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Abstract

Computational neural simulations do not match the functionality and operation

of the brain processes they attempt to model. This gap exists due to both our incom-

plete understanding of brain function and the technological limitations of computers.

Moreover, given that the shrinking of transistors has reached its physical limit, fun-

damentally different computer paradigms are needed to help bridge this gap. Neu-

romorphic hardware technologies attempt to abstract the form of brain function to

provide a computational solution post-Moore’s Law, and neuromorphic algorithms

provide software frameworks to increase biological plausibility within neural mod-

els. This thesis focuses on utilizing neuromorphic frameworks to better understand

how the brain processes social and emotional stimuli. It describes the creation of a

spiking-neuron computational model of the amygdala, the brain region behind our

social interactions, and the simulation of the model using brain-inspired computer

hardware, as well as the implementations of other spike-based computations on these

hardwares. Although scientists agree that the amygdala is the main component of the

social brain, few models exist to explain amygdala function beyond “fight or flight”.
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ABSTRACT

This model incorporates neuroscientists’ more nuanced understanding of the amyg-

dala, and is validated by comparing the neural responses measured from the model to

responses measured in primate amygdalae under the same experimental conditions.

This model will inform future physiological experiments, which will generate deeper

neuroscientific insights, which will in turn allow for better neural models. Repeated

iteratively, this positive feedback loop in which better models beget better under-

standing of biology and vice versa will help close the gap between the computer and

the brain. The computer networks and hardware that emerge from this process have

the potential to achieve higher computing efficiency, approaching or perhaps surpass-

ing the efficiency of the human brain; provide the foundation for new approaches to

artificial intelligence and machine learning within a spike-based computing paradigm;

and widen our understanding of brain function.
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Chapter 1

Introduction

Since the creation of the first digital computer, the ENIAC,3 in 1946, the field of

computer processing has witnessed a complete transformation. The ENIAC weighed

almost 50 tons, occupied 1,800 square feet, and used 18,000 vacuum tubes. Today

many semiconductor companies create integrated circuits using processes less than

20nm in size. In 2017, Apple released the iPhone 8, containing an Apple A11 Bionic

processor. The A11 was manufactured using a 10nm FinFET process and contained

4.3 billion transistors. For the last 30 years, the decrease in transistor size has followed

Moore’s Law,4 a “law” coined by Gordan Moore in 1965 to characterize the increase

in the number of transistors per chip over time. As the number of transistors per chip

has grown and transistor size has continued to shrink, semiconductor companies have

come up against the fundamental limits of physics. In 2016, researchers from Lawrence

Berkeley National Laboratory created a molybdenum disulfide (MoS2) transistor with
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a physical gate length of 1 nm that used a single-walled carbon nanotube as the

gate electrode.5 This work effectively side-stepped the prediction that silicon (Si)

transistors fail below 5 nm gate lengths due to short-channel effects. Nonetheless,

engineers, scientists, and researchers alike agree that Moore’s Law has come to an

end: Moore is no more.6

Despite the end of Moore’s Law, the combination of faster processing, Internet

of thing (IoT) devices, and a prevalence of real-time processing have resulted in an

explosion of data and advances for the fields of machine learning, artificial intelligence,

and robotics.7 It is estimated that 2.5 quintillion bytes of data are generated every

day and that 90% of the data in the world was generated in the last two years (as of

2018).8 This sharp increase in data and machine learning research coupled with the

end of Moore’s Law begs the question, how will computer technology be able to keep

pace with the emergence of these new processing demands?

One path forward post-Moore’s law lies in the field of neuromorphic engineering.

Neuromorphic engineering creates technology solutions that emulate the brain, the

most efficient “computer”, with the hopes of producing lower-power, faster computer

processors.9–11 Carver Mead first coined the term “neuromorphic” in 1989,9 when he

linked transistor properties to those of a biological neuron and first proposed creating

silicon chips to mimic biological structures and computation. The human brain per-

forms many different types of complicated tasks while only burning about 20% of the

whole body’s energy budget, despite composing only 2% of the body’s total mass.12
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This far exceeds any efficiency realized by modern computers. Although computers

may be faster at electrical conduction, the brain is optimized for information stor-

age and representation to a degree of efficiency we are still unable to understand.

Traditional Von Neumann computer architectures generally process information in a

sequential fashion, with memory and computing resources often occupying different

physical spaces within a processor. This configuration expends energy and time to

shuttle information to and from memory for computations. Neuromorphic processors

capitalize on the massively parallel nature of the brain, which consists of many parallel

“neurons” or computation units that co-locate memory and computational resources

to avoid some of the pitfalls of traditional processors. To date there have been neuro-

morphic processors designed under a variety of goals and constraints, implementing

a wide range of computational neuron models.11,13–20

Like many computing-adjacent fields, neuroscience has been affected by the in-

crease in processing power linked to Moore’s Law and has seen vast technological

advancements over the last half century. In 1952, Alan Hodgkin and Andrew Huxley

published the first in a series of papers on their groundbreaking work in understand-

ing how the flow of ions within neurons generates action potentials, allowing neurons

to send electrical signals throughout the body.21 Hodgkin and Huxley proposed a

simple circuit model to describe ion flow based on their work using the patch-clamp

method to measure the current-voltage relationship in the membrane of the squid

giant axon. Over the next seven decades, neuroscience experimentation exploded
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resulting in a vast development of neural recording technology.22–24 Developments

in recording technology have greatly increased the number of neurons that can be

simultaneously recorded, increased the quality of the signal recorded, decreased the

size and impact of recording probes, and changed the way in which recordings are

made. Stevenson and Kording have quantified this trend by describing a “Moore’s

Law” of neuroscience.25 They predict based on past trends that in 15 years (∼ 2025),

scientists will be able to record simultaneously from 1,000 neurons. This growth in

neural data fundamentally changes the questions scientists can pose and investigate

through experimental research. With increased amounts of neural data, the need for

new analysis methods and algorithms grows.

This thesis focuses on the intersection of neuromorphic engineering and neuro-

science. It contains two main contributions, one scientific and one technological. Its

scientific contribution explores neuromorphic modeling techniques to better under-

stand how the brain processes social and emotional stimuli. This is done by creating

a neuromorphic computational model of the amygdala, the region of the brain respon-

sible for processing social and emotional stimuli. All of the data analyzed for this

modeling work came from a collaboration with neuroscientists in Professor Katalin

Gothard’s neurophysiology group at the University of Arizona. The model was vali-

dated using primate amygdala single unit neuron recordings and goes beyond existing

work by incorporating multiple emotional states instead of focusing only on a fear

conditioning paradigm. The model also takes into account individual nuclei and
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their contribution to the amygdala’s overall function, a distinction lacking in existing

amygdala computational models..

This thesis’s technological contribution lies in understanding and then leveraging

the gains and limitations of current neuromorphic processors for neuroscience model-

ing, spike-based computing, and robotics. In 2014 IBM announced their TrueNorth

Neurosynaptic System, the first industry-produced neuromorphic processor.13 With

one million neurons, TrueNorth presented a unique opportunity to develop large-

scale, spike-based algorithms and realize many of the theoretical gains of neuromor-

phic processing. This thesis describes multiple spike-based algorithms developed on

TrueNorth, as well as a project that utilized the TrueNorth ecosystem to execute

a trained convolutional neural network on hardware as a part of an autonomous

platform. Additionally, it compares a number of neuromorphic processors including

Intel’s Loihi,14 University of Manchester’s SpiNNaker,16,26,27 and Stanford Univer-

sity’s Braindrop15 to understand the trade-offs and benefits of these processors for

modeling and spike-based computation.

This thesis begins in Chapter 2 by introducing the amygdala and its role in so-

cial and emotional processing. A number of statistical methods and data analysis

techniques were used to better understand socio-emotional processing in the primate

amygdala. Their methodology and results are explained in this chapter. In partic-

ular, the chapter discusses the role of eyeblinks as a social determinant, and then

explores changes in neural firing patterns in response to the eyeblinks. Further detail
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is presented through the implementation of a Bayesian changepoint detection algo-

rithm for detecting neurons that exhibited a change in firing rate as a response to

the eyeblinks. Chapter 2 also explains research conducted using point process models

to predict the firing of individual neurons as a result of measured covariates such as

input stimuli, past spiking history, and the behavior of nearby neurons. Chapter 2

concludes by describing a tool used to separate multiple bat echolocation calls when

flying in groups. This tool supported research for understanding social behaviors seen

in bats, specifically changes in echolocation patterns when they fly in groups. Over-

all chapter 2 focuses on statistical methods and data analysis techniques to better

understand behavioral and neural responses to socio-emotional processing.

Chapter 3 of this thesis describes models the amygdala at a higher level of ab-

straction, utilizing population-level modeling for understanding how the amygdala

processes social and emotional stimuli. This chapter details a computational spiking-

neuron model of the amygdala built using the Neural Engineering Framework.28,29

This model goes beyond existing models by incorporating multiple emotional states

rather than focusing solely on a fear response. It also includes a breakdown of nu-

clei functionality instead of modeling the amygdala as one homogeneous structure as

most previously existing models do. To validate the model, its neurons’ responses were

compared with single unit neuron recordings from the primate amygdalae. There was

a high degree of matching between the distribution of responses measured from the

neurons in the model to those recorded from neurons found in the primate amygdalae.
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Chapter 4 shifts to the technological contributions of this thesis by focusing on

research by the author utilizing the neuromorphic processor, TrueNorth. This chapter

gives an overview of the TrueNorth architecture and then details work accomplished

using TrueNorth in each of its two engineering methodologies. The first method-

ology uses IBM’s energy-efficient deep neuromorphic networks (Eedn)30 framework

to train convolutional neural networks to execute on TrueNorth directly. The sec-

ond methodology uses the Corelet Programming Environment (CPE)31 to develop

circuit configurations, or corelets, to execute natively on TrueNorth and perform spe-

cific computations. This chapter discusses applications on TrueNorth in the areas of

spike-based computation and robotics.

Lastly, Chapter 5 explores additional neuromorphic hardware beyond the TrueNorth

chip. Intel’s Loihi,14 University of Manchester’s SpiNNaker,16,26,27 and Stanford Uni-

versity’s Braindrop15 are analyzed to understand the trade-offs and benefits of each

of these processors. Practical considerations when using each of these hardwares are

discussed, as well as the results of benchmark experiments. Additionally the chap-

ter details the corelets constructed to execute the NEF on TrueNorth, enabling its

comparison amongst these other neuromorphic processors.

This work presents research both within the field of computational neuroscience

as well as computer engineering. Given the technological advances in computer hard-

ware, computer processing, neural experimentation, data analysis, and machine learn-

ing, the intertwined progress of these fields becomes even more apparent. More data
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requires more powerful processing, which in turn poses more interesting and compli-

cated scientific questions which require more data. This work not only presents a

computational model of the amygdala, a brain region not well understood, but also

analyzes the role of computation in neuroscience itself. As we enter into an era be-

yond Moore’s Law, alternative processing methodologies will become paramount to

progress in other fields.

8



Chapter 2

Statistical Methods and Data

Analysis to Understand

Socio-Emotional Processing in the

Amygdala

How the brain processes social and emotional stimuli is not well understand. Al-

though scientists agree that the amygdala is the main component of the social brain,

the amygdala lies deep in the brain which makes it a difficult region to reach and

record. Because the amygdala is highly connected to other parts of the brain,32,33 it

is difficult to isolate its inputs, thus complicating experimental setups and the anal-

ysis of functional behavior. The amygdala’s primary role involves analyzing social
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interactions and contributing to stimulus appraisal, relevance detection, activation of

neuroendocrine response, and somatic motor expressions of emotions.34 These brain

activities form the foundation of emotional responses.

The amygdala is an almond shaped structure located in the anterior part of the

medial temporal lobe in the limbic system.32,33 Figure 2.1 shows a simplified repre-

sentation of the processing flow through the amygdala. Sensory inputs arrive to the

lateral (input) nucleus from cortical association areas, such as the superior tempo-

ral sulcus, posterior parietal, and inferotemporal cortices.35,36 In the lateral nucleus,

stimuli are identified and discriminated. Output from the lateral nucleus then con-

verges with inputs from the orbitofrontal and medial prefrontal cortices in the basal

nucleus.36,37 Prefrontal areas likely signal to the amygdala the current value or be-

havioral significance of a stimulus or event.33,38–41 As such, the basal nucleus is where

the identity (“what is it”) of the stimulus is combined with its significance (“what does

it mean”). Large pyramidal cells in the basal nucleus provide feedback projections

that signal the outcome of these computations to multiple cortical areas.42,43 The

next stage of processing takes place in the accessory basal nucleus, which is less well

understood and, as the name suggests, might only be an extension (or duplication) of

the basal nucleus.44 The basal and accessory basal nuclei both project to the central

nucleus. The central nucleus is bi-directionally connected to autonomic centers in

the brain stem and hypothalamus.45 Consequently, activity in the central nucleus is

thought to trigger autonomic and behavioral responses to stimuli of high emotional
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value (“what to do”).39,46,47 This thesis focuses on six main nuclei: the lateral nucleus,

basal nucleus, accessory basal nucleus, central nucleus, media nucleus, and the ante-

rior amygdaloid area (AAA), although parts of this work combine nuclei to further

simplify the subdivisions within the amygdala while modeling.

(a) (b)

Figure 2.1: The flow of information into, within, and out of the amygdala. (a) Five
major nuclei are shown and (b) their corresponding role.

The amygdalae of monkeys are often considered when studying social behavior

because of their hierarchical, social societies,48,49 and because the monkey amygdala

has been shown to be a reasonable proxy for the human amygdala.50 Although the

amygdala of humans resembles that of monkeys, there are differences in the overall

size and nuclei breakdown between the two species. The human brain is estimated to

contain 86 billion neurons, with 12 million neurons within the amygdala. The monkey

brain is estimated to contain 6.4 billion neurons, with 1.7 million neurons within
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the amygdala. Although the human brain is ∼ 10 times larger than the monkey

brain and the human amygdala is ∼ 7 times larger than the monkey amygdala,

the relative scaling of the different amygdala nuclei does not follow the scaling of

the overall structure. Table 2.1 lists the number of neurons per amygdala nuclei in

humans and monkeys and Table 2.2 lists the volume of amygdala nuclei in humans

and monkeys.51–53 The values for the monkey amygdala are valid for both males and

females, as well as both the left and right amygdalae.53 As will be detailed in the

next section, all of the neural data analyzed in this thesis comes from amygdalae of

adult male rhesus macaques (Macaca mulatta).

Human Monkey
Brain 86× 109 6.38× 109

Amygdala 12.21× 106 1.7× 106

Lateral 4× 106 1.59× 106

Basal 3.24× 106 1.25× 106

Accessory Basal 1.28× 106 0.89× 106

Central 0.36× 106 0.30× 106

Medial - 0.28× 106

Paralaminar - 0.41× 106

Other 3.33× 106 -

Table 2.1: Average number of neurons in the brain,54,55 amygdala, and amygdala
nuclei for humans51 and monkeys53 .

There are many neural and physiological responses that result from the amyg-

dala’s emotional processing.33,40,56–58 In this chapter the role of eyeblinks as a social

indicator is analyzed,59 but humans and animals exhibit many physiological signals to

indicate underlying emotional states.58,60–63 Non-human primates, which is what the

work in this thesis will focus on, communicate many socio-emotional states through
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Human51 Monkey53

Brain - 52,360
Amygdala 44.54 192.60
Lateral 14.84 38.40
Basal 11.53 47.15

Accessory Basal 4.94 24.38
Central 1.08 8.15
Medial - 5.42

Paralaminar - 8.84
Remaining 12.26 -

Table 2.2: Average volume (mm3) of the brain, amygdala, and amygdala nuclei in
humans and monkeys.51–53

facial expressions, eye contact, and grooming.60,64,65 These responses are more easily

measured than neural recordings, and if correctly linked to specific socio-emotional

processing could lead to more straightforward experimental paradigms for studying

the social brain.

This chapter describes different statistical methods and data analysis techniques

to better understand socio-emotional processing in the primate amygdala. These

methods use different statistical methodologies to understand and ask questions from

the collected data. They focus primarily on the analysis of physiological and single

neuron responses to social experiments. Subsequently, Chapter 3 describes a nuclei-

level modeling approach to understanding socio-emotional processing in the amygdala,

and discusses a subdivision of labor between the nuclei of the amygdala. Creating

effective models of amygdala socio-emotional processing will not only increase our

understanding of this brain region, but by linking underlying neural processes to

measurable psychological responses, it provides an avenue to measure, monitor, and
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understand socio-emotional processing in the human brain.

2.1 Data

Much of the work described in this chapter is a collaboration with Professor

Katalin Gothard’s group at the University of Arizona. All of the neural and behav-

ioral data analyzed here came from adult male rhesus macaques (Macaca mulatta),

and was collected by members of her group. The rhesus brain organization and

structure is similar to that of humans. Rhesus monkeys share many social behaviors

with humans. Rhesus monkeys live in large, hierarchical social groups. When mon-

keys first meet, they engage in a series of negotiations, involving both aggressive and

friendly facial expressions, eye contact, gestures, and posture stances to determine

which monkey will emerge with a higher rank.60,64,65 These visual signals provide

a rich framework to supplement the neural recordings and provide real-time data

on the emerging social interaction.66,67 Analysis of these responses provides invalu-

able insight into human social interactions because monkeys and humans share both

analogous social interactions and closely related neural architecture. Models of these

socio-emotional neural and behavioral responses enable a greater understanding of

the related brain areas.

The work described here analyzes data collected over the course of ten years in

Professor Katalin Gothard’s group. All experiments were performed in compliance
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with National Institute of Health guidelines for the use of primates in research and

were approved by the Institutional Animal Care and Use Committee at the University

of Arizona. Although the data was not collected originally for any of the analyses

described in this thesis, it was obtained to better understand the amygdala and its

processing, and ask related scientific questions.

In addition to the single unit neuron recordings analyzed as a part of this work,

electromyography (EMG), eye tracking data, pupil size, videos of the monkey, and the

stimuli videos or images were recorded. Neuron nuclei was determined during post

processing. Data analyzed in this thesis comes from one of two types of experiments:

either the monkey was shown socially relevant images57 or the monkey was shown

socially relevant movies.68 Spikes were sorted and processed from the single unit

neuron recordings prior to any analysis described in this thesis.

2.2 Social Determinants of Eyeblinks in Adult

Male Macaques

Blinking serves multiple purposes ∗. The reflexive closure of the eyelids maintains

the moisture of the cornea and protects the eyes from foreign objects.69–72 The rate

and timing of the eyeblinks, however, does not merely reflect the physiological status

of the eyes. In both humans and non-human primates, blinking has been linked to
∗This section was previously published by the author.59
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cognitive states and to social engagement with conspecifics.73–79 Eyeblinks play a role

in social communication. Indeed, humans often attribute mental states to their social

partners based on observed changes in their blinking behavior.80–82 Furthermore, hu-

mans coordinate the timing of their blinks with the blinks of their social partners.83,84

This phenomenon, called eyeblink entrainment, is absent when the social partners are

prevented from fully engaging with each other (e.g., seeing each other speak without

any audio to convey the message).83–85 Such observations suggest that eyeblink en-

trainment is not an automatic imitation of blinking but an elemental form of social

interaction.

Macaque monkeys may also entrain their eyeblinks to one another during real-life

dyadic social interactions. It is unknown whether videos of natural social behav-

iors, constructed to serve as a proxy for dyadic social interactions, can also induce

eyeblink entrainment, or other social behaviors in viewer monkeys. Previous studies

have shown that videos with social content induce several interactive social behaviors,

such as gaze following, the reciprocation of eye contact and facial expressions.68,86–88

Videos depicting social stimuli, however, cannot fully substitute for real-life interac-

tions because they are limited by a major shortcoming: the behavior of the stimulus

monkey remains unchanged despite the viewer’s attempt to respond to the perceived

social signals and engage the protagonist. Nevertheless, videos are valuable stimuli

for neurophysiological studies because they can be presented multiple times and their

presentation can be coupled with both non-invasive physiological monitoring (e.g., eye
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tracking, autonomic recordings) and invasive measures of brain activity (intracranial

recordings). If the ultimate goal is to understand the neural events that govern social

behavior in primates, it is critical to use the most appropriate stimuli to elicit mental

states in laboratory settings that closely resemble the mental states in real-life dyadic

interactions.

The aim of this work was to determine the social factors that predict when mon-

keys blink while they view videos of natural social behaviors displayed by unfamiliar

conspecifics. Based on previous observations that monkeys display natural social

behaviors toward monkeys shown in videos,68,86–89 as though they are attempting

to socially engage them, we hypothesized that the blinking behavior in response to

videos would be comparable to blinking behavior during real-life social interactions.

We predicted that monkeys would entrain their eyeblinks while watching videos, just

as humans entrain their eyeblinks during real life social interactions. We expected

that their blink frequency would be modulated by the emotional expressions of their

social partners.

2.2.1 Results

Four male monkeys, QT, RI, RU, and ZI viewed 178, 130, 143 and 330 unique ten

second long videos respectively over at total of 62 recording sessions (QT=16 sessions,

RI=10 sessions, RU=13 sessions, ZI=23 sessions). The majority of the videos depicted

unfamiliar monkeys (henceforth stimulus monkeys), placed in a plexiglass cage where
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they displayed socially meaningful facial expressions, postures, and gestures. Most

of these videos depicted only one monkey, but a subset of these videos showed two

or more monkeys (13% of video exposures). We also displayed videos of individual

monkeys or groups of monkeys in natural outdoor settings. These video segments

were recorded in the field station of the California National Primate Research Center

and on the field station of Cayo Santiago. The segments were not explicitly chosen

to show facial expressions, but on occasion facial expressions are visible. Of the 367

videos, 99 videos clips were seen by all four monkeys. Each monkey viewed each video

3-15 times.

Eyeblink rate decreased significantly when the monkeys watched the videos (Wilcoxon

sum rank test, on averages/session, QT: p = 1.86×10−6, RI: p = 0.011, RU: p = 0.040,

ZI: p = 1.84× 10−5; Figure 2.2a, compared to baseline period when monkeys viewed

a blank screen). The reduction in blink rate correlated with the content of the videos

(Figure 2.2b). Videos depicting more than one monkey or monkeys in outdoor en-

vironments induced a larger decrease in eyeblink rate than videos depicting a single

monkey in an indoor environment (Wilcoxon sum rank test, p = 4.37 × 10−8, (one

monkey indoors vs. one monkey outdoors); p = 1.76 × 10−4 (one monkey indoors

vs, multiple monkeys indoors), and p = 3.10× 10−19 (one monkey indoors vs. multi-

ple monkeys outdoors) (Figure 2.2b). We observed no significant differences among

movies that depicted more than one monkey indoors, one monkey outdoors, or mul-

tiple monkeys outdoors (Wilcoxon sum rank test, one monkey outdoors vs. multiple
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monkeys indoors: p = 0.70, one monkey outdoors vs. multiple monkeys outdoors:

p=0.30 and multiple monkey indoors vs. multiple monkeys outdoors p = 0.71) (Fig-

ure 2.2b).

(a) (b)

Figure 2.2: Video watching lowered the blinking rate of the viewer monkeys. (a)
Average +SEM blink rate (blinks per minute = bpm) during video viewing (red bars)
compared to baseline (blue bars). Each of the four monkeys blinked significantly
less when viewing movies (Wilcoxon sum rank test, QT: p = 1.86 × 10−6, RI: p =
0.011, RU: p = 0.040, ZI: p = 1.84 × 10−5). (b) Eyeblink rate depends on the
social complexity of the movie content. Eyeblink rates have been normalized to the
average blink rate during video viewing of each monkey. The blinking rates during
videos of different content were compared using a Wilcoxon two-tailed rank sum test.
Asterisks indicate significant differences. Eyeblink rate decreased significantly during
videos that occurred in natural settings and videos that depicted multiple monkeys,
p = 4.37 × 10−8, p = 1.76 × 10−4, p = 3.10 × 10−19, respectively as graphically
displayed. For both (a) and (b) *p < 0.05, ***p < 0.001, Wilcoxon rank sum test.
Error bars represent SEM.

We next explored how the occurrence of viewers’ eyeblinks correlated with the

unfolding of the stimulus monkeys’ socio-emotional behaviors. We found that, even

though the viewer monkey’s blink rate was reduced during video viewing compared

to baseline, the eyeblinks appeared synchronous at particular moments during the

viewings. The blinking of the viewers clustered across multiple viewings of the same
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video (Figure 2.4), suggesting that blink rate is related to the visual and/or socio-

emotional content of the videos. This clustering appeared both for repeated viewings

by the same monkey and across monkeys. Indeed, the probability of blinking in a

window of 400 ms (±200 ms from the blink in a different viewing) was higher than

chance (ANOVA, p < 0.05; Figure 2.4). This synchronization of blinking across trials

and among monkeys is unlikely to be due to low-level visual features. Indeed, the

probability of blinking was not significantly correlated with the amount of motion

in the videos (quantified at pixel-by-pixel changes in brightness) (Spearman rank

correlation, QT, R = −0.035 (p = 0.44), ZI, R = −0.061 (p = 0.18), RU, R = −0.050

(p = 0.27), RI, R = 0.021 (p = 0.64). Rather, the increases in blink synchrony appear

to be the result of socio-emotional factors in the videos.

To identify the specific behavioral events that might cause the clustering of eye-

blinks, we explored the relationship between the social signals emitted by the stimulus

monkey (gaze direction, facial expression) and blinking behavior of the viewer mon-

key. We found that the viewer monkeys blinked more frequently when the stimulus

monkey displayed a facial expression directed at the viewer monkey (permutation

test, p < 0.05, for the specific of this test, see methods; Figure 2.5). All four monkeys

showed a tendency to blink more frequently when the stimulus monkey’s gaze was

directed at the viewer. However, this increase in blink rate depended on the facial

expression of the stimulus monkey. Three of the four monkeys blinked more often

while looking at the direct gaze of a stimulus monkey with a threatening facial ex-
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Figure 2.3: (a) The colored squares represent the eyeblinks of the four viewer monkeys
on each trial (blue= monkey QT, red=monkey RI, green=monkey RU, and yellow =
monkey ZI). The dotted vertical lines represent the beginning and the end of the video.
Frames from this video show the behavior of the stimulus monkey immediately prior
to the cluster of blinks (marked by gray bars). The blinking probability of three of the
four viewers increased in response during two time segments in this video. In the first
segment, the stimulus monkey stared insistently at the viewer, a behavior considered
as an assertion of dominance or covert threat. The second cluster of blinks occurred
when the same animal began displaying a lip smacking (appeasing) expression with
direct gaze. At this time in the video the stimulus monkey also blinked. Note that
monkey QT systematically blinked after the presentation of the videos (clustering of
blue marks at the termination of the video).

pression; two of the four monkeys blinked more often while looking at the direct gaze

of a stimulus monkey with an appeasing facial expression (permutation test, p < 0.05,

see methods; Figure 2.5).

Finally the temporal relationship was computed between the blinking of the stim-

ulus monkey and the blinking of the viewer monkeys. This phenomenon, called eye-

blink entrainment, requires the viewer to blink concurrently with its social partner

(within 500 ms). Two of the four monkeys (QT and RI) entrained their eyeblinks to
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Figure 2.4: Probability of eyeblink clustering across all four subjects, based on the
viewing of 1,615 videos. The solid red line represents the proportion of eyeblinks
that occurred within windows of time of 400 ms during repeated presentations of the
same video. The dashed line represents the same proportion for shuffled eyeblink
data (see methods). The difference between the two curves reflects the degree of
eyeblink synchronization (* two-way ANOVA on 7 bins: p = 0.024 (F=5.06) for
shuffling, p = 9.37 ∗ 10−18 (F=15.5) for asynchrony and p = 0.0015 (F=3.60) for
interaction). The post hoc two-tailed t-test at the central bin showed a significant
difference (p=0.0030) between the actual and shuffled data. No significant difference
was found at any of the other time bins. Error bars represent SEM.

the stimulus monkey’s blinks (permutation test, p < 0.05; Figure 2.6a and 2.6b). The

other two subjects (RU and ZI) did not exhibit eyeblinks entrainment (the blinking

rate of these monkeys did not exceed levels expected by chance, where chance values

are based on a 95% confidence interval based on shuffled data; Figure 2.6c and 2.6d).

Monkeys RU and ZI were also less likely to look at the eyes of the stimulus monkey

(Wilcoxon signed rank test: QT vs. RI p = 1.68×10−19; QT vs. RU p = 9.05×10−23;
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Figure 2.5: Viewer monkeys blink more frequently for facial expressions with direct
gaze. The average eyeblink rate of each viewer monkey was calculated during epochs
when the stimulus monkey displayed a facial expression (neutral, lip smack, or threat)
and directed or averted its gaze toward or away from the viewer. Each vertical
dotted line represents the 95% confidence interval calculated from shuffled data (see
methods). The diamonds indicate the mean value of the eyeblink rate. Neutral
faces (in blue) with either directed (filled diamonds) or averted gaze (open diamonds)
did not elevate the blinking rate above the value expected by chance. Threatening
(antagonistic) and lip smacking (affiliative) expressions however, significantly elevated
the blinking rate of the viewer (permutation test, p < 0.05) with the exception of
monkey RI who did not respond to any facial expressions with additional blinking.
Asterisks refer to values that are outside the 95% confidence interval.

QT vs. ZI p = 2.08 × 10−21; RI vs. RU p = 2.09 × 10−4; RI vs. ZI p = 0.029; RU

vs. ZI p = 0.052; Figure 2.6e). In contrast, monkeys QT and RI, who showed eye-
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blink entrainment, reciprocated eye contact, by looking longer at the directed rather

than at the averted eyes of the stimulus monkeys (Wilcoxon signed rank test: QT

p = 0.001, RI p = 3.98× 10−5, RU p = 0.76, and ZI p = 0.29; Figure 2.6e).

(a) (b) (c)

(d) (e)

Figure 2.6: Eyeblink entrainment induced by videos with social content. Each line
plot (a, b, c, and d) shows the average instantaneous blink rate of the four viewer
monkeys aligned to the eyeblinks of the stimulus monkey. The vertical dotted line
(time zero) represents the eyeblinks of the stimulus monkey. The horizontal dotted
curve represents the boundary of the 95% confidence interval for blink rate calculated
from shuffled data (see methods). Asterisk indicate significant (p < 0.05) increases
in blinking rate. (d) Monkeys QT and RI looked longer at the eye regions of the
stimulus monkeys with directed gaze (eye contact) than with averted gaze. RU and
ZI, however did not look longer at eyes with direct gaze and looked less at the eyes
overall compared to QT and RI. (* p < 0.05, ** p < 0.01, *** p < 0.001, Wilcoxon
signed rank test). Error bars represent SEM. Blink entrainment occurred within 500
ms after the eyeblinks of the stimulus monkey.
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2.2.2 Discussion

The blinking behavior of four monkeys was examined while they viewed videos

of conspecifics displaying facial expressions with directed or averted gaze. It was

discovered that all four monkeys blinked less during the presentation of videos than

during baseline periods. Even though monkeys blinked less during videos, their blinks

became more temporally aligned to specific events in the video such as the production

of facial expressions and the blinking of the stimulus monkeys.

During eyeblinks visual input is interrupted for about 200 ms.90 A voluntary sup-

pression of blinking might thus indicate a need to increase the gathering of visual

information.77,89 Indeed, we observed a reduction of blinking during the videos rela-

tive to the baseline. This reduction in blinking was strongest when monkeys viewed

videos of multiple monkeys in natural social settings. It is likely that the more visually

rich videos better captured the viewer’s attention. This interpretation is congruent

with findings that show an inverse relationship between blinking rate and attention

in humans.77,91

The observed increases in eyeblink rates in response to facial expressions might

reflect a process of overriding attentional needs by ongoing socio-emotional processes.

Judicious social decisions require monkeys to process quickly and efficiently large

amounts of visual information. Closing the eyes, even for the duration of an eyeblink,

has been shown to help coping with increased cognitive load.92,93 This might explain

the significant increase in blinking rate that occurred in response to the segments of
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the video in which the stimulus monkeys displayed threatening or appeasing facial

expressions directed at the viewer. It is possible that blinking in these situations

reduces not only processing demands, but also the subjective, emotional impact of

these potent social signals. The observation that different viewer monkeys tend to

blink in response to the same video segment supports the idea that blinks might

punctuate the flow of information during socially meaningful interactions.94

Three of the four monkeys increased their eyeblink rate in response to threatening

or appeasing facial expressions with direct gaze. The blink rate of the fourth monkeys

was just marginally significant (at 96.4%, where 97.5% is the upper limit of the two-

tailed test). Averted gaze, did not cause a similar increase in blink rate in any of the

four monkeys, suggesting that direct gaze has a stronger effect on social behavior than

averted gaze79 enabling either social avoidance or approach.95 This is also consistent

with the finding that direct gaze activates, in the amygdala, a set of neurons singularly

tuned to eye contact87 and that patients with amygdala damage rarely make eye

contact during face-to-face social interactions.96 The biological basis and the potential

functions of these changes in blinking behavior during social contact remain to be

better understood.

The eyeblink entrainment reported here is highly similar to the eyeblink entrain-

ment reported in humans.83,84 In humans, eyeblink entrainment is not a mere imi-

tation of others’ blinks83 rather, it is considered a marker of ongoing, fully-engaged

social interactions. It follows that at least two of the subject monkeys were socially
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engaged with the perceived social partner in the videos. Indeed, the two monkeys that

showed eyeblink entrainment also looked longer at the eyes of the stimulus monkeys,

more often reciprocating their direct gaze. Looking insistently at the eyes and return-

ing eye contact are indicative of dominant social status in macaque societies.97 The

failure of the viewer monkeys to reciprocate the blinks of their social partner might

represent an active form of avoiding social engagement with a dominant individual.

It might be possible therefore to use individual variations in eyeblink entrainment as

a measure of the viewer’s subjective assessment of his or her status relative to the

social partner. It would be interesting to determine whether the timing and rate of

eyeblinks during social interactions could be added to the list of behaviors currently

used for status and personality assessments in monkeys.98–101

In summary, macaques monkeys, like humans, blink less while they visually at-

tend to eventful videos.74,77,91 While the global rate of blinking was reduced, the

timing of the blink appeared to mark events in the video that carried significant

social weight.78,94 Monkeys also showed blink entrainment as an elemental form of

social engagement.83,84 These findings support the view that blinking behavior of

monkeys, particularly during social interactions, can be used as a measure of the

ongoing socio-cognitive states.
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2.2.3 Methods

2.2.3.1 Subjects and Stimuli

Behavioral data were collected from four adult male rhesus macaques (Macaca

mulatta): QT, RI, RU, and ZI. At the time of the study the ages of all animals

varied between 6 and 12 years. Monkeys were housed in double-size cages in the

same room with visual access to all other monkeys in the colony. All experiments

were performed in compliance with the guidelines of the National Institute of Health

for the use of primates in research and were approved by the Institutional Animal

Care and Use Committee at the University of Arizona. For accurate eye tracking

each monkey was fitted with a head-fixation ring, which attached at three points to

titanium pins embedded in an implant. The implant was attached to the skull by

a surgical procedure under isoflurane anesthesia. Subject monkeys were seated in

custom built primate chairs with their eyes positioned 57 cm from an LCD monitor

spanning 37x28 degrees of visual angle (dva). Videos subtended 26x18 dva, contained

299 frames shown at 30 frames per second and contained no cuts. Neurobehavioral

Systems Presentation software (Albany, CA) was used for the display of the videos.

Prior to each experimental session monkeys were calibrated by fixating on a nine-point

calibration grid. Errors were within ±1 dva.

The data were collected across five years of similar experimental protocols all

involving passive viewing of social videos. The duration of each video was 10 seconds;

28



CHAPTER 2. METHODS TO UNDERSTAND EMOTIONAL PROCESSING

during this time an unfamiliar monkey (stimulus monkey) displayed at least one

or more threatening, neutral, or appeasing facial expressions accompanied by the

corresponding postural changes. Each video contained multiple repeats of the same

facial expressions with gaze either directed at or averted from the viewer. A trial

(the presentation of a video) was preceded by the display of a central visual cue

that remained on the monitor for 1.150 ± 250 ms. After presenting the cue, there

was a 600 ± 200 ms period when the monitor was blank. The animals were not

required to maintain their gaze within the boundary of the video to be rewarded.

The inter-trial interval was 9.7 ± 3.3 seconds. Under our experimental conditions,

it was crucial to exclude from the baseline measurement any task-related burst of

eyeblink (e.g. after the presentation of the visual cue that preceded the videos or

after the end of the video viewing). We thus calculated the baseline during the long

inter-trial intervals, (between 7.5 seconds post-video viewing to 2.5 seconds before the

next video viewing) and the intervals between the presentations of blocks of videos

that spanned several minutes when the monitor was blank. The video content was

ethogrammed frame-by-frame to record: direction of gaze (averted or directed at the

viewer), blinks, and facial expressions (neutral, lip smacking or threatening102). The

ethogram also recorded the number of monkeys in the frame and the background

(indoors or outdoors). The videos were recorded in different environments marked

in Figure 2.2 as “indoors” and “outdoors” for semi-free ranging animals and wild

macaques. The frames in which the stimulus monkey’s eyes were more than half-
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covered by the eyelids were scored as the part of an eyeblink. Fixations on the eye

region were classified based on regions-of-interest boundaries manually outlined using

custom-written scripts in Matlab R2016A (Mathworks).

2.2.3.2 Eyeblink and Eye Position Measurement

Eye position and pupil diameter were recorded using an infrared camera with

a sampling frequency of 240 Hz (ISCAN Inc., Woburn, MA) and collected as an

analog signal using a CED Power 1401 data acquisition system and Spike 2 software

(Cambridge Electronic Devices, UK). Eyeblinks were detected by a custom written

script that analyzed pupil diameter, illustrated in Figure 2.7. Short, reversible losses

of pupil data were identified as eyeblinks (when the eyelids were closed and the pupil

was no longer exposed to the infrared beam, and the eye tracking system defaulted

to maximum voltage). The pupil diameter data were smoothed with a 15 ms sliding

window and a second derivate of the pupil diameter signal was taken to find the

deflections (valleys) that corresponded to potential eyeblinks. The baseline signal

level prior to each valley was determined to be the lower of the two highest points

from either side of the valley within a 200-400 ms window. The depth of the valley

was defined as the difference between the baseline and the minimum value of the

valley. Two straight lines were fitted to the signal between the one third and the

two third point depths on each side of the valley. The duration of the blink was

defined as the length of the section between the intersections of the fitted lines with
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the baseline. Valleys in the signal were considered to be eyeblinks if their duration

was in the range of 20 − 800 ms. The minimum duration between the beginnings of

two consecutive eyeblinks was 200 ms. This method was manually verified using a

video recording of the viewer monkey’s face, with 94% match between the automated

system and manual identification on a random video sample.

Figure 2.7: The baseline level of each eyeblink was determined as the lower of the two
highest points from either sides of the valley within a 200−400 ms window depending
on the subject. The depth of the valley was defined as the difference between the
baseline and the minimum value of the valley. Straight lines were fitted to the 1/3
and 2/3 depth of the valley and two fitted lines were drawn through those points. The
duration of the eyeblink was defined as the length of the section determined by the
intersections of the fitted lines with the baseline. The time of the blink was defined
as the time of the deepest point in the valley.
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2.2.3.3 Data Analysis

All data analysis and statistics were performed using custom-written scripts in

Matlab R2016A (Mathworks). To account for individual differences in blink rates,

we calculated the mean blink rate during the movie and during baseline periods.

Baseline periods began 7.5 seconds after the termination of each video and ended 2.5

seconds prior to the presentation of the next video. The intervals between blocks of

videos, when the monitor was blank and typically spanned several minutes, were also

included the calculation of baseline blinking rates.

To assess the temporal clustering of blinks among viewers (Figure 2.4), we adopted

a method previously used by Nakano and colleagues (2009).94 We calculated the

shortest time interval between a blink in a given presentation (reference) and all of

the other blinks in each different presentations of the same video (test). These time

differences were binned into 400 ms bins. The same procedure was then applied to

surrogate data obtained by shuffling blink times. We obtained the shuffled blink data

by shifting all the blinks within a trial by a random time (with circular boundary

conditions). This form of shuffling preserves the natural blink rate of the monkey but

disrupts the relationship between the blinks and the content of the videos.

To establish a correlation between the viewer’s blink rate and the stimulus mon-

key’s facial expression, we marked the frames that contained neutral, appeasing (lip

smacking) and threatening (open-mouth threat) facial expressions. We also marked

for each frame the gaze direction of the monkey shown in the video and whether
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the viewer monkey was looking at the video. We then compared the average blink

rate during each expression and gaze direction combination to the blink rate during

re-sampled, time-matched video segments. We only included in the analysis video

segments when the viewer monkey was gazing at the eyes of the viewer monkey. We

calculated 2000 shuffled time-matched segments and determined whether the blink

rate during each facial expression fell outside the 95% confidence interval (two-tailed

test).

Eyeblink entrainment was quantified in two steps. First we calculated the average

instantaneous blink rate of the viewer monkey relative to the blinks of the stimu-

lus monkey. The instantaneous blink rate, was calculated based on a formula used

previously by Shultz et al. 2011:91

b(t) =
T

σ
√

2π

∑
i

e−(t−ti)2/(2σ2) (2.1)

where b(t) is the time-dependent instantaneous blink rate function and ti are the blink

times. The standard deviation of the Gaussian kernel was chosen as a fixed value of

σ = 100 ms.103 We used T = 60 s to express the results in blink-per-minute (bpm)

units.

Second, we determined whether the observed eyeblink entrainment was signifi-

cantly different than expected by chance, we generated a reference dataset by replac-

ing the blinks of the stimulus monkey with the same number of uniformly distributed

randomly generated blinks. This randomization process was repeated 3000 times
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to yield 3000 different peri-event time histograms. The observed eyeblink entrain-

ment was then compared to the 95% confidence interval calculated from these 3,000

surrogate peri-event time histograms (one-tailed comparison, looking for eyeblink en-

trainment that was significantly higher than chance).

We included in the analysis only the trials in which the viewer looked at the

video for at least 200 ms (the duration of 1-2 fixations) before the stimulus monkey

blinked. We included this criterion to be certain that the viewers were attending

to the stimulus monkey and thus, noticed the stimulus monkey’s blink. During the

first 300 ms in the plot the viewer may or may not be looking at the eyes of the

stimulus monkeys. Of the monkeys that looked frequently at the eyes (e.g., QT),

the confidence interval calculated from the shuffled data appears to be low 500 ms

before the stimulus monkey’s eyeblink and then gradually rises to a stable value by

time point 0 ms (Figure 2.6a). This is due to our 200 ms eye-looking limit (this also

explained why the shuffled data/upper limit of the confidence interval is not straight).

Given that monkeys have high levels of blink suppression during the first trial,

we excluded the this trial when analyzing eyeblink entrainment. Likewise, given that

monkeys spend less time looking at the videos after several repeated exposures, they

are less likely to see the eyeblink of the stimulus monkey. To account for this, we only

included trials up to the fifth viewing. We also eliminated from the analysis 10% of

trials where the viewer monkey spent the most time looking at the screen and 10% of

trials where the viewer monkey spent the least time looking at the screen (often the
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last trial).

2.3 Bayesian Changepoint Detection for Iden-

tification of Changes in Neural Firing

Rates

While analyzing the role of blinking as a social indicator, we noticed a neural

response to blinking exhibited by some of the amygdala neurons. As seen in Figure

2.8, multiple neurons collected from the same experiment described in Section 2.2.3.1

demonstrate a change in neural firing rate during the monkey’s blinks. Although

many of the neurons that exhibit a change in firing rate corresponding to the time of

the blinks are visually obvious in their response, having an algorithm to automatically

detect these changes would not only reduce analysis time, but also potentially detect

neurons with a firing rate change that is not visually perceptible. This section details

the implementation of a Bayesian changepoint detection algorithm to determine which

neurons exhibit a change in firing rate as a result of the blinks.

As previously stated, the neural data analyzed here comes from the same experi-

ment described in Section 2.2.3.1. The data comes from three monkeys (ZI, QT, and

GI) measured over the course of four years while participating in a social experiment

where monkeys watched videos of unfamiliar monkeys in socially meaningful situa-
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tions. In total 341 neurons were used in this analysis, coming from five different nuclei

(accessory basil, basil, lateral, medial, and central) of the amygdala. For each neuron,

its nuclei location was known. Eye tracking data was used to determine the time of

the blinks using the method described in Section 2.2.3.2. Using visual inspection, 83

of the 341 neurons were determined to exhibit a change in firing rate during the time

of the blink, which provided a ground truth for this work.

2.3.1 Changepoint Detection Algorithm

This analysis implements the Bayesian changepoint detection algorithm for online

inference as described by Adams and MacKay.104 In this algorithm the posterior

distribution is estimated over the current run length. When the algorithm begins it

assumes there has just been a changepoint, so the current run length is equal to zero.

At each time point, the current observation is considered which can either increase

the current run length by one, or result in a changepoint, returning the run length to

zero. The conditional prior on the changepoint can be stated as:

P (tt|rt−1) =



H(rt−1 + 1) if rt = 0

1−H(rt−1 + 1) if rt = rt−1 + 1

0 otherwise

(2.2)
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(a) (b)

(c) (d)

Figure 2.8: Neurons with a visually obvious change in firing rate during the duration
of the blink. Plots are shown both from blinks that occurred while the monkey
watched the movies, and blinks during the movie inter-trial period. (a-d) illustrate
four different neurons with firing rate changes during the blinks. Average blink length
is colored in black.

where the function H(t) is the hazard function, given by:

H(τ) =
Pgap(g = r)∑∞
t=τ Pgap(g = t)

(2.3)

If Pgap(g) is geometric with timescale λ, then the process is memoryless and the
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hazard function becomes H(τ) = 1/λ. Because the predictive distribution only de-

pends on the recent data, recursive message-passing can be used for the joint distri-

bution over the current run length and the data based on the prior over rt given rt−1

and the predictive distribution over the most recently observed datum given the data

observed since the last changepoint. Lastly, a Viterbi algorithm was used to back

calculate the locations of the changepoints from which it is determined if there has

been a change in firing rate in the data in response to the blink.

2.3.2 Preprocessing Steps

To perform changepoint detection on each neuron’s data, the spikes from each

neuron were converted into a signal that assumed the data either came from a Poisson

or Gaussian distribution. To form the signal with data from a Poisson distribution, the

neural spikes within the time window of one second before each blink and one second

after each blink were binned (bin sizes varied from 0.05 seconds, 0.01 seconds, 0.005

seconds, and 0.001 seconds). For each bin, the total number of spikes that occurred

in that bin for all blinks was computed. This was done for each non-overlapping

bin in the one second before the blink and one second after the blink time window.

The sums of each of the bins form the signal upon which changepoint detection was

performed.

To form the signal that assumed the data came from a Gaussian distribution, the

same window of spikes one second before each blink and one second after was analyzed.
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A sliding window (window sizes included 0.05 seconds, 0.01 seconds, 0.005 seconds,

and 0.001 seconds) was passed over the spikes surrounding each blink, calculating

the average number of neural spikes in each window. Windows overlapped by half of

their size and the signal was normalized before analysis. Once created, changepoint

detection was performed on this signal.

2.3.3 Parameter Initialization

There are a number of parameters requiring initializing in this algorithm. For both

the signals based on a Poisson distribution and the signals based on a Gaussian distri-

bution, the hazard function is a function of λ which is a parameter that can be varied

to increase accuracy. λ corresponds to the probability of a changepoint occurrence

and increasing λ decreases the hazard function, thus decreasing the probability of a

changepoint occurrence. Additionally, both distributions had prior distributions that

required parameter initialization. For the Poisson distribution signal implementa-

tion, a Gamma distribution was used for the prior with parameters α and β. Because

µ = α/β, α was set equal to the mean value of the Poisson distributed signal, and

β was set equal to 1. For the Gaussian distribution signal implementation, a normal

Gamma distribution was used for the prior which has parameters µ, α, and β, which

were set to 0, 1, and 1, respectively.
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2.3.4 Parameter Tuning

To determine the ideal bin size and value for λ, changepoint detection was run on

signals created with different bin sizes, while also using different values for λ. For this

analysis, it is assumed that there is a change in firing rate in response to the blink

when there were three or less changepoints in the time interval 0.4 seconds before to

0.4 seconds after the blink onset, and there were no other changepoints in the rest of

the time interval, i.e. [-1, -0.4) and (0.4, 1]. The algorithm assumes a changepoint at

the beginning of the sequence (t = -1) but this changepoint is not considered for this

determination.

Using this criterion, Figure 2.9 gives the false positive ratio and true positive ratio

for the different bin sizes and values of λ for both changepoint detection on the signals

from the Poisson distributed data and Gaussian distributed data. If the criterion is

changed to allow for zero or one changepoints in the time window (-1, 0.4] and (0.4, 1]

then the true positive accuracy for some signals with Poisson distributed data jump to

values just below 70% and the true positive accuracy for some signals with Gaussian

distributed data jump to values just below 60%. These plots are shown in the bottom

of Figure 2.9.

Figure 2.10 shows for each bin size and value of λ how many neurons out of the

original 341 neurons had a neural firing rate change in response to the blink detected

by changepoint detection. The top subplots show the neurons detected from the pool

of all 341 neurons, and the bottom subplots shows the neurons detected from the pool
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(a) (b)

(c) (d)

Figure 2.9: False positive and true positive rates for signals with (a) Poisson dis-
tributed data and (b) Gaussian distributed data, created using different bin sizes
(0.001 seconds, 0.005 seconds, 0.01 seconds, 0.05 seconds) and lambda values (20, 30,
50, 70, 80, 90, 100, 120). Each color corresponds to a value of lambda (20 = blue,
30 = red, 50 = magenta, 70 = cyan, 80 = green, 90 = black, 100 = yellow, 120 =
light red), and each marker shape corresponds to a bin size (0.001 = triangle, 0.005
= square, 0.01 = diamond, 0.05 = circle). (c) and (d) show the results for the signals
with (c) Poisson distributed data and (d) Gaussian distributed data when the firing
rate change criterion instead allowed for three or less changepoints in the time interval
(-0.4, 0.4) and one or less changepoints elsewhere.

of the 83 neurons determined to respond to the blinks by visual inspection. From

these plots, a bin size of 0.05 seconds and a λ value of 50.0 was chosen for analyzing

the signals with Poisson distributed data, and a window size of 0.001 seconds and
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λ value of 50.0 was chosen for analyzing the signals with Gaussian distributed data.

These values were chosen in an attempt to minimize false positives and maximize true

positives. Subsequent analysis used these parameter values unless otherwise stated.

(a) (b)

(c) (d)

Figure 2.10: Indicates the number of neurons whose blink-responsiveness is correctly
detected using changepoint detection. The corresponding lambda value and bin size
are shown. Plots are shown for the signals with (a) Poisson and (b) Gaussian dis-
tributed data, as well as just for the signals with (c) Poisson and (d) Gaussian dis-
tributed data created from the neurons determined to respond to blinks by visual
inspection.
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2.3.5 Changepoint Detection Accuracy

Results were determined by using a bin size of 0.05 seconds and a value of 50.0

for λ to make the signals with Poisson distributed data, and a window size of 0.001

seconds and value of 50.0 for λ to make the signals with Gaussian distributed data

for all neurons. For the signals with Poisson distributed data, changepoint detection

yielded 83 neurons that exhibited a firing rate change in response to the blink, 33 of

which were included in the list of neurons determined to respond to blinks by visual

inspection. This resulted in a false positive ratio of 60.3% and a true positive ratio

of 34.9%. Some examples of these neurons can be seen in Figure 2.11.

(a) (b)

(c) (d)

Figure 2.11: Examples of changepoint detection to detect changes in firing rate in
response to eyeblinks using a signal with Poisson distributed data generated from the
neural spiking data.
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For the signals with Gaussian distributed data, changepoint detected yielded 40

neurons that exhibited a change in firing rate in response to the blinks, 21 of which of

which were included in the list of neurons determined to respond to blinks by visual

inspection. These signals results in a false positive ratio of 47.5% and a true positive

ratio of 25.3%. Some examples of these neurons can be seen in Figure 2.12.

(a) (b)

(c) (d)

Figure 2.12: Examples of changepoint detection to detect changes in firing rate in
response to eyeblinks using a signal with Gaussian distributed data generated from
the neural spiking data.

23 neurons indicated a change in firing rate in response to the blink detected by

changepoint detection for both the signals with Poisson distributed data and Gaus-

sian distributed data. 12 of these 23 neurons were were determined to respond to

the blinks by visual inspection. Upon visual inspection, the signals with Gaussian
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distributed data appeared to provide more accurate time detection of the change in

firing rates, although this makes sense since the signals with Gaussian distributed

data were formed from bins of 0.001 seconds and the signals with Poisson distributed

data were formed from bins of 0.05 seconds.

2.3.6 Blink-Responsive Neurons’ Nuclei Distribution

Additionally it was considered in which nuclei of the amygdala the neurons with

responses to blinking were located. Figure 2.13 shows the distribution of nuclei for

all 341 neurons unitized in this analysis as well as the distribution of nuclei for the

83 neurons determined to respond to blinks by visual inspection. Figure 2.14 shows

the distribution of nuclei for the neurons determined by changepoint detection to

respond to the blinks. This figure shows the distribution of neurons for which the

signals created with Poisson and Gaussian data resulted in successful changepoint

detection to detect a response to the blinks, and the distribution of nuclei for the

subset of neurons within those larger sets also from set of blink-responsive neurons

determined by visual inspection. The figure also shows the nuclei distribution for

neurons for which changepoint detection detected a response to blinks using both the

signal created with Poisson distributed data and the signal created with Gaussian

distributed data and not just one or the other.

Overall the distributions of nuclei are similar across all cases. The neuron sub-

group determined to be blink-responsive by visual inspection contained more neurons
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(a) (b)

Figure 2.13: (a) Distribution of amygdala nuclei for the 341 neurons analyzed. (b)
Distribution of amygdala nuclei for the 83 neurons determined to respond to blinks
by visual inspection.

proportionally (as compared to the larger 341 neuron population) from the medial

(M), basal (B), and central (C) nucleus, as compared to the accessory basil (AB)

and lateral (L) nucleus. The neurons for which changepoint detected yielded the

correct result using a signal with Poisson distributed data, were distributed at a

higher percentage from the basil (B) and medial (M) nuclei, whereas the neurons for

which changepoint detection yielded the correct result with a signal from Gaussian

distributed data came proportionally more from the lateral (L) and basal (B) nuclei.

The neurons that exhibited successful blink changepoint detection for both signal did

not come from the medial (M) nucleus, but instead their majority was located in the

basil nucleus.

Nonetheless these differences were not great between the different cases. Addition-

ally, the method described does not perform at a high enough accuracy to detect the
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(a) (b)

(c) (d)

Figure 2.14: (a) Distribution of amygdala nuclei for the neurons determined by
changepoint detection to respond to the blink, using a Poisson distributed signal. (b)
Distribution of amygdala nuclei for the neurons determined by changepoint detection
to respond to the blink, using a Poisson distributed and subgroup determined to be
blink-responsive by visual inspection. (c) Distribution of amygdala nuclei for the neu-
rons determined by changepoint detection to respond to the blink, using a Gaussian
distributed signal. (d) Distribution of amygdala nuclei for the neurons determined by
changepoint detection to respond to the blink, using a Gaussian distributed and in
the subgroup determined to be blink-responsive by visual inspection. (d) Distribution
of amygdala nuclei for the neurons determined by changepoint detection to respond
to the blink, using a Poisson and Gaussian distributed signal.

majority of neurons previously determined to have a change in firing rate in response

to the blink.
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(e) (f)

Figure 2.15: (e) Distribution of amygdala nuclei for the neurons determined by
changepoint detection to respond to the blink, using a Poisson and Gaussian dis-
tributed signal and in the and subgroup determined to be blink-responsive by visual
inspection.

2.4 Point Process Modeling to Predict Neu-

ron Firing

When analyzing neural data, often scientists are most concerned with the specific

time of neuron spikes, and much of the biological details of neurons can be abstracted

away. When this is the case, neuron spike trains can be modeled as point processes,

producing a stochastic set of localized events in time or space. Using point process

modeling the likelihood of each neuron’s firing can be described based on an under-

lying model that incorporates measurable parameters.105,106 When defining a point

process, the signal may be conceptualized as the time of spikes, the waiting time

between spikes, the increments of counts in a process, or discrete binary indicators.
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For this work, the point process data is considered to be discrete binary indicators as

seen in Figure 2.16.

Figure 2.16: Point processes may be defined in terms of the time of spikes, the
waiting time between spikes, the increments of counts in a process, or discrete binary
indicators.

For this work, the data is considered to be discrete binary indicators where, each

time window ∆T is reduced such that it will only contain at most one spike per

window. Thus if an underlying Poisson distribution is assumed, the probability of a

given spike train can be defined as:

49



CHAPTER 2. METHODS TO UNDERSTAND EMOTIONAL PROCESSING

p(SpikeTrain) =
T∏
u=1

p(dNu | Hu) (2.4)

=
∏

t∈Spikes

λ(t | Ht)∆t ∗ exp(−λ(t | Ht)∆t)
∏

exp(−λ(n | Hn)∆t)

(2.5)

=
∏

t∈Spikes

(λ(t | Ht)δt) ∗ exp(−
T∑
u=1

λ(u | Hu)∆t) (2.6)

= exp(
T∑
u=1

log(λ(u | Hu)δt)dNu − λ(u | Hu)∆t) (2.7)

The conditional intensity function of a neuron, λ(t | Ht) is defined as:

λ(t | Ht) = lim
∆t→0

P (s(t, t+ ∆t)|Ht)

∆t
(2.8)

where H is the history of the spiking process up to time t, and s(t, t+ ∆t) gives the

spikes in the time window (t, t+ ∆t).

Because the Poisson distribution belongs to the exponential family, the likelihood

function can then be written in terms of the generalized linear model. By writing the

likelihood in this form, one can realize the canonical link function C(θ) which is a

linear function of parameters. The exponential family of distributions is defined as
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L(θ) = (f ∗ y | θ) (2.9)

=
K∏
k=1

exp{T (yk)C(θ) +H(yk) +D(θ)} (2.10)

with a canonical link function of

C(θ) = θ0 +
J∑
j=1

θjg(xj) (2.11)

The link function is a linear function of parameters. For Poisson data the likelihood

is,

L(θ) =
K∏
k=1

λykk exp{−λk}
λk!

(2.12)

=
K∏
k=1

exp{yklog(λk)− log(yk!)− λk} (2.13)

and the canonical link function is:

C(θ) = log(λk) =
J∑
j=1

θjxkj (2.14)

which gives the relationship between the neuron firing and measurable parameters.

This is the basis for the subsequent modeling and analysis.
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2.4.1 Experimental Setup

As described in Section 2.2 and Section 2.3, the data utilized to build the described

point process models came from an experiment where monkeys watched movies of

unfamiliar monkeys eliciting socially meaningful facial expressions. Specifically the

work described in this section focused only on the data collected from one monkey, QT.

This monkey participated in 16 individual sessions viewing 192 different movies over

the course of all sessions. During each session, 16 - 24 different movies were watched

one to ten times. On average 22 movies were watched during each session, and each

movie was watched an average of five times. Movies were divided into four categories

based upon the title of the movie, including “threatening”, “neutral”, “submissive /

lip-smack”, and “other”. During these sessions, 133 different single unit neurons were

recorded and 2 - 13 neurons were recorded during each session. Figure 2.17 shows

examples of screen shots from the “threatening”, “neutral”, and “submissive” movies.

2.4.2 Average Firing Rate Analysis

To assess initial viability of the hypothesis that the type of movie viewed affected

the firing rate of neurons in the amygdala, the average firing rate was calculated for

each neuron for each category of movie. Figure 2.18 shows this for all neurons in the

dataset, color coded by the nuclei of the amygdala where each neuron was located.

Figure 2.19 illustrates the same data but deletes any neurons with a firing rate of
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Figure 2.17: Screen shots captured from the different movie categories. The top row
shows screen shots from movies categorized as “threatening”, the middle row shows
movies categorized as “neutral”, and the bottom row shows movies categorized as
“submissive/lip-smack”.

less than 10 Hz from the dataset. From these plots, it was clear that there were

neurons whose average firing rate differed given the category of movie that was being

viewed, which encouraged further testing of the hypothesis that neuron firing rate

was a function of the category of movie viewed by the monkey.

Eliminating the neurons with firing rates less than 10H z resulted in 32 neurons

remaining neurons for analysis, although 2 of these 32 neurons were unable to be

processed due to issues with their formatting and collection. Thus, the resulting

30 neurons were the neurons analyzed with this method. Reducing the number of
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neurons, additionally reduced the initial complexity of this work. Additionally, the

average firing rate for both movie duration and when there was no movie displayed

was plotted, and is shown in Figure 2.20. Originally this data was included in the

model but was later removed to decrease the size of the covariate matrix.

Figure 2.18: Average neuron firing rates for each movie category by neuron. Neurons
are plotted by the nuclei in the amygdala in which they were located. Error bars
indicate (2 * standard error).

2.4.3 Model Definition

Point process models were constructed to predict firing rate given a number of

observed covariates. Using the covariates and the MATLAB function glmfit, the

parameters of the canonical link function were determined for the Poisson data by
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Figure 2.19: Average neuron firing rate for each movie category for only neurons with
firing rates greater than 10 Hz. Neurons are plotted by the nuclei in the amygdala in
which they were located. Error bars indicate (2 * standard error).

using a generalized linear model.

The following four models were devised, one for each type of movie, where th =

threatening movie, ne = neural movie, ls = lip smack movie, and other = corresponds

to any movie not in the previous categories.

log(λth(t | H(t)) = αth ∗ Ith +
10∑
i=1

βi ∗ n(t−i)+

27∑
j=1

σj ∗ n((t−10)−5∗(j−1)−→(t−10)−5∗j) (2.15)
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Figure 2.20: Average neuron firing rates during and between the movie durations for
neurons with firing rates above 5 Hz. Error bars indicate (2 ∗ standarderror).

log(λne(t | H(t)) = αne ∗ Ine +
10∑
i=1

βi ∗ n(t−i)+

27∑
j=1

σj ∗ n((t−10)−5∗(j−1)−→(t−10)−5∗j) (2.16)

log(λls(t | H(t)) = αls ∗ Ils +
10∑
i=1

βi ∗ n(t−i)+

27∑
j=1

σj ∗ n((t−10)−5∗(j−1)−→(t−10)−5∗j) (2.17)

56



CHAPTER 2. METHODS TO UNDERSTAND EMOTIONAL PROCESSING

log(λother(t | H(t)) = αother ∗ Iother +
10∑
i=1

βi ∗ n(t−i)+

27∑
j=1

σj ∗ n((t−10)−5∗(j−1)−→(t−10)−5∗j) (2.18)

λ gave the spiking activity for the neuron. Each model had 1 model-specific

parameter and 37 parameters shared across all four models. The model parameters

included an α parameter that was multiplied by an indicator function to indicate the

movie type, 10 β parameters that were multiplied by the short term spiking history

(one millisecond bins from t−1 to t−10 milliseconds), and 27 σ parameters that were

multiplied by the long term spiking history (five millisecond bins from t−10 to t−150

milliseconds). Although these models could be viewed as four distinct models, when

processing in MATLAB the system was treated as one model with four α parameters

that were zero when the current movie was not of that category.

2.4.4 Covariate Data

To form the covariate data matrix for each neuron, three movies from the the

same category were chosen at random over the course of the same viewing session

during which the given neuron was recorded. One viewing per movie was randomly

chosen to be a part of the test data and a different viewing of that same movie was

randomly chosen to be a part of the training data. This was done for all four movie

categories. It was assumed that the neural response did not change from one viewing
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of the movie to another for simplicity.

On average it took 15 minutes to make the covariate matrix for one neuron in

MATLAB, which was why only data from during movies was used, and the data from

the period between movie viewings was not. For future research other computational

methods or resources could be employed to accelerate this process.

2.4.5 Results

2.4.5.1 Parameter Significance

Figure 2.21 shows the results of the Kolmogorov-Smirnov analysis for all 30 neu-

rons for which models were built. For most plots, the models stayed within the 95%

confidence bounds, which are shown in red. Figure 2.22 shows the learned param-

eters for each neuron. Each neuron had 42 parameters including 1 base firing rate

parameter, 4 α parameters, 10 β parameters, and 27 σ parameters. The confidence

intervals are shown, as well as a line to indicate e0. Figure 2.23 shows the p-values of

all parameters, indicating that many are significant.

Figure 2.24 shows, for each neuron, which parameters had a p-values greater than

0.05. Parameters with a p-value greater than 0.05 are indicated on the plot with a

red dot. Parameters with a p-value less than 0.05 have no dot indication. Lines are

drawn to indicate the α, β, and σ parameters. From this plot, it was concluded that

the α parameters, which related to the type of movie were often significant to the
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Figure 2.21: Kolmogorov-Smirnov (KS) plots for each of the 30 neurons analyzed.

model, and that long term spiking history was often more significant than short term

spiking history.

2.4.5.2 Parameter Elimination Analysis

To simplify the model and determine the most significant parameters to predict

neuron firing rate, the data was processed through a parameter elimination exper-

iment. For this experiment the model begins with 30 parameters. Based on the

previous analysis of parameter significance only the α parameters and any other pa-

rameter that was significant for more than ten neurons was considered.

In the first iteration of this experiment, 29 models were built with 29 different
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Figure 2.22: Parameter values and their confidence intervals calculated for each
neuron.

groups of parameters from the 30 original parameters. This was performed for each

of the 30 neurons. For each 29-parameter model, the average Akaike Information

Criterion (AIC) for that model across all of the neurons was calculated. The model

with the lowest AIC was used to seed the next iteration of this experiment. In other

words, whichever parameter that model was missing was the parameter that was

eliminated from the analysis. Figure 2.25a shows the average AIC values computed

during each iteration of this experiment. As parameters were eliminated, the average

AIC increased, indicating that the models with more parameters were better models

for this data. Figure 2.25b shows the parameters used in each model as well as which

parameter was eliminated during each iteration. This experiment was very costly in
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Figure 2.23: Parameter p-values for all 30 neurons. Lines drawn to indicate the α
(parameters 1-4), β (parameters 5-14), and σ (parameters 15-42) parameters.

time due to the size of the covariate matrix and the number of neurons over which

the AIC was averaged.

2.4.5.3 Clustering on Parameters

Because the nuclei for each of the 30 neurons used in this analysis was known,

it was hypothesized that the parameters determined through the model could be

clustered. Ideally these clusters would correspond to the neurons from each nucleus.

K-means clustering was implemented on the 42 parameters. Figure 2.26 shows the

results of this clustering, which indicates that the parameter clustering did not cluster
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(a) (b)

Figure 2.24: (a) For each neuron, parameters that were significant were marked with
a red dot. Blue lines divide the α (movie type), β (short term history), and σ (long
term history) parameters. (b) Indicates the number of neurons for which each param-
eter was significant. Parameters marked with a blue X were used in the parameter
elimination analysis described in 2.4.5.2.

(a) (b)

Figure 2.25: (a) Average AIC (across all 30 neurons) for each model. (b) Illustrates
which parameters remained after each iteration of the elimination process.

the neurons by nuclei. Had the clustering matched the amygdala nuclei, all neurons

within a specific nucleus would have been assigned the same “Nucleus Index” and

that index would have been different from the index of other nuclei. In addition to
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clustering on all 42 parameters, clustering was performed on just the 30 parameters

chosen as a part of the parameter elimination experiment and also just on the four

movie category parameters. None of these clustering metrics led to effective clustering

to indicate amygdala nucleus type.

(a) (b)

(c)

Figure 2.26: (a) Neurons were clustered using k-means clustering based upon the 42
parameters of the model. Neurons did not cluster based upon the nuclei of the amyg-
dala from which they resided. (b) Neurons were clustered based the 30 parameters
used in the parameter elimination experiment. (c) Neurons were clustered based off
of only the α parameters.
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2.5 Analysis of Bat Group Communication

Unrelated to the analysis of the amygdala’s role in social processing, this sec-

tion describes a tool created to facilitate the study of how bats use echolocation in

groups, a primary method for their social interaction and communication.107 Re-

searchers interested in understanding bat communication run many experiments in-

volving multiple bats interacting in a set environment. These experiments require

much post-processing on the collected data to deduce from multiple microphones and

cameras the locations of each bat and their individual echolocation calls through-

out the experiment, before proceeding to answer any larger research questions. This

section describes an interactive graphical user interface (GUI) built in MATLAB to

facilitate this post-processing. Previously the existing GUI to assist with the process-

ing of these trials required 20+ minutes per file, and required many mouse-clicks per

call. The tool described here reduces the time post-processing time, while achieving

an accuracy of ∼70% at best.

2.5.1 Data

This work was a collaboration with graduate student, Michaela Warnecke, in

Professor Cynthia Moss’s Comparative Neural Systems and Behavior Lab at Johns

Hopkins University. All of the data discussed in this section was collected by members

of Moss’s group, and the tool discussed in this section was created to expedite the
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analysis of their experiments. Details of the data and experiment can be found in

their published work.107

2.5.2 Emission Time Call Identification

Like the existing GUI, this program to identify bat echolocation calls began by

asking the user to select an audio file to analyze. Then the user was prompted to

select a threshold above which peaks were considered echolocation calls, as seen in

Figure 2.27. This selection was done for every channel used in the analysis. The

user could adjust the number of channels in this algorithm (although only 24 of

the 32 channels were actually used during the data collection process). The user

threshold selection was retained for this program to simplify the process since it was

already incorporated into the existing GUI. The call detection could also potentially

be automated and accomplished using an algorithm without user input.

Figure 2.27: Screen shot of GUI through which the user selected a threshold above
which peaks would be considered to be echolocation calls.

Once the thresholds were selected, calls were automatically identified using peak
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detection and then the program launched the emission call identification program.

The emission call identification program calculated the time each call would have

been emitted had each bat emitted it, based upon the location of the bats and mi-

crophones. Then it determined which bat emitted the call, based on which bat had

more proposed emission times that “lined up” in time. To accomplish this, first the

program determined for each call, what time each call would have been emitted had

Bat 1 emitted it or had Bat 2 emitted it, and those times were stored. Then the pro-

gram went one by one through the calls in the baseline channel. It first found the call

in each other channel closest to the current call in the baseline channel within a given

window. If there were no calls in that window in the other channel then the program

did not consider that other channel for this analysis. If there was a call, the program

took those potential emission times for Bat 1 and Bat 2 for that call and added them

to an array. After all other channels were cycled through, all of the potential emission

times for Bat 1 and for Bat 2 were considered. The program calculated the variance

of those calls for each bat and determined that the bat that emitted the call to be

the bat whose emission times for this call had the least variance. Figure 2.28 shows

the GUI developed to help visualize this process.

Once the bat that emitted each call was identified, the GUI would launch into

another stage where the user could cycle through each call and check that it was been

matched to the correct bat. A screen-shot of this GUI can be seen in Figure 2.29.

Unfortunately this program did not work as well as anticipated. This program did
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Figure 2.28: GUI used to visualize emission call identification function. The left
shows the experiment setup. Red dots indicate the flight path of Bat 1 and blue dots
indicate the flight path of Bat 2. Microphones are marked with a colored asterisk and
the distances from each bat to each microphone are shown for debugging purposes.
On the right, each channel’s audio data surrounding the time of the current call
in consideration is shown. A white asterisk indicates the call in each non-baseline
channel considered to match to the call being considered in the baseline channel. The
red asterisk indicates the time this call was emitted if Bat 1 emitted it, and the blue
asterisk indicates the time this call was emitted if Bat 2 emitted it. These asterisks
can be visually aligned to determine which bat actually emitted the call.

not work well because when the call threshold was determined, the program would

often mark echos as calls and then identify the bat who emitted that echo. The

program had no way to remove echos or any noise that were marked as calls.
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Figure 2.29: Post processing GUI allowed the user to check the calls the program
automatically identified as being from a specific bat. The left plot shows each bat’s
trajectory throughout the five second trial. (Bat 1 is always red, Bat 2 is always blue).
Microphones are also indicated. The top right shows the audio time series data of
two of the channels and then bottom right plots show the spectrogram information
for that same time period.

2.5.3 Improved Bat Echolocation Identification Pro-

gram

To eliminate some of the issues of the initial program, a second program was

created which first had the user go through two channels in detail so that only actual

echolocation calls were marked as calls, and no noise or echos were selected in those

channels. This was accomplished using a new GUI. Two versions of this GUI were

created to provide different functionality and can be seen in Figure 2.30. Both GUIs
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analyzed data from two channels, the channel with the best signal-to-noise ratio

(SNR) and the channel corresponding to a microphone on the floor. If the channel

corresponding to the microphone on the floor was the best SNR channel, then the

program analyzed the channel corresponding to the microphone on the floor and then

the channel with the second best SNR channel.

When going through these two baseline channels, like the initial program, first the

user was asked to provide a threshold from which a first pass of calls are marked. The

GUIs cycles through the channel audio data one time window (each window covers

0.04 seconds and windows overlap by 0.02 seconds) at a time. During each time

window the user could add calls that were missed by the automated call identification

process or delete calls that are not actual calls but instead noise or echos in the current

time window. Once the entire audio signal was analyzed, the data was saved (or

passed to another function) for further processing and call identification. To identify

the calls, the same emission time call identification method that was described in

Section 2.5.2 was called.

However, before the emission time call identification function was run to determine

which bat emitted each call, the output from the pre-processing GUI was combined

to make a “baseline” call set. The program would go through the calls in the second

audio channel (the audio data from the floor microphone or second best SNR channel)

and make sure that all of these calls were in the first channel call list by checking to

make sure that there was a call in the first channel within a 0.1 second time window
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(a)

(b)

Figure 2.30: Screen shots of the two pre-processing GUIs, each provided different
functionality to the user.

of the call in the second channel. This final list of calls became the baseline for all

future processing. If a call was not in this list, the program would not identify it
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or match it to a bat. Changing the algorithm to not use the calls from these two

channels as the baseline could improve the accuracy of the program.

Initially the peak time of each call was used in the subsequent processing, but the

program was altered to instead calculate the start time for each call in the baseline

list and then use call start times in all subsequent processing.

2.5.4 Time-Difference of Arrival Call Identification

Even after altering the initial pre-processing of the program to create a master

call list from which to run the emission time call identification program, the accuracy

was not optimal. Thus, another call identification algorithm was implemented using

a time-difference of arrival (TDOA) algorithm108 to determine which bat made which

call. There were further issues with this implementation because of the data so a

TDOA-inspired algorithm was developed.

The time difference of arrival (TDOA) inspired call identification algorithm worked

similarly to the emission call identification algorithm in the sense that it cycled

through the baseline call list. For each baseline call, the program took the time

this call occurred and then calculated the distance from Bat 1 and the distance from

Bat 2 to each of the microphones at the time of the call. The program then sorted the

distances from each bat to each microphone to determine the order of microphones

beginning with the microphone closest to the bat (i.e. the microphone that should

first see the bat’s call in its audio signal) to the microphone furthest from the bat
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(i.e. the microphone that should see the bat’s call last in its audio signal).

Next, the program considered the audio data in the other microphone channels.

Like in the emission program, it first found the call in the other channels that was

closest in time to the current baseline call within a given window. The program then

computed all possible combinations of three microphone channels and considered the

three calls seen in those channels. If the start times of those calls aligned with the

distance from Bat 1 to those microphones then a tally for Bat 1 was increased by

one. If the start times of those calls aligned with the distance from Bat 2 to those

microphones then a tally for Bat 2 is increased by one. If the start times for the

calls did not match either bat-microphone distance, nothing was done. This program

assumed that the call should appear in the microphones in the same order as the

distance between the microphone and the bat that made the call. After all groups

of three microphones were analyzed, whichever bat had a higher tally was considered

to have emitted the call. Figure 2.31 illustrates this process and provides visual

confirmation to check that the program was performing correctly.

This algorithm was implemented as such because it did not require code to match

calls between channels. A cross-correlation program was briefly implemented to do

this, but it did not work well. Thus the previously described TDOA-inspired algo-

rithm was implemented to provide more flexibility. If call matching was implemented

so that the program was confident it was only analyzing the same call just seen in

another channel, the program would likely work at a higher accuracy.
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Figure 2.31: GUI used to visualize TDOA inspired call identification function. The
left shows the audio data in each channel surrounding the current call. The current
call from the baseline channel is shown in the top left plot and the call start time is
marked with a red asterisk. The call that is closest in time to the baseline call, and
thus considered during this analysis, is also marked with a red asterisk at its start
time. The right side of the plot shows the spectrogram for each channel. When this
plot was shown, the MATLAB terminal window displayed the distances between each
bat and each microphone, as well as the classification of which bat made the current
call. Using this GUI, one can verify that classification based upon the order in time
that the calls appear in the audio channels as compared to the physical locations of
the bats and the microphones.

2.5.5 Results

To determine the accuracy of these methods, four call files were marked by hand

using the original, slow-to-use GUI to give a truth data set. The GUI output was

considered to be truth for the analysis discussed in this section. To determine the
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Figure 2.32: The program created this plot so that the user could visually verify that
the bat and microphone locations were loaded correctly and made physical sense.
This plot replicated the experimental setup.

accuracy of the program, first the calls output by the program were cycled through

and the nearest call in the truth file to the current call in the program output was

located within a given time window. Then the program went through the truth file

and matched each call in the truth file to the closest call in the program’s output

file within a specified time window. If the same calls matched during both matching

passes, then those calls were considered to be the same. Then if those calls were

identified as coming from the same bat, the call was considered to have been correctly

identified.

Figure 2.33 shows the plot displayed to indicate the results of the program as

compared to the truth file. Calls marked with a red marker are calls that were
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determined to be from Bat 1 (or calls from Bat 1 if marked in the truth file). Calls

marked with a blue marker are calls that were determined to be from Bat 2 (or calls

from Bat 2 if marked in the truth file). Calls marked with an “X” either were not

matched to a call in the truth file because either they did not match to a corresponding

call or the corresponding call indicated the other bat. Calls that were correctly

identified and matched between the files are marked with the same marker to visually

indicate that they are marking the same call. Using this GUI, the calculated accuracy

of the program was verified.

Figure 2.33: Plot shows identified calls in the truth file and calls identified by the
TDOA-inspired program. This figure zooms in on a short time window so that indi-
vidual calls can be seen. The actual figure displays the entire five second experiment
window.

The results for both methods, as well as when the methods were used together
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can be seen in Table 2.3. For this analysis 10 channels of the 32 were used. When

the methods were used together it meant that a call was only marked as from Bat 1

if both the emission algorithm and TDOA-inspired algorithm marked it as from Bat

1. The same is true for Bat 2. Overall the best accuracy on a specific data set was

seen when using the emission call program, and an accuracy of 68.82% was obtained.

Nonetheless, overall accuracy was barely better than chance.

Experiment Method True Positive False Positive Accuracy
DataSet 2 Emission 47.83% 41.30% 49.62%
DataSet 3 Emission 71.11% 28.89% 68.82%
DataSet 4 Emission 43.18% 30.68% 50.00%
DataSet 2 TDOA 48.55% 42.75% 50.38%
DataSet 3 TDOA 56.67% 43.33% 54.84%
DataSet 4 TDOA 47.723% 26.14% 55.26%
DataSet 2 Emission + TDOA 63.10% 36.91% 39.85%
DataSet 3 Emission + TDOA 73.02% 26.98% 49.46%
DataSet 4 Emission + TDOA 66.00% 34.00% 43.42%

Table 2.3: True positives, false positives, and accuracy for the emission time call
identification method, TDOA-inspired identification method, and using both methods
at once.

2.5.6 Conclusions

One major problem with the way this program worked was that it would only

be as accurate as the baseline channel. If the baseline channel was missing calls,

there was no way for the program to find them. Specifically in a scenario where

the two channels that made up the baseline call list were from the same side of the

room, it is likely they would be missing calls made from the other side of the room.
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Additionally if the baseline channel contained echos, then the final program output

contained echos. Lastly, because the program did not “find” the current call in the

other channels, it is likely that it would mistake calls and then “match” a call from

one bat measured in one channel to a call from the other bat measured in a different

channel. Adding in functionality to better find one call in another channel could help

alleviate this problem.
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Chapter 3

Neuromorphic Modeling of the

Amygdala

The fundamental function of the amygdala is to discriminate between objects and

events with positive and negative emotional significance. In primates, the amygdala

also has social functions including supporting the discrimination and emotional evalu-

ation of facial expressions.65,109,110 Abnormal functioning of, or structural damage to

the amygdala causes deficits in interpreting and recognizing facial expressions,111,112

and it has been shown in humans that individuals with larger and more complex social

networks have larger amygdala volumes.113 The response properties of the neurons

in the amygdala of humans and non-human primates suggest that processing faces

engages a large number of neurons which respond selectively to face identity, facial

expressions, and the direction of gaze and eye contact.110,114–116 Neural activation in
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the amygdala also correlates with the autonomic responses elicited by images of faces

and facial expressions.62,63 The recognition of facial expressions, their emotional

evaluation, and the elaboration of emotional responses may emerge from different

population of neurons within the amygdala. The amygdala is not anatomically ho-

mogeneous, rather the main amygdala nuclei have different cellular compositions,

different connectivity, and sizes. Although neurons in the amygdala have been shown

to respond to multiple task and stimulus-related variables,57,117,118 a division of labor

among the main nuclei of the amygdala is also empirically supported.57 The model

described in this chapter is based on the premise that different nuclei in the amygdala

contribute to different components of the process that allow humans and non-human

primates to communicate socially and emotionally with facial expressions.

3.1 Existing Models of Social and Emotional

Processing

Understanding how the brain processes social and emotional stimuli is a compli-

cated task, as previously explained in Chapter 2. The neural regions believed to be

responsible for this processing, like the amygdala, lie deep in the brain which makes

them particularly difficult to measure. The amygdala also receives inputs from and

produces outputs to many different brain regions which makes isolating inputs and

outputs difficult.32,33
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Despite these challenges, there have been many models proposed to reproduce

emotion and cognition both in amygdala-specific structures and more broadly. Some

broad models, which are based on differing theories of emotion and cognition, have

been shown to encapsulate effects including coping, planning, reinforcement learn-

ing, memory, and decision making.119 Other broad models, take into account more

biological plausibility. These models consider the neural processes needed for emo-

tion,120 or specifically how emotion, cognition, and mental states can be represented

in the brain regions like the amygdala and prefrontal cortex.121 Many of these imple-

mentations still remain broad and offer a general methodology instead of a specific

implementation.

Most existing computational models that focus specifically on the amygdala, fo-

cus exclusively on fear conditioning,122–125 conditioning more generally126,127 or only

consider a single type of emotional response.128 Many of these models do not consider

biological plausibility or only incorporate it to a limited extent due to computational

complexity. Moreover these models do not take into account any sort of functional

breakdown within the amygdala, also ignoring nuclei connectivity.

A key issue to be addressed by the model described in this chapter is the division of

labor among the nuclei of the amygdala. Characterizing the specific functions carried

out by these anatomically distinct nuclei is critical for a better understanding of the

amygdala as a whole. Recent studies in mice have made great strides in highlighting

nuclear-specific functions and operations in the amygdala.129,130 Neuroscientists have
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just started to explore the nuclear specializations in monkeys and humans, which

are expected to differ greatly from those in rodents.57,62,131–133 The model presented

in this chapter also goes beyond existing models by incorporating multiple emotional

states beyond simply fear conditioning. Additionally, the model is constructed in such

a way that it could easily be expanded to include more complicated inputs, emotional

states, and responses.

3.2 Modeling Methodology

3.2.1 Experiment and Data

To validate the amygdala model, the output patterns from neurons within the

model were compared to the output spiking patterns from neurons recorded within

amygdalae of adult male rhesus macaques (Macaca mulatta). Model neurons were

simulated and measured under the same experimental conditions as those experienced

by neurons recorded within the primate amygdala.57 In the original experiment,

monkeys were trained to fixate on a cue shown on a screen. Once the cue was shown

the monkey had a two second window to begin its fixation on the cue. Once fixation

began, the monkey had to maintain fixation on the cue for 120 milliseconds. After the

120 milliseconds of fixation, there was a random delay of 200-300 milliseconds before

the image was displayed for 1.5 or 3 seconds. If the monkey did not begin fixation,

did not maintain 120 milliseconds of fixation on the cue, or did not remain looking at
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the image for the duration of its presentation the trial was considered to have failed

and immediately ended. If it was a successful trial, after the image duration there

was an inter-trial period of about three seconds, and then the next trial would begin.

Each image set contained human faces, random objects, landscapes, animals, food

items, and abstract images. There were 681 unique images (383 monkey faces and 298

non-faces) partitioned into 59 unique stimulus sets. On average each set contained

13 images with 8 monkey faces and 5 non-faces. During each recording session 2 - 22

cells were recorded simultaneously.

To replicate this experiment using the model amygdala, fixation or cue presenta-

tion times were drawn from a normal probability distribution determined to model the

actual experimental timing information. Once a trial began, a random variable drawn

from a normal distribution with µ = 0.3047 and σ = 0.0937 indicated the amount

of time before fixation began. Fixation occurred for 0.295 seconds. There were 0.01

seconds between the end of the cue presentation and the image onset. Images were

displayed for 3 seconds, followed by a 3 second inter-trial time. Although there was

primate amygdala neural data collected using a 1.5 second image presentation time

period, for simplicity, simulations were only run using the 3 second image presenta-

tion time because more neurons were recorded under that experimental setup. The

number of trials to simulate was explored during parameter analysis and is discussed

in Section 3.3.7, but ultimately a simulation time of 100 was chosen as the default

number of cycles to simulate.
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The previously existing primate amygdala neural data consisted of 490 neurons

measured from within the basal nucleus, accessory basal nucleus, lateral nucleus,

central nucleus, media nucleus, and anterior amygdaloid area. These neurons were

recorded from within three monkeys over the course of 6 years (2004 - 2010) by

members of the Katalin Gothard’s group at the University of Arizona.

3.2.2 Neural Responses

There were four main categories of cell responses that the original cell analysis

focused on.57 The previous analysis explored how neurons in the basolateral (BL) and

centromedial (CM) nuclei responded to the experiment, showing that the neurons of

these two regions responded differently, indicating a division of labor within the overall

nuclei structure. With this analysis in mind, we began analyzing the model’s neuron’s

responses in a similar pattern.

Figure 3.1 illustrates the experimental setup and the four main neural responses

considered in this work. Firstly, neurons sometimes exhibited a sharp increase or

decrease in firing rate immediately after the onset of the cue, followed by a rapid return

to the baseline firing rate. These responses were categorized as phasic excitatory or

phasic inhibitory to the cue depending on if the change in firing rate was above

or below the baseline firing rate, respectively. Neurons also sometimes exhibited a

phasic excitatory or phasic inhibitory response immediately after the image onset.

Additionally neurons sometimes exhibited a sustained increase or sustained decrease
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in firing rate as compared to the baseline for the duration of the image onset. These

responses were termed tonic excitatory and tonic inhibitory, respectively. The neurons

sometimes exhibited a phasic excitatory or phasic inhibitory response to the image

offset. The neurons could exhibit no response to the onset of the cue, onset of the

image, image duration, and image offset. Additionally, neurons could exhibit any

combination of responses to those four categories.

Figure 3.1: Illustrates the experiment setup as well as the types of neural responses to
different parts of the experiment. The top row of neuron responses illustrate phasic
responses to the cue. The row below those illustrate phasic responses to the image
onset. The row below those illustrate tonic responses to the duration of the image.
The bottom row illustrates phasic responses to the offset of the image.
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3.2.3 Neural Information Encoding

Generally, this approach claims that each group of neurons represents some multi-

dimensional vector x, and that as the pattern of activity within that group changes

over time, that value will also change over time, making it x(t). If one group of

neurons represents x(t) and another represents y(t), then we may want to connect

these populations such that y = f(x). That is, if the first group of neurons is firing

with a particular pattern of activity that corresponds to x1, it’s desirable that the

synaptic connections to the second population will cause those neurons to fire with a

pattern corresponding to y1 = f(x1). If a set of connections can be found to make this

work for the full range of x and y values, then the neural connections between the two

groups can be said to implement the function y = f(x). This general methodology

is known as the Neural Engineering Framework28,29 (NEF), and is described in more

detail in the following sections. The NEF was used to build the computational spiking

neuron model of the amygdala described in this chapter.

3.2.3.1 Encoding Information in Neurons

If a group of neurons is to represent the multi-dimensional time-varying vector

x(t), there must be some mapping from x to the input for each of the neurons within

the group. For this work, we choose a simple population code based on the classic

population representations observed in motor cortex by Georgopoulos.134 Here, each

neuron has a preferred direction vector in the space x is being represented. That
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is, if x is three-dimensional, then for each neuron i we select a three-dimensional

unit vector ei and postulate that the somatic current flowing into the neuron at any

moment in time should be based on the similarity between x and ei. Furthermore,

to introduce heterogeneity into the population, each neuron has a scaling factor αi

and a background current βi. This means that the total somatic current flowing into

a neuron over time is Ji(t) = αiei · x(t) + βi. The current Ji can be treated as the

input to any neuron model; here we use the standard Leaky Integrate-and-Fire (LIF)

neuron model for simplicity. This approach has been shown to match well to a wide

variety of neural firing patterns found throughout the mammalian brain, including

V1,135 M1,136 and the pre-frontal cortex (PFC).137

This encoding process is also depicted in Figure 3.2. The first row shows the

values (x(t) and y(t)) that are to be encoded into the spiking patterns in the neural

groups A and B, respectively. The second row shows the resulting spiking activity

of eight neurons from each population. For demonstration purposes, we have chosen

the ei values for these eight neurons as follows. The first neuron is only sensitive to

the first dimension in the value being represented (the blue line). Notice that it fires

faster when the blue line is high and slows when the blue line is low and is completely

insensitive to the orange line. This corresponds to e1 = [1, 0]. That is, the current

flowing into the soma of the first neuron J1 is as follows:
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J1 = α1e1 · x(t) + β1

= α1(e1,1x1(t) + e1,2x2(t)) + β1

= α1(1x1(t) + 0x2(t)) + β1

= α1x1(t) + β1

(3.1)

This will produce a large input current value whenever the first dimension of x is

large and a small input current value whenever the first dimension of x is small.

Similarly, the second neuron in each population in Figure 3.2 fires more quickly

when the first dimension is small and fires less quickly when it is large. This cor-

responds to e2 = [−1, 0]. The third and fourth neurons follow the same pattern as

the first and second, except they are sensitive to the second dimension (orange line)

rather than the first (blue line). These correspond to e3 = [0, 1] and e4 = [0,−1]. The

remaining fifth through eighth neurons are sensitive to both dimensions, correspond-

ing to e = [± 1√
2
,± 1√

2
]. In general, the ei values are randomly chosen from the unit

hypersphere. It should be noted that this is an example of the same sort of popula-

tion coding using “preferred direction vectors” ’ that has been identified throughout

the brain.134

Now that the spiking activity of neural population A is encoded in a time-varying

vector x(t), in order perform additional operations on this data, the neurons from

population A need to be connected to another population B. That is, population B

should represent y(t), where y(t) = f(x(t)). For example, in Figure 3.2, the two
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Figure 3.2: The method for defining connections between populations of neurons.
Each population (A and B) encode some time-varying information (first row). That
information is mapped to spikes (second row) by assigning each neuron a randomly
generated tuning curve. The populations must then be connected such that if the
population A is driven to create the given firing pattern, population B will produce
a corresponding firing pattern. The connection weights that achieve this are found
using least-squares minimization with the constraint that the connections from 80%
of the neurons are positive while the remainder are negative (bottom row).

dimensions represented in population B are (x1 + x2)/2 and x1x2 (the mean and the

product of the two dimensions represented in A).

The connection from neurons in population A to the neurons in population B is
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accomplished by treating it as a least-squares minimization problem. The spiking

activity produced by population A over time is the spike pattern produced by feeding

the current Ji(t) = αiei ·x(t) +βi into each of the neurons in population A, which we

will call aA(t)). The desired input current to population B is (Jj(t) = αjej ·y(t)+βj).

The connection weights ωij that minimize the difference between aA(t)ω and JB(t)

(i.e. minimize (aA(t)ω − JB(t))2) can then be found.

3.2.3.2 Nengo

Nengo is a Python library that implements the NEF and allows users to build

neural models through a graphical user interface or by scripting.138 It provides an

interface for model manipulation and simulation, allowing users to observe neural pop-

ulations interacting during simulation. Nengo has been used to model many aspects of

cognition, including but not limited to, visual attention,139 rodent navigation,140 and

reinforcement learning.141 It has also been used to create Spaun, a functional brain

model that uses 2.5 million neurons to perform eight different cognitive tasks.142,143

Figure 3.3 illustrates the connections between two neural populations, A and B,

as described in the previous section. When using Nengo, after defining the neural

populations and the functions performed through population connections, the NEF

will calculate the appropriate encoding and decoding weight matrices to approximate

the desired transformations on the information represented in a distributed fashion

across each neural population. Figure 3.3 and Figure 3.2 both illustrate connections
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between two Nengo neural populations. Specifically, Figure 3.2 emphasizes the pop-

ulation encoding aspect and Figure 3.3 emphasizes the encoder and decoder weight

connections.

(a) (b)

Figure 3.3: Illustration of basic Nengo neural population connectivity. (a) Connec-
tions are made between the neural population A and neural population B. (b) Each
connection between two neural populations involves the multiplication of decoding
weights and encoding weights. These weights are calculated by the NEF and Nengo
using least-squares minimization to produce the weights necessary to calculate any
function. This example implements an identify function. As illustrated, population
A’s activity corresponds to a distributed representation of x, which can be decoded
by multiplying the output of A by the decoding weights. x can then be multiplied
by encoding weights to provide the input to population B. Population B’s activity
corresponds to a distributed representation of y, which can be decoded by multiply-
ing the output of B by the corresponding decoding weights. This figure was adapted
from the author’s previous work.144

3.3 Computational Model of the Amygdala

The model described here consisted of three amygdala nuclei, including a basal,

lateral, and central nucleus. In this model the basal nucleus combined the basal and

accessory basal nuclei, while the central nucleus combined the central nucleus, medial
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nucleus, and anterior amygdaloid area. The model contained 37,000 neurons, where

the amygdala portion of the model consisted of 12,000 neurons. To define such a large

model, a general method for mapping a high-level description of the desired behavior

into a low-level detailed model was used as described in Section 3.2.3.

3.3.1 Model Definition

Figure 3.4 shows both an anatomical depiction of the amygdala and a color-

coordinated depiction of the model highlighting information flow through the system.

For this model, a simplified visual processing system was constructed consisting of two

neural populations, V1 and IT. Images were passed into V1 as input. V1 functioned

as a traditional artificial neural network and was trained through gradient descent

to output the emotional state of the monkey in the image (threatening, neural, fear

grimace, or lip smack) and the gaze direction (directed or averted). A fear-grimace

facial expression indicated a non-threatening state to a social partner. A lip smack

facial expression indicated submission and low social status to a social partner.

In this model, the neural firing patterns within V1 represented a five dimensional

value consisting of the input emotional state and gaze direction. That five dimen-

sional value was then passed to IT as input along with a two dimensional value that

indicated the presence or absence of a cue and the presence or absence of an image. IT

aggregated those two signals and then passed the seven dimensional value to the lat-

eral nucleus of the amygdala. The lateral nucleus’s neural firing pattern represented
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(a) (b)

Figure 3.4: (a) Anatomical depiction of information flow through the amygdala nuclei.
(b) Depiction of information flow through computational amygdala model.

the same seven dimensional value as IT.

The lateral nucleus passed information to the basal nucleus. That connection

transformed the seven dimensional input value into a two dimensional emotional

representation. There are many ways to represent the dimensionality of emotional

responses, but this model used a two dimensional representation where one dimension

represented valence and the other represented arousal. This representation is a simpli-

fied version of a common three dimensional emotional representation using evaluation

(good versus bad), potency (powerful versus powerless), and activity (liveliness ver-

sus torpidity).145 The two dimensional value represented by the basal nucleus was a

combination of the information passed to it by the lateral nucleus and the information

passed to it from a prefrontal cortex (PFC) neural population. The PFC stored the

previous emotional state so that the current emotional state calculated by the basal

nucleus was a combination of the current input and a previous state. A lip smack

input expression elicited a response of medium positive valence and low arousal. A
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neutral input expression elicited a response of neutral valence and no arousal. A fear

grimace input expression elicited a response of high positive valence and high arousal.

A threatening input expression elicited a response of high negative valence and high

arousal.

Next, the basal nucleus passed information to a central nucleus, a winner-take-

all circuit that determined which one of the four emotional responses that was then

projected to the rest of the body, or as in Figure 3.4, a brain stem neural population.

Lastly, there was also a connection from the lateral to central nucleus which only

sent information that required an immediate fast responses, such as a threatening

input. A summary of input images, the valence and arousal they elicited, and the

corresponding response state are shown in Figure 3.5. Adverted and direct gaze

resulted in the same determined value, although the arousal response tended to be

larger when the gaze was direct.

3.3.2 Model Build and Simulation

There are two steps to execute a model using Nengo. First the model was built,

i.e., the process of solving the least-squares minimization to determine all encoder

and decoder weights to map the desired functions to neural population connections.

These calculations depended on the number of neurons in the model as well as the

complexity of neural population parameters. Once built, the model was simulated

for a predetermined amount of time. If the model was small enough, it could be
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Figure 3.5: There are four categories of emotional expressions expressed by monkeys
in the input image set. A lip smack expression elicited a response of medium positive
valence and low arousal, resulting in a pro-social response by the viewer monkey’s
amygdala. A neutral expression elicited a response of neutral valence and no arousal,
resulting in a neutral response by the viewer monkey’s amygdala. A fear grimace
expression elicited a response of high positive valence and high arousal, resulting
in a dominant response by the viewer monkey’s amygdala. A threatening expression
elicited a response of high negative valence and high arousal, resulting in an avoidance
response by the viewer monkey’s amygdala.

rendered in a reasonable amount of time and viewed using a graphical user interface

(GUI) provided by Nengo. If models were coded within the GUI, neural populations

were connected in the GUI in real-time as they were described in code. The Nengo

GUI is useful for visual inspection of a coded model, as well as for watching model

simulations. A screen shot of the amygdala model in the Nengo GUI can be seen in

Figure 3.6. To make this video, the amygdala model was reduced by a factor of 1000,

and neuron firing rates were increased by a factor of two so that the video would

render in a reasonable amount of time and execute without error.
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Figure 3.6: Nengo provides a graphical user interface (GUI) for visualization of Nengo
simulations. Above illustrates the visual simulation of the amygdala mode in Nengo.
All neural populations have word clouds illustrating their represented states. The
darkness of the word indicates the strength of that representation. On the left 15
neurons from the lateral, basal, and four winner-take-all states within the central
nucleus are shown. As the model executed in this GUI, the changes in firing rates
and represented states in response to the changing input was illustrated.

3.3.3 Model Output

At the conclusion of the model simulation all relevant information was saved to a

file. This included spiking information for all neurons within the model, model inputs,

and model parameters. This data was then converted from Python to a MATLAB

data structure and processed into the same form as the data and experiment param-

eters recorded in primate amygdalae.
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3.3.4 Automatic Classification of Neural Responses

To compare the model outputs to the neuron responses recorded in the primate

amygdala, each neuron was classified based on its firing responses throughout the

experiment. As described in Section 3.2.2, neurons were identified as having either

a phasic response to the onset of the cue, onset of the image, or the offset of the

image. Neurons could also exhibit a tonic response throughout the duration of the

image presentation. Neurons were classified to have an excitatory, inhibitory, or no

response to each of these categories, resulting in 81 unique classifications of response.

Responses were considered to be phasic to the cue if there was a sharp increase or

decrease in firing rate 80 to 275 milliseconds after the cue came on, followed by a

return to baseline firing rate. Responses were considered to be phasic to the image

onset if there was a sharp increase or decrease in firing rate 80 to 450 milliseconds

after the image came on, followed by a return to baseline firing rate. Responses were

considered to be phasic to the image offset if there was a sharp increase or decrease

in firing rate 80 to 274 milliseconds after the image turned off, followed by a return to

baseline firing rate. Tonic responses were considered 450 milliseconds after the image

came on until the end of the image presentation and corresponded to an increase or

decrease in firing rate during that duration.

To automate this process, a classification algorithm was developed in MATLAB to

classify each neuron into these categories. To do this the spikes from each trial were

aligned relative to the image onset time and then aggregated and averaged across 0.2
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second time windows with 0.1 seconds of overlap. Significant peaks and dips relative

to the baseline firing rate were identified, and if they fell within the corresponding

time window the neuron was considered to have a phasic response. A two sample

t-test was used to determine if the neuron exhibited a tonic response to the image

presentation by comparing the average firing rates during the image presentation and

during the baseline. A visualization of this process is illustrated in Figure 3.7. This

classification algorithm was developed by dividing the labeled primate neural data

into train, development, and test sets and developing the classification algorithm on

the primate neural data. Running this algorithm on the test data set achieved a classi-

fication accuracy of 84.3% for phasic responses to the cue, 78.1% for phasic responses

to the image onset, 72.3% for phasic responses to the image offset, 79.9% for tonic

responses, and an overall accuracy of 40.0%. To label the data for development of this

classifier, process all primate neural cell firing responses were visually inspected and

categorized with guidance from neuroscientist collaborators in Professor Gothard’s

group.

3.3.5 Primate and Model Amygdala Comparison

By observing the model executing in the Nengo GUI, one can verify the accuracy

of the nuclei functionality and represented data through spot checks. However, this

output cannot be validated using primate neural data since that functionality and

representation is precisely the unknown aspects this model attempts to understand.
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Figure 3.7: Visualization of the classification process. (a) Spike raster of neuron
responses to individual trials. Red line indicates the onset of the cue. The left blue line
indicates the onset of the image. The right blue line indicates the offset of the image.
(b) Histogram indicating the firing rate across all trials. (c) Classification visualization
performed on average spike rate signal calculated from the individual spikes across all
trials of the experiment. Signal between the cyan dotted lines indicates the baseline
period. Magenta dotted lines surround the time window for a phasic response to the
cue. Red dotted lines surround the time window for a phasic response to the image
onset. Green dotted lines surround the time period for a phasic response to the image
offset. Horizontal red line indicates time period considered when determining tonic
responses to the image duration.

Instead the neuron firing responses measured from the model were compared to that

of the previously measured primate amygdala neurons. Figure 3.8 illustrates three

neurons from the model and three neurons measured in the primate amygdala that

exhibit the same firing responses to the experiment. In addition to exhibiting the

same firing response, they exhibit similar firing rates. An initial pass through the

model data proved promising for finding many cases of overlap.

After individual examination of neuron response plots, methods were developed

to analyze the similarity of responses on a population level. Figure 3.9 shows the

percentages of neurons within the primate amygdala and model that exhibit each of

the 81 unique responses to the experiment. The four categories of responses (phasic to
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the cue, phasic to the image on, phasic to the image off, and tonic during the duration

of the image) combined with the three responses per category (excitatory, inhibitory,

or no response) result in 81 unique responses to the experiment. Because there

were different numbers of neurons recorded in each nuclei and each nuclei contains

a different number of neurons, Figure 3.10 shows the same distribution calculation

but calculated by nuclei. For example, many fewer neurons were recorded in the

lateral nucleus of the primate amygdala because this nuclei is sparsely connected and

neurons tend to fire at a lower firing rate making neural recordings more difficult to

produce. In both of these figures, it is noted that the majority of neural responses

were replicated in the model amygdala at the same percentage as measured in the

primate amygdala.

3.3.6 Parameter Variation Analysis

To further quantify how well each of the model responses matched those of the

primate amygdala, as well as to help quantify the accuracy of models with different

parameters, a Hellinger distance was calculated. The Hellinger distance is used to

quantify the similarity between two probability distributions. For two discrete proba-

bility distributions P = (p1, ...pk) and Q = (q1, ...qk) the Hellinger distance is defined

as:
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Figure 3.8: Three pairs of neuron responses to the experiment are shown, each con-
taining the response from a primate amygdala neuron, and the response from a neu-
ron from the amygdala model. These are three of many examples where model cell
responses match those measured from primate amygdala neurons. (a) Primate amyg-
dala neuron with tonic excitatory response to the image. (b) Primate amygdala
neuron with phasic excitatory response to the cue. (c) Primate amygdala neuron
with tonic inhibitory response to the image. (d) Model neuron with tonic excitatory
response to the image. (e) Model neuron with phasic excitatory response to the cue.
(f) Model neuron with tonic inhibitory response to the image. Like previous figures,
the red line indicates the onset of the cue, the blue lines indicate the onset and offset
of the image.

H(P,Q) =
1√
2

√√√√ k∑
i=1

(
√
pi −
√
qi)2 (3.2)

Using this distance the difference in the model neuron response distribution com-

pared to primate amygdala neuronal response was quantified. This was particularly
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Figure 3.9: For each of the 81 unique responses to the experiment, the percentage
of neurons within the population that exhibit that response is indicated. This value
is shown for both the model neurons and primate neurons, with confidence bounds.
The 81 unique responses result from the fact that neurons can have no response, an
excitatory response, or an inhibitory response to the cue onset, image onset, image
off, and duration of the image presentation. These response categories are not mutu-
ally exclusive. This plot contains data from 18,785 model neurons and 488 primate
amygdala neurons.

useful for comparing models during parameter exploration. Originally a Kullback-

Leibler (KL) divergence was to be used to quantify the differences in models. The

KL divergence is a measure of how one probability distribution is different from a

second, reference probability distribution. However the calculation to determine the

KL divergence assumes all values of the distribution occur at least once, which is false

for both the model and primate amygdala data. Therefore a Hellinger distance was
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Figure 3.10: For each of the 81 unique responses to the experiment, the percentage
of neurons within the population that exhibit that response is indicated by nuclei.
When simulating the model all neurons are recorded throughout the experiment, but
in vivo the recordings are not collected uniformly across the different nuclei. By
comparing responses by nuclei, the model can be more accurately compared to the
primate neural data. This plot contains data from 1,920 model cells and 250 primate
cells from the basal nucleus, 13,153 model cells and 21 primate cells from the lateral
nucleus, and 3,712 model cells and 217 primate cells from the central nucleus.

used instead.
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3.3.6.1 Neuron Firing Rate Distribution

The first model parameter explored compared the neuron firing rate distribution

from the model to that from the primate amygdala neurons. Nengo assumes a default

uniform distribution with maximum rates from 200 - 400 Hz when building a model.

The range 200 - 400 Hz is much higher than those observed from the neurons measured

within the primate amygdala so the model neuron firing rate distribution was lowered

accordingly.

Figure 3.11 shows the average maximum firing rate distribution for the primate

amygdala neurons, fitted to lognormal, gamma, exponential, and normal distribu-

tions. A bin width of 0.5 seconds was used to generate the histogram upon which the

distributions were based. The fitted distribution parameters were:

• Lognormal µ = 3.109, σ = 0.719

• Gamma k = 1.984, θ = 14.826

• Exponential λ = 29.412

• Normal µ = 29.412, σ = 24.636

A lognormal distribution was selected to generate the neuron firing rates for the

Nengo amygdala models. However, by decreasing the firing rates of the model neu-

rons, the number of neurons had to be increased to maintain a similar level of accuracy

in the decoded representation. This is discussed in the next section.
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Figure 3.11: Plot illustrates the distribution of maximum firing rates for the primate
amygdala neurons, with the distribution fitted to lognormal, gamma, exponential,
and Gaussian distributions. A lognormal distribution was chosen to generate the
distribution of firing rates for the Nengo amygdala models.

3.3.6.2 Nuclei Size

After determining the distribution of firing rates measured from the primate amyg-

dala, the model neurons’ firing rate distribution was decreased and coded to match.

However, to maintain an accurate representation, the number of neurons per nuclei

had to be increased. Figure 3.12 shows how the Hellinger distance increases as the

104



CHAPTER 3. NEUROMORPHIC MODELING OF THE AMYGDALA

model size grows, as well as the rate at which the model size grows as a function of

the neurons per dimension represented by the central nucleus. The basal and lateral

nuclei have twice as many neurons per dimension as the central nucleus. Figure 3.13

shows the decoded basal nuclei values for models with 10, 100, 1,000, and 10,000 neu-

rons per dimension. A model with 10 neurons per represented dimension has 1,360

total neurons in the model and 420 neurons in the amygdala. A model with 100

neurons per represented dimension has 4,600 total neurons in the model and 2,400

neurons in the amygdala. A model with 1,000 neurons per represented dimension has

37,000 total neurons in the model and 22,200 neurons in the amygdala. A model with

10,000 neurons per dimension has 3,610,000 total neurons in the model and 220,200

neurons in the amygdala. As illustrated by this figure, using too few neurons per

dimension does not result in an accurate functional representation of the decoded

value.

3.3.6.3 Biological Plausibility

To make the models more biologically plausible, a constraint was implemented

such that each neuron in the model would only connect to other neurons with either all

positive weights or all negative weights. Using Nengo, the least-squares minimization

that calculates the appropriate connection weights to implement functions on the

values represented by neural populations returns unconstrained connection weight

values. In practice, the weight values tend to be normally distributed with a standard
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Figure 3.12: (a) Illustrates relationship between model size and the Hellinger distance
to the primate amygdala neurons’ response distribution. (b) Illustrates how the model
size grows as the neurons per dimension (in the central nucleus) are increased. The
model contains twice as many neurons per dimension in the basal and lateral nuclei,
as in the central nucleus.
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Figure 3.13: (a) Decoded representation of the basal nucleus when each dimension is
represented with 20 neurons. (b) Decoded representation of the basal nucleus when
each dimension is represented with 200 neurons. (c) Decoded representation of the
basal nucleus when each dimension is represented with 2,000 neurons.

deviation that depends on the number of presynaptic neurons. Nonetheless, biological

neurons are either excitatory or inhibitory and would never have some positively

weighted (excitatory) and some negatively weighted (inhibitory) connections, which

is why the model is constrained to avoid this. Additional constraints were also set
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such that 80% of those connections were made using only positive weights and 20%

of those connections were made using only negative weights to mimic the proportion

of excitatory and inhibitory connections in biological neural systems.

To perform this optimization initially the non-negative least-squares (NNLS) op-

timization found via https://github.com/alexfields/nnls was utilized. This

code could not be parallelized across multiple cores so instead an implementation

of the non-negative least-squares optimization that supported parallelization was in-

corporated into the model code. This code can be found at https://github.com/

alexfields/nnls. For a model of 37,000 neurons, where 12,200 were in the amyg-

dala (1,000 neurons per central dimension), running the NNLS code took ∼ 15 hours

to build the model. The NNLS code provided a tolerance parameter which could be

varied depending on the accuracy of a solution. Because this calculation was costly

in time, different tolerances were explored such that the model did not need to be

built to an unnecessarily low tolerance which would result in prohibitively long build

times. Figure 3.14 shows the results of this exploration and how different tolerance

values affect the decoded represented values.

3.3.6.4 Sparsity

It is known that the different nuclei of the amygdala connect with different levels

of sparsity, thus sparsity was also a parameter that was explored. By varying the level

of sparsity, it was again explored how many connections were needed to accurately
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Figure 3.14: Plots illustrate the decoded value of the basal nucleus, when using
different tolerance values for the non-negative least-squares (NNLS) optimization for
calculating the model weights to provide greater biological plausibility. (a) Tolerance
of 0.1 (b) Tolerance of 0.01 (c) Tolerance of 0.001 (d) Tolerance of 0.0001 (e) Tolerance
of 0.00001 (f) Tolerance of 0.000001

represent values within the amygdala model, as well as how varying the amount of

sparsity affected the Hellinger distance. Additionally, it was explored how varying

the sparsity affected the build time of the model.

Figure 3.15 shows both the calculated Hellinger distance and the associated model

build time for five models with differing levels of sparsity (99%, 95%, 90%, 85%, and

80%) but no other differing parameters. When it is said that a model has 90%

sparsity, it indicates that for each post synaptic neuron in the model, 90% of its
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incoming connections are deleted. In this plot the Hellinger distance decreases as the

sparsity increases. We believe this is due to over-fitting of the model, but requires

further explanation. Because of the additional constraint regarding excitatory and

inhibitory connections, build times increase if the model contains more connections.

The build time for the models with 99%, 95%, 90%, 85%, and 80% sparsity took

0.8, 15.9, 79.1, 208.8, and 393.3 hours, respectively. These models took 7.6, 7.6, 7.6,

7.7, and 7.7 hours to simulate, respectively. Build time length was one of the major

limitations throughout the analysis of parameters.

Figure 3.16 illustrates the decoded two-dimensional basal nuclei value during a 60

second simulation for each of the models with 99%, 95%, 90%, 85% and 80% sparsity.

The decoded value for the model with 99% is quite noisy, whereas the models with

95% and lower sparsity have visually distinguishable steps for the different states

the basal nuclei represented. As expected, as more connections are utilized, the

represented value is better approximated. Because a model with 95% sparsity had

visually distinguishable states within the decoded value and it took significantly less

time to build, this sparsity level was chosen as the one to hold while varying other

model parameters.

3.3.7 Computational Considerations

As previously stated there are two main aspects of running a Nengo model: build

and simulation. Initially both the build process and simulation process occurred on
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Figure 3.15: Effect of Sparsity on Hellinger distance and build time. (a) Hellinger
distance for models with 99%, 95%, 90%, 85%, and 80% sparsity. (Tolerance = 1e-6).
(b) Build time for models with different amounts of sparsity. The model with 99%,
95%, 90%, 85%, and 80% sparsity took 7.6, 7.6, 7.6, 7.7, and 7.7 hours to simulate,
respectively.

the CPU of a 2015 Mac Book Pro with a 2.8 GHz Intel Core i7 processor at 2.8

GHz with 16 GB of memory. Once the model increased in size such that it exceeded

the available memory of that laptop when simulating, models were then built and

simulated on a Linux desktop running Ubuntu with 64 GB of RAM and an Intel Core

i7-5960X processor at 3.00 GHz. To further speed up the build execution, models were

later executed on a NVIDIA GeForce GTX TITAN Z graphical processing unit (GPU)

with the help of the Nengo GPU backend, https://github.com/nengo/nengo-ocl.

Figure 3.17 shows how the Hellinger distance changed as a result of the number

of cycle runs. Each cycle was ∼ 7 seconds of simulated experiment time. Each

cycle included the time before the cue was shown, the cue visualization, the image

visualization, and the inter-trial time.
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Figure 3.16: Effect of Sparsity on Decoded Representation. (a) 99% sparsity. (b)
95% sparsity. (c) 99% sparsity. (b) 85% sparsity. (b) 80% sparsity. 90% sparsity
means that 90% of each post-synaptic neuron’s connections are randomly deleted,
and the connection is optimized with the remaining 10% of the connections. Plots
only illustrate the decoded basal nucleus value for 60 seconds of simulation.

3.3.8 Model-Experiment Feedback Loop

The collaboration behind the work described in this chapter presents a unique

opportunity to use this model as a tool to inform future primate neuroscience physi-

ology experiments, which can subsequently inform future models. Already this work

has prompted a number of conversations about interpretations and implications of

model results.

One such example is illustrated within the contents of Figure 3.20. Figure 3.20

shows six neuron response plots. Three of these neurons were measured in the primate
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Figure 3.17: Illustrates the effect of model simulation time on the calculated Hellinger
distance. Here each cycle is ∼ 7 seconds of simulation.
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Figure 3.18: Illustrates the increase in time to simulate as the length of the experiment
grows. For this plot experiments of 10, 20, 50, 100, 150, 200 and 250 cycles were
simulated using a GPU. A cycle corresponds to about seven seconds (depending on
the cue fixation time, which is drawn from a normal distribution since the primates
did not always begin fixation at the same time). The number of cycles simulated
was converted into simulation hours. These models took 15.0, 15.2, 15.2, 15.9, 14.8,
15.0, and 16.5 hours to build the 10, 20, 50, 100, 150, 200, and 250 cycle models,
respectively. These models only deviated by chance and were built with the same
parameters.
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Figure 3.19: Illustrates the difference in execution time for the same model when
using a CPU as compared to a GPU.

amygdala and three come from a model amygdala. The primate amygdala neurons

all exhibit obviously phasic excitatory responses to the onset of the image. The

three neuron plots that come from the model are characterized by the classification

algorithm as exhibiting a phasic response to the onset of the image but visually do not

appear to exhibit this response. After visually inspecting many of the model neuron

response plots, it was concluded that the model does not produce visually obvious

phasic responses to the image onset, as illustrated by the primate amygdala model.

This conclusion led to a parameter exploration to potentially bring about these types

of responses. The inhibitory and excitatory time constants were varied to attempt to

bring about phasic responses. Phasic responses occur because of the time differential

between the excitatory and inhibitory responses. Inhibition generally follows a longer

time constant, kicking in after the excitatory response, which is what produces the

phasic spike in firing rate. Varying the excitatory and inhibitory time constants did
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produce phasic responses in the model. Moreover, this begs a longer conversation

about why these responses are measured in the amygdala. Does the model lack some

functionality that produces these responses? Do these responses originate in the

amygdala? Some of these questions can be further probed by the model, whereas

others may benefit from future primate neurophysiology experimentation.
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Figure 3.20: The top row shows three primate amygdala neurons. All three neurons
exhibit a visually obvious phasic excitatory response to the onset of the cue. The
bottom row shows three neurons from the model that are classified as having a phasic
excitatory responses to the cue. Besides the fact that the classification algorithm could
always be improved, the lack of any phasic excitatory responses to the experiment
brings a larger question to light. Why does the model lack these responses? This is
one of the many questions the model poses which may benefit from future primate
neurophysiology experiments.
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3.4 Methodology Challenges

In addition to computational challenges that arose as the model increased in terms

of the number of connections and number of neurons, running a Nengo simulation to

replicate a primate experiment presented some challenges to the Nengo infrastructure,

which were overcome to enable this work. This work presents the first model built

using Nengo and then validated with real neural data. In Nengo when one probes or

records a neuron’s spike times, the software creates an array, s, of length t where t

is the number of simulation time steps. si(t) = 1 when there was a spike emitted by

the ith neuron at time, t. Otherwise si(t) = 0. Initially the model would fail for any

simulation with over 3,000 neurons. Saving spike responses as arrays of 1’s and 0’s is

not an efficient way to store spike responses. Instead a spike node was created and

the time of each spike emitted by each neuron was instead saved for later analysis.
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Chapter 4

Applications on the TrueNorth

Neurosynaptic System

4.1 TrueNorth Architecture Overview

The IBM TrueNorth Neurosynaptic processor has a tightly coupled memory-

processor architecture13 ∗. It contains 4096 event-driven cores which operate using

custom asynchronous and synchronous logic. They are globally connected using an

asynchronous packet switched mesh network on chip (NOC). TrueNorth sits on a

development board which includes a Xilinx Zynq Z-7020 SoC (system on chip) that

provides communication support and housekeeping. The NS1e development board is

shown in Figure 4.1.
∗Sections from this chapter were previously published by the author.146–148
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Figure 4.1: The NS1e evaluation platform which houses the TrueNorth chip. The
NS1e has a Xilinx Zynq Z-7020 providing two ARM Cortex-A9 cores and configurable
FPGA fabric. It is 125 mm x 690 mm and weighs 98 g.

Each TrueNorth core contains 256 inputs (axons) and 256 outputs (neurons) con-

nected using a configurable crossbar array as seen in Figure 4.2a. Each connection,

denoted by a binary synapse value, is assigned a synaptic weight, found in a lookup

table associated with the neuron to which it connects. Each neuron, or column of

the crossbar array, has a unique lookup table with four integer value synaptic weights

in the range [-255, 255] and multiple programmable parameters including membrane

potential, leak, spiking threshold, destination axon, and delay. These parameters and

the crossbar array configuration are declared using IBM’s hierarchical, compositional

programming language, Corelet Programming Environment (CPE).31 Computational

units are defined and connected using CPE and can then be executed directly on

TrueNorth or in Compass, a scalable simulator of the hardware.149 Parameters can-
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(a) (b)

Figure 4.2: Illustration of a basic TrueNorth core adapted from the author’s previ-
ous work.147 TrueNorth cores have 256 inputs (axons) and 256 outputs (neurons),
although (b) shows only 3 axons and 2 neurons. In (b) at time t = 1 spikes flow into
the crossbar from both the first and second axons. Where there is a synaptic con-
nection in the crossbar, each spike is multiplied by the corresponding weight found in
the look-up table under the corresponding neuron column. Because the first axon is
Type 0, the synaptic connection between it and the second neuron has a weight of 10.
Because the second axon is of Type 2, the connection between it and the first neuron
will have a synaptic weight of 256. In this diagram the neurons have a threshold, α,
of 1 which means that each neuron will emit a spike once the membrane potential
reaches a value of 1. Following the reset rule used in this example, after emitting
a spike, the neuron membrane potential will decrease by the threshold, or 1. The
first neuron’s spikes are sent to the third axon of this crossbar, whereas the second
neuron’s spikes travel to an axon on a different crossbar.

not be dynamically updated and are therefore only programmed prior to run-time.

Figure 4.2b shows a basic TrueNorth core with only 3 axons and 2 neurons. To

the left of each axon, spikes are depicted. On TrueNorth, each axon has a spike

buffer which is used to delay spikes up to 15 time steps from the time a source neuron

releases them to a destination axon. In Figure 4.2b, at time t = 1 spikes flow into the
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crossbar from both the first and second axons. Where there is a synaptic connection,

the spikes are multiplied by the corresponding weights found in the look-up table

associated with each neuron column. Because the first axon is Type 0, the synaptic

connection between it and the second neuron has a weight of 10 (0th element in the

look-up table). Because the second axon is of Type 2, the connection between it and

the first neuron will have a synaptic weight of 256 (2nd element in the look-up table).

In this diagram the neurons have a threshold, α, of 1 meaning that each neuron will

emit a spike once the membrane potential reaches a value of 1. Following the reset

rule used in this example, after emitting a spike the neuron membrane potential will

decrease by the threshold, 1. The first neuron’s spikes are sent to the third axon

of this crossbar, whereas the second neuron’s spikes travel to an axon on a different

crossbar. Spikes are released through the axons into the crossbar arrays according

to a global synchronization clock, which counts “tick” time steps. A tick is roughly

equivalent to one millisecond and corresponds to the global time signal by which

spikes reach their destination. Membrane potentials are aggregated each time step.

4.2 TrueNorth Use Cases

There are two main ways that TrueNorth can be programmed and used, one which

focuses on implementations of convolutional neural networks, and another which fo-

cuses on implementations of custom algorithms. To allow TrueNorth hardware to eas-
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ily execute simulations of convolutional neural networks, the TrueNorth development

team created a deep learning toolkit called Eedn.30 Eedn stands for “Energy-efficient

deep neuromorphic networks” and is a framework for training convolutional neural

networks constrained to run on TrueNorth’s underlying architecture. Using Eedn,

users specify the layers of their convolution neural network in MATLAB. Then Eedn

trains the network using a constrain-then-train approach, constraining the network

to TrueNorth’s specific hardware. After training, the trained network can be loaded

onto TrueNorth to execute. Eedn trains networks using MATLAB and the MatCon-

vNet deep learning framework. Work by this author employing Eedn is described in

Section 4.4.

The second way to use TrueNorth is to develop corelets using IBM’s hierarchical,

compositional programming language, Corelet Programming Environment (CPE).31

Using the CPE, users can describe crossbar configurations, neuron parameters, core

inputs, and core outputs to produce a specific computation through the processing

of spikes. Users can link multiple cores to perform these computations in succession,

essentially developing spike-based algorithms for TrueNorth. Programmed corelets

can be executed directly on TrueNorth or in Compass, a scalable simulator of the

hardware.149 Custom corelet design by the author is described in Section 4.3 and in

Chapter 5 Section 5.4.1.
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4.3 Path Planning on TrueNorth

IBM’s Neurosynaptic System, also known as the TrueNorth chip,13 offers the op-

portunity to explore bio-inspired path planning algorithms on an industry supported,

general purpose neuromorphic hardware platform†. This platform’s low power con-

sumption and programmable, spiking neurons offer an ideal hardware system on which

to implement robotic navigation applications. Prior work of path planning algorithms

on neuromorphic hardware use spiking VLSI neurons,150,151 where an array which fits

a map of 4 to 100 neurons or nodes is used to propagate spikes throughout the map.

An associated microcontroller stores the address event representation (AER) timing

information of the silicon neurons’ spike activity. The optimal path is later determined

using this stored timing information. This section describes the implementation of

a wave-front algorithm for path planning152 on the TrueNorth chip13 that employs

a neuronal spike-wave to traverse a map, stores timing information, and finds an

optimal path. This work expands from previous implementations by performing all

aspects of path planning on-chip, including storing the AER information and deduc-

ing the optimal path using spiking neurons. An illustration of the implemented wave

front algorithm152 can be seen in Figure 4.3.
†The contents of this section were previously published by the author.148
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(a) (b) (c) (d)

Figure 4.3: Spike-wave propagation using Krichmar’s algorithm.152 (a) Each node’s
cost is indicated. Start and end nodes are colored red and green respectively. For
grid maps, neighbors are geographically co-located and middle nodes, edge nodes,
and corner nodes have 8, 5, and 3 neighbors respectively. (b) First spikes at t=3 after
a delay equal to start node’s cost. (c) Spike propagation at t=4. Spikes have not
yet propagated out of the nodes with higher costs. (d) The optimal path found by
analyzing AER information.

4.3.1 Algorithm and Implementation

The implementation consists of four steps: (1) spike-wave propagation, (2) tie-

break, (3) on-chip AER, and (4) path-finding. Each map location, or node, is assigned

a dedicated portion of a TrueNorth core’s crossbar array to implement these functions

in parallel. A crossbar array consists of inputs (axons) connected to outputs (neurons)

with a number of programmable parameters including synaptic weights, membrane

potentials, spiking thresholds, and delays. TrueNorth neuron parameters were chosen

to deduce and display the optimal path as the output of the system.

4.3.1.1 Spike-Wave Propagation

Spike-wave propagation is well-suited for implementation on the TrueNorth archi-

tecture, as TrueNorth neurons have the ability to encode delays with outgoing spikes
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to represent the cost of traversal of a map node. Within each node’s portion of the

crossbar array, axons and neurons correspond to incoming and outgoing neighbors

of the node respectively. An example of the implemented spike-wave propagation

on TrueNorth is shown in Figure 4.4. When a neuron emits a spike from a node’s

section of the crossbar, this means that the spike-wave has reached this node. At this

point, an axonal delay is encoded with the outgoing spikes by placing them in the

destination axon’s buffer location equivalent to the cost of traversing the node before

proceeding to its outgoing neighbors. TrueNorth axons have buffers for delays up to

15 “ticks”. Each “tick” is roughly equal to one millisecond. Thus, maps are quantized

between 1 and 15 to fit onto one buffer. More resources can be used to create a series

of buffers to increase the delay.

4.3.1.2 Tie-Break

There may be more than one route with the same cost to reach the end node.

Synaptic connections and weights are leveraged to emulate a tie-break function for

each node. If a node receives spikes from incoming neighbors simultaneously, only one

is selected as the “winner”. In Figure 4.5a, if the node received spikes from incoming

neighbors A and C at the same time, only the first neuron representing neighbor A

will spike by reaching its threshold of 1, whereas the second neuron representing C will

be inhibited by a synaptic weight of −10. The output spikes are fed back to disable

the neurons from processing any other inputs using synaptic connections with weights
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Figure 4.4: Spike-wave propagation of a 2×2 map using 4 designated portions of a
core’s crossbar. Neurons are indicated with triangles, axons with half-circles. Cost of
nodes A, B, and C are 2, 4, and 3 respectively. Outgoing neighbors of nodes A, B,
and C are {B,C}, {C,D}, and {B,D} respectively. Simulation begins at t=1. Spike
propagation is shown only for path A → B → C → D for clarity, whereas in this
example spikes would emit from every neuron in parallel.

of −10, as only the information about which incoming neighbors’ spikes reached each

node first needs to be tracked. The spike-wave propagation then proceeds with only

one stored incoming neighboring node as the “winner”. Architectural constraints of the

TrueNorth chip limit each neuron output to one destination axon input, hence neurons

must be replicated to perform the spike-wave propagation tie-breaking process for the

proceeding nodes.

124



CHAPTER 4. APPLICATIONS ON TRUENORTH

(a) (b) (c)

Figure 4.5: A node’s designated portion of a TrueNorth crossbar with incoming neigh-
bors {A,C} and outgoing neighbors {C,D}. Synaptic weights are overlaid on each
connection. All thresholds are α=1 unless otherwise noted. The crossbar is separated
for visual clarity. (a) Tie-break neurons. (b) Spike-wave propagation neurons, same
as processed in Figure 4.4. Feedback from tie-break neurons is used to inhibit spike-
wave propagation neurons to emulate a neuronal refractory period. (c) On-chip AER
and path-finding neurons.

4.3.1.3 On-Chip AER

Neuron potentials and thresholds are used to store an AER table on TrueNorth.

Once the tie-break function is implemented for a node, the “winner” is fed back to

the node’s crossbar, shown in Figure 4.5c. The first two neurons represent incoming

neighbors A and C and have thresholds α = 2. If incoming neighbor A is declared

the winner, the neuron representing A will remain at a potential of V = 1 until the

node is activated as part of the optimal path. The neuron representing neighbor B

will have a potential V = 0 and will therefore never spike even if the node is activated
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since we use inhibition to guarantee only the first spike into a node is processed.

4.3.1.4 Path-finding

Once the propagating spike-wave reaches the end node, all nodes have one winner

stored. Each node that lies in the optimal path will receive a spike via its activation

axon, the last axon in Figure 4.5c. This increases the neuron’s potential from V = 1

to V = 2. A spike is then sent from that neuron to the activation axon of the winning

incoming neighbor’s crossbar. This process begins at the end node and continues in

reverse order along the optimal path until the start node is reached. The last neuron

in Figure 4.5c is also connected to the activation axon. This neuron sends an external

output spike if this node is part of the optimal path. The external output spikes of

all nodes found to be in the optimal path illuminate the ideal path to traverse the

map.

4.3.2 Experimental Results

For any random map, our path planning implementation on the TrueNorth chip

calculates a path with a cost less than or equal to the results from Krichmar’s al-

gorithm152 as we would expect. Differences arise due to randomness associated with

tie-breaking. We find the optimal path by displaying the output spikes from the

TrueNorth chip and show that these results compared to the output of Krichmar’s

algorithm152 in Figure 4.6.
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(a) (b)

Figure 4.6: (a) The optimal path (in yellow) of a map as calculated by the TrueNorth
chip with a total cost of 196. (b) The optimal path as calculated by Krichmar152 with
a total cost of 216.

This implementation can find the optimal route for the largest maps to date on

neuromorphic hardware. The designated portion for each map node on the crossbar

array is a function of incoming neighbors Nin and outgoing neighbors Nout, resulting

in (Nin∗3) axons and (Nin∗2+Nout∗2+1) neurons per node. Multiple nodes’ crossbar

portions can be tiled onto a single core to maximize implementation efficiency and

result in solutions for larger maps. The resources required to analyze maps of different

sizes are visualized in Figure 4.7. For a single TrueNorth chip spikes are propagated,

an AER is stored, and the optimal path is deduced for grid maps with dimensions

up to 173×168 nodes. If larger maps are needed, multiple TrueNorth chips can be

connected in series allowing for a proportional increase in map size and no changes to

the algorithm. If only spikes are propagated on the TrueNorth chip and the AER data

is saved to analyze off-chip after, this method analyzed grid maps with dimensions
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up to 338×340 nodes using one TrueNorth chip.

Figure 4.7: Number of nodes in each dimension of the grid map versus TrueNorth
cores required to implement. Maps that can be contained on a single chip are denoted
with a magenta dot.

4.3.3 Computational Time and Power

Spike-wave propagation requires a number of ticks equal to the total cost of the

optimal path. Deducing the optimal path requires ticks equal to number of nodes

in optimal path. The largest maps this mapping allows on the TrueNorth chip with

average costs of 4.34 ticks per node require an average run-time of 577.3 ticks. Maps

with 10×10 nodes at an average cost of 3.65 ticks per node have an average run-time

of 37.2 ticks. Each tick is roughly equal to one millisecond.
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Four grid maps with dimensions of 25×25 nodes, 75×75 nodes, 125×125 nodes,

and 173×168 nodes utilize 2.0%, 19.0%, 53.5%, and 100% of the cores available on one

TrueNorth chip respectively. These maps respectively utilize an average of 1.4mW,

13.2mW, 27.2mW, and 70.0mW at an operating voltage of 0.8V and 2.9mW, 28.2mW,

77.9mW, and 144.5mW at an operating voltage of 1V. The total power is calculated

by scaling the leakage power by the number of cores actually used, where P is power

and Ptotal = Pactive + Pleak ∗Ncores/4096.153

4.3.4 Extensions to Topological Maps

This implementation offers the flexibility to extend analysis to topological maps.

Each node can have any number of incoming and outgoing neighbors independent of

node location on the map. The incoming neighbors can be different nodes than the

outgoing neighbors and all costs represent the relationship between only those two

nodes. If it is assumed that there are eight incoming and eight outgoing neighbors for

each node, a topological map with 28,674 nodes can be analyzed on one TrueNorth

chip. For maps with nodes connecting to two incoming and two outgoing neighbors,

the optimal path can be computed for maps up to 114,688 nodes.
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4.3.5 Conclusion

This section demonstrates implementation of Krichmar’s path planning algorithm152

on the TrueNorth neurosynaptic system. This approach not only propagates the spike-

wave through the map, but also collects timing information and deduces the optimal

path on-chip. The system consumes ∼70 mW at an operating voltage of 0.8 V for

maps with dimensions up to 173×168 nodes, offering a realizable opportunity for path

planning applications on embedded systems and autonomous robotic applications.

4.4 Neuromorphic Self-Driving Robot Using

TrueNorth

Neuromorphic hardware departs from the sequential processing of Von Neumann

architectures by using a massively parallel design to mimic biology, reducing process-

ing time and overall power consumption154–156‡. Neuromorphic platforms like IBM’s

TrueNorth Neurosynaptic System13,153 provide portable neuromorphic architectures

perfect for use in autonomous system applications or other real-time, power con-

strained environments. The TrueNorth chip is a great platform choice for spike-based

machine learning implementations due to its spike-based computational abilities and

brain-inspired, low-power hardware design. Deep learning with convolutional neural

networks (CNNs) is particularly suitable to this platform because of IBM’s energy-
‡The content of this section was previously published by the author.147
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efficient deep neuromorphic networks (Eedn) software framework for training the

hardware to efficiently run these networks with the hardware constraints posed by

the chip.30

This section details an extension of the self-driving robot described by Hwu.157

However, this implementation departs from previous work because it uses an Asyn-

chronous Time-based Image Sensor (ATIS)158 to provide input to TrueNorth instead

of an Android smart phone. This spike-based sensor is capable of communicating

events from the visual scene in the native processing domain of TrueNorth, resulting

in the first fully neuromorphic self-driving platform.

4.4.1 Background

Machine learning is a growing field used in a wide range of applications:159–162

from customizing web browsers by learning user interests to automatic speech recog-

nition, stock market prediction, image classification, and more recently autonomous

driving vehicles. In some machine learning techniques, human extracted features are

processed with machine learning algorithms. The endeavor of feature extraction re-

quires a great deal of time and effort on behalf of trained engineers. This tedious and

time-consuming exercise inherits the “human bias” which may result in neglecting

important features which could be critical to system performance. This effect may

be mitigated using deep learning, in which new data representations are automat-

ically learned, thus enabling computer algorithms to interact with raw data while
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maintaining system performance.

This work applies deep learning techniques to the problem of autonomous nav-

igation. This emerging field encompasses image processing, machine learning, and

robotics, implementing a closed loop system whose decisions are based primarily on

raw input images. Pomerleau introduced an autonomous land vehicle in 1989163

that utilizes a 3-layer neural network, making it one of the first machine learning

approaches in autonomous navigation. More than a decade and a half later, the

Defense Advanced Research Agency (DARPA) introduced the DARPA Autonomous

Vehicle (DAVE),164 which demonstrated autonomous navigation in an alley of ob-

stacles without communication to a home base. The system consisted of a 6-layer

convolutional neural network (CNN) and was trained from end-to-end by mapping

raw images–taken while the system was driven by a human–to steering angles. A

more recent approach, DAVE-2, was proposed by one NVIDIA research group.162 In-

terestingly, their vehicle was able to navigate areas under different weather conditions

and with limited visibility. Their 9-layer CNN managed to detect features suitable

for predicting vehicle movement.

The aforementioned projects raised awareness for future directions within this field

since they dealt with multiple challenges such as changes in the environment, weather,

and terrain, as well as obstacle avoidance. However, the CNNs were usually deployed

on bulky GPUs consuming hundreds of watts and were powered by heavy batteries.

As previously mentioned, a group at University of California Irvine (UCI) created a
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low power approach to address this problem.157 They used a deep CNN implemented

on IBM’s TrueNorth Neurosynaptic System. However, their data-processing pipeline

used images captured from an Android smart phone, so consequently an extra layer

of post-processing had to be implemented to map raw pixels to spikes for input to

the TrueNorth chip. Our implementation instead uses the ATIS to produce spikes

directly from the visual scene, resulting in a fully neuromorphic system assumed to

consume less power. Details of this system are described in the next section.

4.4.2 Robot Platform Hardware

The robot platform (see Figure 4.8) was built using guidelines from the Univer-

sity of California, Irvine (www.socsci.uci.edu/∼jkrichma/ABR/) and consists of a six

WD aluminum differential drive chassis propelled by six motors using 75:1 gearboxes.

The chassis payload allows all data collection hardware to be easily mounted. The

motors are controlled by a 2x30A controller which accepts drive and steer commands

from an Android smart phone mounted on a pan and tilt system. This phone runs

a host application, which in turn receives commands from a client tablet running

a controller application. The former is adapted from Android-Based Robotics code

(https://github.com/UCI-ABR) and provides discrete driving commands, i.e. dis-

crete speed and discrete turning angles. This approach allows the robot to maneuver

in tight spaces as well as open areas while providing clear, unambiguous driving com-

mands (labels) for training a CNN. Finally, the host phone communicates with the
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motor controller via a special development board, specifically a SparkFun IOIO mi-

crocontroller, designed to interface with Android platforms. Figure 4.8 shows the

front of the chassis supporting a pan servo-motor, which holds the ATIS.

(a) (b)

Figure 4.8: Robot data collection platform: front (a) and side (b) views. Notice the
ATIS mounted on the front, the smart phone in the middle, and the Surface Pro
mounted on the motor controller box.

ATIS is a custom CMOS vision sensor with 304 × 240 pixel resolution. Each

ATIS pixel operates independently, detecting changes in its own log-illumination,

and outputting an event whenever such a change is detected. An event consists of

the pixel address and 1 bit of polarity to indicate whether the change was an increase

or decrease in log-illumination. These events are communicated off-chip with very

low latency, and therefore the time at which an event is output by the ATIS can

be considered as the time at which the corresponding change in log-illumination was

detected.

The ATIS is controlled by a Xilinx Opal Kelly XEM6010-LX45 board, which

allows for logging of event based data onto a Microsoft Surface Pro. The entire ATIS
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system is powered by the main robot battery and consumes less than 5 W. During

data collection, in addition to storing the ATIS data on the Surface Pro, the motor

pulse-width modulation (PWM) control signals and photos taken from the Android

smart phone of the scene are stored on the Android phone. Data are processed later

to form the training input for the deep CNN.

4.4.3 Real-Time Autonomous Platform

The real-time system operates similarly but does not require the Surface Pro since

the TrueNorth chip can ingest spikes directly and there is no need to log data. In

this system, the ATIS spikes are sent to a portable 12 V-powered Linux PC mounted

on the robot which is powered with another battery. This PC simply groups spikes

together as described in Section 4.4.6 and sends batches directly to the TrueNorth

hardware using TCP communication. The TrueNorth chip pushes the spikes through

the trained network stored on board and then outputs the results back to the portable

PC. Finally, the PC decodes these results and commands the motor controllers to

move the wheels in the appropriate fashion. Figure 4.9 shows how information flows

using this platform. The autonomous system bypasses the Android phone and tablet

which were previously used to control the robot when gathering training data since

these devices are not required when the robot drives by itself.
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Figure 4.9: Autonomous platform data flow.

4.4.4 Data Collection

Data was collected from three different environments including the hallways of

a building at Johns Hopkins University, campus sidewalk paths (approximately 2

meters wide), and residential sidewalks (approximately 0.6 meters wide). Figure 4.10

shows images from the Android smart phone camera taken during data collection as

well as the processed ATIS output.

4.4.5 Data Pre-Processing

The main challenge in data pre-processing was time-domain alignment between

asynchronous-time address events and uniformly sampled (usually 30 Hz) driving

commands from the host smart phone. Due to the different nature of the recording

systems, time stamps were aligned offline using a custom algorithm, explained below.

On the smart phone data side, data was truncated to the onset of movement which
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(a) (b) (c)

(d) (e) (f)

Figure 4.10: Examples of the three collected data sets. (a) Data collected using
the Android phone while the robot was driven in the hallways of a building at Johns
Hopkins University and (d) the corresponding input to Eedn. (b) Data collected using
an Android smart phone while the robot was driven on a residential sidewalk and (e)
the corresponding input to Eedn. (c) Data collected using the Android smart phone
while the robot was driven on a campus sidewalk path and (f) the corresponding
input to Eedn.

was found by identifying peaks in the first derivative of the robot speed, derived

from raw PWM signals. On the ATIS side, the onset of movement was captured by

searching peaks in the derivative of the inter-spike-intervals (ISI). When the robot

was motionless, spikes were rare, mostly due to noise or changes in light. Conversely

when the robot was moving, the time-domain differences in the scene relative to the

robot created a high firing rate, thus a lower inter-spike-interval. As a result, the

first major peak in the derivative of the inter-spike-interval revealed the onset of
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movement. After the data alignment, spline interpolation was used to append labels

to the AER data.

4.4.6 Network Training

After the ATIS output spikes were assigned labels, they were used as input to the

training of a deep learning neural network trained to output the correct driving di-

rection (left, right, center). Training was performed using IBM’s energy-efficient deep

neuromorphic networks (Eedn) software framework for TrueNorth.30 Eedn trains con-

volutional networks, whose connections, neurons, and weights have been constrained

to map onto the TrueNorth chip. Training produces a corelet, or composable hard-

ware description, that can be programmed directly onto the TrueNorth chip.31 Eedn

allows the user to specify the parameters of each layer within the network, including

number of features, kernel sizes, padding, stride size, learning rates, and many oth-

ers. While training the network, Eedn can train and test either within Compass, a

one-to-one scalable software simulator, or directly on the TrueNorth chip.149

Because the ATIS generates spikes in very fine-grained intervals, to train the

network in Eedn, spikes are sent into the system in batches, similar to the way

spikes are delivered during real-time communication. Spikes were aggregated within

a specific time window to generate spike-frames. Each of these groups (frames) was

assigned a label based on the majority of occurrences within that time frame. Once

the spikes were grouped and labeled, they were divided into train, development, and
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test sets. The training set consisted of roughly 60% of the collected data while the

development set and test set were roughly 20% each. The hallway dataset contained

6,591 training groups, 2,242 development groups, and 2,189 testing groups. The

campus sidewalk dataset contained 18,076 training groups, 6,099 development groups,

and 6,071 testing groups. Finally, the residential sidewalk dataset contained 12,865

training groups, 4,347 development groups, and 4,271 testing groups.

4.4.7 Results

4.4.7.1 Preliminary Results

Preliminary work included training a CNN on GPUs using the MATLAB Neural

Network Toolbox. Two different datasets were used to train the same network. The

network architecture included one convolution layer with 6 5x5 filters with a stride

of 1, one 2x2 max pooling layer, three fully connected layers, and three outputs

corresponding to the labels left, center, and right. Intuitively the convolutional layers

performed feature extraction while the fully connected layers carried the control,

however it was not possible to draw a definite line between the two tasks. The

first dataset was comprised of 45 minutes of 40x40 pixel smart phone images, down-

sampled to 10 FPS in grayscale. 80% of this data was used for training, and testing

on the remaining 20% produced an accuracy of 79%. The second dataset consisted

of 35 minutes of ATIS output data that was down-sampled into 64x64 pixel frames
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sampled uniformly at 10 FPS. The ATIS output polarity was used to create a three

value color image in MATLAB, akin to RGB. This dataset was again trained on 80%

of the data and tested on 20% which produced an accuracy of 81%.

Figure 4.11 shows an input image taken from the test set and pushed through

the trained network. The bottom of the figure depicts driving input and predicted

commands, and the sub-figures on the right illustrate the output of the six filters from

the convolutional layer. Intuitively it can be seen that the network is carrying out

edge detection. In this particular image, the user is driving the robot left towards the

wall and the CNN is predicting a correction towards the right. During data collection

the robot was randomly steered toward the wall and then corrected to increase the

variability of the data and to teach the robot to recover from mistakes.

Figure 4.11: MATLAB simulation results for CNN tested on ATIS frames. Note
the output of the six convolutional filters appear to be performing edge detection.
Moreover, while the driver is aiming at the wall, the predicted command indicates a
correction towards the right.
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4.4.7.2 Simulation Accuracy

After showing the viability of this CNN approach in Section 4.4.7.1 a separate

network was trained in Eedn (see Section 4.4.6) for use on the TrueNorth hardware.

The network that gave the highest accuracy on the development datasets contained

11 layers. This network is shown in Figure 4.12. The first layer is a data layer which

sends information into the system. Next, there are three sets of layers, each set

containing three individual layers. The first set contains two pooling layers followed

by a convolutional layer. Each of the second and third sets contain a pooling layer

followed by two convolutional layers. The last standard layer is the prediction layer

that chooses the direction the robot should be steered, and finally there is a single

loss layer (not pictured in Figure 4.12) that Eedn uses to train the network.

Figure 4.12: Convolutional Neural Network implemented on the TrueNorth hardware
and trained in IBM’s Eedn framework. Each block shows the size of the output at
each layer and the connections between layers are labeled with the size of the kernel
used in brackets.

This network was trained for 200,000 iterations on each of the three datasets.
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When trained on the residential sidewalk dataset, this network yielded a training

accuracy of 95%, a development accuracy of 81%, and an accuracy of 82% when

run directly on the TrueNorth hardware. The hallway dataset resulted in a training

accuracy of 93%, a development accuracy of 67%, and an accuracy of 69% on the

TrueNorth hardware. The campus sidewalk dataset gave a training accuracy of 96%,

a development accuracy of 90%, and an accuracy of 87% on the TrueNorth hardware.

The accuracy on the TrueNorth hardware and the development data differ due to

the constraints placed on weight values in the actual hardware. The training and

development curves for each dataset can be seen in Figure 4.13.
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Figure 4.13: Results from training a deep neural network in IBM’s Eedn software
framework using the (a) residential sidewalk dataset, (b) hallway dataset, and (c)
campus sidewalk dataset.

4.4.8 Conclusion

This work illustrated the construction of a fully neuromorphic autonomous robotic

driving platform including a spike-based vision system and a spiking “brain” that

successfully processes that sensory information. Even with limited training data the
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robot determined the correct direction to steer up to 82% of the time depending

on the dataset. These results are expected to improve further with more training

data and extended training, and these results will be fed into successful real-time

implementation.
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Chapter 5

Neural Modeling on Neuromorphic

Hardware

5.1 Introduction

The field of neuromorphic engineering began in 1989 under the guidance of Carver

Mead.165 Mead first proposed modeling biological neurons by using transistors to

represent their behavior within VLSI (Very Large Scale Integration) circuits. From

early work within the field of neuromorphic engineering to today, researchers have

implemented many different types of VLSI neuron models.154 By implementing these

neurons directly in hardware, many of the complex aspects of neural software model-

ing are avoided, and transistor characteristics are leveraged for efficient design. From

a computational perspective, neuromorphic hardware engineering has also provided
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the promise of low-power, general-use computational platforms with faster processing,

borrowing inspiration from the brain’s own structure and efficiency.

As technology has progressed and the size of the transistor has decreased, neu-

romorphic engineers have been able to increase the size of neuromorphic chips and

therefore the number of neurons a chip can contain; however, there is a tradeoff

between the number of neurons and the biological plausibility of said neurons for a

given chip size. As Izhikevich summarizes, there have been many computational mod-

els of neurons created, each containing varying levels of biological plausibility.166,167

However, Izhikevich identifies that as biological plausibility increases, computational

neurons take increasingly longer to compute and often consume more power, which

can be undesirable depending on the application. As the field of neuromorphic engi-

neering grew, so did the range of systems built within it. Neuromorphic processors

went from containing just a few neurons to large arrays of neurons, implemented in

both digital and mixed-mode circuitry.17–20,154 In some cases, neuron models were

simplified for computational tradeoffs, and some of the biology behind the initial

inspiration was abstracted away.13

In 2014, IBM announced the release of the TrueNorth neurosynaptic processor.13

TrueNorth contains one million neurons and provided the first commercially produced

neuromorphic platform. With one million neurons per chip, TrueNorth provided a

customizable massively-parallel neuron array designed for users outside of the research

group that created it. IBM provided a programming environment168 to accompany
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the hardware and thus removed the need to understand the underlying hardware to

build applications. TrueNorth consists of a densely-packed array of neurons to achieve

one million neurons per chip but also contains architecture tradeoffs to attain its high

neuron density.

Previous to the creation of TrueNorth, a number of neuromorphic processors had

been developed. One of the first larger-scale neuromorphic processors developed was

the spiking neural network architecture SpiNNaker project.16,169 SpiNNaker was de-

signed to simulate billions of neurons in real time. SpiNNaker consists of 18 ARM968

cores per chip, with different boards containing different numbers of chips, and uses

packet communication between cores. Biological relevance was a priority when de-

signing this hardware. Since the development of TrueNorth, two other neuromorphic

processors that also contain a large number of neurons have been fabricated: Intel’s

Loihi processor14 and Stanford University’s Braindrop,170 created by the Brains in

Silicon research group. Both of these processors provide significant deviations from

many of the design decisions undertaken by the TrueNorth development team. This

chapter provides an overview of the TrueNorth, Loihi, Braindrop, and SpiNNaker

neuromorphic processors and an assessment of the utility of each processor for neural

modeling and spike-based computations.
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5.2 Executing the NEF on Neuromorphic Hard-

ware

As discussed in Chapter 3 Section 3.2.3, the Neural Engineering Framework (NEF)28,29

provides a framework for describing neural populations and the connections between

them mathematically. Nengo138 is a Python library, built upon the NEF, that allows

users to describe NEF-based models in code and then simulate the the models on

different platforms. The NEF and Nengo can be used both to explore spiking-neuron

based computation as well as for neural modeling.

Nengo simulations are most often run on a generic CPU, but backends have been

developed to map the framework for use with GPUs138,171 and field programmable

gate arrays (FPGAs).172 Nengo simulations can also be run on existing neuromorphic

hardware platforms. Nengo simulations can be run on the SpiNNaker chip,16,27,173

Neurogrid,174,175 and a mixed signal neuromorphic multi-neuron VLSI chip.176 Re-

cent work has also extended the NEF to non-ideal silicon synapses177 through the

creation of Braindrop,170 a mixed-signal processor that leverages the NEF to exploit

the variability inherent in analog sub-threshold transistors. These neuromorphic im-

plementations attempt to provide faster, lower-power platforms for neural modeling.

The following subsections will describe the execution of Nengo models on Braindrop

as published by the Braindrop team,170 work by the author to execute those same

models on TrueNorth and the backend developed to do so, and the execution of the
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same models on SpiNNaker and Loihi.

5.3 Neural Modeling on Braindrop

5.3.1 Overview of Braindrop

Braindrop170 is a mixed-signal neuromorphic processor designed specifically to

efficiently execute Nengo models with minimal power consumption. Braindrop lever-

ages the inherent non-uniformity of analog design in its mapping and execution of

Nengo models. Braindrop contains 4096 neurons, 64 KB of weight memory, 1024

accumulator buckets, 1024 synaptic filters, and 2 small memories for a Pool Action

Table (PAT) and a Tag Action Table (TAG) to store other parameters. The PAT

has 64 entries, enabling a pool-size granularity of 64 neurons. TAT has 2048 entries

for redirecting tags to a subset of accumulator buckets, synaptic filters, and other

cores. Braindrop was implemented in a 28-nm FDSOI process and consumes 381 fJ

per equivalent synaptic operation for typical network configurations.

There are two main aspects of the Braindrop design that enable its efficient execu-

tion. First, Braindrop decodes NEF models by accumulative thinning. Accumulative

thinning computes a linearly weighted sum of spike rates to reduce the number of

spikes or deltas that must be fanned out in connections. This operation reduces a

N×d×d×N decode from O(N2d2) spike traffic to O(Nd). This greatly reduces both

energy and time. Second, Braindrop employs sparse encoding by spatial convolution
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to calculate the encodes for each neural population. This is accomplished by using

a diffuser operation to convolve current from specific “tap-points” through a resistive

grid of transistors to create a distributed range of encoders for the population.

In addition to the hardware design, the Braindrop team also created an associ-

ated software stack. This calculates, based on the Nengo model to be mapped to the

hardware, where to place neuron “pools” on chip, among other tasks. It also accom-

plishes the Nengo backend, such that the user experience for Braindrop mirrors that

of other neuromorphic hardware platforms with a Nengo backend (with the exception

of TrueNorth as described in Section 5.4).

5.3.2 Modeling Results

As detailed in their paper,170 the creators of Braindrop implemented a number

of Nengo models on their hardware for initial validation. Figure 5.1 shows one set

of such results, reprinted with author permission, mapping a one-dimensional neural

population onto the Braindrop hardware. Here neural populations of 256 and 1024

neurons were used to implement a sinusoidal transform, yf (x) = Fmax(0.5+sin(fπx))

where f ∈ 1, 2, 4. Fmax is equal to 500 Hz (orange), 1000 Hz (green), and 1500 Hz

(blue). This figure also shows histograms of the calculated decoded weights for this

functional approximation.

For comparison, Figure 5.2 shows the same results run on the CPU of a 2015

Mac Book Pro with a 2.8 GHz Intel Core i7 processor at 2.8 GHz with 16 GB of
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Figure 5.1: Decoded output from a Nengo model executed on Braindrop. The top row
shows decoded output for sinusoidal functions of increasing frequency using a neural
population of 1024 neurons. Below it are the histogram of weights required for the
decodes of the 1025 neural population. The third row from the top are the decoded
outputs for sinusoidal functions of increasing frequency using a neural population of
256 neurons. The bottom row shows a histogram of weights required for decode of
256 neural population. Figure reprinted with author permission170
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memory. This figure highlights the increased accuracy of representing given larger

neural populations.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.2: Illustrates the execution of a one population Nengo model on a CPU
performing a sinusoidal transformation on its input x. For all models the neuron
population computes yf (x) = Fmax(0.5 + sin(fπx)) where f ∈ 1, 2, 4. Fmax is equal
to 500 (orange), 1000 (green), and 1500 (blue). (a-c) Illustrate the decoded output
using a 10 neuron neural population. (d-f) Illustrate the decoded output using a 256
neuron neural population. (g-i) Illustrate the decoded output using a 1024 neuron
neural population. (j-l) Illustrate the decoded output using a 4096 neuron neural
population. As expected, the outputs for Fmax = 500, Fmax = 1000, and Fmax = 1500
match when normalized.
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5.4 Neural Modeling on TrueNorth

TrueNorth is a multiprocessor with a tightly coupled processor/memory architec-

ture that results in energy efficient neurocomputing13 ∗. It is comprised of 4096 cores,

each core with 65 K of local memory (6T SRAM), “synapses”, and an Arithmetic Logic

Unit (ALU) that computes 256 integrated and fire “neurons” using 20 bit fixed point

arithmetic. The cores are event-driven using custom asynchronous and synchronous

logic and are globally connected through an asynchronous packet switched mesh net-

work on chip (NOC). The chip development board includes a Xilinx Zynq 7000 SoC

(system on chip) that performs housekeeping and provides standard communication

support through an Ethernet UDP interface. A hierarchical, compositional program-

ming language is available to develop on-chip applications.31 IBM provides support

and a development system as well as “Compass”, a scalable simulator.149

Each TrueNorth neuron has a number of parameters including synaptic weights,

a membrane potential, a spiking threshold, and a delay allowing each neuron or

a small group of neurons to take on a wide variety of behaviors.178,179 All cores

operate in parallel, with spikes traveling from neurons to destination axons every

“tick”, designated by a global synchronization clock usually running at 1 kHz.
∗Parts of this subsection, and earlier versions of this subsection were previously published by the

author.146
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5.4.1 TrueNorth Corelets to Execute the NEF

To implement the NEF using Rectified Linear Unit (ReLU) neurons on TrueNorth,

corelets were designed to perform the following equations:

Jn =
∑
i

((einxi)gn + bn) (5.1)

sn = floor[max(Jn/T, 0)] (5.2)

zk =
∑

(sndnk) (5.3)

Equation 5.1 describes the input current J to each neuron n in the given pop-

ulation, using the input value x, encoding matrix e, gain g, and bias b. Equation

5.2 states the conditions under which each neuron emits s spikes, following a ReLU

neuron equation, where T is the threshold voltage. Equation 5.3 gives the decoded

value z that the neural population represents, given the decoding matrix d. In this

implementation the values for the encoder, bias, gain, and decoder matrices are com-

puted using Nengo, and then scaled and rounded to integer values for mapping to

the TrueNorth hardware. The corelets created to implement the calculations in these

equations are described in the following subsections.
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5.4.1.1 Vector Matrix Multiplication

The TrueNorth architecture provides a lookup table of four weights per neuron

column of its crossbar array, which presents challenges for calculations requiring high

bit precision multiplication. Previous work existed which described a method for 4-bit

vector matrix multiplications on TrueNorth.180 That work was extended to produce

a corelet which performed 9-bit signed multiplication on TrueNorth.181 The 9-bit

signed multiplication corelet was used with author permission in this work to map

NEF calculations onto TrueNorth.181 The precision was vital for accurate mappings

of NEF models onto TrueNorth. The vector matrix multiplication corelet was used to

multiply the input vector and encoder matrix in Equation 5.1 and the output spike

vector and decoding matrix in 5.3.

5.4.1.2 Addition and Vector Multiplication

To minimize time and resources, the addition and multiplication in Equation 5.1

was combined into one corelet. Gains are programmed as synaptic weights and applied

to the previously calculated product of the input value and encoding matrix. That

product is then added to the bias, all within this corelet. As seen in Figure 5.3, each

input is decomposed into a positive part and a negative part because on TrueNorth

there is no way to differentiate “positive” and “negative” spikes. The “positive” input is

denoted by x1+ for input x1, and x2+ for x2 and the “negative” input is denoted by x1−

for input x1, and x2− for x2. The bias is introduced into the crossbar by a bias trigger
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signal which is sent into the crossbar array at the beginning of each computation

time window. The one-bit bias trigger is initially multiplied by a synaptic weight

equal to the corresponding NEF neuron’s bias and then fed back into the crossbar to

be multiplied by a scaling value, v, before it is added to the “positive” or “negative”

neuron’s membrane potential. If the bias is positive it is added to the “positive”

neuron’s membrane potential and if it is “negative” it is added to the “negative”

neuron’s membrane potential. Thus the “positive" and “negative" neurons will give

the result of Equation 5.1 when aggregated together. Although the bias for each

neuron was initially passed into each crossbar as another input, this corelet was later

changed to the described design to reduce the overall number of inputs that would

need to be passed into the system, especially since the number of bias inputs would

grow proportionally to the size of the neuron population in the NEF model. The

corelet behind the initiation of the bias trigger is the same as the corelet described in

Subsection 5.4.1.5.

5.4.1.3 Rectified Linear Neuron Unit

In this work a Rectified Linear Unit (ReLU) neuron model was utilized as the

neuron model for the NEF/Nengo neurons. These neurons fire according to Equation

5.2. Nengo models can be implemented using any neuron model, but because of the

constraints of the TrueNorth architecture, a ReLU neuron provided an achievable

neural computation given the digital platform and neuron parameters of TrueNorth.
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Figure 5.3: This corelet calculates the multiplication of each NEF neuron’s gain and
the addition of its bias. The previously calculated product of the input and encoding
matrix flow into the crossbar, separated into “positive” and “negative” parts, each
entering through their designated axon. They are multiplied by a synaptic weight
equal to the gain and aggregated in their corresponding “positive” or “negative” neu-
ron. The bias signal is initiated by a bias trigger at the beginning of the computation
window. This one-bit trigger is multiplied first by the bias of that neuron, and then
fed back to also be multiplied by a scaling value, v, before being aggregated into the
correct sign neuron’s membrane potential.

As previously stated, the inputs to each Nengo neuron are divided into a positive and

negative component and sent to the crossbar array in parallel. Concurrent with the
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arrival of the inputs, a trigger spike is sent into this core with a synaptic weight of

−255, initializing the neuron’s membrane potential to −255. Once all input spikes

have been received by the Nengo neuron core, a second trigger is sent into the core,

increasing the membrane potential by 255 and consequently setting the membrane

potential to the resultant summation of the negative and positive inputs. If values

fall below zero, the membrane potential will not reach the neuron’s threshold; there-

fore spikes will not emit from the neuron, resulting in correct rectified linear unit

computation. This neuron has a threshold of T , as seen in Equation 5.2, causing the

number of spikes emitted by those neurons to be equal to s. If the calculations pro-

duce values larger than 255, multiple triggers can be used to provide a proportional

negative initialization.

This calculation initialization is necessary because without it there is a chance

of calculating the wrong result. For example, if the positive component of the input

arrives into the corelet first, it could cause the neurons to achieve membrane potentials

above their threshold, when in reality the final value will not be above threshold due

to the negative component of the input. Through initialization of the membrane

potential, the order of the incoming spikes have no bearing on the output spikes and

the correct values are computed.
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5.4.1.4 Neuron Membrane Reset

After the arrival of the second trigger to the ReLU neuron corelet, each ReLU

neuron will emit its spikes while simultaneously dropping its membrane potential to

zero, following the TrueNorth “linear” neuron model. However, if the ReLU neuron

has a negative membrane potential after the second trigger, it will not emit any spikes

and will maintain a negative membrane potential. Its membrane potential must

be reset to zero before the computation window begins for the next computation

window to produce a correct calculation. The ReLU corelet shown in Figure 5.4a

provides this added functionality. Here, three neurons are used. Neurons 0 and

2 are identical, whereas Neuron 1’s membrane potential will be equal to Neuron 0’s

potential multiplied by −1. For example, if after the end of the second trigger Neuron

0 has a membrane potential of −5, Neuron 1 will have a membrane potential of +5

causing it to send 5 spikes to Neuron 0 thereby increasing its membrane potential back

to zero and effectively resetting the membrane potential. Alternatively, if Neuron 0

has a positive potential, Neuron 1 will not send it any spikes but Neuron 2 will send

Neuron 1 the appropriate number of spikes to reset Neuron 1’s potential to zero.

By adding this functionality, the ReLU neuron can be used to perform continuous

calculations and execute actual NEF simulations on TrueNorth.
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(a) (b)

Figure 5.4: (a) This corelet implements the ReLU neuron. First the negative trigger
initializes all neurons −255. Then the positive and negative components flow in
and are aggregated by the output neurons. Lastly, the positive trigger increases the
membrane potentials by 255, allowing the output neurons to become equal to their
true output value. This corelet also implements the membrane potential reset needed
to enable actual NEF simulations to execute on TrueNorth in successive. By feeding
the outputs back from Neurons 1 and 2, it allows the membrane potentials of all 3
neurons to reset to zero after each calculation. (b) This corelet implements a clock for
the trigger functionality needed to provide the initial decrease in membrane potential
and the final increase in membrane potential for the ReLU neurons. This corelet uses
three neuron types. Type 1 has a leak of +1 and a threshold of d, a large integer
value. Type 2 has no leak and a threshold of T/d where T is the ideal trigger time.
Type 3 has no leak and a threshold of 1. Because the first neuron has a leak of
+1 it does not require input to spike. Neuron 2 outputs n spikes beginning at time
ceil(T/d) ∗ d.

5.4.1.5 Trigger Clock Signal Generation

The trigger corelet consists of three neuron types (indicated in Figure 5.4b) on each

of the neurons. Neuron type 0 has a leak of +1 and a threshold of d, a large positive

159



CHAPTER 5. NEURAL MODELING ON NEUROMORPHIC HARDWARE

value. This neuron creates the base clock signal by spiking every tick. Neuron type 1

has no leak, and a threshold of T/d, where T is the time in ticks that the trigger should

be sent to the ReLU neuron. Neuron type 2 also has no leak and has a threshold of

1. With these neurons the trigger occurs at tick ceil(T/d) ∗ d.

Because the first neuron has a leak of +1 this neuron does not need an input to

spike. As well, the synaptic weight which connects to the neuron of type 2, has a

weight of n where n is the number of triggers fed into the ReLU neuron. Because

synaptic weights can only be in the range [−255, 255], to create an initialization

value of greater magnitude, we use multiple spikes in series. This trigger corelet was

modified from the trigger corelet described in previous work.181

Since TrueNorth can only implement integer thresholds, the values of T and d can

be manipulated to produce a trigger time close to the desired trigger time. This is not

problematic for the implementation of the NEF, as long as the trigger fires after all

incoming spikes have arrived at the ReLU neuron. If this is observed, accuracy will

not be affected, although run-time may be slightly longer than necessary to produce

correct computations.

5.4.2 Results of NEF Mapping onto TrueNorth

This work requires only six corelets per neural population to map the NEF onto

the TrueNorth hardware to execute NEF simulations. These corelets vary in their

implementation size depending on the number of neurons in the represented Nengo
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neural population and the number of dimensions that population represents.

5.4.2.1 Resources Needed

For this implementation the largest neural populations implemented on a single

TrueNorth chip contain 11,789, 10,009, and 6,880 neurons representing 5, 10, and

30 dimensions respectively, as seen in Figure 5.5. Populations representing higher

dimensions require more resources. Thus, populations that represent more dimensions

must contain fewer neurons to fit on one TrueNorth chip. However, one can tile

TrueNorth chips in series to run even larger neural populations.182
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Figure 5.5: The relationship between neural population size and the number of cores
required. The maximum sized neural populations that can fit on one TrueNorth
chip are 11,789, 10,009, and 6,880 neurons representing 5, 10, and 30 dimensions,
respectively.
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5.4.2.2 Computation Time

The computation time to execute NEF models on TrueNorth is directly dependent

on the computation window necessary for all spikes to flow through all cores. This

window is a linear function of the maximum value used in the computations. This

maximum value is also what determines the trigger times for the ReLU neurons,

which must be contained within the window for a single computation.

5.4.2.3 Accuracy

To implement NEF and Nengo models on TrueNorth all encoder, decoder, gain,

and bias matrices must be rounded and scaled to integer values within the appropriate

ranges for the hardware. This TrueNorth mapping matches the results calculated in

Python with the rounded values. 100 trials were executed with a neuron population

of 1000 neurons, representing one dimension. Their averaged results after rounding

produce a root mean squared error of 1.06.

In addition to error introduced by rounding, there is also error introduced during

the division of the threshold in the ReLU corelet. Because all values are represented

with a “positive” component and a “negative” component, when the ReLU performs

that division, sometimes the resulting value is off by one due to the integer division.

Although not initially an issue, this off-by-one error can create much larger errors later

when that value is next multiplied by the decoding matrix. As this error propagates

it makes it difficult to attain any accuracy beyond a single neuron population model.
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Future work could explore altering the VMM corelet to help mitigate this issue.

5.4.2.4 Modeling Output

Figure 5.6 replicates the neural simulation results shown in Figure 5.1 from neural

simulation execution on Braindrop and the results in Figure 5.2 from neural simu-

lation execution on a CPU, on TrueNorth. As shown by Figure 5.6, there is error

introduced during the NEF transformation, mostly due to the rounding to integer

weights required by TrueNorth, as well as an error introduced due to the division in

the ReLU neuron equation.
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Figure 5.6: Illustrates the execution of a one population Nengo model on TrueNorth
performing an identity transformation on its input x. For all models the neuron
population computes the identify of an input equal to yf (x) = Fmax(sin(fπx)) where
f ∈ 1, 2, 4. Fmax is equal to 30. (a-c) Illustrate the decoded output using a 10 neuron
neural population. (d-f) Illustrate the decoded output using a 256 neuron neural
population.

5.5 Neural Modeling on SpiNNaker

5.5.1 Overview of SpiNNaker

The spiking neural network architecture (SpiNNaker) project began with the goal

to create a processor that could simulate billions of neurons in real time.16,169 A

SpiNNaker machine consists of 48 SpiNNaker nodes connected on a printed circuit

board (PCB), shown in Figure 5.7. Each SpiNNaker node is a package that contains

a custom multiprocessor system-on-chip integrated circuit that includes 18 ARM968
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processors, each with their own local 32 kB instruction memory and 64 kB data

memory. These processors are connected via a network-on-chip (NOC) to each other,

as well as to shared on-chip resources, and a 128 MB low-power mobile dual-data-rate

(DDR) DRAM.

Figure 5.7: A 103 SpiNNaker machine, containing 48-nodes and 864 ARM processor
cores. It requires a 12 V, 6 A supply, and uses two 100 Mbps Ethernet connections,
one for the Board Management Processor and one for the SpiNNaker array. 103
boards can be connected together to form larger systems.

Primarily the cores communicate with each other through packets. These packets

follow the concept of Address Event Representation (AER) and convey a spike’s

time and the neuron from which it originated. Although SpiNNaker employs a two-

dimensional physical communication structure, the underlying architecture of the

system allows for multi-dimensional networks to be easily mapped onto the hardware.
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Packets can be 40 to 72 bits long and are directed by a router. Packets can either

be sent to a neuron’s nearest neighbors, point-to-point, multicast, or sent to a fixed

route.

SpiNNaker is optimized for modeling complex networks of simple point neuron

models. Biological relevance was highly considered while the system was designed.

Given the human brain consists of 1011 neurons, SpiNNaker was designed to model

1% to scale, or be able to model a billion neurons. To date SpiNNaker has been used

in many projects involving hardware achitecture and design, neural simulation and

system software, and neural engineering.183

5.5.2 Modeling Results

As previously described for TrueNorth, the same neural model was run on a 103

SpiNNaker machine (pictured in Figure 5.7). Figure 5.8 shows these results for neural

populations containing 256 and 1024 neurons. As expected, the output corresponds

to the output produced by the models executed on TrueNorth.
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(a) (b) (c)

(d) (e) (f)

Figure 5.8: Illustrates the execution of a one population Nengo model on a SpiNNaker
performing an identity transformation on its input x. For all models the neuron
population takes as input yf (x) = Fmax(0.5 + 0.5 ∗ sin(fπx)) where f ∈ 1, 2, 4. Fmax
is equal to 1 (orange), 0.5 (green), and 0.25 (blue). (a-c) Illustrate the decoded output
using a 256 neuron neural population. (d-f) Illustrate the decoded output using a
1025 neuron neural population.

5.6 Neural Modeling on Loihi

5.6.1 Overview of Loihi

Loihi,14 designed by Intel in 2018, is a 60mm2 chip neuromorphic processor fab-

ricated in Intel’s 14 nm FinFET processes, that allows for on-chip leaning and other

features not previously realized on neuromorphic hardware. Loihi implements 2.07
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billion transistors and 33 MB of SRAM. Its digital architecture contains 128 neuro-

morphic cores, each with 1,024 primitive spiking neural units or compartments. Loihi

cores contain four main unit types: 1) Synapse units process incoming spikes and

read out the associated synaptic weights from memory, 2) Dendrite units update the

synaptic current, u, and membrane potential, v, for all neurons within the core, 3)

Axon units generate outgoing spikes, and 4) Learning units update synaptic weights

according to the given learning rule. In addition to the 128 neuromorphic cores,

Loihi contains three embedded x86 processors and off-chip communication interfaces

which allow the connection mesh to extend in four directions onto other chips. Loihi

contains an asynchronous network-on-chip (NoC) which transmits all communication

between cores. Loihi has 16 MB of synaptic memory, providing 2.1 million unique

synaptic variables per mm2.

Special features of Loihi include its sparse network compression, core-to-core mul-

ticast communication, variable synaptic formats, and population-based hierarchical

connectivity. Additionally Loihi’s mesh communication employs a barrier synchro-

nization technique that allows time steps to be dependent on computation time, and

not governed by a global synchronization clock. Loihi provides a number of pro-

grammable variables to enable different types of on-chip learning.
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5.6.2 Modeling Results

Due to limitations in the author’s access to Loihi hardware, the author’s execution

of neural models on Loihi was constricted to during the Telluride 2018 Neuromorphic

Cognition Engineering Workshop. During that workshop, a simplified version of the

amygdala model described in Chapter 3 was executed on Loihi. Because this workshop

was the first public access to Loihi, there were a number of barriers overcome to enable

this simulation. These results of the execution of a Nengo neural model on Loihi are

shown in Figure 5.9 and Figure 5.10.

5.7 Comparison of Neuromorphic Hardware

In the previous section, the results of simulating a one-population Nengo model on

three of the four different neuromorphic platforms were shown. Figure 5.9 and Figure

5.10 illustrate the results of simulating a simplified version of the amygdala model

described in Chapter 3 on a CPU, Braindrop, and Loihi, as well as shows neurons with

the same response measured in primate amygdalae. Each column of Figure 5.9 and

Figure 5.10 illustrate a neuron from a model run on each of those platforms as well

as from the primate amygdalae with the same response to the same experiment. The

differences in the plots illustrate some of the differences of the hardware platforms.
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Figure 5.9: Illustrates neuron responses measured from an early version of the model
described in Chapter 3. Each column contains neurons measured from a different
platform that give the same response to the experiment. (a-d) Neurons measured
from primate amygdalae. (e-h) Neurons measured from a model executed on a CPU.
(i-l) Neurons measured from a model executed on Loihi. (m-p) Neurons measured
from a model executed on Braindrop.
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Figure 5.10: Illustrates additional neuron responses measured from an early version
of the model described in Chapter 3. Each column contains neurons measured from
a different platform that give the same response to the experiment. (a-c) Neurons
measured from primate amygdalae. (d-f) Neurons measured from a model executed
on a CPU. (g-i) Neurons measured from a model executed on Loihi. (j-k) Neurons
measured from a model executed on Braindrop.
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5.8 Discussion

Just as each of the discussed neuromorphic hardware platforms was designed under

different constraints and for a different purpose, each platform provides different

challenges for the execution of neural models. Because Braindrop was specifically

designed to efficiency execute Nengo models, it provides the most straightforward

user path to do so. Still, given the author’s early access to the Braindrop chip, at the

time of this experiment there were challenges to overcome with mismatch and timing,

as the author was the first Braindrop user outside of the group under which it was

created.

Overall TrueNorth is not well suited to execute Nengo models primarily due to

its “tick” global clock. Because the backend implementation of Nengo on TrueNorth

represents values as a number of spikes within a computation window, iterations of

Nengo model computations take a large number of “ticks” to complete. This is not

practical for executing large-scale Nengo models, which can already take a long time

on traditional CPUs. Additionally, because TrueNorth only provides integer synaptic

weights, Nengo weights must be rounded which introduces errors into the Nengo cal-

culations. Lastly, because of the specific implementation of the ReLU neuron corelet,

errors are introduced during each neural population calculation and are compounded

in subsequent calculations, which are not sustainable for accurate calculations of many

population models.

SpiNNaker is the oldest of the neuromorphic platforms included in this work so
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its user interface and work flow had previously been streamlined by previous users

of the system. Because of that, the author found it most straightforward to execute

Nengo models on SpiNNaker. However the Nengo implementation for SpiNNaker

does not allow users to record spikes of individual neurons within the Nengo model.

It does allow users to record decoded values of those neural populations, but for an

application where the individual neuron spikes are needed for analysis, SpiNNaker is

not a useful platform.

The author only had access to Loihi at the Telluride 2018 Neuromorphic Cognition

Engineering Workshop and at that workshop Loihi was quite cumbersome to work

with. Specifically there were still issues loading large amounts of data onto the chip

as input and reading off the large output arrays of neuron spikes. As with some of

these other neuromorphic processors, Loihi was not designed for users intending to

record from every neuron of a Nengo model at once, as is necessary for the neural

modeling work described in this thesis.

5.9 Conclusions

In conclusion, although neuromorphic engineering began with notion that transis-

tors could serve as models for biological neurons, the current neuromorphic hardware

platforms present challenges for the execution of neural models, specifically mod-

els created using the NEF and Nengo. In large neural systems where a complete
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connectomics is not known (and even for those where it is), the NEF provides a

straightforward approach to building functional models. Nonetheless, both platforms

designed specifically to execute NEF models, as well as those that were not, present

challenges when simulating these large models. Many of the existing platforms were

designed to efficiently execute trained neural networks for machine learning or for

spike based computation generally speaking, and specifically not designed for neural

model execution. To date, few users, if any, have employed neuromorphic hardware

for the actual execution of neural models. As shown in this chapter, neural models

can be executed on the existing neuromorphic platforms, but often at a cost such

that CPUs and GPUs can still often provide a comparable or even better modeling

platform. But given necessary shifts in computing due to the end of Moore’s Law,

neuromorphic hardware does continue to hold a promise Von Neumann architectures

do not.

5.10 Social Robot Neural Model Application

Despite the drawbacks of large scale neural modeling on current neuromorphic

hardware, these systems do provide an opportunity to realize novel applications in

biological plausible computing. One application area of such computing is social

robotics, which requires power-intensive models running on autonomous, portable

hardware.
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5.10.1 Introduction and Background

Social robotics is a highly useful field; up to now, social robots have been used to

provide companionship and elderly care,184,185 act as receptionists186,187 and domestic

servants,188 aid in the teaching of children,189 and assist in research to better under-

stand cognitive conditions that affect social processing like autism190,191 to name a

few †. However, the complex algorithms needed to build robots that can successfully

interact with humans in a meaningful social way require computational power previ-

ously unattainable in mobile systems. Modern low-power embedded platforms, and

fields like neuromorphic computing,9–11 provide solutions to run computationally in-

tensive algorithms on mobile platforms, necessary for robotic social interaction. This

section presents a socio-emotional robot with distributed neuromorphic processing.

The robot’s internal model generates emotional states based on visual input, and then

executes predetermined behavior based on the computed internal emotional state. In-

tel’s Loihi,14 University of Manchester’s SpiNNaker,16,26,27 and Stanford University’s

Braindrop15 were each used to run one nuclei of the model on a different neuromor-

phic processor. Although simplified, this system provides a proof-of-concept using

a novel software and hardware processing framework for more emotionally complex

social robots.
†This section was previously published by the author.192
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5.10.1.1 Existing Social Robots

Breazeal categorizes the wide range of existing social robots into four main cate-

gories: socially evocative, social interface, socially receptive, and sociable.193 Socially

evocative robots are robots where humans attribute social responsiveness to the robot

but the robot’s behavior does not actually reciprocate, like Tamogotchis and robotic

“pets”. Social interface robots use human-like social cues and facial expressions to

convey messages often as tour guides or receptionists. These robots’ behaviors are

usually predetermined or reflexive. Socially receptive robots may appear similar to so-

cially evocative robots, but socially receptive robots can additionally learn from their

human interactions and update internal models. They are passively social and re-

spond to interactions but do not engage with humans for social aims. Lastly, sociable

robots have their own internal goals and motivations and engage in social interactions

to benefit both themselves as well as others.

Many of the existing social robots tend to be either social interfaces or socially

receptive,194–197 or created with the primary purpose of exploring human-robot in-

teractions198–201 rather than social robot creation itself or socio-emotional modeling.

Few existing robots take into account more complex socio-emotional models to enable

a sociable robot with pro-social aims. Sonoh, et al. detail a robot with an emotional

model based on the amygdala, the brain region responsible for social and emotional

processing,34 and executes the model on a field programmable gate array (FPGA) for

fast processing.202 Although it includes sensory recognition and classical conditioning,
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it lacks any pro-social leanings.

5.10.2 Method

In this work we adapt the primate amygdala model previously detailed144 for use

in an interactive robotic application. The primate model, as well as our simplified

version, not only takes in visual stimuli and processes it by assessing its emotional

relevance, but also then determines an associated emotional state from which a phys-

iological response could be mounted. Differing from existing work, these emotional

states expand beyond purely fight or flight responses and include a pro-social response,

all the while processed on neuromorphic hardware.

Our model focuses on the amygdala, which is believed to be the key part of

the brain involved with the processing of social and emotional stimuli. The amyg-

dala’s primary role involves analyzing social interactions and contributing to stimulus

appraisal, relevance detection, activation of neuroendocrine responses, and somatic

motor expressions of emotions.34 A diagram of the flow of information through the

amygdala nuclei is shown in Figure 5.11. Though simplified, the amygdala model

presented here still implements the processing of emotional stimuli, value appraisal,

and provides outputs to mount an appropriate autonomic response.
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(a) (b)

Figure 5.11: (a) Diagram of information processing within the amygdala. Information
enters via the lateral nucleus (L), and then flows through the basal (B) nucleus and
accessory basal (AB) nucleus where it is combined with a stored emotional state.
Lastly information flows from the lateral and accessory basal nuclei to the central
(C) and medial (M) nuclei, where it then leaves the amygdala via autonomic outputs.
(b) Diagram of the amygdala model used in this robot. The model follows the same
simplified processing flow, with the addition of a prefrontal cortex (PFC) which stores
the previously determined emotional state. This image was adapted from the author’s
previous work.144

5.10.2.1 Model Overview

This model of the amygdala contains 2,000 neurons and consists of three main nu-

clei, a simplification and aggregation of general amygdala nuclei models. As seen in

Figure 5.11, information first flows into the lateral nucleus, which uses its distributed

spiking neurons to represent that same input. The lateral nucleus connects both to

the basal and central nuclei. The connection from the lateral to basal nuclei deduces

an emotional value from the input by translating the input into a two dimension

vector, representing the valence and arousal of the input, each with one dimension of
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the vector. This two dimensional emotional representation is adapted from existing

work.145 The basal nucleus also receives an input from another cortical region (pre-

frontal cortex, PFC) which stores the current emotional state, thus allowing the new

emotional value to be an average of the previous state and the new input. The basal

nucleus connects to a central nucleus which then translates the valence and arousal

into an emotional state. The central nucleus implements a winner-take-all configura-

tion which outputs one of three states: pro-social, neutral, or distressed. Lastly, there

is a connection from the lateral to central nucleus which only passes information if

the lateral nucleus represents a distressing input, thus providing a fast pathway to the

central nuclei to allow fast reactions to distressing stimuli. These states have been

simplified from those implemented in the original primate amygdala model,144 due to

the simplified scenarios in which this robot operates.

5.10.3 Robot Structure and System Input and Out-

put

This robot was constructed from a LEGO Mindstorms NXT robotics kit and can

be seen in Figure 5.12. To provide visual information to the system, this robot uses

Google’s AIY Vision Kit.203 The Vision Kit detects if the robot’s social partner is

smiling or frowning and returns a joy score (float between 0 and 1). This joy score is

then passed as an input to the lateral nucleus model. The Vision Kit is secured with

179



CHAPTER 5. NEURAL MODELING ON NEUROMORPHIC HARDWARE

LEGOs above the robot base.

Figure 5.12: This robot was constructed from a LEGO Mindstorms NXT robotics kit.
A Google AIY Vision Kit was mounted above the LEGO bumper car and processed
the visual input prior to input to the model. All communication between the Vision
Kit, model processing, and servo motors was performed wirelessly and described in
Section 5.10.3.2. The googly eyes direct the robot’s social partner’s gaze towards the
input sensor of the Vision Kit.

At the output of the model, the emotional state represented by the central nucleus

is transformed into a one dimensional value, where an output of 1 indicates that the

robot should drive towards the subject (the robot exhibits a state of “pro-social”) and

an output of -1 indicates that the robot should drive away from the subject (the robot

exhibits a state of “distress”). This output value is sent from the central nucleus to

the main RedisTM ‡ server, an open-source data structure store and message broker,

which then sends commands to the robot’s motor servos using ev3Link (see Section

5.10.3.2).
‡Redis is a trademark of Redis Labs Ltd
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5.10.3.1 Neuromorphic Hardware

Neuromorphic hardware provides a path towards low-power, embedded process-

ing, necessary for complex robots to interact with their environment in real time.

Although the processing for this robot was not performed on the robot itself, a future

version of this robot could have the associated chips mounted on its body for local,

wired processing. Nonetheless, by using neuromorphic platforms for this robot im-

plementation we are able to explore their tradeoffs and limitations within a real-time

system. To implement the emotional model, three different neuromorphic processing

systems were employed, including Intel’s Loihi,14 University of Manchester’s SpiN-

Naker,16,26,27 and Stanford University’s Braindrop.170

By using the Nengo software package to create our model, we make use of Nengo’s

different “backends” to run parts of the model on different hardware. That is, we de-

scribed the model in terms of the transformations that should be applied to the

values represented by the neurons at different stages of processing. The backend

software then determines the best way to achieve that mapping, given the con-

straints of the particular hardware at hand. This allowed us to design the parts

of the model initially running on a standard CPU, and then transfer portions of

the model to SpiNNaker, Loihi, and Braindrop, even though those different systems

have extremely different neuron types. The software automatically finds the con-

nection weights that will best approximate the desired functions given the available

neural resources. The Nengo SpiNNaker backend is available at https://github.
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com/project-rig/nengo_spinnaker and the Nengo Loihi backend is available at

https://github.com/nengo/nengo-loihi.

5.10.3.2 Communication

Communication between the distributed nuclei of the model was achieved us-

ing Redis, an open-source data structure store and message broker. Each piece of

hardware, including the AIY Vision Kit, LEGO Mindstorms NXT robot, and all neu-

romorphic chips, communicated through a central Redis server. The communication

was implemented as non-blocking, allowing each hardware component to read and

write at its own rate.

This non-blocking, distributed communication paradigm relied on the representa-

tion method employed by the NEF. In the NEF, the spiking pattern of a neural pop-

ulation encodes a particular value; by transmitting these values to the Redis server,

rather than individual neuron spikes, each neuromorphic platform could process in-

formation at a different rate. This representation scheme enabled cross-platform

computation by, for example, allowing Loihi’s variable-length time step computa-

tion to coexist with Braindrop’s analog real-time computation. This communication

paradigm is particularly well-suited for human-computer interaction, where the rate

of change of input (facial expression) is naturally slower than the neurons in the

underlying model.
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5.10.4 Results and Discussion

This robot was able to successfully interact in real time with persons of multiple

ages, genders, and races. It accurately detected a social partner’s facial expression,

computing a pro-social emotional state in response to smiling, a distressed state in

response to frowning, and a neutral state in response to neutral facial expression; the

robot drove towards its social partner when pro-social, drove away when distressed,

and remained stationary when neutral. Although the robot functioned well overall,

it worked best in well-lit environments. Prior to implementation in the robot itself,

the model was tested in simulation using Nengo and simulated input to verify its

functionality.

5.10.4.1 Spiking and Decoded Output

In addition to observing execution of the correct behavior, the neural output

and the decoded values were recorded from the nuclei in real time. Figure 5.14

shows the represented or decoded output values of the input and of the nuclei as the

social partner first smiles, then frowns, and then smiles again. Figure 5.15 shows the

represented values and the associated neuron population spiking as the input changes

in real-time.
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(a) (b)

Figure 5.13: Images illustrating the robot driving towards a smiling social partner
after computing an internal emotional state of happiness.
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Figure 5.14: Output values for (a) the input and (b) the lateral, (c) basal, and (d-
f) central nuclei. Output values are decoded from each nucleus’s distributed neural
activity.
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(a)

(b)

Figure 5.15: The represented value, and the associated neuron spikes for the lateral
and central nucleus populations. This data was taken during the transition from
an input of 1 (frown) to -1 (smile). The SpiNNaker implementation of Nengo does
not support recording spikes in real-time; hence, only the lateral (Loihi) and central
(Braindrop) nuclei are shown.

5.10.5 Conclusion

This work illustrates a proof-of-concept, socio-emotional robot that responds in

real-time to smiling and frowning. It differs from many existing social robots because
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it computes an internal emotional model based on socially-relevant visual inputs to

determine the robot’s current emotional state. Additionally, this robot utilizes a

distributed processing system, processing each of the three nuclei of the model on

a different neuromorphic chip, including SpiNNaker, Loihi, and Braindrop. This

distributed processing illustrates advantages and limitations of these platforms, and

provides a potential path forward for longer term, more computationally complex

social robots and emotional modeling.
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