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ABSTRACT 

 Research has shown that quantitative assessment of bone microstructure can be beneficial 

for early detection of musculoskeletal conditions such as osteoarthritis and osteoporosis. 

However, bone microstructure cannot be accurately measured using current generation x-ray 

systems due to their limited spatial resolution. Therefore, the present clinical practice relies 

primarily on the image-based metric of Bone Mineral Density (BMD), which does not 

distinguish different arrangements of trabecular microarchitecture.  

We investigate whether the recently introduced computed tomography (CT) scanners 

with enhanced spatial resolution, specifically Complementary metal–oxide–semiconductor 

(CMOS) detector-based extremity Cone Beam CT (CBCT) and ultra-high resolution multi-

detector CT (UHR-MDCT, e.g. Canon Aquilion Precision CT), could potentially enable 

quantitative assessment of trabecular microstructure in clinical settings. This could benefit the 

research, early detection, and monitoring of musculoskeletal conditions. 

 The performance of the new imaging systems is evaluated for applications in 

conventional Trabecular Morphometrics (including metrics of trabecular thickness, spacing, and 

number), in classification of trabeculae into Rods and Plates, and in texture analysis. Human 

cadaveric bone samples are used for the assessment. The biomarker results from the new 

imaging systems are compared to the gold-standard micro-CT. We also assess the accuracy and 

reproducibility of BMD measurements on extremity CMOS-CBCT using data from a pilot 

human subject study.  
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 The study shows that CMOS-CBCT and UHR-MDCT are able to achieve improved bone 

microstructure measurements compared to conventional technologies. In terms of established 

biomarkers such as BMD and texture features, the new imaging systems provide a good degree 

of reproducibility, supporting the use of CMOS-CBCT and UHR-MDCT for those biomarkers in 

the same manner as currently done with conventional modalities. Our results offer motivation for 

future clinical translation of in vivo quantitative bone microstructure evaluation using the new 

high resolution CT technologies.  
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Chapter 1 

Introduction 

1.1.1 Significance 

Musculoskeletal conditions are a major concern among the world population. Millions of 

people suffer from bone-related diseases annually, especially in the elderly. A wide range of 

musculoskeletal conditions can affect bone health including osteoporosis (OP) and osteoarthritis 

(OA) , which can significantly limit people’s quality of life [1].  

Bone mineral density (BMD), conventionally used for bone health assessment, can be 

measured reliably in conventional lower resolution CT to predict OP. However, BMD is a bulk 

measurement that reflects both the mineralization of bone and its microstructure [2]. Recent 

preclinical studies using ex-vivo and small-animal micro-CT (gold standard) show that 

independent assessment of bone microstructure might benefit early diagnosis of OA and OP. 

However, because of the small size of trabecular features (≤80–100μm)  [2], such assessment 

requires higher spatial resolution than is available on the current clinical x-ray modalities. 

Ongoing efforts to obtain quantitative assessment of trabecular microstructure in clinical settings 

also includes radiomic texture analysis. In this approach, intensity distribution patterns of small 

image neighborhoods provide indirect insights into the underlying microarchitecture.  

Recently, new x-ray imaging systems with improved spatial resolution have been 

introduced, including ultra-high resolution multi-detector CT (MDCT) and flat-panel detector 

Cone Beam CT (CBCT). We evaluate whether these systems might enable direct quantitative 
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measurements of bone microstructure in clinical practice. The higher spatial resolution of these 

new modalities comes with potential trade-offs – for example, increased noise due to smaller 

detector pixels and scatter due to the use of large area flat-panel detectors in CBCT. Such 

tradeoffs could adversely affect BMD and texture measurement accuracy. Thus, there is a need 

for comprehensive technical evaluation of those new modalities across all metrics of bone health. 

1.1.2 Osteoarthritis 

Osteoarthritis is a multifactorial condition that could be affected by factors such as 

genetic predisposition, aging, gender, and obesity. In 2010-2020, approximately 23% of adults in 

the US were diagnosed with arthritis and 10% showed arthritis-related limitation in activity, with  

numbers projected to increase [5]. The cascade of events that leads to OA is not currently well 

understood [3]. Cartilage loss and subchondral sclerosis is considered the main feature of late-

stage OA [4]. The thinning of the subchondral plate and an increase in porosity and decrease in 

density of the underlying subchondral trabecular structure are the features of early-stage OA [4].  

Research shows that factors such as joint alignment, the shape of  articular bone surfaces, 

and bone microarchitecture are all intricately involved in the progression of OA [3]. Evidence 

shows that change in both the shape of the periarticular bone and the shape of the joint itself are 

responsible for initiating the OA process [3]. Compromising scenarios such as improper 

orientation and socket placement, and femoral head deviating from its spherical optimum (Cam 

type deformities) can cause abnormal contact within the joint, which may lead to high stresses on 

underlying bones [3]. These situations can eventually trigger the onset of OA. Microstructural 

changes such as sclerosis of the subchondral bone are also typical for OA [3]. Patients with 

severe OA show an increase of bone volume density and decrease in mineralization content [3]. 
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Some studies, primarily in bone samples and animal models, suggests that cartilage loss 

and degeneration are preceded by subchondral bone alterations, such as thinning and increase in 

porosity in subchondral plate  [3]. Further animal model studies using micro-CT are still 

underway to discover information about the cascade of events in OA [3]. Due to the 

multifactorial nature of the disease, the cascade of events is likely different from human to 

animal and even between patient populations [3]. Thus, new imaging technology is needed to 

translate the pre-clinical findings regarding the role of subchondral microarchitecture in OA to 

comprehensive patient studies [3]. 

1.1.3 Osteoporosis 

Osteoporosis is the condition where bone mass drops to a level below which the 

likelihood of fracture dramatically increases. OP and OP-related fractures are a major health 

concern. It is estimated that around 40% of white women older than 50 years old and around 

13% of men will experience an osteoporosis-related fracture [6]. In 2005, the cost for OP-related 

fractures were around 13 to 20 billion dollars and is projected to keep rising [6]. 

Osteoporosis is caused by imbalance of bone resorption and formation, commonly 

influenced by endogenous hormone change and external mechanical load [7]. Such factors can 

take effect through the activities of bone cells such as osteoblasts (deposition) and osteoclasts 

(resorption) [7]. The amount and proportion of the two cells directly influence bone strength [7]. 

Bone mass peaks at age 16-25 and then gradually reduces, typically faster in women than in men 

[7]. Women lose significantly more bone mass during the first 5 years of menopause [7]. Type 1 

osteoporosis is related to the onset of menopause [7]. The primary osteoporosis related to aging 

is classified as Type 2. Different from Type 1, which only affects cancellous bone, Type 2 
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osteoporosis affects both cancellous and cortical bone [7]. This makes Type 2 OP patients more 

susceptible to cortical bone fracture [7]. On top of normal aging, factors such as dietary calcium 

deficiency, and lower physical activity all promote bone resorption and inhibit bone formation 

[7].  

While OP is typically diagnosed by a measurement of BMD, the underlying bone loss is 

associated with changes in bone microstructure. Normal cancellous bones have interconnected 

horizontal and vertical trabeculae. This structure provides great compressive strength [7]. 

However, cancellous bones have the tendency to lose horizontal trabeculae, which reduce the 

interconnected scaffolding [7]. This could cause the unconnected trabeculae to easily break 

under minor load [7]. Cortices of long bones have a compensatory mechanism to counteract the 

decrease in bone mass, which results in mid-shaft of long bones being more resistant to age-

related fracture. This, however, does not apply to the vertebral column since the cortical shell 

only accounts for 10% of bone strength. Therefore, bone microarchitecture might provide an 

additional predictor of susceptibility to OP fracture to augment the current BMD-based 

evaluation. These findings underscore the need for improved assessment of trabecular 

microarchitecture in OP. 

1.2 Quantitative Assessment of Bone using X-ray Imaging 

1.2.1 Bone Mineral Density (BMD) 

X-ray imaging measures the attenuation encountered by an x-ray beam in the object [8]. 

In CT, multiple x-ray views are acquired around the object and a reconstruction algorithm is used 

to obtain a map of the x-ray attenuation coefficient. Volumetric BMD of the object can then be 
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inferred from the attenuation coefficient [9] by using calibration phantoms with known bone 

mineral concentrations. Such measurements are typically obtained from conventional single 

energy CT, although a more accurate assessment could be achieved with dual-energy CT that can 

account for the presence of fat in yellow marrow [9]. (Note that an alternative approach for BMD 

estimation involves measurements of areal BMD from Dual Energy X-ray Absorptiometry, 

DXA. Thus technique remains the mainstay of clinical assessment of OP, although it suffers 

from biases due to tissue superposition inherent to 2D imaging.) 

A BMD test is clinically used to identify osteoporosis, predict fracture risk, and measure 

the response to osteoporosis treatment [10]. The test produces a score comparing the measured 

mineral density to an established norm [10].  

1.2.2 Radiomic Texture Analysis 

Recent publications have introduced radiomic imaging features as feasible biomarkers for 

clinical use [11] [12]. Radiomics typically operates on large databases of clinical images to 

identify combinations of quantitative image features – including various metrics of texture – that 

are predictive of a disease state.  

In this thesis, we investigate the application of radiomic texture features of bone. By 

converting medical images into quantitative attributes, texture analysis could potentially provide 

a noninvasive characterization that accounts both for the large-scale density distribution of bone 

and its small-scale microarchitecture [11]. Using texture analysis, changes in trabecular 

microstructure can potentially be detected (although not directly measured), which could in turn 

be used as a predictor of bone strength [13] [14]. Research has shown that texture features from 

CT are predictive of vertebral failure load [14]. 
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1.2.3 Measurement of Trabecular Morphometry 

In this approach, direct measurements of the morphology of the trabecular lattice are 

obtained. As discussed earlier, the applications of morphometry are typically limited to pre-

clinical micro-CT because of the need for high spatial resolution. The analysis begins with a 

segmentation step to separate the trabeculae from background. A global threshold is generally 

sufficient for micro-CT to achieve accurate segmentation, while more sophisticated segmentation 

methods modulating the threshold based on local neighborhood are needed for systems with 

lower spatial resolution [16]. Bone morphometry features including bone volume fraction 

(BvTv), trabecular thickness (Tb.Th), and trabecular separation (Tb.Sp) are then computed in 

regions of interest (ROIs) using a sphere fitting algorithm [17].  

Studies demonstrate the relation of morphometric parameters to progression of OA and 

OP. In multiple animal models for OA, an increase in Tb.Sp, and a decrease in BvTv and Tb.Th 

in subchondral trabecular bone were detected [4]. For OP, it is known that age-related 

degradation of trabecular structure includes morphological changes such as decrease in Tb.Th, 

increase in Tb.Sp and loss in connectivity [15]. 

1.2.4 Individual Trabecular Segmentation (ITS) to Assess Rod and Plate 

Morphology 

Within the framework of trabecular morphometry, structure model index (SMI) is used to 

estimate the plate or rod characteristic of the trabecular bone (from 0 being ideal rod to 3 being 

ideal plate) [18]. Research shows that plate-like structure contributes more substantially to the 

elastic behavior of bone than rod-like structure does. For hip fracture in osteoporosis, there is a 
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preferential loss of plate-like trabecular structure, which leads to compromised mechanical 

competency [19]. Other study shows that a more plate-like structure of the trabecular bone leads 

to a reduction in fracture risk [19]. Furthermore, a dramatic change from plate-like to rod-like of 

trabeculae was found to be associated with aging and osteoporosis [18]. 

Trabecular morphometry provides global characterization of the overall contributions of 

rods and plates to the trabecular lattice. An emerging methodology based on individual 

trabecular segmentation (ITS) attempts to classify each trabecula as being rod- or plate-like. This 

approach includes skeletonization and topological classification. A segmented trabecular bone 

image is first transformed into a collection of 1-voxel-thick curves and surfaces; each resulting 

voxel is then identified by a corresponding topological type (e.g. surface, curve, junction). Using 

the classified skeleton representation, the original trabecular bone image is reconstructed with 

rod-like and plate-like structures identified. Plate-to-Rod ratio is Plate bone volume divided by 

Rod bone volume [19]. 

1.3 Emerging Modalities for Bone Imaging 

Currently, quantitative CT (QCT) by conventional MDCT is used to measure BMD for 

bone health monitoring. However, the application of current generation MDCT to compute the 

metrics of trabecular micro-architecture (~50-200 μm in size) is challenging due to its limited 

spatial resolution (~250-300 μm) [16]. This thesis focuses on the following new technologies, 

which could potentially lead to better imaging performance in quantitative evaluation of bone 

microstructure. 
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1.3.1 Ultra-High Resolution MDCT (UHR-MDCT) 

 UHR-MDCT scanners such as the Somatom Force 

(Siemens) and Aquilion Precision (Canon, shown in Fig. 

1), with smaller focal spot size and voxel size than 

current-generation MDCT have recently been introduced. 

UHR-MDCT can achieve up to 2 times higher spatial 

resolution compared to current standard CT (250–300 

μm) [20]. This technology enables the visualization of details down to 150 μm [20]. As 

visualization capability approaches the size of trabeculae, improved quantification of trabecular 

structure could potentially become possible. 

1.3.2 Extremity Cone Beam CT (CBCT) 

 CBCT systems investigated here are based on Onsight 3D extremity scanner (Carestream 

Health, Rochester NY) [16]. This system 

(Fig. 2) has the advantage of being able to 

perform both volumetric weight-bearing 

and unloaded extremity imaging [16]. 

Furthermore, it uses an amorphous Silicon 

(aSi) Flat Panel Detector (FPD) that offers 

improved spatial resolution compared to the current MDCT, owing to its smaller  pixel size of 

~150 μm [16]. Recently, a new configuration of the CBCT system that replaced the aSi FPD 

with a custom Complementary metal–oxide–semiconductor (CMOS) detector was also 

investigated [16]. With an even smaller detector pixel size, higher frame rate, and lower 

Figure 8: Aquilion Precision CT 

( us.medical.canon) 

Figure 9: Extremity CBCT in (a) weight-bearing and (b) 

unloaded imaging configurations [16] 

https://us.medical.canon/products/computed-tomography/aquilion-precision/
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electronic noise, the CMOS detector can further enhance the performance of the extremity CBCT 

system [16] in high-resolution imaging tasks such as quantitative assessment of bone 

microstructure.  

1.3.3 Pixelated Columnar Csl:TI Scintillator 

 In conventional CT and CBCT 

detectors, x-ray energy is converted to light 

in a scintillator, where x-rays interact with a 

scintillation material through the 

photoelectric effect. The photoelectron 

produced through the photoelectric effect de-

excites and produces light, which is 

subsequently converted to electrical current through the attached photo-diode [8]. Traditionally, 

trade-off exists between the thickness of the scintillator and the resulting resolution, with thicker 

scintillators providing better absorption (from increased probability of photon interaction within 

the longer path along the scintillating material) but reduced spatial resolution due to scintillation 

light spread, and vice versa (Fig. 3). 

 A newly developed pixelated 

columnar Csl:TI scintillator (Fig. 4) for 

the previously mentioned extremity 

CMOS CBCT can reduce light spread due 

to light channeling inside the laser-cut 

pixels, offering improved spatial 

Figure 10: Schematic of a laser pixelated, micro-columnar 

CMS CsI:T1 and the edge profile of pixelated 675 μm CMS 

CsI:Tl with a pixel pitch of 100 μm [2] 

Figure 3: Illustration of light spread in scintillators 
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resolution and contrast. The new scintillator technology, combined with the previously 

mentioned CMOS technology, could provide an even greater improvement in resolution from 

current standard MDCT while having low electronic noise, which benefit the accuracy and 

reproducibility of trabecular measurements.  

1.3.4 Performance Assessment  

With resolution approaching the size of trabeculae, the systems mentioned above could 

potentially enable the individual morphometric measurement of trabecular microstructure and 

could in turn generate biomarkers to facilitate a better understanding, prognosis, and assessment 

of OP, OA, and other bone diseases. Thus, the performance of the above systems is analyzed in 

this thesis for their ability to address the current challenges faced in trabecular measurements.  

1.3.4.1 Trabecular Morphometry 

 The above-mentioned emerging high-resolution imaging modalities were assessed in 

terms of correlation and quantitative agreement of trabecular morphometry with gold standard 

micro-CT to determine if their resolution is sufficient to enable robust, direct detection of 

pathological changes in bone microstructure.  

1.3.4.2 Reproducibility of Texture Features 

 For texture analysis, which could be performed by both the current generation CT and the 

new high-resolution modalities, the higher resolution CT could potentially affect local image 

texture, thus influencing the resulting texture features. This could make the established texture 

analysis pipeline developed for current MDCT inappropriate for the new CT modalities. Thus, 



11 
 

we evaluated the agreement between texture features generated using the new CT modalities and 

the texture features from current standard MDCT. 

1.3.4.3 Performance in BMD Measurements 

 CBCT has the advantage of isotropic resolution and volumetric coverage without 

translation. However, the latter advantaged is associated with increased x-ray scatter that may 

result in cupping and streak artifacts. This could adversely affect quantitative accuracy of BMD 

measurements. Thus, it is also necessary to assess the performance of new CT modalities in 

BMD evaluation. 

1.4 Thesis Overview and Outline 

1.4.1 Thesis Statement 

 Technical performance evaluation of the emerging high-resolution x-ray imaging 

systems, specifically UHR-MDCT and CMOS-based CBCT, indicates that this new generation 

of clinical scanners provides improved in vivo assessment of human bone micro-structure 

compared to the current systems, while maintaining the capability for application of established 

bone biomarkers of BMD and radiomic texture features. 

1.4.2 Outline 

 Chapter 2 details the technical specifications of the previously mentioned high-resolution 

imaging technologies and introduces the biomarkers considered in the performance evaluation 

studies. Implementation details of a general pipeline for generating each biomarker are 
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discussed. Model-based algorithms for quantitatively accurate reconstruction of CBCT human 

subject data are also introduced in this chapter.  

 Chapter 3 presents the performance evaluation of Ultra-High-Resolution MDCT (UHR-

MDCT) and Chapter 4 presents the evaluation of CMOS-CBCT and aSi FPD-CBCT. In addition 

to the results of the performance evaluations, we discuss the procedures for registration of the 

scan volumes to ground truth micro-CT, for placement of Region of Interests (ROIs) for 

biomarker measurements, and for optimization of the settings of the biomarker measurement 

algorithms. 

 Chapter 5 discusses the future directions for development of imaging systems for 

quantitative bone imaging, specifically by using pixelated scintillators. The performance of a 

CMOS detector with a pixelated scintillator is evaluated in terms of trabecular morphometry. A 

general summary and discussion of the investigations presented in the thesis is provided in 

Chapter 6.  
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Chapter 2  

Methods 

2.1 Novel Imaging Systems for In Vivo Studies of Bone 

 The following section lay out in detail the technical specification of the high resolution 

imaging modalities that are investigated in this thesis. 

2.1.1 Ultra-High Resolution MDCT (UHR-MDCT)  

The high-resolution MDCT system (UHR-MDCT), with reduced focal spot size (0.4×0.5 

mm) and ~150 μm pixel size, has been reported to deliver ~2× improved spatial resolution 

compared to conventional MDCT. The two protocols listed in Table 1 were used for imaging: 

Ultra High Resolution acquisition and Normal Resolution, which represents current generation 

MDCT [16].  

2.1.2 Extremity Cone Beam CT (CBCT) 

  The aSi FPD and CMOS-CBCT systems were based on the Onsight3D extremity 

scanner, which was designed to enable weight bearing imaging in a natural stance [16]. The 

gantry accommodates 

source and detector 

motion around the 

patient leg, and, by 

changing the height 

Table 5: Comparison between NR-MDCT and UHR-MDCT [16] 
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and gantry angulation, can also be 

used for unloaded upper or lower 

extremity imaging [16]. The 

difference between the two imaging 

systems is summarized in Table 2. 

While the aSi FPD already offers a 

substantial improvement in resolution 

compared to current MDCT due to 

smaller detector pixels, the CMOS detector provides a higher frame rate, smaller pixels, and 

lower electronic noise. With its smaller pixel size and reduced scintillator thickness, CMOS-

CBCT achieved higher resolution compared to aSi FPD-CBCT. This improvement in 

performance can be visualized through the modulation transfer function (MTF) plot in Fig. 5, 

which shows a ~1.2× improvement in the limiting frequency (MTF at 10%) of CMOS-CBCT 

compared to aSi FPD.  

2.1.3 Pixelated Columnar Csl:TI Scintillator 

 Microcolumnar CsI:TI scintillator screens are 

widely used as they offer an advantageous trade-off 

between detection efficiency vs. spatial resolution 

owing to partial light channeling in the microcolumns 

[2]. However, microcolumnar CsI:TI scintillator 

screens still suffer from the lateral light spread which 

limits system resolution through the resulting blur [2]. 
Figure 5: CMOS and FPD detector MTF 

measurements [15] 

Table 6: Comparison between FPD-CBCT and CMOS-CBCT 

systems [16] 
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A recently developed pixelated columnar CsI:TI scintillator employs micro-machined detector 

pixels to reduce light spread to the dimension of the detector pixels. This, in turn, improves 

resolution without the need to use thinner scintillators, thereby minimizing the reduction in x-ray 

absorption. In our studies, we used a laser-machined high crystallinity CsI:TI film [2]. Atomic 

layer deposition (ALD) coating was applied to prevent light from crossing into surrounding 

pixels [2]. After the laser treatment, a loss in resolution was initially observed (Fig. 6). However, 

after the application of ALD coating, the resulting samples showed a ~47% increase in 

resolution, a 77% gain in contrast, and an 83% gain in contrast at Nyquist frequency compared to 

an unpixellated detector of the same thickness [2]. 

 

  

Figure 6: MTF results of  ~700 μm thick CsI:Tl film, after pixilation (left) and after ALD coating. Zoom-in of the 

high-frequency range of the MTF showing 83% gain in contrast at Nyquist frequency  [2]. 
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2.2 Performance Evaluation in Quantitative Assessment of Bone Health 

2.2.1 Trabecular Microstructure Morphometry 

The four trabecular structure metrics illustrated in Fig. 9 were used: BvTv; Tb.Th; Tb.Sp; 

and Tb.N. BvTv is the fraction of the mineralized bone voxel to the total number voxels in an 

ROI. Tb.Th measures the thickness of a segmented trabecular ridge. Tb.Sp measures the spacing 

between the 

trabecular 

ridges. The 

Tb.Th and 

Tb.Sp 

computations use a sphere fitting algorithm [21]. Tb.N is the inverse of the distance between 

mid-axis of segmented trabeculae.  The Tb.Th, Tb.Sp, and Tb.N values used in the performance 

evaluation below represent the mean of the non-zero measurements within the ROI (mean of 

yellow/red area in Fig. 7) [22]. 

 Figure 8: Illustration of the pipeline for obtaining trabecular morphometry. 

Figure 7: Illustration of metrics for quantifying trabecular microstructure [16] 
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We used human bone samples for evaluation of trabecular morphometry. Fig.8 illustrates 

the pipeline for generating trabecular measurements from scan data. A micro-CT scan of the 

bone sample was used as the ground truth. The ROIs for subsequent analysis were first defined 

in each of the Micro-CT volumes as a binary mask (Fig. 9). To locate the same ROI in bone 

scans obtained on the other CT systems, each micro-CT bone volume was registered to a CT 

scan of the same bone sample using MITK. ROIs generated in the micro-CT volume were then 

transferred to the corresponding 

scan volumes using a 

transformation matrix obtained 

through the registration step. As 

a result, the same set of ROIs 

could be placed in the scans of 

a particular bone for all CT 

systems under investigation.  

Segmentation was applied to all cropped ROIs to delineate the trabecular structure from 

the background. For micro-CT, which has 

high resolution, MITK’s Otsu segmentation 

was used. Otsu’s method generates a binary 

image from the original grey level image by 

finding the threshold value that maximizes 

inter-class variance and minimizes intra-class 

variance. For CT scans with limited 

resolution, such as the images obtained from Figure 10: Pseudocode Illustration of Bernsen 

segmentation [23] 

Figure 11: Illustration for ROI (white) selection in bone sample (left) and 

bone core (right) 
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CBCT and MDCT, Bernsen’s thresholding was used. Before applying the Bernsen’s 

segmentation, all volumes were converted to 8-bit.  

Bernsen’s thresholding has two user defined parameters: radius and contrast threshold 

[23]. For each voxel in the volume, a square local neighborhood with size defined by the user 

specified radius variable was used to generate two values:  

𝐿𝑜𝑐𝑎𝑙 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑙𝑜𝑐𝑎𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑙𝑜𝑐𝑎𝑙 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 

𝐿𝑜𝑐𝑎𝑙 𝑚𝑖𝑑 𝑔𝑟𝑎𝑦 =  (𝑙𝑜𝑐𝑎𝑙 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 + 𝑙𝑜𝑐𝑎𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚)/2 

Fig. 10 outlines the pseudocode of Bernsen’s segmentation. The user-selected contrast 

threshold considers the intensity difference in a neighborhood of a voxel. Below the threshold, 

the neighborhood is considered uniform and the voxel is assigned to the class of the entire 

neighborhood. This method can therefore effectively ignore minor local intensity changes due to 

blur or artifacts. For neighborhoods exhibiting more contrast that the threshold, the voxel class is 

determined by comparing the voxel value with the mid gray value of the neighborhood. Previous 

studies in CBCT showed that a global pre-threshold before Bernsen segmentation helps in 

removing background noise and tissue, and facilitates better delineation of trabecular structures 

[16].  

A previously developed framework [22] used to generate trabecular metrics for each 

ROI. However, the previous implementation cropped the ROI-masked volume before computing 

the metric – i.e. any voxel outside of the mask was assigned a zero value. Since the code uses a 

sphere fitting algorithm, this could cause the value of the metrics to be erroneously calculated in 

areas adjacent to the ROI boundary. Specifically, a continuous trabecular structure would be 

showing an artificial sharp edge at the ROI boundary. To avoid the inaccurate calculation at the 
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edge of the ROI, in this thesis we chose a different approach. Instead of cropping the segmented 

volumes before computing the metric, we cropped the volumes containing the local 

morphological measurements before obtaining their mean values for the analysis, but after 

segmentation.   

The metric values from the different modalities were then correlated with the ground 

truth values obtained from micro-CT to assess imaging performance. In order to find the optimal 

Bernsen segmentation settings, a parameter sweep for radius and contrast threshold was 

conducted. The parameters that yielded the best correlation with micro-CT were used. 

2.2.2 Digital Topological 

Analysis (DTA) to Assess 

Rod and Plate 

Morphology 

 In addition to the 

conventional geometric 

measurements, we also 

considered the metric of Rod 

to Plate ratio. As mentioned in 

the introduction, the proportion 

of Rod-like to Plate-like 

structures correlates with bone 

strength and fracture risk. 
Figure 12: Pseudocode illustrating the primary thinning of the DTA 

algorithm 
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 Digital topological analysis (DTA) involves skeletonization and topological 

classification. The shape preserving parallel thinning algorithm proposed by Saha et. Al. [24] 

was implemented for skeletonization. As a result, the segmented trabecular bone image (see 

Section 2.2.1) was transformed into 1-voxel-thick curves and surface skeletons, where the curve 

represented the rod-like structures and the surface represented the plate-like structures in the 

trabeculae.-like structures and surface represented the plate-like structures in the trabeculae. 

 The skeletonization procedure iteratively 

removes surface voxels from the original binary 

volume and saves voxels that are integral to the 

structure until the original volume is reduced to 

a skeleton. The algorithm (Fig. 10) is able to 

track the voxels deleted and saved as part of the final skeleton in each iteration, so the skeleton 

volume can be traced back to the original form. Before the iterations, object voxels are set to 0 

and background voxels to −1000. At each iteration, the iteration number is tracked. A threshold 

value is computed, which is then assigned to the points deleted in that iteration. As the algorithm 

progress, points saved or deleted in each iteration have a unique identifier, with voxels smaller 

than 0 always belonging to the background. Since the algorithm processes each of the surface 

points based on its 3×3 neighborhood, under some circumstances two connected voxels could 

both satisfy the condition for deletion in an iteration. However, it would break the structural 

connectivity if both were deleted. To avoid this situation, the volume is processed as eight sub-

fields, such that no two voxels within each sub-field are 26 connected. 

Figure 13: Illustration of e-open (left) and v-open 

(right) points. (The red voxel represents the voxel of 

interests, the yellow voxel represents background, and 

the blue voxels represent the object) 
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The skeletonization has 

two steps: primary and final 

thinning. The primary thinning 

iteratively removes surface 

voxels from the binary volume 

(Fig. 11). In each iteration, the voxels in the current outer shell of the object are identified as s-

open points (object point with one 6-connected background point), e-open points, or v-open 

points (Fig. 12 for neighborhood voxel composition).  

The identified voxels will be saved if they are 

structurally integral (shape points). Shape points can be 

classified either as a rod-like or a plate-like structure. A rod-like 

structure should, in one dimension, be 6-closed path by 

background, and have two object points extended one from each 

end (Fig. 13). A plate-like structure should be one to two-voxel 

thick in one dimension and have at least one 26-connected point 

in each of the orthogonal directions (Fig. 14).  

 The identified voxels will be deleted if they are ‘simple 

points’. A voxel needs to satisfy four conditions to be 

considered ‘Simple Point’: (1) have at least one 26-neighbor 

object point; (2) have at least one 6-neighbor background point; 

Figure 13: Illustration of rod-like 'Shape Point'. (The red voxel is the 

voxel of interest, background voxels in the yellow neighborhood should 

form a 6-closed path in (A), at least one voxel should be object in the blue 

neighborhood of (B) and yellow neighborhood of (C)) 

Figure 14: Illustration of plate-like 

'Shape Point'. The yellow voxels and 

at least one of the green voxels 

should be background in the left 

figure. Each of the columns should 

contain at least one object voxel in 

the right figure 

Figure 15: : Illustration of Simple 

Point conditions. The red voxel 

represents the voxel of interest. The 

two 6-neighbor background points 

(yellow in the left figure) could form 

a 6-connected component through the 

18-neighbor background point (blue 

voxel in the right) 
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(3) all 26-neighbor object points are 26-connected to each other; and (4) all 6-neighbor 

background point are 6-

connected through 18-neighbor 

background points (Fig. 15). 

An addition condition needs to 

be satisfied to delete a e-open 

point. This condition checks if 

the topology is preserved in each plain before the deletion 

(Fig. 16).  

 After primary thinning, the volume result will 

consist of 1-2 voxel thick skeletons. The final thinning step 

is carried out to remove any undesired voxel that constitute a 

2 voxel thick structure. The definition of ‘Thick Point’ was 

introduced for point 

classification in the 

final thinning stage 

(Fig. 17). Refer to 

Fig. 18 for the 

pseudocode of final 

thinning. 

The 

topological 

classification 

Figure 16: Illustration of e-open point deletion (for each of the three 

planes passing the voxel of interest (red), either all the yellow points in (A) 

are object points, or all the object points in the green neighborhood of (B) 

are 26-connected while not forming any tunnel. A tunnel is formed when 

all four green points are object points in(C)) 

Figure 17: Illustration of 'Thick Point'. 

For a point of interest (Red), the two 

green voxels should be background and 

blue voxel should be object in left 

figure, a pair of 26-connected blue 

points should be object points in the 

right figure. 

Figure 18: Pseudocode for the final thinning 
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algorithm proposed by Saha et. al. was 

used for classifying each of the resulting 

skeleton points [25]. Each of the object 

points was classified based on the voxel 

arrangement of its neighborhood points. 

The 3-by-3 neighborhood around the point of interest were extracted, and the central point was 

set to zero. Three attributes were computed to classify each point: the number of tunnels, number 

of 26-components, and the number of cavities (Fig. 19). 

To find the number of tunnels for one voxel, all 18-neighbors background voxels were 

first isolated. The number of 6-connected components were found in the group of background 

points. The number of tunnels was 1 minus the number of 6-connected components that also 

contained a 6-neighbor background point.  

All skeleton voxels were first classified into 9 groups based on the composition of their 

object 6-neighbors. For a voxel’s neighborhood, if a 6-connected point belongs to the object, the 

surface that it belongs to could be ignored, since the class of other point on the surface would not 

affect the computation of the attribute. The same is true for e-points (Fig. 16 B): if an e-point 

belongs to the object, the edge that it belongs to could be ignored. Thus, for number of 26-

component, the attribute could instead be formulated as the number of object 26-component in 

the remaining neighborhood. Due to the limited variation that the remaining voxels exhibit after 

ignoring surfaces and edges, and the fact that an attribute computed from one orientation of the 

voxel composition is applicable in different orientations, a lookup table was generated in which 

the 3 attribute numbers were generated for all voxel compositions in each of the nine classes.  

Figure 19: Illustration of a tunnel (A), e-points (B), and a cavity 

(the green voxels are object while center point is zero) (C)  
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By applying the lookup table to all skeleton voxels, each skeleton voxel was assigned a 

set of three attribute values. Using a predefined lookup table [25] that matched the attribute value 

to a topological voxel type, each voxel was categorized into 1 of the 8 voxel types. Voxel type 

includes edge point of surface, inner point of surface, junction point of surface, junction point of 

surface and arcs, arc end point, inner point of arc, junction point of arcs, and isolated point. 

The algorithm was implemented such that the resulting skeleton volume contained the 

information about all the points that had been deleted in each iteration. Thus, it is possible to 

return the skeleton back to the original structure layer by layer. To approximate the rod and plate 

structure in the original volume, all the arc points were assigned a value of 1, all surface points 

were assigned a value of 2, and all junction points were assigned a value of 1.5. For each added 

layer, each of the voxels would assume the mean of its existing object voxel neighbors as the 

value. When all the points were added back, a threshold was applied to the whole volume, and 

voxels with values larger than 1.5 were classified as plate-like structures. Voxels with value 

larger than 0 and smaller than 1.5 were classified as rod-like structures. Plate to Rod ratio was 

then computed as the number of plate voxels divided by the number of rod voxels [26]. 

2.2.3 Texture Analysis 

 Texture features were 

extracted and analyzed for 

different imaging protocols. 

The original scans were 

converted to 8-bit grayscale 

volumes for texture analysis. Digital masks were generated to identify bone samples in the scans. 

Figure 20: Illustration of GLCM and GLRLM matrix for (1,0) direction 
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A set of 403-voxel ROIs were 

generated within each bone mask. 

Within each dataset, the bone 

sample scans from different 

imaging protocols were aligned at 

the same orientation. For situations 

were the same bone was imaged in 

different orientations or on 

different scanners, the bone masks 

were first registered, and the ROIs 

were then regenerated for each 

dataset. 

 A remote module for Insight 

Toolkit named itkTextureFeatures 

was used to generate texture feature 

maps from the CT scan volumes 

[27]. Co-occurrence features were 

generated from the grey level co-

occurrence matrix (GLCM) for each 

voxel’s neighborhood. Similarly, run 

length features were generated based 

on the grey level run length matrix 

(GLRLM) computed for each voxel’s neighborhood. GLCM is a 2-dimensional histogram where 

Table 8: GLCM features equations [27] 

Table 7: GLRLM features equations [27] 
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each axis represents all possible voxel values in a neighborhood. For a given pattern, each bin in 

the histogram records the number of instances in a neighborhood where two voxels of the 

specific value are arranged as the pattern specified. GLRLM is also a 2-dimensional histogram, 

the x axis represents all possible voxel values, while the y axis represents the number of 

consecutive occurrences of the same voxel value in a given direction. For a given direction, each 

bin in the histogram records the number of instances where a specific number of continuous 

voxels of a specific value are lined up in the specified direction. See Fig. 21 for illustration of the 

texture features. 

 Table 3 lists the features generated from GLCM and Table 4 for GLRLM features and 

their equations, in which g(i,j) is the 

element in the corresponding cell in 

the matrix g, μ is the weighted pixel 

average, and σ is the weighted pixel 

variance. μt and σt are mean and 

standard deviation of the row sums in 

the GLCM and GLRLM matrix. Refer 

to Fig. 12 for illustration of the texture 

features. 

Multiple parameters could be 

specified for computing the texture 

features, including the number of 

intensity bins for both the GLCM and 

the GLRLM matrices, the maximum Figure 21: Illustration of GLCM and GLRLM texture features 
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radius of the neighborhood used to compute the texture matrix for each voxel, and the maximum 

run-length for computing the GLRLM. By default, the texture feature includes all possible 

intensity values, and the feature value is calculated as an average of the results from all possible 

pattern directions.   

Texture features for each ROI were extracted as the mean value for all the voxels in the 

ROI (Refer to Fig. 22 for the texture generation pipeline). 

 

2.2.4 CBCT Reconstruction and Bone Mineral Density Analysis 

 Pairs of human knee scans obtained two weeks apart were used for the BMD 

reproducibility analysis. Artifacts such as noise and streaking due to scatter and beam hardening 

could make the attenuation values from CBCT inaccurate and inconsistent, potentially causing 

the derived BMD to be erroneous. Reducing such artifacts could make the BMD measurement 

more reproducible which in turn facilitates better diagnosis. 

Figure 22: Pipeline for generating the texture features 
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To minimize scatter and beam hardening artifacts, we used a previously established 

polyenergetic penalized likelihood (poly-PL) reconstruction incorporating an ideal mixture 

model of tissues and an accelerated Monte Carlo-based scatter correction, as proposed by Cao et 

al [28] based on Elbakri et al [29]. The Poisson maximum likelihood objective function for the 

reconstruction was formulated in terms of base materials: water and calcium carbonate [28]. The 

algorithm finds the densities of the two materials in each voxel [28].  

An initial reconstruction was first obtained using FDK with a 0.8× Nyquist frequency 

cutoff. Using the proposed ideal mixture model, the attenuation value of each voxel in the 

volume was interpolated into density. The density volume was subsequently used for a Monte 

Carlo-based scatter correction and for initialization of poly-PL (after 3 iterations of FDK and 

Monte Carlo scatter correction).  The edge preserving Huber penalty was used as a regularization 

term in poly-PL. Optimization was terminated at 100 iterations. A FDK reconstruction with 

constant scatter correction was also generated along with the iterative reconstruction.  

Figure 23: Illustration of the BMD analysis pipeline 
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 After reconstruction, the pairs of scans of the same subject – separated by a 2-week 

interval where we assumed no change in BMD – were registered using MITK. Tibia and Femur 

were registered separately to account for discrepancies in knee angle. ROIs were defined for 

Femur, Tibia, and tissue in the proximity of each bone in the first of the two scans. Those ROIs 

were transferred to the second scan using the registration transforms. Mean voxel value was 

computed for each ROI for further analysis. 
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Chapter 3 

Performance Evaluation of UHR-MDCT 

3.1 Sources of Data and Imaging Protocols 

  An ~18 cm plastic cylinder containing samples of a human radius, ulna, hamate, tibia 

plateau, and a vertebra was used as the imaging phantom. The phantom was first imaged without 

any additional attenuators (referred to as an In-Air scan) at different x-ray exposure levels (5 - 

100 mAs). In a subset of the scans, the phantom was embedded in an anthropomorphic thorax 

phantom (QRM-Thorax, QRM Gmbh) to study how the imaging dose and anatomical 

background affects the metrics of trabecular microarchitecture. The scans including this extra 

phantom) at different x-ray exposure levels (25 - 375 mAs) are denoted In-Body.  

Reconstructions were performed using Filtered Back Projection (FBP) with a variety of kernels 

including FC30, FC30 with iterative reconstruction, FC50, FC81, and FC81 with iterative 

reconstruction. Reference micro-CT volumes of each bone sample were obtained using a 

SkyScan 1172 system at 28 micron voxel size. For the analysis of the geometric morphometry of 

trabecular microarchitecture, both the UHR and NR MDCT volumes were resampled onto a 

Figure 24: Illustration of the ROIs for UHR-MDCT performance analysis 
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~0.028mm grid to match the voxel size of the micro-CT. We also studied how the reconstruction 

kernel and dose affect the robustness of radiomic texture features. 

 

 An initial parameter sweep was conducted to determine the sharpest reconstruction filter 

and Bernsen segmentation settings that yielded the best correlation with micro-CT. The phantom 

was scanned at 87 mAs and reconstructed with all reconstruction kernels. Cylindrical ROIs 

(diameter = 320 voxels and height = 90 voxels) were selected for each bone’s micro-CT volumes 

(refer to Fig. 24) and registered to bone volumes from other modalities and imaging protocols 

using MITK. A range of radius and contrast thresholds was tested in the Bernsen’s 

segmentation’s parameter sweep. Trabecular metrics for the various reconstruction kernels and 

segmentation parameters of UHR-MDCT were generated (Refer to Fig. 25). It was determined 

that the FC30 reconstruction kernel, along with a radius of 20 voxels and threshold of 30 image 

intensity for the Bernsen segmentation resulted in the best overall correlation of UHR MDCT 

Figure 25: Heatmap for the sweep study of  reconstruction kernels and segmentation parameters for UHR-

MDCT. 
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with micro-CT in BvTv, Tb.Th,  and Tb.Sp. Threshold = 20 image intensity and Radius = 15 

voxels was determined to be the optimal setting for segmentation of NR MDCT. 

3.2 Trabecular Morphometry 

Fig. 26 shows a comparison between UHR- and NR-MDCT for a human radius sample. 

The gold standard micro-CT is also included for reference. It can be observed that even at 5mAs 

the UHR-MDCT is able to reveal more details of the fine trabecular structures than NR-MDCT, 

despite the significant increase in noise. Fig. 27 shows a matching ROI and its segmentation for 

each modality. It can be seen that both of the UHR-MDCT segmentations show better agreement 

with micro-CT than NR-MDCT. 

Fig. 28 studies the correlation of UHR-MDCT and NR-MDCT with micro-CT at the 

matching MDCT exposure of 50mAs. As mentioned earlier, each data point represents the mean 

value extracted from an ROI. 

UHR-MDCT is able to achieve 

a substantially better correlation 

than NR-MDCT in BvTv 

(correlation is 0.91 for UHR-

MDCT and 0.85 for NR-

Figure 26: Images of a human radius obtained by micro-CT, 50mAs UHR-MDCT (In-Air), 5mAs UHR-MDCT (In-

Air), and NR (50mAs) 

Figure 27: Matching ROI and Segmentation for Micro-CT, 50mAs (In-

Air), 5mAs (In-Air), and NR (50mAs) 
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MDCT) and Tb.Sp (correlation is 0.74 in UHR-MDCT and 0.05 for NR-MDCT). Both 

modalities yielded adequate correlation for Tb.Th (0.8 for both). It is worth noting that for NR-

MDCT, the datapoints with higher BvTv and Tb.Th might bias the correlation estimate, whereas 

Figure 28: Correlation and difference plots of UHR-MDCT and NR-MDCT against 

micro-CT (at 50mAs) 
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the data points with lower BvTv and Tb.Th 

values have a more random distribution. The 

high level of correlation with micro-CT 

achieved by UHR-CT indicates that it could 

potentially track the change in trabecular 

geometry with performance comparable to 

micro-CT. 

However, a high level of correlation with micro-CT does not imply a high level of 

quantitative agreement between the two modalities. Thus, the quantitative agreement between 

the two CT modalities and micro-CT metrics was also examined. Fig. 28 shows the difference 

between the measurements obtained with the CT modalities and micro-CT, plotted against the 

micro-CT value. The mean deviation was calculated as the average deviation across all ROIs. It 

can be seen from Fig. 28 that both UHR- and NR-CT show a significant deviation from the 

micro-CT measurements. However, measurements from UHR-MDCT generally have a smaller 

deviation than NR-CT, especially for Tb.Th and Tb.Sp (mean deviation of 0.25 for NR-MDCT 

compared to 0.07 for UHR-MDCT). 

The effect of scan exposure on UHR-MDCT trabecular morphometric measurements was 

studied using In-Air scans. The correlation between scans at different exposure and micro-CT is 

presented in Fig. 29. Scan exposure had minimal effect on the three metrics down to 100mAs. 

Below 100mAs, the correlation of Tb.Sp was significantly reduced, indicating that image noise 

had a greater effect on the extraction of this trabecular metric. Fig. 30 shows the slice views of an 

FC30 In-Body scan at 375 mAs and 50 mAs.   

Figure 29: Correlation of FC30 In-Body scan at exposures 

ranging from 375mAs to 25mAs with Micro-CT 
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3.3 Radiomic Texture Features of Bone  

3.3.1 Parameter Sweep 

 A parameter sweep was conducted for texture 

features, by varying the number of intensity bins, the 

maximum radius of the computation neighborhood, 

and the maximum run-length distance. The cylinder 

was embedded in the thorax phantom as described 

above and it was scanned at 375mAs. The same ROIs 

used in the trabecular morphometry study were used for the parameter sweep. The original 

volumes were converted to 8-bit. The range of values for the intensity bin number was varied 

from 60 to 100, while the range for the maximum neighborhood radius was varied from 4 to 10 

voxels, and the range for the maximum run-length distance was varied from 4 to 16. Texture 

features were generated for all combinations of the parameters. 

Figure 30: Illustration of FC30 In-Body scan at 

375mAs and 50mAs 

Figure 31: Example plot used for visual examination of texture features as a function of the parameters of the 

texture extraction algorithm (here for the feature of Inverse Difference Moment) 
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 Optimal parameter values were determined through visual inspection and by analysis of 

correlation across different reconstruction settings. Specifically, we chose parameters that 

produced the highest correlation between the results across reconstruction settings, which 

indicated that the algorithm was able to extract similar trends from scans of the same bone under 

varying imaging protocols. Visual examination of the texture volumes was also conducted (Fig. 

31). The final parameter set was 100 intensity bins, 8-voxel maximum run-length distance, and a 

neighborhood radius of 8 voxels. 

Figure 32: Illustration of the ROIs for Texture Feature analysis in UHR MDCT. 

Figure 33: Heatmap illustrating the correlation between texture features (UHR-CT and NR-CT) 

at 50mAs and texture features of UHR-CT at 100mAs 
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3.3.2 Texture Features  

Due to the uneven presence of trabecular structures, the spine bone sample was excluded 

from the texture analysis. A new set of square ROIs with a side length of 40 voxels were 

generated for this analysis (Fig. 32). ROIs were cropped from the texture feature volume and 

each ROI measurement was obtained as the mean of texture features over all voxels. 

Figure 34: Illustration of GLCM and GLRLM features (Energy, Entropy, and HGLRE) 

Figure 35: Correlation of texture feature between FC30 and other reconstruction kernels 
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GLCM and GLRLM texture features were examined for UHR-MDCT and NR-MDCT at 

50mAs (Fig. 33). Both the correlation and concordance correlation coefficient (CCC) were 

investigated against UHR-CT at 100mAs. For UHR-CT at 50mAs, all texture features were able 

to achieve a high level of correlation (greater than 0.8); the majority achieved correlations 

greater than ~0.9. Therefore, for UHR-MDCT, the texture features appear mostly insensitive to 

confounding factors such as noise. For NR-MDCT, the correlations with 100mAs UHR-MDCT 

are generally high (correlation and Haralicks correlation from GLCM features >0.8, and HGLRE 

and LRLGE from GLRLM features >0.9). However, the CCC for NR-MDCT against UHR-

MDCT was generally poor. For GLCM, Energy, Entropy, Correlation, IDM, and Cluster Shades, 

CCC was generally around 0.05. For GLRLM, the CCC of most features were also around 0.05. 

However, features with emphasis on either high or low  gray levels generally produced a higher 

CCC, and features with long run emphasis achieve concordance comparable to that of UHR-CT 

(HGLRE and LRLGE with concordance~0.8). Since CCC takes into account the quantitative 

agreement of two variables in addition correlation, it does indicate a poor reproducibility of the 

absolute magnitude of the texture features between UHR and NR-MDCT. However, the high 

Figure 36: Concordance Correlation Coefficient of texture features between FC30 and 

other reconstruction kernels. 
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correlation of the texture features might be sufficient to enable the application of previously 

developed NR-MDCT-based predictive algorithms using texture analysis to UHR-MDCT.  

The reproducibility of UHR-MDCT texture features across reconstruction algorithms was 

also investigated. The same ROIs were used for this analysis. UHR scans at 375mAs were used 

for the study. Four reconstruction kernels were investigated: FC30 using iterative reconstruction, 

BODY (deep learning based reconstruction), FC81, and FC50. Fig. 35 provides a summary of 

the results. All four reconstruction kernels were able to achieve high levels of correlation against 

FC30 UHR-MDCT (all correlations higher than or equal to 0.8 except Inertia in the deep 

learning-based reconstruction). For CCC, shown in Fig. 36, all reconstruction kernels (except for 

FC81) exhibit poor reproducibility in some of the texture features. Features such as energy, 

entropy, correlation, IDM, and Cluster Shades in GLCM, and RE, LRE, and RLN in GLRLM 

show a consistently low correlation (0.2-0.3) for all kernels beside FC81, which was able to 

achieve an adequate correlation for all of the texture features. The result indicate that the UHR-

MDCT reconstruction kernels affect the absolute values of the texture features, but not 

necessarily the trends in those features. 
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Chapter 4 

Performance Evaluation of CMOS-CBCT and FPD-CBCT 

4.1 Sources of Data, Imaging Protocols (including Patient Study) 

A set of 26 bone cores ~8mm in diameter 

extracted from 4 human cadaveric tibias was obtained 

through a collaboration with Hospital for Special 

Surgery (HSS, New York NY). The cores were used 

for the evaluation of the CBCT systems. A water 

cylinder (~50mm diameter) containing BMD 

calibration inserts (75mg/mL CaHa and 150mg/mL 

CaHa) was placed in the same field of view as the 

bone cores (see Fig. 37 for the scan setup). This setup 

was imaged using a conventional MDCT, the aSi 

FPD-CBCT, and the CMOS-CBCT. Each core was 

individually imaged on a micro-CT system as the gold 

standard. The CBCT  performance in trabecular 

morphometric measurement structures were studied in this dataset together with its ability to 

measure the statistics of Rod-like and Plate-like trabeculae. Metrics from CBCT were compared 

to metrics obtained with micro-CT. Due to low trabecular mineral content, one sample set (8 

cores) was removed from the analysis. 

Figure 37: Axial slice showing the 

configuration of the 26 bone samples extracted 

from 4 cadaveric tibias used in the 

performance evaluation of CBCT (with BMD 

inserts) 
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 Human subject data (Fig. 38) was used to study the reproducibility of BMD 

measurements from the CBCT system as described in Sec. 2.2.4.   

4.2 Trabecular Morphometry 

After reconstruction and rescaling to BMD, the 

individual bone cores were segmented individually. For each 

micro-CT bone core volume, a mask that excludes the outer 

shell trabecular structure was generated. As mentioned in the 

Methods section, the bone masks were then transferred to a 

corresponding position in the CBCT and MDCT images 

using a transformation obtained through image registration. 
Figure 38: Example patient knee scan 

for BMD reproducibility analysis 

Figure 39: Trabecular metrics for aSi FPD-CBCT, CMOS-CBCT, and MDCT 
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Due to the high noise and the presence of soft tissue and drilling debris in the trabecular cavities, 

a high global pre-thresholding at BMD value of 70 was applied to each bone core prior to 

Bernsen’s segmentation. Previous studies indicated that thresholding at 70 BMD helps in 

removing the majority of confounding background structures. 

 A parameter sweep was carried out to determine the optimal neighborhood radius (range 

4-15 voxels) and contrast threshold (range 2-202 image intensity) for Bernsen’s segmentation. 

Due to the difference in voxel size (CMOS and FPD-CBCT have a 100 µm voxel size, MDCT 

have a ~250 µm voxel size), two set of parameters were established, one for aSi FPD- and 

CMOS-CBCT and one for MDCT. We chose segmentation settings that produced adequate 

correlations against the ground truth in the initial sweep, with balanced performance across all 

four metrics: a radius of 9 voxels and threshold of 42 image intensity for aSi FPD- and CMOS-

CBCT, and a radius of 2 voxels and threshold of 2 image intensity for MDCT. Otsu 

segmentation was used for binarization of the micro-CT volumes. 

Figure 40: Difference plots (Bland-Altman-type) between the three modalities (CMOS-CBCT, aSi FPD-CBCT, 

and MDCT) and micro-CT plotted against the micro-CT metric value. 
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Trabecular metrics were generated using the pipeline described in the Methods section.  

The metrics for the three modalities were analyzed by comparison with gold standard micro-CT 

measurement. For BvTv and Tb.N, all three modalities achieved good correlation with micro-CT 

(~0.8 or higher). For Tb.Th and Tb.Sp, a significant improvement in correlation can be observed 

in CBCT compared to MDCT. Although little improvement in terms of correlation was observed 

in BvTv, the least square best fit line is more aligned with the identity line, suggesting the BvTv 

could potentially be measured with more quantitative accuracy. Different from BvTv, which 

counts the total number of voxels in an ROI, metrics such as Tb.Th and Tb.Sp convey structural 

information. The significantly higher correlation of Tb.Th and Tb.Sp suggests that change in 

trabecular structure can be tracked with more sensitivity using CBCT, in particular CMOS-

CBCT.  Bland-Altman-type difference plots for the three modalities against micro-CT are shown 

in Fig. 40. It could be observed that, although the difference in the measured magnitude of the 

three metrics between the clinical modalities and micro-CT remains substantial, there is a 

Figure 41: Correlations of derived metrics (Tb.Th and Tb.Sp) for CMOS-CBCT, aSi 

FPD-CBCT , and MDCT 
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significant reduction in metric difference for the CBCT modalities compared to MDCT. Overall, 

CMOS-CBCT improves the correlations with micro-CT compared to aSi FPD-CBCT and 

MDCT, as anticipated based on its high spatial resolution. Therefore, CMOS-CBCT might 

provide a more sensitive tool to track changes in bone microstructure compared to the existing 

modalities. At the same time, achieving accurate measurements of microstructural metrics such 

as TbTh (as opposed to detecting trends in those structural features) remains a challenge using 

clinical imaging technologies, although the new high-resolution modalities yield a clear 

improvement in this respect as well. 

4.2.1 Derived Trabecular Metrics 

 The studies in the previous subsection utilized direct measurements of Tb.Th and Tb.Sp 

obtained from CBCT and MDCT volumes. An alternative approach, previously developed for 

lower resolution imaging technologies, involves deriving those metrics from BvTv and TbN, 

which are less sensitive to system resolution [30].  

The derived Tb.Th and Tb.Sp metrics were also computed for CBCT and MDCT and 

compared to the gold standard micro-CT measurement. As shown in Fig. 41, the derived Tb.Th 

metric exhibits overall a better correlation with micro-CT than the directly measured metric 

does; a significant improvement in correlation can be observed for MDCT (from 0.19 to 0.67). 

However, an overall decrease in correlation is observed for Tb.Sp in all modalities, revealing the 

complex tradeoffs between the settings of the segmentation algorithm and the technique used to 

obtain the trabecular measurements (note that the segmentation settings were not optimized for 
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derived metrics – rather, we 

used the same settings as in 

the direct measurements of 

the previous section).  

4.3 Rods and Plate 

Morphology 

 We used digital 

topological analysis to classify 

the trabeculae into rods and 

plates in CMOS-CBCT, aSi 

FPD-CBCT, and micro-CT 

(reference gold standard). The skeletonization was visually inspected at different cross sections 

of the volumes  (Figs. 42 and 43). Rod to Plate ratio was computed for each bone core scanned 

with FPD-CBCT, 

CMOS-CBCT, 

and Micro-CT. 

CBCT 

performance was 

analyzed against 

the gold standard 

micro-CT result. 

Figure 43: Visual Inspection of the thinning algorithm 

Figure 42: Illustration of the classification of rod-like and plate-like trabecular 
structures 

Figure 44: Correlation of CMOS and FPD Rod to Plate ratio against Micro-CT Rod to Plate 

ratio 
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 Results lead to the 

conclusion that the topological 

analysis is resolution dependent. 

Thus, a parameter sweep study 

was conducted to determine the 

level of up-sampling of the 

binarized CBCT volume needed 

before the topological analysis. 

3× up-sampling was determined 

to be optimal as it produced the highest correlation of the rod-plate ratio with micro-CT. 

 Fig. 44 studies CBCT performance in quantifying rod to plate ratio in the trabecular 

region. It could be observed that aSi FPD-CBCT, achieves better correlation with micro-CT than 

CMOS-CBCT, despite its lower spatial resolution. This might be because the smoother 

appearance of aSi FPD-CBCT volumes is better suited for the skeletonization algorithm than the 

sharper, but slightly noisier CMOS-CBCT images (Fig. 45). Future work will involve 

optimization of CMOS-CBCT reconstruction protocols to improve the performance of the rod-

plate analysis.  

4.4 BMD Reproducibility in CMOS-CBCT  

 As described in the Methods section, the human subject data was used to assess the 

reproducibility of BMD measurements obtained on CMOS-CBCT. This study investigates 

whether the beam hardening and scatter corrections developed for CMOS-CBCT are sufficient to 

enable robust BMD evaluation.  

Figure 45: Classification result from Micro-CT, FPD, and CMOS 
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A total of 12 ROIs with a radius of 15 voxels and 10 

voxels thickness were generated for each bone scan, 5 for the 

femur, 5 for the tibia, and 2 for tissue in the proximity of 

each bone (see Fig. 46 for ROI illustrations).  As explained 

earlier, the ROIs were first generated in the FDK patient 

scans from the first week and then transferred by registration 

to the second week data and to the Poly-PL reconstructions.  

Corresponding ROIs of the same subject were 

compared between the two visits to study the reproducibility 

of the CMOS-CBCT system. Box plots of all the pixels 

within each ROI and heatmap of the mean ROI values were generated for this analysis (see Fig. 

Figure 46: Illustration of ROIs for 

BMD reproducibility analysis in human 

subjects CMOS-CBCT. 

Figure 47: Boxplot of ROI voxel values and a heatmap of mean ROI values for an example 

human subject dataset. 
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47 for an example box plot and heatmap for one of the subjects).  Overall, the corresponding 

ROIs for the 8 patients had a similar mean value and distribution for both FDK and Poly-PL.  

 A paired t-test with 5% confidence interval was also conducted per patient if the ROI 

measurements from the two visits have the same mean and an overall difference of zero. For 

FDK, the t-test confirmed the hypothesis in 7 subjects and rejected the hypothesis in 1 subject. 

For Poly-PL, the t-test resulted in 6 accepts and 2 rejects. In general, the BMD measurements 

between the two visits were consistent with equal mean. The higher t-test rejection rate in Poly-

PL could be due to the inaccuracy in ROI placement since a manual cropping step was involved 

in the Poly-PL volume processing. The high consistency of measurement across the two weeks 

suggests that the CMOS-CBCT with appropriate artifact corrections is capable of measuring 

BMD with good reproducibility.  
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Chapter 5 

Future Directions: Pixelated Scintillators 

 The newly developed pixelated scintillator provides improved resolution compared to 

conventional unpixellated detectors of the same thickness. Fig. 48 shows a human ulna sample 

imaged using a gold standard micro-CT, a pixelated scintillator-based benchtop CBCT, and a 

conventional CT. The pixelated scintillator is able to reveal significantly more trabecular 

structure than conventional CT.  Fig. 49 shows a visual comparison of 2 trabecular ROIs 

between micro-CT and a pixelated scintillator-based benchtop CBCT. The pixelated scintillator’s 

performance is also 

evaluated in quantitative 

trabecular measurements. 

High correlations against 

micro-CT are achieved by 

the pixelated scintillator: 

~0.9 for BvTv, ~0.76 for 

Tb.Th, and ~0.82 for Tb.Sp.   

Figure 48: A scan of a human ulna obtained using Pixelated CMOS CSI:TI and conventional CT [2] 

Figure 49: ROI comparison of Micro-CT and CMS CsI:TI with BvTv and 

TbTh correlation [2] 
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Chapter 6 

Discussion 

 High-resolution extremity CBCT and UHR-MDCT demonstrate favorable performance 

in a range of bone biomarkers compared to the orthopedic imaging modalities in standard of 

care. UHR-MDCT was shown to be able to track the change in trabecular structure with high 

correlation against gold-standard micro-CT (over ~0.9 for BvTv, over ~0.8 for Tb.Th, and over 

~0.7 for Tb.Sp). A significant improvement from conventional CT was also observed in the 

accuracy of quantitative trabecular measurement. Texture analysis in UHR MDCT were 

observed to correlate well across changes in imaging dose and reconstruction kernel, as well as 

between NR-MDCT and UHR-MDCT. However, a change in system resolution (from NR-

MDCT to UHR-MDCT) and reconstruction kernel did affect the magnitude of the texture 

features and thus the concordance between the modalities. Future work is thus needed to 

translate the predictive algorithms based on NR-MDCR bone texture features to UHR-MDCT.  

Both CMOS-CBCT and aSi FPD-CBCT were able to track the change in trabecular structure 

with high correlation against micro-CT (>0.8) for metrics of TbTh, TbSp, TbN, and BvTv. 

CMOS-CBCT offered a general improvement over aSi FPD-CBCT. Both CBCT systems were 

also able to assess rod and plate morphology, with aSi FPD-CBCT achieving a 0.83 correlation 

with micro-CT. CMOS-CBCT also demonstrated a high level of reproducibility in BMD 

measurements after the application of an advanced artifact correction framework, as shown in 

test-retest human subject data obtained two-weeks apart. 
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The new CT technologies evaluated in this thesis open up the possibility for improved diagnosis 

and understanding of bone disease. Biomarkers such as trabecular morphometrics and plate to 

rod ratio, which have been mostly inaccessible to in vivo CT imaging, could potentially become 

available for routine clinical application using CMOS-CBCT and UHR-MDCT. This thesis 

provided a principled technical evaluation of those new high-resolution technologies to support 

such clinical translation. 
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