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Abstract

Networked dynamical systems’ ability to preserve the system equilibrium in the face

of disruptive events or persistent disturbances can be an indication of the convergence

efficiency and quantified as a measure of system performance. The performance

analysis is usually facilitated by simplifications overlooking certain structural properties

of the network that can potentially be significant to actual system behavior. We

characterize the performance of networks in relation to these properties, such as

communication directionality and system heterogeneity, and unravel their influence

on overall performance. We examine performance metrics that quantify an aggregate

system effort to maintain and/or restore a network equilibrium; formulated by a general

quadratic function (L2 norm) of the system output. Using this approach, which builds

on the widely-used H2 norm based analysis, we obtain novel closed-form solutions to

the performance metrics. We then use them to identify the role of communication

directionality and system heterogeneity in network performance.

Particularly, we show that the effect of communication directionality on perfor-

mance can be characterized by the spectral properties of the weighted Laplacian matrix

describing the network interconnection and the output performance matrix. Our re-

sults indicate that while this directionality can degrade performance, well-designed

feedback can also exploit directionality in certain cases to mitigate this degradation

or even lead to improved performance. We also demonstrate that performance is

sensitive to the degree of connectivity in networks with directed interconnection,

however it does not necessarily improve by increasing this degree of connectivity. We
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then derive the asymptotic behavior of performance with respect to network size, and

identify additional performance trade-offs associated with large-scale networks with

communication directionality. In addition, we investigate system heterogeneity in

droop-controlled inverter-based power systems, by relaxing the common assumption

of uniformity of inverter control gains. This heterogeneity, which can result from

the distribution of power demand between the inverters, can lead to performance

limitations. Numerical examples verify and support our theoretical findings. Our

results highlight the performance capabilities and limitations due to the structural

properties of the network, and can inform judicious feedback design.
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Chapter 1

Introduction

Co-operation of multiple agents in order to achieve a common objective is intrinsic to

various types of dynamical systems that can be abstracted from biology, sociology,

physics and engineering. In its simplest form, this co-operation can be understood as

an iterative information exchange between this collection of agents that can eventually

converge to an equilibrium. Such systems are generally termed networked dynamical

systems.

In certain cases, agents can reach an agreement on their equilibrium state -achieve

consensus- which is referred to as network synchronization. Consensus networks, i.e.

single, double or higher order integrator systems with a feedback interconnection,

represent a broad class of networked dynamical systems and provide a widely used

framework for network analysis. In this setting, the ‘closed-loop’ is determined by state

or output feedback based on relative measurements between agents; with the possible

addition of feedback based on measurements with respect to an absolute reference

frame. For example, the DeGroot model [3] poses the question of synchronization for

networked dynamical systems in a simple setting. Each agent receives information

from a subset of agents in the network in order to update its state. This model shows

that after a sufficient number of iterations, the agents achieve consensus if certain

conditions on the network (underlying communication structure) are satisfied. This

notion of network synchronization has been studied in various contexts. For example,
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achieving consensus (synchronization of states) [3–12] can be understood as an opinion

agreement of the agents in social interaction networks or synchronization of the grid

frequency in alternating current (AC) power networks.

These consensus protocols are closely related to co-ordination problems such

as flocking of vehicles, robots or groups of bird or fish; that are concerned with

attaining a desired geometric formation while maintaining a common velocity [13–18].

Naturally, these applications can exhibit equilibrium states that are not necessarily in

agreement. Similarly, power networks can exhibit non-synchronous convergence, i.e.

the equilibrium values for voltage phase angles [11,12,19] and magnitudes [19–21] can

be non-uniform. For the purposes of our discussion, the distinction between network

convergence and synchronization is insignificant.

In this thesis, we are primarily interested in how ‘well’ a networked dynamical

system can maintain its equilibrium given perturbations to it; namely the network

performance. The research questions we study are motivated by engineering systems

such as vehicle networks and the electric power grid; however our results are generally

applicable to a broader class of systems. In this chapter, we first provide a brief overview

of the work on the convergence properties of networks. We then discuss different

notions of network performance and related literature. We follow this discussion with a

review of the results pertaining to the role of certain network topological characteristics

in performance and identify relevant questions for our research motivation. We then

provide a summary of our contributions and a detailed overview of our results.

1.1 Background on Network Convergence

Convergence properties of networks have been widely studied, see e.g. [3–29]. Many

works investigating convergence in networks build on the principles of the DeGroot

model [3], in which each agent in the network updates their state as a weighted
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average of their own state with that of their neighbors. This discrete-time model can

describe ‘first-order’ dynamics of agents and can be represented by single-integrator

networks in continuous time models [5, 6, 8, 11, 17, 23,24]. Double-integrator networks

[4, 7, 9–11,13–16,18], which can use feedback of first and second-order states, can for

example represent a class of systems that have inertia as well as damping including

vehicle networks and power networks with synchronous generators.

The network structure and constraints imposed on the feedback interconnection

are also important parameters in convergence. Namely, the effect of time-delay

in communication between agents is considered in [5, 6, 10, 25, 26]. Time-varying

network interconnection topologies can represent unreliable communication links or

time-dependent sensing constraints [5,6,15,16,18,22–24,26]. In addition, the coupling

between the agents can be non-linear, i.e. the feedback received by agents can be

given by a non-linear function of relative state measurements [6, 11,13–18].

We next provide some background for our main research focus of performance

evaluation of networks. For a more comprehensive survey of work on convergence in

networks, we refer the reader to [30–32].

1.2 Evaluation of Network Performance

Network performance can be defined such that it quantifies a variety of system

attributes that are related to convergence properties. For example, in the presence

of disturbances that perturb the system from its equilibrium, the network tries to

restore this equilibrium or converge to a new one; which leads to transient behavior.

In this setting, network performance can be captured in terms of the signal energy

associated with these transients; and can be used as a metric of convergence efficiency.

Our focus is on this notion of performance. It is standard practice to compute the

performance metrics quantifying the total system energy through the H2 system
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norm [33]. A related performance metric is the system gain quantifying the worst-case

input amplification which can be an indication of the robust stability of the network;

and can be described in terms of the H∞ system norm [33,34].

In networked dynamical systems, these norms can be used to quantify robustness

to disturbances and capture a combined effect of agent dynamics and the network

topological properties (underlying communication structure). In this work, we develop

a novel analysis framework that builds on the H2 based performance metrics of

network dynamical systems in order to characterize the precise effect of certain

network topological properties on the overall system performance. Next, we present

an overview of the literature related to this class of performance metrics.

1.2.1 Performance as Efficiency of Network Convergence

Network robustness to disturbances can be evaluated using performance metrics that

quantify convergence efficiency. These metrics, for example, can be defined in terms

of the lack of coherence or the degree of disorder in first order (single-integrator)

[1, 35–41] and second order (double-integrator) [1, 42–48] consensus networks. The

lack of coherence refers to a network aggregate of the deviation from the synchronous

equilibrium state, whereas the degree of disorder may refer to aggregate state errors of

agents with respect to nominal values. In this sense, the former can be interpreted as

a special case of the latter and also a global performance metric for the network. For

spatial formations of agents, the degree of disorder can be specified as short or long

range state errors, which respectively quantify the level of cohesion between agents

that are relatively close to or distant from each other within the network [1]. For

example, these metrics are widely used for vehicle networks but also are applicable

to a broader class of systems. Network disorder has been analyzed in terms of the

underlying interconnection structure and network size, which can be measured either

in terms of the number of agents [1, 38–41,43,46, 48] or the spatial dimension of agent

4



interactions [1, 39–41,43].

Robustness metrics of power systems are closely related to the degree of network

disorder in formation problems. For example, these metrics can quantify the network

incoherence in terms of the real power losses or the deviation from the equilibrium

values of voltage phase/frequency or magnitude in transmission and inverter-based

networks due to system-wide transients resulting from disturbances [49–60]. The

transient resistive losses have been investigated using the linearized swing dynamics of

a Kron-reduced transmission network [50], a structure preserving network model of a

renewable energy integrated power system [61], as well as a model of droop-controlled

microgrids with coupled frequency and voltage dynamics [51].

Certain works build on the framework of standard consensus protocols and power

system models by introducing additional control that aims to improve overall system

performance. Controllers that have been proposed include dynamic feedback [43,48,52–

54] and optimization based approaches [55, 56]. Control nodes [62] and virtual inertia

placement [63] have been proposed to optimize the synchronization performance in

constant voltage transmission grids. Dynamic control strategies such as distributed

proportional-integral (PI) control have been shown to reduce transient resistive losses

[64]. A dynamic droop control based on lead-lag compensation has also been shown to

improve the robustness to measurement noise and delay and eliminate the frequency

overshoot (frequency nadir) [53, 65]. It has also been demonstrated that proportional-

derivative (PD) control can mitigate high frequency oscillations in transmission

networks [66].

We are interested in investigating the underlying effect of network topological

characteristics on the overall system performance. Next, we provide background on

the literature that relates to this aspect of networks.
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1.3 The Role of Network Topological Characteris-
tics in Performance

As previously outlined, a widely utilized approach to quantify performance in systems

subjected to distributed disturbances is to select a system output such that the desired

metric is defined through the input-output H2 norm of the system. Certain H2 based

performance metrics for systems whose underlying graphs are undirected can be

obtained in closed form, e.g. [1, 42, 50,53,56]. Related performance metrics have also

been evaluated in terms of the effective resistance of undirected graphs [42, 67, 68],

which allows for efficient computational approaches [69].

Much of the existing literature on evaluating the performance in systems with

directed interconnection topologies considers restrictive scenarios on the graph topology

(e.g. spatially invariant [70] and nearest-neighbor type interactions [46]; or systems

with normal Laplacian matrices [36, 37,47]) with closed-form solutions obtained only

for specific metrics (full state [71], degrees of disorder [1], etc.). The notion of effective

resistance has been extended to directed graphs [72,73] within a framework that can

be used to compute network incoherence for single-integrator networks.

Closed-form expressions for more general quadratic performance metrics of double-

integrator networks over undirected graphs formulated in terms of the L2 norm of the

system output have also been obtained [59,60,74]. An extension to directed graphs

with diagonalizable Laplacian matrices was provided for H2 based metrics [75], however

a precise understanding of the role that the underlying network architecture plays is

still lacking. This thesis aims to address this problem by proposing a novel framework

of computing the general quadratic performance metrics of networks over directed

graphs; and revisiting important classes of graph topologies to unravel previously

undiscovered properties of network directionality.

In addition to edge directionality, we also study the heterogeneity of nodal param-
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eters in networks, specifically in inverter-based power systems. Much of the literature

focuses on identical nodal dynamics, which simplifies the analysis significantly while

still providing insight into the robustness of droop control [51]. However, this simplified

setting prevents the investigation of a number of important situations that can arise

in practice. For example, power sharing constraints resulting from a load demand that

is heterogeneous across the network lead to heterogeneous droop gains [12, 19]. There

has been work in transmission systems with heterogeneous inertias, which provides

a step response characterization of the synchronous system frequency [59, 60]. In a

similar setting, the interaction between the network topology (undirected) and this

synchronous frequency is studied [66]. However, extensions to inverter-based systems

which are typically far less uniform by design have yet to be addressed.

1.4 Contributions

As outlined in the previous section, topological characteristics of the network are often

overlooked in performance analysis, through simplifications such as the assumption of

symmetric feedback coupling between agents (undirected interconnection) and nodal

homogeneity of dynamics/control. In this thesis, we relax some of these simplifying

assumptions, and show that network topological characteristics can play a significant

role in overall system performance. We categorize our contributions into two areas;

pertaining to edge directionality and nodal heterogeneity. While the main focus of this

work is on understanding the effect of edge directionality on performance; our results

on nodal heterogeneity provide useful insights about design trade-offs in inverter-based

power systems.

Although the results from the literature represent progress into a wide range

of special cases, a unified treatment of general performance metrics over arbitrary

directed graphs has yet to be developed. This thesis aims to lay the foundations for

such a framework via the following contributions:
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1. We provide a novel unifying approach to compute a general class of quadratic

performance metrics for single and double integrator systems defined over directed

graphs that have at least one globally reachable node (Chapter 4).

2. We use the closed-form solutions resulting from this approach to demonstrate

that overall network performance is determined by an interaction between network

topological characteristics (e.g. edge directionality and connectivity) and the control

strategy. In particular, we show that

(a) The effect of edge directionality on performance can be characterized by the

respective spectral structures of Laplacian and output matrices, which needs to

be accounted for in judicious feedback design (Chapter 5).

(b) While performance is sensitive to the degree of connectivity in directed graphs,

the relationship is not monotonic (Chapter 6).

3. Using our novel closed-form solutions within the framework of spatially invariant

systems, we derive the asymptotic scalings of performance metrics that quantify local

and global degrees of network disorder. In addition, we identify a subclass of spatially

invariant systems and performance metrics for which the scaling bounds have infinite

value (i.e. the input-output system is unstable) for finite network size (Chapter 7).

By relaxing the assumption of uniform nodal dynamics in droop-controlled inverter-

based power systems, we evaluate performance metrics quantifying system robustness

for a more realistic scenario with possibly heterogeneous droop control gains. This

gain heterogeneity, which can result from power sharing constraints imposed on the

inverters at each node, is shown to lead to performance limitations (Chapter 3).

8



1.5 Overview of the Results

Now we provide a brief overview of our results and the organization of this work.

We begin with the results related to power networks with nodal heterogeneity, fol-

lowed by an introduction to our novel performance analysis framework for directed

networks. Then, using this general framework, we investigate the relationship between

performance and network topological characteristics such as edge directionality and

connectivity. Following a detailed analysis of finite-size networks, we then focus on

‘large-scale’ directed networks, investigating how performance metrics of disorder

scale as the network size grows. We finally present generalizations of our closed-form

solutions for quadratic performance metrics to the class of networks over directed

graphs that have at least one globally reachable node. These results are presented in

the following chapters:

Chapter 3. Performance of Droop-controlled Microgrids with Heterogeneous

Inverter Ratings: We analyze the overall system robustness in terms of two performance

metrics: the frequency and voltage synchronization cost (the signal energy associated

with the transient deviation from the synchronous state) and the transient resistive

power losses; given distributed impulse disturbances. We derive closed-form solutions

for these metrics in terms of heterogeneous droop-control gains and network properties;

and investigate performance limitations associated with both frequency and voltage

dynamics.

Chapter 4. A New Analysis Framework for the Quadratic Performance Metrics

of Directed Networks: We develop a novel framework to compute the quadratic

performance metrics in closed-form for a general class of networks over arbitrary

directed graphs that have at least one globally reachable node. We use a frequency-

domain approach and exploit the algebraic properties of the weighted graph Laplacian

matrices representing the network interconnection and the output matrices defining
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the performance metrics to derive the closed-form solutions. We first provide the

closed-form solutions for the performance metrics of single and double-integrator

networks over arbitrary directed graphs that have at least one globally reachable

node. We then use our framework in the subsequent chapters to analyze important

subclasses of directed networks.

Chapter 5. Effect of Communication Directionality on Performance: In this

chapter, we focus on the subclass of single and double-integrator systems whose

feedback interconnection topologies can be described by normal Laplacian matrices.

We first provide the simplified closed-form solutions for the general performance

metrics of this special class of systems. Then, we present a comparison between

systems with directed interconnection and their undirected counterparts (obtained

by ‘symmetrizing’ the directed feedback structure); demonstrating that performance

becomes sensitive to control strategy (e.g. availability of state measurements, using

feedback in different state variables) for systems with communication directionality.

Chapter 6. Effect of Connectivity on the Performance of Directed Networks: In

this chapter, we investigate the role of the degree of connectivity in the performance

of single and double-integrator networks that have communication directionality. We

focus on a more general class of directed graphs compared to the previous chapter;

which emit diagonalizable Laplacian matrices, and provide the closed-form solutions

for the performance of this class of systems using our general analysis framework

from Chapter 4. Then we study the relationship between performance quantified by a

specific network coherency metric (aggregate state deviation from the average) and

the degree of connectivity associated with various feedback interconnections such as

directed cyclic ω-nearest neighbor networks and all-to-one (imploding star) networks.

Chapter 7. Disorder in Large-scale Networks with Uni-directional Feedback:

Following a detailed analysis of finite-size networks, we then proceed to evaluate the

scaling properties of spatially invariant systems with interconnection directionality;
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represented by directed toric lattices. We focus on subclasses of such network intercon-

nections and performance metrics that quantify the network disorder. We derive the

asymptotic scaling properties of bounds on these performance metrics as the network

size grows, for certain combinations of state feedback. In this setting, we also identify

other combinations of state feedback for which the scaling bounds have infinite value

(i.e. the input-output system is unstable) for finite network size. Our results indicate

a trade-off between communication cost and scalability.

We conclude this chapter by providing references to the publications that resulted

from our contributions. Particularly, the material in Chapter 3 is based on

• H. G. Oral and D. F. Gayme, “Performance of Droop-Controlled Microgrids

with Heterogeneous Inverter Ratings,” in Proceedings of the 2019 European

Control Conference, June 2019, pp. 1398–1405.

The material in chapters 4, 5 and 6 is based on

• H. G. Oral, E. Mallada, and D. F. Gayme, “Performance of Single and Double-

Integrator Networks over Directed Graphs,” arXiv preprint, November 2019,

arXiv:1911.00791,

• H. G. Oral, E. Mallada, and D. F. Gayme, “Performance of First and Second

Order Linear Networked Systems over Digraphs,” in Proceedings of the 56th

IEEE Conference on Decision and Control, December 2017, pp. 1688–1694.

The material in Chapter 7 is based on

• H. G. Oral and D. F. Gayme, “Disorder in Large-Scale Networks with Uni-

Directional Feedback,” in Proceedings of the 2019 American Control Conference,

July 2019, pp. 3394–3401.
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Following the presentation of our results, we provide concluding remarks and

present possible directions for future work.

The next chapter sets up the preliminaries for the thesis and formalizes the

description of the research questions we study.
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Chapter 2

Preliminaries and Problem
Description

We begin by introducing definitions, mathematical preliminaries and standard results

from the literature.

2.1 Stability of Linear Time-Invariant Systems

A linear time invariant-system T can be viewed as a linear mapping from an input

w(t) ∈ Rp to an output y(t) ∈ Rq and it can be represented by its impulse response

function T (t) in the time-domain. Throughout this work, we are interested in causal

systems, i.e. the system output does not depend on information from future time,

therefore we assume that T (t) = 0 for t < 0. The output response to an input w(t)

can be computed using the convolution integral:

y(t) =
∫︂ t

0
T (t− τ)w(τ)dτ, t ≥ 0. (2.1)

With a slight abuse of notation, we will use the letters denoting the signals and

impulse response functions in the time domain to denote their respective signals and

transfer functions in the frequency-domain. Then, we have

y(s) = T (s)w(s), s ∈ C,
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where each function is given by the Laplace transform of their time-domain counter-

parts.

If it admits a time-domain realization, T can also be represented by the state-space

equations:
ϕ̇(t) = Aϕ(t) + Bw(t),

y(t) = Cϕ(t) + Dw(t),
(2.2)

where A, B, C and D are real matrices. Equivalently, the transfer function of T (s) is

given by:

T (s) = C(sI − A)−1B + D.

We are interested in several notions of stability throughout this work, which we

present next.

Definition 2.1 (Asymptotic Stability, [76]). The unforced system

ϕ̇(t) = Aϕ(t), ϕ(0) = ϕ0, t ≥ 0 (2.3)

is asymptotically stable if ϕ(t) → 0 as t → ∞ for arbitrary ϕ0.

The following well-known result pertains to the asymptotic stability of the unforced

system.

Fact 2.1. [77] The unforced system in (2.3) is asymptotically stable if and only if all

of the eigenvalues of A are on the open left-half plane.

Another important notion of stability is related to the input-output system T (t).

The system is called stable if the output y(t) remains bounded for all time, given a

bounded input w(t). The formal definition is as follows.

Definition 2.2 (BIBO Stability, [77]). The realization (2.2) of T is bounded-input-

bounded-output (BIBO) stable if

sup
t≥0

∥w(t)∥ < ∞ ⇒ sup
t≥0

∥y(t)∥ < ∞.
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BIBO stability of T is guaranteed by the asymptotic stability of (2.3). But the

converse is not always true. In this case, a certain subset of the modes of A determines

stability. This subset is given by all of the modes that can be both controlled by the

input w and observed from the output y. In order to make the argument precise, we

state the concepts of controllability and observability.

Definition 2.3 (Controllability). System (2.2) is controllable on [0, tf ] if there exists

a continuous input w(t) such that ϕ(tf ) = 0 for any ϕ(0) = ϕ0.

Definition 2.4 (Observability). System (2.2) is observable on [0, tf ] if ϕ(0) = ϕ0 can

be uniquely determined from y(t).

Using these definitions, the following result establishes the connection between

BIBO stability of (2.2) and the asymptotic stability of (2.3).

Fact 2.2. Suppose that realization (2.2) is controllable and observable. Then, it is

BIBO stable if and only if (2.3) is asymptotically stable.

Next, we provide a brief review of signal and system norms, which is central to

the performance analysis in this work.

2.2 Signal and System Norms

The main signal norm that is going to be used in this work is the L2 norm. It is given

by

∥y∥L2 =
(︃∫︂ ∞

0
y(t)∗y(t)dt

)︃1/2
, (2.4)

which provides a measure of the total energy of the system response y(t).

For a strictly proper and stable system T (s), its H2 norm is defined as

∥T∥H2 =
(︄

sup
ϵ>0

1
2π

∫︂ ∞

−∞
tr [T (ϵ+ jω)∗T (ϵ+ jω)] dω

)︄1/2

(2.5)
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and it can be computed by

∥T∥H2 =
(︃ 1

2π

∫︂ ∞

−∞
tr [T (jω)∗T (jω)] dω

)︃1/2
(2.6)

in the frequency-domain and

∥T∥H2 =
(︃∫︂ ∞

0
tr [T (t)∗T (t)] dt

)︃1/2
(2.7)

in the time-domain [34]. The equivalence of these two computations is due to Parseval’s

theorem.

Remark 2.1. We note that for a system that is not BIBO stable (closed right-half-

plane poles exist), the definition of the H2 norm in (2.5) would lead to an infinite

value. In general, (2.6) can be used to define a system 2-norm which can be finite for

a certain class of unstable systems [78], which is outside of the scope of this work.

Noting that a strictly proper system has D = 0, the realization (2.2) can be used

to evaluate the H2 norm through the time domain representation in (2.7):

∥T∥2
H2 = tr(B∗XB), X =

∫︂ ∞

0
eA∗tC∗CeAtdt,

where the observability Gramian X can be computed by solving the Lyapunov equation

A∗X +XA = −C∗C,

when T is BIBO stable. An equivalent computation can be performed by using the

controllability Gramian of T .

There is a connection between the L2 signal norm of the system response in (2.4)

and the H2 norm of system T in (2.7), which can be established through one of

the standard interpretations of the H2 norm [49]. In general, these interpretations

illustrate that the H2 norm can be computed in terms of the system response when

the system is subjected to a specific input. We next review two of these interpretations

as they provide background for the analysis in the subsequent chapters.
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• Consider a white noise input w(t) with unit covariance, i.e. E[w(τ)w(t)∗] =

δ(t− τ)I. Then the squared H2 norm of T quantifies

∥T∥2
H2 = lim

t→∞
E[y(t)∗y(t)], (2.8)

i.e. the steady-state variance of the system response y(t).

• Consider an impulsive input to a single input channel, i.e. w(i)(t) = eiδ(t) where

ei is the vector with a 1 at the ith entry and zeros elsewhere, i ∈ {1, . . . , p}.

Then the squared H2 norm of T quantifies

∥T∥2
H2 =

p∑︂
i=1

∫︂ ∞

0
y(i)(t)∗y(i)(t)dt, (2.9)

where y(i)(t) denotes the system response to w(i)(t). In other words, the squared

H2 norm of T can be computed as the sum of the squared L2 norms of the

system responses y(i)(t) to an impulse at the ith input channel.

The stochastic interpretation of the H2 norm given in (2.8) can for example be

used to compute the steady-state variance of an output signal that measures the

deviation from a desired trajectory or equilibrium, in the presence of persistent random

disturbances. In contrast, disruptive events can be modeled by impulsive inputs and

the H2 norm computation in (2.9) quantifies the aggregate signal energies of the

system responses due to these impulsive inputs. We refer to these interpretations

throughout the thesis in order to specify the relationship between the disturbance

inputs and the performance metrics.

2.3 Graph Theory

In this section, we introduce basic concepts of graph theory, particularly related to

the directionality of graphs, algebraic tools that facilitates the analysis of networked

dynamical systems and fundamental properties.
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Definition 2.5 (Undirected Graph [79]). An undirected graph is a pair G = {V , E}

with a set of vertices (nodes) V and a set of edges E containing unordered pairs of the

vertices in V.

Definition 2.6 (Directed Graph [79]). A directed graph (digraph) is a pair G = {V , E}

with a set of vertices (nodes) V and a set of directed edges E containing ordered pairs

of the vertices in V, i.e. E ⊆ V × V.

In line with the definition of a directed graph given above, a weighted digraph can

be defined as G = {V , E ,W}, by introducing a weight associated with each edge.

Here, the set of edge weights is given by W = {wij > 0 | (i, j) ∈ E}. Using the

same definition, we set bij = bji for a weighted undirected graph, since (i, j) ∈ E if

and only if (j, i) ∈ E .

The following definitions of the neighbors of a given node in the graph is useful for

the algebraic representations of a graph.

Definition 2.7 (In-and-out-neighbors [79]). For a node i ∈ V the in-neighbor set

is given by N in(i) = {j ∈ V | (j, i) ∈ E} and its out-neighbor set is given by

N out(i) = {j ∈ V | (i, j) ∈ E}.

Based on the number of neighbors and edge weights, we assign degrees to each

node.

Definition 2.8 (Weighted In-and-out-degrees [79]). The weighted out-degree (in-

degree) is given by the sum of the weights associated with the out-neighbors (in-

neighbors) of a node. We write

dout(i) =
∑︂

j∈N out(i)
wij, din(i) =

∑︂
j∈N in(i)

wji, i ∈ N .

For an unweighted graph, the same definitions hold with unit edge weights, hence

degrees are given by the number of neighbors.
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Using these definitions, we can state algebraic representations of graphs [79]. G

can be represented by a square, entry-wise non-negative matrix A called the adjacency

matrix which is given by

[A]ij =

⎧⎨⎩wij ∈ W , (i, j) ∈ E
0, (i, j) /∈ E

, i, j ∈ N .

Using the adjacency matrix and the weighted out-degrees of the nodes, the weighted

graph Laplacian matrix can be defined as

L = diag (dout(i))i∈N − A,

which is given entry-wise as

eij := [A]ij, [L]ij =

⎧⎪⎨⎪⎩
∑︁

j∈N \{i}
eij, i = j

−eij, i ̸= j
, i, j ∈ N .

An equivalent definition based on the weighted in-degrees can also be used for both

matrices. We list some important properties of the weighted graph Laplacian:

• Rows of L sum to zero (i.e. L1 = 0, with 1 =
[︂
1 . . . 1

]︂⊺
). Therefore, zero is

an eigenvalue of L.

• Columns of L sum to zero (i.e. 1⊺L = 0) if and only if G is weight-balanced (i.e.

dout(i) = din(i) for all i ∈ N ) [79].

• Denote the eigenvalues of L by λi for i ∈ N . Then, Re[λi] > 0 if and only if

λi ̸= 0, i.e. non-zero eigenvalues of L lie on the open right-half plane [79].

The algebraic multiplicity of zero as an eigenvalue of L can be characterized based

on the connectivity of G [79]. As a simplifying assumption, we are only interested in

the case in which the algebraic multiplicity is one, however results can be generalized.

The following definitions are useful for the discussion.

Definition 2.9 (Directed Path and Cycle [79]). A directed path is an ordered sequence

of nodes {k1, . . . , kp} ⊆ N such that (ki, ki+1) ∈ E for i = 1, . . . , p− 1. A directed path

is called a cycle if every element of {k2, . . . , kp−1} is unique and k1 = kp.
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Definition 2.10 (Globally Reachable Node [79]). A node i ∈ N is globally reachable

if a directed path to i exists from every node j ∈ N \ {i}.

The following result characterizes the class of graphs for which the algebraic

multiplicity of the zero eigenvalue of the weighted Laplacian matrix is one.

Fact 2.3 ( [79]). The algebraic multiplicity of the zero eigenvalue of the weighted

graph Laplacian L is one if and only if G contains at least one globally reachable node.

An implication of this result is that strongly connected directed graphs (every

node is globally reachable) and connected undirected graphs have this property.

We next introduce the class of networked dynamical systems that will be studied

in this work.

2.4 Single and Double-Integrator Networks

A large class of networked dynamical systems can be abstracted in the form of (2.2),

where the system matrix A depends on an interconnection (feedback) between the

agents in the network. Assuming that A represents the closed-loop dynamics, this

realization can be used to investigate system performance, by computing system norms

from a disturbance input w to a performance output y.

Consider a network of n agents represented by a weighted directed graph G.

The agents are denoted by the nodes in N = {1, ..., n} and the network (feedback)

interconnection between agents is represented by the directed edges in E = {(i, j) |

i, j ∈ N , i ≠ j} and the associated edge weights in W. The definition of E implies

that there are no self-loops in the graph.

We consider two types of nodal (agent) dynamics. The first one is a single-integrator

system of the form

ẋi = ui + wi,
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at each i ∈ N , where the control input is given by a weighted combination of relative

state measurements of i with respect to its out-neighbors:

ui = −
n∑︂

j=1
eij(xi − xj),

and wi denotes the disturbance to the ith agent. This results in the well-known

single-integrator (first order consensus) network

ẋ = −Lx+ w. (2.10)

This type of dynamics arises in many areas of networked dynamical systems such as

biological networks or social influence networks.

The second type of system is governed by double-integrator dynamics of the form

ẍi = ui + wi,

where the control input is given by

ui = − kpxi − γp

n∑︂
j=1

e
(x)
ij (xi − xj) − kdẋi − γd

n∑︂
j=1

e
(v)
ij (ẋi − ẋj) ∀i ∈ N .

Adopting the terminology from vehicle networks, we refer to the first two terms in

the control input as position feedback and the last two terms as velocity feedback.

Each type of feedback has two components based on absolute and relative state

measurements. In this case, there are possibly two different feedback interconnection

topologies for each type of relative state feedback, defined over directed graphs G(x)

and G(v). Here, kp, kd ≥ 0 denote the absolute feedback gains and γp, γd ≥ 0 denote

the relative feedback gains. As before, wi denotes the disturbance to the ith agent.

Defining v := ẋ, the double-integrator (second order consensus) network can be

expressed in matrix form as[︄
ẋ
v̇

]︄
=
[︄

0 I
−kpI − γpL

(x) −kdI − γdL
(v)

]︄ [︄
x
v

]︄
+
[︄
0
I

]︄
w. (2.11)

This type of dynamics can be used to study a broad class of networked systems such

as vehicular networks or power networks.
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Next, we briefly discuss a general formulation of performance metrics for this class

of networked systems.

2.5 Performance Metrics

Performance metrics that are quadratic in the state variables are widely used to

evaluate system robustness to disturbances. In this thesis we focus on the analysis of

such metrics through a general output norm based approach in order to gain insight

into how network topological properties such as communication directionality and

system heterogeneity affect performance.

We are interested in performance metrics of the form

P = ∥y∥2
L2 =

∫︂ ∞

0
y(t)∗y(t)dt, (2.12)

i.e. metrics formulated as the signal energy of a performance output y(t), when the

system is subject to an impulse input

w(t) = w0δ(t) (2.13)

with an arbitrary direction vector w0 ∈ Rn. Similar metrics appear in [59] for networks

over undirected graphs. Substitution of (2.13) and (2.1) into (2.12) gives

P =
∫︂ ∞

0
w∗

0T (t)∗T (t)w0dt, (2.14)

therefore the performance metric P is given by a modified version of the H2 norm

given by (2.7), which is ‘weighted’ by the input direction w0. We note that (2.14) is

finite if and only if T (t) is BIBO stable. We will later discuss conditions that guarantee

the IO stability of T (t).

We now show that for a special case of the impulse input (2.13), the performance

metric (2.14) can be computed using the H2 norm of T (t). Although this connection

is closely related to the standard interpretation in (2.9) [49], for completeness we

provide a short proof below. This relationship will be used in the upcoming sections.
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Proposition 2.1. Consider a strictly proper system T , a random impulse input (2.13)

with E [w0w∗
0] = I and zero initial condition. Then ∥T∥2

H2 = E
[︂
∥y∥2

L2

]︂
.

Proof. Assuming zero initial condition, the output is given by y(t) = CeAtBw0. Then

E
[︂
∥y(t)∥2

L2

]︂
= E

[︃
tr
∫︂ ∞

0
CeAtBw0w∗

0B∗eA∗tC∗dt
]︃

= tr
∫︂ ∞

0
CeAtBB∗eA∗tC∗dt = ∥T∥2

H2 .

The squared H2 norm can be computed in terms of the sum of the squared L2 norms

of each system response to an impulsive input at a single input channel, as given

by the interpretation in (2.9). Proposition (2.1) provides a similar computation for

the H2 norm, which is given by the expected value of the squared L2 norm of the

system response to impulsive inputs at every input channel. These inputs have random

directions that are spatially uncorrelated and of uniform magnitude.

Since we are focusing on nodal dynamics governed by integrators, we are interested

in quantifying as performance the energy associated with states of different order. For

example, for C ∈ Rq×n, the performance output

y = Cx (2.15)

will be used to quantify the performance of the single-integrator network (2.10) and

the double-integrator network (2.11) for metrics related to the position state x. For

the double-integrator network (2.11), the performance output

y = Cv, (2.16)

which quantifies performance metrics related to the velocity state v, will also be

considered.

We will analyze system performance in terms of general metrics defined by the

outputs (2.15) and (2.16). Widely used performance metrics of networked systems

such as vehicle networks and power systems lie within this framework.
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disorder
long range 
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Figure 2-1. (Top) One-dimensional network (platoon) of vehicles with relative state
feedback. (Bottom) Abstraction of the vehicle network as a sequence of masses coupled
by linear springs and dampers on a moving reference frame. Disturbances can perturb the
equilibrium and the system’s effort to restore this equilibrium can be quantified through
performance metrics of short range or long range disorder [1].

For example, consider a one-dimensional network (platoon) of vehicles given in

Figure 2-1 (top). Through relative state feedback, a desired formation of vehicles can

be achieved with a constant platoon velocity and desired spacing between vehicles.

As illustrated in Figure 2-1 (bottom), this formation can be viewed as a sequence

of masses coupled by linear springs and dampers over a reference frame moving

at constant velocity. If this equilibrium is perturbed by disturbances, each vehicle

deviates from the desired formation which is counter-balanced by an effort from the

system to mitigate this deviation and restore the network equilibrium. This effort

can be captured through the signal energy of the resulting transients; formulated as

performance metrics quantifying a system aggregate of state deviations of agents from

the equilibrium [1] and can be seen as a measure of network ‘disorder’. As shown in

Figure 2-1 (bottom), these metrics can quantify short range or long range disorder,

depending on the proximity of state error measurements.

A class of performance metrics pertaining to power systems can also be described

in analogy with the notion of disorder in vehicle networks. Consider an equivalent
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Figure 2-2. Coupled oscillators on a rotational reference frame and a perturbation to
their equilibrium (figure is adapted from [2]).

model of a Kron-reduced (loads are lumped into line impedances) power network given

in Figure 2-2. Generation units injecting power into the network can be modeled

as coupled oscillators constrained to a rotational reference frame. At steady-state,

the system attains constant nodal phase angle differences (determines the power-flow

between nodes) and a common grid frequency. The effort required to restore the

equilibrium after it is perturbed by disturbances can be evaluated for example in

terms of performance metrics quantifying transient ressistive line losses [50] and the

frequency synchronization cost [59]. The former can be formulated using a position-

based performance output of the form (2.15) and the latter using a velocity-based

output of the form (2.16).

In the next chapter, we focus on droop-controlled inverter-based power networks

and investigate the effect of heterogeneous inverter ratings on performance. Then,

we evaluate the role of communication directionality in network performance in the

remainder of the thesis.
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Chapter 3

Performance of Droop-controlled
Microgrids with Heterogeneous
Inverter Ratings

In this chapter we study the performance of a certain family of networks that exhibit

heterogeneity of nodal parameters. Namely, we analyze the robustness of droop-

controlled microgrids (inverter-based power systems) with heterogeneously rated

inverters modeled by both frequency and voltage dynamics.

We consider two performance metrics in the presence of distributed impulse

disturbances. The first one quantifies the total transient frequency and voltage

deviations from the synchronous state while the other quantifies the associated total

transient resistive losses. Both metrics are captured through the L2 norm of the system

output. We derive closed-form solutions for these metrics in terms of the heterogeneous

droop gains and properties of the network for the case of highly inductive lines (i.e.

decoupled frequency and voltage dynamics). We show that the transient deviations

from synchrony prevail even in the hypothetical case of infinite droop gains (i.e. infinite

control action), which points to the importance of inertia in further mitigating these

oscillations. We also show that if disturbances are uniform the transient resistive losses

are a monotonically decreasing function of the active power droop gains regardless

of network topology. On the other hand, these losses depend on both the reactive
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power droop gains and the network topology due to the voltage dynamics. Numerical

examples further analyzing the losses reveal that they can be amplified by high droop

gain heterogeneity. These simulations also provide insights into how non-uniform line

susceptances affect judicious selection of the droop gains for decreasing the losses.

The remainder of the chapter is organized as follows. Section 3.1 describes

the system model, performance metrics and the structural assumptions undertaken.

Section 3.2 provides our main results characterizing the system performance based on

total transient frequency and voltage deviations as well as resistive losses. Section 3.3

provides numerical examples. Section 3.4 concludes the chapter.

3.1 Problem Formulation

3.1.1 Linearized Model of the Microgrid Dynamics

We adopt the framework in [19, 51] and consider a Kron-reduced network [80] of

inverters over a weighted, undirected, and connected graph G = {N , E}. Here

N = {1, ..., N} is the set of nodes representing the inverters and E = {Eik} is the set

of edges representing the lines.

The active and reactive power injections Pi and Qi into the network at node i are

given by

Pi = −giiV
2

i +
∑︂
i∼k

gikViVk cos θik + bikViVk sin θik, (3.1a)

Qi = biiV
2

i +
∑︂
i∼k

gikViVk sin θik − bikViVk cos θik, (3.1b)

where Vi and θi are the respective nodal voltage magnitude and phase angle and

θik := θi − θk if i ∼ k (i.e. Eik ∈ E). The conductance and susceptance of each line are

respectively denoted by gik, bik > 0. Here gii = ḡi +∑︁
i∼k gik, and bii = b̄i +∑︁

i∼k bik

with shunt conductance and susceptance ḡi and b̄i, respectively. We assume that

shunt elements are purely inductive [21], i.e. ḡi = 0, and b̄i ≥ 0. Assuming small
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deviations from the equilibrium, the first-order Taylor series expansions of (3.1a) and

(3.1b) around (V ∗
i = V ∗

k = 1, θ∗
ik = 0) lead to

∆Pi ≈
∑︂
i∼k

(bik∆θik − gik(∆Vi − ∆Vk)) , (3.2a)

∆Qi ≈ 2b̄i∆Vi +
∑︂
i∼k

(gik∆θik + bik(∆Vi − ∆Vk)) , (3.2b)

where the ‘∆’ terms indicate the deviation of the respective variable from its equilibrium

value. In the following, by an abuse of notation we omit the ‘∆’ from these variables.

Remark 3.1. By the choice of θ∗
ik = 0 we assume that the phase angle differences are

small at equilibrium, which is a common assumption in power systems analysis [50,51].

Droop control aims to operate each inverter at a common frequency ω∗ and attain

the desired nodal voltage magnitude V ∗
i , active power P ∗

i and reactive power Q∗
i via

the following control laws [28]:

ωi = ω∗ − kPi
(P̂ i − P ∗

i ), Vi = V ∗
i − kQi

(Q̂i −Q∗
i ), (3.3)

where ωi is the frequency, P̂ i and Q̂i are the respective active and reactive power

measurements, and kPi
> 0 and kQi

> 0 are the active and reactive power droop

gains at node i. We assume that the power measurements are governed by first order

dynamics [51] with time constants τPi
, τQi

. Differentiating (3.3) with respect to time

gives the following closed-loop dynamics at each node i

θ̇i = ωi, τPi
ω̇i = −ωi + ω∗ − kPi

(Pi − P ∗
i ), (3.4a)

τQi
V̇ i = −Vi + V ∗

i − kQi
(Qi −Q∗

i ). (3.4b)

Using equations (3.2), (3.4) and introducing the disturbance input w, the closed-loop

dynamics can be written as

ẋ = Ax+Bw, (3.5)
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where

x :=
[︂
θT ωT V T

]︂T
, w :=

[︂
(wP )T (wQ)T

]︂T
,

A :=

⎡⎢⎣ 0 I 0
−T−1

P KPLB −T−1
P T−1

P KPLG

−T−1
Q KQLG 0 −T−1

Q (CQ +KQLB)

⎤⎥⎦ , B :=
[︄
0 T−1

P 0
0 0 T−1

Q

]︄T

,

KP :=diag{kPi
}, KQ :=diag{kQi

}, TP := diag{τPi
}, TQ := diag{τQi

}, CQ = diag{cQi
}.

Here, diag{·} denotes the diagonal matrix of the scalars in its argument and cQi
=

1 + 2b̄ikQi
. We define the weighted Laplacian matrix LB as: [LB]ii := ∑︁

i∼k bik,

[LB]ik := −bik if i ∼ k, [LB]ik := 0 otherwise. LG is defined similarly using the

conductances gik. The eigenvalues of LB are denoted by 0 = λ1 < λ2 ≤ · · · ≤ λN .

We will evaluate the system performance in the presence of a distributed impulse

disturbance input of the form

w(t) = δ(t)w0, (3.6)

where δ(t) denotes the Dirac delta function and w0 ∈ RN defines the input magnitude

and direction.

Remark 3.2. As given by Proposition 2.1 and the interpretations of the H2 norm

in (2.8) and (2.9), the special case of (3.6) in which E{w0wT
0 } = I has a connection

with a white noise input u(t) with unit covariance, i.e. E{u(0)u(t)T } = δ(t)I. This

disturbance input naturally arises in H2 norm based analysis of power networks [50].

Therefore, (3.6) is a generalization that can model spatially correlated disturbance

inputs.

3.1.2 Performance Metrics

In this section we introduce the two performance metrics that are the subject of this

work; the total transient deviation from frequency and voltage synchrony, and the total

transient resistive power losses. The former is a measure of the efficiency of system

synchronization in the presence of disturbances while the latter can be interpreted as

the “cost” of this synchronization.
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3.1.2.1 Deviation from Synchrony

In the following analysis we will show that the frequency can be decomposed as

ω(t) = ω̄(t)1 + ω̃(t)

in analogy with transmission networks [59], where ω̄(t) ∈ R denotes the synchronous

system frequency and ω̃(t) ∈ RN denotes deviations from it. As discussed later,

a similar decomposition is not always possible for V (t) if the inverter ratings are

heterogeneous, therefore we consider voltage deviations from the equilibrium. For

the sake of simplicity, we also use the term “synchrony” for the voltage dynamics by

an abuse of terminology. Combining these ideas the total transient deviation from

synchrony can be quantified by

Πsync =
∫︂ ∞

0
∥ω̃(t)∥2

2dt+
∫︂ ∞

0
∥V (t)∥2

2dt =: ∥ysync∥2
L2 , (3.7)

where ysync :=
[︂
ω̃T V T

]︂T
defines the performance output and ∥·∥2 denotes the

Euclidean norm. The frequency part of the metric in (3.7) was used in [59] to quantify

the deviations from synchrony in a transmission network with heterogeneous generator

inertia, subjected to step disturbances.

3.1.2.2 Transient Resistive Power Losses

The instantaneous resistive power loss incurred across each line Eik is

Πloss
ik = gik|vi − vk|2, (3.8)

where vi = Vie
jθi is the complex voltage. Using standard trigonometric identities (3.8)

becomes Πloss
ik = gik(V 2

i + V 2
k − 2ViVk cos θik). A second order Taylor series expansion

around (V ∗
i = V ∗

k = 1, θ∗
ik = 0) leads to

Πloss
ik ≈ gik[(Vi − Vk)2 + (θi − θk)2]. (3.9)
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The corresponding total transient resistive power losses are given by

Πloss =
∫︂ ∞

0

∑︂
i∼k

Πloss
ik (t)dt.

Using (3.9) and re-writing this expression in terms of LG gives

Πloss ≈
∫︂ ∞

0

[︂
V (t)TLGV (t) + θ(t)TLGθ(t)

]︂
dt=∥yloss∥2

L2 , (3.10)

where the output, yloss :=
⎡⎣L 1

2
G 0 0

0 0 L
1
2
G

⎤⎦x.

3.1.3 Decoupled Dynamics for Performance Analysis

We will employ the following assumptions from [51], which are common in power

system performance analysis.

Assumption 3.1. The power measurement time constants τPi
and τQi

are uniform

across all inverters, i.e. τPi
= τP and τQi

= τQ ∀i ∈ N .

Assumption 3.2. Shunt susceptances are uniform across all nodes, i.e. b̄i = b̄

∀i ∈ N .

Assumption 3.3. The conductance-to-susceptance ratio α is uniform for all edges,

i.e. α := gik

bik
∀Eik.

Assumption 3.4. The transmission lines are inductive, i.e. the conductance-to-

susceptance (resistance-to-reactance) ratio α is small, α ≈ 0.

Remark 3.3. Assumption 3.3 is reasonable in this setting due to the increased

uniformity in node degrees in Kron-reduced networks [81] and the uniformity of

physical line properties in microgrids. Although Assumption 3.4 is not applicable in

general, it is reasonable for an inverter-based network since inverter output impedances

are highly inductive [21] and can dominate line resistances in a Kron-reduced model.

Although the analysis easily extends to the case of non-uniform shunt susceptances, we

use Assumption 3.2 for notational simplicity.
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Assumtion 3.3 implies that LG = αLB which is then combined with assumptions

3.1, 3.2 and 3.4 so that (3.5) leads to the decoupled phase-frequency and voltage

dynamics
⎡⎢⎣ θ̇ω̇
V̇

⎤⎥⎦=

⎡⎢⎢⎣
0 I 0

− 1
τP
KPLB − 1

τP
I 0

0 0 − 1
τQ

(CQ +KQLB)

⎤⎥⎥⎦
⎡⎢⎣ θω
V

⎤⎥⎦+

+

⎡⎢⎢⎣
0 0

1
τP
I 0

0 1
τQ
I

⎤⎥⎥⎦w, yloss =
√
α

⎡⎣L 1
2
Bθ

L
1
2
BV

⎤⎦, ysync =
[︄
ω̃
V

]︄
. (3.11)

This decoupling between phase and voltage as well as frequency and voltage will enable

us to quantify the individual contributions of frequency and voltage dynamics to the

performance metrics in (3.7) and (3.10).

3.2 Performance of Heterogeneously Rated Invert-
ers

In this section, we employ the framework introduced in [59] to investigate the effect of

heterogeneous inverter ratings on the performance of droop-controlled microgrids.

3.2.1 Diagonalization of the Closed-Loop System

We begin by defining a parameter called the node rating. When considering frequency

and voltage dynamics individually we respectively choose the node ratings as fPi
:= kPi

kP

and fQi
:= kQi

kQ
for i = 1, . . . , N such that they determine the ratio of each droop gain

to predetermined constants kP > 0 and kQ > 0.

By taking the Laplace transform of (3.4) and excluding the power flow terms, we

define two open-loop transfer functions associated with each node; one corresponding

to the phase and the other to the voltage dynamics

gP

i (s) := kPi

τP s2 + s
and gQ

i (s) := kQi

τQs+ 1 , i = 1, . . . , N.
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These can be written in terms of the node ratings as

gP

i (s) = fPi
gP

0 (s) and gQ

i (s) = fQi
gQ

0 (s), i = 1, . . . , N,

where gP

0 (s) and gQ

0 (s) are node-independent reference transfer functions with fixed

parameters (independent of kPi
or kQi

). We specify these reference transfer functions

as

gP

0 (s) = kP

τP s2 + s
and gQ

0 (s) = kQ

τQs+ 1 .

Combining the nodal open-loop transfer functions leads to the open-loop transfer

function of the system

G(s) :=
[︄
diag{gP

i (s)}
diag{gQ

i (s)}

]︄
= Fg(s), (3.12)

where F :=
[︄
FP

FQ

]︄
, FP := diag{fPi

}, FQ := diag{fQi
} and g(s) :=

[︄
gP

0 (s)I
gQ

0 (s)I

]︄
.

Based on the state equation in (3.11), the closed loop system is given by the block

diagram in Figure 3-1. Here, we introduce the feedback matrix

L :=
[︄
LB

2b̄I + LB

]︄
,

which determines the power flows emerging from the underlying interconnection graph;

as well as the matrix of droop gains K :=
[︄
KP

KQ

]︄
. Due to (3.12), G(s) = F 1

2 g(s)F 1
2

which along with block manipulations leads to the block diagram in Figure 3-2, where

Γ :=
[︄ 1

kP
I

1
kQ
I

]︄
. We use a scaled Laplacian [59] defined by

LF := F
1
2 LF

1
2 =

[︄
F

1
2

P LBF
1
2

P

F
1
2

Q (2b̄I+LB)F
1
2

Q

]︄
, (3.13)

K−1 + G(s)

L

w(s)
[
θ(s)
V (s)

]

−

1

Figure 3-1. Closed-loop microgrid dynamics.
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F− 1
2 Γ + g(s)

L

F 1
2

F 1
2F 1

2

w(s)
[
θ(s)
V (s)

]

−

1

Figure 3-2. Closed-loop dynamics with the open-loop determined by the reference transfer
functions and the scaled Laplacians in the feedback.

which is symmetric, therefore orthogonally diagonalizable

LF := SΛST , (3.14)

where S ∈ RN×N and SST = I, and Λ ∈ RN×N is diagonal. Due to the block diagonal

form of (3.13), the decomposition in (3.14) is also block diagonal with

S =
[︄
R

U

]︄
and Λ =

[︄
ΛP

ΛQ

]︄
,

which equivalently results in the orthogonal diagonalizations

LF =:
[︄
LP

LQ

]︄
=
[︄
RΛPR

T

UΛQU
T

]︄
. (3.15)

This decomposition and block manipulations lead to the diagonalized closed-loop

dynamics shown in the block diagram of Figure 3-3 with the transfer function

T (s) = F
1
2 SH(s)ST F− 1

2 .

F− 1
2 ST Γ + S g(s) ST

Λ

S F 1
2

w(s)
[
θ(s)
V (s)

]

−

1

Figure 3-3. Diagonalized Closed-loop dynamics.

The diagonalized transfer function H(s) can be partitioned with respect to phase-

frequency and voltage dynamics as

H(s) =
[︄
HP (s)

HQ(s)

]︄
.

We next describe each of these blocks.
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3.2.1.1 Phase-Frequency Dynamics

Since FP is full rank, LP is positive semi-definite and rank N − 1 due to (3.13).

Therefore the decomposition in (3.15) leads to ΛP =: diag {λP

i } and 0 = λP

1 < λP

2 ≤

· · · ≤ λP

N .

The transfer function from wP (s) to θ(s) in Figure 3-3 is

TθwP (s) = F
1
2

P RH
P (s)RTF

− 1
2

P , (3.16)

where HP (s) = diag {hP

i (s)} and for i = 1, . . . , N ,

hP

i (s) = 1
kP

(︄
gP

0 (s)
1 + λP

i g
P
0 (s)

)︄
= 1
τP s2 + s+ λP

i kP

. (3.17)

Given the partition R =
[︂
r1 R⊥

]︂
, the first eigenvector of LP can be written as r1 =

γPF
− 1

2
P 1, with the normalization parameter γP =

(︂∑︁N
i=1 f

−1
Pi

)︂− 1
2 and 1 =

[︂
1 . . . 1

]︂T
.

Using (3.16), the phase signal due to input (3.6) is given by

θ(s) =: θ̄(s)1 + θ̃(s) (3.18)

= F
1
2

P r1⏞ ⏟⏟ ⏞
=γP 1

hP

1(s)rT
1 F

− 1
2

P wP

0 + F
1
2

P R⊥H̃
P (s)RT

⊥F
− 1

2
P wP

0 ,

where R⊥ =
[︂
r2 . . . rN

]︂
, H̃P (s) := diag{hP

i (s)}i=2,...,N . We note that the frequency

signal can be obtained from

ω(s) = sθ(s) =: ω̄(s)1 + ω̃(s), (3.19)

which is characterized by the dynamic terms

hP, ω

i (s) := shP

i (s), i = 1, . . . , N. (3.20)

Since rT
1 R⊥ = 0, we have 1TF−1

P ω̃(s) = 0. Then multiplying the equation above from

the left by 1TF−1
P leads to the expression for the synchronous frequency ω̄(t)

ω̄(t) =
∑︁N

i=1 f
−1
Pi
ωi(t)∑︁N

i=1 f
−1
Pi

=
∑︁N

i=1 k
−1
Pi
ωi(t)∑︁N

i=1 k
−1
Pi

.
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This is analogous to the center of inertia (COI) in transmission networks [59] in the

sense that the averaging weights are the inverses of active power droop gains instead

of inertias.

The following result proves the stability of the phase-frequency dynamics.

Proposition 3.1. The phase and frequency deviations θ̃(t) and ω̃(t) are asymptotically

stable.

Proof. First, observe from (3.18) and (3.19) that the stability of θ̃ and ω̃ are respectively

determined by hP

i (s) and hP, ω

i (s) for i = 2, . . . , N . Then the result follows from (3.17)

and (3.20) by noting that λP

i > 0 for i = 2, . . . , N .

3.2.1.2 Voltage Dynamics

Since FQ is full rank, LQ is positive definite and full rank due to (3.13). Therefore the

decomposition in (3.15) leads to ΛQ = diag {λQ

i } and 0 < λQ

1 ≤ λQ

2 ≤ · · · ≤ λQ

N .

The transfer function from wQ(s) to V (s) in Figure 3-3 is

TV wQ(s) = F
1
2

QUH
Q(s)UTF

− 1
2

Q , (3.21)

where U =
[︂
u1 . . . uN

]︂
, HQ(s) = diag {hQ

i (s)} and

hQ

i (s) = 1
kQ

(︄
gQ

0 (s)
1 + λQ

i g
Q

0 (s)

)︄
= 1
τQs+ λQ

i kQ + 1 , (3.22)

for i = 1, . . . , N . Using (3.21) the voltage due to input (3.6) is

V (s) = F
1
2

QUH
Q(s)UTF

− 1
2

Q wQ

0 =
N∑︂

i=1
hQ

i (s)ξi, (3.23)

where ξi =
(︃
uT

i F
− 1

2
Q wQ

0

)︃
F

1
2

Qui ∈ RN . In contrast to the frequency in (3.19), the voltage

signal may not include an inherent synchronous mode characterized by 1 if the reactive

power droop gains are heterogeneous. This is shown in Proposition 3.2 and for this

reason we consider the deviations from the equilibrium voltage as defined by (3.7).
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Proposition 3.2. Suppose that ui has non-zero entries for all i such that ξi ̸= 0. If

FQ ̸= ζI for all ζ > 0, then ξi /∈ span{1} for all i such that ξi ̸= 0.

Proof. Using (3.23) consider ξi =
(︃
uT

i F
− 1

2
Q wQ

0

)︃
F

1
2

Qui ≠ 0. Assume that ξi ≡ βi1 and

0 ̸= βi ∈ R for some i such that ξi ̸= 0. Then noting that ui = ηiF
− 1

2
Q 1 for 0 ̸= ηi ∈ R,

we have λQ

i ui = LQui = ηiF
1
2

Q (2b̄I + LB)1 = 2b̄FQui, where we used (3.13) and (3.15).

This implies that FQ = λQ
i

2b̄
I since by assumption ui has non-zero entries.

The following result proves the stability of the voltage dynamics.

Proposition 3.3. The voltage V (t) is asymptotically stable.

Proof. The result follows from (3.22) and (3.23) by noting that λQ

i > 0 for i =

1, . . . , N .

Next we study the deviations from synchrony.

3.2.2 Deviation from Synchrony

In this subsection, we study the synchronization performance of (3.11). The following

lemma provides a preliminary result that will be used in the analysis that follows.

Lemma 3.1. The metric Πsync in (3.7) is given by

Πsync = zT
0 Ψz0,

where z0 :=
[︂
(zP

0 )T (zQ

0 )T
]︂T

, zP

0 = RT
⊥F

− 1
2

P wP

0 and zQ

0 = UTF
− 1

2
Q wQ

0 . The matrix

Ψ :=
[︄
ΨP

ΨQ

]︄
has the entries

ψP

ij = ϕP

ij ⟨hP, ω

i+1, h
P, ω

j+1⟩, i, j = 1, . . . , N − 1, (3.24)

ψQ

ij = ϕQ

ij ⟨hQ

i , h
Q

j ⟩, i, j = 1, . . . , N, (3.25)
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where ϕP

ij and ϕQ

ij respectively denote the entries of ΦP := RT
⊥FPR⊥ and ΦQ := UTFQU .

The inner products in (3.24) and (3.25) are given by

⟨hP, ω

i , hP, ω

j ⟩ =
λP

i + λP

j

2τP (λP
i + λP

j ) + kP τ 2
P (λP

i − λP
j )2 , (3.26)

⟨hQ

i , h
Q

j ⟩ = 1
2τQ + kQτQ(λQ

i + λQ

j ) . (3.27)

Proof. See Appendix.

Note that Πsync depends on the heterogeneous droop gains through the eigenvalues

λP

i and λQ

i . Lemma 3.1 is next used to compute Πsync for homogeneous inverter ratings.

Theorem 3.1 (Homogeneous Inverter Ratings). Suppose that F = I. Then Πsync in

(3.7) is given by

Πsync = 1
2τP

N∑︂
i=2

(rT
i wP

0)2 + 1
2τQ

N∑︂
i=1

(uT
i wQ

0)2

cQ + kQλi

,

where cQ = 1 + 2b̄kQ. If in addition E{w0wT
0 } = I, then

E{Πsync} = 1
2τP

(N − 1) + 1
2τQ

N∑︂
i=1

1
cQ + kQλi

.

Proof. FP = FQ = I leads to ΦP = I and ΦQ = I so ΨP and ΨQ are diagonal due to

(3.24), (3.25). Also zP

0 = RT
⊥wP

0 and zQ

0 = UT wQ

0 . Using Lemma 3.1, Πsync = tr(z0z
T
0 Ψ)

which yields the first result via (3.26), (3.27). Assuming E{w0wT
0 } = I, the second

result follows from E{(rT
i wP

0)2} = E{rT
i wP

0(wP

0)T ri} = 1 and E{(uT
i wQ

0)2} = 1.

If the disturbances have unit covariance and the inverter ratings are homogeneous,

the contribution of frequency dynamics is independent of network topology whereas

that of the voltage dynamics depends on the topology through the eigenvalues of

LB. If the disturbance direction is arbitrary, then for given ∥wP

0∥2, the contribution

of frequency dynamics is zero if wP

0 ∈ span{1} and maximal if wP

0 ∈ span{1}⊥ since

in the homogeneous case r1 = 1√
N

1. Similarly for given ∥wQ

0∥2, the contribution of

voltage dynamics is minimal if wQ

0 ∈ span{uN} and maximal if wQ

0 ∈ span{1}.

The next theorem provides an analogous result for heterogeneous inverter ratings.
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Theorem 3.2 (Heterogeneous Inverter Ratings). For given inverter ratings F , Πsync

in (3.7) has the asymptotic value

Πsync → 1
2τP

N−1∑︂
i=1

ϕP

ii(zP

0i)2,

assuming that λP

i ̸= λP

j for i ≠ j, as kP → ∞ and kQ → ∞, i.e. in the limit of large

droop gains; and

Πsync → 1
2τP

N−1∑︂
i,j=1

ϕP

ijz
P

0iz
P

0j + 1
2τQ

N∑︂
i,j=1

ϕQ

ijz
Q

0iz
Q

0j,

as kP → 0 and kQ → 0, i.e. in the limit of small gains.

Proof. In the limit of kP → ∞ and kQ → ∞, (3.24) and (3.25) lead to the fact that ΨP

is diagonal with ψP

ii → ϕP
ii

2τP
and ΨQ → 0. Similarly, as kP → 0 and kQ → 0, ψP

ij → ϕP
ij

2τP

and ψQ

ij → ϕQ
ij

2τQ
. Using the fact from Lemma 3.1 that Πsync = tr(z0z

T
0 Ψ) yields the

result.

In these asymptotic expressions the dependence on heterogeneous droop gains is

through the entries of ΦP , ΦQ and z0. The dependence on network topology is only

through the eigenvectors ri and ui of the scaled Laplacians LP and LQ; and λP

i and

λQ

i do not appear. For given FP and FQ, Πsync in the small gain limit has additional

summation terms for i ̸= j, while these terms are suppressed in the large gain limit.

Furthermore, in the limit of large gains there is no deviation from the equilibrium

voltage hence the contribution of the voltage dynamics to Πsync is zero. In contrast,

frequency deviations cannot be eliminated even with infinite control action. Theorem

3.2 therefore shows that lack of inertia can indeed be problematic in inverter-based

systems because even at the large gain limit frequency deviations can grow unboundedly

as the disturbance magnitude is increased. Additional inertia would contribute to the

time constant term τP due to (3.4), and help to mitigate these deviations. Dynamic

control strategies can also improve frequency synchronization [53].
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3.2.3 Transient Resistive Power Losses

In this subsection, we begin by providing the closed-form solution for the transient

resistive losses. In the special cases where disturbance directions have unit covariance

and the covariance scales with inverter ratings, we will analyze the dependence of

losses on the droop gains kPi
and kQi

.

Lemma 3.2. The metric Πloss in (3.10) is given by

Πloss = α

2kP

N−1∑︂
i=1

(zP

0i)
2

⏞ ⏟⏟ ⏞
=: ΠP

loss

+ α

2τQ

N∑︂
i=1

(zQ

0i)
2

kQ + 1
λQ

i

− ΣQ

⏞ ⏟⏟ ⏞
=: ΠQ

loss

where the notation is adopted from Lemma 3.1 and

ΣQ = 2αb̄(zQ

0 )T ΨQz
Q

0 . (3.28)

Furthermore Πloss → 0 as kP → ∞ and kQ → ∞, i.e. in the limit of large droop

gains for given inverter ratings F .

Proof. See Appendix.

As Lemma 3.2 indicates, Πloss depends on both the droop gains and the network

topology. The dependence on network topology is through the eigenvectors ri and ui

of the scaled Laplacian for ΠP

loss whereas ΠQ

loss additionally includes the eigenvalues λQ

i .

Note that these variables also are functions of the droop gains. Πloss can be eliminated

in the hypothetical case of infinite gains, while this is not true for Πsync as shown by

theorems 3.1 and 3.2.

We now investigate the effect of network topology and heterogeneous droop gains

on the transient resistive losses.
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Theorem 3.3. Suppose that E{w0wT
0 } = I. Then

E{Πloss} = α

2

⎛⎝ N∑︂
i=1
k−1

Pi
−
∑︁N

i=1k
−2
Pi∑︁N

i=1k
−1
Pi

⎞⎠
+ α

2τQ

N∑︂
i=1

uT
i F

−1
Q ui

kQ + 1
λQ

i

− E{ΣQ},

where ΣQ is given by (3.28). If E{w0wT
0 } = F , then

E{Πloss} = α

2kP

(N − 1) + α

2τQ

N∑︂
i=1

λQ

i − 2b̄uT
i FQui

1 + kQλ
Q

i

.

Proof. Assuming E{w0wT
0 } = I, we have E{(zP

0i)
2} = rT

i+1F
−1
P ri+1 and E{(zQ

0i)
2} =

uT
i F

−1
Q ui. Then using E{ΠP

loss} = α
2kP

tr
(︂
R⊥R

T
⊥F

−1
P

)︂
= α

2kP
tr
[︂(︂
I − r1r

T
1

)︂
F−1

P

]︂
and

recalling that r1 = γPF
− 1

2
P 1 and γP =

(︂∑︁N
i=1 f

−1
Pi

)︂− 1
2 leads to

E{ΠP

loss} = α

2kP

tr
(︂
F−1

P − γ2
PF

−1
P 11TF−1

P

)︂
= α

2kP

(︄
N∑︂

i=1
f−1

Pi
−
∑︁N

i=1 f
−2
Pi∑︁N

i=1 f
−1
Pi

)︄
.

Taking 1
kP

inside the parenthesis yields the first result. Assuming that E{w0wT
0 } = F ,

we have E{zP

0 (zP

0 )T } = I and E{zQ

0 (zQ

0 )T } = I. Therefore (3.25) and (3.28) lead to

E{ΣQ} = 2αb̄ tr (ΨQ) = 2αb̄
N∑︂

i=1
uT

i FQui∥hQ

i (t)∥2
L2 .

Combining (3.33) and Lemma 3.2 completes the proof.

If the disturbance has unit covariance, E{ΠP

loss} only depends on the active power

droop gains and is independent of network topology. In contrast, E{ΠQ

loss} depends on

the reactive power droop gains as well as the network topology. Scaling the inverter

ratings in accordance with the disturbance magnitude at each node leads to E{ΠP

loss}

scaling linearly with network size, while E{ΠQ

loss} still depends both on network

topology and droop gains.

Next we show E{ΠP

loss} is monotonically decreasing in the active power droop

gains if the disturbance has unit covariance.
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Corollary 3.1. If E{w0wT
0 } = I, then E{ΠP

loss} is monotonically decreasing in kPl

for l = 1, . . . , N , i.e.

∂

∂kPl

[︄
α

2

(︄
N∑︂

i=1
k−1

Pi
−
∑︁N

i=1k
−2
Pi∑︁N

i=1k
−1
Pi

)︄]︄
< 0, l = 1, . . . , N.

Proof. See Appendix.

Since the derivative in each direction is negative, performance is improved by

increasing any of the active power droop gains. Therefore, E{ΠP

loss} can be minimized

by maximizing all kPi
for given upper limits on these gains. Furthermore, since there

is no dependence on network topology, node connectivity does not play a role in the

optimal choice of kPi
. On the other hand, the directional derivative in (3.34) is a

function of the direction kPl
. So, for given heterogeneous gains, the directional descent

can be non-uniform. This point will be further investigated in Section 3.3.

We next establish an upper bound on E{ΠQ

loss}.

Corollary 3.2. If E{w0wT
0 } = I,

E{ΠQ

loss} ≤ α(2b̄+ λN)kQN

2τQ

(︂
1 + (2b̄+ λN)kQN

)︂ N∑︂
i=1

k−1
Qi
, (3.29)

where kQN
:= maxi{kQi

}.

Proof. See Appendix.

The bound in (3.29) depends on the network topology only via the maximum

eigenvalue of LB instead of the eigenvalues and the eigenvectors of LQ. It also

asymptotically goes to zero in the limit of large reactive power gains. Although

E{ΠQ

loss} is not necessarily monotonically decreasing in the gains, for given kQN
this

bound provides a worst case performance value that is decreasing in all kQi
̸= kQN

.
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3.3 Numerical Examples

We now numerically investigate the dependence of the transient resistive losses on the

changes in heterogeneous droop gains for E{w0wT
0 } = I. The parameter values are

α = 0.2, b̄ = τQ = 1 in all simulations. The directional derivative (3.34) is plotted

with respect to non-uniform active power gains kPi
∈ {1, . . . , 50} in Figure 3-4 (left).

It can be observed that the steepest descent in E{ΠP

loss} occurs in the direction of

the smallest gain. Furthermore, the degree of descent monotonically decreases as the

magnitude of the perturbed gain increases. As a result, in this particular example

the amount of performance improvement is inversely related to the magnitude of

the perturbed gain. Therefore, heterogeneous active power sharing requirements

(equivalently heterogeneous inverter ratings FP ) might limit performance, regardless

of the network topology and line properties. Analytical exploration of this observation

is a direction for future work.

In the case of a complete graph with unit edge weights, which dictates uniform

topology dependence of all nodes, a similar behavior is observed from Figure 3-4

(right) for ∆E{ΠQ
loss

}
∆kQi

, i.e. the estimation of the directional derivative of E{ΠQ

loss} with

respect to kQi
∈ {1, . . . , 50}. We estimate this derivative by choosing a perturbation

of ∆kQi
= 10−5. As before, performance improvement is inversely related to the

magnitude of the perturbed gain.

We next investigate (for E{w0wT
0 } = I) how line susceptances affect the rate of

change in E{Πloss} due to a change in each node’s droop gain. We only consider

E{ΠQ

loss} since E{ΠP

loss} does not depend on the network topology. We consider

a complete graph with edge weights drawn from the uniform distribution over the

interval (0, 1] and assign uniform gains via FQ = I and kQ = 1. Using a perturbation

of ∆kQi
= 10−5, ∆E{ΠQ

loss
}

∆kQi
is plotted with respect to the perturbed node i in Figure 3-5.

Here the nodes are sorted by increasing weighted degree. The general trend is that

43



1 10 20 30 40 50

-0.06

-0.04

-0.02

0

1 10 20 30 40 50

-0.06

-0.04

-0.02

0

Figure 3-4. Directional derivative of E{ΠP

loss} with respect to kPi
(left), and a numerical

estimate of the directional derivative of E{ΠQ

loss} with respect to kQi
for a complete graph

of unit edge weights (right) with E{w0wT
0 } = I.

a larger performance improvement is observed for unit change in the droop gain as

the weighted degree increases. However this relationship is not monotonic. In several

instances this general trend is not seen, which can be explained as follows. E{ΠQ

loss}

depends on the eigenvalues and eigenvectors of the scaled Laplacian LQ as well as the

inverter ratings FQ per Theorem 3.3. Since the weighted degrees are non-uniform,

each gain perturbation leads to possibly non-uniform perturbations in the eigenvalues

and the eigenvectors of LQ. So, the perturbation terms in E{ΠQ

loss} can result in a

non-monotonic relationship with increasing weighted degree.

1 5 10 15 20 25 30 35 40 45 50

-0.086

-0.085

-0.084

-0.083

-0.082

-0.081

Figure 3-5. A numerical estimate of the directional derivative of E{ΠQ

loss} with respect
to kQi

for a complete graph with edge weights drawn from the uniform distribution over
(0, 1], where E{w0wT

0 } = I.
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3.4 Summarizing Remarks

This work generalized previous performance analysis concerning uniform nodal dy-

namics in droop-controlled microgrids to the case of heterogeneously rated inverters.

Our result for the frequency and voltage synchronization performance emphasizes

the possible problem of inertia in inverter-based systems. We also demonstrated that

the transient resistive losses are sensitive to the heterogeneity in droop gains, hence

power sharing requirements can limit performance. Extension to the case of coupled

frequency-voltage dynamics is a direction for future work.

3.5 APPENDIX

3.5.1 Proof of Lemma 3.1

Equations (3.24) and (3.25) follow from (3.7), using (3.19) and (3.23) in the time-

domain. A realization for (3.20) is given by

hP, ω

i =
(︄
Ai Bi

Ci 0

)︄
,

where Ai =
[︄

0 1
−kP

τP
λP

i − 1
τP

]︄
, Bi =

[︄
0
1

τP

]︄
, Ci =

[︂
0 1

]︂
. The inner product in (3.24) can

be computed by [59]

⟨hP, ω

i , hP, ω

j ⟩ =
∫︂ ∞

0
[hP, ω

i (t)]ThP, ω

j (t)dt = BT
i XijBj,

where Xij is the solution to the Sylvester equation

AT
i Xij +XijAj = −CT

i Cj. (3.30)

The inner product ⟨hQ

i , h
Q

j ⟩ in (3.25) can be similarly computed using the following

time-domain realization for (3.22)

hQ

i =
⎛⎝ −1−kQλQ

i

τQ

1
τQ

1 0

⎞⎠ . (3.31)
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3.5.2 Proof of Lemma 3.2

We can rewrite (3.10) as

Πloss = α
∫︂ ∞

0

[︄
θ(t)TLBθ(t) +

V (t)T (2b̄I + LB)V (t)
]︄
dt− 2αb̄∥V ∥2

L2 ,

which by using (3.18) and (3.23) in the time-domain leads to

Πloss = α
∫︂ ∞

0

[︄
(zP

0 )T H̃
P (t)RT

⊥LPR⊥H̃
P (t)zP

0 + (3.32)

(zQ

0 )THQ(t)UTLQUH
Q(t)zQ

0

]︄
dt− 2αb̄∥V ∥2

L2 .

Here RT
⊥LPR⊥ = diag{λP

i }i=2,...,N =: Λ̃P and we recall that UTLQU = ΛQ which leads

to

∫︂ ∞

0
H̃

P (t)Λ̃P H̃
P (t)dt = diag{λP

i ∥hP

i (t)∥2
L2}i=2,...,N ,∫︂ ∞

0
HQ(t)ΛQH

Q(t)dt = diag{λQ

i ∥hQ

i (t)∥2
L2}.

The realization of hP

i in (3.17) is given by hP

i =
(︄
Ai Bi

Ci 0

)︄
, whereAi =

[︄
0 1

−kP

τP
λP

i − 1
τP

]︄
,

Bi =
[︄

0
1

τP

]︄
, Ci =

[︂
1 0

]︂
. Then ∥hP

i (t)∥2
L2 = BT

i XiiBi where Xii solves (3.30) for i = j,

which is a Lyapunov equation. Similarly the realization of hQ

i in (3.31) leads to

∥hP

i (t)∥2
L2 = 1

2kPλP
i

, ∥hQ

i (t)∥2
L2 = 1

2τQ

(︂
1 + kQλ

Q
i

)︂. (3.33)

Substituting these expressions and ∥V ∥2
L2 = (zQ

0 )T ΨQz
Q

0 from Lemma 3.1 into (3.32)

yields the first result. Taking the limit of Πloss as kP → ∞ and kQ → ∞ and using

ΨQ → 0 from the proof of Theorem 3.2 leads to the second result.
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3.5.3 Proof of Corollary 3.1

The partial derivative of E{ΠP

loss} with respect to kPl
is

∂E{ΠP

loss}
∂kPl

= α

2k2
Pl

⎛⎜⎝−1 +
2k−1

Pl∑︁N
i=1k

−1
Pi

−
∑︁N

i=1k
−2
Pi(︂∑︁N

i=1k
−1
Pi

)︂2

⎞⎟⎠ (3.34)

= α

⎛⎜⎜⎜⎜⎜⎝
−kPl

N∑︁
i=1
k−2

Pi
− kPl

N∑︁
j=1

j−1∑︁
i=1

(kPi
kPj

)−1 +
N∑︁

i=1
k−1

Pi

k3
Pl

(︄
N∑︁

i=1
k−1

Pi

)︄2

⎞⎟⎟⎟⎟⎟⎠,

where we used the fact that
(︂∑︁N

i=1k
−1
Pi

)︂2
= ∑︁N

i=1k
−2
Pi

+ 2∑︁N
j=1

∑︁j−1
i=1(kPi

kPj
)−1. So

∂E{ΠP
loss}

∂kPl

< 0 if and only if

κl := −kPl

⎛⎝ N∑︂
i=1
k−2

Pi
+

N∑︂
j=1

j−1∑︂
i=1

(kPi
kPj

)−1

⎞⎠+
N∑︂

i=1
k−1

Pi
< 0.

Partitioning the double summation over a triangular region,

N∑︂
j=1

j−1∑︂
i=1

(kPi
kPj

)−1 =
l−1∑︂
i=1

(kPi
kPl

)−1 +
N∑︂

j=l+1
(kPl

kPj
)−1 + Ξl,

where Ξl =
l−1∑︁
j=1

j−1∑︁
i=1

(kPi
kPj

)−1 +
N∑︁

j=l+1

l−1∑︁
i=1

(kPi
kPj

)−1 +
N∑︁

j=l+2

j−1∑︁
i=l+1

(kPi
kPj

)−1. Substituting

this expression into κl gives κl = −kPl

(︄ ∑︁
i∈{1,...,N}\l

k−2
Pi

+ Ξl

)︄
< 0, which completes

the proof since l ∈ {1, . . . , N} is arbitrary.

3.5.4 Proof of Corollary 3.2

Recalling that ΣQ = 2αb̄∥V ∥2
L2 ≥ 0, the following holds

E{ΠQ

loss} ≤ α

2τQ

N∑︂
i=1

uT
i F

−1
Q ui

kQ + 1
λQ

i

, (3.35)

due to Theorem 3.3. Using the definition of LQ given by (3.13) and (3.15), one can

write for i = 1, . . . , N

λQ

i

uT
i FQui

=
uT

i F
1
2

Q (2b̄I + LB)F
1
2

Qui

uT
i FQui

∈ conv({2b̄+ λj}),
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where conv(·) denotes the convex hull and we used the numerical range of the symmetric

matrix 2b̄I + LB [82]. Then λQ

i ∈ conv
(︂
{uT

i FQui(2b̄+ λj)}
)︂
, which leads to

λQ

i ≤ max
j

{uT
i FQui(2b̄+ λj)} = uT

i FQui(2b̄+ λN).

Finally noting that λQ

i ≤ maxi{λQ

i } ≤ (2b̄+λN )kQN

kQ
, substituting into (3.35) and using∑︁N

i=1 u
T
i F

−1
Q ui = tr(UTF−1

Q U) = tr(F−1
Q ) yields the result.
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Chapter 4

A New Analysis Framework for the
Quadratic Performance Metrics of
Directed Networks

In this chapter, we develop a novel framework to evaluate the performance of directed

networks [83]. This is achieved by formulating the performance metrics through the

L2 norm of the system response due to distributed impulse disturbances. Adopting

the terminology from vehicular networks, the metrics are defined in terms of either

the position or the velocity states of agents. Our novel method of computing these

metrics in closed-form stems from exploiting the spectral properties of weighted graph

Laplacians and output performance matrices. Using our framework, we first provide

closed-form solutions for the general quadratic performance metrics of single and

double-integrator networks defined over arbitrary directed graphs.

This novel framework also paves the way for our analytical findings in the subsequent

chapters. Particularly, we will revisit important subclasses of systems defined over

directed graphs emitting diagonalizable Laplacians. We will then derive and use the

closed-form solutions for the performance metrics for this family of graphs, allowing for

the investigation of the interplay between the network topology and control strategy and

unraveling previously undiscovered system properties. We will also evaluate the scaling

properties of performance metrics of networks with interconnection directionality.
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4.1 System Models and Performance Metrics

4.1.1 Single and Double-Integrator Networks

Consider n dynamical systems that communicate over a weighted digraph G =

{N , E ,W} that have at least one globally reachable node. Here, N = {1, ..., n} is

the set of nodes and E = {(i, j) | i, j ∈ N , i ≠ j} is the set of edges with weights

W = {bij > 0 | (i, j) ∈ E}. In the following bij = 0 if and only if (i, j) /∈ E .

We consider two types of nodal dynamics. Single integrator systems of the form

ẋi = −
n∑︂

j=1
bij(xi − xj) + wi,

at each i ∈ N , where wi denotes the disturbance to the ith agent. This results in the

well-known consensus network

ẋ = −Lx + w, (4.1)

where L denotes the weighted graph Laplacian matrix given by [L]ii = ∑︁n
j=1 bij,

and [L]ij = −bij if i ̸= j, ∀i, j ∈ N . The second type of system is governed by

double-integrator dynamics of the form

ẍi + kdẋi + kpxi = ui + wi,

where ui = −γp
∑︁n

j=1 bij(xi −xj) −γd
∑︁n

j=1 bij(ẋi − ẋj) ∀i ∈ N . Here, kp, kd, γp, γd ≥ 0,

and wi denotes the disturbance to the ith system. Defining v := ẋ, the double-

integrator dynamics can be expressed in matrix form as[︄
ẋ
v̇

]︄
=
[︄

0 I
−kpI − γpL −kdI − γdL

]︄ [︄
x
v

]︄
+
[︄
0
I

]︄
w. (4.2)

A necessary condition for (4.2) to reach consensus without disturbance (w = 0)

is that at least one of (kp, γp) and at least one of (kd, γd) are non-zero (follows

from [9, Theorem 1], see [47, Lemma 3] for a self-contained proof). To ensure that

this condition is met, we impose the following assumption throughout the remainder

of this thesis.
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Assumption 4.1. System (4.2) has feedback in both state variables (position and

velocity), i.e. at least one of (kp, γp) and at least one of (kd, γd) are non-zero.

4.1.2 Performance Metrics

For C ∈ Rq×n that defines the performance metric, the performance output y(t) in

(2.15) will be used to quantify the performance of the single-integrator network (4.1)

and the double-integrator network (4.2) for metrics related to the position state x. For

the double-integrator network (4.2), the performance output in (2.16) which quantifies

performance metrics related to the velocity state v, will also be considered.

We are interested in performance metrics that quantify the squared L2 norm of the

output y(t), which is of the form in (2.12), when the system is subjected to an impulse

input w(t) of the form in (2.13). Denoting the impulse response function from w(t) to

y(t) by T (t), the performance metric can be written as given in (2.14), which will be

computed in closed-form in the upcoming sections. We also note that the relationship

between the output L2 norm and the system H2 norm given in Proposition 2.1 will be

used to investigate special cases in the subsequent chapters.

+ g(s)I

f(s)L

r(s)C
w(s) x(s)

−u(s)

−

y(s)

Figure 4-1. Block diagram of the closed-loop system T (s) from the disturbance input
w(s) to the performance output y(s) and the closed-loop system Hxw(s) from w(s) to
the position state x(s). The performance output y(s) is given by (2.15) if r(s) = 1 and
by (2.16) if r(s) = s.
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4.2 Block-diagonalization of the Closed-loop Dy-
namics

In this section, we express the dynamics given in (4.1) and (4.2) in the frequency

domain using an approach based on [59]. The framework, denoted in Figure 4-1,

describes identical systems g(s) receiving feedback that depends on an arbitrary

transfer function f(s) and the weighted graph Laplacian L emitted by the network

interconnection. Assuming that x(0) = v(0) = 0 (we consider perturbations to the

equilibrium), the closed-loop system from the input w to the position state x is given

by

[︂
(g(s)−1I + f(s)L

]︂
x(s) = w(s),

which leads to

x(s) = [(I + g(s)f(s)L]−1 g(s)w(s) =: Hxw(s)w(s), (4.3)

where Hxw(s) denotes the transfer function from the input w to the position state x.

L can be decomposed as L = RJR−1, where R ∈ Cn×n is invertible and J ∈ Cn×n

is in Jordan Canonical Form (JCF). This decomposition transforms (4.3) into

x(s) = R [(I + g(s)f(s)J ]−1 g(s)R−1w(s),

as shown by the block diagram in Figure 4-2. Defining x̃ := R−1x and w̃ := R−1w,

the transfer function from w̃ to x̃ is

Hx̃w̃(s) = [(I + g(s)f(s)J ]−1 g(s), (4.4)

where the following relationship holds

Hxw = RHx̃w̃R
−1. (4.5)

J is composed of Jordan blocks Jk associated with the eigenvalues λk ∈ C of L for

52



R−1 + R g(s)I R−1

f(s)J

R
w(s) w̃(s) x̃(s) x(s)

−

Figure 4-2. Application of a change of basis given by the Jordan decomposition L =
RJR−1 to the closed-loop system Hxw(s). The feedback loop gives the closed-loop system
Hx̃w̃(s).

k = 1, . . . ,m:

J = blockdiag (Jk)1≤k≤m, (4.6)

where Jk ∈ Cnk×nk and ∑︁m
k=1 nk = n. Since L is a Laplacian matrix, L1 = 0 with 1

denoting the vector of all ones therefore J1 = λ1 = 0. Also Re [λk] > 0 for k = 2, . . . ,m

due to the fact that G has a globally reachable node [79, Theorem 7.4]. So (4.4) can

be written as

Hx̃w̃(s) = blockdiag (Hx̃kw̃k
(s))1≤k≤m, (4.7)

where

Hx̃kw̃k
(s) = [(I + g(s)f(s)Jk]−1 g(s). (4.8)

Here, the vectors x̃k = [x̃dk+1, . . . , x̃dk+nk
]⊺ and w̃k = [w̃dk+1, . . . , w̃dk+nk

]⊺ respectively

denote the position state and the input to the associated subsystem, with d1 = 0 and

dk = ∑︁k−1
i=1 ni for k = 2, . . . ,m. An equivalent representation of the transfer function

in (4.8) is given by the block diagram in Figure 4-3. The following lemma describes the

form of the transfer function in (4.8) which will be used to compute the performance

metric (2.14) in what follows.

+ g(s)I

f(s)Jk

w̃k(s) x̃k(s)
−

Figure 4-3. Block diagram of each subsystem Hx̃kw̃k
for k = 1, . . . ,m.
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Lemma 4.1. Hx̃kw̃k
(s) in (4.8) is an upper triangular Toeplitz matrix given by

Hx̃kw̃k
(s) = 1

f(s)

⎡⎢⎢⎣
hk(s) . . . (−1)nk−1hk(s)nk

. . . ...
hk(s)

⎤⎥⎥⎦ ,
where hk(s) = g(s)f(s)

1+λkg(s)f(s) .

Proof. Using (4.8) and the definition of Jk

Hx̃kw̃k
(s) =

⎡⎢⎢⎢⎢⎢⎢⎣

1+λkg(s)f(s)
g(s) f(s)

. . . . . .
. . . f(s)

1+λkg(s)f(s)
g(s)

⎤⎥⎥⎥⎥⎥⎥⎦

−1

,

where factoring out g(s)f(s) gives

Hx̃kw̃k
(s) = 1

f(s)

⎡⎢⎢⎢⎢⎢⎣
hk(s)−1 1

. . . . . .
. . . 1

hk(s)−1

⎤⎥⎥⎥⎥⎥⎦
−1

. (4.9)

Using the inverse of the JCF in (4.9) yields the result.

Remark 4.1. The form of the closed-loop transfer function in Lemma 4.1 holds for

arbitrary open-loop and feedback transfer functions g(s) and f(s), and therefore applies

to a general class of networked dynamical systems.

We next apply Lemma 4.1 to the special cases of the single and double-integrator

networks.

Corollary 4.1. Consider the single-integrator network (4.1). Then, Hx̃kw̃k
(s) in (4.8)

is an upper triangular Toeplitz matrix

Hx̃kw̃k
(s) =

⎡⎢⎢⎣
hk(s) . . . (−1)nk−1hk(s)nk

. . . ...
hk(s)

⎤⎥⎥⎦ ,
where hk(s) = 1

s+λk
.
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Proof. Taking the Laplace transform of (4.1) leads to g(s) = 1
s

and f(s) = 1. Evalu-

ating the result of Lemma 4.1 at these values gives the desired result.

Corollary 4.2. Consider the double-integrator network (4.2). Then, Hx̃kw̃k
(s) in

(4.8) is an upper triangular Toeplitz matrix

Hx̃kw̃k
(s) = 1

γp + sγd

⎡⎢⎢⎣
hk(s) . . . (−1)nk−1hk(s)nk

. . . ...
hk(s)

⎤⎥⎥⎦ ,
where hk(s) = γp+sγd

s2+(kd+γdλk)s+kp+γpλk
.

Proof. Taking the Laplace transform of (4.2) leads to g(s) = 1
s2+kds+kp

and f(s) = γp+

sγd. Evaluating the result of Lemma 4.1 at these values gives the desired result.

The transfer function from the input w to the velocity state v is given by

Hvw(s) := sHxw(s) since v(s) = sx(s) = sHxw(s)w(s). Therefore, the closed-loop

transfer function T (s) from the input w to the output y can be written as

T (s) = Cr(s)Hxw(s), (4.10)

using the notation in Figure 4-1 and specifying r(s) such that

T (s) =

⎧⎨⎩
CHxw(s), r(s) = 1 (4.11a)

CHvw(s), r(s) = s . (4.11b)

The cases (4.11a) and (4.11b) correspond to the outputs (2.15) and (2.16), respectively.

We next provide necessary and sufficient conditions for the input-output stability of

(4.11a) and (4.11b), which ensure the finiteness of the performance metric (2.14).

4.2.1 Input-Output Stability

In this subsection we state necessary and sufficient conditions for the input-output

stability of (4.11a) and (4.11b). The following assumption will be imposed throughout

the remainder of the thesis to eliminate the unstable consensus mode of the Laplacian

from the performance output.
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Assumption 4.2. The output matrix C satisfies C1 = 0.

First, we apply the change of basis in (4.5) to the closed-loop system (4.10). Since

L1 = 0, we can apply the partitioning

R =
[︂
α1 R̃

]︂
and R−1 =

[︂
q1 Q̃

∗]︂∗
, (4.12)

where α ∈ C, q∗
1 ∈ C1×n is the left eigenvector of λ1 = 0, R̃ ∈ Cn×n−1 and Q̃ ∈ Cn−1×n.

Substituting (4.5), (4.7) and (4.12) into (4.10) we obtain

T (s) = C
(︂
αr(s)Hx̃1w̃1(s)1q∗

1 + R̃ H̃(s)Q̃
)︂

= CR̃ H̃(s)Q̃, (4.13)

where

H̃(s)=blockdiag (H̃k(s)) :=r(s) blockdiag (Hx̃kw̃k
(s)), (4.14)

for k = 2, . . . ,m and we have used Assumption 4.2 and the fact that Hx̃1w̃1(s) is a

scalar. We can partition R̃ in (4.12) as

R̃ =
[︂
R̃2 . . . R̃m

]︂
, (4.15)

which is in a form that conforms to (4.6). Then the columns of R̃k ∈ Cn×nk are

the right generalized eigenvectors associated with the Jordan block Jk in (4.6) for

k = 2, . . . ,m. This partitioning leads to the following useful definition.

Definition 4.1. The set of observable indices Nobsv is given by

Nobsv =
{︂
k ∈ {2, . . . ,m} | CR̃k ̸= 0

}︂
. (4.16)

We now state the stability conditions. We begin with the system T in (4.11a) for

the single-integrator network (4.1).

Proposition 4.1. Consider the single-integrator network (4.1). The system T in

(4.11a) is input-output stable if and only if Assumption 4.2 holds [79, Theorem 7.4].
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As we show next for the double-integrator network (4.2), stability of the observable

modes is necessary and sufficient for the input-output stability of the system T given

by (4.11a) or (4.11b). For simplicity, we assume L to be diagonalizable; the result can

be extended by relaxing this assumption.

Proposition 4.2. Consider the double-integrator network (4.2) and suppose that L

is diagonalizable and assumptions 4.1 and 4.2 hold. The system T given by (4.11a) or

(4.11b) is input-output stable if and only if

s2 + (kd + γdλk)s+ kp + γpλk = 0 (4.17)

has solutions that satisfy Re(s) < 0 for all k ∈ Nobsv.

Proof. Using the block diagram in Figure 4-3 and the fact that Jk = λk leads to the

following realization for Hx̃kw̃k[︄˜︁ẋk˜︁v̇k

]︄
=
[︄

0 1
−kp − γpλk −kd − γdλk

]︄
⏞ ⏟⏟ ⏞

Λk

[︄
x̃k

ṽk

]︄
+
[︄
0
1

]︄
w̃k

ỹk =
[︂
1 0

]︂ [︄x̃k

ṽk

]︄
= x̃k. (4.18)

Since L is diagonalizable, the partitioning of R̃ in (4.15) becomes R̃ =
[︂
r2 . . . rn

]︂
.

Using the block-diagonal form of H̃(s) in (4.14) and the conformal partitioning

Q̃ =
[︂
q2 . . . qn

]︂∗
, (4.13) can be expressed in time-domain as

T (t) = C
n∑︂

k=2
rkH̃k(t)q∗

k = C
∑︂

k∈Nobsv

rkH̃k(t)q∗
k.

For (4.11a), we can use (4.14) and the realization for Hx̃kw̃k
in (4.18) to re-write the

equation above as

T (t) =
∑︂

k∈Nobsv

[︂
Crk 0

]︂
eΛkt

[︄
0
q∗

k

]︄
,

which has a realization

T (t) =

⎛⎜⎜⎜⎜⎜⎝
⎡⎢⎣ ...

Λk

...

⎤⎥⎦
⎡⎢⎢⎣

...[︂
0

q∗
k

]︂
...

⎤⎥⎥⎦
[ ... [ Crk 0 ] ... ] 0

⎞⎟⎟⎟⎟⎟⎠ , k ∈ Nobsv. (4.19)
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The associated observability matrix is given by

O =

⎡⎢⎢⎢⎢⎣
[ ... [ Crk 0 ] ... ]

[ ... [ Crk 0 ]Λk ... ]
...

[ ... [ Crk 0 ]Λ2|Nobsv |−1
k

... ]

⎤⎥⎥⎥⎥⎦ , (4.20)

where k ∈ Nobsv and |Nobsv| denotes the cardinality of Nobsv. Due to the form of

Λk in (4.18), we can see that
[︂
Crk 0

]︂
Λk =

[︂
0 Crk

]︂
. Then the first two block-rows

of (4.20) imply that O is full rank if the vectors Crk are linearly independent for

k ∈ Nobsv. For a proof by contradiction, assume that Crk are linearly dependent, i.e.∑︁
k∈Nobsv

αkCrk = 0 where αk is non-zero for some k. This implies that ∑︁k∈Nobsv
αkrk ∈

ker{C}, which can be expressed as a linear combination of the vectors that span

ker{C}. Then

∑︂
k∈Nobsv

αkrk = −
∑︂

k∈{1,...,n}\Nobsv

αkrk ⇒
n∑︂

k=1
αkrk = 0,

which would contradict the fact that R is invertible. Therefore, O in (4.20) is full

rank, so the realization in (4.19) is observable. By a similar argument we can prove

the controllability, hence the minimality of (4.19). Therefore, the poles of T (s) in

(4.11a) are given precisely by the eigenvalues of the system matrix in (4.19), which

are determined by (4.17). Then T (s) is input-output stable if and only if its poles are

on the open left half-plane.

We now repeat the argument for (4.11b) which is given by

T (t) =
∑︂

k∈Nobsv

[︂
0 Crk

]︂
eΛkt

[︄
0
q∗

k

]︄

in time-domain with a realization

T (t) =

⎛⎜⎜⎜⎜⎜⎝
⎡⎢⎣ ...

Λk

...

⎤⎥⎦
⎡⎢⎢⎣

...[︂
0

q∗
k

]︂
...

⎤⎥⎥⎦
[ ... [ 0 Crk ] ... ] 0

⎞⎟⎟⎟⎟⎟⎠ , k ∈ Nobsv. (4.21)
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The associated observability matrix is given by

O =

⎡⎢⎢⎢⎢⎣
[ ... [ 0 Crk ] ... ]

[ ... [ 0 Crk ]Λk ... ]
...

[ ... [ 0 Crk ]Λ2|Nobsv |−1
k

... ]

⎤⎥⎥⎥⎥⎦ , (4.22)

where k ∈ Nobsv. Since

[︂
0 Crk

]︂
Λk = Crk

[︂
−kp − γpλk −kd − γdλk

]︂
,

and assumption 4.1 holds, (4.22) is full rank and (4.21) is observable, hence minimal.

Therefore, the poles of T (s) in (4.11b) are given precisely by the eigenvalues of the

system matrix in (4.21), which are determined by (4.17). Then T (s) is input-output

stable if and only if its poles are on the open left half-plane.

Remark 4.2. Assumption 4.2 can be relaxed for specific values of kp and kd for which

the consensus modes become Hurwitz. If kp > 0 and kd > 0, the assumption can be

relaxed for both (4.11a) and (4.11b) since Hx̃1w̃1(s) = h1(s)
f(s) = g(s) = 1

s2+kds+kp
and

Hṽ1w̃1(s) = sHx̃1w̃1(s) = s
s2+kds+kp

have stable poles by the Routh-Hurwitz criterion.

Similarly, one can relax the assumption for (4.11b) but not for (4.11a) if kp = 0 and

kd > 0 since Hx̃1w̃1(s) = 1
s2+kds

has a pole at s = 0 but Hṽ1w̃1(s) = s
s2+kds

= 1
s+kd

has a stable pole. However for the sake of simplicity, we only consider performance

metrics such that Assumption 4.2 is satisfied for both (4.11a) and (4.11b).

The stability condition in Proposition 4.2 can be restated as follows.

Proposition 4.3. Consider the double-integrator network (4.2) and suppose that L

is diagonalizable and assumptions 4.1 and 4.2 hold. The system T given by (4.11a) or

(4.11b) is input-output stable if and only if

αkϕ
2
k + βkξkϕk − β2

k > 0 and ϕk > 0, k ∈ Nobsv, (4.23)

where αk = kp + γp Re[λk], ϕk = kd + γd Re[λk], βk = γp Im[λk] and ξk = γd Im[λk].
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Proof. The result follows from applying [9, Lemma 2] to Proposition 4.2.

Propositions 4.2 and 4.3 generalize the necessary and sufficient conditions for

second order consensus ( [9, Theorem 1]) to input-output stability conditions, which

are required for the performance evaluation. We next introduce our framework for

analyzing the performance of directed networks.

4.3 Performance over Arbitrary Digraphs

In this section, we use the block-diagonalization procedure outlined in Section 4.2 to

develop an analysis framework for the performance of the single and double-integrator

networks (4.1) and (4.2). This framework is applicable to systems over arbitrary

directed graphs that have at least one globally reachable node. We will use this

framework in the subsequent chapters to derive closed-form solutions to performance

metrics of various subclasses of systems. Throughout the discussion we use both time

and frequency domain representations, which simplifies the analysis.

First, we simplify (2.14) using the block-diagonal form of (4.7) and show that

performance can be quantified as a linear combination of scalar integrals. These

integrals can be interpreted as L2 scalar products of the elements of the closed-loop

impulse response function matrix blocks Hx̃kw̃k
(t) and Hṽkw̃k

(t).

Combining (2.14) and (4.13), the performance metric in (2.14) can be written as

P =
∫︂ ∞

0
w∗

0Q̃
∗
H̃(t)∗ÑH̃(t)Q̃w0dt, (4.24)

where Ñ = R̃
∗
C∗CR̃ and H̃ is defined as in (4.14) with

H̃k(s) =

⎡⎢⎢⎢⎣
h̃

(k)
11 (s) . . . h̃

(k)
1,nk

(s)
. . . ...

h̃
(k)
nk,nk

(s)

⎤⎥⎥⎥⎦ (4.25)

for k = 2, . . . ,m. The upper triangular form of (4.25) is given in Lemma 4.1. Since

M := C∗C (4.26)
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is a symmetric matrix, it is unitarily diagonalizable, i.e.

M = ΘWΘ∗, W = diag (µi)1≤i≤n ∈ Rn×n, and ΘΘ∗ = I,

therefore Ñ = R̃
∗ΘWΘ∗R̃. Using Assumption 4.2 and assuming without loss of

generality that µ1 = 0 is associated with the eigenvector θ1 = 1√
n
1, we can state Ñ

element-wise as

(Ñ)η−1,κ−1 =
n∑︂

l=2
⟨θl, rη⟩⟨rκ,θl⟩µl =: νη,κ (4.27)

for η, κ = 2, . . . , n, where ⟨θl, rη⟩ = r∗
ηθl, rκ and θl denote respectively the columns κ

and l of R̃ and Θ.

Using this notation, (4.24) can be written in terms of the scalar products between

the elements of H̃k(t), which are given by the element-wise inverse Laplace transforms

of (4.25).

Lemma 4.2. The performance metric P in (4.24) is given by

P = tr (ΣQΨ), (4.28)

where

ΣQ = Q̃Σ0Q̃
∗
, Σ0 = w0w∗

0, (4.29)

and the matrix Ψ is partitioned as Ψ = [Ψkl]2≤k,l≤m .

Furthermore, the entry (q, b) of the matrix Ψkl for k, l = 2, . . . ,m is given by

[Ψkl]qb =
q∑︂

p=1

b∑︂
a=1

νdk+p,dl+a

⟨︃
h̃

(l)
ab (t), h̃(k)

pq (t)
⟩︃

L2

, (4.30)

where ⟨︃
h̃

(l)
ab (t), h̃(k)

pq (t)
⟩︃

L2

=
∫︂ ∞

0
h̃

(k)
pq (t)h̃(l)

ab (t)dt. (4.31)

Here the indices q = 1, . . . , nk and b = 1, . . . , nl are determined by the Jordan block

sizes nk and nl. Terms of the form in (4.27) appear in the summand of (4.30) and

their indices take values larger than the sum of the previous Jordan block sizes, namely

dk = ∑︁k−1
i=1 ni and dl = ∑︁l−1

i=1 ni.
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Remark 4.3. For the special case in which L is diagonalizable each Jordan block is a

scalar, i.e. nk = 1, and (4.30) leads to

Ψkl = νkl

⟨︃
h̃

(l)(t), h̃(k)(t)
⟩︃

L2

.

Here we dropped the subscripts of h̃(k)
pq for simplicity. The case with diagonalizable L

was studied in [59,60] and Lemma 4.2 provides a generalization to the case of arbitrary

Jordan block size nk for k = 2, . . . ,m.

Proof of Lemma 4.2. Taking the trace of both sides of (4.24) and using the per-

mutation property of the trace, we have P = tr
(︂
Q̃w0w∗

0Q̃
∗Ψ
)︂
, where Ψ(t) =∫︁∞

0 H̃(t)∗ÑH̃(t)dt. Partitioning Ñ conformally so that its (k, l) block is given by

Ñkl, one can write

Ψkl =
∫︂ ∞

0
H̃k(t)∗ÑklH̃ l(t)dt, (4.32)

for k, l = 2, . . . ,m. Direct multiplication of the matrices in the integral argument and

interchanging the order of integration with the summation gives the desired result.

Remark 4.4. Since Ñ = Ñ
∗, i.e. Ñkl = Ñ

∗
lk, (4.32) leads to Ψkl = Ψ∗

lk, therefore

Ψ is Hermitian. The fact that ΣQ in (4.29) is also Hermitian leads to tr (ΣQΨ) =

tr [(ΣQΨ)∗] = tr (ΣQΨ), which verifies that P in (4.28) is real as expected.

As Lemma 4.2 indicates, (4.28) can be expressed in closed-form if the integral in

(4.31) can be evaluated. This provides a general framework for the computation of the

performance metrics, which we utilize by first deriving time-domain realizations for the

transfer functions h̃(k)
pq (s) in (4.25) for systems defined over various families of graphs,

and then using these realizations in order to evaluate the integral in (4.31). By using

our closed-form solutions in the upcoming chapters, we analyze system properties

pertaining to the directionality of the underlying network interconnection.

We next use our framework in order to derive the closed-form solutions for the

general quadratic performance metrics of single and double-integrator networks over
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arbitrary directed graphs that have at least one globally reachable node.

4.3.1 Performance of Single-Integrator Networks

We first present the result pertaining to the single-integrator network (4.1). The

following theorem provides a closed-form solution for the performance metric P in

(2.12).

Theorem 4.1. Consider the single-integrator network (4.1). The performance metric

P in (2.12) for the system T given by (4.11a) is P = tr (ΣQΨ). The elements of Ψ

are defined in (4.30) and the scalar product in (4.31) is given by⟨︃
h̃

(l)
ab (t), h̃(k)

pq (t)
⟩︃

L2

= (−1)b−a+q−pΦ(︂
λk + λl

)︂b−a+q−p+1 , (4.33)

where Φ = (b−a+q−p)!
(b−a)!(q−p)! .

Proof. Using the result of Corollary 4.1 and the notation in (4.25)

h̃
(k)
pq (s) = (−1)q−p 1

(s+ λk)q−p+1 .

Here, 1
(s+λk)q−p+1 has the following realization (Ak,δ,Bk,δ, Ck,δ) in JCF

Ak,δ = J (−λk, δ), (4.34)

Bk,δ =
[︄

0 . . . 1⏞ ⏟⏟ ⏞
1×δ

]︄⊺
, Ck,δ =

[︄
1 . . . 0⏞ ⏟⏟ ⏞

1×δ

]︄
,

where J (−λk, δ) denotes the size-δ Jordan block with the eigenvalue −λk and δ =

q − p+ 1. Then, h̃(k)
pq (t) is given by

h̃
(k)
pq (t) = (−1)q−pCk,δe

Ak,δtBk,δ. (4.35)

where

eAk,δt = eJ (−λk,δ)t = e−λkt

⎡⎢⎢⎢⎢⎢⎣
1 t . . . t(δ−1)

(δ−1)!
. . . . . . ...

t
1

⎤⎥⎥⎥⎥⎥⎦ . (4.36)
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Combining (4.34) and (4.35) leads to

h̃
(k)
pq (t) = (−1)q−pe−λkt tq−p

(q − p)! .

The proof is completed by evaluating the integral in (4.31) using the fact that∫︁∞
0 tne−λtdt = n!

λn+1 for λ ∈ C, Re[λ] > 0.

The denominator of the right-hand side of (4.33) is given by a power of the sum

of the graph Laplacian eigenvalues that are associated with possibly distinct Jordan

blocks k and l. The power of this term depends on the Jordan block sizes nk and nl

through the indices q and b and it increases as the Jordan block size increases. This

indicates that performance is affected not only by the network size, but also by the

graph Laplacian spectrum and the size of the individual Jordan blocks.

We next present the analogous result for the double-integrator network (4.2).

4.3.2 Performance of Double-Integrator Networks

We now provide the closed-form solution for the performance metric P in (2.12) for

the double-integrator network (4.2). A similar approach to the one in Theorem 4.1 is

taken but the computation of the impulse response functions h̃(k)
pq (t) is more involved.

We compute these functions through Lemmas 4.3 and 4.4 in the Appendix. Then by

evaluating the integral in (4.31), the result of this subsection is stated as follows.

Theorem 4.2. Consider the double-integrator network (4.2). Let ρ(k)
1 and ρ(k)

2 denote

the roots of

s2 + (kd + γdλk)s+ kp + γpλk = 0. (4.37)

The performance metric P in (2.12) for the system T given by (4.11a) or (4.11b) is

P = tr (ΣQΨ), where Ψ is given element-wise by (4.30) and the scalar product in

(4.31) is as follows:
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If ρ(k)
1 ̸= ρ

(k)
2 and ρ(l)

1 ̸= ρ
(l)
2⟨︃

h̃
(l)
ab (t), h̃(k)

pq (t)
⟩︃

L2

=
σ∑︂

ζ=1

υ∑︂
r=1

Φζr(σ, υ)c(k)
ζ c(l)

r(︃
ρ

(k)
1 + ρ

(l)
1

)︃σ+υ−ζ−r+1

+
Φζr(σ, υ)c(k)

ζ c
(l)
r+υ(︃

ρ
(k)
1 + ρ

(l)
2

)︃σ+υ−ζ−r+1 +
Φζr(σ, υ)c(k)

ζ+σc
(l)
r(︃

ρ
(k)
2 + ρ

(l)
1

)︃σ+υ−ζ−r+1

+
Φζr(σ, υ)c(k)

ζ+σc
(l)
r+υ(︃

ρ
(k)
2 + ρ

(l)
2

)︃σ+υ−ζ−r+1 , (4.38)

If ρ(k)
1 ̸= ρ

(k)
2 and ρ(l)

1 = ρ
(l)
2 = ρ(l)

⟨︃
h̃

(l)
ab (t), h̃(k)

pq (t)
⟩︃

L2

=
σ∑︂

ζ=1

2υ∑︂
r=1

(−1)υΦζr(σ, 2υ)c(k)
ζ c(l)

r(︃
ρ

(k)
1 + ρ(l)

)︃σ+2υ−ζ−r+1

+
(−1)υΦζr(σ, 2υ)c(k)

ζ+σc
(l)
r(︃

ρ
(k)
2 + ρ(l)

)︃σ+2υ−ζ−r+1 , (4.39)

If ρ(k)
1 = ρ

(k)
2 = ρ(k) and ρ(l)

1 = ρ
(l)
2 = ρ(l)

⟨︃
h̃

(l)
ab (t), h̃(k)

pq (t)
⟩︃

L2

=
2σ∑︂

ζ=1

2υ∑︂
r=1

(−1)σ+υΦζr(2σ, 2υ)c(k)
ζ c(l)

r(︂
ρ(k) + ρ(l)

)︂2σ+2υ−ζ−r+1 , (4.40)

where σ = q − p+ 1, υ = b− a+ 1 and Φζr(σ, υ) = (−1)1−ζ−r (σ+υ−ζ−r)!
(σ−ζ)!(υ−r)! .

The coefficients c(k)
ζ are given in the Appendix by Lemma 4.3 if ρ(k)

1 ̸= ρ
(k)
2 and by

Lemma 4.4 if ρ(k)
1 = ρ

(k)
2 .

Remark 4.5. For double-integrator networks, the scalar products in (4.38) - (4.40)

depend on both the control gains and the eigenvalues of L, via the roots of (4.37) and

the coefficients c(k)
ζ . In contrast, for single-integrator networks, eigenvalues of L appear

explicitly in the analogous expression in (4.33).

Proof of Theorem 4.2. Using the result of Corollary 4.2, the notation in (4.25) and

(4.42), h̃(k)
pq (t) is given by

h̃
(k)
pq (t) = (−1)σ−1Ωk,σ(t). (4.41)
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If ρ(k)
1 ̸= ρ

(k)
2 , the realization in (4.43) can be used to calculate

Ωk,σ(t) = Ck,σe
Ak,σtBk,σ,

where eAk,σt = blockdiag
(︃
eJ (ρ(k)

i , σ)t
)︃

i=1,2
and eJ (ρ(k)

i , σ)t can be expanded as in (4.36).

Then, using (4.41) and the definitions of Ck,σ and Bk,σ in (4.43)

h̃
(k)
pq (t) = (−1)σ−1

σ∑︂
ζ=1

(︃
c

(k)
ζ eρ

(k)
1 t + c

(k)
ζ+σe

ρ
(k)
2 t
)︃

tσ−ζ

(σ − ζ)! .

If ρ(k)
1 = ρ

(k)
2 = ρ(k), a similar argument combined with (4.52) leads to

h̃
(k)
pq (t) = (−1)σ−1

2σ∑︂
ζ=1

c
(k)
ζ eρ(k)t t2σ−ζ

(2σ − ζ)! .

The proof is completed by evaluating the integral in (4.31) using the fact that∫︁∞
0 tneλtdt = (−1)n+1 n!

λn+1 for λ ∈ C, Re[λ] < 0.

Theorems 4.1 and 4.2 provide closed-form solutions for the performance metric

(2.12) which consist of terms that: (a) are geometric, i.e. terms that depend on

the input direction, the eigenvalues and the eigenvectors of M in (4.26) and the

eigenvectors of L as in (4.27) and (4.29); and (b) terms that depend on the closed-

loop dynamics of the system, as in (4.31). Overall, performance is given by a linear

combination of the entries of the matrix Ψ in (4.30), weighted by the entries of the

matrix ΣQ in (4.29). Therefore, in the most general case, it is not straightforward to

deduce the individual effect of properties such as network size, graph topology and

the spectrum of the output matrix for an arbitrary system.

4.4 Summarizing Remarks

We developed a novel analysis framework to evaluate the performance of directed

networks. Using this framework, we derived the closed-form solutions for the general

quadratic performance metrics of single and double-integrator networks over arbitrary

directed graphs that have at least one globally reachable node. In the following chapters,
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we focus on systems defined over a special class of graphs that emit diagonalizable

weighted Laplacian matrices. We derive the closed-form solutions for the performance

metrics of these systems, which we then use to analyze system properties pertaining

to the directionality of the underlying network interconnection.

4.5 APPENDIX

4.5.1 Lemmas from Subsection 4.3.2

Lemma 4.3. Consider the transfer function

Ωk,δ(s) = r(s)(γp + sγd)δ−1

[s2 + (kd + γdλk)s+ kp + γpλk]δ
(4.42)

for some δ ∈ Z+. Suppose that s2 + (kd + γdλk)s+ kp + γpλk = 0 has distinct roots ρ(k)
1

and ρ
(k)
2 , i.e. ρ(k)

1 ̸= ρ
(k)
2 . Then, Ωk,δ(s) has a realization (Ak,δ,Bk,δ, Ck,δ) in Jordan

canonical form given by

Ak,δ = blockdiag
(︂
J (ρ(k)

i , δ)
)︂

i=1,2
, (4.43)

Bk,δ =
[︄

0 . . . 1⏞ ⏟⏟ ⏞
1×δ

0 . . . 1⏞ ⏟⏟ ⏞
1×δ

]︄⊺
, Ck,δ =

[︂
c

(k)
1 . . . c

(k)
2δ

]︂
, where J (ρ(k)

1 , δ) denotes the

size-δ Jordan block with the eigenvalue ρ(k)
1 .

If r(s) = 1, i.e. we consider system T given by (4.11a), the elements of Ck,δ are

given by

c
(k)
l =

l−1∑︂
ζ=0

τ(ζ, l)γd
ζ (γp + ρ

(k)
1 γd)

δ−ζ−1

(ρ(k)
1 − ρ

(k)
2 )

δ+l−ζ−1 ,

c
(k)
l+δ =

l−1∑︂
ζ=0

τ(ζ, l)γd
ζ (γp + ρ

(k)
2 γd)

δ−ζ−1

(ρ(k)
2 − ρ

(k)
1 )

δ+l−ζ−1 ,

if r(s) = s, i.e. we consider system T given by (4.11b), the elements of Ck,δ are given
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by

c
(k)
l =

l−1∑︂
ζ=0

τ(ζ, l)γd
ζ−1

⎛⎝ζγp + δρ
(k)
1 γd

δ − ζ

⎞⎠ (γp + ρ
(k)
1 γd)

δ−ζ−1

(ρ(k)
1 − ρ

(k)
2 )

δ+l−ζ−1 ,

c
(k)
l+δ =

l−1∑︂
ζ=0

τ(ζ, l)γd
ζ−1

⎛⎝ζγp + δρ
(k)
2 γd

δ − ζ

⎞⎠ (γp + ρ
(k)
2 γd)

δ−ζ−1

(ρ(k)
2 − ρ

(k)
1 )

δ+l−ζ−1 ,

for l = 1, . . . , δ, where τ(ζ, l) = (−1)l−ζ−1
(︂

l−1
ζ

)︂(︂
δ+l−ζ−2

l−1

)︂
.

Proof. Using the fact that the denominator of Ωk,δ(s) has distinct roots

Ωk,δ(s) = Γ(s)

(s− ρ
(k)
1 )

δ
(s− ρ

(k)
2 )

δ ,

where Γ(s) = r(s)(γp + sγd)δ−1. Applying partial fractions, we have

Ωk,δ(s) =
δ∑︂

l=1

c
(k)
l

(s− ρ
(k)
1 )

δ−l+1 + c
(k)
l+δ

(s− ρ
(k)
2 )

δ−l+1 , (4.44)

which can be represented by the Jordan canonical realization (4.43). Here the coeffi-
cients c(k)

l and c
(k)
l+δ are given by

c
(k)
l = 1

(l − 1)! lim
s→ρ

(k)
1

dl−1

dsl−1

[︃
(s− ρ

(k)
1 )

δ
Ωk,δ(s)

]︃
, (4.45)

c
(k)
l+δ = 1

(l − 1)! lim
s→ρ

(k)
2

dl−1

dsl−1

[︃
(s− ρ

(k)
2 )

δ
Ωk,δ(s)

]︃
. (4.46)

The general Leibniz rule for the derivative of product yields

c
(k)
l = lim

s→ρ
(k)
1

l−1∑︂
ζ=0

(︂
l−1

ζ

)︂
(l − 1)!

dζΓ(s)
dsζ

dl−1−ζ

dsl−1−ζ

[︃
(s− ρ

(k)
2 )

−δ
]︃
, (4.47)

c
(k)
l+δ = lim

s→ρ
(k)
2

l−1∑︂
ζ=0

(︂
l−1

ζ

)︂
(l − 1)!

dζ

dsζ
Γ(s) d

l−1−ζ

dsl−1−ζ

[︃
(s− ρ

(k)
1 )

−δ
]︃
, (4.48)

For the cases of r(s) = 1 or r(s) = s, a direct calculation shows that

dζ

dsζ

[︂
(γp + sγd)δ−1

]︂
=γd

ζ (δ − 1)!
(δ − ζ − 1)!(γp + sγd)δ−ζ−1, (4.49)

dζ

dsζ

[︂
s(γp + sγd)δ−1

]︂
=sγd

ζ (δ − 1)!
(δ − ζ − 1)!(γp + sγd)δ−ζ−1

+ γd
ζ−1ζ

(δ − 1)!
(δ − ζ)!(γp + sγd)δ−ζ, (4.50)
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dl−1−ζ

dsl−1−ζ

[︃
(s− ρ

(k)
2 )

−δ
]︃

= (−1)l−1−ζ (δ + l − ζ − 2)!
(δ − 1)! (s− ρ

(k)
2 )

−δ−l+ζ+1
. (4.51)

Substituting (4.49), (4.50) and (4.51) into (4.47) and taking the limit gives the desired
result. A similar procedure can be followed to evaluate the expression in (4.48).

Lemma 4.4. Consider the transfer function Ωk,δ(s) in (4.42) for some δ ∈ Z+.

Suppose that s2 + (kd + γdλk)s + kp + γpλk = 0 has repeated roots ρ(k)
1 and ρ

(k)
2 , i.e.

ρ
(k)
1 = ρ

(k)
2 = ρ(k). Then, Ωk,δ(s) has a realization (Ak,δ,Bk,δ, Ck,δ) in Jordan canonical

form given by

Ak,δ = J (ρ(k), 2δ), (4.52)

Bk,δ =
[︄

0 . . . 1⏞ ⏟⏟ ⏞
1×2δ

]︄⊺
, Ck,δ =

[︂
c

(k)
1 . . . c

(k)
2δ

]︂
.

If r(s) = 1, i.e. we consider system T given by (4.11a), the elements of Ck,δ are

given by

c
(k)
l =

⎧⎨⎩ γd
l−1
(︂

δ−1
l−1

)︂
(γp + ρ(k)γd)δ−l

, 1 ≤ l ≤ δ

0, δ + 1 ≤ l ≤ 2δ
,

if r(s) = s, i.e. we consider system T given by (4.11b), the elements of Ck,δ are given
by

c
(k)
l =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[︃
(l−1)γp+δρ(k)γd

δ−l+1

]︃
γd

l−2
(︂

δ−1
l−1

)︂
(γp + ρ(k)γd)δ−l

, 1 ≤ l ≤ δ

γd
δ−1, l = δ + 1
0, δ + 2 ≤ l ≤ 2δ

.

Proof. Using the fact that Ωk,δ(s) has repeated roots leads to

Ωk,δ(s) = r(s)(γp + sγd)δ−1

(s− ρ(k))2δ .

Applying partial fractions, we have

Ωk,δ(s) =
2δ∑︂

l=1

c
(k)
l

(s− ρ(k))2δ−l+1 ,

which can be represented by the Jordan canonical realization (4.52). Here the coeffi-
cients c(k)

l are given by

c
(k)
l = 1

(l − 1)! lim
s→ρ(k)

dl−1

dsl−1

[︂
r(s)(γp + sγd)δ−1

]︂
. (4.53)
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For the cases of r(s) = 1 or r(s) = s, using respectively (4.49) and (4.50) and taking
the limit in (4.53) gives the desired result.
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Chapter 5

Effect of Communication
Directionality on Performance

In this chapter, we investigate the role of the directionality associated with the

underlying network interconnection. We use systems with normal Laplacian matrices

as an example, since their spectral structures exhibit properties (unitary eigenbasis,

the relationship between directed edges and complex eigenvalues) that enable a

comprehensive analysis of directionality. We present a comparative analysis between

directed graphs and their undirected counterparts represented by the Hermitian part

of the graph Laplacian. For the family of graphs that emit normal Laplacian matrices,

the Hermitian part of the Laplacian represents a “symmetrized” version of the original

directed graph, preserving the weighted out-degree of nodes.

In this setting, we show that directed graphs and their undirected counterparts

provide identical performance for single integrator networks. In the case of double-

integrator networks, we demonstrate that the presence of observable Laplacian eigen-

values with nonzero imaginary part (i.e. the observability of modes associated with

directed paths) can significantly degrade both position and velocity based performance

compared to the undirected topology. Nevertheless, this degradation can be elimi-

nated for velocity-based metrics using absolute position feedback. On the other hand,

for the case of position-based metrics a proper combination of relative position and
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velocity feedback can, not only mitigate this degradation, but also lead to improved

performance over systems with the undirected topology.

5.1 Closed-form Solutions with Normal Laplacians

In this section, we first provide the closed-form solutions for the performance metrics of

the class of systems whose interconnection topologies emit normal weighted Laplacian

matrices, using our general framework from Chapter 4. We then investigate the role

of communication directionality in performance using these closed-form solutions.

First recall Definition 4.1, which introduced the set of observable indices Nobsv in

(4.16). If L is normal therefore diagonalizable, we can re-state this set as

Nobsv = {k ∈ {2, . . . , n} | Crk ̸= 0} ,

recalling that rk denote the right eigenvectors of L as defined in (4.12). We now

present two lemmas that will be useful in proving the upcoming results.

Lemma 5.1. For k ∈ {2, . . . , n}, the eigenvalue-eigenvector pair (µk,θk) of M in

(4.26) satisfies µk = 0 if and only if Cθk = 0.

Proof. Assume for any k ∈ {2, . . . , n} that µk = 0. Then 0 = Mθk = CTCθk. This

implies that the vector Cθk is in the left nullspace of C, therefore is orthogonal to

the column space of C. But Cθk also has to be in the column space of C therefore

Cθk = 0.

Conversely, if Cθk = 0 for any k ∈ {2, . . . , n}, then 0 = Mθk = µkθk which gives

µk = 0 since θk ̸= 0.

Lemma 5.2. Suppose that L is normal. For k ∈ {2, . . . , n}, νkk in (4.27) satisfies

1. νkk = 0 if and only if k /∈ Nobsv.

2. νkk > 0 if and only if k ∈ Nobsv.
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Proof. Normality of L means that it is unitarily diagonalizable, therefore R−1 = R∗.

We also recall that M in (4.26) is symmetric, therefore unitarily diagonalizable. There-

fore r1 = θ1 = 1√
n
1 and it holds that rk,θl ∈ span{1}⊥ ⊂ Cn for k, l ∈ {2, . . . , n}.

So, we have rk = ∑︁n
i=2 χ

k
i θi with constants χk

i ∈ C for k ∈ {2, . . . , n}.

Given any k ∈ {2, . . . , n}, it follows from (4.27) and Lemma 5.1 that νkk = 0 if

and only if ⟨θl, rk⟩ = 0 for all l ∈ {2, . . . , n} such that Cθl ̸= 0. Combining the

preceding arguments leads to

νkk = 0 ⇔
(︄

n∑︂
i=2

χk
i θ∗

i

)︄
θl = 0, ∀l ∈ {2, . . . , n}, Cθl ̸= 0,

which is equivalent to having χk
l = 0 for all such l, due to the orthonormality of θl. In

other words, νkk = 0 ⇔ rk = ∑︁
Cθi=0, i∈{2,...,n}

χk
i θi ⇔ Crk = 0, which proves the first

result. Since M in (4.26) is postive semi-definite, νkk for k ∈ {2, . . . , n} is given by

a summation in (4.27) with each summand being non-negative. So, νkk ≥ 0 and the

first result implies the second result.

5.1.1 Single-Integrator Networks

We now provide the closed-form solution for the performance of the class of single-

integrator systems that emit normal weighted Laplacian matrices.

Lemma 5.3 (Single-Integrator, Normal Laplacian). Consider the single-integrator

network (4.1). Suppose that L is normal and the input w0 has unit covariance, i.e.

E [Σ0] = I. Then, the expectation of the metric P in (2.12) for the system T given by

(4.11a) is

E [P ] = ∥T∥2
H2 =

∑︂
k∈Nobsv

νkk
1

2 Re[λk] . (5.1)

Proof. The fact that L is normal implies that it is diagonalizable, which leads to

m = n, i.e. all Jordan blocks are scalars. Then using (4.30) from Lemma 4.2, we have

Ψkl = νkl

⟨︃
h̃

(l)
11(t), h̃(k)

11 (t)
⟩︃

L2

. In addition, orthonormality of the eigenvectors rj for
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j = 1, . . . , n yields E [ΣQ] = I due to (4.29) and leads to E [P ] = ∑︁n
k=2 Ψkk due to

(4.28) from Lemma 4.2. Using the result of Corollary 4.1, the notation in (4.25) and

the fact that L is diagonalizable gives h̃(k)
11 (s) = 1

s+λk
. This transfer function can be

used to evaluate Ψkk and the resulting expression leads to (5.1) by using Proposition

2.1 and Lemma 5.2.

Lemma 5.3 generalizes [36, Proposition 1] to performance metrics with arbitrary

output matrices.

5.1.2 Double-Integrator Networks

We now repeat our argument for the double-integrator networks, providing the closed-

form solutions to their performance metrics.

Lemma 5.4 (Double-Integrator, Normal Laplacian). Consider the double-integrator

network (4.2). Suppose that L is normal and the input w0 has unit covariance, i.e.

E[Σ0] = I. Then, the expectation of the performance metric P in (2.12) is

E [P ] = ∥T∥2
H2 =

∑︂
k∈Nobsv

νkk
ϕk

2(αkϕ2
k + βkξkϕk − β2

k) , (5.2)

for the position-based output, i.e. system T given by (4.11a) and

E [P ] = ∥T∥2
H2 =

∑︂
k∈Nobsv

νkk
ξkβk + ϕkαk

2(αkϕ2
k + βkξkϕk − β2

k) , (5.3)

for the velocity-based output, i.e. system T given by (4.11b); where αk = kp +γp Re[λk],

ϕk = kd + γd Re[λk], βk = γp Im[λk] and ξk = γd Im[λk].

Proof. By the same argument used in the proof of Lemma 5.3, we have Ψkl =

νkl

⟨︃
h̃

(l)
11(t), h̃(k)

11 (t)
⟩︃

L2

and E [P ] = ∑︁n
k=2 Ψkk. First consider the position-based per-

formance metric, i.e. the system T given by (4.11a). Using the result of Corollary

4.2, the notation in (4.25) and the fact that L is diagonalizable gives h̃(k)
11 (s) =

1
s2+(kd+γdλk)s+kp+γpλk

, which has the realization (Ak,Bk, Ck) in controllable canonical
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form given by Ak =
[︂

0 1
−kp−γpλk −kd−γdλk

]︂
, Bk =

[︂
0 1

]︂⊺
and Ck =

[︂
1 0

]︂
. Since the case

of k = l is sufficient, performing a standard computation results in
⟨︃
h̃

(k)
11 (t), h̃(k)

11 (t)
⟩︃

L2

=

B⊺
kXkBk, where Xk satisfies the Lyapunov equation A∗

kXk + XkAk = −C∗
kCk. Then we

get ⟨︃
h̃

(k)
11 (t), h̃(k)

11 (t)
⟩︃

L2

= ϕk

2(αkϕ2
k + βkξkϕk − β2

k) .

We now consider the velocity-based performance metric, i.e. the system T given by

(4.11b). Using the result of Corollary 4.2, the notation in (4.25) and the fact that L

is diagonalizable, we have h̃(k)
11 (s) = s

s2+(kd+γdλk)s+kp+γpλk
, so that Ak and Bk are the

same but Ck =
[︂
0 1

]︂
. Since k = l, solving the Lyapunov equation leads to

⟨︃
h̃

(k)
11 (t), h̃(k)

11 (t)
⟩︃

L2

= ξkβk + ϕkαk

2(αkϕ2
k + βkξkϕk − β2

k) .

This expression leads to the desired result by using Proposition 2.1 and Lemma 5.2.

Note that per Lemma 5.2 all νkk in (5.2) and (5.3) are positive. In addition,

stability guarantees that the numerators and the denominators in (5.2) and (5.3) are

positive due to Proposition 4.3. Therefore the performance metrics are guaranteed to be

positive quantities as expected. This result generalizes the result given in [47, Corollary

2] to position and velocity based performance metrics with arbitrary output matrices.

In the next section, we study the effect of communication directionality on perfor-

mance.

5.2 The Role of Communication Directionality

In this section, we use the closed-form solutions from the previous section in order

to investigate the effect of directed feedback. The class of graphs that emit normal

weighted Laplacian matrices can for example arise in spatially invariant systems [1,43].

Given any normal weighted Laplacian matrix L, we extract its Hermitian part as

L′ := L+ L∗

2 . (5.4)
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Since L is weight-balanced [36, Lemma 4], (5.4) gives the Laplacian matrix of an

undirected graph G ′ = {N , E ′,W ′}, where E ′ = E ∪ {(j, i) | (i, j) ∈ E} and W ′ =

{ bij+bji

2 | bij ∈ W}. Put another way, G ′ is the undirected counterpart of G resulting

from creating reverse edges in G and re-defining edge weights such that both graphs

have the same nodal out-degree.

Normality of L and (5.4) imply that the spectrum of L′,

spec(L′) = {Re[λi]|λi ∈ spec(L), i = 1, . . . , n}. (5.5)

In addition, since L is normal, it has eigenvalues with non-zero imaginary parts if

and only if its graph G is directed. For disturbance inputs that are uniform and

uncorrelated across the network, we observe that both the position and velocity based

performance metrics (5.2) and (5.3) depend on both the real and imaginary parts

of the Laplacian eigenvalues. Therefore, comparison of directed graphs G and their

undirected counterparts G ′ can reveal the interplay between the imaginary parts, i.e.

edge directionality and control strategy (judicious selection of control gains) that

determines overall performance.

5.2.1 Position based Performance

5.2.1.1 Single-Integrator Networks

The following theorem provides a comparison of the single-integrator systems with

respective Laplacians L and L′ in terms of the performance metric given in (5.1).

Theorem 5.1 (Equal Performance with Directed Networks and Undirected Counter-

parts). Consider the single-integrator network (4.1) and the performance metric P in

(2.12). Let T and T ′ be two systems given by (4.11a) with weighted Laplacian matrices

L and L′. Suppose L is normal and L′ is given by (5.4). Then ∥T∥2
H2 = ∥T ′∥2

H2.

Proof. The result follows from (5.1) and (5.5).
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As Theorem 5.1 indicates, directed and associated undirected single-integrator

systems perform identically for any output matrix C satisfying Assumption 4.2. This

implies that the same level of performance can be achieved either using directed

paths in the commmunication graph or using the corresponding undirected graph

per (5.4). The directed system might be preferable in certain cases due to reduced

communication requirements (e.g. uni-directional vs. bi-directional paths).

Theorem 5.1 also provides a generalization of previous results obtained for this

class of directed and undirected single-integrator systems. For example, performance of

directed systems can be bounded by functions of the spectrums of output performance

matrices and associated undirected system Laplacians (see e.g. [71, Theorem 5]).

Here, we provide exact solutions in Lemma 5.3 by additionally accounting for the

eigenvectors of these matrices, which lead to the equivalence between directed and

associated undirected systems as shown by Theorem 5.1.

5.2.1.2 Double-Integrator Networks

We now provide a comparison of the double-integrator systems with respective Lapla-

cians L and L′ for the performance metric given in (5.2).

Remark 5.1. The performance metric in (5.2) simplifies to an expression that does

not explicitly depend on Im[λk] if βkξkϕk − β2
k = 0 for k ∈ Nobsv. This holds if

Im[λk] = 0 for k ∈ Nobsv or L is symmetric or γp = 0. If βkξkϕk − β2
k = 0 for

k ∈ Nobsv, (5.2) reduces to

∥T∥2
H2 =

∑︂
k∈Nobsv

νkk
1

2(kp + γp Re[λk])(kd + γd Re[λk]) , (5.6)

when the stability condition (4.23) from Proposition 4.3 holds.

Depending on the values of kp, kd, γp and γd in (5.6), the denominator in (5.2)

can be quadratic in Re[λk], which could indicate a smaller H2 norm for sufficiently

77



large Re[λk], hence better performance compared to the performance of the first order

system given by (5.1).

The following Lemma shows the effect of the imaginary parts of the weighted

Laplacian eigenvalues on the position based performance (5.2) of the double-integrator

network (4.2).

Lemma 5.5 (Characterization of Position based Performance via the Observable

Eigenvalues). Consider the double-integrator network (4.2) and the performance metric

P in (2.12). Let T and T ′ be two systems given by (4.11a) with weighted Laplacian

matrices L and L′. Suppose L is normal and L′ is given by (5.4). Then the following

hold:

1. ∥T∥2
H2 = ∥T ′∥2

H2 if Im[λk] = 0 ∀k ∈ Nobsv.

2. ∥T∥2
H2 ≤ ∥T ′∥2

H2 if

γd(kd + γd Re[λk]) − γp ≥ 0, ∀k ∈ Nobsv. (5.7)

Furthermore, ∥T∥2
H2 < ∥T ′∥2

H2 if in addition at least one of the inequalities in (5.7)

strictly holds for some k ∈ Nobsv such that Im[λk] ̸= 0 and relative position feedback is

present, i.e. γp > 0.

Similarly, ∥T∥2
H2 ≥ ∥T ′∥2

H2 if

γd(kd + γd Re[λk]) − γp ≤ 0, ∀k ∈ Nobsv. (5.8)

Furthermore ∥T∥2
H2 > ∥T ′∥2

H2 if in addition at least one of the inequalities in (5.8)

strictly holds for some k ∈ Nobsv such that Im[λk] ̸= 0 and relative position feedback is

present, i.e. γp > 0.

Proof. Invoking Remark 5.1 and using (5.5), both ∥T∥2
H2 and ∥T ′∥2

H2 are given by (5.6)

which leads to Item 1). Condition (5.7) implies that βkξkϕk − β2
k ≥ 0 for k ∈ Nobsv
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therefore
ϕk

2(αkϕ2
k + βkξkϕk − β2

k) ≤ 1
2αkϕk

, k ∈ Nobsv. (5.9)

Since νkk > 0 for k ∈ Nobsv due to Lemma 5.2, multiplication of both sides of (5.9) by

νkk and summation of the inequalities gives ∥T∥2
H2 ≤ ∥T ′∥2

H2 . If in addition to (5.7)

at least one of these inequalities strictly holds for some k ∈ Nobsv such that Im[λk] ̸= 0

and γp > 0, then ∥T∥2
H2 < ∥T ′∥2

H2 . The reverse inequalities follow from (5.8) using a

similar argument.

Note that the results in Lemma 5.5 hold for any output matrix C satisfying

Assumption 4.2. It is necessary that at least one observable eigenvalue does not lie on

the real line for the performance of the directed and undirected systems to differ, and

the gains need to be tuned based on these eigenvalues to improve performance. We

next use this result to characterize the position-based performance of directed and

undirected double-integrator systems in terms of relative feedback.

Theorem 5.2 (Characterization of Position based Performance via Relative Feedback).

Consider the double-integrator network (4.2) and the performance metric P in (2.12).

Let T and T ′ be two systems given by (4.11a) with weighted Laplacian matrices L and

L′. Suppose that L is normal and L′ is given by (5.4). Then the following hold:

1. If relative position feedback is absent, i.e. γp = 0, then ∥T∥2
H2 = ∥T ′∥2

H2.

2. If relative position feedback is present and relative velocity feedback is absent, i.e.

γp > 0 and γd = 0, and Im[λk] ̸= 0 for some k ∈ Nobsv, then ∥T∥2
H2 > ∥T ′∥2

H2.

3. If both relative position and velocity feedback are present, i.e. γp > 0 and γd > 0,

and Im[λk] ̸= 0 for some k ∈ Nobsv, then there exists γ
p

and γp that satisfy

min
k∈Nobsv ,
Im[λk] ̸=0

Re[λk] ≤
γ

p

γ2
d

− kd

γd

≤
γp

γ2
d

− kd

γd

≤ max
k∈Nobsv ,
Im[λk]̸=0

Re[λk],

such that ∥T∥2
H2 < ∥T ′∥2

H2 if γp < γ
p

and ∥T∥2
H2 > ∥T ′∥2

H2 if γp > γp.
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Proof. Invoking Remark 5.1 and using (5.5) leads to Item 1). Item 2) follows from

Lemma 5.5 by setting γp > 0 and γd = 0 in (5.8). To prove Item 3) we observe from

Lemma 5.5 that

γp > max
k∈Nobsv ,
Im[λk] ̸=0

γd(kd + γd Re[λk]) =: γu ⇒ ∥T∥2
H2 > ∥T ′∥2

H2 ,

γp < min
k∈Nobsv ,
Im[λk] ̸=0

γd(kd + γd Re[λk]) =: γl ⇒ ∥T∥2
H2 < ∥T ′∥2

H2 .

So ∥T∥2
H2 = ∥T ′∥2

H2 if γp = γ
p

and ∥T∥2
H2 < ∥T ′∥2

H2 if γp < γ
p

for some γ
p

∈ [γl, γu],

since ∥T∥2
H2 and ∥T ′∥2

H2 are continuous in γp. Similarly, ∥T∥2
H2 = ∥T ′∥2

H2 if γp = γp and

∥T∥2
H2 > ∥T ′∥2

H2 if γp > γp for some γp ∈ [γl, γu]. Finally we note that γ
p

≤ γp, because

otherwise γp = γ
p
> γp would imply that ∥T∥2

H2 = ∥T ′∥2
H2 and ∥T∥2

H2 > ∥T ′∥2
H2 must

simultaneously hold, which is a contradiction.

Directed communication degrades performance for metrics that capture some of

the modes resulting from the directed paths (i.e. Im[λk] ̸= 0 for some k ∈ Nobsv) if

relative position feedback is used without relative velocity feedback. For such metrics,

this issue can be addressed in several ways depending on the available feedback. For

example, omitting relative position feedback (which requires absolute position feedback

due to Assumption 4.1) can mitigate this degradation. In this case, the directionality

of relative velocity feedback does not affect performance since directed and undirected

systems perform identically.

It is when both types of relative feedback are used that tuning their respective

gains properly can, not only mitigate the performance degradation, but also lead to

the directed system outperforming its undirected counterpart. Therefore, it is critical

to have relative velocity feedback in addition to relative position feedback. Namely,

the directed system performs better than its undirected counterpart for sufficiently

small relative position gain (the converse is true for sufficiently large relative position

gain). This sufficient magnitude is determined by the velocity gains as well as the
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magnitude of the real parts of the observable eigenvalues that have non-zero imaginary

parts. As a consequence, a judicious control strategy depends on the topological

characteristics of the network.

5.2.2 Velocity based Performance

This subsection provides a comparison of the double integrator systems with respective

Laplacians L and L′ in terms of the performance metric given in (5.3).

Remark 5.2. The performance metric in (5.3) simplifies to an expression that does

not explicitly depend on Im[λk] if βk = 0 for k ∈ Nobsv. This holds if Im[λk] = 0 for

k ∈ Nobsv or L is symmetric or γp = 0. If βk = 0 for k ∈ Nobsv, (5.3) reduces to

∥T∥2
H2 =

∑︂
k∈Nobsv

νkk
1

2(kd + γd Re[λk]) , (5.10)

when the stability condition (4.23) from Proposition 4.3 holds.

In contrast to the position based performance metric in (5.6), the velocity based

performance in (5.10) depends only on absolute or relative velocity feedback and its

denominator is affine in Re[λk]. So, absolute or relative position feedback does not

affect velocity based performance if G is undirected.

The following theorem demonstrates that if the velocity based performance of the

system given by (4.11b) is considered and its directed graph emits a normal weighted

Laplacian, its H2 norm is lower bounded by the H2 norm of the corresponding

undirected system whose interconnection is defined by (5.4). This result highlights

the inability of standard feedback schemes to mitigate velocity-based performance

degradation.

Theorem 5.3 (Characterization of Velocity based Performance). Consider the double-

integrator network (4.2) and the performance metric P in (2.12). Let T and T ′ be two

systems given by (4.11b) with weighted Laplacian matrices L and L′. Suppose that L

is normal and L′ is given by (5.4). Then the following hold:
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1. ∥T∥2
H2 ≥ ∥T ′∥2

H2.

2. ∥T∥2
H2 > ∥T ′∥2

H2 if and only if Im[λk] ̸= 0 for some k ∈ Nobsv and relative position

feedback is present, i.e. γp > 0.

3. ∥T∥2
H2 = ∥T ′∥2

H2 if and only if Im[λk] = 0 ∀k ∈ Nobsv or relative position feedback

is absent, i.e. γp = 0.

Proof. Since −β2
k = −γ2

p Im[λk]2 ≤ 0, it holds that

αkϕ
2
k + βkξkϕk − β2

k ≤ αkϕ
2
k + βkξkϕk, k ∈ Nobsv. (5.11)

Stability condition (4.23) from Proposition 4.3 states that

αkϕ
2
k + βkξkϕk − β2

k > 0 and ϕk > 0, k ∈ Nobsv. (5.12)

Therefore, (5.11) can be re-arranged as

ξkβk + ϕkαk

αkϕ2
k + βkξkϕk − β2

k

≥ 1
ϕk

, k ∈ Nobsv. (5.13)

Since νkk > 0 for k ∈ Nobsv as shown in Lemma 5.2,

νkk
ξkβk + ϕkαk

2(αkϕ2
k + βkξkϕk − β2

k) ≥ νkk
1

2ϕk

, k ∈ Nobsv. (5.14)

Summation of the inequalities given in (5.14) and using (5.3) and (5.10) leads to Item

1).

To prove the necessity part of Item 2), we observe that −β2
k = −γ2

p Im[λk]2 < 0

for some k ∈ Nobsv therefore (5.11) strictly holds for such k. Then by a similar

argument to the one used above, (5.14) strictly holds for such k as well, which leads

to ∥T∥2
H2 > ∥T ′∥2

H2 . To prove sufficiency suppose that ∥T∥2
H2 > ∥T ′∥2

H2 . Using

(5.3) and (5.10), this implies that (5.14) strictly holds for some k ∈ Nobsv (otherwise

∥T∥2
H2 = ∥T ′∥2

H2). Since νkk > 0 for k ∈ Nobsv, (5.13) strictly holds for some k ∈ Nobsv

as well. Using (5.12) and re-arranging terms leads to β2
k = γ2

p Im[λk]2 > 0 for some

k ∈ Nobsv implying that Im[λk] ̸= 0 for some k ∈ Nobsv and γp > 0. Finally we note

that items 1) and 2) imply Item 3).
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Unlike position based performance, there does not exist a choice of control gains

for the directed system that can result in better velocity based performance compared

to its undirected counterpart for any output matrix C satisfying Assumption 4.2.

Furthermore, when relative position feedback is used, the directed system performs

strictly worse compared to its undirected counterpart for metrics capturing the effect

of the directed interconnection. They perform identically without relative position

feedback or if metrics do not capture the edge directionality.

When the overall system performance is considered in terms of both position and

velocity based metrics, a trade-off emerges. For systems with observable directed

paths, it is possible to have equal performance to that of their undirected counterparts

in the case of both position and velocity based metrics by omitting relative position

feedback. But this is true only if absolute position feedback is used, as it is required

for stability (Assumption 4.1). Therefore, unless absolute position measurements are

available, the directed system requires well-tuned gains to prevent degradation of the

position-based performance (or to possibly improve it) while it will always have worse

velocity-based performance compared to the undirected system. For directed systems

with absolute position feedback, improving position-based performance comes at the

expense of the velocity-based performance.

Remark 5.3. For the particular metric defined as the variance of the full-state, the

H2 norm of a linear system can be upper bounded by the H2 norm of a system whose

dynamics emit the Hermitian part of the original state matrix [71, Theorem 2]. In

the case of double-integrator networks, this comparison does not explicitly account

for the Laplacian eigenvalues, i.e. communication directionality. In contrast, we

have studied communication directionality for general quadratic metrics by comparing

directed graphs and their undirected counterparts represented by the Hermitian part of

the Laplacian (5.4). Our results characterize performance as an aggregate outcome of

judicious control strategy and network topology.
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Figure 5-1. The expectation of the position-based performance of the double-integrator
system (4.2) given by (4.11a), for E [Σ0] = I and the gains (a) kp = 3, kd = 5, γd = 0,
(b) kp = 1, kd = 2, γd = 6.5. (c) The expectation of the velocity-based performance
of the double-integrator system (4.2) given by (4.11b), for E [Σ0] = I and the gains
kp = 1, kd = 2, γd = 7.

5.2.3 Example: Position and Velocity based Performance
with Uni-directional vs. Bi-directional Feedback

We now consider a cyclic digraph in which each node has uniform out-degree d and

the uniformly weighted edges that start at each node reach ω succeeding nodes. This

results in ‘look-ahead’ type state measurements through ω communication hops. The

respective weighted Laplacian is given by

Lcyc(d, ω)=d×circ
(︂[︂

1 − 1
ω

. . . − 1
ω

0 . . . 0
]︂)︂
, (5.15)

where d ∈ R+, ω ∈ Z+, ω ≤ n− 1 and circ(·) denotes the circulant matrix generated

by permuting the row vector in the argument. The Jordan decomposition of L = Lcyc

gives [82]

Jk = λk = d

(︄
1 − 1

ω

ω∑︂
i=1

e−j 2π
n

i(k−1)
)︄
, (5.16)

for k = 1, . . . , n. Choosing α = 1√
n

in (4.12), the columns of R̃ are given by

rl = 1√
n

[︂
1 ej 2π

n
(l−1) . . . ej 2π

n
(l−1)(n−1)

]︂∗
, (5.17)

for l = 2, . . . , n. For the special case of uni-directional feedback, we set d = 1 and

ω = 1 in (5.15) therefore

L = Lcyc(1, 1) and L′ = Lcyc(1, 1) + Lcyc(1, 1)∗

2 ,
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where we have used (5.4) to also define the corresponding bi-directional feedback. We

consider the respective systems T and T ′ with an arbitrary output matrix C ∈ Rn×n

that satisfies Assumption 4.2, for n = 50.

For the double-integrator network (4.2) given by (4.11a) (position based perfor-

mance), Figure 5-1a shows that, as suggested by Item 2) of Theorem 5.2, using relative

position feedback without relative velocity feedback (γp > 0 and γd = 0) leads to

worse performance with directed interconnection. It is when both relative position

and velocity measurements are used (γp > 0 and γd > 0) that the directed cycles

can be utilized for better performance by tuning the gains. Per Item 3) of Theorem

5.2, sufficiently small γp (i.e. sufficiently large velocity gains kd and γd) improves the

performance of the directed interconnection relative to its undirected counterpart; but

the performance degrades for sufficiently large γp, as shown in Figure 5-1b. Directed

cycles require less communication thus can be preferable, provided the gains are

carefully selected.

For the double-integrator network (4.2) given by (4.11b) (velocity based perfor-

mance), Figure 5-1c shows that relative position feedback degrades performance if

the cycles are directed. But the performance becomes comparable to that of the

undirected system for sufficiently small γp, equaling it at γp = 0. This supports the

findings of Theorem 5.3.

In the next chapter, we focus on a more general class of directed graphs, which

emit diagonalizable weighted Laplacian matrices. This class of graphs will be used to

investigate the relationship between graph connectivity and network performance.
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Chapter 6

Effect of Connectivity on the
Performance of Directed Networks

In this chapter, we investigate the role of the degree of connectivity in system perfor-

mance. We will study examples of directed graphs that arise in common applications

such as vehicular networks and social influence networks.

We first focus on the class of systems that we term ω-nearest neighbor networks,

which have a cyclic and directed communication structure. Each agent in the network

admits uniformly weighted uni-directional state measurements from ω consecutive

neighbors, resulting in a spatially invariant formation. For the special case of the

metric quantifying the aggregate state deviation from the average, we show that

performance does not monotonically improve by increasing ω. We also investigate

a special case of leader-follower networks that we term all-to-one (imploding star)

networks. Here uni-directional state measurements are uniformly weighted and relative

to a single designated “leader” that does not receive any relative feedback. We show

an equivalence between directed all-to-one and all-to-all (represented by a complete

graph) networks for the same performance metric.

We begin by providing the closed-form solutions for the performance metrics.
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6.1 Closed-form Solutions with Diagonalizable
Laplacians

In this section we use our general analysis framework from Chapter 4 to derive the

closed-form solutions for the performance metrics of directed networks that emit

diagonalizable weighted Laplacian matrices. This class of graphs encapsulates the

interconnection topologies we are interested in, in order to examine the effect of

connectivity on the performance of directed networks.

6.1.1 Single-Integrator Networks

The following result provides the closed-form solution for the performance of single-

integrator networks (4.1).

Lemma 6.1 (Single-Integrator, Diagonalizable Laplacian). Consider the single-

integrator network (4.1) and suppose that L is diagonalizable. Then, the metric

P in (2.12) for the system T given by (4.11a) is P = tr (ΣQΨ), where j2 = −1 and

Ψkl = νkl
Re[λk] + Re[λl] + j(Im[λk] − Im[λl])

(Re[λk] + Re[λl])2 + (Im[λk] − Im[λl])2 . (6.1)

Proof. The fact that L is diagonalizable leads to m = n, i.e. all Jordan blocks are

scalars. Then using (4.30) from Lemma 4.2, we have Ψkl = νkl

⟨︃
h̃

(l)
11(t), h̃(k)

11 (t)
⟩︃

L2

.

Using the result of Corollary 4.1, the notation in (4.25) and the fact that L is diagonal-

izable gives h̃(k)
11 (s) = 1

s+λk
. Using this transfer function leads to

⟨︃
h̃

(l)
11(t), h̃(k)

11 (t)
⟩︃

L2

=
1

λk+λl
. Combining these facts and re-arranging terms yields the result.

Note that the diagonal terms Ψkk are real and the cross-terms Ψkl for k ̸= l are

possibly imaginary in (6.1). However, P is guaranteed to be real due to Remark 4.4.

6.1.2 Double-Integrator Networks

Next we present the closed-form solution for the double-integrator network (4.2).
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Lemma 6.2 (Double-Integrator, Diagonalizable Laplacian). Consider the double-

integrator network (4.2). Suppose that L is diagonalizable. The performance metric P

in (2.12) is P = tr (ΣQΨ), where

Ψkk = νkk
ϕk

2(αkϕ2
k + βkξkϕk − β2

k) (6.2)

for the position-based output, i.e. system T given by (4.11a) and

Ψkk = νkk
ξkβk + ϕkαk

2(αkϕ2
k + βkξkϕk − β2

k) (6.3)

for the velocity-based output, i.e. system T given by (4.11b); where αk = kp +γp Re[λk],

ϕk = kd + γd Re[λk], βk = γp Im[λk] and ξk = γd Im[λk].

Remark 6.1. Here, the cross-terms Ψkl for k ̸= l are not given explicitly for brevity.

A Gramian computation as in [59,60] would give Ψkl in closed-form for k ̸= l, which

is not tractable due to the number of terms involved. To gain some insight from the

computation, we focus on the diagonal terms which are the only required ones when

ΣQ in (4.29) is diagonal.

Proof of Lemma 6.2. The fact that L is diagonalizable leads to m = n, i.e. all

Jordan blocks are scalars. Then, using (4.30) from Lemma 4.2 we have Ψkl =

νkl

⟨︃
h̃

(l)
11(t), h̃(k)

11 (t)
⟩︃

L2

. First consider the position-based performance metric, i.e. the

system T given by (4.11a). Using the result of Corollary 4.2, the notation in

(4.25) and the fact that L is diagonalizable gives h̃
(k)
11 (s) = 1

s2+(kd+γdλk)s+kp+γpλk
,

which has the realization (Ak,Bk, Ck) in controllable canonical form given by Ak =[︂
0 1

−kp−γpλk −kd−γdλk

]︂
, Bk =

[︂
0 1

]︂⊺
and Ck =

[︂
1 0

]︂
. If k = l, performing a standard

computation,
⟨︃
h̃

(k)
11 (t), h̃(k)

11 (t)
⟩︃

L2

= B⊺
kXkBk, where Xk satisfies the Lyapunov equation

A∗
kXk + XkAk = −C∗

kCk. Then we get⟨︃
h̃

(k)
11 (t), h̃(k)

11 (t)
⟩︃

L2

= ϕk

2(αkϕ2
k + βkξkϕk − β2

k) .

We now consider the velocity-based performance metric, i.e. the system T given by

(4.11b). Using the result of Corollary 4.2, the notation in (4.25) and the fact that L
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is diagonalizable, we have h̃(k)
11 (s) = s

s2+(kd+γdλk)s+kp+γpλk
, so that Ak and Bk are the

same but Ck =
[︂
0 1

]︂
. If k = l, solving the Lyapunov equation leads to

⟨︃
h̃

(k)
11 (t), h̃(k)

11 (t)
⟩︃

L2

= ξkβk + ϕkαk

2(αkϕ2
k + βkξkϕk − β2

k) .

If we further assume real eigenvalues, we obtain a result similar to the one in [59,60]

for diagonalizable Laplacians.

Lemma 6.3 (Double-Integrator, Diagonalizable Laplacian with Real Eigenvalues).

Consider the double-integrator network (4.2). Suppose that L is diagonalizable and

has real eigenvalues. Then

Ψkl = νkl
2kd + γd(λk + λl)

Ψdenom
kl

, (6.4)

for the position-based output, i.e. system T given by (4.11a) and

Ψkl = νkl
(kp + γpλl)(kd + γdλk) + (kp + γpλk)(kd + γdλl)

Ψdenom
kl

(6.5)

for the velocity-based output, i.e. system T given by (4.11b), where

Ψdenom
kl = (kd + γdλk)(kd + γdλl)(2kp + γp(λk + λl)) +

γ2
p(λk − λl)2+(kp + γpλk)(kd + γdλl)2 + (kp + γpλl)(kd + γdλk)2.

Proof. The argument from the proof of Lemma 6.2 gives Ψkl = νkl

⟨︃
h̃

(l)
11(t), h̃(k)

11 (t)
⟩︃

L2

and
⟨︃
h̃

(l)
11(t), h̃(k)

11 (t)
⟩︃

L2

= B⊺
kXklBl, where Xkl satisfies the Sylvester equation A∗

kXkl +

XklAl = −C∗
kCl [59,60]. Considering (4.11a) and (4.11b) individually and solving for

Xkl in each case leads to respectively (6.4) and (6.5).

The real and imaginary parts of the Laplacian eigenvalues, and the control gains

appear explicitly in the solutions for the performance metrics in Lemma 6.2 and

Lemma 6.3. However, these solutions are still given by a weighted linear combination

of Ψkl. In the next section, we use these closed-form solutions for specific graph

structures to investigate the effect of the degree of connectivity on performance.
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6.2 All-to-One vs. ω-Nearest Neighbor Networks

In this section, we compare two different relative feedback schemes. The first one is

called an all-to-one network, which designates a ‘leader’ node that receives no relative

feedback, where the remaining nodes have access to uniformly weighted uni-directional

state measurements relative to the leader only. The second one is referred to as an

ω-nearest neighbor network, which is based on uniformly weighted uni-directional state

measurements of each node relative to ω succeeding nodes. We consider performance

metrics that have circulant output matrices C, which arise in many applications such as

quantifying lack of coherence in a system in terms of global or local disorder [1,43,70].

6.2.1 Imploding Star Graph: All-to-One Networks

All-to-one networks can be modeled as the imploding star graph whose edge weights

are normalized such that the out-degree of each node is n
n−1 . The corresponding

weighted Laplacian is given by

L = n

n− 1

[︄
In−1 −1
0⊺ 0

]︄
, (6.6)

with total out-degree n. The Jordan decomposition gives

J = n

n− 1

[︄
0 0⊺

0 In−1

]︄
. (6.7)

Choosing α = 1 in (4.12), the matrices R̃ and Q̃ are given by

R̃ =
[︄
In−1
0⊺

]︄
and Q̃ =

[︂
In−1 −1

]︂
. (6.8)

6.2.1.1 Single-Integrator Networks

The next theorem provides the solution for (2.12) for the single-integrator network

(4.1) using Lemma 6.1 and the decomposition given by (6.7) and (6.8).
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Theorem 6.1. Consider the single-integrator network (4.1). Suppose that G is an

imploding star graph with the weighted Laplacian (6.6), C is circulant and the distur-

bance has unit covariance, i.e. E[Σ0] = I. Then the expectation of the performance

metric (2.12) for the system T given by (4.11a) is

E [P ]= ∥T∥2
H2 = n− 1

n2

n∑︂
i=2

µi

⎛⎝n− 1 +
∑︂
l>k,

k,l∈{2,...,n}

cos
(︃2π
n

(i− 1)(l − k)
)︃⎞⎠. (6.9)

Proof. Using the fact that E [Σ0] = I, we have E [P ] = tr(Q̃Q̃∗Ψ). (6.8) leads to

Q̃Q̃
∗ = In−1 + 11⊺ which gives

E [P ] =
n∑︂

k=2
Ψkk +

n∑︂
k=2

n∑︂
l=2

Ψkl. (6.10)

The matrix M in (4.26) has the eigenvectors

θl = 1√
n

[︂
1 ej 2π

n
(l−1) . . . ej 2π

n
(l−1)(n−1)

]︂∗
(6.11)

for l = 2, . . . , n. Using (6.11) and the columns of R̃ given in (6.8), the scalar products

in (4.27) are obtained as

⟨θi, rk⟩ = 1√
n
e−j 2π

n
(i−1)(k−2), k = 2, . . . , n. (6.12)

By (6.1) and the fact that λi = n
n−1 for i = 2, . . . , n we have Ψkl = n−1

2n
νkl, therefore

using (4.27) and (6.12) results in

E [P ] = n − 1
2n2

(︄
n∑︂

k=2

n∑︂
i=2

µi +
n∑︂

k=2

n∑︂
l=2

n∑︂
i=2

ej 2π
n

(i−1)(l−k)µi

)︄
. (6.13)

Rearranging the terms in (6.13) and using Proposition 2.1 gives the result.

We now consider a special case of circulant output matrices C, which leads to

a global measure of disorder that quantifies the aggregate state deviation from the

average through

C = I − 1
n

11⊺ = Lcyc
(︃
n− 1
n

, n− 1
)︃
. (6.14)

This metric will be denoted by Pdav.
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Relationship to Previous Results

For Pdav, the following proposition shows that the result in [36] can be reproduced as

a special case of Theorem 6.1.

Proposition 6.1. Consider the single-integrator network (4.1) and the output matrix

(6.14), i.e. the performance metric Pdav. Suppose that G is an imploding star graph with

the weighted Laplacian (6.6), and the disturbance has unit covariance, i.e. E[Σ0] = I.

Then the expectation of the performance metric (2.12) for the system T given by

(4.11a) is

E [Pdav] = ∥T∥2
H2 = (n− 1)2

2n . (6.15)

Proof. The fact that µi = 1 ∀i and (6.13) gives

E [Pdav] = n− 1
2n2

(︄
2(n− 1)2 +

∑︂
k ̸=l

n∑︂
i=2

ej 2π
n

(i−1)(l−k)
)︄
.

Since ∑︁n
i=1 e

j 2π
n

(i−1)(l−k) =0 for l − k=±1, . . . ,±(n− 2),

E [Pdav] = n− 1
2n2

(︄
2(n− 1)2 −

∑︂
k ̸=l

ej 2π
n

0(l−k)

⏞ ⏟⏟ ⏞
=(n−1)(n−2)

)︄
.

6.2.1.2 Double-Integrator Networks

Using Lemma 6.3, the following theorem characterizes performance metric (2.12) for

all-to-one networks with double-integrator dynamics (4.2).

Theorem 6.2. Consider the double-integrator network (4.2). Suppose that G is an

imploding star graph with the weighted Laplacian (6.6), the output matrix C is circulant

and the disturbance has unit covariance, i.e. E[Σ0] = I. Then the expectation of the

performance metric (2.12) is

E [P ] = ∥T∥2
H2 = P0

1
2(kp + γp

n
n−1)(kd + γd

n
n−1) (6.16)
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for the system T given by (4.11a) and

E [P ] = ∥T∥2
H2 = P0

1
2(kd + γd

n
n−1) (6.17)

for the system T given by (4.11b), where

P0 = 1
n

(︄
n∑︂

k=2

n∑︂
i=2

µi +
n∑︂

k=2

n∑︂
l=2

n∑︂
i=2

ej 2π
n

(i−1)(l−k)µi

)︄
.

Furthermore, if the output matrix is given by (6.14), then

E [Pdav] = ∥T∥2
H2 = n− 1

2(kp + γp
n

n−1)(kd + γd
n

n−1) (6.18)

for the system T given by (4.11a) and

E [Pdav] = ∥T∥2
H2 = n− 1

2(kd + γd
n

n−1) (6.19)

for the system T given by (4.11b).

Proof. Substitution of λk = n
n−1 for k = 2, . . . , n into (6.4) and (6.5) gives Ψkl =

νkl
1

2(kp+γp
n

n−1 )(kd+γd
n

n−1 ) for the system T given by (4.11a) and Ψkl = νkl
1

2(kd+γd
n

n−1 ) for

the system T given by (4.11b). By the argument given in the proof of Theorem 6.1,

using the expressions above and (6.10) leads to (6.16) and (6.17). The argument given

in the proof of Proposition 6.1 combined with (6.16) and (6.17) yields (6.18) and

(6.19).

When Pdav is considered, Proposition 6.1 and Theorem 6.2 show that the perfor-

mance metric grows unboundedly with the network size. Next we study ω-nearest

neighbor networks.

6.2.2 Cyclic Digraphs: ω-Nearest Neighbor Networks

The cyclic digraph defined by the weighted Laplacian (5.15) can be used to model

ω-nearest neighbor networks. In order to normalize the edge weights of the digraphs
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with different number of communication hops we choose the out-degree of each node

as d = 1 in (5.15), which leads to

L = Lcyc (1, ω) (6.20)

so that the total out-degree in the graph is n. Since we consider circulant output

matrices C, the eigenvectors of M in (4.26) are given by (6.11). Combining this with

(5.17), the scalar products in (4.27) are obtained as

⟨θl, rk⟩ =

⎧⎨⎩ 1 k = l

0 k ̸= l
, k = 2, . . . , n, (6.21)

therefore (4.27) leads to

νkk = µk. (6.22)

This means that the dependence of (5.1), (5.2) and (5.3) on the output matrix C is

only through the eigenvalues µk of M .

Then performance is given by (5.1) for the single-integrator system, and by (5.2)

or (5.3) for the double-integrator system, where due to (5.16) the eigenvalues of L

satisfy

λk = 1 − 1
ω

ω∑︂
i=1

e−j 2π
n

i(k−1), k = 1, . . . , n. (6.23)

Next we present two examples to demonstrate the effect of the number of commu-

nication hops ω on the performance of ω-nearest neighbor networks and to investigate

the relationship between all-to-one and all-to-all communication structures.

6.2.3 Example: Number of Communication Hops

In the following we investigate how performance changes with respect to ω. We first

show that performance does not necessarily improve by increasing ω, i.e. through

communication with a larger number of nearest neighbors.

For convenience suppose that n is odd. Consider the case where ω = n−1
2 such
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Figure 6-1. (Top) The expectation of Pdav defined by (6.14) versus the number of
communication hops ω of the ω-nearest neighbor networks given by (6.20) where the
network size is n = 51. (Bottom) The expectation of Pdav versus the network size n for the
imploding star graph and the complete graph given by (6.6) and (6.24). The disturbance
has unit covariance, i.e. E[Σ0] = I. Plots respectively illustrate the cases of: (a, f) single-
integrator (4.1) given by (4.11a), (b, g) double-integrator (4.2) given by (4.11a) (position-
based performance), kp = kd = γp = γd = 1, (c, h) double-integrator (4.2) given by
(4.11a) (position-based performance), kp = kd = γd = 1, γp = 0, (d, i) double-integrator
(4.2) given by (4.11b) (velocity-based performance), kp = kd = γp = γd = 1, (e, j) double-
integrator (4.2) given by (4.11b) (velocity-based performance), kp = kd = γd = 1, γp = 0.

that L = Lcyc(1, n−1
2 ). Using the definition given by (5.4)

L′ =
Lcyc(1, n−1

2 ) + Lcyc(1, n−1
2 )∗

2 = Lcyc(1, n− 1), (6.24)

i.e. L′ is the weighted Laplacian associated with the complete graph with uniform

edge weights 1
n−1 . Then the associated systems T and T ′ have the following properties

for any performance metric satisfying Assumption 4.2:

• ∥T∥2
H2 = ∥T ′∥2

H2 for the single-integrator network (4.1) defined by (4.11a) due to

Theorem 5.1,

• It is possible due to Theorem 5.2 that ∥T∥2
H2 < ∥T ′∥2

H2 , ∥T∥2
H2 = ∥T ′∥2

H2 or

∥T∥2
H2 > ∥T ′∥2

H2 for the position based performance of the double-integrator

network (4.2) defined by system (4.11a),

• It can only hold that ∥T∥2
H2 = ∥T ′∥2

H2 or ∥T∥2
H2 > ∥T ′∥2

H2 for the velocity based

performance of the double-integrator network (4.2) defined by system (4.11b) due
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to Theorem 5.3.

As this example suggests, using half the number of communication hops as compared

to the complete graph, i.e. the case in which ω is maximal, provides identical

performance for the single integrator network (4.1). It is possible to achieve better

performance using half the number of hops compared to the complete graph in the

case of the position based metrics of the double integrator network (4.2); but this is

not the case for the velocity based metrics.

The dependence of E [Pdav] on ω is illustrated in figures 6-1a - 6-1e for a case in

which n = 51 and the disturbance has unit covariance, i.e. E[Σ0] = I. For the single

integrator network (4.1) we observe in Figure 6-1a that ∥T∥2
H2 = ∥T ′∥2

H2 . This is also

true for the position and velocity based performance of the double-integrator network

(4.2) if relative position feedback is absent (kp = kd = γd = 1 and γp = 0) as shown

in figures 6-1c (due to Item 1 in Theorem 5.2) and 6-1e (due to Item 3 in Theorem

5.3). Conversely, using relative position feedback (kp = kd = γp = γd = 1) leads to

∥T∥2
H2 < ∥T ′∥2

H2 as shown in Figure 6-1b (due to Item 3 in Theorem 5.2) for the

position based performance and to ∥T∥2
H2 > ∥T ′∥2

H2 as shown in Figure 6-1d (due to

Item 2 in Theorem 5.3) for the velocity based performance. For all cases, increasing ω

up to ω = 25 monotonically improves performance. Compared to ω = 25, choosing

25 < ω < 50 degrades performance, excluding the velocity based performance with

relative position feedback (γp > 0, Figure 6-1d) which improves monotonically as ω is

increased. Therefore at least for n = 51 and the cases in figures 6-1a-6-1c and 6-1e,

ω = n−1
2 provides the optimal performance.

The next example provides a comparison between all-to-one and all-to-all networks.

6.2.4 Example: All-to-One versus All-to-All Networks

For the special case of Pdav which is determined by (6.14), (6.22) holds and we have

µk = 1 for k = 2, . . . , n. If all-to-all networks are considered, i.e. L is given by (6.24),
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(6.23) reduces to λk = n
n−1 for k = 2, . . . , n. Then Pdav is given by

• (6.15) for the single-integrator network (4.1) given by (4.11a),

• (6.18) for the double-integrator network (4.2) given by (4.11a),

• (6.19) for the double-integrator network (4.2) given by (4.11b),

where we respectively used (5.1), (5.6) and (5.10). Therefore, ω-nearest neighbor

networks with ω = n − 1 (all-to-all) and all-to-one networks perform identically if

Pdav is considered, which is illustrated in figures 6-1f - 6-1j for up to n = 49. In

conclusion, given that the total out-degree is normalized to be n for each graph, the

same Pdav is achieved by using n− 1 directed edges that follow a common leader as

that of using n(n− 1) directed edges such that each node follows every other node.

The latter feedback scheme can be interpreted as every node being a common leader

in the sense of the former feedback scheme. In other words, the all-to-all network can

be interpreted as the superposition of n all-to-one networks with edge weights scaled

by 1
n
. Thus the same level of deviation from the average state (position or velocity) is

achieved by following a single common leader instead of using all-to-all communication,

provided the edge weights are sufficiently large. As n grows, the number of edges

grow linearly and each edge weight n
n−1 remains bounded in all-to-one networks. In

contrast, the number of edges grow quadratically and each edge weight 1
n−1 decays

to zero in all-to-all networks. We note for double-integrator networks (4.2) given by

(4.11a) that compared to both all-to-one and all-to-all communication, it is possible to

achieve better position-based Pdav with ω = n−1
2 nearest neighbor interactions (odd n),

if both relative position and velocity feedback are employed and the relative position

feedback gain γp is sufficiently small (e.g. Figure 6-1b).
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6.3 Summarizing Remarks

In chapters 5 and 6, we analyzed subclasses of directed interconnection topologies

using our general framework from Chapter 4. We have demonstrated the role of

communication directionality and degree of connectivity in overall network performance

for systems defined over such topologies. Our results revealed previously undiscovered

properties of these systems.

The results presented until this point pertain to finite-size networks. In the next

chapter, we examine large-scale networks with directed interconnection topologies and

discuss performance trade-offs that emerge as a result of communication directionality

and growing network size.
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Chapter 7

Disorder in Large-scale Networks
with Uni-directional Feedback

Performance metrics evaluating network disorder have been investigated as a function

of network size and the number of spatial dimensions of feedback interconnections

(e.g. in vehicle formations). For networks of double integrators with undirected and

static feedback interconnections (undirected second order consensus networks), both

long and short range disorder can grow unboundedly with network size with only

relative measurements of both the position and velocity states [1]. Scaling of metrics

of disorder with network size has been investigated in directed first order consensus

networks controlled by static feedback [38–41,46]. as well as in directed 1-dimensional

double-integrator networks [45,46].

Improved scaling of these metrics were demonstrated in 1-dimensional vehicle

strings with directed nearest-neighbor interactions [46]. However, as in the undirected

case, coherence cannot be achieved in these systems without absolute state measure-

ments, using directed nearest neighbor feedback [44]. When undirected second order

consensus networks are additionally equipped with dynamic feedback with undirected

interconnections, at least one type of absolute state measurement can uniformly bound

the state deviation from the average with respect to network size [43,48]. However,

the scaling properties of standard second order consensus networks with directed
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interconnections in multiple spatial dimensions remain to be investigated.

We have shown in Chapter 5 that double-integrator networks with more general

directed feedback interconnections (emitting normal weighted Laplacian matrices) can

attain improved performance. In this chapter, we take a step toward determining

whether or not a directed feedback structure can improve how performance scales

with respect to network size by considering uni-directional feedback in networks with

arbitrary but finite spatial dimension. More precisely, we compare the performance

of a network of agents with double-integrator dynamics and directed uni-directional

local state measurements defined over a multi-dimensional torus to that of the net-

work with symmetric bi-directional local state measurements studied in [1]. These

models represent, for example, spatially invariant vehicle networks where comparible

performance in systems with directed uni-directional feedback structures would be

desirable due to the reduced sensing/communication requirements. Performance of

the network is evaluated in terms of both a local metric quantifying the variance of

an agent’s position error with respect to its nearest predecessor and a global metric

describing the variance of each agent’s position deviation from the network average

(dispersion of consensus error). We compute these metrics using an H2 norm of the

system subjected to distributed stochastic disturbances for system outputs defined

to yield the desired metrics. We then extend the scaling laws in [1] to the case of

directed uni-directional feedback.

We exploit the spatial invariance of the interconnection structure to define the

feedback laws and the performance outputs in terms of circular convolution operators

based on the machinary used in [1]. After establishing the necessary and sufficient

condition for input-output stability, we provide the closed-form solution for the H2

norm of the system for general feedback laws and performance outputs. Then we focus

on the special case of directed uni-directional feedback which employs ‘look-ahead’

state measurements. For networks with absolute measurements of velocity, we provide
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a sufficient condition under which the H2 norm (performance metric) for a system

with uni-directional feedback lower bounds the H2 norm of systems with symmetric

bi-directional (‘look-ahead / look-behind’) feedback for any finite network size and

spatial dimension. This bound provides a special case of Theorem 5.2 from Chapter 5.

We then show that local and global metrics of disorder scale identically in systems

with uni-directional and symmetric bi-directional feedback if at least one type of

absolute state (position or velocity) feedback is employed. Conversely, in the absence

of absolute velocity measurements we prove that it is impossible to maintain the

input-output stability with uni-directional relative position and velocity feedback as

the network size increases for arbitrary spatial dimension, which is consistent with the

observations for 1-dimensional cyclic networks [84–87]. We note that a similar result

more recently appeared in [88]. This condition represents an important difference

between the uni-directional and the symmetric bi-directional feedback structures, as

the latter maintains the stability for arbitrarily large spatially invariant networks [1].

Our results highlight a trade-off between performance and stability in large-scale

networks with uni-directional feedback; while achieving comparable performance with

reduced communication can be favorable, it comes at the cost of degradation of

stability for certain feedback interconnection structures. Numerical examples confirm

the theoretical results regarding performance scaling with respect to network size and

the loss of stability for arbitrarily large networks without absolute velocity feedback.

The remainder of this chapter is organized as follows. Section 7.1.1 defines the

notation and provides the mathematical background used throughout. Section 7.1.2

presents the system models and Section 7.1.3 presents the feedback policies. Section

7.1.4 describes the performance metrics. Sections 7.2 provides the conditions for the

input-output stability of the system, the closed-form solution for the H2 norm as well

as a description of how performance scales with respect to network size and dimension.

Section 7.3 presents numerical examples supporting the theoretical results. Section
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7.4 concludes the chapter.

7.1 Problem Formulation

7.1.1 Preliminaries and Notation

We consider systems connected over the d-dimensional torus Zd
N = ZN ×· · ·×ZN defined

as the d-fold cartesian product of the 1-dimensional torus ZN = {0, 1, . . . , N − 1}. An

array A is defined as the mapping A : Zd
N ↦→ Cp×q where p and q are scalars and

Ak denotes each of the array elements corresponding to the spatial multi-index

k = (k1, . . . , kd) ∈ Zd
N . We denote vector-valued arrays (q = 1) with a lower-case

letter. For example, the position state x(t) is an array whose elements xk(t) ∈ Rd

represent the position of the kth system in d spatial dimensions. Addition is performed

modulo N for indices k, l ∈ Zd
N , i.e. m = k + l with mi = (ki + li)N for i = 1, . . . , d.

The multi-dimensional circular convolution of the arrays A and h yields an array

z with elements given by

zk =
∑︂

l∈Zd
N

Ak−lhl. (7.1)

We equivalently write (7.1) as z = Ah, where A denotes the circular convolution

operator associated with array A acting on array h. The multi-dimensional Discrete

Fourier Transform (DFT) of A is defined by

Ân :=
∑︂

k∈Zd
N

Ake
−j 2π

N
n·k, (7.2)

where (·) denotes the scalar product, n ∈ Zd
N is the wavenumber and Ân is the Fourier

symbol of A. It is a well-known fact that the DFT diagonalizes a circular convolution

operator [1], so

ẑn = Ânĥn ∀n ∈ Zd
N .

If Ân is a square matrix, then the eigenvalues of the circular convolution operator

A are the union of the eigenvalues of all Ân, i.e. σ(A) = ∪n∈Zd
N
σ(Ân), where σ(·)
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denotes the spectrum of its argument.

The adjoint (conjugate transpose) of an operator (matrix) Q is denoted by Q∗.

E{·} denotes the expected value of a random variable and ∥·∥H2 denotes the H2 norm

of a linear system. The zero and identity operators (matrices) are denoted by O

(0) and I (I), respectively. T denotes an array with identical non-zero elements, i.e.

Tk = Tl ≠ 0 for all k, l ∈ Zd
N , and 1 denotes the array with elements 1k = I for all

k ∈ Zd
N . The arrows ↗ and ↘ repsectively denote the left and right limits to a real

number. O(·) denotes the approximation order.

7.1.2 Double-Integrator Systems over the d-Dimensional
Torus

We consider M := Nd identical systems defined over Zd
N each having double-integrator

dynamics given by

v̇k = uk + wk, (7.3)

vk = ẋk ∀k ∈ Zd
N ,

where xk ∈ Rd, vk ∈ Rd, uk ∈ Rd and wk ∈ Rd respectively denote the position,

velocity, control input and an exogenous local disturbance. The control input is of the

form

uk = −goxk − fovk −
∑︂

l∈Zd
N

Gk−lxl −
∑︂

l∈Zd
N

Fk−lvl, (7.4)

where go, fo ≥ 0 are the feedback gains associated with the measurements of states with

respect to an absolute reference frame (absolute feedback). The circular convolutions

of the states with the feedback arrays G : Zd
N ↦→ Rd×d and F : Zd

N ↦→ Rd×d define

feedback laws based on relative state measurements (relative feedback).

Combining (7.3) and (7.4) yields[︄
ẋ
v̇

]︄
=
[︄

O I
−A −B

]︄ [︄
x
v

]︄
+
[︄
O
I

]︄
w, (7.5)
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where A = goI + G and B = foI + F . Here, G and F are the circular convolution

operators associated with the arrays G and F , respectively.

Remark 7.1. Since the feedback laws in (7.5) are determined by circulant operators,

the feedback laws are invariant to the specific location k ∈ Zd
N , i.e. (7.5) describes a

spatially invariant system [1,89].

Assumptions

The following standard assumptions [1] will be imposed on G and F throughout the

chapter. Note that for clarity of exposition we state them only in terms of G.

(A1) The feedback laws satisfy the property

∑︂
k∈Zd

N

Gk = 0,

which implies that T ∈ ker (G).

(A2) If d ≥ 2, the feedback laws are decoupled in spatial coordinates, i.e. the

interactions in the ith spatial coordinate only depend on the state measurements in

that spatial coordinate, for i = 1, . . . , d. This results in diagonal array elements Gk.

In addition setting the non-zero entries of Gk to be equal leads to

Gk = gkI, gk ∈ R.

This condition also implies that the Fourier symbol of G is a scalar matrix

Ĝn = ĝnI.

Therefore, by a slight abuse of notation we will refer to ĝn as the Fourier symbol of G.

(A3) If (A2) holds, the diagonal entries of each array element Gk = gkI satisfy the

property

gk

⎧⎨⎩> 0, k1 = · · · = kd = 0
≤ 0, otherwise.

104



For spatially invariant systems, (A1) - (A3) generalize the properties of a circulant

weighted graph Laplacian matrix to systems with arbitrary spatial dimension.

Under these assumptions, G and F can be specified to define feedback laws based

on relative state measurements. In this setting, if go > 0 (fo > 0), then the system

is said to have absolute position (velocity) feedback. If go = 0 (fo = 0), then we

assume the system has relative position (velocity) feedback. If no relative position

(velocity) feedback is used, then we assume go > 0 (fo > 0).

7.1.3 Feedback Policies

We are interested in examining the effect of directed communication on the performance

of large-scale networks by comparing systems with uni-directional and symmetric

bi-directional feedback. In particular, we will investigate how the performance scales

with network size. We next define the two feedback policies and then specify the

peformance metrics of interest in the subsequent subsection.

Bi-directional Feedback

In this communication structure, each agent employs a look-ahead / look-behind

policy, in which the information flow in either direction is equally weighted. For

example, if d = 1, this feedback interconnection is attained through the control input

uk = −goxk − fovk − 1
2[γg(xk − xk+1) + γg(xk − xk−1)

+γf (vk − vk+1) + γf (vk − vk−1)],

where γg, γf ≥ 0 are control gains and the factor of 1
2 provides a normalization

of weights with respect to the uni-directional feedback described in the following

subsection. For d ≥ 1, the array associated with the corresponding local symmetric
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bi-directional feedback operator Q is given by

Qk =

⎧⎪⎪⎨⎪⎪⎩
dI, k1 = · · · = kd = 0
−1

2I, ki = ±1, kj = 0 for j ̸= i

0, otherwise,
(7.6)

such that the operators G and F in (7.5) are given by

G = γgQ, F = γfQ. (7.7)

This feedback law was studied extensively in [1, 43].

Uni-directional Feedback

For directed communication, we consider uni-directional (look-ahead) feedback. For

d = 1, the associated control input is given by

uk = −goxk − fovk − γg(xk − xk+1) − γf (vk − vk+1).

For d ≥ 1, the array associated with the corresponding local uni-directional feedback

operator R is given by

Rk =

⎧⎪⎪⎨⎪⎪⎩
dI, k1 = · · · = kd = 0
−I, ki = −1, kj = 0 for j ̸= i

0, otherwise.
(7.8)

In this case, the operators G and F in (7.5) are given by

G = γgR, F = γfR. (7.9)

The following proposition about the Fourier symbols of Q and R will be used in the

subsequent results.

Proposition 7.1. The respective Fourier symbols q̂n and r̂n of the circular convolution

operators Q and R defined by (7.6) and (7.8) are given by

r̂n =
d∑︂

i=1

(︂
1 − ej 2π

N
ni

)︂
, q̂n =

d∑︂
i=1

(︃
1 − cos

(︃2π
N
ni

)︃)︃
. (7.10)

Proof. Since Q can be decomposed as Q = R+R∗

2 , it holds that q̂n = Re (r̂n) for n ∈ Zd
N .

Using the definition of the DFT given in (7.2) leads to R̂n =
(︂
d−∑︁d

i=1 e
j 2π

N
ni

)︂
I. The

result is then obtained by invoking (A2), i.e. R̂n = r̂nI.
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7.1.4 Performance Metrics

We now define system outputs that allow us to quantify local and global metrics

of system disorder through the input-output H2 norm of a system of the form (7.5)

for the two feedback interconnection structures (7.7) and (7.9). These metrics were

detailed in [1] for systems with the feedback interconnection structure (7.7) but we

repeat their definitions here for completeness.

Since we focus on spatially invariant systems, it is convenient to define a nodal

performance metric of the form

Pk := lim
t→∞

E{y∗
k(t)yk(t)}, (7.11)

where yk is the performance output given by the circular convolution

yk =
∑︂

l∈Zd
N

Ck−lxl ∀k ∈ Zd
N . (7.12)

Here, we assume that Ck satisfies assumptions (A1) and (A2). Due to (A1), the

consensus modes of (7.5) will be unobservable from the system output

y =
[︂
C O

]︂ [︄x
v

]︄
, (7.13)

where C represents the respective circular convolution operator associated with the

operation in (7.12). We denote the input-output system defined by (7.5) and (7.13)

by H. In this chapter we limit the analysis to performance metrics based solely on the

position, which is common for coordination [1, 43] and phase synchronization [49,50]

applications.

For white noise disturbance inputs w with unit covariance, the squared H2 norm

of H quantifies the steady-state variance of the output [49]

∥H∥2
H2 = lim

t→∞
E{y∗(t)y(t)}, (7.14)

whenever H is input-output stable. Since the performance output of each system yk is

also spatially invariant, it is sufficient to divide (7.14) by the network size to recover
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each system’s metric Pk, i.e.

Pk = 1
M

∥H∥2
H2 ,

where we recall that M = Nd.

7.1.4.1 Local Error

This metric quantifies the steady-state variance of the deviation of each agent’s position

from that of its predecessor. For d = 1, the corresponding output for each system is

yk = xk − xk+1.

The system output (7.13) for d ≥ 1 can be obtained using the right shift operator

along dimension i, namely Di such that

(Dix)(k1,...,ki,...,kd) := x(k1,...,ki+1,...,kd),

and specifying

C =

⎡⎢⎢⎣
I − D1

...
I − Dd

⎤⎥⎥⎦ ⇒
(yk)i = x(k1,...,ki,...,kd)

− x(k1,...,ki+1,...,kd),
i = 1, . . . , d.

(7.15)

The local metric of disorder for each system at location k is then given by

Ploc = lim
t→∞

E

{︄
d∑︂

i=1
(yk)∗

i (yk)i

}︄
. (7.16)

7.1.4.2 Deviation from the Average

This metric quantifies the steady-state variance of the deviation of each system’s

position from the average position of all of the systems. Therefore each system’s

output gives the consensus error

yk = xk − 1
M

∑︂
l∈Zd

N

xl. (7.17)

In this case, the output operator C becomes

C = I − 1
M

J , (7.18)
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where J denotes the circular convolution operator associated with the array 1. The

corresponding performance metric of the form (7.11) quantifies the global degree of

disorder in the network and will be denoted by Pdav for each system.

7.2 Disorder in Large-scale Uni-directional
Networks

In this section, we first provide conditions for the input-output stability of H. We

then derive the closed-form solution of its H2 norm, for the case in which the directed

feedback operators A and B (satisfying (A1)-(A3)) in (7.5) and the directed output

operator C (satisfying (A1) and (A2)) in (7.13) are circular convolution operators.

These results for directed networks can be used to recover those in [1], which deal

with the special case of undirected feedback.

Then we focus on the uni-directional feedback structure described in (7.9) and

the specific performance metrics Ploc and Pdav defined through the outputs in (7.15)

and (7.17). We investigate these metrics under various combinations of absolute and

relative feedback and establish upper bounds on the H2 norm of H as a function of

network size and spatial dimension. In particular, we provide sufficient conditions

under which the uni-directional and the symmetric bi-directional feedback provide the

same performance scaling.

Furthermore, for certain cases lacking absolute velocity feedback we show that

uni-directional local measurements cannot maintain stability with finite control gains

in any number of spatial dimensions if the network size is arbitrarily large.

7.2.1 Input-Output Stability

In this subsection, we derive conditions for the input-output stability of H. We

first provide a condition for the case of any circulant output operator C satisfying

assumptions (A1) and (A2), and then restate this condition for the specific cases of
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Ploc and Pdav.

We begin by stating a result from [9], which provides a generalization of the Routh-

Hurwitz stability criterion to a second order polynomial with complex coefficients.

Proposition 7.2 (Lemma 2, [9]). The roots of a complex-coefficient polynomial

p(s) = s2 + βs+ α, where α, β ∈ C, satisfy Re(s) < 0 if and only if the inequalities

Re(β) > 0 and

Re (α) Re (β)2 + Im (α) Im (β) Re (β) − Im (α)2 > 0

simultaneously hold.

The following proposition provides the necessary and sufficient condition for the

input-output stability of H. The proof builds upon (Corollary 3, [89]).

Proposition 7.3. System H defined by (7.5) and (7.13) is input-output stable if and

only if the inequalities

Re (b̂n) > 0 and (7.19a)

Θn := Re (ân) Re (b̂n)2 (7.19b)

+ Im (ân) Im (b̂n) Re (b̂n) − Im (ân)2 > 0

simultaneously hold for all non-zero wavenumbers n ̸= 0, n ∈ Zd
N such that ĉn ̸= 0.

Proof. Taking the DFT of the arrays on both sides of (7.5) and (7.13), one can obtain

n subsystems of the form[︄ˆ︁ẋnˆ︁v̇n

]︄
=
[︄

0 I

−Ân −B̂n

]︄ [︄
x̂n

v̂n

]︄
+
[︄
0
I

]︄
ŵn,

ŷn =
[︂
Ĉn 0

]︂ [︄x̂n

v̂n

]︄
, n ∈ Zd

N . (7.20)

Due to Assumption (A2), each subsystem can be decomposed into i identical subsys-
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tems [︄
(ˆ︁ẋn)i

(ˆ︁v̇n)i

]︄
=
[︄

0 1
−ân −b̂n

]︄ [︄
(x̂n)i

(v̂n)i

]︄
+
[︄
0
1

]︄
(ŵn)i,

(ŷn)i =
[︂
ĉn 0

]︂ [︄(x̂n)i

(v̂n)i

]︄
, i = 1, . . . , d. (7.21)

Denoting the transfer function of the realization in (7.20) by Ĥn(s) and that of the

realization in (7.21) by ĥn(s) leads to

Ĥn(s) = ĥn(s)I and ĥn(s) = ĉn

s2 + b̂ns+ ân

, (7.22)

where we used the fact that (7.21) is in controllable canonical form. Since all of the

modes associated with (7.20) are controllable, the poles of H(s) are precisely given

by the union of the poles of Ĥn(s) for all wavenumbers n ∈ Zd
N such that ĉn ̸= 0, i.e.

they are determined by the observable modes. Since Ck satisfies Assumption (A1), we

can use the definition of the DFT in (7.2) to obtain

Ĉ0 =
∑︂

k∈Zd
N

Ck = 0,

which implies that ĉ0 = 0 due to Assumption (A2), i.e. the output operator C has a

zero Fourier symbol at n = 0. Therefore it is sufficient to consider only n ̸= 0.

Then disregarding the multiplicities, the poles of H(s) are precisely given by the

poles of ĥn(s) for all non-zero wavenumbers n ̸= 0, n ∈ Zd
N such that ĉn ̸= 0. Invoking

Proposition 7.2, the poles satisfy Re(s) < 0 if and only if the inequalities in (7.19)

simultaneously hold.

The interpretation of Proposition 7.3 is as follows. Since the output operator C

satisfies (A1), the consensus modes of (7.5) associated with the wavenumber n = 0

(which are unstable in the absence of absolute feedback [46]) are unobservable from

the output. Therefore, the input-output stability of H is equivalent to the stability of

the observable modes associated with the non-zero wavenumbers. The next Lemma

specializes this result to the cases of Ploc and Pdav.
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Table 7-I. In systems with uni-directional feedback, asymptotic scalings of upper bounds
on performance metrics with respect to network size M in finite spatial dimension d.
Quantities are up to a multiplicative factor that is independent of M ,γg or γf .

Ploc Pdav

abs. pos. & abs. vel.(︂
fo ≥ γg

γf
, γf > 0

)︂ 1
max{γg ,γf } 1

rel. pos. & abs. vel.(︂
fo ≥ γg

γf
, γf > 0

)︂ 1/γg
1

γg

⎧⎪⎪⎨⎪⎪⎩
M d = 1
ln(M) d = 2
1 d ≥ 3

abs. pos. & rel. vel.
(γg = 0) 1/γf

1
γf

⎧⎪⎪⎨⎪⎪⎩
M d = 1
ln(M) d = 2
1 d ≥ 3

abs. pos. & rel. vel.
(γg > 0) + ∞ + ∞

rel. pos. & rel. vel. + ∞ + ∞

Lemma 7.1. Consider the output matrices (7.15) and (7.18) associated with the

performance metrics Ploc and Pdav. System H defined by (7.5) and (7.13) is input-

output stable if and only if the inequalities in (7.19) simultaneously hold for all

n ̸= 0, n ∈ Zd
N .

Proof. We first consider Ploc. Using (7.15) we get Q = 1
2C∗C [1] therefore |ĉn|2 = 2q̂n.

Then for any n such that n ≠ 0, we observe from (7.10) that q̂n > 0, which implies

ĉn ̸= 0. For Pdav, ĉn = 1 for any n ̸= 0 [1]. In both cases ĉn ̸= 0 for all n ̸= 0, so

Proposition 7.3 yields the result.

7.2.2 Performance Scaling with Respect to Network Size

In this subsection we present the closed-form solution for the H2 norm of H. We

then derive corresponding scaling bounds for the case of uni-directional feedback, in

analogy with those reported in [1] for symmetric bi-directional feedback.

We first discuss the general setting with circulant directed feedback operators A

and B (satisfying (A1)-(A3)) and a circulant directed output operator C (satisfying
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(A1) and (A2)).

Lemma 7.2. Suppose that system H defined by (7.5) and (7.13) is input-output stable.

Then its H2 norm is given by

∥H∥2
H2 = d

2
∑︂

ĉn ̸=0,
n̸=0,n∈Zd

N

|ĉn|2 Re (b̂n)
Θn

, (7.23)

where Θn is given by

Θn = Re (ân) Re (b̂n)2 + Im (ân) Im (b̂n) Re (b̂n) − Im (ân)2.

Proof. Since the H2 norm of H is invariant to the change of basis that yields (7.20) [1],

it is given by

∥H∥2
H2 =

∑︂
ĉn ̸=0,

n ̸=0,n∈Zd
N

∥Ĥn∥2
H2 = d

∑︂
ĉn ̸=0,

n̸=0,n∈Zd
N

∥ĥn∥2
H2 ,

where we used (7.22) and the fact that unobservable modes have no contribution.

Based on the realization of ĥn given in (7.21), one can solve the associated Lyapunov

equation [︄
0 1

−ân −b̂n

]︄∗[︄
ϕ̂11 ϕ̂12
ϕ̂

∗
12 ϕ̂22

]︄
+
[︄
ϕ̂11 ϕ̂12
ϕ̂

∗
12 ϕ̂22

]︄[︄
0 1

−ân −b̂n

]︄
=
[︄
−ĉ∗

nĉn 0
0 0

]︄

and use the fact that ∥ĥn∥2
H2 = ϕ̂

(n)
22 . Solving the Lyapunov equation leads to

ϕ̂
(n)
22 = |ĉn|2 Re (b̂n)

2Θn
and summing over all of the observable modes yields the result.

Lemma 7.2 indicates that the H2 norm depends on both the real and the imaginary

parts of the Fourier symbols of A and B. This is in contrast to the case in which the

feedback structure is undirected, where the terms with the imaginary parts do not

exist.

Remark 7.2. If the feedback operators A and B have even symmetry, i.e. if Ak = A−k

and Bk = B−k for all the non-zero entries of the arrays A and B, then the feedback is

undirected and Fourier symbols ân and b̂n are real. Then (7.23) reduces to the result
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in [1]

∥H∥2
H2 = d

2
∑︂

ĉn ̸=0,
n̸=0,n∈Zd

N

|ĉn|2

ânb̂n

. (7.24)

The following lemma provides two sufficient conditions under which the H2 norm of

the system with uni-directional feedback described by (7.9) respectively lower bounds

or equals the H2 norm of the system with symmetric bi-directional feedback described

by (7.7). At least one of these conditions can be satisfied for any finite network size in

arbitrary spatial dimension given absolute measurements of at least one state variable

(position or velocity).

Lemma 7.3. Consider the system H defined by (7.5) and (7.13). Let HQ and HR

respectively denote the systems that have the feedback laws defined by (7.7) and (7.9).

Then

1. ∥HR∥2
H2 ≤ ∥HQ∥2

H2 if the following inequality holds

γf

[︄
fo + γf

d∑︂
i=1

(︃
1 − cos

(︃2π
N
ni

)︃)︃]︄
− γg ≥ 0, (7.25)

for all non-zero wavenumbers n ̸= 0, n ∈ Zd
N such that ĉn ̸= 0.

2. ∥HR∥2
H2 = ∥HQ∥2

H2 if γg = 0.

Proof. We first consider the stability of HR, which has

ân = go + γgr̂n and b̂n = fo + γf r̂n.

It holds that Re(r̂n) = q̂n = ∑︁d
i=1

(︂
1 − cos

(︂
2π
N
ni

)︂)︂
due to (7.10) in Proposition 7.1

and we see by inspection that q̂n > 0 for all n ̸= 0, n ∈ Zd
N . Recalling that

Θn = (go + γg q̂n)(fo+γf q̂n)2 (7.26)

+γg Im (r̂n)2 [γf (fo + γf q̂n) − γg] ,
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we observe that Θn > 0 for all n ̸= 0, n ∈ Zd
N such that ĉn ̸= 0 in either case of

(7.25) or γg = 0 (since absolute or relative feedback is used for each state variable).

Combining this with the fact that Re(b̂n) > 0 for n ̸= 0, we observe that (7.19) is

satisfied for all n ≠ 0, n ∈ Zd
N such that ĉn ≠ 0, hence HR is input-output stable

by Proposition 7.3. Setting Im (ân) = Im (b̂n) = 0 in (7.19) directly leads to the

input-output stability of HQ, which has real ân and b̂n.

Then one can rewrite (7.23) as

∥HR∥2
H2 = d

2
∑︂

ĉn ̸=0,
n̸=0,n∈Zd

N

|ĉn|2(fo + γf q̂n)
Θn

.

Similarly, (7.24) reduces to

∥HQ∥2
H2 = d

2
∑︂

ĉn ̸=0,
n̸=0,n∈Zd

N

|ĉn|2

(go + γg q̂n)(fo + γf q̂n) .

Finally the inequality in (7.25) leads to

|ĉn|2(fo + γf q̂n)
Θn

≤ |ĉn|2

(go + γg q̂n)(fo + γf q̂n) , (7.27)

for all n ̸= 0, n ∈ Zd
N such that ĉn ̸= 0. Summation over such n yields the first result.

If γg = 0, equality holds in (7.27) due to (7.26). This leads to the second result.

Lemma 7.3 provides a sufficient condition under which uni-directional feedback

performs at least as well as symmetric bi-directional feedback in finite spatial dimension,

for any circulant output operator C (satisfying (A1) and (A2)). Although achieving

equal or better performance with a smaller number of relative state measurements is

counterintuitive, this is possible through well tuned gains, for example using those

that satisfy the inequality (7.25) in Lemma 7.3. However, in certain instances uni-

directional feedback cannot perform better than symmetric bi-directional feedback, e.g.

if the sign of this inequality is reversed. It must be emphasized that with appropriate

gain selection, uni-directional feedback can be preferable due to only requiring single

directional sensing.
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We next employ this result to establish upper bounds on Ploc and Pdav, which we

then invoke to specify how the performance scales with the network size M . The

asymptotic scalings of the performance metrics for the systems with uni-directional

feedback are summarized in Table 7-I.

Theorem 7.1. Consider the system with uni-directional feedback, namely HR. Then,

the upper bounds on the performance metrics have the following asymptotic scalings in

finite spatial dimension d as N → ∞.

1. Suppose that absolute velocity feedback is present, i.e. fo > 0. Then for γf > 0 and

fo ≥ γg

γf
,

(a) Absolute Position and Absolute Velocity Feedback

Ploc ∼ 1
max {γg, γf}

,

Pdav ∼ 1,

(b) Relative Position and Absolute Velocity Feedback

Ploc ∼ 1/γg,

Pdav ∼ 1
γg

⎧⎪⎪⎨⎪⎪⎩
M d = 1
ln(M) d = 2
1 d ≥ 3

.

2. Absolute (but no relative) Position (go > 0 and γg = 0) and Relative Velocity

Feedback

Ploc ∼ 1/γf ,

Pdav ∼ 1
γf

⎧⎪⎪⎨⎪⎪⎩
M d = 1
ln(M) d = 2
1 d ≥ 3

.

Here the quantities are given up to a multiplicative factor that is independent of M ,

γg or γf .
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Proof. It is shown in [1] that the upper bounds given above hold for HQ, i.e. the

system with symmetric bi-directional feedback given by (7.7). We start by proving

the first result. Recall from the proof of Lemma 7.1 that ĉn ≠ 0 for all n ̸= 0 in the

case of Ploc and Pdav. Therefore, we invoke the first result of Lemma 7.3 for all n ̸= 0.

By assumption fo ≥ γg

γf
, which implies that (7.25) is satisfied for all n ̸= 0, n ∈ Zd

N

because the sum term is positive for such n. This yields ∥HR∥2
H2 ≤ ∥HQ∥2

H2 , so the

upper bounds on Ploc and Pdav also hold for HR. The second result follows from a

similar argument and the second result of Lemma 7.3, since ∥HR∥2
H2 = ∥HQ∥2

H2 if

γg = 0.

Remark 7.3. In the absence of absolute velocity feedback, i.e. if fo = 0, satisfying

(7.25) for given γg > 0 and large wavenumbers n requires that γf → ∞ as N → ∞.

In this case, the scaling laws of Theorem 7.1 do not necessarily hold.

As we demonstrate next for the system with uni-directional feedback, lack of

absolute velocity measurements in systems with relative position and velocity feedback

leads to instability (i.e. infinite H2 norm) in an arbitrarily large network connected

over a multi-dimensional torus.

Theorem 7.2. Consider the system with uni-directional feedback, namely HR and the

performance metrics Ploc and Pdav. Suppose that fo = 0 and γg > 0, i.e. the system

either has

1. Absolute (with relative) Position and Relative Velocity Feedback, or

2. Relative Position and Relative Velocity Feedback.

In finite spatial dimension d, if go, γg and γf are finite, then there exists a finite N̄ > 0

such that for all N > N̄ , HR is unstable, i.e. does not have a finite H2 norm.

Proof. For absolute (with relative) position and relative velocity feedback, using (7.10)
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one can write (7.26) as

Θn =goγ
2
f

(︄
d∑︂

i=1
1 − cos 2π

N
ni

)︄2

+γgγ
2
f

(︄
d∑︂

i=1
1 − cos 2π

N
ni

)︄3

+γg

(︄
d∑︂

i=1
sin 2π

N
ni

)︄2[︄
γ2

f

(︄
d∑︂

i=1
1 − cos 2π

N
ni

)︄
− γg

]︄
. (7.28)

Consider the wavenumber n = (N − 1, . . . , N − 1). Then 2π
N
ni ↗ 2π as N → ∞.

Therefore, if we approximate cos(·) and sin(·) around 2π using the first three terms in

the Taylor series expansion, we obtain

cos(2π − δ) ≈ 1 − δ2

2 and sin(2π − δ) ≈ −δ, δ > 0.

Using these expressions one can re-write Θ(N−1,...,N−1) as

Θ(N−1,...,N−1) ≈
γgγ

2
fd

3

8 δ6+γ2
fd

2(go

4 + γgd

2 )δ4−γ2
gd

2δ2.

As N → ∞, δ ↘ 0 which leads to

Θ(N−1,...,N−1) ≈ −O(δ2).

Thus for any finite go, γg and γf , there exists a finite N̄ > 0 such that for all N > N̄ ,

it holds that Θ(N−1,...,N−1) < 0, i.e. the second inequality in (7.19) is violated for

n = (N − 1, . . . , N − 1). Then by Lemma 7.1 HR is unstable, i.e. does not have a

finite H2 norm. For relative position and velocity feedback, we have go = 0 and the

same argument holds.

Remark 7.4. Due to Proposition 7.3, we note that the proof of Theorem 7.2 holds

for any output of the form (7.13) such that ĉ(N−1,...,N−1) ≠ 0, i.e. the modes which

become unstable as the network size grows are observable from the output.

Systems with double-integrator [84] or more general linear dynamics [85–87], which

have directed relative feedback defined over the 1-dimensional torus, have been shown

to exhibit similar instability behavior. While our result provides a generalization to
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the case of uni-directional feedback over a multi-dimensional torus, a similar result

appeared for directed bi-directional multi-neighbor interactions over the same lattice

structure [88].

Theorem 7.2 highlights the limitation of uni-directional relative feedback. If

relative position feedback is used, it is not possible to find a set of finite control gains

that stabilizes arbitrarily large networks in any finite number of spatial dimension

unless the agents have access to their absolute velocity. However, networks with

uni-directional relative feedback can not only be stabilized but also provide the same

performance scaling as that of the symmetric bi-directional feedback using at least

one type (position or velocity) of absolute state information, as stated in Theorem 7.1.

Namely, either by adding absolute velocity feedback to the cases with relative position

feedback, or by eliminating relative position feedback given that absolute position

measurements are available. While uni-directional feedback can lead to instability in

arbitrarily large networks without absolute state information, access to it in position

or velocity combined with well-tuned gains can lead to a favorable scheme, since

the same performance scaling can be achieved with reduced sensing/communication

requirements.

The next section provides numerical examples that illustrate the results in theorems

7.1 and 7.2.

7.3 Numerical Examples

In this section, we provide two numerical examples that confirm the theory presented

in the previous section. The first one shows the performance scalings in the case of

relative position and absolute velocity feedback. The second one demonstrates that

stability is lost for finite network size if uni-directional relative position feedback is

used in the absence of absolute velocity feedback.
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Figure 7-1. Pdav and Ploc as a function of the network size M for relative position and
absolute velocity feedback ( go = 0, fo = 1, γg = 1 and γf = 1). Performance scales as
the laws given in Theorem 7.1.
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Figure 7-2. With uni-directional relative position and velocity, but no absolute velocity
feedback (go = 1, fo = 0, γg = 1 and γf = 1), Θn in (7.28) cannot remain positive for
n = (N − 1, . . . , N − 1) and finite N , which leads to instability due to Proposition 7.3.

In Figure 7-1, performance metrics Ploc and Pdav are plotted as a function of the

network size M . For relative position and absolute velocity feedback with the gains

fo = 1 and γg = γf = 1, the performance scaling obeys the laws presented in Theorem

7.1. It is also observed that the uni-directional feedback provides better performance

compared to that of the symmetric bi-directional feedback, which is expected based

on the result of Lemma 7.3, i.e. since the control gains strictly satisfy the inequality

in (7.25).
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We also confirm the result of Theorem 7.2 by plotting Θn in (7.28) for n =

(N − 1, . . . , N − 1) as a function of N with uni-directional relative feedback and no

absolute velocity information (i.e. fo = 0) in Figure 7-2. Specifically, for absolute

(with relative) position and relative velocity feedback with the gains go = 1 and

γg = γf = 1 and spatial dimensions d = 1, . . . , 5, Θ(N−1,...,N−1) cannot remain positive

as N is increased. This leads to instability for finite N due to Proposition 7.3. As

expected, Θ(N−1,...,N−1) goes to zero as N → ∞.

7.4 Summarizing Remarks

We have studied the asymptotic scaling of local and global metrics of disorder in a large-

scale directed network defined over a multi-dimensional torus. We have considered

absolute as well as relative uni-directional state measurements. Our main results

show that absolute state information plays a critical role in the performance and the

stability of large-scale networks if the relative state measurements are uni-directional.

Additionally a well-tuned uni-directional feedback structure can provide the same

performance scaling with network size as the symmetric bi-directional feedback, with

the advantage of requiring less sensing/communication. As a direction of future work,

we will consider the performance scaling of bi-directional interactions with non-equal

weights (a directed feedback structure), which has been shown to improve the transient

behavior [90] but degrade string stability [87] in vehicle platoons.
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Chapter 8

Conclusion and Directions for
Future Work

In this chapter, we provide our concluding remarks and directions for future work.

Our results on inverter-based power systems evaluate the role of heterogeneous

inverter ratings in system performance in terms of the frequency and voltage variances

and the transient resistive power losses that result from maintaining the system

equilibrium in the face of disturbances. This system heterogeneity, which can arise

due to a non-uniform power demand from the inverters, may lead to performance

limitations (in terms of the transient resistive power losses).

We have developed a novel analysis framework in order to evaluate the perfor-

mance of directed networks. Using this framework, we have investigated the role of the

interconnection directionality and the degree of connectivity in network performance.

We have also derived the asymptotic behavior of performance metrics that quan-

tify network disorder for large-scale spatially invariant systems with uni-directional

feedback.

For the class of systems that emit normal weighted Laplacian matrices, which

include spatially invariant systems, our results demonstrate the interplay between

the interconnection directionality and control strategy that determines the network

performance. In this setting, interconnection graphs of single-integrator networks
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can be designed to be directed or undirected (symmetrized version of the directed

graph) without any change in performance. However, this is in contrast to the

performance of double-integrator networks, which can significantly degrade due to

interconnection directionality (compared to the symmetrized topology). In certain

cases, this directionality can be utilized to mitigate this degradation or exceed the

performance of the symmetrized network, depending on the type of state feedback (e.g.

absolute and/or relative measurements of position and/or velocity) used and tuning of

control gains. The trade-off between communication cost and scalability in spatially

invariant double-integrator networks, which arises due to uni-directional feedback,

also indicates the importance of judicious feedback design in directed networks.

We have also demonstrated the non-monotonic relationship between the degree of

connectivity in directed and cyclic ω-nearest neighbor networks (a spatially invariant

topology) and their performance quantified in terms of the aggregate state deviation

from the network average. For a common communication cost (total weighted out-

degree of nodes is equal to the network size), increasing the number of uni-directional

edges does not necessarily improve performance. In addition, we have shown that

all-to-one (imploding star graph) and all-to-all (complete graph) networks with a

common communication cost provide identical performance for the same metric. These

results suggest that performance is determined by not only the degree of connectivity,

but also the underlying communication topology.

Prior to concluding this thesis, we discuss extensions of our results and provide

directions for future work.

8.1 Heterogeneity in Microgrids with Coupled
Frequency and Voltage

In order to understand the performance trade-offs associated with physical constraints

that lead to system heterogeneity (such as a non-uniform power sharing requirement
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among the inverters), we relaxed the common assumption of homogeneous droop

control gains. In this setting, we assumed a decoupling between frequency and voltage

dynamics (equivalently, a small resistance-to-reactance ratio of lines), which reduces

the complexity of the analysis. This leads to a ‘zeroth order’ approximation of the

computed performance metrics, which provides insights on the role of heterogeneity.

As a direction for future work, our analysis can be extended to the case of coupled

frequency and voltage dynamics. In the case of homogeneous inverter ratings, a

perturbation analysis shows the dependence of the approximation error in transient

resistive losses on the resistance-to-reactance ratio [51]. Similar analysis can be used

to extend our results that evaluate system heterogeneity in microgrids.

8.2 Extension of the Results on the
Performance of Directed Networks

Our closed-form solutions, which are obtained for networks defined over arbitrary

directed graphs with at least one globally reachable node, can be used to further

analyze the effect of network topological characteristics on performance. A direction for

future work is to investigate interconnection topologies that emit non-diagonalizable

weighted graph Laplacian matrices. For a class of weighted directed graphs that are

composed of a collection of paths and cycles, the algebraic structure of the adjacency

matrix such as the Jordan canonical form and its associated generalized eigenvectors

can be derived in closed-form [91]. For this class of graphs, evaluating the relationship

between network structure (characterized in terms of the number and size of Laplacian

Jordan blocks) and performance remains as an open question to be addressed using

our closed-form solutions.
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8.3 Generalization of the Scaling Bounds from
Chapter 7

We now revisit systems with double-integrator dynamics that are interconnected over

the d-dimensional torus Zd
N and discuss possible generalizations of the asymptotic

scaling of bounds on the performance metrics that are presented in Chapter 7. As

given by (7.5), relative position and velocity feedback laws are respectively defined

by the circular convolution operators G and F . The uni-directional feedback policy

which is given by (7.8) and (7.9) can be generalized to a policy that permits each

agent to have access to relative state measurements with respect to a bounded number

of neighbors. In other words, the feedback operators G and F satisfy the locality

property [43]

Gk = 0 for |ki| > q, i ∈ {1, . . . , d}. (8.1)

In this setting, the feedback interconnections of both the position and the velocity

states can have directionality.

Similar to Chapter 7, we consider performance metrics that quantify network

disorder. We use the same metric Pdav, which quantifies the state deviation from the

network average and is given by the output operator (7.18), in order to capture the

global degree of disorder. However, in order to evaluate the local degree of disorder,

we can consider a class of metrics that generalizes the metric that quantifies the state

deviation of each agent with respect to its predecessor, which is given by the output

operator (7.15). Imposing the locality property in (8.1) on the output operator C

leads to a performance output that is defined by a weighted sum of states of each

agent and a bounded number of its neighbors

yk =
∑︂

l∈Zd
N ,

|li|≤q, i∈{1,...,d}

ck−lxl. (8.2)
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The metric of local disorder for each agent at location k is then given by

Ploc = lim
t→∞

E

{︄
d∑︂

i=1
(yk)∗

i (yk)i

}︄
. (8.3)

In addition to metrics in (7.13) which are position-based, we can also consider velocity-

based metrics

y =
[︂
O C

]︂ [︄x
v

]︄
. (8.4)

We now present conjectures on how performance metrics Pdav and Ploc scale

asymptotically, for respective position and velocity-based outputs (7.13) and (8.4).

Conjecture 8.1. Consider the position-based performance output (7.13). Suppose

that directed feedback operators G and F satisfy the locality property in (8.1). Then as

N → ∞, the upper and lower bounds on performance scale asymptotically as

1. Suppose that absolute velocity feedback is present, i.e. fo > 0.

(a) Absolute Position and Absolute Velocity Feedback

Ploc ∼ 1,

Pdav ∼ 1,

(b) Relative Position and Absolute Velocity Feedback

Ploc ∼ 1,

Pdav ∼

⎧⎪⎪⎨⎪⎪⎩
M d = 1
ln(M) d = 2
1 d ≥ 3

.

2. Absolute (but no relative) Position (go > 0 and γg = 0) and Relative Velocity

Feedback

Ploc ∼ 1,

Pdav ∼

⎧⎪⎪⎨⎪⎪⎩
M d = 1
ln(M) d = 2
1 d ≥ 3

.
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Here the quantities are given up to a multiplicative factor that is independent of M .

We now present the conjecture on the asymptotic scaling of velocity-based perfor-

mance metrics.

Conjecture 8.2. Consider the velocity-based performance output (8.4). Suppose that

directed feedback operators G and F satisfy the locality property in (8.1). Then as

N → ∞, the upper and lower bounds on performance scale asymptotically as

1. Suppose that absolute velocity feedback is present, i.e. fo > 0.

(a) Absolute Position and Absolute Velocity Feedback

Ploc ∼ 1,

Pdav ∼ 1,

(b) Relative Position and Absolute Velocity Feedback

Ploc ∼ 1,

Pdav ∼ 1.

2. Absolute (but no relative) Position (go > 0 and γg = 0) and Relative Velocity

Feedback

Ploc ∼ 1,

Pdav ∼

⎧⎪⎪⎨⎪⎪⎩
M d = 1
ln(M) d = 2
1 d ≥ 3

.

Here the quantities are given up to a multiplicative factor that is independent of M .

The preliminary results in conjectures 8.1 and 8.2 can be respectively summarized

in tables 8-I and 8-II. We note that when the performance output is position-based,

the same asymptotic scaling of bounds on both local and global degrees of disorder
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in networks with uni-directional feedback, which are given in Theorem 7.1, hold

for more general directed feedback operators that satisfy the locality property in

(8.1). Comparing the position and velocity-based performance metrics shows that

their asymptotic behavior differs only in the case of global disorder Pdav and relative

position and absolute velocity feedback. This feedback strategy can uniformly bound

the asymptotic scaling of global network disorder in terms of the velocity states. We do

not consider the cases of absolute (with relative) position and relative velocity feedback

and relative position and relative velocity feedback; as directed interconnections over

toric lattices lead to instability with these feedback strategies for sufficiently large but

finite network size [88].

Table 8-I. In systems with directed feedback, asymptotic scalings of upper and lower
bounds on position-based performance metrics with respect to network size M in finite
spatial dimension d. Quantities are up to a multiplicative factor that is independent of M .

Ploc Pdav

abs. pos. & abs. vel. 1 1

rel. pos. & abs. vel. 1
M d = 1
ln(M) d = 2
1 d ≥ 3

abs. pos. & rel. vel.
(γg = 0) 1

M d = 1
ln(M) d = 2
1 d ≥ 3

Table 8-II. In systems with directed feedback, asymptotic scalings of upper and lower
bounds on velocity-based performance metrics with respect to network size M in finite
spatial dimension d. Quantities are up to a multiplicative factor that is independent of M .

Ploc Pdav

abs. pos. & abs. vel. 1 1
rel. pos. & abs. vel. 1 1

abs. pos. & rel. vel.
(γg = 0) 1

M d = 1
ln(M) d = 2
1 d ≥ 3
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