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Abstract

In this dissertation, we discuss three classes of nonconvex optimization problems, namely,

mixed-integer programming, nonlinear complementarity problems, and mixed-integer bilevel

programming.

For mixed-integer programming, we identify a class of cutting planes, namely the class

of cutting planes derived from lattice-free cross-polytopes, which are proven to provide good

approximations to the problem while being efficient to compute. We show that the closure of

these cuts gives an approximation that depends only on the ambient dimension and that the cuts

can be computed efficiently by explicitly providing an algorithm to compute the cut coefficients

in O(n2n) time, as opposed to solving a nearest lattice-vector problem, which could be much

harder.

For complementarity problems, we develop a first-order approximation algorithm to

efficiently approximate the covariance of the decision in a stochastic complementarity problem.

The method can be used to approximate the covariance for large-scale problems by solving a

system of linear equations. We also provide bounds to the error incurred in this technique. We

then use the technique to analyze policies related to the North American natural gas market.

Further, we use this branch of nonconvex problems in the Ethiopian food market to analyze

the regional effects of exogenous shocks on the market. We develop a detailed model of the food

production, transportation, trade, storage, and consumption in Ethiopia, and test it against

exogenous shocks. These shocks are motivated by the prediction that teff, a food grain whose

export is banned now, could become a super grain. We present the regional effects of different

government policies in response to this shock.

For mixed-integer bilevel programming, we develop algorithms that run in polynomial

time, provided a subset of the input parameters are fixed. Besides the Σp
2-hardness of the

general version of the problem, we show polynomial solvability and NP -completeness of certain

restricted versions of this problem.
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Finally, we completely characterize the feasible regions represented by each of these

different types of nonconvex optimization problems. We show that the representability of

linear complementarity problems, continuous bilevel programs, and polyhedral reverse-convex

programs are the same, and they coincide with that of mixed-integer programs if the feasible

region is bounded. We also show that the feasible region of any mixed-integer bilevel program

is a union of the feasible regions of finitely many mixed-integer programs up to projections and

closures.

Readers: Sauleh Siddiqui, Amitabh Basu, Michael Shields
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Chapter 1

Introduction and motivation

The problem of finding a point where a function takes the largest (or smallest) possible value, given

some conditions that such a point should satisfy is an optimization problem. The function which has

to be maximized or minimized is called the objective and the restrictions on the set of points one is

allowed to choose from are called the constraints. The problem of optimizing a convex function over

a convex set is a well-understood problem and in general, we have reasonably efficient algorithms to

solve the problem to global optimality. Though convex optimization problems model a reasonable

subset of problems of interest, a vast majority of problems beg for more sophisticated modeling

approaches. Making no assumptions about convexity enables us to model a significantly large class

of problems, but such problems are significantly harder, sometimes even impossible, i.e., Turing

undecidable [88, for example] to solve to global optimality. This dissertation introduces methods

that strike a balance between the ability to model larger classes of problems compared to convex

optimization problems while retaining the ability to solve a large class of problems efficiently.

In particular, this dissertation deals with three different classes of nonconvex problems, namely,

(i) mixed-integer linear programs (ii) complementarity problems and (iii) mixed-integer bilevel

1



programs.

Integer nonconvexity, which is the restriction that a subset of the decision variables must be

integers, is one of the most extensively studied subfields of nonconvexities. Conforti, Cornuéjols,

and Zambelli [43], Nemhauser and Wolsey [118], Schrijver [126] are some references where this

subbranch is covered in great detail.

Nonconvexity arising due to complementarity constraints, which we refer to as complementarity

nonconvexity, requires two vectors of the same size to be component-wise non-negative, and their

inner product to evaluate to zero. In other words, the said vectors should have non-negative

components, and for each component, the corresponding element in at least one of the two vectors

should be exactly zero. The case where these two vectors are related by a linear function is studied

extensively in Cottle, Pang, and Stone [47] and the case where they could be related by a nonlinear

function is studied in Facchinei and Pang [66, 67].

Mixed-integer bilevel programs arise naturally from a problem in economics known as the

Stackelberg game [37]. This requires that a subset of the solution variables of one optimization

should also be a solution of another optimization problem, which is parameterized in the remaining

variables. This induces nonconvexity in the optimization problem and we refer to such nonconvexity

as mixed-integer bilevel nonconvexity.

In the rest of this chapter, we formally define convexity and motivate the need to methodically

include nonconvex constraints. Then we motivate the applicability of complementarity constraints

in two areas, namely the North American natural gas market and Ethiopian food market. Chapter 2

has definitions and previously-known results that are preliminary to the results in Chapter 3 to 6.

Following that, Chapter 3 deals with the nonconvexities in the form of integer constraints, and

develops new techniques that fall under the so-called cutting plane approach to the problem.

2



Theoretical, as well as practical evaluation of the new tools, is considered in Chapter 3. Chapter 4

talks about the two different real-world problems arising from the North American natural gas

market and Ethiopian food market, that we modeled using complementarity constraints. One of

the applications also describes a novel algorithm to approximate the covariance of the solution

of a complementarity problem, under uncertainty of problem parameters. Chapter 5 describes

a new algorithm to solve a relaxation of the mixed-integer bilevel programs under polynomial

time, provided a subset of the problem parameters are fixed. Finally, Chapter 6 comprehensively

characterizes and quantifies the set of problems that can be modeled using the said types of

nonconvexities and Chapter 7 concludes the dissertation with some ideas and directions for future

work. The dissertation also has appendices to provide supplementary details. Appendix A has a

key to the set of standard notations used across multiple chapters in the dissertation. Appendix B

provides the comprehensive set of equations defining the North American natural gas model.

Appendix C provides details about a python package we developed and shared to handle multi-

dimensional sparse arrays. Appendix D provides the comprehensive set of equations defining the

DECO2 model we use to analyze the Ethiopian food market and Appendix E lists the set of papers

published, submitted and in preparation as a part of the doctoral work.

Conventions: In this dissertation, we refer to solving an optimization problem as finding the

global optimum of the problem. Local minima are not considered unless explicitly stated otherwise.

1.1 The assumptions of convexity

In order to make formal statements about including non-convex constraints, it is necessary to

mathematically state what the assumption of convexity means and the type of problems that can

3



be solved as a convex optimization problem.

Definition 1 (Convex set). A set C ⊆ Rn is a convex set if ∀x, y ∈ C and ∀ η ∈ [0, 1], ηx+ (1−

η)y ∈ C.

A set that is not convex is called a nonconvex set. Fig. 1.1a and 1.1b show an example of a

convex and a nonconvex set respectively.

Definition 2 (Convex function). A function f : C ↦→ R is a convex function, if the domain C is

a convex set and ∀x, y ∈ C, and ∀ η ∈ [0, 1],

f(ηx+ (1− η)y) ≤ ηf(x) + (1− η)f(y)

A function that is not convex is called a nonconvex function. Fig. 1.1c and 1.1d show an example

of a convex and a nonconvex function respectively.

Definition 3 (Optimization problem). Given f : Rn ↦→ R and S ⊆ Rn, the optimization problem

is to solve minx∈S f(x). We call the set S as the feasible set and the function f as the objective

function. If S = Rn, then we call the problem an unconstrained optimization problem.

Note that a minimum as necessitated in the previous definition need not necessarily exist. Even

under some natural cases, for example, the mixed-integer bilevel linear program, it is possible to

construct examples where S is not necessarily closed. In such cases, we typically either report that

the minimum does not exist or work with the infinimum with the caveat that such an infinimum

cannot be achieved by any feasible point. But an explicit mentioning of the convention is always

made in this dissertation.

We now define certain standard terms used in convex analysis. Let S ⊆ Rn. Then

the convex hull of S is conv(S) :=
{
x =

∑k
i=1 λiv

i : 0 ≤ λi ≤ 1,
∑k

i=1 λi = 1, vi ∈ S
}
. In other

4



y

O x

(a) The blue shaded region is a convex set in R2.

Note that any line connecting two points in this

set is contained in the set.

y

O x

(b) The blue shaded region is a nonconvex set in

R2. Note that the red line connecting two points

in the set is not contained in the set.

y

O x

(c) A convex function. Note that the function

always stays below any secant like the one shown

in red.

y

O x

(d) A nonconvex function R ↦→ R. Note that

the function doesn’t stay necessarily below the

secant shown in red.

Figure 1.1: Convex and nonconvex functions and sets
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words it is the inclusion-wise smallest convex set containing S. A set C is called a cone if

x ∈ C, y ∈ C =⇒ λx + µy ∈ C, ∀λ, µ ∈ R+. Note that this definition implies that all

cones are convex sets. The conic hull of S is cone(S) :=
{
x =

∑k
i=1 λiv

i : 0 ≤ λi, vi ∈ S
}
. In

other words, it is the inclusion-wise smallest cone containing S. The affine hull of S is define as

aff(S) :=
{
x =

∑k
i=1 λiv

i :
∑k

i=1 λi = 1, vi ∈ S
}
. Suppose S is a convex set, the relative interior of

S is defined as relint(S) := {x ∈ S : ∃ ε > 0 such that B(x, ε) ∩ aff(S) ⊆ S}. Let A, B ⊆ Rn. Then

their Minkowski sum A+B := {x+ y : x ∈ A, y ∈ B}. Similarly we define αA := {αx : x ∈ A} for

any α ∈ R. We define A−B := A+ (−1)B.

Definition 4 (Feasibility problem). Given S ⊆ Rn we define the feasibility problem of S as follows:

either find a vector v ∈ S or report that S = ∅. If S ̸= ∅, the solution v ∈ S is an example of a

certificate of feasibility.

Remark 5. Note that the feasibility problem and the optimization problem are closely related.

Given an optimization problem, one can always ask a series of “a few” feasibility questions that

enable to obtain the optimum with arbitrary precision [85].

Definition 6 (Convex optimization problem). A convex optimization problem is minx∈C f(x)

where C is a convex set and f is a convex function.

Convexity is an elegant assumption in optimization problems that greatly enhances the

solvability of the problem. The definition of a convex function motivates a U-shaped function, whose

every local minimum is guaranteed to be a global minimum and the set of global minima is also

a convex set. This structure enables us to design efficient algorithms to solve convex optimization

problems. On the other hand, an absence of such structure can make a problem quite hard to

solve. Here we reformulate a problem from number theory which was unsolved for centuries into a

“small” nonconvex optimization problem.
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Example 7. 1 Fermat’s last theorem states that no three positive integers a, b, c satisfy the equation

an+bn = cn for any integer n ≥ 3. The conjecture was made in 1637 and the proof remained elusive

for over three centuries despite continued efforts. It was finally proved in 1994, about 358 years

after the conjecture was made. Now, consider the following continuous nonconvex optimization

problem.

min
a, b, c, n∈R

: (cn − an − bn)2

subject to

a, b, c ≥ 1

n ≥ 3

sin2(aπ) + sin2(bπ) + sin2(cπ) + sin2(nπ) ≤ 0

This problem is a “small” nonconvex optimization problem with 4 variables and 5 constraints. The

objective function, the constraints are all smooth. The objective is 0 if and only if cn = an + bn,

while the last constraint ensures that each of the four variables are integers, as integer multiples

of π are the only points where the sin function vanishes. Now, if one can prove that the optimal

objective value of the problem is strictly greater than 0, then they have proved Fermat’s last theorem.

Conversely, if one proves that the optimal objective value of the problem is equal to zero, they have

disproved Fermat’s last theorem.

This example motivates how hard even a reasonably small (counting the number of variables

and constraints) nonconvex optimization problem can be. Thus assumptions of convexity can be

quite useful.

1Thanks to the lecture notes of Dr. Amir Ali Ahmadi, Princeton University for this example.
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While we state this, it is not true that every nonconvex optimization problem is very difficult

to solve or that every convex optimization problem is easy to solve. For example, the S-lemma

[121, 141] enables one to write a quadratic program with a single quadratic constraint (i.e., problems

where f(x) = xTQ0x + cT0 x and S = {x : xTQ1x + cT1 x + v1 ≤ 0} in the notation of Definition 3)

equivalently as a semidefinite program. No assumptions of convexity are required on the objective

or the constraint. This nonconvex optimization problem can be solved with any desired accuracy

in polynomial time. Thus it serves as an example of a computationally tractable nonconvex

optimization problem. On the flip-side, checking non-emptiness of the convex copositive cone (A

matrix M ∈ Rn×n is copositive if xTMx ≥ 0 for every non-negative x ∈ Rn) under finitely many

affine constraints is NP-complete [35, 117] . So unless P = NP , we have no hope of solving this

convex optimization problem in polynomial time.

Despite the observation that there are convex optimization problems which are computationally

intractable and nonconvex optimization problems that are efficiently solvable, there is a non-

trivial overlap between the set of computationally tractable optimization problems and the set

of convex optimization problems. Thus in the literature and modern research, convex optimization

is considered synonymous to the computationally tractable class of optimization problems.

However, the assumptions on convexity limit our modeling power. We call the representability

(a more formal term for modeling power) of a given family of sets as the larger family of sets which

can be represented by the first family potentially using additional variables and projections. We

define representability more formally below.

Definition 8 (Representability). Let T be a given family of sets. We say that a set S is represented

by T or T -representable, if S is a linear transformation of a set in T . We denote the family of

all T -representable sets as TR.
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(a) Union of two intervals (shown in red) that

cannot be a feasible region for an MIP

(b) Union of intervals represented with auxiliary

variable in Y - axis

Figure 1.2: Representability of mixed-integer program (MIP) - A union of two intervals can be

represented using auxiliary variables in an MIP

Definition 8 is motivated to answer questions about the type of feasible regions we can model

with a family. Below, we give an example of a set that is not a feasible region of any mixed-integer

program but can still be represented using a mixed-integer program using additional variables.

Example 9. Suppose we are interested in optimizing a function f over the union of two intervals,

[1, 2] ∪ [3, 4]. The feasible region is shown in red in Figure 1.2a. We cannot directly write this as

a feasible region of an integer program defined in Definition 10. However, suppose we use auxiliary

variables, consider the following set of constraints:

y ≥ 0 y ≤ 1

x− 2y ≥ 1 x− 2y ≤ 2

The polyhedron defined by these equations correspond to the region bounded by blue lines in

Figure 1.2b. We use an auxiliary variable y. Now, if we constrain that y should be an integer,

i.e., y ∈ Z, then the projection of this set onto the space of x variables, gives the required region

[1, 2] ∪ [3, 4]. Here we observe that, while a mixed-integer linear program (MIP) cannot directly

model the union of two intervals, using auxiliary variables which can be later discarded, helped

us to model the set of interest. Here, we just showed that [1, 2] ∪ [3, 4] is MIP-representable.

More generally, characterizing representability helps us understand the family of sets which can be
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obtained using auxiliary variables.

It is not too difficult to see that a projection (or a linear transform) of a convex set is always a

convex set [123]. Hence any linear transform of a feasible set of a convex optimization problem is a

convex set. Thus it becomes necessary to include nonconvex constraints to optimize over nonconvex

sets. And indeed, as seen in the above example, allowing nonconvexity, especially with projections,

enabled us to model more complicated nonconvex feasible sets.

However as said before, the nonconvexity can increase the difficulty of solving the problem.

We want to simultaneously increase the representability of our class of problems diligently without

compromising on the complexity of solving it. Chapter 3 is concerned with improving the efficiency

of algorithms for an MIP. Chapter 5 guarantees efficient approximate algorithms for general bilevel

programs which have polynomial time guarantees when some of the parameters are fixed. Chapter 6

completely characterizes the representability of both linear complementarity problems (LCP) and

mixed-integer bilevel programs (MIBLP) extending the previously known characterization for MIPs

due to Jeroslow and Lowe [92].

1.2 Applications of nonconvex optimization

In the previous section, we showed an example of a set that can only be modeled using nonconvex

constraints. Using these nonconvex constraints help us model practical problems, in addition

to the theoretical curiosities that they resolve. In this dissertation, we show the application of

complementarity constraints to model economic equilibrium.

In a market, economic equilibrium is the point at which all players in the market have no

incentive to change their economic decisions (See Definition 16 for a more formal definition).

Under mild assumptions, it can be shown that the market players eventually reach an equilibrium.

10



Understanding the market equilibrium helps in designing policies and interventions in the market.

Complementarity constraints help in identifying the equilibrium. By computing the equilibrium

under different scenarios, one quantitatively analyze changes in welfare under these scenarios.

In this dissertation, we show the applicability of complementarity problems to economic

equilibrium problems arising in the North American natural gas market and the Ethiopian food

market. We discuss the motivation for our study in the forthcoming subsections.

1.2.1 North American Natural GAs Model (NANGAM)

New technology in the field of natural gas exploration, known as hydraulic fracturing technology

and horizontal drilling, led to a large increase in United States natural gas production. This shale

boom and the announcements by the United States Environment Protection Agency (US-EPA) to

impose new power plant regulations to control greenhouse gas emissions, led to a lot of academic

debates and research about the role of natural gas in North America over the first half of the 21st

century [69]. Our understanding of the crucial role of Mexico and Canada in the natural gas market

is particularly limited. Feijoo et al. [69] observe that the demand for natural gas grew by over 60% in

Mexico between 2005 and 2015. They further note that increased consumption from the electricity

sector is the primary cause of this growth in demand. Feijoo et al. [69] developed a model using

complementarity constraints to identify the market equilibrium under different energy policies by

the Mexican government. The model was constructed with deterministic parameters for futuristic

values for the demand curve, the supply curve, and costs of transportation and infrastructure

expansion.

In the work described in this dissertation, we solve the complementarity problem under

uncertainty in the futuristic parameters and efficiently obtain an approximation of the second-
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order statistical information of the solution. This gives us information about the variability of the

equilibrium obtained and the correlation between variables in the solution.

Additionally, we also introduce a sensitivity metric which quantifies the change in uncertainty

in the output due to a perturbation in the variance of uncertain input parameters. This helps us to

directly compare input parameters by the amount of uncertainty they propagate to the solution.

1.2.2 Ethiopian Food market

Ethiopia is an East African country whose economy is predominantly based on agriculture. The

food-price crisis in 2008 led to the country banning teff exports, with an intention to insulate

domestic food prices from global food price. Most of the analyses so far, retrospectively discuss the

impacts of the governmental policy on the nation as a whole in a macroeconomic level. Instead, a

useful tool for the policy-maker would be something that allows her to compare the effects of global

as well as policy shocks on a regionalized basis. The action of the market agents under different

policy scenarios and different global economic shocks can be modeled with adequate regionalized

details using complementarity problems. We discuss the details of such modeling and the policy

insights obtained hence in Chapter 4.
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Chapter 2

Preliminaries

In this chapter, we state a few preliminary definitions, theorems and other previously known results

which frequent throughout the dissertation.

We now formally define the types of nonconvex constraints we consider in this dissertation. We

define them in the feasibility version of the problem and say that the optimization version of any

of these is just minimizing a linear function over the given set whose feasibility is checked.

Definition 10 (Mixed-integer program). Given A ∈ Qm×n, b ∈ Qm, I ⊆ [n], the mixed-integer

program (MIP) is to find an element in the set

{x ∈ Rn : Ax ≤ b, xi ∈ Z if i ∈ I}

or to show that the set is empty.

We say that the mixed-integer program is in standard form, if the set in Definition 10 is presented

in the form {x ∈ Rn : Ax = b, x ≥ 0, xi ∈ Z if i ∈ I}. Further if I = [n], we call the problem as

a pure integer program and if I = ∅, the problem is a linear programming problem. We refer the

readers to Conforti et al. [43], Nemhauser and Wolsey [118], Schrijver [126] for a detailed treatment
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of mixed-integer programming. Finally, the family of these sets whose non-emptiness is being

checked in a mixed-integer program would be referred to as mixed-integer sets.

Definition 11 (Linear complementarity problem). Given M ∈ Qn×n and q ∈ Qn, the linear

complementarity problem (LCP) is to find an element in the set

{
x ∈ Rn : x ≥ 0, Mx+ q ≥ 0, xT (Mx+ q) = 0

}
or to show that the set is empty. For convenience, we notate the above condition as 0 ≤ x ⊥

Mx+ q ≥ 0 where ⊥ implies that the inner product of the symbols on either of its sides should be

zero.

The notion of a complementarity problem can be generalized to a nonlinear complementarity

problem, by checking, for a given F : Rn ↦→ Rn, if the set
{
x ∈ Rn : x ≥ 0, F (x) ≥ 0, xTF (x) = 0

}
is nonempty. We refer the readers to Cottle et al. [47] for linear complementarity problems and

Facchinei and Pang [66, 67] for nonlinear complementarity problems (NCP).

Definition 12 (Mixed-integer bilevel program). Given A ∈ Qmℓ×nℓ , B ∈ Qmℓ×nf , b ∈ Qmℓ , f ∈

Qnf , D ∈ Qmf×nf , C ∈ Qmf×nℓ , g ∈ Qmf , IL ⊆ [nℓ], IF ⊆ [nf ], define

S = S1 ∩ S2 ∩ S3 (2.1a)

S1 =
{
(x, y) ∈ Rnℓ+nf : Ax+By ≤ b

}
(2.1b)

S2 =

{
(x, y) ∈ Rnℓ+nf : y ∈ argmax

y

{
fT y : Dy ≤ g − Cx, yi ∈ Z for i ∈ IF

}}
(2.1c)

S3 =
{
(x, y) ∈ Rnℓ+nf : xi ∈ Z for i ∈ IL

}
(2.1d)

The mixed-integer bilevel program (MIBLP) is to find an element in the set S or to show that the

set S is empty. We call the variables denoted by x as upper-level variables or leader’s variables

and we call the variables denoted by y as lower-level variables or follower’s variables. We call the
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constraint defined by eq. (2.1c) as the bilevel constraint. If IL = IF = ∅, i.e., if all variables are

continuous, then we call the problem a continuous bilevel program (CBL). Further if IF = ∅, i.e.,

all follower’s variables are continuous, then we call the problem a bilevel program with upper-level

integer (BLP-UI).

We refer the reader to Bard [16], Dempe [52], Deng [54], Fischetti et al. [72, 73], Köppe et al. [98],

Lodi et al. [105], Tahernejad et al. [134], Wang and Xu [138], Yue et al. [143] for more information

on MIBLPs.

We now define some standard terms in convex analysis which are used throughout the

dissertation.

Definition 13. In the below definitions C ⊆ Rn is a convex set.

(i) Halfspace: A set of the form {x ∈ Rn : ⟨a, x⟩ ≤ b}. If a ∈ Qn and b ∈ Q we call it a rational

halfspace.

(ii) Polyhedron: An intersection of finitely many halfspaces. If each of those halfspaces are

rational, we call it a rational polyhedron.

(iii) Polytope: A polyhedron that is bounded.

(iv) Dimension of an affine set A ⊆ Rn: Let x ∈ A. Then dim(A) is the dimension of the linear

subspace A− {x}.

(v) Dimension of C: Dimension of aff(C).

(vi) Face of C: F ⊆ C is a face of C if x ∈ F , ∀x1, x2 ∈ C such that x = x1+x2
2 , then x1 ∈

F, x2 ∈ F .

(vii) Facet of C: Suppose dim(C) = d. Then a face F of C is called a facet, if dim(F ) = n− 1.
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(viii) Vertex of C: x ∈ C is a vertex of C if x1, x2 ∈ C such that x = x1+x2
2 , implies that

x1 = x2 = x.

(ix) Recession direction of C: r ∈ Rn such that x ∈ C =⇒ x+ λr ∈ C for any λ ≥ 0.

(x) Recession cone of C: {r ∈ Rn : r is a recession direction of C}. This is denoted by rec(C).

(xi) Projection of a point ProjC (x): Let x ∈ Rn. Then ProjC(·) is the unique solution to the

following convex optimization problem. y = argminy {∥y − x∥ : y ∈ C}. In other words,

ProjC(x) is the point in C that is closest to y.

(xii) Projection of a set ProjC (S): Let S ⊆ Rn. Then ProjC(S) =

{y ∈ C : ∃x ∈ S such that y = ProjC(x)}.

Note that in (xi) and (xii), C is assumed to be closed, in addition to being convex.

2.1 Complexity of problem classes

We now state the following theorem about the computational complexity of each of these families of

problems. Informally, we describe some terminology related to computational complexity and refer

the reader to Arora and Barak [9], Jeroslow [94] for a more comprehensive and formal treatment

of this subject. This study is motivated by the notion that problems that can be solved using

polynomially many elementary operations (polynomial in the size of the problem description) are

“easy” to solve. P is defined as the class of decision problems which can be solved using polynomially

many elementary operations. NP is defined as the class of decision problems whose “yes” instances

have a so-called certificate that can be verified using polynomially many elementary operations. If

X is a complexity class, we say a problem Q is X-complete, if Q is in X and any problem in X

can be reduced to Q using polynomially many elementary operations. The class NP is equivalently
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referred to as Σp1. We now define Σpi+1 as the class, whose “yes” instances have a certificate that

can be verified using polynomially many calls to a problem that is Σpi -complete. While it is easy to

see that P ⊆ NP ⊆ Σp2 ⊆ . . . ⊆ Σpk ⊆ . . ., we do not have a proof if any of these inclusions is strict.

However, it is strongly conjectured that all these inclusions are strict, thus motivating a so-called

polynomial heirarchy of complexity classes.

Theorem 14 (Hardness of problems). (i) [97] Linear programming is in P.

(ii) [45] Mixed-integer linear programming is NP-complete.

(iii) [104] Mixed-integer linear programming with fixed number of variables is in P.

(iv) [42] Linear complementarity problem is NP-complete.

(v) [16] Bilevel programming with L = F = ∅, i.e., continuous bilevel programming is NP-

complete.

(vi) [105] Mixed-integer bilevel programming is Σp2-complete.

2.2 Representability of problem classes

Recalling the definition of representability in Definition 8, one can readily see that the class of linear

program-representable sets is set of all polyhedra. Indeed, any feasible set for a linear program is

a polyhedron, and linear transforms of polyhedra are always polyhedra. However, the increase in

modeling power by using integer variables is precisely quantified by the following result by Jeroslow

and Lowe [92].

Theorem 15. [92] Let S be a mixed-integer representable set. Then,

S =
k⋃
i=1

P i + int cone({r1, . . . , rℓ}) (2.2)
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where each P i is a polytope, r1, . . . , rℓ ∈ Qn and the operation int cone(M) corresponds to all points

obtained as a sum of non-negative integer multiples of elements in M .

The representability of linear complementarity problems and mixed-integer bilevel programs

is precisely characterized as a part of the author’s doctoral work. We postpone these results till

Chapter 6.

2.3 Applications

Theorem 15 due to Jeroslow and Lowe [92] assures that one can optimize over a finite union of

polytopes (and many other sets too) by using mixed-integer sets. Optimizing over such families of

sets have importance in real life. In fact, in this section, we show that important real-life problems

could be modeled using the paradigms of nonconvexity considered in this dissertation. In particular,

Chapter 4 is dedicated to describing the modeling of real-life problems as complementarity problems.

We refer the reader to Conforti et al. [43, Chapter 2], Cook et al. [46] and references therein for a

fairly comprehensive list of problems which can be solved as an MIP. Facchinei and Pang [66, Section

1.4] gives a detailed set of problems that can be solved using complementarity constraints. We refer

the reader to Bard [16], Dempe [52] for an overview of the applications of mixed-integer bilevel

programming. We devote the rest of the section to motivate an application of complementarity

problems which is extensively used during the author’s doctoral work.

2.3.1 Games and equilibria

We first define a Nash equilibrium problem. We motivate this from economics where finitely many

players simultaneously make decisions about the goods they produce or the services they offer.
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Definition 16 (Nash equilibrium problem). A Nash equilibrium problem is defined as a finite tuple

of optimization problems (P 1, . . . , Pn), where each P i has the following form.

min
xi∈Rni

: f i(xi; x−i)

subject to

gij(x
i) ≤ 0 j = 1, . . . , ki

where x−i is defined as (x1, . . . , xi−1, xi+1, . . . , xn). We call P i as the problem of the ith player.

With the same terminology, f i is the ith player’s objective and gij are the constraints of ith player.

x ∈ R
∑n

i=1 ni is called a Nash equilibrium, if x solves each of the optimization problems P i.

An alternative way to look at this problem is by observing we have n optimization problems, each

of which has a set of decision variables, and each problem’s variables parameterizes other problems’

objective functions. Observe that the definition implies that no player can unilaterally change her

decision from Nash equilibrium and get a better objective. Further, note that if each f i is a function

only of xi, i.e., if the players don’t interact with each other, then we can trivially solve n individual

optimization problems and we obtain the Nash equilibrium. However, the interactions between the

individual problems require more sophisticated techniques to solve for Nash equilibrium.

We now state Assumptions A1 to A3 which hold throughout this dissertation.

Assumption A1 (Compact strategies). For each i,
{
x : gij(x) ≤ 0, j = 1, . . . , ki

}
is a compact

set.

If Assumption A1 does not hold, we can make simple games with no Nash equilibrium. For

example, consider the game with two players where each player’s objective is to minimize xi − x−i

where xi ∈ R. Both players’ objectives are unbounded and there exists no Nash equilibrium.
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Now we make assumptions on convexity and smoothness of f i and gij . These assumptions enable

us to reformulate the problem of finding the Nash equilibrium as a complementarity problem.

The assumptions of convexity and smoothness mentioned below ensure that the problem of

finding the Nash equilibrium can be posed as a complementarity problem.

Assumption A2 (Convexity). (a) Each f i is a convex function in xi.

(b) Each gij is an affine function. In other words, each P i is a convex optimization problem with

affine constraints.

Here the assumption (b) ensures that certain so-called constraint qualifications and the so-

called Slater’s conditions always hold [119]. This assumption eliminates pathological cases where

Theorem 17 does not hold.

Assumption A3 (Smoothness). Each f i is twice continuously differentiable.

If these functions are continuously differentiable, that is sufficient to pose the problem of

finding the Nash equilibrium as a complementarity problem. However, we assume twice continuous

differentiability, which is crucial for the approximation algorithm developed in Chapter 4.

We now state the theorem about the well known “Karush-Kuhn-Tucker conditions” or “KKT

conditions.” These are first-order necessary and sufficient conditions for optimality in a smooth

convex optimization problem.

Theorem 17. [99, 132] Consider the problem

min
x∈Rn

: f(x) subject to

gj(x) ≤ 0 for j = 1, . . . ,m

(2.4)
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where f is a convex function and gj are all affine functions. Then x ∈ Rn solves the problem if and

only if ∃u ∈ Rm such that the following hold.

∂f (x)

∂xi
+

m∑
j=1

uj
∂gj (x)

∂xi
= 0 ∀ i ∈ [n] (2.5a)

uj ≥ 0 ∀ j ∈ [m] (2.5b)

gj (x) ≤ 0 ∀ j ∈ [m] (2.5c)

ujgj (x) = 0 ∀ j ∈ [m] (2.5d)

We call eq. (2.5) as the KKT-conditions for the convex optimization problem. uj is called the dual

variable or the Lagrange multiplier corresponding to the constraint gj.

Formally, the condition that each gi has to be affine can be relaxed to just each gi being

convex. Then, the so-called constraint qualifications are needed to ensure that the “only if” part of

the theorem holds and non-empty interior of the feasible set (otherwise called Slater’s condition) is

needed to ensure that the “if” part of the theorem holds. Such conditions are satisfied trivially when

gj are all affine. We avoid the technicalities for brevity and refer curious readers to Facchinei and

Pang [66], Nocedal and Wright [119], Ruszczyński [124] for a more detailed treatment of constraint

qualifications and to Boyd and Vandenberghe [34], Nocedal and Wright [119] for Slater’s conditions.

Observe that the condition in eqs. (2.5b) to (2.5d) is indeed the complementarity relation.

This observation is used in Theorem 18 to convert a non-cooperative game into a complementarity

problem. The intuition behind these conditions are given in Figure 2.1.

Theorem 18. [66, 77] Let P be a non-cooperative game satisfying Assumptions A1 to A3. Then

there exists a nonlinear complementarity problem whose every solution is a Nash equilibrium of P .

Further if each P i has a convex quadratic objective and affine constraints, then we have a linear

complementarity problem whose every solution is a Nash equilibrium of P .
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(a) Observe that the unconstrained optimum can already be strictly feasible (g(x) < 0) for the problem. In

such cases, the gradient of the function defining the feasible region need not have any significant connection

to the gradient of the objective. But the gradient of the objective is forced to be zero. This is ensured by

eq. (2.5a). Equation (2.5d) ensures u = 0 when g(x) ̸= 0.

(b) Observe that the gradient of the function (blue arrow) is collinear with the gradient of the function

defining the feasible region (pink arrow). This is ensured by eq. (2.5a) that ∇f = −u∇g, in one constraint

case. The fact that they point to opposite direction is ensured by eq. (2.5b), u ≥ 0.

Figure 2.1: Intuition behind the KKT conditions: The blue circles are the contours of the

objective function. The pink region is the feasible region and the point denoted by x⋆ is the

optimal solution. Note that the optimal solution should be feasible, which is ensured by eq. (2.5c).
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Proof. [66]

Write the KKT conditions of each problem P i using dual variables ui as follows.

∇xif i(xi; x−i) + ui
T∇xigi(xi) = 0

gi(xi) ≤ 0

ui ≥ 0

(ui)T gi = 0

Now using auxilary variables, λi+, λ
i
− ∈ Rni , we can write the above as

0 ≤ −∇xif i(xi; x−i)− ui
T∇xigi(xi) ⊥ λi− ≥ 0

0 ≤ ∇xif i(xi; x−i) + ui
T∇xigi(xi) ⊥ λi+ ≥ 0

0 ≤ gi(xi) ⊥ ui ≥ 0

Clearly, this is a complementarity problem for each i. But even in case of multiple players, they

can all be stacked vertically, and we still have a complementarity problem whose solution, after

projecting out ui, λi+ and λi−, is simultaneously optimal to each of the n player’s problem, which

by definition is the Nash equilibrium. Further, by the construction, it is trivial to see that if f is

quadratic, ∇f is linear. Now if all gi are also affine, we have a linear complementarity problem. �

23



Chapter 3

Mixed-integer programming

3.1 Introduction

In this chapter, we describe a well-studied branch of nonconvexity known as mixed-integer

nonconvexity. This corresponds to the constraint that some of the variables should take integer

values. As such, problems of this variety are ubiquitous in the fields of engineering and management.

Some applications of integer programs are discussed in Conforti et al. [43, Chapter 2]. In this

chapter, we discuss some of the algorithmic improvements provided to solve mixed-integer programs.

We organize the chapter as follows. We use the rest of this section to motivate some problems

that can be posed as a mixed-integer linear program. Then we describe the standard branch-and-

cut algorithm used to solve such problems. We then dedicate Section 3.2 to motivate the theory

behind cut-generating functions and some well-known results in that area. Finally, the author’s

work is detailed in Section 3.3.

3.1.1 Mixed-integer programming

We recall the definition of a mixed-integer program.
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Definition 10 (Mixed-integer program). Given A ∈ Qm×n, b ∈ Qm, I ⊆ [n], the mixed-integer

program (MIP) is to find an element in the set

{x ∈ Rn : Ax ≤ b, xi ∈ Z if i ∈ I}

or to show that the set is empty.

As noted before, we say that the mixed-integer program is in standard form, if the question is

about the non-emptiness of the set {x ∈ Rn : Ax = b, x ≥ 0, xi ∈ Z if i ∈ I}. Further if I = [n],

we call the problem as a pure integer program and if I = ∅, the problem is a linear programming

problem. Finally, the family of these sets whose non-emptiness is being checked in a mixed-integer

program would be referred to as mixed-integer sets.

Remark 19. We alternatively talk about mixed-integer (or pure integer or linear) optimization

when we are interested in optimizing a linear function over the set whose non-emptiness is being

checked. We also remind the reader about Remark 5 where we noted that the feasibility version

and the optimization version of the problem are equivalent.

3.1.2 Some source problems

In this subsection, we show some of the problems that can be posed as a mixed-integer program.

Knapsack problem

Suppose a person has a knapsack that can carry a weight W . Suppose there are n articles of value

v1, . . . , vn that the person would like to carry in her knapsack. Let us say that each of the objects

weighs w1, . . . , wn and the total weight that the person can carry should not exceed the capacity,

W of the knapsack. Now, which articles should the person pick so as to maximize the value of the

articles she carries in her knapsack?
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This problem can be written concisely as the following mixed-integer program (refer Remarks 5

and 19).

max
x∈Rn

{
vTx : wTx ≤W ; 0 ≤ x ≤ 1; xi ∈ Z if i ∈ [n]

}
(3.1)

where v =

⎛⎜⎜⎜⎜⎜⎜⎝
v1

...

vn

⎞⎟⎟⎟⎟⎟⎟⎠ and w =

⎛⎜⎜⎜⎜⎜⎜⎝
w1

...

wn

⎞⎟⎟⎟⎟⎟⎟⎠. One can observe that the above problem is a pure integer

program. The conditions 0 ≤ x ≤ 1 enforces that each component of x is either a 0 or a 1.

The solution to the original problem corresponds to carrying the objects i whose corresponding

component in x is a 1 and not carrying the rest. The constraint wTx ≤ W ensures that the total

weight of the objects carried does not exceedW and vTx adds the values of objects that are carried,

which is indeed maximized.

Chance-constrained linear program

A linear program, as stated in Theorem 14 is an example of a convex optimization problem that

can be solved efficiently in polynomial time. It has a variety of applications in its original form and

its applicability gets enhanced as a chance-constrained linear program, which allows that certain

conditions are satisfied with a probability, 1− ε. More formally, let us consider a bounded chance

constrained program,

Minimize
x∈Rn

: cTx (3.2a)

subject to

P (Tx ≥ ξ) ≥ 1− ε (3.2b)

Ax = b (3.2c)
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x ≥ l (3.2d)

x ≤ u (3.2e)

where T ∈ Rm×n is a known matrix, 1 ≥ ε > 0 is a known scalar and ξ : Ω ↦→ Rm is a

random variable with finite support. In particular, let us say that ξ takes values from ξ1, . . . , ξℓ

with probabilities π1, . . . , πℓ respectively. Indeed, 0 ≤ πi ≤ 1 for all i ∈ [ℓ] and
∑ℓ

i=1 πi = 1.

These problems can be shown to be NP -complete [110], while their deterministic counter parts are

polynomially solvable.

To solve these problems, Luedtke, Ahmed, and Nemhauser [110] propose a mixed-integer

program reformulation for this problem.

Minimize
x∈Rn

y∈Rm

z∈{0,1}ℓ

: cTx (3.3a)

subject to

Ax = b (3.3b)

x ≥ l (3.3c)

x ≤ u (3.3d)

y = Tx (3.3e)

y +M(1− zi)e ≥ ξi ∀ i ∈ [ℓ] (3.3f)

n∑
i=1

πizi ≥ ε (3.3g)

whereM is a large number and e is a vector of ones. Such a numberM exists from the boundedness

of the problem. Equation (3.3) is a mixed-integer program in variables (x, y, z) ∈ Rn+m+ℓ. For

some i, if zi = 0, then eq. (3.3f) is trivially satisfied since M is large. On the other hand, if zi = 1,
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then the constraint Tx = y ≥ ξi is enforced. Then, eq. (3.3g) ensures that the set of i for which

Tx ≥ ξi is satisfied is sufficiently large that the chance constraint is satisfied.

Other problems:

Knapsack problem is a traditional example of a mixed-integer program. The fact that a chance-

constrained optimization program can be rewritten as a mixed-integer program is known for not

more than a decade. Besides these, boolean satisfiability problem, clique problem, stable set

problem, problem of finding a Hamiltonian cycle in a graph, the travelling-salesman problem,

vertex-cover problem, set packing problem, set covering problem, machine scheduling problem,

open pit mining problem are all standard problems which can be reduced into a mixed-integer

program.

3.1.3 Preliminary definitions and algorithms for mixed-integer programs

Definition 20 (Linear relaxation of an MIP). Given the mixed-integer program of finding an

element in the set {x : Ax ≤ b, xi ∈ Z if i ∈ I ⊆ [n]} or showing its emptiness, the linear relaxation

of the problem is to find an element in the set maxx∈Rn {Ax ≤ b} or to show that this set is empty.

We also call this as the LP relaxation of the problem.

Remark 21. Note that the definition of linear relaxation can also be defined with the idea of

optimizing a linear function, as described in Remarks 5 and 19.

Definition 22 (Valid inequality). Let S ⊆ Rn. We say that (a, b) ∈ Rn × R is a valid inequality

for S if {x : ⟨a, x⟩ ≤ b} ⊇ conv(S).

Definition 23 (Separation oracle). Let S ⊆ Rn. Then ΩS : Rn ↦→ ({“Yes”} ∪ (Rn × R)) is called

a separation oracle for S, if ΩS(x) = “Yes” if x ∈ conv(S) and ΩS(x) = (a, b) such that (a, b)
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is a valid inequality for S and ⟨a, x⟩ > b otherwise. We call the set {x ∈ Rn : ⟨a, x⟩ = b} as the

separating hyperplane returned by the oracle.

Theorem 24 (Grötschel et al. [85]). Let S ⊆ Rn and let ΩS be its separation oracle. Then for

any c ∈ Rn, maxx∈S c
Tx can be solved with polynomially many calls to ΩS and polynomially many

elementary operations.

The above theorem was proved using the ellipsoidal algorithm provided by Khachiyan [97] to

solve linear programs in polynomial time. For the case of linear programs, the separation oracle is

defined by the set of constraints defining the linear program. Grötschel et al. [85] extends the result

by saying that any optimization problem with a separation oracle can be solved using polynomially

many calls to the oracle.

Lemma 25 ([126]). Consider the linear program maxx∈P {cTx} where P is a polyhedron. Assume

that this problem has a finite solution. Then there exists v ∈ P , a vertex of the polyhedron such

that v solves the linear program. We call such a v as a vertex solution of the linear programming

problem.

In fact, we have algorithms (for example, the Simplex algorithm [126]) that are guaranteed

to return a vertex solution for a linear programming problem or a certificate that says that the

problem is either infeasible or unbounded.

Cutting plane approach

Cutting plane methods were first introduced in Gomory [82] as a means to solve pure integer

programs. Cutting plane methods iteratively generate valid inequalities for the mixed-integer set

of interest, typically “cutting off” the solution to the LP relaxation of the problem.
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x2

O x1

(a) The shaded region is the polyhedron P ⊂

R2. We are interested in maxx∈P∩Z2{x1}. The

solution to the LP relaxation is shown as a blue

dot.

x2

O x1

(b) The convex hull of P ∩ Z2 is shown in

green. The cutting plane which cuts of the LP

relaxation’s solution but valid for conv(P ∩ Z2)

is shown in red.

Figure 3.1: Intuition behind cutting planes for MIP

Example 26 (Cutting plane). Consider the problem,

max
x,y,z∈Z

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
x+ y + z :

x+ y ≤ 1

y + z ≤ 1

x+ z ≤ 1

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
. One can verify that the solution to the LP relaxation of this problem is x = 0.5, y = 0.5, z = 0.5.

Now to solve the original problem, one can sum the constraints x+ y ≤ 1, y + z ≤ 1, z + x ≤ 1 to

get 2(x+ y+ z) ≤ 3 or x+ y+ z ≤ 1.5. However, given the condition that each of x, y, z have to be

integers, one can say that their sum has to be an integer. Thus the inequality x+y+z ≤ 1.5 implied

by the given set of constraints can be strengthened to x + y + z ≤ 1, because of the integrality of

the variables. Note that the solution to the LP relaxation violates this new constraint or in other
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words, “cuts off” the LP relaxation’s solution. Such an inequality which is valid for the original

problem but not to the LP relaxation’s solution is a cutting plane.

There are many methodical algorithms to generate cutting planes and their advent has greatly

improved the speed of our algorithms for MIPs. We discuss some of the ideas behind generating

cutting planes in greater detail in Section 3.2.

Next, we describe the branch-and-cut algorithm to solve a mixed-integer program.

Branch-and-cut algorithm

The branch-and-cut algorithm is the most widely used algorithm for mixed-integer programs. The

algorithm iteratively solves linear programming problems. If the solution to the linear program

already satisfies the integer constraints in the MIP, then we are done. If not, we do one of the

following - (i) add cutting planes that make the original LP solution infeasible and we solve another

LP (ii) or we choose a variable whose integer constraints are not fulfilled and branch on that variable.

This creates a tree of linear programs one of whose solutions either solves the original MIP or we

identify that the mixed-integer set is empty (or infeasible). While in the worst case, this algorithm

can end up solving exponentially many linear programs, in practice, this works very well and

forms the basis for every commercial solver to solve MIPs. An outline of this algorithm is given

in Algorithm 1. A close variant of this algorithm is the branch-and-bound algorithm that always

chooses to branch in line 8 of Algorithm 1. On the other hand, if the algorithm always chooses to

cut in line 8 of Algorithm 1 is called the cutting-plane algorithm.
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Algorithm 1 Branch-and-cut algorithm

Given c ∈ Rn, A ∈ Rm×n, b ∈ Rm, I ⊆ [n], maximize cTx over the mixed-integer set defined by

A, b, I. Initialize L = {(A, b)} , x∗ = ∅, z = −∞.

1: while L ≠ ∅ do

2: Choose some (Ai, bi) ∈ L.

3: Solve LPi : maxx{cTx : Aix ≤ bi}. Let xi solve LPi and zi be the optimal objective value.

If it is infeasible, set xi = 0, zi = −∞.

4: if zi ≤ z then Go to line 2. end if ◃ Fathom node

5: if xi satisfies the integrality constraints then ◃ Update incumbent

6: x∗ = xi and z := zi. Go to line 2.

7: end if

8: Choice ← “cut” or “branch” ◃ Choose to cut or to branch

9: if Choice is “cut” then

10: Add cutting planes to the constraints Aix ≤ bi generated from some cutting plane

procedure. Go to line 3.

11: else ◃ Branch

12: Find a component j ∈ I such that xij ̸∈ Z.

13: Define two new (A′, b′) and (A′′, b′′) such that both includes all rows of (Ai, bi). One of

them has xj ≤
⌊
xij

⌋
constraint and the other has xj ≥

⌈
xij

⌉
constraint.

14: Include (A′, b′) and (A′′, b′′) in L. ◃ New branches

15: end if

16: end while

17: Return x∗.
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3.2 Cut generating functions

One of the well-studied areas of the Algorithm 1 which is still an active area of research is to

implement the cutting plane generation procedure mentioned in line 10. Bixby and Rothberg

[28], Bixby et al. [29] give an account of how the advent of cutting planes has increased the speed

of MIP solvers by over 5000% in standardized test problem sets. In this section, we briefly deal

with some ideas behind generating cutting planes for MIP.

Gomory [81] introduced the idea of obtaining a cutting plane, given the solution to the LP

relaxation associated with the MIP. Suppose we are interested in generating a valid inequality for

the (pure) integer points in P = {x ∈ Rn : Ax ≤ b}, then the following can be done. Suppose we

find y ≥ 0 such that yTA ∈ Zn and yT b ∈ R \ Z, observe that for any x ∈ Zn, (yTA)x ∈ Z. So,

we can strengthen yTAx ≤ yT b to yTAx ≤
⌊
yT b
⌋
, which is a valid inequality for the set of integer

points in P but not necessarily for P . This is the basis for the so-called Chvátal-Gomory procedure

and is the motivation for the Gomory’s fractional cuts described in Gomory [81, 82]. Note that the

cutting plane derived in Example 26 is a Gomory’s fractional cut.

Following the Chvátal-Gomory procedure to generate valid inequalities for MIP, a large number

of procedures and algorithms came into practice for generating cutting planes. These different

algorithms to generate cutting planes gave rise to different families of cutting planes like mixed-

integer rounding (MIR) inequalities, split inequalities, Gomory mixed-integer (GMI) inequalities,

cover inequalities, clique inequalities, lift-and-project inequalities and so on. Conforti et al. [43,

Chapter 5 and 6] give an extensive survey of different families of cutting planes.

The idea of cut generating functions provides a unifying framework to describe a large family

of cutting planes for MIPs. Before a formal definition of cut generating functions, we brief the

concept of corner polyhedron next.
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3.2.1 Corner polyhedron

Let us consider a mixed-integer set presented in the standard form.

Ax = d (3.4a)

x ≥ 0 (3.4b)

xi ∈ Z ∀ i ∈ I (3.4c)

where A ∈ Rm×n, d ∈ Rm. Using the simplex method [119, 126], one can find the vertices of the

polyhedron P = {x ∈ Rn : Ax = d, x ≥ 0}. Each vertex is associated with a so-called basic-index B

which is a subset of [n] with exactly m elements, such that the submatrix formed by the columns of

A in positions corresponding to the indices in B is non-singular. This nonsingular matrix is called

as the basic matrix. From the theory of simplex algorithm, one can find the coordinates of the

vertex associated with B as the point, whose B coordinates are given by B−1d and all the other

coordinates set to 0.

In other words, let A = [B N ] where B ∈ Rm×m is the basic matrix and the remaining columns

of A make the non-basic matrix N ∈ Rm×(n−m). Then the constraint Ax = d can be written as

BxB +NxN = d (3.5)

where xB corresponds to the the B coordinates of x and xN corresponds to the remaining coordinates

of x. Premultiplying by B−1, the system eq. (3.4) can be rewritten as

xB = B−1d−B−1NxN (3.6a)

xN ≥ 0 (3.6b)

xB ≥ 0 (3.6c)

xB, xN ∈ Z (if corresponding coordinate is in I) (3.6d)
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Gomory [83] introduced a useful relaxation of the above set of equations, i.e., to let go of the non-

negativity of the basic variables that is imposed in eq. (3.6c). This popularly came to be known as

the corner relaxation and the feasible region of this relaxation is known as the corner polyhedron.

The equations describing the corner polyhedron are given below

xB = B−1d−B−1NxN (3.7a)

xN ≥ 0 (3.7b)

xB, xN ∈ Z (if corresponding coordinate is in I) (3.7c)

The corner polyhedron, is a relatively easier set for analysis compared to a general mixed-integer

set. Most of the families of cutting planes are valid for the corner polyhedron. Next, we motivate

some background material and results on subadditive functions which are central to the definition

of cut generating functions in Definition 28.

For the rest of the chapter, we will consider the mixed-integer set and its corner relaxation in

the following canonical form.

Definition 27. A mixed-integer set in canonical form for cut generating functions is

X+
S (R,P ) =

{
(s, y) ∈ Rk+ × Zℓ+ : Rs+ Py ∈ b+ Zn+

}
(3.8)

for some matrices R ∈ Rm×j , P ∈ Rm×ℓ for some m ∈ Z+. The correspoding corner relaxation in

the canonical form is

XS(R,P ) =
{
(s, y) ∈ Rk+ × Zℓ+ : Rs+ Py ∈ b+ Zn

}
(3.9)

Note the equivalence between Definition 27 and eq. (3.7). The solution of the linear program

relaxation B−1d is equivalent to −b in Definition 27. R and S in Definition 27 are submatrices

of N in eq. (3.7) corresponding to continuous and integer nonbasic variables respectively. s, y in

35



Definition 27 correspond to the continuous and integer nonbasic variables xN in eq. (3.7). Also

note that the origin (i.e., where all coordinates of s and z are zero) in this notation corresponds

to the solution of the LP relaxation. This is because, the vertex solution of an LP has all its non

basic entries as zeros.

Further, in practice, only a subset of the rows of the corner polyhedron defined in eq. (3.7) is

used. But one can observe, it is still in the form motivated by Definition 27 and cut generating

functions can be used in this context.

Now we define functions that enable us to generate valid inequalities for XS(R,P ). We call

them as cut generating functions.

Definition 28 (Cut generating functions). Let ψ : Rk ↦→ R and π : Rℓ ↦→ R. Now (ψ, π) is called

a cut generating function (CGF) pair or a valid pair, if

k∑
i=1

ψ(ri)si +

ℓ∑
i=1

π(pi)yi ≥ 1 (3.10)

is a valid inequality for XS(R,P ) where r
i is the i-th column of R and pi is the i-th column of P .

Note that, any valid inequality generated by a CGF is indeed a cutting plane, as it is valid for

X+
S (R,P ) ⊆ XS(R,P ), the mixed-integer set by definition and cuts off the LP relaxation’s solution

(0, 0). Also note that the same pair (ψ, π) should give valid inequalities irrespective of k, ℓ, R and

P to be a CGF pair. However, it can depend upon b, the negative of the LP relaxation’s solution.

While Definition 28 indeed defines a seemingly useful class of functions that can generate valid

inequalities for a mixed-integer set, one might wonder if such a pair of functions exists. To answer

that question, we define certain classes of functions and use them to construct CGFs.

Definition 29 (Gauge function). Let B ⊆ Rn be a convex function such that 0 ∈ int(B). Then the

gauge function of C, ψB : Rn ↦→ R is defined as ψB(x) := inf
{
t > 0 : xt ∈ B

}
.
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Theorem 30 ([20, 56]). Let B be a convex set such that 0 ∈ int(B) and int(B) ∩ (b + Zn) = ∅.

Then, (ψB, ψB) is a cut generating function pair.

The above theorem gives a constructive proof on the existence of CGF. Now let us strengthen

our requirements on cut generating functions that are guaranteed to give strong valid inequalities.

From the valid inequalities that CGFs produce, one can observe that if the function value of ψ and

π are smaller, the inequalities they provide are stronger. This leads us to the concept of minimal

cut generating functions.

Definition 31 (Minimal cut generating functions). A CGF pair (ψ, π) is called minimal if we

have another CGF pair (ψ′, π′) such that ψ′(s) ≤ ψ(s) for all s and π′(y) ≤ π(y) for all y, then

ψ′ = ψ and π′ = π.

Existence of minimal CGFs can be proved using Zorn’s lemma.

Next, we define lifting, which helps us get stronger cut generating functions.

Definition 32 (Lifting). Let ψ : Rn ↦→ R be a function such that (ψ,ψ) is a CGF. A function

π ≤ ψ is a lifting of ψ if (ψ, π) is also a CGF.

Theorem 33 (Trivial lifting). Let (ψ, ψ) be a CGF. Then (ψ, ψ̃) is also a CGF where

ψ̃(x) := inf
z∈Zn

ψ(x+ z) (3.11)

Here ψ̃ is called as the trivial lifting of ψ.

Definition 34 (Maximal b+Zn-free convex set). Let B ⊆ Rn be a convex set such that 0 ∈ int(B)

and int(B)∩ (b+Zn) = ∅. B is called a maximal b+Zn-free convex (MLC) set if for some convex

set B′ containing the origin such that int(B′) ∩ (b+ Zn) = ∅, B′ ⊇ B implies B′ = B.
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Remark 35. Given the notion that b+ Zn is the “lattice”, we alteratively refer to b+ Zn-free sets

as lattice-free sets.

Theorem 36. Let B be a maximal b+Zn-free convex set. Then ∃π : Rn ↦→ R such that (ψB−b, π)

is a minimal CGF. Such a π is called a minimal lifting of ψB.

While the above theorem is about the existence of a minimal lifting, it need not necessarily be

unique. In fact, it can be shown for many b+ Zn-free convex sets that there are multiple minimal

liftings. We use the definition below to identify some sets which have a unique minimal lifting.

With all the preliminary definitions and theorems here, we now discuss generating good cuts

from CGFs efficiently.

3.3 Can cut generating functions be good and efficient?

In our opinion, there are two key obstacles to implementing such cut generating functions in state-

of-the-art software:

1. There are too many (in fact, infinitely many) maximal b+ Zn free sets to choose from – this

is the problem of cut selection,

2. For maximal b+Zn free polyhedra with complicated combinatorial structure, the computation

of the trivial lifting via eq. (3.11) is extremely challenging. Moreover, computing the values

of other minimal liftings is even more elusive, with no formulas like eq. (3.11) available.

Thus, a central question in making cut generating function theory computationally viable, which

also motivates the title of this section, is the following.

Can we find a “simple” subset of maximal b + Zn free polyhedra such that two goals

are simultaneously achieved:
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(i) provide guarantees that this “simple” subset of b + Zn free sets gives a good

approximation of the closure obtained by throwing in cuts from all possible

maximal b+ Zn free sets, and

(ii) cutting planes can be derived from them with relatively light computational

overhead, either via trivial liftings or other lifting techniques.

Summary of results. The goal of this work is to make some progress in the above question. We

achieve the following as a part of this work:

1. One may wonder if the trivial lifting function of the gauge can approximate any minimal

lifting up to some factor. We show that there exist maximal b + Zn free sets whose gauge

functions have minimal liftings that are arbitrarily better than the trivial lifting (on some

subset of vectors). More formally, we establish

Theorem 37. Let n be any natural number and ϵ > 0. There exists b ∈ Rn \Zn and a family

F of maximal (b+ Zn)-free sets such that for any B ∈ F , there exists a minimal lifting π of

ψB and p ∈ Rn satisfying π(p)

ψ̃B(p)
< ϵ.

2. Given an arbitrary maximal b+Zn free set B, computing the trivial lifting using eq. (3.11) can

be computationally very hard because it is equivalent to the notorious closest lattice vector

problem in the algorithmic geometry of numbers literature [63]. One could potentially write

an integer linear program to solve it, but this somewhat defeats the purpose of cut generating

functions: one would like to compute the coefficients much faster than solving complicated

optimization problems like eq. (3.11) (and even harder IPs for general lifting). To overcome

this issue, we isolate a particular family of maximal b+ Zn free sets that we call generalized

cross-polyhedra (see Definition 39 for a precise definition) and give an algorithm for computing
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the trivial lifting function for any member of this family without using a high dimensional

integer linear program. For this family, one needs O(2n) time to compute the gauge function

because the b + Zn free sets have 2n facets, and one needs an additional O(n2n) time to

compute the trivial lifting coefficient. Recall that n corresponds to the number of rows used

to generate the cuts. This is much better complexity compared to solving eq. (3.11) using an

integer program or the closest lattice vector (the latter will have to deal with an asymmetric,

polyhedral gauge which is challenging). This is described in Section 3.5; see Algorithm 2.

For a subfamily of generalized cross-polyhedra, both of these computations (gauge values and

trivial lifting values) can actually be done in O(n) time, which we exploit in our computational

tests (see Section 3.6.2). We envision using this in software and computations in the regime

n ≤ 15.

3. From a theoretical perspective, we also show that our family of generalized cross-polyhedra

can provide a finite approximation for the closure of cutting planes of the form

k∑
i=1

ψB(ri)si +

ℓ∑
i=1

ψ̃B(pi)yi ≥ 1.

More precisely, for any matrices R ∈ Rn×k, P ∈ Rn×ℓ, and any maximal b + Zn free set B,

let HB(R,P ) := {(s, y) :
∑k

i=1 ψB(ri)si +
∑ℓ

i=1 ψ̃B(pi)yi ≥ 1}. Let Gb denote the set of all

generalized cross-polyhedra (as applicable to S = b+ Zn). Then, we have

Theorem 38. Let n ∈ N and b ∈ Qn \ Zn. Define for any matrices R,P

M(R,P ) := ∩B maximal b+ Zn free setHB(R,P )

G(R,P ) := ∩B∈Gb
HB(R,P )

Then there exists a constant α depending only on n, b such that M(R,P ) ⊆ G(R,P ) ⊆

αM(R,P ) for all matrices R,P .
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Note that since ψB, ψ̃B ≥ 0, both M(R,P ) and G(R,P ) in Theorem 38 are polyhedra of the

blocking type, i.e., they are contained in the nonnegative orthant and have their recession

cone is the nonnegative orthant. Thus, the relationship G(R,P ) ⊆ αM(R,P ) shows that one

can “blow up” the closure M(R,P ) by a factor of α and contain G(R,P ). Equivalently, if we

optimize any linear function over G(R,P ), the value will be an α approximation compared

to optimizing the same linear function over M(R,P ).

4. We test our family of cutting planes on randomly generated mixed-integer linear programs,

and also on the MIPLIB 3.0 set of problems. The short summary is that we seem to

observe a tangible improvement with our cuts on the random instances, while no significant

improvement in structured problems like MIPLIB 3.0 problems (except for a specific family).

The random dataset consists of approx. 13000 instances and our observed improvement

cannot be explained by random noise. More details are available in Section 3.6.

Our conclusion is that there is something to be gained from our cuts; however, it is unclear

what kind of structures in MILP instances can be exploited by the proposed family in practice.

It is also disappointing that these structures almost never appear in MIPLIB 3.0 problems.

Nevertheless, we believe that future research will likely reveal when, in practice, our cuts

will provide an improvement over current state-of-the-art methods. A very optimistic view

that one can hold is that some future applications might contain models with the kind of

structures which benefit from the proposed family of cuts.

The remainder of the chapter is dedicated to rigorously establishing the above results.

Section 3.4 formally introduces the class of generalized cross-polyhedra and Theorem 38 is proved.

Section 3.5 then gives an algorithm for computing the trivial lifting for the family of generalized

cross-polyhedra, which avoid solving integer linear programming problems or closest lattice vector
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O

(a) The horizontal red line is the crosspolytope

B and the vertical red line is the interval I⌊γ⌋.

The points on the lines are c and γ.

O

(b) With µ = 0.25, the horizontal blue line is(
1
µ (B − c) + c

)
× {γ} and the vertical line is

{c} ×
(

1
1−µ (I⌊γ⌋ − γ) + γ

)
.

O

(c) The convex hull of the sets in Figure 3.2b

gives G, the generalized cross-polytope.

O

(d) b+G is the new b+ Zn free generalized

cross-polytope.

Figure 3.2: Cross-polytope construction - The points b+ Zn are shown as black dots with Zn at

the intersection of the grid.

problems for this purpose. Section 3.6 gives the details of our computational testing. Section 3.7

proves Theorem 37.

3.4 Approximation by Generalized Cross Polyhedra

Definition 39. [Generalized cross-polyhedra] We define the family of generalized cross-

polytopes recursively. For n = 1, a generalized cross-polytope is simply any interval Ia := [a, a+1],

where a ∈ Z. For n ≥ 2, we consider any generalized cross-polytope B ⊆ Rn−1, a point c ∈ B,

γ ∈ R, and µ ∈ (0, 1). A generalized cross-polytope in Rn built out of B, c, γ, µ is defined as the

convex hull of
(

1
µ(B − c) + c

)
×{γ} and {c}×

(
1

1−µ(I⌊γ⌋ − γ) + γ
)
. The point (c, γ) ∈ Rn is called
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the center of the generalized cross-polytope.

A generalized cross-polyhedron is any set of the form X × Rn−m, where X ⊆ Rm, m < n

is a generalized cross-polytope in Rm.

The following theorem collects important facts about generalized cross-polyhedra that were

established in Averkov and Basu [11], Basu and Paat [19] (where these sets were first defined and

studied) and will be important for us below.

Theorem 40. Let G ⊆ Rn be a generalized cross-polyhedron. The following are all true.

(i) Let b ∈ Rn \ Zn such that −b ∈ int(G) and let S = b + Zn. Then b +G is a maximal S-free

convex set. Moreover, using the values of c, γ and µ in the recursive construction, one can

find normal vectors a1, . . . , a2
n ∈ Rn such that b+G = {x ∈ Rn : ai · x ≤ 1, i = 1, . . . , 2n}.

(ii) If G is a generalized cross-polytope, then there exists a unique z ∈ Zn such that z + [0, 1]n ⊆

G ⊆ ∪nj=1((z + [0, 1]n) + ℓj), where ℓj is the j-th coordinate axis obtained by setting all

coordinates to 0 except coordinate j. Moreover, zj = ⌊γj⌋, where γj is the value used in the

j-th stage in the recursive construction of G for j = 1, . . . , n.

The main goal of this section is to establish the following result, which immediately implies

Theorem 38.

Theorem 41. Let b ∈ Qn \ Zn such that the largest denominator in a coordinate of b is s. Let L

be a (b+Zn)-free set with 0 ∈ int(L). Then there exists a generalized cross-polyhedron G such that

B := b+G is a (b+ Zn)-free convex set such that
(

1
s4n−1 Flt(n)

)n−1
L ⊆ B.

Let us quickly sketch why Theorem 41 implies Theorem 38.

Proof of Theorem 38. We claim that α =
(

1
s4n−1 Flt(n)

)n−1
works. By a standard property of gauge

functions, Theorem 41 implies that for any maximal b + Zn free set L, there exists a generalized
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cross-polyhedron B such that ψB ≤ αψL, consequently, by (3.11), ψ̃B ≤ αψ̃L. Thus, HB(R,P ) ⊆

αHL(R,P ) and we are done. �

The rest of this section is dedicated to proving Theorem 41. We need to first introduce some

concepts and intermediate results, and the final proof of Theorem 41 is assembled at the very end

of the section.

Definition 42 (Width function and lattice width). For every nonempty subset X ⊂ Rn, the width

function w(X, ◦) : Rn ↦→ [0,∞] of X is defined to be

w(X,u) := sup
x∈X

x · u− inf
x∈X

x.u (3.12)

The lattice width of X is defined as

w(X) := inf
u∈Zn\{0}

w(X,u) (3.13)

Definition 43 (Flatness). The Flatness function is defined as

Flt(n) := sup {w(B) : B is a b+ Zn free set in Rn} (3.14)

Theorem 44 (Flatness theorem [18]). Flt(n) ≤ n5/2 for all n ∈ N.

Definition 45 (Truncated cones and pyramids). Given an n − 1-dimensional closed convex set

M ⊂ Rn, a vector v ∈ Rn such that aff(v+M) ̸= aff(M), and a scalar γ ∈ R+, we say that the set

T (M,v, γ) := cl(conv{M ∪ (γM + v)}) is a truncated cone (any set that can be expressed in this

form will be called a truncated cone).

A truncated cone with γ = 0 is called a pyramid and is denoted P (M, v). If M is a polyhedron,

then P (M,v) is a polyhedral pyramid. v is called the apex of P (M,v) and M is called the base of

P (M,v). The height of a pyramid P (M, v) is the distance of v from the affine hull of M .

When M is a hyperplane, the truncated cone is called a split.
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Definition 46 (Simplex and Generalized Simplex). A simplex is the convex hull of affinely

independent points. Note that a simplex is also a pyramid. In fact, any facet of the simplex

can be taken as the base, and the height of the simplex can be defined with respect to this base.

A generalized simplex in Rn is given by the Minkowski sum of a simplex ∆ and a linear space X

such that X and aff(∆) are orthogonal to each other. Any facet of ∆+X is given by the Minkowski

sum of a base of ∆ and X. The height of the generalized simplex with respect to such a facet is

defined as the height of ∆ with respect to the corresponding base.

We first show that b+Zn free generalized simplices are a good class of polyhedra to approximate

other b+ Zn free convex bodies within a factor that depends only on the dimension. This result is

a mild strengthening of Proposition 29 in Averkov et al. [12] and the proof here is very similar to

the proof of that proposition.

Definition 47 (Unimodular matrix and unimodular transformations). A matrix U ∈ Rn×n is

called unimodular if each element of the matrix Uij ∈ Z and det(U) = ±1. A linear transformation

induced by a unimodular matrix is called unimodular transformation.

In other words, unimodular transforms are invertible linear transforms U such that for any

z ∈ Zn, Uz ∈ Zn. More informally they map Zn onto Zn.

Lemma 48. Let n ∈ N and b ∈ Qn \ Zn such that the largest denominator in a coordinate of

b is s. Let S = b + Zn. Then for any S-free set L ⊆ Rn, there exists an S-free generalized

simplex B = ∆+X (see Definition 46) such that 1
s4n−1 Flt(n)

L ⊆ B. Moreover, after a unimodular

transformation, B has a facet parallel to {x ∈ Rn : xn = 0}, the height of B with respect to this

facet is at most 1, and X = Rm × {0} for some m < n.

Proof. We proceed by induction on n. For n = 1, all S-free sets are contained in a lattice-free
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(b+ Z free) interval, so we can take B to be this interval. For n ≥ 2, consider an arbitrary S-free

set L. By Theorem 44, L′ := 1
s4n−2 Flt(n)

L has lattice width at most 1
s . Perform a unimodular

transformation such that the lattice width is determined by the unit vector en and bn ∈ [0, 1).

If bn ̸= 0, then bn ∈ [1/s, 1−1/s], and therefore L′ is contained in the split {x : bn−1 ≤ xn ≤ bn}.

We are done because all splits are generalized simplices and 1
s4n−1 Flt(n)

L = 1
4L

′ ⊆ L′ ⊆ B := {x :

bn − 1 ≤ xn ≤ bn}.

If bn = 0, then L ∩ {x : xn = 0} is an S′-free set in Rn−1, where S′ = (b1, . . . , bn−1) + Zn−1.

Moreover, by the induction hypothesis applied to L∩{x : xn = 0} and L′∩{x : xn = 0} shows that

there exists an S′-free generalized simplex B′ ⊆ Rn−1 × {0} such that L′ ∩ {x : xn = 0} ⊆ B′. Let

B′ be the intersection of halfspaces H ′
1, . . . ,H

′
k ⊆ Rn−1. By a separation argument between L′ and

cl(Rn−1 \H ′
i)×{0}, one can find halfspaces H1, . . . ,Hk ⊆ Rn such that Hi∩ (Rn−1× 0) = H ′

i×{0}

and L′ ⊆ H1 ∩ . . . ∩Hk (this separation is possible because 0 ∈ int(L′)).

We now consider the set P := H1 ∩ . . .∩Hk ∩{x : −1/s ≤ xn ≤ 1/s}. By construction, P ⊆ Rn

is S-free and L′ ⊆ P since L′ has height at most 1
s and contains the origin. P is also a truncated

cone given by v = 2
se
n andM = P ∩{x : xn = −1/s} and some factor γ (see Definition 45), because

B′ is a generalized simplex. Without loss of generality, one can assume γ ≤ 1 (otherwise, we change

v to −v and M to P ∩ {x : xn = 1}). By applying Lemma 25 (b) in Averkov et al. [12], one can

obtain a generalized simplex B as the convex hull of some point x ∈ P ∩ {x : xn = 1
s} and M such

that 1
4P ⊆ B ⊆ P (the hypothesis for Lemma 25 (b) in Averkov et al. [12] is satisfied because 0

can be expressed as the mid point of two points in P ∩ {x : xn = 1
s} and P ∩ {x : xn = −1

s} ).

Since L′ ⊆ P , we have that 1
s4n−1 Flt(n)

L = 1
4L

′ ⊆ 1
4P ⊆ B. Since B ⊆ P , B is S-free. �

Proof of Theorem 41. We proceed by induction on n. If n = 1, then an S-free convex set is

contained in an S-free interval, which is an S-free generalized cross-polyhedron, so we are done.
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For n ≥ 2, we consider two cases. Without loss of generality, we may assume bn ∈ [0, 1) (by

translating everything by an integer vector).

By Lemma 48, there exists an S-free generalized simplex P = ∆ +X (see Definition 46) such

that 1
s4n−1 Flt(n)

L ⊆ P . Moreover, after a unimodular transformation, P has a facet parallel to

{x ∈ Rn : xn = 0} and the height of P with respect to this facet is at most 1. Moreover, X can be

assumed to be Rm × {0} for some m < n. Thus, by projecting on to the last n −m coordinates,

we may assume that P is a simplex with a facet parallel to {x ∈ Rn : xn = 0}.

If bn ̸= 0, then bn ∈ [1/s, 1 − 1/s]. Moreover, 1
sP has height at most 1

s , and therefore it is

contained in the maximal S-free split {x : bn−1 ≤ xn ≤ bn}. We are done because all maximal S-free

splits are generalized cross-polyhedra and
(

1
s4n−1 Flt(n)

)n−1
L ⊆ 1

sP ⊆ B := {x : bn− 1 ≤ xn ≤ bn}.

If bn = 0, then by the induction hypothesis, there exists a translated generalized cross-

polyhedron B′ ⊆ Rn−1 × {0} such that
(

1
s4n−2 Flt(n−1)

)n−2
(P ∩ {x : xn = 0}) ⊆ B′. Let v

be the vertex of P with positive vn coordinate. Since the height of P is at most 1, the height

of
(

1
s4n−2 Flt(n−1)

)n−2
P is also at most 1. Let the facet F of

(
1

s4n−2 Flt(n−1)

)n−2
P parallel to

{x ∈ Rn : xn = 0} be contained in the hyperplane {x ∈ Rn : xn = λ}, where −1 < λ < 0 since P

has height at most 1 with respect to this facet. Moreover, we may assume that after a unimodular

transformation, the projection of v on to Rn−1 × {0} lies in B′, because the points from S on the

boundary of B′ form a lattice hypercube in Rn−1 by Theorem 40(ii). Let this projected vertex be

c ∈ Rn−1. Let µ = 1− |λ| and γ = λ. Create the generalized cross-polyhedron B from B′, c, µ, γ in

Rn as described in Definition 39. By the choice of µ and γ and the fact that P has height at most

1, v ∈ B.

We also claim that F ⊆ ( 1µ(B
′ − c) + c)× {γ} ⊆ B. Indeed, observe that

F − (c, λ) ⊆ 1

µ

(((
1

s4n−2 Flt(n− 1)

)n−2

P ∩ {x ∈ Rn : xn = 0}
)
− (c, 0)

)
.
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Since
(

1
s4n−2 Flt(n−1)

)n−2
(P ∩ {x : xn = 0}) ⊆ B′, we have F ⊆

(
1
µ(B

′ − c) + c
)
× {γ}.

Thus, we have that
(

1
s4n−2 Flt(n−1)

)n−2
P ⊆ B since v ∈ B and F ⊆ B. Combining with

1
s4n−1 Flt(n)

L ⊆ P , we obtain that

(
1

s4n−1 Flt(n)

)n−1

L ⊆

((
1

s4n−2 Flt(n− 1)

)n−2
)

1

s4n−1 Flt(n)
L ⊆ B

�

3.5 Algorithms for trivial lifting in generalized cross-polyhedra

The key fact that we utilize in designing an algorithm to compute the trivial liftings of generalized

cross-polyhedra is the following. By the results in Averkov and Basu [11], Basu and Paat [19],

generalized cross-polyhedra have the so-called covering property. The essential implications of this

for our purposes are distilled into the following theorem.

Theorem 49. Let G ⊆ Rm be any generalized cross-polytope and let b ∈ Rm \ Zm such that

−b ∈ int(G). There is a subset T ⊆ G such that T + Zm = Rm and for any p ∈ Rm, there exists

p̃ ∈ b+ T such that p̃ ∈ p+ Zm and ψ̃b+G(p) = ψb+G(p̃).

The region T is called the covering region and the implication of Theorem 49 is that the family

of generalized cross-polytopes have the covering property.

Thus, for any generalized cross-polyhedron G ⊆ Rm and p ∈ Rm, if one can find the p̃ in

Theorem 49, then one can compute the trivial lifting coefficient ψ̃b+G(p) by simply computing the

gauge function value ψb+G(p̃). The gauge function can be computed by simple evaluating the 2m

inner products in the formula ψb+G(r) = max2
m

i=1 a
i ·r, where ai, i = 1, . . . , 2m are the normal vectors

as per Theorem 40(i).
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Thus, the problem boils down to finding p̃ from Theorem 49, for any p ∈ Rm. Here, one uses

property (ii) in Theorem 40. This property guarantees that given a generalized cross-polytope

G ⊆ Rm, there exists z ∈ Zn that can be explicitly computed using the γ values used in the

recursive construction, such that T ⊆ G ⊆ ∪mj=1((z + [0, 1]m) + ℓj), where ℓj is the j-th coordinate

axis obtained by setting all coordinates to 0 except coordinate j. Now, for any p ∈ Rm, one can

first find the (unique) translate p̂ ∈ p + Zn such that p̂ ∈ b + z + [0, 1]m (this can be done since b

and z are explicitly known), and then p̃ in Theorem 49 must be of the form p̂+Mej , where M ∈ Z

and ej is one of the standard unit vectors in Rm. Thus,

ψ̃b+G(p) = min
j∈{1,...,m},

M∈Z

ψb+G(p̂+Mej).

For a fixed j ∈ {1, . . . ,m}, this is a one dimensional convex minimization problem over the integers

M ∈ Z for the piecewise linear convex function φj(λ) = ψb+G(p̂+λe
j) = max2

m

i=1 a
i · (p̂+λej). Such

a problem can be solved by simply sorting the slopes of the piecewise linear function (which are

simply a1j , . . . , a
2n
j ), and finding the point λ where the slope changes sign. Then either φj(⌈λ⌉) or

φi(⌊λ⌋) minimizes φj . Taking the minimum over j = 1, . . . ,m gives us the trivial lifting value for

p.

One observes that this entire procedure takes O(m2m). While this was described only for

generalized cross-polytopes, generalized cross-polyhedra of the form G× Rn−m pose no additional

issues: one simply projects out the n−m extra dimensions.

We give a formal description of the algorithm below in Algorithm 2. We assume access

to procedures GetNormal(G, b) and Gauge(G, b, x). GetNormal(G, b) takes as input a

generalized cross-polytope G and b such that −b ∈ int(G), and returns the list of normals

{a1, . . . , a2n} such that b+G = {x ∈ Rn : ai · x ≤ 1, i = 1, . . . , 2n} (property (i) in Theorem 40).

Gauge(G, b, r) takes as input a generalized cross-polytope G and b such that −b ∈ int(G) and a
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vector r, and returns ψb+G(r) (given the normals from GetNormal(G, b), one simply computes

the 2n inner products ai · r and returns the maximum).

Algorithm 2 Trivial lifting of a generalized cross-polytope

Input: Generalized cross-polytope G ⊆ Rn, b ∈ Rn \ Zn such that −b ∈ int(G). p ∈ Rn where the

lifting is to be evaluated.

Output: ψ̃b+G(p)

1: function CrossPolyLift(G, b, x)

2: Set z ∈ Rn using parameters of G as given in property (ii) in Theorem 40.

3: Compute unique p̂ ∈ (p+ Zn) ∩ b+ z + [0, 1]n.

4: Let N = GetNormal(G, b) be the set of normals.

5: for Each coordinate j from 1 to n do

6: Find a− ∈ argmaxa∈N {aj : aj ≤ 0} where aj denotes the j-th coordinate of a ∈ N ).

Break ties by picking the one with maximum a · p̂.

7: Find a+ ∈ argmina∈N {aj : aj > 0} where aj denotes the j-th coordinate of a ∈ N ).

Break ties by picking the one with maximum a · p̂.

8: λ← a+·p̂−a−·p̂
a−−a+ .

9: mj ← min{a+ · p̂+ ⌈λ⌉a+j , a− · p̂+ ⌊λ⌋a
−
j }.

10: end for

11: return min{1,m1, . . . ,mj}.

12: end function
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3.6 Computational Experiments and Results

In this section we give results from a set of computational experiments comparing the cuts described

in this dissertation against Gomory’s Mixed Integer (GMI) cuts, and also CPLEX computations at

the root node. In the next two subsections, we describe the data generation procedure and the cut

generation procedure we use, respectively. Following that, we summarize our results.

3.6.1 Data generation

Most of the tests we mention in this section were performed on randomly generated data. We write

all our test problems in the canonical form

min
x∈Rd

{
cTx : Ax = b;x ≥ 0; i ∈ I =⇒ xi ∈ Z

}
(3.15)

where A ∈ Rk×d, b ∈ Rk, c ∈ Rd and I ⊆ {1, 2, . . . , n}.

We generated roughly 12,000 problems in the following fashion.

� Each problem can be pure integer or mixed-integer. For mixed-integer programs, we decide

if each variable is discrete or continuous randomly with equal probability.

� Each problem can have the data for A, b and c as matrices with either integer data or rational

data represented upto 8 decimal places.

� The size of each problem varies from (k, d) ∈ {(10i, 25i) : i ∈ {1, 2, . . . , 10}}.

� There are roughly 300 realizations of each type of problem.

This leads to 2 × 2 × 10 × 300 (roughly) ≈ 12, 000 problems in all. This number is not precise as

some random problems where infeasibility or unboundedness were discovered in the LP relaxation
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were ignored. Below we present the results for these approximately 12,000 problems as a whole

and also the performance of our methods in various subsets of these instances.

3.6.2 Cut generation

We consider three types of cuts in these computational tests - Gomory’s mixed-integer (GMI)

cuts, X-cuts and GX-cuts. GMI cuts are single row cuts obtained from standard splits Conforti

et al. [43, Eqn 5.31]. GX-cuts are cuts obtained from certain structured generalized cross-polytopes

defined in Definition 39. X-cuts are obtained from a special case of generalized cross-polytopes,

where the center (c, γ) coincides with the origin. It should be noted that the GMIs are indeed a

special case of X-cuts because they can be viewed as cuts obtained from b + Zn free intervals or

one-dimensional generalized cross-polytopes whose center coincide with the origin. In this section,

we call such cross-polytopes as regular cross-polytopes. This motivates the set inclusions shown

in Figure 3.5. The motivation behind classifying a special family of cross-polytopes with centers

coinciding with the origin is the algorithmic efficiency they provide. Because of the special structure

in these polytopes, the gauges and hence the cuts can be computed much faster than what we can

do for an arbitrary generalized cross-polytope (comparing with the algorithms in Section 3.5). In

particular, the gauge and the trivial lifting can both be computed in O(n) time, as opposed to

O(2n) and O(n2n) respectively for the general case (see Section 3.5), where n is the dimension of

the generalized cross-polytopes or equivalently, the number of rows of the simplex tableaux used

to generate the cut.

The family of generalized cross-polytopes that we consider can be parameterized by a vector

µ ∈ (0, 1)n and another vector in f ∈ Rn. This vector consists of the values µi used in each

stage of construction of the cross-polytope, after appropriate normalization (see Definition 39).
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This actually forces
∑n

i=1 µi = 1. The vector f corresponds to the center of the generalized cross-

polytope; the coordinates of f give the coordinates of c and γ in the iterated construction of

Definition 39. Both the parameters µ and f show up in Algorithm 3. The regular cross-polytopes

are obtained by setting f = 0 in the above construction; thus, they are parameterized by only the

vector µ ∈ (0, 1)n. As long as
∑n

i=1 µi = 1, there exists a one-to-one map between such vectors and

the set of regular cross-polytopes in Rn.

3.6.3 Comparison procedure

In each of the problems, the benchmark for comparison was an aggressive addition of GMI cuts.

The procedure used for comparison is mentioned in Algorithm 3. We would like to emphasize that

X-cuts and GX-cuts are an infinite family of cuts, unlike the GMI cuts. However, we add only

finitely many cuts from this infinite family.

In all the computational tests in this dissertation, these cuts are randomly generated without

looking into any systematic selection of rows or µ. However, to improve the performance from a

completely random selection, we generate ℓ batches of k cuts and only keep the best set of k cuts.

We lay out our testing procedure in detail in Algorithm 3.

For the set of 12,000 problems, X-cuts and GX-cuts were generated with N = 2, 5, and 10

rows. For GX-cuts, the number q of rows to be picked whose corresponding basics violate integrality

constraints was chosen to be 1. This was found to be an ideal choice under some basic computational

tests with small sample size, where cuts with different values of q were compared. Also, a qualitative

motivation behind choosing q = 1 is as follows: GMI cuts use the information only from those rows

where integrality constraints on the corresponding basic variables are violated. To beat GMI, it is

conceivably more useful to use information not already available for GMI cuts, and hence to look
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at rows where the integrality constraint on the corresponding basic variable is not violated.

3.6.4 Results

A typical measure used to compute the performance of cuts is gap closed which is given by cut−LP
IP−LP .

However, the IP optimal value IP could be expensive to compute on our instances. So we use a

different metric, which compares the performance of the best cut we have, against that of GMI

cuts. Thus we define

β =
Best− GMI

GMI− LP
, (3.16)

which tries to measure the improvement over GMI cuts using the new cuts.

The testing procedure mentioned in Algorithm 3 was run with the values of k = ℓ = 5. The

results hence obtained are mentioned in Table 3.1. Besides this table, we present some interesting

observations from our computational testing.

1. In mixed-integer programs, we have β ≥ 10% in 648 cases (which is 9.53% of the set of

mixed-integer programs). In pure-integer programs, we have β ≥ 5% in 320 cases (which is

4.7% of the set of pure-integer programs). A conclusion from this could be that the family of

cuts we are suggesting in this dissertation works best when we have a good mix of integer and

continuous variables. We would like to remind the reader that in the mixed-integer examples

we considered, roughly half the variables were continuous, due to a random choice between

the presence or absence of integrality constraint for each variable.

2. We also did some comparisons between N = 2, 5, 10 row cuts. In particular, let us define

β2, β5 and β10 as the values of β with N = 2, 5, 10 respectively. Among the 13,604 cases,

only in 265 cases we found β5 > β2 or β10 > β2 (the inequalities are considered strictly here).
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Table 3.1: Results

Filter Number of

problems

Cases where

GMI < Best

Average of β Average of β

when GMI is

beaten

None (All problems) 13604 6538 (48.06%) 2.00% 4.15%

Rational Data 6600 3213 (48.68%) 2.11% 4.23%

Integer Data 7004 3325 (47.47%) 1.90% 3.80%

Pure Integer programs 6802 2189 (32.18%) 0.69% 2.146%

Mixed Integer programs 6802 4376 (64.33%) 3.32% 5.159%

Rational Data

Pure Integer programs
3300 1078 (32.67%) 0.75% 2.306%

Rational Data

Mixed Integer programs
3300 2135 (64.70%) 3.48% 5.376%

Integer Data

Pure Integer programs
3502 1111 (31.52%) 0.63% 1.996%

Integer Data

Mixed Integer programs
3502 2241 (63.42%) 3.17% 4.95%

In 264 of these cases, max{β5, β10} > GMI (the inequality is strict here). In these 265 cases,

62 were pure-integer programs and GMI was beaten in all 62 problems. The other 203 cases

were mixed-integer programs. GMI was beaten in 202 of these problems.

We conclude that when cuts derived from higher dimensional cross-polytopes dominate cut

obtained from lower dimensional cross-polytopes, then the cuts from the higher dimensional

cross-polytopes dominate GMI cuts as well. In other words, if we find a good cut from a high

dimensional cross-polytope, then we have a very useful cut in the sense that it adds significant
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value over GMI cuts.

3. Another test was done with increasing the number k which corresponds to the number of GX

cuts added, from a constant 10 to half the number of GMI cuts in the problem (recall that

for the results reported in Table 3.1, k = 5). Integer data was used in this, and this test was

performed in a smaller randomly generated sample of size 810. In pure integer cases, we beat

GMI in about 25% cases and in mixed-integer programs, we beat GMI in 61% cases. The

value of β is comparable to Table 3.1 in both cases. But the lack of significant improvement

suggests the following. The performance of cross-polytope based cuts is determined more by

the problem instance characteristics, rather than the choice of cuts. If these cuts work well

for a problem, then it should be reasonably easy to find a good cut.

4. Further there were 4 problems, all mixed-integer, with β > 100% implying that there could

be a set of problems on whom a very good choice of rows and µ could give quite a significant

improvement.

5. As far as the time taken to run these instances goes, for the number of rows considered in

this test, most of the time is typically spent in solving the LP relaxation after addition of

cuts, accessing the simplex tableaux to generate the cut etc., rather than actually computing

the cut.

3.6.5 Performance in MIPLIB 3.0

Our testing with the new cuts discussed in this dissertation had meagre to no improvement in most

of MIPLIB problems. Apart from the type of test mentioned in Algorithm 3 above, we performed

the following test motivated by Espinoza [65]. We ran the MIPLIB problem on CPLEX 12.7.1,

stopping after all root node calculations before any branching begins (CPLEX typically adds several
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rounds of cuts at the root node itself). We keep count of the number of cuts added by CPLEX. Now

we allow up to 10 times the number of cuts added by CPLEX, iteratively solving the LP relaxation

after the addition of each cut. In each round, the cut that gives the best β among twenty-five

randomly generated cut is added. We count the number of cuts we had to add and hence the

number of rounds of LP we solve, to obtain an objective value as good as CPLEX. However, in

almost all cases adding even ten times as many cuts as CPLEX did, did not give us the objective

value improvement given by CPLEX.

Tests along the line of Algorithm 3 were also not promising. The only set of exceptions is the

enlight set of problems in MIPLIB 3.0. These are problems coming from the Enlight combinatorial

game. The X-cuts did not show any improvement over GMI cuts. The performance of the GX-cuts

are shown below in Table 3.2. It can be seen from Table 3.2 that the performance of GX cuts

increases with the number of rows used.

Table 3.2: Performance on Enlight problems. The numbers reported are the optimal values of the

LP after the corresponding cuts have been added (they are minimization problems).

Problem LP GMI 2 row GX 5 row GX 10 row GX IP

enlight9 0 1 1.1902 1.4501 1.9810 INF

enlight13 0 1 1.1815 1.5410 1.9704 71

enlight14 0 1 1.1877 1.5051 1.9195 INF

enlight15 0 1 1.2001 1.4712 1.8991 69

enlight16 0 1 1.1931 1.4934 1.8766 INF
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3.7 Limitation of the trivial lifting: Proof of Theorem 37

In this section, we show that for a general b+ Zn free set, the trivial lifting can be arbitrarily bad

compared to a minimal lifting. We first show that for n = 2, there exist b ∈ R2 \ Z2 such that one

can construct maximal (b + Z2)-free triangles with the desired property showing that the trivial

lifting of its gauge function can be arbitrarily worse than a minimal lifting.

Example in 2 dimensions: Consider the sequence of Type 3 Maximal b+Zn free triangles with

b = (−0.5,−0.5) given by the equations

20x− y + 10.5 = 0 (3.17a)

αix+ y +
1− αi

2
= 0 (3.17b)

−βix+ y +
1 + βi

2
= 0 (3.17c)

with αi = 1 + 1
i and βi =

1
i . Let us call the sequence of triangles as Ti. The triangle T1 is shown

in Fig. 3.6.

For all i, the point p = (0.25, 0) is located outside the region Ti + Zn. So clearly for all i, the

trivial lifting evaluated at p is at least 1. However, let us consider the minimum possible value any

lifting could take at p. This is given by (see Dey and Wolsey [56, Section 7], Basu et al. [22]):

πmin(p) = sup
z∈Zn

w∈Rn

w+Np∈b+Zn

1− ψTi(w)
N

(3.18)

= sup
N∈N
z∈Zn

1− ψTi(b−Np+ z)

N
(3.19)

= sup
N∈N

1− infz∈Zn ψTi(b−Np+ z)

N
(3.20)

= sup
N∈N

1− ψ̃Ti(b−Np)
N

(3.21)
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In the current example, b = (−0.5,−0.5) and p = (0.5, 0). Hence points of the form b − Np

correspond to a horizontal one-dimensional lattice. i.e., points of the form (−(N + 1)/2, −0.5).

Since all of these points are arbitrarily close to the side of Ti + z for some z ∈ Z2 (as i → ∞),

ψ̃Ti(b−Np) ≥ 1− ϵi where ϵi → 0. This implies that the minimal lifting of the point could become

arbitrarily close to zero, and the approximation ψ̃(p)
πmin(p)

could be arbitrarily poor.

The proof for general n ≥ 2 can be completed in two ways. One is a somewhat trivial way, by

considering cylinders over the triangles considered above. A more involved construction considers

the so-called co-product construction defined in Averkov and Basu [11], Basu and Paat [19], where

one starts with the triangles defined above and iteratively takes a co-product with intervals to get

maximal b + Zn free sets in higher dimensions. It is not very hard to verify that the new sets

continue to have minimal liftings which are arbitrarily better than the trivial lifting, because they

contain a lower dimension copy of the triangle defined above. We do not provide more details,

because this will involve definitions of the coproduct construction and other calculations which do

not provide any additional insight, in our opinion.

59



(a) A b+ Zn-free convex set that is to be

approximated with a b+ Zn-free simplex.

(b) The integer lattice plane passing through

the convex set is shown in orange.

(c) The set shown in orange is a

lower-dimensional b+ Zn-free convex set. This

can be approximated by a lower-dimensional

simplex using the induction hypothesis.

(d) Hyperplanes can be added that passes

through the facets of the set in orange to get a

truncated pyramid and then a simplex to

approximate the given b+ Zn-free set.

Figure 3.3: Intuition behind Lemma 48 to approximate a b+ Zn-free convex set with a simplex.
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(a) Lifting region T of a generalized cross-

polytope is shaded in grey. The red cross is the

origin. Observe that the T + Zn = Rn.

(b) Observe that the lifting region of a

generalized cross-polytope is contained in n splits

(shown in orange). This is the motivation behind

Algorithm 2.

Figure 3.4: The covering region of generalized cross-polytope and intuition behind Algorithm 2

Figure 3.5: Venn diagram showing inclusions of various types of cuts and algorithmic efficiencies

to generate them.
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Algorithm 3 Computational testing procedure

Input: A mixed-integer program (MIP) in standard form. Number N ≥ 2 of rows to use to

generate multi-row cuts; Number k ≥ 1 of multi-row cuts; Number ℓ ≥ 1 of rounds of multi-row

cuts to be used; Number of 1 ≤ q ≤ N non-integer basics to be picked for GX-cuts.

1: LP← Objective of LP relaxation of MIP.

2: In the final simplex tableaux, apply GMI cuts on all rows whose corresponding basic variables

are constrained to be integer in the original problem, but did not turn out to be integers.

3: GMI← Objective of LP relaxation of MIP and GMI cuts.

4: for i from 1 to ℓ do

5: for j from 1 to k do

6: Generate µ ∈ [0, 1]N such that
∑N

ξ=1 µξ = 1. Also randomly select N rows where

integrality constraints are violated for corresponding basic variables.

7: Generate an X-cut from the generated µ and the chosen set of rows.

8: Generate f ∈ [0, 1]N randomly.

9: Randomly select rows such that q of them correspond to rows that violate the integrality

contraints and N − q of them don’t.

10: Generate a GX-cut from the generated µ, f and the set of rows.

11: end for

12: (Xi,XGi,GXi,GXGi) ← Objective of LP relaxation of MIP and all the (X-cuts, X-cuts and

GMI, GX-cuts, GX-cuts and GMI).

13: end for

14: X← maxℓi=1 Xi; XG← maxℓi=1 XGi; GX← maxℓi=1 GXi; GXG← maxℓi=1 GXGi.

15: Best← max {X,XG,GX,GXG}

16: return LP, GMI, X, XG, GX, GXG,Best
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b-2p b-p

Figure 3.6: Example where trivial lifting can be very poor
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Chapter 4

Complementarity problems

4.1 Introduction

In this chapter, we describe a well-studied branch of nonconvexity that arises from the presence

of complementarity constraints. This corresponds to the constraint that two variables in the

problem should remain non-negative while their product should be zero. Problems with this type

of nonconvexity have a wide range of applications. Theorem 18 shows how a game satisfying

some regularity assumptions (Assumptions A1 to A3) can be posed as a complementarity problem.

Abada et al. [1], Bushnell [36], Christensen and Siddiqui [41], Feijoo et al. [69], Gabriel et al.

[75, 76], Huppmann and Egging [89], Mart́ın et al. [112], Oke et al. [120], Zhuang and Gabriel [144]

use complementarity problems to model markets from a game-theoretic perspective, where the

complementarity conditions typically arise between the marginal profit and the quantity produced

by the producer. In the field of mechanics, they typically arise in the context of frictional contact

problems [102], where there is a complementarity relation between the frictional force between

a pair of surfaces and the distance of separation between them. Wilmott et al. [139] show the

64



application of complementarity problems for pricing American options. A rigorous survey of their

application is available in Ferris and Pang [71] and Facchinei and Pang [66, Chap 1.4, pg 20].

Before we delve into the new results we obtained as a part of this doctoral work, we define

certain standard terms and results that we use in this section.

Facchinei and Pang [66] defines a general complementarity problem as follows.

Definition 50 (General complementarity problem). Let K ⊆ Rn be a closed cone and ⟨·, ·⟩ be an

inner-product defined in Rn. Let F : K ↦→ Rn. Then x ∈ Rn solves the general complementarity

problem if

K ∋ x ⊥ F (x) ∈ K∗ (4.1)

where K∗ is the dual cone of K defined as K∗ := {d ∈ Rn : ⟨v, d⟩ ≥ 0, ∀ v ∈ K}. The symbol x ⊥ y

refers to the requirement that ⟨x, y⟩ = 0.

Remark 51. Note that if K = Rn+, the non-negative orthant, ⟨x, y⟩ := xT y the standard inner-

product, and F (x) :=Mx+ q, some affine function, the above problem is a linear complementarity

problem as in Definition 11.

We formalize such a structure of K into the assumption below.

Assumption A4. The cone K for the general complementarity problem is

K = {x ∈ Rn : xi ≥ 0 if i ∈ I} (4.2)

for some I ⊆ [n].

The special choice of K (which is a cartesian product of a non-negative orthant and a Euclidean

space) as stated in Assumption A4, allows us to devise efficient algorithms to solve such problems.

Also the dual cone K∗ can be written in a simple closed form in such cases. We state that as a

lemma below.
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Lemma 52. Let K satisfy Assumption A4. The dual cone K∗ is

K∗ =

⎧⎪⎪⎨⎪⎪⎩x ∈ Rn :
xi ≥ 0 if i ∈ I

xi = 0 if i ̸∈ I

⎫⎪⎪⎬⎪⎪⎭ (4.3)

The structure that the above lemma guarantees, helps us design efficient algorithms for this

problems. For conciseness, we will call the components of x corresponding to i ∈ I as positive

variables (since they are constrainted to be non-negative) and the components of x corresponding

to i ∈ [n] \ I as free variables.

Solving complementarity problems We now briefly outline two methods to solve

complementarity problems. The first is the motivation for the PATH algorithm [58] for solving

complementarity problems. The following theorem is needed to motivate the PATH algorithm.

Theorem 53 ([66]). Let K ⊆ Rn be a cone and F : Rn ↦→ Rn. Then x∗ solves the general

complementarity problem defined by K and F if and only if there exists z∗ ∈ Rn such that x∗ =

ProjK(z∗) and F nor
K (z∗) = 0, where F nor

K : K ↦→ Rn is the normal map given F , defined by

F nor
K (x) = F (ProjK(x)) + x− ProjK(x).

This theorem allows us to rewrite the nonlinear complementarity problem as a zero-finding

problem of F nor
K which can be solved using Newton-like methods. However, the problem suffers

from the fact that F nor
K is not continuously differentiable since Proj(·) used to define it is not a

continuously differentiable function. PATH solves this problem using a gradient smoothing-based

method and a so-called stabilization scheme that they construct. However this comes at the cost

that PATH converges in Q-superlinear rate instead of a quadratic rate associated with the Newton

method [58, Theorem 8]. Also under some assumptions, the algorithm is also guaranteed global

convergence, unlike the Newton method, making it a popular choice to solve complementarity
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Figure 4.1: Demand curve showing the relation between price and quantity. Notice that lesser

quantity is demanded at a higher price and vice versa.

problems. We refer more curious readers to Dirkse and Ferris [58] for a comprehensive description

of this algorithm.

4.1.1 Example application

In this section, we formulate an example application of complementarity problems and motivate

the economic significance of the complementarity constraint.

Nash-Cournot game - Oligopoly: Consider an energy market. Let the demand curve, the

relation which connects the price vs quantity available, be defined by P = a− bQ, where P is the

price of energy and Q is the total quantity of energy available in the market (Figure 4.1).

Consider two players A and B competitively producing enery non-cooperatively. Let us say

both the players are interested in maximizing their profits. Further let the unit cost of production

for A and B be cA and cB respectively.
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Then the problem of A can be written as

min
qA

: cAqA − (a− b(qA + qB)) qA subject to

qA ≥ 0

and the problem of B is

min
qB

: cBqB − (a− b(qA + qB)) qB subject to

qB ≥ 0

The KKT conditions for these problems can be succintly written as

0 ≤ qA ⊥ cA − (a− b(qA + qB)) + bqA ≥ 0 (4.4a)

0 ≤ qB ⊥ cB − (a− b(qA + qB)) + bqB ≥ 0 (4.4b)

We refer the readers to Figure 2.1 for an intuition behind the KKT conditions. We observe that

the problem defined by eq. (4.4) define the game played between A and B. The value qA and qB

which solves eq. (4.4) is the Nash equilibrium to the game played by A and B.

Now with the preliminary definitions, properties and solution techniques of complementarity

problems, we present our contribution in the following sections.

4.2 North American natural gas model

4.2.1 Introduction

With a wide range of application, understanding the behavior of complementarity problems gains

importance, especially in cases where there are uncertainties in the problem. The behavior of a

solution to a complementarity problem with random parameters was first addressed by Gürkan et al.
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[86], where such problems were referred to as stochastic complementarity problems (SCP). Shanbhag

[128] formally defines two primary formulations of SCPs, namely the almost-sure formulation and

the expectation based formulation. While the former formulation rarely has a solution, the latter

is widely accepted as the SCP. In addition to this, Chen and Fukushima [40] define an expected

residual minimization (ERM) formulation for an SCP which they solve using Quasi-Monte Carlo

methods. There have been a number of different methods employed to solve SCPs which include

scenario-based methods, gradient-based methods, and Monte-Carlo sampling methods. Gabriel

et al. [76] and Egging et al. [60] use a scenario reduction based approach to solve the SCP, which

systematically analyzes the probability of a discrete set of scenarios. Not restricting to discrete

distributions for the random variables, Jiang and Xu [95] provide an iterative line-search based

algorithm to converge to a solution of the SCP under assumptions of monotonicity.

While the scenario reduction methods typically assume discrete probability distributions for

random parameters, it is more appropriate to sample certain real-life quantities from a continuous

distribution. For example, the Central Limit Theorem and the Extreme Value Theorem guarantee

that processes arising as a sum of sufficiently many random variables and as maxima and minima

of sufficiently many variables follow Normal or one of the extreme value distributions respectively

[8, 78]. The ERM formulation and the solution by Chen and Fukushima [40] solve the problem of

finding the mean of the solution irrespective of the distribution of the parameters. While Lamm

et al. [103] compute confidence intervals for the solution of the expected value formulation of

the problem, we do not have efficient methods to find the second-order statistics for large-scale

complementarity problems, i.e., the covariance of the solution for problems over 10,000 output

variables and over 1000 random input parameters.

Large-scale problems arise naturally out of detailed market models and there is considerable
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interest in studying, understanding and solving such models. Gabriel et al. [74] discuss a case of

an energy model with a large number of variables and parameters. Naturally, developing methods

to solve such large-scale problems gained interest. Biller and Corlu [27], Contreras et al. [44], Luo

et al. [111] discuss various tools ranging from mathematical techniques (Bender’s decomposition)

to computational techniques (parallel processing) for solving large-scale optimization problems.

The objective of this work is to efficiently obtain second-order statistical information about

solution vectors of large-scale stochastic complementarity problems. In addition, we also introduce

a sensitivity metric which quantifies the change in uncertainty in the output due to a perturbation

in the variance of uncertain parameters.

The diagonal elements of the covariance matrix, i.e., the variance of the solution vector,

quantify the uncertainty in the decision variables while the off-diagonal elements capture the linear

dependency among pairs of decision variables. Hyett et al. [90] and Benedetti-Cecchi [23] provide

examples in the area of clinical pathways and ecology respectively about the utility of understanding

the variance of the solution in addition to the mean. They also show that a knowledge of variance

aids better understanding and planning of the system. Agrawal et al. [5] emphasize the necessity to

understand covariance as a whole rather than individual variances by quantifying “the loss incurred

on ignoring correlations” in a stochastic programming model.

The sensitivity metric developed in this work quantifies the sensitivity of the output uncertainty

and thus helps us to directly compare input parameters by the amount of uncertainty they propagate

to the solution.

In attaining the above objectives, apart from solving the stochastic complementarity problem

in its expected value formulation, the most computationally expensive step is to solve a system of

linear equations. We choose approximation methods over analytical methods, integration or Monte
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Carlo simulation because of the computational hurdle involved while implementing those methods

for large-scale problems. The method we describe in this section achieves the following:

� The most expensive step has to be performed just once, irrespective of the covariance of the

input parameters. Once the linear system of equations is solved, for each given covariance

scenario, we only perform two matrix multiplications.

� Approximating the covariance matrix and getting a sensitivity metric can be done by solving

the said linear system just once.

The methods developed in this section can also be used for general differentiable optimization

problems with linear equality constraints. We prove stronger results on error bounds for special

cases of quadratic programming.

Having developed this method, we apply it to a large-scale stochastic natural gas model for North

America, an extension of the deterministic model developed by Feijoo et al. [69] and determine the

covariance of the solution variables. We then proceed to identify the parameters which have the

greatest impact on the solution. A Python class for efficiently storing and operating on sparse

arrays of dimension greater than two is created. This is useful for working with high-dimensional

problems which have an inherent sparse structure in the gradients.

We divide this as follows. Section 4.2.2 formulates the problem and mentions the assumptions

used in the work. It then discusses the method used to solve the stochastic complementarity

problem, develops the algorithm used to approximate the solution covariance and provides proofs

for bounding the error. Section 4.2.3 develops a framework to quantify the sensitivity of the

solution to each of the random variables. Section 4.2.4 shows how the result can be applied to

certain optimization problems with equality constraints. Having obtained the theoretical results,

Section 4.2.5 gives an example of an oligopoly where this method can be applied. Section 4.2.6
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describes the Natural Gas Model to which the said method is applied. It also discusses the

scenario we used on the model and the results hence obtained. Section 4.2.7 discusses the possible

enhancements for the model and its limitations in the current form.

4.2.2 Approximation of covariance

The approximation algorithm

Definition 54. Given F : Rn×m ↦→ Rn, and parameters θ ∈ Rm, the parametrized complementarity

problem is to find x ∈ Rn such that

K ∋ x ⊥ F(x; θ) ∈ K∗ (4.5)

We now define C-functions, which are central to pose the complementarity problem into an

unconstrained optimization problem. The equivalent formulation as an unconstrained optimization

problem assists us in developing the algorithm.

Definition 55. [66] A function ψ : R2 ↦→ R is a C-function when

ψ(x, y) = 0

⇔

x ≥ 0 y ≥ 0 xy = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(4.6)

We consider the following commonly used C-functions.

ψFB(x, y) =
√
x2 + y2 − x− y (4.7)

ψmin(x, y) = min(x, y) (4.8)

ψMan(x, y) = ζ(|x− y|)− ζ(|x|)− ζ(|y|) (4.9)

where ζ(x) is some strictly monotonic real-valued function with ζ(0) = 0
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Under our assumptions on K, the following two theorems show the equivalence of the

complementarity problem and an unconstrained minimization problem. The first theorem shows

the necessary condition for a solution of the complementarity problem.

Theorem 56. Suppose Assumption A4 holds. Then every solution x∗(θ) of the parameterized

complementarity problem in (4.5), is a global minimum of the following function f(x; θ),

Φi(x, θ;F) =

⎧⎪⎪⎨⎪⎪⎩
Fi(x, θ) if i ̸∈ I

ψi(xi,Fi(x, θ)) if i ∈ I
(4.10)

f(x; θ) =
1

2
∥Φ(x; θ;F)∥22 (4.11)

with an objective value 0, for some set of not necessarily identical C-functions ψi.

Proof. Since x∗ solves the problem, following from the requirement that F(x∗) ∈ K∗ and Lemma 52,

if i ̸∈ I, Fi(x∗(θ); θ) = 0.

For i ∈ I, x∗ ∈ K ⇒ x∗
i ≥ 0 and F(x∗) ∈ K∗ ⇒ Fi(x

∗) ≥ 0. Also from the requirement

x∗TF(x∗) = 0, one of the above two quantities should vanish for each i ∈ I. But C-functions are

precisely functions that vanish when both their arguments are non-negative and of them equal zero.

So ψi(x
∗,Fi(x

∗)) = 0.

Thus each coordinate of Φ is individually zero, which makes f(x∗) vanish, which is the smallest

value f can take. Thus x∗ is a global minimum of f. �

Now we show that the sufficient condition for a point to be a solution of the complementarity

problem is that it should be a global minimum to the same unconstrained optimization problem as

in Theorem 56.

Theorem 57. Suppose Assumption A4 holds. If a solution to the problem in (4.5) exists and

x∗(θ) is an unconstrained global minimizer of f(x; θ) defined in (4.11), then x∗(θ) solves the

73



complementarity problem in (4.5).

Proof. Since a solution exists for the NCP, we know by Theorem 56 that the minimum value f can

take is 0. Suppose we have x∗ ∈ Rn such that f(x∗; θ) = 0. Since f is sum of squares, this can

happen only if each of the individual terms are zero. This means for i ̸∈ I, Fi(x∗) = 0.

Now since ψi(xi,Fi(x
∗)) = 0 for i ∈ I, we know Fi(x

∗) ≥ 0. This combined with the previous

point implies F(x∗) ∈ K∗.

Also from the fact that ψi(x
∗
i;Fi(x

∗; θ)) = 0 for i ∈ I, we know that x∗ ∈ K. It also implies that

x∗
iFi(x

∗) = 0 for i ∈ I. Thus

x∗TF(x∗; θ) =
n∑
i=1

x∗
iFi (4.12)

=
∑
i∈I

x∗
iFi +

∑
i ̸∈I

x∗
iFi (4.13)

= 0 + 0 = 0 (4.14)

This implies x∗(θ) ⊥ F(x∗; θ) and x∗(θ) solves the complementarity problem. �

We state the below corollary explicitly to show that the equivalence holds for a stochastic

complementarity problem too.

Corollary 58. A solution x∗ of a stochastic complementarity problem with F̂ ≡ EF(x; θ(ω)) is a

global minimum of the function f defined in (4.11).

Proof. The proof is immediate by considering a new function F̃ : Rn ↦→ Rn such that F̃ (x) =

EF(x; θ(ω)). �

Now given a function F, and a set K which satisfies Assumption A4, and a solution of the NCP

x∗(E(θ)) for some fixed θ = E(θ), we define a vector valued function Φ : Rn×m ↦→ Rn component-
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wise as follows.

Φi(x, θ;F) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Fi(x, θ) if i ̸∈ I

ψ2(xi,Fi(x, θ)) if i ∈ Z

ψ(xi,Fi(x, θ)) otherwise

(4.15)

where

Z = {i ∈ I : x∗
i(E(θ)) = Fi(x

∗(E(θ));E(θ)) = 0} (4.16)

f(x; θ) =
1

2
∥Φ(x;F)∥22 (4.17)

Note that if ψ is a C-function, ψ2 is also a C-function since ψ2 = 0 ⇐⇒ ψ = 0. We observe from

Theorems 56 and 57 that minimizing f(x; θ) over x is equivalent to solving the NCP in (4.5).

Now we assume conditions on the smoothness of F so that the solution to a perturbed problem

is sufficiently close to the original solution.

Assumption A5. F(x; θ) is twice continuously differentiable in x and θ over an open set containing

K and E(θ).

Given that the rest of the analysis is on the function f(x; θ) defined in (4.11), we prove that a

sufficiently smooth F and a suitable ψ ensure a sufficiently smooth f.

Theorem 59. With Assumption A5 holding, we state f(x;E(θ)) defined as in (4.17) is a twice

continuously differentiable at f(x;E(θ)) = 0 for any C function ψ provided

1. ψ is twice differentiable at
{
(a, b) ∈ R2 : ψ(a, b) = 0

}
\ {(0, 0)} with a finite derivative and

finite second derivative.

2. ψ vanishes sufficiently fast near the origin. i.e.,

lim
(a,b)→(0,0)

ψ2(a, b)
∂2ψ(a, b)

∂a∂b
= 0 (4.18)
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Proof. Given that f is a sum of squares, it is sufficient to prove each term individually is twice

continuously differentiable to prove the theorem. Also since we are only interested where f vanishes,

it is sufficient to prove the above property for each term where it vanishes.

Consider terms from i ̸∈ I. Since Fi is twice continuously differentiable, F2
i is twice continuously

differentiable too.

Consider the case i ∈ I; x∗
i(E(θ)) = Fi (x

∗
i(E(θ)),E(θ)) = 0. These contribute a ψ4 term to f.

With the notation ψi = ψ(xi,Fi(x; θ)), we clearly have,

∂ψ4
i

∂xj
= 4ψ3

i

(
∂ψi
∂a

δij +
∂ψi
∂b

∂Fi
∂xj

)
= 0 (4.19)

∂2ψ4
i

∂xjxk
= 12ψ2

i

(
∂ψi
∂a

δij +
∂ψi
∂b

∂Fi
∂xj

)(
∂ψi
∂a

δik +
∂ψi
∂b

∂Fi
∂xk

)
+ 4ψ3

i

(
∂2ψi
∂a2

δijδik +
∂2ψi
∂a∂b

∂Fi
∂xk

+ other terms

)
(4.20)

= 0 (4.21)

For the third case, we have

∂ψ2
i

∂xj
= 2ψi

(
∂ψi
∂a

δij +
∂ψi
∂b

∂Fi
∂xj

)
= 0 (4.22)

∂2ψ2
i

∂xjxk
=

(
∂ψi
∂a

δij +
∂ψi
∂b

∂Fi
∂xj

)
+ 2ψi

(
∂2ψi
∂a2

δijδik +
∂2ψi
∂a∂b

∂Fi
∂xk

+ other terms

)
(4.23)

=
∂ψi
∂a

δij +
∂ψi
∂b

∂Fi
∂xj

(4.24)

Continuity of f at the points of interest follow the continuity of the individual terms at the points.

�

The following corollaries show the existence of C-functions ψ which satisfy the hypothesis of

Theorem 59.
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Corollary 60. With Assumption A5 holding, for the choice of C-function ψ = ψFB defined in

(4.7), the function f is twice continuously differentiable.

Proof. For ψ = ψFB, we have assumption 1 of Theorem 59 satisfied by [66]. For assumption 2,

lim
(a,b)→(0,0)

ψ2(a, b)
∂2ψ(a, b)

∂a∂b
= lim

(a,b)→(0,0)

(√
a2 + b2 − a− b

)2 ab(√
a2 + b2

)3 (4.25)

= 0 (4.26)

Thus f is twice continuously differentiable at its zeros. The twice continuous differentiability

elsewhere follows directly from the fact that ψFB is twice continuously differentiable everywhere

except at the origin. This ensures that all the terms in the derivative of the sum of squares exist

and are finite. �

We now define an isolated solution to a problem and assume that the problem of interest has

this property. This is required to ensure that our approximation is well defined.

Definition 61. [119] A solution x∗ of a problem is said to be an isolated solution, if there is a

neighborhood B(x∗; ϵ) of x∗, where x∗ is the only solution of the problem.

A counter-example for an isolated minimum is shown on the left of Figure 4.2. It is a plot of

the function

f(x) = 5x2 + x2 sin

(
1

x2

)
(4.27)

and the global minimum at x = 0 is not an isolated minimum as we can confirm that any open

interval around x = 0 has other minimum contained in it. Unlike this case, in this chapter, we

assume that if we obtain a global-minimum of f, then it is an isolated minimum.

Assumption A6. For an ε ball around θ = E(θ), there exists a known solution x∗(E(θ)) such that

it is an isolated first-order stationary point of f(x; θ).
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Algorithm 4 Approximating Covariance

Solve the complementarity problem in (4.5) for the mean value of θ = E(θ) and calibrate the value

of the parameters θ = E(θ) for this solution. Call this solution as x∗. Choose a tolerance level τ .

1: Evaluate F∗ ← F(x∗;E(θ)), Gij ← ∂Fi(x
∗;E(θ))
∂xj

, Lij ← ∂Fi(x
∗;E(θ))
∂θj

.

2: Choose a C-function ψ such that the conditions in Theorem 59 are satisfied.

3: Define the function ψa(a, b) = ∂ψ(a,b)
∂a , ψb(a, b) = ∂ψ(a,b)

∂b .

4: Find the set of indices Z = {z ∈ I : |x∗
z| = |F∗

z| ≤ τ}.

5: Define

Mij ←

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Gij if i ̸∈ I

0 if i ∈ Z

ψa(x∗
i,F

∗
i )δij + ψb(x∗

i,F
∗
i )Gij otherwise

(4.28)

where δij = 1 if i = j and 0 otherwise.

6: Define

Nij ←

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Lij if i ̸∈ I

0 if i ∈ Z

ψb(x∗
i,F

∗
i )Lij otherwise

(4.29)

7: Solve the linear systems of equations for T .

MT = N (4.30)

If M is non singular, we have a unique solution. If not, a least square solution or a solution

obtained by calculating the Moore Penrose Pseudo inverse [87] can be used.

8: Given C, a covariance matrix of the input random parameters, θ(ω), return C∗ ← T CT T .
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Figure 4.2: Left: An example of a function where the global minimum x = 0 is a non-isolated

solution. Right: The intuition behind our approximation for finding where ∇f(x, θ) = 0 under a

small perturbation.

Theorem 62 ([125]). Algorithm 4 generates a first-order approximation for the change in solution

for a perturbation in parameters and computes the covariance of the solution for a complementarity

problem with uncertain parameters with small variances.

Proof. Consider the function f(x; θ). From Theorem 56, x∗ minimizes this function for θ = E(θ).

From Theorem 59, we have f(x; θ) is twice continuously differentiable at all its zeros. Thus we have,

∇xf(x
∗;E(θ)) = 0 (4.31)

Now suppose the parameters E(θ) are perturbed by ∆θ, then the above gradient can be written

using the mean value theorem and then approximated up to the first order as follows.

∇xf(x
∗(E(θ)),E(θ) + ∆θ) = ∇xf(x

∗(E(θ)),E(θ)) +∇(θ)∇xf(x
∗(E(θ)), θ̃)∆θ

(4.32)

∇xf(x
∗(E(θ)),E(θ) + ∆θ)−∇xf(x

∗(E(θ)),E(θ)) ≈ J∆θ (4.33)
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where,

θ̃ ∈ [θ, θ +∆θ] (4.34)

Jij = [∇(θ)∇xf(x
∗(E(θ)),E(θ))]ij (4.35)

=
∂[∇xf(x

∗;E(θ))]i
∂(θ)j

(4.36)

Since J∆θ is not guaranteed to be 0, we might have to alter x to bring the gradient back to zero.

i.e., we need ∆x such that ∇xf(x
∗(E(θ)) + ∆x,E(θ) + ∆θ) = 0. But by the mean value theorem,

∇xf(x
∗(E(θ)) + ∆x,E(θ) + ∆θ) = ∇xf(x

∗(E(θ)),E(θ) + ∆θ) +∇2
xf(x̃,E(θ) + ∆θ)∆x (4.37)

0 ≈ J∆θ +∇2
xf(x̃,E(θ))∆x (4.38)

≈ J∆θ +∇2
xf(x

∗(E(θ)),E(θ))∆x (4.39)

H∆x ≈ −J∆θ (4.40)

where,

x̃ ∈ [x∗(E(θ)),x∗(E(θ)) + ∆x] (4.41)

[H]ij = [∇2
xf(x

∗(E(θ)),E(θ))]ij (4.42)

=
∂[∇xf(x

∗;E(θ))]i
∂xj

(4.43)

Now from [119], the gradient of the least squares function f can be written as

∇xf(x
∗,E(θ)) = MTΦ(x∗,E(θ)) (4.44)

[M]ij =
∂Φi(x

∗,E(θ))
∂xj

(4.45)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂Fi(x
∗,E(θ))
∂xj

if i ̸∈ I

∂ψ2(xi,Fi(x
∗,E(θ)))

∂xj
if i ∈ Z

∂ψ(xi,Fi(x
∗,E(θ)))

∂xj
otherwise

(4.46)
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=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂Fi(x
∗,E(θ))
∂xj

if i ̸∈ I

0 if i ∈ Z

∂ψi

∂xj
otherwise

(4.47)

which is the form ofM defined in Algorithm 4. Also

H = ∇2
xf(x

∗;E(θ)) = MTM+
n∑
i=1

Φi(x
∗;E(θ))∇2

xΦi(x
∗;E(θ)) (4.48)

= MTM (4.49)

where the second term vanishes since we have from Theorem 56 that each term of Φ individually

vanishes at the solution. Now

J = ∇xθf(x
∗;E(θ)) (4.50)

Jij =
∂[∇xf(x

∗;E(θ))]i
∂θj

(4.51)

=
∂

∂θj

(
n∑
k=1

[∇xΦ(x
∗;E(θ))]kiΦk(x∗;E(θ))

)
(4.52)

=

n∑
k=1

(
∂[∇xΦ(x

∗;E(θ))]ki
∂θj

Φk(x
∗;E(θ)) + [∇xΦ(x

∗;E(θ))]ki
∂Φk(x

∗;E(θ))
∂θj

)
(4.53)

=
n∑
k=1

MkiNkj = MTN (4.54)

where the first term vanished because Φi are individually zeros, and we define

Nij =
∂Φk(x

∗;E(θ))
∂θj

(4.55)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂Fi
∂xj

if i ̸∈ I

2ψ(x∗
i;F

∗
i )ψ

b(x∗
i;F

∗
i )
∂Fi
∂xj

if i ∈ Z

ψb(x∗
i;F

∗
i )
∂Fi(x

∗;E(θ))
∂xj

otherwise

(4.56)
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=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂Fi
∂xj

if i ̸∈ I

0 if i ∈ Z

ψb(x∗
i;F

∗
i )
∂Fi(x

∗;E(θ))
∂xj

otherwise

(4.57)

which is the form of N defined in Algorithm 4. By Assumption A6, we have a unique minimum in

the neighborhood of x∗ where the gradient vanishes. So we have from (4.40), (4.49) and (4.54)

H∆x = −J∆θ (4.58)

MTM∆x = −MTN∆θ (4.59)

∆x solves the above equation, if it solves

M∆x = −N∆θ (4.60)

By defining T as the solution to the linear system of equations

MT = N (4.61)

∆x = −T ∆θ (4.62)

and we have the above first-order approximation. We know that if some vector x has covariance C,

then for a matrix A, the vector Ax will have covariance ACAT . So we have.

cov(∆x) ≈ T cov(∆θ)T T (4.63)

This forms the basis for the computation of the covariance of ∆x in Algorithm 4. �

For computational purposes, the matrix T in the above equation has to be calculated only once,

irrespective of the number of scenarios for which we would like to run for the covariance of θ. Thus

if x ∈ Rn, θ ∈ Rm and we want to test the output covariance for k different input covariance cases,

the complexity is equal to that of solving a system of n linear equations m times as in (4.61), and
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hence is O(mn2). i.e., the complexity is quadratic in the number of output variables, linear in the

number of input parameters and constant in the number of covariance scenarios we would like to

run.

In Theorem 63 below, we prove that the error in the approximation of Theorem 62 can be

bounded using the condition number of the Hessian. We need the following assumption that the

condition number of the Hessian of f is bounded and the Hessian is Lipschitz continuous.

Assumption A7. At the known solution of the complementarity problem of interest (θ = E(θ)),

1. The condition number of the Hessian of f defined is finite and equal to κH

2. The Hessian of f is Lipschitz continuous with a Lipschitz constant L(x∗; θ).

Theorem 63 ([125]). With Assumption A7 holding, the error in the linear eq. (4.40) for a

perturbation of ϵ is o(ϵ).

Proof. Since ∇2f is Lipschitz continuous on both x and θ, we can write for x̃ near x∗,

∇2
xf(x

∗(E(θ)),E(θ))−∇2
xf(x̃,E(θ))

 ≤ L(x∗; θ) ∥x∗(E(θ))− x̃∥ (4.64)

≤ L(x∗; θ) ∥∆x∥ (4.65)

H̃ = ∇2
xf(x̃,E(θ)) (4.66)

= H+ εH (4.67)

where ∥εH∥ ≤ L(x∗; θ) ∥∆x∥. Applying the Lipschitz continuity on θ,

∇θ∇xf(x
∗(E(θ)), θ̃)−∇θ∇xf(x

∗(E(θ)),E(θ))
 ≤ L(x∗; θ)

θ̃ − E(θ)
 (4.68)

≤ L(x∗; θ) ∥∆θ∥ (4.69)

J̃ = ∇θ∇xf(x
∗(E(θ)), θ̃) (4.70)
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= J + εJ (4.71)

where ∥εJ∥ ≤ L(x∗; θ) ∥∆θ∥. Thus the equation

H̃∆x = J̃∆θ (4.72)

is exact, even if we cannot compute H̃ and J̃ exactly. Now the error in inverting H̃ is bounded by

the condition number [87]. H−1 − H̃−1
H̃−1

 ≤
κH

∥εH∥
∥H̃∥

1− κH ∥εH∥
∥H̃∥

(4.73)

Assuming κH ∥εH∥ ≪ ∥H∥, the above equation becomesH−1 − H̃−1
H̃−1

 ≤ κH
∥εH∥H̃ (4.74)

⇒
H̃−1 −H−1

 ≤ κH

H̃−1
H̃ ∥εH∥ (4.75)

⇒
H̃−1J̃ − H−1J̃ − H−1εJ

 ≤ κH

H̃−1
H̃ εH ∥J ∥+ κH

H̃−1
H̃ ∥εH∥ ∥εJ∥ (4.76)

⇒
H̃−1J̃ − H−1J

 ≤ k1 ∥∆x∥+ k2 ∥∆θ∥ (4.77)

with

k1 = κHL(x∗; θ)

H̃−1
H̃ ∥J ∥ (4.78)

k2 = L(x∗; θ)
H−1

 (4.79)

Thus we have from (4.77), that the error in the approximation done in Algorithm 4 is bounded. �

4.2.3 Stochastic sensitivity analysis

In this section, we quantify the sensitivity of the solution to each of the input parameters. To

achieve this, we define total linear sensitivity. We then show how these quantities can be calculated
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using the matrix T derived earlier. We then proceed to prove that these quantities also bound

the maximum increase in uncertainties of the output. We now define a quantity that bounds a

maximum change in the value of a function due to perturbations.

Definition 64. Given a function λ : Rm ↦→ Rn, the total linear sensitivity, βd ∈ R+ of a dimension

d ≤ m; d ∈ N at a point x ∈ Rm is defined for δ > 0, sufficiently small,

βd = inf {α : ∥λ(x)∥2 − δα+ o(δ) ≤ ∥λ(x+ δed)∥2 ≤ ∥λ(x)∥2 + δα+ o(δ)} (4.80)

where ed is the d-th standard basis vector.

This is a bound to the distance by which the functional value can move for a small perturbation

in the input. A solution to the parametrized complementarity problem in (4.5) can be viewed as a

function from the space of parameter tuples to the solution of the problem. The above definition

talks about bounding the change in the solution for a small change in the parameters. The next

theorem shows how the total linear sensitivity can be calculated from the linear approximation

matrix T derived earlier.

Theorem 65. Suppose we know, G ∈ Rn×m such that Gij =
∂fi(x)
∂xj

, then βd =
√(∑n

i=1G
2
id

)
Proof. By definition, for some admissible d,

λ(x+ δed) = λ(x) + δGed + o(δ) (4.81)

⇒ [λ(x+ δed)]i = [λ(x)]i + δGid + o(δ) (4.82)

∥λ(x+ δed)∥2 ≤ ∥λ(x)∥2 + ∥δG.d∥2 + ∥o(δ)∥2 (4.83)

= ∥λ(x)∥2 + δ

√( n∑
i=1

G2
id

)
+ o(δ) (4.84)

where G.d is the d-th column of G. Also we have from (4.82) for sufficiently small δ,

∥λ(x+ δed)∥2 ≥ ∥λ(x)∥2 − ∥δG.d∥2 + ∥o(δ)∥2 (4.85)
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= ∥λ(x)∥2 − δ

√( n∑
i=1

G2
id

)
+ o(δ) (4.86)

�

The above theorem proves that the T matrix obtained in (4.61) is sufficient to approximate the

total linear sensitivity. The following result suggests how the total linear sensitivity can approximate

the total variance in the output variables.

Theorem 66. Given a function λ : Rm ↦→ Rn taking random inputs and βd, the increase in the total

uncertainty in the output, i.e., the sum of variances of the output variables, for a small increase of

the variance of an input parameter, σ2d of xd is approximated by β2dσ
2
d.

Proof. Let Ed be the matrix of size m×m with zeros everywhere except the d-th diagonal element,

where it is 1. Given C = cov(x(ω)) where x(ω) is the random input for the function λ, for a small

perturbation σ2 in the variance of xd, the covariance of λ(x) changes as follows.

C∗ ≈ (∇xλ)C(∇xλ)
T (4.87)

C∗ +∆C∗ ≈ (∇xλ)(C + σ2Ed)(∇xλ)
T (4.88)

= C∗ + σ2(∇xλ)Ed(∇xλ)
T (4.89)

[∆C∗]ij ≈ σ2[∇xλ]id[∇xλ]jd (4.90)

n∑
i=1

[∆C∗]ii ≈ σ2β2d (4.91)

which is the total increase in variance. The off-diagonal terms do not affect the total uncertainty

in the system because, the symmetric matrix C can be diagonalized as QDQT , where Q is an

orthogonal matrix, and the trace is invariant under orthogonal transformations. �

With the above result, we can determine the contribution of each input parameter to the
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total uncertainty in the output. Once the parameter which contributes the most to the output

uncertainty is identified, efforts can be made to get a more accurate estimate of the parameter.

4.2.4 Application to optimization

We now show how the method explained in Algorithm 4 can be applied to approximate the

covariance of the solution of an unconstrained optimization problem or an optimization problem

with only equality constraints.

To start with, we assume conditions on the differentiability and convexity of the objective

function.

Assumption A8. The objective function f(x; θ) is strictly convex in x and is twice continuously

differentiable in x and θ.

In the theorem below, we approximate the covariance of the decision variables of a convex

optimization with uncertainties in the linear term and with only linear equality constraints.

Theorem 67. With Assumption A8 holding, the covariance of the primal and dual variables at the

optimum of the problem,

Minimize
x

f(x; θ) = g(x) + c(θ)Tx (4.92)

subject to Ax = b(θ) (y) (4.93)

where θ = θ(ω) are random parameters with covariance C, is first-order approximated by T CT T

where

T =

⎛⎜⎜⎝ ∇2
xg(x) AT

A 0

⎞⎟⎟⎠
−1⎛⎜⎜⎝ −∇θc(θ)

∇θb(θ)

⎞⎟⎟⎠ (4.94)
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Proof. For the given optimization problem, because of Assumption A8 and linear independence

constraint qualification (LICQ), the KKT conditions are necessary and sufficient for optimality.

The KKT condition satisfied at a solution (x∗,y∗) for the problem are given by

∇xg(x
∗) + c(θ) +ATy∗ = 0 (4.95)

Ax∗ = b(θ) (4.96)

for some vector y so that the equation is well defined. Suppose from there, θ is perturbed by ∆θ,

we have

∇xg(x
∗) + c(θ +∆θ) +ATy∗ ≈ ∇θc(θ)∆θ (4.97)

Ax∗ − b(θ +∆θ) ≈ −∇θb(θ)∆θ (4.98)

Now we need to find ∆x and ∆y such that

∇xg(x
∗ +∆x) + c(θ +∆θ) +AT (y∗ +∆y) ≈ 0 (4.99)

A(x∗ +∆x)− b(θ +∆θ) ≈ 0 (4.100)

∇2
xg(x

∗)∆x+AT∆y ≈ ∇θc(θ)∆θ (4.101)

A∆x ≈ −∇θb(θ)∆θ (4.102)

The above conditions can be compactly represented as⎛⎜⎜⎝ ∇2
xg(x) AT

A 0

⎞⎟⎟⎠
⎛⎜⎜⎝ ∆x

∆y

⎞⎟⎟⎠ =

⎛⎜⎜⎝ ∇θc(θ)
−∇θb(θ)

⎞⎟⎟⎠∆θ (4.103)

If A has full rank, then the above matrix is non-singular. So the change in the decision variables

x and the duals y can be written as a linear transformation of the perturbation in the random

parameters. And we now have

cov

⎛⎜⎜⎝ ∆x

∆y

⎞⎟⎟⎠ = T cov(θ)T T (4.104)
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T =

⎛⎜⎜⎝ ∇2
xg(x) AT

A 0

⎞⎟⎟⎠
−1⎛⎜⎜⎝ −∇θc(θ)

∇θb(θ)

⎞⎟⎟⎠ (4.105)

�

In the theorem below, we show that the method suggested is accurate ( i.e., has zero error) for

an unconstrained quadratic optimization problem with uncertainty in the linear term.

Theorem 68. For an optimization problem with uncertainty of objectives of the form,

f(x; θ) =
1

2
xTGx+ θ(ω)Tx (4.106)

the approximation method has zero error. In other words, the obtained covariance matrix is exact.

Proof. For the problem to be well-defined, let G ∈ Rn×n and θ ∈ Rn. This makes ∇2
xθf(x; θ) ∈

Rn×n.

∇xf(x; θ) = Gx+ θ(ω) (4.107)

∇2
xf(x; θ) = G (4.108)

[∇2
xθf(x; θ)]ij = I (4.109)

Due to absence of terms dependent on x in the last two equations, we have an exact equation,

G∆x = ∆θ (4.110)

Due to the exactness of the above equation, we have

T = G−1 (4.111)

cov(∆x) = T cov(∆θ)T T (4.112)

with no error. �
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4.2.5 Application to a general oligopoly market

We now present an example of a complementarity problem in a natural gas oligopoly and show

how the methods developed in this work can be applied.

Problem Formulation and results

Consider k producers competitively producing natural gas in a Nash-Cournot game. Let us assume

the unit costs of production are γi(ω), i ∈ {1, . . . , k}. We assume these are random variables.

Also, let us assume that the consumer behavior is modeled by a linear demand curve P (Q̃) as

follows.

P = a(ω) + b(ω)Q̃ (4.113)

where P is the price the consumer is willing to pay, Q̃ is the total quantity of the natural gas

produced and a(ω) > 0, b(ω) < 0 ∀ω ∈ Ω. Suppose the producers are competitively producing

natural gas in a Nash-Cournot game, then the problem that each producer solves is as follows.

Producer i : Maximize

⎛⎝a+ b

⎛⎝ k∑
j=1

Qj

⎞⎠⎞⎠Qi − γiQi s.t. Qi ≥ 0 (4.114)

where Qi are the quantities produced by each producer. The KKT conditions of this optimization

problem can be written as the following complementarity problem to obtain a Nash equilibrium

[47, 77].

In this formulation, a, b, γi correspond to θ andQi correspond to x in (4.5) with I = {1, 2, . . . , k}.

Fi (Q) = γi − a− b

⎛⎝ k∑
j=1

Qk

⎞⎠− bQi (4.115)

In the current numerical example, let us consider a duopoly where k = 2. Let

E
(
γ1 γ2 a b

)T
=

(
2 1 15 −1

)T
(4.116)

90



Solving the complementarity problem deterministically with the above parameter values using the

PATH algorithm [57], we get Q1 and Q2 to be 4 and 5 respectively. We use the C-function

ψmin(x, y) = min(x, y) for this example to get

M =

⎛⎜⎜⎝ 2 1

1 2

⎞⎟⎟⎠ N =

⎛⎜⎜⎝ 1 0 −1 −13

0 1 −1 −14

⎞⎟⎟⎠ (4.117)

Now we have from (4.61)

T = M−1N =
1

3

⎛⎜⎜⎝ 2 −1 −1 −12

−1 2 −1 −15

⎞⎟⎟⎠ (4.118)

Having obtained T , we attempt to get insight on how uncertainties in various input parameters

propagate through the model causing uncertainty in the equilibrium quantities. If we assume that

all these parameters, viz. γ1, γ2, a, b have a 10% coefficient of variation and are all uncorrelated,

then the covariance matrix of the input is

C1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.04 0 0 0

0 0.01 0 0

0 0 2.25 0

0 0 0 0.01

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.119)

Then the covariance matrix of the solution would be

C∗
1 = T C1T T =

⎛⎜⎜⎝ 0.4289 0.4389

0.4389 0.5089

⎞⎟⎟⎠ (4.120)

The standard deviation of the produced quantities are 0.65(=
√
0.4289) and 0.71(=

√
0.5089)

respectively. The produced quantities also have about 95% positive correlation as an increase in

demand will cause both producers to produce more and a decrease in demand will cause both

producers to produce less.
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If we assume that we have perfect knowledge about the demand curve, and if the uncertainty

is only in the production costs, then the new parameter covariance C2 has the third and fourth

diagonal term of C1 as zero. In such a scenario, we would expect the decrease in the quantity of

production of one player to cause an increase in the quantity of production of the other and vice

versa since one producer would lose market share to the other. We can see that by computing the

covariance of the solution as T C2T . The solution thus obtained shows that the produced quantities

are negatively correlated with a correlation of −85%. The uncertainties in the produced quantities

are 3% and 2% respectively of the quantity produced by each producer. We also note that the

variances are smaller now, as we no longer have uncertainties stemming from the demand side of

the problem.

Now if we assume a more realistic scenario of the production costs being correlated (60%

correlation), then we note that the produced quantity are negatively correlated with −62%

correlation. The standard deviations in the produced quantities have also dropped to about 2.9%

and 1.2% of the produced quantities. Thus we not only obtain insight about the uncertainties

in the output, but also the correlation between the output parameters. From an energy market

policy maker’s perspective, this is crucial information as it helps in identifying the regions where

production/consumption/price/flows increase/decrease simultaneously and where they change

asynchronously. Now we calculate the sensitivity of each of the input parameters to identify the

parameter that causes maximum uncertainty in the output. The values for β for each of the four

parameters γ1, γ2, a, b are calculated below.

β =
1

3

(
√
5

√
5

√
2

√
369

)T
=

(
0.745 0.745 0.471 6.40

)T
(4.121)

Thus we see that the solution is more sensitive to the slope of the demand curve than to say

production cost. Strictly speaking, this says, a unit increase in uncertainty (variance) of the slope
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Figure 4.3: Computational experiments comparing Monte-Carlo methods and First-order

approximation method

of the demand curve will be magnified about 41 times (6.42) in the output uncertainty. However, a

unit increase in the uncertainty of production cost will increase the uncertainty in the equilibrium

only by 0.556 units.

Computational Complexity

We used a Monte-Carlo based method as a comparison against our approximation method

to compute covariance in the decision variables. To achieve this, we modeled the oligopoly

complementarity problem mentioned in (4.115) varying the number of players, and hence the

number of random parameters and the decision variables. For the Monte-Carlo simulation based

approach, symmetrically balanced stratified design [130] is used with each dimension divided

into two strata. With an increasing number of random parameters and equilibrium variables,

Monte-Carlo methods become increasingly inefficient as the number of simulations required grows

exponentially. A comparison of the time taken in an 8GB RAM 1600 MHz DDR3 2.5GHz Intel
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Figure 4.4: Regional disaggregation of United States and Mexico. Source: [3] and U.S. Energy

Information Administration http://www.eia.gov/todayinenergy/detail.php?id=16471

Core i5 processor to solve the above oligopoly problem with varying number of players is shown

in Figure 4.3a. Despite developments in algorithms to solve complementarity problems, the said

exponential growth in the number of sample points required in a Monte-Carlo based approach deters

the computational speed. A problem with as few as 25 uncertain variables takes about 2 hours

to solve and one with 30 uncertain variables takes about seven days to solve using Monte-Carlo

based approaches while it takes few seconds to minutes in the first-order approximation method.

Figure 4.3b compares the error between 5 rounds of Monte Carlo simulation and the first-order

approximation method.

4.2.6 Application to North American natural gas market

In Mexico, motivation to move from coal to cleaner energy sources creates an increasing trend

in natural gas consumption. The United States is expected to become a net exporter of Natural

gas by 2017 [3] especially due to the continuous increase in exports to Mexico [62]. The North

American Natural Gas Model (NANGAM) developed in [69] analyzes the impacts of cross-border

trade with Mexico. NANGAM models the equilibrium under various scenarios by competitively
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maximizing the profits of producers and pipeline operators and the utility of consumers. The

formulation leads to a complementarity problem. The model also uses the Golombek function [80]

in the supply function to model the increase in the marginal cost of production, when producing

close to capacity. This makes the complementarity problem into a nonlinear one.

In this model, which is motivated by NANGAM, we have disaggregated United states into 9

census regions and Alaska [3]. Mexico is divided into 5 regions. A map showing this regional

disaggregation is shown in Figure 4.4. Further, Canada is divided into two zones, Canada East

and Canada West. The model has 13 producers, 17 consumers, 17 nodes and 7 time-steps. This

amounts to 12,047 variables (primal and dual) and 2023 parameters. A complete description of the

model is given in Appendix B. The gradient matrix of the complementarity function would contain

12, 0472 elements and a Hessian matrix will have 120473 elements which is more than 1700 trillion

floating point variables. We need efficient methods to handle these large objects. We observe,

however, that the dependence of each component of the complementarity function is limited to few

variables, thus making the gradient matrix sparse. Efficient sparse matrix tools in scipy [96] are

used along with a python class we specially built to handle a sparse multi-dimensional array. The

details of the implementation are presented in Appendix C.

This model is calibrated to match the region-wise production and consumption data/projections

by adjusting the parameters of the demand curve, the supply curve, and the transportation cost.

The source for the projected numbers is the same as the ones in Table 2 of [69]. The parameters of

the demand curve were chosen in such a way that an elasticity of 0.29 is maintained at the solution

to be consistent with [61].
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Figure 4.5: Coefficient of variation in Price and Covariance of Produced quantity

Figure 4.6: Sensitivity of the solution to the parameters
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Covariance Matrix Calibration

We used the method developed in Algorithm 4 to understand the propagation of uncertainty in the

model. The covariance for each parameter across years is obtained by fitting a Wiener process to

the parameter value. This is chosen to mimic the Markovian and independent increment properties

of market parameters. Thus we have for any parameter

dθ(t) = dµθ(t) + σθdB(t) (4.122)

where µθ is calibrated, σθ is chosen to be 1% of the average value of µθ in the analyzed period and

B(t) is the standard Brownian motion. The diffusion parameter σθ is assumed to be independent

of time. Additionally to understand the effect of greater uncertainty in the US census region US7,

which contains Texas and accounts for about 40% of the total production in the continent, the

parameters of production cost are assumed to have 5 times the variance than in any other region.

Results

The deterministic version of the problem is solved using the PATH algorithm [57] by assuming

a mean value for all random parameters. With that solution as the initial point, we used the

algorithm in [95] to solve the stochastic version of the problem and obtain the solution to the

SCP. Following this, Algorithm 4 was applied and the T matrix defined in (4.61) is obtained by

solving the linear system of equations using a Moore Penrose pseudoinverse [87]. In the following

paragraph, we discuss some of the results obtained in this study.

The heat map on the left of Figure 4.5 shows the coefficient of variation (std dev divided by

mean) in consumer price in each year caused by the uncertainty in parameters as mentioned in

Section 4.2.6. We notice that this uncertainty in production costs of US7 caused relatively small

uncertainties in the consumer price. This is partially due to the availability of resources in US8 and
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Canada West to compensate for the large uncertainty in Texas (US7). The fact that it is actually

US8 and Canada West that compensate for this uncertainty is known by looking at the covariance

plot on the right of Figure 4.5 which shows a large correlation between US7 and US8 and also

between US7 and CAW.

Figure 4.6 shows the sensitivity of the solution to various input parameters. The graph on the

left shows the sum total change in uncertainty in price for a 1% fluctuation in the demand curve

of various consumers. We notice that the price is particularly sensitive to changes in demand in

Mexico. We also note that fluctuations in demand at nodes where production facilities are not

available (MEX1, MEX3, MEX4) cause greater uncertainty in price. This is because, for regions

with a production facility in the same node, the production facility produces more to cater the

demand at that node and there is little effect in the flows and in the prices at other nodes. However,

a perturbation to the demand at a node with no production unit causes the flows to alter to have

its demand catered. This affects natural gas availability elsewhere and causes larger fluctuations

in price. The tornado plot on the right of Figure 4.6 sorts the parameters in decreasing order of

their effect on the uncertainty of the solution. Noting that it is plotted in log scale, we understand

that uncertainties in the intercept of the demand curve affect the equilibrium the most. Among

the supply parameters, the linear cost parameter causes maximum fluctuation in the output.

4.2.7 Conclusion and future work

In this work, we developed a method to approximate the covariance of the output of a large-

scale nonlinear complementarity problem with random input parameters using first-order metrics.

We extended this method to a general unconstrained optimization problem. We then developed

sensitivity metrics for each of the input parameters quantifying their contribution to the uncertainty
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in the output. We used these tools to understand the covariance in the equilibrium of the North

American Natural Gas Market. The method gave insights into how production, consumption,

pipeline flows, prices would vary due to large uncertainties. While the variances identified the

regions that are affected the most, the covariance gave information about whether the quantity will

increase or decrease due to perturbation in the input. We also obtained results on the sensitivity

of price uncertainty to demand uncertainty in various nodes. We then quantified the contribution

of each input parameter to the uncertainty in the output. This, in turn, helps in identifying the

regions that can have large impacts on equilibrium.

We note that the method is particularly useful for large-scale nonlinear complementarity

problems with a large number of uncertain parameters to make Monte-Carlo simulations or methods

involving scenario trees intractable. It is robust in approximating the solution covariance for small

uncertainty in the inputs. It is also good in quantifying the sensitivity of the output (and its

variance) to the variance of various input parameters. However since all the above are obtained

as an approximation based on first-order metrics, there is a compromise in the accuracy if the

variances of the input are large. The method works the best for problems involving a large number

of decision variables and random parameters with small variance.

We foresee expanding this work by using progressively higher-order terms of the Taylor series

to capture the nonlinearities more efficiently. To ensure computational feasibility, this would

typically require us to have stronger assumptions on the sparsity of the Hessian and the higher-

order derivatives. This will also require knowledge/assumptions about higher-order moments of

the random parameters.
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Figure 4.7: Administrative regions in Ethiopia. Credit: UN Office for the Coordination of

Humanitarian Affairs (UN-OCHA)

4.3 Ethiopian food market

4.3.1 Introduction

Ethiopia is an east African country with a population of about 105 million [4, 39] and a GDP of 72

billion US dollars [4]. Over 70% of the labor force is dependent on agriculture for their livelihood [4]

and agriculture contributes to about 40% of the GDP of the country [4]. Moreover, about 60% of

all exports are agricultural products [115] leading to extensive studies on the country’s agricultural

sector. However, agriculture in Ethiopia is vulnerable to changes in climate patterns and droughts

since the country is dominated by rainfed agriculture and the irrigated farmland area in Ethiopia

is less than 5% of the cultivated land [13]. This led to an extensive study of the climate shocks on

crop production in the literature [13, 14, 113].

In addition to climatic shocks, the country’s agriculture and food supply chain is not immune to
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Figure 4.8: Global food price time series. Credit: Food and Agriculture Organization

other exogenous shocks. The 2008 global food price inflation (see Figure 4.8) caused deep distress

to the country’s food sector. Alem and Söderbom [6], Kumar and Quisumbing [100] quantify the

impact of the price hike in terms of changes in food consumption pattern and changes in nutrient

intake through a survey. The adverse effect of such a global change motivated the Ethiopian

government to ban the export of food grains, in particular, teff indefinitely. This was done with an

intention to ensure more affordable domestic prices. Woldie and Siddig [140] analyze the impacts

of the ban on the country’s macroeconomy under this scenario. While predicting that the policy

will indeed fulfill its goal of reducing domestic food prices, it comes at a cost of social welfare,

quantified post facto, at about 148 million US dollars. Further, the government policy was also

studied extensively in Sharma [129] which criticized the government policy comparing it against

similar policies in other countries and the harmful effects thereon. Instead, the author suggests other

alternatives for the government including various tax regimes, price floors for exports, government

to government sales.

While the existing literature quantifies the effects of past shocks in global food prices and

government policies, to the best of our knowledge, there are few resources that can analyze the
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distributed impacts of future shocks in local regions under different government policies. In this

work, we address the variations in regional teff markets, transport patterns, and stakeholder revenue

across disaggregated regions in Ethiopia due to the teff-export ban policy. The specific interest

towards teff is motivated by the fact that teff has been predicted by some to become a new “super-

grain” [48, 122], with dramatically increased international demand. Our analysis complements the

existing analyses in Sharma [129], Woldie and Siddig [140] in providing a detailed understanding

of the regional effects of such shocks, along with comparing the effects of the shocks under possible

futuristic demand.

Given this global scenario, we address the following questions regarding potential relaxation or

removal of teff export restrictions:

1. How do regional microeconomic market indicators change under different policies?

2. How does the production and consumption pattern change across the country, and which regions

in the country are impacted the most?

3. Which regional stakeholders benefit by the increased revenue from exports?

To answer these questions, we present an integrated partial-equilibrium model, Food Distributed

Extendible COmplementarity model 2 (Food-DECO 2), an extension of the model in [14]. The

model is a partial-equilibrium model, that models the behavior of multiple stakeholders in a market,

non-cooperatively maximizing their objective (typically profit or utility) with detailed modeling of

the agro-economic properties of the regions in the country and the food markets therein. This

detailed modeling enables us to present regionalized effects of the shocks to the country’s food

market.

In this work, we run the model for severeal scenarios of global shocks that affect demand for teff
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and compare the performance of different government policy under each of the scenarios. Such an

analysis helps compare plicy undeer various stimuli and provide quantifiable differences in regional

welfare.

The rest of the chapter is divided as follows. We use Section 4.3.2 to describe the features

and enhancements of the DECO2 model. Section 4.3.3 present the scenarios we analyze in detail

and explains the method employed in implementing these scenarios and Section 4.3.4 contains the

results and discussions.

4.3.2 Model description

The Food-Distributed Extendible Complementarity model (DECO2) is an integrated partial-

equilibrium model that models the food supply chain in Ethiopia. Partial-equilibrium models

find an equilibrium among the micro-economic variables, while assuming macroeconomic variables

(i.e., population, GDP) as constant, more popularly known in economics as ceteris paribus.

Modelers follow this approach typically to capture more granular detail than general equilibrium

models, which factor all macroeconomic variables but don’t explicitly model regional markets and

infrastructure. Partial-equilibrium models are more suited for analyzing localized changes under

isolated shocks, and not to project future macroeconomic trends.

In DECO2, we compute the equilibrium resulting from the interaction of five types of aggregated

stakeholders in the model namely:

1. Crop producers

2. Livestock raisers

3. Food distribution operators
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Figure 4.9: Adaptation zones of Ethiopia

4. Food storage operators or warehouses

5. Food consumers

Each stakeholder competitively maximizes her own objective under perfect competition. The model

disaggregates Ethiopia into multiple regions which accounts for variability in climate as well as

soil fertility patterns across the country. This disaggregation helps in explicitly modeling food

production and consumption within the country. Given that regions with similar agro-economic

properties are not necessarily contiguous, we also have markets across the country where the

producers can participate and sell their produce and intra-national transport occurs between the

markets.
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Spatial disaggregation

We use two types of spatial disaggregation in the model, namely disaggregation by adaptation zone

to represent production and consumption and by regions centered with selected transportation

hubs to model regional markets and transportation. The 14 adaptation zones divide the country

into regions of similar weather patterns and soil fertility patterns, so that in our model, any crop

will have the same yield across a single adaptation zone. These zones have been defined by the

Government of Ethiopia as a framework for climate resilience efforts. These zones are defined with

production rather than consumption in mind but given the dominance of smallholder subsistence

agriculture in Ethiopia, we use the adaptation zones as the unit for modeling consumption as

well. However, the adaptation zones are not necessarily a contiguous stretch of land, and they

can spread over long distances geographically. For this reason, we cannot use adaptation zones

to model food transport. For this purpose, we divide the country into 15 transportation hubs or

markets and assume that all transport occurs between pairs of these markets. The markets were

chosen to ensure that they were both reasonably spread across the country and correspond to highly

populated cities in the country. We use the markets as seeds to a Voronoi tessellation, such that

the country is partitioned into Thiessen polygons, each of which contains exactly one market (see

Figure 4.9). The Thiessen polygons have the property that the market contained in the polygon is

the closest market to every point within the polygon [137]. We assume that any crop producer in

the country sells in the market in their Thiessen polygon. This is equivalent to saying that the crop

producer sells in the market closest to them geographically. This assumption is reasonable since

we have divided the country into only 15 polygons; we are not literally claiming that producers go

to the closest village market, but rather that they sell into the market of their general region.

Exports from Ethiopia are modeled by adding an “external” node to the collection of
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transportation hubs. The prices and demand in the external node are set by global prices for

food. Any export from Ethiopia is sent to the external node and any import to Ethiopia comes

in through the external node, which is connected to other nodes via the national capital, Addis

Ababa.

Time steps

DECO2 solves for equilibrium in semi-annual time steps, each step corresponding to a cropping

season. To ensure realistic modeling of responses to shocks in climate and global economy, we solve

the model on a year-by-year basis, without information about future years. On the other hand,

to remove excessive model short-sight, two additional years are solved in each iteration and then

dropped. We call this the “rolling-horizon process” and refer readers to the paper by Sethi and

Sorger [127] for a more rigorous analysis of the approach.

Within each year, we explicitly model the two cropping seasons of Ethiopia. The meher season,

which relies on the summertime kremt rains (primarily June-September), and the springtime belg

season, which relies primarily on March-April rains. The meher season is the primary cropping

season, in which more than 70% of all food is produced. We now discuss the six stakeholders

we model in DECO2. They are all profit maximizing stakeholders, aside from the consumer who

maximizes utility. The model assumes a non-cooperative game played between the stakeholders

under an assumption of perfect competition.

Now we describe the different stakeholders in the model and their optimization problem.

A formal description of these problems and the KKT conditions associated with them are in

Appendix D.
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Crop producer

We assume that the agricultural land in Ethiopia is used to produce either primary food crops or

secondary food crops or cash crops. The primary food crops are teff, sorghum, barley, maize and

wheat, the secondary food crops are pulses, vegetables, and fruits, and the cash crops are coffee and

oilseeds. The primary crops are grown in about 70% of the total cropping area while the secondary

and cash crops are grown in roughly 20% and 10% of the total cropping area respectively. We

assume, that there is a representative aggregate crop producer in each adaptation zone who decides

the proportion of land allotted for each of the crops. The aggregate crop producer decides this with

an objective to maximize her profits, given the knowledge of the yield she could have for the crop

while constrained on the total area she can crop. In the zone z, for the crop c, during the cropping

season s, in the year y, the problem of the food producer can be written as

Maximize
Azcsy

:
∑
c,s,y

(∑
n

QF→D
zncsyπ

D→F
ncsy − CFzcsyAzcsy

)
− penalty terms (4.123)

subject to

∑
c

Azcsy = ATotal
z (4.124)

QFzcsy = YzcsyAzcsy (4.125)

QF→D
zncsy = ΨznQ

F
zcsy (4.126)

In this formulation, QFzcsy refers to the total quantity produced in the region. The crop producer

sells QF→D
zncsy to a distributor in the market or hub n which fetches a price of πD→F

ncsy . CFzcsy stands

for the cost of raising and maintaining the crops.

The decision variables are the area that the crop producer allocates for each crop in the

adaptation zone. The crop producer decides this to maximize her profits, which is the difference
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between the revenue obtained by selling various crops to distributors in different cities or nodes n,

and the cost incurred by growing them. We also include a penalty term which penalizes substantial

changes in cropping patterns in consecutive years. This happens by subtracting a large value

proportional to the difference in cropping patterns between consecutive years, from the objective

(which the crop producer wants to maximize). For brevity, we have not detailed the precise form

of the penalty term and this can be found in the more formal set of equations in Appendix D. This

approach mimics the real-life behavior of crop producers, who are reluctant to drastically change

cropping patterns in response to single year fluctuations in climate.

The constraint in eq. (4.124) ensures that the sum of areas allotted for each crop equals the

total cropping area in each adaptation zone. The constraint in eq. (4.125) connects the cropped

area with the yield of the crop. The yield of a crop, YFzcsy , is calculated using the crop yield model

based on an FAO approach described in Allen et al. [7], Doorenbos and Kassam [59]. In summary,

using historical data, the model helps us predict the yield of crops (quintals per hectare) under

various water conditions, which are affected by climatic patterns and irrigation patterns. The

climatic data that goes into yield prediction include meteorological inputs such as temperature,

precipitation, humidity, wind, solar radiation and cloud cover. For each growing season, a climate

yield factor (CYF) is output by this model. The CYF ranges from 0 to 1, with 0 indicating total

crop failure and 1 indicating no water stress.

The constraint in eq. (4.126) decides the proportion of the crop producer’s production that goes

to each city or node n from the adaptation zone z. Keep in mind that, given that the adaptation

zones are just regions of similar agro-economic features, these can be quite disconnected. Regions

in different adaptation zones can be geographically clustered together while regions in the same

adaptation zone can be scattered across the country. Hence the proportion, Ψzn, is decided by
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the percentage of area in the adaptation zone z that is geographically closest to the node n. The

price πD→F
ncsy that the crop producer gets is the price a food distributor at node n is ready to pay

for the crop c. We note that there is a single unique price for the crop c at any node n at a time,

irrespective of who the seller could be (i.e., the adaptation zone z). Since we do not grade the

quality of crop in one region over the other, this is a direct consequence of the economic principle

that if there are two different prices at a place and time, the buyer would only buy the crop at a

lower price. By the principle, the price, πD→F
ncsy , is the so-called “clearing price” or the “equilibrium

price” of the crop.

Finally, the quantities in parentheses at the end of each constraint are the dual variables

corresponding to the constraints. They quantify the impact of the constraint to the optimization

problem. In other words, their value is the proportional increase in the objective value for a

marginal relaxation of the constraint.

Livestock producer

The livestock raiser is also a food producer, like the aggregated crop producer. However, in contrast,

livestock raisers produce beef and milk in quantities proportional to the number of cattle they raise.

We do not attempt to model the climate sensitivity of livestock growth or survival rates in the

current version of the model. However, if adverse climate conditions led to a small crop yield, the

livestock raiser might slaughter more cattle to raise beef production in a certain year to provide for

the food demand. Livestock holdings are thus sensitive to climate via climate’s impact on crops.

Their optimization problem is shown below.

Maximize
QC

zsy , Q
sl
zsy

:
∑
s,y

⎛⎝∑
n,ξ

QC→D,ξ
znsy πD→C,ξ

nsy − CczsyQzsy

⎞⎠ (4.127)
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subject to

QCzsy = (1 + birth rate− death rate)QCzs(y−1) −Q
sl
zsy (4.128)

Qslzsy ≥ kQCzsy (4.129)

QCzsy ≥ Herd size requirement (4.130)

QC,milk
zsy = Ymilk

zsy Q
C
zsy (4.131)

QC,beefzsy = Ybeef
zsy Q

sl
zsy (4.132)

QC→D,ξ
znsy = ΨznQ

C,ξ
zsy (4.133)

In this formulation QCzsy refers to the quantity of cattle raised in a year and Qslzsy refers to the

quantity of cattle slaughtered in the year. ξ refers to both beef and milk, the produce from cattle.

The objective of the player is to maximize the difference between the revenue from selling milk and

beef in various cities indexed by n and the cost of raising cattle.

The first constraint, eq. (4.128) connects the number of cattle from one year to the next. The

count varies due to both fertility and mortality of cattle, and due to slaughtering. The mortality

rate is typically zero or a very small number, as the player generally slaughters the animal before

it dies.

The second constraint, eq. (4.129) ensures that the player slaughters at least a certain fraction

of cattle each year, without which they might die of natural causes. In contrast, the third constraint

ensures that the player does not slaughter too many animals, thus not being able to maintain the

herd size she desires to have.

The next constraints, eqs. (4.131) and (4.132) connect the quantity of milk with the number

of animals alive and the quantity of beef with the number of animals slaughtered. Like the crop

producer, the livestock producer is also expected to sell her produce to various cities in a fixed
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proportion, based on geographical proximity. This is taken care of by the last constraint, eq. (4.133).

The prices in the formulation are the clearing prices obtained in the market. This is again, similar

to the food crops. We assume that the distributors and the storage operators do not differentiate

between the food crops and the animal products in the model. We also assume that the quantity

of agricultural and animal products produced is capable of meeting a market demand for food or

a food consumption need. This simplification could be modified in future versions of the model.

Distributor and warehouses

The distributor buys agricultural and animal products from crop producers and livestock raisers

in the cities across the country. Each city has a unique price for each crop, for exchange between

producer and distributor. Keeping in mind that there are different regions which preferentially

grow different crops, and that the consumption preference might not coincide with production,

the distributors move the agricultural and animal products between the markets in different cities.

They act as arbitrageurs taking advantage of the price differential between these markets while

incurring the cost of transporting the goods. We fix the cost of transport as a function of time

taken to travel in between cities and the distance between them.

The warehouses in each city store agricultural and animal products from the day of harvest to

consumption, potentially across seasons or years in case of predicted drought. They also sell the

goods to the consumer, acting as the market maker. While they endure a cost of storage, they also

charge a markup in prices for the consumers.

Consumer

We assume homogeneous food consumption in each adaptation zone, but not across adaptation

zones to account for subsistence-farming-type demand in the model. More precisely, we assume
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that preference for choice of food changes based on the regional production due to subsistence

farming practices [38], and hence assume similar utility function of food for people in the same

adaptation zone.

The utility function is constructed using the price elasticity of various crops across the country.

People from the given adaptation zone, who exhibit similar preferences, might be forced to purchase

food from different markets in different cities at different prices. Thus, the problem is modeled as

follows.

Maximize
QU

zcsy

:
∑
c,s,y

(
Uzcsy

(
QUzcsy

)
−
∑
n

πU→W
ncsy QW→U

zncsy

)
(4.134)

subject to

QW→U
zncsy = ΨznQ

U
zcsy (4.135)

QUzcsy ≤ Qexport limit
zcsy (4.136)

Here Uzcsy(·) is the utility function of the consumers in the adaptation zone z. QUzcsy is the actual

quantity consumed in zone z while QW→U
zncsy is the quantity consumed in zone z that is purchased

from a warehouse in node n. The objective is to maximize the difference between the utility

of consumption and the money paid to obtain the utility. The constraint eq. (4.135) connects the

total quantity consumed with the quantity purchased from each warehouse. Note that πU→W
zncsy is not

dependent on z, implying a single price for a crop in warehouses irrespective of the consumer. Again,

these prices are the market-clearing prices at the warehouse. For simplicity, the utility functions

have been assumed to be concave quadratic functions, a standard practice used in previous studies

[69, 70, 77, 125].
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Market clearing

Besides each stakeholder’s optimization problem, we have the so-called market-clearing conditions

which are not a part of any stakeholder’s optimization problem but connect the optimization

problems of different stakeholders. They also have dual variables associated with them, and they

represent the price of the commodity that gets cleared in the equations. We have three market

clearing equations in the DECO2.

∑
z

QF→D
zncsy = QDb

ncsy

(
πD→F
ncsy

)
(4.137)

QDs
ncsy = QWb

ncsy

(
πW→D
ncsy

)
(4.138)

QWs
ncsy =

∑
z

QW→U
zncsy

(
πU→W
zncsy

)
(4.139)

The constraint in eq. (4.137) ensures that the total quantity of agricultural and animal products

sold by crop producers and the livestock producer in each market n equals the quantity bought

by the distributor. The constraint in eq. (4.138) ensures that the quantity sold by the distributor

is the quantity bought by the storage operator and the constraint in eq. (4.139) ensures that the

quantity stored by the storage operator in market n is purchased by some consumer in one of the

adaptation zones z.

Food exports

To model food exports, we have an “external” node that is connected to the national capital, Addis

Ababa. The food distributor, under this setting, does not only transport food between the set of

cities in Ethiopia, but also to the external node.

The external node allows us to model global demand using a global demand curve, which can
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be informed by global price for a commodity and its elasticity. To model specific policy scenarios

of export limits, this node also can have a consumption limit, which enables us to model caps on

exports.

Model limitations and simplifying assumptions

While the model has a detailed description of the agro-economic zones to model crop production and

markets to model food trade and transport, like every model, DECO2 has its own set of limitations

and simplifying assumptions. Being a partial-equilibrium model, DECO2 assumes invariability of

macroeconomic parameters that could potentially affect the variables considered in the model. For

example, we do not consider changes in GDP of the country throughout the time-horizon over

which the model is solved. This contrasts with the reality where the GDP of Ethiopia has been

growing at about 8-10% per annum over the last decade. Similarly, Ethiopia also imports about 15

million quintals of wheat per annum over the last few years. We again assume that these imports

stay constant throughout the time horizon.

These assumptions on the macroeconomic variables could be unrealistic if we are interested in

future macroeconomic trends. However, we observe that the macroeconomic variables affect all the

scenarios (including the reference) and shocks uniformly. So, if we are interested in determining

the direct impacts of shocks, and evaluating the differences in microeconomic parameters, DECO

2 serves as a useful tool to compare policies on a “what-if” basis.

4.3.3 Base case calibration and scenarios

In this section, we discuss the source of data for our model and various scenarios we run our model

on and discuss their relevance to Ethiopia.
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(a) Cropping Area distribution in Kremt Season

(b) Cropping Area distribution in Belg Season

Figure 4.10: Calibration data for cropping area by the crop producer. The details of the adaptation

zone abbreviations are in Figure 4.9.

Crop area and yield

Area allotted for various crops in 2015 is available in the report on Area and Production of Major

Crops [38] for both kremt and belg season at woreda level. Woredas are administrative units of

Ethiopia and the country is divided into 64 administrative zones. The production data is aggregated

into production in each adaptation zone. If an administrative zone is completely contained in an

adaptation zone, all production in the zone is counted for the adaptation zone. However, if the

boundary of an administrative zone cuts a woreda into two (or more) parts, then the production
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(a) Production in kremt season

(b) Production in belg season

Figure 4.11: Calibration data for quantity produced by the crop producer. The details of the

adaptation zone abbreviations are in Figure 4.9.

is divided into the two (or more) adaptation zones proportional to the area each adaptation zone

contains.

Over 23% of the total agricultural land is used for teff and about 22% of the land is used for

sorghum and barley. Cash crops, which includes oil seeds and coffee, use about 11% of total land

in the base case scenario. Teff production the country is about 50 million quintals. Barley and

sorghum together amount to about 65 million quintals while maize production is around 75 million

quintals, making them the most significant food crops, by production quantity. A summary of the
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(a) Consumption in Kremt

(b) Consumption in Belg

Figure 4.12: Calibration data for consumed quantity. The details of the adaptation zone

abbreviations are in Figure 4.9.

cropping area and production quantity is shown in Figure 4.10 and 4.11.

Consumption

The model is run with the notion that all crops that are produced are consumed. The quantity

consumed is assumed to be proportional to the population in each region. The data for the

population is obtained from MIT [115]. Further, the demand curve for each adaptation zone is

calibrated as follows. Price elasticity e, which is defined as the percentage change in consumption

117



for a unit percent change in price, is obtained from Tafere et al. [133]. The utility function mentioned

in Section 4.3.2 is assumed to be a quadratic function of the form aQ− bQ2 for some a and b. This

leads to an inverse demand curve given by π = a − bQ. This along with the equation for price

elasticity e = −dQ
dπ

π
Q , gives the parameters of the utility function as a = π

(
1 + 1

e

)
and b = −1

e
π
Q .

The national average price for all the crops are obtained from Tafere et al. [133] and we assume

that the same price is observed in all the markets for calibrating the demand curve.

Transportation

Transportation is modeled between pairs of markets in Ethiopia are the markets are located in a

chosen set of 15 cities mentioned earlier. The distances between any pair of cities through road

is obtained through [84]. The cost of transportation is proportional to both the quantity of food

transported and the distance between markets. Given the production and consumption costs, we

let the model decide the optimal transportation between the markets.

Scenarios

In this work, we are interested in comparing the regional changes in market indicators, namely

regional food transport, crop producers’ revenue, regional consumption and prices within Ethiopia,

due to teff-related governmental policies under typical as well as adversarial future global demand.

This requires an adequate granularity in the representation of the teff supply-chain infrastructure.

To do this, we include detailed modeling of teff production area, yield, transport, markets, storage,

and consumption. In addition, it is also necessary to model the effects due to other crops that

could share resources with teff. The DECO2 model developed as a part of this work considers all

these effects extensively and analyzes policies and intervention strategies.

With respect to the long-standing policy of Ethiopia’s cereal export ban, we are interested in
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answering the following questions, mentioned earlier in Section 4.3.1:

Compared with the case where the teff ban is still in place and similar global demand for teff,

1. How do regional microeconomic market indicators change under different policies?

2. How does the production and consumption pattern change across the country, and which regions

in the country are impacted the most?

3. Which regional stakeholders benefit by the increased revenue from exports?

under the following exogenous shocks:

(i) When the government allows about 200,000 quintals of teff export per year (or 100,000 quintals

of teff export per season), motivated by Abdu [2].

(ii) When the government allows a higher quantity of exports of up to 2 million quintals of teff

each year (or 1 million quintals of teff export per season)

(iii) When the government allows a fully free market for teff, allowing the market to decide the

quantity exported and the price. We run these scenarios under both typical and increased

global demand for teff, which indeed was followed by the teff ban by the government. We

analyze the results of this study in the next section.

4.3.4 Results

In this section, we will compare how different stakeholders react and benefit under different scenarios

of government policies and global demand. First, we compare the additional revenue that the crop

producers could potentially get and then we compare domestic average changes in the price of teff

under each of these scenarios.
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Changes in crop producers’ revenue

People who advocate for the removal of teff export ban do so primarily on account of the lost

international revenue from teff export [26, 79]. Crymes [48], for example, assumes a direct increase

in the revenue and hence the welfare of the crop producers due to increased international revenue.

While it is true that the foreign revenues due to teff export range from 0 USD under a complete

ban to 15 million USD and 160 million USD under 200,000 quintal per annum export case and

2 million quintal per annum export case, we observe that hardly any revenue reaches the crop

producer. We notice, as shown in Figure 4.13a, that the crop producers’ revenue, irrespective of

their geographical location, remains roughly the same under each of these scenarios. The additional

inflow of money from the export is enjoyed almost exclusively by the distributors and storage

operators who transport the commodity. So, unless a crop producer is a large-scale stakeholder

who can afford to do her own distribution of her production across the country or outside, the

increase in her revenue is marginal.

Changes in teff transportation pattern and domestic consumption

Now we analyze the regions that primarily contribute to teff export and the changes in domestic

consumption patterns. Teff from the fertile regions in Amhara and Tigray regions contribute to

most of the teff exported from the country. This is observable due to the significant changes in

transportation patterns of teff in Figure 4.13b. We notice that the teff that should have otherwise

gone to Dire Dawa and thereon to Jijiga and Werder is diverted to Addis Ababa, from where export

occurs. We also notice that relatively small quantities of teff from the Oromia and SNNPR regions

of Ethiopia is sent for export.

Due to this effect, some markets sell significantly less teff than before (Figure 4.14; note that the
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(a) Aggregated crop producers’ revenue under different scenarios

(b) Changes in teff transport patterns

Figure 4.13: Crop producers’ revenue and changes in teff transport patterns in different scenarios.

The details of the adaptation zone abbreviations are in Figure 4.9.

pins are scaled to the percentage decrease in quantity sold in the markets). This includes markets

in Gondar, Mekelle, Harar and Semera, which are all located in the Northern and Eastern part of
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(a) Relative changes in quantities sold in domestic markets (in free export

scenario) compared to complete export ban

(b) Relative changes in quantities sold in the domestic market (with 100

thousand quintals per season cap on export as well as free export)

Figure 4.14: Relative changes in quantities sold in domestic markets

the country. These disruptions are significantly smaller for a scenario of capped exports (white pins

in Figure 4.14b). This result suggests that the government’s proposal to allow regulated quantities

of teff export [2] could achieve its desired goal of bringing in revenue while controlling shocks to

local markets. However, this control comes at the cost of bringing in only about a tenth of the
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Figure 4.15: Changes in consumer price under different scenarios

revenue obtainable in a more aggressive policy allowing exports.

Somali, the low fertility desert region of Ethiopia, is the region that is affected the most due to

the teff export. It is costlier and unattractive for any producer to transport teff to Jijiga or Werder

than to export. Thus, these locations suffer a price higher than the export price of teff. Further,

this leads to decreased consumption of teff in these regions.

Consumer price of teff and revenue from teff export

Finally, we discuss the fluctuations in prices due to the shocks as one of the primary reasons

to implement a ban on teff export. Currently, the domestic price of teff averages to about 74

United States dollars (USD) per quintal [133]. We note that under a free market for teff export,

the price can rise to as high as 91 USD per quintal. This amounts to over 22% increase in the

price of teff. While the inflation is not a huge number on a percentage basis, in the model it

has the ability wipe out teff consumption in certain regions of the country (for example the moist

lowlands (M1) adaptation zone), forcing the population in these regions to substitute other sources
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of food, including wheat, barley and sorghum. Under no taxation for export, the export price is

commensurate with the average domestic price. We also note that under the considered milder

restrictions on export as opposed to a complete ban, namely a cap of 100,000 quintals or a million

quintals of teff export per season, the inflation is relatively smaller at 0.58% and 7.5%. However,

if there is an increase in the global demand for teff, even under these milder restrictions on export,

domestic inflation can be as high as 17% and 18% respectively. In other words, we observe that

the domestic prices of teff could be quite sensitive to global fluctuations of teff demand compared

to governmental policies on teff export. The details of the observations are shown in Figure 4.15.

4.3.5 Conclusion

In this work, we present the DECO2 model that can model shifts in equilibrium in Ethiopian food

market by a detailed segregation of regions by their agroeconomic conditions for food production

and consumption and a detailed market modeling for food transport and marketing at various parts

of the country.

Compared to the partial equilibrium model presented in Bakker et al. [14], we have a more

detailed modeling of food production using the adaptation zones which group regions with similar

agro-economic properties together. We also have a more sophisticated modeling of markets across

the country and transport between them, which helps in quantifying the distribution of welfare

as well as domestic inflation under a range of government policies for teff export. The Thiessen

polygons constructed with the markets as the seeds for the Voronoi tessellation, to mimic that the

producers sell into the market of their general region.

We use the status of a complete ban on teff export as the base case. We then use the DECO2

model to identify shifts in equilibrium under scenarios including a completely free international
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market for teff, and limited export quantities of 100,000 quintals per season and a million quintals

per season, respectively. We also run these scenarios under higher global demand for teff. We

observe that a lion’s share of the additional international revenue is enjoyed by the distributors

and storage operators as opposed to crop producers, unless they are large stakeholders themselves.

Though there is a minor increase in national revenue during a typical year, a surge in the global

demand for teff could cause significant harm to consumers across the country, especially to the ones

in Northern and Eastern part of the country.

4.4 Conclusion and discussion

In this chapter, we showed how complementarity constraints can be used to model economic

equilibrium problems to understand the North American natural gas market and the Ethiopian

food market. While solving the former problem, we also developed an algorithm that approximates

the covariance of the solution of a nonlinear complementarity problem under certain regularity

conditions. We used this algorithm to also develop a sensitivity metric that can identify the

parameters that contribute most to the variance in the solution of a stochastic complementarity

problem. We then used these methods in the North American natural gas model, developed in

Feijoo et al. [69], and identified the relevant parameters that the policymaker could alter in order

to achieve a new market equilibrium.

Next, we apply complementarity constraints to model equilibrium in the Ethiopian food market.

In particular, we analyze the current government policy to ban teff exports amidst increased

domestic inflation due to global stimuli, against other scenarios like allowing a free export market

or a market with caps on the maximum allowed quantity to export. We quantify the changes in

domestic prices, regional differences in welfare due to such policy amidst differing global demand
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for teff.

While we solve complementarity problems, it is common for researchers to be interested in the

“best policy”, given that an equilibrium exists following the policy decision. Such problems can be

posed as the so-called Mathematical Program with Equilibrium Constraints (MPECs). Ye and Zhu

[142] provide a set of optimality conditions for MPECs, as the typical KKT conditions are no longer

necessary, since standard constraint qualifications fail. Naturally, they require more sophisticated

methods to solve. For example, Jara-Moroni, Pang, and Wächter [91] use a difference-of-convex

optimization approach to solve linear MPECs to local optimum. Siddiqui and Gabriel [131] uses a

SOS1-based approach to solve these problems with an energy application.
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Chapter 5

Mixed-integer bilevel programming

5.1 Introduction

In this chapter, we discuss mixed-integer bilevel linear programs (MIBLPs) of the form described

in Definition 12. We restate the definition below.

Definition 12 (Mixed-integer bilevel program). Given A ∈ Qmℓ×nℓ , B ∈ Qmℓ×nf , b ∈ Qmℓ , f ∈

Qnf , D ∈ Qmf×nf , C ∈ Qmf×nℓ , g ∈ Qmf , IL ⊆ [nℓ], IF ⊆ [nf ], define

S = S1 ∩ S2 ∩ S3

S1 =
{
(x, y) ∈ Rnℓ+nf : Ax+By ≤ b

}
(2.1b)

S2 =

{
(x, y) ∈ Rnℓ+nf : y ∈ argmax

y

{
fT y : Dy ≤ g − Cx, yi ∈ Z for i ∈ IF

}}
(2.1c)

S3 =
{
(x, y) ∈ Rnℓ+nf : xi ∈ Z for i ∈ IL

}
The mixed-integer bilevel program (MIBLP) is to find an element in the set S or to show that the

set S is empty. We call the variables denoted by x as upper-level variables or leader’s variables

and we call the variables denoted by y as lower-level variables or follower’s variables. We call the

constraint defined by eq. (2.1c) as the bilevel constraint. If IL = IF = ∅, i.e., if all variables are
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continuous, then we call the problem a continuous bilevel program (CBL). Further if IF = ∅, i.e.,

all follower’s variables are continuous, then we call the problem a bilevel program with upper-level

integer (BLP-UI).

The bilevel programming problem stated in eq. (2.1) has a long history, with traditions in

theoretical economics (see, for instance, [114], which originally appeared in 1979) and operations

research (see, for instance, [37, 94]). While much of the research community’s attention has focused

on the continuous case, there is a growing literature on bilevel programs with integer variables,

starting with early work in the 1990s by Bard and Moore [17, 116] up until to a more recent surge

of interest [53, 72, 73, 105, 106, 134, 138, 143]. Research has largely focused on algorithmic concerns,

with a recent focus on leveraging recent advancements in cutting plane technique. Typically, these

algorithms restrict how integer variables appear in the problem. For instance, Wang and Xu

[138] consider the setting where all variables are integer-valued whereas Fischetti et al. [73] allow

continuous variables but no continuous variables of the leader in the follower’s problem.

In this chapter, we give an algorithm that can solve a relaxation of MIBLPs. The algorithm runs

in polynomial time, provided the number of follower variables and the number of integer variables

of the leader is fixed.

In Section 5.2, we discuss Stackelberg games, a problem that can be formulated and solved as

a bilevel program. In Section 5.3, we discuss some of the previously known results which are used

in this chapter. In Section 5.4, we present our key results which are proved in Section 5.5. Finally

we conclude the chapter in Section 5.6.
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5.2 Applications for mixed-integer bilevel programs

Bilevel optimization problems arise from a problem in economics known as the Stackelberg game.

To motivate Stackelberg games, consider the following problem. Let us assume the electricity

market in a country.

In a country A, let us say that the power-generating company has both coal-based power plants

and solar-based power plants. The company has different costs of production for both these plants

and has to serve for demand in the country. Let Cc be the unit cost of production from the

coal-based plant and Cs be the unit cost of production from the solar plant. Let us say that

the producer produces xc and xs quantity of electricity from each of these plants. However, the

government restricts the maximum quantity the producer can produce from the coal plants, giving

rise to constraints of the form xc ≤ xc where xc is the limit imposed by the government. Let us

also say, the power plants have to cater to a certain demand, xc + xs ≥ d − xi where d is the

demand at the location and xi is the quantity the government decides to import. Let us also say,

the producer switches on the solar generator only if it produces at least xs amount of electricity,

or chooses to keep it off, as the fixed costs to operate the solar-based plant is high. This gives an

integer constraint namely, xs ≥ xsbs where bs is a binary variable that is 1 if the solar-based plant

is on and 0 otherwise. Also, let xs be the capacity of the solar power plant. Now the power plant

operator’s problem is a mixed-integer linear program as follows:

Minimize
xc,xs,bs

: Ccxc + Csxs (5.2a)

such that

xc, xs ≥ 0 (5.2b)
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xc ≤ xc (5.2c)

xc + xs ≥ d− xi (5.2d)

xs ≥ xsbs (5.2e)

xs ≤ xsbs (5.2f)

bs ∈ {0, 1} (5.2g)

Here the variables xc and xi are not decided by the power-plant operator but by the government.

The government might import electricity at a price Ci and perhaps coal emission has a cost of Ce

per unit quantity. So the problem solved by the government is an MIBLP as follows:

Minimize
xi,xc

: Cexs + Cixi (5.3a)

subject to

xs ∈ Solution of eq. (5.2) (5.3b)

This is a simple example of a mixed-integer bilevel problem in a practical application. We refer the

readers to [73] for more applications where MIBLPs are used.

5.3 Mixed-integer bilevel programs and complexity

First we recall a part of Theorem 14 and discuss its implications

Theorem 14 (Hardness of problems).

(v) [16] Bilevel programming with IL = IF = ∅, i.e., continuous bilevel programming is NP-

complete.
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(vi) [105] Mixed-integer bilevel programming is Σp2-complete.

Statement (v) in Theorem 14 says that unless P=NP, which is conjectured to be extremely

unlikely, there exists no algorithm that can solve the continuous bilevel program. Further, statement

(vi) states that there does not exist an algorithm that can solve MIBLPs even in exponential time

unless the polynomial hierarchy collapses to the second level, which is also conjectured to be very

unlikely. In other words, every algorithm to solve a general MIBLP uses at least Ω(22
n
) elementary

operations.

For the purpose of this chapter we define poly(a, b, c, . . .) to define a polynomial in its arguments

a, b, c, . . . and ϑ(a, b, c, . . .) to be an arbitrary function. Further, we use φ to denote the number of

bits required to store the largest entry in the data of the problem, where the data could be matrices

or vectors or scalars used to describe the problem.

Amidst the strong negative results on finding algorithms to solve MIBLPs, Köppe, Queyranne,

and Ryan [98] give an algorithm to solve an MIBLP in polynomial time under specific conditions.

We state the theorem formally below.

Theorem 69 (Theorem 3.1 in Köppe et al. [98]). Let nf be a fixed number and IF = [nf ]. Also

let IL = ∅. This subclass of MIBLPs can be solved in O (poly(mℓ,mf , nℓ, φ)) time.

In other words, the authors in Köppe et al. [98] state that if there are fixed number of follower

variables and the follower’s problem is a pure integer program while the leader’s variables are all

continuous, then the problem can be solved in polynomial time.

The algorithm that Köppe et al. [98] use in this work hinges on the central result of Eisenbrand

and Shmonin [64]. We extend the definition of mixed-integer representable sets below before stating

Theorem 71 due to Eisenbrand and Shmonin [64].
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Definition 70. Let S ⊆ Rm be a mixed-integer representable set (refer Definitions 8 and 10). We

say S is a type 1 set of order p if there exists a rational polyhedron Q ⊆ Rm+p such that

S := Q/Zp := {σ ∈ Rm : ∃z ∈ Zp such that (σ, z) ∈ Q} (5.4)

Further, we say S is a type 2 set of order (p, q) if there exists a rational polyhedron Q ⊆ Rm+p+q

such that

S := Q/(Zp × Rq) := {σ ∈ Rm : ∃z ∈ Zp and y ∈ Rq such that (σ, z, y) ∈ Q} (5.5)

Observe that a type 1 set of order p is a type 2 set of order (p, 0).

The above definition quantifies the number of integer variables and continuous variables

“projected out” of a mixed-integer set to get the mixed-integer representable set S. This is necessary

to state the complexity results of Eisenbrand and Shmonin [64].

Theorem 71 ([64]). Let S ⊆ Rm be a type 1 set of order p. Let M ∈ Qm×n. The sentence

∀σ ∈ S ∃x ∈ Pσ ∩ Zn where Pσ := {x ∈ Rn :Mx ≤ σ} (5.6)

can be decided in polynomial time if p and n are fixed. In other words, the decision problem can be

solved in O (poly(m,φ)ϑ(n, p)) time.

In other words, if the RHS σ of the polyhedron changes over a mixed-integer representable set

S, we can answer if all the pure-integer programs hence obtained are feasible in polynomial time,

provided the number of variables in the pure-intger program as well as the number of variables

projected out to obtain S are fixed, provided all the variables that are projected out are integer

variables.

In our work, we extend the results to more general settings and apply them to obtain algorithms

to solve MIBLPs in some settings and a relaxation of MIBLPs in others. We compile our results

as a part of this work in Section 5.4.
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5.4 Key results

First, we extend Theorem 71 to a setting where S can be a type 2 set.

Theorem 72. Let S ⊆ Rm be a type 2 set of order (p, q). Let M ∈ Qm×n be a rational matrix.

Then the sentence

∀σ ∈ S ∃x ∈ Pσ ∩ Zn where Pσ := {x ∈ Rn :Mx ≤ σ} (5.7)

can be decided in time bounded by O(poly (m, q, φ)ϑ(n, p)). i.e., if n and p are fixed, the problem

can be solved in polynomial time.

Note that in this theorem, we do not require q to be fixed. The algorithm we provide has a

complexity that is polynomial in q. Clearly Theorem 72 implies Theorem 71.

While Theorems 71 and 72 deal with existence of pure-integer points in the family of polyhedra

Pσ, the theorem below extends it for mixed-integer points in all members of the family. Also, though

Theorem 73 implies Theorem 72, we state both the theorem separately, as we use Theorem 72 to

prove Theorem 73.

Theorem 73. Let S ⊆ Rm be a type 2 set of order (p, q). Let M ∈ Qm×(n1+n2) be a rational

matrix. Then the sentence

∀σ ∈ S ∃x ∈ Pσ ∩ (Zn1 × Rn2) where Pσ :=
{
x ∈ R(n1+n2) :Mx ≤ σ

}
(5.8)

can be decided in time bounded by O(poly(m, q, φ)ϑ(p, n1, n2)). In other words, the problem can be

decided in polynomial time if p, n1 and n2 are fixed.

Now we define a relaxation of the mixed-integer bilevel program defined in Definition 12. We

then show that under special assumptions, this relaxation can be solved in polynomial time.
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Definition 74 (ε-mixed-integer bilevel program). Given A ∈ Qmℓ×nℓ , B ∈ Qmℓ×nf , b ∈ Qmℓ , f ∈

Qnf , D ∈ Qmf×nf , C ∈ Qmf×nℓ , g ∈ Qmf , IL ⊆ [nℓ], IF ⊆ [nf ], define for ε > 0

Sε = S1 ∩ S2(ε) ∩ S3 where

S2(ε) =

{
(x, y) ∈ Rnℓ+nf : fT y + ε ≥ max

y

{
fT y : Dy ≤ g − Cx, yi ∈ Z for i ∈ IF

}}
(5.9a)

where S1 and S3 are as defined in Definition 12. Then the ε-mixed-integer bilevel program (ε-

MIBLP) is to either find an element in the set S or to show that S = ∅.

Note that, the bilevel constraint eq. (2.1c) is relaxed in Definition 74 such that the follower’s

problem is not solved to optimality but ensured that the follower is not more than ε away from her

optimal decision.

Theorem 75. For 0 < ε < 1, ε-MIBLP can be solved in time bounded by

O (poly (mℓ, nℓ,mf , log(1/ε), φ)ϑ (|IL|, nf )). In other words, if |IL|, |IF | and nf are fixed, then

the ε-MIBLP can be solved in polynomial time.

Note that ε is part of the data for the problem. So strictly speaking, the dependence on the

size of ε is already contained in φ, however, we state the polynomial dependence on the size of ε

explicitly to empasize its significance.

Corollary 76. The following are true. Unless P = NP , there exists no polynomial time that can

solve an MIBLP under any of the following conditions:

(a) Fixing nf and hence |IF | while allowing nℓ and |IL| to vary.

(b) Fixing nℓ and hence |IL| while allowing nf and |IF | to vary.

(c) Fixing |IL| and |IF | while allowing nℓ and nf to vary.

These theorems are proved formally in Section 5.5.
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5.5 Proofs of Theorems 72, 73 and 75

First we prove the following lemma which is required in the proof of Theorem 72.

Lemma 77. Let Q ⊆ Rm+p+q be a rational polyhedron. Let M ∈ Qm×n be given. We claim that

the following are equivalent.

1. ∀σ ∈ Q/(Zp × Rq), ∃x ∈ Pσ ∩ Zn where Pσ := {x ∈ Rn :Mx ≤ σ}.

2. ∀σ̃ ∈ Q/Zp, ∃ x̃ ∈ P̃σ̃ ∩ Zn+1 where

P̃σ̃ :=
{
x̃ = (x, x′) ∈ Rn × R :Mx ≤ ProjRm(σ̃), x′ ≤ σ̃m+1, . . . , x

′ ≤ σ̃m+q

}
(5.10)

Lemma 77 establishes the equivalence solving the so-called parametric integer program in

Theorem 71 with one additional variable and solving a similar problem where the mixed-integer

representable set over which σ can vary is extended to be of type 2 as well. We prove the lemma

below.

Proof. First we prove that 2 =⇒ 1. Let us assume that statement 2 holds. Now, consider some

σ ∈ Q/(Zp × Rq). By definition, this means ∃ σ̃ ∈ Q/Zp ⊆ Rm+q such that σ = ProjRm(σ̃). From

statement 2, we know there exists x̃ = (x, x′) such that Mx ≤ σ and x ∈ Zn. But x ∈ Pσ ∩ Zn,

thus proving 1.

Conversely, consider some σ̃ ∈ Q/Zp. Let σ = ProjRm(σ̃). By statement 1, ∃x ∈ Zn such that

Mx ≤ σ. Choose x′ = ⌊mini σ̃i⌋, i.e., the floor of the smallest coordinate of σ̃. Now (x, x′) ∈

P̃σ̃ ∩ Zn+1. �

Now, using Lemma 77, we prove Theorem 72.

Proof of Theorem 72. Since S is a type 2 set, we can write S = Q/(Zp × Rq) for some rational

polyhedron Q ∈ Rm+p+q. Thus sentence in eq. (5.7) is in the form of statement 1 in Lemma 77.
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But by Lemma 77, this is equivalent to checking the statement 2. However, statement 2 corresponds

to a similar problem with just one additional variable but σ̃ varying over a type 1 set Q/Zp. Here

if p and n are fixed, then the size of description of P̃σ̃ is polynomial in the size of description of Pσ

and q. But this sentence can be checked in polynomial time using Theorem 71. �

Now that we allow σ in Pσ to vary over a type 2 mixed-integer representable set without any

loss in computational efficiency, we prove Theorem 73 which is an extension of Theorem 71 for

mixed-integer points in a parametric polyhedron.

Proof of Theorem 73. Let Q ⊆ Rm+p+q be the rational polyhedron such that S = Q/(Zp × Rq).

Now consider P ′
σ = ProjRn1 (Pσ). Clearly Pσ ∩ (Zn1 × Rn2) ̸= ∅ ⇐⇒ P ′

σ ∩ Zn1 ̸= ∅.

By Fourier-Motzkin procedure, there exists a matrix U ∈ Qr×m such that P ′
σ =

{x ∈ Rn1 : UMx ≤ Uσ} with r ≤ m2n2 where U is dependent only on M [126]. Note that r is

polynomially bounded (in m) because we assume n2 is a fixed constant.

Thus, it is equivalent to check the statement

∀ σ′ ∈ {Uσ : σ ∈ S} ∃x ∈ P ′
σ′ ∩ Zn1 where P ′

σ′ :=
{
x :M ′x ≤ σ′

}
(5.11)

with M ′ = UM .

We now observe that if Q has an inequality description Q = {(σ, z, y) ∈ Rm × Zp × Rq :

Bσ+Cz +Ey ≤ d} for some matrices B,C,E of appropriate dimensions, and right hand side d of

appropriate dimension, then

{Uσ : σ ∈ S} =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
σ′ ∈ Rr :

∃z ∈ Zp, y ∈ Rq, σ ∈ Rm, such that

Bσ + Cz + Ey ≤ d

σ′ = Uσ

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(5.12)
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The statement in eq. (5.11) is then equivalent to checking

∀ σ′ ∈ Q′/(Zp × Rq × Rm), ∃ x ∈ P ′
σ′ ∩ Zn1 , (5.13)

where Q′ :=

⎧⎪⎪⎨⎪⎪⎩(σ′, z, y, σ) ∈ Rr × Rp × Rq × Rm :
Bσ + Cz + Ey ≤ d

σ′ = Uσ

⎫⎪⎪⎬⎪⎪⎭ is a rational polyhedron

whose description size is polynomial in the description size of Q (note that we use the fact the r

is polynomially bounded in m). Since p and n1 are fixed constants, statement eq. (5.13) can be

checked in polynomial time by Theorem 72. �

Corollary 78. Given a type 2 set S of fixed order (p, q) and fixed n1 and n2, withM ∈ Qm×(n1+n2),

the sentence

∃σ ∈ S : {x :Mx ≤ σ} ∩ (Zn1 × Rn2) = ∅ (5.14)

can be decided in polynomial time.

Proof. This follows from negating the sentence in Theorem 73. �

With the theorems that extend Theorem 71 from Eisenbrand and Shmonin [64] proved, we now

prove the central result Theorem 75 of this chapter that a relaxation of MIBLP can be solved in

polynomial time.

Proof of Theorem 75. Without loss of generality, let us write that the first |IF | of the follower’s

variables are constrained to be integers. Also note that when nℓ is fixed, |IL| ≤ nℓ is also fixed.

Similarly when nf is fixed, so is |IF | ≤ nf .

Now note that for ε > 0, (x, y) ∈ S2(ε) if⎧⎪⎪⎨⎪⎪⎩y′ :
fT y′ − ε ≥ fT y

Dy′ ≤ g − Cx

⎫⎪⎪⎬⎪⎪⎭ ∩
(
Z|IF | × Rnf−|IF |

)
= ∅ (5.15)
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{
y′ :My′ ≤ σ

}
∩

(
Z|IF | × Rnf−|IF |

)
= ∅ (5.16)

where M =

⎛⎜⎜⎝ fT

D

⎞⎟⎟⎠ and σ =

⎛⎜⎜⎝ fT y + ε

g − Cx

⎞⎟⎟⎠. The condition in the first row of the first set in

eq. (5.15) looks for y′ which is more than “ε better” than y, while the second row exists that such

a y′ satisfies the inequality constraints that y should follow. The second set ensures that such a

y′ also satisfies the required integrality constraints. Note that M does not depend upon the point

(x, y) whose feasibility is checked.

Now, (x, y) cannot be any point, but to be chosen from S1 ∩ S3 (from the notation of

Definition 74) along with it satisfying eq. (5.16), so that it is feasible to the ε-MIBLP. So the

question transforms into the form

∃σ ∈ T : {x :Mx ≤ σ} ∩
(
Z|IF | × Rnf−|IF |

)
= ∅ (5.17)

where

T =

⎧⎪⎪⎨⎪⎪⎩σ : σ =

⎛⎜⎜⎝ fT y + ε

g − Cx

⎞⎟⎟⎠ for (x, y) ∈ S1 ∩ S3

⎫⎪⎪⎬⎪⎪⎭
But from Definition 74, S1 ∩ S3 is a mixed-integer representable sets whose order is fixed if |IL|,

|IF | and nf are fixed. Thus T , which is a linear transform of S1 ∩ S3 is also a mixed-integer

representable set of fixed order. Now the result follows from Corollary 78. �

Proof of Corollary 76. (a) Observe that fixing nf = 0 gives a mixed-integer linear program that is

NP complete.

(b) Observe that fixing nℓ = 0 gives a mixed-integer linear program that is NP complete.

(c) Bard [16] shows the NP completeness of a continuous bilevel program which has |IF | = |IF | = 0.

�
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5.6 Conclusion

In this chapter, we defined and motivated the importance of mixed-integer bilevel optimization

problems. Then, we extended the results from Eisenbrand and Shmonin [64] for more general

settings. Using the extended version of these results, we motivate an ε-relaxation of the mixed-

integer bilevel problem and show that if certain parameters are fixed, this problem can be solved in

polynomial time. Then as a corollary, we deduce that no polynomial time algorithm can be found

for certain versions of the problem.
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Chapter 6

Linear complementarity and

mixed-integer bilevel representability

6.1 Introduction

Separate from the design of algorithms and questions of computational complexity, studying

representability quantifies the family of sets which can be modeled using a class of optimization

problems. The concept of representability was motivated in Example 9 and formally defined in

Definition 8. Representability quantifies the types of sets over which one could optimize using a

given class of optimization problems.

The classical paper of Jeroslow and Lowe [92] provides a characterization of sets that can be

represented by mixed-integer linear feasible regions. They show that a set is the projection of

the feasible region of a mixed-integer linear program (termed MILP-representable) if and only if

it is the Minkowski sum of a finite union of polytopes and a finitely-generated integer monoid

(concepts more carefully defined below). This result answers a long-standing question on the limits
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of mixed-integer programming as a modeling framework. Jeroslow and Lowe’s result also serves as

inspiration for recent interest in the representability of a variety of problems. See Vielma [136] for

a review of the literature until 2015 and Basu et al. [21], Del Pia and Poskin [49, 50], Lubin et al.

[107, 108, 109] for examples of more recent work.

To our knowledge, questions of representability have not even been explicitly asked of continuous

bilevel linear (CBL) programs where IL = IF = ∅ in Definition 12. Accordingly, our initial

focus concerns the characterizations of CBL-representable sets. In the first key result of our work

(Theorem 94), we show that every CBL-representable set can also be modeled as the feasible

region of a linear complementarity (LC) problem (in the sense of Cottle et al. [47]). Indeed, we

show that both CBL-representable sets and LC-representable sets are precisely finite unions of

polyhedra. Our proof method works through a connection to superlevel sets of piecewise linear

convex functions (what we term polyhedral reverse-convex sets) that alternately characterize finite

unions of polyhedra. In other words, an arbitrary finite union of polyhedra can be modeled as a

continuous bilevel program, a linear complementarity problem, or an optimization problem over a

polyhedral reverse-convex set.

A natural question arises: how can one relate CBL-representability and MILP-representability?

Despite some connections between CBL programs and MILPs (see, for instance, Audet et al. [10]),

the collection of sets they represent are incomparable (see Corollary 95 below). The Jeroslow-Lowe

characterization of MILP-representability as the finite union of polytopes summed with a finitely-

generated monoid has a fundamentally different geometry than CBL-representability as a finite

union of polyhedra. It is thus natural to conjecture that MIBL-representability should involve

some combination of the two geometries. We will see that this intuition is roughly correct, with an

important caveat.
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A distressing fact about MIBL programs, noticed early on in Moore and Bard [116], is that the

feasible region of a MIBL program may not be topologically closed (maybe the simplest example

illustrating this fact is Example 1.1 of Köppe et al. [98]). This throws a wrench in the classical

narrative of representability that has largely focused on closed sets. Indeed, the recent work of Lubin

et al. [108] is careful to study representability by closed convex sets. This focus is entirely justified.

Closed sets are indeed of most interest to the working optimizer and modeler, since sets that are

not closed may fail to have desirable optimality properties (such as the non-existence of optimal

solutions). Accordingly, we aim our investigation on closures of MIBL-representable sets. In fact,

we provide a complete characterization of these sets as unions of finitely many MILP-representable

sets (Theorem 98). This is our second key result on MIBL-representability. The result conforms to

the rough intuition of the last paragraph. MIBL-representable sets are indeed finite unions of other

objects, but instead of these objects being polyhedra as in the case of CBL-programs, we now take

unions of MILP-representable sets, reflecting the inherent integrality of MIBL programs.

To prove this second key result on MIBL-representability we develop a generalization of Jeroslow

and Lowe’s theory to mixed-integer sets in generalized polyhedra, which are finite intersections of

closed and open halfspaces. Indeed, it is the non-closed nature of generalized polyhedra that

allows us to study the non-closed feasible regions of MIBL-programs. Specifically, these tools

arise when we take the value function approach to bilevel programming, as previously studied in

[53, 106, 135, 142]. Here, we leverage the characterization of Blair [32] of the value function of

the mixed-integer program in the lower-level problem. Blair’s characterization leads us to analyze

superlevel and sublevel sets of Chvátal functions. A Chvátal function is (roughly speaking) a linear

function with integer rounding (a more formal definition later). Basu et al. [21] show that superlevel

sets of Chvátal functions are MILP-representable. Sublevel sets are trickier, but for a familiar reason
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— they are, in general, not closed. This is not an accident. The non-closed nature of mixed-integer

bilevel sets, generalized polyhedra, and sublevel sets of Chvátal functions are all tied together in

a key technical result that shows that sublevel sets of Chvátal functions are precisely finite unions

of generalized mixed-integer linear representable (GMILP-representable) sets (Theorem 100). This

result is the key to establishing our second main result on MIBL-representability.

In fact, showing that the sublevel set of a Chvátal function is the finite union of GMILP-

representable sets is a corollary of a more general result. Namely, we show that the collection

of sets that are finite unions of GMILP-representable sets forms an algebra (closed under unions,

intersections, and complements). We believe this result is of independent interest.

The representability results in the mixed-integer case require rationality assumptions on the

data. This is an inevitable consequence when dealing with mixed-integer sets. For example, even

the classical result of Jeroslow and Lowe [92] requires rationality assumptions on the data. Without

this assumption, the result does not even hold. The key issue is that the convex hull of mixed-

integer sets are not necessarily polyhedral unless certain other assumptions are made, amongst

which the rationality assumption is most common (see Dey and Morán [55] for a discussion of these

issues).

Of course, it is natural to ask if this understanding of MIBL-representability has implications for

questions of computational complexity. The interplay between representability and complexity is

subtle. We show (in Theorem 98) that allowing integer variables in the leader’s decision x captures

everything in terms of representability as when allowing integer variables in both the leader and

follower’s decision (up to taking closures). However, we show (in Theorem 101) that the former

is in NP while the latter is Σ2
p-complete [105]. This underscores a crucial difference between an

integer variable in the upper level versus an integer variable in the lower-level, from a computational

143



complexity standpoint.

In summary, we make the following contributions. We provide geometric characterizations of

CBL-representability and MIBL-representability (where the latter is up to closures) in terms of

finite unions of polyhedra and finite unions of MILP-representable sets, respectively. In the process

of establishing these main results, we also develop a theory of representability of mixed-integer

sets in generalized polyhedra and show that finite unions of GMILP-representable sets form an

algebra. This last result has the implication that finite unions of MILP-representable sets also form

an algebra, up to closures.

The rest of the chapter is organized as follows. The main definitions needed to state our

main results are found in Section 6.2, followed in Section 6.3 by self-contained statements of these

main results. Section 6.4 contains our analysis of continuous bilevel sets and their representability.

Section 6.5 explores representability in the mixed-integer setting. Section 6.6 concludes.

6.2 Key definitions

This section provides the definitions needed to understand the statements of our main results

collected in Section 6.3. Concepts that appear only in the proofs of these results are defined later

as needed. We begin with formal definitions of the types of sets we study in this chapter.

First we extend Definition 11 in this chapter to include linear inequalities as follows.

Definition 79 (Linear complementarity sets). A set S ⊆ Rn is a linear complementarity (LC) set,

if there exist M ∈ Rn×n, q ∈ Rn and A, b of appropriate dimensions such that

S =
{
x ∈ Rn : x ≥ 0, Mx+ q ≥ 0, x⊤(Mx+ q) = 0, Ax ≤ b

}
.
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Sometimes, we represent this using the alternative notation

0 ≤ x ⊥ Mx+ q ≥ 0

Ax ≤ b.

A linear complementarity set will be labeled rational if all the entries in A,M, b, q are rational.

As an example, the set of all n-dimensional binary vectors is a linear complementarity set.

Indeed, they can be modeled as 0 ≤ xi ⊥ (1− xi) ≥ 0 for i ∈ [n].

Definition 80 (Polyhedral convex function). A function f : Rn ↦→ R is a polyhedral convex

function with k pieces if there exist α1, . . . , αk ∈ Rn and β1, . . . , βk ∈ R such that

f(x) =
k

max
j=1

{⟨
αj , x

⟩
− βj

}
.

A polyhedral convex function will be labeled rational if all the entries in the affine functions are

rational.

Note that f is a maximum of finitely many affine functions. Hence f is always a convex function.

Definition 81 (Polyhedral reverse-convex set). A set S ∈ Rn is a polyhedral reverse-convex (PRC)

set if there exist n′ ∈ Z+, A ∈ Rm×n, b ∈ Rm and polyhedral convex functions fi for i ∈ [n′] such

that

S =
{
x ∈ Rn : Ax ≤ b, fi(x) ≥ 0 for i ∈ [n′]

}
.

A polyhedral reverse-convex set will be labeled rational if all the entries in A, b are rational, and the

polyhedral convex functions fi are all rational.

One of the distinguishing features of MIBL sets is their potential for not being closed. This was

discussed in the introduction and a concrete example is provided in Lemma 130. To explore the

possibility of non-closedness we introduce the notion of generalized polyhedra.
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Definition 82 (Generalized, regular, and relatively open polyhedra). A generalized polyhedron

is a finite intersection of open and closed halfspaces. A bounded generalized polyhedron is called a

generalized polytope. The finite intersection of closed halfspaces is called a regular polyhedron. A

bounded regular polyhedron is a regular polytope. A relatively open polyhedron P , is a generalized

polyhedron such that P = relint(P ). If relatively open polyhedron P is bounded, we call it a relatively

open polytope.

Such sets will be labeled rational if all the defining halfspaces (open or closed) can be given using

affine functions with rational data.

Note that the closure of a generalized or relatively open polyhedron is a regular polyhedron.

Also, singletons are, by definition, relatively open polyhedra.

Definition 83 (Generalized, regular and relatively open mixed-integer sets). A generalized

(respectively, regular and relatively open) mixed-integer set is the set of mixed-integer points in a

generalized (respectively, regular and relatively open) polyhedron.

Such sets will be labeled rational if the corresponding generalized polyhedra are rational.

Our main focus is to explore how collections of the above objects can be characterized and

are related to one another. To facilitate this investigation we employ the following notation and

vocabulary. Let T be a family of sets. These families will include objects of potentially different

dimensions. For instance, the family of polyhedra will include polyhedra in R2 as well as those in

R3. We will often not make explicit reference to the ambient dimension of a member of the family

T , especially when it is clear from context unless explicitly needed. For a family T , the subfamily

of bounded sets in T will be denoted by T . Also, cl(T ) is the family of the closures of all sets in

T . When referring to the rational members of a family (as per definitions above), we will use the

notation T (Q).
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We are not only interested in the above sets, but also linear transformations of these sets. This

notion is captured by the concept of representability. While we defined it before in Definition 8,

here we extend the definition for rationally representable sets too.

Definition 84 (Representability). Given a family of sets T , S is called a T -representable set or

representable by T if there exists a T ∈ T and a linear transform L such that S = L(T ). The

collection of all such T -representable sets is denoted TR. We use the notation TR(Q) to denote

the images of the rational sets in T under rational linear transforms, i.e., those linear transforms

that can be represented using rational matrices.1

Remark 85. The standard definition of representability in the optimization literature uses

projections as opposed to general linear transforms. However, under mild assumption on the

family T , it can be shown that TR is simply the collection of sets that are projections of sets in T .

Since projections are linear transforms, we certainly get all projections in TR. Now consider a set

S ∈ TR, i.e., there exists a set T ∈ T and a linear transform L such that S = L(T ). Observe that

S = Projx{(x, y) : x = L(y), y ∈ T}. Thus, if T is a family that is closed under the addition of

affine subspaces (like x = L(y) above), and addition of free variables (like the set {(x, y) : y ∈ T}),

then TR does not contain anything beyond projections of sets in T . All families considered in this

chapter are easily verified to satisfy these conditions.

One can immediately observe that T ⊆ TR since the linear transform can be chosen as the

identity transform. However, the inclusion may or may not be strict. For example, it is well known

that if T is the set of all polyhedra, then TR = T . However, if T is the family of all (regular)

mixed-integer sets then T ( TR.

1We will never need to refer to general linear transforms of rational sets, or rational linear transforms of general

sets in a family T ; so we do not introduce any notation for these contingencies.
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When referencing specific families of sets we use the following notation. The family of all linear

complementarity sets is T LC , continuous bilevel sets is T CBL and the family of all polyhedral

reverse-convex sets is T PRC . The family of mixed-integer sets is T MI . The family of MIBL sets is

T MIBL. The family of BLP-UI sets is T BLP−UI . We use P to denote the family of finite unions

of polyhedra and T D−MI to denote the family of finite unions of sets in T MI . We use T M̂I to

denote the family of generalized mixed-integer sets and T D̂−MI to denote the family of sets that

can be written as finite unions of sets in T M̂I . The family of all integer cones is denoted by T IC .

This notation is summarized in Table 6.1.

We make a useful observation at this point.

Lemma 86. The family T D−MI
R is exactly the family of finite unions of MILP-representable sets,

i.e., finite unions of sets in T MI
R . Similarly, T D̂−MI

R is exactly the family of finite unions of sets

in T M̂I
R . The statements also holds for the rational elements, i.e., when we consider T D−MI

R (Q),

T MI
R (Q), T D̂−MI

R (Q) and T M̂I
R (Q), respectively.

Proof. Consider any T ∈ T D−MI
R . By definition, there exist sets T1, . . . , Tk ∈ T MI and a linear

transformation L such that T = L
(⋃k

i=1 Ti

)
=
⋃k
i=1 L(Ti) and the result follows from the definition

of MILP-representable sets.

Now consider T ⊆ Rn such that T =
⋃k
i=1 T

i where Ti ∈ T MI
R for i ∈ [k]. By definition of

Ti ∈ T MI
R , we can write Rn ⊇ Ti =

{
Li(z

i) : zi ∈ T ′
i

}
where T ′

i ⊆ Rni × Rn′
i is a set of mixed-

integer points in a polyhedron and Li : Rni × Rn′
i ↦→ Rn is a linear transform. In other words,

T ′
i =

{
zi = (xi, yi) ∈ Rni × Zn′

i : Aixi +Biyi ≤ bi
}
. Let us define

T̃i =
{
(x, x1, . . . , xk, y1, . . . , yk) : ∀ j ∈ [k], xj ∈ Rnj , yj ∈ Rn

′
j ; x = Li(x

i), Aixi +Biyi ≤ bi
}
.

(6.1)

Clearly, for all i ∈ [k], T̃i ⊆ Rn+
∑k

j=1(nj+n
′
j) is a polyhedron and projecting T̃i ∩
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(
Rn+

∑k
j=1 nj × Z

∑k
j=1 n

′
j

)
over the first n variables gives Ti. Let us denote the projection from

(x, x1, . . . , xk, y1, . . . , yk) onto the first n variables by L. Since any linear operator commutes with

finite unions, we can write,

T =

{
L(z) : z = (x, x1, . . . , xk, y1, . . . , yk) ∈

(
k⋃
i=1

T̃i

)⋂(
Rn

′ × Zn
′′
)}

,

where n′ = n+
∑k

j=1 nj and n
′′ =

∑k
j=1 n

′
j , proving the first part of the lemma.

The second part about T D̂−MI
R follows along very similar lines and is not repeated here. The

rational version also follows easily by observing that nothing changes in the above proof if the linear

transforms and all entries in the data are constrained to be rational. �

Remark 87. Due to Lemma 86, we will interchangeably use the notation T D−MI
R and the phrase

“finite unions of MILP-representable sets” (similarly, T D̂−MI
R and “finite unions of sets in T M̂I

R ”)

without further comment in the remainder of this chapter.

Finally, we introduce concepts that are used in describing characterizations of these families of

sets. The key concept used to articulate the “integrality” inherent in many of these families is the

following.

Definition 88 (Monoid). A set C ⊆ Rn is a monoid if for all x, y ∈ C, x + y ∈ C. A monoid is

finitely generated if there exist r1, r2, . . . , rk ∈ Rn such that

C =

{
x : x =

k∑
i=1

λir
i where λi ∈ Z+; ∀ i ∈ [k]

}
.

We will often denote the right-hand side of the above as int cone
{
r1, . . . , rk

}
. Further, we say that

C is a pointed monoid, if cone(C) is a pointed cone. A finitely generated monoid is called rational

if the generators r1, . . . , rk are all rational vectors.
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Table 6.1: Families of sets under consideration.

Notation Family

T bounded sets from the family T

cl(T ) the closures of sets in the family T

T (Q) the sets in family T determined with rational data

TR T -representable sets

T MI sets that are mixed-integer points in a polyhedron

T M̂I sets that are mixed-integer points in a generalized polyhedron

T CBL continuous bilevel linear (CBL) sets

T LC linear complementarity (LC) sets

T BLP−UI bilevel linear polyhedral sets with integer upper level (BLP-UI)

T D−MI sets that can be written as finite unions of sets in T MI

T D−MI
R sets that can be written as finite unions of sets in T MI

R (see Lemma 86)

T MIBL Mixed-integer bilevel sets

T D̂−MI sets that can be written as finite unions of sets in T M̂I

T D̂−MI
R sets that can be written as finite unions of sets in T M̂I

R (see Lemma 86)

T IC integer cones

P finite unions of polyhedra
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In this chapter, we are interested in discrete monoids. A set S is discrete if there exists an ε > 0

such that for all x ∈ S, B(x, ε) ∩ S = {x}. Not all discrete monoids are finitely generated. For

example, the set M = {(0, 0)} ∪
{
x ∈ Z2 : x1 ≥ 1, x2 ≥ 1

}
is a discrete monoid that is not finitely

generated.

The seminal result from Jeroslow and Lowe [92], which we restate in Theorem 108, shows that

a rational MILP-representable set is the Minkowski sum of a finite union of rational polytopes and

a rational finitely generated monoid. Finally, we define three families of functions that provide an

alternative vocabulary for describing “integrality”; namely, Chvátal functions, Gomory functions

and Jeroslow functions. These families derive significance here from their ability to articulate

value functions of integer and mixed-integer programs (as seen in Blair and Jeroslow [30, 31], Blair

[32], Blair and Jeroslow [33]).

Chvátal functions are defined recursively by using linear combinations and floor (⌊·⌋) operators

on other Chvátal functions, assuming that the set of affine linear functions are Chvátal functions.

We formalize this using a binary tree construction as below. We adapt the definition from Basu

et al. [21].2

Definition 89 (Chvátal functions Basu et al. [21]). A Chvátal function ψ : Rn ↦→ R is constructed

as follows. We are given a finite binary tree where each node of the tree is either: (i) a leaf node

which corresponds to an affine linear function on Rn with rational coefficients; (ii) has one child

with a corresponding edge labeled by either ⌊·⌋ or a non-negative rational number; or (iii) has two

children, each with edges labeled by a non-negative rational number. Start at the root node and

recursively form functions corresponding to subtrees rooted at its children using the following rules.

2The definition in Basu et al. [21] used ⌈·⌉ as opposed to ⌊·⌋. We make this change in this chapter to be consistent

with Jeroslow and Blair’s notation. Also, what is referred to as “order” of the Chvátal function’s representation is

called “ceiling count” in Basu et al. [21].
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1. If the root has no children then it is a leaf node corresponding to an affine linear function

with rational coefficients. Then ψ is the affine linear function.

2. If the root has a single child, recursively evaluating a function g, and the edge to the child is

labeled as ⌊·⌋, then ψ(x) = ⌊g(x)⌋. If the edge is labeled by a non-negative number α, define

ψ(x) = αg(x).

3. Finally, if the root has two children, containing functions g1, g2 and edges connecting them

labeled with non-negative rationals, a1, a2, then ψ(x) = a1g1(x) + a2g2(x).

We call the number of ⌊·⌋ operations in a binary tree used to represent a Chvátal function the order

of this binary tree representation of the Chvátal function. Note that a given Chvátal function may

have alternative binary tree representations with different orders.

Definition 90 (Gomory functions). A Gomory function G is the pointwise minimum of finitely

many Chvátal functions. That is,

G(x) :=
k

min
1=1

ψi(x),

where ψi for i ∈ [k] are all Chvátal functions.

Gomory functions are then used to build Jeroslow functions, as defined in Blair [32].

Definition 91 (Jeroslow function). Let G be a Gomory function. For any invertible matrix E,

and any vector x, define ⌊x⌋E := E
⌊
E−1x

⌋
. Let I be a finite index set and let {Ei}i∈I be a set

of n × n invertible rational matrices indexed by I, and {wi}i∈I be a set of rational vectors in Rn

index by I. Then J : Rn ↦→ R is a Jeroslow function if

J(x) := max
i∈I

{
G
(
⌊x⌋Ei

)
+ w⊤

i

(
x− ⌊x⌋Ei

)}
,
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Remark 92. Note that we have explicitly allowed only rational entries in the data defining Chvátal,

Gomory and Jeroslow functions. This is also standard in the literature since the natural setting for

these functions and their connection to mixed-integer programming uses rational data.

Remark 93. Note that it follows from Definitions 89 to 91, the family of Chvátal functions, Gomory

functions and Jeroslow function are all closed under composition with affine functions and addition

of affine functions.

A key result in Blair [32] is that the value function of a mixed-integer program with rational data

is a Jeroslow function. This result allows us to express the lower-level optimality condition captured

in the bilevel constraint (2.1c). This is a critical observation for our study of MIBL-representability.

We now have all the vocabulary needed to state our main results.

6.3 Main results

Our main results concern the relationship between the sets defined in Table 6.1 and the novel

machinery we develop to establish these relationships.

First, we explore bilevel sets with only continuous variables. We show that the sets represented

by continuous bilevel constraints, linear complementarity constraints and polyhedral reverse convex

constraints are all equivalent and equal to the family of finite unions of polyhedra.

Theorem 94. The following holds:

T CBL
R = T LC

R = T PRC
R = T PRC = P.

The next result shows the difference between the equivalent families of sets in Theorem 94

and the family of MILP-representable sets. The characterization of MILP-representable sets by

Jeroslow and Lowe [92] (restated below as Theorem 108) is central to the argument here. Using this
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characterization, we demonstrate explicit examples of sets that illustrate the lack of containment

in these families.

Corollary 95. The following holds:

T CBL
R \T MI

R ̸= ∅ and

T MI
R \T CBL

R ̸= ∅.

The next result shows that the lack of containment of these families of sets arises because of

unboundedness.

Corollary 96. The following holds:

T CBL
R = T LC

R = T PRC
R = P = T MI

R .

Remark 97. The rational versions of Theorem 94, Corollary 95, Corollary 96 all hold, i.e., one can

replace all the sets in the statements by their rational counterparts. For example, the following

version of Theorem 94 holds:

T CBL
R (Q) = T LC

R (Q) = T PRC
R (Q) = T PRC(Q) = P(Q).

We will not explicitly prove the rational versions; the proofs below can be adapted to the rational

case without any difficulty.

Our next set of results concern the representability by bilevel programs with integer variables.

We show that, with integrality constraints in the upper level only, bilevel representable sets

correspond to finite unions MILP-representable sets. Further allowing integer variables in lower

level may yield sets that are not necessarily closed. However, we show that the closures of sets are

again finite unions of MILP-representable sets. In contrast to Remark 97, the rationality of the
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data is an important assumption in this setting. This is to be expected: this assumption is crucial

whenever one deals with mixed-integer points, as mentioned in the introduction.

Theorem 98. The following holds:

T MIBL
R (Q) ) cl

(
T MIBL
R (Q)

)
= T BLP−UI

R (Q) = T D−MI
R (Q).

In fact, in the case of BLP-UI sets, the rationality assumption can be dropped; i.e.,

T BLP−UI
R = T D−MI

R .

Behind the proof of this result are two novel technical results that we believe have interest in

their own right. The first concerns an algebra of sets that captures, to some extent, the inherent

structure that arises when bilevel constraints and integrality interact. Recall that an algebra of sets

is a collection of sets that is closed under taking complements and unions. It is trivial to observe

that finite unions of generalized polyhedra form an algebra, i.e., a family that is closed under finite

unions, finite intersections and complements. We show that a similar result holds even for finite

unions of generalized mixed-integer representable sets.

Theorem 99. The family of sets
{
S ⊆ Rn : S ∈ T D̂−MI

R (Q)
}

is an algebra over Rn for any n.

The connection of the above algebra to optimization is made explicit in the following theorem,

which is used in the proof of Theorem 98.

Theorem 100. Let ψ : Rn ↦→ R be a Chvátal, Gomory, or Jeroslow function. Then (i)

{x : ψ(x) ≤ 0} (ii) {x : ψ(x) ≥ 0} (iii) {x : ψ(x) = 0} (iv) {x : ψ(x) < 0} and (v) {x : ψ(x) > 0}

are elements of T D̂−MI
R (Q).

As observed below Definition 91, the family of Jeroslow functions capture the properties of the

bilevel constraint (2.1c) and thus Theorem 100 proves critical in establishing Theorem 98.
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Finally, we also discuss the computational complexity of solving bilevel programs and its the

connections with representability. A key result in this direction is the following.

Theorem 101. If S is a rational BLP-UI set, then the sentence “Is S non-empty?” is in NP.

Remark 102. In light of the Theorems 98 and 101, we observe the following. While adding integrality

constraints in the upper level improves the modeling power, it does not worsen the theoretical

difficulty to solve such problems. We compare this with the results of [105] which says that if

there are integral variables in the lower level as well, the problem is much harder (Σ2
p-complete).

However, by Theorem 98, this does not improve modeling power up to closures. This shows some

of the subtle interaction between notions of complexity and representability.

6.4 Representability of continuous bilevel sets

The goal of this section is to prove Theorem 94. We establish the result across several lemmata.

First, we show that sets representable by polyhedral reverse convex constraints are unions of

polyhedra and vice versa. Then we show three inclusions, namely T PRC
R ⊆ T CBL

R , T CBL
R ⊆ T LC

R

and T LC
R ⊆ T PRC

R . The three inclusions finally imply Theorem 94.

Now we prove a useful technical lemma.

Lemma 103. If T 1 and T 2 are two families of sets such that T 1 ⊆ T 2
R then T 1

R ⊆ T 2
R . Moreover,

the rational version holds, i.e., T 1(Q) ⊆ T 2
R (Q) implies T 1

R (Q) ⊆ T 2
R (Q).

Proof. Let T ∈ T 1
R . This means there is a linear transform L1 and T 1 ∈ T 1 such that T = L1(T 1).

Also, this means T 1 ∈ T 2
R , by assumption. So there exists a linear transform L2 and T 2 ∈ T 2 such

that T 1 = L2(T 2). So T = L1(T 1) = L1(L2(T 2)) = (L1 ◦ L2)(T 2), proving the result. The rational

version follows by restricting all linear transforms and sets to be rational. �
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We now establish the first building block of Theorem 94.

Lemma 104. The following holds:

P = T PRC = T PRC
R .

Proof. We start by proving the first equivalence. Consider the ⊇ direction first. Let S ∈ T PRC .

Then S = {x ∈ Rn : Ax ≤ b, fi(x) ≥ 0 for i ∈ [n′]} for some polyhedral convex functions fi with

ki pieces each. First, we show that S is a finite union of polyhedra. Choose one halfspace from

the definition of each of the functions fi(x) = maxkij=1{⟨αij⟩ − βj} (i.e.,
{
x : ⟨αij , x⟩ − βij ≥ 0

}
for

some j and each i) and consider their intersection. This gives a polyhedron. There are exactly K =∏n′

i=1 ki such polyhedra. We claim that S is precisely the union of these K polyhedra, intersected

with {x : Ax ≤ b} (clearly, the latter set is in P). Suppose x ∈ S. Then Ax ≤ b. Also since

fi(x) ≥ 0 , we have maxkij=1

{
⟨αij , x⟩ − βij

}
≥ 0. This means for each i, there exists a ji such that

⟨αiji , x⟩−βiji ≥ 0. The intersection of all such halfspaces is one of the K polyhedra defined earlier.

Conversely, suppose x is in one of these K polyhedra (the one defined by ⟨αiji , x⟩ − βiji ≥ 0 for

i ∈ [n′]) intersected with {x : Ax ≤ b}. Then, fi(x) = maxkij=1

{
⟨αij , x⟩ − βij

}
≥ ⟨αiji , x⟩−βiji ≥ 0

and thus x ∈ S. This shows that T PRC ⊆P.

Conversely, suppose P ∈ P and is given by P =
⋃k
i=1 Pi and Pi =

{
x : Aix ≤ bi

}
where

bi ∈ Rmi . Let aij refer to the j-th row of Ai and bij the j-th coordinate of bi. Let Ω be the Cartesian

product of the index sets of constraints, i.e., Ω = {1, . . . ,m1} × {1, . . . ,m2} × . . . × {1, . . . ,mk}.

For any ω ∈ Ω, define Now consider the following function:

fω(x) =
k

max
i=1

{
−⟨aiωi

, x⟩+ biωi

}
,

where ωi denotes the index chosen in ω from the set of constraints in Aix ≤ bi, i = 1, . . . , k. This

construction is illustrated in Figure 6.1. Let T = {x : fω(x) ≥ 0,∀ω ∈ Ω} ∈ T PRC . We now claim
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Figure 6.1: Representation of union of polyhedra [1, 2] ∪ {3} ∪ [4, ∞) as a PRC set. The three

colored lines correspond to three different the polyhedral convex functions. The points where each

of those functions is non-negative precisely correspond to the region shown in black, the set which

we wanted to represent in the first place.

that P = T . If x ∈ P then there exists an i such that x ∈ Pi, which in turn implies that bi−Aix ≥ 0.

However each of the fω contains at least one of the rows from bi − Aix, and that is non-negative.

This means each fω, which are at least as large as any of these rows, are non-negative. This implies

P ⊆ T . Now suppose x ̸∈ P . This means in each of the k polyhedra Pi, at least one constraint

is violated. Now consider the fω created by using each of these violated constraints. Clearly for

this choice, fω(x) < 0. Thus x ̸∈ T . This shows T ⊆ P and hence P = T . This finally shows

P ⊆ T PRC . Combined with the argument in the first part of the proof, we have T PRC = P.

Now consider the set PR. A linear transform of a union of finitely many polyhedra is a union

of finitely many polyhedra. Thus PR = P. But P = T PRC and so T PRC
R = PR = P = T PRC ,

proving the remaining equivalence in the statement of the lemma. �

Next, we show that any set representable using polyhedral reverse convex constraints is

representable using continuous bilevel constraints. To achieve this, we give an explicit construction
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of the bilevel set.

Lemma 105. The following holds:

T PRC
R ⊆ T CBL

R .

Proof. Suppose S ∈ T PRC . Then,

S =
{
x ∈ Rn : Ax ≤ b, fi(x) ≥ 0 for i ∈ [n′]

}
for some n′, A, b and polyhedral convex functions fi : Rn ↦→ R for i ∈ [n′]. Further, let us explicitly

write fi(x) = maxkij=1

{
⟨αij , x⟩ − βij

}
for j ∈ [ki] for i ∈ [n′]. Note for any i, fi(x) ≥ 0 if and only

if
{
⟨αij , x⟩ − βij

}
≥ 0 for each j ∈ [ki]. Now, consider the following CBL set S′ ⊆ Rn ×Rn′

where

(x, y) ∈ S′ if

Ax ≤ b

y ≥ 0

y ∈ argmax
y

{
−

n′∑
i=1

yi : yi ≥ ⟨αij , x⟩ − βij for j ∈ [ki], i ∈ [n′]

}
. (6.2)

A key observation here is that in (6.2), the condition yi ≥ ⟨αij , x⟩ − βij for all j ∈ [ki] is equivalent

to saying yi ≥ fi(x). Thus (6.2) can be written as y ∈ argminy

{∑n′

i=1 yi : yi ≥ fi(x), i ∈ [n′]
}
.

Since we are minimizing the sum of coordinates of y, this is equivalent to saying yi =

fi(x) for i ∈ [n′]. However, we have constrained y to be non-negative. So, if S′′ ={
x ∈ Rn : ∃ y ∈ Rn′

such that (x, y) ∈ S′
}
, it naturally follows that S = S′′. Thus S ∈ T CBL

R ,

proving the inclusion T PRC ⊆ T CBL
R . The result then follows from Lemma 103. �

The next result shows that a given CBL-representable set can be represented as an LC-

representable set. Again, we give an explicit construction.
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Lemma 106. The following holds:

T CBL
R ⊆ T LC

R .

Proof. Suppose S ∈ T CBL. Let us assume that the parameters A, B, b, f, C, D, g that define S

according to Definition 12 has been identified. We first show that S ∈ T LC
R . Retaining the notation

in Definition 12, let (x, y) ∈ S. Then from (2.1c), y solves a linear program that is parameterized

by x. The strong duality conditions (or the KKT conditions) can be written for this linear program

are written below as (6.3b) - (6.3e) and hence S can be defined as (x, y) satisfying the following

constraints for some λ of appropriate dimension:

Ax+By ≤ b (6.3a)

D⊤λ− f = 0 (6.3b)

g − Cx−Dy ≥ 0 (6.3c)

λ ≥ 0 (6.3d)

(g − Cx−Dy)⊤λ = 0. (6.3e)

Consider S′ as the set of (x, y, λ) satisfying

b−Ax−By ≥ 0

D⊤λ− f ≥ 0

0 ≤ λ ⊥ g − Cx−Dy ≥ 0.

Clearly, S′ ∈ T LC
R . Let S′′ = {(x, y) : (x, y, λ) ∈ S′}. Clearly S′′ ∈ T LC

R . We now argue that

S = S′′. This follows from the fact that Lagrange multipliers λ exist for the linear program in (2.1c)

so that (x, y, λ) ∈ S′. Hence T CBL ⊆ T LC
R follows and by Lemma 103, the result follows. �
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Finally, to complete the cycle of containment, we show that a set representable using linear

complementarity constraint can be represented as a polyhedral reverse convex set.

Lemma 107. The following holds:

T LC
R ⊆ T PRC

R .

Proof. Let p, q ∈ R. Notice that 0 ≤ p ⊥ q ≥ 0 ⇐⇒ p ≥ 0, q ≥ 0, max{−p, −q} ≥ 0. Consider

any S ∈ T LC . Then

S = {x : 0 ≤ x ⊥Mx+ q ≥ 0, Ax ≤ b} = {x : Ax ≤ b, x ≥ 0, Mx+ q ≥ 0, fi(x) ≥ 0} ,

where fi(x) = max{−xi, −[Mx+ q]i}. Clearly, each fi is a polyhedral convex function and hence

by definition S is a polyhedral reverse-convex set. This implies S ∈ T PRC . So, T LC ⊆ T PRC =⇒

T LC
R ⊆ T PRC

R . �

With the previous lemmata in hand, we can now establish Theorem 94.

Proof of Theorem 94. Follows from Lemmata 104 to 107. �

We turn our focus to establishing Corollary 95. This uses the following seminal result of Jeroslow

and Lowe [92], which gives a geometric characterization of MILP-representable sets.

Theorem 108 (Jeroslow and Lowe [92]). Let T ∈ T MI
R (Q). Then,

T = P + C

for some P ∈P(Q), C ∈ T IC(Q).

We now give two concrete examples to establish Corollary 95. First, a set which is CBL-

representable but not MILP-representable and, second, an example of a set which is MILP-

representable but not CBL-representable.
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x

y

Figure 6.2: The set T used in the proof of Corollary 95. Note that T ∈ T CBL
R \ TMI

R

Proof of Corollary 95. We construct a set T ∈ T CBL
R as follows. Consider the following set T ′ ∈

T CBL given by (x, y, z1, z2) ∈ R4 satisfying:

(y, z1, z2) ∈ argmin

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1 − z2 :

z1 ≥ x

z1 ≥ −x

z2 ≤ x

z2 ≤ −x

y ≤ z1

y ≥ z2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
with no upper-level constraints. Consider T =

{
(x, y) ∈ R2 : (x, y, z1, z2) ∈ T ′} illustrated in

Figure 6.2. Note that T ∈ T CBL
R . We claim T ̸∈ T MI

R . Suppose it is. Then by Theorem 108, T

is the Minkowski sum of a finite union of polytopes and a monoid. Note that {(x, x) : x ∈ R} ⊂ T

which implies (1, 1) is an extreme ray and λ(1, 1) should be in the integer cone of T for some λ > 0.

Similarly {(−x, x) : x ∈ R} ⊂ T which implies (−1, 1) is an extreme ray and λ′(−1, 1) should be in

the integer cone of T for some λ′ > 0. Both the facts imply, for some λ′′ > 0, the point (0, λ′′) ∈ T .

162



But no such point is in T showing that T ̸∈ T MI
R .

Conversely, consider the set of integers Z ⊆ R. Clearly Z ∈ T MI
R since it is the Minkowski

sum of the singleton polytope {0} and the integer cone generated by −1 and 1. Suppose, by way

of contradiction, that Z can be expressed as a finite union of polyhedra (and thus in T CBL by

Theorem 94). Then there must exist a polyhedron that contains infinitely many integer points.

Such a polyhedron must be unbounded and hence have a non-empty recession cone. However, any

such polyhedron has non-integer points. This contradicts the assumption that Z is a finite union

of polyhedra. �

These examples show that the issue of comparing MILP-representable sets and CBL-

representable sets arises in how these two types of sets can become unbounded. MILP-representable

sets are unbounded in “integer” directions from a single integer cone, while CBL-representable sets

are unbounded in “continuous” directions from potentially a number of distinct recession cones of

polyhedra. Restricting to bounded sets removes this difference.

Proof of Corollary 96. The first three equalities follow trivially from Theorem 94. To prove that

P = T MI
R , observe from Theorem 108 that any set in T MI

R is the Minkowski sum of a finite union

of polytopes and a monoid. Observing that T ∈ T MI
R is bounded if and only if the monoid is a

singleton set containing only the zero vector, the equality follows. �

6.5 Representability of mixed-integer bilevel sets

The goal of this section is to prove Theorem 98. Again, we establish the result over a series of

lemmata. In Section 6.5.1, we show that the family of sets that are representable by bilevel linear

polyhedral sets with integer upper-level variables is equal to the family of finite unions of MILP-
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representable sets (that is, T BLP−UI
R = T D−MI

R ). In Section 6.5.2 we establish an important

intermediate result to proving the rest of Theorem 98, that the family T D̂−MI
R is an algebra of

sets; that is, it is closed under unions, intersections, and complements (Theorem 99). This pays off

in Section 6.5.4, where we establish the remaining containments of Theorem 98 using the properties

of this algebra and the characterization of value functions of mixed-integer programs in terms of

Jeroslow functions, due to Blair [32].

6.5.1 Mixed-integer bilevel sets with continuous lower level

First, we show that any BLP-UI set is the finite union of MILP-representable sets.

Lemma 109. The following holds:

T BLP−UI
R ⊆ T D−MI

R

Moreover, the same inclusion holds in the rational case; i.e. T BLP−UI
R (Q) ⊆ T D−MI

R (Q).

Proof. Suppose T ∈ T BLP−UI . Then T = {x : x ∈ T ′} ∩ {x : xj ∈ Z, ∀ j ∈ IL}, for some T ′ ∈

T CBL and for some IL (we are abusing notation here slightly because we use the symbol x now

to denote both the leader and follower variables in the bilevel program). By Theorem 94, T ′ ∈

P. Thus we can write T ′ =
⋃k
i=1 T

′
i where each T ′

i is a polyhedron. Now T =
(⋃k

i=1 T
′
i

)
∩

{x : xj ∈ Z, ∀ j ∈ IL} =
⋃k
i=1 ({x : xj ∈ Z, ∀ j ∈ IL} ∩ T ′

i ) which is in T D−MI by definition. The

result then follows from Lemma 103. The rational version involving T BLP−UI
R (Q) and T D−MI

R (Q)

holds by identical arguments restricting to rational data. �

We are now ready to prove the reverse containment to Lemma 109 and thus establish one of

the equivalences in Theorem 98.
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Lemma 110. The following holds:

T D−MI
R ⊆ T BLP−UI

R .

Moreover, the same inclusion holds in the rational case; i.e. T BLP−UI
R (Q) ⊆ T D−MI

R (Q).

Proof. Let T ∈ T D−MI
R ; then, by definition, there exist polyhedra T̃i such that T is the linear image

under the linear transform L of the mixed-integer points in the union of the T̃i. Let T̃ =
⋃k
i=1 T̃i

and so T =
{
L(y, z) : (y, z) ∈ T̃ ∩

(
Rn′ × Zn′′

)}
. By Theorem 94, T̃ ∈ T CBL

R . If the z ∈ Zn′′

are all upper-level variables in the feasible region of the CBL that projects to T̃ , then T is clearly

in T BLP−UI
R . If, on the other hand, some zi is a lower-level variable then adding a new integer

upper-level variable wi and upper-level constraint wi = zi gives a BLP-UI formulation of a lifting

of T̃ , and so again T ∈ T BLP−UI
R . This proves the inclusion. The rational version involving

T BLP−UI
R (Q) and T D−MI

R (Q) holds by identical arguments restricting to rational data. �

6.5.2 The algebra T D̂−MI
R

We develop some additional theory for generalized polyhedra, as defined in Section 6.2. The main

result in this section is that the family of sets that are finite unions of sets representable by mixed-

integer points in generalized polyhedra forms an algebra (in the sense of set theory). Along the

way, we state some standard results from lattice theory and prove some key lemmata leading to

the result. This is used in our subsequent proof in the representability of mixed-integer bilevel

programs.

We first give a description of an arbitrary generalized polyhedron in terms of relatively open

polyhedra. This allows us to extend properties we prove for relatively open polyhedra to generalized

polyhedra.
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Lemma 111. Every generalized polyhedron is a finite union of relatively open polyhedra. If the

generalized polyhedron is rational, then the relatively open polyhedra in the union can also be taken

to be rational.

Proof. We proceed by induction on the affine dimension d of the polyhedron. The result is true

by definition for d = 0, where the only generalized polyhedron is a singleton, which is also a

relatively open polyhedron. For higher dimensions, let P = {x : Ax < b, Cx ≤ d} be a generalized

polyhedron. Without loss of generality, assume P is full-dimensional, because otherwise we can

work in the affine hull of P . We then write

P =

⎧⎪⎪⎨⎪⎪⎩x :
Ax < b

Cx < d

⎫⎪⎪⎬⎪⎪⎭ ∪
⋃
i

(
P ∩

{
x : ⟨ci, x⟩ = di

})
.

The first set is a relatively open polyhedron and each of the sets in the second union is a generalized

polyhedron of lower affine dimension, each of which are finite unions of relatively open polyhedra

by the inductive hypothesis.

The rational version also goes along the same lines, by restricting the data to be rational. �

From [123, Theorem 6.6], we obtain the following:

Lemma 112 (Rockafellar [123]). Let Q ⊆ Rn be a relatively open polyhedron and L is any linear

transformation. Then L(Q) is relatively open. If Q and L are both rational, then L(Q) is also

rational.

We now prove for relatively open polyhedra an equivalent result to the Minkowski-Weyl theorem

for regular polyhedra.

Lemma 113. Let Q ⊆ Rn be a relatively open polyhedron. Then Q = P +R where P is a relatively

open polytope and R is the recession cone rec cl(Q). If Q is rational then P and R can also be

taken to be rational.
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Proof. We first assume that dim(Q) = n; otherwise, we can work in the affine hull of Q. Thus, we

may assume that Q can be expressed as Q = {x ∈ Rn : Ax < b} for some matrix A and right hand

side b.

We first observe that if L is the lineality space of cl(Q), then Q = ProjL⊥(Q)+L where ProjL⊥(·)

denotes the projection onto the orthogonal subspace L⊥ to L. Moreover, ProjL⊥(Q) is a relatively

open polyhedron by Lemma 112 and its closure is pointed (since we projected out the lineality

space). Therefore, it suffices to establish the result for full-dimensional relatively open polyhedra

whose closure is a pointed (regular) polyhedron. Henceforth, we will assume cl(Q) is a pointed

polyhedron.

Define Qϵ := {x ∈ Rn : Ax ≤ b− ϵ1} and observe that Q0 = cl(Q) and Q = ∪0<ϵ≤1Qϵ. Notice

also that rec(Qϵ) = rec(cl(Q)) = R for all ϵ ∈ R (they are all given by {r ∈ Rn : Ar ≤ 0}).

Moreover, since cl(Q) is pointed, Qϵ is pointed for all ϵ ∈ R. Also, there exists a large enough

natural integer M such that the box [−M,M ]n contains, in its interior, all the vertices of Qϵ for

every 0 ≤ ϵ ≤ 1.

Define P ′ := Q0 ∩ [−M,M ]n which is a regular polytope. By standard real analysis arguments,

int(P ′) = int(Q0) ∩ int([−M,M ]n). Thus, we have int(P ′) + R ⊆ int(Q0) + R = Q. Next, observe

that for any ϵ > 0, Qϵ ⊆ int(P ′) +R because every vertex of Qϵ is in the interior of Q0, as well as

in the interior of [−M,M ]n by construction of M , and so every vertex of Qϵ is contained in int(P ′).

Since Q = ∪0<ϵ≤1Qϵ, we obtain that Q ⊆ int(P ′) +R. Putting both inclusions together, we obtain

that Q = int(P ′) +R. Since P := int(P ′) is a relatively open polytope, we have the desired result.

The rational version of the proof is along the same lines, where we restrict to rational data. �

We also observe below that generalized polyhedra are closed under Minkowski sums (up to finite

unions).
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Lemma 114. Let P,Q be generalized polyhedra, then P + Q is a finite union of relatively open

polyhedra. If P and Q are rational, then P+Q is a finite union of rational relatively open polyhedra.

Proof. By Lemma 111, it suffices to prove the result for relatively open polyhedra P and Q. The

result then follows from the fact that relint(P + Q) = relint(P ) + relint(Q) = P + Q, where the

second equality follows from [123, Corollary 6.6.2].

The rational version follows along similar lines by using the rational version of Lemma 111. �

We now prove a preliminary result on the path to generalizing Theorem 108 to generalized

polyhedra.

Lemma 115. Let Q ⊆ Rn×Rd be a rational generalized polyhedron. Then Q∩(Zn×Rd) is a union

of finitely many sets, each of which is the Minkowski sum of a relatively open rational polytope and

a rational monoid.

Proof. By Lemma 111, it is sufficient to prove the theorem where Q is relatively open. By

Lemma 113, we can write Q = P+R where P is a rational relatively open polytope and R is a cone

generated by finitely many rational vectors. Set T = P +X, where X =
{∑k

i=1 λir
i : 0 ≤ λi ≤ 1

}
where ri are the extreme rays of R whose coordinates can be chosen as integers. For u + v ∈

Q = P + R, where u ∈ P, v ∈ R; let v =
∑k

i=1 µir
i. Define γi = ⌊µi⌋ and λi = µi − γi. So,

u + v = (u +
∑k

i=1 λir
i) +

∑k
i=1 γir

i, where the term in parentheses is contained in T and since

γi ∈ Z+, the second term is in a monoid generated by the extreme rays of R. Thus, we have

Q ∩ (Zn × Rd) = (T ∩ (Zn × Rd)) + int cone(r1, . . . , rk). Since T is a finite union of rational

relatively open polytopes by Lemma 114, T ∩ (Zn ×Rd) is a finite union of rational relatively open

polytopes. �

The following is an analog of Jeroslow and Lowe’s fundamental result (Theorem 108) to the
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generalized polyhedral setting.

Theorem 116. The following are equivalent:

(1) S ∈ T D̂−MI
R (Q),

(2) S is a finite union of sets, each of which is the Minkowski sum of a rational relatively open

polytope and a rational finitely generated monoid, and

(3) S is a finite union of sets, each of which is the Minkowski sum of a rational generalized polytope

and a rational finitely generated monoid.

Proof. (1) =⇒ (2): Observe from Lemma 112 that a (rational) linear transform of a (rational)

relatively open polyhedron is a (rational) relative open polyhedron, and by definition of a (rational)

monoid, a (rational) linear transform of a (rational) monoid is a (rational) monoid. Now from

Lemmata 86 and 115, the result follows.

(2) =⇒ (3): This is trivial since every (rational) relatively open polyhedron is a (rational)

generalized polyhedron.

(3) =⇒ (1): This follows from the observation that the Minkowski sum of a rational generalized

polytope and a rational monoid is a rational generalized mixed-integer representable set. A formal

proof could be constructed following the proof of Theorem 108 given in the original Jeroslow and

Lowe [92] or [43, Theorem 4.47]. These results are stated for the case of regular polyhedra but it

is straightforward to observe that their proofs equally apply to the generalized polyhedra setting

with only superficial adjustments. We omit those minor details for brevity. �

Remark 117. Notice that the equivalence of (1) and (3) in Theorem 116 is an analog of Jeroslow and

Lowe’s Theorem 108. Moreover, the rationality assumption cannot be removed from Lemma 115,
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and hence cannot be removed from Theorem 116. This is one of the places where the rationality

assumption plays a crucial role; see also Remark 124.

Now we prove that if we intersect sets within the family of generalized MILP-representable sets,

then we remain in that family.

Lemma 118. Let S and T be sets in Rn where S, T ∈ T M̂I
R . Then S ∩ T ∈ T M̂I

R . The rational

version holds, i.e., one can replace T M̂I
R by T M̂I

R (Q) in the statement.

Proof. Using the same construction in Lemma 86, one can assume that there is a common ambient

space Rn1 × Rn2 and a common linear transformation L such that

S =
{
L(x) : x ∈ Rn1 × Zn2 : A1x ≤ b1, Â1x < b̂1

}
T =

{
L(x) : x ∈ Rn1 × Zn2 : A2x ≤ b2, Â2x < b̂2

}
.

Now, it is easy to see S ∩ T ∈ T M̂I
R .

The rational version follows by restricting the linear transforms and data to be rational. �

An immediate corollary of the above lemma is that the class T D̂−MI
R is closed under finite

intersections.

Lemma 119. Let S and T be sets in Rn where S, T ∈ T M̂I
R . Then S ∩T ∈ T D̂−MI

R . The rational

version holds, i.e., one can replace T D̂−MI
R by T D̂−MI

R (Q) in the statement.

Proof. By Lemma 86, S =
⋃k
i=1 Si and T =

⋃ℓ
i=1 Ti where Si, Ti ∈ T M̂I

R . Now S∩T =
(⋃k

i=1 Si

)
∩(⋃ℓ

i=1 Ti

)
=
⋃k
i=1

⋃ℓ
j=1 (Si ∩ Tj). But from Lemma 118, Si ∩ Tj ∈ T M̂I

R . Then the result follows

from Lemma 86.

The rational version follows from the rational versions of Lemmata 86 and 118. �
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To understand the interaction between generalized polyhedra and monoids, we review a few

standard terms and results from lattice theory. We refer the reader to [18, 43, 126] for more

comprehensive treatments of this subject.

Definition 120 (Lattice). Given a set of linearly independent vectors d1, . . . , dr ∈ Rn, the lattice

generated by the vectors is the set

Λ =

{
x : x =

r∑
i=1

λid
i, λi ∈ Z

}
(6.4)

We call the vectors d1, . . . , dr as the generators of the lattice Λ and denote it by Λ = Z(d1, . . . , dr).

Note that the same lattice Λ can be generated by different generators.

Definition 121 (Fundamental parallelepiped). Given Λ = Z(d1, . . . , dr) ⊆ Rn, we define the

fundamental parallelepiped of Λ (with respect to the generators d1, . . . , dr) as the set

Π{d1,...,dr} :=

{
x ∈ Rn : x =

r∑
i=1

λid
i, 0 ≤ λi < 1

}
.

We prove the following two technical lemmata, which are crucial in proving that T D̂−MI
R (Q)

is an algebra. The lemmata prove that (P + M)c, where P is a polytope and M is a finitely

generated monoid, is in T D̂−MI
R (and a corresponding rational version is true). The first lemma

proves this under the assumption that M is generated by linearly independent vectors. The second

lemma uses this preliminary results to prove it for a general monoid.

The proof of the lemma below where M is generated by linearly independent vectors is based

on the following key observations.

(i) If the polytope P is contained in the fundamental parallelepiped Π of the lattice generated

by the monoid M , then the complement of P +M is just (Π \P ) +M along with everything

outside cone(M).
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(ii) The entire lattice can be written as a disjoint union of finitely many cosets with respect

to an appropriately chosen sublattice. The sublattice is chosen such that its fundamental

parallelepiped contains P (after a translation). Then combining the finitely many cosets with

the observation in (i), we obtain the result.

The first point involving containment of P inside Π is needed to avoid any overlap between distinct

translates of P in P +M . The linear independence of the generators of the monoid is important

to be able to use the fundamental parallelepiped in this way. The proof also has to deal with the

technicality that the monoid (and the lattice generated by it) need not be full-dimensional.

Lemma 122. Let M ⊆ Rn be a monoid generated by a linearly independent set of vectors M =

{m1, . . . ,mk} and let P be a generalized polytope. Then (P +M)c ⊆ T D̂−MI
R . Moreover, if P and

M are both rational, then (P +M)c ⊆ T D̂−MI
R (Q).

Proof. Suppose k ≤ n. We now choose vectors m̃k+1, . . . , m̃n, a scaling factor α ∈ Z+ and a

translation vector f ∈ Rn such that the following all hold:

(i) M̃ :=
{
m1, . . . ,mk, m̃k+1, . . . , m̃n

}
forms a basis of Rn.

(ii)
{
m̃i
}n
i=k+1

are orthogonal to each other and each is orthogonal to the space spanned byM.

(iii) f + P is contained in the fundamental parallelepiped defined by the vectors M := αM∪{
m̃k+1, . . . , m̃n

}
.

Such a choice is always possible because of the boundedness of P and by utilizing the Gram-

Schmidt orthogonalization process. Since we are interested in proving inclusion in T D̂−MI
R , which

is closed under translations, we can assume f = 0 without loss of generality.

Define Λ̃ := Z(M̃) and M̃ := int cone(M̃). Define Λ := Z
(
M
)
⊆ Λ̃ and M := int cone(M) ⊆
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M̃ . Moreover, linear independence of M̃ and M implies that M̃ = Λ̃ ∩ cone(M̃) and M =

Λ ∩ cone(M). All of these together imply

Claim 122.1: M = Λ ∩ M̃ .

Proof of Claim 122.1: M = Λ ∩ cone(M) = Λ ∩ cone(M̃) = (Λ ∩ Λ̃) ∩ cone(M̃) = Λ ∩(
Λ̃ ∩ cone(M̃)

)
= Λ∩M̃ , where the second equality follows from the fact that cone(M) = cone(M̃).

Claim 122.2: ΠM +M = cone(M̃). Moreover, given any element in x ∈ cone(M̃), there exist

unique u ∈ ΠM and v ∈M such that x = u+ v.

Proof of Claim 122.2: Suppose u ∈ ΠM and v ∈ M , then both u and v are non-negative

combinations of elements in M. So clearly u + v is also a non-negative combination of those

elements. This proves the forward inclusion. To prove the reverse inclusion, let x ∈ cone(M̃).

Then x =
∑k

i=1 λim
i +
∑n

i=k+1 λim̃
i where λi ∈ R+. But now we can write

x =

(
k∑
i=1

⌊
λi
α

⌋
αmi +

n∑
i=k+1

⌊λi⌋ m̃i

)
+

(
k∑
i=1

(
λi
α
−
⌊
λi
α

⌋)
αmi +

n∑
i=k+1

(λi − ⌊λi⌋)m̃i

)
,

where the term in the first parentheses is in M and the term in the second parentheses is in ΠM.

Uniqueness follows from linear independence arguments, thus proving the claim.

Claim 122.3:
(
ΠM +M

)
\ (P +M) = (ΠM \ P ) +M .

Proof of Claim 122.3: Note that, by construction, P ⊆ ΠM. By the uniqueness result in

Claim 122.2, (ΠM + u)∩ (ΠM + v) = ∅ for u, v ∈M and u ̸= v. Thus we have, x = u+ v = u′ + v′

such that u ∈ ΠM, u′ ∈ P, v, v′ ∈M implies v = v′. Then the claim follows.

Also, there exists a finite set S such that Λ̃ = S+Λ (for instance, S can be chosen to be ΠM∩Λ̃)

[18, Theorem VII.2.5]. So we have

P + M̃ = P + (Λ̃ ∩ M̃)
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(a) P is shown in gray and the translates of P

along M̃ are shown. The fundamental

parallelepiped ΠΛ is also shown to contain P .

(b) P + ((s+ Λ) ∩ M̃) is shown for each s ∈ S.

The red crosses correspond to the translation of

M along each s ∈ S. The union of everything in

Figure 6.3b is Figure 6.3a.

Figure 6.3: Intuition for the set S such that Λ + S = Λ̃.

=
⋃
s∈S

(
P +

(
(s+ Λ) ∩ M̃

))
=

⋃
s∈S

(
P + (Λ ∩ M̃) + s

)
=

⋃
s∈S

(
P +M + s

)
, (6.5)

where the last equality follows from Claim 122.1. The intuition behind the above equation is

illustrated in Figure 6.3. We will first establish that (P + M̃)c ∈ T D̂−MI
R . By taking complements

in (6.5), we obtain that (P + M̃)c =
⋂
s∈S

(
P +M + s

)c
. But from Lemma 118, and from the

finiteness of S, if we can show that (P +M + s)c is in T D̂−MI
R for every s ∈ S, then we would have

established that (P + M̃)c ∈ T D̂−MI
R .

Since each of the finite s ∈ S induce only translations, without loss of generality, we can only
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consider the case where s = 0. Since we have P +M ⊆ cone(M̃), we have

(
P +M

)c
= cone(M̃)c ∪

(
cone(M̃) \ (P +M)

)
= cone(M̃)c ∪

((
ΠM +M

)
\ (P +M)

)
, (6.6)

which follows from Claim 122.2. Continuing from (6.6):

(
P +M

)c
= cone(M̃)c ∪

(
(ΠM \ P ) +M

)
,

which follows from Claim 122.3.

The first set cone(M̃)c in (6.5.2) belongs to T D̂−MI
R since the complement of a cone is a finite

union of generalized polyhedra. In the second set (ΠM \ P ) + M , ΠM and P are generalized

polytopes, and hence ΠM \ P is a finite union of generalized polytopes, (ΠM \ P ) +M is a set in

T D̂−MI
R . Thus, (P +M)c ∈ T D̂−MI

R (note that Lemma 86 shows that T D̂−MI
R is closed under

unions).

We now finally argue that (P +M)c belongs to T D̂−MI
R . Let A1 := (P + M̃)c.

For each vector m̃i for i = k + 1, . . . , n added to form M̃ fromM, define H i as follows:

H i =
{
x : ⟨m̃i, x⟩ ≥ ∥m̃i∥22

}
.

Now let A2 :=
⋃n
i=k+1H

i. Note that A2 is a finite union of halfspaces and hence A2 ∈ T D̂−MI
R .

We claim (P +M)c = A1 ∪ A2. This suffices to complete the argument since we have shown A1

and A2 are in T D̂−MI
R and thus so is their union.

First, we show that A1 ∪ A2 ⊆ (P +M)c, i.e., P +M ⊆ Ac1 ∩ Ac2. Let x ∈ P +M . Since

M ⊆ M̃ we have x ∈ P + M̃ . Thus, x ̸∈ A1. Further, since x ∈ P +M we may write x = u + v

with u ∈ P and v ∈ M where u =
∑k

i=1 µiαm
i +

∑n
i=k µim̃

i, v =
∑k

j=1 λjm
j with 0 ≤ µ < 1

and λj ∈ Z+, since P ⊆ ΠM. So for all i, ⟨m̃i, u⟩ = µi∥m̃i∥22 < ∥m̃i∥22. This is because we have
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m̃i is orthogonal to every vector mj and m̃j for i ̸= j. Hence, ⟨m̃i, u + v⟩ < ∥m̃i∥22. This follows

because m̃i is orthogonal to the space spanned by the monoid M ∋ v. Thus x ̸∈ A2. So we now

have P +M ⊆ Ac1 ∩Ac2 and so A1 ∪A2 ⊆ (P +M)c.

Conversely, suppose x ̸∈ P +M . If, in addition, x ̸∈ P + M̃ then x ∈ A1 and we are done.

However, if x = u+ v ∈ P + (M̃ \M) with u ∈ P and v ∈ M̃ \M . This means v =
∑k

j=1 λjm
j +∑n

j=k+1 λjm̃
j with λj ∈ Z+ for all j = 1, . . . , n and λj ≥ 1 for some j ∈ {k + 1, . . . , n} and we

can write u =
∑k

j=1 µjαm
j +

∑n
j=k+1 µjm̃

j with 0 ≤ µ ≤ 1. So ⟨m̃i, u⟩ = ⟨m̃i, µim̃i⟩ ≥ 0 and

⟨m̃j , v⟩ = ⟨m̃j , λjm̃
j⟩ > ∥mj∥22. So u + v ∈ Hj ⊆ A2. Thus we have the reverse containment and

hence the result.

The rational version follows along similar lines. �

Lemma 123. Let P ⊆ Rn be a rational generalized polytope and M ∈ Rn be a rational, finitely

generated monoid. Then S = (P +M)c ∈ T D̂−MI
R (Q).

Proof. Define C := cone(M). Consider a triangulation C =
⋃
iCi, where each Ci is simplicial.

Now, Mi := M ∩ Ci is a monoid for each i (one simply checks the definition of a monoid) and

moreover, it is a pointed monoid because Ci is pointed and cone(Mi) = Ci since every extreme ray

of Ci has an element of Mi on it. Observe that M =
⋃
iMi.

By Theorem 4, part 1) in Jeroslow [93], each of the Mi are finitely generated. By part 3)

of the same theorem, each Mi can be written as Mi =
⋃wi
j=1(p

i,j + M i) for some finite vectors

pi,1, . . . , pi,wi ⊆Mi, where M i is the monoid generated by the elements of Mi lying on the extreme

rays of Ci. Now,

P +M =
⋃
i

(P +Mi) =
⋃
i

wi⋃
j=1

(P + (pi,j +M i)).

Thus by Lemma 119, it suffices to show that (P +(pi,j+M i))
c is in T D̂−MI

R . SinceM i is generated
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by linearly independent vectors, we have our result from Lemma 122. �

Remark 124. We do not see a way to remove the rationality assumption in Lemma 123, because it

uses Theorem 4 in Jeroslow [93] that assumes that the monoid is rational and finitely generated.

This is the other place where rationality becomes a crucial assumption in the analysis (see also

Remark 117).

Lemma 125. If S ∈ T D̂−MI
R (Q) then Sc ∈ T D̂−MI

R (Q).

Proof. By Theorem 116, S can be written as a finite union S =
⋃ℓ
j=1 Sj , with Sj = Pj+Mj , where

Pj is a rational generalized polytope and Mj is a rational, finitely generated monoid. Observe

Scj = (Pj + Mj)
c, which by Lemma 123, is in T D̂−MI

R (Q). Now by De Morgan’s law, Sc =(⋃
j Sj

)c
=
⋂
j S

c
j . By Lemma 119, T D̂−MI

R (Q) is closed under intersections, and we have the

result. �

Proof of Theorem 99. We recall that a family of sets F is an algebra if the following two conditions

hold. (i) S ∈ F =⇒ Sc ∈ F and (ii) S, T ∈ F =⇒ S∪T ∈ F . For the class of interest, the first

condition is satisfied from Lemma 125 and noting that the complement of finite unions is a finite

intersection of the complements and that the family T D̂−MI
R (Q) is closed under finite intersections

by Lemma 119. The second condition is satisfied by Lemma 86 which shows that T D̂−MI
R (Q) is

the same as finite unions of sets in T M̂I
R (Q). �

6.5.3 Value function analysis

We now discuss the three classes of functions defined earlier, namely, Chvátal functions, Gomory

functions, and Jeroslow functions, and show that their sublevel, superlevel and level sets are all

elements of T D̂−MI
R (Q). This is crucial for studying bilevel integer programs via a value function
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approach to handling the lower-level problem using the following result.

Theorem 126 (Theorem 10 in Blair [32]). For every rational mixed-integer program maxx, y{c⊤x+

d⊤y : Ax+By = b; (x, y) ≥ 0, x ∈ Zm} there exists a Jeroslow function J such that if the program

is feasible for some b, then its optimal value is J(b).

We now show that the sublevel, superlevel, and level sets of Chvátal functions are all in

T D̂−MI
R (Q).

Lemma 127. Let ψ : Rn ↦→ R be a Chvátal function. Then (i) {x : ψ(x) ≥ 0}, (ii) {x : ψ(x) ≤ 0},

(iii) {x : ψ(x) = 0}, (iv) {x : ψ(x) < 0}, and (v) {x : ψ(x) > 0} are all in T D̂−MI
R (Q).

Proof. (i) We prove by induction on the order ℓ ∈ Z+ used in the binary tree representation of

ψ (see Definition 89). For ℓ = 0, a Chvátal function is a rational linear inequality and hence

{x : ψ(x) ≥ 0} is a rational halfspace, which is clearly in T D̂−MI
R (Q). Assuming that the assertion

is true for all orders ℓ ≤ k, we prove that it also holds for order ℓ = k + 1. By [21, Theorem. 4.1],

we can write ψ(x) = ψ1(x) + ⌊ψ2(x)⌋ where ψ1 and ψ2 are Chvátal functions with representations

of order no greater than k. Hence,

{x : ψ(x) ≥ 0} = {x : ψ1(x) + ⌊ψ2(x)⌋ ≥ 0}

= {x : ∃y ∈ Z, ψ1(x) + y ≥ 0, ψ2(x) ≥ y} .

We claim equivalence because, suppose x is an element of the set in RHS with some y ∈ Z, y is at

most ⌊ψ2(x)⌋. So if ψ1(x) + y ≥ 0, we immediately have ψ1(x) + ⌊ψ2(x)⌋ ≥ 0 and hence x is in the

set on LHS. Conversely, if x is in the set on LHS, then choosing y = ⌊x⌋ satisfies all the conditions

for the sets in RHS, giving the equivalence. Finally, observing that the RHS is an intersection of

sets which are already in T D̂−MI
R (Q) by the induction hypothesis and the fact that T D̂−MI

R (Q) is

an algebra by Theorem 99, we have the result.
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(ii) By similar arguments as (i), the statement is true for ℓ = 0. For positive ℓ, we proceed by

induction using the same construction. Now,

{x : ψ(x) ≤ 0} = {x : ψ1(x) + ⌊ψ2(x)⌋ ≤ 0}

= {x : ∃y ∈ Z, ψ1(x) + y ≤ 0, ψ2(x) ≥ y, ψ2(x) < y + 1} .

The last two conditions along with integrality on y ensures y = ⌊ψ2(x)⌋. Note that

{x : ψ2(x)− y ≥ 0} is in T D̂−MI
R (Q) by (i). Similarly {x : ψ2(x)− y − 1 ≥ 0} ∈ T D̂−MI

R (Q).

Since T D̂−MI
R (Q) is an algebra (cf. Theorem 99), its complement is in T D̂−MI

R (Q) and hence

we have {x : ψ2(x) < y + 1} ∈ T D̂−MI
R (Q). Finally from the induction hypothesis, we have

{x : ψ1(x) + y ≤ 0} ∈ T D̂−MI
R (Q). Since T D̂−MI

R (Q) is closed under finite intersections, the result

follows.

(iii) Set defined by (iii) is an intersection of sets defined in (i) and (ii).

(iv)-(v) Sets defined here are complements of sets defined in (i)-(ii). �

Lemma 128. Let G : Rn ↦→ R be a Gomory function. Then (i) {x : G(x) ≥ 0}, (ii) {x : G(x) ≤ 0},

(iii) {x : G(x) = 0}, (iv) {x : G(x) < 0}, (v) {x : G(x) > 0} are all in T D̂−MI
R (Q).

Proof. Let G(x) = minki=1 ψi(x), where each ψi is a Chvátal function.

(i) Note that {x : G(x) ≥ 0} =
⋂k
i=1 {x : ψi(x) ≥ 0} ∈ T D̂−MI

R (Q) since each individual set in

the finite intersection is in T D̂−MI
R (Q) by Lemma 127 and T D̂−MI

R (Q) is closed under intersections

by Lemma 119.

(ii) Note that G(x) ≤ 0 if and only if there exists an i such that ψi(x) ≤ 0. So {x : G(x) ≤ 0} =⋃k
i=1 {x : ψi(x) ≤ 0} ∈ T D̂−MI

R (Q) since each individual set in the finite union is in T D̂−MI
R (Q) by

Lemma 127, andT D̂−MI
R (Q) is an algebra by Theorem 99.

(iii) This is the intersection of sets described in (i) and (ii).
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(iv)-(v) Sets defined here are complements of sets defined in (i)-(ii). �

Lemma 129. Let J : Rn ↦→ R be a Jeroslow function. Then (i) {x : J(x) ≥ 0}, (ii) {x : J(x) ≤ 0},

(iii) {x : J(x) = 0}, (iv) {x : J(x) < 0}, and (v) {x : J(x) > 0} are all in T D̂−MI
R (Q).

Proof. (i) Let J(x) = maxi∈I G
(
⌊x⌋Ei

)
+w⊤

i (x−⌊x⌋Ei
) be a Jeroslow function, whereG is a Gomory

function, I is a finite set, {Ei}i∈I is set of rational invertible matrices indexed by I, and {wi}i∈I is a

set of rational vectors indexed by I. Since we have a maximum over finitely many sets, from the fact

that T D̂−MI
R (Q) is an algebra, it suffices to show

{
x : G(⌊x⌋E) + w⊤(x− ⌊x⌋E) ≥ 0

}
∈ T D̂−MI

R (Q)

for arbitrary E, w and Gomory function G. Observe that

{
x : G(⌊x⌋E) + w⊤(x− ⌊x⌋E) ≥ 0

}
= Projx

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(x, y1, y2, y3) :

G(y1) + y2 ≥ 0

y1 = ⌊x⌋E

y2 = ⟨w, y3⟩

y3 = x− y1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
and the set being projected in the right hand side above is equal to the following intersection

{
(x, y1, y2, y3) : G(y1) + y2 ≥ 0

}
∩

{
(x, y1, y2, y3) : E−1y1 =

⌊
E−1x

⌋}
∩

{
(x, y1, y2, y3) : y2 = ⟨w, y3⟩

}
∩

{
(x, y1, y2, y3) : y3 = x− y1

}
.

Since each of the sets in the above intersection belong to T D̂−MI
R (Q) by Lemmata 127 and 128,

and T D̂−MI
R (Q) is an algebra by Theorem 99, we obtain the result.
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(ii) As in (i), since we have maximum over finitely many sets, from the fact that T D̂−MI
R (Q) is

an algebra (Theorem 99), it suffices to show
{
x : G(⌊x⌋E) + w⊤(x− ⌊x⌋E) ≤ 0

}
∈ T D̂−MI

R (Q) for

arbitrary E, w and Gomory function G. The same arguments as before pass through, except for

replacing the ≥ in the first constraint with ≤.

(iii) This is the intersection of sets described in (i) and (ii).

(iv)-(v) Sets defined here are complements of sets defined in (i)-(ii). �

Proof of Theorem 100. Follows from Lemmata 127 to 129. �

6.5.4 General mixed-integer bilevel sets

We start by quoting an example from Köppe et al. [98] showing that the MIBL set need not even

be a closed set. This is the first relation in Theorem 98, showing a strict containment.

Lemma 130. [98, Example 1.1] The following holds:

T MIBL
R \ cl

(
T MIBL
R

)
̸= ∅.

Proof. The following set T is in T MIBL
R \ cl

(
T MIBL
R

)
:

T =

{
(x, y) ∈ R2 : 0 ≤ x ≤ 1, y ∈ argmin

y
{y : y ≥ x, 0 ≤ y ≤ 1, y ∈ Z}

}
.

By definition, T ∈ T MIBL
R . Observe that the bilevel constraint is satisfied only if y = ⌈x⌉. So

T = {(0, 0)} ∪ ((0, 1]× {1}). So T is not a closed set. Observing that every set in cl
(
T MIBL
R

)
is

closed, T ̸∈ cl
(
T MIBL
R

)
. �

Now we prove a lemma that states that rational MIBL-representable sets are in T D̂−MI
R (Q).

Lemma 131. The following holds: T MIBL
R (Q) ⊆ T D̂−MI

R (Q).
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Proof. Recall from Definition 12 an element S of T MIBL(Q) consists of the intersection S1∩S2∩S3

(with rational data). From Theorem 126, S2 can be rewritten as
{
(x, y) : f⊤y ≥ J(g − Cx)

}
for some Jeroslow function J . Thus, from Lemma 129, S2 ∈ T D̂−MI

R (Q). Moreover, S1, S3 ∈

T D̂−MI
R (Q) since they are either rational polyhedra or mixed-integer points in rational polyhedra.

Thus, S = S1 ∩ S2 ∩ S3 ∈ T D̂−MI
R (Q) by Theorem 99, proving the inclusion. This shows that

T MIBL(Q) ⊆ T D̂−MI
R (Q), and by Lemma 103 the result follows. �

Lemma 131 gets us close to showing cl(T MIBL
R (Q)) ⊆ T D−MI

R (Q), as required in Theorem 98.

Indeed, we can immediately conclude from Lemma 131 that cl(T MIBL
R (Q)) ⊆ cl(T D̂−MI

R (Q)).

The next few results build towards showing that cl(T D̂−MI
R ) = T D−MI

R , and consequently

cl(T D̂−MI
R (Q)) = T D−MI

R (Q). The latter is intuitive since closures of generalized polyhedra are

regular polyhedra. As we shall see, the argument is a bit more delicate than this simple intuition.

We first recall a couple of standard results on the closure operation cl(·).

Lemma 132. If S1, . . . , Sk ∈ Rn then cl (
⋃n
i=1 Si) =

⋃n
i=1 cl (Si) .

Proof. Note Sj ⊆
⋃
i Si for any j ∈ [k]. So cl(Sj) ⊆ cl(

⋃
i Si). So, by union on both sides over all

j ∈ [n], we have that the RHS is contained in LHS. Conversely, observe that the RHS is a closed

set that contains every Si. But by definition, LHS is the inclusion-wise smallest closed set that

contains all Si. So the LHS is contained in the RHS, proving the lemma. �

Lemma 133. Let A,B be sets such that A is a finite union of convex sets, cl(A) is compact and

B is closed. Then cl(A+B) = cl(A) +B.

Proof. For the inclusion⊇, we refer to Corollary 6.6.2 in Rockafellar [123], which is true for arbitrary

convex sets A, B. The result naturally extends using Lemma 132 even if A is a finite union of convex

sets. For the reverse inclusion, consider z ∈ cl(A + B). This means, there exist infinite sequences

182



{xi}∞i=1 ⊆ A and {yi}∞i=1 ⊆ B, such that the sequence {xi + yi}∞i=1 converges to z. Now, since

cl(A) ⊇ A, xi ∈ cl(A) and since cl(A) is compact, there exists a subsequence, which has a limit in

cl(A). Without loss of generality, let us work only with such a subsequence xi and the limit as x.

Now from the fact that each yi ∈ B, B is a closed set and the sequence yi converges to z − x, we

can say z − x ∈ B. This proves the result, as we wrote z as a sum of x ∈ cl(A) and z − x ∈ B. �

Lemma 134. The following holds: cl(T D̂−MI
R ) = T D−MI

R . Moreover, cl(T D̂−MI
R (Q)) =

T D−MI
R (Q).

Proof. The ⊇ direction is trivial because sets in T D−MI
R are closed and a regular polyhedron

is a type of generalized polyhedron. For the ⊆ direction, let S ∈ cl(T D̂−MI
R ); that is, S =

cl(
⋃k
i=1(Pi + Mi)) for some Pi that are finite unions of generalized polytopes and Mi that are

finitely generated monoids. By Lemma 132, this equals
⋃k
i=1 cl(Pi +Mi). Observe that Pi is a

finite union of generalized polytopes and are hence bounded. Thus their closures are compact. Also

Mi are finitely generated monoids and are hence closed. Thus, by Lemma 133, we can write this is

equal to
⋃k
i=1 cl(Pi) +Mi. But by Theorem 108, each of these sets cl(Pi) +Mi is in T MI

R . Thus,

their finite union is in T D−MI
R by Lemma 86.

The rational version follows by assuming throughout the proof that the generalized polytopes

and monoids are rational. �

The following is then an immediate corollary of Lemmata 131 and 134.

Corollary 135. The following holds: cl(T MIBL
R (Q)) ⊆ T D−MI

R (Q).

We are now ready to prove the main result of the section.

Proof of Theorem 98. The strict inclusion follows from Lemma 130. The equalities T BLP−UI
R (Q) =

T D−MI
R (Q) and T BLP−UI

R = T D−MI
R are obtained from Lemmata 109 and 110. For the
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equality cl(T MIBL
R (Q)) = T D−MI

R (Q), the inclusion ⊇ follows from the equality T BLP−UI
R (Q) =

T D−MI
R (Q) and the facts that BLP-UI sets are MIBL sets and sets in T D−MI

R are closed. The

reverse inclusion is immediate from Corollary 135. �

Finally, we prove Theorem 101.

Proof of Theorem 101. Following the notation in Definition 12, S = S1 ∩ S2 ∩ S3. Since |IF | = 0,

(x, y) ∈ S2 if and only if there exists a λ ≤ 0 such that D⊤λ = f and λ⊤(g − Cx) =

f⊤y. However, this is same as checking if there exists (x, y) such that (x, y) ∈ S1 ∩ S3 ∩{
(x, y) : ∃λ ≤ 0, D⊤λ = f, λ⊤g − f⊤y ≤ λ⊤Cx

}
is non-empty. But this set is a set of linear

inequalities, integrality requirements along with exactly one quadratic inequality. From Del Pia

et al. [51], this problem is in NP. �

By reduction from regular integer programming, we obtain this corollary.

Corollary 136. Bilevel linear programs with rational data integrality constraints only in the upper

level is NP-complete.

6.6 Conclusion

In this chapter, we give a characterization of the types of sets that are representable by feasible

regions of mixed-integer bilevel linear programs. In the case of bilevel linear programs with only

continuous variables, the characterization is in terms of the finite unions of polyhedra. In the case of

mixed-integer variables, the characterization is in terms of finite unions of generalized mixed-integer

linear representable sets. Interestingly, the family of finite unions of polyhedra and the family of

finite unions of generalized mixed-integer linear representable sets are both algebras of sets. The

parallel between these two algebras suggests that generalized mixed-integer linear representable sets
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are the “right” geometric vocabulary for describing the interplay between projection, integrality,

and bilevel structures. We are hopeful that the algebra properties of finite unions of generalized

mixed-integer linear representable sets may prove useful in other contexts.

There remain important algorithmic and computational questions left unanswered in this study.

For instance, is there any computational benefit of expressing a bilevel program in terms of

disjunctions of (generalized) mixed-integer linear representable sets? Are there problems that

are naturally expressed as disjunctions of generalized mixed-integer linear representable sets that

can be solved using algorithms for mixed-integer bilevel programming (such as the recent work

by Fischetti et al. [72], Wang and Xu [138], etc.)? In the case of continuous bilevel linear

programs, its equivalence with unions of polyhedra suggests a connection to solving problems over

unions of polyhedra, possibly using the methodology of Balas et al. [15]. The connection between

bilevel constraints and linear complementarity also suggest a potential for interplay between the

computational methods of both types of problems.
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Chapter 7

Conclusion and Future work

In this chapter, we briefly summarize the key results obtained throughout the dissertation. And

then we mention some questions and directions of research that follow as a natural continuation of

the dissertation.

7.1 Concluding remarks

In this dissertation, we discussed the modeling power obtained by a careful introduction of

nonconvex constraints. In particular, we discussed three families of nonconvex problems, namely,

mixed-integer programs, complementarity problems, and mixed-integer bilevel programs. We were

interested in quantifying the trade-off between their modeling capability versus the additional

computational burden in solving these problems.

Following the characterization of the modeling power of mixed-integer programs by Jeroslow

and Lowe [92] as a finite union of polytopes plus a finitely generated monoid, we characterize the

modeling power of linear complementarity problems as finite union of polyhedra, continuous bilevel

problems also as finite union of polyhedra, and that of mixed-integer bilevel programs as finite
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union of sets that are representable by mixed-integer programs (Theorem 98).

Besides theoretically characterizing their modeling power, we employed one of these

nonconvexities — complementarity nonconvexity — to estimate Nash-equilibrium in two real-

life problems. The first problem where this was applied was that of understanding the behavior

of the natural gas market in North America (Refer Section 4.2). Since there are uncertainties

involved in the parameters of such a problem, we were interested in the covariance of the resulting

vector containing the Nash-equilibrium of the problem. Since solving the integral to obtain such a

covariance is computationally expensive, we developed a method based on Taylor series expansion,

that approximates the covariance of the solution of a stochastic complementarity problem. We

then used these constraints to understand the effects of governmental policies on cereal export in

Ethiopia (Refer Section 4.3).

Now with theoretical quantification of the modeling capacity of these problems and a more

practical evidence in the applicability of these problems, we are interested in efficient ways to solve

these problems. For problems with integer constraints, a significant part of the modern research

is on generating valid inequalities for the corner polyhedron defined in eq. (3.9) of Definition 27.

Our contribution in this area is to give a parametrized family of valid inequalities for the corner

polyhedron that are simultaneously strong and can be computed efficiently. For mixed-integer

bilevel programs, we give an algorithm that can solve the problem in polynomial time provided the

number of integer variables and the number of follower variables is fixed.

7.2 Future work

Machine learning is one of the fastest growing fields that has benefitted extensively from the

developments in the field of optimization. In a world where data-driven decisions become more and
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more important, and the quantity of data keeps growing, fast algorithms to make optimal decisions

are crucial. While the first decade of the 21st century used methods from nonlinear optimization,

structured nonconvex optimization is becoming more and more important in making machine

learning algorithms more efficient. For example, Bennett et al. [24] use bilevel programming to

do hyperparameter optimization for machine learning problems. Kunapuli [101] uses mathematical

programs with complementarity constraints for support-vector regression and bilevel optimization

for missing value imputation. Similarly, Bertsimas and Dunn [25] use mixed-integer programs to

build a classification tree that has high accuracy on standardized test sets for machine learning

algorithms. The methods, algorithms and structural results introduced in this dissertation for

handling structured nonconvex optimization problems can provide useful directions in machine

learning research, as described in the subsections below.

7.2.1 Theoretical and Structural questions

One of the reasons that a linear program is considered an “easy” problem to solve is because of

the availability of a dual problem, which satisfies the so-called strong duality property and the fact

that the dual problem is also a linear program of comparable size. There are some ideas of duality

for mixed-integer programs too, ideas from which are used in speeding up the existing algorithms

to solve mixed-integer programs.

Mixed-integer bilevel programs, on the other hand, do not have a well-developed duality theory.

It would be both theoretically interesting and algorithmically useful to derive dual programs for

bilevel programs. This could result in deriving cutting planes valid for the feasible region of the

mixed-integer bilevel programs and eventually faster algorithms to solve them.

Another area with developing interest is to identify the role of sparsity in mixed-integer
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programs. Very large instances of mixed-integer programs are routinely solved when the matrices

defining the constraints are sparse. While tree-width based approaches [68, for example] partially

explain this behavior, we still do not fully characterize the set of easy instances, for any structured

sparsity forms. These are of greater interest, since many hard (NP -complete) problems can be

posed as reasonably sparse MIPs and many problems arising from real-life applications are sparse.

Quantifying the structure in such instances and methodically tailoring algorithms to solve these

problems is another potential extension of the work in this dissertation.

7.2.2 Theoretical questions driven by applications

Given the extensive representability properties of mixed-integer bilevel programs described in

Section 6.3, characterizing the class of optimization problems that can be approximated well with

mixed-integer bilevel programs becomes important. If structured optimization problems that result

from machine learning applications can be posed as a mixed-integer bilevel program of a reasonable

size that could be solved efficiently, this can lead to a new paradigm in solving optimization problems

originating from machine learning problems approximately to global optimality. Bertsimas and

Dunn [25] give evidence that solving a learning problem to global optimality increases the

performance of the decision-tree algorithm for classification. This approach of solving machine

learning based optimization problems approximately to global optimality will contrast the current

approach of solving this class of optimization problems to first-order stationary points in some cases

and local minima in some cases. While the literature on if such an approach would be useful is

sparse, mixed-integer bilevel programs might serve as one of the first methods which can help solve

a significant subset of machine learning-inspired optimization problems to global optimality and

understand the usefulness of such an approach.
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7.2.3 Novel and extended applications

The need to control climate change is driving policies geared towards using cleaner forms of energy

across the globe. Such policies pose new challenges in modeling the energy markets. With the

presence of carbon tax, energy obtained from cleaner means could be distinguished from energy

obtained by burning fossil fuels. This is coupled with the fact that increasing number of domestic

consumers resort to using solar panels for domestic consumption, creating significant differences

in the demand structure for energy. These changes require updated models reflecting consumer

behavior to evaluate policies efficiently. More interestingly, this could require us to model a game

between various countries who act as multiple “leaders” and the energy market players in each

of the countries who act as “followers”, a problem that can be posed as an equilibrium problem

with equilibrium constraints (EPEC ). Developing algorithms to solve EPECs and hence analyze

the markets would be a useful extension of the work in this dissertation.

The DECO2 model (Section 4.3) is capable of answering long-term policy analysis questions.

For example, the impact of global warming on cropping patterns in Ethiopia can be assessed using

DECO2. A useful extension of the model is to incorporate machine learning model predictions.

Machine-learning models that can predict global demand for teff, coffee and other export goods

with high accuracy can help in designing flexible government policies.

Extending the model to accommodate uncertainty in futuristic scenarios and modeling the

actions of relatively short-sighted players can quantify the merits of long-term planning in

economies. Such a model would be a better representation of the reality and hence will enable

us to understand the response of the market to external stimuli much better.
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Appendix A

Standard Notations and Symbols

∅ The empty set

R Set of real numbers

Q Set of rational numbers

Z Set of integers

N Set of natural numbers 1, 2, . . .

[n] Natural numbers 1, . . . , n.

conv(S) Convex hull of the set S

cone(S) Conic hull of the set S

aff(S) Affine hull of the set S

int(S) Interior of the set S

relint(S) Relative interior of the convex set S

x ⊥ y Asserting xT y = 0
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Appendix B

Equations for North American

natural gas model

In this chapter of the appendix, we provide the set of optimization problems along with their KKT

conditions which that are a part of the North American natural gas model.

In this formulation, we assume we have a set of suppliers P, consumers C and a pipeline operator.

The players are located in a set of nodes N, and some of them are connected by pipelines A.

Let also say that Pn ⊆ P, Cn ⊆ C are located in node n ∈ N. Let An be the pipelines connected

to node n. The symbols used here are explained in Table B.1 to B.3. Most of the analysis closely

follow [69] and [60]. Random parameters are denoted by an (ω) beside them. The implementation

of this problem is made available in https://github.com/ssriram1992/Stoch_Aprx_cov.

B.1 Producer’s problem

Maximize
∑
Y

dfy

{∑
C

QC
pcnyπcy −Gol

(
QP
pny,CAP

P
py

)
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Table B.1: Sets

Set Explanation Set Explanation

P Set of suppliers A Set of pipeline connections(arcs)

C Set of consumers A+
n Set of arcs from node n on which natural gas flows out

N Set of nodes A−
n Set of arcs from node n on which natural gas flows in

Y Set of periods

Table B.2: Symbols - Variables

Symbol Explanation

Quantities QC
pcny Quantity produced by p in n to send to c in year y

QP
pny Total quantity produced by p in year y

QA
pay Total quantity p choses to send by arc a in year y

QA
ay Total quantity sent by a during year y

Prices πcy Unit price paid by consumer C in year Y

πA
ay Unit price of sending natural gas through a during year y

Capacity XP
py Production expansion in year y for supplier p

XA
ay Transportation capacity expansion in year y for arc a

CAPP
py Production capacity for supplier p in year y

CAPA
ay Transportation capacity for arc a in year y
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Table B.3: Symbols - Parameters

Symbol Explanation

Quantities Q̂p0 Initial capacity of production for supplier p

Q̂a0 Initial capacity of transportation for pipeline a

Prices πXP
py (xi) Price of capacity expansion for supplier p

πXA
ay (xi) Price of capacity expansion for transportation arc a

Losses LP
py(ω) Percentage loss in production by supplier p in year y

LA
ay(ω) Percentage loss in transportation via arc a in year y

αP Availability fraction of the production capacity

Consumer EC
cy(ω) Intercept of the demand curve for consumer c in year y

DC
cy(ω) Slope of the demand curve for consumer c in year y

dfy Discount Factor for year y
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−πXP
py (xi)XP

py −
∑
A+

n

πAayQ
A
pay

⎫⎬⎭ (B.1)

subject to

QC
pcny,Q

P
pny,Q

A
pay ≥ 0

XP
py,CAP

P
py ≥ 0

QP
pny ≤ αPCAPP

py

(
δ1py
)

(B.2a)

CAPP
py = Q̂p0 +

y∑
i=1

XP
pi

(
δ2py
)

(B.2b)

∑
Cn

QC
pcny +

∑
A+

n

QA
pay = QP

pny(1− LP
py(ω))

+
∑
A−

n

QA
pay(1− LA

ay(ω))
(
δ3pny

)
(B.2c)

where

Gol(·) = (lPpy(ω) + gPpy(ω))Q
P
pny + qPpy(ω)

(
QP
pny

)2
+ gPpy(ω)(CAP

P
py −QP

pny) log

(
1−

QP
pny

CAPP
py

)
(B.3)

B.2 Pipeline operator’s problem

Maximize
∑
Y

dfy

{∑
A

QA
ay

(
πAay − γAya(ω)

)
− πXA

ay (xi)XA
ay

}
(B.4)

subject to

QA
ay,X

A
ay,CAP

A
ay ≥ 0

QA
ay ≤ CAPA

ay

(
δ5ay
)

(B.5a)

CAPA
ay = Q̂a0 +

y∑
i=1

XA
ai

(
δ6ay
)

(B.5b)
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B.3 Consumer

πcy = EC
cy(ω) +DC

cy(ω)
∑
P

QC
pcny (πcy) (B.6)

It can be shown that the above said optimization problems are all convex with non-empty

interior. Hence the Karush-Kuhn Tucker conditions (KKT conditions) are necessary and sufficient

for optimality. The KKT conditions are presented below and they form the equations for the

complementarity problem along with the constraints above.

B.4 KKT to Producer’s problem

−dfyπcy + δ3pny ≥ 0
(
QC
pcny

)
(B.7a)

dfyπ
XP
py (xi)−

y∑
i=1

δ2pi ≥ 0
(
XP
py

)
(B.7b)

dfyπ
A
ay +

(
Ia∈A+

n
− Ia∈A−

n
(1− LA

ay(ω))
)
δ3pny ≥ 0

(
QA
pay

)
(B.7c)

dfy
∂Gol

∂QP
pny

+ δ1py − δ3pny(1− LP
py(ω)) ≥ 0

(
QP
pny

)
(B.7d)

dfy
∂Gol

∂CAPP
py

+ αPδ2py − δ1py ≥ 0
(
CAPP

py

)
(B.7e)

B.5 KKT to Pipeline operator’s problem

−dfyπAay + γAya(ω) + δ5ay ≥ 0
(
QA
ay

)
(B.8a)

dfyπ
XA
ay (xi)−

y∑
i=1

δ6ai ≥ 0
(
XA
ay

)
(B.8b)

δ6ay − δ5ay ≥ 0
(
CAPA

ay

)
(B.8c)
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B.6 Market clearing condition

QA
ay =

∑
P

QA
pay (πAay) (B.9)
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Appendix C

N-dimensional Sparse array

implementation

A general purpose Python class has been implemented to handle a sparse ndarray object. The class

is a generalization of the scipy class coo matrix which stores the array coordinates of each non-zero

element in the array. We now describe the details of the implementation. A continuously updated

version of the class can be found at https://github.com/ssriram1992/ndsparse.

C.1 Initialization

The n-dimensional sparse array (coo array) can be initialized by any of the following methods.

� A tuple, which initializes the sparse array of the shape mentioned in the tuple and with

zeros everywhere.

� A dense ndarray which will be converted and stored as a coo array.
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� A matrix of positions and a 1 dimensional array of values where the matrix contains the

positions of the non-zero elements and the vector containing the non-zero values of those

positions. In this case, the shape of the coo array would be the smallest ndarray that can

store all the elements given. Optionally a tuple containing the shape of the ndarray can be

given explicitly.

� Another coo array whose copy is to be created.

C.2 Methods

The following methods and attributes are available in the coo array.

� print(coo array) will result in printing the location of each of the non-zero elements of the

array and their values.

� coo array.flush(tol = 1e-5) will result in freeing the space used in storing any zero-

elements or elements lesser than the tolerance, tol. Such numbers typically arise out

arithmetic operations on coo array or poor initialization.

� coo array.size() returns the number of non-zero elements in the coo array.

� coo array.shape returns the shape of the underlying dense matrix.

� coo array.add entry(posn,val) and coo array.set entry(posn,val) both add a new

non-zero element with the given value at the given position. The difference however is that

set entry() checks if a non-zero value already exists at the mentioned position, and if yes,

it overwrites it instead of creating a duplicate entry with the same coordinates. This search

makes set entry() slower compared to add entry() which assumes that the previous value
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or the position is zero. Thus add entry() could potentially cause duplicates and ambiguity,

if an illegal input is given. However in case the input is ensured to be legal, add entry() is

much faster.

� coo array.get entry(posn) returns the value at the given position.

� coo array.swapaxes(axis1,axis2) is a higher dimensional generalization of matrix

transposes where the dimensions that have to be swapped can be chosen.

� coo array.remove duplicate at(posn,func=0) checks if there are multiple values defined

for a single position in the sparse array. If yes, they are replaced by a single entry containing

the scalar valued defined by func or passes them to a function defined in func and stores the

returned value. Passing a function for the argument func is incredibly useful in performing

arithmetic operations on coo array.

� coo array.todense() returns a dense version of the coo array.

� coo array.iterate() returns an iterable over the non-zero positions and values in the

coo array.

The above class is used extensively to handle high-dimensional sparse arrays in NANGAM to

approximate the solution covariance according to Algorithm 4.
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Appendix D

Equations for DECO2

In this chapter, we present the optimization problems used in the DECO2 model for the Ethiopian

food market.

D.1 Crop Producer

D.1.1 Problem

A crop producer maximizes her profit, which is the benefit given production and unit price minus

the cost of cropping area, expanding the area, and converting cropping area for different crop types.

Maximize :
∑
y∈Y
h∈H

dfy

⎧⎨⎩∑
f∈C

((∑
n

πFyhnfQ
FD
yhznf

)
− C F

yhzfA
F
yhzf −

1

2
C change
yhn

(
AF
yhnf −AF

(y−1)hzf

)2)

−C conv
yhn

∑
f∈C

(
AF
yhnf −AF

(y−1)hzf

)⎫⎬⎭ (D.1)

where Y is year; L is crop season; C is crop type; n is node/region; z is adaptation zone; F in

superscript stands for food products; dfy is a discount factor for year y’s present value; π is unit

price of production; Q is production quantity; C is cost; A is cropping area.
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The stakeholder is subject to the constraints for f ∈ C

QF
yhzf , A

F
yhzf ≥ 0 (D.2a)

Az ≥
∑
f∈C
h∈H

AF
yhzf (δ1yz) (D.2b)

QF
yhzf ≤ YyhzfAF

yhzf (δ2yhzf ) (D.2c)

Linking yield with climate yield factor:

Yyhnf = ayhzfCYFyhzf
(
πFyhzf

)e
(Yyhnf ) (D.2d)

where Yyhnf is yield; ayhzf is a adjustment factor; CYFyhzf is Climate Yield Factor; e is crop own

elasticity.

QFD
yhznf = ΨnzQ

F
yhzf (δ18yhznf ) (D.2e)

(D.2f)

D.1.2 KKT Conditions

These KKT conditions for this problem hold for f ∈ C

δ2yhzf −
∑
n

Ψnzδ
18
yhznf ≥ 0 (QF

yhzf )

(D.3a)

δ1yz + dfy
(
C F
yhzf + C conv

yhz − C conv
(y+1)hz + C change

yhz AF
yhnf + C change

(y+1)hzA
F
yhnf

)
−δ2yhzfYyhzf − dfy

(
C change
yhz AF

(y−1)hzf + C change
(y+1)hzA

F
(y+1)hzf

)
⎫⎪⎪⎬⎪⎪⎭ ≥ 0 (AF

yhzf )

(D.3b)

δ18yhznf − dfyπ
F
yhnf ≥ 0 (QFD

yhznf )

(D.3c)
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where the sign of the last term depends upon whether f is the main crop or the secondary crop

used for rotation.

D.2 Livestock producer

D.2.1 Problem

Maximize :
∑
y∈Y
h∈H
f ̸∈C

dfy

((∑
n

πFyhnfQ
FD
yhznf

)
− ByhzC cow

yhz

)
(D.4)

where C cow
yhz is the general management cost of cow.

The stakeholder is subject to the constraints for f ̸∈ C

Bbuyyhiz, Byhz, B
slg
yhz ≥ 0 (D.5a)

QF
yhzf , Q

L
yhz ≥ 0

Production quantity is yield of milk and beef per bovine times the number of bovine owned or

slaughtered:

QF
yhzf ≤ YyhzfByhz (f = Milk) (δ2yhzf )

QF
yhzf ≤ YyhzfBslgyhz (f = Beef) (δ2yhzf )

Number of Bovine slaughtered should not exceed the number owned:

Bslgyhz ≤ Byhz (δ4yhz) (D.5b)

Quantity balance of Bovine:

Byhz ≤ (1 + k − κ)B(y−1)hz − B
slg
(y−1)hz (πcowyhz ) (D.5c)
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where k is the birth rate; κ is the death rate.

Number of Bovine should not be fewer than the natural deaths:

Bslgyhz ≥ κdeathyhz Byhz (δ9yhz) (D.5d)

Number of Bovine owned should be above certain level for reproduction (cannot slaughter all the

livestocks):

Byhz ≥ Bherdz (δ10yhz) (D.5e)

QFD
yhznf = ΨnzQ

F
yhzf (δ18yhznf )

D.2.2 KKT Conditions

dfyC
cow
yhz − δ2yhzfYyhnf − δ4yhz + κdeathyhz δ9yhz

−δ10yhz + πcowyhn − (1 + k − κ)πcow(y+1)hn

⎫⎪⎪⎬⎪⎪⎭ ≥ 0 (f = Milk) (Byhz) (D.6a)

δ2yhzf − dfyΨnzδ
18
yhznf ≥ 0 (QF

yhzf )

δ4yhz − δ9yhz − δ2yhzfYyhzf + πcow(y+1)hz ≥ 0 (f = Beef) (Bslgyhz) (D.6b)

δ18yhznf − dfyπ
F
yhnf ≥ 0 (QFD

yhznf ) (D.6c)

D.2.3 Adaptation zones to administrative regions

Here we convert production data from adaptation zone level to administrative region level to model

transportation. These are indeed market clearing equations.

QDb
yhnf =

∑
z

QFD
yhznf

(
πFyhnf

)
(D.7a)
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D.3 Distribution

D.3.1 Problem

Maximize :
∑
y∈Y
h∈H
f∈F

dfy

{∑
n∈N

(
QDs
yhnfπ

W
yhnf −QDb

yhnfπ
F
yhnf

)
−
∑
r∈R

CR
yhrfQ

D
yhrf

}
(D.8)

where D in superscript stands for distributor; W in superscript stands for warehouse (storage

manager); R stands for road and represents the linkages between nodes; CR
yhrf is the transportation

cost per unit of quantity distributed.

The stakeholder is subject to the constraints

QDb
yhnf , Q

D
yhrf , Q

Ds
yhnf ≥ 0 (D.9a)

The quantity purchased at one node n plus the quantity being distributed into n should be greater

than total quantity sold and shipped out at n:

QDb
yhnf +

∑
r∈Rin

QD
yhrf ≥ QDs

yhnf +
∑

r∈Rout

QD
yhrf (δ6yhnf ) (D.9b)

Road capacity constraint per food item:

QD
yhrf ≤ QR,CAP

yhrf (δ7yhrf ) (D.9c)

Road capacity constraint:

∑
f

QD
yhrf ≤ QR,CAP

yhr (δ16yhr) (D.9d)

Note that equation (3.2c) will be active depending upon the FoodDistrCap setting.
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D.3.2 KKT Conditions

Representing sr and dr as the source and destination nodes of the transport system r ∈ R, we have

the following KKT conditions.

dfyπ
F
yhnf − δ6yhnf ≥ 0 (QDb

yhnf ) (D.10a)

δ7yhrf + δ16yhr + dfyC
R
yhrf + δ6yhsrf − δ

6
yhdrf ≥ 0 (QD

yhrf ) (D.10b)

δ6yhnf − dfyπ
W
yhnf ≥ 0 (QDs

yhnf ) (D.10c)

D.3.3 Market Clearing between distribution and Storage

The quantity storage manager bought in (demand) equals to the quantity sold from the distributor

(supply):

QWb
yhnf = QDs

yhnf (πWyhnf ) (D.11a)

D.4 Storage

D.4.1 Problem

Maximize :
∑
y∈Y
h∈H
f∈F

{
πUyhnfQ

Ws
yhnf − π

W
yhnfQ

Wb
yhnf −

(
1

2
CWq
yhnfQ

W
yhnf + CWl

yhnf

)
QW
yhnf

}
(D.12)

where U in superscript stands for ultimate or utility price selling to the customers;Ws in superscript

stands for the quantity sell out from the warehouse and Wb stands for the quantity buy into

the warehouse; Wq and Wl stand for the quadratic and linear storage cost factors; QW
yhnf is the

quantity of food f stored in year y season h at node n.
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The stakeholder is subject to the constraints

QWb
yhnf , Q

Ws
yhnf , Q

W
yhnf ≥ 0

Storage capacity constraint:

QW
yhnf ≤ QW,CAP

yhnf (δ8yhnf ) (D.13a)

Balance constraint of storage over years:

For the first season h, if h′ is the last season:

QW
yhnf = QW

(y−1)h′nf +QWb
yhnf −QWs

yhnf (δ11yhnf ) (D.13b)

For other seasons:

QW
yhnf = QW

y(h−1)nf +QWb
yhnf −QWs

yhnf (δ11yhnf )

D.4.2 KKT Conditions

πWyhnf − δ11yhnf ≥ 0 (QWb
yhnf ) (D.14a)

δ11yhnf − πUyhnf ≥ 0 (QWs
yhnf ) (D.14b)

For last season h, where h′ is the first season:

CWq
yhnfQ

W
yhnf + CWl

yhnf + δ8yhnf + δ11yhnf − δ11(y+1)h′nf ≥ 0 (QW
yhnf ) (D.14c)

For other seasons:

CWq
yhnfQ

W
yhnf + CWl

yhnf + δ8yhnf + δ11yhnf − δ11y(h+1)nf ≥ 0 (QW
yhnf )
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D.4.3 Administrative zones to adaptation zones

These are again market clearing equations just as in Sec D.2.3. Here we are converting from

administrative zone to adaptation zone instead. With the same definitions,

QWs
yhnf =

∑
z

QU
yhnzf (πUyhnf ) (D.15a)

D.5 Consumers

Consumers are aggregated stakeholders who maximize their utility by consuming food products

while minimizing the cost incurred in purchasing the food.

D.5.1 Problem

Maximize :
∑
y∈Y
h∈H
f∈F

{∑
n

(
πUyhnfQ

U
yhnzf

)
− αyhzfQU

yhzf +
1

2
βyhzfQ

U
yhzf

2

}
(D.16)

The stake holder is subject to the constraints

QU
yhzf , Q

U
yhnzf ≥ 0

There could be an export ban or limit where this constraint can become active.

QU
yhzf ≤ QU

yhzf (δ20yhnf ) (D.17a)

Total amount consumed is at most what is purchased from each node

QU
yhzf ≤

∑
n

QU
yhnzf (δ19yhzf ) (D.17b)

Consumers have to purchase at least Ψ fraction of their consumption from every corresponding

node

QU
yhnzf ≥ ΨnzQ

U
yhzf (δ17yhnzf ) (D.17c)
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D.5.2 KKT Conditions

πUyhnf − δ19yhzf − δ17yhnzf ≥ 0 (QU
yhnzf ) (D.18a)

βyhzfQ
U
yhzf − αyhzf + δ19yhzf + δ20yhnf +

∑
n

Ψnzδ
17
yhnzf ≥ 0 (QU

yhzf ) (D.18b)
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Publications and co-authors

� Sankaranarayanan, S., Feijoo, F., and Siddiqui, S. (2018). Sensitivity and covariance in

stochastic complementarity problems with an application to North American natural gas

markets. European Journal of Operational Research, 268(1), 25–36.

� Feijoo, F., Iyer, G., Avraam, C., Sankaranarayanan, S., Wise, M., Clarke, L., and Siddiqui,

S. (2018) Natural gas Infrastructure development - An analysis from GCAM-NANGAMmodel

coupling. Applied Energy, 228, 149-166.

� Basu, A., and Sankaranarayanan, S. (2018). Can cut generating functions be good and

efficient? Under revision. arXiv Preprint arXiv:1803.00667.

� Basu, A., Ryan, C.T., and Sankaranarayanan, S. (2018) Mixed-integer bilevel

representability. Submitted. arXiv Preprint arXiv:1808.03865.

� Sankaranarayanan, S., Zhang, Y., Carney, J., Zaitchik, B., and Siddiqui, S. Domestic

distributional impacts of teff-ban policy and alternatives in Ethiopia. Working paper.
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� Basu, A., Molinaro, M., Nguyen, T., and Sankaranarayanan, S. A machine learning based

approach to classify integer programming problems for cut selection. Working paper.

� Basu, A., Ryan, C.T., and Sankaranarayanan, S. Mixed-integer bilevel solvability. Working

paper.
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