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Abstract

Although fecundity has been studied for decades, the heterogeneity among couples, both

biologically and behaviorally, is not well understood. The length of the woman’s menstrual

cycle has been shown to play an important role; however, a complete assessment of this

role requires a model that accounts for both male and female risk factors and the couple’s

intercourse pattern. We develop and implement a Bayesian joint modeling approach to esti-

mate the woman’s underlying distribution of cycle length and assess its relation with couple

fecundity while accounting for risk factors of both partners and intercourse frequency and

timing relative to ovulation. We apply our approach to prospective pregnancy studies in

which couples may enroll when they learn of the study as opposed to waiting for the start of

a new menstrual cycle. Due to length-bias, the enrollment cycle will be stochastically larger

than the general run of cycles, a typical property of prevalent cohort studies. We develop

and evaluate an approach for unbiased estimation of the cycle length distribution for the

study population that accounts for length-bias and selection effects, where the probability of

enrollment may depend on the time since the last menstrual period. We find that shorter and

longer cycle lengths are negatively associated with fecundity even with adjustment for semen

quality, age, smoking, and intercourse pattern. This finding motivates investigation of en-

vironmental chemicals, in particular perfluoroalkyl surfactants (PFASs), and their potential

role in cycle length and fecundity. We extend the joint model to include exposure to PFASs

and find that 2-(N-methyl-perfluorooctane sulfonamido) acetate (MeFOSAA) and perfluo-

rooctanoate (PFOA) are associated with shorter cycles while perfluorodecanoate (PFDA)

is associated with longer cycles. Further, we find perfluorononanoate (PFNA) and perfluo-

rooctane sulfonamide (PFOSA) are adversely associated with fecundity.
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Chapter 1

Introduction

Interest is building in cross-disciplinary approaches to scientific research as evidenced in a

speech by Dr. Alan Guttmacher, director of the Eunice Kennedy Shriver National Institute

of Child Health and Human Development. Dr. Guttmacher called for the advancement of

research in nine key areas including environment, behavior, reproduction, pregnancy and

pregnancy outcomes (Eunice Kennedy Shriver National Institute of Child Health and Hu-

man Development 2011). Each of these themes are rich in challenges that require use and

enhancement of methodologies that cut across disciplines. One important example is the

investigation of determinants and correlates of human fecundity. Fecundity impairments

affect men and women of all countries, races, and socioeconomic levels, and there is evidence

to suggest even further health implications later in life (Cooper and Sandler 1997; Whelan

et al. 1994). However, relatively few risk factors have been identified. Several studies have

shown evidence to suggest that a woman’s menstrual cycle characteristics may play an im-

portant role in fecundity (Small et al. 2006, 2010; McLain et al. 2012). Scientifically valid

and statistically efficient evaluations of the role of menstrual cycle characteristics and fe-

cundity require use of modern statistical approaches and enhancements thereof. A complete

investigation requires accounting for the role of biological, behavioral, and environmental

risk factors (e.g., age, intercourse timing, and environmental chemicals).

This dissertation addresses the measurement and evaluation of the role of menstrual cycle

length in human fecundity. In Chapter 2, we focus on the length of the menstrual cycle in
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which the couple enrolls and develop and evaluate an estimation approach that accounts for

features of the sampling plan, in particular length-bias and selection effects. This serves as

the building block for Chapter 3 in which we incorporate the post-enrollment cycle lengths

and jointly model both menstrual cycle length and fecundity accounting for biological and

behavioral risk factors. Lastly in Chapter 4, we assess the relation between environmental

chemicals, specifically perfluoroalkyl surfactants, and menstrual cycle length and fecundity.

We conclude with a discussion of future work and an appendix containing R and OpenBugs

code for implementing these methods.

In the remainder of this introduction we provide an overview of menstrual cycle length,

fecundity, and perfluoroalkyl surfactants. We also describe key details of the data pertaining

to its collection and sampling plan. Finally, we briefly summarize the three main chapters

of this dissertation.

1.1. Scientific Background

1.1.1 Fecundity

Fecundity is defined as the biologic capacity of males and females for reproduction irre-

spective of pregnancy intentions (Buck Louis 2011). Measurement of fecundity is facilitated

through one or more study endpoints which include, but are not limited to, onset and pro-

gression of puberty, menses and ovulation, hormone profile and libido, and conception and

implantation on the female side; and onset and progression of puberty, semen quality, and

sexual libido on the male side. This list emphasizes the role of both the male and female

partner and the complexity of factors that contribute to a couple becoming pregnant, yet

few statistical models have been developed that model more than one of these endpoints. In

this dissertation, we focus on two key endpoints: menstrual cycle length and the probability

of pregnancy in a menstrual cycle conditional on no pregnancy in previous cycles.

Pregnancy is typically detected by sonography or by home pregnancy tests which mea-

sure levels of human chorionic gonadotrophin (hCG) hormone. It should be distinguished
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from conception because not only is conception currently unmeasurable (except in assisted

reproductive technology), but also, unknown losses can occur between fertilization and im-

plantation. The probability of a recognized pregnancy per menstrual cycle is very low in

humans, perhaps emphasizing the many failures that can occur at the stages of ovulation,

fertilization, and implantation and the impacts of early pregnancy losses (Norwitz et al.

2001).

Although a large number of studies have been conducted to investigate potential deter-

minants of fecundity (see, e.g., Zaadstra et al. 1993; Jensen et al. 1999a; Kolstad et al. 1999;

Small et al. 2006; Ramlau-Hansen et al. 2007; Small et al. 2010; McLain et al. 2012), there

is still much work to be done. In 2006, Axmon et al. (2006) found that only 14% of the

variation in fecundity as measured by time-to-pregnancy (TTP) was explained by use of oral

contraceptives prior to attempting conception, menstrual cycle length, age, and parity. In

investigating the role of a potential risk factor or exposure and fecundity, it is important to

account for occurrences of intercourse (Tingen et al. 2004). A menstrual cycle is not ‘at-risk’

for pregnancy if the couple does not have intercourse at least once in the fertile window, a

short window of time in a menstrual cycle in which conception is possible. The window’s

exact length and location are still a topic of research and are thought to potentially vary

both within and between couples.

1.1.2 The Menstrual Cycle

The menstrual cycle consists of three phases of changes to the endometrium: bleeding,

proliferative, and secretory. The timing and lengths of these phases are controlled by complex

hormonal mechanisms. During the proliferative phase, follicular stimulating hormone (FSH)

causes the ovum to grow and produce estrogen, which in turn causes endometrial growth.

The rise in estrogen at the end of the proliferative phase is thought to trigger a rapid increase

in leutinizing hormone (LH). This surge of LH is detectable using fertility monitors and can

potentially be used as a biomarker for ovulation. At ovulation, there is a dip in estrogen
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levels, which levels out as the corpus luteum (ruptured follicle) takes over production of

estrogen and progesterone, resulting in maturation of the endometrium. If pregnancy does

not occur, then the corpus luteum decays resulting in a decrease in estrogen and progesterone

that leads to bleeding. On the other hand, if pregnancy does occur, increased levels of

progesterone preclude menstrual bleeding in preparation for implantation of the blastocyst.

Researchers and clinicians define the beginning of the menstrual cycle with menstruation,

designated as the first day of bleeding followed within one day by at least two additional

days bleeding. The length of the menstrual cycle is then defined as time (in days) from the

first day of menstrual bleeding to the day preceding menstrual bleeding of the next cycle.

Prospective longitudinal studies have shown heterogeneity in menstrual cycles both within

and across women, with the greatest variability occurring at extremes of age, 2-5 years after

menarche and before menopause (Treloar et al. 1967; Vollman 1977; Fehring et al. 2006).

1.1.3 Perfluoroalkyl Surfactants

Perfluoroalkyl surfactants (PFASs) are synthetic chemicals that have been used since the

1950s in the United States and globally in a variety of consumer products (e.g., surfactants

and surface protectors in carpets, leather, paper, packaging, fabric and upholstery) (Giesy

and Kannan 2002). They are examples of persistent organic pollutants (POPs), which are

so named because they resist metabolism and thus persist in the environment. PFASs bio-

accumulate in human tissue and have been found in varying levels in human populations

from several countries (Kannan et al. 2004; Kato et al. 2011; Olsen et al. 2012; Wang et al.

2011). There is considerable interest in studying the role of PFASs and other POPs in human

fecundity. In Chapter 4 we investigate the relations between PFASs, menstrual cycle length,

and the probability of pregnancy.
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1.2. Epidemiologic Pregnancy Studies

The most popular study designs for collection of fecundity data are retrospective and prospec-

tive cohort designs; however, a variety of other designs are possible such as historic prospec-

tive, current duration, and case-cohort designs. In retrospective designs, couples are con-

tacted during pregnancy or some time after delivery and asked to recall TTP. Such studies

are common because of their ease and low cost, but validity of retrospective TTP has yet

to be extensively tested and a number of biases should be carefully considered including

behavior modification, exposure time trends, planning, wantedness, pregnancy recognition,

medical intervention and the unhealthy-worker effect (Weinberg et al. 1994). Moreover,

study samples should be expanded to include couples who did not achieve pregnancy. Al-

ternatively, prospective study designs recruit couples at the start of the pregnancy attempt

and prospectively follow them for 6 or 12 menstrual cycles at-risk for pregnancy. To ensure

high validity, some prospective designs ask couples to keep daily journals of menstruation,

intercourse frequency, contraceptive use, and lifestyle behaviors. Prospective design chal-

lenges include intensive data collection demands on the couples, potential selection bias, and

extensive recruitment since approximately only 1% of the population is planning pregnancy.

For this research, we use prospective pregnancy data from the Longitudinal Investigation

of Fertility and the Environment (LIFE) Study (Buck Louis et al. 2011). The LIFE study

sampled couples planning pregnancy who were likely to consume large amounts of fish caught

in contaminated waters, and followed 501 couples until delivery, pregnancy loss, or 12 cycles

at risk for pregnancy. Couples were accepted if they fulfilled the following: married or in

a committed relationship, females aged 18-40 and males over age 18, English or Spanish

speaking, self-reported menstrual cycle lengths within 21-42 days, and no hormonal birth

control injections in the past 12 months. Couples were excluded if they had been attempting

pregnancy for more than 2 months prior to screening. In order to capture preconception

concentrations, exposure to PFASs was quantified from non-fasting blood collected on the

day of enrollment. An interview was conducted at enrollment to confirm that the couple
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was not already pregnant and to obtain baseline data including demographics, reproductive

history, and date of last menstrual period (LMP), regularity of menstrual cycles. For the

length of the pregnancy attempt, both the male and female kept daily journals of intercourse

frequency, contraceptive use, servings of fish or shellfish eaten, multivitamin use, alcohol

and caffeinated drinks consumed, cigarettes smoked, and menstruation (female diary only).

Male journals also included number of ejaculations and excessive heat exposure at work.

In addition, women used the Clearblue®Easy fertility monitor to measure daily levels of

oestrone-3-glucuronide, a metabolite of oestradiol, and luteinizing hormone (LH). Pregnancy

was recognized using Clearblue®Easy pregnancy tests that detect levels of hCG over 25

mIU/mL and are administered at home on the day menstruation is expected.

The sampling plan for the LIFE Study is a prevalent sampling plan wherein enrollment

occurs after some initiating event but prior to a terminating event. Couples were enrolled

in the study at any point in the woman’s menstrual cycle, as opposed to the first day of

menstrual bleeding (the initiating event). Assuming a couple’s awareness of the study is

equally likely on any day and their propensity to enroll does not depend on the day, then

a couple is more likely to enroll during a menstrual cycle that is generally longer than the

woman’s typical cycle. The observed lengths of the cycle in which the couple enrolls, which

we will refer to as the enrollment cycle, are said to be length-biased. This problem is well

known in the area of disease screening where those living with detectable disease for longer

periods of time are more likely to be screened compared to those with fast moving disease.

Furthermore, there may be selection bias if the couple’s decision to enroll is based upon the

length of time between the woman’s LMP and the date of enrollment (a backward recurrence

time). Sampling weights may be used to account for the fact that the enrollment cycle

lengths are not random observations from the same inherent woman-specific distribution as

the follow-up cycle lengths; however, the weights are a function of the unknown probability

of enrollment.
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1.3. Overview of Chapters

In Chapter 2, we propose an approach for estimating the distribution of menstrual cycle

length that accounts for features of the sampling plan, in particular for length bias and

selection bias on the backward recurrence time. For this chapter only, we restrict our atten-

tion to the enrollment cycle (i.e., the cycle in which the couple enrolls), as the distribution

estimated from these observations can be influenced by the way in which these lengths are

ascertained. We propose a two-stage approach wherein we first estimate the probability of

enrollment as a function of the backward recurrence time and then use it in the full likelihood

with sampling weights to account for length-bias and selection effects. To broaden the appli-

cability of this approach, we incorporate a time-independent covariate and woman-specific

random effect using a mixed effects accelerated failure time model. We conduct simulation

studies to evaluate the performance of the algorithm for two scenarios of the probability

of enrollment. Lastly, we demonstrate our approach using enrollment cycle data from the

LIFE Study to estimate the woman’s menstrual cycle length distribution and the association

between age group and cycle length. Our approach yields an estimate of the probability of

enrollment as a function of time since LMP which may inform the design of future studies.

In Chapter 3, we develop and implement a Bayesian hierarchical joint model to assess

the association between the woman-specific distribution of menstrual cycle length and couple

fecundity, while accounting for the timing and frequency of intercourse and risk factors of

both the male and female partner. For menstrual cycle length, we build on the methods

developed in Chapter 2 and model all cycles of follow-up while addressing issues such as

skewness, intra- and inter-woman variability, and right-censoring of the cycle in which the

woman becomes pregnant. For fecundity, we develop a hierarchical model for the conditional

probability of pregnancy in a menstrual cycle given no pregnancy in previous cycles of trying

and the couples’ history of intercourse acts. We incorporate a flexible spline function of

intercourse timing and consider a broad window of days at risk for pregnancy around the

estimated day of ovulation. Based on an analysis of the LIFE Study data, we find evidence

7



that a woman’s age is inversely associated with menstrual cycle length (for ages 19 to 40) and

that there is a quadratic relation between cycle length and fecundity wherein shorter and

longer cycle lengths are negatively associated with couple fecundity even with adjustment

for male semen quality, age, smoking status and intercourse pattern.

In Chapter 4, we investigate the role of female exposure to PFASs with (i) menstrual

cycle length and (ii) fecundity in the context of menstrual cycle length. We incorporate

female concentration levels (in ng/mL) of seven PFASs in the menstrual cycle length and

pregnancy models of the joint model developed in Chapter 3. We fit this model using data

from the LIFE Study with preconception quantification of PFASs. As some of the PFASs

have values below the limit of detection (LOD), we consider both the machine observed

values (continuous) and also categorical forms of the exposures in which the values below

LOD are in the category of lowest concentration. We find evidence that both 2-(N-methyl-

perfluorooctane sulfonamido) acetate and perfluorooctanoate are associated with shorter

menstrual cycle lengths while perfluorodecanoate is associated with longer length. In the

context of menstrual cycle length, we find evidence that perfluorononanoate (PFNA) and

perfluorooctane sulfonamide are negatively associated with the probability of pregnancy in a

two stage model. In the joint model which accounts for uncertainty in estimating menstrual

cycle length, PFNA is again directly associated with the probability of pregnancy.
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Chapter 2

Accounting for Length-bias and
Selection Effects in Estimating the
Distribution of Menstrual Cycle
Length

2.1. Introduction

We consider the setting of longitudinal prospective studies of cyclic events forming a renewal

process, where the primary objective is to estimate the distribution of interarrival times.

A necessary consideration when making inferences about the study population based on

the observed times is the sampling plan; in particular, one in which enrollment can occur

at any time in a gap interval including its start or end, and the enrollment date may differ

among participants. After enrollment, generally participants are followed with cycle renewals

recorded until censoring at the end of the study, after a fixed number of cycles, loss to follow-

up, or occurrence of a competing event. Also, the gap time can be truncated.

For example, the process underlying the periodic shedding of the lining of the uterus

known as menstruation is a stationary renewal process in that the occurrence of bleeding

events is cyclic over time. The interarrival time of menstrual bleeding events, or menstrual

cycle length, is an important determinant of risk for several chronic diseases afflicting females

including heart disease and breast cancer, and it is also an important component in assessing

female fecundity (see, e.g., Jensen et al. 1999b). It is typically defined as the number of days
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from the first day of menstrual bleeding (the day marking the last menstrual period, LMP)

to the day preceding the next menstrual cycle, with care taken to distinguish menstrual

bleeding from episodic bleeding. Cycle length is commonly measured in time-to-pregnancy

studies either via retrospective recall or more reliably in prospective designs using daily

diaries of intensity of bleeding along with hormonal monitoring. In this paper, we will

analyze cycle lengths from a comprehensive prospective pregnancy study, the Longitudinal

Investigation of Fertility and the Environment (LIFE) Study (Buck Louis et al. 2011) in

which repeated measurements of menstrual cycle length and couple’s preconception exposure

to persistent environmental chemicals were collected. Research goals include estimating

the distribution of menstrual cycle length accounting for covariates and residual variation,

and using the estimated distribution to predict time-to-pregnancy. An initial step is to

estimate the distribution of menstrual cycle length, both in a population of women and for

an individual woman.

A complicating feature of the LIFE and other such studies of renewal processes is that

in order to efficiently sample couples attempting to become pregnant, enrollments occur

between renewals as opposed to waiting for the next bleeding event. Furthermore, the

interarrival time is potentially right censored by pregnancy or exit from the study resulting

in four different combinations of truncation and censoring relevant to the observed enrollment

menstrual cycle lengths (more generally, the gap times) as described by Gill and Keiding

(2010). In modeling the distribution of (potentially censored) enrollment lengths, we account

for two features of this sampling process: length-bias and selection effects. Length-bias

relates to the process by which an announcement of a study has a probability of “intersecting”

a menstrual cycle length that is proportional to its length. Due to length-biased sampling,

the distribution of enrollment lengths is biased in the positive direction compared with the

population distribution. Selection relates to the possible dependence of the probability that

the couple will decide in favor of enrollment on the time from LMP until they learn of the

study (the backward recurrence time), resulting in effects that could be positive or negative;
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thus, adding to or canceling out the length-bias.

A common and possibly unbiased approach for estimating the menstrual time distribution

is to circumvent these challenges by excluding the enrollment cycle lengths and analyzing only

post-enrollment cycle lengths (see, e.g., Murphy, Bentley, and O’Hanesian 1995), conceding

some loss of information. However, in some applications the additional information provided

by the enrollment data can be important in detecting subtle covariate effects and the selection

effects may in themselves be of interest. Moreover, in prospective pregnancy studies, the most

fecund women may have very few cycles under observation, if any, post-enrollment.

Several authors have developed methods for estimating the unbiased distribution of sur-

vival times from length-biased or left-truncated data (see, e.g., Asgharian, M’Lan, and Wolf-

son 2002; Cox 1969; Huang and Qin 2011; Vardi 1989; Wang 1989, 1991; Wang, Jewell, and

Tsai 1986; Winter and Foldes 1988), which would allow for inclusion of the enrollment men-

strual cycle lengths. Building upon this body of work, we propose an approach for estimating

both the probability of enrollment as a function of time from LMP and the distribution of

menstrual cycle length for the study population, adjusting for length-bias and selection ef-

fects. In Sections 2.2-2.5, we formalize the issue and develop our estimation approach with a

focus on enrollment data. In Sections 2.6 and 2.7, we present results from a simulation study

and analysis of the distribution of menstrual cycle length for the LIFE study population,

respectively. We conclude with a discussion of remaining challenges and impact on analysis

and design of longitudinal studies of recurrent events.

2.2. Estimating the Distribution of Menstrual Cycle Length

Our aim is to estimate the distribution of menstrual cycle length for a population focusing

on the role of the enrollment cycle data, as the distribution estimated from observations of

this cycle can be influenced by the way in which these cycles are ascertained. We assume

that the enrollment cycle lengths for different individuals are independent and identically

distributed. The sampling (enrollment process) induces a distribution for the initial observed

11



cycle length that could potentially be different from that for the population. Specifically, we

account for length-bias and selection effects on the enrollment cycle length distribution so

that inferences relate to a reference population. We first consider the uncensored case and

then generalize.

2.2.1 Notation, Sampling Plan and Consequences

Let Ỹ ∼ f(·), 0 < Ỹ < ∞ with associated survivor function S(y) =
∫∞
y
f(u)du and cumu-

lative distribution function (CDF) F (y) =
∫ y
0
f(u)du. Without loss of generality, assume

Ỹ < V <∞, where V is a finite upper bound. Assume that the sequence (Ỹ1, Ỹ2, . . .), indexed

by m, starts at some origin (T0) and continues over time with Tm = T0 + Ỹ1 + Ỹ2 + · · ·+Ỹm.

Consider the following sampling plan for a longitudinal study:

• An announcement of study availability is issued at calendar time t∗ and it “intersects”

cycle length Ỹm(t∗) with m(t∗) = {m : Tm−1 < t∗ ≤ Tm} at B̃, the backwards recurrence

time. That is, B̃ is the time from Tm−1 to t∗ and can take on values in the range

0 ≤ B̃ < V . In addition let,

◦ λ(Ỹ ) = pr(the announcement “intersects” a cycle of length Ỹ ).

◦ Ã be the residual time from enrollment to the next event, so Ỹm(t∗) = B̃ + Ã.

We consider the case where both B̃ and Ã are known. As examples, Keiding

et al. (2002) and Keiding et al. (2012) studied estimation of the distribution

of time-to-pregnancy in the current-duration design when only B̃ was known;

and Brookmeyer and Gail (1987) studied bias in estimation of the distribution of

time to disease when B̃ was unknown, but Ã was known.

• The potential participant (the couple) decides on enrolling in the study. Let R = 1 if

the participant enrolls and R = 0 otherwise. If the participant enrolls, the enrollment

cycle length is Ỹm(t∗).

◦ Assume that t∗ is stochastically independent of the Tm sequence. As the underly-

ing process Ỹ is a renewal process, using the theorem proved by Winter (1989) and
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details included in Section 2.A.1.1, [B̃ | Ỹm(t∗)] ∼ U(0, Ỹm(t∗)), 0 ≤ B̃ < Ỹ < V .

◦ A potential participant knows only the B̃ value and not Ỹm(t∗), and so define the

probability of enrollment, π(B̃) = pr(R = 1 | Ỹm(t∗), B̃) = pr(R = 1 | B̃).

A λ(Ỹ ) ∝ Ỹ produces standard length-bias analogous to the waiting time paradox (see,

Feller 1971) or, for example, in Aalen and Husebye (1991) pertaining to the cyclic movements

in the small bowel during the fasting state. Just as longer bus waiting times are more likely

to be intersected by an individual arriving at a bus stop, longer cycle lengths are more likely

to be intersected by the announcement of the study than are shorter. This length-biased

sampling results in a distribution of enrollment cycle lengths that is stochastically larger

than the population distribution. Further, a non-constant π(·) induces additional selection

effects and, depending on the shape of π(·), can induce a stochastically larger or smaller

distribution for an enrollment cycle.

In modeling the enrollment cycle length, one must account for the aforementioned length-

bias and selection effects on the first observation of the underlying renewal process. Our

focus is on estimating the distribution of Ỹ using a likelihood that adjusts for the enrollment

sampling process and henceforth we consider only enrollment lengths.

2.2.2 Modeling

If λ(Ỹ ) ≡ λ̄ and π(B̃) ≡ π̄, then neither length-bias nor selection effects operate and stan-

dard modeling is valid. If λ(Ỹ ) ∝ Ỹ and π(B̃) ≡ π̄, then Ỹm(t∗) is distributed according to

the length-biased distribution: f(y)yµ−1, where µ = E(Ỹ ) (see Cox 1962). If, in addition,

π(B̃) depends on B̃, then Ỹm(t∗) is distributed as a more generally weighted version of f(·).

Consequently, statistical models must account for the enrollment sampling plan by condi-

tioning on R = 1. To simplify notation, henceforth we drop the “ ˜ ” notation and subscript

m(t∗), let [Y,B]
D
= [Ỹm(t∗), B̃ | R = 1] and denote this enrollment distribution by g. We have
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the joint distribution

gY,B(y, b) = fỸ ,B̃|R(y, b | R = 1) =
f(y)λ(y)π(b) 1

y∫∞
0
f(u)λ(u) 1

u

{∫ u
0
π(t)dt

}
du
, 0 ≤ b < y < V <∞.

The marginal distribution of Y is

gY (y) =
f(y)λ(y) 1

y

∫ y
0
π(t)dt∫∞

0
f(u)λ(u) 1

u

{∫ u
0
π(t)dt

}
du
, 0 < y < V <∞; (2.1)

a weighted distribution with weight ω(λ, y, π) ∝ λ(y) 1
y

∫ y
0
π(t)dt and CDFGY (y) =

∫ y
0
gY (u)du.

The marginal distribution for B is

gB(b) = π(b)

∫∞
b
f(u)λ(u) 1

u
du∫∞

0
f(u)λ(u) 1

u

{∫ u
0
π(t)dt

}
du
, 0 ≤ b < V <∞; (2.2)

which is proportional to π(b), and if λ(Y ) ∝ Y , to S(b).

2.3. Parameter Estimation

Assume that f(·) = f(· | θ), and that recruitment for the longitudinal study continues

until n participants are enrolled. At enrollment, participants report the LMP of the current

cycle, so observed data for participant i are (bi, yi). The full likelihood is the product of

the conditional likelihood ([y | b]) and the marginal likelihood for B. Specifically, with

f(·) = f(· | θ), assuming that the functions λ(·) and π(·) are known,

L(θ; y | b, λ) = Lc(θ; y | b, λ)× Lm(θ; b, λ) (2.3)

Lc(θ; y | b, λ) =
n∏
i=1

gY |B(yi | bi) =
n∏
i=1

f(yi)λ(yi)
1
yi∫∞

bi
f(u)λ(u) 1

u
du
, (2.4)

and from (2.2), the marginal likelihood of B is

Lm(θ | b, π, λ) =
n∏
i=1

π(bi)
∫∞
bi
f(u)λ(u) 1

u
du∫∞

0
f(u)λ(u) 1

u

{∫ u
0
π(t)dt

}
du
. (2.5)

Note that Lm depends only on the shape of π(·) and not on its magnitude (is invariant to

multiplication of π(·) by a positive constant).
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We focus on estimating the survivor (tail) function S(y) =
∫∞
y
f(u)du or in the parametric

case S(y | θ) =
∫∞
y
f(u | θ)du. Under the renewal process sampling plan in Section 2.2.1,

we henceforth assume that λ(y) ∝ y. If π(·) can be estimated, it is straightforward to use

the full likelihood. The conditional likelihood (Lc) does not depend on π(·) and so if this

selection function is not of interest, inferences can be based on (2.4). Including the marginal

likelihood (Lm) may provide a notable increment in information on θ, but it does depend on

π(·). As (2.2) shows, π(·) and f interact, and a recursive approach is effective.

2.3.1 Recursive Estimation

The following recursive algorithm requires gB (equivalently the CDFGB). Using the observed

backward recurrence times, gB can be estimated by the empirical probability mass function

(equivalently GB by the empirical distribution function). Alternatively, a smoothed estimate

of gB, can be obtained using adaptive bandwidth kernel density estimation (see, e.g. Wand

and Jones 1994). A two-stage algorithm for estimating π(·) and S(·) proceeds as follows:

1. Conditioning on B, let Ŝ(0)(·) be a non-parametric estimate of S(·) based on the con-

ditional likelihood (see, e.g. Winter and Foldes 1988). For parametric estimation,

equivalently let θ̂(0) be the estimate of θ based on maximizing Lc(θ; y | b, λ) in (2.4).

2. Using the relation between π(·) and gB in (2.2), obtain π̂(1)(·) (only the shape is

needed), with S(·) = Ŝ(0)(·).
3. Let Ŝ(ν)(·) be the NPMLE using the full likelihood, with π(·) = π̂(ν)(·). Equivalently,

for parametric estimation let θ̂(ν) be the MLE using L(θ; y | b, λ) in (2.3).

4. Using relation (2.2), update π̂(ν+1)(·) (up to a constant of proportionality) with S(·) =

Ŝ(ν)(·).
5. Iterate between steps 3 and 4 until convergence criterion is met.

In Section 2.A.1.2 we give a proof of the existence and uniqueness of the solution for π.
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2.3.2 Nonparametric Estimation of S(y)

Assuming λ(y) ∝ y and π(b) ≡ π̄, the inverse probability weighted empirical estimate of

S(y) derived by Cox (1969) for uncensored lengths (yi; i = 1, . . . , n) sampled from GY is

Ŝ(y) =
n∑
i=1

wi1{yi ≥ y}; y > 0, where wi =
1/yi
n∑
j=1

1/yj

. (2.6)

Under the sampling plan in Section 2.2.1, we have a single sample of uncensored enrollment

cycle lengths and backward recurrence times {(yi, bi); i = 1, . . . , n} and we allow for a non-

constant π(b). In this case, Y has the marginal density, gY (·), given in (2.1) and it is

straightforward to derive the relation:

E
[{
λ(Yi)

1

Yi

∫ Yi

0

π(t)dt
}−1

1{Yi ≥ y}
]

=
S(y)∫∞

0
f(u)λ(u) 1

u

{∫ u
0
π(t)dt

}
du
.

Since this expectation is proportional to S(y), we estimate S(y) as in (2.6), but with modified

weights:

wi =

{
λ(yi)

1
yi

∫ yi
0
π(t)dt

}−1
n∑
j=1

{
λ(yj)

1
yj

∫ yj
0
π(t)dt

}−1 . (2.7)

The weights in (2.7) depend on π(·) up to a multiplicative constant; therefore, the recursive

algorithm presented in Section 2.3.1 can be amended to include an additional step prior to

step 3 updating w
(ν)
i using (2.7) with π(·) = π̂(ν)(·).

For right-censored data, assuming π(·) ≡ π̄, several non-parametric approaches for esti-

mating S(·) accounting for length-bias or left-truncation have been developed (Asgharian,

M’Lan, and Wolfson 2002; Huang and Qin 2011; Vardi 1989). In order to relax the assump-

tion on π(·), we note that conditioning on B the likelihood does not depend on π(·). Methods

for estimating S(·) based on Lc have been developed by many including Keiding and Gill

(1990); Wang (1991), Wang, Jewell, and Tsai (1986), and Winter and Foldes (1988). When

estimation of π(·) is not of interest, these methods allow for non-parametric estimation of

S(·), but may lead to a loss of efficiency when compared with using the full likelihood. In

the simulation study (see Section 2.6), we do not find evidence of an efficiency loss.
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2.3.3 Semi-parametric Estimation of S(y | θ)

In the semi-parametric approach, we assume Ỹ ∼ f(·; θ); however, we do not make any

parametric assumptions about π(·). The recursive algorithm given in Section 2.3.1 may be

used to estimate π(·) and S(y | θ) =
∫∞
y
f(u | θ)du with the adaptation in step 3 of producing

θ̂(ν) from the full likelihood written in terms of the current estimate of π(·) = π̂(ν)(·). As

we will show in Section 2.4.1, the semi-parametric approach can accommodate censoring.

Bootstrap bias-corrected and accelerated (BCa) confidence intervals (Efron 1987) can be

constructed for θ that account for the uncertainty in estimating π(·).

2.4. Censoring

To accommodate censoring, let C̃ denote the censoring time defined from the most recent

event (LMP) to the censoring date. Under the sampling plan detailed in Section 2.2.1, length-

bias operates on the enrollment cycle length and also on the enrollment cycle censoring time,

when defined from LMP. Consequently, length-bias operates on the available length: Ỹ ∧ C̃.

For the enrollment cycle, we eliminate the “ ˜ ” notation and write C = B + V , where V is

the residual time from enrollment date to censoring date, and write X = Y ∧C as the length

from LMP to the next menstrual period or censoring, with event indicator δ = I(Y ∧ C).

As Asgharian, M’Lan, and Wolfson (2002), Huang and Qin (2011), and Wang (1991) among

others noted, B is the initial segment of both Y and C, so in general Y and C are dependent.

We assume the standard relations for left truncated, right-censored random variables, that

[A ⊥ V | B] (conditional independence) and the conditional distribution of V given B is

non-informative regarding f , and so fV |B does not depend on θ.

As before recruitment continues until n couples are enrolled, with enrollment data (bi, xi, δi);
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i = 1, . . . , n. Under the conditional independence and non-informative assumptions, the con-

ditional likelihood of X given B is (leaving out θ on the right-hand side)

Lc(θ | b, λ,x, δ) ∝
n∏
i=1

{
f(xi)λ(xi)

1
xi

}δi{∫∞
xi
f(u)λ(u) 1

u
du
}(1−δi)∫∞

bi
f(u)λ(u) 1

u
du

. (2.8)

The marginal likelihood retains the form from (2.5), and so the full likelihood is

L(θ | π, λ,b,x, δ) ∝
n∏
i=1

{
f(xi)

}δi{∫∞
xi
f(u)λ(u) 1

u
du
}(1−δi)

∫∞
0
f(u)λ(u) 1

u

{∫ u
0
π(t)dt

}
du

. (2.9)

2.4.1 Semi-parametric Estimation of S(y | θ) in the Censored Case

We find the MLE θ̂ and use S(y | θ̂) =
∫∞
y
f(u; θ̂)du, y > 0. For known π(·), maximum

likelihood methods can be used to estimate θ, S(· | θ) and other functions of it, and the

likelihood ratio can be used to calculate confidence regions. However, π(·) is usually not

known and a recursive algorithm similar to that in Section 2.3.1 is necessary. Starting with

an estimate of gB(b), proceed as follows: 1) let θ̂(0) be the MLE using the conditional like-

lihood in (2.8) so, Ŝ(0) = S(y | θ̂(0)) =
∫∞
y
f(u | θ̂(0))du; 2) estimate the shape of π(b) by

π̂(1)(b) ∝ ĝB(b)

S(b|θ̂(0)) ; 3) let θ̂(ν) be the MLE using the full likelihood in (2.9) with π(·) = π̂(ν)(·);

4) update π̂(ν+1)(b) ∝ ĝB(b)

S(b|θ̂ν)) ; and 5) iterate between steps (3) and (4) until convergence

criterion is met. Use bootstrap BCa confidence intervals (Efron 1987) to account for uncer-

tainty in estimating π(·).

2.5. Incorporating a Random Effect and a Covariate

In many applications it is desirable to account for observed and unobserved residual hetero-

geneity; therefore, we propose the following model for the observed menstrual cycle length

for couple i:

Ỹi = Ỹ0iWie
βzi , (2.10)

where Wi is an unobserved couple-specific random effect with support wi ∈ (0,∞) and

CDF H(wi;α), α ∈ A; zi is an observed time-independent covariate; β is a fixed effect
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parameter; and Ỹ0i is the baseline cycle length for a couple with Wi = 1 and zi = 0 with

CDF F0(y0i; θ), θ ∈ Θ. We assume the distribution of Z does not depend on θ and that

conditional on Zi = zi and Wi = wi, the cycle lengths within a woman are independent

and identically distributed with CDF F (yi | wi, zi; θ, β) = F0(yiw
−1
i e−βzi ; θ, β) and pdf f(yi |

wi, zi; θ, β) = w−1i e−βzif0(yiw
−1
i e−βzi ; θ, β).

Our goal is to use the enrollment cycle data to estimate the marginal distribution of

menstrual cycle length for the reference population with covariate Z = z. For the enrollment

cycle, we eliminate the “ ˜ ” notation and assume as in Section 2.4 that length-bias operates

on Xi = Yi ∧Ci with Yi modeled as in (2.10). Since the random effects are not observed, we

assume π(·) does not depend on Wi, and further we restrict to the case where π(·) does not

explicitly depend on zi. Incorporating the covariate, the observed enrollment data consist of

(bi, xi, δi, zi); i = 1, . . . , n. We assume non-informative and independent censoring conditional

on Zi = zi and Wi = wi. Under these assumptions, the observed data conditional likelihood

of X given (B,Z) is

Lc(θ, α, β | b, z, λ,x, δ) ∝
n∏
i=1

{
f(xi | zi; θ, α, β)λ(xi)

1
xi

}δi{∫∞
xi
f(u | zi; θ, α, β)λ(u) 1

u
du
}(1−δi)∫∞

bi
f(u | zi; θ, α, β)λ(u) 1

u
du

.

(2.11)

Here, f(· | zi; θ, α, β) =
∫
W
f(· | w, zi; θ, β)dH(w;α), where we use Gaussian quadrature

integration to integrate over the unobserved random effect; however, one could alternatively

derive the complete data likelihood and use an Expectation Maximization approach. Ex-

tending the full likelihood in (2.9) to incorporate the covariate and random effect, we have

L(θ, α, β | π, λ,b,x, z, δ) ∝
n∏
i=1

{
f(xi | zi; θ, α, β)

}δi{∫∞
xi
f(u | zi; θ, α, β)λ(u) 1

u
du
}(1−δi)

∫∞
0
f(u | zi; θ, α, β)λ(u) 1

u

{∫ u
0
π(t | zi)dt

}
du

.

(2.12)

As before, note that Lc in (2.11) does not depend on π(·). Therefore, one could estimate

(θ, α, β) using a maximum likelihood approach based on it, and we compare the estimates

and standard errors obtained using Lc to those based on L in Sections 2.6 and 2.7.

19



2.5.1 Semi-parametric Estimation of S(y | z; θ, α, β)

To extend the semi-parametric approach to incorporate a covariate and random effect, we

assume a parametric distribution for Ỹ0; but as before, we do not make any parametric

assumptions about the form of π(·). Starting with an estimate of gB(b | z) (as shown in

Section 2.6, the empirical probability mass function works well), proceed as follows:

1. Let (θ̂(0), α̂(0), β̂(0)) be the MLE using the conditional likelihood in (2.11) so,

S(0)(y | z; θ̂(0), α̂(0), β̂(0)) =

∫ ∞
y

f(u | z; θ̂(0), α̂(0), β̂(0))du.

2. π̂(1)(b | z) ∝
ĝB|Z(b | z)

S(0)(y | z; θ̂(0), α̂(0), β̂(0))
.

3. Let (θ̂(ν), α̂(ν), β̂(ν)) be the MLE using the full likelihood in (2.12) with π(· | z) = π̂(ν)(· | z).

4. π̂(ν+1)(b | z) ∝
ĝB|Z(b | z)

S(ν)(y | z; θ̂(ν), α̂(ν), β̂(ν))
.

5. Iterate between steps (3) and (4) until convergence criterion is met.

In Sections 2.6 and 2.7, we consider the case where Z is a binary covariate, which is

useful when comparing the distribution of menstrual cycle length for two populations.

2.6. Simulation Studies

We describe and report a simulation study examining the semi-parametric estimation ap-

proach described in Section 2.5 in the setting in which we model the observed menstrual cycle

length dependent on an unobserved random effect W and an observed time-independent bi-

nary covariate z (see model 2.10). Our primary interest is in the estimation of the marginal

means and standard deviations: E(Ỹ | z = 0), E(Ỹ | z = 1), SD(Ỹ | z = 0), and

SD(Ỹ | z = 1), which are functions of the parameters (θ, α, β). We evaluate performance

of maximum likelihood estimators when proper account is taken of length-bias and selection

effects. We focus on censored data using the full likelihood in (2.12).

20



Using the data generation scheme described in Appendix A.1, we generate the simulated

data consisting of 2000 samples, each with 500 participants enrolled using quota sampling,

a sampling scheme in which participants are enrolled until a quota is reached. The first 250

participants enrolled of each sample compose a small sample size case. In the data generation

scheme, the choice of parametric family and the values of the parameters mimic the LIFE

data analysis in Section 2.7.

We study the performance of the proposed recursive semi-parametric algorithm for em-

pirical estimation of π(b | z) and parametric estimation of the distribution of Ỹ , under

model (2.10) in which Ỹ0 is assumed to be a normal-Gumbel mixture andW ∼ Gamma(α, 1/α)

so E(W ) = 1 and V ar(W ) = 1/α. In particular, we are interested in two data generating

models for π, constant as found in the data analysis, and decreasing with b. The bias, stan-

dard errors, mean squared error and coverage probabilities for the estimators of E(Ỹ | z = 0),

E(Ỹ | z = 1), SD(Ỹ | z = 0), SD(Ỹ | z = 1), β, and SD(W ) are summarized in Table 2.1.

For both cases of π, the bias of each of the marginal parameters is approximately 0. To

account for the uncertainty in estimating both π and the model parameters, we calculated

bootstrap BCa intervals with 1000 bootstrap replicates. The coverage probability of the nui-

sance parameter, SD(W ), is less than the nominal 95%; however, the coverage probability

for each of the marginal parameters of interest is very good even for small samples. Using

the same simulated data, we also studied the performance of maximum likelihood estimators

based on the conditional likelihood, Lc in (2.11) which does not require estimation of π (see

Table 2.2). Under both generating models for π and for each sample size, we did not ob-

serve a notable difference between the two approaches in any of the performance measures.

Computer code in R for this simulation is given in Appendix A.2.
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Table 2.1: Performance of semi-parametric algorithm for estimating S(y | z; θ, α, β) using
the full likelihood under the following model assumptions: Ỹ = Ỹ0Weβz, z an observed
binary covariate, W ∼ Gamma(α, 1/α), Ỹ0 ∼ qfnormal(µN , σ

2
N) + (1− q)fGumbel(µG, σ2

G) and
λ(y) ∝ y. Data generated using algorithm enumerated in Appendix A.1 with 2 cases for π(b):
constant (ζ = 0) and decreasing (ζ = 5.5) with b. Number of simulations = 2000. Standard
errors based on simulation estimates (Sim SE). Bootstrap BCa CI constructed using 1000
bootstrap replicates. Two sample sizes: 250 and 500.

Setting Parameter True Bias Sim SE MSE BCa CP
Const π(b) E(Y | z = 0) 31.95 0.03 0.81 0.66 92.80
(n=250) E(Y | z = 1) 30.39 -0.04 0.83 0.70 93.05

SD(Y | z = 0) 9.70 0.02 1.08 1.17 94.45
SD(Y | z = 1) 9.23 0.00 1.04 1.08 94.35

β -0.05 0.00 0.03 0.00 93.05
SD(W ) 0.10 0.00 0.00 0.00 78.70

Setting Parameter True Bias Sim SE MSE BCa CP
Const π(b) E(Y | z = 0) 31.95 0.01 0.55 0.31 94.90
(n=500) E(Y | z = 1) 30.39 -0.04 0.56 0.31 91.50

SD(Y | z = 0) 9.70 0.02 0.72 0.52 94.75
SD(Y | z = 1) 9.23 0.00 0.69 0.48 94.65

β -0.05 0.00 0.02 0.00 90.70
SD(W ) 0.10 0.00 0.00 0.00 75.35

Setting Parameter True Bias Sim SE MSE BCa CP
Decr π(b) E(Y | z = 0) 31.95 0.04 0.76 0.58 94.75
(n=250) E(Y | z = 1) 30.39 -0.03 0.76 0.58 94.90

SD(Y | z = 0) 9.70 0.02 1.10 1.21 95.70
SD(Y | z = 1) 9.23 0.00 1.05 1.11 95.35

β -0.05 0.00 0.02 0.00 93.35
SD(W ) 0.10 0.00 0.00 0.00 81.15

Setting Parameter True Bias Sim SE MSE BCa CP
Decr π(b) E(Y | z = 0) 31.95 0.01 0.53 0.29 95.45
(n=500) E(Y | z = 1) 30.39 -0.03 0.52 0.27 92.50

SD(Y | z = 0) 9.70 0.01 0.77 0.59 95.40
SD(Y | z = 1) 9.23 0.00 0.73 0.54 95.25

β -0.05 0.00 0.02 0.00 92.70
SD(W ) 0.10 0.00 0.00 0.00 73.45



Table 2.2: Performance of estimators of S(y | z; θ, α, β) using the conditional likelihood
under the following model assumptions: Ỹ = Ỹ0Weβz, z an observed binary covariate,
W ∼ Gamma(α, 1/α), Ỹ0 ∼ qfnormal(µN , σ

2
N) + (1 − q)fGumbel(µG, σ2

G) and λ(y) ∝ y. Data
generated using algorithm enumerated in Appendix A.1 with 2 cases for π(b): constant
(ζ = 0) and decreasing (ζ = 5.5) with b. Number of simulations = 2000. Standard errors
based on simulation estimates (Sim SE). Bootstrap BCa CI constructed using 1000 bootstrap
replicates. Two sample sizes: 250 and 500.

Setting Parameter True Bias Sim SE MSE BCa CP
Const π(b) E(Y | z = 0) 31.95 0.04 0.81 0.66 92.85
(n=250) E(Y | z = 1) 30.39 0.01 0.81 0.66 93.25

SD(Y | z = 0) 9.70 0.02 1.08 1.17 94.50
SD(Y | z = 1) 9.23 0.02 1.04 1.08 94.30

β -0.05 0.00 0.03 0.00 95.25
SD(W ) 0.10 0.00 0.00 0.00 78.95

Setting Parameter True Bias Sim SE MSE BCa CP
Const π(b) E(Y | z = 0) 31.95 0.01 0.55 0.31 95.00
(n=500) E(Y | z = 1) 30.39 -0.01 0.54 0.29 95.50

SD(Y | z = 0) 9.70 0.02 0.72 0.52 94.70
SD(Y | z = 1) 9.23 0.01 0.69 0.47 95.05

β -0.05 0.00 0.02 0.00 96.20
SD(W ) 0.10 0.00 0.00 0.00 72.25

Setting Parameter True Bias Sim SE MSE BCa CP
Decr π(b) E(Y | z = 0) 31.95 0.04 0.76 0.58 94.75
(n=250) E(Y | z = 1) 30.39 -0.01 0.76 0.58 95.10

SD(Y | z = 0) 9.70 0.02 1.10 1.21 95.80
SD(Y | z = 1) 9.23 0.00 1.06 1.12 95.35

β -0.05 0.00 0.02 0.00 95.00
SD(W ) 0.10 0.00 0.00 0.00 81.05

Setting Parameter True Bias Sim SE MSE BCa CP
Decr π(b) E(Y | z = 0) 31.95 0.01 0.53 0.29 95.65
(n=500) E(Y | z = 1) 30.39 -0.01 0.52 0.27 95.85

SD(Y | z = 0) 9.70 0.01 0.77 0.59 95.25
SD(Y | z = 1) 9.23 0.00 0.73 0.54 95.15

β -0.05 0.00 0.00 0.00 96.50
SD(W ) 0.10 0.00 0.02 0.00 72.25



2.7. Application to the LIFE Study

We apply the proposed semi-parametric approach to estimate the enrollment probability

function and the distribution of menstrual cycle length for the population studied in the

LIFE Study, focusing on enrollment cycle data with adjustment for length-bias and selection

features of the sampling plan. For this prospective pregnancy study, recruitment took place

in the U.S. in Michigan and Texas in 2005-2009 with minimal criteria for eligibility listed

as follows: female ages 18-44 years and male ages 18+ years; in a committed relationship;

ability to communicate in English or Spanish; menstrual cycle length between 21 and 42

days; no hormonal contraception injections during past year; and no sterilization procedures

or physician diagnosed infertility. Prior to conception, 501 couples satisfying the eligibility

criteria and interested in becoming pregnant were enrolled on a calendar date irrespective of

the day of the woman’s menstrual cycle and followed until pregnancy, exit from the study,

or censored at the completion of 12 menstrual cycles at-risk for pregnancy. Under these

inclusion criteria and protocol, the sampling plan is independent of the participants’ cycle

lengths. For further details, see the complete study protocol (Buck Louis et al. 2011).

The enrollment menstrual cycle length was observed as the sum of two segments: the

backward recurrence time, which was recalled on the enrollment date as the time since LMP;

and the residual time, which was prospectively observed from enrollment until the next

menstrual bleeding event determined from the woman’s daily recorded level of bleeding or

spotting (0 = none to 4 = heavy), using an algorithm to distinguish menstrual bleeding from

non-menstrual bleeding. The residual time was censored if the couple exited the study for

one or more of the following reasons: no longer wishing to participate, relocation, diagnosis

of sterility, and non-compliance with study protocol; or if pregnancy was detected using

Clearblue®Easy pregnancy tests which detect levels of hCG over 25 mIU/mL. For couples

becoming pregnant in the enrollment cycle, we would have ideally censored the residual time

on the day on which the next menstrual bleeding is precluded by the absence of a decline

in estrogen and progesterone. In the absence of knowledge of this date, we censored on the
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date of the first positive pregnancy date.

We consider the enrollment cycles of 467 couples for which both the backward recurrence

time and residual time (or censoring time) could be determined, with total observed length

in the range of (8, 90) days and backward recurrence time less than 50 days. Since a

menstrual cycle length of 90 days is more than twice the study’s inclusion criteria of 42

days, we have excluded lengths outside this range as they are likely an artifact of a missing

cycle stop/start. Furthermore, we have excluded 4 women because the onset date of the

enrollment menstrual cycle could not be determined due to breastfeeding, miscarriage, or

discontinuation of hormonal birth control. This restriction excludes women who recently

were pregnant which may be important if cycle length is associated with pregnancy, but

this is a very small number of exclusions. We excluded 6 women who exited the study

before recording any bleeding information due to non-compliance or no longer wishing to

participate. This exclusion is based on the assumption that these exits were not associated

with menstrual cycle length.

We estimate the marginal distribution of menstrual cycle length using model (2.10) for the

observed menstrual cycle length, with z = 0 for the women aged < 30 years and z = 1 for the

women aged ≥ 30 years, where 30 is the median age; and we assume W ∼ Gamma(α, 1/α) so

E(W ) = 1 and V ar(W ) = 1/α. Motivated by the statistical model for menstrual cycle length

implemented by McLain, Lum, and Sundaram (2012), we assume Ỹ0 has a normal-Gumbel

mixture distribution with unknown parameter vector: θ = (q, µN , σN , µG, σG), where q is

the proportion of normally distributed lengths and (µN , σN) and (µG, σG) are the mean and

standard deviation of the normal and Gumbel distributions, respectively. As described in

Section 2.A.2, we find this parametric choice for Ỹ0 fits the menstrual cycle length data better

than the log-normal model. We assume λ(y) ∝ y and provide a check of this assumption as

suggested by a reviewer in Section 2.A.3. Rather than assuming a model for π(· | z) in the

full likelihood (see 2.12), we use the semi-parametric approach proposed in Section 2.5.1 to

estimate the shape of π(· | z) and (θ, β, α).
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Figure 2.1: Parametric estimates of marginal survivor function of menstrual cycle length
(a) for women aged < 30 years based on enrollment cycle data, with adjustments for both
length-bias and selection effects (solid), length-bias only (dotted), and without adjustments
(dashed); and (b) for women aged < 30 years (dashed) compared with women aged ≥ 30
years (dotted) based on enrollment cycle data with adjustments for both length-bias and
selection effects, zoomed in to a range of 20-40 days. Restricted to n = 467 enrollment
cycles of known observed length within (8, 90) days and with backward recurrence time less
than 50 days.

In order to illustrate the effects of adjusting for the sampling plan, we show the marginal

survival curves (Fig. 2.1a) for women aged < 30 years, point estimates and 95% confidence

intervals (Table 2.3) with and without adjustment for length-bias and selection effects. The

estimates of the unadjusted marginal survivor function and marginal means and standard

deviations are located above those which have been adjusted, due to the over-representation

of long cycles. The marginal survivor function that adjusts for both length-bias and selection

effects lies in between the other curves, suggesting some cancellation of the length-bias by the

selection effects. The same pattern was observed for the women aged ≥ 30 years (not shown).

The point estimate and confidence interval of the standard deviation of the random effect

are small indicating that the residual variation is small. Of biological interest is that the

estimated marginal survivor curve (see Fig. 2.1b) and marginal mean and standard deviation
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Figure 2.2: Smoothed shape of empirical estimate of π(b | z) for LIFE Study for women
aged < 30 years (a) and women aged ≥ 30 years (b), scaled so that maximum value is 100%.
Rug shows backward recurrence times. Note that a non-smoothed estimate of the shape of
π(b | z) was used to calculate the estimates shown in column 3 of Table 2.3. Restricted to
n = 467 enrollment cycles of known observed length within (8, 90) days and with backward
recurrence time less than 50 days.



Table 2.3: Estimates of parameters of menstrual cycle distribution for LIFE Study population
based on enrollment cycle data with and without adjustments for length-bias (LB) and
selection effects (S). Model assumptions: Ỹ = Ỹ0Weβz, z = 0 (age < 30), z = 1 (age ≥ 30),
W ∼ Gamma(α, 1/α), Ỹ0 ∼ qfnormal(µN , σ

2
N) + (1 − q)fGumbel(µG, σ

2
G). Adjustments for

LB and S done using semi-parametric algorithm to estimate model parameters and π(· | z)
assuming λ(y) ∝ y. Point estimate with BCa 95% confidence limits displayed as: LoEst Up
(Louis and Zeger 2009). BCa confidence intervals were calculated using non-parametric
bootstrapping with 1000 replicates. Restricted to n = 467 enrollment cycles of known
observed length within (8, 90) days and with backward recurrence time less than 50 days.

Parameter Unadjusted Adj. for LB Adj. for LB and S

E(Ỹ | age < 30) 32.5533.76 34.77 30.4231.40 32.31 31.0132.18 33.39

E(Ỹ | age ≥ 30) 31.3032.51 33.71 29.1230.13 31.00 29.9131.07 32.22

SD(Ỹ | age < 30) 8.7010.92 12.30 7.598.56 9.84 8.5410.04 11.98

SD(Ỹ | age ≥ 30) 8.5010.51 11.99 7.318.21 9.42 8.219.69 11.66

β : age −0.08−0.04 −0.01 −0.08−0.04 −0.01 −0.07−0.04 −0.01
α 82.6985.24 88.00 73.2880.94 84.91 71.4182.88 85.85

SD(W ) 0.110.11 0.11 0.110.11 0.12 0.110.11 0.12

q 0.540.64 0.70 0.620.71 0.78 0.600.70 0.77

µN 28.9329.83 31.11 29.0029.72 30.88 28.9829.73 30.70

σN 0.650.76 1.35 0.700.83 1.69 0.690.81 1.72

µG 37.5440.72 42.87 32.7235.47 38.66 34.1337.78 41.56

σG 10.3114.59 16.74 11.1513.45 16.79 12.3915.49 19.99



for the women aged ≥ 30 years is below that of women aged < 30 years which agrees with

the findings of Harlow, Lin, and Ho (2000). If estimation of π(· | z) is not of interest, we can

alternatively estimate the parameters by maximizing the censored form of the conditional

likelihood, Lc, in (2.11). For these data, the point estimates and standard errors for the full

and conditional approaches are approximately identical (not shown); however, this is not

always the case as seen in the simulation results in Table 2.2. Additionally, in Section 2.A.4,

we compare the unadjusted and adjusted estimated distribution of Ỹ based on enrollment

cycle data to the estimated distribution based on first post-enrollment cycle data.

Although the estimates shown in Fig. 2.1 and Table 2.3 are based on an empirical estimate

of π(b | z), for the purpose of visualizing the enrollment probability function we display a

smoothed version of the estimate for each age group in Fig. 2.2 which was obtained using

a kernel density smoothing approach with oversmoothed bandwidth selection (Wand and

Jones 1994), implemented in R via the function bkde. The magnitude of the estimate is

scaled by its maximum so that the values on the y-axis are the percent of maximum value.

For both groups, the shape of the smoothed estimate is approximately uniform for most

values of b; therefore, we do not see evidence of selection effects with regard to the length of

the backward recurrence time.

2.8. Discussion

We have considered the problem of estimating the distribution of menstrual cycle length

from enrollment cycle data for which the distribution is potentially weighted by features

of the sampling process, in particular length-bias and selection effects. Addressing these

features in the likelihood, we developed a two-stage semi-parametric approach for estimating

the population distribution along with the shape of the enrollment probability. Using the

empirical probability mass function to estimate the distribution of backward recurrence

times, we obtained approximately unbiased estimates of the parameters of the distribution

and traded very little variance for estimating the shape of the enrollment probability.
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In the analysis of the LIFE Study data, we showed that adjustment for both length-bias

and selection effects leads to visible differences in parameter and survivor curves estimates.

These differences may be especially important when making risk predictions for TTP or

disease, or when studying covariate effects in studies where an effect size on the order of 1-3

days is not uncommon such as those investigating the effects of environmental pollutants on

menstrual cycle length (see, e.g. Buck Louis et al. 2011a).

This approach is particularly useful in settings where there is a desire to model the first

gap time or an interest in the characteristics of the selection process. For example, one

could compare the estimated enrollment probability across multiple studies or recruitment

strategies and, if a significant difference is found, then account for selection effects to make

inference on a reference population.

As is done in many studies involving a renewal process, the backward recurrence time was

ascertained using self-report at enrollment. Since the inclusion criteria restricted to women

with regular cycles, we expect the recall bias and uncertainty to be small. As is common

with retrospective recalled information, we do observe some digit preference, in particular for

an LMP of 7, 14, and 21 days before enrollment. In a more comprehensive analysis of these

data, we could conduct a sensitivity analysis on digit preference generating distributions

around those digits.

We investigated the possibility that an undetected spontaneous abortion (SAB) could

make the enrollment cycle different from post-enrollment cycles in addition to length-bias

and selection. Based on the eligibility screening, the couples must have been off contraception

for 0, 1, or 2 cycles prior to enrollment. Seventy percent of the couples who enrolled had

been off contraception for 0 cycles. A pregnancy test was conducted on day of enrollment

using the Clearblue®Easy pregnancy test which has been shown to be sensitive for detecting

25 mIU/mL of hCG (Cole 2011); therefore the probability that a SAB would not have been

detected on enrollment day is low. Couples who had been trying for 1-2 cycles and who had a

positive test prior to enrollment would not have enrolled. In the case of a couple who did not
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test for pregnancy prior to enrollment, if an SAB occurred and the woman mistook bleeding

for menses, the woman’s hCG level would have had to return to less than 25mIU/mL by

the time of the pregnancy test on the day of enrollment, an unlikely combination of events.

Furthermore all bleeding, including spotting, was recorded as a categorical variable indicating

intensity in the female daily journal starting on the day of enrollment. The possibility of

SAB after enrollment was investigated when the data was completed and it was concluded

that the majority of the long cycles could not be contributed to SAB.

Focusing solely on enrollment cycle data, we were able to obtain relatively small con-

fidence intervals for all parameters of the menstrual cycle length distribution, suggesting

potential gain for inclusion of these data even when post-enrollment data are available. Our

future work will focus on modeling the full history of menstrual cycle data from enrollment

to pregnancy along with the time-to-pregnancy process. In modeling the pregnancy cycles

for this work, we used time-to-positive test date as a proxy for the date on which the men-

strual cycle is paused; however, the true date is some time before the positive test date.

Improvements can be made using data on intercourse patterns, ovulation, and pregnancy

tests and by conditioning on the date for which the menstrual cycle is paused being earlier

than the positive pregnancy test.

This work impacts the analysis of existing longitudinal data by providing an approach

to estimate π(·) for a particular study and to use this estimate to adjust inferences to a

reference population. The estimate of π(·) can also be useful in designing recruitment for a

new study. Additionally, it might be of interest to collect data on the number of participants

who decline enrollment in order to estimate the magnitude of π(·).
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Appendices
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2.A.1. Proofs

2.A.1.1 The Conditional Distribution of Backward Recurrence Times

In the sampling plan of the renewal process described in Section 2.2.1 of the manuscript, we

assume that the study announcement, t∗, is stochastically independent of the sequence: Tm =

T0+Ỹ1+Ỹ2+· · ·+Ỹm. Here, we show how our subsequent claim that [B̃ | Ỹm(t∗)] ∼ U(0, Ỹm(t∗))

follows from a theorem proven by Winter (1989). To simplify notation, henceforth we drop

the “ ˜ ” notation and subscript m(t∗) and show that this follows from Winter (1989)’s proof

that B = UY where U ∼ U(0, 1) and Y ∼ gY (·).

First, by the transformation, B(U, Y ) = UY and W (U, Y ) = Y , the joint distribution of

(B,W ) is:

fB,W (b, w) =
fU,Y ( b

y
, w)∣∣∣∣( y u

0 1

)∣∣∣∣
=
fU,Y ( b

y
, w)

y

=
1

y
1{0 < b/y < 1}gY (w) by U ⊥⊥ Y

=
1

y
1{0 < b < y}gY (w).

Therefore, the joint distribution of (B, Y ) is:

fB,Y (b, y) =
1

y
1{0 < b < y}gY (y).

Then, the conditional distribution of B given Y is:

fB|Y (b | y) =
fB,Y (b, y)

gY (y)

=
1

y

1{0 < b < y}gY (y)

gY (y)

=
1

y
1{0 < b < y}.
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Thus, [B̃ | Ỹm(t∗)] ∼ U(0, Ỹm(t∗)).

This concludes the proof.

2.A.1.2 Solution to the Integral Equation

Define

β(u) :=

∫ u

0

dGB(z)∫∞
z
f(t)λ(t)

t
dt

=

∫ u

0

gB(z)dz∫∞
z
f(t)λ(t)

t
dt
, (13)

where gB(z) is the marginal density of B. The following observation is crucial, namely,∫ ∞
0

β(u)f(u)
λ(u)

u
du = 1. (14)

To see this, note that∫ ∞
0

β(u)f(u)
λ(u)

u
du =

∫ ∞
0

f(u)
λ(u)

u

(∫ u

0

gB(z)dz∫∞
z
f(t)λ(t)

t
dt

)
du

=

∫ ∞
0

gB(z)∫∞
z
f(t)λ(t)

t
dt

(∫ ∞
z

f(u)
λ(u)

u
du

)
dz (15)

=

∫ ∞
0

gB(z) dz = 1,

where in (15), we used Tonelli’s theorem to change the order of integration as the integrand

is non-negative.

Recall now that as B < V, a.s. and the support of f and gB are included in [0, V ], all

integrals can be truncated to the interval [0, V ] and we are interested in π(b) for b ≤ V .

Define γ(u) =
∫ u
0
π(t)dt. Consider now the integral equation in γ given by

γ(u) = β(u)

(∫ ∞
0

f(t)
λ(t)

t
γ(t) dt

)
= β(u)

(∫ V

0

f(t)
λ(t)

t
γ(t) dt

)
, 0 ≤ u ≤ V. (16)

In order that the integral equation is meaningful, we will need to restrict our attention to

those γ such that

‖γ‖1 :=

∫ V

0

f(t)
λ(t)

t
|γ(t)| dt <∞.

Let X = {γ : [0, V ]→ R, ‖γ‖1 <∞}. Clearly, X is a Banach space.
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Consider the mapping γ → Tγ given by

(Tγ)(u) = β(u)

(∫ V

0

f(t)
λ(t)

t
γ(t) dt

)
.

Note that f, λ, β etc are non-negative functions and therefore,

‖Tγ‖1 =

∫
β(u)f(u)

λ(u)

u
du

∣∣∣∣∫ V

0

f(t)
λ(t)

t
γ(t) dt

∣∣∣∣
≤
∫
β(u)f(u)

λ(u)

u
du

∫ V

0

f(t)
λ(t)

t
|γ(t)| dt

= ‖γ‖1,

where we used (14) and the definition of ‖γ‖1. This shows that T maps the unit ball B in X

into the unit ball B, i.e., T is a self map of the unit ball. Moreover, T (B) = B∩{cβ : c ∈ R},

which immediately implies that the image T (B) is a compact set in B (as it is the intersection

of a one dimensional subspace and the unit ball B in the Banach space X). Applying

Schauder’s fixed point theorem (Conway 1990), we infer that there exists a fixed point of

the map T , i.e., a solution of the integral equation (16).

Concerning uniqueness, it is easy to see that if γ is a solution of (16), then so is cγ for

any c ∈ R. Thus uniqueness cannot be expected in the strict sense. However, the solution

is unique modulo a proportionality constant. To see this, for γ ∈ X, define the constant

(which depends on γ) cγ =
∫ V
0
f(t)λ(t)

t
γ(t) dt. If γ1, γ2 satisfy (16), then γ1(u) = cγ1β(u) and

γ2(u) = cγ2β(u). If both cγ1 = cγ2 = 0, then clearly γ1 = γ2 = 0. Now assuming cγ1 6= 0, we

may divide and conclude γ1(u)
γ2(u)

=
cγ2
cγ1

. The right hand side is a constant independent of u.

This concludes the proof.

2.A.1.3 Alternative Method for Solving for π

Using (14), it is immediate that γ1(u) = β(u) solves (16). Differentiating (and using the

fundamental theorem of calculus), we get π1(u) = gb(u)∫∞
u f(t)

λ(t)
t
dt

. Note that π1(u) ≥ 0. How-

ever, note that π is a probability and therefore π(u) ≤ 1 for all 0 ≤ u ≤ V . In case
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‖π1‖∞ := sup0≤u≤V π1(u) <∞, we may simply take π(u) = π1(u)
‖π1‖∞ . Since we know π1 solves

(16) and so does any scalar multiple of it, π will be a solution, which, as proven in the

previous section, is unique up to a constant of proportionality.

2.A.2. Comparison of Model Fit: Normal-Gumbel vs Log-normal

In this section we compare the fit of the normal-Gumbel model for Ỹ0 to that of a log-

normal model motivated by the skewness of the menstrual cycle length distribution. Using

model (2.10) for the observed cycle length, we incorporate a gamma random effect W with

mean 1 and variance 1/α and a binary covariate that indicates age≥30 years. We first con-

sider the subset of 467 couples with known enrollment cycle lengths in the range (8,90) days

and known backward recurrence times < 50 days. Estimates of the parameters adjusted

for length-bias and selection effects using the approach in Section 2.5.1 are shown in Ta-

ble 2.A.1. Comparing the AIC of each model, the normal-Gumbel mixture model is a better

fit to the data. As a second comparison, we consider the first cycle post-enrollment for 304

couples who neither exited the study nor became pregnant in the first post-enrollment cycle

and with known cycle length in the range of (8, 90) days and known backward recurrence

time less than 50 days. Figure 2.A.1 compares the kernel density estimates for the two

age groups. Table 2.A.2 displays the parameter estimates and Figures 2.A.2-2.A.5 show the

estimated density and survival function curves comparing to non-parametric kernel density

and Kaplan-Meier estimates, respectively. The normal-Gumbel model has an overall better

fit to the data.
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Table 2.A.1: Estimates of parameters of menstrual cycle distribution for LIFE Study popu-
lation based on enrollment cycle data assuming a normal-Gumbel distribution for Y0 versus
assuming a log-normal distribution. Estimates calculated using semi-parametric algorithm
to estimate model parameters and π(· | z) assuming λ(y) ∝ y, Ỹ = Ỹ0Weβz, z = 0 (age
< 30), z = 1 (age ≥ 30), and W ∼ Gamma(α, 1/α). Point estimate with BCa 95% confi-
dence limits displayed as: LoEst Up (Louis and Zeger 2009). BCa confidence intervals were
calculated using non-parametric bootstrapping with 1000 replicates. Restricted to n = 467
couples with known observed length within (8, 90) days and with backward recurrence time
less than 50 days.

Parameter Normal-Gumbel Log-normal

E(Ỹ | age < 30) 31.0132.18 33.39 30.4532.00 33.28

E(Ỹ | age ≥ 30) 29.9131.07 32.22 28.7230.09 31.35

SD(Ỹ | age < 30) 8.5410.04 11.98 7.378.50 9.92

SD(Ỹ | age ≥ 30) 8.219.69 11.66 6.977.99 9.41

β : age −0.07−0.04 −0.01 −0.12−0.06 −0.01
SD(W ) 0.110.11 0.12 0.010.11 0.11

AIC 2799 2945

2.A.3. A Check of the Assumption: λ(y) ∝ y

Beginning in Section 2.3 of the manuscript, we make the assumption λ(y) ∝ y. Here we

provide a check of this assumption for the menstrual cycle data from the LIFE Study as

suggested by a reviewer.

In Section 2.2.2, the marginal distribution of Y in (2.1) is a weighted version of the

reference distribution f with weight proportional to λ(y) 1
y

∫ y
0
π(t)dt. If we assume

1

y

∫ y

0

π(t)dt ≈ π̄,

then the ratio of gY (y) to f(y) is approximately equal to Cλ(y) where C is a constant of

proportionality. If longitudinal data are available, the form of λ can be approximated by
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Figure 2.A.1: Nonparametric kernel density estimates of menstrual cycle length density for
women aged less than 30 years (red) versus women aged 30 years or older (blue) based on
first post-enrollment cycle. Restricted to n = 304 couples who did not exit the study or
become pregnant in the enrollment cycle and in the first post-enrollment cycle and for which
these cycles are of known observed length within (8, 90) days and with backward recurrence
time less than 50 days.
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Figure 2.A.2: Parametric estimates of marginal density function of menstrual cycle length
for women aged less than 30 years based on first post-enrollment cycle assuming a normal-
Gumbel (red) vs assuming a log-normal (blue) model for Y0 vs a non-parametric kernel
density estimate (black). Restricted to n = 304 couples who did not exit the study or
become pregnant in the enrollment cycle and in the first post-enrollment cycle and for which
these cycles are of known observed length within (8, 90) days and with backward recurrence
time less than 50 days.
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Figure 2.A.3: Parametric estimates of marginal density function of menstrual cycle length
for women aged 30 years or older based on first post-enrollment cycle assuming a normal-
Gumbel (red) vs assuming a log-normal (blue) model for Y0 vs a non-parametric kernel
density estimate (black). Restricted to n = 304 couples who did not exit the study or
become pregnant in the enrollment cycle and in the first post-enrollment cycle and for which
these cycles are of known observed length within (8, 90) days and with backward recurrence
time less than 50 days.
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Figure 2.A.4: Parametric estimates of marginal survival function of menstrual cycle length
for women aged less than 30 years based on first post-enrollment cycle assuming a normal-
Gumbel (red) vs assuming a log-normal (blue) model for Y0 vs a non-parametric Kaplan
Meier (black). Restricted to n = 304 couples who did not exit the study or become pregnant
in the enrollment cycle and in the first post-enrollment cycle and for which these cycles are
of known observed length within (8, 90) days and with backward recurrence time less than
50 days.
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Figure 2.A.5: Parametric estimates of marginal survival function of menstrual cycle length
for women aged 30 years or older based on first post-enrollment cycle assuming a normal-
Gumbel (red) vs assuming a log-normal (blue) model for Y0 vs a non-parametric Kaplan
Meier estimate (black). Restricted to n = 304 couples who did not exit the study or become
pregnant in the enrollment cycle and in the first post-enrollment cycle and for which these
cycles are of known observed length within (8, 90) days and with backward recurrence time
less than 50 days.
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Table 2.A.2: Estimates of parameters of menstrual cycle distribution for LIFE Study popu-
lation based on first post-enrollment cycle data assuming a normal-Gumbel distribution for
Y0 versus assuming a log-normal distribution. Estimates calculated assuming Ỹ = Ỹ0Weβz,
z = 0 (age < 30), z = 1 (age ≥ 30), and W ∼ Gamma(α, 1/α). Point estimate with BCa

95% confidence limits displayed as: LoEst Up (Louis and Zeger 2009). BCa confidence inter-
vals were calculated using non-parametric bootstrapping with 1000 replicates. Restricted to
n = 304 couples who did not exit the study or become pregnant in the enrollment cycle and
in the first post-enrollment cycle and for which these cycles are of known observed length
within (8, 90) days and with backward recurrence time less than 50 days.

Parameter Normal-Gumbel Log-normal

E(Ỹ | age < 30) 30.1130.98 31.85 30.1231.20 32.45

E(Ỹ | age ≥ 30) 28.1029.04 30.17 27.7428.52 29.44

SD(Ỹ | age < 30) 5.567.04 9.10 4.865.91 7.20

SD(Ỹ | age ≥ 30) 5.226.61 8.56 4.525.40 6.56

β : age −0.10−0.06 −0.03 −0.13−0.09 −0.05
SD(W ) 0.100.10 0.11 0.010.10 0.10

AIC 1780 1901

plotting an estimate of the ratio gY (y)
f(y)

.

We focus on a subset of 304 couples from the LIFE Study with at least one cycle post-

enrollment. For these couples, we use adaptive bandwidth kernel density estimation (see, e.g.

Wand and Jones 1994) to estimate gY (y) from the enrollment cycle data (without adjustment

for length-bias and selection effects) and f(y) from the first cycle post-enrollment; and use

their ratio to estimate gY (y)
f(y)

for a grid of y values. In order to obtain an estimate of the

uncertainty for this ratio estimator, we use the bootstrapping algorithm below to estimate

95% pointwise confidence bands. Figure 2.A.6 shows a plot of the estimated ratio curve

(solid, black) and the 95% pointwise confidence bands versus y (solid, blue). A reference line

Cy (dashed, black) is given. We also display a rug of the jittered data from the enrollment

cycles (red) and post-enrollment cycles (black). In the range of 24-33 days, in which the

uncertainty is the smallest, it seems reasonable that λ(y) ∝ y.

Bootstrapping algorithm:

1. Sample n=304 ids with replacement from the couple ids.
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Figure 2.A.6: Estimate of gy(y)

f(y)
(solid, black) with 95% pointwise confidence bands (solid,

blue) compared to reference line Cy (dashed, black) where C is a constant. Rug shows
jittered data from the enrollment cycles (red) and post-enrollment cycles (black). Restricted
to n = 304 couples who did not exit the study or become pregnant in the enrollment cycle
and in the first post-enrollment cycle and for which these cycles are of known observed length
within (8, 90) days and with backward recurrence time less than 50 days.
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2. For the sampled ids, using a fixed bandwidth, estimate the density of the enrollment

cycle and of the first post-enrollment cycle, and then calculate the ratio for each value

of length y.

3. Repeat for a total of 1000 iterations.

4. For each value of length, y, find the 95% confidence interval. Together, these intervals

form the 95% pointwise confidence bands.

2.A.4. A Comparison to Post-enrollment Cycle Length Distribution

For longitudinal studies of menstrual cycle length, we can compare the distribution of enroll-

ment cycle data, adjusting for length-bias and selection effects, with the distribution of first

post-enrollment cycle data. Assuming the sampling plan does not influence the distribution

of post-enrollment cycle lengths, we expect these distributions to be similar. In this section,

we make this comparison using data from the Longitudinal Investigation of Fertility and

the Environment (LIFE) Study, detailed in Buck Louis et al. (2011). We consider a subset

of the study population consisting of 304 couples who neither exited the study nor became

pregnant in the enrollment and in the first post-enrollment cycles and for which both cycle

lengths could be determined, with cycle length in the range of (8, 90) days and backward

recurrence time less than 50 days. The raw mean and standard deviation of menstrual cycle

length for the enrollment cycle is 30.9 days and 7.6 days, respectively, versus 29.8 days and

6.9 days for the first post-enrollment cycle.

We assume the observed length follows model (2.10) of the manuscript and model Ỹ0

parametrically as a normal-Gumbel mixture. For the enrollment cycles, we assume λ(y) ∝ y

and use the proposed semi-parametric approach in Section 2.5.1 of the manuscript to esti-

mate the parameters of the distribution adjusting for length-bias and selection effects. For

the first post-enrollment cycles, we assume the observed data are a random sample from

the distribution of Ỹ and use maximum likelihood methods to estimate the parameters of
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the distribution. In order to demonstrate the effect of the adjustment on the enrollment

cycle length distribution, we show the estimated marginal survivor curves (Figs 2.A.7-2.A.8)

and parameter point estimates and 95% confidence intervals (Table 2.A.3) based on the en-

rollment cycle data with and without adjustment versus the marginal survivor curve and

parameter point estimates and 95% confidence intervals of the first post-enrollment cycle.

The adjusted enrollment marginal survivor function and marginal mean and standard de-

viation estimates are closer to those of the first post-enrollment cycle than the unadjusted,

suggesting the adjustments have improved the estimated menstrual cycle length distribution

by moving it closer to the estimated distribution of the first post-enrollment cycle, which

is an estimate of the distribution of Ỹ . We note that there is some difference between the

adjusted survivor curve and that of the post-enrollment cycle for cycles approximately 20

days in length, which make up < 5% of enrollment cycle lengths. This could be due to the

fact that in order to contribute to the first post-enrollment cycle, the couple must not have

become pregnant in the enrollment cycle and so will tend to be less fecund than others in

the enrolled population.
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Figure 2.A.7: Parametric estimates of marginal survivor function of menstrual cycle length
for women aged less than 30 years based on first post-enrollment cycle (dotted, blue) versus
based on enrollment cycle with (solid, black) and without (dashed, red) adjustments for
length-bias and selection effects. Restricted to n = 304 couples who did not exit the study
or become pregnant in the enrollment cycle and in the first post-enrollment cycle and for
which these cycles are of known observed length within (8, 90) days and with backward
recurrence time less than 50 days.
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Figure 2.A.8: Parametric estimates of marginal survivor function of menstrual cycle length
for women aged 30 years or older based on first post-enrollment cycle (dotted, blue) versus
based on enrollment cycle with (solid, black) and without (dashed, red) adjustments for
length-bias and selection effects. Restricted to n = 304 couples who did not exit the study
or become pregnant in the enrollment cycle and in the first post-enrollment cycle and for
which these cycles are of known observed length within (8, 90) days and with backward
recurrence time less than 50 days.
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Table 2.A.3: Comparison of parameter estimates for menstrual cycle length distribution
based on enrollment cycle data (unadjusted vs adjusted for length-bias (LB) and selection
(S) effects) and based on first post-enrollment cycle (unadjusted). Model assumptions: Ỹ =
Ỹ0Weβz, z = 0 (age < 30), z = 1 (age ≥ 30), W ∼ Gamma(α, 1/α), Ỹ0 ∼ qfnormal(µN , σ

2
N)+

(1− q)fGumbel(µG, σ2
G). Adjustments for LB and S done using semi-parametric algorithm to

estimate model parameters and π(· | z) assuming λ(y) ∝ y. Point estimate with BCa 95%
confidence limits displayed as: LoEst Up (Louis and Zeger 2009). BCa confidence intervals
were calculated using non-parametric bootstrapping with 1000 replicates. Restricted to
n = 304 couples who did not exit the study or become pregnant in the enrollment cycle and
in the first post-enrollment cycle and for which these cycles are of known observed length
within (8, 90) days and with backward recurrence time less than 50 days.

Parameter Enrollment Cycle Enrollment Cycle Post-enrollment Cycle
(Unadjusted) (Adjusted for LB and S) (Unadjusted)

E(Ỹ | age < 30) 30.5931.69 32.64 29.5630.72 31.69 30.1130.98 31.85

E(Ỹ | age ≥ 30) 29.7130.71 32.01 26.5428.00 28.24 28.1029.04 30.17

SD(Ỹ | age < 30) 6.898.25 9.87 6.417.51 9.02 5.567.04 9.10

SD(Ỹ | age ≥ 30) 6.777.99 9.65 5.536.85 8.04 5.226.61 8.56

β : age −0.07−0.03 0.01 −0.12−0.09 −0.08 −0.10−0.06 −0.03
SD(W ) 0.100.10 0.11 0.090.10 0.10 0.100.10 0.11



Chapter 3

A Bayesian Approach to Joint
Modeling of Menstrual Cycle Length
and Fecundity

3.1. Introduction

Fecundity, or the biologic capacity of male and female for reproduction irrespective of preg-

nancy intentions (Buck Louis 2011), can be measured in terms of multiple endpoints such

as pubertal onset and progression, menstrual cycle regularity and length, ovulation, semen

quality, and pregnancy, among others. This list emphasizes the role of both the male and

female partner and the complexity of factors that contribute to a couple becoming pregnant,

yet few statistical models have been developed that model more than one of these endpoints.

Until recently available study data on fecundity consisted mostly of retrospective pregnancy

studies or prospective studies with fewer than six months follow-up, and mainly of the female

partner. However, investigators of a recent prospective pregnancy study called the Longitu-

dinal Investigation of Fertility and the Environment (LIFE) Study (Buck Louis et al. 2011)

approached fecundity from a couple-based perspective, collecting measurements on exposures

for both partners with the goal of assessing the effects of exposures on multiple fecundity

related outcomes. We develop a joint model to investigate the relation between female men-

strual cycle length and the couple’s probability of pregnancy. We develop a framework that

allows for the assessment of time-constant exposures on the probability of pregnancy as well
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as those mediated through the female menstrual cycle length. Furthermore, we incorporate

male factors which may be associated with the probability of pregnancy.

Statistical models of repeated measures of menstrual cycle length data have mainly fo-

cused on extensions of mixed effects models to account for covariates, large and heterogeneous

within-female variability, and extreme cycle lengths. Harlow and Zeger (1991) categorized

menstrual cycle lengths as standard and non-standard and developed separate random ef-

fects models for the mean of the standard lengths and the risk of having a non-standard

length. Including only standard lengths, Lin et al. (1997) extended the linear mixed model

to allow for heterogeneous within-female variability (see Laird and Ware 1982; Diggle et al.

2002; Verbeke and Molenberghs 2009; Carlin and Louis 2009, for details). Allowing for non-

standard cycle lengths, Guo et al. (2006) proposed a marginal model with covariates for the

population mean and variance, assuming a mixture of Gaussian and shifted Weibull error

distributions.

Focusing on prediction, Bortot et al. (2010) used a state space approach to develop a pre-

dictive model of menstrual cycle length accounting for trend, autocorrelation and extremely

long or short outlying lengths. McLain et al. (2012) proposed a parametric model assum-

ing a mixture of Gaussian and Gumbel error distributions and incorporating random effects

and covariates on the mean and variance parameters of the Gaussian component. Building

on these work, in the menstrual cycle submodel of our joint model we propose a Bayesian

hierarchical, accelerated failure time model with a mixture error distribution to allow for

skewness in cycle length. In addition, we account for length-bias in modeling the length of

the cycle in which the couple is enrolled and censoring of the length of the cycle in which

the couple becomes pregnant.

Statistical modeling of pregnancy attempts has focused on assessing biological risk factors

in the context of the couple’s day-specific intercourse behavior (see Ecochard 2006, for a

review). However, many models assume there exists a fixed, narrow (fertile) window of

days around ovulation outside of which there is no risk for pregnancy. This restriction
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may not be reasonable, as evidenced by studies which assessed the fertile window, including

ovulation using the gold standard, i.e., serial vaginal ultrasound (Keulers et al. 2007). In

contrast, Dominik et al. (2001) developed a method that incorporates all intercourse acts in

a menstrual cycle, modeling the day-specific probability of pregnancy as a quadratic function

of distance of the intercourse act from ovulation day (assumed to be day 14).

We generalize this approach to a Bayesian hierarchical model for the day-specific prob-

abilities of pregnancy using natural, cubic splines to model the probability of pregnancy,

incorporating cycle-specific information on the couple’s ovulation day as measured using a

fertility monitor, and using the joint model in Section 3.2 investigate the association of fe-

male menstrual cycle length with the probability of pregnancy in the context of male and

female risk factors.

In addition to modeling the relation between menstrual cycle length and the probability of

pregnancy, we include adjustment for the male contribution. For the LIFE Study, Buck Louis

et al. (2014) found significant associations between fecundity and several semen quality pa-

rameters, when each parameter was entered into the model individually. To account for

the male contribution, we incorporate male age, smoking status and multiple semen quality

parameters in addition to female covariates in the model for the probability of pregnancy.

Here, we focus on four World Health Organization (WHO) semen quality parameters (mor-

phology (strict criteria), semen volume, sperm concentration, and total sperm count) which

are common across many studies of semen quality (see e.g., Cooper et al. 2010).

3.2. Joint Model for Menstrual Cycle Length and Pregnancy

For the ith couple (i = 1, . . . , n), let j (j = 1, . . . , ni) index the female menstrual cycles

with lengths Yij and ovulation dates Oij. For the kth(k = 1, . . . , Yij) day of the jth cycle,

let xijk ∈ {0, 1} be the observed day-specific intercourse indicator. For the jth cycle, collect

the intercourse indicators in the vector xij = (xij1, . . . , xijYij). Further, Aij and δi are the

cycle-specific and couple-specific pregnancy indicators, respectively.
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3.2.1 Submodel for Longitudinal Menstrual Cycle Length

In the submodel for menstrual cycle length, we model the relation between baseline covariates

(e.g., age, smoking status) and the expected menstrual cycle length, while accounting for

within-female correlation in longitudinal cycle lengths and extremely short and long cycle

lengths. To meet these challenges, we use a hierarchical accelerated failure time model (see,

e.g., Kalbfleisch and Prentice 2011), which was adapted for modeling menstrual cycle length

by Lum et al. (2014). For the jth (j = 2, . . . , ni) menstrual cycle length from the ith (i =

1, . . . , n) female, we assume

[εij | q, µN , σN , µG, σG]

∼ qGaussian(µN , σ
2
N) + (1− q)Gumbel(µG, σ

2
G), µN > 0, σN > 0, µG > 0, σG > 0;

[Wi | σW ] ∼ Gamma(shape=σ−2W , rate=σ−2W ), σW > 0;

Yij | Wi, exp(vi
>η), εij = Wi exp(vi

>η)εij. (3.1)

Here, vi is an r-dimensional vector of observed covariates with corresponding unknown pa-

rameter vector η and Wi is a couple-specific random effect with support of the distribution

function ∈ (0,∞). We assume a Gaussian/Gumbel mixture distribution for the error vari-

ables to accommodate two groups of menstrual cycle lengths. We will use Ti = 1 to denote

cycle lengths from a Gaussian distribution (group 1) and Ti = 2 to denote cycle lengths

from a Gumbel distribution (group 2). As the mean of the error distribution is non-zero,

we do not include an intercept in the fixed effects and we parameterize the random ef-

fect distribution such that E[W ] = 1 and V [W ] = σ2
W . We assume the distribution of

the covariates does not depend on (q, µN , σ
2
N , µG, σ

2
G) and that the cycle lengths within a

female are conditionally independent given vi and Wi = wi. Let Fε(ε; q, µN , σ
2
N , µG, σ

2
G)

denote the Gaussian-Gumbel cumulative distribution function (CDF). By a transforma-

tion, the CDF of Yij, i = 1, . . . , n, j = 2, . . . , ni is F (yij | wi,vi; q, µN , σ
2
N , µG, σ

2
G, η) =

Fε(yijw
−1
i exp(−vi

>η); q, µN , σ
2
N , µG, σ

2
G, η) and the probability density function is
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f(yij | wi,vi; q, µN , σ
2
N , µG, σ

2
G, η) = w−1i exp(−vi

>η)fε(yijw
−1
i exp(−vi

>η); q, µN , σ
2
N , µG, σ

2
G, η).

Modeling the Length of the Enrollment Cycle

In Lum et al. (2014), we proposed a method for estimating the population menstrual cycle

length distribution using the enrollment cycle (i.e., the menstrual cycle during which the

women enrolled), that accounts for features of the sampling plan of the LIFE Study, specif-

ically length-bias and a selection process that is potentially a function of the time since the

last menstrual period (LMP). For the LIFE study, we found that the estimated probability

of enrollment was approximately constant with respect to time from LMP. Based on this

finding, we account for the sampling plan by assuming a length-biased sampling distribution

for Yi1

fY1(yi1 | wi,vi; q, µN , σ
2
N , µG, σ

2
G, η) =

yi1f(yi1 | wi,vi; q, µN , σ
2
N , µG, σ

2
G, η)

E(Yi | Wi, exp(vi
>η), q, µN , µG)

(3.2)

where E(Yi | Wi, exp(vi
>η), q, µN , µG) = Wi exp(vi

>η){qµN + (1− q)µG}.

Modeling the Length of the Pregnancy Cycle

Menstrual cycle lengths were prospectively measured until the pregnancy cycle, during which

increased levels of progesterone preclude menstrual bleeding in preparation for implantation

of the blastocyst. Therefore, the length of the pregnancy cycle (i.e., the menstrual cycle

during which the couple becomes pregnant) is right censored. Let τini be the time (in days)

from the first day of the nthi cycle to the censoring day. We assume the censoring distribution

is non-informative and conditionally independent of Y given W = w and v. For enrollment

pregnancy cycles, the contribution to the likelihood is proportional to

{1 − F (τini | wi,vi; q, µN , σ
2
N , µG, σ

2
G, η)}/E(Yi | Wi, exp(vi

>η), q, µN , µG); while for non-

enrollment pregnancy cycles, the contribution is proportional to

1− F (τini | wi,vi; q, µN , σ
2
N , µG, σ

2
G, η).
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Choice of Priors for Menstrual Cycle Length Submodel

Let ϕY = (η, σW , q, µN , σN , µG, σG) denote the unknown population parameters of the men-

strual cycle length model. We assume the components of ϕY are independent a priori, such

that [ϕY ] = [σW ][q][µN ][σN ][µG][σG]
R∏
r=1

[ηr]. We complete the hierarchical model with the

following specification of uniform (U) priors:

[ηr | aηr , bηr ] ∼ U(aηr , bηr), r = 1, . . . , R,

[σW ] ∼ U(0, bσW ), (3.3)

[q] ∼ U(0, 1),

[µN ] ∼ U(aµN , bµN ),

[σN ] ∼ U(0, bσN ),

[µG] ∼ U(aµG , bµG),

[σG] ∼ U(0, bσG),

where we choose values for the hyperparameters that are scaled to determine vague priors.

In (3.3), we choose a uniform prior on the scale of the standard deviation of the female-specific

parameter so as not to bias the prior away from 0 (Gelman 2006). If the posterior distribution

of σW includes zero, for example, this would indicate no between-female variability in the

mean beyond that explained by the fixed effects. We discuss alternative choices for the priors

in Appendix A.3.

3.2.2 Submodel for the Probability of Pregnancy

The observed prospective pregnancy data include at the cycle level, pregnancy indicated by

Clearblue®Easy pregnancy tests which detect levels of human chorionic gonadotropin over

25 mIU/mL; and within each cycle, the ovulation day and the pattern of intercourse acts.
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We aim to estimate the association between the female-specific distribution of menstrual

cycle length and the probability of pregnancy in a cycle, accounting for intercourse pattern

in both the current and previous cycles, the preceding cycles of attempts ending without

pregnancy, and male and female covariates.

For the jth cycle, let k′ (k′ = 1, . . . , K ′ij) index the intercourse acts in the cycle, νijk′

denote the (possibly unobserved) indicator of fertilization at the (k′)th intercourse act,

dijk′ denote the time difference (in days) of the intercourse day from ovulation; and let

νij = (νij1, . . . , νijK′ij) and di = (di11, . . . , dijK′ij). We develop a model for the conditional

probability of pregnancy in the jth cycle given no pregnancy at each of the intercourse acts

in previous cycles and timing of all intercourse, denoted

Pr(Aij = 1 | Ai1 = . . . = Ai(j−1) = 0,νi1, . . . ,νi(j−1), K
′
ij,dij), j > 1.

We assume intercourse cannot be successful if the ovum has already been fertilized;

thus, νijk′ is dependent on {νi11, . . . , νij(k′−1)}. Let ρ(dijk′) be the conditional probability of

fertilization at the (k′)th intercourse given no prior fertilization. For the (k′)th intercourse,

k′ > 1, we have

pr(νijk′ = 1 | νi11 = . . . = νij(k′−1) = 0) = ρ(dijk′),

pr(νijk′ = 1 | max(νi11, . . . , νij(k′−1)) = 1) = 0; (3.4)

where (3.4) follows from the fact that prior fertilization prevents subsequent. For the cycles

preceding the jth cycle, we observe νi1 = . . . = νi(j−1) = 0. However, if pregnancy occurs in

the jth cycle, νij is unobserved for K ′ij > 1. Therefore, we express the conditional probability

of pregnancy in the jth cycle as the sum of the probabilities of all possible permutations of

(vij1, . . . , vijK′ij) under the condition
∑

k′ vijk′ = 1. In the special case of one act of intercourse

in the jth cycle,

Pr(Aij = 1 | Ai1 = . . . = Ai(j−1) = 0,νi1, . . . ,νi(j−1), K
′
ij = 1,di) = ρ(dij1).
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For the probability of pregnancy in the jth cycle with two intercourse acts,

Pr(Aij = 1 | Ai1 = . . . = Ai(j−1) = 0,νi1, . . . ,νi(j−1), K
′
ij = 2,di) =ρ(dij1) + {1− ρ(dij1)}ρ(dij2);

and in general, for the probability of pregnancy in the jth cycle with K ′ij intercourse acts,

Pr(Aij = 1 | Ai1 = . . . =Ai(j−1) = 0,νi1, . . . ,νi(j−1), K
′
ij,di) =

ρ(dij1) +
{ K′ij∑
k′=2

([ k′−1∏
l=1

{1− ρ(dijl)}
]
ρ(dijk′)

)}K′ij>1

. (3.5)

The conditional probability of no pregnancy in the jth cycle with K ′ij intercourse acts is

Pr(Aij = 0 | Ai1 = . . . = Ai(j−1) = 0;νi1, . . . ,νi(j−1), K
′
ij,di) =

K′ij∏
k′=1

{1− ρ(dijk′)}.

The expression in (3.5) is equivalent to

Pr(Aij = 1 | Ai1 = . . . = Ai(j−1) = 0,νi1, . . . ,νi(j−1), K
′
ij,di) = 1−

K′ij∏
k′=1

{1− ρ(dijk′)}.

Let k (k = 1, . . . , Ÿij) index day of the menstrual cycle, where Ÿ = [Y ] and [. . .] denotes the

greatest integer function. Using xijk to indicate intercourse and xi to denote the full history

of intercourse acts, we equivalently model

Pr(Aij = 1 | Ai1 = . . . = Ai(j−1) = 0,xi,di) = 1−
Ÿij∏
k=1

{1− ρ(dijk)}xijk . (3.6)

One decision that must be made in fitting this model is which days of the menstrual cycle to

include. Various approaches have been suggested such as assuming the intercourse act clos-

est to ovulation is the one that fertilizes the ovum (Royston and Ferreira 1999) or assuming

an intercourse act has a nonzero probability of success only if it falls within a predetermined

fixed window around the ovulation day (see, e.g., Weinberg et al. 1994; Dunson and Stan-

ford 2005). We employ this second approach, but since a wide variety of fixed windows have

been reported (Lynch et al. 2006), we use a very broad window, specifically excluding only

intercourse acts more than 16 days before ovulation or 18 days after ovulation. Approxi-

mately 5% of all observed intercourse acts occurred outside this range. In a model of barrier
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contraceptive efficacy, Dominik and Chen (2006) consider a broad window consisting of 13

days prior to and 16 days after an assumed ovulation on day 14 of the cycle.

In the second level of the hierarchical model, we model the probability of pregnancy by

intercourse on the kth day of the cycle as a function of the latent female-specific menstrual

cycle length, denoted Ypi, with adjustment for male and female risk factors and difference of

day k from ovulation:

logit[ρ{mi,β, zi,γ, α0, g(dijk)}] = mi
>β + zi

>γ + α0 + g(dijk). (3.7)

In (3.7), mi is a vector composed of linear and potentially quadratic terms of Ypi, which we

incorporate by mixing over the posterior predictive distribution conditional on the woman’s

observed menstrual cycle lengths, priors and hyperpriors. The corresponding unknown re-

gression coefficient vector β, links the menstrual cycle length and pregnancy submodels.

In separate models, we also consider the relation between the probability of preg-

nancy and the latent female-specific menstrual cycle length conditional on group 1 de-

noted Ypi | Ti = 1, and the corresponding conditional means, E(Ypi | Yi, ϕY ,Wi,vi) and

E(Ypi | Yi, ϕY ,Wi,vi, Ti = 1). In Section 3.4.2, we present results from models with the
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following choices for mi
>β:

mi
>β = β1Ypi (Lin)

mi
>β = β1Ypi + β2(Ypi)

2 (LinQuad)

mi
>β = β1(Ypi | Ti = 1) (LinT=1)

mi
>β = β1(Ypi | Ti = 1) + β2(Ypi | Ti = 1)2 (LinQuadT=1)

mi
>β = β1E(Ypi | Yi, ϕY ,Wi,vi) (LinCmean)

mi
>β = β1E(Ypi | Yi, ϕY ,Wi,vi) + β2{E(Ypi | Yi, ϕY ,Wi,vi)}2 (LinQuadCmean)

mi
>β = β1E(Ypi | Yi, ϕY ,Wi,vi, Ti = 1) (LinCmeanT=1)

mi
>β = β1E(Ypi | Yi, ϕY ,Wi,vi, Ti = 1) + β2{E(Ypi | Yi, ϕY ,Wi,vi, Ti = 1)}2

(LinQuadCmeanT=1)

In (3.7) we also adjust for male and female risk factors denoted by zi with corresponding

parameter vector γ. Specifically, we consider four of the WHO male semen quality param-

eters, male smoking status and female smoking status. As male and female age are highly

correlated, we incorporate the average and difference in male and female ages. Additionally,

we account for the time (in days) from intercourse to ovulation, dijk = k − Oij. We model

g(dijk) as a smooth function estimated by ĝ(·) =
∑L

l=1 αlBl(·), where {B1(·), . . . , BL(·)} are

the B-spline basis functions for a natural cubic spline. The intercept is represented by the

parameter α0. Previous specifications of g(dijk) found in the literature include a piecewise

linear spline (Dominik et al. 2001), a quadratic function centered around ovulation (Dominik

and Chen 2006), or a day-specific parameter with restriction of k to a small window of days

around ovulation (see, e.g., Dunson and Stanford 2005).

We denote the parameters of the pregnancy model by ϕA = (β,γ, α). Assuming the

components of ϕA are independent and are also independent of ϕY ; we complete the model
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structure by choosing noninformative uniform priors for each parameter in ϕA.

Modeling the Probability of Pregnancy in the Enrollment Cycle

As we describe in Section 3.4.1, the ovulation day is estimated based on day level data

collected using the Clearblue®Easy fertility monitor. Since couples were allowed to enroll

on any day of the female menstrual cycle, the majority of the couples do not have suffi-

cient monitor data throughout the enrollment cycle to estimate the ovulation day. Further,

for the most fecund couples who become pregnant before the first observed bleeding event

(approximately 10%), the enrollment cycle is their only cycle under observation. In order

to include these couples in the analysis, we model the probability of becoming pregnant in

the enrollment cycle as a function of the couple’s baseline covariates, average number of

intercourse acts (IntcFreq) and the female menstrual cycle length:

logit{P (Ai1 = 1; mi,β, γ, λ, zi)} = mi
>β + zi

>γ + λ0 + λ1IntcFreqi + λ2(IntcFreqi)
2.

3.3. Estimation

We jointly model the longitudinal menstrual cycle lengths and the conditional probability

of pregnancy per cycle, assuming these processes are independent conditional on the shared

random effect Wi. Further, we assume cycle lengths, (Yi1, . . . , Yini), are independent given

(Wi,vi). Let Yo
i denote the observed menstrual cycle lengths and Y u

i the unobserved length

of the pregnancy cycle. Under these assumptions, the joint distribution of (Yi,Ai, Ypi,Wi)

can be factored as

[Yi,Ai, Ypi,Wi | ϕY , ϕA] = [Ai | Ypi, zi,xi,di,ϕA][Ypi | Yi,Wi,vi,ϕY ][Yi | Wi,vi,ϕY ][Wi | ϕY ],

60



where

[Yi | Wi,vi,ϕY ] = [Yo
i , Y

u
i | Wi,vi,ϕY ]

= [Y u
i | Yo

i ,Wi,vi,ϕY ]δi [Yo
i | Wi,vi,ϕY ]

= [Y u
i | Yo

i ,Wi,vi,ϕY ]δi [Y o
ini
| Wi,vi,ϕY ](1−δi)

ni−1∏
j=1

[Y o
ij | Wi,vi,ϕY ].

The unknown model parameters for couple i are: Y u
i , Ypi,Wi,ϕY , and ϕA; and the

observed data are D = (Yo
i ,vi,Ai,Oi, zi,xi,di), where xi is a vector composed of the stacked

vectors of day-specific intercourse indicators. For a couple with Aini = 0 (i.e., no pregnancy),

Yo
i = Yi (i.e., the lengths of all cycles j = 1, . . . , ni are observed) and the contribution to

the joint posterior distribution is given by

[Ypi,Wi,ϕY , ϕA|D;Aini = 0] ∝

( ni∏
j=1

[Y o
ij | Wi,vi,ϕY ][Aij = 0 | Ai1 = . . . = Ai(j−1) = 0;Ypi,xi,di, zi,ϕA]

)
× [Ypi | Yi,Wi,vi,ϕY ][Wi | ϕY ][ϕY ][ϕA].

For a couple with Aini = 1 (i.e., pregnant), the contribution to the joint posterior distri-

bution is given by

[Y u
i , Ypi ,Wi,ϕY , ϕA|D;Aini = 1] ∝

( ni−1∏
j=1

[Y o
ij | Wi,vi,ϕY ][Aij = 0 | Ai1 = . . . = Ai(j−1) = 0;Ypi,xi,di, zi,ϕA]

)
1{ni>1}

× [Y u
i | Yo

i ,Wi,vi,ϕY ][Aini = 1 | Ai1 = . . . = Ai(ni−1) = 0;Ypi,xi,di, zi,ϕA]

× [Ypi | Yi,Wi,vi,ϕY ][Wi | ϕY ][ϕY ][ϕA].

We estimate the marginal posterior distributions of the parameters using Markov chain

Monte Carlo (MCMC) integration. We describe the details of implementing our approach

in Appendix A.3.
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3.4. Application to the LIFE Study, a Prospective Pregnancy Study

The aim of our analysis is to investigate the relation between female menstrual cycle length

and couple fecundity, while accounting for both female and male risk factors in keeping with

the couple dependent nature of human reproduction. Specifically, we use the joint model

detailed in Section 3.2 to model the female-specific menstrual cycle length distribution jointly

with the couple’s fecundity, as measured by the probability of pregnancy in a menstrual cycle.

We assess the association between menstrual cycle length and the probability of pregnancy

adjusting for male and female smoking status, average of male and female age, difference

between male and female age, and four WHO semen quality parameters, specifically semen

volume, sperm concentration, total sperm count, and morphology (strict criteria) as discussed

in Cooper et al. (2010). While the focus of Cooper et al. (2010) is defining cutpoints for

the semen quality parameters, we choose to use the continuous measurements. Furthermore,

since total sperm count is the product of semen volume and sperm concentration, we fit two

separate models adjusting for either total sperm count or both semen volume and sperm

concentration.

3.4.1 The LIFE Study

We apply our joint modeling approach to the LIFE Study, a couple-based, prospective preg-

nancy study of 501 couples. Couples were accepted if they fulfilled the following inclusion

criteria: married or in a committed relationship, females aged 18-40 and males over age 18

years, English or Spanish speaking, self-reported menstrual cycle lengths within 21-42 days,

and no hormonal birth control injections in the past 12 months. Couples were followed until

pregnancy, exit from the study or one year attempting pregnancy. Pregnancy was recognized

using Clearblue®Easy pregnancy tests administered at home on the day menstruation is

expected. For the length of the pregnancy attempt, both the male and female kept indepen-

dent journals of daily intercourse frequency. If the intercourse question was not answered

on a particular day in the female daily journal, we used the number of acts recorded in the
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male daily journal. If the intercourse question was left blank by both members of the couple

(approximately 2.9% of days), we assume the couple did not have intercourse on that day.

Women recorded daily bleeding observed on a scale of 0 (none) to 4 (heavy). The beginning

of the menstrual cycle is defined by menstruation, designated as the first day of bleeding

followed within one day by at least two additional days bleeding. The length of the men-

strual cycle is then defined as time (in days) from the first day of menstrual bleeding to the

day preceding menstrual bleeding of the next cycle. Measurements of semen quality param-

eters were made at the National Institute for Occupational Safety and Health’s andrology

laboratory and a contract laboratory (Fertility Solutions) on samples collected at home via

masturbation without the use of any lubricant following 2 days of abstinence. Morphology

was assessed using the strict and WHO normal criteria (World Health Organization 1992;

Rothmann et al. 2013). As both criteria measure morphology, we choose to use the strict

criteria. Additional details on the collection of semen quality measurements can be found

in Buck Louis et al. (2014).

Beginning on day six of the menstrual cycle, women used the Clearblue®Easy fertility

monitor to measure daily levels of oestrone-3-glucuronide, a metabolite of oestradiol, and

luteinizing hormone (LH). The ovulation day was identified as the peak day detected using

the Clearblue®Easy fertility monitor. In the case of two consecutive peak days, the latter

of the two was designated as the ovulation day. If a peak was not detected and the female

tested on at least 90% of the 20 testing days, we assumed the cycle was anovulatory (151

cycles) and therefore had zero risk for pregnancy; otherwise, we imputed the mean of the

couple’s observed ovulation days (250 cycles). If ovulation was not observed in any cycles, we

imputed the ovulation day as the day with the highest LH peak (33 cycles). We excluded 20

cycles for which the ovulation day could not be detected or imputed due to non-compliance

in testing.

For this analysis, we consider a subset of the LIFE Study restricted to 436 couples with

complete data on the four WHO semen quality parameters so that we may investigate both
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male and female risk factors for pregnancy. Couples who exited the study are censored on

the last day of the cycle preceding their exit. We further excluded 10 couples who exited in

the enrollment cycle and thus are missing data on intercourse days, menstrual cycle length,

and pregnancy success, bringing the size of the subset to 426 couples (1934 menstrual cycles).

Lastly, we excluded 23 cycles shorter than 9 or longer than 89 days. As the upper limit is

more than twice the study’s inclusion criteria of 42 days, lengths outside this range are likely

an artifact of a missing cycle stop/start.

Details on the implementation of the proposed joint modeling approach are described in

Appendix A.3 along with OpenBUGS (Thomas et al. 2006) model code in Appendix A.4.

3.4.2 Analysis of the LIFE Study

We first describe the relation between the female-specific mean menstrual cycle length and

baseline age and smoking status. Table 3.1 shows the posterior medians and 95% equal tail

credible intervals (CI) of the parameters of the regression model for mean menstrual cycle

length (3.1). For the age range of the LIFE Study (18 to 40 years), we found that the

female-specific mean cycle length decreased with increasing age (see Figure 3.1), which is in

agreement with the findings by Harlow et al. (2000) in a study of menstrual cycle character-

istics by age. We also included a quadratic age term, though this was not significant. For

active smoking status, defined as cotinine level at least 10ng/mL (Pirkle et al. 1996), the

posterior median of the coefficient was negative; however, the percentage of female active

smokers was small and the posterior distribution included zero. In the model for the length

of the enrollment cycle (3.2) we accounted for length-bias, which can be visualized by the

right shift in the histogram of the female-specific mean of the enrollment cycle lengths com-

pared to that of the post-enrollment cycles lengths (see Figure 3.2). Lastly, the parameters

of the Gaussian-Gumbel mixture distribution indicate that the probability of a cycle from

group 1 is approximately 79% (CI: (75%, 82%)), and that the mean and standard deviation
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Figure 3.1: Median (solid) and 95% equal tail credible interval (dashed) for the posterior
distribution of mean menstrual cycle length (in days) versus female age (in years).

of the Gaussian distribution are much smaller than that of the Gumbel distribution. In

Section 3.A.1, we assess the fit of the menstrual cycle length submodel.

For the remainder of this section, we describe the results of the fecundity portion of the

joint model. For each couple, we estimated the probability of pregnancy in a cycle conditional

on no pregnancy in previous cycles of attempts, intercourse history, and couple covariates.

Figure 3.3 shows boxplots of the conditional probability of pregnancy by cycle number. The

conditional probability of pregnancy diminishes as the number of cycles without pregnancy

increases.

Table 3.2 shows the posterior medians and 95% CIs of the parameters of the regression

model for the day-specific probability of pregnancy on menstrual cycle length, without adjust-

ment for other risk factors. We first fit a linear term for menstrual cycle length (model Lin)

and then added a quadratic term (model LinQuad) which we found to be significant. For

intercourse on a particular day of the menstrual cycle, we estimate the unconditional proba-

bility of pregnancy as a function of menstrual cycle length and find the optimal cycle length.
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Figure 3.2: Histograms and density estimates of the estimated woman-specific mean men-
strual cycle length (in days) for enrollment cycles (light gray bars, dashed line) compared to
that of post-enrollment cycles (dark gray bars, solid line). Estimates shown are medians of
the posterior distribution of woman-specific mean cycle length.
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Figure 3.3: Box plots of conditional probability of pregnancy in a cycle given no pregnancy
in previous cycles, intercourse history, menstrual cycle length, total sperm count, sperm
morphology (strict criterion), mean of male and female age, difference between male and
female age, male and female active smoking status (yes/no).



Table 3.1: Posterior median and 95% equal-tail credible intervals for menstrual cycle length
parameters of joint model displayed as: LoMedian Up (Louis and Zeger 2009). Age is stan-

dardized and active smoking status (yes/no) is defined as baseline cotinine level ≥ 10ng/mL.
Restricted to 426 couples with data on semen quality who did not exit in the enrollment
cycle.

Parameter LoMedian Up
η1 Age −0.04−0.03 −0.01
η2 Age (squared) −0.02−0.01 0.00

η3 Active smoking (yes/no) −0.07−0.02 0.03

q Probability of cycle from group 1 0.750.79 0.82

µN Mean, group 1 28.9029.33 29.85

σN Standard deviation, group 1 1.791.94 2.11

µG Mean, group 2 33.8435.18 37.02

σG Standard deviation, group 2 11.0612.34 13.60

σW Standard deviation, random effect 0.080.09 0.10

As an example, for a single intercourse act on the day before ovulation, we see that the

optimal cycle length is approximately 31.8 days (see Figure 3.4a). In a separate model, we

considered the relation between fecundity and menstrual cycle length conditional on cycles

from group 1 (models LinT=1 and LinQuadT=1). For a single intercourse act on the day be-

fore ovulation, we found a similar concave relation with an optimal cycle length of 29.8 days

(see Figure 3.4b). Lastly, we fit separate models to assess the relation between conditional

mean menstrual cycle length and day-specific probability of pregnancy (models LinCmean-

LinQuadCmeanT=1). For these models, the coefficient on the quadratic term was much

smaller and was not significant (see bottom half of Table 3.2). It is also of considerable

interest to assess the role of the conditional variance of menstrual cycle length in fecundity;

however, a model containing both the mean and variance of cycle length did not converge

due to high correlation between the mean and variance.

To further visualize the relation between menstrual cycle length and fecundity, we plot

the day specific probability of pregnancy for the 25th, 50th, and 75th percentiles of menstrual
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Table 3.2: Posterior median and 95% equal-tail credible intervals (CI) for association
between (mean) menstrual cycle length and probability of pregnancy (see models Lin-
LinQuadCmeanT=1) in Section 3.2.2. Posterior summaries displayed as: LoMedian Up
(Louis and Zeger 2009). Restricted to 426 couples with data on semen quality who did not
exit in the enrollment cycle.

Model Parameter LoMedian Up
Lin Menstrual cycle length 0.170.34 0.55

LinQuad Menstrual cycle length 0.140.46 0.77

Menstrual cycle length (squared) −0.62−0.35 −0.17
LinT=1 Menstrual cycle length, group 1 0.090.25 0.43

LinQuadT=1 Menstrual cycle length, group 1 0.050.40 0.72

Menstrual cycle length, group 1 (squared) −0.70−0.45 −0.16
LinCmean Conditional mean cycle length 0.050.21 0.38

LinQuadCmean Conditional mean cycle length 0.040.25 0.45

Conditional mean cycle length (squared) −0.28−0.10 0.05

LinCmeanT=1 Conditional mean cycle length, group 1 0.060.21 0.38

LinQuadCmeanT=1 Conditional mean cycle length, group 1 0.020.23 0.44

Conditional mean cycle length, group 1 (squared) −0.27−0.10 0.03

Figure 3.4: Median (solid) and 95% equal tail credible interval (dashed) for the unconditional
probability of pregnancy due to intercourse on the day before ovulation versus menstrual
cycle length (in days) for (a) all cycles (b) conditional on group 1.
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cycle length for all cycles and conditional on group 1 (see Figure 3.5a-b). The day specific

probability of pregnancy is the unconditional probability of pregnancy due to intercourse on

a single day, and the values shown in Figure 3.5 are the medians of the posterior distributions.

The x-axis shows the difference in time between the intercourse day and the ovulation day.

In both plots, the profile for probability of pregnancy is non-zero starting approximately

seven days before ovulation, peaks the day prior to ovulation and then drops sharply to zero

one day post ovulation. The probability of pregnancy is lower for the women in the 25th

percentile of menstrual cycle length.

Our finding of peak probability of pregnancy corresponding to a menstrual cycle length

of approximately 31.8 days agrees with the finding of Small et al. (2006) using data from the

Mount Sinai Study of Women Office Workers. In this study of both pregnancy planners and

nonplanners, menstrual cycle length was observed using daily diaries and then categorized

into 5 categories. To compare our results, we fit a separate joint model in which menstrual

cycle length is incorporated in the fecundity model as a categorical variable using cutpoints

as in Small et al. (2006). As shown in Figure 3.5c, the group with menstrual cycle length of

30-31 days has the highest day specific probability of pregnancy. This plot also illustrates

the difficulty in choosing a priori cutpoints of cycle length and then using these cutpoints to

transform menstrual cycle length into a categorical covariate as is frequently done in studies

of menstrual cycle length and pregnancy.

To assess the association between menstrual cycle length and the probability of preg-

nancy in the context of both male and female risk factors, we incorporated covariates in the

fecundity model for sperm morphology (strict criteria), total sperm count, semen volume,

sperm concentration, mean of male and female age, difference between male and female age,

male active smoking status (yes/no), and female active smoking status (yes/no). We first fit

separate models for each covariate to determine each one’s unadjusted estimated association

with the probability of pregnancy. As shown in the ‘Unadjusted’ column in Table 3.3, each

of the semen quality parameters had a positive association with pregnancy, while the mean
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Table 3.3: Posterior median and 95% equal-tail CI for pregnancy parameters of joint model
displayed as: LoMedian Up (Louis and Zeger 2009). Adjusted models A and B correspond to

two combinations of uncorrelated semen quality parameters. Active smoking status (yes/no)
is defined as baseline cotinine level ≥ 10ng/mL; and all other risk factors are standardized.
Restricted to 426 couples with data on semen quality who did not exit in the enrollment
cycle.

Parameters Unadjusted Model A Model B
Menstrual cycle length 0.140.46 0.77 −0.060.26 0.59 −0.050.27 0.58

Menstrual cycle length (squared) −0.62−0.35 −0.17 −0.52−0.27 −0.11 −0.52−0.27 −0.12
Morphology (strict criteria) 0.160.28 0.40 0.060.23 0.41 0.050.23 0.40

Total sperm count (log) 0.000.12 0.25 −0.090.08 0.25

Semen volume (log) −0.070.05 0.17 −0.130.03 0.20

Sperm concentration (log) −0.020.11 0.23 −0.090.09 0.27

Male active smoking (yes/no) −0.76−0.38 −0.02 −0.86−0.37 0.13 −0.87−0.37 0.13

Female active smoking (yes/no) −1.10−0.37 0.24 −1.01−0.13 0.74 −1.05−0.15 0.73

Male and female age (mean) −0.36−0.24 −0.11 −0.34−0.16 0.02 −0.35−0.17 0.01

Male and female age (difference) −0.120.01 0.14 −0.19−0.02 0.14 −0.19−0.03 0.14

Intercourse frequency 8.009.36 9.94 8.089.46 9.96 7.959.35 9.96

Intercourse frequency (squared) −0.87−0.79 −0.66 −0.87−0.80 −0.67 −0.87−0.79 −0.66

couple age and smoking covariates had a negative association. Next, we fit the joint model

adjusting for multiple covariates simultaneously in the fecundity model. Since total sperm

count is the product of semen volume and sperm concentration, we fit two separate models

(A and B), where model A adjusts for total sperm count and model B adjusts for semen

volume and sperm concentration. In both adjusted models, the concave relation between

female-specific menstrual cycle length and day-specific probability of pregnancy remained

significant (see Table 3.3). For each of the semen quality parameters, we found a positive

association with the probability of pregnancy though the coefficient was only significant for

sperm morphology (strict criteria). Figure 3.6 illustrates the positive relation between sperm

morphology and the day specific probability of pregnancy using the 25th, 50th, and 75th

percentiles of morphology. We also found that the probability of pregnancy decreased with

male and female smoking status and with mean age and difference in ages; however, none
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Figure 3.6: Percentiles of morphology (strict criteria, in % normal forms) and unconditional
probability of pregnancy due to a single act of intercourse by difference of intercourse day
from ovulation day. Estimates are adjusted for cycle length, total sperm count, mean of
male and female age, difference between male and female age, female active smoking status
(yes/no), and male active smoking status (yes/no).

of these were significant in the adjusted models. Lastly, for the enrollment cycles, we found

a concave relation between probability of pregnancy and average intercourse frequency (see

Figure 3.7) with a peak at 6 days of intercourse, adjusted for cycle length, total sperm count,

mean of male and female age, difference between male and female age, female smoking status

and male smoking status.

3.5. Discussion

We employed a Bayesian hierarchical modeling approach for assessing the relation between

female menstrual cycle length and couple fecundity, while accounting for both male and

female risk factors for pregnancy. In the menstrual cycle length submodel, we addressed

several challenges including length-biased sampling of enrollment cycles, unobserved length

of pregnancy cycles, and skewness of the underlying distribution. In the fecundity submodel,

we proposed a model for the probability of pregnancy conditional on no pregnancy in previous

cycles of attempts. We adjusted for the couples intercourse behavior in a cycle using a flexible
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Figure 3.7: Median (solid) and 95% equal tail credible interval (dashed) for the probability
of pregnancy in the enrollment cycle versus average number of days of intercourse. Estimates
are adjusted for menstrual cycle length, total sperm count, sperm morphology (strict crite-
ria), mean of male and female age, difference between male and female age, female active
smoking status (yes/no), and male active smoking status (yes/no).

spline that is a function of the difference of day of intercourse from the ovulation day and

gives weight to a broad window of days of intercourse in a cycle. We also incorporated a

model for the probability of pregnancy in the enrollment cycle as a function of the average

frequency of intercourse.

A key aspect of our approach is the inclusion of regression models in both the mean cycle

length and day-specific probability of pregnancy models. For the LIFE Study population,

we found that mean cycle length decreases with increasing age and that there is a concave

relation between menstrual cycle length and the couple’s probability of pregnancy, with an

optimal cycle length of about 31.8 days. These findings are consistent with others in the

literature; therefore, we have developed the framework for assessing the relation between

exposures and both menstrual cycle length and fecundity. In Chapter 4, we build upon

this model by incorporating baseline exposure variables to investigate potential associations

between environmental chemicals, menstrual cycle length, and fecundity.

Finally an extension of this work that focuses on the fecundity model is to incorporate an
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interaction between the spline function and menstrual cycle length. The trend in modeling

fecundity has been to allow for flexibility in the length of the fertile window, i.e., the window

of days around ovulation for which the probability of pregnancy is nonzero. In the proposed

model, we estimated the day-specific probability of pregnancy for a broad window of days

in the female menstrual cycle and found that the probability of pregnancy consistently

declines to zero just one day post-ovulation; while pre-ovulation, we found more variation in

the number of days with a non-zero probability of pregnancyacross female menstrual cycle

length. Currently, we have incorporated menstrual cycle length in the fecundity model as a

link-additive term, which allows the profile of day-specific probabilities to shift up or down.

By incorporating an interaction with the spline function, we would allow for changes in the

shape of the profile of probabilities.
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3.A.1. Fit of Menstrual Cycle Length Submodel

We examine the fit of the menstrual cycle length submodel (3.1) by comparing the predicted

cycle length with that observed in the first cycle post-enrollment. We consider a subset of 284

couples with at least one post-enrollment cycle. In Figure 3.A.1, we plot the observed length

and the median and 95% equal tail credible interval of the posterior predictive distribution

for every fourth couple where the y-axis is the couple index and the couples are sorted by

observed length. Overall, the observed cycle length is predicted well by the posterior median.

In Figure 3.A.2, we focus on the smallest, middle, and largest 10% of observed cycle lengths.

The observed lengths in the middle 10% are well predicted. The smallest observed lengths

are slightly overestimated by the median but even the smallest still fall within the posterior

predictive distribution. The largest 10% observed lengths are underestimated by the median

and approximately 6 fall outside the posterior predictive distribution. We also fit the model

assuming a log-normal distribution for the error variables and found a similar pattern of

results (see Figures 3.A.3 and 3.A.4); however, the predictions were better and the deviance

information criterion was smaller for the model assuming a Gaussian/Gumbel mixture.

We also assessed the fit of both menstrual cycle length models by estimating the posterior

distribution of the standardized residuals, denoted ri

ri =
yi − E(Ypi | Yi)√

V (Ypi | Yi)
,

where yi is the observed length of the first cycle post-enrollment. Figure 3.A.5 shows plots

of the residuals versus the predicted lengths. For both models, the majority of the residuals

are between -2 and 2 with some outlying large values. For the Gaussian-Gumbel mixture

model, the residuals are smaller, indicating a better fit.
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Figure3.A.1:Posteriormedians(black,circle)and95%equal-tailcredibleintervals(black,
squares)forpredictedmenstrualcyclelengthcomparedwithobservedlengthoffirstcycle
post-enrollment(red,diamond).Thepredictiveposteriordistributionisestimatedusingthe
proposedmenstrualcyclelengthmodelassumingaGaussian/Gumbelmixturedistribution
fortheerrorvariables. Restrictedto284coupleswithatleastoneobservedcyclelength
post-enrollment. Couplesaresortedbyobservedcyclelengthandresultsareshownfor
everyfourthcouple.
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Figure3.A.2:Posteriormedians(black,circle)and95%equal-tailcredibleintervals(black,
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Figure3.A.3:Posteriormedians(black,circle)and95%equal-tailcredibleintervals(black,
squares)forpredictedmenstrualcyclelengthcomparedwithobservedlengthoffirstcycle
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Figure3.A.4:Posteriormedians(black,circle)and95%equal-tailcredibleintervals(black,
squares)forpredictedmenstrualcyclelengthcomparedwithobservedlengthoffirstcycle
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Figure 3.A.5: Standardized residuals versus predicted menstrual cycle lengths for (a) the
model assuming Gaussian-Gumbel mixture error distribution and (b) the model assuming
log-normal error distribution.



3.A.2. Time-to-Pregnancy Survival Distribution

An application of our fecundity modeling approach is the calculation of the time-to-pregnancy

(TTP) survival distribution for various scenarios. This is potentially useful for counseling

couples planning pregnancy. In Figure 3.A.6 we compare the survival probabilities (i.e. the

probably that TTP is greater than j cycles) for various patterns of intercourse (fixed through-

out cycles) adjusted for mean couple age, age difference, smoking status, sperm morphology

and total sperm count. The intercourse pattern corresponding to the shortest estimated

median TTP is intercourse every day for 7 days ending on ovulation day. The curve for

intercourse on the two peak days is slightly lower than intercourse every other day. Fig-

ure 3.A.6 compares the TTP survival distributions varying the timing of intercourse for

three consecutive acts. As expected the shortest median TTP corresponds to intercourse on

peak days. An important counseling note is that the pattern of late timing corresponds to a

much longer median TTP than that of early timing. Lastly, we can compare the TTP sur-

vival distribution for various risk factors fixing intercourse patterns over cycles. Figure 3.A.8

compares the four combinations of smoking fixing intercourse to one act on the peak day.

Couples in which both partners smoke have the longest estimated median TTP while those

in which only the female smokes have a slightly shorter estimated median TTP than couples

in which only the male smokes.
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Chapter 4

Perfluoroalkyl Surfactants and Their
Relations with Menstrual Cycle
Length and Fecundity: the LIFE
Study

4.1. Introduction

In Chapter 1 we provided some background on perfluoroalkyl surfactants (PFASs). Briefly,

PFASs are ubiquitous environmental chemicals used in a variety of household products

(e.g., surfactants and surface protectors in carpets, leather, paper, packaging, fabric and

upholstery) (Giesy and Kannan 2002) and found at detectable levels in US and other pop-

ulations around the world (Kannan et al. 2004; Kato et al. 2011; Olsen et al. 2012; Wang

et al. 2011). There is considerable interest in studying the role of PFASs and other POPs in

human fecundity, or the biologic capacity of men and women for reproduction (Buck Louis

2011). Epidemiologic studies of fecundity have reported negative associations, indicated by

prolonged time-to-pregnancy, with perfluorooctane sulfonamide (PFOSA) (Buck Louis et al.

2012), and in a separate study with perfluorooctane sulfonate (PFOS), and perfluorooc-

tanoate (PFOA) (Fei et al. 2009). For males, there is an evolving body of literature, though

not consistent, for potential toxicity of PFASs with respect to semen quality parameters (Toft

et al. 2012; Raymer et al. 2012; Buck Louis et al. 2014). However, the mechanism by which

PFASs may be associated with couple fecundity is unclear. Although there is evidence to
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support the important role of menstrual cycle length in female fecundity, see Chapter 3

and (Small et al. 2006, 2010; McLain et al. 2012), research on PFASs and menstrual cycle

characteristics is limited, with only one study to our knowledge which examined PFOS and

PFOA (Lyngsø et al. 2013). To address this data gap, we sought to investigate the asso-

ciation between female serum PFAS concentrations and (i) menstrual cycle length and (ii)

fecundity in the context of menstrual cycle length.

4.2. Methods

4.2.1 Study Design And Cohort

The Longitudinal Investigation of Fertility and the Environment (LIFE) (Buck Louis et al.

2011), was a prospective pregnancy study in which 501 couples residing in Texas and Michi-

gan between 2005-2009 and planning pregnancy within two months were enrolled. The cou-

ples were followed until pregnancy or up to one year of attempting pregnancy with the aim of

studying the effects of environmental chemicals on couple fecundity. Couples were included

in the study if they fulfilled the following criteria: married or in a committed relationship,

females aged 18-40 and males age 18+ years, English or Spanish speaking, self-reported men-

strual cycle lengths within 21-42 days, and no hormonal birth control injections in the past

12 months. Couples were excluded if they had been sterilized or told by a physician that

they could not achieve pregnancy without medical aid. Full human subjects approval was

obtained from all participating institutions, and all participants provided written informed

consent prior to enrollment into the study.

4.2.2 Data and Biospecimen Collection

Baseline characteristics were collected by a research assistant in an at-home interview held

on the day of enrollment following a pregnancy test to ensure that the female did not test

positive for pregnancy. Also on enrollment day, 10cc of blood was collected by a nurse

using equipment deemed free of environmental chemicals under study and transported on
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ice to a laboratory for processing in which 2 ml of serum were used for analysis of PFAS

concentrations.

Data on menstrual bleeding intensity was collected in a daily journal and used in con-

junction with an at home fertility monitor to define cycles distinct from episodic bleeding.

The length of the menstrual cycle was defined as the time (days) from the onset of bleed-

ing that increased in intensity and lasted two or more days to the day preceding the next

similar bleeding event. As follow up began on any day of the females menstrual cycle, the

length of the cycle in which the couple was enrolled was calculated as the sum of the time

since last menstrual period, recalled at enrollment, and the prospectively observed time from

enrollment to the next bleeding event. If the couple became pregnant, increased levels of

progesterone precluded menstrual bleeding in preparation for implantation. To avoid ex-

cluding couples who became pregnant in the first cycle, the length of the cycle in which the

couple became pregnant was right-censored. Couples who did not become pregnant were

censored on the last day of the menstrual cycle preceding their withdrawal from the study or

at one year of follow-up, thereby excluding 16 couples who withdrew before the first observed

bleeding event. We excluded cycles which were shorter than 9 days or longer than 89 days

(1%), leaving 2,198 cycles remaining.

The female partner was instructed by the research nurse in the use of Clearblue®Easy

pregnancy tests which reliably detect human chorionic gonadotropin (hCG) levels over

25mIU/mL, and the Clearblue®Easy fertility monitor which tracks daily levels of oestrone-

3-glucuronide and luteinizing hormone (LH). The ovulation day in a cycle was estimated by

the peak fertile day identified by the monitor, or the second peak day in the case of two

consecutive peak days. In cycles in which the peak was not detected, if the woman tested for

at least 90% of 20 test days, the cycle was assumed to be anovulatory (8.5%) and thus not

at risk for pregnancy; otherwise, in 14% of cycles, the ovulation day was imputed using the

mean of the ovulation day of the females other cycles. If there were no other cycles in which

the ovulation day could be estimated, the day of peak LH was imputed as the ovulation day.
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Less than 1% of cycles were excluded for which no ovulation dates could be estimated due

to noncompliance in monitor use resulting in a final count of 483 couples and 2,174 cycles.

Daily data on the couples intercourse pattern frequency was reported independently in

male and female journals. The female journal was used to calculate the timing of intercourse

relative to the estimated ovulation day. If the intercourse question was left blank in the

female journal, then the male journal was consulted. If the intercourse question was blank

in both journals, then it was assumed that the couple did not have intercourse on this day

(< 3% of days).

4.2.3 Toxicological Analysis

Quantification of PFASs in serum, reported in ng/mL, was done at the Division of Lab-

oratory Sciences in the National Center for Environmental Health, Centers for Disease

Control and Prevention, using isotope dilution high performance liquid-chromatography-

tandem mass spectrometry and established operating procedures (Kato et al. 2011; Kuk-

lenyik et al. 2005). Seven PFASs were analyzed: 2-(N-ethyl-perfluorooctane sulfonamido)

acetate (EtFOSAA), 2-(N-methyl-perfluorooctane sulfonamido) acetate (MeFOSAA), perflu-

orodecanoate (PFDA), perfluorononanoate (PFNA), perfluorooctane sulfonamide (PFOSA),

perfluorooctane sulfonate (PFOS), and perfluorooctanoate (PFOA). The limit of detection

(LOD) was 0.1 for PFNA, PFOSA, and PFOA and 0.1 for the remaining 4 PFASs. Measure-

ment of cotinine in serum (in ng/ml) was conducted using liquid chromatography-isotope

dilution tandem mass spectrometry (Bernert et al. 1997). We used a cut point of 10 ng/mL

to define active smoking (yes/no) (Pirkle et al. 1996).

4.2.4 Statistical Analysis

In the descriptive phase, we describe female characteristics and serum PFAS concentrations

by mean menstrual cycle length. For descriptive analyses only, we categorized mean men-

strual cycle length using cutoffs based on those found in previous literature (Small et al.
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2007; Kolstad et al. 1999; Buck Louis et al. 2011).

In the analytic phase, we first fit a two stage model where in stage (i), we model the

relation between individual serum concentrations of 7 PFASs and female menstrual cycle

length, and in stage (ii) we model the relation between PFASs and couple fecundity in the

context of the fitted menstrual cycle length from stage (i). We compare this two stage

approach with the Bayesian joint model of menstrual cycle length and fecundity developed

in Chapter 3, which accounts for the uncertainty in estimating the distribution of menstrual

cycle length.

In both the two stage and joint models, we model the role of each PFAS in menstrual cycle

length (continuous) using the Bayesian hierarchical accelerated failure time model in (3.1)

with the exposure incorporated in the covariate vector, v. In this model, the exponential

of the regression coefficient, exp(η), represents the multiplicative acceleration factor (AF)

by which the menstrual cycle length is increased (AF>1) or decreased (AF<1) for each

unit change in the PFAS covariate conditional on the female-specific random effect. We

also adjusted for a priori potential confounders (i.e., age (years), body mass index (BMI)

(categorical), and active smoking at enrollment (yes/no)). To allow for the possibility of

extremely short or long cycle lengths we assumed a mixture of Gaussian and Gumbel error

distributions. We address length-bias in the distribution of length for the cycle in which the

couple enrolls (Lum et al. 2014) and right censoring for the length of the cycle in which the

couple becomes pregnant.

Next, we use (3.6) and(3.7) to model the association between female-specific menstrual

cycle length and fecundity as measured by the probability of pregnancy in a cycle condi-

tional on previous cycles ending without pregnancy. We incorporate menstrual cycle length

in stage (ii) of the two-stage model using the median of its posterior predictive distribution;

while in the joint model, we average over the full posterior predictive distribution. We in-

clude female PFAS concentration in the covariate vector z in (3.7) to investigate the relation

between female PFAS exposure and day-specific probability of pregnancy with adjustment
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for the couples intercourse pattern in the current and previous cycles and a priori poten-

tial confounders (i.e., female age (years), BMI (categorical), active smoking at enrollment

(yes/no)).

For the aforementioned models, we fit both a single model for each PFAS and a model con-

sisting of all 7 PFAS concentrations simultaneously. In addition, to determine if a weighted

combination of multiple PFASs might be related to the endpoints and to reduce issues related

to multicollinearity, we conducted unadjusted and adjusted principal component regression

in both the menstrual cycle length model and the fecundity model of the joint model. This

was implemented by first calculating the principal components of the instrument observed

concentrations of the 7 PFASs and then including the first three principal components in

the regression models.

A challenge that must be addressed is how to handle concentrations below the limit of

detection (LOD). According to (Armbruster and Pry 2008):

The limit of detection is the lowest analyte concentration likely to be reliably

distinguished from the [limit of blank] (LoB) and at which detection is feasible.

The LoB is the highest apparent analyte concentration expected to be found

when replicates of a blank sample containing no analyte are tested.

One approach is substitution by 1
2
LOD, or 1√

2
LOD or 0; however this has been shown to

introduce bias (Richardson and Ciampi 2003; Schisterman et al. 2006). Therefore, we used

the instrument observed concentrations without substitution for values below LOD. As the

units of measurement are small we scaled the instrument observed concentrations by the

interquartile range (IQR), with the exception of PFOSA and EtFOSAA for which the IQR

could not be determined. We also considered log transformations of the instrument observed

concentrations. As several of the PFASs have some values below the limit of detection

(LOD), we fit separate models replacing the continuous PFAS concentrations with categorical

variables, specifically tertiles of concentration with the lowest as the reference group. We used

dichotomous categorizations (e.g., above and below LOD, above and below 75th percentile)
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Table 4.1: Characteristics by mean menstrual cycle length (days), LIFE Study, 2005-2009.
Data are mean ± standard deviation for continuous variables and no. (%) for categorical
variables. Active smoking is defined as baseline cotinine ≥ 10ng/ml.

Characteristic

Short Mean
Cycle Length
(≤ 24 days)

(n=21)

Average Mean
Cycle Length
(25-31 days)

(n=305)

Long Mean
Cycle Length
(≥ 32 days)

(n=157)
Age (years) 32.1 ± 4.8 30.5 ± 4.2 29.0 ± 3.6
BMI(kg/m2) 28.3 ± 9.3 27.3 ± 6.5 27.9 ± 8.2
Active smoking (yes/no) 3 (14) 29 (10) 22 (14)
Gravid 12 (57) 186 (61) 79 (50)
Parous 12 (57) 153 (51) 61 (39)
Nonwhite 1 (5) 42 (14) 24 (15)
≤ High school graduate/GED 0 (0) 16 (5) 9 (6)
No health insurance 2 (10) 17 (6) 17 (11)

for PFOSA and EtFOSAA as more than 90% of values of these PFASs were below LOD.

We conducted all analyses under the missing-at-random assumption and used Markov Chain

Monte Carlo methods to impute missing PFAS concentrations and cotinine levels (≤4%) data

due to insufficient blood for quantification (Schafer 2010). We did not adjust for multiple

comparisons in keeping with the exploratory purposes of this investigation.

4.3. Results

Baseline female characteristics by mean menstrual cycle length are shown in Table 4.1. Mean

cycle length tended to decrease with age. The geometric means (GMs) and 95% confidence

intervals for PFAS serum concentrations by menstrual cycle length category are shown in

Table 4.2. For calculation of the GM, zeros were replaced with half the value of the minimum

positive concentration. None of the GMs differed significantly by mean menstrual cycle

length category; however, the number of women in the short mean cycle length category was

very small.
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Table 4.2: Geometric means (GM) (95% CI) of preconception serum concentrations of PFASs
(ng/mL) by mean menstrual cycle length (days), LIFE study, 2005-2009.

PFAS
(ng/mL)

LOD
(ng/mL)

<LOD
(%)

Short Mean
Cycle Length
(≤ 24 days)

GM (95% CI )

Average Mean
Cycle Length
(25-31 days)

GM (95% CI)

Long Mean
Cycle Length
(≥ 32 days)

GM (95% CI)
EtFOSAA 0.2 97 0.050.06 0.07 0.060.06 0.07 0.060.06 0.06

MeFOSAA 0.2 25 0.260.40 0.63 0.250.27 0.30 0.250.29 0.33

PFDA 0.2 9 0.190.29 0.42 0.340.37 0.40 0.290.33 0.36

PFNA 0.1 1 0.580.93 1.51 1.081.16 1.25 0.951.06 1.17

PFOSA 0.1 89 0.050.06 0.07 0.050.05 0.06 0.050.05 0.06

PFOS 0.2 <1 9.7012.38 15.81 11.0811.92 12.81 9.6910.73 11.88

PFOA 0.1 <1 2.432.99 3.68 2.983.20 3.43 2.592.89 3.21

4.3.1 Role of PFASs in Menstrual Cycle Length

The AF and 95% credible interval (CI) corresponding to each PFAS in the menstrual cycle

length stage of the two stage model are presented in Table 4.3. For each PFAS, we first display

the results using the categorical form of the PFAS followed by the results using the continuous

(scaled) form of the PFAS. The AF is the exponentiated form of the regression coefficient.

For the categorized exposures, the AF is the factor by which the menstrual cycle length is

increased (AF>1) or decreased (AF<1) for a woman with serum PFAS concentration in the

2nd or 3rd tertile compared to the 1st tertile of exposure, conditional on the random effect.

Both the 2nd and 3rd tertiles of concentrations of PFOA and the 2nd tertile of MeFOSAA

were associated with shorter menstrual cycle lengths compared with the respective 1st tertile

of each PFAS. When adjusting for age (years), BMI (categorical), and active smoking at

enrollment (yes/no), the 2nd and 3rd tertiles of PFOA were again associated with shorter

lengths, while the 2nd tertile of PFDA was associated with longer lengths. As an illustration,

we present boxplots of predicted menstrual cycle length by PFOA tertile in Figure 4.1. Each

of the aforementioned associations were also observed in the model which included all 7

PFASs simultaneously. Some moderate to high correlations in concentration were observed

between PFASs (Tables 4.5 and 4.6). PFNA was correlated with PFDA, PFOS, and PFOA;
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Figure4.1:Boxplotsofpredictedmenstrualcyclelength(days)bytertileofPFOAexposure
(ng/mL).

andPFDAwasmoderatelycorrelatedwithPFOSandPFOA.Incontinuous(scaled)or

log-transformedform,noneofthePFASsweresignificantlyassociatedwithmenstrualcycle

length.Inthemenstrualcyclelengthpartofthejointmodel(seeTable4.4),weagain

observedassociationswithcyclelengthforPFOA,MeFOSAA,andPFDAwhenmodeled

simultaneously. Whenmodeledindividually,the2ndtertileofPFOA,MeFOSAA,andPFDA

wereeachassociatedwithchangesinlengthcomparedwiththecorresponding1sttertilein

unadjustedmodels. Withadjustmentforage(years),BMI(categorical),andactivesmoking

atenrollment(yes/no),the2ndtertileofPFDAandthe3rdtertileofPFOAwereassociated

withchangesinmenstrualcyclelength.
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Table 4.5: Correlations among serum concentrations of PFASs, LIFE Study, 2005-2009.
MeFOSAA PFDA PFNA PFOSA PFOS PFOA

EtFOSAA 0.03 0.04 0.05 0.03 0.06 0.05
MeFOSAA 0.03 0.10 0.46 0.24 0.09
PFDA 0.73 -0.03 0.56 0.55
PFNA -0.06 0.60 0.60
PFOSA 0.13 -0.06
PFOS 0.45

Table 4.6: Correlations among log transformed serum concentrations of PFASs, LIFE Study,
2005-2009.

MeFOSAA PFDA PFNA PFOSA PFOS PFOA
EtFOSAA 0.11 0.06 0.07 0.08 0.11 0.07
MeFOSAA 0.04 0.08 0.45 0.26 0.07
PFDA 0.81 -0.07 0.56 0.56
PFNA -0.11 0.60 0.64
PFOSA 0.12 -0.07
PFOS 0.57



4.3.2 Role of PFASs in Probability of Pregnancy

The odds ratio (OR) and 95% credible interval (CI) corresponding to each PFAS in the

pregnancy stage of the two stage model are presented in Table 4.7. The OR is the expo-

nentiated coefficient corresponding to the PFAS covariate in z of (3.7). An OR significantly

less than 1 indicates the corresponding PFAS is negatively associated with the probability

of pregnancy. We found increased concentrations of PFOSA were negatively associated with

the probability of pregnancy in both the individual and multiple PFAS models, while ac-

counting for menstrual cycle length estimated in the first stage. This negative association

was observed when PFOSA was included in the model either as continuous or dichotomized

as above versus below LOD. In Figure 4.2, we illustrate this negative role of PFOSA with

box plots of the conditional probability of pregnancy by cycle for females with PFOSA con-

centration above (‘high’) and below (‘low’) LOD. In the adjusted multiple PFAS model,

the 2nd tertile of PFNA was also negatively associated with the probability of pregnancy

in comparison to the 1st tertile of PFNA. This association was also observed in the joint

model (Table 4.8) which accounts for the uncertainty in estimating the females menstrual

cycle length. Also of note is the quadratic relation between menstrual cycle length and the

probability of pregnancy found in both the two stage and joint models, which indicates both

short and long cycle lengths are negatively associated with the probability of pregnancy.

For the principal component (PC) analysis, the proportional contribution of each PFAS

is shown in Table 4.9. We included the first three PCs in both the menstrual cycle length

submodel and the pregnancy submodel of the joint model; however, the credible interval

for the exponentiated coefficient associated with each PC included 1 (Tables 4.10-4.11). We

also fit the joint model with the PCs only in the menstrual cycle length submodel, but the

results did not change.
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Table 4.9: Proportional contribution of PFASs to each principal component, LIFE Study,
2005-2009.

Principal Component
PFAS (ng/mL) 1st 2nd 3rd 4th 5th 6th 7th

EtFOSAA 0.03 0.03 0.84 0.00 0.01 0.01 0.00
MeFOSAA 0.06 0.36 0.05 0.25 0.20 0.08 0.06
PFDA 0.23 0.07 0.04 0.13 0.02 0.26 0.32
PFNA 0.24 0.05 0.03 0.01 0.05 0.14 0.43
PFOSA 0.01 0.37 0.03 0.20 0.26 0.04 0.06
PFOS 0.22 0.07 0.02 0.15 0.16 0.34 0.06
PFOA 0.21 0.05 0.00 0.25 0.30 0.12 0.06

Cumulative Proportion of Variance 0.39 0.61 0.75 0.83 0.90 0.96 1.00

Table 4.10: Joint model principal components regression: unadjusted and adjusted AF and
95%CI (displayed as: LoAF Up (Louis and Zeger 2009)) for association of principal compo-

nent with menstrual cycle length, LIFE Study, 2005-2009. Adjusted for female age (years),
body mass index (categorical), and active smoking at enrollment (yes/no).

Menstrual Cycle Length Submodel
Unadjusted Adjusted

Principal Component LoAF Up LoAF Up
1st

0.991.00 1.00 0.991.00 1.01

2nd
0.991.00 1.00 0.991.00 1.00

3rd
0.991.00 1.01 0.991.00 1.01

Table 4.11: Joint model principal components regression: unadjusted and adjusted OR
and 95%CI (displayed as: LoOR Up (Louis and Zeger 2009)) for association of principal

component with day-specific probability of pregnancy, LIFE Study, 2005-2009. Adjusted for
menstrual cycle length (days), menstrual cycle length (squared, days2), female age (years),
body mass index (categorical), and active smoking at enrollment (yes/no).

Pregnancy Submodel
Unadjusted Adjusted

Principal Component LoOR Up LoOR Up
1st

0.840.92 1.01 0.840.93 1.02

2nd
0.820.95 1.10 0.830.97 1.13

3rd
0.800.98 1.11 0.800.98 1.14



4.4. Discussion

Based on the LIFE Study, a prospective cohort of couples enrolled prior to conception and

followed for up to one year while attempting to become pregnant, we found that select

PFASs may be adversely associated with menstrual cycle length. In particular, increased

concentrations of PFOA and MeFOSAA were associated with decreases in cycle length while

increased concentration of PFDA was associated with increases in cycle length. Moreover, we

observed an adverse association between short and long menstrual cycle and the probability

of pregnancy. This finding underscores the importance of menstrual cycle length in evaluating

the role of PFAS in fecundity. Additionally, we found that the PFASs associated with the

probability of pregnancy (PFOSA and PFNA) were different from the ones associated with

menstrual cycle length suggesting there are multiple roles in which PFASs may serve in

relation to fecundity. It is important to note that only 11% of PFOSA concentrations were

above the LOD, potentially reflective of ceased production of PFOSA in the U.S. in 2002.

In a recent study of PFOS, PFOA and menstrual cycle characteristics, Lyngsø et al.

(2013) found that PFOA was associated with long mean cycle length (≥32 days) compared to

normal mean cycle length (25-31 days). Our findings also suggest a negative role for PFOA

though in terms of shortening cycle length. However, comparison of these two findings

is impeded by important differences between the INUENDO cohort and the LIFE Study,

including antenatal enrollment and quantification of PFOS and PFOA and retrospective

ascertainment of menstrual cycle length in the INUENDO study. In the LIFE Study, blood

for PFAS quantification was obtained at preconception enrollment and data on menstrual

cycle length was collected prospectively and modeled as a continuous outcome. Furthermore,

the level of concentrations of PFOA found in the LIFE Study is slightly higher than that

found in the INUENDO study.

Recent analyses of LIFE Study data and fecundity with respect to time-to-pregnancy

and semen quality parameters are also suggestive of a role for PFOSA and PFNA in fecun-

dity. In an analysis of male and female exposure to POPs and couple fecundity as measured
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by time-to-pregnancy, increased concentration of PFOSA was associated with reduced fe-

cundity (Buck Louis et al. 2012). Moreover, in an assessment of the relation between male

PFASs and semen quality, increased concentration of PFOSA was associated with smaller

sperm head area and perimeter, and a higher percentage of bicephalic and immature sperm

while increased concentration of PFNA was associated with a lower percentage of sperm

with coiled tails (Buck Louis et al. 2014).

In conclusion, for this prospective cohort, increased concentration of select PFASs mea-

sured preconception were associated with changes in menstrual cycle length, both in shorter

and longer lengths. Other PFASs were negatively associated with the probability of preg-

nancy. Our findings await corroboration as investigation in the role of PFASs and the female

component of fecundity has only recently begun.
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Chapter 5

Concluding Remarks

We develop and apply a joint modeling approach to assess the role of female menstrual cy-

cle length in a couple’s probability of pregnancy. We address several challenges including

modeling skewed distribution of menstrual cycle length accounting for length-bias and right

censoring, and modeling the probability of pregnancy incorporating biological factors from

both partners while also accounting for the couple’s daily history of intercourse acts rela-

tive to ovulation. In a prospective study with preconception enrollment of couples trying

to become pregnant, we find evidence of a quadratic relation between cycle length and the

probability of pregnancy such that both short and long cycle lengths are associated with

decreased pregnancy probabilities. To investigate the role of environmental chemicals, we

develop a framework that allows for the assessment of time-constant exposures on the prob-

ability of pregnancy as well as those mediated through menstrual cycle length. In particular

we investigate perfluoroalkyl surfactants (PFASs) and find evidence that increased concen-

tration of select PFASs, measured in females at enrollment, are associated with changes in

menstrual cycle length (both shortening and lengthening). We also found evidence that two

of the PFASs are negatively associated with the couple’s probability of pregnancy and these

are different from the PFASs associated with changes in cycle length.

To develop a model for menstrual cycle length from prospective pregnancy data, we first

need to account for the sampling process, in particular length-bias and selection effects.

We develop and apply a two-stage semi-parametric approach for enrollment cycle data to
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estimate the distribution of menstrual cycle length along with the shape of the enrollment

probability. We evaluate our approach in simulation and find that we obtain approximately

unbiased estimates of the parameters of the cycle length distribution with very little increase

in variance for estimating the shape of the enrollment probability.

5.1. Implications and Future Work

The methods developed in this research are utilized for investigating the role of environmen-

tal and biological risk factors in a couple’s probability of pregnancy and jointly in female

menstrual cycle length. Our methods are also applicable to the study of other environmental

pollutants including pesticides, phthalates, and phytoestrogens to name a few; therefore, this

work may serve as a platform for collaboration between biostatisticians, epidemiologists, and

environmental health scientists to develop informed and appropriate analyses of the role of

environmental pollutants and fecundity. Moreover, this work will generate ideas for ana-

lyzing existing data and for improving sampling plans, study design, and data collection of

future prospective pregnancy studies.

Although we apply our methods to the study of fecundity, the methods we develop are

relevant to other applications as well. For example, several of the challenges addressed here

are also faced in modeling human immunodeficiency virus (HIV) infection and progression to

acquired immunodeficiency syndrome (AIDS). As is the case with pregnancy, a person must

be at-risk in order for infection to occur; thus models of HIV infection due to intercourse

with an infected partner must account for the observed history of intercourse acts and their

unknown outcomes. As is also the case in sampling couples attempting pregnancy, a prevalent

sampling plan is typically utilized to study the rate of progression to AIDS. Features of this

sampling plan such as length-bias and selection effects on the time since HIV infection are

relevant in estimating the distribution of time-to-AIDS diagnosis for the population.

In Chapter 3, we found evidence of an association between female menstrual cycle length

and the couple’s probability of pregnancy. As the length is actually the sum of three phases,
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it would be of interest to develop a joint model of the bleeding, proliferative, and secretory

phases and fecundity. The length of the proliferative phase of the menstrual cycle is the

time from the first day without bleeding to the ovulation day. The range of days on which

the female uses the fertility monitor to test for ovulation is limited to at most 20 (e.g., day

6 through 26 of the cycle); therefore, there is the additional challenge of interval censoring.

Using the predictive distribution, one could predict the unknown ovulation day as an alter-

native to imputation of the average ovulation day. The length of the secretory phase is the

time from ovulation day to the next bleeding event. One could develop a model to study

the variability of both the proliferative and secretory phases and the relation between these

variabilities and fecundity.

Much of this research is based on a Bayesian hierarchical modeling framework. An ad-

vantage of this is the ability to make predictions of pregnancy success while accounting

for complex sources of uncertainty and variability. For example, given a couples biological

risk factors, history of failed attempts, pattern of intercourse, and level of environmental

pollutants, the joint model developed in Chapters 3- 4 could be used to obtain the poste-

rior predictive distribution of the probability of the couple becoming pregnant, marginalized

over the posterior of the unknown parameters. A web tool such as a calculator could be

programmed to calculate the posterior predictive distribution and provide output and in-

terpretation for clinicians or users. For example, based on such a prediction and his/her

medical expertise, a clinician may advise the couple to continue attempting pregnancy on

their own, perhaps with changes in their behavior, or s/he may suggest fertility counseling

or treatment.

This dissertation contributes to the study of human fecundity, in particular couple proba-

bility of pregnancy and female menstrual cycle length. We build a framework for investigating

the complex relation between these two processes along with assessment for environmental

exposures on both processes. We do so by integrating methodology from the disciplines of

biostatistics, epidemiology, and environmental health.
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Appendix A

Guidance and Code for Simulations
and Analyses

In this chapter, we provide code for the simulation and analyses in this dissertation and

some guidance on computational challenges.

A.1. Steps for Simulating Data

In Section 2.6 of the manuscript, we describe a simulation study of the performance of the

proposed semi-parametric estimation approach for estimating the parameters of the target

distribution. Here we describe steps for generating the simulated data.

In each sample, the data for the i-th individual are generated according to the following

plan:

1. Generate Ỹ0i from the normal-Gumbel mixture distribution with density Ỹ0 ∼

qfnormal(µN , σ
2
N) + (1 − q)fGumbel(µG, σ

2
G), with θ = (q = 0.65, µN = 29.5, σN =

0.75, µG = 36.5, σG = 14.3), where q is the proportion of normally distributed lengths

and (µN , σN) and (µG, σG) are the mean and standard deviation of the normal and

Gumbel distributions, respectively.

2. Generate covariate observation Zi ∼ Bern(pc) with pc = 0.5.

3. Generate random effect Wi ∼ Gamma(α, 1/α), so E(W ) = 1 and SD(W ) =
√

1/α =

0.10.

118



4. Given Zi = zi and Wi = wi, generate Yi = Y0iwie
βzi with β = −0.05.

5. Generate censoring time Ci ∼ exponential(ϕ) with ϕ chosen to result in an overall

censoring percentage of 13%.

6. Set Xi = Yi ∧ Ci.

7. Given Xi = xi, draw γi from [γi | xi] ∼ Bern(plb) with plb = xi
k

where k is a constant

chosen so that 0 ≤ plb ≤ 1. If γi=0, discard Xi and start a new observation at step 1.

If γi = 1, keep Xi and go on to the next step.

8. Given Xi = xi, generate backward recurrence time Bi using the method by Winter

(1989).

9. Enroll (Xi, δi, Bi) with probability: π(Bi) = exp(ζBi/100), ζ = −5.5.

Additionally, to study the case of a constant π(·), this plan is repeated changing ζ in step 9

to ζ = 0.
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A.2. R code for Estimation of Menstrual Cycle Length Distribution Accounting for

Length-bias and Selection Bias from Simulated Data

The following R (R Development Core Team) computer code can be used to estimate the

distribution of menstrual cycle length and the probability of enrollment for the simulated

data (see Section 2.6).

#Purpose: Estimate probability of enrollment as a function of

backward recurrence time. Use this in the full likelihood

to estimate the menstrual cycle length distribution.

#Note: This code is for data from simulations.

#Define functions

ParamNonsmooth<-function(data,indices=1:(dim(data)[1])){

#Function to calculate log likelihood (conditional likelihood)

condLikgaussquadprob = function(arg,nnodes){

re.nodenwt=gauss.quad.prob(nnodes,dist="gamma",alpha=arg[6],beta=1/arg[6])

fy0marg=sapply(1:nsub,function(i){dfmargGaussQuadProbwCov(x=ys[i],funct=’pdf’,

nodesnwt = re.nodenwt, pmix.in=arg[1],

norm.mean.in=arg[2],norm.sd.in=arg[3],

gumbel.mean.in=arg[4],gumbel.sd.in=arg[5],

beta.slope=arg[7], z.cov=covs[i])})

Sy0marg.ys=sapply(1:nsub,function(i){dfmargGaussQuadProbwCov(x=ys[i],funct=’surv’,

nodesnwt = re.nodenwt, pmix.in=arg[1],

norm.mean.in=arg[2],norm.sd.in=arg[3],

gumbel.mean.in=arg[4],gumbel.sd.in=arg[5],

beta.slope=arg[7], z.cov=covs[i])})
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Sy0marg.bs=sapply(1:nsub,function(i){dfmargGaussQuadProbwCov(x=bs[i],funct=’surv’,

nodesnwt = re.nodenwt, pmix.in=arg[1],

norm.mean.in=arg[2],norm.sd.in=arg[3],

gumbel.mean.in=arg[4],gumbel.sd.in=arg[5],

beta.slope=arg[7], z.cov=covs[i])})

loglik = sum(delta*log(fy0marg) + (1-delta)*log(Sy0marg.ys) - log(Sy0marg.bs))

if(is.finite(loglik)==F) loglik = -10^10

#output log likelihood

loglik

}

#Full Likelihood

fullLikMCint = function(arg,nnodes,n.mc){

re.nodenwt=gauss.quad.prob(nnodes,dist="gamma",alpha=arg[6],beta=1/arg[6])

fy0marg=sapply(1:nsub,function(i){dfmargGaussQuadProbwCov(x=ys[i],funct=’pdf’,

nodesnwt = re.nodenwt, pmix.in=arg[1],norm.mean.in=arg[2],

norm.sd.in=arg[3],gumbel.mean.in=arg[4],gumbel.sd.in=arg[5],

beta.slope=arg[7], z.cov=covs[i])})

Sy0marg.ys=sapply(1:nsub,function(i){dfmargGaussQuadProbwCov(x=ys[i],funct=’surv’,

nodesnwt = re.nodenwt, pmix.in=arg[1],norm.mean.in=arg[2],

norm.sd.in=arg[3],gumbel.mean.in=arg[4],gumbel.sd.in=arg[5],

beta.slope=arg[7], z.cov=covs[i])})

W.draws = rgamma(n.mc,shape=arg[6],scale=(1/arg[6]))

y0.draws = fy0rand(n.mc,pmix=arg[1],norm.mean=arg[2],norm.sd=arg[3],

gumbel.mean=arg[4],gumbel.sd=arg[5])

doubleintcov0 = 1/n.mc*sum(outerf.cov0(y0.draws*W.draws))

doubleintcov1 = 1/n.mc*sum(outerf.cov1(y0.draws*W.draws*exp(arg[7])))
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loglik=sum(delta*log(fy0marg) + (1-delta)*log(Sy0marg.ys) -

(1-covs)*log(doubleintcov0) - (covs)*log(doubleintcov1))

if(is.finite(loglik)==F) loglik = -10^10

#output log likelihood

return(loglik)

}

ys = data[indices,1]

bs = data[indices,2]

delta = data[indices,3]

covs = data[indices,4]

nsub=length(ys)

results = rep(NA,35)

optim.res = optim(par=initial,fn=condLikgaussquadprob, nnodes=nnodesForGQP,

method=’L-BFGS-B’, lower=lowerbounds, upper=upperbounds,

control=list(fnscale=-1),hessian=FALSE)

if(optim.res$convergence!=52 & optim.res$par[1]!=lowerbounds[1] &

optim.res$par[1]!=upperbounds[1] & optim.res$par[6]!=lowerbounds[6]

& optim.res$par[3]!=lowerbounds[3] & optim.res$par[5]!=lowerbounds[5]){

#Store results using conditional

results[1:7] = optim.res$par

p.est.CL = results[1]

norm.mean.est.CL = results[2]

norm.sd.est.CL = results[3]

gumbel.mean.est.CL = results[4]
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gumbel.sd.est.CL = results[5]

alpha.est.CL = results[6]

beta.slope.est.CL = results[7]

#E[y0] and SD[y0]

results[8:9] = y0meanSD(pmix=p.est.CL,norm.mean=norm.mean.est.CL,

norm.sd=norm.sd.est.CL,gumbel.mean=gumbel.mean.est.CL,

gumbel.sd=gumbel.sd.est.CL)

meanY0.est.CL=results[8]

sdY0.est.CL=results[9]

#E[Y] = y0mean

results[10] = meanY0.est.CL

results[11] = meanY0.est.CL*exp(beta.slope.est.CL)

#SD[Y] = sqrt(y0sd^2*(1/alpha + 1) + y0mean^2/alpha

results[12]= sqrt(sdY0.est.CL^2*(1/alpha.est.CL + 1) +

meanY0.est.CL^2/alpha.est.CL)

results[13]= sqrt(sdY0.est.CL^2*exp(2*beta.slope.est.CL)*(1/alpha.est.CL + 1) +

meanY0.est.CL^2*exp(2*beta.slope.est.CL)/alpha.est.CL)

results[14]=sqrt(1/alpha.est.CL)

# #Get fixed estimate of f_B|R(b|R=1) (in paper, this is g_B(b)

bs.cov0 = bs[covs==0]

numuniqueb.cov0 = length(unique(bs.cov0))

fbgivR.disc.cov0=data.frame(matrix(rep(0,2*numuniqueb.cov0),numuniqueb.cov0,2))

names(fbgivR.disc.cov0)=c(’grid’,’estimates’)

fbgivR.disc.cov0[,1]=unique(sort(bs.cov0))

fbgivR.disc.cov0[,2]=sapply(1:numuniqueb.cov0,function(i){
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length(bs.cov0[bs.cov0==fbgivR.disc.cov0$grid[i]])/length(bs.cov0)})

#Initialize pi

pi.est.disc.cov0=data.frame(matrix(rep(0,2*numuniqueb.cov0),numuniqueb.cov0,2))

names(pi.est.disc.cov0)=c(’grid’,’estimates’)

pi.est.disc.cov0$grid=unique(sort(bs.cov0))

pi.est.disc.cov0$estimates=rep(1,numuniqueb.cov0)

#Estimate S(b)

nodesandweights=gauss.quad.prob(nnodesForGQP,dist="gamma",alpha=alpha.est.CL,

beta=1/alpha.est.CL)

Survy0marg.cov0 = sapply(1:numuniqueb.cov0,

function(i){dfmargGaussQuadProbwCov(x=fbgivR.disc.cov0$grid[i],

funct=’surv’, nodesnwt = nodesandweights,

pmix.in=results[1],norm.mean.in=results[2],

norm.sd.in=results[3],gumbel.mean.in=results[4],

gumbel.sd.in=results[5],

beta.slope=results[7], z.cov=0)})

#Estimate pi

pi.est.disc.cov0$estimates=fbgivR.disc.cov0$estimates/Survy0marg.cov0

pi.est.disc.cov0$estimates[pi.est.disc.cov0$estimates==Inf]=

fbgivR.disc.cov0$estimates.cov0[pi.est.disc.cov0$estimates==Inf]/.001

outerf.cov0<-function(yarg) {

sapply(yarg, function(yarg) {

sum(pi.est.disc.cov0$estimates[pi.est.disc.cov0$grid<=yarg])
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})

}

bs.cov1 = bs[covs==1]

numuniqueb.cov1 = length(unique(bs.cov1))

fbgivR.disc.cov1=data.frame(matrix(rep(0,2*numuniqueb.cov1),numuniqueb.cov1,2))

names(fbgivR.disc.cov1)=c(’grid’,’estimates’)

fbgivR.disc.cov1[,1]=unique(sort(bs.cov1))

fbgivR.disc.cov1[,2]=sapply(1:numuniqueb.cov1,function(i){

length(bs.cov1[bs.cov1==fbgivR.disc.cov1$grid[i]])/length(bs.cov1)})

#Initialize pi

pi.est.disc.cov1=data.frame(matrix(rep(0,2*numuniqueb.cov1),numuniqueb.cov1,2))

names(pi.est.disc.cov1)=c(’grid’,’estimates’)

pi.est.disc.cov1$grid=unique(sort(bs.cov1))

pi.est.disc.cov1$estimates=rep(1,numuniqueb.cov1)

#Estimate S(b)

Survy0marg.cov1 = sapply(1:numuniqueb.cov1,function(i){

dfmargGaussQuadProbwCov(x=fbgivR.disc.cov1$grid[i],funct=’surv’,

nodesnwt = nodesandweights, pmix.in=results[1],

norm.mean.in=results[2],

norm.sd.in=results[3],gumbel.mean.in=results[4],

gumbel.sd.in=results[5],

beta.slope=results[7], z.cov=1)})
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#Estimate pi

pi.est.disc.cov1$estimates=fbgivR.disc.cov1$estimates/Survy0marg.cov1

pi.est.disc.cov1$estimates[pi.est.disc.cov1$estimates==Inf]

=fbgivR.disc.cov1$estimates.cov1

[pi.est.disc.cov1$estimates==Inf]/.001

outerf.cov1<-function(yarg) {

sapply(yarg, function(yarg) {

sum(pi.est.disc.cov1$estimates[pi.est.disc.cov1$grid<=yarg])

})

}

optim.resfull = optim(par=results[1:7],fn=fullLikMCint, nnodes=nnodesForGQP,

n.mc=n.montecarlo, method=’L-BFGS-B’,

lower=lowerbounds,upper=upperbounds,

control=list(fnscale=-1),hessian=F)

if(optim.resfull$convergence!=52 & optim.resfull$par[1]!=lowerbounds[1]

& optim.resfull$par[1]!=upperbounds[1]

& optim.resfull$par[6]!=lowerbounds[6]

&optim.resfull$par[3]!=lowerbounds[3]

& optim.resfull$par[5]!=lowerbounds[5]){

results[15:21] = optim.resfull$par

p.est.FullL = results[15]

norm.mean.est.FullL = results[16]

norm.sd.est.FullL = results[17]

gumbel.mean.est.FullL = results[18]
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gumbel.sd.est.FullL = results[19]

alpha.est.FullL = results[20]

beta.slope.est.FullL = results[21]

#E[y0] and SD[y0]

results[22:23] = y0meanSD(pmix=p.est.FullL,norm.mean=norm.mean.est.FullL,

norm.sd=norm.sd.est.FullL,gumbel.mean=gumbel.mean.est.FullL,

gumbel.sd=gumbel.sd.est.FullL)

meanY0.est.FullL=results[22]

sdY0.est.FullL=results[23]

#E[Y] = y0mean

results[24] = meanY0.est.FullL

results[25] = meanY0.est.FullL*exp(beta.slope.est.FullL)

#SD[Y] = sqrt(y0sd^2*(1/alpha + 1) + y0mean^2/alpha

results[26]= sqrt(sdY0.est.FullL^2*(1/alpha.est.FullL + 1) +

meanY0.est.FullL^2/alpha.est.FullL)

results[27]= sqrt(sdY0.est.FullL^2*exp(2*beta.slope.est.FullL)*

(1/alpha.est.FullL + 1) +

meanY0.est.FullL^2*exp(2*beta.slope.est.FullL)/alpha.est.FullL)

results[28]=sqrt(1/alpha.est.FullL)

results[29] = fullLikMCint(results[1:7],nnodes=nnodesForGQP,n.mc=n.montecarlo)

results[30] = optim.resfull$value

results[31] = optim.res$counts

results[32] = optim.resfull$counts

results[33] = 2*7 - 2*optim.resfull$value

127



results[34] = optim.res$convergence

results[35] = optim.resfull$convergence

}

}

return(results)

}

#For post enrollment cycles

ParamNonsmoothPostEnroll<-function(data,indices=1:(dim(data)[1])){

loglikelihoodfunc = function(arg,nnodes){

re.nodenwt<-gauss.quad.prob(nnodes,dist="gamma",alpha=arg[6],beta=1/arg[6])

fy0marg=sapply(1:nsub,function(i){dfmargGaussQuadProbwCov(x=ys[i],funct=’pdf’,

nodesnwt = re.nodenwt,

pmix.in=arg[1],

norm.mean.in=arg[2],norm.sd.in=arg[3],gumbel.mean.in=arg[4],gumbel.sd.in=arg[5],

beta.slope=arg[7], z.cov=covs[i])}

loglik = sum(log(fy0marg))

if(is.finite(loglik)==F) loglik = -10^10

#output log likelihood

loglik

}

ys = data[indices,1]

covs = data[indices,2]

nsub = length(ys)

results = rep(NA,14)
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maxitvalue = 100

optim.res = optim(par=initial,fn=loglikelihoodfunc, nnodes=nnodesForGQP,

method=’L-BFGS-B’,

lower=lowerbounds, upper=upperbounds,control=list(fnscale=-1),hessian=FALSE)

if(optim.res$convergence!=52 & optim.res$par[1]!=lowerbounds[1] &

optim.res$par[1]!=upperbounds[1] &

optim.res$par[6]!=lowerbounds[6] &

optim.res$par[3]!=lowerbounds[3] &

& optim.res$par[5]!=lowerbounds[5]){

results[1:7] = optim.res$par

#Store results using conditional

p.est.CL = results[1]

norm.mean.est.CL = results[2]

norm.sd.est.CL = results[3]

gumbel.mean.est.CL = results[4]

gumbel.sd.est.CL = results[5]

alpha.est.CL = results[6]

beta.slope.est.CL = results[7]

#E[y0] and SD[y0]

results[8:9] = y0meanSD(pmix=p.est.CL,norm.mean=norm.mean.est.CL,

norm.sd=norm.sd.est.CL,gumbel.mean=gumbel.mean.est.CL,

gumbel.sd=gumbel.sd.est.CL)

meanY0.est.CL=results[8]

sdY0.est.CL=results[9]
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#E[Y] = y0mean

results[10] = meanY0.est.CL

results[11] = meanY0.est.CL*exp(beta.slope.est.CL)

#SD[Y] = sqrt(y0sd^2*(1/alpha + 1) + y0mean^2/alpha

results[12]= sqrt(sdY0.est.CL^2*(1/alpha.est.CL + 1)+meanY0.est.CL^2/alpha.est.CL)

results[13]= sqrt(sdY0.est.CL^2*exp(2*beta.slope.est.CL)*(1/alpha.est.CL + 1) +

meanY0.est.CL^2*exp(2*beta.slope.est.CL)/alpha.est.CL)

results[14]=sqrt(1/alpha.est.CL)

}

return(results)

}

A.3. Implementation Details for Joint Model of Cycle Length and Fecundity

The posterior distributions of the population and couple-specific parameters of the joint

model described in Section 3.3 are estimated using MCMC sampling methods implemented

using the OpenBUGS (Thomas et al. 2006) software using the code in Section A.4. Con-

vergence of parameters is checked by visual inspection of trace plots. Based on these trace

plots, we use a burn-in of 10000 iterations and a sample of 30000 iterations. While the

regression coefficients of both submodels exhibit rapid mixing, the spline parameters are

slower to converge. Convergence can be improved by using fewer knots.

To assess the sensitivity to the choice of uniform priors for (σ1, σ2, σW ), we fit the model

assuming uniform priors on the scale of the log standard deviations; and we found that the

corresponding posterior distributions were approximately the same. As a separate sensitivity

analysis, we also fit the model assuming a log-normal distribution for Wi, i = 1, . . . , n. Again,

there was very little difference in the posterior distributions.
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For the shape of the profile of pregnancy probabilities in the fecundity model, we assume

g(·) is a smooth function and estimate g by ĝ(·) =
∑L

l=1 αlBl(·), where {B1(·), . . . , BL(·)} are

the B-spline basis functions for a natural cubic spline. Brown et al. (2005) suggest choosing

the number of knots based on the model with the smallest deviance information criterion

(DIC). We separately fit models with 4-10 knots at locations based on percentiles of the

intercourse day data. We found that the DIC was smaller for the models with 8, 9, or 10

knots; therefore, we chose to use 8 knots so that the profile of pregnancy probabilities is

informed by the intercourse data without the addition of too many parameters. We exclude

intercourse acts occurring more than 16 days prior to ovulation or 18 days post ovulation,

or on the days following a positive pregnancy test as these occur after conception; and we

also exclude intercourse acts on days occurring more than 45 days after the start of a cycle.
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A.4. Model Code for Joint Model of Menstrual Cycle Length and Fecundity

The following OpenBUGS computer code can be used to estimate the parameters of the joint

model of menstrual cycle length and fecundity developed and implemented in Chapter 3.

This code can also be used to do the analyses in Chapter 4 by putting in the data on PFAS

exposure as specified below.

#Purpose: Estimate posterior distributions of parameters of joint model of

menstrual cycle length and fecundity

#Start model

model{

const <-10000 #for ones trick

#Regression for menstrual cycle length model

for(i in 1:n){

w[i] ~ dgamma(inv.sigma.squared.w,inv.sigma.squared.w)

#Put PFAS exposure here

vTeta[i]<- eta.age1*agef[i]+eta.smokef*smokef[i]+ eta.PFAS*PFAS[i]

risk[i] <- exp(vTeta[i])

mult[i]<- w[i]*risk[i]

EYgivWz[i] <- mult[i]*EY0

SDYgivWz[i] <- mult[i]*SDY0

y0.pred[i]<-y.pred[i]*pow(mult[i],-1)

fy.pred[i] <- pow(mult[i],-1)*(p.normal*sqrt(inv.sigma.squared.normal/2/3.14159)*
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exp(-1/2*inv.sigma.squared.normal*pow(y0.pred[i]-mean.normal,2))+

p.Gumbel/scale*exp(-(y0.pred[i]-loc)/scale-exp(-(y0.pred[i]-loc)/scale)))

One.pred[i] <- 1

One.pred[i] ~ dbern(p.Onestrick.pred[i])

p.Onestrick.pred[i] <- fy.pred[i]/const

y.pred[i] ~ dflat()

y.pred.cen[i]<- y.pred[i] - 29.47438 #updated

y.pred.std[i]<- y.pred.cen[i]/3.261141 #updated

#Regression for pregnancy model

#cycle level data

for (j in offsets[i]:(offsets[i+1]-1)){

#day level data

for(k in dayoffsets[j]:(dayoffsets[j+1]-1)){

#splines

for(m in 1:etamalpha){

gsmoothmat[k,m]<- alpha[m]*basis[(intcdayrel[k]+addconst+1),m]

}

gsmooth[k]<-sum(gsmoothmat[k,])

innersum[k] <--1*log(1 + exp(beta.MCL[1]*y.pred.std[i] +

beta.MCL[2]*pow(y.pred.std[i],2) +

gamma.STCRIT*STCRIT[i]+ gamma.logSPCOUNT*logSPCOUNT[i]+

gamma.logSEVOLUME*logSEVOLUME[i] +

gamma.averageofagefandagem*averageofagefandagem[i] +

gamma.agemminusagef*agemminusagef[i] +

gamma.smokef*smokef[i] + gamma.smokem*smokem[i] +

133



(1-nopeakInd[k])*(mu0 + gsmooth[k]) +

nopeakInd[k]*(lambda[1] + lambda[2]*AvgIntc[i] +

lambda[3]*pow(AvgIntc[i],2))))

}

log.comp.pcycle[j] <- sum(innersum[dayoffsets[j]:(dayoffsets[j+1]-1)])

log.comp.pcycle.withannov[j] <- (1-annovInd[j])*log.comp.pcycle[j]

pcycle.withannov[j]<- 1-exp(log.comp.pcycle.withannov[j])

}

pttp[i,1]<-pcycle.withannov[offsets[i]]

for(cyc in 2:etamcyc[i]){

pttp[i,cyc]<-pcycle.withannov[offsets[i]+cyc-1]*

exp(sum(log.comp.pcycle.withannov[offsets[i]:(offsets[i]+cyc-2)]))

}

#This will pad the ragged arrays with 1’s (change to NA in R) max(etamcyc)=16

for(futcyc in (etamcyc[i]+1):17){

pttp[i,futcyc] <- 1

}

#For last cycle, the probability of Aini = 1 (have to put annov on outside)

log.p.cycle[i] <- (1-annovInd[(offsets[i+1]-1)])*

log(1-exp(log.comp.pcycle[(offsets[i+1]-1)]))

loglik.pregcycle[i] <- delta[i]*log.p.cycle[i]

loglik.bycouple[i] <- loglik.pregcycle[i]+indttpgr1[i]*

sum(log.comp.pcycle.withannov[offsets[i]:(offsets[i]+

(etamcyc[i]-1)-delta[i]*indttpgr1[i])])

#Ones trick

z[i] <-1
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z[i] ~ dbern(pz[i])

pz[i]<- L[i]/const

L[i] <- exp(loglik.bycouple[i])

}

for(j in 1:Ncyc.AllcycCensPregAtOvul){

y0[j] <- y.AllcycCensPregAtOvul[j]*pow(mult[woman.AllcycCensPregAtOvul[j]],-1)

fy[j] <- pow(mult[woman.AllcycCensPregAtOvul[j]],-1)*

(p.normal*sqrt(inv.sigma.squared.normal/2/3.14159)*

exp(-1/2*inv.sigma.squared.normal*pow(y0[j]-mean.normal,2))

p.Gumbel/scale*exp(-(y0[j]-loc)/scale-exp(-(y0[j]-loc)/scale)))

Sy[j] <- p.normal*phi((mean.normal-y0[j])/sigma.normal) +

p.Gumbel*(1-exp(-exp(-(y0[j]-loc)/scale)))

One[j] <- 1

One[j] ~ dbern(p.Onestrick[j])

p.Onestrick[j] <- pow(EYgivWz[woman.AllcycCensPregAtOvul[j]],-1*enrollcycInd[j])*

pow(fy[j],1-pregind[j])*pow(Sy[j],pregind[j])/const

}

EY0<-p.normal*mean.normal+p.Gumbel*mean.Gumbel

#Specification of priors

p.Gumbel <-1-p.normal

p.normal ~ dunif(0,1) #Alternative: ddirch

mean.normal ~ dunif(0,50)

sigma.normal ~ dunif(0,10)

inv.sigma.squared.normal <-1/pow(sigma.normal,2)
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lam ~ dunif(0,20)

mean.Gumbel <- mean.normal + lam

sigma.Gumbel ~ dunif(0,40)

scale <-sigma.Gumbel/3.14159*sqrt(6)

loc <-mean.Gumbel - scale*0.5772156649

sigma.w ~ dunif(0,0.5) #Play with this

inv.sigma.squared.w <-1/pow(sigma.w,2)

eta.age1 ~ dunif(-1,1)

eta.smokef ~ dunif(-1,1)

eta.PFAS ~ dunif(-1,1)

beta.MCL[1] ~ dunif(-2,2)

beta.MCL[2] ~ dunif(-2,2)

gamma.agemminussagef ~ dunif(-2,2)

gamma.averageofagefandagem ~ dunif(-2,2)

gamma.smokef ~ dunif(-2,2)

gamma.smokem ~ dunif(-2,2)

gamma.STCRIT ~ dunif(-2,2)

gamma.logSPCOUNT~ dunif(-2,2)

gamma.logSEVOLUME~ dunif(-2,2)

for(m in 1:etamalpha){

alpha[m] ~ dunif(-1000,1000)

}

mu0 ~ dunif(-1000,100)

lambda[1]~dunif(-30,30)
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lambda[2]~dunif(-10,10)

lambda[3]~dunif(-2,2)

} #End model

137



Kirsten J. Lum
Curriculum Vitæ

(Updated October 26, 2014)

Johns Hopkins University
Department of Biostatistics

615 N. Wolfe St.
Baltimore, MD 21205

Email: klum@jhu.edu

Education

Ph.D. candidate, Biostatistics, Johns Hopkins University (JHU), 2009–present

Thesis topic: Joint modeling of hierarchical data with application to prospective
pregnancy studies

Advisor: Dr. Thomas A. Louis

M.S., Statistics, American University, 2008

Thesis topic: Joint modeling of longitudinal binary data and time to an event:
an application to human fecundity models

Advisor: Dr. Elizabeth Malloy

M.S.E, Biomedical Engineering, Johns Hopkins University, 2004

Thesis topic: Automatic methods for classifying sulcal regions on the human
brain cortex

Advisor: Dr. Jerry Prince

B.S. Electrical Engineering, cum laude, University of Maryland in College Park, 2001

Employment

Pre-doctoral Fellow and Summer Intern, Biostatistics and Bioinformatics Branch, Eu-
nice Kennedy Shriver National Institute of Child Health and Human Development
(NICHD), National Institutes of Health (NIH), Summers 2007, 2010, and years 2012-
present

Teaching Assistant, Department of Biostatistics, JHU, 2010–present

Magnetic Resonance Engineer, Center for the Study of Brain, Mind, and Behavior,
Princeton University, 2003–2006

138

http://www.jhu.edu/
mailto:klum@jhu.edu


Research Fellow, Lab of Personality and Cognition, National Institute on Aging, NIH,
2003–2006

Honors and Awards

The Helen Abbey Award for excellence in teaching, JHU, 2013

Pre-doctoral Intramural Research Training Award, NICHD, NIH, 2012

Louis I. and Thomas D. Dublin Award for the advancement of Epidemiology and
Biostatistics, JHU, 2012

Pre-doctoral Training Award in Environmental Biostatistics, National Institute of En-
vironmental Health Sciences, NIH, 2010-2012

7th Annual Summer Institute in Reproductive and Perinatal Epidemiology, NICHD
and CIHRs Institute of Human Development, Child and Youth Health, 2011

Wray Jackson Smith Scholarship, American Statistical Association, 2008

Outstanding Graduate Student Award, Washington Statistical Society, 2007

Professional Memberships

American Statistical Association

Eastern North American Region/International Biometric Society

Caucus for Women in Statistics

Washington Statistical Society

Publications

Published

Lum KJ, Sundaram R., Louis TA (2014). Accounting for length-bias and selection
effects in estimating the distribution of menstrual cycle length. Biostatistics. Advanced
access published July 14, 2014, doi: 10.1093/biostatistics/kxu035.

McLain A, Lum KJ, Sundaram R (2012). A joint mixed effects dispersion model
for menstrual cycle length and time-to-pregnancy. Biometrics, 68: 648-656. PMID:
22321128.

Lynch, Courtney D., Sundaram R, Buck Louis GM, Lum KJ, Pyper C (2012). Are
increased levels of self-reported psychosocial stress, anxiety, and depression associated
with fecundity?. Fertility and Sterility, 98: 453-458. PMID: 22698634.

139



Lum KJ, Sundaram R, Buck Louis GM (2011). Women’s lifestyle behaviors while
trying to become pregnant: evidence supporting preconception guidance. American
Journal of Obstetrics and Gynecology, 205: 203.e1-7. PMID: 21658667.

Buck Louis GM, Lum KJ, Sundaram R, Chen Z, Kim SD, Lynch CJ, Schisterman
EF, Pyper C (2011). Stress reduces conception probabilities across the fertile win-
dow: evidence in support of relaxation. Fertility and Sterility, 95: 2184-2189. PMID:
20688324.

Neta GI, von Ehrenstein OS, Goldman LR, Lum KJ, Sundaram R, Andrews W, Zhang
J (2010). Umbilical cord serum cytokine levels and risks of small-for-gestational-age
and preterm birth. American Journal of Epidemiology, 171: 859-867. PMID: 20348155.

Pollack AZ, Buck Louis GM, Sundaram R, Lum KJ (2010). Caffeine consumption and
miscarriage: a prospective cohort study. Fertility and Sterility, 93: 304-306. PMID:
19732873.

Behnke KJ, Rettmann ME, Pham DL, Shen D, Resnick SM, Davatzikos C, Prince
JL (2003). Automatic classification of sulcal regions of the human brain cortex using
pattern recognition. Medical Imaging, Proc of SPIE, 5032: 1499-1510.

In Progress

Lum KJ, Sundaram R, Buck Louis GM, Louis TA. A Bayesian approach to joint mod-
eling of menstrual cycle length and fecundity, (Aug 2014). Johns Hopkins University,
Dept. of Biostatistics Working Papers. http://biostats.bepress.com/jhubiostat/

Lum KJ, Sundaram R, Louis TA, Buck Louis GM. Perfluoroalkyl substances and
their relations with menstrual cycle length and fecundity: the LIFE Study.

Teaching

Teaching Assistant

Non-Inferiority and Equivalence Clinical Trials, JHU, 2014

Biostatistics in Medical Product Regulation, JHU, 2013-2014

Lead TA, Statistical Methods in Public Health I-II, JHU, 2011, 2012

Statistical Methods in Public Health I-IV, JHU, 2010

Basic Algebra, American University, 2006-2007

Guest Lectures

Statistical Methods in Public Health II, JHU, 2012

140

http://biostats.bepress.com/jhubiostat/


Presentations and Posters

A Bayesian Approach to Joint Modeling of Longitudinal Menstrual Cycle Length and
the Probability of Pregnancy. Joint Statistical Meetings (JSM), Aug 2014, Boston,
MA [speed presentation, poster combination]

Assessing the Association Between Time-to-Pregnancy and Woman-Specific Menstrual
Cycle Length Mean and Variability Using a Bayesian Hierarchical Model. Joint Sta-
tistical Meetings (JSM), August 2013, Montreal, Canada. [presentation]

Accounting for Length-bias and Selection Bias in Estimating Menstrual Cycle Length.
Eastern North American Region (ENAR) Spring Meeting, March 2013, Orlando, FL.
[presentation]

Incorporating sampling plan and competing risks in analysis of prospective pregnancy
studies. ENAR, April 2012, Washington, DC. [poster]

Joint modeling of menstrual cycle length and fecundity. ENAR, March 2011, Miami,
FL. [poster]

Womens lifestyle behaviors during the periconception window: evidence supporting
need for preconception guidance. 1st European Congress 2010: Preconception Care
and Preconception Health, October 2010, Brussels, Belgium. [presentation]

Joint modeling of binary longitudinal data with discrete time-to-event: an application
to human fecundity models. JSM, August 2009, Washington, DC. [presentation]

Do women change behavior while attempting pregnancy? Society for Epidemiologic
Research 42nd Annual Meeting, June 2009, Anaheim, CA. [poster]

Joint model of longitudinal binary data with discrete survival time. JSM, August 2008,
Denver, CO. [presentation]

A model for human intercourse behavior and its importance in modeling time to preg-
nancy. American University CAS Robyn Rafferty Mathias Student Research Confer-
ence, March 2008, Washington, DC. [presentation]

Incorporating libido into human fecundability models. ENAR, March 2008, Arlington,
VA. [presentation]

Computing Skills

R, S-PLUS, Matlab, OpenBUGS, SAS (certified SAS 9), PROC IML, STATA, C, C++,
IDEA (certified, Siemens Corporation)

141



Leadership and Service Activities

Organizer and chair of invited session at ENAR, 2014

Organizer of JHU Biostatistics Student Welcome Picnic, 2011

Leader of JHU Biostatistics Computing Club, 2010-2011

Organizer of JHU Biostatistics Student Camping Trip, 2010

142


	Table of Contents
	List of Abbreviations and Acronyms
	List of Tables
	List of Figures
	Introduction
	Scientific Background
	Fecundity
	The Menstrual Cycle
	Perfluoroalkyl Surfactants

	Epidemiologic Pregnancy Studies
	Overview of Chapters

	Accounting for Length-bias and Selection Effects in Estimating the Distribution of Menstrual Cycle Length
	Introduction
	Estimating the Distribution of Menstrual Cycle Length
	Notation, Sampling Plan and Consequences
	Modeling

	Parameter Estimation
	Recursive Estimation
	Nonparametric Estimation of S(y)
	Semi-parametric Estimation of S(y)

	Censoring
	Semi-parametric Estimation of S(y) in the Censored Case

	Incorporating a Random Effect and a Covariate
	Semi-parametric Estimation of S(yz;,, )

	Simulation Studies
	Application to the LIFE Study
	Discussion

	Appendices
	 Proofs
	 The Conditional Distribution of Backward Recurrence Times
	 Solution to the Integral Equation
	 Alternative Method for Solving for 

	 Comparison of Model Fit: Normal-Gumbel vs Log-normal
	 A Check of the Assumption: (y)y
	 A Comparison to Post-enrollment Cycle Length Distribution

	A Bayesian Approach to Joint Modeling of Menstrual Cycle Length and Fecundity
	Introduction
	Joint Model for Menstrual Cycle Length and Pregnancy
	Submodel for Longitudinal Menstrual Cycle Length
	Submodel for the Probability of Pregnancy

	Estimation
	Application to the LIFE Study, a Prospective Pregnancy Study
	The LIFE Study
	Analysis of the LIFE Study

	Discussion

	Appendices
	 Fit of Menstrual Cycle Length Submodel
	 Time-to-Pregnancy Survival Distribution

	Perfluoroalkyl Surfactants and Their Relations with Menstrual Cycle Length and Fecundity: the LIFE Study
	Introduction
	Methods
	Study Design And Cohort
	Data and Biospecimen Collection
	Toxicological Analysis
	Statistical Analysis

	Results
	Role of PFASs in Menstrual Cycle Length
	Role of PFASs in Probability of Pregnancy

	Discussion

	Concluding Remarks
	Implications and Future Work

	Bibliography
	Guidance and Code for Simulations and Analyses
	Steps for Simulating Data
	R code for Estimation of Menstrual Cycle Length Distribution Accounting for Length-bias and Selection Bias from Simulated Data
	Implementation Details for Joint Model of Cycle Length and Fecundity
	Model Code for Joint Model of Menstrual Cycle Length and Fecundity

	Curriculum Vitæ

