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Abstract

In modern Multiple-Input and Multiple-Output (MIMO) systems, such as

cellular and Wi-Fi technology, an array of antenna elements is used to spatially

steer RF signals with the goal of changing the overall antenna gain pattern to

achieve a higher Signal-to-interference-plus-noise ratio (SINR). Digital Beam-

forming (DBF) achieves this steering effect by applying weighted coefficients

to antenna elements- similar to digital filtering- which adjust the phase and

gain of the received, or transmitted, signals. Since real world MIMO systems

are often used in dynamic environments, Adaptive Beamforming techniques

have been used to overcome variable challenges to system SINR- such as dis-

persive channels or inter-device interference- by applying statistically-based

algorithms to calculate weights adaptively.

However, large element count array systems, with their high degrees of

freedom (DOF), can face many challenges in real application of these adaptive

algorithms. These statistical matrix methods can be either computationally

prohibitive, or utilize non-optimal simplifications, in order to provide adap-

tive weights in time for an application, especially given a certain system’s

computational capability; for instance, MIMO communication devices with
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strict size, weight and power (SWaP) constraints often have processing limita-

tions due to use of low-power processors or Field-Programmable Gate Arrays

(FPGAs).

Thus, this thesis research investigation will show novel progress in these

adaptive MIMO challenges in a twofold approach. First, it will be shown

that advances in Machine Learning (ML) and Deep Neural Networks (DNNs)

can be directly applied to the computationally complex problem of calcu-

lating optimal adaptive beamforming weights via a custom Convolutional

Neural Net (CNN). Secondly, the derived adaptive beamforming CNN will

be shown to efficiently map to programmable logic FPGA resources which

can update adaptive coefficients in real-time. This machine learning imple-

mentation is contrasted against the current state-of-the-art FPGA architecture

for adaptive beamforming- which uses traditional, Recursive Least Squares

(RLS) computation- and is shown to provide adaptive beamforming weights

faster, and with fewer FPGA logic resources. The reduction in both processing

latency and FPGA fabric utilization enables SWaP constrained MIMO proces-

sors to perform adaptive beamforming for higher channel count systems than

currently possible with traditional computation methods.
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Chapter 1

Introduction

Modern Multiple-Input-Multiple-Output (MIMO) systems, such as those used

in cellular and Wi-Fi communication technologies, are often developed to

optimally service multiple end users. To do so, the multiple antenna elements

are usually coordinated in a fashion that allows the radiation gain pattern

to be "steered" in space towards the direction of a specific user, so that user

sees high signal strength, and other users see attenuation as to not interfere

with that user’s communication channel. This beamforming process can be

visualized as a directional beam as in Figure 1.1.
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Figure 1.1: Beamforming a Signal from MIMO System to User

Source: Adapted from [1]

However, since real world MIMO systems are often used in dynamic envi-

ronments, with constantly shifting sources of interference, Adaptive Beam-

forming techniques have been used to nullify interferers from disrupting the

intended communication channel. Large element count array systems though,

with their high degrees of freedom (DOF)- a metric of how many simultaneous

interference sources can be nulled-, require significant processing in real calcu-

lation and application of these adaptive beamforming algorithms. For SWaP

constrained, embedded implementations, these processing requirements may

be too great for a given system to calculate the adaptive beamforming weights
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in time to be useful (e.g. to adapt to a rapidly changing spatial interference

environment).

The problem worsens in massive MIMO systems where systems that must

service multiple users, in the same or adjacent frequency band, compete for

communication bandwidth and interfere with each other like in Figure 1.2

and as such, efficient adaptive beamforming algorithms will be necessary to

practically support next generation massive MIMO systems [2].

Figure 1.2: Multiple Simultaneous Users in MIMO System

Source: Adapted from [1]

Since processing complexity of adaptive beamforming grows exponentially

with channel count, a more efficient adaptive beamforming algorithm than

traditional methods could allow an edge device- such as a 5G radio tower- to

calculate the adaptive beamforming weights directly at the edge. To support

this end goal, this research will go over the background of traditional adaptive

beamforming methodology and applicability to a low-power FPGA device,

as commonly used in modern MIMO communication devices, like 5G radio
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heads [3], [4].

After a baseline implementation using the current state-of-the-art FPGA

architecture is established, this research will show a novel method in apply-

ing recent advances in Deep Learning to the Adaptive Beamforming weight

calculation problem set. To show a real-world, deployable implementation

of the deep learning model, this work will also show an architecture, hosted

in FPGA programmable-logic fabric, to compute adaptive weights in a more

efficient manner than previous implementations.
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Chapter 2

Adaptive Beamforming
Background

2.1 Introduction

In this section, the concept and application of beamforming, as well as the

method of adaptive beamforming, is introduced. It’s assumed the reader is

familiar with the fundamentals of discrete signal processing techniques, such

as Finite Impulse Response (FIR) filtering.

2.2 Beamforming and Array Basics

Filtering is a commonly used operation in signal processing; in the discrete

sense, samples are passed through a set of filter coefficients, or "taps", to

perform the convolution and achieve the desired response. Analogous to such

temporal filtering, an array of sensors can be filtered spatially to produce a

desired response across the elements.

Specifically in the context of Radio Frequency (RF) antenna arrays, this
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spatial filtering can be utilized to optimize the overall antenna pattern, in

a process commonly known as beamforming [1]. The specific spatial opti-

mization is often application dependent, however beamforming is generally

seen as a method of beam steering, where gain is provided in a specific, de-

sired direction- relative to the array’s front-, with attenuation in other angles.

Though the term "beamforming" sounds specific to transmitting applications-

like radiating RF arrays-, beamforming, and consequently spatial filtering, can

actually be performed on both the transmit and receive functions of any array,

also known as array reciprocity [1], [2]. Beamforming is inclusive of non-RF

arrays and applications as well, such as sound transducers used in SONAR

arrays [1].

The fundamental operation of beamforming is derived from the properties

of constructive and destructive interference of propagating waves in phased

array systems. These systems are so named in that the individual array ele-

ments shift the phase of a received, or transmitted, signal to create a desired

far field array pattern that culminates into a steered wavefront, as illustrated in

Figure 2.1.
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Figure 2.1: Phased Array Wavefront Steering

This phase shifting process can be acheived by digital or analog means.

For instance in Figure 2.1, the ∆ blocks could be analog phase shifter units

that perform the beam steering in the RF/analog domain. In this case, each

phase shifter unit is attached to an individual array antenna element, and is

manifolded to a single receiver- such as an Analog to Digital Converter (ADC)-

and/or a single transmitter- such as a Digital to Analog Converter (DAC).

The benefits of such a system is simplicity in the digital and RF electronics, as

there is only one ADC and/or DAC- and possibly one mixing/heterodyne

system for the array-, however the system is much less flexible in that it can

only steer in one direction at a time. For Single-Input Single-Output (SISO)

systems, this architecture may suffice.
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However for Multiple-Input Multiple-Output (MIMO) or other systems

that need more flexibility, these ∆ phase shifting blocks could also be per-

formed in the digital domain. In this case, each antenna element can be consid-

ered to be directly connected to an ADC and/or DAC and the associated phase

shifts can be performed in digital logic- such as in a Field-Programmable Gate

Array (FPGA) directly connected to each ADC/DAC- and then coherently

combined to form the intended beam(s) [2]. The downside of a digitally beam-

formed system is increased complexity- and thereby often an increased cost-

due to each channel requiring RF and sampling electronics that must be phase

synchronous, however the upside is this system is much more flexible in how

it can apply phase shifts, as well as it creates the opportunity for a system to

create multiple spatial beams at one time [1].

For MIMO communication arrays, these properties of directional gain and

attenuation can be exploited for servicing multiple users, such as in Spatial

Multiplexing [3] where distinct users are assumed to be in different spatial

locations or directions, so digital beamforming with multiple beams can be

used to target each user independently at the same time.

In the case of a Uniform Linear Array (ULA)- which we will be using for the

majority of this investigation- the standard digital beamforming architecture

can be seen in Figure 2.2.
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Figure 2.2: ULA Beamformer

A ULA is defined as an array with N elements equally spaced a distance d

from each other along a linear axis [2], [4]. Each RF channel- related to an RF

antenna element- is sampled synchronously such that the digital samples are

aligned in time across all channels so coherent processing can be performed.

It can be seen that when dealing with a signal from the far field impinging
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on the array with angle, θ0, the difference in propagation path length, L,

between elements in a ULA is given by Equation 2.1 [2], [4].

L(n) = nd sin(θ0), 0 ≤ n ≤ N − 1 (2.1)

The reason we assume far field characteristics for the majority of this work

to simplify the math and operations of phased arrays; for the case of a phased

array receiver in the near field, an RF emitter is so close to the array that the

incident angle of the received energy is different for every element due to the

spherical wavefront of the source, as shown in Figure 2.3.

Figure 2.3: Near Field Response

Source: Adapted from [2]

However, in the far field, where the same emitter is farther away from the

receiving array, the wavefronts become approximately linear, and each receive

element sees an equivalent incidence angle, θ, of the arriving wave, as in 2.4.
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Figure 2.4: Far Field Response

Source: Adapted from [2]

The specific point at which a given system is operating in the far field

is dependent on many factors of the array’s antenna properties, however a

general equation can be found from 2.2 based on an array’s antenna diameter,

D, and the wavelength of the operating carrier frequency, λ [2], [5].

FarField >
2D2

λ
(2.2)

2.2.1 Digital Beamforming Architecture

Once in the digital domain, there are several ways to perform phase shifting

on the sampled baseband signals, mainly by way of time delay shifting or mul-

tiplication by a complex phasor [2], [4]. The decision to take a given approach

is mainly dominated by RF system characteristics, though for narrowband

signals that we will be using for this text, we will show that phase shifting is

often more economical than time shifting.

True time delay shifting acts to match the time difference of a wavefront
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impinging on each different element such that when the time delayed channels

are coherently summed together, the desired signal from that wavefront sees

processing gain applied, while signals from other directions see attenuation [2].

Specifically, each antenna element will see a time shift of the same signal based

on the specific path length L- defined from Equation 2.1- and the propagation

speed of the signal over that distance- nominally assumed to be near the speed

of light c, though varies on the medium and frequency- as in Equation 2.3.

tDelay(n) = L(n)/c, 0 ≤ n ≤ N − 1 (2.3)

However, achieving the exact time delay required for a given steering

direction may not be practical. For instance, in digital logic, individual chan-

nels can be easily delayed using some number of registers in the datapath,

however the time delay quanta is limited to the clock frequency of the logic,

as ∆ = 1/ fClk; so for a 200 MHz clock region in an FPGA, each signal can be

delayed by an integer multiple of 5 nanosecond steps.

This level of delay precision may not be sufficient for some applications

or frequencies, so instead of performing a true time delay on each channel’s

signal, often the time shift can be accurately approximated by an applied

phase shift, especially for narrowband signals. When L is a fraction of the nar-

rowband signal’s wavelength, λ, the equivalent phase shift ϕ of the impinging

signal at an incidence angle θ can be derived from Equation 2.4 [2], [6].

ϕ =
2πd

λ
sin θ, −π/2 ≤ θ ≤ π/2 (2.4)
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The constraints on θ in 2.4 for ϕ to be valid are such that d < λ/2 so that

there is no ambiguity between the value of the incidence angle and the desired

phase shift; this half-wavelength spacing requirement of the array elements can

be directly viewed as the spatial analog of the Nyquist sampling theorem, which

similarly states a signal up to bandwidth B can be perfectly reconstructed

given a sampling rate, fs, that complies with B < fs/2 [6].

Thus in narrowband systems that are designed for a specific carrier fre-

quency, the array spacing often conforms to half the signal wavelength, which

can lead to a further simplification of the elemental phase shift as in Equation

2.5.

ϕ = πd sin θ, d =
λ

2
(2.5)

When an array uses digital phase shifting to perform beamforming on

receive, the basic architecture can be seen in Figure 2.5 where each ADC

channel is phase shifted by a complex weight value wn. The digitized sample

data from each channel, xn(k), is assumed to be complex- also commonly

known as In-Phase and Quadrature data (I/Q) for digital RF systems- to

retain phase information from each channel, where k is the time index for each

sample.
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Figure 2.5: ULA Digital Beamforming on Receive

The beamformed output signal y(k) is formed by summing the products

of the complex conjugate of weights wn and the input signals across each

channel xn(k), as in Equation 2.6 [1], [6].

y(k) =
N−1

∑
i=0

w∗i xi(k) (2.6)

Equivalently in vector notation, this beamforming can be seen as the dot

product of the N-by-1 complex weight column vector w = [w1, w2, . . . , wN]
T
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and the N-by-1 complex sample column vector x(k) = [x1(k), x2(k), . . . , xN(k)]
T

at observation time k, as in Equation 2.7.

y(k) = wHx(k) (2.7)

Note that the superscript (·)H operator represents the Hermitian (com-

plex conjugate) transpose applied to the weight vector, while (·)T is the non-

conjugate (normal) transpose operator [1].

Conversely, in the transmit case the opposite data flow occurs; we fan

out- or DEMUX- a single transmit signal to each individual transmit channel,

where again the complex weights are multiplied, and the resulting array’s

output has its beam steered in a given direction.
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Figure 2.6: ULA Digital Beamforming on Transmit

2.2.2 Deterministic Beamforming

A standard beamformer, with quiescent beamforming weights wn, can be

called a deterministic beamformer [7]. The system is considered quiescent in the

sense that the calculation of the beamforming weights need only depend on

the intended steering direction of the array, with all other system properties

static or not included as part of the calculation process.

For narrowband signals, the complex spatial response vector sn is formed
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from the baseband envelope phasor at each ULA element [4]:

sn = ej2π(n−1) d
λ sin θ0 0 ≤ n ≤ N − 1 (2.8)

Equation 2.8 is a function of steering direction, or Angle of Arrival (AoA)

θ0, wavelength of the carrier frequency λ , and the elemental spacing of the n

element array d [4], [6].

Again, analogous to temporal filtering, the ideal, quiescent beamforming

weights can be seen to be the matched filter equivalent to the spatial response

vector sn to directly counteract the apparent phase shift across the array for an

impinging wavefront, as in Equation 2.9. Note that the matched filter response

is equivalent to the complex conjugate of the received response [6].

wn = s∗n (2.9)

This quiescent response for θ = 0 can be seen in the radiation pattern plot

in Figure 2.7; a radiation pattern plot- also sometimes called an azimuth cut

for a ULA- is used to show array gain versus angle of wave incidence, θ [6].

For example, a radiation plot of an ideal, omnidirectional, isotropic antenna

would show constant gain across all angles. Here, we see that our main lobe

expectedly shows up at an angle of 0, while all other angles show attenuation.
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Figure 2.7: Normalized Radiation Pattern of ULA, θ = 0, N = 16

Note also that it sometimes is useful to plot the x-axis of the radiation plot

in sine space, where the angle is normalized by Equation 2.10 to show incidence

angle based on array spacing and the incident signal’s wavelength.

θNorm =
d
λ

sin(θ) (2.10)

This radiation plot is fundamentally showing the array factor (AF) of a

system, which is defined in equation 2.11 as the total voltage response of

an array as a sum of individual voltage responses, based on the difference
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between the steered angle ϕ and the incident angle θ [8].

AF(θ) =
1
N

N

∑
n=1

e−j(2π(n−1) d
λ sin(θ0−ϕn)) (2.11)

When the incident angle θ is sweeped in 2.11, the resultant plot of Array

Factor yields the radiation plot over incidence angles, as shown in Figure 2.7.

Note the similarity of the exponential/phasor term in the Array Factor

equation 2.11 to the spatial response vector in Equation 2.8, which is again the

complex conjugate of the quiescent beamforming weights; essentially, we can

insert the beamforming weights directly into 2.11 to refactor the equation as

in 2.12.

AF(θ) =
1
N

N

∑
n=1

wne−j(2π(n−1) d
λ sin(ϕn)) (2.12)

This means we can take the same approach of sweeping receive incidence

angles ϕn with Equation 2.12 with a set of beamforming weights to calculate

the Array Factor, and create a resulting sine space plot.

For instance, to calculate the quiescent beamforming weights to steer the

array to −10◦ with half-wavelength spacing, we simply plug θ0 = −10◦

into Equation 2.8 and then find the matched filter equivalent in Equation 2.9.

Then we can plot the response over incident angles using Equation 2.12. The

resultant sine space plot is shown in Figure 2.8 where we can see a gain peak

at 0.5 sin(−10◦) ≈ −0.09 (the green vertical line plots exactly where we expect

the gain peak in sine space).
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Figure 2.8: Sine Space Plot of Quiescent Weights

2.2.3 Beamforming Array Effects

In the previous section, we introduced the spatial sampling theorem for

phased arrays where we implied a d < λ/2 elemental spacing restriction

on the ULA. If however the d < λ/2 spacing requirement is violated, the array

pattern of the beamformed system will experience grating lobes, which is the

spatial equivalent of signal aliasing in the temporal domain by an undersam-

pled system, where B > fs/2 [6], [9]. These grating lobes appear as duplicate

areas of gain in the array’s radiation pattern plot. Such a radiation plot for an

array showing grating lobes can be seen in Figure 2.9 for a 32-channel ULA

steered to beamform at an incidence angle of 30 degrees.
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Figure 2.9: Normalized Radiation Pattern of ULA with different element spacing,
N = 32

Source: Adapted from [9]

In Figure 2.9, it can be seen that when d/λ = 0.5, or half-wavelength, we

see the expected gain peak at 30 degrees and attenuation in all other directions.

However, when wavelength spacing is greater than half-wavelength, d/λ =

0.7, we unexpectedly see another gain peak at roughly -70 degrees. This

could cause issues for a beamforming system when it is expecting to only

receive signals from a specific steering direction, as signals impinging from

-70 degrees would be at the same gain level as the intended direction.

Mentioned previously, we are assuming narrowband systems in this text
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for simplification of math and experimentation. However the issue that can

arise when performing narrowband beamforming- such as multiplication of a

complex phasor to apply the phase shift- when wideband signals are present-

or even signals of different wavelengths then designed- is that of beam squint

[2], [8]. This is shown in Figure 2.10 where a ULA designed for a carrier

frequency of 3 GHz is receiving a 3.3 GHz signal at different incidence angles.

Figure 2.10: Beam Squint

Note that as the incidence angle moves past boresight (where θ = 0), the

main lobe broadens, and we even see some aliasing into other signal directions

at larger angles.
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Another simplification we are making in the discussion of these phased

array systems is we assume that individual array elements are isotropic,

however as shown in Figure 2.11, real antenna elements have real directivity

and angular response of their own.

Figure 2.11: Individual Array Element Directivity

Source: Adapted from [8]

Thus, a more accurate description of the actual antenna array directivity,

E(θ) , is a linear combination of the Array Factor, AF(θ), and the individual

element directivity Ee(θ) as shown in Equation 2.13 [8].

E(θ) = Ee(θ)AF(θ) (2.13)

The resulting combination can be shown in Figure 2.12 where the elemental

pattern starts to show attenuation at large angles off boresight, therefore the
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overall array pattern also shows some attenuation at large angles.

Figure 2.12: Total Antenna Array Directivity

Source: Adapted from [8]

Thus in real systems, we cannot always assume that every steering angle

sees the exact same gain response.

Finally on the topic of real directivity, another fundamental array effect

that should be considered in phased array systems is that the main lobe width

of the Array Factor is inversely related to the number of antenna elements. In

the standard, non-windowed (rectangular) spatial response, the null-to-null

width of a ULA can be found by 2.14 [4].

θMB = 2 sin−1
[︃

λ

Nd
− sin(θ0)

]︃
(2.14)

This can also be seen in Figure 2.13 where higher channel count systems
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see much narrower main lobe beamwidths.

Figure 2.13: Array Radiation Plot over Different Element Counts, d = λ/2

Source: Adapted from [2]

It would seem obvious that designing a system with higher channel counts

yields a better, more directional system, however increasing RF channel count

increases system cost and complexity, especially if given a fixed power or

space budget.

2.3 Adaptive Beamforming

In some systems just applying quiescent weights to steer the array may not

be enough, as signals from non-intended directions can still make their way

into the desired signal frequency band, especially if there are multiple users
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within this same band.

For instance, in the case of Figure 2.14 a desired signal at 300 MHz is

impinging the array at θd = 5◦ and an interference source at 270 MHz is

impinging the array at θIn f = 30◦. The sampling frequency is arbitrarily set to

fs = 1GHz.

Figure 2.14: Quiescent Interference, d = λ/2

Note that in both the non-beamforming, weighted-sum averaging case

(which is equivalent to beamforming weights equal to unity, or an array factor

pointed at boresight) and in the quiescent beamforming case where we are

applying digital beamforming with weights designed to steer the array to θd =
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5◦, we still see the interference source in the resultant frequency spectrum. The

cause of this is the fact that, even in steered/quiescent-beamformed systems,

the side lobes of the Array Factor response do not attenuate interference

sources enough, so they still show up in our output spectrum. This can be seen

by referring back to a sine space plot of the Array Factor, such as in Figure 2.8,

where the nearest side lobes are only −13dB down from the main lobe- typical

of a rectangular, non-windowed response in the frequency domain, which

shows here as a familiar sinc() function due to sinc( f ) = sin( f )
f = F [rect(t)]

[2].

One basic approach to null, off-angle, undesired sources could be to apply

windowing to the individual antenna elements (either digitally or applied via

analog methods). As an example, a Hamming window can be used to create

scalar values to multiply across our quiescent weights vector. Hamming

weights can be derived from Equation 2.15; the Hamming window provides

lower, equiripple side lobes, but at the expense of an increased main lobe

width, as shown in Figure 2.15.

whamming(n) = 0.54− 0.46 cos(
2πn

M− 1
) 0 ≤ n ≤ M− 1 (2.15)
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Figure 2.15: Non-windowed vs Hamming Window Sine Space Response, N = 8

However, windowing on its own may still not be ideal as the increased

main lobe width means interference sources near the spatial direction of

the desired source are at nearly the same gain as the desired direction. As

well, even though side lobes have larger attenuation (less gain) in windowed

responses, a very powerful interference source may still show up in the output

spectrum, or band of interest, if that particular emitter does not fall within a

natural null (e.g. the interference source falls within a side lobe).

It should also be noted that the difference in frequency between the de-

sired and interference signals in the above examples are mainly for easier

demonstration of the negative affects of certain digital beamforming setups

where we view one output spectrum post-beamforming; the two signals may

actually be at the exact same frequency, for instance two communications

users occupying the same channel, in which case both signals may directly
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interfere with each other, possibly causing degradation or even loss of signal.

Again, the only assumed difference between signals in these scenarios is that

both interference and desired signals emit from different spatial locations,

which provides the impetus for processing such as Adaptive Beamforming to

seperate the desired signal from interference and noise.

2.3.1 MVDR Adaptive Beamforming

The basic function of Adaptive Beamforming is to calculate beamforming

weights which- when applied in the same beamforming architecture covered

previously- provides gain to signals incident from a desired direction, while

dynamically nulling signals from other spatial locations. This nulling effect is

achieved in spatial directions with interference sources by driving a spatial

null- an area with large attenuation- in those locations, which is also why

Adaptive Beamforming has been referred to as null steering [1].

Though there are many different algorithms and implementations for per-

forming adaptive beamforming, the Minimum-variance distortionless response

(MVDR) algorithm is a classical, data-dependent method for adaptive beam-

forming. MVDR is advantageous due to its fast convergence speed and ability

to deal with many, complicated interference sources [1], [6]. The MVDR

method may also be referred in literature as Capon’s method from (Capon, 1969)

[6].

The MVDR method works on a batch of sample data across each spatial

channel at a given time, here called a snapshot of K samples. As such, an

N-by-K sample data matrix X is given, as in Equation 2.16, where X is built of
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N rows (each row corresponding to a distinct array element) of K samples of

data.

XN,K =

⎛⎜⎜⎜⎝
x1,1 x1,2 · · · x1,k
x2,1 x2,2 · · · x2,k

...
... . . . ...

xn,1 xn,2 · · · xn,k

⎞⎟⎟⎟⎠ (2.16)

From this input sample matrix X, the estimated sample covariance matrix

M can be formed [1], [6]. Note that in some texts this covariance matrix is

denoted as Φ or R, however we wish to not conflict with similarly-named

variables in this text, such as in QR matrix decomposition in the next section.

We will assume for practical purposes that we are dealing with overdetermined

systems in which the number of samples per channel in a snapshot, K, is greater

than the number of channels, N [6]. Thus, in this case M is an N-by-N matrix

formed by the expectation E(·) of the matrix product of the N-by-K sample

matrix X and its K-by-N Hermitian transpose XH such as in 2.17 [6].

M = E[XHX] (2.17)

Given zero-mean input samples- as is assumed for most RF systems where

the sampled input is a set of time varying signals with little to no direct current

(DC) bias voltage- the covariance matrix M is equivalent to the autocorrelation

matrix. Moreover, the mutually uncorrelated sources in X mean each sample

is equiprobable, thus the expectation E(·) of the matrix product is essentially
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the time-average correlation matrix as seen in Equation 2.18 [6], [10].

M =
1
K

K

∑
n=1

xH(n)x(n) (2.18)

It should also be noted that, although not perfectly known by the system

during runtime, the covariance matrix is essentially made up of the desired

signal of interest (SOI) covariance matrix Md and the interference plus noise

covariance matrix Mi+n [10].

M = Md + Mi+n (2.19)

As alluded to in the previous section, the figure of merit for an adaptive

beamforming algorithm, is how well it can increase the signal power of an

SOI from a desired steering direction while attenuating sources of noise and

interference from other directions; mathematically we can represent this value

by the Signal-to-Interference-Plus-Noise ratio (SINR) of the system. SINR is

basically calculated by dividing the signal power of the SOI P by the total

noise N and interference powers I [6]:

SINR =
P

I + N
(2.20)

SINR is also a valuable metric for both MIMO, and non-MIMO, commu-

nication systems. The linear (non-dB) SINR value can be used to estimate

the theoretical upper bounds of a communication channel’s capacity (in C

bits/second), given a B Hz channel bandwidth, as in the Shannon-Hartley
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theorem of [6]:

C = B log2 (1 + SINR) (2.21)

Given the N-by-N covariance matrices for SOI and noise-plus-interference

defined above, and some N-by-1 beamforming weight vector w, we can

actually directly calculate the expected SINR given Equation 2.22 [10].

SINR =
wHMdw

wHMi+nw
(2.22)

Also necessary for the data-dependent adaptive beamforming MVDR

method, s(θ) is to be given as the N-by-1 steering vector, which is equivalent

to 2.23 given a desired array steering angle θ [6].

sn(θ) = [1, e−jθ, . . . , e−j(N−1)θ]T (2.23)

Note that the steering vector is equivalent to the complex conjugate of

the spatial response vector defined in Equation 2.8 in the previous section.

This makes sense given we also covered that the ideal quiescent response in

the deterministic beamforming case is essentially the matched filter (complex

conjugate) of the spatial response, as previously shown in Equation 2.9.

Thus, the optimum beamformer maximizes the SINR output of the system

given the constraint wHs(θ) = 1 through the following minimization equation

in 2.24 [6], [10]:

ŵ = min
w

wHMw (2.24)
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From here we can introduce the mathematical definition of the MVDR

solution for the adaptive beamforming N-by-1 weight vector ŵ in Equation

2.25 [6].

ŵ =
M−1s(θ)

sH(θ)M−1s(θ)
(2.25)

An example of the MVDR beamformer from [6] can be shown in Figure

2.16 where the correlation/covariance matrix is built from the snapshot of K

samples of data from each channel, and passed to an MVDR processor which

calculates the adaptive beamforming weights which are applied across each

channel, then coherently summed to form the output beam y(n). Note, in [6],

the channel count is denoted by M instead of N.
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Figure 2.16: Block Diagram of a MVDR Beamformer for a ULA

Source: Adapted from [6]

Using the same example from the deterministic beamforming section,

we can apply the MVDR-calculated beamforming weights and compare the

spectrum to the quiescent beamforming spectrum from Figure 2.14. To repeat

the scenario, a desired signal at 300 MHz is impinging the array at θd = 5◦

and an interference source at 270 MHz is impinging the array at θIn f = 30◦.

The MVDR narrowband beamformer output is thus given by 2.26.

y(k) = ŵHx(k) (2.26)
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Figure 2.17: Output Spectrum from the MVDR Beamformer for a ULA

As seen in Figure 2.17, the desired SOI has a visibly high SINR, due to the

applied beamforming gain, and the interference signal is no longer present in

the output spectrum at all.

Further demonstration that the interference source has in-fact been nulled

can be seen by examining the MVDR output weights in sine space. This can

be seen in Figure 2.18 where the interference angle sees a deep null, and as

such, the interference signal is attenuated.
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Figure 2.18: Radiation Plot of the MVDR Beamforming Weights

Based on the spatial response of a given number of antenna elements, the

degrees of freedom (DOF) of an N element array is fundamentally driven by the

number of independent nulls that can be produced by the MVDR algorithm,

as defined in Equation 2.27.

DOF = N − 2 (2.27)

In the context of interference mitigation, this means that up to N − 2 inter-

ference sources can be cancelled out using MVDR [6]. To show this in practice,
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an 8-element ULA can be shown to have 6 interference sources, at varying nar-

rowband frequencies and varying incident angles, which completely muddies

the output spectrum in the quiescent beamforming case as seen in Figure 2.19.

Figure 2.19: Output Spectrum with Multiple Interference Sources, N = 8

Post-MVDR adaptive beamforming, the output spectrum again in Figure

2.20 is cleaned up with only the intended signal from the desired direction

present.
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Figure 2.20: MVDR Output Spectrum with Multiple Interference Sources, N = 8

Again in sine space, we can see the different spatial interference directions

adaptively nulled in Figure 2.21.
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Figure 2.21: MVDR with Multiple Interference Sources in Sine Space, N = 8

Note that in some cases, MVDR- or really any adaptive beamforming

algorithm- can not perfectly null all interference sources. Usually this is due

to where interferers fall spatially relative to each other and the desired look

direction, which can be seen from the sine space plot in Figure 2.22 where a

ULA has N = 8 channels and a desired signal at impinging at the array at

θd = 5◦, but the interference source is spatially very close, impinging the array

at θIn f = 8◦.
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Figure 2.22: MVDR with Interference Source Too Close in Sine Space, N = 8

Notice here that the algorithm is trying to force the interference direction

into a null while maintaining gain in the desired steering direction, however

the main lobe beamwidth of the 8-element ULA is too wide to perform both.

The takeaway of this effect is that more antenna elements not only gives a

system more numerous nulls to place with adaptive beamforming processes

like MVDR, but also tighter lobes- as shown in Figure 2.13 from the previous

section- which can more easily null interference directions with close spacing

relative to each other and/or the desired look direction.
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Chapter 3

FPGA Implementation of Adaptive
Beamforming

In this chapter, we survey the different methods for practical implementation

of Adaptive Beamforming in an embedded Field-Programmable Gate Array

(FPGA) processor. Thus, it is assumed the reader has some familiarity with

FPGAs and digital logic implementations, as in Very Large Scale Integration

(VLSI) circuits. The reasoning for choosing an FPGA as a processor for Adap-

tive Beamforming is not universal, however usually an FPGA is already used

as a common interconnect between sensors (such as RF ADCs and DACs used

in RF communication systems) and other computer systems (for instance an

FPGA commonly acts as "glue logic" by transferring digital samples over some

common protocol, such as Ethernet or PCIe, or even locally processing data

within the FPGA or larger System on Chip). FPGAs also give flexibility and

re-programmability to algorithms without having to be fixed functions as in

the case of Application Specific Integrated Circuits (ASICs). Modern FPGAs

are also popular in certain embedded, sensor processing devices due to low

power consumption for certain algorithms compared to a fixed processor, like
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a CPU.

Since embedded is a relative term, we are mainly looking at approaches

based on performance- such as processing latency to determine the adaptive

beamforming weights- as well as on Size, Weight and Power (also known

as SWaP). For "edge" devices, especially those designed to process RF com-

munications in deployed locations and operational environments, we cannot

ignore processing power and resources. Most embedded devices have strict

constraints as well, such as a fixed power budget or size constraint to perform

all processing within one physical processor board.

3.1 Comparison of Standard Architectures

Since there are many different architectures for performing Adaptive Beam-

forming in FPGA logic, we will first compare and contrast the standard meth-

ods and choose one as our optimal method which balances processing latency

as well as logic resource utilization.

3.1.1 Systolic Arrays for QR Decomposition in Digital Logic

In the previous chapter, we showed that the MVDR method applied to adap-

tive digital beamforming yielded great results for nulling interference sources

from a desired SOI, given a sample data covariance matrix M and a desired

array steering vector s(θ). However, the MVDR equation for finding optimal

adaptive beamforming weights assumes some relatively complex math when

calculating in an embedded system, namely the inversion of the covariance

matrix, M−1.
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For instance, directly performing the matrix inversion- also aptly called

Sample Matrix Inversion (SMI) [1]- using Gaussian elimination has a high

computational complexity of O(n3) [2]. As well, fixed-point (integer) direct

computations of SMI often have poor numerical robustness and stability [3],

[4].

A common method for avoiding the pitfalls of direct matrix inversion is

that of QR Decomposition (QRD), so called because the operation decomposes

some full rank n × p matrix A into an n × p orthogonal matrix Q and an

upper-triangular p× p matrix R (where the lower triangle is all zeros) [1]–[3]:

A = Q
[︃

R
0

]︃
(3.1)

Using a rotation algorithm such as Gram-Schmidt orthogonalization, House-

holder transformations or Givens rotations, the pseudo-inverse of matrix A can

be found by Equation 3.2 [2]–[5]:

A−1 = (AHA)−1AH = (RHR)−1RHQH → A−1 = R−1QH (3.2)

As well, since Q is a unitary matrix, we can fundamentally achieve the

identify matrix I (a matrix with ones on the main diagonal and zeros else-

where) from 3.3:

QHQ = I (3.3)

These properties of QRD allow us to perform the Recursive Least Squares

(RLS) algorithm (combined known as QRD-RLS) to find the inverse of the
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matrix A in the context of solving the system of linear equations for x given

the general form in Equation 3.4 by minimizing the least square error |b−Ax|

[1]–[3], [6]:

Ax = b (3.4)

In the context of Adaptive Beamforming, we can setup a similar system

of linear equations to optimally solve for adaptive weights using QRD-RLS,

instead of direct matrix inversion as with MVDR, given the same optimization

goals of maximizing SINR. For instance, we can surmise that, given a constant,

ideal spatial signal column-vector, s(θ)- which is the same steering vector from

the MVDR process-, a system with only one SOI present, which experiences

zero noise or interference, would expect to observe each spatial channel

(row) of the sample matrix X (xn) be directly related with the associated

spatial element sn when the phase relationship of θ is exact (albeit by a scalar

relationship based on relative powers of each) [3], [6]. Said another way, s

is optimum when the sample covariance matrix M was proportional to the

Identity Matrix, such that it appeared that there was equal and independent

noise from each array element [6]. Thus the system of linear equations in 3.5

can be solved for the ideal adaptive beamforming weight vector ŵ given only

the covariance matrix M and the ideal steering vector s [3], [4], [6]:

Mŵ = s (3.5)
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To solve for the adaptive beamforming weights, we can start by substi-

tuting the QR decomposition relationship for the covariance matrix from

Equation 3.1 and 3.2, we can refactor 3.5 into Equation 3.6:

Mŵ = s
QRD−−→ QRŵ = s (3.6)

Given the identity matrix relationship in Equation 3.3, we can rearrange

terms as in Equation 3.7 [4]:

QHQRŵ = QHs→ IRŵ = QHs→ Rŵ = QHs (3.7)

From here, we can find ŵ using back-substitution such as in Equation 3.8,

where c = QHs for ease of notation [4], [5], [7]:

ŵj =
1

rj,j

[︄
cj −

N

∑
k=j+1

rj,kŵk

]︄
(3.8)

QRD-RLS not only solves the numerical stability issues SMI experiences [1],

[2], [8], but moreover QRD allows for very efficient computation in digital (e.g.

FPGA, ASIC, VLSI, etc.) logic. This is due to the common form of QRD-RLS in

digital systems to be a systolic array which exploits the inherent parallelism of

digital architectures when using rotation algorithms such as Givens Rotations,

which allow distributed rotation cells as processing elements [1]–[3]. The

common systolic array structure and signal flow graph (SFG) for QRD-RLS can

be seen in Figure 3.1 which is common to QRD methods from [1]–[3], [5], [8],

[9].
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Figure 3.1: QRD Systolic Array with Linear Back-Substitution Section, N = 3

The triangular systolic array process consists of two main cell types: a

Boundary Cell (BC) and an Internal Cell (IC). These cells of the systolic array

perform the Givens Rotations on each element of the input matrix to zero out

unwanted elements to form the upper-triangular matrix [2], [3]. The elements

stored within the upper-triangular systolic array directly correspond with the

elements of the R matrix from QRD, indexed as ri,j as seen by the indices in

each cell of Figure 3.1 [10].

Values move top-down and left-to-right in the SFG. Input samples x(k)

from the covariance matrix M can either be staggered via a tapped delay line-

as shown- or using handshaking signals to each channel to ensure proper

timing of data flow through the processing systolic array. The steering vector

s is directly fed into the column to the right of the last input sample column.
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The linear array performs the necessary back-substitution operation to form

the final adaptive beamforming output weights ŵ(k).

Due to the commonality in some of the rotation processing elements, some

particularly resource-constrained implementations forego the parallel systolic

array for a folded implementation which utilizes a single, common processing

element to perform all operations. Some extra state control logic (or even a SW

programmable co-processor) then iterates over the matrix space to give partial

products to the Processing Element [7]. This approach, however, causes much

greater processing latency, and so for this work was not pursued (essentially

there is an area versus throughput trade with QRD implementations in digital

logic).

The Boundary Cell (circular node in Figure 3.1) accomplishes the vectoring

operation on complex input samples denoted xin, which essentially transforms

the sample from complex (e.g. I/Q) to a magnitude and phase [2], [5], [9]. The

output of the BC are the rotation angles from the vectoring operation and are

directly fed to an adjacent Internal Cell within the same systolic array row.

The mathematical functions of the Boundary Cell can be seen below:

Figure 3.2: Boundary Cell SFG
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Algorithm 1 Boundary Cell Operations

if xin = 0 then
c← 1
s← 0
x ← λ1/2x

else
x′ ←

√︂
λx2 + |xin|2

c← λ1/2x
x′

s← xin
x′

x ← x′

end if

In the processing cell equations, x is used to denote a processing cell’s

internal memory (e.g. register in logic) which maintains value from a previous

cycle. λ is the forgetting factor which aids in numerical stability of RLS viewing

statistical variations over time, as samples in the distant past are "forgotten",

and for adaptive purposes here, is usually set to a value close to 1 (e.g. 0.99)

[3]. Having no forgetting factor (e.g. λ = 1) for some systems is admissible

depending on the situation [3], [9]. Specifically to the BC, x′ is an intermediate

value for ease of notation, and c, s are the cosine and sine values respectively

corresponding to the Givens Rotations.

It can already be seen that the equations for the BC require some complex

operations, namely a square root and division. There are other distinct imple-

mentations that can eliminate the square-root operations within the Boundary

processing cells like in the Squared Givens Rotation (SGR) algorithm [2], [8],

however the logic still needs to support arbitrary integer division operations in

SGR [2] which- while possible with methods such as pre-quantized Look-up-

Tables (LUT), as done in [11], or multi-cycle, iterative cores- was not pursued
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for this research due to added complexity and fabric resources. There are

other algorithms that are also "division free", however they mainly put off the

division operations until the very end and incur extra processing penalties

within the systolic array’s processing elements, so these algorithms were also

not pursued [2]. The ideal method of vectoring- from a complexity, relative

performance and resource utilization perspective- uses CORDIC engines in

programmable logic. This will be covered in detail in the next section.

The Internal Cell (square node in Figure 3.1) performs the rotation operation

on complex input values using the rotation angles received from that row’s

Boundary Cell as shown in Figure 3.3 [2], [5], [9].

Figure 3.3: Internal Cell SFG

Algorithm 2 Internal Cell Operations

xout ← cxin − sλ1/2x
x ← sxin + cλ1/2x

The nodes in the linear array section of 3.1 receive the upper-triangular

matrix from the systolic array and performs the back-substitution to finally

derive the adaptive beamforming weights [2], [9]. These cells, and their

mathematical functions, are shown below:

52



Figure 3.4: Back-Substitution Cell SFG

ŵi =
pi − z(i)i

xii
(3.9)

Figure 3.5: Back-Substitution Output Cell SFG

z(k−1)
i = z(k)i + x∗ikŵk (3.10)

Since back-substitution is an iterative operation, several implementations

perform the back-substitution with an embedded processor, such as in [7].

Another approach is to perform weight flushing, where the output weights are

extracted from the final lower triangular cell by appending sets of zeros after

the input matrix has been fully consumed, however this approach requires

extra logic and incurs extra latency [1], [8]. As well, since back-substitution

is mainly the bottleneck for these QRD-RLS architectures, some approaches

look to forgo QRD and instead calculate the adaptive weights using Cholesky

factorization on the covariance matrix M; however while valid, Cholesky is

not numerically robust in fixed-point logic [6] (e.g. best to perform in floating
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point) and thus usually involves shipping off the covariance matrix calculated

in FPGA logic to a CPU with a floating-point unit (FPU), which induces further

latency. Thus, this approach was not pursued in this research as well.

3.1.2 IQRD Systolic Array Implementation

To overcome the throughput limitations of back-substitution in the de facto

QRD-RLS systolic array implementation, another extended QRD-RLS architec-

ture has been implemented which adds a second lower-triangular downdating

array interfaced to the upper-triangular QRD array to directly extract the final

adaptive beamforming weights through a simple multiplication and addition

operation [10]. This new systolic array architecture is also known as the Inverse

QR Decomposition (IQRD) Systolic Array, and provides much lower latency

for weight extraction compared to linear back-substitution [10]. The reader

is advised to review the works in [12]–[15] for more details on the numerical

analysis and proof of Inverse QR Decomposition for Recursive Least Squares

Filtering. The IQRD SFG can be seen in Figure 3.6 and is the chosen digital

architecture that we will be developing with Very-High Speed Integrated

Circuit Hardware Description Language (VHDL) components.
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Figure 3.6: Inverse QRD Systolic Array SFG

The lower-triangle array rotates the matrix R−1 stored in the downdating

cells using null input vectors [10]. Two new processing cells are added to the

systolic array as well: a downdating cell and a weigh extraction cell.

The downdating cell is very similar to the QRD Internal Cell from previous

implementations, with the only difference being the use of a 1/λ forgetting

factor in the internal operation- thus the downdating cell has also been called

the Inverse Internal Cell.

Figure 3.7: Inverse Internal Cell (Downdating) SFG
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Algorithm 3 Inverse Internal Cell Operations

xout ← cxin − sλ−1/2x
x ← sxin + cλ−1/2x

The weight extraction cell uses the final sample output from the upper-

triangular array, and the final sample outputs from its respective column of

the lower-triangular inverse array, to form each of the adaptive output weights

ŵi(k) using simple arithmetic operations as shown in Equation 3.11 [10].

Figure 3.8: Weight Extract Cell SFG

ŵi(k) = ŵi(k− 1)− ai(k)bi(k) (3.11)

3.2 IQRD HDL Design Details

Given the ideal implementation for Adaptive Beamforming in FPGA pro-

grammable logic as the IQRD Systolic Array, we here show the detailed

implementation and the HDL architecture of the individual processing cells,

as well as the top-level architecture of the array.

Some implementations use High-Level Synthesis (HLS) for complicated

DSP designs such as Adaptive Beamforming, such as in [4]. While HLS is a

great tool for rapid prototyping, the particular language and/or toolchain is
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often vendor-specific (e.g. cannot easily port to another vendor’s device) and

sometimes does not infer the optimal solution that HDL done by-hand can

acheive. As such, the IQRD architecture here is being developed in vendor-

neutral VHDL without usage of any vendor-specific IP cores.

3.2.1 Covariance Matrix Calculation

The first component developed calculates the covariance matrix M over a

snapshot of K training samples from a set of N parallel input channels, X, as

in 3.12 [6]

M =
1
K

XHX (3.12)

On first glance of the Equation in 3.12, it would seem logical that we must

buffer K samples of data across all channels to form the sample data matrix X.

While correct, needing to store the N × K matrix could result in a fairly large

memory requirement if using a high value of K and/or a high-channel count

system. Instead, the covariance matrix can actually be calculated on-the-fly

requiring very little resources. This is due to the fact that the covariance

matrix multiplication has all information required to form the partial matrix

product at each sample time k, since both the N × 1 column-vector x(k) and

its complex conjugate transpose 1× N row-vector xH(k) are known based on

simple data reordering and conjugate operations.

As well, we can reduce the number of simultaneous multiply-accumulate

(MAC) operations by half since the covariance matrix M is always Hermitian

positive semi-definite, meaning the lower-triangle always equals the complex
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conjugate of the upper-triangle; because of this, only the lower-triangle values

of the covariance matrix need to be calculated, at which point the output can

simply copy and complex conjugate the lower-triangle into the upper-triangle

elements, which is a simple data reordering and sign change on the imaginary

parts.

One last optimization can be found with the 1
K division operation at the

end of the matrix multiply; if given the constraint that the sample snapshot

size K is some power-of-2 value (e.g. 1024 = 210), we can avoid direct integer

division by K and instead bit-shift the output values right by log2(K), which

is a simple, singe-cycle operation in digital logic.

The optimized covariance matrix calculation algorithm can be seen below:

Algorithm 4 Optimized Covariance Matrix Calculation

for i← 1 to N do
for j← 1 to i + 1 do

for k← 1 to M do
mi,j ← xi,kx∗j,k + mi,j
if i ̸= j then

mj,i ← m∗i,j
end if

end for
end for

end for
M← M≫ log2(K)

The resulting VHDL code for the entity that calculates the covariance

matrix is shown below:
1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.numeric_std.all;
4 library work;
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5 use work.util_pkg.all;
6

7 -- #TODO: use find first set bit in MSB (largest across matrix) to
dynamically scale elements to output bitwidth?

8

9 entity sample_covar_matrix is
10 generic (
11 G_DATA_WIDTH : natural := 16; -- real & imag part sample

bitwidth
12 G_ACC_WIDTH : natural := 48; -- covariance matrix internal

accumulator data width
13 G_N : natural := 4 -- number of channels (rows)
14 );
15 port (
16 clk : in std_logic;
17 reset : in std_logic;
18 num_est_samp : in unsigned; -- number of estimation samples (

columns), M
19 din_valid : in std_logic; -- din_real & din_imag valid (

assumed all rows are aligned)
20 din_real : in T_signed_2D(G_N - 1 downto 0)(G_DATA_WIDTH

- 1 downto 0);
21 din_imag : in T_signed_2D(G_N - 1 downto 0)(G_DATA_WIDTH

- 1 downto 0);
22 dout_valid : out std_logic;
23 dout_real : out T_signed_3D(G_N - 1 downto 0)(G_N - 1

downto 0)(G_DATA_WIDTH - 1 downto 0);
24 dout_imag : out T_signed_3D(G_N - 1 downto 0)(G_N - 1

downto 0)(G_DATA_WIDTH - 1 downto 0)
25 );
26 end sample_covar_matrix;
27

28 architecture rtl of sample_covar_matrix is
29

30 component complex_multiply_mult4 is
31 generic (
32 G_AWIDTH : natural := 16; -- size of 1st input of

multiplier
33 G_BWIDTH : natural := 18; -- size of 2nd input of

multiplier
34 G_CONJ_A : boolean := false; -- take complex conjugate of

arg A
35 G_CONJ_B : boolean := false -- take complex conjugate of

arg B
36 );
37 port (
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38 clk : in std_logic;
39 ab_valid : in std_logic; -- A & B complex input data valid
40 ar : in signed(G_AWIDTH - 1 downto 0); -- 1st input ’s

real part
41 ai : in signed(G_AWIDTH - 1 downto 0); -- 1st input ’s

imaginary part
42 br : in signed(G_BWIDTH - 1 downto 0); -- 2nd input ’s

real part
43 bi : in signed(G_BWIDTH - 1 downto 0); -- 2nd input ’s

imaginary part
44 p_valid : out std_logic; -- Product complex output data

valid
45 pr : out signed(G_AWIDTH + G_BWIDTH downto 0); -- real

part of output
46 pi : out signed(G_AWIDTH + G_BWIDTH downto 0) --

imaginary part of output
47 );
48 end component;
49

50 -- #TODO: double -buffered covar matrix reg ’s so one can be read
out while another is calculated with inputs?

51

52 signal sig_covar_re , sig_covar_im : T_signed_3D(G_N - 1 downto
0)

53 (G_N - 1 downto
0)

54 (G_ACC_WIDTH - 1
downto 0);

55 signal sig_pr , sig_pi : T_signed_3D(G_N - 1 downto
0)

56 (G_N - 1 downto
0)

57 (2* G_DATA_WIDTH
downto 0);

58

59 constant K_PIPE_DELAY : integer := 3; -- # clk cycles of
pipeline delay through component

60 signal sig_valid_sr : std_logic_vector(K_PIPE_DELAY - 1 downto
0) := (others => ’0’);

61 signal sig_end_of_est : std_logic; -- # of estimation samples
complete

62 signal sig_samp_cnt : unsigned(num_est_samp ’range);
63

64 begin
65

66 dout_valid <= sig_end_of_est;
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67 dout_real <= sig_covar_re;
68 dout_imag <= sig_covar_im;
69

70 S_dvalid_count: process(clk)
71 begin
72 if rising_edge(clk) then
73 if reset = ’1’ then
74 sig_valid_sr <= (others => ’0’);
75 sig_samp_cnt <= (others => ’0’);
76 sig_end_of_est <= ’0’;
77 else
78 -- shift register to delay data valid to match pipeline

delay of cmult
79 sig_valid_sr <= sig_valid_sr(K_PIPE_DELAY - 2 downto 0) &

din_valid;
80 if sig_valid_sr(sig_valid_sr ’high) = ’1’ then
81 if sig_samp_cnt >= num_est_samp then
82 sig_samp_cnt <= (others => ’0’);
83 sig_end_of_est <= ’1’;
84 else
85 sig_samp_cnt <= sig_samp_cnt + 1;
86 end if;
87 end if;
88

89 if sig_end_of_est = ’1’ then
90 sig_end_of_est <= ’0’;
91 end if;
92 end if;
93 end if;
94 end process S_dvalid_count;
95

96 -- create triangular , fused , complex multiply of input and its
complex transpose

97 UG_gen_rows: for i in 0 to G_N - 1 generate
98 UG_gen_columns: for j in 0 to i generate
99 -- Perform z[i,k]*conj(z[j,k])

100 U_cmplx_mult: complex_multiply_mult4
101 generic map (
102 G_AWIDTH => G_DATA_WIDTH , -- size of 1st input of

multiplier
103 G_BWIDTH => G_DATA_WIDTH , -- size of 2nd input of

multiplier
104 G_CONJ_A => false ,
105 G_CONJ_B => true -- take complex conjugate of B

arg
106 )
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107 port map (
108 clk => clk ,
109 ab_valid => ’0’, -- not used , see S_dvalid_count
110 ar => din_real(i), -- 1st input ’s real part
111 ai => din_imag(i), -- 1st input ’s imaginary part
112 br => din_real(j), -- 2nd input ’s real part
113 bi => din_imag(j), -- 2nd input ’s imaginary part
114 p_valid => open , -- not used , see S_dvalid_count
115 pr => sig_pr(i)(j),
116 pi => sig_pi(i)(j)
117 );
118

119 -- Since output is always Hermitian positive semi -definite ,
the calculated

120 -- lower triangle can be copied to the upper triangle by its
diagonal

121 -- complex conjugate
122 UG_upper_hermitian: if i /= j generate
123 sig_covar_re(j)(i) <= sig_covar_re(i)(j);
124 sig_covar_im(j)(i) <= -sig_covar_im(i)(j);
125 end generate UG_upper_hermitian;
126

127 S_accumulate: process(clk)
128 begin
129 if rising_edge(clk) then
130 -- reset accumulator at end of estimation cycle (number

of samples hit)
131 if (reset = ’1’) or (sig_end_of_est = ’1’) then
132 sig_covar_re(i)(j) <= (others => ’0’);
133 sig_covar_im(i)(j) <= (others => ’0’);
134 else
135 if sig_valid_sr(sig_valid_sr ’high) = ’1’ then
136 sig_covar_re(i)(j) <= resize( sig_pr(i)(j),

G_ACC_WIDTH ) + sig_covar_re(i)(j);
137 sig_covar_im(i)(j) <= resize( sig_pi(i)(j),

G_ACC_WIDTH ) + sig_covar_im(i)(j);
138 end if;
139 end if;
140 end if;
141 end process S_accumulate;
142 end generate UG_gen_columns;
143 end generate UG_gen_rows;
144

145 end rtl;

Listing 3.1: Sample Covariance Matrix Calculation Component
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When dealing with the direct implementation of the covariance matrix

calculation, it should also be noted that the difficulty of power domain algo-

rithms such as QRD-RLS is the word length of the multiply-accumulate in

the covariance matrix estimation block is somewhat derived by the largest

and smallest eigenvalues of the covariance matrix; on the high end, this is

related to the max signal power seen from the input sample matrix and on the

low end, its related to the thermal noise floor of the receiver [6]. The MUSE

approach taken by [6] is a voltage domain approach which needs not directly

calculate the covariance matrix and instead operates directly on the input

samples, however this approach takes a fair amount of iterations and so was

not considered as part of the architectural trades. As well, we’d like to reuse

this covariance matrix estimation block as the input for our Neural Network,

though this will be covered in detail in the next chapter.

3.2.2 CORDIC Internal and Boundary Cells

As shown in the previous sections, the Internal and Boundary Cells (including

Inverse Internal Cells) perform the Givens Rotations on the R and R−1 matri-

ces and functions including square-root and division operations. Mentioned

previously, digital logic is not well suited for these operations so instead,

we will utilize the Coordinate Rotation Digital Computer (CORDIC) method to

iteratively perform the vectoring and rotation operations for the Boundary

and Internal Cells respectively [6], [9], [10].

CORDIC employs only addition/subtraction, bit-shifting and look-up

table (LUT) operations to calculate transcendental functions, so the CORDIC
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engines can be easily pipelined to meet high clock rates with very little expense

to fabric resource utilization [9]. CORDIC also has two main modes: rotation

and vectoring.

In rotation mode, the CORDIC block takes an X/Y magnitude value and

an input angle, θ, to calculate the trigonometric functions such as X sin(θ)

and X cos(θ). It does this by iteratively decimating the input angle to 0 in

successively smaller angle steps, while adding or subtracting the X/Y value

at each stage based on the sign of the phase at that step. The angle value

the CORDIC engine uses at the i-th stage relates to the function arctan(2−i),

and these arctan values are pre-computed and stored in a simple LUT. For

every iteration stage, the output values gain one bit of precision; so a 16 stage

CORDIC can produce 16-bit output values. A pipelined CORDIC rotator block

can be seen in the following VHDL component, ’cordic’:

1 -- Core logic inspired by Verilog example: https :// github.com/
cebarnes/cordic

2

3 library ieee;
4 use ieee.std_logic_1164.all;
5 use ieee.numeric_std.all;
6

7 entity cordic is
8 generic (
9 G_ITERATIONS : natural := 16 -- also equates to output

precision
10 );
11 port (
12 clk : in std_logic;
13 reset : in std_logic := ’0’; -- (optional) sync reset

for *valid ’s
14 valid_in : in std_logic;
15 x_in : in signed(G_ITERATIONS - 1 downto 0);
16 y_in : in signed(G_ITERATIONS - 1 downto 0);
17 angle_in : in unsigned (31 downto 0); -- 32b

phase_in (0-360deg)
18
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19 valid_out : out std_logic;
20 cos_out : out signed(G_ITERATIONS - 1 downto 0); --

cosine/x_out
21 sin_out : out signed(G_ITERATIONS - 1 downto 0) -- sine/

y_out
22 );
23 end entity cordic;
24

25 architecture rtl of cordic is
26

27 type T_sign_iter is array (integer range <>) of signed(
G_ITERATIONS downto 0);

28 type T_unsign_32b is array (integer range <>) of unsigned (31
downto 0);

29

30 function F_init_atan_LUT return T_unsign_32b is
31 variable V_return : T_unsign_32b (30 downto 0);
32 begin
33 -- +/-90deg angle rotation already accounted for in S_quad

input stage
34 V_return( 0) := "00100000000000000000000000000000"; -- 45.000

degrees -> atan (2^0)
35 V_return( 1) := "00010010111001000000010100011101"; -- 26.565

degrees -> atan (2^-1)
36 V_return( 2) := "00001001111110110011100001011011"; -- 14.036

degrees -> atan (2^-2)
37 V_return( 3) := "00000101000100010001000111010100"; -- atan

(2^-3)
38 V_return( 4) := "00000010100010110000110101000011"; -- ...
39 V_return( 5) := "00000001010001011101011111100001";
40 V_return( 6) := "00000000101000101111011000011110";
41 V_return( 7) := "00000000010100010111110001010101";
42 V_return( 8) := "00000000001010001011111001010011";
43 V_return( 9) := "00000000000101000101111100101110";
44 V_return (10) := "00000000000010100010111110011000";
45 V_return (11) := "00000000000001010001011111001100";
46 V_return (12) := "00000000000000101000101111100110";
47 V_return (13) := "00000000000000010100010111110011";
48 V_return (14) := "00000000000000001010001011111001";
49 V_return (15) := "00000000000000000101000101111100";
50 V_return (16) := "00000000000000000010100010111110";
51 V_return (17) := "00000000000000000001010001011111";
52 V_return (18) := "00000000000000000000101000101111";
53 V_return (19) := "00000000000000000000010100010111";
54 V_return (20) := "00000000000000000000001010001011";
55 V_return (21) := "00000000000000000000000101000101";

65



56 V_return (22) := "00000000000000000000000010100010";
57 V_return (23) := "00000000000000000000000001010001";
58 V_return (24) := "00000000000000000000000000101000";
59 V_return (25) := "00000000000000000000000000010100";
60 V_return (26) := "00000000000000000000000000001010";
61 V_return (27) := "00000000000000000000000000000101";
62 V_return (28) := "00000000000000000000000000000010";
63 V_return (29) := "00000000000000000000000000000001";
64 V_return (30) := "00000000000000000000000000000000";
65 return V_return;
66 end F_init_atan_LUT;
67

68 signal atan_LUT : T_unsign_32b (30 downto 0) := F_init_atan_LUT;
69

70 signal x, y : T_sign_iter(G_ITERATIONS - 1 downto 0) := (
others => (others => ’0’));

71 signal z : T_unsign_32b(G_ITERATIONS - 1 downto 0) := (
others => (others => ’0’));

72

73 signal sig_valid_sr : std_logic_vector(G_ITERATIONS - 1 downto
0) := (others => ’0’);

74

75 begin
76

77 -- valid pulse output after input pulse passes through shift reg
78 valid_out <= sig_valid_sr(sig_valid_sr ’high);
79 -- sign extend outputs
80 cos_out <= resize( x(G_ITERATIONS - 1), cos_out ’length );
81 sin_out <= resize( y(G_ITERATIONS - 1), sin_out ’length );
82

83 S_shift_reg_valid: process(clk)
84 begin
85 if rising_edge(clk) then
86 -- shift register to delay data valid to match pipeline

delay
87 if reset = ’1’ then
88 sig_valid_sr <= (others => ’0’);
89 else
90 sig_valid_sr <= sig_valid_sr(G_ITERATIONS - 2 downto 0) &

valid_in;
91 end if;
92 end if;
93 end process S_shift_reg_valid;
94

95 -- Pre -CORDIC rotations to normalize input angle & X/Y to +/- 90
deg (Quad I & IV)
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96 -- These initial rotations are zero -gain , just sign adjustments
97 S_quad: process(clk)
98 begin
99 if rising_edge(clk) then

100 case angle_in (31 downto 30) is -- account for angles in
different quads

101 when "00" | "11" => -- (270:90) deg: no changes needed for
these quadrants

102 x(0) <= resize( x_in , G_ITERATIONS + 1 );
103 y(0) <= resize( y_in , G_ITERATIONS + 1 );
104 z(0) <= angle_in;
105 when "01" => -- (90:180) deg: Quad II
106 x(0) <= -resize( y_in , G_ITERATIONS + 1 );
107 y(0) <= resize( x_in , G_ITERATIONS + 1 );
108 z(0) <= "00" & angle_in (29 downto 0); -- subtract pi/2

for angle in this quad
109 when "10" => -- (180:270) deg: Quad III
110 x(0) <= resize( y_in , G_ITERATIONS + 1 );
111 y(0) <= -resize( x_in , G_ITERATIONS + 1 );
112 z(0) <= "11" & angle_in (29 downto 0); -- add pi/2 for

angle in this quad
113 when others =>
114 end case;
115 end if;
116 end process S_quad;
117

118 -- generate each pipelined stage for CORDIC rotations
119 UG_CORDIC_rotations: for i in 0 to G_ITERATIONS - 2 generate
120 S_add_sub: process(clk) -- add/subtract shifted data based on

phase
121 begin
122 if rising_edge(clk) then
123 if z(i)(31) = ’1’ then -- Negative Phase: rotate clockwise

by CORDIC angle
124 x(i + 1) <= x(i) + shift_right( y(i), i );
125 y(i + 1) <= y(i) - shift_right( x(i), i );
126 z(i + 1) <= z(i) + atan_LUT(i);
127 else -- Positive Phase: rotate counter -clockwise by CORDIC

angle
128 x(i + 1) <= x(i) - shift_right( y(i), i );
129 y(i + 1) <= y(i) + shift_right( x(i), i );
130 z(i + 1) <= z(i) - atan_LUT(i);
131 end if;
132 end if;
133 end process S_add_sub;
134 end generate UG_CORDIC_rotations;
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135

136 end architecture rtl;

Listing 3.2: Basic CORDIC Rotator

Note that as part of the CORDIC iterative process, each iteration stage not

only provides an extra bit of precision, but also changes the processing gain

experienced at the outputs of the CORDIC engine. The processing gain can

be cancelled out by multiplying the CORDIC outputs by a scale factor a, as

computed in Equation 3.13 given n CORDIC processing stages [16].

a =
n−1

∏
i=0

1√
1 + 2−2i

(3.13)

The other form of the CORDIC function is that of the vectoring mode;

in this mode, the CORDIC block takes some X/Y cartesian coordinates and

calculates the magnitude and phase using a similar iterative approach as in

the rotation mode. This form can also be seen as a complex (rectangular I/Q

coordinates) to magnitude and phase (polar coordinates) conversion process.

The VHDL entity that achieves this vectoring process can be seen below:

1 -- inspired by https :// github.com/ZipCPU/cordic/blob/master/rtl/
topolar.v

2 -- ^ since GPL , this component shall be GPL licensed as well
3 library ieee;
4 use ieee.std_logic_1164.all;
5 use ieee.numeric_std.all;
6

7 entity cordic_vec is
8 generic (
9 G_ITERATIONS : natural := 16 -- also equates to output

precision
10 );
11 port (
12 clk : in std_logic;
13 reset : in std_logic := ’0’; -- (optional) sync reset

for *valid ’s
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14 valid_in : in std_logic;
15 x_in : in signed(G_ITERATIONS - 1 downto 0);
16 y_in : in signed(G_ITERATIONS - 1 downto 0);
17

18 valid_out : out std_logic;
19 phase_out : out unsigned (31 downto 0); -- 32b phase (0-360

deg)
20 mag_out : out signed(G_ITERATIONS - 1 downto 0)
21 );
22 end entity cordic_vec;
23

24 architecture rtl of cordic_vec is
25

26 type T_sign_iter is array (integer range <>) of signed(
G_ITERATIONS downto 0);

27 type T_unsign_32b is array (integer range <>) of unsigned (31
downto 0);

28

29 function F_init_atan_LUT return T_unsign_32b is
30 variable V_return : T_unsign_32b (29 downto 0);
31 begin
32 -- +/-45deg angle rotation already accounted for in

S_pre_cordic input stage
33 V_return( 0) := "00010010111001000000010100011101"; -- 26.565

degrees -> atan (2^-1)
34 V_return( 1) := "00001001111110110011100001011011"; -- 14.036

degrees -> atan (2^-2)
35 V_return( 2) := "00000101000100010001000111010100"; -- atan

(2^-3)
36 V_return( 3) := "00000010100010110000110101000011"; -- ...
37 V_return( 4) := "00000001010001011101011111100001";
38 V_return( 5) := "00000000101000101111011000011110";
39 V_return( 6) := "00000000010100010111110001010101";
40 V_return( 7) := "00000000001010001011111001010011";
41 V_return( 8) := "00000000000101000101111100101110";
42 V_return( 9) := "00000000000010100010111110011000";
43 V_return (10) := "00000000000001010001011111001100";
44 V_return (11) := "00000000000000101000101111100110";
45 V_return (12) := "00000000000000010100010111110011";
46 V_return (13) := "00000000000000001010001011111001";
47 V_return (14) := "00000000000000000101000101111100";
48 V_return (15) := "00000000000000000010100010111110";
49 V_return (16) := "00000000000000000001010001011111";
50 V_return (17) := "00000000000000000000101000101111";
51 V_return (18) := "00000000000000000000010100010111";
52 V_return (19) := "00000000000000000000001010001011";
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53 V_return (20) := "00000000000000000000000101000101";
54 V_return (21) := "00000000000000000000000010100010";
55 V_return (22) := "00000000000000000000000001010001";
56 V_return (23) := "00000000000000000000000000101000";
57 V_return (24) := "00000000000000000000000000010100";
58 V_return (25) := "00000000000000000000000000001010";
59 V_return (26) := "00000000000000000000000000000101";
60 V_return (27) := "00000000000000000000000000000010";
61 V_return (28) := "00000000000000000000000000000001";
62 V_return (29) := "00000000000000000000000000000000";
63 return V_return;
64 end F_init_atan_LUT;
65

66 signal atan_LUT : T_unsign_32b (29 downto 0) := F_init_atan_LUT;
67

68 signal x, y : T_sign_iter(G_ITERATIONS - 1 downto 0) := (
others => (others => ’0’));

69 signal ph : T_unsign_32b(G_ITERATIONS - 1 downto 0) := (
others => (others => ’0’));

70

71 signal sig_valid_sr : std_logic_vector(G_ITERATIONS - 1 downto
0) := (others => ’0’);

72

73 begin
74

75 -- valid pulse output after input pulse passes through shift reg
76 valid_out <= sig_valid_sr(sig_valid_sr ’high);
77 phase_out <= ph(G_ITERATIONS - 1);
78 -- sign extend magnitude output
79 mag_out <= resize( x(G_ITERATIONS - 1), mag_out ’length );
80

81 S_shift_reg_valid: process(clk)
82 begin
83 if rising_edge(clk) then
84 -- shift register to delay data valid to match pipeline

delay
85 if reset = ’1’ then
86 sig_valid_sr <= (others => ’0’);
87 else
88 sig_valid_sr <= sig_valid_sr(G_ITERATIONS - 2 downto 0) &

valid_in;
89 end if;
90 end if;
91 end process S_shift_reg_valid;
92
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93 -- Pre -CORDIC rotations to map input angle to +/- 45deg based on
X/Y input quadrant

94 -- NOTE: use hex(degree_to_signed_fx ()) function in Python to
help with angle conversions

95 S_pre_cordic: process(clk)
96 begin
97 if rising_edge(clk) then
98 -- Quad IV: rotate by -315deg (so set initial phase to 315

deg)
99 if (x_in(x_in ’left) = ’0’) and (y_in(y_in ’left) = ’1’) then

100 x(0) <= resize( x_in , G_ITERATIONS + 1 ) - resize( y_in ,
G_ITERATIONS + 1 );

101 y(0) <= resize( x_in , G_ITERATIONS + 1 ) + resize( y_in ,
G_ITERATIONS + 1 );

102 ph(0) <= X"e000_0000";
103 -- Quad II: rotate by -135deg (init phase = 135deg)
104 elsif (x_in(x_in ’left) = ’1’) and (y_in(y_in ’left) = ’0’)

then
105 x(0) <= -resize( x_in , G_ITERATIONS + 1 ) + resize( y_in ,

G_ITERATIONS + 1 );
106 y(0) <= -resize( x_in , G_ITERATIONS + 1 ) - resize( y_in ,

G_ITERATIONS + 1 );
107 ph(0) <= X"6000 _0000";
108 -- Quad III: rotate by -225deg (init phase = 225deg)
109 elsif (x_in(x_in ’left) = ’1’) and (y_in(y_in ’left) = ’1’)

then
110 x(0) <= -resize( x_in , G_ITERATIONS + 1 ) - resize( y_in ,

G_ITERATIONS + 1 );
111 y(0) <= resize( x_in , G_ITERATIONS + 1 ) - resize( y_in ,

G_ITERATIONS + 1 );
112 ph(0) <= X"a000_0000";
113 else -- Quad I ["00"]: rotate by -45deg (init phase = 45deg)
114 x(0) <= resize( x_in , G_ITERATIONS + 1 ) + resize( y_in ,

G_ITERATIONS + 1 );
115 y(0) <= -resize( x_in , G_ITERATIONS + 1 ) + resize( y_in ,

G_ITERATIONS + 1 );
116 ph(0) <= X"2000 _0000";
117 end if;
118 end if;
119 end process S_pre_cordic;
120

121 -- generate each pipelined stage for CORDIC rotations
122 UG_CORDIC_rotations: for i in 0 to G_ITERATIONS - 2 generate
123 -- CORDIC process for rectangular -> polar rotates the Y value

to 0 and
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124 -- gives the magnitude of the vector as our x value and the
phase as the

125 -- angle it took to rotate the Y component to 0
126 S_add_sub: process(clk)
127 begin
128 if rising_edge(clk) then
129 if y(i)(y(i)’left) = ’1’ then -- Negative Y val: rotate by

CORDIC angle in (+) direction
130 x(i + 1) <= x(i) - shift_right( y(i), i+1 );
131 y(i + 1) <= y(i) + shift_right( x(i), i+1 );
132 ph(i + 1) <= ph(i) - atan_LUT(i);
133 else -- Positive Y val: rotate by CORDIC angle in (-)

direction
134 x(i + 1) <= x(i) + shift_right( y(i), i+1 );
135 y(i + 1) <= y(i) - shift_right( x(i), i+1 );
136 ph(i + 1) <= ph(i) + atan_LUT(i);
137 end if;
138 end if;
139 end process S_add_sub;
140 end generate UG_CORDIC_rotations;
141

142 end architecture rtl;

Listing 3.3: Basic CORDIC Vectoring

For the Boundary Cell, we need to calculate two angles for Givens Rota-

tions, ϕ and θ. The first CORDIC vectoring engine essentially transforms the

complex input sample into its phase and magnitude components, and as such,

the first angle ϕ is calculated by Equation 3.14 [5], [9].

ϕ = arctan
(︃
ℑ(xin)

ℜ(xin)

)︃
(3.14)

The angle ϕ is seen as the rotational angle the CORDIC engine took to

eliminate the y-axis (imaginary) component of the complex input vector, which

equates to the input sample’s phase. This phase value ϕ is then utilized by

the Internal Cells within the same row as the Boundary Cell to rotate given

input samples within the array [9]. The second angle θ to be calculated in

72



the BC annihilates an element of the input matrix, which culminates into the

upper-triangular matrix form of R in Givens Rotations [5], [9]. The value of θ

can be found by Equation 3.15 [9].

θ = arctan
(︃

xine−jϕ

x

)︃
(3.15)

The block diagram of the CORDIC Boundary Cell unit can be seen as in

Figure 3.9.

Figure 3.9: CORDIC Boundary Cell

The VHDL entity designed for the Boundary Cell can be seen below:

1 --
2 -- Implements the boundary cell (BC) of the QR architecture using

two vector -mode
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3 -- CORDIC engines to perform the "vectoring" on complex input
samples to

4 -- nullify their imaginary parts and form rotation angles used by
internal cells.

5 --
6 -- Inputs:
7 -- =======
8 -- - ‘CORDIC_scale ‘: scale factor to counteract CORDIC gain on

magnitude from
9 -- vectoring engines

10 -- - ‘lambda ‘: (optional) forgetting factor applied to feedback
magnitude. This

11 -- value is often selected to be slightly less than 1 (e.g.
0.99). When the

12 -- generic ‘G_USE_LAMBDA ‘ == false , this forgetting factor is
ignored and no

13 -- multiplier is used.
14 --
15

16 library ieee;
17 use ieee.std_logic_1164.all;
18 use ieee.numeric_std.all;
19

20 entity boundary_cell is
21 generic (
22 G_DATA_WIDTH : natural := 16; -- operational bitwidth of

datapath (in & out)
23 G_USE_LAMBDA : boolean := false -- use forgetting factor (

lambda) in BC calc
24 );
25 port (
26 clk : in std_logic;
27 reset : in std_logic;
28 CORDIC_scale : in signed(G_DATA_WIDTH - 1 downto 0) := X"4DBA

";
29 lambda : in signed(G_DATA_WIDTH - 1 downto 0) := X"7EB8

";
30

31 x_real : in signed(G_DATA_WIDTH - 1 downto 0); -- real
32 x_imag : in signed(G_DATA_WIDTH - 1 downto 0); -- imag
33 x_valid : in std_logic;
34 x_ready : out std_logic;
35

36 -- Current CORDIC/trig blocks use 32b unsigned angles , so keep
to that
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37 -- since this will directly feed the Internal Cell CORDIC
Rotators

38 phi_out : out unsigned (31 downto 0);
39 theta_out : out unsigned (31 downto 0);
40 bc_valid_out : out std_logic;
41 ic_ready : in std_logic -- downstream internal cell (IC)

ready to consume
42 );
43 end entity boundary_cell;
44

45 architecture rtl of boundary_cell is
46

47 component cordic_vec_scaled is
48 generic (
49 G_ITERATIONS : integer := 16 -- also equates to output

precision
50 );
51 port (
52 clk : in std_logic;
53 reset : in std_logic := ’0’; -- (optional) sync

reset for *valid ’s
54 valid_in : in std_logic;
55 x_in : in signed(G_ITERATIONS - 1 downto 0);
56 y_in : in signed(G_ITERATIONS - 1 downto 0);
57 CORDIC_scale : in signed(G_ITERATIONS - 1 downto 0) := X"4

DBA";
58

59 valid_out : out std_logic;
60 phase_out : out unsigned (31 downto 0);
61 mag_out : out signed(G_ITERATIONS - 1 downto 0)
62 );
63 end component;
64

65 type T_bc_fsm is (S_IDLE , S_WAIT_PHI , S_WAIT_THETA , S_OUT_VALID)
;

66 signal sig_bc_state : T_bc_fsm := S_IDLE;
67

68 -- related to U_input_vectoring
69 signal sig_x_valid_gated : std_logic;
70 signal sig_input_vec_valid : std_logic := ’0’;
71 signal sig_phi_out : unsigned (31 downto 0);
72 signal sig_input_vec_mag : signed(G_DATA_WIDTH - 1 downto 0);
73

74 -- related to U_output_vectoring
75 signal sig_output_vec_valid_out : std_logic := ’0’;
76 signal sig_theta_out : unsigned (31 downto 0);
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77 signal sig_output_vec_mag : signed(G_DATA_WIDTH - 1 downto
0);

78 signal sig_feedback_mag : signed(G_DATA_WIDTH - 1 downto
0);

79 signal sig_feedback_mag_valid : std_logic := ’0’;
80 signal sig_output_vec_valid_in : std_logic := ’0’;
81

82 -- forgetting factor scaling
83 signal sig_lambda_mag_valid : std_logic := ’0’;
84 signal sig_lambda_mag : signed ((2* G_DATA_WIDTH) - 1

downto 0);
85

86 -- output registers of theta & phi
87 signal sig_phi_out_q : unsigned (31 downto 0) := (others =>

’0’);
88 signal sig_theta_out_q : unsigned (31 downto 0) := (others =>

’0’);
89

90 begin
91

92 x_ready <= ’1’ when (sig_bc_state = S_IDLE) and (reset =
’0’) else ’0’;

93 phi_out <= sig_phi_out_q;
94 theta_out <= sig_theta_out_q;
95 bc_valid_out <= ’1’ when sig_bc_state = S_OUT_VALID else ’0’;
96

97 sig_x_valid_gated <= x_valid when sig_bc_state = S_IDLE else
’0’;

98

99 U_input_vectoring: cordic_vec_scaled
100 generic map (
101 G_ITERATIONS => G_DATA_WIDTH
102 )
103 port map (
104 clk => clk ,
105 reset => reset ,
106 valid_in => sig_x_valid_gated ,
107 x_in => x_real ,
108 y_in => x_imag ,
109 CORDIC_scale => CORDIC_scale ,
110

111 valid_out => sig_input_vec_valid ,
112 phase_out => sig_phi_out , -- phi = atan2(Q, I)
113 mag_out => sig_input_vec_mag -- mag = sqrt(I**2 + Q**2)
114 );
115
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116 -- we need only care about input vectoring magnitude valid as
feedback magnitude

117 -- will _always_ be valid and stable before this point , due to
being calculated

118 -- from previous cycle (or from reset , default value). Thus the
signal

119 -- ‘sig_feedback_mag_valid ‘ is purely for informational/debug
value , and will

120 -- get optmized out as a dead -path in synthesis as nothing reads
it

121 sig_output_vec_valid_in <= sig_input_vec_valid;
122

123 U_output_vectoring: cordic_vec_scaled
124 generic map (
125 G_ITERATIONS => G_DATA_WIDTH
126 )
127 port map (
128 clk => clk ,
129 reset => reset ,
130 valid_in => sig_output_vec_valid_in ,
131 x_in => sig_feedback_mag ,
132 -- scaled magnitude output from input vectoring
133 y_in => sig_input_vec_mag ,
134 CORDIC_scale => CORDIC_scale ,
135

136 valid_out => sig_output_vec_valid_out ,
137 phase_out => sig_theta_out ,
138 mag_out => sig_output_vec_mag
139 );
140

141

142 UG_apply_forgetting_factor: if G_USE_LAMBDA generate
143 S_scale_lambda: process(clk)
144 begin
145 if rising_edge(clk) then
146 if reset = ’1’ then
147 -- feedback magnitude ’s zero ’ed on reset
148 sig_lambda_mag_valid <= ’0’;
149 sig_lambda_mag <= (others => ’0’);
150 sig_feedback_mag <= (others => ’0’);
151 sig_feedback_mag_valid <= ’0’;
152 else
153 -- apply lambda scaling/forgetting factor for feedback

magnitude
154 if sig_output_vec_valid_out = ’1’ then
155 sig_lambda_mag <= sig_output_vec_mag * lambda;
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156 end if;
157 sig_lambda_mag_valid <= sig_output_vec_valid_out;
158

159 -- scale back down to operational data width
160 if sig_lambda_mag_valid = ’1’ then
161 sig_feedback_mag <= resize( shift_right(

sig_lambda_mag ,
162

G_DATA_WIDTH - 1 ),
163 sig_feedback_mag ’

length );
164 end if;
165 sig_feedback_mag_valid <= sig_lambda_mag_valid;
166 end if;
167 end if;
168 end process S_scale_lambda;
169 end generate UG_apply_forgetting_factor;
170

171 UG_no_forgetting_factor: if not G_USE_LAMBDA generate
172 S_no_lambda: process(clk)
173 begin
174 if rising_edge(clk) then
175 if reset = ’1’ then
176 -- feedback magnitude ’s zero ’ed on reset
177 sig_feedback_mag <= (others => ’0’);
178 sig_feedback_mag_valid <= ’0’;
179 else
180 if sig_output_vec_valid_out = ’1’ then
181 sig_feedback_mag <= sig_output_vec_mag;
182 end if;
183 sig_feedback_mag_valid <= sig_output_vec_valid_out;
184 end if;
185 end if;
186 end process S_no_lambda;
187 end generate UG_no_forgetting_factor;
188

189

190 S_output_FSM: process(clk)
191 begin
192 if rising_edge(clk) then
193 if reset = ’1’ then
194 sig_bc_state <= S_IDLE;
195 else
196 case sig_bc_state is
197 when S_IDLE =>
198 if x_valid = ’1’ then
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199 sig_bc_state <= S_WAIT_PHI;
200 end if;
201

202 when S_WAIT_PHI =>
203 if sig_input_vec_valid = ’1’ then
204 sig_phi_out_q <= sig_phi_out;
205 sig_bc_state <= S_WAIT_THETA;
206 end if;
207

208 -- since theta needs second CORDIC vectoring operation ,
it will always

209 -- take longer than input/first CORDIC vectoring
operation

210 when S_WAIT_THETA =>
211 if sig_output_vec_valid_out = ’1’ then
212 sig_theta_out_q <= sig_theta_out;
213 sig_bc_state <= S_OUT_VALID;
214 end if;
215

216 when S_OUT_VALID =>
217 -- wait till downstream internal cell is ready to

consume theta & phi
218 if ic_ready = ’1’ then
219 sig_bc_state <= S_IDLE;
220 end if;
221

222 when others => sig_bc_state <= S_IDLE;
223 end case;
224 end if;
225 end if;
226 end process S_output_FSM;
227

228 end architecture rtl;

Listing 3.4: CORDIC-based Boundary Cell

The Internal Cell rotates each input sample xin by the angles ϕ and θ given

from that row’s Boundary Cell [9]. These rotated samples are then passed to

the next row via xout. The block diagram of the CORDIC Internal Cell made

up of CORDIC rotation engines can be seen in Figure 3.10.
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Figure 3.10: CORDIC Internal Cell

The VHDL entity designed for the Internal Cell can be seen below:

1 --
2 -- Implements the internal cell (IC) of the QR architecture using

four rotation -mode
3 -- CORDIC engines
4 --
5 -- Inputs:
6 -- =======
7 -- - ‘CORDIC_scale ‘: scale factor to counteract CORDIC gain on

magnitude from
8 -- vectoring engines
9 -- - ‘lambda ‘: (optional) forgetting factor applied to feedback

magnitude. This
10 -- value is often selected to be slightly less than 1 (e.g.

0.99). When the
11 -- generic ‘G_USE_LAMBDA ‘ == false , this forgetting factor is

ignored and no
12 -- multiplier is used. For inverse internal cells , set this

value to 1/ lambda
13 --
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14

15 library ieee;
16 use ieee.std_logic_1164.all;
17 use ieee.numeric_std.all;
18

19 entity internal_cell is
20 generic (
21 G_DATA_WIDTH : natural := 16; -- operational bitwidth of

datapath (in & out)
22 G_USE_LAMBDA : boolean := false -- use forgetting factor (

lambda) in BC calc
23 );
24 port (
25 clk : in std_logic;
26 reset : in std_logic;
27 CORDIC_scale : in signed(G_DATA_WIDTH - 1 downto 0) := X"4DBA

";
28 lambda : in signed(G_DATA_WIDTH - 1 downto 0) := X"7EB8

";
29

30 xin_real : in signed(G_DATA_WIDTH - 1 downto 0);
31 xin_imag : in signed(G_DATA_WIDTH - 1 downto 0);
32 xin_valid : in std_logic;
33 xin_ready : out std_logic;
34 -- Current CORDIC/trig blocks use 32b unsigned angles , so keep

to that
35 -- since this is directly feed from Boundary Cell CORDIC

Vector engines
36 phi_in : in unsigned (31 downto 0);
37 theta_in : in unsigned (31 downto 0);
38 bc_valid_in : in std_logic; -- connected to BC on first IC

in row , else connected to angles valid from previous IC in row
39 ic_ready : out std_logic; -- this internal cell (IC) ready

to consume (only needed for first IC connected to BC)
40

41

42 xout_real : out signed(G_DATA_WIDTH - 1 downto 0);
43 xout_imag : out signed(G_DATA_WIDTH - 1 downto 0);
44 xout_valid : out std_logic;
45 xout_ready : in std_logic;
46

47 -- These are registered copies , propogated to next IC in row ,
to prevent

48 -- high fan -out of 32b angle signals (no handshaking needed ,
since ICs not
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49 -- connected directly to a BC have handshaking/timing with
rotations)

50 phi_out : out unsigned (31 downto 0);
51 theta_out : out unsigned (31 downto 0);
52 angles_valid : out std_logic
53 );
54 end entity internal_cell;
55

56 architecture rtl of internal_cell is
57

58 component cordic_rot_scaled is
59 generic (
60 G_ITERATIONS : natural := 16 -- also equates to output

precision
61 );
62 port (
63 clk : in std_logic;
64 reset : in std_logic := ’0’; -- (optional) sync

reset for *valid ’s
65 valid_in : in std_logic;
66 x_in : in signed(G_ITERATIONS - 1 downto 0);
67 y_in : in signed(G_ITERATIONS - 1 downto 0);
68 angle_in : in unsigned (31 downto 0); -- 32b

phase_in (0-360deg)
69 CORDIC_scale : in signed(G_ITERATIONS - 1 downto 0) := X"4

DBA";
70

71 valid_out : out std_logic;
72 cos_out : out signed(G_ITERATIONS - 1 downto 0); --

cosine/x_out
73 sin_out : out signed(G_ITERATIONS - 1 downto 0) --

sine/y_out
74 );
75 end component cordic_rot_scaled;
76

77 type T_ic_fsm is (S_IDLE , S_CONSUME , S_WAIT_ROTATIONS ,
S_OUT_VALID);

78 signal sig_ic_state : T_ic_fsm := S_IDLE;
79

80 signal sig_inputs_valid : std_logic;
81

82 -- Input Rotator
83 signal sig_in_rot_valid_out : std_logic;
84 signal sig_in_rot_cos_out : signed(G_DATA_WIDTH - 1 downto

0);
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85 signal sig_in_rot_sin_out : signed(G_DATA_WIDTH - 1 downto
0);

86

87 -- Real Rotator
88 signal sig_real_rot_valid : std_logic;
89 signal sig_real_x_feedback : signed(G_DATA_WIDTH - 1 downto

0);
90 signal sig_real_x_out : signed(G_DATA_WIDTH - 1 downto

0);
91 signal sig_real_y_out : signed(G_DATA_WIDTH - 1 downto

0);
92

93 -- Imag Rotator
94 signal sig_imag_rot_valid : std_logic;
95 signal sig_imag_x_feedback : signed(G_DATA_WIDTH - 1 downto

0);
96 signal sig_imag_x_out : signed(G_DATA_WIDTH - 1 downto

0);
97 signal sig_imag_y_out : signed(G_DATA_WIDTH - 1 downto

0);
98

99 -- Registered outputs
100 signal sig_xout_real : signed(G_DATA_WIDTH - 1 downto 0);
101 signal sig_xout_imag : signed(G_DATA_WIDTH - 1 downto 0);
102 signal sig_phi_out : unsigned (31 downto 0);
103 signal sig_theta_out : unsigned (31 downto 0);
104

105 begin
106

107 -- assert ready once able to consume both x/sample & BC inputs
108 -- due to difference in timing between datapaths
109 xin_ready <= ’1’ when sig_ic_state = S_CONSUME else ’0’;
110 ic_ready <= ’1’ when sig_ic_state = S_CONSUME else ’0’;
111 xout_valid <= ’1’ when sig_ic_state = S_OUT_VALID else ’0’;
112 angles_valid <= ’1’ when sig_ic_state = S_OUT_VALID else ’0’;
113

114 xout_real <= sig_xout_real;
115 xout_imag <= sig_xout_imag;
116 phi_out <= sig_phi_out;
117 theta_out <= sig_theta_out;
118

119 -- gated valid signal , only propagate through once we’ve
consumed a sample

120 sig_inputs_valid <= ’1’ when sig_ic_state = S_CONSUME else ’0’;
121

122 U_input_rotator: cordic_rot_scaled
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123 generic map (
124 G_ITERATIONS => G_DATA_WIDTH
125 )
126 port map (
127 clk => clk ,
128 reset => reset ,
129 valid_in => sig_inputs_valid ,
130 x_in => xin_real ,
131 y_in => xin_imag ,
132 angle_in => phi_in ,
133 CORDIC_scale => CORDIC_scale ,
134

135 valid_out => sig_in_rot_valid_out ,
136 cos_out => sig_in_rot_cos_out ,
137 sin_out => sig_in_rot_sin_out
138 );
139

140 U_real_rotator: cordic_rot_scaled
141 generic map (
142 G_ITERATIONS => G_DATA_WIDTH
143 )
144 port map (
145 clk => clk ,
146 reset => reset ,
147 valid_in => sig_in_rot_valid_out ,
148 x_in => sig_real_x_feedback ,
149 y_in => sig_in_rot_cos_out ,
150 angle_in => theta_in ,
151 CORDIC_scale => CORDIC_scale ,
152

153 valid_out => sig_real_rot_valid ,
154 cos_out => sig_real_x_out ,
155 sin_out => sig_real_y_out
156 );
157

158 U_imag_rotator: cordic_rot_scaled
159 generic map (
160 G_ITERATIONS => G_DATA_WIDTH
161 )
162 port map (
163 clk => clk ,
164 reset => reset ,
165 valid_in => sig_in_rot_valid_out ,
166 x_in => sig_imag_x_feedback ,
167 y_in => sig_in_rot_sin_out ,
168 angle_in => theta_in ,
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169 CORDIC_scale => CORDIC_scale ,
170

171 valid_out => sig_imag_rot_valid ,
172 cos_out => sig_imag_x_out ,
173 sin_out => sig_imag_y_out
174 );
175

176

177 UG_no_lambda: if not G_USE_LAMBDA generate
178 S_X_feedbacks: process(clk)
179 begin
180 if rising_edge(clk) then
181 if reset = ’1’ then
182 sig_real_x_feedback <= (others => ’0’);
183 sig_imag_x_feedback <= (others => ’0’);
184 else
185 if sig_real_rot_valid = ’1’ then
186 sig_real_x_feedback <= sig_real_x_out;
187 end if;
188

189 if sig_imag_rot_valid = ’1’ then
190 sig_imag_x_feedback <= sig_imag_x_out;
191 end if;
192 end if;
193 end if;
194 end process S_X_feedbacks;
195 end generate UG_no_lambda;
196

197 S_output_FSM: process(clk)
198 begin
199 if rising_edge(clk) then
200 if reset = ’1’ then
201 sig_ic_state <= S_IDLE;
202 else
203 case sig_ic_state is
204 when S_IDLE =>
205 if (xin_valid = ’1’) and (bc_valid_in = ’1’) then
206 sig_ic_state <= S_CONSUME;
207 end if;
208

209 when S_CONSUME =>
210 sig_ic_state <= S_WAIT_ROTATIONS;
211

212 when S_WAIT_ROTATIONS =>
213 -- Real & Imag rotations should take exactly the same

amount of time
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214 if (sig_real_rot_valid = ’1’) and (sig_imag_rot_valid
= ’1’) then

215 sig_xout_real <= sig_real_y_out;
216 sig_xout_imag <= sig_imag_y_out;
217 sig_ic_state <= S_OUT_VALID;
218 end if;
219

220 when S_OUT_VALID =>
221 -- wait till downstream internal/boundary cell in next

row is ready
222 if xout_ready = ’1’ then
223 sig_ic_state <= S_IDLE;
224 end if;
225

226 when others => sig_ic_state <= S_IDLE;
227 end case;
228 end if;
229 end if;
230 end process S_output_FSM;
231

232 S_pipeline_angles: process(clk)
233 begin
234 if rising_edge(clk) then
235 if bc_valid_in = ’1’ then -- reg angles whenever valid to

hold until output
236 sig_phi_out <= phi_in;
237 sig_theta_out <= theta_in;
238 end if;
239 end if;
240 end process S_pipeline_angles;
241

242 end architecture rtl;

Listing 3.5: CORDIC-based Internal Cell

The weight extract cell uses simple multiply and subtraction, so the VHDL

entity can be directly shown here:

1 -- Weight Extraction Cell:
2 -- W_{i,j}(k) = W_{i,j}(k - 1) - a_{i}(k)b_{i}(k)
3

4 library ieee;
5 use ieee.std_logic_1164.all;
6 use ieee.numeric_std.all;
7

8 entity weight_extract_cell is
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9 generic (
10 G_DATA_WIDTH : natural := 16
11 );
12 port (
13 clk : in std_logic;
14 reset : in std_logic;
15

16 -- no ‘ready ‘ signal as a is updated across final row
17 ain_real : in signed(G_DATA_WIDTH - 1 downto 0);
18 ain_imag : in signed(G_DATA_WIDTH - 1 downto 0);
19 ain_valid : in std_logic;
20

21 -- pipelined ‘a‘ to be passed to next weight extract cell
22 aout_real : out signed(G_DATA_WIDTH - 1 downto 0);
23 aout_imag : out signed(G_DATA_WIDTH - 1 downto 0);
24 aout_valid : out std_logic;
25

26 b_real : in signed(G_DATA_WIDTH - 1 downto 0);
27 b_imag : in signed(G_DATA_WIDTH - 1 downto 0);
28 b_valid : in std_logic;
29 b_ready : out std_logic;
30

31 w_real : out signed(G_DATA_WIDTH - 1 downto 0);
32 w_imag : out signed(G_DATA_WIDTH - 1 downto 0);
33 w_valid : out std_logic;
34 w_ready : in std_logic
35 );
36 end entity weight_extract_cell;
37

38 architecture rtl of weight_extract_cell is
39

40 component complex_multiply_mult4 is
41 generic (
42 G_AWIDTH : natural := 16; -- size of 1st input of

multiplier
43 G_BWIDTH : natural := 18; -- size of 2nd input of

multiplier
44 G_CONJ_A : boolean := false; -- take complex conjugate of

arg A
45 G_CONJ_B : boolean := false -- take complex conjugate of

arg B
46 );
47 port (
48 clk : in std_logic;
49 reset : in std_logic := ’0’; -- (optional) sync reset

for *valid ’s
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50 ab_valid : in std_logic; -- A & B complex input data valid
51 ar : in signed(G_AWIDTH - 1 downto 0); -- 1st input ’s

real part
52 ai : in signed(G_AWIDTH - 1 downto 0); -- 1st input ’s

imaginary part
53 br : in signed(G_BWIDTH - 1 downto 0); -- 2nd input ’s

real part
54 bi : in signed(G_BWIDTH - 1 downto 0); -- 2nd input ’s

imaginary part
55 p_valid : out std_logic; -- Product complex output data

valid
56 pr : out signed(G_AWIDTH + G_BWIDTH downto 0); -- real

part of output
57 pi : out signed(G_AWIDTH + G_BWIDTH downto 0) --

imaginary part of output
58 );
59 end component;
60

61 type T_weight_fsm is (S_IDLE , S_CONSUME , S_WAIT_CALC ,
S_OUT_VALID);

62 signal sig_weight_state : T_weight_fsm := S_IDLE;
63

64 signal sig_input_valid : std_logic;
65

66 signal sig_ab_valid : std_logic := ’0’;
67 signal sig_ab_real : signed ((2* G_DATA_WIDTH) downto 0);
68 signal sig_ab_imag : signed ((2* G_DATA_WIDTH) downto 0);
69

70 signal sig_weight_z_real : signed(G_DATA_WIDTH downto 0);
71 signal sig_weight_z_imag : signed(G_DATA_WIDTH downto 0);
72

73 signal sig_aout_real : signed(G_DATA_WIDTH - 1 downto 0);
74 signal sig_aout_imag : signed(G_DATA_WIDTH - 1 downto 0);
75 signal sig_aout_valid : std_logic;
76

77 begin
78

79 aout_real <= sig_aout_real;
80 aout_imag <= sig_aout_imag;
81 aout_valid <= sig_aout_valid;
82

83 sig_input_valid <= ’1’ when sig_weight_state = S_CONSUME else
’0’;

84 b_ready <= ’1’ when sig_weight_state = S_CONSUME else
’0’;

85
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86 w_real <= resize( shift_right( sig_weight_z_real , 1 ), w_real ’
length );

87 w_imag <= resize( shift_right( sig_weight_z_imag , 1 ), w_imag ’
length );

88 w_valid <= ’1’ when sig_weight_state = S_OUT_VALID else ’0’;
89

90 -- register ’a’ to next weight extract cell
91 S_reg_a: process(clk)
92 begin
93 if rising_edge(clk) then
94 if reset = ’1’ then
95 sig_aout_valid <= ’0’;
96 else
97 if ain_valid = ’1’ then
98 sig_aout_real <= ain_real;
99 sig_aout_imag <= ain_imag;

100 end if;
101 sig_aout_valid <= ain_valid;
102 end if;
103 end if;
104 end process S_reg_a;
105

106 U_cmult_AB: complex_multiply_mult4
107 generic map (
108 G_AWIDTH => G_DATA_WIDTH ,
109 G_BWIDTH => G_DATA_WIDTH ,
110 G_CONJ_A => false ,
111 G_CONJ_B => false
112 )
113 port map (
114 clk => clk ,
115 reset => reset ,
116 ab_valid => sig_input_valid ,
117 ar => ain_real ,
118 ai => ain_imag ,
119 br => b_real ,
120 bi => b_imag ,
121 p_valid => sig_ab_valid ,
122 pr => sig_ab_real ,
123 pi => sig_ab_imag
124 );
125

126 S_weight_diff: process(clk)
127 begin
128 if rising_edge(clk) then
129 if reset = ’1’ then
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130 sig_weight_z_real <= (others => ’0’);
131 sig_weight_z_imag <= (others => ’0’);
132 else
133 if sig_ab_valid = ’1’ then
134 sig_weight_z_real <= sig_weight_z_real - resize(

shift_right( sig_ab_real ,
135

G_DATA_WIDTH + 1 ),
136

G_DATA_WIDTH + 1 );
137 sig_weight_z_imag <= sig_weight_z_imag - resize(

shift_right( sig_ab_imag ,
138

G_DATA_WIDTH + 1 ),
139

G_DATA_WIDTH + 1 );
140 end if;
141 end if;
142 end if;
143 end process S_weight_diff;
144

145 S_output_FSM: process(clk)
146 begin
147 if rising_edge(clk) then
148 if reset = ’1’ then
149 sig_weight_state <= S_IDLE;
150 else
151 case sig_weight_state is
152 when S_IDLE =>
153 -- only care about b_valid to continue , since a should

always be updated
154 -- before b value since it comes from a preceeding QRD

column output
155 if b_valid = ’1’ then
156 sig_weight_state <= S_CONSUME;
157 end if;
158

159 when S_CONSUME =>
160 sig_weight_state <= S_WAIT_CALC;
161

162 when S_WAIT_CALC =>
163 if sig_ab_valid = ’1’ then
164 sig_weight_state <= S_OUT_VALID;
165 end if;
166

167 when S_OUT_VALID =>
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168 if w_ready = ’1’ then
169 sig_weight_state <= S_IDLE;
170 end if;
171

172 when others => sig_weight_state <= S_IDLE;
173 end case;
174 end if;
175 end if;
176 end process S_output_FSM;
177

178 end rtl;

Listing 3.6: Weight Extract Cell

3.2.3 IQRD Top-Level

Tied together structurally, the top-level IQRD component matches the Signal

Flow Graph in Figure 3.6. The design also uses VHDL generics to parameterize

the bit width of the internal data samples, as well as to support an arbitrary

number of channels and samples.

1 -- Inverse QR Decomposition (IQRD)
2 -- Solves the linear equation Ax = b for x, where:
3 -- Âů A = complex input matrix , of size (M,N), where M âĽě N
4 -- Âů b = complex input vector , of size (M,1)
5 -- Âů x = complex output vector to solve for , of size (N,1)
6 --
7 -- NOTE: For ready/valid handshaking , components with multiple

input dependencies
8 -- (such as this top -level component) expect data producers

(e.x. A & b
9 -- driven inputs) to assert ‘valid ‘ before this component

asserts ‘ready ‘
10 -- which then signals to the driving component(s) that input

data aligned
11 -- to that ‘valid ‘ has been successfully consumed.
12 --
13

14 library ieee;
15 use ieee.std_logic_1164.all;
16 use ieee.numeric_std.all;
17 library work;
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18 use work.util_pkg.all;
19

20 entity IQRD is
21 generic (
22 G_DATA_WIDTH : positive := 16; -- operational bitwidth of

datapath (in & out)
23 G_USE_LAMBDA : boolean := false; -- use forgetting factor (

lambda) in BC calc
24 G_M : positive := 4;
25 G_N : positive := 3
26 );
27 port (
28 clk : in std_logic;
29 reset : in std_logic;
30 CORDIC_scale : in signed(G_DATA_WIDTH - 1 downto 0) := X"4DBA

";
31 lambda : in signed(G_DATA_WIDTH - 1 downto 0) := X"7EB8

"; -- 0.99
32 inv_lambda : in signed(G_DATA_WIDTH - 1 downto 0) := X"814A

"; -- 1.01
33

34 A_real : in T_signed_3D(G_M - 1 downto 0)
35 (G_N - 1 downto 0)
36 (G_DATA_WIDTH - 1 downto 0);
37 A_imag : in T_signed_3D(G_M - 1 downto 0)
38 (G_N - 1 downto 0)
39 (G_DATA_WIDTH - 1 downto 0);
40 A_valid : in std_logic;
41 A_ready : out std_logic;
42

43 b_real : in T_signed_2D(G_M - 1 downto 0)
44 (G_DATA_WIDTH - 1 downto 0);
45 b_imag : in T_signed_2D(G_M - 1 downto 0)
46 (G_DATA_WIDTH - 1 downto 0);
47 b_valid : in std_logic;
48 b_ready : out std_logic;
49

50 x_real : out T_signed_2D(G_N - 1 downto 0)
51 (G_DATA_WIDTH - 1 downto 0);
52 x_imag : out T_signed_2D(G_N - 1 downto 0)
53 (G_DATA_WIDTH - 1 downto 0);
54 x_valid : out std_logic;
55 x_ready : in std_logic
56 );
57 end IQRD;
58
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59 architecture rtl of IQRD is
60

61 type T_IQRD_FSM is (S_IDLE , S_CONSUME , S_WAIT_X , S_OUT_VALID);
62 signal sig_iqrd_state : T_IQRD_FSM := S_IDLE;
63 -- counts how many valid weights have been extracted to know

when final
64 -- weight vector is completed
65 signal sig_w_valid_cntr : integer range 0 to G_M - 1 := 0;
66

67 signal sig_A_real : T_signed_3D(G_M - 1 downto 0)
68 (G_N - 1 downto 0)
69 (G_DATA_WIDTH - 1 downto 0);
70 signal sig_A_imag : T_signed_3D(G_M - 1 downto 0)
71 (G_N - 1 downto 0)
72 (G_DATA_WIDTH - 1 downto 0);
73

74 -- indexes A matrix , for each column , as it is consumed into the
systolic array

75 type T_2D_idx is array (integer range <>) of unsigned( F_clog2(
G_M) - 1 downto 0 );

76 signal sig_A_idx : T_2D_idx(G_N - 1 downto 0);
77 signal sig_A_valid : std_logic_vector(G_N - 1 downto 0);
78 signal sig_A_ready : std_logic_vector(G_N - 1 downto 0);
79

80 signal sig_b_real : T_signed_2D(G_M - 1 downto 0)
81 (G_DATA_WIDTH - 1 downto 0);
82 signal sig_b_imag : T_signed_2D(G_M - 1 downto 0)
83 (G_DATA_WIDTH - 1 downto 0);
84 -- indexes b vector as it is consumed into the systolic array
85 signal sig_b_idx : unsigned( F_clog2(G_M) - 1 downto 0 );
86 signal sig_b_valid : std_logic;
87 signal sig_b_ready : std_logic;
88

89 -- cmplx samples & handshaking from row -> row (up/down)
90 -- +1 row extra to map outputs to weight extract cells
91 -- -1 column since most right/last IIC cell in systolic array

is always fed null
92 -- dim: (row index)(column index)
93 signal sig_X_real , sig_X_imag : T_signed_3D(G_N downto 0)
94 (G_N + 1 downto 0)
95 (G_DATA_WIDTH - 1

downto 0);
96 signal sig_X_valid , sig_X_ready : T_slv_2D(G_N downto 0)
97 (G_N + 1 downto 0);
98

99 -- rotation angles (phi & theta) across rows & columns
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100 -- dim: (row index)(column index*)
101 -- * column indexing ‘downto 1‘ to match other indexing

in array
102 signal sig_phi , sig_theta : T_unsigned_3D(G_N - 1 downto 0)
103 (G_N + 2 downto 1)
104 (31 downto 0);
105 signal sig_angles_valid : T_slv_2D(G_N - 1 downto 0)
106 (G_N + 2 downto 1);
107 -- ‘ready ‘ signal for angles only needed between BC & fist IC of

each row
108 signal sig_bc_ic_ready : std_logic_vector(G_N - 1 downto 0);
109

110 -- weight extract signals (indexing to match absolute column
indexing)

111 -- "G_N + 2" is extra column index for final output cell but is
not consumed

112 signal sig_w_a_real , sig_w_a_imag : T_signed_2D (2 to G_N + 2)
113 (G_DATA_WIDTH - 1

downto 0);
114 signal sig_w_a_valid : std_logic_vector (2 to G_N +

2);
115 signal sig_w_w_real , sig_w_w_imag : T_signed_2D (2 to G_N + 1)
116 (G_DATA_WIDTH - 1

downto 0);
117 signal sig_w_w_valid : std_logic_vector (2 to G_N +

1);
118

119 -- reg output vector X from weight extract cells
120 signal sig_out_x_real , sig_out_x_imag : T_signed_2D(G_N - 1

downto 0)
121 (G_DATA_WIDTH

- 1 downto 0);
122

123 begin
124

125 A_ready <= ’1’ when sig_iqrd_state = S_CONSUME else ’0’;
126 b_ready <= ’1’ when sig_iqrd_state = S_CONSUME else ’0’;
127

128 x_real <= sig_out_x_real;
129 x_imag <= sig_out_x_imag;
130 x_valid <= ’1’ when sig_iqrd_state = S_OUT_VALID else ’0’;
131

132

133 UG_index_A_matrix_for_each_column: for col_idx in 0 to (G_N - 1)
generate

134 S_index_A_input_matrix: process(clk)
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135 begin
136 if rising_edge(clk) then
137 if (reset = ’1’) or (sig_iqrd_state = S_IDLE) then
138 sig_A_idx (col_idx) <= (others => ’0’);
139 sig_A_valid(col_idx) <= ’0’;
140 else
141 if (sig_A_ready(col_idx) = ’1’) and (sig_A_valid(col_idx

) = ’1’) then
142 -- if we’re at the end of indexing the A matrix ,

samples are no longer valid
143 if sig_A_idx(col_idx) = (G_M - 1) then
144 sig_A_valid(col_idx) <= ’0’;
145 else
146 -- increment A-matrix index when systolic array

consumes a sample
147 sig_A_idx(col_idx) <= sig_A_idx(col_idx) + 1;
148 end if;
149 end if;
150

151 if sig_iqrd_state = S_CONSUME then
152 sig_A_valid(col_idx) <= ’1’;
153 end if;
154 end if;
155 end if;
156 end process S_index_A_input_matrix;
157 end generate UG_index_A_matrix_for_each_column;
158

159 S_index_b_input_vector: process(clk)
160 begin
161 if rising_edge(clk) then
162 if (reset = ’1’) or (sig_iqrd_state = S_IDLE) then
163 sig_b_idx <= (others => ’0’);
164 sig_b_valid <= ’0’;
165 else
166 if (sig_b_ready = ’1’) and (sig_b_valid = ’1’) then
167 -- if we’re at the end of indexing the b vector , samples

are no longer valid
168 if sig_b_idx = (G_M - 1) then
169 sig_b_valid <= ’0’;
170 else
171 -- increment b-vector index when systolic array

consumes a sample
172 sig_b_idx <= sig_b_idx + 1;
173 end if;
174 end if;
175
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176 if sig_iqrd_state = S_CONSUME then
177 sig_b_valid <= ’1’;
178 end if;
179 end if;
180 end if;
181 end process S_index_b_input_vector;
182

183 UG_map_inputs_to_first_row: for col_idx in 0 to (G_N + 1)
generate

184 UG_input_from_matrix_A: if col_idx < G_N generate
185 -- Indexes registed A matrix: | index into M dim. |

samp column |
186 sig_X_real (0)(col_idx) <= sig_A_real( to_integer(sig_A_idx(

col_idx)) )(col_idx);
187 sig_X_imag (0)(col_idx) <= sig_A_imag( to_integer(sig_A_idx(

col_idx)) )(col_idx);
188 sig_X_valid (0)(col_idx) <= sig_A_valid(col_idx);
189 sig_A_ready(col_idx) <= sig_X_ready (0)(col_idx);
190 end generate UG_input_from_matrix_A;
191

192 UG_input_from_vector_b: if col_idx = G_N generate
193 sig_X_real (0)(col_idx) <= sig_b_real( to_integer(sig_b_idx)

);
194 sig_X_imag (0)(col_idx) <= sig_b_imag( to_integer(sig_b_idx)

);
195 sig_X_valid (0)(col_idx) <= sig_b_valid;
196 sig_b_ready <= sig_X_ready (0)(col_idx);
197 end generate UG_input_from_vector_b;
198

199 UG_input_const_1: if col_idx = (G_N + 1) generate
200 sig_X_real (0)(col_idx) <= to_signed( 1, G_DATA_WIDTH);
201 sig_X_imag (0)(col_idx) <= to_signed( 0, G_DATA_WIDTH);
202 sig_X_valid (0)(col_idx) <= ’1’;
203 -- since giving constant 1 + 0j, d/c about ready signal ,

always valid
204 end generate UG_input_const_1;
205

206 -- right -most IIC cell fed NULL samples in below systolic
array generate clauses

207 end generate UG_map_inputs_to_first_row;
208

209 -- Number of rows = size N
210 UG_systolic_array_rows: for row_idx in 0 to (G_N - 1) generate
211 -- Number of columns = size N + 3, where the first (left -most)

processing
212 -- element within a row is the BC
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213 UG_systolic_array_columns: for col_idx in 0 to (G_N + 2)
generate

214

215 -- Boundary Cell is always left -most/first in column
216 UG_left_BC: if col_idx = 0 generate
217 U_BC: entity work.boundary_cell
218 generic map (
219 G_DATA_WIDTH => G_DATA_WIDTH ,
220 G_USE_LAMBDA => G_USE_LAMBDA
221 )
222 port map (
223 clk => clk ,
224 reset => reset ,
225 CORDIC_scale => CORDIC_scale ,
226 lambda => lambda ,
227

228 x_real => sig_X_real (row_idx)(col_idx),
229 x_imag => sig_X_imag (row_idx)(col_idx),
230 x_valid => sig_X_valid(row_idx)(col_idx),
231 x_ready => sig_X_ready(row_idx)(col_idx),
232

233 phi_out => sig_phi (row_idx)(col_idx +1),
234 theta_out => sig_theta(row_idx)(col_idx +1),
235 bc_valid_out => sig_angles_valid(row_idx)(col_idx +1),
236 ic_ready => sig_bc_ic_ready(row_idx)
237 );
238 end generate UG_left_BC;
239

240 UG_internal_cells: if (col_idx > 0) and (col_idx < (G_N + 2
- row_idx) ) generate

241 -- the first IC needs the BC/IC ready handshaking signal
242 UG_first_IC: if col_idx = 1 generate
243 U_IC_BC: entity work.internal_cell
244 generic map (
245 G_DATA_WIDTH => G_DATA_WIDTH ,
246 G_USE_LAMBDA => G_USE_LAMBDA
247 )
248 port map (
249 clk => clk ,
250 reset => reset ,
251 CORDIC_scale => CORDIC_scale ,
252 lambda => lambda ,
253

254 xin_real => sig_X_real (row_idx)(col_idx),
255 xin_imag => sig_X_imag (row_idx)(col_idx),
256 xin_valid => sig_X_valid(row_idx)(col_idx),
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257 xin_ready => sig_X_ready(row_idx)(col_idx),
258

259 phi_in => sig_phi (row_idx)(col_idx),
260 theta_in => sig_theta(row_idx)(col_idx),
261 bc_valid_in => sig_angles_valid(row_idx)(col_idx),
262 ic_ready => sig_bc_ic_ready(row_idx),
263

264 -- X sample to next row , but shifted one column left
(triangular array)

265 xout_real => sig_X_real (row_idx +1)(col_idx -1),
266 xout_imag => sig_X_imag (row_idx +1)(col_idx -1),
267 xout_valid => sig_X_valid(row_idx +1)(col_idx -1),
268 xout_ready => sig_X_ready(row_idx +1)(col_idx -1),
269

270 phi_out => sig_phi (row_idx)(col_idx +1),
271 theta_out => sig_theta(row_idx)(col_idx +1),
272 angles_valid => sig_angles_valid(row_idx)(col_idx +1)
273 );
274 end generate UG_first_IC;
275

276 -- other (non -first) ICs are interconnected within a row
277 UG_other_ICs: if col_idx /= 1 generate
278 U_IC: entity work.internal_cell
279 generic map (
280 G_DATA_WIDTH => G_DATA_WIDTH ,
281 G_USE_LAMBDA => G_USE_LAMBDA
282 )
283 port map (
284 clk => clk ,
285 reset => reset ,
286 CORDIC_scale => CORDIC_scale ,
287 lambda => lambda ,
288

289 xin_real => sig_X_real (row_idx)(col_idx),
290 xin_imag => sig_X_imag (row_idx)(col_idx),
291 xin_valid => sig_X_valid(row_idx)(col_idx),
292 xin_ready => sig_X_ready(row_idx)(col_idx),
293

294 phi_in => sig_phi (row_idx)(col_idx),
295 theta_in => sig_theta(row_idx)(col_idx),
296 bc_valid_in => sig_angles_valid(row_idx)(col_idx),
297 ic_ready => open , -- not needed for other ICs
298

299 -- X sample to next row , but shifted one column left
(triangular array)

300 xout_real => sig_X_real (row_idx +1)(col_idx -1),
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301 xout_imag => sig_X_imag (row_idx +1)(col_idx -1),
302 xout_valid => sig_X_valid(row_idx +1)(col_idx -1),
303 xout_ready => sig_X_ready(row_idx +1)(col_idx -1),
304

305 phi_out => sig_phi (row_idx)(col_idx +1),
306 theta_out => sig_theta(row_idx)(col_idx +1),
307 angles_valid => sig_angles_valid(row_idx)(col_idx +1)
308 );
309 end generate UG_other_ICs;
310 end generate UG_internal_cells;
311

312 UG_inverse_internal_cells: if (row_idx > 0) and
313 (col_idx >= (G_N + 2 - row_idx

)) and
314 (col_idx < (G_N + 2))

generate
315 U_IIC: entity work.internal_cell
316 generic map (
317 G_DATA_WIDTH => G_DATA_WIDTH ,
318 G_USE_LAMBDA => G_USE_LAMBDA
319 )
320 port map (
321 clk => clk ,
322 reset => reset ,
323 CORDIC_scale => CORDIC_scale ,
324 lambda => inv_lambda ,
325

326 xin_real => sig_X_real (row_idx)(col_idx),
327 xin_imag => sig_X_imag (row_idx)(col_idx),
328 xin_valid => sig_X_valid(row_idx)(col_idx),
329 xin_ready => sig_X_ready(row_idx)(col_idx),
330

331 phi_in => sig_phi (row_idx)(col_idx),
332 theta_in => sig_theta(row_idx)(col_idx),
333 bc_valid_in => sig_angles_valid(row_idx)(col_idx),
334 ic_ready => open , -- not needed for other ICs
335

336 -- X sample to next row , but shifted one column left (
triangular array)

337 xout_real => sig_X_real (row_idx +1)(col_idx -1),
338 xout_imag => sig_X_imag (row_idx +1)(col_idx -1),
339 xout_valid => sig_X_valid(row_idx +1)(col_idx -1),
340 xout_ready => sig_X_ready(row_idx +1)(col_idx -1),
341

342 phi_out => sig_phi (row_idx)(col_idx +1),
343 theta_out => sig_theta(row_idx)(col_idx +1),
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344 angles_valid => sig_angles_valid(row_idx)(col_idx +1)
345 );
346 end generate UG_inverse_internal_cells;
347

348 -- Inverse Interal Cell fed by null -sample is always right -
most/last in column

349 UG_right_IIC: if col_idx = (G_N + 2) generate
350 U_null_IIC: entity work.internal_cell
351 generic map (
352 G_DATA_WIDTH => G_DATA_WIDTH ,
353 G_USE_LAMBDA => G_USE_LAMBDA
354 )
355 port map (
356 clk => clk ,
357 reset => reset ,
358 CORDIC_scale => CORDIC_scale ,
359 lambda => inv_lambda ,
360

361 xin_real => to_signed( 0, G_DATA_WIDTH),
362 xin_imag => to_signed( 0, G_DATA_WIDTH),
363 xin_valid => ’1’, -- always NULL input
364 xin_ready => open , -- d/c
365

366 phi_in => sig_phi (row_idx)(col_idx),
367 theta_in => sig_theta(row_idx)(col_idx),
368 bc_valid_in => sig_angles_valid(row_idx)(col_idx),
369 ic_ready => open , -- ready signaling not needed

here
370

371 xout_real => sig_X_real (row_idx +1)(col_idx -1),
372 xout_imag => sig_X_imag (row_idx +1)(col_idx -1),
373 xout_valid => sig_X_valid(row_idx +1)(col_idx -1),
374 xout_ready => sig_X_ready(row_idx +1)(col_idx -1),
375

376 -- last cell , these angles not needed
377 phi_out => open ,
378 theta_out => open ,
379 angles_valid => open
380 );
381 end generate UG_right_IIC;
382

383 end generate UG_systolic_array_columns;
384 end generate UG_systolic_array_rows;
385

386

100



387 --// Start Final Extraction of X Vector
/////////////////////////////////////

388 -- first IC from last row in systolic array feeds ‘a‘ sample to
weight extract cells

389 -- and since these cells don ’t have a ‘ready ‘ signal for ‘a‘,
assert it here

390 sig_X_ready(G_N)(0) <= ’1’;
391 -- same thing for next IC, always ‘ready ‘ so the IC is not held

up
392 sig_X_ready(G_N)(1) <= ’1’;
393

394 -- map last row , first IC data output -> weight extract ‘a‘
input row

395 sig_w_a_real (2) <= sig_X_real (G_N)(0);
396 sig_w_a_imag (2) <= sig_X_imag (G_N)(0);
397 sig_w_a_valid (2) <= sig_X_valid(G_N)(0);
398

399 -- first two output column ’s (0 & 1) samples can be multiplied
togeter to form

400 -- error function e(k)
401 UG_output_vector: for col_idx in 2 to (G_N + 1) generate
402 U_calc_x: entity work.weight_extract_cell
403 generic map (
404 G_DATA_WIDTH => G_DATA_WIDTH
405 )
406 port map (
407 clk => clk ,
408 reset => reset ,
409

410 ain_real => sig_w_a_real (col_idx),
411 ain_imag => sig_w_a_imag (col_idx),
412 ain_valid => sig_w_a_valid(col_idx),
413

414 aout_real => sig_w_a_real (col_idx +1),
415 aout_imag => sig_w_a_imag (col_idx +1),
416 aout_valid => sig_w_a_valid(col_idx +1),
417

418 -- use final/output row from IC/IICs in systolic array
419 b_real => sig_X_real (G_N)(col_idx),
420 b_imag => sig_X_imag (G_N)(col_idx),
421 b_valid => sig_X_valid(G_N)(col_idx),
422 b_ready => sig_X_ready(G_N)(col_idx),
423

424 w_real => sig_w_w_real (col_idx),
425 w_imag => sig_w_w_imag (col_idx),
426 w_valid => sig_w_w_valid(col_idx),
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427 w_ready => ’1’ -- for now , final ready from
downstream is handled in FSM

428 );
429

430 S_reg_weight_outputs_to_x: process(clk)
431 begin
432 if rising_edge(clk) then
433 if sig_w_w_valid(col_idx) then
434 sig_out_x_real(col_idx -2) <= sig_w_w_real (col_idx);
435 sig_out_x_imag(col_idx -2) <= sig_w_w_imag (col_idx);
436 end if;
437 end if;
438 end process S_reg_weight_outputs_to_x;
439 end generate UG_output_vector;
440 --// End Final Extraction of X Vector

///////////////////////////////////////
441

442

443 --// Start FSM that coordinates array timing
////////////////////////////////

444 S_main_FSM: process(clk)
445 begin
446 if rising_edge(clk) then
447 if reset = ’1’ then
448 sig_w_valid_cntr <= 0;
449 sig_iqrd_state <= S_IDLE;
450 else
451 case sig_iqrd_state is
452 when S_IDLE =>
453 if (A_valid = ’1’) and (b_valid = ’1’) then
454 sig_A_real <= A_real;
455 sig_A_imag <= A_imag;
456 sig_b_real <= b_real;
457 sig_b_imag <= b_imag;
458 sig_iqrd_state <= S_CONSUME;
459 end if;
460

461 when S_CONSUME =>
462 sig_iqrd_state <= S_WAIT_X;
463

464 when S_WAIT_X =>
465 -- when last/right -most weight is valid , count up
466 -- once we’ve hit G_M - 1, we know this is the last

weight and
467 -- can move to show this as final x vector output
468 if sig_w_w_valid(G_N+1) = ’1’ then
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469 if sig_w_valid_cntr >= (G_M - 1) then
470 sig_w_valid_cntr <= 0;
471 sig_iqrd_state <= S_OUT_VALID;
472 else
473 sig_w_valid_cntr <= sig_w_valid_cntr + 1;
474 end if;
475 end if;
476

477 when S_OUT_VALID =>
478 if x_ready = ’1’ then
479 sig_iqrd_state <= S_IDLE;
480 end if;
481

482 when others => sig_iqrd_state <= S_IDLE;
483 end case;
484 end if;
485 end if;
486 end process S_main_FSM;
487 --// End FSM that coordinates array timing

//////////////////////////////////
488

489 end rtl;

Listing 3.7: Top-Level IQRD Design

3.2.4 Application of Beamforming Weights

As shown in previous chapters, the application of the complex, adaptive

beamforming weights is simply a dot product of the column vector of each

spatial sample at time k (x(k)) and the complex conjugate of the weight vector

ŵ, as y(k) = ŵHx(k).
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Figure 3.11: Application of Beamforming Weights, N = 4

The dot-product VHDL design developed below utilizes a recursive adder

tree implementation to adapt to varying vector lengths through generics:

1 -- Computes dot -product of two complex , signed input vectors (uses
parallel adder tree)

2 -- If G_CONJ is TRUE , the complex transpose product a^{H}b is
computed , else does a^{T}b

3 library ieee;
4 use ieee.std_logic_1164.all;
5 use ieee.numeric_std.all;
6 library work;
7 use work.util_pkg.all;
8

9 entity dot_product_cmplx is
10 generic (
11 G_AWIDTH : natural := 16; -- input vector bitwidth
12 G_BWIDTH : natural := 16; -- input vector bitwidth
13 G_VEC_LEN : natural := 8; -- number of input samples in

each vector
14 G_CONJ : boolean := true -- if true , do complex conjugate

on input vector a
15 );
16 port (
17 clk : in std_logic;
18 reset : in std_logic := ’0’; -- (optional) sync reset

for *valid ’s
19 -- input data valid across input row vectors
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20 din_valid : in std_logic := ’1’;
21 din_a_real : in T_slv_2D(G_VEC_LEN - 1 downto 0)(G_AWIDTH -

1 downto 0);
22 din_a_imag : in T_slv_2D(G_VEC_LEN - 1 downto 0)(G_AWIDTH -

1 downto 0);
23 din_b_real : in T_slv_2D(G_VEC_LEN - 1 downto 0)(G_BWIDTH -

1 downto 0);
24 din_b_imag : in T_slv_2D(G_VEC_LEN - 1 downto 0)(G_BWIDTH -

1 downto 0);
25

26 dout_valid : out std_logic;
27 dout_real : out std_logic_vector(F_clog2(G_VEC_LEN) +

G_AWIDTH + G_BWIDTH downto 0);
28 dout_imag : out std_logic_vector(F_clog2(G_VEC_LEN) +

G_AWIDTH + G_BWIDTH downto 0)
29 );
30 end dot_product_cmplx;
31

32 architecture rtl of dot_product_cmplx is
33

34 component adder_tree is
35 generic (
36 G_DATA_WIDTH : natural := 16; -- sample bitwidth
37 G_NUM_INPUTS : natural := 8 -- number of input samples in

vector
38 );
39 port (
40 clk : in std_logic;
41 reset : in std_logic := ’0’; -- (optional) sync

reset for *valid ’s
42 -- input data valid across input row vector
43 din_valid : in std_logic := ’1’;
44 -- NOTE: input samples not registered
45 din : in T_slv_2D(G_NUM_INPUTS - 1 downto 0)(

G_DATA_WIDTH - 1 downto 0);
46

47 dout_valid : out std_logic;
48 dout : out std_logic_vector(F_clog2(G_NUM_INPUTS) +

G_DATA_WIDTH - 1 downto 0)
49 );
50 end component adder_tree;
51

52 component complex_multiply_mult4 is
53 generic (
54 G_AWIDTH : natural := 16; -- size of 1st input of

multiplier
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55 G_BWIDTH : natural := 18; -- size of 2nd input of
multiplier

56 G_CONJ_A : boolean := false; -- take complex conjugate of
arg A

57 G_CONJ_B : boolean := false -- take complex conjugate of
arg B

58 );
59 port (
60 clk : in std_logic;
61 reset : in std_logic := ’0’; -- (optional) sync reset

for *valid ’s
62 ab_valid : in std_logic; -- A & B complex input data valid
63 ar : in signed(G_AWIDTH - 1 downto 0); -- 1st input ’s

real part
64 ai : in signed(G_AWIDTH - 1 downto 0); -- 1st input ’s

imaginary part
65 br : in signed(G_BWIDTH - 1 downto 0); -- 2nd input ’s

real part
66 bi : in signed(G_BWIDTH - 1 downto 0); -- 2nd input ’s

imaginary part
67 p_valid : out std_logic; -- Product complex output data

valid
68 pr : out signed(G_AWIDTH + G_BWIDTH downto 0); -- real

part of output
69 pi : out signed(G_AWIDTH + G_BWIDTH downto 0) --

imaginary part of output
70 );
71 end component complex_multiply_mult4;
72

73 -- registered product outputs -> adder tree
74 signal sig_product_real : T_signed_2D(G_VEC_LEN - 1 downto 0)(

G_AWIDTH + G_BWIDTH downto 0)
75 := (others => (others => ’0’));
76 signal sig_product_imag : T_signed_2D(G_VEC_LEN - 1 downto 0)(

G_AWIDTH + G_BWIDTH downto 0)
77 := (others => (others => ’0’));
78

79 signal sig_product_slv_real : T_slv_2D(G_VEC_LEN - 1 downto 0)(
G_AWIDTH + G_BWIDTH downto 0)

80 := (others => (others => ’0’));
81 signal sig_product_slv_imag : T_slv_2D(G_VEC_LEN - 1 downto 0)(

G_AWIDTH + G_BWIDTH downto 0)
82 := (others => (others => ’0’));
83

84 signal sig_product_valid : std_logic := ’0’;
85 signal dout_valid_real : std_logic := ’0’;
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86 signal dout_valid_imag : std_logic := ’0’;
87

88 begin
89

90 -- NOTE: since initial complex products are enforced to be valid
contiguously

91 -- the output valid need only come from one of the adder
tress since they

92 -- have equal pipeline delay
93 dout_valid <= dout_valid_real; -- and dout_valid_imag;
94

95 UG_index_input_vectors: for i in 0 to G_VEC_LEN - 1 generate
96 U_cmplx_mult: complex_multiply_mult4
97 generic map (
98 G_AWIDTH => G_AWIDTH ,
99 G_BWIDTH => G_BWIDTH ,

100 G_CONJ_A => G_CONJ ,
101 G_CONJ_B => false
102 )
103 port map (
104 clk => clk ,
105 reset => reset ,
106 ab_valid => din_valid ,
107 ar => signed( din_a_real(i) ),
108 ai => signed( din_a_imag(i) ),
109 br => signed( din_b_real(i) ),
110 bi => signed( din_b_imag(i) ),
111 p_valid => sig_product_valid ,
112 pr => sig_product_real(i),
113 pi => sig_product_imag(i)
114 );
115

116 sig_product_slv_real(i) <= std_logic_vector(
sig_product_real(i) );

117 sig_product_slv_imag(i) <= std_logic_vector(
sig_product_imag(i) );

118 end generate UG_index_input_vectors;
119

120 U_adder_tree_real: adder_tree
121 generic map (
122 G_DATA_WIDTH => G_AWIDTH + G_BWIDTH + 1,
123 G_NUM_INPUTS => G_VEC_LEN
124 )
125 port map (
126 clk => clk ,
127 reset => reset ,
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128 din_valid => sig_product_valid ,
129 din => sig_product_slv_real ,
130 dout_valid => dout_valid_real ,
131 dout => dout_real
132 );
133

134 U_adder_tree_imag: adder_tree
135 generic map (
136 G_DATA_WIDTH => G_AWIDTH + G_BWIDTH + 1,
137 G_NUM_INPUTS => G_VEC_LEN
138 )
139 port map (
140 clk => clk ,
141 reset => reset ,
142 din_valid => sig_product_valid ,
143 din => sig_product_slv_imag ,
144 dout_valid => dout_valid_imag ,
145 dout => dout_imag
146 );
147

148 end architecture rtl;

Listing 3.8: Beamforming Weights- Dot Product

3.3 IQRD Performance

The parameterize-able IQRD core has differing amounts of processing latency

and FPGA resource utilization depending on the size of the matrix inversion

supported. Since this is directly driven by the number of spatial channels

to support, table 3.1 shows a comparison of latency and resource utilization

based on a few common channel count values, N, using the implemented

design in a 100MHz synchronous clock domain, and using a pre-computed

covariance matrix (since the snapshot length K may dominate latency in

applications where this value is high):
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N Latency (µs) FF LUT DSP48 BRAM
3 4.80 3889 (27.6%) 3901 (54.9%) 90 (25.0%) 0 (0.0%)
4 6.34 63657 (45.1%) 64149 (90.4%) 144 (40.0%) 0 (0.0%)
8 12.50 231199 (164%) 252446 (356%) 272 (75.6%) 0 (0.0%)

16 24.82 895377 (635%) 1040992 (1466%) 144 (40.0%) 0 (0.0%)

Table 3.1: IQRD Performance: Latency and Resource Utilization vs Channel
Count for XCZU3EG FPGA

The values in Table 3.1 were generated post-synthesis using Xilinx Vivado

2020.1, targeting a Xilinx XCZU3EG Zynq UltraScale+ FPGA. Note that differ-

ing FPGA architectures/devices, synthesis settings, and effects of placement

and routing (PaR) can alter the resource utilization of the design, however for

this architecture, the differences will not be much. Interestingly, the N = 16

case showed a massive increase in slice utilization- generally related to flip-

flop (FF) and look-up-table (LUT) logic building blocks, though depends on

the exact FPGA architecture- but a decrease in DSP resources; the exact cause

is not known, however the vendor tools might try to rearrange logic to utilize

less DSP resources since this device does not have many available [17].

Even though this part is not very large, it is a modern FPGA SoC which, due

to its size and power, would be of common size to an edge deployed device.

Thus, the main takeaway from this exploration of existing architectures is

that fully FPGA-accelerated adaptive beamforming using QRD systolic arrays

may not fit in some devices, as seen above where the current part can really

only support up to a 4-channel implementation. As discussed before, there

are other FPGA architectures which utilize folded arrays or weight-flushing to

save on resources, however they trade these resource savings for processing

latency, in which case, it may be faster to just compute the covariance matrix
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in FPGA logic and then transfer the matrix to an embedded processor (as is

found in the XCZU3EG SoC device here which has 4x ARM A53 cores locally

attached) to do the matrix inversion and back substitution to get the adaptive

weights (which can then be applied to incoming data streams in the FPGA).

It should be noted that the CORDIC IQRD implementation used here could

be slightly improved by replacing the CORDIC Boundary and Internal Cells

with direct multiplier/LUT equations as in [2], however this will cause an

increase in DSP and BRAM/LUT utilization.
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Chapter 4

Machine Learning Applied to
Adaptive Beamforming

Now that we have a baseline, optimized implementation for the closed-form

solution of generating adaptive beamforming weights using IQRD-RLS, we

can explore the potential of using advances in the field of Machine Learn-

ing to possibly generate these adaptive weights in a more efficient, or more

performant, manner. We will first give a background on the current body

of knowledge in Machine Learning, specifically in the subset class of Deep

Learning where a model uses multiple layers to progressively extract, and infer,

features from a given set of data inputs [1].

After a deep learning model for the adaptive beamforming case is devel-

oped, we will walk through the FPGA-based implementation of the model to

show practical deployment of Machine Learning at the edge.

The developed approach takes the covariance matrix and steering vector

as a two-dimensional input layer and generates the adaptive weights directly
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at the output of the Convolutional Neural Network (CNN). To the writer’s un-

derstanding, this approach, and application, is fairly unique. The current

body of knowledge of Deep Learning applied to RF systems is relatively small

compared to the large amount of works applied to optimizations for computer

vision or classification applications. Furthermore, much of the example litera-

ture and code tools for CNNs are skewed towards classification taks, in which

the output of the CNN is one or more confidence values that a certain input

matches a pre-defined, discrete label. This can even be seen in RF signal classi-

fication research works, as in [2] and [3] where CNNs are trained to classify

input signals as a certain modulation type. Instead, the adaptive beamforming

case, in which we desire to have the CNN give us weight values directly, we

instead look to have a system essentially perform multi-output regression [1].

As well, we do not have discrete labels for training, but rather a numerical

optimization problem (maximizing SINR) for each training scenario, thus a

custom training methodology also had to be developed.

One work by Lin and Zhu [4] took a similar approach to this work by

training a neural network (NN) for mmWave MIMO systems, however the

phase shift control was assumed to be part of a hybrid beamforming system-

where discrete analog phase shifters perform the shift in discrete, quantized

steps- as well assumed specific channel state information (CSI) was available

for training and inference. The closest approach to our adaptive beamforming

application is in [5] where the authors used a CNN for generating adap-

tive beamforming weights for an ultrasound imaging application; the input

pre-processing and network layers differed from our implementation, but
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the authors’ results of 96.4% processing efficiency provided the impetus to

further explore the application of Adaptive Beamforming CNNs in resource-

constrained edge devices, specifically in FPGAs [5].

4.1 Deep Learning Background

Deep Learning, and largely the broader field of Machine Learning, is ex-

tremely dense and pulls from many mathematical and scientific disciplines.

Moreover, the field is growing quite literally everyday due to the popularity

of implementation in a variety of application areas, so the "state-of-the-art" in

Machine Learning is constantly changing. As such, the reader is suggested

to explore comprehensive texts, as in [1], to gain a deeper understanding of

Machine Learning as a whole, as well as some of the background math behind

these models. A comprehensive explanation here is beyond the scope of this

specific research work.

4.1.1 CNN Architecture

A popular architecture for deep neural networks is that of the Convolutional

Neural Network (CNN). The premise of the CNN is that it models the interac-

tion of neurons within the human brain [1], where some set of input data, x, is

convolved with a set of weights- also known as a kernel- to produce an output

feature map [1].

The discrete convolution operation that forms the basis of CNNs can be
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seen in Equation 4.1 [1].

s(t) = (x ∗ w)(t) =
∞

∑
a==∞

x(a)w(t− a) (4.1)

For a two-dimensional, m× n input X, a two-dimensional kernel K can

also be used to perform 2D convolution, as in Equation 4.2 [1]:

S(i, j) = (X ∗ K)(i, j) = ∑
m

∑
n

X(i−m, j− n)K(m, n) (4.2)

This convolution operation at the macro level starts with the individ-

ual neuron- also called perceptrons [6]- functionality. In a standard, one-

dimensional perceptron structure, a certain number of inputs are multiplied

by a corresponding number of weights, and then summed together, in effect

performing a dot-product of the two. After which, an activation function is

performed on the output to mimic the activity filtering of real neurons, as well

as aid in network training [1], [6]. This perceptron can be seen in Figure 4.1.

Figure 4.1: Perceptron Building Block in Neural Networks

The popular Rectified Linear Unit (ReLU) activation function was used
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for this research work; ReLU as an activation function not only mimics the

biological neuron, but has proved to enable better training of deep neural

networks than previous logistic sigmoid or hyperbolic tangent activation

functions of the past [1]. The ReLU is so called due to the fact that it returns

0 for negative input values, and directly returns the input value for positive

values, similar to electrical rectification circuits [1], as shown in Equation 4.3.

ReLU(x) = x+ = max(0, x) (4.3)

The interconnection of a number of inputs to a number of neurons, where

each neuron is fed all inputs, is known as a fully connected (FC) layer in CNNs

[1], [7]. The fully connected layer has the property that a change in one input

value has a corresponding effect on all output values of the next layer, as

shown in Figure 4.2. A sequential combination of multiple layers creates a

network, and is the basis of the overall CNN.

Figure 4.2: Fully Connected Layer
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In Figure 4.2, the nodes on the left side represent the inputs, and the nodes

on the right side represent the perceptions, each with a unique set of weights

and an activation function. If this is the first layer of a network, the inputs are

the data directly fed into the CNN. Correspondingly if this is the last layer of

the network, the output of the perceptrons are the final values computed by

the CNN.

The fully connected layer depicted here is indicative of a one-dimensional

layer, however layers may be made of any arbitrary dimension, for instance a

2D layer which performs 2D convolution on input data, as shown in Equation

4.2. In this case, most software tools used to develop neural networks, like

TensorFlow [8], operate generally on tensors, which is broad term for a matrix

of variable dimension [1]. There are other layer types as well, which can

perform different operations other than convolution, however for brevity a

further catalog of layer types is not covered in this work. Again, the reader

is encouraged to view comprehensive Machine Learning texts like [1] for

more information on different layers and their applicability to a certain neural

network.

4.1.2 CNN Model Development in TensorFlow

Given the background on CNNs, we can now start to develop a CNN specif-

ically designed and trained for computing adaptive beamforming weights

using the open-source software tool TensorFlow [8]. The decision to use Ten-

sorFlow over other tools was simply due its wide popularity- which gives it a

broad support base- and its constant development and updates.

118



Starting with the input layer of the CNN model, the decision was made

to use the generated covariance matrix as a preprocessing step prior to the

CNN, rather than some collection of unprocessed sampled data. Besides it

being relatively easy to implement in FPGA logic and light on resources- as

shown in the previous chapter-, if input preprocessing was not used, the input

layer would be very large to sample a sufficient time-series window across all

channels in order to extract meaningful features in the CNN. If the time-series

approach was chosen, a different NN structure would be used, such as a

Long Short-Term Memory (LSTM) network, which is a class of Recurrent Neural

Networks (RNNs) that has internal feedback connections to support inference

over time [1]. This is compared to feedforward networks, like CNNs, which

have no memory and infer a result based only on the current input sample

set, thus being time invariant. The approach to pre-process the input samples

before input to the CNN is similar to the approach of [3] and [2] where they

use a Short-time Fourier Transform to create an image retaining the time and

frequency properties of a set of input sample data. In this case, we only care

to keep the spatial properties of the input sample data.

Since we needed to provide the CNN a way to calculate adaptive weights

while not nulling the intended SOI, the steering vector was included as part

of the CNN’s input dataset, similar to the previous adaptive beamforming

algorithms. To accomplish this, the steering vector was appended to the

input covariance matrix as an added row to the input layer. As well, since the

covariance matrix is complex-valued, and most CNN tools assume real-valued

data and operations, we define the input layer as 2D in an approach similar to
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CNNs designed for image data input; similar to how computer vision CNNs

utilize an added dimension to represent the three color channels of an image

(red, green and blue), we add a dimension to represent the two "channels" of

our complex covariance matrix: one for the real, and one for the imaginary

part. Thus, given a targeted implementation support N spatial channels, we

create an input layer tensor of dimension N + 1× N × 2.

As stated previously, since we are looking for the CNN to compute the

adaptive beamforming weights directly, our output layer is designed to be of

size 2N; the reason for this size is that in the developed CNN model, one of

the hidden layers (a layer within a deep neural network) flattens the 2D fully

connected layer to a 1D representation, and as such, the output is designed to

give the real part of the adaptive beamforming weights in the lower half of

the output vector, and the imaginary part in the upper half.

Through experimentation, a CNN structure was chosen with one 2D con-

volutional layer, a flattened hidden layer, and a final fully connected layer.

The approach looked to balance performance and number of filter parameters

(driven by dimensionality and number of hidden layers) since the goal was to

implement a CNN directly in FPGA fabric. This structure is shown in Figure

4.3.
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Figure 4.3: Adaptive Beamforming CNN Structure

After CNN model definition, we look to train the model, which is the

process of deriving weights for each layer based on a desired output function

[1], [7]. To accomplish this, we created a synthetic test data set in Python which

generated a large amount of test scenarios to feed the model during training.

Each test data scenario was generated to vary the number of interference

sources- up to the N − 1 theoretical limit for nulling-, interference and SOI

incidence angles, interference and SOI center frequencies, and the desired

and SOI signal-to-noise ratios (SNRs). The large number of test scenarios,

and the large number of varied parameters, attempt to avoid the issue of

overfitting during model training, in which the model essentially memorizes

test datasets instead of creating real associations to input features [1]; this
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problem is further exacerbated by very deep, or high dimensional, neural

networks with relatively small training datasets, or datasets that don’t fully

represent the full space of input features.

In the approach of supervised learning, we feed the network test input

data, where each scenario has an associated label, and check the output of the

network for how close it inferred towards the expected label. A label can be

any set of values- as in multi-output regression where we look to match a

set of input values with a set of expected output vales-, or something like an

enumerated integer value- as in the case for classification tasks which look to

decide an input to a discrete set of output labels. For tasks like regression and

classification, the statistical error between the set of inferred (Y) and expected

(Ŷ) output values can be computed using methods such as Mean Squared Error

(MSE) [1], [7]:

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2 (4.4)

The specific calculation of error in Machine Learning terms is the loss func-

tion, and the job of the training tool is to derive neural network weights which

minimizes loss [1], [7]. Finding the minimal loss is done through stochastic

gradient descent and backpropagation (a.k.a. "backprop"), which essentially finds

the analytic derivative of the loss function to find a local minima [1], [7].

In this work, we used MSE to calculate the loss during training between

the inferred weights during a training batch, and the ideal set of weights

derived from the standard MVDR calculation process. Ideally, we looked to

actually create a custom loss function based on calculating 1/SINR, such that
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the tools could possibly derive a better solution, however TensorFlow does

not currently support complex-valued loss functions, which were necessary

for the SINR computation.

As such, TensorFlow was able to at least perform multi-output regression

with the ideal, MVDR results for comparison and loss calcuations, but the

relative performance suffered slightly, with the average SINR difference being

almost 5 dB worse from the CNN implementation versus MVDR, as shown in

Figure 4.4:

Figure 4.4: CNN vs MVDR SINR over Validation Test Dataset

Future developments of TensorFlow, or perhaps even a different tool set al-

together which supports complex-valued core operations, should be pursued

for future work to better develop a neural network for adaptive beamforming.

For this initial research work however, where we will next implement this

CNN in FPGA logic, this slight under-performance will suffice to prove the

concept.
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4.2 FPGA Implementation of CNN

Now that we have a working CNN trained to perform adaptive beamform-

ing, we can look to port the layers, and structure, to FPGA logic. However,

before porting the CNN, we should take some steps to optimize the model for

embedded targets like FPGAs. An extension of the TensorFlow distribution

called TensorFlow Lite contains utilities to perform these optimization steps

while aiming to maintain model accuracy [9].

First, we can perform an operation known as pruning to remove (zero-out)

nodes within a model that have little effect to the model’s overall accuracy [9].

At a basic level, pruning can be thought of as a process that removes existing

connections between layers where the weights are at, or nearly, zero; in this

sense creating a sparsely connected layer where those connections simply

don’t exist can reduce model size and processing latency, while theoretically

having little effect on overall model operation. However, this should be

verified through testing and usually pruning is best done in the latter, less

critical layers of a neural net [9].

Even more critical to efficient implementation in hardware accelerators is

the process of quantization [9]. As the name implies, quantization is a process

of converting model weights from a full-precision numeric representation-

which is often single precision, 32-bit floating point- to a smaller numeric

representation such as 16-bit floating point (FP16) or integer data types. While

floating point operations are supported in most major FPGA vendors by

now, the coding and implementation is often vendor-specific- through vendor

supplied Intellectual Property (IP) cores- or best done through High-Level
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Synthesis (HLS) toolchains. As such, integer quantization is preferred for

our vendor-neutral FPGA implementation goal, as well integer multiplication

is cheaper in FPGA DSP fabric resources than the equivalent floating point

operations. It further makes sense to use integer weights given our input

covariance matrix is assumed to be in fixed point for this model. To support

this, TensorFlow Lite supports a post-training integer quantization model

where the same model we trained with floating point weights can be directly

converted to quantized weights and the accuracy checked within TensorFlow

before final deployment [9]. Furthermore, a relatively new (at the time of

this writing) mode of quantization was used for this research called "16x8

quantization mode" [9]; in this mode weights are quantized to 8-bit integer

values while activations are converted to larger 16-bit values. This gives us

better model dynamic range than the traditional, full 8-bit quantization modes

where all model parameters were quantized down to 8-bit integer sizes, while

still drastically reducing model resource utilization [9]. Quantization of a set

of floating-point values, b, to a signed, n bit integer data type can be found by

multiplying each value by a scaling coefficient k, as shown in the Equation 4.5

below, and then rounding to the nearest integer:

k =
2n−1

max
x∈b
|x| (4.5)

Given the set of quantized weights, we can start to build up the neural

network; starting with the basic perceptron building block, we created a

VHDL component that matches the dot-product operation shown in Figure 4.1.

However, instead of taking the direct form of the perceptron and calculating
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all connection weight products and summing in parallel (which could use our

previous dot-product component), we can attain great DSP resource savings

by using a single multiplier in the perceptron, and then iterating through each

connection and multiplying by the associated weight stored in local Read-only

memory (ROM). Given our CNN with over 2000 unique weights for an N = 8

configuration, and an embedded device with only 360 multipliers- as in the

XCZU3EG- this DSP resource savings is critical. The amount of memory space

the weights take up is minimal (since we have 8-bit quantized weights) and,

for overall latency, fully-connected layers with small to medium dimensions

will not see much of a performance hit. Given a Python export of quantized

filter weights (see Python code in Appendix), we create per-node weight files

which we can point to with this component to load a node’s associated weights

per input connection.

1 -- Implements a perceptron with N-connections
2 -- For quantizations like 16b data w/8b weights , we can simply

keep the 24b product and accumulate
3 -- to something like a 32b/48b value (large adders are cheap

nowadays) and then shift at very end
4 -- to keep relative precision
5 library ieee;
6 use ieee.std_logic_1164.all;
7 use ieee.numeric_std.all;
8 use std.textio.all;
9 library work;

10 use work.util_pkg.all;
11

12 entity perceptron is
13 generic (
14 G_DATA_WIDTH : integer := 16;
15 G_WEIGHT_WIDTH : integer := 8;
16 -- number of connections from previous layer (== # of weights)
17 G_NUM_CONNECT : integer := 32;
18 -- accumulator register word size
19 G_ACCUM_WIDTH : integer := 24;
20 G_WEIGHT_PATH : string := "../ scripts/coef.txt"
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21 );
22 port (
23 clk : in std_logic;
24 reset : in std_logic;
25

26 din_valid : in std_logic;
27 din : in T_signed_2D(G_NUM_CONNECT - 1 downto 0)(

G_DATA_WIDTH - 1 downto 0);
28

29 dout_valid : out std_logic;
30 dout : out signed(G_DATA_WIDTH - 1 downto 0)
31 );
32 end entity perceptron;
33

34 architecture rtl of perceptron is
35

36 type T_percep_fsm is (S_IDLE ,
37 S_ITER_MAC ,
38 S_FINAL_ACC ,
39 S_OUT_VALID);
40 signal sig_percep_state : T_percep_fsm := S_IDLE;
41

42 type T_rom_type is array (G_NUM_CONNECT - 1 downto 0) of
std_logic_vector(G_WEIGHT_WIDTH - 1 downto 0);

43

44 -- Reads an ASCII file with bit -vector patterns on each line
where:

45 -- + each line has a single binary value of length ‘slv_length
‘

46 -- + reads up to ‘dim_length ‘ lines of file
47 -- e.x. a file with values ‘0‘, ‘1‘, and ‘7‘ is:
48 -- 00000000
49 -- 00000001
50 -- 00000111
51 -- similar to Vivado RAM file init VHDL template
52 function F_read_from_file( file_path : string ) return

T_rom_type is
53 file fd : text is in file_path;
54 variable V_line : line;
55 variable V_bitvec : bit_vector(G_WEIGHT_WIDTH - 1 downto 0);
56 variable V_return : T_rom_type;
57 begin
58 for i in T_rom_type ’range loop
59 readline( fd, V_line );
60 read( V_line , V_bitvec );
61 V_return(i) := to_stdlogicvector( V_bitvec );
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62 end loop;
63 return V_return;
64 end F_read_from_file;
65

66

67 -- infers as ROM by synthesis tools (LUTRAM vs BRAM left to
tooling , could

68 -- explicitly specificy here as an attribute) and initial values
are weights

69 -- from passed weight file path
70 signal sig_weight_array : T_rom_type := F_read_from_file(

G_WEIGHT_PATH );
71

72 signal sig_idx : unsigned( F_clog2(G_NUM_CONNECT) - 1 downto 0
);

73 signal sig_prd : signed(G_DATA_WIDTH + G_WEIGHT_WIDTH - 1
downto 0);

74 signal sig_acc : signed(G_ACCUM_WIDTH - 1 downto 0);
75

76 begin
77

78 dout_valid <= ’1’ when sig_percep_state = S_OUT_VALID else ’0’;
79 -- given large accumulator register , and we’ve been shift/

scaling
80 -- after each multiplication , we can simply take the LSBs for

our
81 -- final data output
82 dout <= sig_acc(G_DATA_WIDTH - 1 downto 0);
83

84 S_output_FSM: process(clk)
85 begin
86 if rising_edge(clk) then
87 if reset = ’1’ then
88 sig_idx <= (others => ’0’);
89 sig_acc <= (others => ’0’);
90

91 sig_percep_state <= S_IDLE;
92 else
93 case sig_percep_state is
94 when S_IDLE =>
95 if din_valid = ’1’ then
96 -- perform 1st lookup/mult here
97 sig_prd <= din(to_integer(sig_idx)) *
98 signed( sig_weight_array(to_integer(

sig_idx)) );
99 sig_idx <= sig_idx + 1;
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100

101 sig_percep_state <= S_ITER_MAC;
102 end if;
103

104

105 -- iterate through weights & connections and accumulate
result

106 when S_ITER_MAC =>
107 -- accumulate scaled/RSH product from last cycle
108 sig_acc <= sig_acc + resize( shift_right( sig_prd ,

G_WEIGHT_WIDTH ),
109 sig_acc ’length );
110 sig_prd <= din(to_integer(sig_idx)) *
111 signed( sig_weight_array(to_integer(sig_idx

)) );
112

113 if sig_idx = G_NUM_CONNECT - 1 then
114 sig_percep_state <= S_FINAL_ACC;
115 end if;
116 sig_idx <= sig_idx + 1;
117

118

119 when S_FINAL_ACC =>
120 -- accumulate product from last cycle
121 sig_acc <= sig_acc + resize( shift_right( sig_prd ,

G_WEIGHT_WIDTH ),
122 sig_acc ’length );
123 sig_percep_state <= S_OUT_VALID;
124

125

126 when S_OUT_VALID =>
127 -- clear index & accumulator registers for next use
128 sig_idx <= (others => ’0’);
129 sig_acc <= (others => ’0’);
130 -- since feed -forward , no need to wait for ’ready ’
131 sig_percep_state <= S_IDLE;
132

133 when others => sig_percep_state <= S_IDLE;
134 end case;
135 end if;
136 end if;
137 end process S_output_FSM;
138

139 end rtl;

Listing 4.1: Perceptron Component
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After the perceptron was built and verified, we created the simple ReLU

activation function in VHDL, as shown below:
1 -- Pipelined ReLU activation: max(0, x)
2 library ieee;
3 use ieee.std_logic_1164.all;
4 use ieee.numeric_std.all;
5

6 entity ReLU is
7 generic (
8 G_DATA_WIDTH : integer := 16
9 );

10 port (
11 clk : in std_logic;
12 din_valid : in std_logic;
13 din : in signed(G_DATA_WIDTH - 1 downto 0);
14 dout_valid : out std_logic;
15 dout : out signed(G_DATA_WIDTH - 1 downto 0)
16 );
17 end entity ReLU;
18

19 architecture rtl of ReLU is
20

21 signal sig_dout : signed(G_DATA_WIDTH - 1 downto 0);
22 signal sig_dvalid : std_logic := ’0’;
23

24 begin
25

26 dout_valid <= sig_dvalid;
27 dout <= sig_dout;
28

29 S_relu: process(clk)
30 begin
31 if rising_edge(clk) then
32 if din > 0 then
33 sig_dout <= din;
34 else
35 sig_dout <= (others => ’0’);
36 end if;
37 sig_dvalid <= din_valid;
38 end if;
39 end process S_relu;
40

41 end architecture rtl;

Listing 4.2: ReLU Activation Component
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Now that we have parameterize-able perceptron components, we can

create the fully-connected (dense) layer by pointing to a set of weight files and

connecting the input and output array of signed values:

1 -- Implements a Fully -Connected (Dense) layer of perceptrons and
activations

2 library ieee;
3 use ieee.std_logic_1164.all;
4 use ieee.numeric_std.all;
5 use ieee.std_logic_misc.all;
6 use std.textio.all;
7 library work;
8 use work.util_pkg.all;
9

10 entity FC is
11 generic (
12 G_DATA_WIDTH : integer := 16;
13 G_WEIGHT_WIDTH : integer := 8;
14 G_NUM_INPUTS : integer := 50;
15 G_NUM_OUTPUTS : integer := 32;
16 -- accumulator register word size
17 G_ACCUM_WIDTH : integer := 24;
18 G_LAYER_IDX : integer := 0;
19 -- base file system path to weight files for this FC layer ,

also uses
20 -- layer index from above to match file pattern for node ’s

weight file
21 G_BASE_PATH : string := "/home/jgentile/src/jhu -masters -

thesis/src/hdl -lib/DSP/ML/neural/sim/FC_weights_layer_";
22 -- choice of activation function post -perceptron: ["NONE", "

RELU"]
23 G_ACTIVATION : string := "RELU"
24 );
25 port (
26 clk : in std_logic;
27 reset : in std_logic;
28

29 -- only one valid required , since all nodes from previous
layer need to be valid before moving here

30 din_valid : in std_logic;
31 din : in T_signed_2D(G_NUM_INPUTS - 1 downto 0)(

G_DATA_WIDTH - 1 downto 0);
32 -- no handshaking/ready signaling required either , since we

only do simple feed -forward operation
33 dout_valid : out std_logic;
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34 dout : out T_signed_2D(G_NUM_OUTPUTS - 1 downto 0)(
G_DATA_WIDTH - 1 downto 0)

35 );
36 end entity FC;
37

38 architecture rtl of FC is
39

40 signal sig_percep_out : T_signed_2D(G_NUM_OUTPUTS - 1 downto
0)

41 (G_DATA_WIDTH - 1 downto 0)
;

42 signal sig_percep_valid : std_logic_vector(G_NUM_OUTPUTS - 1
downto 0);

43 signal sig_activ_out : T_signed_2D(G_NUM_OUTPUTS - 1 downto
0)

44 (G_DATA_WIDTH - 1 downto 0)
;

45 signal sig_activ_valid : std_logic_vector(G_NUM_OUTPUTS - 1
downto 0);

46

47 begin
48

49 -- all nodes should have equal delay so arbitrarily use just one
activation ’s

50 -- valid output , but pruned layers or other things might change
this

51 -- better than ’and_reduce ’ right now too , as thats unnecessary
logic

52 dout_valid <= sig_activ_valid (0);
53 dout <= sig_activ_out;
54

55 UG_gen_nodes: for i in 0 to G_NUM_OUTPUTS - 1 generate
56 U_percep_x: entity work.perceptron
57 generic map (
58 G_DATA_WIDTH => G_DATA_WIDTH ,
59 G_WEIGHT_WIDTH => G_WEIGHT_WIDTH ,
60 -- number of connections from previous layer (== # of

weights)
61 G_NUM_CONNECT => G_NUM_INPUTS ,
62 -- accumulator register word size
63 G_ACCUM_WIDTH => G_ACCUM_WIDTH ,
64 -- build path to each weight file here
65 G_WEIGHT_PATH => G_BASE_PATH &
66 integer ’image(G_LAYER_IDX) &
67 "_node_" &
68 integer ’image(i) &
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69 ".txt"
70 )
71 port map (
72 clk => clk ,
73 reset => reset ,
74 din_valid => din_valid ,
75 din => din ,
76 dout_valid => sig_percep_valid(i),
77 dout => sig_percep_out(i)
78 );
79

80 UG_ReLU: if G_ACTIVATION = "RELU" generate
81 U_ReLU_x: entity work.ReLU
82 generic map (
83 G_DATA_WIDTH => G_DATA_WIDTH
84 )
85 port map (
86 clk => clk ,
87 din_valid => sig_percep_valid(i),
88 din => sig_percep_out(i),
89 dout_valid => sig_activ_valid(i),
90 dout => sig_activ_out(i)
91 );
92 end generate UG_ReLU;
93

94 UG_no_activation: if G_ACTIVATION = "NONE" generate
95 sig_activ_valid(i) <= sig_percep_valid(i);
96 sig_activ_out(i) <= sig_percep_out(i);
97 end generate UG_no_activation;
98 end generate UG_gen_nodes;
99

100 end rtl;

Listing 4.3: Fully-Connected Layer Component

Given our 2D convolutional input layer in our proposed CNN, we must

also have a component which can perform the 2D convolution of a given

set of filter weights across the 2D input signal. The component developed

multiplies all kernel weights by a certain input data window in one cycle, and

then uses a two-dimensional, adder tree to perform the accumulation to a final

output value; the multiply-accumulate logic is pipelined such that as soon as
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one window’s product is complete, we immediately slide to the next window

coordinates and repeat. This gives us a great balance between DSP/resource

utilization and low processing latency:

1 -- Implements 2D convolutional filter given a set of input kernel
weights

2 -- of size K_HEIGHT x K_WIDTH and an input signal size of I_HEIGHT
x I_WIDTH

3 -- resulting in a configurable output signal size of O_HEIGHT x
O_WIDTH

4 -- assumes a single stride and spacing of 0 around input signal
5 library ieee;
6 use ieee.std_logic_1164.all;
7 use ieee.numeric_std.all;
8 use ieee.std_logic_misc.all;
9 library work;

10 use work.util_pkg.all;
11

12 entity conv2D is
13 generic (
14 G_DATA_WIDTH : integer := 16;
15 G_WEIGHT_WIDTH : integer := 8;
16 G_I_HEIGHT : integer := 9;
17 G_I_WIDTH : integer := 8;
18 G_K_HEIGHT : integer := 5;
19 G_K_WIDTH : integer := 4;
20 G_O_HEIGHT : integer := 5;
21 G_O_WIDTH : integer := 5
22 );
23 port (
24 clk : in std_logic;
25 reset : in std_logic;
26

27 conv_kern : in T_signed_3D(G_K_HEIGHT - 1 downto 0)
28 (G_K_WIDTH - 1 downto 0)
29 (G_WEIGHT_WIDTH - 1 downto 0);
30

31 din_valid : in std_logic;
32 din : in T_signed_3D(G_I_HEIGHT - 1 downto 0)
33 (G_I_WIDTH - 1 downto 0)
34 (G_DATA_WIDTH - 1 downto 0);
35

36 dout_valid : out std_logic;
37 dout : out T_signed_3D(G_O_HEIGHT - 1 downto 0)
38 (G_O_WIDTH - 1 downto 0)
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39 (G_DATA_WIDTH - 1 downto 0)
40 );
41 end entity conv2D;
42

43 architecture rtl of conv2D is
44

45 type T_conv2D_fsm is (S_IDLE ,
46 S_CALC_KERN ,
47 S_WAIT_FINAL_ACC ,
48 S_OUT_VALID);
49 signal sig_conv2D_state : T_conv2D_fsm := S_IDLE;
50

51 signal sig_row_offst : integer range 0 to G_O_HEIGHT;
52 signal sig_col_offst : integer range 0 to G_O_WIDTH;
53

54 signal sig_final_row_offst : integer range 0 to G_O_HEIGHT;
55 signal sig_final_col_offst : integer range 0 to G_O_WIDTH;
56

57 constant K_POST_MULT_SZ : integer := G_DATA_WIDTH +
G_WEIGHT_WIDTH;

58 constant K_POST_ROW_ADD_SZ : integer := K_POST_MULT_SZ + F_clog2
(G_K_WIDTH);

59 constant K_POST_COL_ADD_SZ : integer := K_POST_ROW_ADD_SZ +
F_clog2(G_K_HEIGHT);

60

61 signal sig_conv_kern_prd_valid : std_logic;
62 signal sig_conv_kern_prd : T_signed_3D(G_K_HEIGHT - 1 downto 0)
63 (G_K_WIDTH - 1 downto 0)
64 (K_POST_MULT_SZ - 1 downto

0);
65 signal sig_conv_kern_prd_slv : T_slv_3D(G_K_HEIGHT - 1 downto 0)
66 (G_K_WIDTH - 1 downto 0)
67 (K_POST_MULT_SZ - 1

downto 0);
68

69 signal sig_kern_prd_row_acc_slv : T_slv_2D(G_K_HEIGHT - 1
downto 0)

70 (K_POST_ROW_ADD_SZ
- 1 downto 0);

71 signal sig_kern_prd_row_acc_vld_vec : std_logic_vector(
G_K_HEIGHT - 1 downto 0);

72 signal sig_kern_prd_row_acc_vld : std_logic;
73

74 signal sig_kern_prd_final_acc : std_logic_vector(
K_POST_COL_ADD_SZ - 1 downto 0);

75 signal sig_kern_prd_final_acc_vld : std_logic;
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76

77 signal sig_dout : T_signed_3D(G_O_HEIGHT - 1 downto 0)
78 (G_O_WIDTH - 1 downto 0)
79 (G_DATA_WIDTH - 1 downto 0);
80

81 begin
82

83 dout_valid <= ’1’ when sig_conv2D_state = S_OUT_VALID else ’0’;
84 dout <= sig_dout;
85

86 -- create 2D adder tree which adds in parallel across rows , then
adds

87 -- the column -sum vector to a single output. design is pipelined
so

88 -- that we can start throwing 2D products to it, and a seperate
valid

89 -- counter indexes into the final registered 2D signal
90 UG_parallel_adder_tree_rows: for i in 0 to G_K_HEIGHT - 1

generate
91 -- convert to T_slv_3D type for adder tree component use
92 UG_map_slv: for j in 0 to G_K_WIDTH - 1 generate
93 sig_conv_kern_prd_slv(i)(j) <= std_logic_vector(

sig_conv_kern_prd(i)(j) );
94 end generate UG_map_slv;
95

96 U_row_adder: entity work.adder_tree
97 generic map (
98 G_DATA_WIDTH => K_POST_MULT_SZ ,
99 G_NUM_INPUTS => G_K_WIDTH

100 )
101 port map (
102 clk => clk ,
103 reset => reset ,
104 din_valid => sig_conv_kern_prd_valid ,
105 din => sig_conv_kern_prd_slv(i),
106 dout_valid => sig_kern_prd_row_acc_vld_vec(i),
107 dout => sig_kern_prd_row_acc_slv(i)
108 );
109 end generate UG_parallel_adder_tree_rows;
110

111 -- just need to use one of the valids since all should complete
at the same time

112 --sig_kern_prd_row_acc_vld <= and_reduce(
sig_kern_prd_row_acc_vld_vec );

113 sig_kern_prd_row_acc_vld <= sig_kern_prd_row_acc_vld_vec (0);
114
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115 U_col_adder: entity work.adder_tree -- final add across rows
116 generic map (
117 G_DATA_WIDTH => K_POST_ROW_ADD_SZ ,
118 G_NUM_INPUTS => G_K_HEIGHT
119 )
120 port map (
121 clk => clk ,
122 reset => reset ,
123 din_valid => sig_kern_prd_row_acc_vld ,
124 din => sig_kern_prd_row_acc_slv ,
125 dout_valid => sig_kern_prd_final_acc_vld ,
126 dout => sig_kern_prd_final_acc
127 );
128

129

130

131 S_build_output_matrix: process(clk)
132 begin
133 if rising_edge(clk) then
134 if (reset = ’1’) or (sig_conv2D_state = S_OUT_VALID) then
135 sig_final_row_offst <= 0;
136 sig_final_col_offst <= 0;
137 else
138 if sig_kern_prd_final_acc_vld = ’1’ then
139 sig_dout(sig_final_row_offst)(sig_final_col_offst) <=
140 signed( sig_kern_prd_final_acc(G_DATA_WIDTH - 1 downto

0) );
141

142 if sig_final_col_offst = G_O_WIDTH - 1 then
143 sig_final_row_offst <= sig_final_row_offst + 1;
144 sig_final_col_offst <= 0;
145 else
146 sig_final_col_offst <= sig_final_col_offst + 1;
147 end if;
148 end if;
149 end if;
150 end if;
151 end process S_build_output_matrix;
152

153

154

155 S_main_FSM: process(clk)
156 begin
157 if rising_edge(clk) then
158 if reset = ’1’ then
159 sig_row_offst <= 0;
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160 sig_col_offst <= 0;
161 sig_conv2D_state <= S_IDLE;
162

163 sig_conv_kern_prd_valid <= ’0’;
164 else
165 case sig_conv2D_state is
166 when S_IDLE =>
167 sig_conv_kern_prd_valid <= ’0’;
168

169 sig_row_offst <= 0;
170 sig_col_offst <= 0;
171 if din_valid = ’1’ then
172 sig_conv2D_state <= S_CALC_KERN;
173 end if;
174

175 when S_CALC_KERN =>
176 sig_conv_kern_prd_valid <= ’1’;
177 -- parallel products of 2D kernel and current offset

into 2D input
178 for i in 0 to G_K_HEIGHT - 1 loop
179 for j in 0 to G_K_WIDTH - 1 loop
180 sig_conv_kern_prd(i)(j) <= conv_kern(i)(j) *
181 din(i + sig_row_offst)(

j + sig_col_offst);
182 end loop;
183 end loop;
184

185 if sig_col_offst = G_O_WIDTH - 1 then
186 if sig_row_offst = G_O_HEIGHT - 1 then
187 -- should be at end of output size , wrap things up

, change state
188 sig_conv2D_state <= S_WAIT_FINAL_ACC;
189 end if;
190 sig_row_offst <= sig_row_offst + 1;
191 sig_col_offst <= 0;
192 else
193 sig_col_offst <= sig_col_offst + 1;
194 end if;
195

196

197 when S_WAIT_FINAL_ACC =>
198 sig_conv_kern_prd_valid <= ’0’;
199 -- #TODO: wait till parallel adder valid goes low?

since we should have stuffed that pipeline
200 if sig_kern_prd_final_acc_vld = ’0’ then
201 sig_conv2D_state <= S_OUT_VALID;
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202 end if;
203

204 when S_OUT_VALID =>
205 sig_conv2D_state <= S_IDLE;
206

207 when others => sig_conv2D_state <= S_IDLE;
208 end case;
209 end if;
210 end if;
211 end process S_main_FSM;
212

213 end rtl;

Listing 4.4: 2D Convolution Component

Now that we have all of our CNN building blocks, we can easily tie

together a sequential CNN- similar to the Keras sequential layering process

in TensorFlow- with our VHDL components to create our overall Adaptive

Beamforming CNN. Since our input is really a 2D "image"- with real and

complex channels instead of RGB color channels- we split the 2D convolution

across both channels, and then use a generative VHDL statement to flatten

the 2D convolved output to feed the two dense, fully-connected layers. This

overall CNN structure can be seen below:
1 -- Example CNN from thesis research of ABF CNN with N=8:
2 -- Input Size: 9x8x2
3 -- Output Size: 8x2
4 library ieee;
5 use ieee.std_logic_1164.all;
6 use ieee.numeric_std.all;
7 use ieee.std_logic_misc.all;
8 library work;
9 use work.util_pkg.all;

10

11 entity ABF_CNN_N9x8x2 is
12 generic (
13 G_DATA_WIDTH : integer := 16
14 );
15 port (
16 clk : in std_logic;
17 reset : in std_logic;

139



18

19 -- input from covariance matrix calculation
20 din_valid : in std_logic;
21 din_real : in T_signed_3D (8 downto 0)
22 (7 downto 0)
23 (G_DATA_WIDTH - 1 downto 0);
24 din_imag : in T_signed_3D (8 downto 0)
25 (7 downto 0)
26 (G_DATA_WIDTH - 1 downto 0);
27

28 -- output adaptive weights from CNN
29 dout_valid : out std_logic;
30 dout_real : out T_signed_2D (7 downto 0)
31 (G_DATA_WIDTH - 1 downto 0);
32 dout_imag : out T_signed_2D (7 downto 0)
33 (G_DATA_WIDTH - 1 downto 0)
34 );
35 end entity ABF_CNN_N9x8x2;
36

37 architecture rtl of ABF_CNN_N9x8x2 is
38

39 constant K_WEIGHT_WIDTH : integer := 8; -- signed , 8b quantized
weights throughout

40

41 signal sig_conv_kern_real : T_signed_3D (4 downto 0)
42 (3 downto 0)
43 (K_WEIGHT_WIDTH - 1

downto 0);
44 constant K_conv_kern_int_real : T_int_3D (4 downto 0)
45 (3 downto 0) :=
46 (
47 (-26, 66, 16, -15),
48 (-62, -5, -24, -36),
49 (-39, 29, -44, -38),
50 (-84, 53, 12, 9),
51 ( 99, 80, -65, -44)
52 );
53 signal sig_conv_kern_imag : T_signed_3D (4 downto 0)
54 (3 downto 0)
55 (K_WEIGHT_WIDTH - 1

downto 0);
56 constant K_conv_kern_int_imag : T_int_3D (4 downto 0)
57 (3 downto 0) :=
58 (
59 ( -10, -21, -13, -63),
60 ( -4, -54, -30, 57),
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61 ( 24, 10, 10, -32),
62 (-104, 23, 17, -26),
63 ( -97,-127, 96, 125)
64 );
65

66 signal sig_conv2D_out_real : T_signed_3D (4 downto 0)
67 (4 downto 0)
68 (G_DATA_WIDTH - 1 downto

0);
69 signal sig_conv2D_out_real_valid : std_logic;
70 signal sig_conv2D_out_imag : T_signed_3D (4 downto 0)
71 (4 downto 0)
72 (G_DATA_WIDTH - 1 downto

0);
73 signal sig_conv2D_out_imag_valid : std_logic;
74

75 signal sig_FC0_din : T_signed_2D (49 downto 0)(
G_DATA_WIDTH - 1 downto 0);

76 signal sig_FC0_dout_valid : std_logic;
77 signal sig_FC0_dout : T_signed_2D (31 downto 0)(

G_DATA_WIDTH - 1 downto 0);
78 signal sig_FC1_dout_valid : std_logic;
79 signal sig_FC1_dout : T_signed_2D (15 downto 0)(

G_DATA_WIDTH - 1 downto 0);
80

81 begin
82

83 -- map integer values to signed input
84 UG_row_conv2D: for i in 0 to 4 generate
85 UG_col_conv2D: for j in 0 to 3 generate
86 sig_conv_kern_real(i)(j) <= to_signed( K_conv_kern_int_real(

i)(j), K_WEIGHT_WIDTH );
87 sig_conv_kern_imag(i)(j) <= to_signed( K_conv_kern_int_imag(

i)(j), K_WEIGHT_WIDTH );
88 end generate UG_col_conv2D;
89 end generate UG_row_conv2D;
90

91 U_real_conv2D: entity work.conv2D
92 generic map (
93 G_DATA_WIDTH => G_DATA_WIDTH ,
94 G_WEIGHT_WIDTH => K_WEIGHT_WIDTH ,
95 G_I_HEIGHT => 9,
96 G_I_WIDTH => 8,
97 G_K_HEIGHT => 5,
98 G_K_WIDTH => 4,
99 G_O_HEIGHT => 5,
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100 G_O_WIDTH => 5
101 )
102 port map (
103 clk => clk ,
104 reset => reset ,
105 conv_kern => sig_conv_kern_real ,
106 din_valid => din_valid ,
107 din => din_real ,
108 dout_valid => sig_conv2D_out_real_valid ,
109 dout => sig_conv2D_out_real
110 );
111

112 U_imag_conv2D: entity work.conv2D
113 generic map (
114 G_DATA_WIDTH => G_DATA_WIDTH ,
115 G_WEIGHT_WIDTH => K_WEIGHT_WIDTH ,
116 G_I_HEIGHT => 9,
117 G_I_WIDTH => 8,
118 G_K_HEIGHT => 5,
119 G_K_WIDTH => 4,
120 G_O_HEIGHT => 5,
121 G_O_WIDTH => 5
122 )
123 port map (
124 clk => clk ,
125 reset => reset ,
126 conv_kern => sig_conv_kern_imag ,
127 din_valid => din_valid ,
128 din => din_imag ,
129 dout_valid => sig_conv2D_out_imag_valid ,
130 dout => sig_conv2D_out_imag
131 );
132

133 -- flatten 2Dx2 outputs to wide 2D signal for input to first
dense hidden layer

134 -- goes from 5x5x2 -> 50x1
135 UG_row_flatten: for i in 0 to 4 generate
136 UG_col_flatten: for j in 0 to 4 generate
137 sig_FC0_din( (i*10) + (j*2) ) <= sig_conv2D_out_real(i)(

j);
138 sig_FC0_din( (i*10) + (j*2) + 1 ) <= sig_conv2D_out_imag(i)(

j);
139 end generate UG_col_flatten;
140 end generate UG_row_flatten;
141

142 U_hidden_layer_4N: entity work.FC
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143 generic map (
144 G_DATA_WIDTH => G_DATA_WIDTH ,
145 G_WEIGHT_WIDTH => K_WEIGHT_WIDTH ,
146 G_NUM_INPUTS => 50,
147 G_NUM_OUTPUTS => 32,
148 G_ACCUM_WIDTH => 24,
149 G_LAYER_IDX => 0,
150 G_BASE_PATH => "/home/jgentile/src/jhu -masters -thesis/src

/hdl -lib/DSP/ML/neural/sim/FC_weights_layer_",
151 G_ACTIVATION => "RELU"
152 )
153 port map (
154 clk => clk ,
155 reset => reset ,
156 din_valid => sig_conv2D_out_real_valid , -- could ’ve

used *imag too , doesn ’t matter
157 din => sig_FC0_din ,
158 dout_valid => sig_FC0_dout_valid ,
159 dout => sig_FC0_dout
160 );
161

162 U_output_layer_2N: entity work.FC
163 generic map (
164 G_DATA_WIDTH => G_DATA_WIDTH ,
165 G_WEIGHT_WIDTH => K_WEIGHT_WIDTH ,
166 G_NUM_INPUTS => 32,
167 G_NUM_OUTPUTS => 16,
168 G_ACCUM_WIDTH => 24,
169 G_LAYER_IDX => 1,
170 G_BASE_PATH => "/home/jgentile/src/jhu -masters -thesis/src

/hdl -lib/DSP/ML/neural/sim/FC_weights_layer_",
171 G_ACTIVATION => "NONE" -- no activation for final layer

that gives weights
172 )
173 port map (
174 clk => clk ,
175 reset => reset ,
176 din_valid => sig_FC0_dout_valid ,
177 din => sig_FC0_dout ,
178 dout_valid => sig_FC1_dout_valid ,
179 dout => sig_FC1_dout
180 );
181

182

183 dout_valid <= sig_FC1_dout_valid;
184 dout_real <= sig_FC1_dout( 7 downto 0);
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185 dout_imag <= sig_FC1_dout (15 downto 8);
186

187 end rtl;

Listing 4.5: Adaptive Beamforming CNN

The result is a dramatic decrease in both processing latency and resource

utilization for an 8-channel adaptive beamforming implementation, as shown

in Table 4.1 using an equivalent 100 MHz clock domain as used in IQRD

testing:

N Latency (µs) FF LUT DSP48 BRAM
8 1.20 3347 (2.4%) 16422 (23.1%) 87 (24.2%) 0 (0.0%)

Table 4.1: FPGA CNN Performance: Latency and Resource Utilization for
XCZU3EG FPGA, N = 8

Note that, while the CNN architecture was made to be somewhat general,

the process from model development to training to FPGA implementation is

somewhat tailored for a certain channel count, thus only an attempt for an N =

8 case was made and completed. For a specific system where channel count

is uncertain, or changing, this could be a reason to use a closed-form QRD-

RLS solution that more easily scales for differing channel counts. However if

performance and resource constraints are key, the CNN solution looks very

attractive.

We can attain even further logic/DSP savings by "folding" or reusing the

same multipliers for multiple layers, though similar to folded QRD-RLS archi-

tectures, the latency hit may increase beyond system requirements. Similarly

at some point, the number of resources required for the FPGA CNN imple-

mentation may exceed available space for a given target device, especially

144



for large, complex neural nets with hundreds of thousands (or more) weight

parameters. In this case, a certain system may look at other hardware accel-

erator architectures like Google’s Tensor Processing Unit (TPU) which uses

high-bandwidth memory and a large, 256× 256 wide systolic array to perform

65,536 multiply-accumulate (MAC) operations per cycle, which gives parallel

matrix multiplications as shown below [10]:

Figure 4.5: Google Tensor Processing Unit- Matrix Multiplier

Source: Adapted from [10]

A detailed comparison of different deep learning accelerator hardware

architectures can be found in [11].
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4.3 Future Work

The results provided here are likely by no means complete, and more areas of

advanced research could likely be applied to squeeze more performance out

of this CNN implementation. For instance, in the generated training data, we

could provide more complex input signaling, such as different modulation

types, instead of simple narrowband input signals.

Specifically to the need of providing a steering vector as part of the input

layer, the training scenarios could also include situations where there are

slight errors in the actual/ideal steering direction (e.g. the intended SOI is

actually a couple degrees off spatially than thought when creating the steering

vector) and the model must compensate for those errors to still produce the

best SINR; this would be a significant contribution to the field of adaptive

beamforming where steering vector errors could lead to the SOI being treated

as an interference source, and effectively nulled out, as shown in [12].

One other future area of future optimization may also be in the approach

of using Generative Adversarial Networks (GANs), developed in [13], to train

the CNN as opposed to simulated data from Python/MATLAB code. This

approach was used by [14] with success to train a Massive MIMO’s antenna pa-

rameters for differing users. Furthermore, using real world sample data would

be advantageous in both training and validation of inference of the adaptive

beamforming CNN for further confidence in real-world deployments.

It would also be valuable to research the field of Complex-Valued Neural

Networks (CVNNs) in future works, as shown by Hirose in [15], since RF data
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is, by nature, complex-valued. However, at the time of this writing, the current

set of popular open-source toolsets, like TensorFlow, do not natively support

CVNNs yet, and the performance characteristics of using complex-valued

layers and activation functions would need to be weighed against traditional,

real-valued methods as used in this research process.
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Chapter 5

Conclusion

In this research work, we’ve covered the background knowledge of RF array

processing in the context of current, and next generation, MIMO systems. We

then explored the current state-of-the-art in Adaptive Beamforming processes

for embedded FPGA devices. After creating a baseline implementation for

performance and resource comparisons, we explored a novel Deep Learning

model to solve Adaptive Beamforming weights in a more efficient process

then the current closed-form, statistical solution.

The exciting result was both a proof-of-concept of applying advances in

Machine Learning to complicated RF Signal processing tasks, as well as the

development of a deployable, vendor-neutral FPGA VHDL design code base

that showed drastic performance improvements, as well as reductions in

resource utilization for the same FPGA target and channel count, as seen in

Table 5.1.

150



Latency (µs) FF LUT DSP48
IQRD-RLS 12.50 231199 (164%) 252446 (356%) 272 (75.6%)

CNN 1.20 3347 (2.4%) 16422 (23.1%) 87 (24.2%)
Reduction 10.4x 69.1x 15.4x 3.13x

Table 5.1: IQRD vs CNN FPGA Performance: Latency and Resource Utilization
for XCZU3EG FPGA, N = 8

With this great decrease in FPGA resources for the N = 8 channel-count

case, we can now comfortably fit in our resource-constrained FPGA device.

This decrease in resources also means we can use even lower power FPGA

devices, and use lower power for the logic device overall, which allows

even more deeply embedded deployment environments. A reduction in

FPGA fabric resources can also mean we can now fit other logic in the same

programmable-logic space for other important acceleration blocks, such as

modulation/demodulation cores for communication systems.

The large decrease in latency of processing time means we can more readily

support a "real-time" adaptive beamforming system in an edge FPGA, where

we need only buffer- or delay- 1µs worth of incoming RF data, rather than

more than 10× as much data in the IQRD implementation case.

The advantages of Deep Learning applied to array signal processing is

also of use beyond RF communication arrays, such as active noise cancellation

(ANC) audio applications, which may be extremely SWaP constrained for

headphone-style devices. Due to these research findings, it’s of the writer’s

belief that Deep Learning applied to Digital Signal Processing applications

will not only grow over time, but may be necessary to meet some future

systems’ requirements that are currently not met with traditional methods.
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Appendix A

Software Code

A.1 MATLAB Code

1 %% X = 2D input sample array(samples x element), sv = steering
vector ,

2 % Y = output beam , w = MVDR weights
3 function [Y, w] = MVDR_beamform(X, sv)
4 % form covariance matrix of input samples
5 Ecx = X.’*conj(X);
6

7 % compute weight vector using steering vector
8 % NOTE: the MATLAB ’\’ operator is a 2-3x more efficient inv()

operation
9 % for solving systems of linear equations than inv(Ecx)*

sv
10 wp = Ecx\sv;
11

12 % normalize response
13 w = wp/(sv ’*wp);
14

15 % form output beam
16 Y = X*conj(w);
17 end

Listing A.1: MVDR Process

1 function x=backSubstitution(U,b,n)
2 % Solving an upper triangular system by back -substitution
3 % Input matrix U is an n by n upper triangular matrix
4 % Input vector b is n by 1
5 % Input scalar n specifies the dimensions of the arrays

152



6 % Output vector x is the solution to the linear system
7 % U x = b
8 % K. Ming Leung , 01/26/03 , from http ://cis.poly.edu/~ mleung/CS3734

/s03/ch02/backSubstitutionU.htm
9

10 x=zeros(n,1);
11 for j=n:-1:1
12 if (U(j,j)==0)
13 error(’Matrix is singular!’)
14 end
15 x(j)=b(j)/U(j,j);
16 b(1:j-1)=b(1:j-1)-U(1:j-1,j)*x(j);
17 end

Listing A.2: Back-Substitution

1 clear; close(’all’);
2 %% Deterministic Digital Beamformer
3 % givens/user defined values
4 N = 16; % number of elements in ULA (more elements =

tighter mainlobe & more gain (SNR gain = M))
5 fc = 300e6; % carrier frequency (Hz)
6 fs = 1e9; % sampling frequency (Hz)
7 theta = 5; % wave Angle of Arrival (AoA) in degrees
8 SNR = 1; % element SNR (linear)
9 noiseP = 1; % noise power (linear)

10 spacing = 0.5; % d/wavelength element spacing (0.5 = half -
wavelength)

11

12 % calculated constants & vectors
13 c = physconst(’LightSpeed ’);
14 wavelength = fc/c;
15 antPos = (0:1:N-1)*wavelength*spacing; % antenna element

positions
16 % create spatial response vector at each ULA element
17 d = exp(1i*2*pi/wavelength*antPos ’*sind(theta)); % phase shift

over ULA
18 s = sqrt(SNR*noiseP)*d;
19

20

21 %% compute hypothesis of steering vectors from -1<>+1 (sine space)
for quiescent response

22 % sine space is same as sin ( -90:90 deg)
23 numHyp = 400; % number of hypothesis to compute
24 u = linspace(-1,1,numHyp);
25 v = exp(1i*2*pi/wavelength*antPos ’*u);
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26 % create matched filter (beam weights) for quiescent case (no
interference)

27 wq = v;
28 % unit normalize filter weights
29 mag = sum(wq .* conj(wq));
30 wq = wq./mag;
31 % compute array response to incoming signal across ULA
32 yq = wq ’*s;
33

34 % plot quiescent response in sine space
35 figure
36 plot(u*spacing , 20* log10(abs(yq)));
37 xlabel(’Normalized angle , $\frac{d}{\ lambda }\sin(\theta)$’,’

Interpreter ’,’latex’)
38 ylabel(’Normalized Amplitude (dB)’)
39 grid on; ylim ([-60 0]);
40 title(’Quiescent ULA Response $\frac{d}{\ lambda }=0.5$’,’

Interpreter ’,’latex’)
41

42

43 %% additive noise response to quiescent beamformer
44 Nperiod = 1000;
45 xn = sqrt(noiseP /2)*(randn(N,Nperiod) + 1i*randn(N,Nperiod));
46 x = repmat(s,1,Nperiod) + xn;
47 % apply quiescent beamformer
48 yn = wq ’*x;
49

50 figure
51 plot(u*spacing , 20* log10(abs(yn(:,1))), u*spacing , 20* log10(mean(

abs(yn.^2) ,2)));
52 xlabel(’Normalized angle , $\frac{d}{\ lambda }\sin(\theta)$’,’

Interpreter ’,’latex’)
53 ylabel(’Normalized Amplitude (dB)’)
54 grid on; ylim ([-60 10]);
55 title(’Quiescent ULA Response with Noise $\frac{d}{\ lambda }=0.5$’,

’Interpreter ’,’latex’)
56 legend(’Single Period ’,’Average over Periods ’,’Location ’,’

southwest ’)
57

58

59 %% Create example received signal w/additive noise & interference
60 thetaInf = 30; % interference wave Angle of Arrival (AoA)

in degrees
61 fInf = 0.9*fc; % interference wave frequency
62 lambdaInf = fInf/c;
63
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64 dInf = exp(1i*2*pi/lambdaInf*antPos ’*sind(thetaInf)); % phase
shift over ULA

65

66 M = N*128; % M received samples , where M âĽě N channels to form
MxN sample matrix

67 t = (1:1:M)/fs;
68 rxd = sqrt(SNR*noiseP)*exp(1i*2*pi*fc*t) .* ... % fundamental cw

pulse
69 d; % phase over array
70 infNoise = sqrt(noiseP /2)*(randn(N,M) + 1i*randn(N,M));
71 infRx = sqrt(SNR*noiseP)*exp(1i*2*pi*fInf*t).*dInf; %

interference wave
72

73 % add interference to RX waveform (only for section of time)
74 rx = rxd + infRx + infNoise;
75

76 nonDBF = zeros(1,M);
77 for i = 1:N % perform non -DBF (weighted sum average) across array

to show effect
78 nonDBF = nonDBF + (rx(i,:)/N);
79 end
80

81 % apply quiescent beamformer using weights matching intended
incident AoA

82 [~,uIdx] = min(abs(u-sind(theta))); % find array position of sine
space

83 qDBF = wq(:,uIdx)’*rx;
84

85 figure
86 freqBin = (1:1:M)*(fs/M);
87 subplot (211)
88 plot(freqBin , 20* log10(abs(fft(nonDBF))))
89 title(’Weighted -Sum Average Spectrum ’)
90 xlabel(’Frequency (Hz)’); ylabel(’Magnitude (dB)’);
91 axis tight
92 subplot (212)
93 plot(freqBin , 20* log10(abs(fft(qDBF))))
94 xline(fc,’g--’); xline(fInf ,’r--’);
95 title(’Quiescent Beamformer Spectrum ’)
96 legend(’RX Spectrum ’, ’f_{c}’, ’f_{Inf}’)
97 xlabel(’Frequency (Hz)’); ylabel(’Magnitude (dB)’);
98 axis tight
99

100

101 %% MVDR weight calculation
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102 % the desired response or steering vector , repeated to create size
(m,1)

103 b = d; % matched filter response of ULA phase shift
104 % the complex received sample matrix , size (m,n) where m âĽě n
105 A = rx.’; % nonconjugate transpose of signal matrix to get correct

dimensions
106 [ymv , wmv] = MVDR_beamform(A, b);
107 figure
108 plot(freqBin , 20* log10(abs(fft(ymv))))
109 xline(fc,’g--’); xline(fInf ,’r--’);
110 title(’MVDR Beamformer Spectrum ’)
111 legend(’RX Spectrum ’, ’f_{c}’, ’f_{Inf}’)
112 xlabel(’Frequency (Hz)’); ylabel(’Magnitude (dB)’);
113

114 % calculate SINR
115 Rd = (rxd*rxd ’)/M;
116 intr_noise = infNoise + infRx;
117 Rin = (intr_noise*intr_noise ’)/M;
118 SINR = 20* log10(abs((wmv ’*Rd*wmv)/(wmv ’*Rin*wmv)));
119

120 sin_mvdr = wmv ’*wq;
121 figure
122 plot(u*spacing , 20* log10(abs(sin_mvdr)));
123 xline(sind(theta)*spacing/wavelength ,’g--’);
124 xline(sind(thetaInf)*spacing/lambdaInf ,’r--’);
125 xlabel(’Normalized angle , $\frac{d}{\ lambda }\sin(\theta)$’,’

Interpreter ’,’latex’)
126 ylabel(’Amplitude (dB)’)
127 title(’MVDR Response Sine Space $\frac{d}{\ lambda }=0.5$’,’

Interpreter ’,’latex’)
128 legend(’MVDR’, ’\theta_{c}’, ’\theta_{Inf}’)
129

130

131 %% QR MATLAB
132 %Acovar = A.’*conj(A);
133 Acovar = (rx*rx ’)/M; % when M = pow2 , can use simple lsh bitwise

op (FXP)
134 % since Hermitian positive semi -definite

output , need
135 % only compute upper or lower triangle of

values , then
136 % copy conj in other triangle for output
137 % the desired response or steering vector , repeated to create size

(m,1)
138 %b = repmat(d,M/N,1); % matched filter response of ULA phase shift
139 [Q,R] = qr(Acovar); % perform QR decomp of input sample matrix

156



140 c_qr = Q’*b;
141 % perform back substituion to solve Rx = Q’b, where x = weights
142 w_qr = backSubstitution(R, c_qr , N);
143 %[~,R] = qr(A,0); % perform Q-less QR decomp of input sample

matrix
144 %w_qr = R\R’\b;
145 % form output beam from complex weights
146 y_qr = A*conj(w_qr);
147 figure
148 plot(freqBin , 20* log10(abs(fft(y_qr))))
149 xline(fc,’g--’); xline(fInf ,’r--’);
150 title(’QRD Beamformer Spectrum ’)
151 legend(’RX Spectrum ’, ’f_{c}’, ’f_{Inf}’)
152 xlabel(’Frequency (Hz)’); ylabel(’Magnitude (dB)’);
153

154 sin_qr = w_qr ’*wq;
155 figure
156 plot(u*spacing , 20* log10(abs(sin_qr)));
157 xline(sind(theta)*spacing/wavelength ,’g--’);
158 xline(sind(thetaInf)*spacing/lambdaInf ,’r--’);
159 xlabel(’Normalized angle , $\frac{d}{\ lambda }\sin(\theta)$’,’

Interpreter ’,’latex’)
160 ylabel(’Amplitude (dB)’)
161 title(’QR Decomposition Response Sine Space $\frac{d}{\ lambda }=0.5

$’,’Interpreter ’,’latex’)
162 legend(’QRD’, ’\theta_{c}’, ’\theta_{Inf}’)
163

164

165 %% Modified Gram Schmidt
166 % Q = zeros(N,N);
167 % R = zeros(N,N);
168 % for i = 1:N
169 % Q(:,i) = A(:,i);
170 %
171 % for j = 1:i-1
172 % R(j,i) = Q(:,j)’*Q(:,i);
173 % Q(:,i) = Q(:,i) - (R(j,i)*Q(:,j));
174 % end
175 %
176 % R(i,i) = norm(Q(:,i));
177 % Q(:,i) = Q(:,i)/R(i,i);
178 % end
179 % c_qr = Q’*b;
180 % w_qr = zeros(N,1);
181 % for i = N:-1:1 % perform back substitution to find weights
182 % for j = i+1:N
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183 % w_qr(i) = R(i,j)*w_qr(j) + w_qr(i);
184 % end
185 % w_qr(i) = (c_qr(i)-w_qr(i))/R(i,i);
186 % end

Listing A.3: ULA Calculations and MVDR Process

1 clear; close(’all’);
2 %% Generates fixed point signed 16bit (S15.0) for HW tests
3 % givens/user defined values
4 N = 4; % number of elements in ULA (more elements =

tighter mainlobe & more gain (SNR gain = N))
5 fc = 300e6; % carrier frequency (Hz)
6 fs = 1e9; % sampling frequency (Hz)
7 thetaD = 0; % desired wave Angle of Arrival (AoA) in

degrees
8 thetaInf = 30; % interference wave Angle of Arrival (AoA) in

degrees
9 fInf = 0.9*fc; % interference wave frequency

10 SNR = 1; % element SNR (linear)
11 noiseP = 1; % noise power (linear)
12 spacing = 0.5; % d/wavelength element spacing (0.5 = half -

wavelength)
13

14 % calculated constants & vectors
15 c = physconst(’LightSpeed ’);
16 wavelength = fc/c;
17 antPos = (0:1:N-1)*wavelength*spacing; % antenna element

positions
18 % create spatial response vector at each ULA element
19 d = exp(1i*2*pi/wavelength*antPos ’*sind(thetaD)); % phase shift

over ULA
20

21 %% Create example received signal w/additive noise & interference
22 lambdaInf = fInf/c;
23 dInf = exp(1i*2*pi/lambdaInf*antPos ’*sind(thetaInf)); % phase

shift over ULA
24

25 M = 1024;
26 t = (1:1:M)/fs;
27 rx = sqrt(SNR*noiseP)*exp(1i*2*pi*fc*t) .* ... % fundamental cw

pulse
28 d + ... % phase over array
29 sqrt(noiseP /2)*(randn(N,M) + 1i*randn(N,M)); % random noise
30

31 infRx = sqrt(SNR*noiseP)*exp(1i*2*pi*fInf*t).*dInf; % interference
wave
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32 rx = rx + infRx; % add interference to RX waveform
33

34 %% Convert Data to Signed 16b Fixed Point
35 maxRxValReal = max(abs(real(rx(:))));
36 maxRxValImag = max(abs(imag(rx(:))));
37 if maxRxValReal > maxRxValImag
38 maxRxVal = maxRxValReal;
39 else
40 maxRxVal = maxRxValImag;
41 end
42 scaleVal = ((2^15)/maxRxVal)/2; % scale value for signed 16bit (/2

for less gain)
43 rxs16 = round(rx*scaleVal); % scale and round to create signed

16b values
44 figure
45 subplot (211)
46 plot(t,real(rxs16))
47 title(’Fixed -Point Data’)
48 subplot (212)
49 freqBin = (1:M)*(fs/M);
50 plot(freqBin , 20* log10(abs(fft(rxs16 (1,:)))))
51 title(’Fixed -Point Spectrum ’)
52 xline(fc,’g--’); xline(fInf ,’r--’);
53 legend(’RX Spectrum ’, ’f_{Desired}’, ’f_{Interference}’)
54 axis tight
55

56 %% Convert Steering Vector to 16b Fixed Point
57 maxDval = max(abs(d));
58 scaleVal = floor ((2^15)/maxDval)/4; % scale value for signed 16bit

(/4 to not overflow)
59 Ds16 = round(d*scaleVal); % scale and round to create signed

16b values
60

61 %% Write steering vector to text file
62 fId = fopen(’steering.txt’, ’w’);
63 for i = 1: length(Ds16)
64 % each row is: I Q
65 I = real(Ds16(i));
66 Q = imag(Ds16(i));
67 fprintf(fId , ’%d %d\n’, I, Q);
68 end
69 fclose(fId);
70

71 %% Write FXP data to text file
72 fId = fopen(’input.txt’, ’w’);
73 for sample = 1: length(rxs16 (:,1)):length(rxs16 (1,:))
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74 for ch = 1: length(rxs16 (:,1))
75 for ch_s = sample:sample+length(rxs16 (:,1))-1
76 % pre -build square 2D matrix , by printing out 1 of M

channels
77 % and M samples at a time , then reiterating
78 % each row is: I Q
79 I = real(rxs16(ch, ch_s));
80 Q = imag(rxs16(ch, ch_s));
81 fprintf(fId , ’%d %d\n’, I, Q);
82 end
83 end
84 end
85 fclose(fId);
86

87 %% compute hypothesis of steering vectors from -1<>+1 (sine space)
for quiescent response

88 % sine space is same as sin ( -90:90 deg)
89 numHyp = 400; % number of hypothesis to compute
90 u = linspace(-1,1,numHyp);
91 v = exp(1i*2*pi/wavelength*antPos ’*u);
92 % create matched filter (beam weights) for quiescent case (no

interference)
93 wq = v;
94 % unit normalize filter weights
95 mag = sum(wq .* conj(wq));
96 wq = wq./mag;
97

98 %% QR MVDR Process
99 Acovar = (rxs16*rxs16 ’)/M; % when M = pow2 , can use simple lsh

bitwise op (FXP)
100 % since Hermitian positive semi -definite

output , need
101 % only compute upper or lower triangle of

values , then
102 % copy conj in other triangle for output
103 maxCovarValReal = max(abs(real(Acovar (:))));
104 maxCovarValImag = max(abs(imag(Acovar (:))));
105 if maxCovarValReal > maxCovarValImag
106 maxCovarVal = maxCovarValReal;
107 else
108 maxCovarVal = maxCovarValImag;
109 end
110 scaleVal = ((2^15)/maxCovarVal)/2; % scale value for signed 16bit

(/2 for less gain)
111 Acovars16 = round(Acovar*scaleVal); % scale and round to create

signed 16b values
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112

113 % the desired response or steering vector , repeated to create size
(m,1)

114 [Q,R] = qr(Acovars16); % perform QR decomp of input sample matrix
115 c_qr = Q’*Ds16;
116 % perform back substituion to solve Rx = Q’b, where x = weights
117 w_qr = backSubstitution(R, c_qr , N);
118 A = rxs16.’; % nonconjugate transpose of signal matrix to get

correct dimensions
119 % form output beam from complex weights
120 y_qr = A*conj(w_qr);
121 figure
122 plot(freqBin , 20* log10(abs(fft(y_qr))))
123 xline(fc,’g--’); xline(fInf ,’r--’);
124 title(’QRD Beamformer Spectrum ’)
125 legend(’RX Spectrum ’, ’f_{c}’, ’f_{Inf}’)
126 xlabel(’Frequency (Hz)’); ylabel(’Magnitude (dB)’);
127

128 sin_qr = w_qr ’*wq;
129 figure
130 plot(u*spacing , 20* log10(abs(sin_qr)));
131 xline(sind(thetaD)*spacing/wavelength ,’g--’);
132 xline(sind(thetaInf)*spacing/lambdaInf ,’r--’);
133 xlabel(’Normalized angle , $\frac{d}{\ lambda }\sin(\theta)$’,’

Interpreter ’,’latex’)
134 ylabel(’Amplitude (dB)’)
135 title(’QR Decomposition Response Sine Space $\frac{d}{\ lambda }=0.5

$’,’Interpreter ’,’latex’)
136 legend(’QRD’, ’\theta_{c}’, ’\theta_{Inf}’)

Listing A.4: ULA Fixed-Point Test Data Generation

1 clear; close(’all’);
2 %% Demonstrate the effect of beamsquint by calculating the

response of a
3 % linear array with a design frequency of 3.0 GHz and half

wavelength
4 % element spacing. The ULA is 1m long. The system has a bandwidth

of 600
5 % Mhz. Show the response when the array is focused at 0ř, 30ř, 45ř

and 60ř
6 % off broadside and at 0%, 5%, 10%, 25%, and 50% of the bandwidth

above the
7 % design frequency. Assume uniform weighting. The phase shift

between
8 % elements should be calculated at the design frequency for the

antenna
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9 % beamforming regardless of the calculation frequency.
10

11 c = 3e8; % speed of light (m/s)
12 fc = 3e9; % given design center frequency (Hz)
13 lambda0 = c/fc; % wavelength of center design frequency (m)
14 elmSpc = lambda0 /2; % half -wavelength element spacing (m)
15 arrLen = 1; % given array length (m)
16 BW = 600e6; % given system bandwidth (Hz)
17 bwAbvVec = 0.5; % BW % > design frequency
18

19 N = round(arrLen/elmSpc); % # of array elements based on Length &
spacing

20 fTest = -90:0.1:90; % frequencies to test response of array
over (deg)

21

22 figure
23 hold on;
24

25 fBw = fc + (bwAbvVec*BW); % calculate highest freqency at BW
26 lambda = c/fBw; % wavelength of current BW over design frequency
27

28 for pntAng = [0 30 45 60] % pointing angles off broadside (deg)
29 % from POMR eq. 9.22, we can calculate the angle/wavelength

for
30 % the set of all incoming RX angles over the wavlength

determined
31 % by the current BW, and the current steering angle with a

phase
32 % shift/wavelength determined by the design center frequency

giving
33 % the incoming waveform angle to pointing angle ratio:
34 rx2pnt_ratio = (sind(fTest)/lambda) - (sind(pntAng)/lambda0);
35 E = 0; % initialize total antenna directivity pattern
36 for n = 1:N % perform summation over each element as eq. 9.22
37 E = E + exp(-1i*2*pi*n*elmSpc*rx2pnt_ratio);
38 end
39 % element directivity pattern Ee(?,?) = 1 for uniform

weighting
40 Ee = 1;
41 E = Ee*E/N; % final calc of total antenna directivity pattern
42 legendStr = [’\theta_{s} = ’, num2str(pntAng), ’^{\ circ}’];
43 plot(fTest , 20* log10(abs(E)), ’DisplayName ’, legendStr)
44 aa = gca; aa.YLim = [-40 5]; aa.XLim = [-90 90];
45 title([’Frequency Response @ ’,num2str(fBw/1e9),’ GHz for ULA

designed for ’, ...
46 num2str(fc/1e9),’GHz’]);
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47 xlabel(’Angle (\theta ^{\ circ})’);
48 ylabel(’Directivity (dB)’);
49 end
50

51 hold off;
52 legend(’Location ’,’southwest ’)

Listing A.5: Beam Squint Calculation

A.2 Python Code

1 #!/usr/bin/python3
2 import numpy as np
3

4 ang_bitwidth = 32 # based on atan2 LUT
5 data_bitwidth = 16 # also the number of CORDIC rotations to

perform
6 # CORDIC processing gain: https ://en.wikipedia.org/wiki/CORDIC#

Rotation_mode
7 processing_gain = 1
8 for i in range(data_bitwidth):
9 processing_gain *= np.sqrt (1.0 + (2.0**( -2.0*i)))

10

11 print(’CORDIC Processing Gain of component: %0.8f’ %
processing_gain)

12 u_scale_factor = int(np.floor ((1/ processing_gain)*(2**
data_bitwidth)))

13 s_scale_factor = int(np.floor ((1/ processing_gain)*(2**(
data_bitwidth -1))))

14 print(’\tTo cancel gain (scale of %0.8f) for %d bit outputs:’ %
(1/ processing_gain , data_bitwidth))

15 print(’\t\t- Multiply by 0x%X (%d unsigned)’ % (u_scale_factor ,
u_scale_factor))

16 print(’\t\t\t- Then shift right (>>) by %d bits’ % (data_bitwidth)
)

17 print(’\t\t- Or multiply by 0x%X (%d signed)’ % (s_scale_factor ,
s_scale_factor))

18 print(’\t\t\t- Then shift right (>>) by %d bits’ % (data_bitwidth
- 1))

19

20 # Convert angle (in degrees) to unsigned integer value for input
to CORDIC block

21 def degree_to_unsigned_fxp( angle , bitwidth ):
22 # Python mod operator works with FP and constrains to positive

values:
23 # e.x. -45deg input angle -> 315deg wrapped angle
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24 wrapped_angle = angle % 360.0
25 return int(np.floor( (wrapped_angle /360.0) * (2** bitwidth) ))
26

27 # Rotation Mode Tests
---------------------------------------------------------

28 # https ://en.wikipedia.org/wiki/CORDIC#Rotation_mode
29 # this is an efficient way to compute trigonometric functions &

rotations of a vector
30 # Mag/Phase -> I/Q (https ://en.wikipedia.org/wiki/

Polar_coordinate_system#
Converting_between_polar_and_Cartesian_coordinates)

31 # X = r*cos(theta)
32 # Y = r*sin(theta)
33 print(’Testing Rotation Mode: Polar format (Mag & Phase) ->

Rectangular (X & Y)’)
34 magnitudes = [19429 , 5000]
35 test_angles = [45, 60]
36 for x_in , ang in zip(magnitudes , test_angles):
37 print(’%d deg input angle value: %d’ % (ang ,
38 degree_to_unsigned_fxp(ang , ang_bitwidth)) )
39 cos_est = round(processing_gain*x_in*np.cos(np.deg2rad(ang)))
40 sin_est = round(processing_gain*x_in*np.sin(np.deg2rad(ang)))
41 print(’\t%d*Cos(%d) [X] ~= %d’ % (x_in , ang , cos_est))
42 print(’\t%d*Sin(%d) [Y] ~= %d’ % (x_in , ang , sin_est))
43

44

45 # Vectoring Mode Tests
--------------------------------------------------------

46 # https ://en.wikipedia.org/wiki/CORDIC#Vectoring_mode
47 # this is an efficient way to compute magnitude and phase of a

complex signal
48 # I/Q -> Mag/Phase (https ://en.wikipedia.org/wiki/

Polar_coordinate_system#
Converting_between_polar_and_Cartesian_coordinates)

49 # where Mag = sqrt(X**2 + Y**2)
50 # Phase = atan2(Y,X)
51

52 # CORDIC processing gain: https ://www.xilinx.com/support/
documentation/ip_documentation/cordic/v6_0/pg105 -cordic.pdf

53

54 print(’Testing Vectoring Mode: Rectangular (X & Y) -> Polar format
(Mag & Phase)’)

55 test_x = [5000]
56 test_y = [2000]
57 for x_in , y_in in zip(test_x , test_y):
58 print(’X: %d, Y: %d’ % (x_in , y_in))
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59 print(’Mag: %d’ % round(processing_gain*np.sqrt(x_in **2 + y_in
**2)))

60 phase = degree_to_unsigned_fxp(np.rad2deg(np.arctan2(y_in ,
x_in)), ang_bitwidth)

61 print(phase)
62 print( hex(phase) )

Listing A.6: CORDIC Numerical Validation

1 import numpy as np
2 import random
3

4 N = 3 # number of channels
5 M = 5 # samples per channel to estimate , where M âĽě N
6 # form MxN complex sample matrix
7 x = np.matrix( np.arange(N*M).reshape ((N,M)) )
8 z = x - 1j*x
9 # create differing imag() parts to show Hermitian response

10 for i in range(0, N):
11 for j in range(0, M):
12 z[i,j] = x[i,j] - (random.randint (-5,5)*1j*x[i,j])
13 print("Sample Data & Complex Transpose:")
14 print(z)
15 print()
16 print(z.H)
17 print()
18 # Sample covariance matrix estimation (https ://en.wikipedia.org/

wiki/Estimation_of_covariance_matrices)
19 covar = np.matmul(z, z.H)/M
20 print("Direct Covariance Response:")
21 print(covar)
22 print()
23

24 # show manual model of covariance calc (for HDL implementation)
25 ct = np.zeros ((3,3), dtype=np.complex_)
26 for i in range(0, N): # rows
27 for j in range(0, i+1): # columns
28 for k in range(0, M): # sample in row
29 # MAC input sample vector at each time step based on

output position
30 # Only need to calculate lower triangle of covariance

matrix since
31 # output is always Hermitian positive semi -definite (

lower == upper
32 # triangle)
33 ct[i,j] = z[i,k]*np.conjugate( z[j,k] ) + ct[i,j]
34 # copy conj() in upper triangle for output
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35 if i != j:
36 ct[j,i] = np.conjugate( ct[i,j] )
37

38 # when M = pow2 , can use simple lsh bitwise op (FXP) for divide -by
-M, and

39 # use seperate wrapper component to do /div & give option to
either stream/double -buffer

40 # output covar matrix , or just output 3D signed array directly for
use somewhere else

41 ct = ct/M
42 print("Dataflow model output:")
43 print(ct)

Listing A.7: Sample Covariance Matrix Validation

1 #!/usr/bin/env python3
2 #
3 # takes exported np-array weights from Netron and converts to

binary string files
4 # for use by VHDL components. could also do this direct from *.

tflite file like in:
5 # https :// stackoverflow.com/questions /52111699/ how -can -i-view -

weights -in-a-tflite -file
6 #
7

8 import numpy as np
9

10 def int_to_bin_string(value , bitWidth):
11 # convert to signed -8b twos -complement value
12 twos_cmplt = value & ((2** bitWidth) -1)
13 # write out as padded binary string (always fixed character

width)
14 return str((bin(twos_cmplt)[2:]. zfill(bitWidth)))
15

16 # assumes FC weights are simple 2D numpy matrix of size (output ,
input)

17 def write_FC_weight_files(weights , layerID , bitWidth):
18 for node_idx in range(len(weights)):
19 # write individual weight file per perceptron/neural -node
20 fd = open("FC_weights_layer_%d_node_%d.txt" % (layerID ,

node_idx), "w")
21 for weight_val in weights[node_idx ]:
22 fd.write( int_to_bin_string(weight_val , bitWidth) + "\

n" )
23 fd.close()
24

25
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26 if __name__ == "__main__":
27 # execute only if run as a script
28 nBits = 8 # bitwidth of quantized integer weights
29 FClayerIdx = 0 # layer index to help identify sets of weight

files
30

31 # Netron easily export layer weights directly as NumPy array
files

32 conv2D_weights = np.load("./ sequential_conv2d_0")
33 FC0_weights = np.load("./ sequential_dense_MatMul_FC0")
34 FC1_weights = np.load("./ sequential_dense_MatMul_FC1")
35

36 print("2D-convolutional filter dimensions:")
37 print("\tLayer 0: 2D convolution weights of size {}".format(

conv2D_weights.shape))
38 print("Fully -connected dimensions = (output , input)")
39 print("\tLayer 1: Fully -connected weights of size {}".format(

FC0_weights.shape))
40 print("\tLayer 2: Fully -connected weights of size {}".format(

FC1_weights.shape))
41

42 write_FC_weight_files(FC0_weights , FClayerIdx , nBits)
43 FClayerIdx += 1
44 write_FC_weight_files(FC1_weights , FClayerIdx , nBits)

Listing A.8: TFLite CNN Weights Binary String Files

A.3 TensorFlow Jupyter Notebook
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ML Adaptive Beamformer for ULA

Quiescent Beamforming
First as a background, the quiescent (e.g. static) case of a linear array will be considered. The non-
dynamic beamforming weights will be derived for a given steering direction. We will also show the
basis of Digital Beamforming (DBF) with these static weights.

Lets also import the necessary Python packages and libraries now too:

Set the random seeds for the Python libraries for experiment reproducibility

Uniform Linear Array Parameters & System Constants

Here we are dealing with a linear phased array system with distances between source and emitters
assumed to be in the far field ( ) so phase shift across array elements are equal to the same

angle .

In [1]:
import os 

import pathlib 

import random 

from tqdm.notebook import trange, tqdm 

from IPython.display import Image, display 

 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

import scipy.constants 

 

import tensorflow as tf 

from tensorflow.keras import layers 

from tensorflow.keras import models 

# used for model pruning 

import tensorflow_model_optimization as tfmot 

In [2]:
seed = 17 

random.seed(seed) 

tf.random.set_seed(seed) 

np.random.seed(seed) 

≥ 2D2

λ

θ

In [3]:
display(Image(filename='../../02_abf_background/phased_array.png', width=400)) 
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Set the parameters and system constants for the Uniform Linear Array (ULA), including the number
of antenna elements, , the operating/carrier frequency, , and the desired plane wave angle of
arrival (AoA) relative to boresight, :

NOTE: to prevent grating lobes, the antenna element spacing should be 

N fc

θ0

≤ 0.5
d

λ

In [4]:
N       = 8     # number of elements in ULA 

fc      = 300e6 # RF carrier frequency (assuming narrowband here) 

fs      = 1e9   # IF/direct sampling frequency 

theta   = -10   # desired signal Angle of Arrival (AoA) in degrees 

SNR     = 1     # element SNR (linear units) 

noiseP  = 1     # noise power (linear units) 

spacing = 0.5   # d/wavelength element spacing (0.5 = half-wavelength spacing) 

 

wavelength = fc/scipy.constants.c 

# generate array of antenna element positions 

antPos = np.linspace(0,N-1,N)*wavelength*spacing 

plt.scatter(antPos, np.zeros(N), marker='1') 

plt.title("ULA Element Positions, N=%i" % N) 

plt.ylabel("Y-Position (m)") 

plt.xlabel("X-Position (m)") 

plt.show() 
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Spatial Response

For narrowband signals, the complex spatial response vector is formed from the baseband
envelope phasor at each ULA element, which is a function of AoA , operating wavelength  , and
the elemental spacing  [2]:

Compute hypothesis of steering vectors in sine space for quiescent beamforming weights. Plot the
weight response over sine space by testing weight magnitude at each look direction in vector u ,
from  to 

θ0 λ

d

sn = ej2π(n−1) sin θ0 0 ≤ n ≤ N − 1
d

λ

In [5]:
# given wavelength (same units as ula_pos_vec), azimuth direction of wave imping

def narrowband_spatial_phasor(wavelen, theta_deg, ula_pos_vec): 

    cmplx_pos = (1j*2*np.pi/wavelen)*ula_pos_vec.T 

    sn = np.exp(cmplx_pos*np.sin(np.deg2rad(theta_deg))) 

    return sn 

     

s = narrowband_spatial_phasor(wavelength, theta, antPos) 

−90∘ 90∘

In [6]:
# numHyp = number of direction hypothesis to compute 

def calc_quiescent_weights(wavelen, ula_pos_vec, numHyp=400): 

    u = np.linspace(-1, 1, numHyp) 

    wq = np.exp(np.outer((1j*2*np.pi/wavelen)*ula_pos_vec.T, u)) 

    # normalize quiescent filter weights to unity (0dB) @ boresight 

    mag = wq * wq.conj() 

    wq = wq / mag.sum(axis=0) # sum over columns (each channel, per hypothesis) 

    return wq, u 

 

wq, u = calc_quiescent_weights(wavelength, antPos, 400) 

In [7]:
def plot_az_cut(weights,                 # weights to plot 

                thetas,                  # list of tuples (angles, wavelengths) 

                                         # to plot (1st is desired angle) 

                plt_title='Azimuth Cut', # plot title 

                lims=[-40,1]):           # plot limits (b/c resp -> 0 near edges
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    # convolve quiescent ULA response w/given spatial weights 

    conv_weights = np.inner(wq.conj().T, weights) 

    fig, ax = plt.subplots() 

    ax.plot(u*spacing, 20*np.log10(np.abs(conv_weights)), linewidth=0.5) 

    ax.set(xlabel=r'Normalized Angle, $\frac{d}{\lambda} \sin(\theta)$', 

           ylabel='Magnitude (dB)', 

           title=plt_title) 

    ax.set_ylim(lims) 

    for idx, angle in enumerate(thetas): 

        if idx == 0: 

            lin_color = 'green' 

            plt_lbl = r'$\theta_{c}$' 

        elif idx == 1: 

            lin_color = 'red' 

            plt_lbl = r'$\theta_{Inf}$' 

        else: 

            lin_color = 'red' 

            plt_lbl = '' 

        # NOTE: since interference tone is at different frequency than desired 

        #       tone, the normalized sine space plot scales the incidence angles

        #       by its wavelength 

        norm_angle = np.sin(np.deg2rad(angle[0]))*spacing/angle[1] 

        # wrap normalized angle for wavelengths >>/<< desired 

        while norm_angle < -spacing: 

            norm_angle += 2*spacing 

        while norm_angle > spacing: 

            norm_angle -= 2*spacing 

        ax.vlines(norm_angle, 

                  lims[0], lims[1],

                  colors=lin_color, 

                  linestyles='dashed', 

                  label=plt_lbl, 

                  linewidth=(3 if idx == 0 else 1)) 

    ax.legend() 

    plt.show() 

 

# create matched filter (beam weights) for quiescent case (no interference) 

plot_az_cut(s, 

            [(theta, wavelength)], 

            plt_title='Azimuth Cut: Quiescent Weight Response in Sine Space', 

            lims=[-40, 1]) 
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Windowing Quiescent Weights

Windowing can be applied to weights as well to adjust sidelobes, such as applying an -point
Hamming window which is weighted by:

As expected, the great reduction in sidelobes causes an increase in mainlobe width compared to
non-windowed weights. Windowing is always a balance between sidelobe performance and
mainlobe width.

M

w(n) = 0.54 − 0.46 cos( ) 0 ≤ n ≤ M − 1
2πn

M − 1

In [8]:
window = np.hamming(N) 

plt.plot(window) 

plt.title("Hamming Window Values, N=%i" % N) 

plt.ylabel("Amplitude") 

plt.xlabel("Sample") 

plt.show() 

In [9]:
w_ham = window * s 

# normalize Hamming windowed weights to 0dB by giving 6dB gain (mainlobe is atte

w_ham *= 10.0**(6.0/20.0) 

y_ham = np.inner(wq.conj().T, w_ham) 

fig, ax = plt.subplots() 

 

yq = np.inner(wq.conj().T, s) # quiescent response for reference 

ax.plot(u, 20*np.log10(np.abs(y_ham)), 

        u, 20*np.log10(np.abs(yq)), linewidth=0.5) 

ax.set(xlabel=r'$\sin(\theta)$', 

       ylabel='Magnitude (dB)', 

       title='Azimuth Cut: Windowed Weight Response in Sine Space') 

ax.set_ylim([-60, 1]) # set sensible magnitude limits since edges near 0 gain 

ax.legend(['Hamming', 'Rectangular']) 

plt.show() 
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The non-windowed (rectangular) null-to-null width of a ULA can be found by [2]:

Mainlobe null-to-null width of rectangular window is 50.130255 degrees 

Response to Off-Angle Interference

Here we create an interference signal at a different angle of arrical than our intended signal.

Create an interference signal and additive gaussian noise.

θMB = 2 sin−1[ − sin(θ0)]
λ

Nd

In [10]:
theta_MB = 2*np.rad2deg( np.arcsin( 1/(N*spacing) - np.sin(np.deg2rad(theta)) ))

print('Mainlobe null-to-null width of rectangular window is %f degrees' % theta_

In [11]:
def shifted_tone(amplitude, freq, time_vec, spatial_phasor_vec): 

    phasor_tone = amplitude * np.exp(1j*2*np.pi*freq*time_vec) 

    phasor_shft = np.outer(phasor_tone, np.matrix(spatial_phasor_vec)).T 

    return phasor_shft 

In [12]:
thetaInf = 30 # intereference signal Angle of Arrival (AoA) in degrees 

fInf = 0.9*fc # interference signal carrier frequency (assuming narrowband) 

wavelengthInf = fInf/scipy.constants.c 

 

M = N*128 # M received samples/ch, where M ≥ N channels to form MxN sample matri

# time vector based on sampling frequency 

t = np.linspace(1,M,M)/fs 

t.shape = (1,M) # force transpose 

 

# phase shift received ideal waveform w/o noise or interference 

rx_shft = shifted_tone(np.sqrt(SNR*noiseP), fc, t, s) 

 

# calculate phase shift of interefence wave over ULA 

sInf = narrowband_spatial_phasor(wavelengthInf, thetaInf, antPos) 

# interference waveform with interference phase shift based on its frequency (ag

infRx_shft = shifted_tone(np.sqrt(SNR*noiseP), fInf, t, sInf) 
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Next, we show a comparison between no digital beamforming and a simple DBF with quiescent
weights in the presence of an interferer and noise.

Notice that since the interference is off angle, and the basic sum averaging case is the same as
having quiescent weights for a look directly at boresight (0 degrees), the 30 degree interference is
seen but at a lower power since it falls within a sidelobe (see previous weight plots above).

Calculate Signal-to-interference-plus-noise ratio (SINR) using simple procedure since desired and
interference signals known a priori.

# create random RX noise (thermal, environmental, etc.) across array which is Ga

# in distribution: https://en.wikipedia.org/wiki/Johnson%E2%80%93Nyquist_noise 

infNoise = np.sqrt(noiseP/2) * (np.random.randn(N,M) + 1j*np.random.randn(N,M)) 

 

# add interference & noise to create combined, synthetic RX waveform 

rx_all = rx_shft + infNoise + infRx_shft 

In [13]:
# perform basic sum averaging across all channels for "no DBF" case 

nonDBF = np.sum(rx_all, axis=0)/N 

 

# plot FFT power spectrum of RX signals 

freqBin = np.linspace(1,M,M)*(fs/M) 

nonDBF_PSD = 20*np.log10(np.abs(np.fft.fft(nonDBF))) 

fig, ax = plt.subplots() 

ax.plot(freqBin, nonDBF_PSD, linewidth=0.5) 

ax.set(xlabel='Frequency (Hz)', 

       ylabel='Magnitude (dB)', 

       title='RX Power Spectrum: Weighted Sum Average') 

ax.text(fInf*.95, 35, 'Interference\nSignal →', horizontalalignment='right', col

ax.text(fc*1.05, 50, 'Desired\n← Signal', color='blue', fontstyle='italic') 

ax.set_ylim([20, 60]) 

plt.show() 

In [14]:
def calc_SINR_simple(X,      # power spectrum vector 

                     Fs,     # sample frequency

                     freqs): # list of >=2 frequencies (1st is desired, others i

    nBins = len(X) 

    desired_fbin_idx = int(round(freqs[0]*nBins/Fs)) 

    desired_power    = X[desired_fbin_idx] 
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Non-DBF SINR: 15.38 dB 

MVDR Beamforming
Minimum Variance Distortionless Response (MVDR) minimizes the total array power while
maintaining unity gain for signals in the desired direction [1]. Essentially this process minimizes
noise and off-angle interference signals' powers by placing spatial nulls at certain array angles (also
known as "null steering"). The MVDR beamforming weights, , can be calculated by:

where  is the spatial sample covariance matrix of the  element by  input sample
matrix , and  is the complex steering vector (of size ) representing the phase shifts across
the array to form the desired steering direction.

    intfr_fbin_idx   = int(round(freqs[1]*nBins/Fs)) 

    intfr_power      = X[intfr_fbin_idx] 

    for infFreq in freqs[2:]: 

        intfr_fbin_idx = int(round(infFreq*nBins/Fs)) 

        temp = X[intfr_fbin_idx] 

        if temp > intfr_power: 

            intfr_power = temp 

    return desired_power - intfr_power 

 

print("Non-DBF SINR: %0.2f dB" % calc_SINR_simple(nonDBF_PSD, fs, [fc, fInf])) 

w

w =
S

−1
v0

v
H
0

S−1v0

S = XXH N M

X v0 N

In [15]:
# Given N channels, with M samples per channel, and M ≥ N 

#   input args: X = 2D input sample array(N elements x M samples) 

#      returns: S = sample covariance matrix (N x N) 

def calc_covar_matrix(X): 

    # form covariance matrix of input samples 

    S = X @ X.T.conj() 

    return S 

 

# Given N channels, with M samples per channel, and M ≥ N 

#   input args: S = sample covariance matrix (N x N), sv = steering vector(N x 1

#      returns: w = MVDR weight col vector(N x 1) 

def MVDR_beamform(S, sv): 

    # compute weight vector using steering vector and inverting matrix 

    # solves for x in Ax=b, where A is the covariance sample matrix, and b is th

    wp, resid, rank, s = np.linalg.lstsq(S, sv, rcond=None) 

    # normalize weight response 

    w = wp/(np.matrix(sv).H * wp) 

    return w 

 

# input args: X = 2D input sample array(N samples x M elements), w = weight col 

# returns: Y = output beam row vector(1 x M) 

def DBF_apply(X, w): 

    # form output beam with MVDR computed weights 

    # TODO: why does below work but not -> Y = X * np.conjugate(w) 

    Y = np.zeros(M) + 1j*np.zeros(M) 

    for i in range(N): 

        for j in range(M): 

175



5/1/2021 ML_ABF_beamformer_ULA

file:///home/jgentile/Downloads/ML_ABF_beamformer_ULA.html 9/25

Adaptive Beamforming Application

We can now apply MVDR beamforming to our combined RX data set (containing noise and the
desired + intereference signal sources) by calculating the adaptive weights and then applying them
to each element channel:

            Y[j] += X[i,j] * np.conjugate(w[i]) 

    return Y 

In [16]:
display(Image(filename='../../02_abf_background/ula_beamformer.png', width=400))

In [17]:
steer_vec = np.matrix(s).T 

w_MVDR = MVDR_beamform( calc_covar_matrix(rx_all), steer_vec ) 

Y_MVDR = DBF_apply(rx_all, w_MVDR) 

 

MVDR_PSD = 20*np.log10(np.abs(np.fft.fft(Y_MVDR))) 

fig, ax = plt.subplots() 

ax.plot(freqBin, MVDR_PSD, linewidth=0.5) 

ax.set(xlabel='Frequency (Hz)', 

       ylabel='Magnitude (dB)', 

       title='RX Power Spectrum: MVDR Adaptive Beamforming') 

ax.text(fInf*.95, 35, 'Interference\nSignal\n[Nulled]', horizontalalignment='rig

ax.text(fc*1.05, 50, 'Desired\n← Signal', color='blue', fontstyle='italic') 

ax.set_ylim([20, 70]) 

plt.show() 

 

plot_az_cut(w_MVDR.T, 

            [(theta, wavelength), 
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Post-MVDR SINR: 35.64 dB 

Here we can see that the off-angle interference wave is nulled out by seeing that the SINR is much
improved over non-DBF case. The desired signal gain is also improved over the previous weighted-
sum average spectrum as the steering direction is optimizing directionality.

             (thetaInf, wavelengthInf)], 

            plt_title='Azimuth Cut: MVDR Weight Response in Sine Space', 

            lims=[-80, -10]) 

 

print("Post-MVDR SINR: %0.2f dB" % calc_SINR_simple(MVDR_PSD, fs, [fc, fInf])) 

In [18]:
def calc_SINR_sine(weights, # weights to plot 

                   thetas): # list of tuples (angles, wavelengths) to plot (1st 

    # convolve quiescent ULA response w/given spatial weights 

    conv_weights = np.inner(wq.conj().T, weights) 

    #w_spectrum = 20*np.log10(np.abs(conv_weights)) 

    #ax.plot(u*spacing, w_spectrum, linewidth=0.5) 

    desired_pwr = 0 

    intfr_pwr   = 0 

    for idx, angle in enumerate(thetas): 

        norm_angle = np.sin(np.deg2rad(angle[0]))*spacing/angle[1] 

        # wrap normalized angle for wavelengths >>/<< desired 

        while norm_angle < -spacing: 
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Sine-space calculated SINR: 31.90 dB 

Multiple Interference Sources

The adaptive nulling scenario can be expanded to multiple sources of interference.

            norm_angle += 2*spacing 

        while norm_angle > spacing: 

            norm_angle -= 2*spacing 

        # find index in computed weight spectrum by accounting for -1<>+1 hypthe

        ang_idx = int(round((norm_angle + spacing)*len(u))) 

        # bounds check edge condition where we round up to array limit 

        if ang_idx >= len(u): 

            ang_idx = len(u) - 1 

        tmp_pwr = 20*np.log10(np.abs(conv_weights[ang_idx])) 

        if idx == 0: 

            desired_pwr = tmp_pwr 

        elif idx == 1: 

            intfr_pwr = tmp_pwr 

        else: 

            if tmp_pwr > intfr_pwr: 

                intfr_pwr = tmp_pwr 

    return desired_pwr - intfr_pwr 

                 

         

SINR = calc_SINR_sine(w_MVDR.T, 

                      [(theta, wavelength), 

                       (thetaInf, wavelengthInf)]) 

print("Sine-space calculated SINR: %0.2f dB" % SINR) 

In [19]:
num_intfr = N - 2 # number of interference sources to add 

 

# reuse desired signal & noise from before 

plt_angles = [(theta, wavelength)] 

rx_multi = rx_shft + infNoise 

deg_step = 180.0/num_intfr # degree step to use for each interference source 

for intfr_idx in range(num_intfr): 

    inf_theta = -90.0 + (intfr_idx*deg_step) 

    inf_fc    = random.uniform(0.05*fs, 0.5*fs) 

    inf_wvlen = inf_fc/scipy.constants.c 

    plt_angles += [(inf_theta, inf_wvlen)] 

    id_tmp    = narrowband_spatial_phasor(inf_wvlen, inf_theta, antPos) 

    rx_multi += shifted_tone(np.sqrt(SNR*noiseP), inf_fc, t, id_tmp) 

 

covar_MVDR = calc_covar_matrix(rx_multi) 

w_MVDR     = MVDR_beamform( covar_MVDR, steer_vec ) 

Y_MVDR     = DBF_apply(rx_multi, w_MVDR) 

     

# arbitrarily plot one channel's spectrum 

test_PSD = 20*np.log10(np.abs(np.fft.fft(rx_multi[6,:]))) 

fig, ax = plt.subplots() 

ax.plot(freqBin, test_PSD, linewidth=0.5) 

ax.set(xlabel='Frequency (Hz)', 

       ylabel='Magnitude (dB)', 

       title='RX Power Spectrum: Multiple Interference Sources') 

plt.show() 

 

test_MVDR_PSD = 20*np.log10(np.abs(np.fft.fft(Y_MVDR))) 

fig, ax = plt.subplots() 
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ax.plot(freqBin, test_MVDR_PSD, linewidth=0.5) 

ax.set(xlabel='Frequency (Hz)', 

       ylabel='Magnitude (dB)', 

       title='RX Power Spectrum: Post-MVDR Adaptive Beamforming') 

plt.show() 

 

plot_az_cut(w_MVDR.T, 

            plt_angles, 

            plt_title='Azimuth Cut: MVDR Weight Response in Sine Space', 

            lims=[-80, -10]) 

 

SINR = calc_SINR_sine(w_MVDR.T, 

                      plt_angles) 

print("Sine-space calculated SINR: %0.2f dB" % SINR) 
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Sine-space calculated SINR: 13.44 dB 

Note that in some cases (such as the above if the random seed was not changed), MVDR
beamforming can not perfectly null all inteference sources. This is mainly due to where interferers
fall spatially relative to each other and the desired look direction, which can be seen from the sine
space plot; you'll notice most interference angles fall into nulls, but a couple are very close to the
desired direction, which cannot be placed into a null (without also nulling the desired direction) due
to the lobe width of the given antenna pattern. The takeaway of this effect is that more antenna nulls
not only give a system more numerous nulls to place with ABF, but also tighter lobes which can
more easily null interference directions with close spacing (relative to each other and/or the desired
look direction).

ML Beamforming

Relevant Current Research

Beamforming using the Relevance Vector Machine- UCSF: shows Relevance Vector Machine
(RVM) to improve standard MVDR with basic sample covariance estimates, for instance better
DoA estimation.
Neural Network Adaptive Beamforming for Robust Multichannel Speech Recognition- Google:
uses Long Short Term Memory (LSTM) layers to predict time domain beamforming filter
coefficients for time varying speech/acoustic models.
A Deep Learning Framework for Optimization of MISO Downlink Beamforming- IEEE: uses
CNNs to optimize SINR, however with slightly different structure of "exploitation of expert
knowledge"

Covariance Matrix Input Layer
We can visualize the covariance matrix as a false color image, along with the deterministic steering
vector on the last row; this corollary of the array input preprocessing (e.g. covariance matrix
calculation) to 2D images makes an easier transition to interacting with our proposed Machine
Learning (ML) model. Though an added dimension is added here to easily plot to standard 
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pyplot  utilities expecting three color channels (Red, Green, Blue), the input layer to the ML
model can be of shape (batch_size, N+1, N, 2) , where the added N+1  dimension allows
us to include the intended steering vector, and the last dimension of 2  accounts for the real and
imaginary parts of the complex sample covariance matrix.

Building the covariance sample/estimation matrix as preprocessing before the CNN input layer is
likely the best way to map this problem set. Besides it being relatively easy to implement and light
on resources (e.g. in HDL and SW code), if input preprocessing was not used, the input layer would
be unnecessarilly large to sample some time-series window across all channels (and sample
enough data in time to create meaningful associations between channels). If time-series information
was needed, a different ML structure such as LTSMs might fit better.

Time-frequency transforms are also popular in applications such as audio recognition

Two other interesting input preprocessing could also be considered:
Using STFT (or overlapped/RTSA to get both time & frequency resolution) BUT instead of
taking it across the temporal domain (e.g. across the time domain of each channel's
samples like traditional FFT processing), we take it across the spatial dimension (e.g.
across all channels, btw could process an 8-channel system with 8-pt FFT per sample, or
larger FFT like 64-pt+ by stacking inputs?). We can make a good comparison to STFT
used in audio/RF classification tasks (like TF's example and RadioML)

In [20]:
comb_re  = np.zeros((N+1,N)) 

comb_im  = np.zeros((N+1,N)) 

comb_re[:N, :] = covar_MVDR.real 

comb_re[N, :]  = s.real 

comb_im[:N, :] = covar_MVDR.imag 

comb_im[N, :]  = s.imag 

# create (N+1, N, 3) false color matrix for plotting covariance matrix & steerin

full_test = np.dstack((comb_re, np.zeros((N+1,N)), comb_im)) 

# normalize covariance values to 0-1 float range for proper plotting 

ind_max   = np.unravel_index(np.argmax(full_test, axis=None), full_test.shape) 

ind_min   = np.unravel_index(np.argmin(full_test, axis=None), full_test.shape) 

full_test = (full_test + np.abs(full_test[ind_min]))/(full_test[ind_max] + np.ab

plt.imshow(full_test) 

plt.show() 
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Spatial Dataset Generation

The generated test data sets for training can be built using mathematical RF signal models to create
realistic test data. Different parameters should vary to best train the CNN (as well as buck
"overfitting" to a specific dataset/test) like:

Number of interference sources (up to num_channels - 1 theoretical nulling limits)
Desired & interference signal directions
Desired & interference signal center frequencies
Desired & interference signal SNRs

In Tim O'Shea's RadioML research, he built an interesting graph which was able to show
model accuracy vs input SNR, where expectedly, very low SNR (or signals below noise)
led to less probability of modulation classification (different application than us btw, though
the RadioML dataset could be another interesting test source)
Maybe start to train w/high SNR first, then move to lower and lower SNR levels during
training process

[Advanced] Desired & interference signal modulation and bandwidths (e.x. simple AM/tone,
QPSK, QAM, OFDM, LFM/chirp, etc.). This may be somewhat futile given we are generating
narrowband weights.

Since we have lots of desired features for our training data set, we could also explore using
dimensionality reduction algorithms in the future for feature extraction.

https://matplotlib.org/3.1.1/gallery/images_contours_and_fields/specgram_demo.html#sph
glr-gallery-images-contours-and-fields-specgram-demo-py

Investigate performance with input from CWT, WVD or other time-frequency transform?
Investigate any other Lossy Compression preprocessing methods, like DCT or DWT,
which can create compressed 2D input layers?

In [21]:
# using current ULA antenna setup, create a matrix of test scenarios 

# vary frequency, direction 

num_scenarios = 10000   # total size of dataset to generate 

train_ratio   = 0.9     # ratio of total dataset to use for training 

min_num_intfr = 1       # minimum number of interference sources (0 = no interfe

max_num_intfr = 1       # maximum number of interference sources (N-1 limit arra

min_az_deg    = -89     # minimum look angle (degrees) 

max_az_deg    =  89     # maximum look angle (degrees) 

min_fc        = 0.05*fs # minimum carrier frequency (Hz, based on given sample r

max_fc        = 0.49*fs # maximum carrier frequency (Hz, based on given sample r

 

narrowband_test_set = np.zeros((num_scenarios, N+1, N, 2)) # allocate dataset ar

target_weight_set   = np.zeros((num_scenarios, N*2))  # N*2 for flattened output

# array of angle, wavelength pairs [:,0,0] = desired theta, [:,0,1] = desired wv

gen_test_angle_set  = np.zeros((num_scenarios, max_num_intfr + 1, 2)) 

 

train_size = int(round(num_scenarios*train_ratio)) 

pred_size  = int(round(num_scenarios*(1-train_ratio))) 

 

train_test_set   = np.zeros((train_size, N+1, N, 2)) # allocate training array 

train_weight_set = np.zeros((train_size, N*2))  # N*2 for flattened output 
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pred_test_set    = np.zeros((pred_size, N+1, N, 2)) # allocate prediction array 

pred_weight_set  = np.zeros((pred_size, N*2)) 

 

# covariance matrices for loss function 

Rd = np.zeros((num_scenarios, N, N)) + 1j*np.zeros((num_scenarios, N, N)) 

Ri = np.zeros((num_scenarios, N, N)) + 1j*np.zeros((num_scenarios, N, N)) 

for samp_idx in trange(num_scenarios, desc='Generating Dataset'): 

    # first start w/additive gaussian noise (~0 dB) 

    rx_inf = (10.0**(-40.0/20.0))*(np.random.randn(N,M) + 1j*np.random.randn(N,M

     

    num_intfr     = random.randint(min_num_intfr, max_num_intfr) 

    desired_theta = random.uniform(min_az_deg, max_az_deg) 

    desired_fc    = random.uniform(min_fc, max_fc) 

    desired_wvlen = desired_fc/scipy.constants.c 

     

    gen_test_angle_set[samp_idx, 0, 0] = desired_theta 

    gen_test_angle_set[samp_idx, 0, 1] = desired_wvlen 

     

    # add desired signal 

    sd_tmp  = narrowband_spatial_phasor(desired_wvlen, desired_theta, antPos) 

    d_SNR   = 20 

    d_amp   = 10.0**((-65.0+d_SNR)/20.0) 

    # signal of interest 

    rx_SOI  = shifted_tone(d_amp, desired_fc, t, sd_tmp) 

    # add interference sources 

    for intfr_idx in range(num_intfr): 

        inf_theta = random.uniform(min_az_deg, max_az_deg)

        inf_fc    = random.uniform(min_fc, max_fc) 

        inf_wvlen = inf_fc/scipy.constants.c 

        id_tmp    = narrowband_spatial_phasor(inf_wvlen, inf_theta, antPos) 

        rx_inf   += shifted_tone(d_amp, inf_fc, t, id_tmp) 

         

        gen_test_angle_set[samp_idx, intfr_idx + 1, 0] = inf_theta 

        gen_test_angle_set[samp_idx, intfr_idx + 1, 1] = inf_wvlen 

         

    rx_tot = rx_SOI + rx_inf 

         

    # preprocessing: covariance matrix estimation & steering vector concatenatio

    sv = np.matrix(sd_tmp).T 

    covar_tmp = calc_covar_matrix(rx_tot) 

    target_weights = MVDR_beamform( covar_tmp, sv ).T 

     

    # we also calculate the desired & interference+noise covariance matrices to 

    # function during training to calculate SINR for a batch of infered adaptive

    Rd_tmp = calc_covar_matrix(rx_SOI) 

    Ri_tmp = calc_covar_matrix(rx_inf) 

    Rd[samp_idx, :, :] = Rd_tmp 

    Ri[samp_idx, :, :] = Ri_tmp 

     

    # turn complex covariance matrix & steering vectors -> multi-dim layer 

    narrowband_test_set[samp_idx, :N, :, 0] = covar_tmp.real 

    narrowband_test_set[samp_idx, :N, :, 1] = covar_tmp.imag 

    narrowband_test_set[samp_idx,  N, :, 0] = sv.T.real 

    narrowband_test_set[samp_idx,  N, :, 1] = sv.T.imag 

    target_weight_set[samp_idx, :N]  = target_weights.real 

    target_weight_set[samp_idx,  N:] = target_weights.imag 

 

train_test_set   = narrowband_test_set[:train_size,:,:,:] 

train_weight_set = target_weight_set[:train_size,:] 

pred_test_set    = narrowband_test_set[train_size:,:,:,:]     

pred_weight_set  = target_weight_set[train_size:,:] 
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Spatial Dataset shape:  (10000, 9, 8, 2) 

Target ABF weights shape:  (10000, 16) 

Training Dataset shape:  (9000, 9, 8, 2) 

Training ABF weights shape:  (9000, 16) 

Training angles shape:  (9000, 2, 2) 

Prediction Dataset shape:  (1000, 9, 8, 2) 

Prediction ABF weights shape:  (1000, 16) 

Prediction angles shape:  (1000, 2, 2) 

(10000, 8) 

(10000, 8, 8) 

(10000, 8, 8) 

CNN Design

train_angle_set  = gen_test_angle_set[:train_size,:,:] 

pred_angle_set   = gen_test_angle_set[train_size:,:,:] 

print('Spatial Dataset shape: ', narrowband_test_set.shape) 

print('Target ABF weights shape: ', target_weight_set.shape) 

print('Training Dataset shape: ', train_test_set.shape) 

print('Training ABF weights shape: ', train_weight_set.shape) 

print('Training angles shape: ', train_angle_set.shape) 

print('Prediction Dataset shape: ', pred_test_set.shape) 

print('Prediction ABF weights shape: ', pred_weight_set.shape) 

print('Prediction angles shape: ', pred_angle_set.shape) 

In [22]:
trgt_weights = np.matrix( target_weight_set[:,:N] + 1j*target_weight_set[:,N:] )

print(trgt_weights.shape) 

print(Rd.shape) 

print(Ri.shape) 

 

#SINR = (w_test.conj() * rd * w_test.T)/(w_test.conj() * ri * w_test.T) 

MVDR_SINRs = np.zeros(num_scenarios) 

for i in range(num_scenarios): 

    #MVDR_SINRs[i] = 20*np.log10( np.abs( (trgt_weights[i,:].conj() * Rd[i,:,:] 

    MVDR_SINRs[i] = 20*np.log10( np.abs( (trgt_weights[i,:] * Rd[i,:,:] * trgt_w

 

plt.plot(MVDR_SINRs[:100]) 

plt.xlabel('Test Scenario Iteration') 

plt.ylabel('SINR (dB)') 

plt.title('SINR Performance over Test Scenarios') 

plt.show() 
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The input layer is the 2D, complex covariance sample matrix (with steering vector appended as an
extra row). The input 2D convolutional layer (Conv2d) is defined by the Keras API.

The amount of hidden layers is derived from experimentation and resource constraints; more layers
can not only can cause overfitting and take longer to train, but many layers blow our eventual
resource utilization out of the water.

A max pooling layer MaxPool2D after Conv2D  can be used to reduce dimensionality, however for
our spatial weight derivation, this actually works against us (though great for applications that need
to reduce dimensionality, such as single-output regression).

The output layer should be 2D for complex weights (N channels x 2 per I/Q weight), since the goal
is to have a CNN which can directly create weights for beamforming "weight and sum"/MAC
application in PL logic; specifically for TensorFlow implementation, the output layer is a flattened
vector of 2*N  samples, where the first N  samples are the real part, and the last N  samples are
the imaginary part.

The popular ReLU activation function) is used as the rectification of the neural layers; note other
papers have used other activation functions like the Antirectifier since it can keep negative part,
however its not necessary for this application since weights can still produce negative output values
for final output weights.

Model: "sequential" 

_________________________________________________________________ 

Layer (type)                 Output Shape              Param #    

================================================================= 

conv2d (Conv2D)              (None, 5, 5, 2)           82         

_________________________________________________________________ 

flatten (Flatten)            (None, 50)                0          

_________________________________________________________________ 

dense (Dense)                (None, 32)                1632       

_________________________________________________________________ 

dense_1 (Dense)              (None, 16)                528        

================================================================= 

Total params: 2,242 

In [23]:
# since 1x input tensor and 1x output tensor, can use simple sequential layering

# look at https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D 

#   http://d2l.ai/chapter_convolutional-neural-networks/lenet.html 

model = models.Sequential([ 

    # 2D dim filter output (keep real & imag) [filter dim/conv is +1 in row to e

    # NOTE: Don't use aditional Conv2D & MaxPooling2D layers since we actually w

    #       Weirdly even by decimating input spatial dimensions into depth-wise 

    #       in a layer below), the output performance is terrible... 

    layers.Conv2D(2, (int(np.floor(N/2))+1, int(np.floor(N/2))), activation='rel

    # dropout is good for randomnly dropping out weights to prevent overfit but 

    #layers.Dropout(0.25), 

    layers.Flatten(), 

    # interestingly, even though relu gets rid of negative parts, this still giv

    # and results in a better trained network (vs no activation) 

    layers.Dense(N*4, activation='relu'), 

    layers.Dense(N*2), 

]) 

 

model.summary() 
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Trainable params: 2,242

Non-trainable params: 0

_________________________________________________________________ 

Compile & Fit using Keras API

Since doing multi-output regression, not using loss functions meant for classification, but can use
basic statistical functions like Mean Squared Error

The Adam optimization algorithm is a currently popular stochastic gradient descent method that is
computationally efficient and has many modern benefits.

TODO:

So it looks like regression to MVDR weights works, so since MVDR isn't necessarilly perfect,
should we instead make a custom loss function based on calculating SINR on the fly? (like
https://neptune.ai/blog/keras-loss-functions) This could lead to inferring a better ABF algorithm,
and less expensive

There should be a way to pad extra data columns in your input tensor to provide the info
necessary for calculating SINR as a loss function
https://stackoverflow.com/questions/55445712/custom-loss-function-in-keras-based-on-
the-input-data

In [24]:
EPOCHS     = 30 

# default batch size is 32: higher batch sizes decrease training time, but small

batch_size = 1 

 

#TODO: adapt to calculate SINR (or inverse since loss is looking to be 

#      minimized by training optimization function) as new loss fn 

def invSINR_loss(train_angle, y_pred): 

    pred_SINR = 0 

    #for i in range(batch_size): 

        #predicted_weights = np.matrix(y_pred[i,:N] + 1j*y_pred[1,N:]) 

        #pred_SINR += calc_SINR_sine(predicted_weights, 

        #               [(train_angle[i,0,0], train_angle[i,0,1]), 

        #                (train_angle[i,1,0], train_angle[i,1,1])]) 

    #pred_SINR /= batch_size # average SINR for batch 

    predicted_weights = np.matrix(y_pred[:N] + 1j*y_pred[N:]) 

    pred_SINR += calc_SINR_sine(predicted_weights, 

                   [(train_angle[0,0], train_angle[0,1]), 

                    (train_angle[1,0], train_angle[1,1])]) 

    return 1/pred_SINR 

                                

     

#loss=MSE_ex(4), 

#def MSE_ex(i): 

#    def loss(y_true, y_pred): 

#        squared_diff = tf.square(y_true - y_pred) + i 

#        return tf.reduce_mean(squared_diff, axis=-1)

#    return loss 

 

model.compile( 

    optimizer=tf.keras.optimizers.Adam(), 

    #loss=invSINR_loss, 

    # MSE is good for basic regression/matching 

    loss=tf.keras.losses.MeanSquaredError(), 
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Epoch 1/30 

9000/9000 [==============================] - 4s 472us/step - loss: 0.0029 

Epoch 2/30 

9000/9000 [==============================] - 4s 474us/step - loss: 5.0312e-04 

Epoch 3/30 

9000/9000 [==============================] - 4s 477us/step - loss: 4.4402e-04 

Epoch 4/30 

9000/9000 [==============================] - 4s 482us/step - loss: 4.3002e-04 

Epoch 5/30 

9000/9000 [==============================] - 4s 474us/step - loss: 4.1494e-04 

Epoch 6/30 

9000/9000 [==============================] - 4s 473us/step - loss: 3.9901e-04 

Epoch 7/30 

9000/9000 [==============================] - 4s 477us/step - loss: 3.9162e-04 

Epoch 8/30 

9000/9000 [==============================] - 4s 475us/step - loss: 3.9474e-04 

Epoch 9/30 

9000/9000 [==============================] - 4s 481us/step - loss: 3.9544e-04 

Epoch 10/30 

9000/9000 [==============================] - 4s 479us/step - loss: 3.9070e-04 

Epoch 11/30 

9000/9000 [==============================] - 4s 478us/step - loss: 3.7549e-04 

Epoch 12/30 

9000/9000 [==============================] - 4s 470us/step - loss: 3.7896e-04 

Epoch 13/30 

9000/9000 [==============================] - 4s 464us/step - loss: 3.7347e-04 

Epoch 14/30 

9000/9000 [==============================] - 4s 464us/step - loss: 3.7372e-04 

Epoch 15/30 

9000/9000 [==============================] - 4s 466us/step - loss: 3.7589e-04 

Epoch 16/30 

9000/9000 [==============================] - 4s 474us/step - loss: 3.6998e-04 

Epoch 17/30 

9000/9000 [==============================] - 4s 472us/step - loss: 3.6914e-04 

Epoch 18/30 

9000/9000 [==============================] - 4s 474us/step - loss: 3.6735e-04 

Epoch 19/30 

9000/9000 [==============================] - 4s 473us/step - loss: 3.6580e-04 

Epoch 20/30 

9000/9000 [==============================] - 4s 469us/step - loss: 3.6501e-04 

Epoch 21/30 

9000/9000 [==============================] - 4s 473us/step - loss: 3.7036e-04 

Epoch 22/30 

9000/9000 [==============================] - 4s 474us/step - loss: 3.6429e-04 

Epoch 23/30 

9000/9000 [==============================] - 4s 473us/step - loss: 3.6137e-04 

Epoch 24/30 

9000/9000 [==============================] - 4s 469us/step - loss: 3.6063e-04 

Epoch 25/30 

9000/9000 [==============================] - 4s 476us/step - loss: 3.5744e-04 

Epoch 26/30 

9000/9000 [==============================] - 4s 470us/step - loss: 3.6383e-04 

)

 

# https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit  

history = model.fit( 

    train_test_set, 

    train_weight_set, # standard for regression 

    #train_angle_set, # set for eventual custom loss function? 

    batch_size=batch_size, 

    epochs=EPOCHS, 

    verbose=1 

)
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Epoch 27/30 

9000/9000 [==============================] - 4s 470us/step - loss: 3.5341e-04 

Epoch 28/30 

9000/9000 [==============================] - 4s 471us/step - loss: 3.5375e-04 

Epoch 29/30 

9000/9000 [==============================] - 4s 472us/step - loss: 3.5577e-04 

Epoch 30/30 

9000/9000 [==============================] - 4s 469us/step - loss: 3.4591e-04 

Once trained, we now use the prediction API to estimate outputs from the designated prediction
scenarios.

Here's an example cut of one of the predictive scenarios and the performance of the CNN and the
traditional MVDR weight calculation process:

In [25]:
# use prediction set and get output weights 

pred_idx = 28 

cnn_pred_weights       = model.predict(pred_test_set[pred_idx:pred_idx+1,:,:,:])

# unflatten to complex numbers for plotting in sine space 

cnn_pred_weights_cmplx = cnn_pred_weights[0,:N] + 1j*cnn_pred_weights[0,N:] 

verif_pred_weights     = pred_weight_set[pred_idx,:N] + 1j*pred_weight_set[pred_

 

plot_az_cut(np.matrix(cnn_pred_weights_cmplx), 

            [(pred_angle_set[pred_idx,0,0], pred_angle_set[pred_idx,0,1]), 

             (pred_angle_set[pred_idx,1,0], pred_angle_set[pred_idx,1,1])], 

            plt_title='Azimuth Cut: ML Model Predicted Weight Response in Sine S

            lims=[-80, -10]) 

SINR = calc_SINR_sine(np.matrix(cnn_pred_weights_cmplx), 

            [(pred_angle_set[pred_idx,0,0], pred_angle_set[pred_idx,0,1]), 

             (pred_angle_set[pred_idx,1,0], pred_angle_set[pred_idx,1,1])]) 

print("CNN Output SINR: %0.2f dB" % SINR) 

 

plot_az_cut(np.matrix(verif_pred_weights), 

            [(pred_angle_set[pred_idx,0,0], pred_angle_set[pred_idx,0,1]), 

             (pred_angle_set[pred_idx,1,0], pred_angle_set[pred_idx,1,1])], 

            plt_title='Azimuth Cut: MVDR Calculated Weight Response in Sine Spac

            lims=[-80, -10]) 

SINR = calc_SINR_sine(np.matrix(verif_pred_weights), 

            [(pred_angle_set[pred_idx,0,0], pred_angle_set[pred_idx,0,1]), 

             (pred_angle_set[pred_idx,1,0], pred_angle_set[pred_idx,1,1])]) 

print("MVDR SINR: %0.2f dB" % SINR)
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CNN Output SINR: 24.48 dB 

MVDR SINR: 28.38 dB 

Iterate over training scenarios to calculate average SINR for ML model and MVDR approach.

In [26]:
avg_CNN_SINR  = 0 

avg_MVDR_SINR = 0 

CNN_SINRs  = np.zeros(pred_size) 

MVDR_SINRs = np.zeros(pred_size) 

for test_idx in trange(pred_size, desc='Calculating SINR over Test Scenarios and

    cnn_pred_weights       = model.predict(pred_test_set[test_idx:test_idx+1,:,:

    # unflatten to complex numbers for plotting in sine space 

    cnn_pred_weights_cmplx = cnn_pred_weights[0,:N] + 1j*cnn_pred_weights[0,N:] 

    verif_pred_weights     = pred_weight_set[test_idx,:N] + 1j*pred_weight_set[t

 

    CNN_SINRs[test_idx] = calc_SINR_sine(np.matrix(cnn_pred_weights_cmplx),

                                       [(pred_angle_set[test_idx,0,0], 

                                         pred_angle_set[test_idx,0,1]), 

                                        (pred_angle_set[test_idx,1,0], 

                                         pred_angle_set[test_idx,1,1])]) 

    avg_CNN_SINR += CNN_SINRs[test_idx] 

 

    MVDR_SINRs[test_idx] = calc_SINR_sine(np.matrix(verif_pred_weights), 

                                        [(pred_angle_set[test_idx,0,0], 

                                          pred_angle_set[test_idx,0,1]), 

                                         (pred_angle_set[test_idx,1,0], 

                                          pred_angle_set[test_idx,1,1])]) 

    avg_MVDR_SINR += MVDR_SINRs[test_idx] 

     

     

plt.plot(np.linspace(1,pred_size,pred_size), CNN_SINRs, label='CNN') 

plt.plot(np.linspace(1,pred_size,pred_size), MVDR_SINRs, label='MVDR') 

plt.xlabel('Test Scenario Iteration') 

plt.ylabel('SINR (dB)') 

plt.title('CNN vs MVDR SINR Performance over Test Scenarios') 

plt.legend() 

plt.show() 

 

avg_CNN_SINR  /= pred_size 

avg_MVDR_SINR /= pred_size 

print('Average SINR from CNN: %0.2f dB' % avg_CNN_SINR) 

print('Average SINR from MVDR: %0.2f dB' % avg_MVDR_SINR) 
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Average SINR from CNN: 17.76 dB 

Average SINR from MVDR: 22.67 dB 

Average SINR performance of CNN compared to the MVDR approach: -4.91 dB 

Adaptation to FPGA FW
After quantization, we do not need to quantize to 0.0 - 1.0  constraint on input data like
with floats anymore, nor have negative values get thrown, the model is made to use signed 8-
bit integer input and output with the inference input/output type value
The "why?" of optimization has great TF documentation at ->
https://www.tensorflow.org/lite/performance/model_optimization and in Post-training
quantization

Pruning

Prune using TF API

/home/jgentile/.local/lib/python3.8/site-packages/tensorflow/python/keras/engin

e/base_layer.py:2281: UserWarning: `layer.add_variable` is deprecated and will b

e removed in a future version. Please use `layer.add_weight` method instead. 

  warnings.warn('`layer.add_variable` is deprecated and ' 

Model: "sequential" 

_________________________________________________________________ 

Layer (type)                 Output Shape              Param #    

================================================================= 

prune_low_magnitude_conv2d ( (None, 5, 5, 2)           164        

_________________________________________________________________ 

prune_low_magnitude_flatten  (None, 50)                1          

_________________________________________________________________ 

prune_low_magnitude_dense (P (None, 32)                3234       

print('Average SINR performance of CNN compared to the MVDR approach: % 0.2f dB'

      % (avg_CNN_SINR - avg_MVDR_SINR)) 

In [27]:
model_for_pruning = tfmot.sparsity.keras.prune_low_magnitude(model) 

model_for_pruning.summary() 
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_________________________________________________________________ 

prune_low_magnitude_dense_1  (None, 16)                1042       

================================================================= 

Total params: 4,441 

Trainable params: 2,242

Non-trainable params: 2,199 

_________________________________________________________________ 

Quantization

Tools like TF Lite intended for embedded deployment should output a fixed point model for
comparison as well (since this would be easiest/most resource optimized for FPGA logic
implementation).

To scale a set of float values ( ) to signed, integer values, each value can be multiplied by a scaling
coefficient  and then rounded to the nearest integer:

Quantize in 16x8 mode which gives 16-bit Integer weights and 8-bit Integer quantized data.

INFO:tensorflow:Assets written to: /tmp/tmp4ann_fb5/assets 

Can save/export Keras model weights to an h5  file format, which can then be read with basic
Python using the h5py package; we can dynamically traverse the h5 structure to pull out the
weights for each layer.

Convolutional layer descriptions:

b

k

k =
2N−1

max
x∈b

|x|

In [28]:
# check if 16x8 (16b weights, 8b quantized values) quanitzation is supported

tf.lite.OpsSet.EXPERIMENTAL_TFLITE_BUILTINS_ACTIVATIONS_INT16_WEIGHTS_INT8 

converter = tf.lite.TFLiteConverter.from_keras_model(model) 

# use default `optimizations` 

converter.optimizations = [tf.lite.Optimize.DEFAULT]

# to use 16x8 mode use the OpsSet flag 

converter.target_spec.supported_ops = [tf.lite.OpsSet.EXPERIMENTAL_TFLITE_BUILTI

#converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]

# Set inputs & outputs of quantized model to be 8b Integers 

#  https://www.tensorflow.org/lite/performance/post_training_quantization#full_i

# thus entire model (inputs, outputs, weights, biases, etc.) are integers 

#converter.inference_input_type = tf.int8 

converter.inference_output_type = tf.int16 

 

# TODO: is this OK for representative data gen for quantization? It may be just 

#  https://www.tensorflow.org/lite/performance/post_training_integer_quant_16x8 

def representative_data_gen(): 

    for _ in range(100): 

        data = np.random.rand(1, 9, 8, 2) 

        #yield [data.astype(np.int8)] 

        yield [data.astype(np.float32)] 

         

converter.representative_dataset = representative_data_gen 

 

tflite_16x8_model = converter.convert() 
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Convolutional Networks- MIT Deep Learning Book <- tons of great reference here for
documentation
A Comprehensive Introduction to Different Types of Convolutions in Deep Learning
Intuitively Understanding Convolutions for Deep Learning
Calculating Parameters of Convolutional and Fully Connected Layers with Keras
Convolutional Neural Networks- Intel YouTube
Convolutions in Image Processing- MIT YouTube

Can also manually extract, and prototype, weights using Keras API: Or even using Netron

5384
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In [30]:
model.save_weights("weights.h5") 

 

tflite_models_dir = pathlib.Path("quantized_tflite_model/") 

tflite_models_dir.mkdir(exist_ok=True, parents=True) 

tflite_model_16x8_file = tflite_models_dir/"abf_model_quant_16x8.tflite" 

tflite_model_16x8_file.write_bytes(tflite_16x8_model) 

Out[30]:
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Appendix B

VHDL Design Source

B.1 Miscellaneous/Support VHDL Entities

1 -- Package for common utilities
2 library ieee;
3 use ieee.std_logic_1164.all;
4 use ieee.numeric_std.all;
5 use ieee.math_real.all;
6 use std.textio.all;
7

8 package util_pkg is
9

10 -- // Start: Common Types
/////////////////////////////////////////////////////

11 -- VHDL -2008 unbounded array definitions
12 type T_slv_2D is array (integer range <>) of

std_logic_vector;
13 type T_signed_2D is array (integer range <>) of signed;
14 type T_unsigned_2D is array (integer range <>) of unsigned;
15 type T_int_2D is array (integer range <>) of integer;
16 type T_slv_3D is array (integer range <>) of T_slv_2D;
17 type T_signed_3D is array (integer range <>) of T_signed_2D;
18 type T_unsigned_3D is array (integer range <>) of T_unsigned_2D;
19 type T_int_3D is array (integer range <>) of T_int_2D;
20 -- // End: Common Types

///////////////////////////////////////////////////////
21

22 -- // Start: File I/O Utilities
///////////////////////////////////////////////

23 impure function F_read_file_slv_2D( file_path : string;
24 slv_length : integer;
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25 dim_length : integer )
return T_slv_2D;

26 -- // End: File I/O Utilities
/////////////////////////////////////////////////

27

28 -- // Start: String Utilities
/////////////////////////////////////////////////

29 -- Converts a String to std_logic_vector
30 function F_string_to_slv( X : string ) return std_logic_vector;
31 -- // End: String Utilities

///////////////////////////////////////////////////
32

33 -- // Start: Number Utilities
/////////////////////////////////////////////////

34 function F_return_smaller( A : integer;
35 B : integer ) return integer;
36 function F_return_larger( A : integer;
37 B : integer ) return integer;
38

39 function F_clog2( x : real ) return integer;
40 function F_clog2( x : natural ) return integer;
41 function F_is_even( x : integer ) return boolean;
42 function F_is_odd( x : integer ) return boolean;
43

44 function F_FFS_bit( x : std_logic_vector ) return integer;
45 function F_FFS_bit( x : signed ) return integer;
46 function F_FFS_bit( x : unsigned ) return integer;
47 -- // End: Number Utilities

///////////////////////////////////////////////////
48

49 end util_pkg;
50

51 package body util_pkg is
52

53 -- // Start: File I/O Utilities
///////////////////////////////////////////////

54 -- Reads an ASCII file with bit -vector patterns on each line
where:

55 -- + each line has a single binary value of length ‘slv_length
‘

56 -- + reads up to ‘dim_length ‘ lines of file
57 -- e.x. a file with values ‘0‘, ‘1‘, and ‘7‘ is:
58 -- 00000000
59 -- 00000001
60 -- 00000111
61 impure function F_read_file_slv_2D( file_path : string;
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62 slv_length : integer;
63 dim_length : integer )

return T_slv_2D is
64 file fd : text;
65 variable V_line : line;
66 variable V_bitvec : bit_vector(slv_length - 1 downto 0);
67 variable V_return : T_slv_2D(dim_length - 1 downto 0)(

slv_length - 1 downto 0)
68 := (others => (others => ’0’));
69 begin
70 if file_path /= "" then
71 file_open( fd, file_path , read_mode );
72 for i in 0 to dim_length - 1 loop
73 readline( fd, V_line );
74 read( V_line , V_bitvec );
75 V_return(i) := to_stdlogicvector( V_bitvec );
76 end loop;
77 end if;
78 return V_return;
79 end F_read_file_slv_2D;
80 -- // End: File I/O Utilities

/////////////////////////////////////////////////
81

82 -- // Start: String Utilities
/////////////////////////////////////////////////

83 function F_string_to_slv( X : string ) return std_logic_vector
is

84 variable V_return : std_logic_vector ((X’length *8) -1 downto 0);
85 begin
86 for i in X’range loop
87 V_return (((i+1)*8) -1 downto i*8) :=
88 std_logic_vector( to_unsigned( character ’pos( X(i) ), 8 )

);
89 end loop;
90 return V_return;
91 end F_string_to_slv;
92 -- // End: String Utilities

///////////////////////////////////////////////////
93

94 -- // Start: Number Utilities
/////////////////////////////////////////////////

95 function F_return_smaller( A : integer;
96 B : integer ) return integer is
97 begin
98 if A < B then
99 return A;
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100 else
101 return B;
102 end if;
103 end F_return_smaller;
104

105 function F_return_larger( A : integer;
106 B : integer ) return integer is
107 begin
108 if A > B then
109 return A;
110 else
111 return B;
112 end if;
113 end F_return_larger;
114

115 function F_clog2( x : real ) return integer is
116 begin
117 return integer(ceil(log2(x)));
118 end F_clog2;
119

120 function F_clog2( x : natural ) return integer is
121 begin
122 return F_clog2(real(x));
123 end F_clog2;
124

125 function F_is_even( x : integer ) return boolean is
126 begin
127 return (x mod 2) = 0;
128 end F_is_even;
129

130 function F_is_odd( x : integer ) return boolean is
131 begin
132 return (x mod 2) = 1;
133 end F_is_odd;
134

135 -- Find First Set bit: returns the first set bit , respecting
136 -- given SLV range direction (e.g. if x(2 downto 0) := "011",
137 -- F_FFS_bit(x) would return index ’1’, however if defined as
138 -- x(0 to 2) := "011", F_FFS_bit(x) returns index ’0’)
139 function F_FFS_bit( x : std_logic_vector ) return integer is
140 begin
141 for i in x’range loop
142 if x(i) = ’1’ then
143 return i;
144 end if;
145 end loop;
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146 -- set bit not found (all 0’s), return left -most index since
this

147 -- function is often used to decide how much to shift
148 return x’left;
149 end F_FFS_bit;
150

151 function F_FFS_bit( x : signed ) return integer is
152 begin
153 return F_FFS_bit( std_logic_vector( x ) );
154 end F_FFS_bit;
155

156 function F_FFS_bit( x : unsigned ) return integer is
157 begin
158 return F_FFS_bit( std_logic_vector( x ) );
159 end F_FFS_bit;
160 -- // End: Number Utilities

///////////////////////////////////////////////////
161

162 end util_pkg;

Listing B.1: VHDL Common Utilities Package

1 -- Complex Multilier:
2 -- The following code implements a parameterizable complex

multiplier
3 -- The style described uses 4 DSP ’s to implement the direct

complex multiply
4 -- which can be optimized for a given architecture pipeline
5 library ieee;
6 use ieee.std_logic_1164.all;
7 use ieee.numeric_std.all;
8

9 entity complex_multiply_mult4 is
10 generic (
11 G_AWIDTH : natural := 16; -- size of 1st input of

multiplier
12 G_BWIDTH : natural := 18; -- size of 2nd input of

multiplier
13 G_CONJ_A : boolean := false; -- take complex conjugate of arg

A
14 G_CONJ_B : boolean := false -- take complex conjugate of arg

B
15 );
16 port (
17 clk : in std_logic;
18 reset : in std_logic := ’0’; -- (optional) sync reset for

*valid ’s
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19 ab_valid : in std_logic; -- A & B complex input data valid
20 ar : in signed(G_AWIDTH - 1 downto 0); -- 1st input ’s

real part
21 ai : in signed(G_AWIDTH - 1 downto 0); -- 1st input ’s

imaginary part
22 br : in signed(G_BWIDTH - 1 downto 0); -- 2nd input ’s

real part
23 bi : in signed(G_BWIDTH - 1 downto 0); -- 2nd input ’s

imaginary part
24 p_valid : out std_logic; -- Product complex output data valid
25 pr : out signed(G_AWIDTH + G_BWIDTH downto 0); -- real

part of output
26 pi : out signed(G_AWIDTH + G_BWIDTH downto 0) --

imaginary part of output
27 );
28 end complex_multiply_mult4;
29

30 architecture rtl of complex_multiply_mult4 is
31

32 signal ar_q , ai_q : signed(G_AWIDTH - 1
downto 0) := (others => ’0’);

33 signal br_q , bi_q : signed(G_BWIDTH - 1
downto 0) := (others => ’0’);

34 signal multr0 , multr1 , multi0 , multi1 : signed(G_AWIDTH +
G_BWIDTH - 1 downto 0) := (others => ’0’);

35 signal addr , addi : signed(G_AWIDTH +
G_BWIDTH downto 0) := (others => ’0’);

36

37 constant K_PIPE_DELAY : integer := 3; -- # clk cycles of
pipeline delay through component

38 signal sig_valid_sr : std_logic_vector(K_PIPE_DELAY - 1 downto
0) := (others => ’0’);

39

40 begin
41

42 pr <= addr;
43 pi <= addi;
44 p_valid <= sig_valid_sr(sig_valid_sr ’high);
45

46 S_reg_inputs: process(clk)
47 begin
48 if rising_edge(clk) then
49 ar_q <= ar;
50 if G_CONJ_A then
51 ai_q <= -ai;
52 else
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53 ai_q <= ai;
54 end if;
55 br_q <= br;
56 if G_CONJ_B then
57 bi_q <= -bi;
58 else
59 bi_q <= bi;
60 end if;
61

62 -- shift register to delay data valid to match pipeline
delay

63 if reset = ’1’ then
64 sig_valid_sr <= (others => ’0’);
65 else
66 sig_valid_sr <= sig_valid_sr(K_PIPE_DELAY - 2 downto 0) &

ab_valid;
67 end if;
68 end if;
69 end process S_reg_inputs;
70

71 -- Implements pr = (ar*br) - (ai*bi)
72 S_real: process(clk)
73 begin
74 if rising_edge(clk) then
75 multr0 <= ar_q * br_q;
76 multr1 <= ai_q * bi_q;
77 addr <= resize( multr0 , G_AWIDTH + G_BWIDTH + 1 ) - resize

( multr1 , G_AWIDTH + G_BWIDTH + 1 );
78 end if;
79 end process S_real;
80

81 -- Implements pi = (ar*bi) + (ai*br)
82 S_imag: process(clk)
83 begin
84 if rising_edge(clk) then
85 multi0 <= ar_q * bi_q;
86 multi1 <= ai_q * br_q;
87 addi <= resize( multi0 , G_AWIDTH + G_BWIDTH + 1 ) + resize

( multi1 , G_AWIDTH + G_BWIDTH + 1 );
88 end if;
89 end process S_imag;
90

91 end architecture rtl;

Listing B.2: Complex Multiply Block

1 -- Parallel Adder Tree w/recursion (VHDL -2008)
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2 -- inspired by: https :// stackoverflow.com/a/50002251
3 library ieee;
4 use ieee.std_logic_1164.all;
5 use ieee.numeric_std.all;
6 library work;
7 use work.util_pkg.all;
8

9 entity adder_tree is
10 generic (
11 G_DATA_WIDTH : natural := 16; -- sample bitwidth
12 G_NUM_INPUTS : natural := 8 -- number of input samples in

vector
13 );
14 port (
15 clk : in std_logic;
16 reset : in std_logic := ’0’; -- (optional) sync reset

for *valid ’s
17 -- input data valid across input row vector
18 din_valid : in std_logic := ’1’;
19 -- NOTE: input samples not registered
20 din : in T_slv_2D(G_NUM_INPUTS - 1 downto 0)(

G_DATA_WIDTH - 1 downto 0);
21

22 dout_valid : out std_logic;
23 dout : out std_logic_vector(F_clog2(G_NUM_INPUTS) +

G_DATA_WIDTH - 1 downto 0)
24 );
25 end adder_tree;
26

27 architecture rtl of adder_tree is
28 constant K_NXT_NUM_INPUTS : natural := (G_NUM_INPUTS /2) + (

G_NUM_INPUTS mod 2);
29

30 -- registered adder outputs for next stage (+1 bit growth)
31 -- NOTE: arbitrarily adding input slv ’s as unsigned since

addition is same
32 -- with sign extension and accounted overflow bit
33 signal sig_nxt_din : T_unsigned_2D(K_NXT_NUM_INPUTS - 1 downto

0)(G_DATA_WIDTH downto 0)
34 := (others => (others => ’0’));
35 signal sig_nxt_slv : T_slv_2D(K_NXT_NUM_INPUTS - 1 downto 0)(

G_DATA_WIDTH downto 0);
36 signal sig_dvalid : std_logic := ’0’;
37

38 begin
39
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40 UG_unsigned_to_slv_2D: for i in sig_nxt_din ’range generate
41 sig_nxt_slv(i) <= std_logic_vector( sig_nxt_din(i) );
42 end generate UG_unsigned_to_slv_2D;
43

44 S_adder: process(clk)
45 begin
46 if rising_edge(clk) then
47 if reset = ’1’ then
48 sig_dvalid <= ’0’;
49 else
50 if din_valid = ’1’ then
51 for i in 0 to (G_NUM_INPUTS /2) - 1 loop
52 sig_nxt_din(i) <= resize( unsigned( din(i*2) ),

G_DATA_WIDTH + 1 ) +
53 resize( unsigned( din((i*2)+1) ),

G_DATA_WIDTH + 1);
54 end loop;
55

56 if F_is_odd( G_NUM_INPUTS ) then -- account for odd
input -> next stage

57 sig_nxt_din(sig_nxt_din ’high) <= resize( unsigned( din
(din ’high) ),

58 G_DATA_WIDTH
+ 1 );

59 end if;
60 end if;
61 sig_dvalid <= din_valid;
62 end if;
63 end if;
64 end process S_adder;
65

66 UG_recurse: if F_clog2( G_NUM_INPUTS ) > 1 generate
67 U_next_adder_stage: entity work.adder_tree
68 generic map (
69 G_DATA_WIDTH => G_DATA_WIDTH + 1,
70 G_NUM_INPUTS => K_NXT_NUM_INPUTS
71 )
72 port map (
73 clk => clk ,
74 reset => reset ,
75 din_valid => sig_dvalid ,
76 din => sig_nxt_slv ,
77 dout_valid => dout_valid ,
78 dout => dout
79 );
80 end generate UG_recurse;
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81

82 UG_final_stage: if F_clog2( G_NUM_INPUTS ) = 1 generate
83 dout_valid <= sig_dvalid;
84 dout <= std_logic_vector( sig_nxt_din (0) );
85 end generate UG_final_stage;
86

87 end architecture rtl;

Listing B.3: Generic Parallel Adder Tree

1 -- CORDIC logic with output scaling to cancel out CORDIC gain (via
CORDIC_scale)

2

3 library ieee;
4 use ieee.std_logic_1164.all;
5 use ieee.numeric_std.all;
6

7 entity cordic_rot_scaled is
8 generic (
9 G_ITERATIONS : natural := 16 -- also equates to output

precision
10 );
11 port (
12 clk : in std_logic;
13 reset : in std_logic := ’0’; -- (optional) sync reset

for *valid ’s
14 valid_in : in std_logic;
15 x_in : in signed(G_ITERATIONS - 1 downto 0);
16 y_in : in signed(G_ITERATIONS - 1 downto 0);
17 angle_in : in unsigned (31 downto 0); -- 32b

phase_in (0-360deg)
18 CORDIC_scale : in signed(G_ITERATIONS - 1 downto 0) := X"4DBA

";
19

20 valid_out : out std_logic;
21 cos_out : out signed(G_ITERATIONS - 1 downto 0); --

cosine/x_out
22 sin_out : out signed(G_ITERATIONS - 1 downto 0) -- sine/

y_out
23 );
24 end entity cordic_rot_scaled;
25

26 architecture rtl of cordic_rot_scaled is
27

28 component cordic is
29 generic (
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30 G_ITERATIONS : natural := 16 -- also equates to output
precision

31 );
32 port (
33 clk : in std_logic;
34 reset : in std_logic := ’0’; -- (optional) sync

reset for *valid ’s
35 valid_in : in std_logic;
36 x_in : in signed(G_ITERATIONS - 1 downto 0);
37 y_in : in signed(G_ITERATIONS - 1 downto 0);
38 angle_in : in unsigned (31 downto 0); -- 32b

phase_in (0-360deg)
39

40 valid_out : out std_logic;
41 cos_out : out signed(G_ITERATIONS - 1 downto 0); --

cosine/x_out
42 sin_out : out signed(G_ITERATIONS - 1 downto 0) --

sine/y_out
43 );
44 end component cordic;
45

46 signal sig_valid_out : std_logic := ’0’;
47 signal sig_cos_out : signed(G_ITERATIONS - 1 downto 0); --

cosine/x_out
48 signal sig_sin_out : signed(G_ITERATIONS - 1 downto 0); --

sine/y_out
49

50 signal sig_scl_valid : std_logic := ’0’;
51 signal sig_cos_scl : signed ((2* G_ITERATIONS) - 1 downto 0);
52 signal sig_sin_scl : signed ((2* G_ITERATIONS) - 1 downto 0);
53

54 signal sig_sft_valid : std_logic := ’0’;
55 signal sig_cos_sft : signed(G_ITERATIONS - 1 downto 0);
56 signal sig_sin_sft : signed(G_ITERATIONS - 1 downto 0);
57

58 begin
59

60 valid_out <= sig_sft_valid;
61 cos_out <= sig_cos_sft;
62 sin_out <= sig_sin_sft;
63

64 U_CORDIC_rotation: cordic
65 generic map (
66 G_ITERATIONS => G_ITERATIONS
67 )
68 port map (
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69 clk => clk ,
70 reset => reset ,
71 valid_in => valid_in ,
72 x_in => x_in ,
73 y_in => y_in ,
74 angle_in => angle_in ,
75 valid_out => sig_valid_out ,
76 cos_out => sig_cos_out ,
77 sin_out => sig_sin_out
78 );
79

80 S_scale_magnitudes: process(clk)
81 begin
82 if rising_edge(clk) then
83 if reset = ’1’ then
84 -- NOTE: mostly we need only reset registers related to

handshaking/dataflow ,
85 -- which will aid in easing timing (less reset

routing required than
86 -- resetting the wider , data output registers)
87 sig_scl_valid <= ’0’;
88 sig_sft_valid <= ’0’;
89 else
90 -- normalize/cancel CORDIC gain using given scale factor
91 if sig_valid_out = ’1’ then
92 sig_cos_scl <= sig_cos_out * CORDIC_scale;
93 sig_sin_scl <= sig_sin_out * CORDIC_scale;
94 end if;
95 sig_scl_valid <= sig_valid_out;
96

97 -- scale normalized CORDIC magnitude back down to
operational data width

98 if sig_scl_valid = ’1’ then
99 -- since scaling & data are always of same data width ,

can simply shift right
100 -- by >> G_ITERATIONS value (-1 data width since given

signed scale factor)
101 sig_cos_sft <= resize( shift_right( sig_cos_scl ,
102 G_ITERATIONS - 1 ),
103 sig_cos_sft ’length );
104 sig_sin_sft <= resize( shift_right( sig_sin_scl ,
105 G_ITERATIONS - 1 ),
106 sig_sin_sft ’length );
107 end if;
108 sig_sft_valid <= sig_scl_valid;
109

204



110 end if;
111 end if;
112 end process S_scale_magnitudes;
113

114 end architecture rtl;

Listing B.4: Gain-Scaled CORDIC Rotator

1 -- CORDIC logic with output scaling to cancel out CORDIC gain (via
CORDIC_scale)

2

3 library ieee;
4 use ieee.std_logic_1164.all;
5 use ieee.numeric_std.all;
6

7 entity cordic_vec_scaled is
8 generic (
9 G_ITERATIONS : natural := 16 -- also equates to output

precision
10 );
11 port (
12 clk : in std_logic;
13 reset : in std_logic := ’0’; -- (optional) sync reset

for *valid ’s
14 valid_in : in std_logic;
15 x_in : in signed(G_ITERATIONS - 1 downto 0);
16 y_in : in signed(G_ITERATIONS - 1 downto 0);
17 CORDIC_scale : in signed(G_ITERATIONS - 1 downto 0) := X"4DBA

";
18

19 valid_out : out std_logic;
20 phase_out : out unsigned (31 downto 0); -- 32b phase (0-360

deg)
21 mag_out : out signed(G_ITERATIONS - 1 downto 0)
22 );
23 end entity cordic_vec_scaled;
24

25 architecture rtl of cordic_vec_scaled is
26

27 component cordic_vec is
28 generic (
29 G_ITERATIONS : natural := 16 -- also equates to output

precision
30 );
31 port (
32 clk : in std_logic;
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33 reset : in std_logic := ’0’; -- (optional) sync
reset for *valid ’s

34 valid_in : in std_logic;
35 x_in : in signed(G_ITERATIONS - 1 downto 0);
36 y_in : in signed(G_ITERATIONS - 1 downto 0);
37

38 valid_out : out std_logic;
39 phase_out : out unsigned (31 downto 0); -- 32b phase

(0-360deg)
40 mag_out : out signed(G_ITERATIONS - 1 downto 0)
41 );
42 end component cordic_vec;
43

44 signal sig_valid_out : std_logic := ’0’;
45 signal sig_mag_out : signed(G_ITERATIONS - 1 downto 0);
46 signal sig_phase_out : unsigned (31 downto 0);
47

48 signal sig_scl_valid : std_logic := ’0’;
49 signal sig_mag_scl : signed ((2* G_ITERATIONS) - 1 downto 0);
50 signal sig_phase_q : unsigned (31 downto 0);
51

52 signal sig_sft_valid : std_logic := ’0’;
53 signal sig_mag_sft : signed(G_ITERATIONS - 1 downto 0);
54 signal sig_phase_qq : unsigned (31 downto 0);
55

56 begin
57

58 valid_out <= sig_sft_valid;
59 phase_out <= sig_phase_qq;
60 mag_out <= sig_mag_sft;
61

62 U_CORDIC_vectoring: cordic_vec
63 generic map (
64 G_ITERATIONS => G_ITERATIONS
65 )
66 port map (
67 clk => clk ,
68 reset => reset ,
69 valid_in => valid_in ,
70 x_in => x_in ,
71 y_in => y_in ,
72

73 valid_out => sig_valid_out ,
74 phase_out => sig_phase_out ,
75 mag_out => sig_mag_out
76 );
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77

78 S_scale_magnitudes: process(clk)
79 begin
80 if rising_edge(clk) then
81 if reset = ’1’ then
82 -- NOTE: mostly we need only reset registers related to

handshaking/dataflow ,
83 -- which will aid in easing timing (less reset

routing required than
84 -- resetting the wider , data output registers)
85 sig_scl_valid <= ’0’;
86 sig_sft_valid <= ’0’;
87 else
88 -- normalize/cancel CORDIC gain using given scale factor
89 if sig_valid_out = ’1’ then
90 sig_mag_scl <= sig_mag_out * CORDIC_scale;
91 end if;
92 sig_scl_valid <= sig_valid_out;
93 -- since we don ’t care about scaling phase (for now ,

interacts with
94 -- other CORDIC/trig functions at full 32b width) just

pipeline to
95 -- match delay of scale & shift of magnitude signal
96 sig_phase_q <= sig_phase_out;
97

98 -- scale normalized CORDIC magnitude back down to
operational data width

99 if sig_scl_valid = ’1’ then
100 -- since scaling & data are always of same data width ,

can simply shift right
101 -- by >> G_ITERATIONS value (-1 data width since given

signed scale factor)
102 sig_mag_sft <= resize( shift_right( sig_mag_scl ,
103 G_ITERATIONS - 1 ),
104 sig_mag_sft ’length );
105 end if;
106 sig_sft_valid <= sig_scl_valid;
107 sig_phase_qq <= sig_phase_q;
108

109 end if;
110 end if;
111 end process S_scale_magnitudes;
112

113 end architecture rtl;

Listing B.5: Gain-Scaled CORDIC Vectoring
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