axonal 

regeneration post injury, fluidic isolation between cell body and axonal compartments is a 

necessity. I achieved this required fluidic isolation by establishing hydrostatic pressure 

difference between the two chambers that counteracts mass transfer by advection and 

diffusion phenomena. The established gradient was stable for the entire duration of 

experiment (over 72 hours). While fluidic isolation is in effect, I demonstrated that GDNF 
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applied locally to cell body side promotes growth of axon after injury in a better way 

compared to when applied locally in axonal compartment. This led to a hypothesis that the 

observed difference in growth rate might be due to the fact that the GDNF signal is to be 

relayed to cell body via retrograde axonal transport to initiate the influence of GDNF on 

axonal growth. To test this hypothesis I used retrograde transport blocker Cytochalasin D 

along with GDNF. The presence of retrograde transport blocker further suppressed the rate 

of axonal growth post injury conforming my hypothesis.. 

  

5.1.2. Dissemination of original research 

The work mentioned in chapter 3 is culminating into a publication in a journal soon. 

While the manuscript is under preparation the results observed in dissociated DRG neurons 

are being translated at tissue levels in vitro.  

. 

5.2. Contributions from Aim 2:  

5.2.1. Technical and Scientific Achievements 

In chapter 4, which deals with my aim 2, I have described two possible directions 

for further developing existing AIM device to study TAI and carried out preliminary work, 

which has a great potential to be refined and furthered. One of the possible directions that 

I considered was to transform the AIM device developed by Hosmane et al. [61] into a 3D 

platform. Such transformation would provide strong relevance to the physiological 

conditions, for example brain tissue is soft while the axons in AIM are compressed against 

rigid glass substrate which may not be true reflection of the physiological scenario. Also, 
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this transformation would eliminate the complexities involved at tissue levels while 

permitting a study that closely mimics the mechanical nature of a tissue. In order to achieve 

this I developed an extra layer and named it the ECM layer. This layer had long and wide 

channels which are out of the regime of microfluidics. The channels were designed in such 

a way that the aspect ratio of height to width is less, this allows establishment of stable 

soluble gradients, a phenomenon observed in vivo. I established gels in those 

microchannels which would act as substrates for neurons to grow on. Though this is not a 

true 3D architecture per se, in essence it would pseudo 3D system that would mimic the 

mechanical properties of soft tissue. With this experimental plan I set out to culture rat E17 

1o hippocampal cells on the methacrylated hydrogels in these devices. Soon, issues with 

the compatibility between cell and hydrogels arose. I have attempted several iterations and 

various combinations of ECM to improve compatibility but noting seem to work. One 

interesting thing to note here is that Fan  et al. [187] were able to achieve good 

compatibility between methacyrlated gelatin hydrogels and rat cortical cells. I tried using 

cortical cells but they did not show better compatibility either. 

 

The second direction that I was considering was to modify the architecture of injury 

pad itself, of the AIM platform. The idea was to modify the injury pad such that the axons 

are subject to partial compression rather than complete transection, when the pad is fully 

compressed. In other words, the injury is dictated by the displacement caused by the pad 

rather than the load it delivers. This modality of injury inflection can be extended for 

prolonged durations so as to establish in vitro microfluidic models of pathologies like 

carpal tunnel syndrome. In order to achieve this, I incorporated an additional layer in the 
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master template of fluidic layer and termed this layer as the notch layer. With this 

modification Incorporation of this notch layer required spinning and photolithography of 

submicron thick layer. Though a challenge in itself, I could successfully achieve clearances 

in the range 500-1000 nm. This range was chosen assuming that the average diameter of a 

CNS axon to be 1000 nm. Though actual experiments could not be conducted with this 

platform the potential that it could offer is quite evident and could be taken up in the near 

future. 

 

5.2.2. Dissemination of original research  

Preliminary results from the first part of the work mentioned in chapter 4 was 

presented in a poster session of BMES conference 2012, held at Atlanta, Georgia. 

Likewise, preliminary results leading up to the second part of the work mentioned in 

chapter 4 was presented in a talk series of Society for Engineering  2012, held at Atlanta, 

Georgia. 

 

5.3 Future directions 

In this concluding section, I try to list few possible future directions to the work 

mentioned in earlier chapters 3 and 4. These possible future outcomes can broaden the 

horizons of LOC devices in neuroengineering applications and neuroscience as a whole. I 

hope that the future of neuroscience is dictated by the miniaturization of tools currently 

being like the semiconductor revolution to for computers which started out with beasts like 

ENIAC ending up with smart phones and gadgets in the present day. 
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5.3.1 Neurotrophic factors and functional nerve regeneration  

One of the possible future directions is to employ neurotrophic factors in nerve 

repair and functional nerve regeneration. Neurotrophic factors are a promising area of 

research for understanding axonal regeneration. Their role in providing trophic support 

during development and in maintenance of neurons has long been known, but elucidating 

their roles in regeneration may prove fruitful in the development of therapies for 

overcoming neural degeneration and enhancing regeneration post injury. 

 

Understanding axon specific or cell body specific effects of growth factors and 

being able to distinguish between local effects and retrograde signaling will be necessary 

for any future therapies. Compartmentalized microfluidic culture devices may be 

instrumental in these studies, but caution must be exercised to better characterize the 

devices to ensure true microfluidic separation of chambers. Role of these growth factors 

can be studied in more complex systems which involve tissue cultures, organotypic cultures 

and at the ultimate level in vivo studies. Initiatives towards in vivo study of growth factors 

like GDNF is already being taken up by couple of groups in rodents in peripheral nervous 

system [188, 189]  

 

Treatment strategies can combine stable establishment of local gradients of 

neurotrophic factors by systemic injection along with stimulation of oligodendrocytes or 

Schwann cell to provide conduits to the regenerating axons. The presence of Schwann cells 
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and their establishment of stable conduits protects the regenerating axons and they shield 

the axon from encountering inhibitory cues that will decrease the effective growth rate of 

axons and nerves. Another challenge that is to be tackled is to keep the distal part of the 

nerve conduit from degenerating while the proximal part grows in length to reestablish 

functional connectivity. Once again, local establishment of gradients and neurotrophic cues 

can be exploited to recruit Schwann cells and debris clearing cells. Microfluidics might 

soon offer platforms that allow studies involving regeneration and mylenation while 

maintaining stable and sustained gradients in cultures. And these strategies can then be 

translated in vivo.  

 

5.3.2 Secondary Injury and axonal transportation 

In TAI, usually a primary insult is followed upon by a much serious and often 

debilitating secondary injury which involves changes ranging from intracellular [Ca2+] 

level changes to cytoskeletal reorganizations. These may be associated with a form of 

memory with these insults in case of prolonged and repeated injuries. Intracellular calcium 

levels have be shown to be associated with secondary injury mechanisms in various studies 

[190-192]. These studies were done without compartmentalization of axons from cell body. 

This implies the need for exploration and tracking of the time course of intracellular [Ca2+] 

levels in axon independent of cell body during the time course of injury in different injury 

modalities. With the existing AIM platform and the modifications that I tried to accomplish 

it might be an achievable feat in near future.  
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In order to do this, the first and foremost thing that one would want to focus is on 

modifying the surface chemistry of the hydrogels, to improve the compatibility issues 

encountered between hydrogels and neurons. Once this is sorted out one could potentially 

look at the relationship of stiffness of the hydrogel surface to the thresholds of axonal 

regeneration after injury and subsequently study the intracellular [Ca2+] dynamics..Further, 

microglia can be incorporated in these gels to improve debris clearance after injury and 

study the changes in regeneration. Also, comparative studies between stiffness of the 

hydrogels and intracellular Ca2+ concentration changes in the injured axons can be 

potentially studied. I believe that the monitoring of extracellular field potential during the 

time course of an injury is an important aspect. As there is the intracellular [Ca2+] levels 

the membrane potential is potentially altered which will contribute to the opening and 

closing of several ion channels in the membrane which could be caught in the extra cellular 

field potentials. Integrating microfluidic devices with multi electrode arrays (MEA) or any 

other electrodes can facilitate additional information related to axonal injury.  

 

I also believe that the notch device could be combined with the other two devices 

in various combinations to conduct interesting experiments where axons could be subject 

to displacement controlled injuries. These studies would shed light at the cytoskeletal 

reorganization and transport disruption and axonal growth in chronic injuries. I have 

conducted preliminary experiments on neurofilaments and microtubules in collaboration. 

These preliminary results were a result of developing a technique to image cytoskeletal 

elements at great resolutions which can be used to do a time lapse in case of chronic 

injuries. 
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5.3.3 Hybrid and  in vivo microfluidic technologies 

I envision that the day when implantable microfluidic devices are a reality is in near 

future. The miniature size of the microfluidic devices makes them a suitable candidate for 

in vivo monitoring and therapeutic devices.Most commonly used polymer, PDMS for 

microfluidic devices is biocompatible and flexible which makes it suitable material for 

implants. Apart from biocompatibility and flexibility, the ability for rapid prototyping, cost 

effectiveness makes PDMS a powerful material for implantable microfluidic devices for 

neurological applications. 

 

Before the above mentioned could be successfully achieved one need to make 

progress in developing hybrid microfluidic platforms to maintain cultures with tissue and 

organ level organization and sophistication. To achieve the sophistication required for a 

organ level culture several types of microfluidic platforms mentioned in chapter 1 needs to 

be integrated. And I believe that this is going to be a major area of research in microfluidics 

and neuroengineering in the coming years. 
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Appendix A 

Photolithography Protocol 

Step Process 

Name 

Process Parameters Duration 

 

1 

 

 

Dehydration 

Bake 

 

Bake the substrate @200 OC on hot plate 

(Note: In case of an existing layer of photoresist 

bake at 95 OC) 

 

10’ 

 

2 

 

Plasma 

Treatment 

 

Treat the substrate with O2 plasma @ 350 mTorr 

and 250 W 

(Note: If there is already a layer of photoresist on 

the wafer use a low power of 75 W for 30) 

 

3’ 

 

3 

 

Resist 

Coating 

 

Look up the spin table 

 

Look up 

the spin 

table 

 

4 

 

Soft Baking 

 

Bake @ 65 OC -> 95 OC and then cool down to 65 
OC 

(The durations might have to be increased based on 

the thickness of underlying layers) 

 

Look up 

the spin 

table 

 

5 

 

Exposure 

 

Look up the spin table  

 

N/A 

 

6 

 

Post 

Exposure 

Bake 

 

Bake @ 65 OC-> 95 OC and then cool down to 65 
OC 

 

 

15’ 

 

7 

 

Resist 

Development 

 

SU8 developer (with gentle agitation) 

(If the resist layer is thick and the features are of 

low aspect ratio one could use sonication to speed 

up the process) 

 

1’-5’ 

 

8 

 

Hard Baking  

 

Bake @ 65 OC->95 OC-> 150 OC and cool down to 

room temperature 

 

 

12 hrs 

 

9 

 

Cool Down  

 

Cool down to room temperature 

 

 

~35’ 
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Appendix B 

SU8 spin protocols 

 

SU-8 
Thickness (µm) 

[1] 

Spin 

#1 
Spin #2 Spin #3 

Spin 

#4 

Soft 

Bake 

(min) 

[3] 

Dose 

PEB 

(min) 

[3] 

 
Family Real Expected [2] [2] [2] [2] 

65ºC to 

95ºC 
mJ/cm2 

65ºC to 

95ºC 

 

2000.5 0.5 0.4 

500 

(104) 

[6s] 

2000 

(312) 

[10s] 

3500 

(520) 

[37s] 

300 

(520) 

[12s] 

6 min 400 6 min 

 

2000.5 0.9 0.8 

500 

(104) 

[6s] 

1250 

(255) 

[34s] 

300 

(255) 

[10s] 

N/A 6 min 400 6 min 

 

2002 2.5 2.9 

500 

(104) 

[6s] 

1000 

(255) 

[34s] 

300 

(255) 

[10s] 

N/A 19 min 450 19 min 

 
3005 10 10 

500 

(104) 

[6s] 

1000 

(255) 

[32s] 

300 

(255) 

[10s] 

N/A 19 min 450 19 min 

 
3025 20 20 

500 

(104) 

[6s] 

2000 

(312) 

[10s] 

4000 

(520) 

[37s] 

300 

(520) 

[12s] 

34 min 500 19 min 

 
3050  

160-

180 
115 

500 

(104) 

[6s] 

1000 

(312) 

[32s] 

300 

(255) 

[10s] 

N/A 
1 hr 49 

min 
500 19 min 
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Appendix C 

SU8 Dilution 

1 SU8 can be diluted to decrease the viscosity in case there is no resist available for spin 

coating a layer of desired thickness. 

2 Commonly used solvents for dilution are cyclopentanone or the commercially available 

SU8 thinner marketed by Microchem. 

3 Dilutions can be made either by viscosity or the total solid content in the resist. 

4 Take little less than the measure amount of the solvent in a beaker and keep stirring. 

5 Add the required amount of desired the photoresist while stirring the solvent 

continuously. 

6 Add the remaining solvent, this way you can ensure to wash and dissolve any 

photoresist sticking to the walls of the beaker. 

7 Close the beaker with an aluminum foil and keep stirring continuously for 30 min. 

8 Make sure that the temperature is low so that the evaporation could be minimized and 

resist of desired viscosity be achieved.  
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