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ABSTRACT 

Male breast cancer (MBC) occurs at less than 1% frequency of female breast 

cancer, and its actual etiology is still unclear. We hypothesize that males are protected 

from contracting breast cancer because the male-specific region of the human Y 

chromosome (MSY) has breast tumor suppressive function. Here, we show via 

fluorescence in situ hybridization (FISH) and droplet digital PCR (ddPCR) that Y 

chromosome was lost clonally at a frequency of ~15% (5/32) in two independently 

collated cohorts of MBC patients. We also show via FISH that this clonal Y loss occurred 

since ductal carcinoma in situ (DCIS) stage of MBC.  

Furthermore, we investigated regional loss of the Y chromosome in MBC patients 

who retained their Y chromosomes with STS-PCR (sequence-tagged-site PCR), derived 

from the male specific region of the Y chromosome Breakpoint Mapper (MSY-BPM), 

and showed nullisomic loss of TMSB4Y in a MBC patient. We showed via 

immunohistochemistry (IHC) that TMSB4Y is expressed in normal male breast tissue. 

Dox-inducible cell lines of TMSB4Y, TmY1 and TmY2, were generated in the female 

breast epithelial cell line MCF-10A background. Dox-induced expression of TMSB4Y 

resulted in altered morphology and reduced cell proliferation. Furthermore, reverse phase 

protein array (RPPA) analysis on TmY1 showed reduced expression of Syk (spleen 

tyrosine kinase) after Dox-induced expression of TMSB4Y.  

Interestingly, though TMSB4Y is highly homologous to its homologue TMSB4X 

on the X chromosome, the TMSB4Y antibody is solely specific to TMSB4Y, which 

suggests differences between TMSB4Y and TMSB4X.  
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Taken together, our results suggest that in situ clonal loss of human Y 

chromosome might contribute to MBC tumorigenesis, and that TMSB4Y is tumor 

suppressive through regulating breast cell morphology and reducing cell proliferation. 

 

Thesis Readers: 

Ben Ho Park, M.D., Ph.D., Thesis Advisor 

 Paula Hurley, Ph.D.   
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1  Introduction
 

 

 

 

 

 

 

Male breast cancer (MBC) is a rare disease 

 Male breast cancer (MBC) is a rare disease that occurs at a frequency of less than 

1% of female breast cancers, and MBC makes up less than 1% of all cancers in men [1-

3]. In the United States of America, an annual average of about 200,000 females will be 

diagnosed with FBC, and only about 2000 males will be diagnosed with MBC [4, 5]. 

Internationally, MBC is proposed to occur at a proposed average incidence rate of <1 per 

100,000 men per year [6]. Here, the cancer incidence rate is calculated as the number of 

new global cases of MBC per 100,000 men per year. After analyzing statistics across the 

continents of Asia, Europe, America, and Oceania, MBC incidence rate is the highest in 

Israel (1.24 per 100,000 per year) and the lowest in Thailand (0.16 per 100,000 per year). 

Furthermore, recent epidemiological MBC studies showed a steady increase in annual 

occurrence [2, 7, 8]. 
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Interestingly, Klinefelter patients, who are males with an extra X chromosome, 

are reported to have elevated risks for MBC [9].  

This unbalanced statistical occurrence of breast cancer resulted in a female biased 

availability of breast cancer research resources as well. Based on the established MBC 

frequency, pathological tissue banks will have 100 times less MBC tumor formalin-fixed 

paraffin embedded (FFPE) tissue deposits. Such rarity of MBC tissue samples at each 

individual institution across the world has resulted in very recent consolidation efforts 

such as the Male Breast Cancer Pooling Project led by the National Cancer Institute [10]. 

Such collation projects is ongoing and will take a long time due to the complexity of 

approval protocols of various institutions and countries. 

Irrefutably, cancer cell lines are crucial to the progress of cancer research [11]. 

The first breast cancer cell line established was BT-20 [12], and then widely used breast 

cancer cell lines include the MDA-MB-coded MD Anderson series and the MCF-7 

established by the Michigan Cancer Foundation [13, 14]. To date, the American Type 

Culture Collection (ATCC) has 58 human mammary gland/breast cell lines available in 

their comprehensive catalogue, and all of them are of female origin. We managed to 

acquire one single MBC cell line, COLO-824, available at the Leibniz-Institut DSMZ - 

Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ) in 

Germany. However, we were unable to validate its identity from its signature Rb1 

deletion, which was documented in the Catalogue of Somatic Mutations in Cancer 

(COSMIC) when we first acquired the cell line. Therefore, we could not utilize it for 

further study. 
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MBC versus female breast cancer 

Generally, MBC has a higher age of onset across Western, Middle Eastern, and 

South Asia compared to female breast cancer [15-17]. Unlike female breast cancer, MBC 

does not plateau after men become older than 50 years old and ethnically, more blacks 

than whites in the United States of America [18, 19]. 

Because of the rarity of MBC, most research studies are based on female breast 

cancer, and results are generally extrapolated into MBC clinical diagnosis and treatment  

[15]. However, clinical data from female breast cancer might not be entirely applicable to 

men since the etiology of MBC is still unclear, and studies have shown clinical and 

molecular differences in MBC when compared to female breast cancer. 

Clinically, surgical management of breast cancer is different in males and 

females. According to an analysis of 35 years of data (1973 to 2008) queried from the 

Surveillance, Epidemiology, and End Results (SEER) database, a majority of males with 

MBC with localized breast cancer (contained in breast) received mastectomy despite 

equivalent cause specific survival with lumpectomy or radiation therapy. In MBC, post 

mastectomy radiation therapy is not utilized extensively for patients with regional breast 

cancer (cancers in chest wall, skin, and regional lymph nodes) [20]. In general, it is noted 

that a majority of males usually do not opt for breast-conserving surgeries [21, 22]. 

Molecularly, breast cancers are traditionally classified according to their receptor 

status, namely Estrogen Receptor (ER), Progesterone Receptor (PR), and Her2 

(Epidermal Growth Factor Receptor 2). Females are exposed to hormonal cycles of 

estrogen and progesterone and it is logical for female breast cells express ER and PR, and 
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also for the ER+ and/or PR+ female breast cancer cells to maintain their expression. 

Interestingly, despite the lack of hormonal cycles in males, more than 75% of MBC is 

ER+ and/or PR+ [21, 22]. 

The current conceptual molecular subtyping of breast cancer combines 

information of the receptor status and tumor grade into several classes, namely 

Basal-like (Triple Negative), Luminal A (low grade and ER+), Luminal B (high grade 

and ER+), Luminal ER-/AR+, Her2+, and Normal-breast-like [23]. Claudin-low is a 

recently added molecular subtype that have opposite expression of tight junction genes 

(low) and epithelial-to-mesenchymal transition genes (high) [24]. These molecular 

subtypes were established mostly based on female breast cancer studies. Averaging 

across a few studies that grouped MBC cases accordingly, MBC mostly fall into Luminal 

A (~80%), some in Luminal B (~15%), and very few that are Basal-like (<5%) or Her2+ 

(<5%) [25-29]. Female breast cancers mostly fall into Luminal A (71%), some in Basal-

like (16%), and very few in Luminal B (6%) and Her2+ (6%) [30]. Interestingly, the 

percentages of Luminal B and Basal-like seem opposite for male and female breast 

cancers. 

 Recent sophisticated studies also highlight global genomic, transcriptomic, and 

proteomic differences between female and male breast cancers. Global gene expression 

profiling showed differences in at least 1000 genes between female and male breast 

cancers [31]. Using a computer framework called COpy Number and EXpression In 

Cancer (CONEXIC), cancer driver genes were shown to be largely different between 

male and female breast cancers as well [32]. 
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Physiologically, the human breast tissue lies behind the nipple on the chest wall. 

In males, it is generally considered non-functional, and also the total number of breast 

cells compared to females is significantly lower. Male breasts are not exposed to 

hormonal cycles like in females, but male breast cells do not escape genetic assaults like 

mutations that can lead to tumor formation. Since cancer is a genetic disease, and the 

fundamental genetic difference between males and females is the possession of the Y 

chromosome by males, genetics of the Y chromosome might play a role in why male 

breast cancer is a rare disease. 

 

The human Y chromosome is a genetic desert 

The human Y chromosome is one of the smallest human chromosomes, and it 

consists of 5% pseudoautosomal region (PAR) homologous to the X chromosome and 

95% of the male-specific region of the Y chromosome (MSY) [33]. The MSY is unique 

to males and only males have this genomic region. The MSY region was sequenced in 

2003, and it was revealed to be a mosaic of discrete euchromatic classes, namely 

X-transposed (99% identity to X chromosome), X-degenerate (ancient autosomal 

remnant sequences), and ampliconic (repetitive) [34]. Back then, they reported only about 

150 transcribed genes, with which only 80 are protein-coding, on the Y chromosome. 

Recent Y chromosome characterization has increased the total number of annotated genes 

to about 450 (according to the human genome map, National Center for Biotechnology 

Information), but the number of protein coding genes remain around 90 [35].  
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 The Y chromosome is best known for its role in sex determination and normal 

sperm production. SRY is the most well-known gene on the Y chromosome, and is 

established as the single determining factor for males [36]. Deletions of certain genomic 

loci on the Y chromosome is reported to cause azoospermic infertility in men [37]. 

 

Previous cytogenetic studies of MBC did not show in situ Y loss 

Previous early studies of MBC involved small case numbers, these include 

cytogenetic chromosome banding studies [38-40]. Even though the loss of Y 

chromosome had been reported as a nonrandom chromosome abnormality, results did not 

show in situ loss in tumor tissue. In these reports, the breast tumor tissues were 

dissociated, put through short term culture, and then underwent cytogenetic analysis. 

A recent 2013 study reported that loss of Y chromosome frequency was the same 

in their MBC patient group relative to their control group, and noted that this loss 

frequency increases sharply with age [41]. However, this study looked at sex 

chromosome aneuploidy in the peripheral blood of their human subjects. 

To date, there is no report that describes the in situ Y chromosome status in MBC. 
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Hypothesis 

 Cancer is a genetic disease. Considering the fact that the human Y chromosome is 

the fundamental genetic difference between males and females, and that MBC is a rare 

disease, we hypothesize that the human Y chromosome is tumor suppressive in breast 

cancer. Therefore, we hypothesize that the loss of Y chromosome contributes to the 

tumorigenesis of MBC. According to our hypothesis, the human Y chromosome should 

contain breast specific tumor suppressive gene(s), which can be potential target(s) of 

breast cancer therapy. 

 

 

 

 

 

  

 



8 
 

2  Materials and Methods
 

 

 

 

 

 

 

FFPE Tissue of MBC patients 

A total of 32 informative MBC patients were collated from 2 independent cohorts. 

Cohort 1 consisted of 15 MBC patients from the tumor tissue bank of Pathology 

Department of the Johns Hopkins Medical Institutes. Formalin-fixed paraffin embedded 

(FFPE) tissue blocks were available and samples were manufactured into a tissue 

microarray (TMA) for analysis. Cohort 2 consisted of a total of 20 MBC patients; 1 has 

the same source as cohort 1; the remaining 19 were obtained from the United States 

Department of Veterans Affairs. For cohort 2, only FFPE tissue slides were available, and 

3 out of 20 MBC patients were uninformative due to the quality of FFPE tissue. Thus, 

cohort 2 consisted of 17 informative MBC patients. 
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Fluorescence in situ hybridization (FISH) 

FFPE tissue slides were de-paraffinized by melting paraffin at 65°C for 5min, 

washed with Xylene for 3x15min, 100% EtOH for 2x5min, and air dried. Briefly, slides 

were pretreated, hybridized with FISH probes, and then mounted for microscope 

observation. Pretreatment was performed using Pretreatment Kit I (Abbott Molecular 

02J02-032). Slides were submerged for 20min in 0.2N HCl at RT, followed by 30min in 

Pretreatment Buffer (NaSCN) at 80°C, and then 16min in reconstituted protease solution 

at 37°C, rinsing and washing with diH2O and 2XSSC in between transitions. Slides were 

then dehydrated through 70%, 95%, then 100% EtOH, and dried for at least overnight. 

Probes were mixed with LSI/WCP Hybridization Buffer (Abbott Molecular 06J67-001) 

and heated to 45°C before being applied to tissue slides, which were denatured for 5min 

using the Statspin® Thermobrite slide processing system, and incubated at 37°C for 

48hrs in a humidity chamber. Slides were then washed in post-hybridization buffer (0.3% 

IGEPAL CA-630, Sigma 18896, in 2XSSC) for 4min at RT and then 3min at 75°C, 

counterstained with DAPI, and mounted with ProLong® Gold (Invitrogen, P36930). All 

fluorescence microscopy photos were imaged with NIS-Elements BR2.30. FISH probes 

used were all from Abbott Molecular: Vysis CEP X (DXZ1) SO Probe (Centromeric, 

05J08-033), Vysis CEP X (DXZ1) SA Probe (Centromeric, 05J09-033), Vysis CEP Y 

(DYZ1) SGn Probe (q arm, 05J10-034), Vysis CEP Y (DYZ3) SO Probe (Centromeric, 

05J08-035), and Vysis LSI SRY SO Probe (p arm, 05J27-089). 
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Droplet Digital PCR (ddPCR) 

Droplet digital PCR (ddPCR) was performed using the QX100™ Droplet Digital 

PCR System according to the manufacturer’s recommendations (BioRad, Hercules, CA), 

as previously described [42]. TaqMan® Copy Number Assays (Life Technologies) used 

were Hs00314226_cn (FAM labeled) for XK gene on the X chromosome and 

Hs04125506_cn (VIC labeled) for EIF1AY gene on the Y chromosome. The positive 

control gDNA (Promega) used were male human gDNA (G1471) and female human 

gDNA (G1521). ddPCR was performed with the BioRad’s recommended two-step 

thermo-cycling protocol with a 58°C annealing/extension step. All data analysis was 

performed using QuantaSoft (BioRad). 

 

gDNA extraction from FFPE tissue slides 

Patient tissue slides were first stained with hematoxylin and eosin using standard 

techniques and our pathologist circumscribed areas of tumor versus normal tissue. Serial 

tissue slides were de-paraffinized as in our FISH protocol, and pinpoint solution (Zymo 

Research, D3001-1) was applied specifically onto the tumor versus normal tissue areas. 

Genomic DNA was then extracted and purified from the dried pinpointed tissue areas 

using the QIAmp DNA FFPE tissue kit (Qiagen, 56404) as per the manufacturer’s 

protocol. 

 

STS-PCR 

Male specific region of the Y chromosome Breakpoint Mapper (MSY-BPM) [43] 

was used to analyze the sequence-tagged sites (STS) status of gDNA extracted from 
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patients. 33 sets of STS primers that cover the MSY region (Table 2) and standard PCR 

conditions described were used to amplify STSs from gDNA extracted from tumor and 

normal tissue from breast cancer patients. PCR products were then ran on a 1% agarose 

gel, and the presence and absence of the STS amplicons were compared between the 

tumor and normal gDNA. For every set of STS-PCR (33 PCR reactions), a positive 

control (gDNA from a healthy anonymous male) and a negative control (gDNA from a 

female cell line MCF-10A) were performed synchronously to ensure integrity of PCR 

reactions. Each set of STS-PCR was repeated 5 times for reproducibility. 

 

Cell culture 

TetHyg2.5, derivative of the nontumorigenic human breast epithelial cell line 

MCF-10A [44] was grown in DMEM/F12 (1:1) supplemented with insulin at 10 µg/mL, 

hydrocortisone at 0.5 µg/mL, and cholera toxin at 0.1 µg/mL (hereafter denoted as 

“supplemented DMEM/F12”), 5% horse serum (Gibco), EGF at 20 ng/mL, and 

hygromycin at 14.3 µg/mL. Dox-inducible TetHyg2.5 derivatives (EV, TmY1, TmY2, 

and UA3) were grown in supplemented DMEM/F12 with 5% Tet-free FBS (HyClone), 

EGF at 20 ng/mL, hygromycin at 7.15 µg/mL, and G418 at 120 µg/mL. 293 cells were 

grown in DMEM media with 5% FBS. All supplements were purchased from Sigma-

Aldrich unless otherwise specified. MCF-10A and 293 cells were purchased from 

American Type Culture Collection (ATCC). 
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Generation of Dox-inducible clones 

TetHyg2.5 cells were seeded at about 50% confluency in a T25 flask in 

supplemented DMEM/F12 with 5% Tet-free FBS (HyClone), EGF at 20 ng/mL, 

hygromycin at 14.3 µg/mL on day 0; cotransfected with pBI-EGFP vector (with TMSB4Y 

cloned in) and 6A vector (gives Neomycin resistance) on day 1; changed to selection 

media (supplemented DMEM/F12 with 5% Tet-free FBS (HyClone), EGF at 20 ng/mL, 

hygromycin at 7.15 µg/mL, and G418 at 120 µg/mL) on day 2. On day 5, all cells were 

replated into ten 96-well plates and observed for single-well clones that express GFP 

upon Dox-induction at 2ug/ml, for 48hrs. The single well clones were then expanded and 

characterized. EV (empty pBI-EGFP vector) was generated as a negative control cell line, 

and TmY1 and TmY2 were generated as Dox-inducible cell lines to express TMSB4Y. 

 

Immunoblotting 

For Dox-induction assays, TetHyg2.5 and its derivatives were seeded in 

respective media with and without Dox for 48hours before harvesting. For transient 

expression assays, 293 cells were transfected with expression vectors for TMSB4Y, 

TMSB4X, or FLAG-TMSB4X , and harvested 48hrs after transfection. Whole-cell protein 

lysates prepared using Laemmli sample buffer were resolved by SDS-PAGE using 

NuPAGE gels (Invitrogen), transferred to 0.2 µm pore size Invitrolon polyvinylidene 

difluoride (PVDF) membranes (Invitrogen), and probed with primary antibody followed 

by incubation with horseradish peroxidase-conjugated secondary antibodies. The primary 

antibodies used in this study include anti-TMSB4Y (clone 6G4) mouse monoclonal 

antibody (SAB1403013; Sigma Aldrich), anti-TMSB4X mouse antibody (SAB1406539; 
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Sigma Aldrich), anti-TMSB4X (clone 4H7) mouse monoclonal antibody (H00007114-

M03; Abnova), anti-FLAG M2 antibody (200472-21; Agilent), anti-rabbit IgG 

HRP-linked antibody (7074, Cell Signaling Technology), anti-mouse IgG HRP-linked 

antibody (7076, Cell Signaling Technology), and anti-GAPDH (D16H11) XP rabbit 

monoclonal antibody (5174; Cell Signaling Technology). Specific RPPA antibodies 

(according to the RPPA standard antibody list) used include anti-Syk mouse monoclonal 

antibody (sc1240, Santa Cruz), anti-Rictor (53A2) rabbit monoclonal antibody (2114, 

Cell Signaling Technology), anti-ATP5H mouse monoclonal antibody (ab110275, 

Abcam), anti-PDGF Receptor β (28E1) rabbit monoclonal antibody (3169, Cell Signaling 

Technology), anti-PREX1 rabbit polyclonal antibody (ab102739, Abcam), and anti-

PCNA mouse monoclonal antibody (ab29, Abcam). 

 

Cell line tissue block 

Cells were trypsinized and fixed in 10% buffered formalin overnight. Thereafter, 

cells were spun down and resuspended with minimal (1:1) 1X PBS, then mixed via 

pipetting with 2% agarose solution. Various mixtures solidified after 5minutes forming 

agar plugs, which were placed in 6-compartment tissue cassettes and processed into 

paraffin embedded tissue blocks, which were then processed into FFPE cell line tissue 

slides. 
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Immunohistochemistry 

Immunohistochemistry was performed on de-paraffinized (as in FISH protocol) 

patient tissue slides and the cell line tissue slides using the PowerVision + Poly-HRP 

anti-Mouse IHC Dectection System (Immunovision). Briefly, slides were steamed for 

40min in EDTA solution (Zymed) and incubated with anti-smooth muscle actin antibody 

mouse monoclonal (1:800 dilution, DAKO, m0851) or anti-TMSB4Y (clone 6G4) mouse 

monoclonal antibody (1:200 dilution, SAB1403013; Sigma Aldrich) overnight at 4°C. 

Poly-HRP anti-mouse IgG antibody was applied for 30min, and then visualized with 3,3’-

diaminobenzidine (Sigma) as the chromogen. Finally, slides were counterstained with 

hematoxylin. TBST rinses were performed in between steps. 

 

Cell proliferation assay 

Exponentially growing TetHyg2.5 cells were washed with HBSS twice and 

seeded in supplemented DMEM/F12 with 1% Tet-free FBS (HyClone), EGF at a 

physiological dose of 0.2 ng/mL, and hygromycin at 14.3 µg/mL. TetHyg2.5 and Dox-

inducible TetHyg2.5 derivatives (EV, TmY1, and TmY2) were seeded in supplemented 

DMEM/F12 with 1% Tet-free FBS (HyClone), EGF at a physiological dose of 0.2 

ng/mL, hygromycin at 7.15 µg/mL, and G418 at 120 µg/mL. Dox induction was done by 

seeding cells with the respective media with 2µg/mL of Dox. 2 x 104 cells per well of a 

6-well tissue culture dish on day 0. Medium was changed every third day, and cells were 

harvested for cell counting on days 3, 6, 7, 13, and 18 using a Beckman Coulter® Vi-

CELL™ XR Cell Viability Analyzer. On matched days, cell counts of Dox-induced cells 

were graphed relative to cell counts of non-induced cells as a percentage of proliferation. 
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Statistical analysis 

All statistical analyses were conducted with GraphPad Prism software. For the t-

tests conducted, P<0.05 was considered significant. 

 

Reverse phase protein array (RPPA) 

Cell lines TeHyg2.5, EV, and TmY1 were grown in 6-wells with and without 

Dox-induction for 48hrs, and lysates were harvested at a confluency of 80% to 90% using 

the lysis buffer and 4X SDS sample buffer provided by the RPPA Core Facility – 

Functional Proteomics of the MD Anderson Cancer Center, University of Texas. Lysates 

were prepared strictly accordingly to the protocol provided by the RPPA Core Facility. 

Briefly, cellular proteins were denatured by 1% SDS (with beta-mercaptoethanol) and 

diluted in five 2-fold serial dilutions in dilution buffer (lysis buffer containing 1% SDS). 

Serial diluted lysates were arrayed on nitrocellulose-coated slides (Grace Biolab) by 

Aushon 2470 Arrayer (Aushon BioSystems). Total 5808 array spots were arranged on 

each slide including the spots corresponding to positive and negative controls prepared 

from mixed cell lysates or dilution buffer, respectively. Each slide was probed with a 

validated primary antibody plus a biotin-conjugated secondary antibody. Only antibodies 

with a Pearson correlation coefficient between RPPA and western blotting of greater than 

0.7 were used in reverse phase protein array study. Antibodies with a single or dominant 

band on western blotting were further assessed by direct comparison to RPPA using cell 

lines with differential protein expression or modulated with ligands/inhibitors or siRNA 

for phospho- or structural proteins, respectively. The signal obtained was amplified using 

a Dako Cytomation–catalyzed system (Dako) and visualized by DAB colorimetric 
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reaction. The slides were scanned, analyzed, and quantified using a customized-software 

Microvigene (VigeneTech Inc.) to generate spot intensity. Each dilution curve was fitted 

with a logistic model (“Supercurve Fitting” developed by the Department of 

Bioinformatics and Computational Biology in MD Anderson Cancer Center, 

“http://bioinformatics.mdanderson.org/OOMPA”). This fits a single curve using all the 

samples (i.e., dilution series) on a slide with the signal intensity as the response variable 

and the dilution steps are independent variable. The fitted curve is plotted with the signal 

intensities – both observed and fitted - on the y-axis and the log2-concentration of 

proteins on the x-axis for diagnostic purposes. The protein concentrations of each set of 

slides were then normalized by median polish, which was corrected across samples by the 

linear expression values using the median expression levels of all antibody experiments 

to calculate a loading correction factor for each sample. 
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3  Results
 

 

 

 

 

 

 

Clonal loss of Y chromosome in MBC 

To address the hypothesis that Y chromosome might have a protective role in 

breast cancer, we investigated the presence or absence of Y chromosome in MBC 

patients. A loss of Y chromosome would support our hypothesis of Y chromosome’s 

protective role in breast cancer. Here, we obtained FFPE tissue blocks of MBC tissue of 

15 patients (cohort 1), manufactured them into a tissue microarray (TMA), and analyzed 

the sex chromosome statuses by FISH (Fig. 1). To survey the entire Y chromosome, we 

used various combinations of sex chromosome enumeration FISH probes specific for the 

short arm, centromere, and long arm of the Y chromosome (Fig. 2), and we observed 

clonal loss of whole Y chromosome in ~13.33% (2 out of 15) MBC patients. Here, we 

are the first to report in situ clonal loss of Y chromosome in MBC, whereas previous 

cytogenetic reports [38-40, 45] did not show in situ clonal of Y loss. 



18 
 

Next, we obtained 20 more MBC patient FFPE slides, but only 17 MBC patients 

were informative (cohort 2). We were unable to obtain FFPE tissue blocks for these 

samples, we could not manufacture another TMA. Therefore, we analyzed gDNA 

extracted from these FFPE tissue serial slides with ddPCR, using taqman probes and 

primers specific to sex chromosomes (Table 1). The ratio of Y vs X taqman positive 

droplet signal (ratio Y/X) of our known Y loss patient (Patient 19) was 0.193, the residual 

Y signal in this sample was attributed to contamination of normal gDNA within the 

tumor tissue. Subsequently, a ratio Y/X of lower than ~0.2 is considered a most possible 

Y loss patient; a ratio Y/X of between ~0.2 to ~0.4 is considered a probable Y loss 

patient; and a ratio Y/X of higher than ~0.4 is considered a Y retention patient. gDNA 

from one patient (Patient 18) yielded uninformative ddPCR results. Using ddPCR as a 

first pass analysis, we observed 6 out of 17 analyzable MBC patients who have possible 

Y loss. FISH was performed successfully in 14 out of these 17 patients to validate the 

presence or absence of sex chromosomes. Among the 6 patients with the lowest Ratio 

Y/X (range of 0.0 to 0.4), and it is confirmed that the 2 MBC patients with Ratio Y/X 

smaller than 0.2 and 1 MBC patient with a Ratio Y/X of ~0.4 are Y loss cases. Therefore, 

for cohort 2, we observed clonal loss of Y chromosome in ~17.65% (3 out of 17) MBC 

patients. 

Combining results from the two independent cohorts of MBC patients, we 

observed a Y loss frequency of ~15% (5 out of 32 MBC patients). 
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Loss of Y chromosome in MBC since DCIS 

After observing the loss of whole Y chromosome in MBC tissue, we investigated 

whether Y was lost in the ductal carcinoma in situ (DCIS) stage of MBC. Therefore, we 

obtained DCIS tissue of one of the Y loss patients (Fig. 3A). An anti-smooth muscle actin 

stain verified that the tissue was DCIS (Fig. 3B), and we showed via FISH that Y was 

lost since DCIS, where the DCIS tissue has the absence of the Y chromosome while the 

adjacent stromal tissue retained the Y chromosome (Fig. 3C). 

 

Nullisomic loss of TMSB4Y in male breast cancer patient 

In MBC samples that retained the Y chromosome, Y FISH signals were aberrant 

in tumor cells compared to the surrounding stromal cells in the fibrous tissue (Fig. 1B, Y 

Probe panel). Thus, we hypothesized that the Y chromosome in MBC tumor cells might 

be chromosomally unstable, also based on previous studies that microdeletions are 

common within the Y chromosome [46-50]. To investigate this, we extracted gDNA of 

five MBC patients who retained the Y chromosome, and amplified 33 Sequence Tagged 

Sites (STSs) with standard PCR (Table 2, Fig. 4) within the MSY based on the MSY-BM 

[43]. Paired tumor vs normal gDNA (labeled by pathologist) were extracted from FFPE 

slides, and only three out of our five patients were analyzable due to the quality of the 

extracted FFPE gDNA. STS primer set S27 was not amplified from any FFPE gDNA, 

because the amplicon size is ~1kb and thus cannot be amplified from fragmented FFPE 

gDNA. 

Interestingly, STS primer S17 did not amplify at all for the tumor gDNA for one 

of the three analyzable MBC patients, but it amplified for his paired normal gDNA 
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(Fig. 5). STS primer S17 amplifies STS sY1230, which spans exon1 and intron 1 of 

TMSB4Y, the gene coding for an actin sequestering protein, Thymosin Beta 4, Y-linked. 

Therefore, our STS-PCR data showed the nullisomic loss of TMSB4Y in MBC the tumor 

gDNA of one of our MBC patients who retained the Y chromosome. 

 

TMSB4Y is expressed in normal male breast tissue 

We performed immunohistochemistry for TMSB4Y on breast tissue of one of our 

patients who lost the Y chromosome in his breast cancer cells. In this patient, the normal 

acini were more strongly stained compared to the tumor tissue (Fig. 6), and any faint 

staining in fibrous tissue and tumor cells was attributed to a low level of background 

nonspecific staining. This shows that TMSB4Y is expressed in normal male breast tissue, 

and apparently not expressed after the loss of Y chromosome. 

 

TMSB4Y expression alters breast epithelial cell morphology 

To investigate the effects of TMSB4Y in breast cells, we generated stable Dox-

inducible clones in the TetHyg2.5 cell line. TetHyg2.5 is MCF-10A that is engineered to 

permanently express the reverse Tet repressor; MCF10A is a genetically stable 

nontumorigenic breast epithelial cell line [44]. TMSB4Y was cloned into the bidirectional 

pBI-EGFP vector, which contains the Tet response element, and expresses GFP 

simultaneously with TMSB4Y. We generated TmY1 and TmY2, two Dox-inducible cell 

lines that express both GFP and TMSB4Y when induced with Dox. EV contains the pBI-

EGFP empty vector and expresses only GFP when induced with Dox. Expression of 

TMSB4Y after Dox-induction was verified via western blotting (Fig. 7A) and 
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immunohistochemistry (IHC) on tissue cell blocks made from the generated cell lines 

(Fig. 7B). Apparently, TmY1 has stronger induction of TMSB4Y compared to TmY2. It is 

noteworthy that transient expression of GFP in MCF-10A cells is non-toxic (Fig. 8). 

Dox-induction of TMSB4Y changes the morphology of TmY1 and TmY2 cell 

lines drastically (Fig. 9A), where cells become enlarged and distorted. Furthermore, 

F-actin staining after Dox-induction of TmY1 confirms this alteration in cell morphology 

(Fig. 9B). 

 

TMSB4Y expression reduces cell proliferation 

In Fig. 10A, Dox-induction of TMSB4Y significantly reduced the growth rates of 

TmY1 and TmY2 by about 30% when compared to TetHyg2.5 and EV (P < 0.05) in a 6-

day growth assay, where cell counts of Dox-induced cells were plotted as a percentage of 

cell counts of non-induced cells. This reduction is proliferation was also observed in a 

detailed growth assay where cell counts were taken on days 0, 3, 7, 13, and 18 (Fig. 10B). 

 

Syk expression is reduced after Dox-induced TMSB4Y expression 

In order to find the possible cause of the effects of TMSB4Y expression on cell 

morphology and proliferation, we utilized reverse phase protein array (RPPA) to 

investigate global protein expression changes in TmY1 after Dox-induction. The change 

in expression of other proteins might allow us to tease out genetic pathways regulated by 

TMSB4Y. TetHyg2.5 and EV were analyzed with RPPA as negative controls. The RPPA 

heatmap (Fig. 11A) indicates relative protein expression by a color pattern, where green 
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equates to low expression, and red equates to high expression. We are interested only in 

protein candidates that are either noticeably increased or decreased for only TmY1+Dox, 

and then a similar color pattern for the rest of the samples (TetHyg2.5, TetHyg2.5+Dox, 

EV, EV+Dox, TmY1). According to this observation pattern, 6 protein candidates were 

noted. Expression of Rictor was increased, whereas the expression of Syk, ATP5H, 

PCNA, PDGFRβ, and Prex1 were decreased. Their specific antibodies (according to the 

RPPA standard list) were utilized to validate the RPPA results. For 5 protein candidates, 

expression difference was either too subtle, or the antibodies exhibited high 

non-specificity towards our lysates. Eventually, we were only able to validate the reduced 

expression (P<0.05) of Syk (spleen tyrosine kinase) after Dox-induced expression of 

TMSB4Y in both TmY1 and TmY2 (Fig. 11B).  

 

TMSB4Y is different from its homologue TMSB4X 

TMSB4Y has an X-linked homologue TMSB4X, and they are different only by 

three out of 44 amino acids. However, their antibodies clearly do not cross-react, which 

shows that the three amino acid differences cause apparent differences between TMSB4Y 

and TMSB4X. We transiently expressed TMSB4X in 293 cells, and we did not observe 

any bands on western blots with our specific anti-TMSB4Y and also our two anti-

TMSB4X antibodies (results not shown). Therefore, we expressed FLAG-TMSB4X in 293 

cells, confirmed the expression of TMSB4X by blotting for FLAG, and then confirmed 

that our specific TMSB4Y antibody cannot detect FLAG-TMSB4X (Fig. 12). 
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Figure 1. Clonal loss of Y chromosome in MBC 

A, Normal somatic male breast acinus has both X and Y sex chromosomes. 

B, Male breast cancer tissue that retained both X and Y sex chromosomes. 

C, Male breast cancer tissue that retained X chromosomes, lost the Y chromosome 

clonally in cancer tissue, but retained Y chromosome in surrounding somatic tissue. 

Red, X chromosome FISH Probe; Green, Y chromosome FISH Probe; Blue, DAPI. 
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Figure 2. FISH probes for sex chromosomes 

In the schematic of the sex chromosomes, the Y-shaped figure represents the Y 

chromosome and the X-shaped figure represents the X chromosome.  

A, Various probes we used for both X and Y sex chromosomes. We have red probes for 

p-arm and centromere of Y chromosome; green probe for q-arm of Y chromosome; red 

and violet probes for centromere of X chromosome. 

B, C, and D, three combinations of FISH probes we used for FISH on patient tissues. 
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S/No Patient ID 
Positive ddPCR Droplets 

Ratio Y/X Observation * Y Chr 

Taqman 

X Chr 

Taqman 

01 0751724 3J 5 7 524 0.013 (F) Y Loss 

02 0251354 A 5 6 114 0.053 (F) Y Loss 

03 1154102 4A 5 357 1009 0.354 (F) Y Retention ** 

04 995209 C 5 217 566 0.383 (F) Y Retention ** 

05 0251134 A 5 84 205 0.410 (F) Y Loss 

06 0051749 P 5 54 116 0.466 Y Retention 

07 0752630 1D 5 47 73 0.644 (F) Y Retention 

08 0252481 B 5 17 24 0.708 (F) Y retention 

09 0251600 M 5 158 196 0.806 (F) Y Retention 

10 0453365 C 5 57 52 1.096 (F) Y retention 

11 9952907 H 5 134 117 1.145 (F) Y retention 

12 972005 L 5 334 214 1.561 (F) Y retention 

13 0854095 2F 5 482 293 1.645 (F) Y retention 

14 0953927 1d 5 156 91 1.714 Y retention 

15 1251936 4E 5 2067 1188 1.740 (F) Y retention 

16 115759 1T 5 53 23 2.304 Y retention 

17 S13 1824 252 86 2.930 (F) Y retention 

18 9651911 B 5 3 1 3.000 Uninformative 

19 06-70864 101 523 0.193 (F) Y Loss Patient 

20 Male gDNA 2628 2720 0.966 Male Control 

21 Female gDNA 0 3451 0.000 Female Control 

 

*(F) refers to FISH verified patients.  

** Denotes MBC patients who have duplication of X chromosome. 

Table 1. Y Loss in MBC Patients Shown via droplet digital PCR (ddPCR) 

Tumor gDNA was extracted from FFPE tissue slides of MBC patients and analyzed with 

ddPCR Taqman probes specific for X and Y chromosomes. Promega Male and Female 

gDNA were used as control for probe specificity; Patient 19 (from cohort 1) showed Y 

Loss and is as a gauge of the possible base level gDNA contamination from normal tissue 

during FFPE extraction. 14 out of 17 ddPCR-analyzable patients were validated with 

FISH; 3 patients had FFPE tissue that cannot be validated with FISH. 
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Figure 3. Clonal loss of Y chromosome in MBC since DCIS 

A, H&E Stain of a DCIS lesion of a male breast cancer patient who lost the Y 

chromosome in his cancer tissue. 

B, Anti-smooth muscle actin stain confirms that the well- circumscribed lesion is a DCIS 

lesion. 

C, DCIS lesion (left) retained X chromosomes, lost the Y chromosome clonally, but 

retained Y chromosome in adjacent somatic tissue (right). Red arrows point to the X-

probe signal and green arrow points to the Y-probe signal.  

Red, X chromosome FISH Probe; Green, Y chromosome FISH Probe; Blue, DAPI. 
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S/No. STS Identifier Primer 1 Primer 2 
S01 sY1247 GAACTCTGCAAACCTCCTGG TTTTGAGGCGGAGTCTCG 

S02 sY14 GAATATTCCCGCTCTCCGGA GCTGGTGCTCCATTCTTGAG 

S03 sY274 TTAAGGGGACAGTATTTCAACTTC CCACATTTAAACTGAGTACAGTCC 

S04 sY238 AACAAGTGAGTTCCACAGGG GCAAAGCAGCATTCAAAACA 

S05 sY1254 GACCAATTTGTCTTTGTTGCG GCTGCTGAAGTCGGCGTA 

S06 sY1240 GGGTCCTAGATAGGCTCCAAG TTCATGTTGGCAGTGATTGG 

S07 sY276 CCTACCGCATCAGTGAATTTC TCTGTATGTGGAGTACACATGG 

S08 sY1238 GGTGTGCTAACATTGCATGG TTTGTTCCATTTCAGAGCGA 

S09 sY637 CCTGCCTTTTTTAGTTTCCAGCA TACTGTGATAGGTAGAATAATGGC 

S10 sY1319 ACCTGTCTGGGAAACACCTC GAGCCCTACAACCAGCTTCA 

S11 sY1250 TTTTTCTAACCTTGCCTGCG TGCAGAGAAGCAGCCTACAA 

S12 sY1251 GACTGGAGTGGAACGGTCTC TCACTTCCCTCCGATTTTCT 

S13 sY1317 GAGATTACAGGCATGCACCA CCACACTTAGCCCACAGTCA 

S14 sY1316 AAGGCAGGTCTGATGCATGT AAAGAAAGCTGCCTCATAGCA 

S15 sY1234 TTACCCCTTTCACCCACTGA CCATAAACTACACAAGGACGAACT 

S16 sY1231 TTGCACCCGTAGTCAAATGT ACCCACAACTCAAATCGTCT 

S17 sY1230 CTCTTCCAAGCCAGCCTTTA AACCTTTGCAAGCCACATTC 

S18 sY90 CAGTGCCCCATAACACTTTC ATGGTAATACAGCAGCTCGC 

S19 sY1239 CCTAGCTCTCTTTTTCTTGCAG CAAATATCGCCAGTGAGGCT 

S20 sY210 ATCACTTGGCAGCTTTTCC GCACTGCAACTTTTATGCCT 

S21 sY121 AGTTCACAGAATGGAGCCTG CCTGTGACTCCAGTTTGGTC 

S22 sY1322 TGGAAACATTCTCAACAGGGA GGCATTTCTCGCATGAGTTT 

S23 sY280 AACTGTACTCCTGGGTAGCCTG CTCCCGTGGGGATGAAGATAATA 

S24 sY1233 TCTCCGGTATCCTGATGGAG AAATAGGGCATTCCCAGCTC 

S25 sY1682 GGTTGCACCGTAAAAGGAGA GTCTGTCAAGACAGCGTCCA 

S26 sY142 AGCTTCTATTCGAGGGCTTC CTCTCTGCAATCCCTGACAT 

S27 sY1258 AACCCCATCTCTAGCAAAAATATG TAGGTGACAGGGCAGGATTC 

S28 sY1197 TCATTTGTGTCCTTCTCTTGGA CTAAGCCAGGAACTTGCCAC 

S29 sY1191 CCAGACGTTCTACCCTTTCG GAGCCGAGATCCAGTTACCA 

S30 sY1291 TAAAAGGCAGAACTGCCAGG GGGAGAAAAGTTCTGCAACG 

S31 sY1201 CCGACTTCCACAATGGCT GGGAGAAAAGTTCTGCAACG 

S32 sY1166 AGTCGGAGTCGGAGTGTGAT ATTCCATTGCTTTCCATTGC 

S33 sY1273 GAGCTGCAACATAACAGGCA AGGGGAACATCACACTCTGG 

 

Table 2. 33 Pairs of Landmark STS Primers within the MSY 

33 STSs spanning the male specific region of the human Y chromosome (MSY), as 

shown in the MSY Breakpoint Mapper [43]. 
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Figure 4. Amplicons of STS-PCR (Sequence-Tagged Sites PCR) 

The 33 pairs of MSY Breakpoint Mapper (MSY-BP) primers, S01 to S33, amplify 

sequence-tagged sites spread across the Male Specific Region of the Y chromosome 

(MSY). PCR was performed on gDNA extracted from a normal human male. The 

amplicon sizes range from 176bp to 968bp. S13 is uninformative; S12, S28, S32, and S33 

each have one extra nonspecific amplicon. GAPDH is the positive control. 
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Figure 5. STS-PCR results of MBC patient 

A, Each STS-PCR is repeated 5 times on the matched tumor and normal FFPE gDNA 

from the patient. Each of the 33 sets of tumor vs normal STS-PCR is presented in a 

decagon. The relative segment of the decagon is filled only if the PCR reaction fired; 

tumor STS-PCR is filled with blue, represented by the five decagon segments on the left; 

normal STS-PCR is filled with red, represented by the five decagon segments on the 

right. 

B, Primer sets S13 and S27 are uninformative. A majority of the decagons are completely 

filled, which signifies that both tumor and normal gDNA retained that respective STS. 

Only S17 is lost in tumor gDNA, but retained in normal gDNA. 
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Figure 6. TMSB4Y is expressed in normal male breast tissue 

Immunohistochemistry (IHC) for TMSB4Y was performed on breast tissue from a male 

breast cancer patient who lost his Y chromosome (shown previously via FISH). Normal 

acini are more strongly stained compared to tumor tissue, which has no staining above a 

low level of background nonspecific staining. 
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Figure 7. Verification of TMSB4Y expression in Dox-inducible clones 

TMSB4Y is cloned into the pBI-EGFP vector and transfected into the TetHyg2.5 to make 

Dox-inducible clones. TmY1 and TmY2 express TMSB4Y upon Dox induction, shown 

via western blotting (A) and immunohistochemistry on tissue cell blocks (B). 

293 transient transfection is the positive control; TetHyg2.5 expresses the reverse Tet 

repressor and is derived from MCF-10A; EV is generated with the empty pBI-EGFP 

vector. 
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Figure 8. Transient expression of GFP in MCF-10A cells is non-toxic 

Transient expression of GFP in MCF-10A cells has no noticeable effect, as shown in 

phase contrast microscopy (left) and GFP fluorescent signals (right). 
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Figure 9. TMSB4Y expression induces morphological changes 

Dox-induction expresses TMSB4Y in Dox-inducible clones, and results in aberrant 

morphological changes. 

A, Phase contrast and GFP images of TmY1 and TmY2 show enlargement and distortion 

of cells after Dox induction. 

B, F-actin staining of TmY1 confirms the aberrant morphological changes after Dox-

induction. 

TetHyg2.5 expresses the reverse Tet repressor and is derived from MCF-10A; EV is 

generated with the empty pBI-EGFP vector. 
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Figure 10. TMSB4Y expression reduces cell proliferation 

Dox-induction expresses TMSB4Y in Dox-inducible clones, and results in reduction in 

proliferation. 

A, TmY1 and TmY2 exhibited ~30% of reduced proliferation upon Dox induction 

(P < 0.05), after 6 days of growth. 

B, A persistent ~30% of reduced proliferation after Dox-induction in both TmY1 and 

TmY2 was observed in a detailed growth assay, with cell counts at Days 3, 7, 13, and 18.  

TetHyg2.5 expresses the reverse Tet repressor and is derived from MCF-10A; EV is 

generated with the empty pBI-EGFP vector. 
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Figure 11. Syk expression is reduced after Dox-induced TMSB4Y expression 

Reverse phase protein array (RPPA) was utilized to investigate global protein expression 

patterns in TetHyg2.5, EV, and TmY1 before and after Dox-induction. 

A, RPPA heatmap. Green means low protein expression, and red means high protein 

expression. Syk expression is green only for TmY1+Dox. Therefore, Syk expression in 

TmY1 is reduced when TMSB4Y is expressed. 

B, Syk expression is reduced for both TmY1 and TmY2 after Dox-induced expression of 

TMSB4Y. Densitometry of the western blot shows that this reduction is significant 

(P<0.05). 
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Figure 12. TMSB4Y is different from its homologue TMSB4X 

TMSB4X is a gene on the X chromosome, and it only differs from TMSB4Y by three out 

of 44 amino acids. Here, we transiently expressed TMSB4Y and FLAG-TMSB4X in 293 

cells, and despite the close homology, our specific TMSB4Y antibody did not detect 

TMSB4X. TMSB4X expression was confirmed via blotting for FLAG. 
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4  Discussion
 

 

 

 

 

 

 

Cancer is a disease fundamentally caused by a successive series of genetic 

alterations that lead to selective proliferative advantages in a single starting cell, which 

expands into a tumorigenic clone. This classic “Vogelgram” model of sequential 

accumulation of carcinogenic mutations was first described in colorectal cancer, where 

progressive accumulation of mutations in APC (from normal to early adenoma), KRAS 

(from early to intermediate adenoma), SMAD4 (from intermediate to late adenoma), and 

then p53 which eventually leads to colorectal carcinoma [51]. All the cells that originate 

from this clone will retain specific genetic signatures acquired in this tumorigenic 

process. Therefore, our novel FISH report of in situ clonal loss of Y chromosome in 

MBC increases the weight of evidence that Y loss contributes to the tumorigenesis of 

MBC. 

Even though our total MBC sample size of 32 patients is small, it is noteworthy 

that the Y loss frequency is consistently ~15% in these 2 independent cohort of MBC 
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patients. Because there is an international effort to consolidate MBC samples that our 

research group is involved in, we anticipate to greatly expand our sample size to confirm 

this average frequency of ~15% clonal Y loss in MBC. 

Interestingly, we also saw the loss of Y chromosome in the DCIS tissue of one of 

our MBC patients who has clonal Y loss in his tumor tissue (Fig 3). DCIS slides were 

only available for 1 out of 5 of our Y loss patients. In consonant with the concept of 

progressive accumulation of genetic mutations in tumorigenesis, Y loss seems to have 

already happened since DCIS, which suggests that Y loss might be an early contributive 

oncogenic factor. However, since we only showed this in one MBC patient, this aspect of 

our study needs to be expanded after collation of more MBC samples with available 

DCIS tissue. 

FISH presents clonal Y loss clearly in situ, however, the success of FISH is 

dependent on the quality of the FFPE tissue. Therefore, we established a much more 

sensitive technique of droplet digital PCR (ddPCR) to analyze Y loss in MBC, as shown 

in our results in patients of cohort 2. However, we have to be cautious when analyzing 

ddPCR results. Here, we utilized the Y/X fluorescent ddPCR readout ratio to evaluate Y 

loss status in ddPCR. The loss of Y will skew the Y/X ratio towards zero. ddPCR is a 

very sensitive technique, and because there is always normal stromal cells and tissue 

around the tumor tissue, genomic DNA of these normal cells amongst tumor cells serves 

as contaminating ddPCR readouts. Our previous case study, where we established ddPCR 

as a tool to analyze loss of heterozygosity of BRCA2 alleles, also shows a basal level of 

contamination from surrounding normal stromal cells [52]. Therefore, when analyzing 

ddPCR results, we have to take this basal level of contamination from normal gDNA into 
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account, which is shown in our Y/X ratio. According to our Y/X ratios consolidated in 

Table 1, our three Y loss patients from cohort 2 have Y/X ratios of 0.013 (1.3%), 0.053 

(5.3%), and 0.41 (41%); our control Y loss patient has a Y/X ratio of 0.193 (19.3%). The 

high level of 41% contamination from normal stromal cells was unexpected, and when 

we relooked at the H&E section of the tumor area we selected for extraction, there was a 

high level of normal stromal cells, which explains this high level of contaminating Y 

readouts in a Y loss patient (validated by FISH). Therefore, caution has to be taken while 

selecting tissue areas on the FFPE slides for gDNA extraction. Targeted tumor areas for 

gDNA extraction should have a tumor cell population as pure as possible. A strict cutoff 

for Y/X ratio of below 0.010 (10%) should be established if only looking at ddPCR 

results. Any Y/X ratios between 0.010 (10%) to 0.040 (40%) should definitely be 

validated with FISH, otherwise, their Y loss status (based on ddPCR) is debatable. Here, 

we established ddPCR as a novel tool to evaluate Y loss in MBC, which should be 

utilized especially when MBC tissue is very limited, and a TMA (for FISH) of MBC 

samples is not available. 

Our ddPCR assay is able to indicate duplication of X chromosome in male breast 

tumor cells as well. In Table 1, two patients (S/No. 03 and 04) show duplicated X in 

tumor cells according to FISH, and their Y/X ratios from ddPCR are 0.354 (35.4%) and 

0.383 (38.3%), which seems to have almost double the X ddPCR readout compared to the 

Y ddPCR readout. Thus, our ddPCR assay indicates duplication of X in tumor cells when 

the Y/X ratio is around 0.35 (35%). Gaining an extra X chromosome might be a causative 

tumorigenesis factor too, which is in consonant with the concept of the report that 

Klinefelter patients (XXY) have a higher risk for MBC [9]. 
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Interestingly, recent studies have strongly suggested that the human Y 

chromosome has tumor suppressive functions that are still not elucidated. Mosaic loss of 

Y chromosome is now associated with a higher risk of non-hematologic cancers in men 

[53]. It is shown that men with non-hematologic cancers (such as throat, prostate, 

stomach), have a loss of Y chromosome in their peripheral blood. Furthermore, this loss 

of Y in peripheral blood in men is associated with smoking in a dose-dependent manner 

[54]. It has been well established for more than half a century that cigarette smoking 

causes many human diseases, which includes cancer, especially lung cancer [55]. 

Furthermore, male microchimerism in women was shown to reduce the risk of 

breast cancer to one third [56]. In fact, this male chimerism observed in the peripheral 

blood of women generally increases the survival of women affected by cancers and 

cardiovascular diseases [57]. Male microchimerism is a natural phenomenon that occurs 

in females who are or have been pregnant with a male fetus, and it happens when the 

male fetus exchanges cells with his mother via the placenta. Some of these male fetal 

cells presumably persist throughout the mother’s lifetime, for as long as almost three 

decades [58]. Very interestingly, these studies suggest that the presence of the Y 

chromosome in females is tumor suppressive without any known mechanism. 

In order to investigate putative tumor suppressive function of the human Y 

chromosome, the full Y chromosome was transferred into PC-3, a prostate cancer cell 

line that has Y loss, via microcell-mediated chromosome transfer (MMCT). This MMCT 

of the Y chromosome into PC-3 suppressed the formation of xenografts in 59 out of 60 

athymic nude mice. This further suggests that the Y chromosome contains some tumor 

suppressive element.  
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Taken together, previously described reports and our own report of clonal Y loss 

in MBC strongly suggest a tumor suppressive role of the human Y chromosome in human 

cancer. 

After seeing whole Y loss in 5 out of 32 (~15%) of our MBC patients, we 

proceeded to investigate regional loss of the Y chromosome in MBC patients who 

retained Y. The FISH signals for the Y chromosome are aberrant in the tumor cells of 

some of our MBC patients who retained Y, compared to the corresponding Y signals in 

the surrounding normal stromal cells (Fig. 1B). This led us to think that the retained Y 

chromosome underwent some form of structural rearrangement or deletions, and thus 

indicative of regional loss of genomic regions on the retained Y chromosome. Therefore, 

we proceeded to utilize STS-PCR (STS primer sets derived from MSY-BPM) to 

investigate regional Y loss in MBC patients who retained their Y chromosome.  

Using STS-PCR, we were able to show that STS17 was lost in the tumor gDNA 

in one of our MBC patients who retained Y. Because of the quality of the extracted FFPE 

gDNA, we were only able to analyze 3 out of 5 of the patients we extracted FFPE gDNA 

from. Our STS-PCR has certain limitations. Firstly, the quality of FFPE limits the success 

of our STS-PCR reactions. Secondly, the total amount of gDNA available from our FFPE 

extractions were also limited. Thirdly, formalin fixing and paraffin embedding degraded 

the tissue gDNA and thus, the amplicon sizes of our STS-PCRs have to be relatively 

short, leading to a couple of STS primer sets with amplicon sizes of about 1kb to become 

uninformative. In future, we look forward to optimize the STS primer sets that cover the 

MSY region for the highly sensitive ddPCR, and develop STS-PCR into STS-ddPCR. 
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Eventually, using STS-PCR, we showed focal nullisomic loss of STS17 in one of 

our MBC patients. STS17 is located within the gene TMSB4Y. To increase the argument 

that TMSB4Y is a deleted tumor suppressor gene, we surveyed public databases of 

sequenced tumors via cBioPortal, a web-based tool that allows analysis of publicly 

available next-generation sequencing data of tumors, and discovered that TMSB4Y was 

reportedly deleted in 10 out of 61 prostate cancer samples with known copy number 

alteration profiles [59]. Furthermore, a previous study has shown via array comparative 

genomic hybridization (aCGH) a 40% (10/25 patients) deletion of Yq11.1-q11.221in 

MBC, and this Yq region contains TMSB4Y [60]. 

So far, all these TMSB4Y deletion data is shown at the DNA level, which is 

provocative, because if TMSB4Y is a genuine tumor suppressor gene, it should be 

expressed at the protein level in normal male breast tissue. And we managed to show that 

TMSB4Y is expressed in normal male breast tissue via IHC (Fig. 6), which suggests that 

TMSB4Y has a normal functional role in normal male breast epithelial cells. 

Not much is known about TMSB4Y itself, except that based on gene sequence, it 

codes for the Y homologue of an actin monomer sequesterer called Thymosin Beta 4 

[61]. Interestingly, TMSB4Y was reported to have an unconventional open reading frame 

that codes for a novel minor histocompatibility antigen [62]. Thymosin Beta 4 is also 

reported to enhance natural killer cell cytotoxicity [63]. Interestingly, TMSB4Y has a 

homologue on the X chromosome, TMSB4X, which is known as a major monomer actin 

sequesterer, which is the main focus of RegeneRx Biopharmaceuticals. They have shown 

that TMSB4X promotes seemingly oncogenic cellular effects, which includes increased 
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cell migration, blood vessel formation, cell survival, stem cell differentiation. Therefore, 

it is currently on clinical trials to be for dermal and corneal repair. 

On the contrary, our functional analysis of TMSB4Y is consistent with tumor 

suppressive effects. When we overexpressed TMSB4Y in our Dox-inducible system in 

MCF-10A background, we observed altered cellular morphology, where cells become 

enlarged with aberrant morphology (Fig. 9), and also persistent reduced cell proliferation 

(Fig. 10). Because we saw a persistent reduction in cell proliferation after Dox-induction, 

we are currently looking at cell cycle analysis of the stable Dox-induced clones. 

TMSB4Y is highly homologous to TMSB4X, with a difference of only three out of 

44 amino acids. However, we show here that these X-Y homologues have fundamental 

differences, especially because the specific antibody for TMSB4Y does not recognize 

TMSB4X (Fig. 12) despite their high extent of homology. 

Interestingly, mammalian studies introduced a rising concept of antagonism 

between X-Y homologues, generally seen as genomic battles between the sex 

chromosomes [64, 65]. These studies infer that X homologues oppose Y homologues 

functionally, which is in consonance with our functional observations of TMSB4Y and 

functional reports of TMSB4X. To date, there is no report of direct interaction between 

TMSB4Y and monomeric actin. Therefore, we are currently trying to investigate this 

protein-protein interaction via immunoprecipitation assays and also via proximity ligation 

assay. We believe that TMSB4Y and TMSB4X might interact differently with actin. More 

comparative functional studies are required to explore and confirm this proposed 

opposing functional difference between TMSB4Y and TMSB4X. 
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Our functional analysis of TMSB4Y in the Dox-inducible system shows that 

TMSB4Y causes aberrant cellular morphology and reduced cell proliferation. In order to 

find the mechanism behind these effects, we performed RPPA on these Dox-inducible 

clones to investigate the global protein expression changes caused by the overexpression 

of TMSB4Y. Here, we have to note that caution has to be taken when analyzing RPPA 

data, because the specificity of the antibody optimized by the RPPA core facility at MD 

Anderson might be different towards different kinds of cell lines. Overall, subtle protein 

level changes were observed after Dox-induction in TmY1, and amongst several 

candidates that we are currently validating, we observed here that the Syk protein 

expression was modestly reduced after Dox-induction (Fig. 11).  Syk is the spleen 

tyrosine kinase, which is upregulated in T cell lymphoma, suggesting an oncogenic role 

in tumorigenesis, and various Syk inhibitors are currently available [66]. Our RPPA data 

suggests that overexpression of our proposed tumor suppressor candidate TMSB4Y led to 

reduced expression of the oncogenic Syk, further suggesting possible inter-regulatory 

effects between opposing oncogenic and tumor suppressive genes. These are initial 

results from our RPPA experiment and further analysis is needed to elucidate mechanistic 

details of our observations. 

Because our functional analysis of TMSB4Y suggests that it is a breast specific 

tumor suppressor, it will be informative to be able to knockout TMSB4Y in a normal male 

breast epithelial cell line, which is basically the male equivalent of the female MCF-10A 

nontumorigenic breast epithelial cell line. In future, perhaps this male equivalent of 

MCF-10A can also be created via spontaneously immortalizing normal male breast 

epithelial cells in long-term tissue cultures. It took about 800 days for MCF-10A to be 
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spontaneously formed and therefore, it might take about the same, a shorter, or perhaps a 

longer duration for male breast epithelial cells to become spontaneously immortalized 

[44]. Furthermore, we are also currently trying to establish stable expression clones of 

TMSB4Y in some female breast cancer cell lines to further validate its tumor suppressive 

role in breast cancer. 

In conclusion, our observation of ~15% in situ clonal loss of Y chromosome in 

MBC supports our hypothesis that the human Y chromosome is tumor suppressive in 

breast cancer. Furthermore, TMSB4Y might be a breast specific tumor suppressor gene on 

the human Y chromosome, and TMSB4Y might confer its tumor suppressive effects via 

regulation of cell morphology and reduction of cell proliferation.  
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