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Abstract

During cued motor tasks, for both speech and limb movement, information propa-

gates from primary sensory areas, to association areas, to primary and supplementary

motor and language areas. Through the recent advent of high density recordings at

multiple scales, it has become possible to simultaneously observe activity occurring

from these disparate regions at varying resolution. Models of brain activity generally

used in brain-computer interface (BCI) control do not take into account the global

differences in recording site function, or the interactions between them. Through the

use of connectivity measures, however, it has been made possible to determine the

contribution of individual recording sites to the global activity, as they vary with task

progression.

This dissertation extends those connectivity models to provide summary information

about the importance of individual sites. This is achieved through the application of

network measures on the adjacency structure determined by connectivity measures.

Similarly, by analyzing the coordinated activity of all of the electrode sites simulta-

neously during task performance, it is possible to elucidate discrete functional units
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through clustering analysis of the electrode recordings.

In this dissertation, I first describe a BCI system using simple motor movement imag-

ination at single recording sites. I then incorporate connectivity through the use of

TV-DBN modeling on higher resolution electrode recordings, specifically electrocor-

ticography (ECoG). I show that PageRank centrality reveals information about task

progression and regional specificity which was obscured by direct application of the

connectivity measures, due to the combinatorial increase in feature dimensionality.

I then show that clustering of ECoG recordings using a method to determine the

inherent cluster count algorithmically provides insight into how network involvement

in task execution evolves, though in a manner dependent on grid coverage. Finally,

I extend clustering analysis to show how individual neurons in motor cortex form

distinct functional communities. These communities are shown to be task-specific,

suggesting that neurons can form functional units with distinct neural populations

across multiple recording sites in a context dependent impermanent manner.

This work demonstrates that network measures of connectivity models of neurophysi-

ological recordings are a rich source of information relevant to the field of neuroscience,

as well as offering the promise of improved degree-of-freedom and naturalness possible

through direct BCI control. These models are shown to be useful at multiple recording

scales, from cortical-area level ECoG, to highly localized single unit microelectrode

recordings.

Primary Reader: Nitish Thakor

Secondary Reader: Nathan Crone
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Chapter 1

Background and Motivation

1.1 Motivation

1.1.1 Problem Statement

It is estimated that the number of people in the United States in 2013 with spinal

cord injuries (SCI) is between 238,000 and 332,000, with as much as 40% of the cases

being a result of car accidents [Center et al., 2013]. Of these patients, the majority

suffer from tetraplegia, and lose control of their limbs, as well as sensory afferents.

Most of the remaining patients suffer from paraplegia, with a loss of control of their

lower limbs, but an intact upper body [Sanchez et al., 2012]. Other neurological

diseases which can induce limb motor and sensory deficits include stroke, traumatic

brain injury, and ALS, with respective annual incidence per 100,000 of 183, 101, and
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1.6 [Hirtz et al., 2007,del Ama et al., 2012].

1.1.2 Approaches

1.1.2.1 Functional Electrical Stimulation

For partially paralyzed patients, one promising method of restoring control to intact

limb muscles is Functional Electrical Stimulation (FES). With FES, limb muscles

that no longer receive efferent innervation are stimulated directly with electrodes.

This technology has been used to restore limited walking and grasping capabilities

to SCI patients [Popovic et al., 2001], both alone and with robotic assistance [del

Ama et al., 2012]. There are limitations to FES, e.g., muscle fatigue occurs fairly

rapidly, limiting the duration of restored movement in a particular session [Nangini

et al., 2006]. One suggested solution to this problem is to create more natural muscle

stimulation through the use of individual muscle groups [Lau et al., 1995].

1.1.2.2 Prostheses

Estimates based on data from 1996 suggest 1.2 million people suffer from limb loss

[Ziegler-Graham et al., 2008], with approximately 185,000 people undergoing an upper

or lower limb amputation each year [Owings and Kozak, 1998]. Recently developed

artificial limbs allow for similar independent control to what is naturally present in

healthy people, with individual finger joint flexion and extension (examples include:
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the i-Limb from Touch Bionics (Mansfield, MA); the bebionic from RSLSteeper (Sev-

ern Road, Leeds, UK), and with arm and shoulder flexion, extension, and rotation

(examples include: the APL Modular Prosthetic Limb (Howard County, MD); the

DEKA Prosthetic arm (Manchester, NH)). The bottleneck with these prostheses is

to allow subjects to control the dozens of degrees-of-freedom of the limb available

with each device [Fougner et al., 2012].

1.1.2.2.1 Myoelectric Control

Myoelectric systems have been receiving widespread use as the control method for

prosthetic devices by amputees [Parker and Scott, 1985, Scott and Parker, 1988].

Myoelectric systems are based on extracting control signals from existing electromyo-

graphic (EMG) signals produced by muscles remaining after the amputation. These

control signals are called myoelectric signals (MES), and common processing tech-

niques based on the time-domain features include measuring the voltage amplitude

[Scott and Dorcas, 1966], or the rate of change of this amplitude to achieve con-

trol [Childress, 1969]. More recently implementations include time-scale feature anal-

ysis such as through the use of the short-time Fourier transform [Englehart et al.,

1999b], or wavelet transform [Karlsson et al., 1999, Englehart et al., 2001]. Addi-

tional techniques are used to improve decoding the signals, such as projection into

principal component space through the application of Principal Component Analysis

(PCA) [Englehart et al., 1999a], or through the application of Linear Discriminant

Analysis (LDA) as a dimensionality reduction method [Chu et al., 2007].
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1.1.2.2.2 Targeted Nerve / Motor Reinnervation

Targeted nerve reinnervation (TNR), targeted motor reinnervation (TMR), or more

simply, targeted reinnervation (TR), is a recently developed technique for allowing

amputees to control prosthetic devices [Kuiken et al., 2004, Kuiken et al., 2007b,

Kuiken et al., 2009]. The method consists of amputated brachial plexus nerves,

which previously provided motor control and sensory feedback in the missing limb,

being transferred to arm and chest muscles that remain after the amputation. After

reinnervation, the EMG signals which are recorded from these reinnervated muscles

still correspond to the amputees’ intended activation of the phantom limb, as sent

from the brain down to the brachial plexus nerve [Kuiken et al., 2007a]. This method

allows for more natural control of prostheses by amputees, and could allow for an

increase in the complexity of the control signals necessary for the prostheses these

amputees can control [Miller et al., 2008].

1.1.2.2.3 Brain Computer Interface (BCI)

Brain Computer Interfaces allow a paralyzed user to control an end-effector purely

based off of thought, or more specifically, through the controlled modulation of brain

activation [Curran and Stokes, 2003,Allison et al., 2007]. BCI control may only be

necessary for the most severely paralyzed, however, due to the advances in the pre-

viously stated techniques. Recently, the capabilities of BCIs for control have been

extended by allowing for hybrid control for those who don’t suffer from complete

locked-in-syndrome [Katyal et al., 2013,McMullen et al., 2014,McMullen et al., 2015].
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The techniques used, and some of their advantages and limitations for real-time pros-

thesis control, will be discussed in the next section.

Connectivity Based Features

Network methods are attractive because they could allow for independent control

of multiple muscle groups through utilization of network properties specific to ar-

eas relevant to certain muscles. Network methods could also allow for an increased

dimensionality in the decoded space, with individual groups being used to decode

separate movement features, allowing for direct and natural neural control of multi-

joint prosthetic devices. Since they inherently divide the neural signals into distinct

groups based on the measure used, the network models could streamline the process of

identifying neural ensembles to train for independent feature control, thus providing

a more natural division of neurons into functional groups.

1.2 Background

1.2.1 Motor Pathways

Brain control of speech production is in many ways similar to that of limb movement,

but the differences are still substantial [Grimme et al., 2011]. The departure be-

tween the two pathways, specifically for output control, is illustrated by the physical

limitations of the two types of control.
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Limb motor control requires the coordination of physical forces exerted by muscle

groups. Speech control, however, is proportionately more cognition focused, with

understanding and real-time processing of the complex rules of language a prerequisite

for the creation of interpretable words and sentences [Brooks, 1986]. The similarities

are apparent, however, when it is taken into account that speech production is also

bound by physical laws, and requires motor control mechanisms for proper execution.

This includes the active participation of the motor cortex (area M1) and its efferent

pathways [Ackermann and Riecker, 2004].

While the execution of limb and speech movement is discussed in this section, the

input pathways for both modalities bare considerable differences in both of the re-

gions implicated, and the time-dependent cascade structure. Input modalities are not

considered here.

1.2.1.1 Limb Position Control

Motor movement control of the hands and arms is not a simple mapping between

the underlying neural activity and any obvious aspect of the resultant physical out-

put [Lacquaniti, 1989]. In fact, while the somatosensory cortex shows somatotopic

organization at the individual finger level, the mapping in motor cortex is consider-

ably more complex, below the scale of the individual limbs [Schieber and Hibbard,

1993]. This is suggestive of an increase in the complexity of how the brain encodes

individual movements over the processing of sensory stimulation [Schieber, 2001].
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Figure 1.1: Two-stream hypothesis for visually-guided movement [Goodale, 2011].

(➞Vision Research, 2011)

From a more global perspective, however, the motor output pathway during a visually-

cued reach-to-grasp task, which the limb control experiments analyzed in this thesis

all qualify as, is relatively well understood [Jeannerod, 1994].

Initially at the cortical level, task-specific visual cues are processed in visual cortex

(area V1) [Zipser et al., 1996]. The neurons in this area represents complex stimu-

lus properties, with a retinotopic organization of the visual field [Hubel and Wiesel,

1968]. At this point in a reach-to-grasp task, however, the processed information

diverges, with the particular pathway chosen dependent on whether it will be used

for determining where and how to reach toward, or how precisely to grasp (and sub-

sequently manipulate) the object in the task-space [Ungerleider and Mishkin, 1982].

This separation of task-specific information flow is called the dual-stream hypothesis,

separated into the ventral- object recognition component, and the dorsal- location
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guiding pathway [Goodale and Milner, 1992].

There is evidence, however, that the areas described in this section are not as segre-

gated as previously believed [Goodale, 1998]. Mainly, areas previously believed to be

strictly sensory are also implicated in direct efferent pathways [Milner and Goodale,

1995]. This should be kept in mind during the following overview of the more tradi-

tional feed-forward model of the motor pathways, as depicted in Figure 1.2.

1.2.1.1.1 Dorsal Visual Stream Hypothesis

Following processing in the visual cortex, objects are identified, and reach movement

planning occurs along the dorsal stream [Chao and Martin, 2000]. Further semantic

object information is processed and stored in posterior temporal cortex [Chao et al.,

1999], but for my thesis work the focus is on motor planing. While there are many

parallels in human anatomy, much of what is known about motor planning anatomy

comes from studies in monkeys, so the specific areas described are specific to macaque

monkeys.

The posterior parietal cortex (PPC), which receives input from the visual cortex, is

involved with the multimodal representation of space, and is also implicated in move-

ment planning [Andersen et al., 1997]. More specifically, the lateral intraparietal area

(LIP) of PPC tracks eye position and forms plans for saccadic eye movements [An-

dersen et al., 1992], while medial superior temporal area (MST) guides visual motion

processing [Beauchamp et al., 2002]. The dorsal area of MST (dMST) specifically is

involved in tracking complicated movements of objects in the visual field [Graziano

8



Figure 1.2: Post-visual cortex output: cortical motor-output pathway [Wise et al.,

1997]. (➞Annual Reviews Neuroscience, 1997)
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et al., 1994], and for tracking self-guided movement’s affect on the visual field [Ko-

matsu and Wurtz, 1988,Thier and Erickson, 1992].

The PPC shows output-modality independent activation, e.g., the firing in PPC is

not selective for planning of eye movement or hand movement [Robinson et al., 1978].

This task-independence suggests that PPC’s role in movement planning is to mediate

the visual response to selected stimuli [Bushnell et al., 1981].

The premotor dorsal cortex (PMd), along with supplementary motor area (SMA),

upon receiving information concerning attention and the visuospatial representation

of the object to be manipulated, produce output specific to the selection, preparation,

and execution of movement [Wise et al., 1997,Kermadi, 2000,Cisek, 2006].

The output of PMd and SMA help guide the activation of motor cortex (M1), tran-

sitioning from a more abstract representation of the motor movements to specific

control signals [KERMADI, 1997,Wu and Hatsopoulos, 2007]. This cortical output

commonly enters the corticospinal tract (CST) to drive the motor output [Lemon,

2008]. There is more recent evidence, however, that these areas previously thought

to function exclusively in motor planning have direct output projections to spinal

motoneurons (PMd: [Dum and Strick, 2002], SMA: [Boudrias et al., 2006]).

1.2.1.1.2 Ventral Visual Stream Hypothesis

After early visual processing, object manipulation planning occurs along the ventral

visual stream [Theys et al., 2015], where it inputs into the anterior intraparietal
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sulcus (AIP). AIP is implicated in visual control of grasping and manipulation of

hand movements, controlling for specific aspects of the object such as size, shape,

orientation in three dimensional space [Sakata and Taira, 1994,Murata et al., 2000].

The ouptut from the AIP informs the ventral premotor cortex (PMv), sthrough pro-

jections, of the three dimensional representation of the object [Theys et al., 2015].

Converting this task-independent visuospatial object representation into actionable

motor planning most likely begins in PMv [Chao and Martin, 2000].

From PMv, the ventral pathway basically converges with the dorsal pathway, in

that the output projections of both pathways run parallel through M1 and the CST

[Lemon, 2008]. While the M1 hand area has been shown to have no clear somatotopy

[Schieber and Hibbard, 1993], at a more gross level the pathways are segregated in

which areas of the limb they control [Plow et al., 2010]. The pathways do maintain

gross somatotopic specificity through M1, but there is substantial overlap at the level

of individual spinal motoneuron innervation [Schieber, 2001], which then directly

control muscle fibers for movement actuation [Wuerker et al., 1965,McPhedran et al.,

1965].

1.2.1.2 Speech Control

There is a direct parallel to the dual-stream hypothesis for auditory information

flow. Proceeding transduction by the ear and cochlea, properties of the aural stimuli

are processed in the superior temporal gyrus (STG) and subsequently the superior
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temporal sulcus (STS) before being divided up into the ventral and dorsal streams

[Hickok and Poeppel, 2007].

While the ventral pathway processes the content of the aural information for interpre-

tation, the dorsal pathway is implicated in response formation [Saur et al., 2008]. For

the picture naming task used in this thesis, the dorsal pathway is of interest. Specif-

ically, the experimental task involves the presentation of a picture, which a subject

must then name.

1.2.2 Recording Methodology

In order to directly study the brain and motor control, recordings must be obtained

during the execution of the task of interest. Imaging studies are popular due to their

ability to capture 3-dimensional structure with high regional specificity. The work

here is all limited to electrophysiological recordings, however, so the methodology and

characteristics of various imaging techniques is not discussed here.

1.2.2.1 Electromyography (EMG)

For amputees who maintain control of remaining muscle activation, EMG is an effec-

tive approach to allowing them to control a prosthetic device. With EMG recordings,

electrodes are placed on top of functioning muscles, and record voltage activity when

contraction occurs [Ahmad et al., 2012]. Through the application of signal processing

techniques, EMG approaches to prosthesis control determine how to move the limb
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based on these recordings [Parker et al., 2006].

The application of sophisticated decoding techniques to the EMG signals has allowed

for improved prosthesis control. One example is Support Vector Machine classifi-

cation, which has allowed for three DOF control, including wrist flexion-extension,

abduction-adduction and forearm pronation-supination [Ameri et al., 2014]. Another

example is the implementation of pattern recognition techniques, which has been

shown to improve accuracy in discrete and simultaneous movements [Young et al.,

2013, Young et al., 2014]. Even individual finger positions have been shown to be

decodable with EMG with high accuracy [Smith et al., 2008].

Other less algorithmic optimization have also been studied for EMG, for example,

recent studies have been done to find the ideal electrode size and placement [Young

et al., 2011,Young et al., 2012]. The previously mentioned TMR method allows for

improved naturalness in control of prosthetics, due to the subject activating the same

nerves which they had prior to amputation, and not having to learn to modulate other

muscles as a surrogate. EMG based control still has to improve to restore natural

control of all of the DoFs available, however, with the advanced prostheses already

available on the market [Fougner et al., 2012].

1.2.2.2 Electroencephalography (EEG)

Brain-Computer interfaces (BCIs) use electrophysiological measures of brain function

to enable individuals to communicate directly with their external world, bypassing
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normal neuromuscular pathways. Recently, noninvasive BCIs have used a variety

of electroencephalography (EEG) based features to communicate the intent of the

user, such as slow cortical potentials and event-related desynchronization via motor

imagery. This noninvasive EEG-BCI has been a highly active research topic in neuro-

science, engineering, and signal processing. One of the reasons for this development

is the remarkable advances of BCI systems with respect to usability, information

transfer, and robustness for which modern machine learning and signal processing

techniques have been instrumental [Guger et al., 2003].

One of the most important characteristics of the EEG recorded over the sensorimo-

tor cortex is linked to possible modulation of EEG rhythms through simple motor

imagery, e.g., imagining a flexion of the right or left elbow. A widely used rhythm

for control is the mu rhythm (812 Hz). The reason for utilizing the mu band is

that it shows an increase in power during relaxation (event-related synchronization),

and similarly, a decrease during real and imaginary motor movement performance

(event-related desynchronization) [McFarland et al., 1997]. This characteristic can

be utilized to control a cursor in at least one dimension. The two electrodes shown

to have the largest weight of mu rhythm are located at C3 and C4 or adjacent po-

sitions, but recruitment of more electrodes could be necessary for control of more

sophisticated movements.

EEG is a rough measure of neural activity, based on the voltages generated by the

firing of large populations of neurons, as recorded over time from the scalp at discrete

sites. As a result of the distance of the electrodes from the source of the signals, and
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the volume conduction effect of the scalp, skull and cerebral spinal fluid, the EEG

signals are a low-pass filtered version of the summed activity from large sections of

pyramidal cells in the cortex [van den Broek et al., 1998].

Despite the limits in frequency and spatial resolution of EEG, complex BCI control

has been achieved through the use of intelligent task design, sophisticated signal

processing techniques, thorough training paradigms. There are recent examples of

practical control of BCI in 3D space through the intelligent use of two degrees-of-

freedom (DoF), such as a virtual car [Zhao et al., 2009], and a virtual helicopter [Royer

et al., 2010], in virtual reality environments. At the most advanced, EEG BCI has

been shown to control a computer cursor in three dimensions through having patients

train initially in one dimension, and scale up over time to the full three dimensions

of independent control [McFarland et al., 2010].

Nevertheless, the following invasive techniques provide far greater spatial and tempo-

ral resolution, allowing for much more sophisticated control in practical BCI devices,

due to their closer proximity to the source signals being acquired.

1.2.2.3 Electrocorticography (ECoG)

ECoG, also known as intracranial-EEG, involves the implantation of a grid of elec-

trodes directly on the exposed surface of the brain. Because of this, it is an invasive

procedure, and so limits the set of subjects which can perform experiments. The

closer contact to the source of the voltage signals generated by the brain, however, al-
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lows ECoG to record much signals with higher spatial resolution, due to the decreased

volume conduction effect [Buzsáki et al., 2012]. This also results in the presence of

high frequency features. The skull acts like a low-pass filter, blocking signals above

30Hz from being measured on the surface of the skull [Srinivasan et al., 1998]. Be-

cause the skull is no longer between the source of the signals (the brain) and the

recording sites (electrodes), ECoG no longer has this limitation.

ECoG signal analysis is generally performed on specific frequency bands, including:

mu ( 7-12 Hz), beta ( 12-30 Hz), or high gamma ( 70-120 Hz). It has been suggested

that high-gamma power modulations are the result of the interactions between neural

populations, such that high-gamma activity recorded at the ECoG scale may be

a representation of the underlying neuronal population dynamics [Crone and Hao,

2002, Crone et al., 2011]. Additionally, high-gamma power changes are detectable

in single trials, and have been used for online movement decoding in real-time tasks

[Schalk et al., 2008].

1.2.2.4 Microelectrode neural recordings

With Microelectrode recordings, arrays are implanted into the cortical surface, and

depth penetrating electrodes record the activity generated around individual neurons,

ideally around the pyramidal neurons in layer V of the cortex [Buzsáki et al., 2012].

The signals acquired off of the individual electrodes can be processed in order to

separate out distinct activity:

18



• The excitatory post-synaptic potentials of one to a few neurons can be measured

at the individual sites recording from extracellular voltages.

– The units can be high-pass filtered to separate out ’multi-unit activity’ and

can provide insight into very localized activity [Stark and Abeles, 2007].

– Single unit activity can be separated out by using methods such as tem-

plate matching [Kim and McNames, 2007], Principal Component Analy-

sis [Adamos et al., 2008,Jung et al., 2006], or a wavelet approach [Letelier

and Weber, 2000].

• The signals can be low-pass filtered to reveal the summed discharge of popula-

tions of neurons as they modulate the extracellular potential [Donoghue et al.,

1998,Scherberger et al., 2005].

1.2.2.4.1 Single Unit / Multiunit Activity

Cortical neural prostheses based on spike decoding have the potential to restore move-

ment to amputees and the paralyzed [Schwartz, 2004,Schwartz et al., 2006,Nicolelis

and Lebedev, 2009]. Recently, they been developed to successfully decode upper arm

movements of monkeys in both open-loop [Taylor et al., 2002] and with real-time

feedback [Velliste et al., 2008].

Traditionally, BCI researchers have recorded from single cortical sites and been lim-

ited to decoding from individual neurons that are found to be tuned to the movement

or otherwise task-related [Schwartz et al., 2001]. However, recent advances in neu-
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ral recording now allow for single session datasets with multiple signals obtained at

high sampling rates using microelectrode arrays. This increased data has led to the

decoding of more complex, multiple-DoF movements [Vargas-Irwin et al., 2010]. Neu-

ronal ensembles can be trained to encode unique movement parameters, suggesting

the dimensionality of the control achieved could be limited only by the number of

ensembles [Lebedev et al., 2005,Nicolelis and Lebedev, 2009].

Even in cases where multiple neurons are decoded, only individual contributions to the

decoding accuracy are considered and not how neurons function as a group. Neuronal

interactions are generally assumed to be stationary, and their groupings constant. In

order to extend the capabilities of BCIs, the behavior of neurons as dynamically

evolving communities must be considered. For example, although a particular group

of neurons may show the highest decoding accuracy during one component of a task,

there is no reason to expect the same group will decode a different component similarly

well. Furthermore, not all single units from multichannel recordings are task-related

and thus potentially contribute only noise to the decoding filter. Presumably, neurons

that are not relevant to the task would exhibit different firing rate profiles and could

thus be identified and pruned from the input space ahead of time.

1.2.2.4.2 Local Field Potentials (LFP)

Recent studies have shown tuning in Motor cortex (M1 area) of the LFP feature to

reach direction [Heldman et al., 2006], and with individual finger movements [Mol-

lazadeh et al., 2008]. This tuning was manifested as changes in signal amplitude
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with task parameter. This tuning was found to augment the information provided

by spike activity alone, even when recorded from the same electrodes, suggesting

LFP recordings could be utilized to enhance BCI control with out further implanta-

tion [Mollazadeh et al., 2008,Bansal et al., 2012].

LFP recordings are more robust than spike activity, since the they are not depen-

dent on the electrode being nearly in contact with the same neuron over multiple

sessions [Ceyssens et al., 2013]. This robustness suggests LFP could be used for BCI

control with chronically implanted microelectrode arrays, without requiring substan-

tial retraining or readjustment.

Despite these benefits, no group to date has reported utilizing LFP recordings for BCI

control [Moran, 2010]. This is partly due to LFPs not previously being thought of as

contributing unique information over spikes. Additionally, other less-invasive record-

ing methodologies have gained in popularity due to the advancement of processing

techniques in the field.

1.2.3 Continuous signal decoding techniques

1.2.3.1 Frequency features

Analysis of ECoG signals often focuses on activity in specific frequency bands, for

example: mu (7-12 Hz), beta (12-30 Hz), or high gamma (70-120 Hz). High gamma

power modulation has been shown to reflect firing rate changes underlying neuronal
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populations and has been demonstrated across many functional domains to be a

robust index of cortical activation [Crone et al., 2011]. Additionally, changes in

high gamma power are detectable in single trials [Flinker et al., 2010a], and are

commonly used as inputs to decoding models for brain-machine interfaces (BCIs)

[Schalk et al., 2008]. High gamma power exhibits robust task-related changes in

effective connectivity during language and motor tasks [Sinai et al., 2005,Towle et al.,

2008,Korzeniewska et al., 2011,Marsden et al., 2000] and coupling to theta band (4-8

Hz) oscillations during a variety of tasks [Canolty et al., 2006].

1.2.4 Connectivity methods

Connectivity methods are a way of modeling activity at one site as it is influenced

by, or influences, the activity at other sites which are simultaneously being recorded.

While pairwise similarity measures such as correlation [Melssen and Epping, 1987],

and cross-power [Arslan and Sakarya, 2000], can be considered network models for

neural signals, in this thesis I focus on Granger Causal methods. Granger causality

is a definition of connectivity that is used to suggest the influence one node exerts on

another in a network, in a Bayesian sense [Granger, 1969a,Granger, 1988,Granger,

1969b,Brovelli et al., 2004]. Alternatively, a measure of Granger causality indicates

how much one signal can influence the activity of another. In this sense, if the measure

is positive, the first signal can be said to be Granger causal of the second one.

The planning and execution of complex movements involves the precise coordination
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of multiple cortical regions [Tanji, 2001]. An understanding of the functional rela-

tionships between brain areas and their role in motor tasks may be obtained from

models of connectivity between distinct regions [Rubinov and Sporns, 2010]. If such

information was available for clinical decision-making, it might be used to assess or

quantify the importance of a region to normal function prior to epileptic resection

surgery. Likewise, connectivity methods and network measures may be used to char-

acterize seizure activity generated by epileptogenic cortical networks [Franaszczuk

et al., 1994,Baccalá et al., 2004,Ortega et al., 2008,Wilke et al., 2011].

Investigation of the relative timing of high gamma signals across multiple sites has

revealed robust task-related changes in functional connectivity between distinct cor-

tical sites (in a language task, examined in isolation [Korzeniewska et al., 2011], and

in a range of tasks, shown to be coupled to theta band (4-8 Hz) oscillations [Canolty

et al., 2006]). Investigation of the relative timing of high gamma signals across multi-

ple sites has revealed robust task-related changes in functional connectivity between

distinct cortical sites [Korzeniewska et al., 2011].

Connectivity models based on Granger causality [Granger, 1969a, Geweke, 1982]

have been applied to electrocorticographic (ECoG) data to model the dynamics of

functional interactions during different cognitive and motor tasks [Baccala et al.,

1998,Wilke et al., 2009]. The direct transfer function (DTF) [Kaminski and Bli-

nowska, 1991], is one extension of Granger causality, in which a signal of interest

is represented with a multivariate autoregressive (MVAR) model estimated from

the history of each neural signal. This approach has also been implemented non-
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parametrically using Fourier and wavelet transforms [Dhamala et al., 2008].

While the aforementioned Granger causality models are informative, they require

data from multiple trials and are therefore incompatible with real-time measurement

and single-trial analysis. A recently developed technique for computing dynamic con-

nectivity in single trials, called time-varying dynamic Bayesian network (TV-DBN)

modeling performs computationally efficient estimation of first-order MVAR model

parameters, which can be used as an estimate of inter-electrode connectivity [Song

et al., 2009,Benz et al., 2012b].

The true utility of connectivity models lies in their ability to map the recruitment of

cortical populations and their functional interactions during specific tasks. A growing

body of literature indicates that cortical functions are not carried out by single areas,

but are instead accomplished by cortical networks involving many regions [Knight

et al., 2007]. Decoding movements using connectivity information has been shown in

ECoG and MEG recordings to outperform changes in spectral power at individual

nodes [Benz et al., 2012b, Sugata et al., 2014]. Identifying salient connections from

a connectivity map, however, requires either post-hoc manual selection by a trained

observer or pre-selection of regions of interest. Additionally, due to the exponential

increase in dimensionality from nodes to connections (n → n2), connectivity models

should only be trained on a limited set of electrodes to prevent over-fitting. What fol-

lows is a short description of the connectivity models underlying much of the analysis

in this thesis.
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1.2.4.1 Event Related Causality (ERC)

ERC is a method of estimating the time-varying connectivity in a multichannel net-

work. It has been described in full detail in [Korzeniewska et al., 2008]. The subset

of electrodes chosen for network analysis are fitted with a multivariate autoregressive

(MVAR) model of the form:

x(t) = −

p
∑

j=1

Aj(t− j) + e(t) (1.1)

where x(t) is the time series of data, Aj is the matrix of MVAR coefficients, p is the

model order, and e(t) is the residual. The frequency domain representation of this

equation is:

X(f) = H(f)E(f) (1.2)

where f is the frequency and H(f), the transfer function, is given by:

(

p
∑

j=0

Aje
−i2πfδt

)−1

(1.3)

The elements of the transfer function are used to find the short time direct directed

transfer function (SdDTF), which gives directed flows in short windows between sig-

nals:

ζkl =
|hkl(f)||χkl(f)|

√

∑

f

∑

kl

|hkl(f)|2|χkl(f)|2
(1.4)

Here χ is the partial coherence, which gives direct flows between signals.

ERC is then calculated by comparing each element of the SdDTF time-frequency

matrix to the baseline period to find only statistically significant event-related flows.
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1.2.4.2 Time-Varying Dynamic Bayesian Networks (TV-DBN)

TV-DBN is a method of estimating, within single trials, the time-varying connectivity

within a multichannel network. Here we use this method to investigate frontal-parietal

networks that have previously been shown to vary with hand and finger movements

[Benz et al., 2012b,Benz et al., 2012a]. Within a sliding window ending at sample t,

weights A(t) from the following equation were fit using linear regression with ℓ2-norm

regularization:

x(t) = A(t)x(t− 1) + ǫ(t), ǫ ∼ N (0, σ2I). (1.5)

where x(t) contains the vector of high gamma power at sample t of each ECoG channel

after convolution with a radial basis function kernel.

The solution was found through the approximation:

Â(t) = argmin
A(t)∈R1xn

1

T

T
∑

t=1

w(t){x(t)− A(t)x(t− 1)}+ λ ‖A(t)‖2 , (1.6)

where λ = 100, as suggested by [Benz et al., 2012b] to prioritize small coefficient

values relative to modeling accuracy.

A Gaussian Radial Basis Function (RBF) kernel, notated w(t), was used to incorpo-

rate additional neural data from previous samples in estimating A(t), reducing noise

and providing more stable estimates [Song et al., 2009].

The weight of an observation at time t∗ is given by wt(t∗), defined as:

wt(t∗) =
Kh(t

∗ − t)
T
∑

t∗=1

Kh(t∗ − t)

, (1.7)
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where Kh is an RBF kernel of width h:

Kh(t) = exp(
−t2

h
). (1.8)

Unlike ERC, TV-DBN does not use partial coherence to limit the resulting connec-

tivity only to direct connections.

1.3 Summary and Dissertation Organiza-

tion

Brain-Machine Interface (BCI) controlled dexterous motor prostheses are being de-

veloped to restore multi-joint movement to amputees, as well as quadriplegics. Earlier

work has shown that multiple degrees-of-freedom movements are decodable in human

and animal models, allowing for control of computer cursors, as well as robotic arms.

In order to improve both the degrees-of-freedom of control, as well as the intuitive

nature of neuroprosthetic control, an increase in the information extracted from neural

signals for use in control is necessary. Additionally, by utilizing those neural signals to

gain a more complete understanding of the function of cortical areas, specific control

methods which match the task-specific role of those areas may be employed. Network

measures use inferred relationships between the brain signals to determine properties

of the underlying connections between the sources of those signals. Current state-of-

the-art BCI control methods do not use network measures to model neural data. This

has limited the DoF of control obtained, as well as decoding accuracy achievable. The
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goal of this research is to develop a systematic way to apply network methods to BCI

data analysis, control methods, and implantation guidance.

An introduction to the network methods used in this thesis follows (Chapter 2). For

the first part of this work, I analyzed the performance of patients suffering from Spino-

Cerebellar Ataxia and control patients during performance of a non-invasive EEG BCI

control task (Chapter 3). To extract further information from electrophysiological

recordings, the methodology was transitioned to invasive recordings for the remainder

of the work. To find task-specific network engagement, I analyzed network measures

based on connectivity analysis during the performance of a center-out reach-to-grasp

task performed during ECoG recordings (Chapters 4 and 5). To determine more

holistically how the task-relevant networks evolve over time, clustering analysis was

performed in an unsupervised fashion using stability k-means clustering (Chapter

6). To explore the fine-grained details of single neuron network formation during a

movement task, eigenspectral clustering was performed on spike data acquired from

multi-electrode arrays in monkey (Chapter 7). Chapter 8 summarizes the work, and

discusses the limitations and future directions.
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Chapter 2

Network Measures

Network measures were originally developed for the analysis of social networks in the

field of social sciences [Wasserman and Faust, 1994,Hall and Wellman, 1985]. The

methods have been generalized to apply to many fields outside of the social sciences,

however, such as physics, and biology. As suggested by the underlying equations, the

analytic methods are generally applicable to any dataset in which the connectivity

structure of the underlying network can be determined.

Efforts has been made to quantify the flow of information in the brain through the

application of network measures [Rubinov and Sporns, 2010]. These methods are

applied to connectivity measures taken on multi-channel neural recordings, or images,

in order to quantify the strength of connections between distinct brain regions, and

make inference based on them [Bullmore and Sporns, 2012]. The impetus behind

much of this research is an interest in quantifying normal functioning behavior in

order to detect dysfunction in patient populations with neurodegenerative diseases,
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quantified through differences in these network measures [Van Den Heuvel and Pol,

2010].

2.1 Centrality Measures

A centrality measure is a quantification of the importance a node contributes to a

network. In the case of neural imaging studies, the nodes are voxels or regions of

voxels with anatomical continuity, and the edges are functional connections [Smith

et al., 2011]. With neural microelectrode or surface recordings, however, the nodes

are the individual electrode voltages or frequency feature power.

For an in-depth introduction to centrality measures, see chapter 7 of [Newman, 2010].

For the remainder of the chapter, it will be assumed that we have a network consisting

of the connections between n nodes, or recording sites. Further, it is assumed that

an adjacency matrix, A ∈ N
nxn, has already been found for this network. The i, j-th

element of A represents the connection strength from node i in the network to node

j. Thus, the centrality measure of A determines how important the contribution of

each node, or row in the matrix A is to the network.

2.1.1 Degree

Degree is the most basic measure of centrality [Freeman, 1979]. It is simply the row

sum of the adjacency matrix. Intuitively, each degree centrality value represents the
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total strength of all of the connections which the corresponding node forms.

2.1.2 Betweenness

Betweenness centrality, while also being a fairly basic measure, is based on addressing

the question of which nodes are important to a network with sparse connectivity, i.e.,

many of the entries in the adjacency matrix are valued at 0 [Anthonisse, 1971].

To quantify this importance, betweenness centrality represents which nodes in the

network have the most shortest-path connections passing through them. In the case

where there are multiple shortest paths for two nodes, the weight of the intermediary

node is diminished proportionately by the number of possible shortest paths (i.e.,

geodesic paths).

The method is fairly straightforward, as implemented by Freemen [Freeman, 1977].

First, the betweenness measure for the individual node k is determined using the

fraction of geodesic paths from node i to node j that pass through k, as in:

bij(pk) =
gij(pk)

gij
, (2.1)

where bij is the betweenness measure of k on the paths between nodes i and j.

Finally, this measure for each node k is summed up over all possible source and

target nodes in the network to form the centrality measure cB through the following

equation:
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cB(pk) =
n−1
∑

i=1

n
∑

j=i+1

bij(pk). (2.2)

The output from this equation, cB, is a n-length vector consisting of the betweenness

centrality values for each node.

2.1.3 Closeness

A similar measure to betweenness centrality, which also involves calculating the

geodesic paths, is closeness centrality [Stephenson and Zelen, 1989]. Closeness cen-

trality is a measure of the mean distance from each vertex to the other nodes in the

network.

The mean distance for each node is determined by:

l(i) =
1

n− 1

∑

j( 6=i)

dij, (2.3)

where dij is the adjacency of nodes i and j.

While this measure is actually a distance measure, the closeness centrality value is

easily computed by inverting the equation:

Ci =
1

l(i)
=

n
∑

j dij
. (2.4)
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2.1.4 PageRank

An eigenvector-based centrality measure, PageRank is a quantification of how many

connections each node forms, whether directly or indirectly, i.e., of arbitrary path-

length. Originally PageRank centrality was developed for the Google web search

engine, but it has been directly applied to various networks. Common examples in-

clude social networks, such as Twitter [Ghosh et al., 2012], and Slashdot [Kunegis

et al., 2009]. The method has similarly been applied to ranking academic journal

citation importance [Chen et al., 2007], to semantic processing for word sense disam-

biguation [Mihalcea et al., 2004], and to image processing for ranking images [Jing

and Baluja, 2008].

The rows of the adjacency matrix are divided by their individual sums to create

a Stochastic matrix, labeled S. The matrix must be stochastic to ensure that a

stationary vector exists for any S.

The Google matrix G, which describes the directional interactions of the network

[Ermann et al., 2013], is formed. The Google matrix consists of the linear combination

of S with a matrix consisting of 1’s for all elements (1) [Page et al., 1999, Austin,

2006],

G = αS + (1− α)
1

n
1, (2.5)

where n is the number of rows in S, and α is a weighting parameter allowing for an

emphasis on either direct connections, or the equal probability of randomly jumping
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to another node. Commonly, α = 0.85 is used as an adequate trade-off between the

probability of following the adjacency matrix, and the probability of transferring to

a random node. Different fields may have their own standard value.

If the adjacency matrix has non-negative elements, the Google matrix will have all

positive elements. This implies that G is a primitive matrix, meaning that it is pos-

sible to find an indirect connection from one node to another of any arbitrary length.

This is necessary for the power method to work, which determines the stationary

vector with a low number of matrix multiplications (extended in [Haveliwala et al.,

2003,Kamvar et al., 2003]). For sufficiently large networks, the power method may

be advantageous for time-constrained calculations.

Eigenvector decomposition is performed on the Google matrix, G, and the eigenvector

corresponding to the maximal eigenvalue of G is denoted C1. Thus, the following

equation is solved for the time-varying Google matrix G:

GC1 = λ1C1, (2.6)

where λ indicates the eigenvalues in descending order, and C is the corresponding

eigenvector. The centrality vector is notated C1. The entries in C1 indicated the

total information flow to each node in the network.
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2.1.5 Eigenvector

The subsequent methods, Eigenvector and Katz centrality predate PageRank, and

are actually specialized cases of PageRank. Eigenvector centrality replaces Equation

2.5’s stochastic matrix S with the adjacency matrix directly, and sets the α-value to

1. This has the effect of eliminating the impact of random jumps.

2.1.6 Katz

Similar to Eigenvector centrality, Katz centrality replaces Equation 2.5’s α-value

with the number 1. It still uses the stochastic matrix S in the calculation, however.

2.1.7 Centrality Comparison

Table 2.1 demonstrates the differences between the three eigenspectral centrality

measures, and their relationship to the most basic degree centrality. The matrix D is

diagonal, and is made up of the degree of each node i along the diagonal: Di,i = ki.

2.2 Clustering

Clustering is the unsupervised segmentation of data sets into distinct groups [Jain

et al., 1999]. This is useful for determining the underlying activation patterns for

distinct neural states during the complex tasks analyzed in this thesis.
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Table 2.1: Centrality Methods Comparison (Modified from [Newman, 2010]).

0 <= α <= 1 α = 1

Stochastic matrix
x = D(D − αA)−11

PageRank

x = AD−1x

Degree

Adjacency matrix
x = (I − αA)−11

Katz

x = κ−1
1 Ax

Eigenvector

Throughout this thesis, two broad categories of clustering methods are performed.

The first, centroid based clustering, is done using the features directly. Most com-

monly, High-gamma power is used as the input to the clustering techniques. The

dimensionality of the input space is (n x t): the number of electrodes by the time-

window segmentation.

The second technique, connectivity based clustering, involves finding the connectiv-

ity between each pair of electrodes, using the techniques listed in chapter 1. The

adjacency matrices provided by these techniques are then clustered on directly.

2.2.1 Centroid based clustering

Due to its clustering on the features directly, centroid based clustering results in easier

to interpret segmentation of neural data than connectivity based clustering. Since

they don’t require the computation of a adjacency matrix, these methods are less

configurable, but still have many aspects that can be modified depending on the form
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Figure 2.1: Demonstration of the k-means algorithm. (➞Wikimedia Foundation,

2016)

of the data or the intended analysis.

2.2.1.1 K-means

K-means is an unsupervised clustering technique with a hyper parameter K, repre-

senting the number of clusters. for a specific K, K-means finds the centroid of each

cluster which minimizes the total distance from all features to the nearest cluster.

This is commonly achieved using EM (expectation maximization), since the exact

solution is NP-hard, through the steps illustrated in Figure 2.1.

Since K-means looks to minimize the distance from the centroid to each group member

in the high-dimensional space of the underlying data, different distance functions

can be used, and may impact the results. Commonly, square Euclidean distance is

used, but alternative distance metrics include taxicab (Manhattan) distance, cosine

distance, Minkowski distance and cluster symmetry (an extension of point symmetry)
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[Aggarwal et al., 2001, Su and Chou, 2001, Modha and Spangler, 2003, Patel and

Mehta, 2012].

Similarly, the location of the centroids is not necessarily the mean of the coordinates

of its members. A popular alternative, K-medoids, is based on the median of each

cluster’s members location in high-dimensional space [Singh and Chauhan, 2011].

2.2.2 Connectivity based clustering

Clustering on connectivity structure requires the prior formation of an adjacency

matrix using the selected connectivity measure. The adjacency matrix is then used

directly with the clustering methods. This has the implication that if the connectivity

measure does not contain information about the features of interest for the analysis,

it is not possible to make conclusions based on those features using connectivity

clustering. While the clusters may still provide interesting insight, they won’t contain

structure relating to the property of interest.

2.2.2.1 Spectral clustering

While there are multiple approach to spectral clustering [Ng et al., 2002,Zelnik-Manor

and Perona, 2004,Von Luxburg, 2007], for the purposes of this thesis an adaptation

of [Newman, 2006] is used, with a modification to optimize the number of clusters

found [Humphries, 2011].

For this section, the similarity matrix (denoted by C; for consistency with [Newman,
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2006]) is non-directional. The diagonal of C is set to zero, so that self-similarity will

not influence grouping. The goal of the approach is to maximize the modularity Q

over all possible divisions of the network,

Q = trace(ST (C − P )S), (2.7)

where C is the similarity matrix from before; P is the null-network model that cap-

tures the expected number of links within each community, and S is a matrix denoting

which group a node belongs to. In other words, P represents the pair-wise probability

of a connection between two nodes. S represents the grouping matrix, where each

row contains a 1 for the column corresponding to that node’s group.

Rather than fixing the number of groups a priori, both the group count and group

memberships of all nodes is determined iteratively. To determine an upper bound

on the number of possible groups, singular value decomposition is performed on the

modularity matrix B = C − P , and all N eigenvectors with positive eigenvalues

is retained. K-means clustering for K = 2...N + 1 possible groupings is then be

performed, and QK for each case is calculated.

The clustering that provides the largest value for QK indicates the most natural

grouping structure for the given adjacency matrix. While for multiple numbers of

clusters there may be interpretable grouping structure, the maxKQ is the one best

supported by the method.
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Chapter 3

Cerebellar ataxia patients are able

to use motor imagery to modulate

mu-band power in a pilot study of

EEG-based brain-computer

interface control

3.1 Abstract

Cerebellar ataxia is a steadily progressive neurodegenerative disease associated with

loss of motor control, leaving patients unable to walk, talk, or perform activities
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of daily living. Direct motor instruction in cerebellar ataxia patients has limited

effectiveness, presumably because an inappropriate closed-loop cerebellar response to

the inevitable observed error confounds motor learning mechanisms. However, open-

loop reinforcement of motor control programs may hold promise as a technique to

improve motor performance. Recent studies have validated the age-old technique of

employing motor imagery training (mental rehearsal of a movement) to boost motor

performance in athletes, much as a champion downhill skier visualizes the course

prior to embarking on a run. Could the use of EEG-based BCI provide advanced

biofeedback to improve motor imagery and provide a backdoor to improving motor

performance in ataxia patients? In order to determine the feasibility of using EEG-

based BCI control in this population, we compare the ability to modulate mu-band

power (8-12 Hz) by performing a cued motor imagery task in an ataxia patient and

healthy control.

3.2 Introduction

Brain-computer interfaces (BCIs) use electrophysiological measures of brain function

to enable individuals to communicate directly with their external world, bypassing

normal neuromuscular pathways. Recently, noninvasive BCIs have used a variety

of electroencephalography (EEG) based features to communicate the intent of the

user, such as slow cortical potentials and event-related desynchronization via motor

imagery. This noninvasive EEG-BCI has been a highly active research topic in neuro-
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science, engineering, and signal processing. One of the reasons for this development

is the remarkable advances of BCI systems with respect to usability, information

transfer, and robustness for which modern machine learning and signal processing

techniques have been instrumental [Guger et al., 2003].

One of the most important characteristics of the EEG recorded over the sensorimo-

tor cortex is linked to possible modulation of EEG rhythms through simple motor

imagery, e.g., imagining a flexion of the right or left elbow. A widely used rhythm

for control is the mu rhythm (8-12 Hz). The reason for utilizing this is that it shows

an increase in power during relaxation (event-related synchronization), and similarly,

a decrease during real and imaginary motor movement performance (event-related

desynchronization) [McFarland et al., 1997]. This characteristic can be utilized to

control a cursor in at least one dimension. The two electrodes shown to have the

largest weight of mu rhythm are located at C3 and C4 or adjacent positions, but

recruitment of more electrodes could be necessary for control of more sophisticated

movements.

EEG mapping may be distorted in the setting of neurologic disease, which may affect

the ability of ataxia patients to use EEG-based BCI. EEG is a rough measure of

neural activity, based on the voltages generated by the firing of large populations

of neurons, as recorded over time from the scalp at discrete sites. Although the

literature states that the EEG pattern is normal in cerebellar degeneration, this

presumably refers to the lack of heightened epileptogenic potential, which does not

necessarily indicate that the EEG is comparable to that of unaffected individuals.
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Diaschisis (the loss of function in a distant portion of the brain that is connected to

an area of injury) is a well-established phenomenon, with transneuronal degeneration

in many neurodegenerative processes. We hypothesize that cortical regions of the

corticocerebellar circuit may show functional abnormalities when they are connected

to areas of primary cerebellar degeneration. The strong interconnections between

the cerebellum and the cerebral cortex most likely contribute to the distortion in the

processing of sensory feedback.

Electrophysiological studies in ataxia are rarely performed as early EEG studies were

reportedly normal [Brown, 1959, Liversedge and Emery, 1961]. There are, however,

some disease-specific differences in visual evoked potentials, [Schöls et al., 2008] au-

ditory evoked potentials, [Arai et al., 2003] and auditory brain stem response [Abele

et al., 1997, Schöls et al., 1997] suggestive of white matter disease located outside of

the cerebellum and its direct connections. Seizures are not a common clinical manifes-

tation, except in certain rare subtypes, such as acetazolamide-responsive paroxysmal

ataxia [Zasorin et al., 1983, Van Bogaert and Szliwowski, 1996] or spinocerebellar

ataxia type 10 [Rasmussen et al., 2001]; EEG findings are consistent with the epilep-

tic phenotype.

Electrophysiological biomarker studies in other neurodegenerative diseases demon-

strate that EEG measures are useful for detecting clinically relevant, disease-specific

differences. Notably, power spectral density analysis of EEG in schizophrenia var-

iously shows frequency-specific depression [Kwon et al., 1999] or failure of suppres-

sion [Clementz et al., 1997] of acoustic responses. The positive peak P300 elicited
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in response to acoustical stimuli with the so-called oddball paradigm has great po-

tential to be used as a diagnostic tool in a wide range of clinical conditions, such

as schizophrenia, autism, severe depression, dementia, and Alzheimers disease [Daw-

son et al., 1988, Blackwood, 2000, Frodl et al., 2002] Along the spectrum of normal

and abnormal function, EEG measures can be used to distinguish children with low

arithmetic performance [Grunau and Low, 1987].

There is some evidence that motor imagery is affected in cerebellar ataxia. In a

study of people with unilateral cerebellar stroke, patients attempting motor imagery

showed decreased motor evoked potential facilitation in the associated motor cortex

[Battaglia et al., 2006]. In a second study, patients that had apparently recovered from

a unilateral cerebellar stroke showed a marked slowing of motor performance in both

hands (ipsi- and contralateral to lesion). This effect was accompanied by a similar

slowing of motor imagery, suggesting that the cerebellum, traditionally implicated in

the control of motor execution, is also involved in nonexecutive motor functions such

as the planning and internal simulation of movements [González et al., 2005].

Thus, it remains to be proved that cerebellar ataxia patients are capable of using

cued motor imagery to effect EEG changes that can be interpreted by a standard

BCI system.
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3.3 Methods

3.3.1 Study Subjects

One patient with cerebellar ataxia and one control subject provided informed con-

sent according to a protocol approved by the Johns Hopkins University Institutional

Review Board. Both subjects were self-reported right-handed.

3.3.2 Test Paradigm

During each trial, the subject was cued to either relax, or perform a motor imagery

task (without actually moving). A three-state (move up, move down, remain still)

EEG-based BCI was used to control the position of a cursor in one dimension on a

computer screen. EEG signals were acquired at 250 Hz. Every 500 ms, the common

average referenced signals in a 500 ms window from two electrodes (C3 and C4) were

modeled as an autoregressive (AR) process [Chatterjee et al., 2007],

yE[n] =
K
∑

k=1

akyE[n− k] + ǫ[n], (3.1)

where E was the electrode of interest, ak were the autoregressive coefficients, K

was the model order, and ǫ[n] was an independent identically distributed stochastic

sequence with zero mean and variance 2 [Bos et al., 2002]. K was choosen to be 15.

Burg’s method was used to estimate the time-varying AR coefficients.
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The power spectral density (in dB) of the AR processes for both electrodes was

computed as,

P (ω) = dB

(

σ2

|1− (a1e−iω + ...+ aKe−iKω)|2

)

, (3.2)

and the mu-band power was determined at discrete times tk as the mean of the P (µ),

where µ is the mu-band frequency range (8-12 Hz).

The sum of the mu band power of the C3 and C4 electrodes were used to train a

two stage hierarchical linear classifier. A gating classifier G was designed to identify

significant modulations of power due to intention,

G(tK) =



















1, if |w1
GPC3(tk) + w2

GPC4(tk) + BG| > TG

0, otherwise

(3.3)

where w1
G, w

2
G, BG, and TG were the weights, bias, and threshold respectively, as

determined online for both subjects. A second movement classifier was designed to

distinguish between the relaxation and the motor imagery task,

M(tK) =



















+1, if |w1
MPC3(tk) + w2

MPC4(tk) + BM | > TM

−1, otherwise

(3.4)

where w1
M , w2

M , BM , and TM were the weights, bias, and threshold respectively, as

determined online for both subjects. The final output F (tk) was the product of the

two classifiers,
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F (tk) = G(tk)×M(tk), (3.5)

where +1 corresponds to relaxation, -1 to motor imagery, and 0 to no task. If the

cursor reached a target 7 steps away from the center where trials start, within 15

seconds, the trial was considered a success. To achieve a trial success case, the sum

of F (tk) over all tk within that trial must equal +7 in the relaxation trials, and -7

in the motor imagery trials before 15 seconds elapse. The control subject underwent

6 sets, and the ataxia subject underwent 10 sets, of 16 trials each (8 relaxation and

8 movement imagery trials), with a pseudorandomized order of presentation within

each set.

3.3.3 Data Acquisition

Signals were acquired using a QuickCap 64-channel EEG cap (modified 10-20 system,

referenced between Cz and CPz, and grounded anteriorly to Fz; Compumedics, El

Paso, TX). The amplifier and signal processing modules were connected through

client-server architecture, with a Neuroscan SynAmps2 64-channel amplifier system

from Compumedics (El Paso, TX) acting as the server, and the signal processing

module running on a separate client computer. Data were sampled at 250 Hz, with

a band-pass filter applied between 0.1 and 30 Hz, and transmitted over a TCP/IP

protocol to the client PC for storage and real-time signal processing using a custom

BCI platform.
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3.3.4 Data Analysis

EEG signals were spatially filtered using common average referencing. The C3 and

C4 electrodes, which generally overlap with the hand-area of the primary motor cor-

tex, were then used in a 15th order autoregressive model to determine the power

spectrum. Frequency-specific modulation was observed for C3 and C4. Topographic

power spectral maps were generated for the mu frequency band.

3.4 Results

Our primary endpoint was to evaluate the possibility that ataxia patients could

achieve control of a BCI using cued motor imagery. Indeed, both subjects were

able to achieve mean trial success of greater than 13.21% (chance performance rate)

on their first session. (Table 1). Chance performance was calculated as the proba-

bility of reaching the target based on an equal probability of performing any of the

three possible movements with each step, up to the maximum allowable 30 steps.

The average successful chance trial duration was determined as the first moment of

chance successes rates for the allowable step counts.

Figure 1 suggests that both the ataxia patient and control subject show an increased

difference in power in the mu range (8-12 Hz), between relaxation and motor imagery.

This difference is greater in the control subject as compared to the ataxia patient.

Although trials continued on beyond 4 seconds, the power difference between the
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Subject Condition ICARS score Trial success rate Average successful

trial duration

Control 91.7% 7.8s

SCA6 45.5 63.1% 6.6s

Simulated Chance 13.21% 14.7s

Table 3.1: Trial performance reveals ataxia patients have the ability to perform the

BCI task with significantly greater efficacy than chance. International Cooperative

Ataxia Rating Scale (ICARS) score is used to determine severity of an ataxia diagno-

sis, out of 100, with a higher number indicating an increased severity [Trouillas et al.,

1997].

two tasks is not as obvious, due to the inability of subjects to maintain the required

imagination throughout the task duration. The Ataxia subject had higher power

activity in low frequency bands, which is most likely due to movement artifacts.

Scalp maps representing mu band power during the task are shown (Figure 2), sep-

arated by subject. These demonstrate that the control subject increased mu power

specifically over the C3 and C4 electrodes, with a bias toward the left side, during

the relaxation condition. The ataxia patient appeared to show a similarly originating

increase in mu power during relaxation, but at a lower amplitude, and on the right

side. In the ataxia patient, the more modest increase in power is a less localized

phenomenon; it appears to extend further posteriorly.
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Figure 3.1: The event related spectral power (ERSP) differences between the aver-

ages of the two task conditions are displayed for the control (left) and ataxia (right)

subjects from the C3 electrode. Darker shades of red represent an increase in power

during the relaxation task over the motor imagery task at the same time point and

frequency band within the trial. The blue trace on the left indicates average power

of each frequency. The bottom blue trace indicate minimum power over the range

of frequencies at each time point, while the bottom green trace indicates maximum

power at each time point.
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Figure 3.2: Topographic maps of mu power distribution in control (left) and ataxia

(right) subjects during the two different tasks (relaxation and motor imagery). Power

was determined as the average over all trials during 2-5 seconds after task cue. Both

subjects show modulation with task condition by the change in color for a given

electrode between the two task conditions. Selectively unilateral changes, in C3 for

the control, and C4 for the ataxia patient, are made less obvious by the presence

of significant power in frontal electrodes in both task conditions, possibly due to

extraoculogram artifact. Mu power was determined as the power at 10 Hz using

Welch’s method to estimate the power spectral density.
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3.5 Discussion

Our results demonstrate that despite the theoretical possibility that patients with

severe ataxia may have impaired motor imagery and abnormal cortical rhythms, an

ataxia patient is capable of generating sufficient changes in cortical rhythms to achieve

voluntary control of an EEG-based BCI using cued motor imagery. Success and

learning rates do not appear to be directly related to the clinical diagnosis of the

subject.

Although the control has a higher success rate than the ataxia patient, this is most

likely due to the control showing an uncommon natural ability to modulate mu

rhythm, when compared to other control subjects’ performance (unpublished results).

Although these success rates may seem low, it may partly be due to the subjects hav-

ing only completed one session of BCI control.

There are, nonetheless, observable differences between ataxia subjects and control

subjects. The ataxia patient appeared to have a smaller increase in mu band power

during relaxation, compared to the control. This is consistent with the possibility

that ataxia patients are unable to properly modulate the synchronous firing of large

groups of neurons in the motor cortex due to a deterioration of feedback pathways

from the cerebellum. While overall activity in this area may be increased, this lack

of increased synchronization results in attenuation of the peak in the mu band.

More global changes in power in the ataxia patient were also observed. This suggests

that ataxia subjects may use a strategy of increasing global activity in order to com-
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pensate for the inability to generate synchrony with spatial or frequency specificity.

It may be possible to take advantage of these differences to create a BCI that ataxia

patients would be able to control more easily, perhaps by determining the average

power over several centrally focused electrodes, instead of just C3 and C4. By creating

a BCI specific to ataxia patients, we may be able to increase their ability to naturally

control an end-effector, and with continuous training, improve their motor control

skills. For severe ataxia patients, this could mean a significant improvement in quality

of life.

3.6 Conclusions

Our current setup allows ataxia patients to control a BCI with similar efficacy to

control participants. The neural method of control, however, may be different between

the populations. Thus, in order to improve efficacy and usability of a BCI system, it

may be necessary to tailor the decoding algorithm to the more diffuse spatial response

and the smaller amplitude response found in ataxia patients. The EEG differences we

have uncovered could be used as a diagnostic tool, and may find a role in rehabilitation

therapy.
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Chapter 4

Eigenvector centrality reveals the

time course of task-specific

electrode connectivity in human

ECoG

4.1 Abstract

Connectivity measures provide a quantification of information flow across electrodes

in human subject electrocorticography (ECoG). They do not, however, lend them-

selves to direct interpretation due to the combinatorial size increase of the feature

space. We utilize time-varying dynamic Bayesian networks (TV-DBN) as a model
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of the individual ECoG electrode activity based on the activation of the electrode

array. Using the high gamma power TV-DBN connectivity matrices, we determine

if eigenvector centrality can objectively highlight the important interactions between

electrodes. The statistically thresholded centrality measure reveals task-related dif-

ferences in the significant electrode subsets during distinct task phases (p<0.05 ; 13

significant electrodes overall: 2 exclusive to the cue processing phase, 3 exclusive to

the motor output phase). These results suggest that TV-DBN and centrality analysis

can be used in an online brain-mapping system to show regions of the brain relevant

to real-time task performance.

4.2 Introduction

The organization and execution of complex movements involves the precise coordi-

nation of multiple cortical regions [Tanji, 2001]. An understanding of the functional

relationships between brain areas, and their role in the motor task, may be obtained

from models of the connectivity as inferred from temporal dependence between dis-

tinct regions [Rubinov and Sporns, 2010].

While providing an interpretable measure of cortical interactions, the resultant ex-

ponential increase in dimensionality with connectivity measures causes these models

to be difficult to manually parse, e.g., for clinical analysis. Fortunately, the network

involvement of each electrode can be described using network measures based on the

electrode connectivity. Network measures provide a summary of the activity between
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all of the electrodes forming a network in an abbreviated form.

To form the connectivity models, separation of the feature of interest from the raw

data is required. ECoG signal analysis is generally performed on specific frequency

bands, including: mu ( 7-12 Hz), beta ( 12-30 Hz), or high gamma ( 70-120 Hz).

It has been suggested that high-gamma power modulations are the result of the

interactions between neural populations, such that high-gamma activity recorded

at the ECoG scale may be a representation of the underlying neuronal population

dynamics [Crone et al., 2011]. Investigation of the relative timing of high gamma

signals across multiple sites has revealed robust task-related changes in functional

connectivity between distinct cortical sites [Korzeniewska et al., 2011]. These findings

suggest high gamma band modulation could be used as a feature in network model

analysis of ECoG.

Connectivity methods have been applied to ECoG connectivity to characterize seizure

activity, which is believed to originate within epileptogenic cortical networks [Baccalá

et al., 2004]. There are also examples of network measures being applied to neural

data. The betweenness centrality of the correlations [Ortega et al., 2008] and DTF

components [Wilke et al., 2011], in addition to the eigenvector centrality of the co-

herences [Burns et al., 2012] have been used to identify seizure networks. Eigenvector

centrality, which will be used in this paper, is a measure that quantifies the informa-

tion received by each node in a network through direct and indirect connections [Page

et al., 1999].

In this work, we determined the network properties of the time-varying dynamic
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Bayesian network (TV-DBN) connectivity of high gamma power between each elec-

trode pair [Song et al., 2009]. TV-DBN estimates how strongly each electrode’s

current activity is modulated by the activity of the other electrodes in the previ-

ous sample window. Centrality, a quantification of the information each electrodes

receives, is proposed to determine which neural populations receive substantial in-

formation during distinct phases of movement planning and execution. This method

will allow for a more compact subset of information flows between channels to be

displayed for interpretation, or to be used in further processing.

The TV-DBN and eigenvector centrality methods were applied to data obtained from

a patient suffering from intractable epilepsy while performing a reach and grasp task,

followed by object manipulation. To quantify the changes in network structure with

task performance, entropy of the centrality vector was measured over time, and com-

pared between task types. Additionally, the spatial distribution of the highly central

electrodes was examined over time. The temporal modulation of centrality within

functional networks has not previously been described during the performance of a

motor task. This method may eventually improve cortical resection planning and

brain-computer interface control.
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Figure 4.1: Macroelectrode and microelectrode ECoG array placement. Two micro-

electrode arrays were inserted within the macroelectrode grid. Additional recordings

were obtained from macroelectrode strips placed on superficial layers of cortex. Intra-

operative photo (left), 3D MRI reconstruction of electrode sites (right).

4.3 Methods

4.3.1 Task Participants

One 61 year old male subject was implanted with subdural ECoG macroelectrodes

and microelectrodes in his left hemisphere (Fig. 6.1) for seizure focus and eloquent

cortex mapping prior to epilepsy resection surgery. Electrode implantation location

was determined solely based on clinical need. Data from this study were recorded

from 94 ECoG macroelectrodes from two 4x8 grids and seven strips each consisting

of either four or six electrodes (0.23 cm diameter, 1 cm center-to-center). Data

were also recorded from 32 ECoG microelectrodes (75 micron diameter, 900 micron

center-to-center) from two 4x4 grids centered between four adjacent macroelectrodes.
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The subject gave informed consent to participate in this study, which was done in

accordance with a protocol approved by the Institutional Review Board of Johns

Hopkins University.

4.3.2 Experimental Design

The apparatus for cue presentation was placed on a table within reach of the subject,

who reclined on his hospital bed for the duration of the experiment. The subject

rested his right hand on an electronic home switch in his lap for monitoring movement

onset. The apparatus had four objects: a push button, a key, a doorknob, and a ball,

fixed to an octagonal board at 0, 90, 180, and 270 degrees 8 inches from the center

of the board. LEDs surrounding the specific objects were used to cue the subject to

reach and perform the following manipulations: 1) push the push button, 2) turn the

key, 3) turn the doorknob, 4) and pull on the ball. For this analysis, the push button

and key were grouped as dexterous manipulations while the doorknob and ball were

classified as gross manipulations.

The subject completed 76 experimental trials, 34 of which were successful gross move-

ments, and 37 of which involved successful dexterous movements. The remaining 4

trials were failures in which the subject could not complete the manipulation in under

4 seconds. The different manipulations were interleaved in pseudorandom order.
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4.3.3 Signal Acquisition and Preprocessing

ECoG data were recorded with a 128-channel Neuroport system (Blackrock Microsys-

tems; Salt Lake City, UT) at 1 kHz. Data were common average referenced, then

digitally bandpass filtered from 70-120 Hz. The TV-DBN connectivity was computed

in 200 ms sliding windows with a slide size of 8 ms, from 1 s before the cue onset to

4 s after the cue onset. This connectivity was computed for the 21 electrodes across

the microelectrode and macroelectrode arrays which showed task related high gamma

modulation.

4.3.3.1 Time-Varying Dynamic Bayesian Networks (TV-DBN)

TV-DBN is a method of estimating, within single trials, the time-varying connectivity

within a multichannel network. Here we use this method to investigate frontal-parietal

networks that have previously been shown to vary with hand and finger movements

[Benz et al., 2012b,Benz et al., 2012a]. Within a sliding window ending at sample t,

weights A(t) from the following equation were fit using linear regression with ℓ2-norm

regularization:

x(t) = A(t)x(t− 1) + ǫ(t), ǫ ∼ N (0, σ2I). (4.1)

where x(t) contains the vector of voltage values at sample t of each ECoG channel

after convolution with a radial basis function kernel.

The TV-DBN coefficients, A(t), were calculated for a subset of the electrodes that

were found to have task-related modulation in the high-gamma band during post-hoc
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analysis.

4.3.3.2 Centrality

An eigenvector-based centrality measure, that quantifies the total strength of connec-

tions in the entire network each site receives, was used to describe the modulation

of network activity during the movement planning and execution phases [Freeman,

1979,Page et al., 1999].

The Google matrix G(t) was formed as the linear combination of the row-sum nor-

malized TV-DBN connectivity matrices as they varied in time, (S(t)), with constant

value matrix 1, allowing all electrodes a small presumed influence on other electrodes

in the network [Page et al., 1999,Austin, 2006]:

G(t) = αS(t) + (1− α)
1

n
1 (4.2)

where n is the number of rows in S, and α = 0.85 was used as an adequate compromise

between the connectivity of the actual network, and the situation where all of the

nodes are connected with equal strength.

The eigenvector corresponding to the maximal eigenvalue of G was denoted C1(t).

The entries in C1(t) indicated the total information flow to each electrode in the

network at sample t.
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4.4 Results

4.4.1 Task-related changes in network centrality

The centralities of the averaged TV-DBN coefficients over all successful trials were

determined. A two-tailed t-test was used to compare the centrality at each sample

for each channel to the total pre-cue samples’ distribution over all channels (p < 0.05)

(Fig. 4.2).

From the 21 high-gamma modulated electrodes, task-related changes in centrality

were observed in a subset of 13 electrodes, beginning 0.4-0.6 s following cue presen-

tation. The increased connectivity lasted for approximately 3 s, which encompassed

the entirety of the forward reach, the manipulation, and the return to the home lo-

cation. Of the 13 electrodes with task-related changes in centrality, two showed this

activity only early during trials (earlier than .75s post-cue), suggesting they may be

relevant to motor planning. Three were limited to the later task phase (later than .75s

post-cue), potentially relating to motor output. The remaining 8 electrodes showed

modulation during both of these phases of the task.

4.4.2 Time-Varying Centrality Distribution

To quantify the differences between the trial-independent noise in the centrality mea-

sure and the task-related centrality modulation, the entropy of the eigenvector cen-
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trality H(C1(t)) was measured in each sample window, as given by the equation:

H(C1(t)) = −
∑

i

P (c1i (t)) logP (c1i (t)), (4.3)

where C1 is the eigenvector centrality and P (C1) is the empirical probability mass

function of C1. The entropy represents the information content of the eigenvector

centrality, as shown in Fig. 4.3(A-C).

Failed trials and successful trials have substantially overlapping empirical distri-

butions prior to the movement onset. This finding suggests that there were no

statistically-significant task-related network differences in the neural data prior to

the initiation of movement. This serves as a control, since the randomized trial start

time was expected to result in no task-related activity, which is necessary for task-

related network changes to occur, prior to cue processing.

After the subject initiated the movement, however, the successful trials of both types

showed considerable increases and differing entropy values of their corresponding cen-

trality vectors. This increased entropy was not observed in failed trials, suggesting

the network behavior was not modified for these trial types in a consistent manner.

4.4.3 Spatial Distribution of Connectivity Infor-

mation

Differences in the timing of the significant centrality modulation are shown based on

observation in Fig. 4.3-D. Electrodes in adjacent locations showed similar timing in
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their network modulation. Specifically, the microelectrode PMIC grid and its neigh-

boring macroelectrodes, which were anterior to the central sulcus, showed prolonged

network modulation following movement onset. Dorsal electrodes, both on the mi-

croelectrode AMIC grid and its neighboring macroelectrodes, had modulation with a

later onset, which was sustained for a much shorter duration.

Temporal lobe electrodes showed the earliest modulation, as soon as 100 ms after

cue onset (Fig. 4.3-D, light blue). The earlier onset of this modulation relative to

motor area activation may be due to the latency of information transfer from visual

processing areas into the motor stream. This modulation decreased approximately 1

s after cue onset, consistent with reduced demands of the task on visual processing

at the completion of the reach and onset of the grasp.

4.5 Discussion

This study examined the properties of the connectivity measures of neural data ob-

tained using ECoG during a fine motor control task. Eigenvector centrality was used

to show importance of individual electrodes to overall network dynamics, which might

not be apparent from visual inspection of the connections themselves.

We studied task-related changes in eigenvector centrality to determine the role of

sites with high centrality in different phases of the task. The interactions within the

microelectrode array, within the macroelectrode grid, and between the two arrays

had similar properties. Specifically, the microelectrode task involvement, as inferred

67



from the connectivity timing, was similar to that of the macroelectrodes situated near

them (Fig. 4.3-D).

Since the surface area of cortex covered and the inter-electrode distances varied, it is

surprising that the networks between and across electrode array types appeared to

be comparable.

4.6 Conclusions

Network measures, specifically eigenvector centrality, are shown to have utility in

post-hoc analysis of neural activity in this work. In an online system, however,

network-based feature selection could be performed after a few trials of performance

of the task of interest. Determination of the network measure from these training

trials would permit the use of only the connections with the most central nodes for

input into a decoder for online control, or for targeted surgical resection planning.
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Chapter 5

Task-specific sensorimotor

networks revealed by eigenvector

centrality in human ECoG

5.1 Abstract

Connectivity measures have recently been used to estimate the propagation of neural

activity between recording sites in human electrocorticographic (ECoG) recordings.

The high dimensionality of connectivity information resulting from combinatorial ex-

plosion with increasing electrode density, however, complicates its interpretation. In

this study, we used time-varying dynamic Bayesian network (TV-DBN) connectivity

models to estimate task-related neural propagation in ECoG signals as human sub-
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jects reached for, grasped, and manipulated different objects. We then used eigenvec-

tor centrality, an estimate of the influence each electrode has on the network, to reduce

the dimensionality of the results and to study the spatial and temporal distribution of

critical nodes in the observed connectivity networks. We observed significant changes

in centrality at times near reach onset and during object manipulation (p < 0.05),

but not immediately following the cue, for both subjects. This suggested that the

reach execution concurrent with grasp planning elicited distinct object-type depen-

dent network structure in both subjects. Additionally, the usefulness of centrality as

a feature selection technique was shown with an LDA classification model. For both

subjects, the decoder using centrality features was shown to outperform the control

condition (p < 0.05). Our results illustrate the use of network centrality analysis as

a tool for comparing and summarizing the complex, high-dimensional spatiotemporal

dynamics of movement-related functional networks recorded by human ECoG.

5.2 Introduction

The planning and execution of complex movements involves precise coordination be-

tween multiple cortical regions [Tanji, 2001]. An understanding of the functional

relationships between brain areas and their role in motor tasks may be obtained from

models of connectivity between distinct regions [Rubinov and Sporns, 2010]. If such

information was available for clinical decision-making, it could be useful for quantify-

ing the importance of a region to normal function prior to epileptic resection surgery.
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In addition, connectivity methods and network measures may be used to character-

ize seizure activity generated by epileptogenic cortical networks [Franaszczuk et al.,

1994,Baccalá et al., 2004,Ortega et al., 2008,Wilke et al., 2011].

Connectivity models based on Granger causality [Granger, 1969a, de Vico Fallani

et al., 2015] have been applied to electrocorticographic (ECoG) data to model the

dynamics of functional interactions during different cognitive and motor tasks [Bac-

cala et al., 1998,Wilke et al., 2009]. The direct transfer function (DTF) [Kaminski

and Blinowska, 1991] is one extension of Granger causality, in which a signal of in-

terest is represented with a multivariate autoregressive (MVAR) model estimated

from the history of each neural signal. This approach has also been implemented

non-parametrically using Fourier and wavelet transforms [Dhamala et al., 2008].

While the aforementioned Granger causality models are informative, they require

data from multiple trials and are therefore incompatible with real-time measurement

and single-trial analysis. A recently developed technique for computing dynamic

connectivity in single trials called time-varying dynamic Bayesian network (TV-DBN)

modeling performs computationally efficient estimation of first-order MVAR model

parameters, which can be used as an estimate of inter-electrode connectivity [Song

et al., 2009,Benz et al., 2012b].

The true utility of connectivity models lies in their ability to map the recruitment

of cortical populations and their functional interactions during specific tasks. Re-

cent literature indicates that cortical functions are not carried out by single areas,

but are instead accomplished by cortical networks involving many regions [Knight
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et al., 2007]. Decoding movements using connectivity information has been shown in

ECoG and MEG recordings to outperform changes in spectral power at individual

nodes [Benz et al., 2012b, Sugata et al., 2014]. Identifying salient connections from

a connectivity map, however, requires either post-hoc manual selection by a trained

observer or pre-selection of regions of interest. Additionally, due to the exponential

increase in dimensionality from nodes to connections (n → n2), connectivity models

should only be trained on a limited set of electrodes to prevent over-fitting.

Analysis of ECoG signals often focuses on activity in specific frequency bands, for

example: mu (7-12 Hz), beta (12-30 Hz), or high gamma (70-120 Hz). High gamma

power modulation has been shown to reflect firing rate changes underlying neuronal

populations and has been demonstrated across many functional domains to be a ro-

bust index of cortical activation [Crone et al., 2011]. Additionally, changes in high

gamma power are detectable in single trials [Flinker et al., 2010a], and are commonly

used as inputs to decoding models for brain-machine interfaces (BMIs) [Schalk et al.,

2008]. High gamma power exhibits robust task-related changes in effective connectiv-

ity during language and motor tasks [Sinai et al., 2005,Towle et al., 2008,Korzeniewska

et al., 2011,Marsden et al., 2000], supporting its use in connectivity model analysis.

In this study, we quantified the network properties of task-related high gamma con-

nectivity estimated with a TV-DBN model. We then used a centrality measure [Free-

man, 1979, Bonacich, 1987] to further analyze the spatial and temporal properties

of connectivity between ECoG sites. The measure of Eigenvector centrality reveals

which neural populations contributed substantial information during distinct phases
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of movement planning and execution. The specific implementation of centrality works

well in networks where select nodes have no connectivity, which could otherwise be

problematic for ECoG connectivity analysis. Our results suggest that eigenvector

centrality can provide a concise representation of the cortical networks recruited dur-

ing different tasks and which electrodes overlay regions of cortex which help drive

that network activity. With additional validation in the future, such a representa-

tion could be of potential use in surgical planning or in feature selection for neural

decoding models for brain-computer interfaces.

5.3 Methods

5.3.1 Task Participants

Two male, right handed adult subjects were included in this study. ECoG grid

implantation was performed for mapping seizure focus and eloquent cortex prior to

epilepsy resection surgery. Electrode implantation locations were determined solely

based on clinical need.

Subject 1 was a 30-year-old right-handed male who had previously undergone partial

resection of his right post-central gyrus and superior parietal lobule. He was implanted

with seven eight-contact (2.41-mm length, 6.5-mm center-to-center spacing) platinum

depth electrodes placed medially in his right premotor, motor, somatosensory, and

posterior parietal cortices. One hybrid-scale depth electrode contained eight 1.57-mm
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length (5-mm center-to-center spacing) platinum macroelectrode contacts, as well as

four microelectrodes interposed between each of the five most distal contacts. The

patient also had an eight-contact ECoG strip placed over motor and sensory cortices

laterally, with 2.3-mm-diameter exposed recording surface on each contact with 10-

mm center-to-center spacing.

Subject 2 was a 20-year old right-handed male implanted with an 8x16 hdECoG elec-

trode grid (Adtech; Racine, WI; 1mm diameter, 3 mm center-to-center spacing) over

left sensorimotor cortex for mapping the seizure focus and eloquent cortex prior to

epilepsy resection surgery. Placement of the high-density grid was determined based

on the semiology of the patients seizures, which consistently began with tingling in the

right forearm and spread proximally to the rest of the right upper arm. In addition

to the high-density grid, a 2x5 macro grid was placed in left inferior parietal cortex,

three 1x4 macro strips were placed in left posterior parietal cortex, left posterior supe-

rior temporal gyrus and left middle temporal gyrus, in addition to four eight-contact

macro depth electrodes inserted in left inferior frontal and parietal cortices.

Neuronavigation, via the Cranial Navigation Application (BrainLab; Westchester, IL,

USA), was used during placement of the depth electrodes. Electrode locations were

confirmed by volumetric co-registration of the subject’s pre-implantation magnetic

resonance image (MRI) with the post-surgical computed-tomography (CT) using the

BioImage Suite [Duncan et al., 2004]. For Subject 2, the reconstruction of the high-

density grid’s electrode locations was modified using intraoperative photos from the

implantation and explantation of the high density grid. The electrode locations on
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a two-dimensional snapshot of the reconstruction were manually adjusted relative to

the underlying cortex via rotation, scaling, and translation of the grid in the GNU

Image Manipulation Program (GIMP) to optimize the alignment between the grid

and prominent gyral and sulcal landmarks present in both the 3D reconstruction and

the intraoperative photos. The subjects gave informed consent to participate in this

study, which was done in accordance with a protocol approved by the Institutional

Review Board of Johns Hopkins University.

Figure 5.1 (following page): (a,b) Implantation location for ECoG arrays. Subject

1 had seven depth electrodes, one hybrid-scale depth electrode, and eight strips.

Subject 2 had one high-density grid, one macro grid, three macro strips, and four

macro depths. (c) Experimental setup (experimenter pictured). The subject sat

in front of the object presentation apparatus, with a platform containing the home

sensor placed on the subject’s lap. LED lights embedded in the apparatus indicated

when the subject should begin a reaching movement, followed by manipulating the

indicated object and returning the arm to the rest position to complete a trial. Labels

next to electrode arrays indicate the naming convention used to locate them. The

labels are used for convenience in the text when indicating relevant electrodes, and

do not necessarily refer to the correct anatomical location.
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5.3.2 Experimental Design

The apparatus for cue presentation had four objects: a push button, a key, a door-

knob, and a ball, fixed to an octagonal board at 0, 90, 180, and 270 degrees clockwise

from vertical. The apparatus was placed on a table within reach of the subject, who

reclined on his hospital bed for the duration of the experiment. Each subject rested

his right hand on an electronic home switch in his lap for monitoring movement onset.

Each object’s attachment to the board was approximately 8 inches from the board’s

center. The objects were rotated in 90 degree increments between trial blocks in a

pseudo-random fashion, presenting each object at four separate positions, but all pre-

sentations of each object (i.e., regardless of location) were grouped together for this

study. LEDs surrounding the specific objects were used to cue the subject to reach

and perform one of the following manipulations: 1) push the button, 2) turn the key,

3) turn the doorknob, or 4) and pull on the ball. The home switch recorded the time

of the start of the reach and a switch on the apparatus recorded when each object

was manipulated. The task manipulandum and subject implantations are pictured

in Figure 5.1.

Subjects 1 and 2 completed 193 and 235 successful trials, respectively. The different

manipulations were interleaved in pseudo-random order. Trials were finished when

subjects manipulated the object and returned their hand to the home position switch

on the base resting on their lap. The inter-trial interval was randomly distributed

between 2.5 and 3.5s. Trials had an average duration of 3.5s with a standard deviation

of 0.5s between initial release of the home switch and subsequent return.
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5.3.3 Signal Acquisition and Preprocessing

ECoG data were recorded with a 128-channel Neuroport system (Blackrock Microsys-

tems; Salt Lake City, UT). Signals were initially recorded at 30 kHz and filtered with

a third-order Butterworth analog bandpass filter with cutoffs of 0.3 Hz and 7.5 kHz.

Noisy channels were visually identified and excluded from subsequent analysis. Com-

mon average referencing was used to remove noise common to all channels. Trials

were aligned to one of three task phases for analysis: cue presentation, reach initia-

tion, and manipulation completion. Signals were subsequently digitally band-passed

filtered between 16 and 200 Hz. The high gamma spectral power was extracted using

the multitaper method [Cox, 1996,Freeman and Zhai, 2009,Yazdan-Shahmorad et al.,

2013]. High gamma power was z-scored relative to the pre-cue baseline, for all three

types of trial alignment. Trial averaged power modulation centered on reach initiation

is shown in Figure 5.2. The TV-DBN connectivity was computed in 128 ms sliding

windows with a slide size of 16 ms, from 1.5 s before the cue onset to 1.5 s after the

cue onset on the high gamma power signal. Connectivity was computed for all the

channels not containing noise. The computed high gamma power was downsampled

to 1KHz for subsequent analysis.
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5.3.4 Time-Varying Dynamic Bayesian Networks

(TV-DBN)

TV-DBN is a method of estimating, within single trials, the time-varying connectivity

within a network [Song et al., 2009]. Here, each node in the network is the smoothed

high gamma power at a different ECoG electrode. A detailed description of applying

TV-DBN models to human ECoG data can be found in [Benz et al., 2012b]. In brief,

TV-DBN calculates the time-varying weights by modelling the smoothed high gamma

power at each node as a linear function of all of the remaining nodes’ smoothed high

gamma powers at a fixed time lag:

x(t) = A(t)x(t− 1) + ǫ(t), ǫ ∼ N (0, σ2I). (5.1)

where x(t) is the high gamma power of each channel at time t. A(t) is the time varying

connectivity weights, and ǫ(t) is Gaussian distributed noise. Gaussian smoothing is

used to reduce noise and provide more stable estimates.

Connectivity weights were z-scored to the mean and standard deviation of the 1.5s

to 0s prior to cue period distribution of connectivity values over all trials, performed

separately for each channel. This resulted in individual connectivity values represent-

ing the number of standard deviations above the baseline average in the strength of

individual connections.
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5.3.5 Centrality

Each site’s total strength was summarized using eigenvector centrality. Eigenvec-

tor centrality quantifies each site’s total strength of connections to the entire net-

work [Freeman, 1979,Page et al., 1999] through a recursive process. The connectivity

matrices were averaged for each object type and alignment parameter, then the cen-

trality vector of the connections was determined at each time point, t. The rows

of the connectivity matrix, A(t) were divided by their individual sums to create a

stochastic matrix, S(t), which ensured that a centrality vector exists for any S.

To guarantee a minimal amount of connectivity from all nodes, the Google matrix

G(t)was formed. This matrix describes the directional interactions of the network

[Ermann et al., 2013]. The Google matrix consists of the linear combination of S(t)

with a matrix consisting of 1’s for all elements (1) [Page et al., 1999,Austin, 2006]:

G(t) = αS(t) + (1− α)
1

n
1, (5.2)

where n was the number of rows in S, and α = 0.85 was used as an adequate

compromise between the connectivity of the actual network, and the situation where

all of the nodes were connected with equal strength [Whang et al., 2015].

Eigenvector decomposition was performed on the Google matrix, G, and the eigen-

vector corresponding to the maximal eigenvalue of G was denoted C1(t). Thus, the

following equation is solved for the time-varying Google matrix G(t):
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G(t)C1(t) = λ1(t)C1(t), (5.3)

where λ indicated the eigenvalues in descending order, and C was the corresponding

eigenvector. The time-varying centrality matrix was notated C1(t). The entries in

C1(t) indicated the total information flow from each electrode in the network at

sample t. This analysis was limited to output centrality, as a means of quantifying

the influence each electrode had on the network, but could be trivially modified to

apply to electrode inputs.

To compute the statistical significance of centrality values at each time point, the

centrality of the z-scored TV-DBN connectivity (A(t) matrix) weights was first com-

puted separately for each trial. Trials for each object type were then grouped together,

and the distribution of each (channel, time) pair was compared to a baseline distri-

bution of centrality values. The baseline distribution was composed of connectivity

weights calculated from non-overlapping windows of data prior to cue presentation.

A two-tailed Student’s t-test was used separately for each (channel, time) pair to

find significance at the p < 0.05 level, after false discovery rate (FDR) correction for

multiple comparisons.

5.3.6 Central Electrode Subset Comparison

The time-varying centrality vector directly reveals modulation with task execution,

but we were also interested in seeing differences in this vector with task conditions,
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i.e., with different objects being manipulated. Electrodes with significant centrality

at any time point during the performance of the task were added to an object-specific

list of electrode subsets. Separate lists were generated for the three different trial

alignments: cue presentation, reach initiation, and object manipulation. To compare

the cortical network involvement for different object types, and separate task phases,

the overlap of the electrode subsets with significant centrality for each object type

was computed by the Jaccard distance [Jaccard, 1912,Strehl et al., 2000]:

dj =
|setcond1 ∪ setcond2| − |setcond1 ∩ setcond2|

|setcond1 ∪ setcond2|
, (5.4)

where setcond1 and setcond2 were the subsets of electrodes with significant centrality in

any time-point for the specific trial conditions cond1 and cond2. The Jaccard distance

normalizes the similarity of subsets such that identical sets had a Jaccard distance of

0, and sets with no overlap had a value of 1.

The Jaccard distance revealed total differences in central electrode sets, but the timing

information of those differences was lost. To elucidate timing-related differences in

centrality, the pairwise Pearson’s linear correlation coefficient (r-value) was computed

separately for each pair of objects’ centrality vectors.

A nonparametric permutation test was performed to determine the significance of

differences between subsets of highly-central electrodes [Rokni et al., 2007]. The test

was performed by permuting the labels for the trial types of the TV-DBN matrices

before averaging. Centrality was then computed on the permuted averages. Statistical
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testing was then performed for each time-window’s centrality vector, and similarity

was found between pairs using either the Jaccard distance or correlation for the

respective test. The resultant matrix of centrality vector similarity values was stored

for 5,000 randomized permutations.

5.3.7 Object Classification

To assess the utility of the centrality method for improving decoding accuracy, Lin-

ear Discriminant Analysis (LDA) was used to classify the object type for each trial

[McLachlan, 2004]. The high gamma power at the time of object contact was used as

the input to the LDA classifier. The electrodes used as the input were varied between:

1. The control case: any electrode which did not contain obvious noise

2. Electrodes with significant high gamma power within this time-window relative

to baseline

3. Electrodes with significant centrality within this time-window relative to base-

line

Significance was determined by a t-test which compared the distribution of each

channel’s high gamma power in the selected time-window over all trials to its base-

line distribution. Significance was determined at the 0.05 level after a Bonferroni

correction was used. A subset of these three electrodes sets was compared as the

input to the model for an increasing number of selected electrodes, up to the full
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sets. Ten-fold cross-validation was used to prevent over-fitting and provide a reliable

measure of decoding accuracy, consistent with what would be expected if the method

were used online. The cross-validation was repeated 100 times for a different subset

of n electrodes within each category, where 1 <= n <= Nc, where Nc is the number

of electrodes within category c.

5.4 Methods validation - Centrality of TV-

DBN simulation

5.4.1 Model construction

To validate the TV-DBN and eigenvector centrality method, the network measures

were compared for synthesized ECoG signals generated to be neurophysiologically re-

alistic [Crone et al., 1998]. The simulation was separated into two separate phases of

differing structure within a 4-node network. Each channel consisted of three seconds

of sixth-order AR-model generated data, using randomly generated AR coefficients.

The data was then bandpass filtered to extract the high-gamma component using

multi-tapers. The simulated network initially consisted of the first channel influ-

encing the three other channels exclusively. After three seconds of simulated time,

the structure was switched to a network where the channels cascade. Signals were

then contaminated with Gaussian-distributed white noise, delayed by 16 ms (so as to
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be physiologically reasonable) and added to the signals they influence. Influence is

related to noise magnitude by the following equation:

xt(w) = infls,t(w) ∗ xs(w) + (1− infls,t(w)) ∗ N (0, 1), (5.5)

where infls,t(w) represents the fraction of influence the source node has on the target

within window w. This simulated the effect of the source channel driving the activity

of the target channel in the high-gamma band.

In the second network, the signals were defined by the following steps, with the

addition of a 16 ms delay between each step: 1) channel 1 contributed equally to all

of the other channels’ signals, 2) channel 2 then contributed equally to the signals at

channel 3 and 4, 3) channel 3 contributed to channel 4’s signal. TV-DBN was then

calculated with a 128 ms window size and a 16 ms slide size. The results of the TV-

DBN calculations were averaged over the three second trial period. The simulations

were repeated 50 times for each level of noise. The distribution of centrality values

over all runs was computed separately for each level of noise. The average coefficient

magnitudes were plotted as the size and red saturation of the arrows in Figure 5.3.

Centrality values for individual channels with a significantly different distribution

than the control case (p < 0.01; Bonferroni corrected) were indicated with stars in

the figure.
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5.4.2 Interpretation

TV-DBN was able to reproduce the simulated network structure with good fidelity,

even with increasingly weak network influence. While the first and simpler network

was robust to the presence of noise, showing connectivity and centrality closely match-

ing the original structure while the influence was at or above 25%, the second network

was less consistent. For the second network, the fourth node (clockwise from the top)

consistently shows the lowest centrality, but the second node is often more central

than the first node after the simulation. Both nodes have large influence on all of the

remaining nodes, so this is not unreasonable given the extent of noise in the signals.

Although none of the components were of zero magnitude, this was to be expected

because of the addition of a constant value weight to the stochastic matrix, allowing

for spurious connections between nodes.

5.5 Results

Trials were separated into those corresponding to each of the four objects, irrespective

of presentation location. Trials were aligned separately for this analysis according to

the timing of three events: cue presentation, reach initiation, and onset of object

manipulation.
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5.5.1 Correlation between centrality and high

gamma power

To determine if centrality represents more than a simple linear transformation from

high gamma power, the cross-correlation with no lag was taken between the individual

high gamma power features and the corresponding centrality features (Figure 5.4).

the r-value of Pearson’s correlation coefficient was used to allow for the detection

of negative correlations. For both subjects, r-values ranged between 0.15 and 0.85,

with a median value near 0.35. This suggests that the correlation varied considerably

across channels, but none of the centrality features were directly dependent on the

high gamma power for the same electrode.

5.5.2 Changes in network centrality during differ-

ent task phases and object types

Figure 5.5 compares the statistically significant trial-averaged TV-DBN centralities

observed using different phases for alignment. Task-related changes occurred in a

subset of ECoG sites, beginning no sooner than 250 milliseconds following cue pre-

sentation. For Subject 1, this subset contained 28 of the 70 ECoG sites. For Subject

2, this subset contained 60 of the 162 ECoG sites. For both subjects these subsets con-

tain electrodes which may or may not be present in all three of the alignment periods.

The increased connectivity lasted for approximately 1.5 s, which encompassed the en-
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tirety of the task performance. For Subject 2, 13 electrodes had significant changes

in centrality during the cue-aligned period, all following the cue presentation. This

increased centrality was very transient, only lasting for tens of milliseconds at a time.

Subject 1, however, had sustained increases in centrality following cue, lasting for 200

– 500 ms in each central electrode.

One clear object-related difference can be seen for Subject 1 in Figure 5.6, where the

button, and to a lesser extent the handle, had significant centrality in several of the

hybrid macro-micro depth electrodes. This depth array was placed ventral relative

to the other electrodes on the cortex. The handle’s spatial distribution was more

constrained in these depth electrodes, relative to the button. Similarly, the number

of successive time-windows containing significant centrality is more limited, as seen

in Figure 5.5.

Figure 5.6 (following page): Significance of the centrality of the four object types is

indicated at the alignment points, shown in Figure 5.5 with vertical lines, laid-out

spatially. The object type of each electrode which had statistically significant central-

ity at the specified time-point is indicated by the markers. These shapes correspond

to the object type indicated by the legend on the right. The specific alignment point

and time-window relative to the trigger are shown above each column.
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5.5.3 Behavioral phase selectivity of centrality spa-

tial distribution

Many of the electrodes with significant task-related changes in centrality were the

same across task phase and object type. Figure 5.7 illustrates the degree of uniqueness

in membership among these subsets of electrodes for different object types. Pairs of

object types with statistically significant differences in the central electrode sets are

overlaid with asterisks (p < 0.05; Bonferroni corrected for multiple comparisons).

Significant differences for both subjects were only seen during the active movement

phases of task performance, and not between all pairs of object types. There is no

obvious pattern in which object types had the greatest specific differences, however.

The coverages differed between the two patients and the types of arrays implanted

were different. However, both subjects showed similar trends in the properties of

their centrality vectors. In particular, after the cue, both subjects had a sparse set

of central electrodes which only had significant centrality for a few consecutive time

windows. The sets of these electrodes with significant centrality for at least one time

window for specific alignment points and object types are called the central subets.

During the reach phase, the central subsets became larger for both subjects, and

the centrality was maintained for a longer period of time. The manipulation phase

showed the most centrality for both subjects, and it was sustained for a major portion

of the task performance.
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5.5.4 Absence of object selectivity specific to cen-

trality time course

For both subjects, the cue period showed no statistically significant differences in

centrality correlation. This suggests that the network connectivity at this phase of

the task was not object dependent. Subject 2 showed significant centrality differences

starting with reach onset and continuing through object manipulation. Subject 1 only

showed significant differences during physical contact with the object, starting later

in the trials.

The correlation analysis did not deviate substantially from the Jaccard distance seen

in Figure 5.7. This is in support of the previous observation that centrality is sustained

with a similar time-course in the central electrodes, irrespective of object type. This

does not contradict the finding that the central electrode subsets themselves vary

with object type.

5.5.5 Object Classification

The reliability of centrality as a method for feature selection was determined for both

subjects, as shown in Figure 5.8. For subject 1, high gamma and centrality electrode

selection performed comparably. For subject 2, however, centrality electrode selection

generally outperformed high gamma electrode selection. With a larger portion of the

selected electrodes used as input, centrality does significantly better than high gamma
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selection. For subject 2, decoding accuracies decreased beyond 90 electrodes up to

all 162 channels. High gamma and central sets contained at most 50 electrodes up to

which point the trend of accuracy increase with added input features was maintained.

For subject 2, with 20 or more central electrodes used in the model, control electrodes

always performed worse on average over 100 runs with any number of input features.

5.6 Discussion

In this study, we have described a method to determine the important sites of network

activity based on the connectivity information from multi-site neural recordings. We

Figure 5.8 (following page): Decoding comparison. An LDA decoder was trained

to predict task-type based on the high-gamma power present in a subset of electrodes.

The centrality subset was determined based on the presence of centrality > 0.75

standard deviations when compared to the baseline. The high gamma subset was

determined based on the presence of high gamma power > 0.5 standard deviations

when compared to the baseline. The horizontal axis indicates how many of the

electrodes contained in the subset were used for each decoder. The members in these

subsets were randomized 100 times, and the distribution of decoding accuracies over

these runs is indicated by the lightly colored shaded regions. Statistical significance is

indicated by asterisks, based on a one-tailed Student’s t-test with Bonferroni multiple

comparison correction (p < 0.05).
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have analyzed ECoG data obtained during the performance of a reach-to-grasp task.

By applying the centrality measure to connectivity coefficients from the TV-DBN

model, we have shown task-related differences in the performance of the task.

5.6.1 Centrality of Electrodes

Time-averaging of the TV-DBN connectivity matrices locked to different phases of

the task reveals that different electrodes have unique time-courses of centrality modu-

lation for sustained periods (Figure 5.5). Perhaps more interestingly, some electrodes

only show pronounced centrality for certain trial phases, and with certain object

types. A good example of this is in the micro-electrodes( PPr(3); Figure 5.6) for Sub-

ject 1, with the hybrid depth electrodes showing only manipulation-related centrality,

mainly for the button or handle objects. Conversely, for Subject 2, electrode DPS3,

which is posterior to primary somatosensory cortex, shows only modulation prior to

reach onset, and only for the ball or button objects (Figure 5.6). The time course

of DPS3’s centrality, along with its anatomical location, suggest that it’s involved in

cue processing or motor planning, Overall, this supports the claim that those elec-

trodes only become important to the network during a specific behavioral stage in

the performance of the motor task.
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5.6.2 Task-related Network Evolution

Both subjects showed remarkable task-related changes in both the time-course of cen-

trality modulation (Figure 5.5, as well as the localization of highly central electrodes

(Figure 5.6). The robustness of this result when considering that the electrode place-

ment differed between the two patients and the types of arrays implanted were differ-

ent is supportive of the general applicability of the methodology to similar datasets.

This was seen consistently in both the tightly constrained cue-related activity, as

well as the stable increases in centrality with task progression. These patterns were

present across both reach and manipulation, with less constrained localization of cen-

tral electrodes in the later task-phase. It has been shown that ECoG spectral features

can represent task specifics at the resolution of individual fingers in somatosensory

areas [Miller et al., 2009]. The networks used were modeled on high-gamma spectral

features, as was the input to our connectivity model.

Subject 2 also had many of the same central electrodes across both reach and ma-

nipulation alignment. The cue alignment relative to both of these phases, however,

had a unique set of central electrodes. The lack of the reach and movement central

subsets being represented during cue is most likely due to the extensive peri-Rolandic

coverage of Subject 2. While this configuration allows for a strong representation of

the network activity involved in both movement and sensory feedback, it precludes

earlier areas of the visuo-motor pathway from being represented in these results, due

to the lack of Occipital and posterior Parietal lobe coverage. Though much is still

unknown concerning the neural representation of motor control [Koike et al., 2015], it
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has been shown that high-gamma activation in these areas occurs prior to movement

onset [Sun et al., 2015].

5.6.3 Object Related Network Differences

Both subjects had clear object related differences in centrality distribution (Figure

5.7). The electrodes which had significant centrality modulation show object re-

lated differences (Figure 5.6). The time-course of this activation did not show clear

object-related differences outside of those contained in the central subsets’ spatial

distribution, however (Figure 5.5).

Despite different electrode placements, there was still a clear dorsal-ventral distri-

bution of central electrodes along the sensorimotor cortices for both subjects, which

suggests a somatotopy. Ball manipulation trials had a more dorsal representation of

central electrodes, while handle and button trials had more ventral centrality along

the electrode arrays. The key object did not show consistent trends across both sub-

jects (subject 1 appears to have had a dorsal representation of the key trials, while

subject 2 had a more ventral one, around the initiation of object manipulation). This

may be due to differences in how the two subjects performed the different manipula-

tions. ECoG spectral features have previously been shown to contain grasp specific

information correlating hand posture to neural activity [Pistohl et al., 2012,Chestek

et al., 2013]. The exact localization of task-modulation with distinct complex move-

ments, however, has been shown to be inconsistent across patients [Pfurtscheller et al.,
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2003], fitting with our results.

Subject 1 showed substantially increased cue-aligned centrality that carried over into

the reach-aligned centrality. This centrality was activated in a nearly identical man-

ner in terms of location and time-course for all four object types, as indicated by the

prevalence of statistically significant centrality values in Figure 5.5. Subject 2 gener-

ally showed less central electrode set overlap across object types with cue-alignment

than Subject 1. This reduced overlap was in part due to the shorter time-course

of cue-aligned centrality for this subject, in addition to the reduced electrode sets

included in the cue-period activation patterns. Conversely, Subject 2 had far more

centrality activation with manipulation than Subject 1. This may have been a result

of the dense coverage of sensorimotor areas provided by Subject 2’s high density grid,

which allows for more fine-grained differences in network structure to be represented.

5.6.4 Decoding

We have shown the feasibility of centrality as a down-selection technique for input

selection to a classifier. While similar grasp decoding studies have had higher accu-

racies /citemarquez2009control, pistohl2012decoding, these studies were not limited

to using the high gamma feature and in general had better hand-area motor cortical

coverage.

Both subjects showed continued improved decoding accuracies with a larger subset

of high gamma or central electrodes. In both cases, the intelligent electrode selection
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always performed similarly, or outperformed naive electrode selection. Even in the

best case, subject 1 had an accuracy rate of 45%, while subject 2 had an accuracy of

65%. While this suggests that these electrodes contain discriminative information for

the grasp category in the high gamma band, it would not be practical to implement

the method directly in a BCI, due to the high error rate.

The eventual decrease in decoding accuracy with added channels for subject 2 suggests

that much of the information contained in the electrodes is not useful for object

type decoding. This suggests that a dimensionality reduction technique used on the

input features, such as principal component analysis, such as that used in [Wang

et al., 2009] could improve accuracies. That would be outside the scope of this

article, however, since the goal was to see if highly central electrodes contain task-

discriminative activity.

5.6.5 Applications

Network measures, specifically eigenvector centrality, are shown to have utility in

post-hoc analysis of neural activity in this work. In an online system, however,

network-based feature selection could be performed after a few trials of performance

of the task of interest. Determination of the network measure from these training

trials would permit the use of only the connections with the most central nodes

for input into a decoder for online control, or be used for providing highly relevant

analysis prior to targeted surgical resection planning. The Google matrix G used in
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finding the centrality vector has all positive elements, making it a primitive matrix

for which it is possible to find an indirect connection from one node to another

of any arbitrary length. This is a necessary precondition of the power method for

computationally efficient calculation of the stationary vector (extended in [Haveliwala

et al., 2003,Kamvar et al., 2003]). As electrode density increases, the power method

allows the algorithm to continue to be feasible for time-constrained (e.g., real-time)

calculations.

Our results suggest potential usefulness in brain-machine interfaces with the use of

ECoG signals for control of a prosthetic device. The methods presented here may

be extended to local field potential recordings, or applied to different task paradigms

such as language processing. Centrality measures could potentially be used to select

a subset of network nodes from all recording sites for which network dynamics could

be computed much more efficiently for real-time control of a prosthetic limb. While

we have shown that using the high gamma power of the most central electrodes

always outperforms a naive electrode selection technique, it is possible that using the

centrality features directly could further improve decoding accuracies.

5.7 Conclusions

We have used eigenvector centrality to better understand the complex dynamics of

functional connectivity in human ECoG recordings during cued reaching and ma-

nipulation of different objects. In particular, centrality estimates the importance of

104



individual recording sites to overall network dynamics. This information may not be

apparent from visual inspection of the connections themselves. Application of the

centrality method results in a substantial reduction in the dimensionality of network

connectivity, while preserving the essential features of the network and identifying

recording sites of particular importance. In this paper, we have illustrated how cen-

trality analysis facilitates comparisons between the temporal and spatial features of

network dynamics observed during different task phases and conditions. Specifically,

the temporal differences in the network are manifested by changes in the most cen-

tral nodes, which drive the overall network behavior. The spatial distribution of these

nodes as observed correlate with the specifics of task performance. While some chan-

nels have a high correlation between their centrality and high gamma power, this was

not a general trend, as the median correlation was around r = 0.35 for both subjects,

suggesting centrality is not directly dependent on this single channel feature. A high

gamma power LDA decoder was trained using channels selected based on subsets

of central electrodes, high gamma power electrodes and all of the electrodes. For

subject 1 centrality generally outpeformed the control condition. For subject 2, who

had more dense sensorimotor coverage, the central channels also performed as good

as or better than the high gamma electrodes in all cases on average. Together, these

analyses can help inform neuroscientific understanding of brain function, in addition

to allowing for a more practical BCI application resulting in a reduction in decoder

input feature size.
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Chapter 6

Brain State Detection in Human

ECoG Using Stability Clustering

6.1 Abstract

The determination of underlying brain activation patterns during the execution of a

complex task generally involves presupposition of the number of processing phases for

the task, and the timing of each phase, based on when the stimuli were presented. For

a complex task such as object naming, the stimulus processing and response execution

can vary in timing and duration across trials, while the exact number of measurable

distinct processing phases is electrode coverage dependent. Six subjects were pre-

sented with a series of images of unique objects, and were subsequently required to

name the objects displayed during an electrocorticography (ECoG) recording session.
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K-means clustering, with the number of clusters determined by the optimization of

the cluster label stability between subsets was performed on high gamma power in

an unsupervised fashion. High-gamma activation separated into a limited number

of unique clusters in a task-related manner, consistent across both sets of trials for

all subjects. A hidden Markov model was also trained for each subject, using the

most stable number of clusters from k-means. Despite timing information not be-

ing accounted for by the clustering method, high consistency between the labels of

localized time-windows was observed. This supports the clustering methodology’s

potential usefulness for the determination of task engagement, in addition to its util-

ity in separation of activity based on underlying unobservable variables in a reliable

time-locked manner across trials. Localized changes in brain activity with repeat per-

formance were detectable in the clustering analysis, restricted to a confined subset of

electrodes for each subject, though with varying location. The described method has

wide-spread applicability to cortical mapping analysis and to the study of complex

cognitive tasks.

6.2 Introduction

The execution of an object naming task requires the precise coordination of multiple

cortical regions [Sinai et al., 2005]. While trial-averaged analyses reveals cortical

processing in relation to task stage, variability in the timing and duration of cortical

processing and response articulation can result in blurring. Single trial analyses is not
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susceptible to this effect, and so can lead to deeper understanding of network activity

during task execution [Flinker et al., 2010b]. If such information was available for

clinical decision-making, it could be useful for quantifying the importance of a region

to normal function prior to epileptic resection surgery.

Analysis of ECoG signals often focuses on activity in specific frequency bands. In

this work we focus on high gamma (70-120 Hz). High gamma power modulation has

been shown to reflect firing rate changes underlying neuronal populations and has

been demonstrated across many functional domains to be a robust index of cortical

activation [Crone et al., 2011]. Additionally, changes in high gamma power are de-

tectable in single trials [Flinker et al., 2010a], and are commonly used as inputs to

decoding models for brain-machine interfaces (BMIs) [Schalk et al., 2008].

Clustering analysis in ECoG has been shown to overlay stimulation mapping areas’

functions with good specificity in gamma band when correlation is used to measure

connectivity [Ko et al., 2013]. Clustering analysis of resting state spectral features has

been shown to accurately cluster in isolation the areas expected to show modulation

in the particular frequency bands implicated in their functional role [Groppe et al.,

2013], though this analysis was limited to sub-gamma band features. Clustering

analysis has been applied to the problem of seizure detection in the high gamma

band, successfully localizing the region of seizure onset [Liu et al., 2015].

For clustering to meaningfully partition the data, a logical choice for the number of

clusters should be imposed [Sneath et al., 1973]. There exist a multitude of techniques

for determining the appropriate number of clusters in a data-dependent manner [Mil-
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ligan and Cooper, 1985]. One such technique involves minimizing the average distance

between each cluster centroid and its members [Ball and Hall, 1965]. A similar tech-

nique involves minimizing a function of the spread of each cluster’s members [Hubert

and Levin, 1976]. A common optimization technique involves minimizing an infor-

mation criteria [Goutte et al., 2001], such as Akaike Information Criteria [Akaike,

1974,Burnham and Anderson, 2002], as in [Pelleg et al., 2000] and [Žalik, 2008].

It has been shown that when the same stimuli are presented in a response task multi-

ple times to subjects, their response times are reduced [Forbach et al., 1974,Scarbor-

ough et al., 1977]. It has been suggested that this is the result of the engagement of

distinct cortical pathways which are activated for primed stimuli retrieval [Hayman

and Tulving, 1989,Schacter et al., 1991]. Specifically, this ”perceptual representation

system” is distinct from the episodic memory implicated in the response to the ini-

tial unprimed stimulus [Tulving and Schacter, 1990], a suggestion supported by the

reduction in reaction time upon repeat presentation.

Our hypothesis is that by separately clustering over the ECoG recordings during

initial and repeat single trial performance, it will be possible to detect functional

differences in brain activity during task performance based on the cluster memberships

and time-courses. To test this hypothesis, we utilize ECoG recordings acquired during

the performance of a picture naming task. To find the most stable clustering over

trials, we have selected a stability clustering criteria [Lange et al., 2004,Groppe et al.,

2013], which provides the number of clusters with the greatest robustness to trial-

related variation in activity. By finding the most stable clusters across trials, we hope

109



to selectively enhance differences related to initial relative to repeat presentation

during a picture naming task, in effect deemphasizing trial-related variability.

6.3 Methods

6.3.1 Task Participants

Six subjects were implanted with subdural ECoG electrodes in the left hemisphere

(Figure 6.1) for seizure focus and eloquent cortex mapping prior to epilepsy resec-

tion surgery. Electrode implantation location was determined solely based on clinical

need. Data from this study were recorded from 94 ECoG macroelectrodes from two

4x8 grids and seven strips consisting of four or six electrodes each (0.23 cm diam-

eter, 1 cm center-to-center, company, location). Data were also recorded from 32

ECoG microelectrodes (75 micron diameter, 900 micron center-to-center, PMT Corp.,

Chanhassen, MN) from two 4x4 grids placed between four adjacent macroelectrodes.

Electrode locations were confirmed by volumetric co-registration of the subjects pre-

implantation MRI with his post-surgical CT using the BioImage Suite [Duncan et al.,

2004]. The subject gave informed consent to participate in this study, which was done

in accordance with a protocol approved by the Johns Hopkins Institutional Review

Board.

110



Figure 6.1: ECoG array recording sites for the six subjects participating in the naming

priming experiment.
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6.3.2 Experimental Design

The subjects reclined comfortably in his hospital bed, while being presented with

visual stimuli. The subjects were required to respond verbally with the name of the

presented object. The activation of a microphone channel was used to determine

response time. Each initial trial consisted of a unique object being presented, with

the same object being presented a second time during repeat trials.

6.3.3 Signal Acquisition and Preprocessing

ECoG data were recorded with a 128-channel Neuroport system (Blackrock Microsys-

tems; Salt Lake City, UT) at 1 kHz. Data was initially recorded at 30 kHz with a

third-order Butterworth analog bandpass filter with cutoffs of 0.3 Hz and 7.5 kHz,

then downsampled to 1 kHz. Noisy channels were visually identified and excluded

from subsequent analysis. A common average reference was used to remove noise

common to all channels, then data were digitally bandpass filtered from 70-120 Hz

and downsampled to 500 Hz.

6.3.4 Clustering

All subsequent analysis was performed using Matlab 2015b (Mathworks, Natick, MA).

Two clustering techniques were used. K-means was used in determining the number of

inherent clusters, separately for initial and repeat presentations. The cluster number
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Figure 6.2: High gamma power for each subject’s trial averaged spectrogram over

initial (init) and repeat (rpt) presentation of each image. Each channel is shown along

the vertical axis of the subplots, and is z-scored to the total baseline distribution (-1

to 0 seconds for each trial). Z-score values for individual pixels represent a cue-aligned

trial-averaged time window for a single electrode, with the color value corresponding

to the z-score on the colorbar.
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found for each subject and task-condition was then used in both k-means clustering,

and hidden Markov modeling (as the number of states). The high-gamma power

amplitude was used as the features for clustering analysis with both the k-means and

hidden Markov model approaches.

6.3.4.1 K-means clustering

K-means is a technique to cluster data based on minimizing the distance from each

cluster to its center of mass, given a number of clusters k. Because K-means is

an NP-hard problem [Drineas et al., 2004], iterative techniques are used to locate

the centroid of each cluster [Jain et al., 1999]. Specifically, initial guesses are made

for cluster centroids. In this work this is achieved through the use of k-means++

[Arthur and Vassilvitskii, 2007], to help prevent getting stuck in local minima. The

centroid guesses are then improved iteratively by assigning membership based on

which centroid is closest to each feature, then determining the new center of mass of

each cluster based on its membership, and assigning that new value as the centroid.

This step is repeated until the centroid no longer moves with successive iterations,

within some range of acceptable error. To measure the distance between each centroid

and each feature in this process, the square Euclidean distance was used. Correlation

distance was also used, but the results were consistent with the square euclidean

results, and so were not shown. The entire process was repeated ten times for each

condition, and the minimum sum of distances between all cluster members and their
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centroids was used to find the best clustering.

The centroids were found across all time windows on a continuous time window basis,

after removing inter-trial intervals (except for one second of baseline for each trial).

Each time window was classified as the cluster with the closest centroid in the high

gamma feature space.

To determine the appropriate number of clusters for each subject and task condition,

a stability-based clustering validation method was used [Lange et al., 2004,Groppe

et al., 2013]. The implementation of the technique is summarized here:

1. The high gamma power for all channels over the continuous trial-centered data

was separated into two equal size partitions of time-points (labeled A and B),

selected at random.

2. K-means clustering was performed separately for both subsets of time-windows

to determine the label of each data point.

3. Step 2 was repeated 10 times, and the centroids and corresponding cluster labels

with the minimum spread of data points were kept as that subset’s best labels.

4. Cluster centroids from group A were used to reclassify group B, with each

datapoint being relabeled as the centroid in A it was closest to.

5. The dissimilarity of the labels for group B from the two conditions: actual group

B labels, and group A centroids used to reclassify group B, was measured.

6. Steps 1-5 were repeated 50 times to prevent bias in the selection of group A and
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B members from influencing the final results.

7. The process was repeated for k ranging from 2 to 8.

8. The value for k with the corresponding median lowest dissimilarity score was

taken as the level of inherent structure for that dataset.

There are many configurable aspects of the stability clustering technique [Von Luxburg,

2010]. Specifically, the data can be partitioned in many different ways, and the par-

titions can be compared using different measures. In this work, the data was split

into two subsets, similar to [Levine and Domany, 2001]. The labels can be compared

directly between partitions [Fridlyand and Dudoit, 2001]. To achieve this, the cen-

troids from group A were used to reclassify the members of group B, in this work.

Alternatively, the labels of A and B could have been compared directly, but that

would require the added assumption that all of the time-windows in both groups

come from the same distribution, which may not be the case with randomly sampled

heteroscedastic ECoG high gamma power signals [Chang et al., 2015].

Normalized mutual information (NMI) was used to measure similarity between labeled

data points [Danon et al., 2005]. The dissimilarity, taken as 1−NMI, was minimized

as a function of k in determining the optimal number of clusters, as NMI is expressed

in the following equation:

NMI(A,B) =

−2
CA
∑

i=1

CB
∑

j=1

Nij log
(

NijN

NiNj

)

CA
∑
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Ni log
(

Ni

N

)

+Nj log
(

Nj

N

)

, (6.1)
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where NMI(A,B) is the normalized mutual information between labels A and B,

and CA and CB are the number of unique labels for A and B respectively, and Nij is

the number of data points in A condition’s i-th group that appears in B condition’s

j-th group. NMI is able to select the cluster labels that are the most consistent across

sets, despite the value of those labels being variable.

6.3.4.2 Hidden Markov Model

Hidden Markov models (HMM) are a tool for modeling generative sequences that

are based on an underlying process generating the observable data [Baum et al.,

1970,Blunsom, 2004]. In the case of our experiment, the cognitive execution of the

various phases of the complex task are believed to be the underlying process, identified

as the hidden states, and the ECoG recordings are the observed data.

To ensure consistency between the K-means and HMM techniques, we used the sup-

plied best fit number of clusters from stability clustering as the number of hidden

states in the HMM.

HMM has a state-dependent parameter which determines the likelihood of transition-

ing from one state to another. By setting this parameter to be very low for transitions,

the HMM would better follow the task-progression, without the noise inherent in the

k-means approach. If the parameter is set too low between two states, however,

there may be a delay in detecting the state transition, or entire states may never
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be activated. We used expectation-maximization (EM) to optimize this transition

matrix [Rabiner, 1989,Gold et al., 2011].

6.4 Results

6.4.1 Cluster number determination

To determine the appropriate number of clusters for each subject and task condition,

the stability criteria was compared for a varying number of clusters from one to eight

using k-means (Figure 6.3), with square euclidean distance. The centroids were then

found that yield the lowest sum of square errors using the corresponding number of

clusters. The value of disagreement for each subject and each presentation, taken as

1−NMI, is shown in the box plots.

Subjects PY09N001, PY10N011, and PY12N003 had differing numbers of optimal

clusters across task conditions. After considering the properties of these additional

clusters, however, it was determined that they were spurious activity specific to one

to three trials, and not indicative of different task-related states. For subsequent

analysis, the minimum number of stable clusters across conditions was used.

While subjects PY09N001 and PY10N009 had three optimal clusters, the remaining

four subjects all had two.
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Figure 6.3: Box plots of the number of high gamma power clusters using stability

criteria, indicating the normalized mutual information. Green distributions represent

initial presentations, while red distributions represent repeats. The colored boxes

indicate the 25th and 75th percentiles. Dark bands represent median values. Separate

plots indicate unique subjects. Vertical lines indicate the number of clusters for which

the disagreement was minimized. The green vertical lines corresponds to the first

presentation of a stimulus, while the red lines correspond to the second presentation.
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6.4.2 High gamma based single trial k-means clus-

tering

6.4.2.1 Single trial membership

K-means clustering for the six subjects based on the high gamma power was computed

using the stability method’s suggested number of clusters (Figure 6.4). Assigned

membership of a (trial x time-window) pair is indicated by color in the plots. Each

pixel was fit to the cluster with the centroid of the smallest Euclidean distance.

It can be seen that pre-cue the electrodes had a nearly-uniform distribution of cluster

membership for all subjects except PY10N011, with varying amounts of consistency.

Subject PY10N011’s clustering does not appear to have any discernible pattern.

For subjects PY09N001 and PY10N009, it can be seen that, after cue there were

two distinct phases of cluster membership across trials. For subject PY09N001, the

second phase of membership begins shortly after cue and is sustained for the duration

of the trial for the majority of trials, but not all. Subject PY10N009, however, had

the second cluster occur in almost all trials, and lasted for approximately one second

with some variability.

For subject PY09N001, the third cluster occurred approximately one second after

response initiation, but only occurred in roughly 1/4th of all trials. This suggests

that this cluster was indicative of task completion, prior to the subject returning to
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Figure 6.4: Comparison of cluster membership between subjects for high gamma

power based clustering. The time on the horizontal axis is relative to the cue timing,

with 0 s being the cue presentation. Each row representes a separate trial, sorted

by the time between cue presentation and initiation of response. Unique clusters are

delineated by different colors. The black horizontal line indicates cue timing and red

dots correspond to each trial’s response time.
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baseline activity, when present.

For subject PY10N009, the third cluster occurred most often immediately after re-

sponse initiation, and lasted for the remaining duration of the trial. This suggests

that this cluster was indicative of response execution. This third cluster was present

for approximately 1/3rd of all trials.

6.4.2.2 Frequency of membership

There is inherent variability in how each time window is clustered over trials. To

account for this, the frequency of each time window and trial being classified as a

particular cluster was determined (Figure 6.5).

All subjects showed a very consistent baseline cluster in dark blue, which dropped in

frequency substantially after cue presentation. This baseline cluster had the lowest

frequency for subject PY10N011, who had very poor clustering results overall.

There were also very clear post-cue active clusters that drop below baseline frequency

several seconds after cue presentation across all subjects.

For subjects PY09N001 and PY10N009, who both had three clusters, the third cluster

only ever appears in 40% of trials, never overcoming the second cluster’s count in

time-windows where it was present.
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Figure 6.5: Comparison of frequency of cluster membership across all trials in each

time window between subjects for gamma power based clustering. The time on the

horizontal axis is relative to the event timing, with 0 being cue presentation. Each

colored line represents a different cluster.
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Figure 6.6: Comparison of the cluster centroids for each subject from k-means cluster-

ing. The contribution of each electrode to each subject’s centroids are shown for each

cluster. Size and color of markers indicate the amplitude of that particular electrode

to the centroid’s corresponding component. Subjects PY09N001 and PY10N011 had

three clusters, while the remaining subjects had two. The (+/-) signs indicate whether

the location of that component is along the positive or negative axis, respectively.
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6.4.3 Anatomical comparison of cluster centroids

The centroids of each cluster, representing the average high gamma power for each

individual electrode within its membership is shown (Figure 6.6). These plots con-

tain information about which underlying regions of cortex are active when each time

window was classified as a particular cluster member.

All subjects have a cluster with lower activation across the brain. Subjects PY09N001

and PY10N011 have two more active clusters, while the rest have one more active

one. Subject PY10N011’s more active clusters had very strong contributions by basal

electrodes. This was most likely representative of visual processing, and indicates a

large increase in basal high gamma power corresponding to classification as a member

of one of those clusters.

6.4.4 Initial vs. repeat presentation: k-means cen-

troid comparison

Clustering was performed independently for initial and repeat picture presentation.

The distance between those two sets of centroids is shown (Figure 6.7). Because

the centroid labels are arbitrary, the distance between all permutations of cluster

centroid pairs was determined, and the minimum value was taken as the correct

distance. Distances were normalized by the average variability in each channel’s

activation over all time-windows.
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Figure 6.7: Comparison of the mean L2 norm distance between cluster centroids for

each subject from k-means clustering between initial and repeat trials. Distances were

corrected by the individual channels’ standard deviations across all time-windows, to

separate centroid variability from general electrode amplitude variation. The mini-

mum over all possible distances of cluster centroids was determined, due to the labels

not being consistent across clusterings. Circles indicate the distance between partic-

ular centroids, corresponding to the coloring used in Figure 6.4. Crosses indicate the

mean distance across all centroids for each subject.
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Subjects PY09N001 and PY10N009 both showed similar centroid average distances

to the other subjects, except for their additional third cluster. This third cluster,

which only appeared in a minority of the trials, was much less consistent in elec-

trode amplitude across task conditions. This suggests that the most stable state

for both conditions supplies consistent centroid locations across clustering for similar

data, with the exception of the spurious activity clusters which demonstrated more

variability in centroid coordinates.

For all subjects the baseline centroids were nearer across conditions than the response

clusters. This is indicative of the baseline period not containing task-specific activity,

since the subject was not prepared before cue presentation.

Overall these distances were extremely small, and were consistent across subjects.

This consistency is a result of correcting for channel variability, by reducing the

impact of noisier channels on the distance between task conditions, the cross-condition

distances appeared consistent between subjects. This suggests that the clustering

reveals task-phase specific differences which were consistent across trials, whether the

picture was presented initially or repeated.

6.4.5 Relative change of cluster centroids between

task conditions

The relative change in centroid components is shown for the two subjects with three

distinct clusters (Figure 6.8). Both subjects showed highly localized component dif-
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Figure 6.8: Relative change in cluster centroids corresponding to the same state

across initial and repeat trials. (Top) Subject PY09N001 and (bottom) PY10N009

are shown, since they had three separate task-related clusters. The top half of both

plots show the individual electrode activations within each cluster centroid. (+/-)

indicates the sign of each electrode’s activation. The bottom half of both plots show

the magnitude of each channel’s relative change between initial and repeats.
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ferences in the third, more spurious, state.

The differences in the first centroid, which appeared most frequently during the base-

line period, were on the same scale as the other task-based components. Taken in

conjunction with Figure 6.7 the change in activation patterns is actually much less

substantial when the total channel variability is taken into account.

6.4.6 HMM based single trial clustering

Each subject was clustered using an HMM with the number of hidden states corre-

sponding to the number of clusters from the respective k-means solution, as shown

in Figure 6.9. Each subject’s results were extremely similar to the k-means solution

in terms of cluster activations across trials and time.

Due to the decreased likelihood of transitioning from one state to another over k-

means, however, these results were more stable over time. This stability of cluster

membership is clearly seen in Figure 6.10, where most subjects had almost 100% of

their baseline clusters in a single cluster.

Both subjects PY09N001 and PY10N009 third cluster was present in more trials with

the HMM classifier. This suggests that HMM is better at separating out the specific

activation pattern present in that cluster.
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Figure 6.9: Comparison of cluster membership between subjects for the hidden

Markov model. The time on the horizontal axis is relative to the cue timing, with

0 s being the cue presentation. Each row representes a separate trial, sorted by the

time between cue presentation and initiation of response. The black horizontal line

indicates cue timing and red dots correspond to each trial’s response time. Unique

clusters are delineated by different colors.
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Figure 6.10: Comparison of frequency of cluster membership across all trials in each

time window between subjects for the hidden Markov model. The time on the hori-

zontal axis is relative to the event timing, with 0 being cue presentation. Each colored

line represents a different cluster membership frequency.
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6.5 Discussion

This work involves the use of single trial high gamma power to find clusters across

individual time windows of activation, with the stability measure used to determine

the number of clusters. Additionally, the most stable number of clusters for k-means

was used as the number of hidden states in an HMM, allowing for smoother inter-

cluster transitions. These clusters showed trial-timing dependent activation. Across

task conditions, selective differences were found in centroid locations, suggesting dif-

fering underlying brain activation between initial and repeat trials localized to specific

cortical regions.

6.5.1 Single trial clustering

Single trial clustering demonstrated stability with the correct number of clusters,

and provided task related activation in a consistent manner across trials. With the

exception of subject PY09N001, all subjects showed an increasing trend in stability

disagreement with increasing cluster numbers (Figure 6.3). This suggests that these

stable states were the most representative of distinct task-related cognitive processing.

Subject PY09N001’s consistently low disagreement across cluster numbers may be

indicative of differing levels of processing occurring simultaneously, causing the most

stable state not to result in the only possible clustering.

For most subjects, two clusters were seen as the optimal configuration, between task

conditions 6.3. Only two of the 6 subjects had three representative clusters. While
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three of the subjects had a different number of stable clusters across task conditions,

when the time-window classification was examined, it was clear that spurious ac-

tivity across a very limited number of trials was separated into its own cluster 6.4.

To account for this, the number of clusters was constrained to a consistent number

across both conditions. This suggests that those few trials may have had some extrin-

sic factor influencing the subject’s activation, which was not accounted for by task

conditions.

This suggests that while those two subjects had discrete brain activation patterns

corresponding to the evolution of the task, the other four subjects may have had

less distinct task-related brain activation, and only showed substantial modulation

between the baseline period and the task performance. Alternatively, given the lim-

itations of the recording modality, it’s possible a region of cortex corresponding to

substantial differential activation was only covered in the two subjects who showed

the three unique clusters. The differences of time courses of cluster activation, in

addition to the cluster count, support this claim. This further lends support to the

suggestion that there are distinct brain-networks that are engaged for different phases

of task performance in a consistent manner.

During complex tasks recorded with ECoG, coverage can impact which types of ac-

tivity can be detected in the signals [Miller et al., 2007]. The first two clusters for

all subjects are robust across subjects, in terms of timing of predominant activation.

The presence of these clusters was most likely not an artifact of the grid-coverage

individual subjects received, since the analysis was consistent across six unique sub-
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jects. This supports the claim that these two clusters were fairly robust to differences

in coverage, and are indicative of global brain activation phenomenon corresponding

to task engagement.

The difference in cluster numbers determined for subjects PY09N001 and PY10N009

suggests grid-coverage may have some impact on clustering, however, since they have

very specialized clusters active late in the trial.

6.5.2 Spatial distribution of cluster centroids

While the magnitude of individual component contributions varied between centroids

for each subject (Figure 6.6), there was no clear spatial separation of cluster local-

ization, for the most part. With the exception of PY10N011, all subjects showed

consistently lower electrode activations across the grids for what is representative of

the baseline phase. The second and third centroids, when present, show increased

activation, in either the positive or negative direction, depending on the electrode.

This is to be expected, however, due to the Z-scoring used to separate task-related

modulation from channel dependent noise.

All subjects show a focus of activation in the more rostral electrodes along the grid,

for the non-baseline clusters, with the exception of PY10N011 who shows that in-

creased modulation in the baseline cluster, as well. Subjects with basal electrodes,

including PY10N011, PY10N014 and PY12N003 also show increased activation in

those for response-period centroids. This task required semantic processing and au-
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ditory response, suggesting both centroids two and three, when present, represented

task-specific processing.

Subject PY10N009 had very strong and sparsely distributed contributions to the

third, more spurious centroid. The timing of this centroid is very constrained, and

inconsistent across trials, indicative of some task-independent short-lasting process.

The focus of this activation in certain electrodes suggests it may have been some high

order processing requiring the coordination of multiple cortical regions.

6.5.3 Task condition specific clustering differences

The comparison of cluster centroids for corresponding task phases for two subjects

showed sparse and widely distributed changes in activation (Figure 6.8). While Sub-

ject PY09N001 showed the largest decreases in activation with repeat presentation,

Subject PY10N009 showed greater increases in activation, but also some electrodes

with decreases, in a non-spatially specific manner. This may have indicated changes

in neural processing occurring with the repeat presentation of a stimulus, as suggested

in [Hayman and Tulving, 1989,Schacter et al., 1991].

For both subjects, the third cluster showed greater increases in activation with repeat

stimulus confined to one to two electrodes. This third cluster was only present in a

small portion of trials, suggesting the activity underlying this response, when present,

was locally modulated across task conditions.

The third cluster showed different properties for each subject, however. While Sub-
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ject PY09N001 showed late response time-locking, Subject PY10N009 showed sparse

activation with inconsistent trial-locked timing. This suggests that these clusters

represented different cognitive processes, so they were not directly comparable.

6.5.4 Reduction of dimensionality of ECoG record-

ings

The cluster centroids for each subject were in the high gamma power space, with

dimensionality equal to the number of electrodes. Since all electrodes without notice-

able noise were used for this analysis, these clusters existed in very high-dimensional

space, of subject-dependent dimensionality.

Dimensionality reduction techniques, such as principal component analysis (PCA)

with thresholding of the components based on their contribution to the variance of

the data should be useful for selecting task related activity [Jolliffe, 2005]. This

technique has been successfully applied to channel selection for ECoG separation of

task related activity [Naeem et al., 2009].

It should be expected that computing the clustering on the lower-dimensional rep-

resentation of the data would improve the results, possibly increasing the number of

clusters, and the consistency of cluster membership across trials. PCA was attempted,

however, with 8 components kept. This would both decrease the dimensionality of

the features substantially, and allow for all subjects to have a consistent number

of features. The results are not shown, since they showed no improvement in any
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noticeable quality. All subjects had the same number of stable clusters as in the

electrode-space clustering, but a general decrease in clustering disagreement was seen

for low numbers of clusters.

When PCA was attempted, the first component generally explained 20-40% of the

variance, with subsequent components only explaining 1-4% each, which is very un-

usual. This is most likely due to the very high dimensional space of the raw ECoG

recordings, as opposed to preselected task-specific electrodes (varying between 60 and

90 electrodes per subject).

6.5.5 Consistency across k-means and HMM clus-

tering

The high gamma based clustering results, as summarized in Figure 6.5 for k-means,

and Figure 6.10 for HMM, show surprising consistency. This suggests that both

methods emphasized similar criteria when determining the constituent time-window

activation patterns for the electrodes.

The HMM method allows for the tuning of a transition probability matrix, which

in this work was done using EM, but other methods could have been applied [Ford

and Moore, 1998]. By further emphasizing stationarity of cluster membership, it is

possible to decrease the noise in cluster determination over time, even for single trial

data.
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These results already show improved consistency over k-means classification, however.

All subjects show a higher frequency baseline period, which is further subdued during

task performance, suggesting the HMM method has better consistency in detecting

the actual task-phase.

6.6 Conclusions

This study examined the time-evolution and spatial distribution of clusters found

across neural data obtained from ECoG arrays during a picture naming task. The

method successfully detects two or more clusters in six subjects performing a picture

naming task. One of the clusters overlays baseline period activation for all six sub-

jects, while the remaining cluster shows a clear task-related time-course modulation.

For the two unique subjects, the third cluster showed post-response activation, with

timing dependent on response initiation.

The methodology was able to separate both task-phase specific variation in brain

activation, and show how this underlying activation was modulated with task condi-

tions, over initial and repeat presentation of a stimulus. Using the stability clustering

method, it is possible to detect subtle changes in brain activation pattern modulation

with the conditions of task performance.
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Chapter 7

Identifying neuron communities

during a reach and grasp task using

an unsupervised clustering analysis

7.1 Abstract

Recent advances in brain-machine interfaces (BMIs) have allowed for high density

recordings using microelectrode arrays. However, these large datasets present a chal-

lenge in how to practically identify features of interest and discard non-task-related

neurons. Thus, we apply a previously reported unsupervised clustering analysis to

neural data acquired from a non-human primate as it performed a center-out reach-

and-grasp task. Although neurons were recorded from multiple arrays across motor
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and premotor areas, neurons were found to cluster into only two groups which differ

by their mean firing rate. No spatial distribution of neurons was evident in different

groups, either across arrays or at different depths. Using a Kalman filter to decode

arm, hand, and finger kinematics, we find that using neurons from only one of the

groups resulted in higher decoding accuracy (r=0.73) than using randomly selected

neurons (r = 0.68). This suggests that the proposed method can be used to prune

the input space and identify an optimal population of neurons for BMI tasks.

7.2 Introduction

Brain-machine interfaces (BMIs) have been developed to successfully decode upper

arm movements of monkeys in both open-loop [Taylor et al., 2002] and with real-

time feedback [Velliste et al., 2008]. Traditionally, BMI researchers have recorded

from single cortical sites and been limited to decoding from individual neurons that

are found to be tuned to the movement or otherwise task-related [Schwartz et al.,

2001]. However, recent advances in neural recording now allow for single session

datasets with multiple signals obtained at high sampling rates using microelectrode

arrays. This increased data has led to the decoding of more complex, multiple-DoF

movements [Vargas-Irwin et al., 2010].

Even in cases where multiple neurons are decoded, only individual contributions to the

decoding accuracy are considered and not how neurons function as a group. Neuronal

interactions are generally assumed to be stationary, and their groupings constant. In
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order to extend the capabilities of BMIs, the behavior of neurons as dynamically

evolving communities must be considered. For example, although a particular group

of neurons may show the highest decoding accuracy during one component of a task,

there is no reason to expect the same group will decode a different component similarly

well. Furthermore, not all single units from multichannel recordings are task-related

and thus potentially contribute only noise to the decoding filter. Presumably, neurons

that are not relevant to the task would exhibit different firing rate profiles and could

thus be identified and pruned from the input space ahead of time.

Finding community structure in neuronal data is complicated by several factors. First,

the true number of neuronal groups is not known - and thus methods that specify

the number of groups a priori artificially bias the observed structure. Second, most

grouping techniques are semi-supervised and thus require the specification of addi-

tional initial parameters [Slonim et al., 2005]. In order to overcome these issues,

we employ a novel clustering technique described by Humphries [Humphries, 2011],

which identifies neuronal communities based on similarities between spike trains. This

technique is also robust in that it self-determines the number of groups and clusters

neurons accordingly.

We apply this clustering technique to spiking data collected from primates as they

perform a center-out reach-and-grasp task. This paper has three goals: (1) we will

group across all trials for each neuron to determine whether neurons have a stereotypi-

cal response for identical motor movements, (2) we will then group across all neurons

and investigate how neurons are grouped spatially across arrays, and whether this
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grouping is different for each movement type, and (3) we will see if the resultant

grouping can be used for feature selection in decoding arm, hand, and finger kine-

matics. Thus, this work aims to provide a better understanding of neuronal behavior

across multiple cortical regions during a BMI motor task.

7.3 Methods

7.3.1 Experimental Setup

A male rhesus monkey (M mulatta) was visually cued to reach towards and grasp four

different objects at different spatial locations (Figure 7.1, middle). After grasping,

the monkey was required to rotate the sphere 45, pull the perpendicularly mounted

cylinder (mallet), depress the pushbutton, or pull the coaxial cylinder. Single-unit

activity was recorded using a Plexon (Dallas, TX) data acquisition system from five

floating microelectrode arrays (FMA) in the primary motor cortex (M1), one each in

dorsal (PMd) and ventral (PMv) premotor cortex, and one in the primary somatosen-

sory cortex (S1). Each FMA consisted of 16 electrodes and up to four single-units

could be discriminated per electrode. Upper-limb kinematics were simultaneously

tracked using a Vicon (Oxford, UK) motion capture system with 30 markers on the

forearm, palm, and individual fingers. Joint angles of the hand, wrist, and fingers

were calculated using methods described in [Aggarwal et al., 2011].
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7.3.2 Clustering Algorithm

Neurons were grouped using the clustering algorithm described in detail by Humphries

[Humphries, 2011] and implemented in Matlab 7.4 (MathWorks, Inc., Natick, MA).

A summary of the key steps is presented here.

As a pre-processing step, individual spike trains were first binned at different time

scales. The similarity between any two spike trains was assessed by computing the

Hamming distance, which is defined as the proportion of identical bins in each spike

train. In this fashion, a similarity matrix Formula was constructed for all pair-wise

comparisons of spike trains,

Cij = Cji = 1− hij (7.1)

where hij is the Hamming distance between the i-th and j-th spike trains. The

diagonal of C was set to zero, so that self-similarity would not influence grouping.

The clustering technique uses network theory to describe the similarity matrix as an

undirected network, where each spike train represents a node. The goal is to thus

maximize the modularity Q over all possible divisions of the network,

Q = Trace(ST (C − P )S) (7.2)

where C is the similarity matrix from before; P is the null-network model that cap-

tures the expected number of links within each community, and S is a matrix denoting
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which group that a node belongs to. In other words, P represents the pair-wise prob-

ability of spike trains forming connections with each other and is defined as,

Pij =
didj

m
, (7.3)

where di is the total strength of connections from node i, and m is the total strength

of all of the connections.

S represents the grouping matrix and is defined as,

Sij =



















1, if nodeiisingroupj

0, otherwise

(7.4)

Rather than fixing the number of groups a priori, both the number of groups and

group memberships of all nodes are determined iteratively. To determine an upper

bound on the number of possible groups, we performed singular value decomposition

on the modularity matrix B = C − P , and retained all N eigenvectors with posi-

tive eigenvalues. We then performed K-mean clustering for K = 2...N + 1 possible

groupings and calculated QK for each case.

In order to account for spurious groupings due to patterned firing of individual neu-

rons, the same grouping analysis was performed after randomly shuffling the inter-

spike intervals (ISIs) of each spike train to form new spike trains [Humphries, 2011].

While the mean and variance of the firing rates are unaltered, cross-correlations be-

tween spike trains are eliminated. The shuffling was repeated 20 times and the max-
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imum modularity score QC was used as an upper-bound for the control case. The

grouping matrix S that results in the maximum difference ∆Qmax between the mod-

ularity score for the experimental data and the control data is retained.

∆Qmax = max
k

(QK −QC) (7.5)

In order to determine the optimal number of groups and time scale for the clustering

analysis, a golden-section search with parabolic interpolation [Forsythe et al., 1977,

Brent, 1973] was used to repeat the clustering with varying bin sizes until it converged

to a maximal ∆Qmax, i.e. the maximally effective grouping.

7.3.3 Decoding Hand and Finger Kinematics

For continuous prediction of arm, hand, and finger kinematics, a single Kalman filter

was used to model the relationship between neural activity and the 18 joint angles.

In the Kalman framework described in detail in [Schieber and Hibbard, 1993], each

joint angle is modeled as the system state, X, and the mean spike firing rate during

the previous 100 ms is modeled as the observation, Y . At each discrete 20 ms time

step Formula, the observed neural activity is modeled as,

X(tk) = H(tk)Y (tk) + q(tk) (7.6)

and the state estimate model is defined as,
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Y (tk+1) = A(tk)Y (tk) + w(tk) (7.7)

where H and A are coefficient matrices, and q(t) N(0, Q) and w(t) N(0,W ). Neurons

with a mean firing rate of less than 1 Hz were removed from the population. Mutually

exclusive feature sets were used for training and testing, and results were averaged

using fivefold cross-validation.

7.4 Results

7.4.1 Single Neuron Analysis

Figure 7.1 shows the activity of a single neuron recorded from an array in M1, grouped

across all trials for each of the four object types (cylinder, pushbutton, mallet, sphere).

Individual trials were aligned to the time at which the monkey grasped the instructed

object. To facilitate comparison across movement types, a fixed bin size of 100 ms

was used for clustering. As can be seen, the neuron exhibited two different firing rate

responses (green, red) for each of the movements. This suggests that some extrinsic

factor unrelated to differences in the task conditions may affect the modulation of

that neuron.

This particular neuron shows a stereotypical increase in firing rate during the period

immediately preceding object grasp (t = 0), as did others from M1. Visual inspection

of the neural response for each group suggests that trials are separated primarily

146





based on differences in the firing patterns prior to grasping. Specifically, trials in the

green group appear to have a lower firing rate during the reach period than trials in

the red group.

7.4.2 Multiple Neurons, Combined Movements

Figure 7.2 shows the grouping across all neurons recorded from the eight FMAs. For

each neuron, all trials for the four object types were concatenated to form a single

continuous spike train. As can be seen in neurons were grouped into one of two

groups: neurons that fire sporadically (green, mean firing rate of 4.2 Hz) and neurons

with patterned activity or high firing rate (red, mean firing rate of 16.7 Hz). Grouping

across all movement types yielded an optimal bin size of 93 ms and a corresponding

∆Q of 218.4.

To investigate spatial patterns in the neuron groupings the location of each neuron,

colored according to its group membership. Neuron locations were determined from

the positions of each array and the known length of each electrode. The sphere

size for each neuron represents how strongly the neuron belongs to its group, and is

inversely proportional to the square of the Euclidian distance between the neuron’s

location in the eigenspace and the K-means centroid of the group. No clear spatial

organization is evident as neurons from both groups are distributed across all arrays

and at different cortical depths.

148







7.4.3 Comparing Group Membership

To compare how the same population of neurons was assigned to groups for each of the

different task conditions separately, we calculated the normalized mutual information

(MI) which provides a measure of how similar a group assignment from one set of

data is to another set of data through the following equation [Danon et al., 2005]:

MI(A,B) =

−2
CA
∑

i=1

CB
∑

j=1

Nij log
(

NijN

NiNj

)

CA
∑

i=1

Ni log
(

Ni

N

)

+Nj log
(

Nj

N

)

(7.8)

where N is a confusion matrix whose rows are group assignments for the first task

condition and columns are group assignments for the second task condition. Nij

is the number of nodes (i.e. neurons) in the first task condition’s i-th group that

appears in the second task condition’s j-th group. As seen in Figure 7.3, neurons

were assigned to relatively similar groups across all four task conditions, with the

smallest MI between the pushbutton and mallet object types.

7.4.4 Decoding Results

Figure 7.4 shows the Pearson correlation coefficients (r) for continuous prediction of

arm, hand, and finger kinematics as a function of high firing group 1 neurons (red), low

firing group 2 neurons (green), or randomly selected neurons (blue). The correlation

values shown are averaged across all 18 joint angles. As can be seen, the average

decoding accuracy using group 1 neurons was statistically significantly higher than

151





that using group 2 neurons or randomly selected neurons (p < 0.05). This difference

was more evident with fewer neurons (for n = 20: group 1, avgr = 0.73; group 2,

avgr = 0.63; random, avgr = 0.68). Therefore, this clustering method could help

prune the input space to use neurons that are optimal for decoding.

7.5 Discussion and Conclusions

It is somewhat surprising to discover that an individual neuron’s firing rate response

varied over time for a given movement, even though the monkey performed fairly

stereotypical movements for each object type. From the grouping analysis, we find

that neurons are separated based on how they respond to certain phases of the task,

which facilitates comparison of firing properties during a single response type. It is

also informative that the optimal grouping resulted in two groups, which suggests

that the elicited response may actually be influenced by some extrinsic binary factor

independent of the object being grasped, e.g., whether the monkey was gazing at the

target object during grasp or elsewhere. Without this grouping analysis, these trial-

to-trial variations in neuronal response would be hidden by the more global response

archetypes that are distributed over repeated trials.

Grouping across neurons from all arrays, however, no longer distinguishes groups

based on event-locked responses, but instead selects for differences in firing rate pro-

files over a longer timescale. In addition, this grouping analysis reveals that there is

no obvious spatial distribution of neurons from different groups, either across arrays
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or at different depths. This provides more evidence for a complex and heterogeneous

organization of the motor cortex, which has been found to lack strict somatotopy at

a fine scale [Schieber and Hibbard, 1993].

Lastly, it is important to note that the current clustering technique does not take into

account delays between different cortical areas. To account for this, we can compute

adjacency matrices for different sets of lags across arrays, and select for the optimal

lag that gives the largest ∆Q. This could reveal additional information about network

structure and also what delays exist between discrete cortical regions.
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Chapter 8

General Discussion

8.1 Summary and Significance of Results

The work presented here has demonstrated that effective connectivity models of neu-

ral recordings can be efficiently summarized with network measures. First, we showed

that EEG mu-band modulation can effectively restore smooth movement control to

spinocerebellar ataxia patients, with near-parity to control subjects’ control capabili-

ties. We then used PageRank centrality to determine how the important task-relevant

brain regions evolve over time based on connectivity measures in ECoG subjects.

Next we demonstrate that clustering using k-means on these ECoG signals can re-

veal task-relevant functional units in single trial analysis. An unsupervised clustering

method found inherent network structure without any a priori assumptions. Finally,

we identified functional communities from single unit activity using an eigenspectral
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clustering technique. These communities were used to improve decoding accuracy

of reach and grasp movements. The network methods utilized in this work showed

modulation with various aspects of the behavioral task. These results suggest that

BCI control could be improved through the appropriate implementation of network

measures.

8.1.1 Variation of EEG during BCI control

Mu band (7-12 Hz) power changes over left and right hand area of motor cortex were

shown to allow a severe spinocerebellar ataxia (SCA) patient to control a three-state

BCI system with nearly the accuracy of a healthy control. This control did not require

actual movements to be produced, but instead for the subject to imagine the intended

movement, bypassing the diseased motor-output pathway of the ataxia subject.

8.1.1.1 Limitations of three-state EEG BCI

While any improvement in the smoothness and accuracy of control achievable through

the use of a BCI is beneficial to the most severe spinocerebellar ataxia (SCA) patients,

further improvements in accuracy and degrees-of-freedom would increase the utility

of the system. The spatial resolution of EEG is limited, it is unlikely to be able to

differentiate between independent dimensions of movement control directly from M1

cortical recordings. Additionally, as has been discussed, high gamma power shows

high spatial specificity with modulation to highly specific movements, but this feature
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is not present in EEG recordings due to the low-pass filter effect of the skull.

To extend analysis to connectivity models, it is necessary to use recordings of higher

spatial and temporal resolution. This has led to the use of invasive ECoG recordings

to allow for improved signal properties which are amenable to connectivity analysis.

8.1.1.2 ECoG Network Analysis

8.1.1.2.1 Connectivity

The increased recording site density and higher frequency feature content of ECoG

recordings allows for the TV-DBN model to measure, with high specificity, the influ-

ence regions of the brain have on each other. These TV-DBN models were generated

in a phase-specific fashion with the performance of a reach-to-grasp task. By applying

network measures to these connectivity models, it has been shown that the central

electrodes for task performance are localized to areas of the brain previously impli-

cated in the specific aspect of task performance occurring throughout task execution.

These findings are consistent across multiple subjects, despite variation in coverage

and recording site density, suggesting that these responses are rather robust and

involve the coordination of multiple distinct cortical regions. These phase-specific

central electrode subsets also show modulation with task conditions, i.e., the config-

uration of the object being manipulated in a center-out reach-to-grasp task. These

findings suggest that the PageRank centrality measure reveals the network involve-

ment of brain regions as they evolve with the experimental task phases of visual
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processing, reaching, grasping, and object manipulation.

8.1.1.2.2 Stability Clustering

Stability clustering of ECoG high gamma power determined the number of inherent

brain states for a visual naming task. This number of states was then used as input

to k-means clustering to find functional units as they vary with task progression, at

single trial resolution. The centroids for the most stable number of clusters provide an

estimate of average activation patterns for the discrete cognitive processing phases.

As a result of the successful application of the method, stability clustering could be

used as the input to an unsupervised control system to allow for context-dependent

task-switching, in effect increasing the degrees-of-freedom of a BCI system.

The final consistency of the clustering across trials and the number of inherent clusters

varied between patients. This variability suggests that differing cognitive processes

are occurring for the same task across the subject population. However, it is also

possible that the areas contributing mainly to the modulation of the additional state

did not receive coverage for the majority of subjects.

8.1.2 Limitations of ECoG Network Analysis

While ECoG has substantially improved spatial and temporal revolution relative to

EEG, the main drawback is the inability to obtain global coverage with ECoG arrays.

For the majority of studies, ECoG placement is determined by clinical need, making it
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impossible to target areas for implantation of specific importance to the BCI control

task of interest.

ECoG is the recording of summed activity of large populations of neurons as they

synchronize firing, creating a dipole. As a result of the summed activity of large groups

of neurons modulating synchronously being detected by the electrode, it’s impossible

to infer the activity of small subsets of those neurons as they are implicated in task

execution. To localize activity to minimal functional units in a cortical region, it

became necessary to analyze single neuron recordings from microelectrode arrays.

8.1.2.1 Spike Community Detection

Eigenspectral clustering revealed that individual neurons were separated into distinct

functional units during the performance of a reach-to-grasp task in a task specific

manner.

These communities were not based on any obvious pattern, despite spatial distri-

butions both with array location and depth of electrode penetration were analyzed.

This supports the understanding that M1 cortex does not have a clear somatotopic

representation at the individual digit resolution.

8.1.3 Limitations of Spikes

Spikes provide the highest possible spatial and temporal resolution of any electro-

physiological recording. Coverage is even more limited with spikes than with ECoG,
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unfortunately, due to multielectrode arrays only being implantable within a single

contiguous region of cortical gray matter. Due to hardware limitations, it’s only

possible to record from a small number of arrays simultaneously, and even if that

weren’t a limitation, implanting of arrays requires invasive surgery, so comprehensive

coverage is not feasible. The combined effect of these limitations is that determining

the information flow across all of the cortical regions relevant to a particular task is

impractical at the single neuron level.

Connectivity models require measurement of the modulation of activity in disparate

regions as they co-occur, suggesting that it’s not possible to perfectly predict which

areas are of value to record from for a particular task. With a given set of array

placements, it’s possible to infer that an area drives the activity of another area.

With an additional area being covered simultaneously, however, it may become clear

that this area actually serves as an intermediary, driving activity in one area, and

being driven by the other area. Indirect connections such as these are not possible to

detect without full coverage, as suggested by this example, as a result these methods

cannot provide a full picture of the function of the brain given limitations of the

extent and consistency of cortical coverage.

With technological improvements, it may be expected that electrode density will con-

tinue to increase, allowing for a better representation of the global cortical activity.

As an alternative, the recordings of EEG, ECoG, microelectrodes, and even imaging

could potentially be co-registered and overlaid to establish a global multiscale per-

spective. This would require either that the recordings are obtained simultaneously,

160



or that the subject completes the task repeatedly under different recording method-

ologies, and the corresponding trials from the differing modalities are combined.

8.2 Future Work

There are many practical extensions of this connectivity work, for both online control

of a BCI, and for neuroscientific discovery or clinical implementation of network-based

activity mapping. Some direct extensions of this work are highlighted in this section.

8.2.1 Online Decoding

Centrality can improve online decoding in terms of efficiency and accuracy. A few

training trials would first be run to find the connectivity networks. Centrality could

then be used to determine which electrodes contribute most to the network. Those

channels could then be selected in use for an online classifier or decoder.

This implementation could consist of directly using the centrality values that show

the greatest task-relevant modulation. Alternatively, the connections between the

most central channels could be used for decoding. A third approach would be to use

the high-gamma power of the most central channels to decode directly. This final

option is the most similar to current techniques, but improves upon them by using

an unsupervised method for feature down-selection.
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8.2.2 Online Mapping

A system has been proposed for passive spatial-temporal functional mapping during

a language task [Wang et al., 2016]. As ECoG patients perform the specified task, the

high-gamma spectral power at each electrode is compared to baseline. This technique

is used to localize task-related modulation in the cortex.

A similar system could be designed utilizing network measures. Connectivity models

with centrality can be calculated on single trials. Upon each additional trial, the

connectivity results can be averaged, and the centrality can be recalculated. As the

connectivity structure converges to a stable network structure, the analysis can be

completed for a predetermined statistical confidence level, without requiring addi-

tional training trials. This could be useful for seizure monitoring and localization, as

well as for online BCI control feature selection.

8.2.2.1 Personalized PageRank

Personalized PageRank is a hybrid centrality measure which finds clusters based on

the local structure of a network [Fogaras et al., 2005]. It is based on finding the

connectivity structure of each individual node, and clustering based on locally strong

connections [Haveliwala, 2002,Jeh and Widom, 2003].

Through the application of personalized PageRank to the connectivity measures of

ECoG recordings, it becomes possible to combine the techniques utilized separately

throughout this thesis, i.e., centrality and clustering. The personalized PageRank
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technique will find both which electrodes overlay task-specific cortical modulation

drivers, as well as which electrodes they communicate most strongly with.

Through the application of this technique, a more holistic view of the network in-

volvement of the electrodes to the task would be provided. One case where this could

be useful could be in determining the specific network structure underlying a partic-

ular cortical area for a specific task phase. By limiting the analysis to performing the

personalized pagerank calculation on the electrode of interest, it’s possible to perform

this analysis in real-time during ECoG recording sessions.

8.2.2.2 Centrality of Predetermined Clusters

Once clustering is found, e.g., using the eigenspectral clustering method, a cluster

ordered adjacency matrix can be formed through a permutation.

A′ = P ∗AP, (8.1)

where P is the permutation matrix consisting of all zeros except 1 for each element

i, j where i is the original row and j is the row corresponding to the new ordering.

Each ordered sub-block of this matrix, consisting of n blocks, indicating the number of

clusters, can then be separated into its own matrix, containing only the connectivity

structure within that cluster. Centrality could then be found separately for each new

matrix. This would indicate which electrodes contribute the most to the network

structure of each cluster.
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This can be seen as an inversion of the previously described personalized PageRank

method. Instead of finding the connectivity structure of predetermined highly-central

electrodes to elucidate localized clustering, the network would first be partitioned, and

then centrality would be determined.

Techniques designed for segregated networks, which the partitioned network would

become, have been described [Carreras et al., 2007]. Partitioning of the network

prior to centrality calculation allows for the separate subnetworks to be analyzed

independently in parallel [Bader and Madduri, 2008]. This could lead to substantially

reduced computation time, and an increase in the feature space, e.g., number of

electrodes included in the model, in a real-time system.
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