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Abstract

In Computer Assisted Intervention (CAI) systems, a surgeon performs the surgery

using an interface connected to a computer that remotely controls a set of surgical

tools attached to a robot. Such systems are particularly appealing for minimally inva-

sive surgeries since they allow for a larger and more precise set of movements than in

traditional laparoscopic interventions, and provide enhanced vision capabilities such

as 3D vision and augmented reality. These features directly translate into benefits

for the patients such as smaller incisions, less pain and quicker healing. However, the

benefits of the technology might be reduced due to the steep learning curve associated

with CAI systems. This makes it necessary to account for a fair and objective crite-

rion for the evaluation and assessment of the skills of a novice surgeon. Furthermore,

it is desirable to automate the process in order to avoid constant supervision of an

expert surgeon, a time consuming, subjective and rather inefficient method.

It is therefore necessary to develop algorithmic methods that extract information

from kinematic cues provided by the robot and video recordings of the interven-

tions. A common approach is to divide the surgical procedure into smaller actions,
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ABSTRACT

forming a vocabulary able to to describe different surgical tasks. Following such an

approach requires a method capable of providing temporal segmentation, recognition

of the action and final skill assessment. Prior work has usually modeled the interac-

tions between these atomic actions using generative models such as Hidden Markov

Models, Factor-Analysis and Switching Linear Dynamical Systems. In this thesis,

we focus on the classification problem and assume segmented data. We propose to

follow a discriminative approach using Linear Dynamical Systems (LDS) to model

and characterize a particular action. We develop new methods for the extraction of

meaningful representations by means of averaging in the space of LDSs. These rep-

resentative points are then used into a discriminative framework for surgical gesture

classification. We propose a novel SVM classification method for time series of data

that reduces computation at the expense of some degradation in performance. Our

contributions are fairly general and can be applied to any temporal signal coming

from an LDS.

Primary Reader: Prof. Gregory D. Hager

Secondary Reader: Prof. Sanjeev Khudanpur
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Chapter 1

Introduction

1.1 Motivations

Over 100 years ago, Dr. William Halsted created the first surgical residency

training program in the United States. His training paradigm was extremely simple:

“see one, do one, teach one.” However, recent technological advances have changed

the way in which some surgeries are performed. This has opened the opportunity for

revisiting Halsted’s paradigm in search for improved ways of training surgeons.

One of such technological advances is Robotically Minimally Invasive Surgery

(RMIS), which has several advantages over traditional surgery, as shown in [2,3] and

[4]. For example, [4] compared the post-surgery recovery of patients who underwent

RMIS to that of patients who underwent traditional surgery. One of the findings

was that the former group experienced a shorter length of stay, and was less likely

1



CHAPTER 1. INTRODUCTION

to receive blood transfusions or develop postoperative respiratory and miscellaneous

surgical complications.

However, after a first wave of optimism about RMIS, drawbacks started to arise. In

the same study, [4] observed that RMIS was associated with an almost 2-fold increase

in the odds of postoperative genitourinary complications. One of the hypotheses for

this increment is the steep learning curve for surgeons who want to add RMIS to

their armamentarium. In fact, even for expert surgeons, training for RMIS is often

considered challenging, as reported in [5]. This is exacerbated by the fact that there

is a lack of fair, objective, and effective criteria for judging the skills acquired by

a trainee with an RMIS system, which could ultimately reduce the benefits of such

technology.

These issues have motivated a number of approaches for automatic RMIS skill

assessment and gesture classification. One of the most natural approaches is to de-

compose a surgical task into a series of pre-defined “atomic” gestures or surgemes,

such as “insert needle”, “grab needle”, “position needle”, etc. Figure 1.1 shows sam-

ple frames from three different surgemes taken from the dataset presented in [1]. The

problem then becomes how to segment the task in time, recognize each surgeme, and

finally assess the skill level.

Even if RMIS systems are typically equipped with cameras that record the en-

tire procedure, to the best of our knowledge, most of the studies focused mainly on

the analysis of kinematic data stored by the robot. This kind of information typi-
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CHAPTER 1. INTRODUCTION

Figure 1.1: Surgeme Examples – A representation of some of the surgemes present

in the set of actions that define a task.

cally involves the position of the robot tools, angles between robot joints, velocity

measurements and force/torque signatures. In the medical literature, action recog-

nition techniques from video have been applied to the analysis of the behavior of

surgeons and nurses in an operating room [6–8]. However, as far as video recognition

of surgical gestures, little has been done mainly because kinematic-based approaches

usually outperformed those based on visual cues. For example in [9] some basic ges-

ture recognition strategies from video were investigated, but the conclusion of this

study was that kinematic-based approaches were generally more accurate. Recent ap-

proaches based on video [10–12] show that video can provide very high performances

in automatic recognition of the different surgical phases, suggesting that the above

3



CHAPTER 1. INTRODUCTION

conclusion should be revisited.

Additionaly, video data can be a rich source of contextual information about a

surgical task, which can be complementary to the motion information contained in

kinematic data. For example, in a surgical video we can see which tool is being

used, whether the tool is in contact with the tissue, whether the suture is passing

through the suture line, etc. All of that information is not available in the kinematic

data. Moreover, recognition methods based on video data could be more generally

applicable to any MIS where video data is available but kinematic data is not. On the

other hand, the automatic detection and tracking of surgical tools, and the detection

of surgical events in video data is very challenging due to the occlusions and clutter

present in a surgical video, as well as the variability of tool pose and motions across

tasks and surgeon expertise.

Motivated by these ideas, the work in [11, 13] proposed the first steps towards

automatic recognition of surgical gestures in video. Rather that aiming to a complete

semantic interpretation of a surgical video, the authors proposed to use the statistical

properties of features extracted from the video to build models for each gesture and

use these models to classify surgical gestures in new videos. More specifically, given

a video of a surgical task (e.g., suturing), it is assumed that the video has been

segmented into video clips corresponding to a single gesture (e.g., position needle,

drive needle through tissue, pull suture, etc.). The problem is then to recognize the

gesture associated with each (segmented) video clip. The authors in [11,13] use Linear
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CHAPTER 1. INTRODUCTION

Dynamical Systems (LDSs) to model the surgical gestures. Using different features,

such as raw pixel intensities or optical flow, and different metrics in the space of LDSs

the authors achieve state-of-the-art performance in surgical gesture classification.

1.2 Fundamental challenges

The use of system-theoretic techniques (e.g., LDSs) to the modeling of high-

dimensional time-series data has also found application in many other computer vision

problems over the past decade [14–20]. However, if we want to characterize some pro-

cess using LDSs, there are several challenges that need to be addressed. The first one

is to estimate or learn the parameters of the model (identification problem). This

is a well-studied subject for LDSs [16, 21, 22]. Once the model has been estimated,

one may be interested in performing some statistical analysis on these models. This

entails problems such as determining which process is being observed in a given time

series (classification problem), finding a representative for a class of processes (av-

eraging problem), or clustering time series according to different classes (clustering

problem). Classification, recognition and clustering problems have been mainstream

areas of research in machine learning for the past decades. However, most existing

methods for the analysis of high-dimensional time series require a distance or kernel

on the (typically Euclidean) observation space [23]. A fundamental challenge in per-

forming pattern recognition in the space of LDSs (i.e., find averages, learn clusters,

5
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do kernel-based classification) is that the space is not Euclidean. Indeed, it has the

structure of a quotient space. The problem of averaging and clustering LDSs have

been previously addressed in several works: [24,25] find an embedding of the LDS into

a Grassmann manifold and perform the averaging in the embedding; [26] proposes

to embed the LDS points into Euclidean space using the pairwise distances and a

non-linear dimensionality reduction technique such as multidimensional scaling. One

limitation of such methods is that they are approximate and not able to generate

novel LDSs. On the contrary, more recent approaches try to find novel averages di-

rectly in the space of LDSs without relying to any embedding of the data. The work

in [27] proposes to find an average LDS using the hierarchical Expectation Maximiza-

tion algorithm. The main drawback of such method is its computational complexity,

since it requires running a Kalman filter on every averaging step. Also in a recent

contribution [28], the authors propose a distance and an averaging method based on

the equivalence of representations between LDSs.

Another key challenge shows up in the statistical analysis of large collections of

dynamical models identified from high-dimensional datasets, where the computational

complexity might become an issue. Therefore, it is desirable to have efficient methods

to perform these statistical tasks (e.g., averaging, classification).

6
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1.3 Thesis contributions

Our main goal is to develop methods for automatic gesture recognition in surgical

tasks. This clearly constitutes a first step towards having an automated system for

the assessment and evaluation of novice surgeons. We take a similar approach as

in [1] and decompose each task into atomic gestures called surgemes. Using low-level

features (e.g., pixel intensities and kinematic recordings), we fit an LDS to the data

in order to capture both the dynamics and the appearance associated with each of

the surgemes. Once we have extracted the models for each of the actions (we follow

a similar approach as in [11, 13] and assume that the different gestures have already

been segmented), we can use metrics in the space of LDS to build classifiers (e.g.,

k-Nearest-Neighbors or Support Vector Machines) to recognize new actions. In gen-

eral, we are interested in performing some statistical analysis in the space of LDSs.

To that end, we will investigate averaging (extrinsic mean) and clustering of LDSs

with respect to some distance metrics. Our first contribution is to propose a novel

averaging method with respect to the Martin distance [29, 30]. The Martin distance

is a particularly attractive metric since it is a true distance in the space of LDSs

that is also invariant to basis transformations, a desired property when comparing

dynamical models. To the best of our knowledge, the only previous attempt to pro-

duce an average LDS model using the Martin distance is the nonlinear dimensionality

reduction method of [26]. Contrary to [26], our method is not restricted to select a

point in the sample set but it is able to produce novel LDS averages. We pose the
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problem as a constrained optimization problem and devise a gradient-descent type of

algorithm for the computation of the minimizer. To that end we derive expressions

for the efficient computation of the derivatives of the objective function with respect

to the optimization variables. Our second contribution to averaging and clustering

LDSs is the derivation of an alternative method for the computation of the Align

distance [28]. We propose to compute the distance using the Alternating Direction

Method of Multipliers [31]. The advantage of using our method is that it can be easily

implemented since the updates can be computed in closed-form. The Align distance

can also be used for averaging as described in [28].

These averaging methods will allow us to extract some representative points for

a given class of processes. We will then use those representatives to perform clas-

sification of LDSs. Using linear predictors in the ambient space of time series, we

will study the classification problem using support vector machines. The classical

approach is to use a kernel in the space of LDSs. Such kernel can be built from a

distance measure (e.g., using a radial basis function) such as the Martin or Frobe-

nius distances [29, 30, 32], or directly using a kernel in the space of LDSs such as the

Binet-Cauchy kernels proposed in [33]. It is well-known that the optimal separating

hyperplane is a linear combination of the data points (in the reproducing Hilbert

space) [23]. In this thesis, and this is our third contribution, we also consider an

alternative and novel classification method that restricts the optimal separating hy-

perplane to a specific set of representative points. By fixing some of the parameters
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of the separating hyperplane and optimizing only over the initial conditions of the

models, we will show how the kernel SVM classification problem reduces to a linear

SVM in Euclidean space. The method also benefits from a reduced complexity as

compared to the Binet-Cauchy kernels. We call this new method DynamicSVM. Fi-

nally, our fourth contribution is the application of these techniques to the particular

problem of surgical action classification. We will use the dataset presented in [1] for

the evaluation of the described procedures. It is worth to mention that our methods

are current state-of-the-art in surgical action recognition [11, 13].

1.4 Thesis outline

The remainder of the thesis is organized as follows. In Chapter 2 we present some

background material that will be used througout the thesis. Chapter 3 addresses the

problem of averaging and clustering LDSs using the Martin and the Align distances.

We will show the derivation of the methods and will illustrate their performance on

different real datasets. In Chapter 4 we will present the DynamicSVM classification

method for time series coming from LDSs. We will illustrate its relation to the

Binet-Cauchy kernels of [33] and how the kernel SVM problem can be reduced to a

linear SVM in Euclidean space. Finally, in Chapter 5 we will evaluate the presented

techniques for the problem of surgical gesture classification.

9



Chapter 2

Linear Dynamical Systems

2.1 Introduction

A common approach to describe and represent data time series is to use a stochas-

tic generative approach such as a Linear Dynamical System (LDS), where the dynam-

ics of the observed sequence are assumed to be governed by the time evolution of some

latent (unobserved) variable. Such models have been successfully applied to several

problems in computer vision such as synthesis and classification of dynamic textures,

action recognition or segmentation, among others. For instance, [11] uses Linear Dy-

namical Systems (LDSs) to model surgical gestures in kinematic and video data from

the DaVinci robot; [34, 35] use LDSs to model the appearance of a deforming heart

in a magnetic resonance image sequence; [16,18,20,26,36–39] use LDSs to model the

appearance of dynamic textures, such as water or fire, in a video sequence; [14,15] use
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LDSs to model human gaits, such as walking or running, in motion capture and video

data; [19] uses LDSs to model the appearance of moving faces; and [40] uses LDSs

to model audio-visual lip articulations. Given a high-dimensional time series, one

can use standard system identification techniques, e.g., subspace identification [22],

to learn the parameters of an LDS model. Given a model, novel time series can be

synthesized by simulating the model forward. For example, impressive synthesis of

dynamic textures has been demonstrated by a number of papers [16–18, 41]. The

same ideas have also been used for the synthesis of lip articulations using speech as

the driving input [40].

When it comes to classification/recognition problems, most of the approaches

based on LDSs rely on some dissimilarity metric or distance in the space of LDSs.

There exist several metrics that have been commonly used in the literature such

as distances based on the Binet-Cauchy kernels [42], probabilistic metrics based on

the KL-divergence [43] or metrics such as the Martin distance [29, 30]. The Martin

distance was originally proposed in [30] for Single-Input Single-Output (SISO) Auto-

Regressive Moving Average (ARMA) processes, and it was computed as a function

of the cepstrum coefficients (inverse Fourier transform of the logarithm of the power

spectrum). It was later generalized to Multiple-Input Multiple-Output (MIMO) sys-

tems as a function of the subspace angles between the observability subspaces of the

dynamical models [29]. A more recent approach [28], defines a distance between LDSs

based on the equivalence of representations between models. The idea is to find the
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“closest” representation between two models through an orthogonal basis transforma-

tion. Once a metric has been selected, a simple approach to classify novel sequences

based on that metric is to use a k-nearest neighbors classifier or a kernel support

vector machine (SVM) [23] using, e.g., a radial basis function kernel.

This chapter aims to provide the reader with some background material about

LDSs that will be used throughout the thesis. We will start with a formal description

of LDSs and then we will cover topics such as parameter estimation, metrics in the

space of LDSs and their application to classification problems.

2.2 Formal description

In order to model the statistical properties of a temporal sequence of observations,

it is often assumed that the observed sequence is correlated with a hidden (contin-

uous) state variable that is evolving over time. In the case of an LDS, the state

variable is assumed to be real-valued and the underlying driving and measurement

noise processes are assumed to be Gaussian. More formally, we have that

st+1 = Ast +But, (2.1)

zt = Cst +wt, (2.2)

where st ∈ Rn represents the (unobserved) state variable at time instant t, zt ∈

Rp is the observed signal (e.g., a video frame) and B ∈ Rn×z is a noise-coloring

matrix. Without loss of generality we will assume the sequences to start at time

12
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instant t = 0. The noise sequences are assumed to be independent and identically

distributed (i.i.d.) Gaussian random variables that are also jointly independent. More

precisely, {ut}
∞
t=0 ∼ N (0, I) and {wt}

∞
t=0 ∼ N (0,W), where I is the identity matrix

of appropriate dimensions and W is the measurement noise covariance matrix. It is

important to mention that in the case of dynamic scenes (video data) the dimension p

of the observed signal is usually much larger than the order n of the system (p � n).

Given the state-space representation of (2.1) and (2.2), a linear dynamical model

is parametrized by the tuple M = (A,C,B,W, s0), with s0 being the initial state

(initial conditions).

Notice however, that this representation is not unique. This is because an equiv-

alent representation can be found by a change of coordinates of the state variable.

More specifically, if we define st = Trt, where T ∈ Rn×n is non-singular, then the

two representations M = (A,C,B,W, s0) and M̃ = (T−1
AT,CT,T−1

B,W, s0)

are equivalent (i.e., both represent the same process zt). This consideration will

be important when comparing two dynamical models by looking at their parametric

representation since this representation is not unique.

In what follows we will restrict ourselves to the case of stable and observable

Auto-Regressive (AR) processes. Recall that an LDS is stable if the magnitude of

the eigenvalues of A is smaller than one, and that it is observable if the observability

matrix is full rank (see Section 2.3.1.2).
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2.3 Metrics and kernels in the space of

LDSs

In this section we will provide an overview of some of the metrics commonly

used to compare dynamical models. In particular, we will focus our attention on

metrics based on the subspace angles between the observability subspaces of the

dynamical models such as the Martin and Frobenius distances [29, 30, 32], and the

metric proposed in [28], that proposes a similarity measure based on the equivalence

of representations between dynamical models. We will also review some kernels for

dynamical models such as the Binet-Cauchy kernels proposed in [33].

2.3.1 Distances based in the subspace angles

For the sake of completeness, let us first provide a quick review about the notion of

angles between subspaces. Let us start with the simple definition of an angle between

two vectors u and v in some vector space. It is well-known that

cos θ =
�u,v�

�u��v�
, (2.3)

where �·, ·� denotes inner product (e.g., �u,v� = u
T
v in Rn), �·� is the induced norm

by the inner product (i.e., �u�2 = �u,u�), and θ is the angle between the two vectors.

If the two vectors are unitary (unit norm) then, their inner product corresponds to

the cosine of the angle between them.
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2.3.1.1 Principal angles between subspaces

Consider now the case of two subspaces generated by the column space of two real

matrices M1 ∈ Rn×r and M2 ∈ Rn×q, both full column rank and with r ≥ q. Then

the cosine of the first principal angle θ1 between U = range (M1) and V = range (M2)

is defined as

cos θ1 = max
u,v

�
�u,v�

�u��v�

����u ∈ U ,v ∈ V

�
. (2.4)

If we denote by ui and vi the principal vectors associated with the principal angle θi,

i = 1, . . . , q, we can recursively compute the principal angles as

cos θi = max
u,v

�
�u,v�

�u��v�

����u ∈ U ,v ∈ V , and u ⊥ uj,v ⊥ vj, j = 1, . . . , i− 1

�
, (2.5)

where u ⊥ v means that the two vectors are orthogonal (i.e., �u,v� = 0).

Alternatively, one can show that the principal angles can be obtained from the

following generalized eigenvalue problem




0 M

T
1M2

M
T
2M1 0








u

v



 = λ




M

T
1M1 0

0 M
T
2M2








u

v



 (2.6)

where u
T
M

T
1M1u = 1 and v

T
M

T
2M2v = 1. The relationship to the principal angles

is then given by

cos(θi) = λi, i = 1, . . . , q, (2.7)

with λi being the generalized eigenvalues of Equation (2.6).
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2.3.1.2 Principal angles between LDS

Since a stable and observable LDS can be equivalently represented by its observ-

ability matrix, De Cock and De Moor [29], define the principal angles between two

stable and observable AR linear dynamical systems as the principal angles between

their observability subspaces.

Consider two stable and observable LDS models, M1 = (A1,C1) and M2 =

(A2,C2). Their respective observability matrices are the infinite-dimensional matrices

(R∞×n) given by

O
T
1 =

�
C

T
1 (C1A1)

T (C1A
2
1)

T
. . .

�
(2.8)

O
T
2 =

�
C

T
2 (C2A2)

T (C2A
2
2)

T
. . .

�
(2.9)

Therefore, (for stable models) the principal angles can be computed from the gener-

alized eigenvalues of




0 O

T
1O2

O
T
2O1 0








u

v



 = λ




O

T
1O1 0

0 O
T
2O2








u

v



 (2.10)

subject to the constraints �O1u� = 1 and �O2v� = 1.

2.3.1.3 The Martin and Frobenius distances

Consider again the stable and observable LDS models M1 and M2 of order n

and let Qij = O
T
i
Oj, i, j = 1, 2 denote the observability Grammians. The Martin
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distance is then related to the subspace angles [29] by

d
2
M
(M1,M2) = − log

n�

i=1

cos2(θi), (2.11)

where the following relation holds:

cos2(θi) = λi

�
Q

−1
11 Q12Q

−1
22 Q21

�
, (2.12)

with λi(X) being the ith largest eigenvalue of matrix X. Therefore, we can express

the Martin distance as

d
2
M
(M1,M2) = − log detQ−1

11 Q12Q
−1
22 Q21, (2.13)

where Qij are obtained as the solution to the following Sylvester equation:

Qij = A
T
i
QijAj +C

T
i
Cj, i, j = 1, 2. (2.14)

Another distance based on subspace angles that we will consider is the Frobenius

distance and it is defined as

d
2
F
(M1,M2) = 2

n�

i=1

sin2(θi). (2.15)

2.3.2 Action-induced distances

Afsari et al., [28] proposed an alternative approach to comparing LDSs based

on finding a basis transformation that bring their realizations as close as possible

to each other. Recall that the two LDS realizations M = (A,C,B,W, s0) and

M̃ = (T−1
AT,CT,T−1

B,W, s0) are equivalent provided that T is non-singular.
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In order to derive a metric, the authors in [28] further assume that the LDSs are

asymptotically stable (i.e., maxi |λi(A)| < 1) and observable (i.e., the observability

matrix has full rank). With these considerations in mind, one could define a distance

between two (stable and observable) LDS realizations (of order n) M1 and M2 as

d
2(M1,M2) = inf

T1,T2∈GL(n)

�
λA�T

−1
1 A1T1 −T

−1
2 A2T2�

2
F

+ λC�C1T1 −C2T2�
2
F
+ λB�T

−1
1 B1 −T

−1
2 B2�

2
F

�
,

(2.16)

where λA ≥ 0, λC ≥ 0 and λB ≥ 0 are positive weights, �·�
F
denotes the Frobenius

norm of a matrix, and where GL(n) denotes the set of non-singular matrices of order

n.

When p ≥ n, it is common to assume that the matrix C is full rank. For such

cases, we can always find an equivalent representation of an LDS such that C is

orthonormal, that is C
T
C = I. Such an equivalent representation can be easily

obtained by e.g., the SVD of C. Therefore, when comparing two LDS representations,

the authors in [28] restrict themselves to realizations such that C is orthonormal

since, for every stable and observable LDS, such a representation always exist. One

important implication of using an orthonormal representation of C is that, whenever

two LDSs are equivalent (i.e., they can be related by a basis transformation), then the

basis transformation that relates them must belong to the orthogonal group O(n) =

�
T ∈ Rn×n |TT = T

−1
�
. This allows a more tractable formulation of the problem

and it also facilitates the computation of the metric using gradient-descent type of

algorithms due to the compactness of O(n). The (squared) Align distance between
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two models Mi and Mj is then defined as

d
2
A
(M1,M2) = min

Q∈O(n)

�
λA�Q

T
A1Q−A2�

2
F

+λC�C1Q−C2�
2
F
+ λB�Q

T
B1 −B2�

2
F

�
,

(2.17)

where, different from (2.16), we can lump the effect of both T1 and T2 into a single

matrix Q due to the invariance of the Frobenius norm with respect to orthogonal

transformations. Note from (2.17) that the computation of the Align distance requires

the solution of an optimization problem over the manifold of orthogonal matrices. For

that purpose, the authors in [28] propose a Riemannian gradient-descent algorithm

that runs two separate optimizations over the two disjoint connected components of

O(n).

2.3.3 Kernels between LDSs

An alternative way to compute a similarity measure between two data points x

and x
� is to use their inner product. For example, if x,x� ∈ X , where X is a subset

of Rn, then �x,x�� = x
T
x
� =

�
n

i=1 xix
�
i
measures the angle between the two vectors,

provided that both x and x
� are of unit norm (e.g., �x� =

�
�x,x� = 1). However,

it is not always the case that the data points have a vectorial representation in a dot

product space (e.g., if we want to compare strings). In such cases, we may resort to

a map φ : X �→ H into some Hilbert space H where we can still compute an inner

product. Therefore, we can define a similarity measure between to points x,x� ∈ X
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using a map of the form:

κ(x,x�) = �φ(x),φ(x�)�H, (2.18)

where κ : X ×X �→ R is referred to as a kernel. Note that the map κ(·, ·) in (2.18) is

symmetric (i.e., κ(x,x�) = κ(x�,x)) and positive definite since

m�

i=1

m�

j=1

cicjκ(xi,xj) ≥ 0, (2.19)

for all xi ∈ X , ci ∈ R, i = 1, . . . ,m ∈ N.

We have used the map φ(·) to define the kernel κ(·, ·) as an inner product in some

Hilbert space H. What is interesting is that the same relationship can be stablished

the other way around i.e., given a kernel map κ(·, ·) that satisfies (2.19) there exist

a map φ : X �→ H to a reproducing Hilbert space such that (2.18) holds [23]. Kernels

can thus be regarded as a generalization of the inner product and they can be used

to design a large variety of similarity measures. One of the key advantages of using

kernels is that we do not need to explicitly know the feature map φ(·) in order to

compute them. This fact is of practical importance for classification problems using

support vector machines [44] (cf. Section 2.5.2.2).

2.3.3.1 Distance-based kernels

Given a distance between two data points x,x� ∈ X it is possible to build a kernel

from the distance metric using a Radial Basis Function (RBF) kernel. The RBF

kernel is given by

κR(x,x
�) = exp

�
−γ d

2(x,x�)
�
, (2.20)
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where γ ∈ R+ is a parameter and d(·, ·) is some distance. For the case where the

data points are LDSs we can use any of the distance metrics presented in the previous

sections.

In some cases, it is also possible to have a closed-form expression for the kernel

between two LDSs M and M�. For example, the Martin kernel can be computed

based on the subspace angles between the LDSs as

κM(M,M
�) =

n�

i=1

cos2(θi), (2.21)

which is nothing but an RBF kernel on the Martin distance with γ = 1.

2.3.3.2 Binet-Cauchy kernels

Vishwanathan et al., [33] introduced a family of kernels for LDSs called the Binet-

Cauchy (BC) kernels. Such kernels depend on not only on the parameters (A,C,B),

but also on the initial condition s0. More precisely, given two LDS models M =

(A,C,B, s0) and M� = (A�,C�,B�, s�0) whose corresponding trajectories are x =

{zt}
∞
t=0 and x

� = {z�
t
}∞
t=0, the trace kernel is defined as

κT (x,x
�) = E

�
∞�

t=0

λ
t
z
T
t
Σ z

�

t

�
, (2.22)

where 0 < λ < 1 is a parameter to ensure convergence of the sum (2.22) and Σ ∈ Rp×p

is a positive semi-definite matrix. The symbol E [·] denotes expectation over the

driving and measurement noise processes. Assuming the same driving noise but

independent measurement noise for the two trajectories, and using Σ = I, the trace
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kernel particularizes to

κT (x,x
�) = κT (M,M

�) = s
T
0Ps

�

0 +
λ

1− λ
TrBPB

�
, (2.23)

where the matrix P is the solution to the Sylvester equation

P = λA
T
PA

� +C
T
C

�
. (2.24)

In order to give different importance to each of the terms in (2.23) one can consider

the following heuristic definition of the trace kernel:

κη(M,M
�) = η s

T
0Ps

�

0 +
(1− η)λ

1− λ
TrBPB

�
, (2.25)

where η ∈ (0, 1) is a parameter that weights the contribution of each term.

It is clear that the value of the trace kernel in (2.23) and (2.25) depends on the

initial conditions of the trajectories. In some applications, however, it is convenient

to avoid such dependency (e.g., gait classification problems). For that purpose, we

will also consider in our analysis one special case of BC kernel, called the determinant

kernel, which was proposed by [32]. This kernel is independent of the initial conditions

and also invariant with respect to basis transformations. The determinant kernel is

given by

κD(x,x
�) = detP. (2.26)

In our experiments we will use the normalized versions of the kernels (2.23) and

(2.26). For a given kernel κ(·, ·) its normalized version κ̃(·, ·) is obtained by

κ̃(x,x�) =
κ(x,x�)�

κ(x,x)κ(x�,x�)
, (2.27)
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2.4 Parameter estimation

So far we have assumed that we have access to the true parameters of an LDS

in order to compute distances and kernels in the space of LDSs. However, in re-

ality we would only have access to an estimate of these parameters obtained from

noisy measurements. The question is now how to estimate these parameters in order

to be able to compute distances between LDSs. This is a well-studied subject and

there exist algorithms that optimally (in the maximum likelihood sense) solve the pa-

rameter estimation problem [21, 22] (also known as system identification). However,

when dealing with very high-dimensional signals (such as video) where the output

dimension of the system is much larger than the dimension of the state variable (i.e.,

p � n), the use of such methods becomes impractical due to the computational de-

mands. Alternatively, one could resort to other suboptimal but more computationally

efficient methods based on Principal Component Analysis (PCA) [16]. Due to the

computational advantage of such techniques, we will use them throughout the thesis.

2.4.1 PCA-based system identification

In what follows, we will give the description of the PCA-based estimation method

proposed in [16]. Assume that we have a zero-mean time series of length L given

by {zt}, t = 1, ..., L, where zt ∈ Rp is the output of an LDS as per (2.1) and (2.2)

with p � n. If the sequence is not of zero-mean, we just center it by subtracting the
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sample mean. Let Z = [z1, . . . , zL] be the concatenation of all observation vectors,

and let the SVD of Z be equal to

Z = UΣV
T
, (2.28)

where U ∈ Rp×p, Σ ∈ Rp×L and V ∈ RL×L. If we write U = [u1, . . . ,up], then an

estimate of the observation matrix C can be obtained as the n first columns of U as

Ĉ = [u1, . . . ,un], (2.29)

where, in the case of p � L, the above computation can be performed efficiently by

the thin SVD of Z. Using (2.29) we can now get an estimate of the state sequence as

Ŝ = Ĉ
T
Z = ΣnV

T
n
= [ŝ1, . . . , ŝL], (2.30)

where Σn = diag (σ1, . . . , σn), with σi being the ith singular value of Z, and where

Vn = [v1, . . . ,vn] are the first n columns of V.

Let Ŝ+ = [ŝ2, . . . , ŝL] and Ŝ
− = [ŝ1, . . . , ŝL−1], then an estimate of the transition

matrix A can be obtained by the solution of the following least-squares problem

Â = argmin
A

�Ŝ
+
−AŜ

−
�
2
F
. (2.31)

Note that estimates of the covariance matrices of the driving and measurement noises

can be easily obtained from the corresponding residuals.

2.4.1.1 Learning stable LDSs

It is clear that the PCA-based approach in [16] is computationally appealing,

particularly when the output dimension is very large as compared to the order of the
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system. However, the method does not guarantee the estimated systems to be stable.

Since we are assuming our systems to be stable, we need an estimation method that

can guarantee stability of the estimated systems. The stability of the system only

depends on the transition matrix A. Therefore, we can still estimate C using (2.29)

but we need to modify the way in which A is estimated. An intuitive way of enforcing

stability is to solve a constrained least-squares problem of the form

minimize
A

�Ŝ+ −AŜ
−�2

F

subject to ρ(A) ≤ 1,

(2.32)

where ρ(A) = maxi |λi(A)| is the spectral radius of matrix A. However, problem

(2.32) is very difficult to solve due to the non-convexity of the spectral radius function.

Alternatively, we can use the approach proposed in [45], where the spectral radius is

replaced by a constraint on the maximum singular value of A (i.e., σmax(A) ≤ 1).

This leads to the convex problem

minimize
A

�Ŝ+ −AŜ
−�2

F

subject to σmax(A) ≤ 1,

(2.33)

which can be efficiently solved using general-purpose convex optimization software

such as SeDuMi [46]. Note also that the constraint in (2.36) can be equivalently

expressed as a semidefinite constraint since

σmax(A) ≤ 1 ⇐⇒ I−AA
T
� 0 ⇐⇒




I A

T

A I



 � 0, (2.34)

where the last equivalence holds due to the Schur complement (see, e.g., [47]). The

problem with the formulation in (2.36) is that the constraint might be too conservative
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since it constitutes a sufficient but not a necessary condition for stability. To overcome

that issue, the authors in [48] propose to use a constraint generation approach that

iteratively adds constraints to the least-squares problem until it finds a stable solution.

Initially, the method starts with the least-squares solution Â of (2.31). If Â is stable,

then we are done otherwise, let Â = ŨΣ̃Ṽ be the SVD of Â and consider the fact

that

ρ(Â) ≤ σmax(Â) = ũ
T
1 Âṽ1 = Tr

�
ṽ1ũ

T
1 Â

�
= Tr

�
G1Â

�
, (2.35)

where ũ1 and ṽ1 are the left and right singular vectors corresponding to the largest

singular value, and where Tr(·) is the trace operator. If the matrix Â is unstable,

then Tr
�
G1Â

�
> 1. Note that G1 constitutes a separating hyperplane to the set

of matrices with σmax ≤ 1. Therefore, we can add the constraint Tr (G1A) ≤ 1 to

the least-squares problem (2.31) and recompute the solution again. This process is

repeated, adding one constraint at a time until the found estimate Â is stable. In

particular, at the kth iteration, we need to solve a problem of the form

minimize
A

�Ŝ+ −AŜ
−�2

F

subject to Tr (GiA) ≤ 1, i = 1, . . . , k − 1

(2.36)

where Gi are the generated constraints according to the described procedure. For

further details, we refer the reader to [48].
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2.5 Classification methods using LDSs

We have already defined metrics in the space of LDSs and shown how the sys-

tems can be identified using computationally efficient methods. Having the notion

of a distance between LDSs allows us to perform classification tasks based on the

estimated LDS parameters. Given a set of training time series with parameters Mi,

i = 1, . . . ,m, and associated labels yi ∈ Y , where Y is a set of labels, the goal is to

learn a classifier function h : Mi �→ Y that maps the parameters of the LDS models

to its corresponding label. Throughout this section we will provide a review of some

of the most common approaches used for the classification of time series generated

by an LDS.

2.5.1 k-nearest neighbors classification

The simplest approach for classification is to use a k-nearest neighbors (kNN)

classifier. In kNN, a novel point gets the label of the majority of the closest k

neighbors, where the proximity is quantified based on some dissimilarity metric. More

formally, given a set of m training model-label pairs (Mi, yi), i = 1, . . . ,m, and a

novel (test) model Mx, the kNN classifier works as follows

• Compute the distance between the test sample and all the training samples

d(Mi,Mx), i = 1, . . . ,m for some metric d(·, ·).

• Sort the distances in increasing order and take the first k models (k-nearest
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neighbors).

• Assign to the test sample the class of the most repeated class among the k-

nearest neighbors.

A typical choice is to only use the closest neighbor (k = 1), then the class of the test

sample is estimated as ŷx = yj, where

j = argmin
i=1,...,m

d(Mi,Mx). (2.37)

2.5.2 Kernel support vector machines

An alternative approach to classifying LDSs is to use a kernel Support Vector

Machine (SVM) [23]. In this section we will provide the basic foundations of linear

SVMs and how they naturally extend to non-Euclidean classification problems using

kernels.

2.5.2.1 Linear SVMs

Consider a binary classification problem withm feature-label training pairs (xi, yi),

i = 1, . . . ,m, where xi ∈ Rd and where the class labels yi ∈ {−1,+1}. A support

vector machine is a linear classifier that tries to separate the two classes using a

prediction function of the form

f(x) = �w,x�+ b = w
T
x+ b, (2.38)
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where w ∈ Rd is the separating hyperplane and where b ∈ R is an offset. The label

of a data point x is assigned according to the sign of f(x), that is

ŷ = h(x) = sign (f(x)) . (2.39)

The parameters (w, b) of the classifier need to be learned from the training set by

minimizing the regularized empirical risk. The general formulation of the two-class

SVM classification problem [23] is given by

minimize
w,b

1

2
�w�

2 + C

m�

i=1

� (yif(xi)) , (2.40)

where the first term is a regularizer that controls the complexity of the solution,

� : R �→ R+ is a (convex) loss-function (e.g., exponential, hinge, etc.) that penalizes

the misclassification of the training samples, and C > 0 is a parameter that trades-off

between classifier complexity and classification accuracy. The typical choice for the

loss function is to use the hinge loss given by �h(x) = max(1− x, 0). Using the hinge

loss the problem can be rewritten as

minimize
w,{ξi},b

1

2
�w�

2 + C

m�

i=1

ξi

subject to yi(wT
xi + b) ≥ 1− ξi, i = 1, . . . ,m

ξ ≥ 0,

(2.41)

where ξ = [ξ1, . . . , ξm]T. It is well-known that the optimal hyperplane w
� is a linear

combination of the feature vectors [23] given by

w
� =

m�

i=1

αiyixi (2.42)
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for some αi ∈ R. The optimal predictor f �(x) is then given by

f
�(x) =

m�

i=1

αiyix
T
i
x+ b

� =
m�

i=1

αiyi�xi,x�+ b
�
, (2.43)

where b� is the optimal offset obtained by solving 2.41.

For linearly separable data, the hyperplane found by solving (2.41) can be shown

to provide the largest margin to the decision boundaries. In general, only a few

coefficients αi will be different from zero (if we use the hinge loss). The corresponding

training points xi of the non-zero coefficients αi are known as the support vectors since

only those define the optimal separating hyperplane.

2.5.2.2 Kernel SVMs

In many applications, linear separability is a rare event and one has to resort to

non-linear decision functions. In such cases, linear SVMs fail to correctly classify the

data. However, SVMs are intrinsically suitable for non-linear classification problems

as it can be guessed by looking at the form of the optimal predictor in (2.43). To

better illustrate this fact, let us have a look at the dual formulation of the SVM

problem. From the Lagrangian of problem (2.41), it can be easily shown that the

dual of problem (2.41) is given by the following quadratic optimization problem

maximize
α

αT
1−

1

2
αT(K⊙Y)α

subject to αT
y = 0

0 ≤ α ≤ C1

(2.44)

30



CHAPTER 2. LINEAR DYNAMICAL SYSTEMS

where y = [y1, . . . , ym]T, the symbol ⊙ denotes element-wise product and K is a

kernel matrix with entries [K]ij = �xi,xj� = x
T
i
xj.

The dual formulation (2.44) of the primal SVM problem (2.41) encloses an im-

portant implication. As it can be seen from (2.44), in order to solve the prob-

lem, one no longer needs to explicitly know the feature vectors xi. It suffices to

know how to compute their inner product. Furthermore, we could now replace

�xi,xj� = x
T
i
xj with a positive-definite kernel κ(xi,xj) since, by Mercer’s theorem,

there exist a feature map φ : X �→ H into some Hilbert space H, xi ∈ X , such that

κ(xi,xj) = φ(xi)Tφ(xj) = �φ(xi),φ(xj)�H. A non-linear SVM classifier can be then

obtained by replacing the original kernel matrix by (also known as the kernel trick)

[K]ij = κ(xi,xj), i, j = 1, . . . ,m. (2.45)

The advantage of using the dual formulation (2.44) and the kernel trick (2.45) is that

now we can use the same machinery to solve problems were the classes cannot be

linearly separated or where the data points do not live in an Euclidean space.

2.6 Chapter summary

In this chapter we have provided an introduction to linear dynamical systems,

covering aspects such as metrics in the space of LDSs, system identification, as well

as their use in classification problems. This background material provides the basic

foundations to properly follow the forthcoming chapters.
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Chapter 3

LDS Averaging and Clustering

This chapter is devoted to studying the problem of averaging and clustering when

using LDSs as data points. There exist several reasons why one would be interested

in computing such averages. For example, one may describe a class of dynamical

processes based only on a small subset of representative points in order to build dic-

tionaries of LDSs for representing dynamic scenes using a Bag-of-Words (BoW) type

of approach, or for classification problems using a nearest mean criterion. Note also

that in the latter case, there is a clear computational advantage (particularly for large

scale problems) as compared to kNN since the computation of all pairwise distances

between LDS models is no longer required but, only between each data point and the

set of representative points or exemplars. The question then is how to construct those

representative points. Having a method for computing averages clearly addresses this

issue since we can find representative points by means of averaging (and clustering) a
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number of data points belonging to the same class. Furthermore, having the notion of

an average is also beneficial in the sense that it also opens the door to some statistical

analysis of the data points.

Due to the modeling capabilities of LDSs for time series (e.g., video or kinematic

data), it is clear that the development of methods for computing averages in the space

of LDSs is a problem of practical importance in computer vision applications. How-

ever, finding an average LDS poses a hard problem since the points (LDS models) do

not live in an Euclidean space. There exist several works in the literature that deal

with the problem of finding an average LDS model. For example, the work in [26]

proposes an extension of K-means to the case where the data points are LDSs, and

applies it to the problem of dynamic texture classification. In order to extract rep-

resentative points, the authors propose to use an approximate averaging method to

build the codebook of LDSs. The idea is to find a low-dimensional embedding into an

Euclidean space based on the pairwise dissimilarity matrix between the models (e.g.,

using the Martin distance and a non-linear dimensionality reduction technique such

as multidimensional scaling) where standard Euclidean averaging can be applied. The

average point is then defined (from the sample set) as the one corresponding to the

closest point in the embedding to the Euclidean average. Other approaches [24, 25]

find an embedding of the LDS into a Grassmann manifold and perform the averag-

ing in the embedding. The principle behind these techniques is that an LDS can

be represented as a point on the Grassmann manifold corresponding to the column
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space of the (finite-dimensional) observability matrix [25]. It is important to note

that these methods rely on approximate representations of the data points and that

they are not able to generate novel LDS points since the computed averages are points

already present in the sample set. Instead of using approximate representations of

the data points to find the averages, there exist other approaches in the literature

that try to find novel average models directly in the space of LDSs. The approach

in [27], proposes a method for clustering and averaging LDSs based on the generative

probabilistic framework of LDSs using the hierarchical Expectation Maximization al-

gorithm. In a more recent contribution, the authors in [28] propose an averaging

method using the Align distance that is able to generate novel LDS points.

This chapter presents new methods for averaging and clustering LDSs. In Section

3.1 we present two methods for averaging LDS. The first one, described in Section

3.1.1, is based on the Martin distance. The Martin distance is a particularly attrac-

tive metric since it is a true distance in the space of LDSs that is also invariant to

basis transformations, a desired property when comparing dynamical models. To the

best of our knowledge, the only previous attempt to produce an average LDS model

using the Martin distance is the nonlinear dimensionality reduction method of [26].

However, the latter approach has its limitations in finding good averages since, as it

has been already pointed out, it is not able to generate novel models but only identify

potential candidates within the sample set. In contrast, we propose a new method
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along the lines of [27, 28] that is able to generate novel LDSs. We pose the problem

of averaging as an optimization problem over the system’s parameters that tries to

minimize the sum of squared distances to the average model (Fréchet mean). We will

show how to compute the derivatives of the objective function with respect to the

optimization variables and will propose a gradient descent algorithm for the solution

of the problem. The second approach, described in Section 3.1.2, is an alternative to

the methods presented in [28,49] for the computation of the Align distance based on

the Alternating Direction Method of Multipliers (ADMM) [31]. We will also review

the averaging with respect to the Align distance as described in [28]. The method

starts with an initial average model that is aligned to the sample points by finding an

orthogonal basis transformation using the Align distance. Once all aligning matrices

(orthogonal transformations) have been computed, an averaging step of the average

model’s parameters follows. This averaging pulls the current average model towards

the true average. The same procedure is iteratively repeated until convergence to a

local minimum. In Section 3.2 we will review the Generalized K-means algorithm,

illustrating how the presented averaging methods can be used for clustering LDSs.

Towards the end of the chapter, we will dedicate a section for experimental evaluation

where we show that the proposed averaging method finds better average models than

the method in [26] while providing results comparable to the state-of-the-art [28].
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3.1 Averaging LDSs

Assume that we have m > 1 linear dynamical models Mi = (Ai,Ci), i = 1, . . . ,m

that parametrize some dynamic process or phenomenon of a certain class. We further

assume that the models are all stable and of the same order n. The averaging problem

is to find an average model M = (A,C) with respect to some dissimilarity metric

over the space of LDSs. More formally, we want to find the model that minimizes the

sum of squared distances to the sample points, that is

minimize
M

m�

i=1

d
2
X
(M,Mi). (3.1)

where (in our case) d2
X
(·, ·) can be the Martin or the Align distance.

3.1.1 Averaging using the Martin distance

Let us consider the averaging problem with respect to the Martin distance. Making

use of Equation (2.13), the averaging problem (3.1) can be written as

minimize
A,C

m�

i=1

d
2
M
(M,Mi) = −

m�

i=1

log detX−1
XiS

−1
i
Xi, (3.2)

where

X = A
T
XA+C

T
C (3.3)

Xi = A
T
XiAi +C

T
Ci (3.4)

Si = A
T
i
SiAi +C

T
i
Ci. (3.5)
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Using the properties of the determinant, and neglecting the terms that do not depend

on the optimization variables (A,C), we have that the averaging problem with respect

to the Martin distance can be expressed as

minimize
A,C

m�

i=1

log detX− log detXT
i
Xi (3.6)

Additionally, we will consider a representation of the models where the columns of C

are orthonormal, that is

C
T
C = I. (3.7)

As pointed out in Section 2.4.1 there is no loss of generality by making such an

assumption in the case of stable and observable models. Furthermore, the basis chosen

for the representation of the LDSs does not affect our averaging method since the

Martin distance is invariant to basis transformations. However, in order to compare

with other metrics it is convenient to adopt a common representation. Another benefit

of imposing C to be orthonormal is that it simplifies the computation of the derivative

of the cost function with respect to C since we get rid of the term C
T
C in the cost

function.

What it is interesting from problem (3.6) is that it is possible to compute the

derivatives of the cost function with respect to the optimization variables. This

allows us to devise a gradient descent algorithm that iteratively updates A and C

until convergence to a (local) minimum or until a maximum number of iterations is

reached. Note also that since problem (3.6) is non-convex, convergence to the global
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minimizer cannot be guaranteed. Additionally, we have to take into account the

orthogonality constraint of Equation (3.7). Then our optimization problem becomes

minimize
A,C

m�

i=1

log detX− log detXT
i
Xi

subject to C
T
C = I

(3.8)

where Xi is given by Equation (3.4) and X now particularizes (due to the orthonor-

mality of C) to

X = A
T
XA+ I (3.9)

During the optimization we will consider both X and Xi, i = 1, . . . ,m as matrix

functionals and use matrix calculus to find the derivatives of the objective function

with respect to the optimization variables A and C.

3.1.1.1 Computing the derivatives

In order to compute the derivatives of the cost function in (3.8) we will make use

of some facts about matrix derivatives [50]. Assuming all the inverses exist we have

that for a matrix X

∂ log detX

∂X
= (X−1)T (3.10)

∂ log detXT
X

∂X
= 2(X†)T (3.11)

where X
† denotes the pseudo-inverse of X. We also make use of the chain rule for

matrix functionals. Let g : R�×k �→ R be some scalar function and Z : Rs×q �→ R�×k
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be a matrix functional. Assuming all derivatives exist we have that

∂g(Z)

∂Xij

= Tr

��
∂g(Z)

∂Z

�T
∂Z(X)

∂Xij

�
(3.12)

where Xij = [X]ij denotes the ijth entry of matrix X and where Tr (·) is the trace

operator.

Let f(A,C) denote the cost function of problem (3.8). The derivative of f(·) with

respect to the ijth entry of matrix A can be computed in closed-form as

∂f(·)

∂Aij

= mTr

�
(X−1)T

∂X

∂Aij

�
− 2

m�

s=1

Tr

�
(X†

s
)T

∂Xs

∂Aij

�
(3.13)

Applying the product rule for derivatives it can be easily shown that the derivatives

of X and Xs are, respectively given by

∂X

∂Aij

= A
T ∂X

∂Aij

A+ J
T
ij
XA+A

T
XJij (3.14)

∂Xs

∂Aij

= A
T ∂Xs

∂Aij

As + J
T
ij
XsAs (3.15)

where Jij is the single-entry matrix (zeros everywhere but a one at the ijth position).

Note that Equations (3.14) and (3.15) correspond respectively, to a discrete Lyapunov

and Sylvester equations whose solutions are unique provided A and As have no

complementary eigenvalues, that is

λk(A) �= 1/λj(As), for all k, j. (3.16)

Note that the above condition is always true provided that ρ(As) < 1. Enforcing

stability of the models does not guarantee uniqueness in the solutions of Equations
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(3.14) and (3.15) since periodic systems will have associated eigenvalues on the unit

circle. However, for most practical situations we could assume that stability implies

eigenvalues strictly smaller than 1.

In a similar way, the derivative of f(·) with respect to the entries of C can be

computed as

∂f(·)

∂Cij

= −2
m�

s=1

Tr

�
(X†

s
)T

∂Xs

∂Cij

�
(3.17)

where ∂Xi/∂Cij is the solution of the following Sylvester equation

∂Xs

∂Cij

= A
T ∂Xs

∂Cij

As + J
T
ij
Cs . (3.18)

Since in problem (3.8) we are also imposing C to be orthonormal (i.e., C belongs

to the Stiefel manifold Sn,p = {X ∈ Rp×n|XT
X = I}), we also need to compute the

derivative with respect to the Stiefel manifold. From Edelman et al. [51], we have

that the gradient of f(·) with respect to Sn,p is given by

∆ = ∇Cf −C(∇Cf)
T
C , (3.19)

where ∇Cf denotes the derivative of f(·) with respect to all entries of C (e.g.,

[∇Cf ]ij = ∂f(·)/∂Cij ) and where ∆ belongs to the tangent space TCSn,p of f(·)

at C. Given the tangent vector ∆ ∈ TCSn,p the update of C along the geodesic can

be computed using the exponential map

expC(∆) = CD+ΦE, (3.20)
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where D,E ∈ Rn×n are given by




D

E



 = exp



δ




C

T
∆ −R

T

R 0












I

0



 (3.21)

with δC being the gradient step-size for the update of C, Φ ∈ Rp×n and R ∈ Rn×n

are, respectively an orthonormal and upper-triangular matrices corresponding to the

(economy-size) QR-decomposition of (I−CC
T)∆ and where

exp(X) = I+X+
1

2
X

2 +
1

3!
X

3 + . . . =
∞�

k=0

1

k!
X

k (3.22)

is the matrix exponential (using the convention 0! = 1 and X
0 = I).

The complete optimization procedure is outlined in Algorithm 1 where ∇Af(·)

denotes the derivative of f(·) with respect to all entries of A, qr (·) is a function

that performs the QR-decomposition and where δA denotes the step-size used for the

gradient update of A. The algorithm updates iteratively A and C until some exit

condition is reached (e.g., small change in the objective function or maximum number

of iterations reached). For the initialization of the optimization variables we could use

one of the data points at random or we could use Euclidean averaging and projection.

More specifically, we could initialize to

A0 =
1

m

m�

i=1

Ai (3.23)

C0 = ΠSn,p

�
1

m

m�

i=1

Ci

�
(3.24)
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where ΠSn,p(·) denotes projection on the Stiefel manifold. That is, let X = UΣV
T

be the singular value decomposition of matrix X, then ΠSn,p(X) = UV
T. As an

illustration, we have depicted in Figure 3.1 a sample realization of the evolution of

the cost function as the number of iterations increases for a toy example where we

average ten randomly generated sequences. A random LDS model is first generated

with A stable and C orthonormal. Then, we generate 10 synthetic sequences of

length 100 samples using the generated model parameters but with different driving

and measurement noise (i.i.d. Gaussian with identity covariance in both cases). Once

we have the synthetic sequences, we perform system identification of the parameters

using the PCA-based method for learning stable systems of Chapter 2. We then

perform the averaging over the estimated models. As it can be appreciated in Figure

3.1, the average squared distance decreases as the number of iterations increases until

we reach a minimum of the objective function.

3.1.1.2 Computational complexity

In this subsection we provide a rough estimate of the computational complexity

of Algorithm 1. The major computational burden of the algorithm resides in the

computation of the derivatives of the cost function with respect to the optimization

variables. For the computation of ∇Af , the inversion of m + 1 matrices of size n

by n is needed, which means O((m + 1)n3) operations. Additionally, each of the

entries of ∇Af requires m times the computation of the trace of the product of two
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Algorithm 1 - Average LDS Martin

1: Input: {Mi = (Ai,Ci)}, i = 1, . . . ,m

2: k ← 0, C(0) ← C0 and A
(0) ← A0

3: repeat

4: Compute ∇Af
�
A,C(k)

�
using (3.13), (3.14) and (3.15)

5: A
(k+1) ← A

(k) + δA ∇Af
�
A

(k),C(k)
�

6: Compute ∇Cf
�
A

(k+1),C
�
using (3.17) and (3.18)

7: Compute tangent vector ∆ using (3.19)

8: [Φ,R] ← qr
�
(I−C

(k)(C(k))T)∆
�

9: Compute D and E using (3.21)

10: C
(k+1) ← C

(k)
D+ΦE

11: k ← k + 1

12: until Exit Condition

13: Output: M = (A(k),C(k))

matrices O((m+ 1)n) as well as the calculation of ∂Xs/∂Aij and ∂X/∂Aij. A naive

implementation would require the solution of one Lyapunov or Sylvester equation

O(n3) for each entry of the derivatives, which in turn will translate into O((m+1)n5)

and O(mpn
4) operations for the derivatives with respect to A and C, respectively.

However, such computation can be simplified by the observation that an equation of

the form X = AXAi + Z is equivalent to

�
I−A

T
i
⊗A

�
vec (X) = vec (Z) , (3.25)
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Figure 3.1: Averaging using the Martin distance – Sample evolution of the

cost function (mean squared Martin distance to the average model) as the number of

iterations increases.

where ⊗ is the Kronecker product and vec (X) is the vectorized form of matrix X.

Therefore, we only need to solve one equation of the form in (3.25) per model and

particularize the result for each of the entries in the derivative since in (3.14), (3.15)

and (3.18) the only term that changes is the independent term. As a result, we need

to add O((m + 1)n6) for the solution of an equation of the form of (3.25) at each

iteration plus O(n3) and O(pn2) operations corresponding to the computation of the

derivatives with respect to A and C. Analogously, the computation of ∇Cf requires

on the order of O(pmn
2 +mn3) operations plus the computation of the derivatives.
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Putting everything together, the total complexity of Algorithm 1 is roughly O(p(m+

1)n2 + (m+ 1)n6 + 3(m+ 1)n3). It is easy to realize that the described approach for

the implementation presents a computational advantage provided that p > n
2, which

is generally the case in computer vision applications. Overall, we can conclude that

the complexity of Algorithm 1 increases linearly in both the number of models m as

well as in the output dimension p.

3.1.2 Averaging using the Align distance

In this section we will consider again the averaging problem in (3.1), but this time

with respect to the Align distance. A method for averaging w.r.t. Align was proposed

in [28]. We will provide a review of the method but we will consider a novel way for

the computation of the distance. The original method for the computation of the

Align distance [28] is based on a gradient-descent optimization over the orthogonal

group O(n). In a very recent contribution, an alternative method based Jacobi-type

of updates which requires finding the roots of quartic polynomials has been proposed

in [49]. We will use an alternative approach based on the Alternating Direction

Method of Multipliers (ADMM) [31]. The main advantage of the new formulation

is that it allows the derivation of simple closed-form updates for the optimization

variable, making it easy to implement and computationally appealing. Our method

generally gives better averaging results than the method in [49], however convergence

to a solution is generally slower. Although there are no guarantees for convergence
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since the optimization set is non-convex (i.e., orthogonal group) in practice we observe

a good behavior.

3.1.2.1 Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers is a general approach for solving

optimization problems that dates back to the 60’s and that has attracted the attention

of the researchers over the past years. The method relies on augmented Lagrangian

[52] and dual ascent and has been recently reviewed in [31] showing its application

to many interesting problems in the fields of statistics and signal processing. We

will consider here one special class of problems where the method can be applied. In

particular, consider an optimization problem of the form

minimize
x

f(x)

subject to x ∈ X

(3.26)

with optimization variable x and where f(x) is a convex function and X is some

(possibly non-convex) set. The ADMM method tries to find the solution of the

problem (3.26) by the following iterative procedure

x
(k+1) = argmin

x
f(x) + ρ/2�x− q

(k) + u
(k)
�
2
2 (3.27)

q
(k+1) = ΠX

�
x
(k+1) + u

(k)
�

(3.28)

u
(k+1) = u

(k) + x
(k+1)

− q
(k+1) (3.29)

where q(·) is the variable that we are interested in, x(·) is an auxiliary variable, u(·) is

the dual variable, and where ΠX (·) denotes the projection onto the set X . When the
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set is convex, the above procedure converges to the optimal solution of the problem

[31]. When the set X is not convex, convergence (even to local minima) is not

guaranteed in general. However, the procedure can still be used and is of particular

interest when the projection update can be computed in closed-form.

3.1.2.2 An ADMM approach for computing the Align dis-

tance

Recall from Section 2.3.2, that the Align distance between two dynamical models

M1 = (A1,C1) and M2 = (A2,C2) of order n can be computed as

d
2
A
(M1,M2) = min

Q∈O(n)
λA�Q

T
A1Q−A2�

2
F
+ λC�C1Q−C2�

2
F

= min
Q∈O(n)

λA�A1Q−QA2�
2
F
+ λC�C1Q−C2�

2
F

(3.30)

where we have set λB = 0 in (2.17), and where the second equality holds because the

Frobenius norm is invariant to orthogonal transformations. It is easy to realize that

the Align distance falls into the category of problem (3.26). The ADMM procedure

particularizes then to

X
(k+1) = argmin

X
fρ(X) (3.31)

Q
(k+1) = ΠO(n)

�
X

(k+1) +U
(k)
�

(3.32)

U
(k+1) = U

(k) +X
(k+1)

−Q
(k+1)

, (3.33)

where

fρ(X) = λA�A1X−XA2�
2
F
+ λC�C1X−C2�

2
F
+ ρ/2�X−Q

(k) +U
(k)
�
2
F
. (3.34)
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As it can be realized, the update in (3.31) corresponds to solving an unconstrained

linear least-squares problem in the variable X. In fact, it is possible to solve (3.31) in

closed-form by setting the derivative of fρ(·) to zero. For the computation of ∂fρ/∂X

we will use matrix calculus [50] and, in order to make it easier to read, we will consider

the contribution of each term separately (modulo its weight). The first term of fρ(·)

is given by

�A1X−XA2�
2
F
=Tr

�
A1XX

T
A

T
1 −XA2X

T
A

T
1

−A1XA
T
2X

T +XA2A
T
2X

T
�

(3.35)

with derivative

∂ �A1X−XA2�
2
F

∂X
= 2

�
A

T
1A1X−A

T
1XA2 −A1XA

T
2 +XA2A

T
2

�
. (3.36)

The second term reads

�C1X−C2�
2
F
= Tr

�
C1XX

T
C

T
1 −C2X

T
C

T
1 −C1XC

T
2 +C2C

T
2

�
(3.37)

whose derivative is

∂ �C1X−C2�
2
F

∂X
= 2

�
C

T
1C1X−C

T
1C2

�
. (3.38)

Lastly, the third term is given by

�X−Q+U�
2
F
=

ρ

2
Tr

�
(U−Q)XT + (U−Q)(U−Q)T

+X(U−Q)T +XX
T
�

(3.39)

and its derivative by

∂ �X−Q+U�
2
F

∂X
= 2 (X−Q+U) . (3.40)
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If we put all the terms together with their corresponding weights and set the it to

zero we have that

2λA

�
A

T
1A1X−A

T
1XA2 −A1XA

T
2 +XA2A

T
2

�

+ 2λC

�
C

T
1C1X−C

T
1C2

�
+ 2

ρ

2
(X−Q+U) = 0,

(3.41)

which is a linear equation in X. Rearranging terms and getting rid of the 2 scaling

factor we end up with

�
ρ

2
I+ λCC

T
1C1 + λAA

T
1A1

�
X+ λA

�
XA2A

T
2 −A

T
1XA2 −A1XA

T
2

�

= λCC
T
1C2 +

ρ

2
(Q−U) .

(3.42)

One simple, although not the most efficient, way of solving (3.42) is by using the

Kronecker product and rewriting equation (3.42) as

�
λA

�
I⊗A

T
1A1 +A2A

T
2 ⊗ I−A

T
2 ⊗A

T
1 −A2 ⊗A1

�

+
ρ

2
I+ λCI⊗C

T
1C1

�
vec (X) = vec

�
λCC

T
1C2 +

ρ

2
(Q−U)

�
.

(3.43)

The complete procedure for computing the Align distance is summarized in Algorithm

2. The algorithm takes as inputs two LDS models M1 and M2, and the penalty

parameter ρ and it returns the Align distance between the models. The iterative

procedure in Algorithm 2 stops when some exit condition is met (e.g., maximum

number of iterations or small relative change in the objective function and/or in the

update of the optimization variables).

Remark: Since the orthogonal group has two disjoint connected components (i.e.,

one with determinant +1 and another one with determinant −1), the procedure
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Algorithm 2 - Computation of the Align distance using ADMM

1: Input: (M1,M2, ρ)

2: k ← 0, U(0) ← 0, Q(0) ← 0

3: repeat

4: k ← k + 1

5: Compute X
(k) using (3.42)

6: Projection onto O(n)

[SVD] ← svd
�
X

(k)
�

Q
(k) ← SD

T

7: Update multiplier

U
(k) ← U

(k−1) +X
(k) −Q

(k)

8: Evaluate objective (Align distance)

f
(k) = λA

��A1Q
(k) −Q

(k)
A2

��2

F
+ λC

��C1Q
(k) −C2

��2

F

9: until Exit Condition

10: Output: (f (k),Q(k))

outlined in Algorithm 2 needs to be run separately on each of the two components.

The distance is then selected as the minimum over the two runs.

3.1.2.3 Align average

Using the procedure described in Algorithm 2 we can now solve the averaging

problem (3.1) with respect to the Align distance following the approach presented in
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Algorithm 3 - ADMM for averaging using the Align distance

1: Input: {Mi = (Ai,Ci)}, i = 1, . . . ,m

2: k ← 0, C(0) ← C0 and A
(0) ← A0

3: repeat

4: for i = 1, . . . ,m do

5: Compute the aligning matrix Qi between Mi

and M = (A(k),C(k)) using Algorithm 2

6: end for

7: Update of A

A
(k+1) ←

1
m

�
i
Q

T
i
Ai

8: Update of C (Euclidean average + projection)

C
(k+1) ← ΠSn,p

�
1
m

�
i
CiQi

�

9: k ← k + 1

10: until Exit Condition

11: Output: M = (A(k),C(k))

[28] that we outline in Algorithm 3. Starting with an initial average model (A(0),C(0)),

the averaging method in Algorithm 2 iteratively aligns the sample points Mi to

the current average model. After that, an update of the current average model is

performed. In the case of A, the average is computed as the Euclidean average of

the aligned LDS points while, in the case of C, an additional projection step onto the

Stiefel manifold follows the Euclidean averaging of the aligned realizations.
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3.2 Clustering LDSs

A popular method for unsupervised clustering in Euclidean space is the K-means

algorithm. Let X = {x1, . . . ,xm} be a collection of data points in Euclidean space

(xi ∈ Rd for some d). The K-means clustering problem consists of finding a set of K

centroids (cluster centers) X̄ = {x̄1, . . . , x̄K} such that

m�

i=1

min
k=1,...,K

||xi − x̄k||
2
2, (3.44)

is minimized. Note that this problem can be generalized to non-Euclidean spaces by

replacing the Euclidean distance with an appropriate distance in the non-Euclidean

space. For instance, given a collection of LDS models M1, . . . ,Mm, and a distance

dX(Mi,Mj) in the space of LDSs, the K-means clustering problem for LDSs can be

written as
m�

i=1

min
k=1,...,K

d
2
X
(Mi,M̄k), (3.45)

where M̄k, k = 1, . . . , K, are the LDS cluster centers. An iterative method that tries

to solve the K-means clustering problem is the K-means algorithm. It alternates

between two steps: averaging and assignment. In the averaging step the set of cluster

centers are computed based on the current assignment while, in the assignment step

the different data points are assigned to belong to the cluster of the nearest centroid.

The general procedure is outlined in Algorithm 4. It becomes clear that, given a

distance in the space of LDSs (e.g., Martin or Align) and its corresponding averaging

method, Algorithm 4 can be used for clustering a collection of dynamical models Mi,
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Algorithm 4 - Generalized K-means for LDS

1: Input: LDS models {M1, . . . ,Mm} and initial cluster centers {M̄1, . . . ,M̄K}

2: repeat

3: Assignment step (for i = 1, . . . ,m)

Sample i gets assigned to cluster ji where

ji = argmin
k

dX(Mi,M̄k), k = 1, . . . , K

4: Averaging step (for k = 1, . . . , K)

M̄k ← argmin
M

�
i∈Ik

d2
X
(Mi,M), where Ik = {i | ji = k}

5: until Exit condition

6: Output: LDS cluster centers {M̄1, . . . ,M̄K}

i = 1, . . . ,m. In this case, the algorithm can be stopped when a maximum number

of iterations is reached or if the algorithm converges (i.e., there are no changes in the

assignment from one iteration to the next).

3.3 Experiments

In this section we will illustrate the performance of the proposed averaging meth-

ods by evaluating their performance on both synthetic and real datasets. Since our

assumption is that the models are stable, we will use the constraint generation ap-

proach in [48] for system identification in order to enforce stability. We will refer to

our averaging method using the Martin distance as “Martin Average” throughout the
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experiments.

3.3.1 Experiments on synthetic data

We used the following procedure to synthesize time series data generated by an

LDS. The dimensions of the generative model are set to n = 3 and p = 20. The

entries of the state transition matrix A are generated at random from a Gaussian

distribution of zero-mean and unit variance N (0, 1) and we pick one matrix that is

stable. The entries of the observation matrix C are also generated from N (0, 1) and

then, the matrix is projected to the Stiefel manifold. Once the model parameters have

been generated, sequences of length l = 100 are synthesized using a Gaussian driving

noise process with zero-mean and identity covariance. Measurement noise generated

from N (0, σ2
I), where σ is a parameter, is then added to the synthesized sequences.

At each iteration 10 such sequences are randomly generated and the parameters of the

models are identified using the method in [48]. Then the 10 sequences are averaged

using the nonlinear dimensionality reduction method of [26] with the Martin distance

as a dissimilarity metric (MDS Average). The averages obtained are then compared

with the proposed technique (Martin Average). The experiment was repeated for

different values of the measurement noise standard deviation σ, and the results were

averaged over 1000 realizations. We used a step-size of 10−4 for both the A and C

updates and a maximum number of iterations equal to 100.

In Figure 3.2 we have displayed the 2-dimensional MDS embedding of ten gen-
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Figure 3.2: MDS representation – Multidimensional scaling representation of the

data points together with the generating model and computed averages using the

approximate MDS averaging and the proposed Martin averaging.

erated time series together with the generative and computed average models using

the Martin distance as our dissimilarity measure. As it can be observed, the approx-

imate averaging method in [26] (dark square) exhibits a higher error with respect to

the true generative model since it is restricted to choose a point within the actual

data samples, while the proposed technique (green triangle) is able to produce novel

models that come very close to the actual underlying generative model (red circle).

The average squared distance between the data points and the average models over

1000 realizations and for different values of the measurement noise standard devia-
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Figure 3.3: Average error – Average squared distance as a function of the measure-

ment noise standard deviation.

tion is displayed in Figure 3.3. It can be appreciated that our averaging technique

always provides a lower error than the MDS averaging and that the error is even more

pronounced as the measurements become more noisy.

In order to compare our ADMM method for computing the Align distance to the

one in [49] we generated systems at random from a Gaussian distribution with zero

mean and unit variance, varying the order of the dynamical models and the output

dimension. We averaged the obtained distances using the method in [49] and our

method (ρ = 50)over 100 realizations. The results of the average squared distances

using both methods are given in Table 3.1. It can be seen that our proposed scheme
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achieves better averages than the one in [49], specially for smaller orders. If we look at

the average computation times displayed in Table 3.2 we observe that our method is

slower than the one in [49] (around 4 times slower for order 8). However, there is still

room for improvement for the ADMM method since its convergence speed depends

on the parameter ρ. Also for the computation of the update in (3.31) we are using

the vectorized form of (), which is certainly not the most efficient way of computing

the update. It is also worth to mention that the computational complexity increases

slowly in the output dimension and that increasing the order of the models has a

greater effect in the computation times.

3.3.2 Experiments of the Weizmann human action

dataset

In order to test the performance of the proposed method in a real dataset, we

performed an experiment on the Weizmann human action dataset [53]. The dataset

consists of nine people performing 10 different natural actions (see Figure 3.4) like

‘‘run’’, ‘‘walk’’, ‘‘jump’’, ‘‘wave hands’’, etc. For each video, we compute

the optical-flow and extract a bounding box time-series around the person of size

p = 63× 29× 2 = 3654. From the extracted time-series we identify an LDS of order

n = 5.

We conduct an experiment where each action is represented by its average model
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Average squared distance

p = 10 p = 50 p = 100 p = 500 p = 1000

Jacobi method

n = 4 14.8647 15.5556 15.4506 16.0272 15.6611

n = 6 20.5571 22.4632 22.1456 22.6476 22.7694

n = 8 32.9441 35.2943 34.9150 36.0533 35.4104

ADMM

n = 4 12.4305 13.4099 13.5185 13.5058 13.9928

n = 6 18.9067 21.0748 20.3559 21.0285 21.1435

n = 8 32.8144 35.1214 34.5729 34.8349 35.3758

Table 3.1: Average squared distance for different orders and output dimensions.

and perform classification of a novel model based on the nearest mean. A leave-one-

out cross-validation setup over all the sequences is used to evaluate the classification

accuracy. The step-size of the averaging algorithm is set to δA = δC = 5× 10−5.

The results in terms of classification accuracy are given in Table 3.3. As a com-

parison, we include the results for the MDS averaging method of [26] (MDS Average)

and the averaging method of [28] presented in Section 3.1.2.3. In order to illustrate

the improvement achieved through the optimization process, we have also included

the results when no optimization is carried out (i.e., the average models correspond to

58



CHAPTER 3. LDS AVERAGING AND CLUSTERING

Average computation time

p = 10 p = 50 p = 100 p = 500 p = 1000

Jacobi method

n = 4 0.0009 0.0009 0.0008 0.0010 0.0011

n = 6 0.0029 0.0031 0.0030 0.0033 0.0032

n = 8 0.0090 0.0091 0.0102 0.0097 0.0102

ADMM

n = 4 0.0103 0.0126 0.0106 0.0117 0.0162

n = 6 0.0236 0.0282 0.0259 0.0305 0.0388

n = 8 0.0373 0.0359 0.0369 0.0460 0.0527

Table 3.2: Average computation time for different orders and output dimensions.

the initial values used for the optimization). The latter one is labeled as “Euclidean”

since the initial points are obtained through Euclidean averaging (and projection onto

Sn,p in the case of C0) as per (3.23) and (3.24).

As it can be observed, the proposed approach gives the best performance for this

particular dataset. We also observe a significant improvement (around 20%) compared

to the initial point where the optimization started (i.e., Euclidean). Compared to the

performance of a 1-NN classifier with the Martin distance (96.77%) we see that the

degradation in performance due to the use of the average models is very small (around
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Figure 3.4: Weizmann dataset – Human actions in the Weizmann dataset.

2%) while the savings in terms of the number of representative points and distance

computations (at test time) is significantly reduced (by a factor of 10 since there are

around 10 samples per class).

3.3.3 Experiments on the UCLA8 dynamic tex-

ture dataset

As it was already mentioned before, an averaging method is particularly useful

for clustering purposes. In our case, we could use the proposed method for building a

dictionary of LDS codewords and perform dynamic texture classification using Bag-

of-Systems [26]. In order to build the codewords, we use the generalized K-means

clustering algorithm described in Section 3.2 using both Martin and Align distances

and their corresponding averaging methods. We use a view-invariant subset of the
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Method % Correct

Euclidean 75.27

MDS Average 90.32

Align [28] 93.55

Martin Average 94.62

Table 3.3: Nearest mean classification performance on the Weizmann human action

database for different averaging methods.

UCLA8 dynamic texture database (see Figure 3.5) as in [26] and apply the Bag-of-

Systems approach using the proposed averaging method. We follow a similar approach

as in [28] for the representation of the videos. Firstly, squared video patches of 25

frames of length are extracted from the original videos and fitted with an LDS of

order n = 3. Then a dictionary of LDSs is learnt using the clustering method of

Section 3.2. We tried different values (25, 50 and 75) for the total number of clusters

(codebook size). Once the dictionaries were built, a histogram representation of each

video sequence is computed based on the frequency of occurrence of the codebook’s

words (LDSs). Novel sequences are then labelled with a 1-NN classifier using the

χ
2-distance between histograms. Again, for comparison purposes, we included in our

experiments the MDS averaging method in [26]. Each method is run several times

with different random initializations for the K-means clustering part. We used a
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Figure 3.5: UCLA8 dataset – Dynamic textures in the UCLA8 database.

step-size of δC = 10−3 and δA = 10−5 for the gradient descend optimization with a

maximum number of iterations equal to 150. For the K-means clustering we set the

maximum number of iterations to 10.

The results shown in Table 3.4 correspond to the best achieved correct classi-

fication rate for different combinations of patch and codebook sizes. As it can be

observed, the proposed technique based on averaging with respect to the Martin dis-

tance clearly outperforms the MDS averaging method of [26]. When compared to

Align, Martin averaging does better in 5 out of 9 configurations. In general the per-

formance of all three methods improves as the patch size is reduced as well as the size

of the dictionary increases. This may be attributed to the fact that smaller patches

capture better the local properties of the dynamic textures which, together with an

increase in the codebook size, result in better descriptors in a Bag-of-Systems ap-

proach. From the results of the table, it can also be observed that Align does better
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on the 20× 20 patches while Martin generally does better for patch sizes of 60× 60

and 30 × 30. It is also interesting to note that Align is quite sensitive if the size of

the patch is not appropriate (differences in performance around 30%) while Martin

appears to be more robust to the chosen size of the patches giving reasonable perfor-

mance even with the largest patches (differences around 12%). This is a nice property

to have in real applications where it is not known a priori what a suitable size of the

patches is.

3.4 Chapter summary

In this chapter we have addressed the problem of averaging & clustering LDSs.

We have considered the so-called extrinsic averaging problem using distances in the

space of LDSs. In particular, we have presented a novel approach for averaging linear

dynamical models based on the Martin distance. The method can be used to build

meaningful representations with a reduced number of points. We have shown by

means of numerical experiments that the method can be successfully applied to clas-

sification/recognition tasks in computer vision applications outperforming the method

in [26] and providing a performance comparable to the state of the art. Also in this

chapter we have provided a new method for computing the Align distance using the

ADMM method that can be used for averaging w.r.t. that metric.
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Patch Size 60×60×25 30×30×25 20×20×25

25 clusters

MDS Average 54.55 61.36 61.36

Align Average 47.73 68.18 81.82

Martin Average 63.64 65.91 75.00

50 clusters

MDS Average 59.09 61.36 61.36

Align Average 52.27 70.45 84.09

Martin Average 63.64 79.55 77.27

75 clusters

MDS Average 54.55 65.91 61.36

Align Average 59.09 70.45 90.91

Martin Average 72.73 72.73 84.09

Table 3.4: Bag-of-Systems dynamic texture classification accuracy on the UCLA8

dataset for different patch sizes and different number of clusters.
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Chapter 4

DynamicSVM

In this chapter we will present a novel classification approach for time series data

generated from an LDS. We will work directly with linear prediction functions in the

ambient space of infinite dimensional time series. We will propose to use an SVM

type of classifier in the infinite dimensional space of time series generated from an

LDS. By restricting the set of possible solutions to a specific subset we will show how

the problem can be reduced to a linear SVM problem in Euclidean space.

4.1 SVMs and LDSs

In Section 2.5.2.2 we presented the SVM classification approach in Euclidean space

and showed how this approach can be generalized to any space where an inner product

or a kernel can be defined. In this section we will consider the classification of time
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series generated by an LDS using an SVM-like formulation in the Hilbert space of

infinite dimensional time series generated by an LDS. Let us denote such space as

Z. Since the inner product between two elements in Z can be easily computed from

the finite dimensional parameters of the LDSs, we can follow a regularized empirical

risk minimization approach in order to compute a linear classifier in Z. For the

regularization term we will use the induced norm of the standard dot product in the

ambient space Z.

Recall that in a binary classification problem with m training feature-label pairs

(xi, yi), where xi ∈ Z are infinite dimensional time series and where yi ∈ {−1,+1},

the formal formulation of the SVM optimization problem would be

minimize
w∈Z,b,{ξi}

1

2
�w,w�Z + C

m�

i=1

ξi

subject to yi(�w,xi�Z + b) ≥ 1− ξi, i = 1, . . . ,m

ξ ≥ 0,

(4.1)

where we have used the standard dot product in Z and have replaced the Euclidean

norm by the induced norm of the dot product (i.e., �·�2
Z
= �·, ·�Z).

From the representer theorem [23] it is well known that the optimal separating

hyperplane is a linear combination of the data points

w
� =

�

i

αixi. (4.2)

Note that w� also corresponds to the output of an LDS. In order to see this, consider

a situation where w
� is only determined by the linear combination of two samples,
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that is w� = α1x1 + α2x2. It is straightforward to see that

w
� = {α1x

1
t
+ α2x

2
t
}
∞

t=0 = {α1C1x
1
0 + α2C2x

2
0,

α1C1A1x
1
0 + α2C2A2x

2
0,

α1C1A
2
1x

1
0 + α2C2A

2
2x

2
0, . . .},

(4.3)

where we have assumed no driving or measurement noise. It is easy to realize that

the sequence can be expressed as the output of the following LDS:

x̄t =




A1 0

0 A2



 x̄t−1, with x̄0 =




x
1
0

x
2
0



 (4.4)

wt =

�
α1C1 α2C2

�
x̄t. (4.5)

Note that the optimal hyperplane is determined by an LDS of the same output di-

mension and possibly of higher order than the original points. According to (4.2) the

optimal predictor is given by

f(x) = �w
�
,x�Z + b =

m�

i=1

αi�xi,x�Z + b =
m�

i=1

αiκZ(xi,x) + b, (4.6)

where κZ(·, ·) is a linear kernel in Z. For example, consider two time series x = {xt}
∞
t=0

and x
� = {x�

t
}∞
t=0, both (generated from an LDS) belonging to Z. Let us consider the

inner product definition

�x,x
�
�Z =

∞�

t=0

λ
t
x
T
t
x
�

t
, (4.7)

with λ ∈ (0, 1) is a forgetting factor that ensures the convergence of the sum in (4.7).

Then we recover the Binet-Cauchy trace kernel between LDSs.
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4.2 DynamicSVM

We have shown how the formulation of the SVM classification problem naturally

relates to the concept of Binet-Cauchy kernels by using the inner product definition

of (4.7). We propose in this section an alternative classifier by restricting the search

space to a specific subset of Z. From (4.2) it is clear that the optimal hyperplane is

defined by a vector that is obtained as the linear combination of some elements in the

training set. We can think of w� as a sort of “average” time series obtained from the

training data points. Based on this observation we propose to use a linear predictor

function f(x) = �w,x�Z + b, where the vector (time series) w is generated from an

LDS of the same order and output dimensions as the training data points. Let w be

parameterized by M̄ = (Ā, C̄, s̄0), where Ā and C̄ are the parameters of an average

LDS, while s̄0 represent the initial conditions of the time series w.

Consider now a time series x that is parametrized by M = (A,C, s0). If we

neglect the noise terms in the state-space representation of (2.1) and (2.2), the time

series x generated by the LDS model M (similarly for w and M̄) is given by

x = {zt}
∞

t=0 = {Cs0,CAs0,CA
2
s0,CA

3
s0, . . .}. (4.8)

Keeping in mind (4.8), we can now write the dot product between w and x as

�w,x�Z =
∞�

t=0

λ
t
w

T
t
zt =

∞�

t=0

λ
t
s̄
T
0 (Ā

t)TC̄T
CA

t
s0 = s̄

T
0 Ps0, (4.9)
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where the matrix P corresponds to the infinite sum

P =
∞�

t=0

λ
t(Āt)TC̄T

CA
t
. (4.10)

Note that if the sum in (4.10) converges, P can be expressed as

P =
∞�

t=0

λ
t(Āt)TC̄T

CA
t

=
∞�

t=1

λ
t(Āt)TC̄T

CA
t + C̄

T
C

= λĀ
T

�
∞�

t=0

λ
t(Āt)TC̄T

CA
t

�
A+ C̄

T
C

= λĀ
T
PA+ C̄

T
C,

(4.11)

and therefore, it can be efficiently computed as the solution to the Sylvester’s equation

P = λĀ
T
PA+C̄

T
C. It is important to mention that, in order for the sum to converge,

it is necessary that λĀ ⊗ A be stable. Note that this condition is automatically

satisfied for stable LDS models.

Let us recover our binary classification problem with m training samples xi, i =

1, . . . ,m. Let xi be time series generated from an LDS with parameters Mi =

(Ai,Ci, s
(i)
0 ). We know from (4.9) that �w,xi�Z can be equivalently computed as

s̄
T
0Pis

(i)
0 = s̄

T
0 x̄i, (4.12)

Pi = λĀ
T
PiAi + C̄

T
Ci. (4.13)

Plugging (4.12) into problem (4.1) leads to
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minimize
w∈Z,b,{ξi}

1

2
s̄
T
0S s̄0 + C

m�

i=1

ξi

subject to yi(s̄T0 x̄i + b) ≥ 1− ξi, i = 1, . . . ,m

ξ ≥ 0,

(4.14)

where �w,w�Z = s̄
T
0S s̄0 and where the matrix S is the solution to the Lyapunov

equation

S = λĀ
T
SĀ+ C̄

T
C̄. (4.15)

Note that S is symmetric and positive semi-definite, and it is positive definite for

full-rank C̄.

It is easy to realize now that if we fix the Ā and C̄ parameters of the separating

hyperplane w ∈ Z, and optimize only over the initial conditions s̄0, the problem

reduces to a linear SVM problem in Rn. To better illustrate this, assume that C̄ is

of full-rank (therefore S is positive definite) and consider the change of variables

w̃ = S
1/2

s̄0. (4.16)

We can now rewrite problem (4.23) as

minimize
w̃∈Rn,{ξi},b

1

2
�w̃�

2 + C

m�

i=1

ξi

subject to yi(w̃T
x̃i + b) ≥ 1− ξi, i = 1, . . . ,m

ξ ≥ 0,

(4.17)

where

x̃i = S
−1/2

x̄i = S
−1/2

Pis
i

0. (4.18)
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Note that, since we know Ā and C̄, we can compute the “projected” features x̃i

from the associated LDS model parameters Mi of the time series xi. In that regard,

we are effectively mapping an infinite dimensional time series xi parametrized by

Mi = (Ai,Ci, s
(i)
0 ) to a finite dimensional space (i.e., Rn). This mapping allows the

reduction of the problem to a linear SVM in Rn. Therefore, we can interpret the

DynamicSVM approach as a preprocessing step that reduces the dimensionality of

the problem to Euclidean space where we run a linear SVM classifier.

4.2.1 Multiple representatives

In the previous section we have illustrated how to exploit the fact that the con-

sidered time series are generated from an LDS in order to compute a linear classifier

in Z. Further, we have seen that if we fix some of the parameters of the separating

hyperplane w ∈ Z the problem reduces to a linear SVM problem in Euclidean space.

It is clear that for a binary classification problem it suffices to have one separating

hyperplane. In order to reduce the problem to a linear SVM in Euclidean space, we

could use one representative model for one of the two classes.

In principle, one could choose such representative as an average model M̄ =

(Ā, C̄) for any of the two classes. These average models could be obtained using

the methods presented in Chapter 3. However, it is not clear which one of the two

classes should be used. But in addition, one may also want to consider the possibility

of using more than just one representative point per class. In fact, in the original
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SVM problem (without fixing some of the parameters of the hyperplane) the optimal

separating hyperplane is obtained by combining points coming from the two classes.

This suggests that having several representative points could lead to an increase in

the discriminative power of the classifier since we would be able to better capture

the variability within each class. One important property of the DynamicSVM for-

mulation that we propose is that it can easily handle multiple representative points

per class. To better illustrate this idea let us note that the kernel implicitly used in

problem (4.23) is given by

κ(xi,xj) = x̃
T
i
x̃j = (s(i)0 )TPT

i
S
−1
Pjs

(j)
0 . (4.19)

Also note that using multiple representatives could be handled in a straightforward

way by considering a new kernel that is a weighted combination of the different data-

dependent kernels induced by each one of the representatives. More formally, consider

again a binary classification problem where we extract r1 and r2 representative points

from class 1 and class 2, respectively. Let the total number of representatives be

R = r1 + r2, whose parameters are given by M̄r = (Ār, C̄r), r = 1, . . . , R. Consider

then a kernel of the form

κ(xi,xj) =
R�

r=1

dr(s
(i)
0 )TPT

ri
S
−1
r
Prjs

(j)
0 =

R�

r=1

drκr(xi,xj), (4.20)

where dr ∈ R+ are positive weights and where

Pri = λĀ
T
r
PriAi + C̄

T
r
Ci (4.21)

Sr = λĀ
T
r
SrĀr + C̄

T
r
C̄r. (4.22)

72



CHAPTER 4. DYNAMICSVM

4.2.2 Finding the weights

Effectively, the kernel definition in (4.20) implies that we are using a concatenation

of the equivalent feature vectors (also of the time series). There is however, one

question remaining and it is how to choose the kernel weights dr. A simple alternative

would be to give the same weight for each kernel component (e.g., dr = 1/R for all

r = 1, . . . , R). Alternatively, one could try to simultaneously optimize the classifier

parameters together with the weights dr. The latter approach can be done using the

Multiple Kernel Learning (MKL) framework [54]. There exist several approaches in

the literature on how to solve the MKL problem. A possible approach is the one

in [55] where and additional regularizer on the weights dr is added to the objective

of the primal SVM problem. It is easy to see that following our formulation, the

problem to solve is

minimize
d,w̃,{ξi},b

1

2
�w̃�

2 + C

m�

i=1

ξi + β(d)

subject to yi(w̃Tφ(xi) + b) ≥ 1− ξi, i = 1, . . . ,m

ξ ≥ 0, dr ≥ 0, r = 1, . . . , R

(4.23)

where d = [d1, . . . , dR]T, β(·) is a regularizer (�1 or �2 norm in Euclidean space) and

where the mapping φ : Z �→ RnR is given by

φ(xi) =





√
d1 S

−1/2
1 P1i s

(i)
0

...

√
dR S

−1/2
R

PRi s
(i)
0




. (4.24)
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The way in which problem (4.23) is solved is by alternating the updates of the clas-

sifier’s parameters (w̃, b) and the kernel weights dr. Note that fixing the weights,

problem (4.23) reduces to a linear SVM problem that can be solved using any SVM

solver such as libsvm [56]. Once the classifier has been learnt, a gradient update of

the kernel weights can be performed as described in [55]. This alternating process is

successively repeated until convergence.

To better illustrate the learning process, let us rewrite problem (4.23) as the

following optimization problem

minimize
d

β(d) + g(d)

subject to d ≥ 0,

(4.25)

where the function g(d) = minw̃,b
1
2 �w̃�

2 +
�

i
�(yi(w̃Tφ(xi) + b)). Since g(d) cor-

responds to the solution of a convex optimization problem, it can be equivalently

computed from the dual problem (i.e., strong duality holds provided some qualifica-

tion constraints). We can therefore express g(d) as

g(d) = maximize
α

αT
1−

1

2
αT

�
�

r

drKr ⊙Y

�
α

subject to αT
y = 0, 0 ≤ α ≤ C1,

(4.26)

where Kr is the kernel matrix corresponding to the rth representative and whose

entries are given by [Kr]ij = κr(xi,xj). The fact that g(d) is the solution of a strictly

convex optimization problem makes it a differentiable function (see [55] and references

therein), and its derivative can be computed from the derivative of the dual objective
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particularized to the optimal solution, that is

∂g

∂dr
= −

1

2
α�T(Kr ⊙Y)α�

. (4.27)

Therefore, if β(d) is differentiable, we can now easily compute the derivative of the

cost function in (4.25) in order to perform a gradient update of the kernel weights.

In particular, consider that β(·) = �·�
2
2, then the weights at the kth iteration can be

updated as

d
(k)
r

= d
(k−1)
r

− δd

�
∂β

∂dr
+

∂g

∂dr

�

= d
(k−1)
r

− δd

�
2dr −

1

2
α�T(Kr ⊙Y)α�

�
,

(4.28)

where δd is the step size for the update. After updating the weights, the parameters of

the SVM classifier are computed again, and the process is repeated until convergence.

4.3 Chapter summary

In this chapter we have presented a novel classification approach for time series

of data generated from an LDS. We call this approach DynamicSVM. Starting from

the formulation problem in the Hilbert space of infinite dimensional time series, and

fixing some of the parameters of the classifier to the average value, we can optimize

over the initial conditions. The approach offers a clear computational advantage as

compared to the Binet-Cauchy kernels, since only the kernel to a few representative

points needs to be computed. The approach can also be interpreted as a mapping from

75



CHAPTER 4. DYNAMICSVM

the space of parameters (or from the time series) to an Euclidean space in Rn. In the

experiments chapter we will show how our method not only reduces the complexity

of the classifier but also achieves a comparable performance in terms of classification

accuracy.
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Chapter 5

Surgical Gesture Classification

In this chapter we will investigate some of the techniques presented in [11, 13]

(also covered in the previous chapters) to the problem of surgical gesture classifica-

tion from video. More specifically, we will use linear dynamical systems (LDSs) to

model the time series of the raw pixel intensities extracted from each video clip and

the kinematic measurements provided by the da Vinci Surgical System of Intuitive

Surgical1). We will use the metrics between the parameters of the LDSs presented

in Chapter 2 to train classifiers for each gesture. In addition, we will also investigate

the performance of the DynamicSVM approach discussed in Chapter 4 where the dif-

ferent LDS data points are mapped to Rn using a set of pre-computed representative

points or exemplars. For the computation of these representative points we will use

the techniques presented in Chapter 3 using the extrinsic mean of a set of LDS points

1Intuitive Surgical Inc., Sunnyvale, CA
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with respect to some metric (e.g., Martin and Align distances).

5.1 State of the art

Previous work on skill evaluation in RMIS mainly exploited kinematic data recorded

by the robot. Many works used global measurements of the task, such as time to com-

pletion [57, 58], speed and number of hand movements [57], distance travelled [58],

and force and torque signatures [58–60]. These methods are generally easy to imple-

ment. However, they perform a global assessment neglecting the fact that a surgical

task is composed of many different gestures. Such global approaches have two main

drawbacks. First, they use a single model for a complex task as a whole, while the

decomposition of a task into atomic gestures allows for the use of a simpler model

for each gesture. Second, they assume that a trainee is either skilled or unskilled at

all gestures. In practice, different gestures have different levels of complexity, and

one would expect a trainee to learn quickly how to perform simple gestures, and to

require more training to perform complex ones.

To address these drawbacks, several works (see, e.g., [1,61–63]) have considered the

problem of decomposing a surgical task into atomic gestures, usually called surgemes.

Such a decomposition not only addresses the drawbacks of global approaches, but also

has the advantage of exploiting the set of rules that govern how different surgemes

are related to each other. In other words, it allows one to describe a surgical task
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using a grammar that, for each task, describes which transitions between gestures

are allowed. One can leverage this grammar to help the recognition of a surgeme,

e.g., by exploiting the fact that the set of surgemes that follows an already labelled

surgeme is smaller. One can also use such a grammar as an additional measure of

assessment. For instance, each gesture in isolation could be executed perfectly, but

the sequence of gestures may not make sense for the given task (e.g., inserting the

needle before grabbing the needle). Given the many similarities with the structure of

natural languages, this approach to surgical skill assessment is also known as the lan-

guage of surgery. This approach proceeds in three steps: task segmentation, gesture

recognition, and skill evaluation (assessment of the quality of the execution and the

feasibility of the sequence of gestures). Since this thesis deals with the recognition

phase, we will limit the discussion of previous work to those related to surgical gesture

recognition.

Most of the prior work on surgical gesture recognition (see, e.g., [64–66]) uses

HMMs to analyze kinematic data stored by the robot. All these approaches model

each surgeme as one or more states of an HMM. The main difference is in how

these approaches model the observations within each surgeme. For example, [65]

vector-quantize the observations into discrete symbols, [67] use a Gaussian model

combined with linear discriminant analysis (LDA), [66] assumes that the observations

are generated from a lower-dimensional latent space using Factor Analyzed HMMs

(FA-HMMs) and Switched Linear Dynamical Systems (SLDSs), [68] use a Gaussian
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mixture model (GMM), and [69] model the observations as a linear combination

of atomic motions with sparse coefficients. All of these models have significantly

improved surgical gesture classification over a standard HMM.

In addition to kinematic measurements, RMIS systems are also typically equipped

with cameras that record the entire procedure. Early work on video data analysis,

such as [6], focus on recognizing the (coarse) phases of a surgery by also observing

surgeons and nurses in the operating room. In [70] an automatic feature extraction

mechanism from the videos is proposed based on genetic programming. They use

the extracted features to classify the (coarse) phases of a surgery but the average

recognition accuracy is around 50%. The work in [71] and [12] propose to recognize

the different coarse phases of a surgery (e.g. CO2 inflation, abdominal suturing, etc.)

using laparoscopic videos. For example, the work in [12] uses binary signals that

indicate the presence or not of a set of tools in the operating room. Using those

signatures they use Dynamic Time Warping (DTW) and HMMs in order to classify

new sequences. Also in [10] an application-dependent framework for the recognition of

high-level surgical phases is proposed. The method applies DTW and HMMs on top

of a set of SVM classifiers. In a recent contribution [72], the same authors extend their

approach in order to provide additional granularity by further decomposing each of

the surgical phases into basic actions. The authors combine then the approach in [10]

together with the detection of tools and organs in order to determine the surgical

action being performed. A recognition accuracy of around 64% on a frame by frame
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basis can be achieved with the proposed technique when applied to cataract surgeries.

A limitation of the methodology is that it is application dependent and needs to be

tuned to target a specific type of intervention. It would be desirable to have a general

methodology that can be abstracted from the surgery at hand and that is based on

the recognition of elementary actions that can be used to describe almost any surgery.

One attempt to automatic classification of skill and surgical gestures (rather than

coarse phases) from video is that of [9]. [9] uses different flavors of HMM where the

observation is the histogram of optical flow concatenated with the mean flow com-

puted in spatially separated regions of the image. The conclusion of this study is that

kinematic-based approaches are generally more accurate than vision-based methods.

However, the recent work in [11, 13] shows that video-based techniques can perform

equally-well as kinematic-based approaches. They propose the use of LDSs and fea-

tures extracted from the videos to build classifiers of the surgical gestures. Further,

the work also suggests the combination of different kinds of data using Multiple Kernel

Learning (MKL) as a possible way of boosting performance.

In the experimental section, we will study the performance of the techniques

proposed in the previous chapters based on LDSs to the problem of surgical gesture

recognition analyzing their advantages and drawbacks as compared to the state-of-

the-art.
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5.2 Dataset

In order to test our algorithms, we will use the surgical dataset presented in [1].

The dataset is a collection of surgical trials on three different tasks: suturing (SU,

39 trials), needle passing (NP, 26 trials) and knot tying (KT, 36 trials). Each task is

performed by 8 trainees with different skill levels (expert, intermediate and novice).

Typically each user performed around 3 to 5 trials for each task. Each trial lasts, on

average, 2 minutes and both kinematic and video data are recorded at a rate of 30

frames per second. Kinematic data consists of 78 motion variables (positions, rotation

angles, and velocities of the master/patient side manipulators), whereas the videos

are converted into JPEG images of size 320× 240 for each frame.

The data was manually segmented based on the surgeme’s definition of [1]. Specif-

ically, the vocabulary of possible atomic actions consisted of 15 surgemes (or ges-

tures): 1) reaching for needle with right hand, 2) positioning needle, 3) pushing

needle through tissue, 4) transferring needle from left to right, 5) moving to center

with needle in grip, 6) pulling suture with left hand, 7) pulling suture with right hand,

8) orienting needle, 9) using right hand to help tighten suture, 10) loosening more

suture, 11) dropping suture at end and moving to end points, 12) reaching for needle

with left hand, 13) making ‘C’ loop around right hand, 14) right hand reaches for

suture and 15) both hands pull. Note that, although there are a total of 15 surgemes,

not all of them appear in a given task. For example, suturing and needle passing

typically involves 10 of these 15 surgemes, while knot tying involves only 6 surgemes.
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Surgeme Description SU NP KT

G1 Reach needle right hand 29 30 19

G2 Positioning needle 166 113 –

G3 Push needle through tissue 164 106 –

G4 Transfer needle left to right 119 81 –

G5 Move to center with needle 37 30 –

G6 Pull suture with left hand 163 108 –

G7 Pull suture with right hand – – –

G8 Orienting needle 48 27 –

G9 Tighten suture right hand 24 1 –

G10 Loosening more suture 4 1 –

G11 Drop suture, move to end points 39 23 36

G12 Reach needle left hand – – 70

G13 C loop around right hand – – 75

G14 Right hand reaches suture – – 98

G15 Pull with both hands – – 73

Total 793 519 371

Table 5.1: Definition of the different gestures or surgemes in [1] and the total number

of occurrences within each task (suturing, needle passing, and knot tying).
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A detailed description about the total number of gestures in the dataset for each

of the tasks is given in Table 5.1. In terms of length, a typical suturing trial is a

collection of about 20 video clips, while a needle passing has an average of 13 video

clips, and knot tying is composed of about 9 video clips.

5.3 Experimental setup

In order to compare the accuracy of the surgeme recognition task using kinematic

versus video data, we have created two different test setups following [11, 13, 66, 69].

The first setup is the leave-one-super-trial-out (LOSO), where we leave one trial for

each one of the users out for testing. For example, we leave the first trial of every

user for testing and use the remaining trials as training data. The second setup is

the leave-one-user-out (LOUO), where we leave all the trials from one user out for

testing. This clearly corresponds to a more challenging scenario since, contrary to the

LOSO setup, we are testing on a novel user, not previously seen in training. For each

task we performed a training and a test phase using only the surgemes that appeared

in that task. To be more precise, we will compare three classification approaches:

nearest-neighbor, kernel SVMs and dynamicSVM. For the nearest-neighbor approach

(1-NN) we will use the distances (e.g., Martin, Frobenius and Align) and kernels (BC-

Det and BC-Trace) described in Chapter 2. For the case of the kernels we will use

the kernel to distance formula, that is, given a kernel κ(·, ·) we can define a distance
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as

dκ(M,M
�) = κ(M,M) + κ(M�

,M
�)− 2κ(M,M

�), (5.1)

where M and M� are two LDSs. For the kernel SVM approach we will use RBF

kernels on the LDS distances as well as the Binet-Cauchy kernels. In the case of

RBF kernels, we will combine ten different kernels with γ = 1, . . . , 10 using MKL.

The dynamicSVM approach will be evaluated for two different numbers of clusters

per gesture (e.g., one and three clusters). In order to compute the representatives we

will employ the averaging methods described in Chapter 3 (with respect to Martin

and Align distances). For the SVM classifiers we will evaluate the performance for

different values of the penalty parameter C (e.g., C ∈ {2−6, 2−5, . . . , 23}). Finally,

the BC-Trace kernel will be evaluated for two different values of the η parameter, one

that takes into account the driving noise matrices (η = 0.5) and another one that

only uses the A, C and the initial conditions (η = 1).

5.4 Experimental results

In this section we evaluate the performance of the methods described in Chapters

2, 3 and 4 for the problem of surgical gesture classification. We present the classi-

fication accuracy separately for each of the tasks, namely suturing, knot tying and

needle passing, and for each one of the two setups (LOSO and LOUO) described in

the previous section.
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In Tables 5.2 to 5.10 we report the best average classification rates obtained in the

simulations (i.e., numbers within the same table may correspond to different values

of the penalty C). We report two metrics in the tables. The metric labelled as

“Macro-avg” corresponds to the average correct classification of the gestures without

differentiating their class. The second metric, labelled as “Micro-avg” corresponds

to an average computed over the per-class averages. More formally, in a K-class

classification problem, denote Nk the number of test samples of class k and let N =

�
k
Nk be the total number of test samples. Then, the macro- and micro-averages

are defined as

µmacro =

�
N

i=1 I [ĉi = ci]�
K

k=1 Nk

(5.2)

µmicro =
1

K

K�

k=1

1

Nk

N�

i=1

I [ĉi = ci & ci = k] , (5.3)

where ĉi, ci ∈ {1, . . . , K} are the estimated and the true class of sample i, respectively,

i = 1, . . . , N , and where I [·] is the indicator function (1 if the argument is true, 0

otherwise). For example, suppose that we had a two-class dataset with 9 gestures in

the test set, 5 gestures of class 1 and 4 gestures of class 2. Suppose that we correctly

classify 4 out of 5 for class 1 and all of them for class 2 (4 out of 4). Then the macro-

and micro-averages will be computed as

µmacro =
4 + 4

9
=

8

9
= 0.89,

µmicro =
4/5 + 4/4

2
=

9

10
= 0.90.

From Tables 5.2 to 5.10, we can extract several conclusions regarding the perfor-
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mance of the considered approaches. For instance, it can be observed that, in general,

the best results correspond to the combination of several RBF kernels with different

γ values using MKL. Note that, in the tables with the title KernelSVM, and for

the metrics based on subspace angles, we are actually combining several RBF kernels

with different values of γ (i.e., from 1 to 10). Therefore, it is not surprising that

those metrics typically outperform the Binet-Cauchy kernel counterparts. To be fair

when comparing metrics based on subspace angles with metrics based on the Binet-

Cauchy kernels, one should look at the performance of the 1-NN classifiers, since in

that case, we are directly using the distances between the models without any further

combination.

Looking at the numbers coming from the 1-NN classifier, one realizes that, indeed,

the BC kernels provide comparable performance to metrics based on the subspace

angles. Furthermore, in the more challenging LOUO setup, the BC kernels typically

provide the best results, showing more robustness in their accuracy against novel data

samples. It is also interesting to mention that the BC determinant kernel seems to be

performing reasonably well using nearest neighbors and that a significant degradation

in the classification performance occurs when using SVMs. When comparing the

performance of the BC kernels, clearly the trace kernel provides the best results.

More interestingly, the kernel with η = 1 almost always outperforms its balanced

counterpart (i.e., η = 0.5). This result is telling us that the inclusion of the noise

coloring matricesB when comparing two LDSs might not be beneficial for the purpose
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of classification, and that its consideration might increase the uncertainty among the

models. When comparing the Martin, Frobenius and Align distances, we observe that

for kinematic data Frobenius seems to be the most appropriate metric whereas so it

is Align for the case of video data.

From the analysis of the numbers coming from the DynamicSVM approach, we

can also draw some conclusions. First of all, it is worth to remember, that the Dy-

namicSVM approach should be directly compared with the Binet-Cauchy kernels,

and more particularly, to the trace kernel with η = 1, since in the DynamicSVM

approach we are also neglecting the driving noise coloring matrices B. Overall, there

is a degradation in terms of accuracy of the DynamicSVM when compared to the

Binet-Cauchy trace kernel. This degradation is due to the fact that the classifiers are

built. Recall that the DynamicSVM uses a few exemplars per class rather than the

entire set of training points at the SVM classification step. Also note that, in general,

the performance of the DynamicSVM approach increases when the number of repre-

sentatives is larger. This effect is more pronounced in the case of video data due to

the high dimensionality of the frame (320 × 240), while with the kinematic data the

improvement is more moderate. These results suggest that the number of representa-

tive points per class should be larger when the output dimension is bigger. However,

it is important to mention that the DynamicSVM presents a significant advantage

in the computational complexity as compared to the BC kernels since the Sylvester

equation needs to be solved between each point and the set of representatives and
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not between every training-test pair. These savings in the computational complexity

come at the expense of a small degradation in terms of classification accuracy.

Regarding the question of whether video or kinematic data is more discriminative,

the obtained results support the conclusions drawn in [11,13] where it was concluded

that both type of data can be equally discriminative. If we look at the KernelSVM or

1-NN results, we observe similar performances for both video and kinematic data with

the only exception of the Needle Passing task where we observe a significant benefit

of kinematic over video. In the DynamicSVM approach there is a clear benefit of

using kinematic over video but this might be attributed to the fact that we are using

too few representatives given the high dimensionality of the video signals.

Finally, we would like to comment on the difference between the macro- and

micro-averages reported in Tables 5.2 to 5.10. The fact that the macro-averages

are typically higher than their micro- counterparts is due to the reduced number of

samples of some of the gestures. For example, if we look at Table 5.1, we observe

that G10 and G9 only appears once in the Needle Passing task (also in the Suturing

task G10 appears only 4 times). This means that those gestures are never going to

be correctly classified since they will either belong to the test or to the training set.

When averaging the per-class averages (i.e., micro-average) this will cause bias in the

classification accuracy. It is clear then that this imbalance between the number of

gestures per class makes the two metrics deviate from each other.
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5.5 Chapter summary

In this chapter we have analyzed the performance of the classification methods

presented in the thesis on the problem of surgical gesture classification. Assuming

known segmentation of the data, we have used LDSs to model the evolution of both

kinematic and video data time series within each segment. Overall, our results are in

agreement with the state of the art [11,13], with classification accuracies around 90%

for the Suturing and Knot Tying tasks, and around the 85% for the Needle Passing

task. Also in this chapter we have analyzed the performance of the DynamicSVM ap-

proach and compared it to the Binet-Cauchy kernels. Our simulations also show that,

in a typical surgical training setup, video data can be as discriminative as kinematic

data for the purpose of surgical gesture classification. Overall, the combination of

several RBF distance-based kernels using LDSs outperforms the use of Binet-Cauchy

kernels and the DynamicSVM approach. However, the latter approach is computa-

tionally more attractive than the former two since, at testing, it only requires the

computation of the projected features with respect to the set of representatives. This

is a considerably reduction in the computational complexity since we are no longer

required to compute the set of all pairwise distances/kernels at testing. However,

this computational advantage of the DynamicSVM with respect to the Binet-Cauchy

kernels comes at the expense of some degradation in the classification accuracy.
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1-NN – Suturing Task

Metric Macro-avg Micro-avg Macro-avg Micro-avg

LOSO Kinematic Video

Martin 80.32±5.29 64.34±9.58 77.37±5.79 67.43±7.50

Frobenius 83.85±6.26 70.91±10.63 79.78±7.66 71.21±9.34

Align 74.44±5.67 58.94±8.48 81.78±7.61 73.78±9.03

BC-Det 80.79±4.93 66.05±6.06 82.04±5.76 75.64±8.26

BC-Trace η = 1
2 82.88±3.22 66.33±3.85 81.51±7.37 69.24±8.28

BC-Trace η = 1 85.28±3.87 71.64±5.10 81.81±7.82 70.16±8.79

LOUO Kinematic Video

Martin 64.93±9.45 49.12±8.37 57.89±7.53 48.04±7.76

Frobenius 65.92±8.91 50.57±10.39 56.12±5.77 47.26±6.40

Align 59.94±6.22 45.31±8.39 57.72±7.58 49.55±10.40

BC-Det 65.21±8.15 51.97±11.90 61.31±10.24 53.30±9.82

BC-Trace η = 1
2 74.05±7.55 57.93±8.75 63.39±6.52 49.23±8.84

BC-Trace η = 1 78.05±8.84 62.85±11.37 63.39±6.81 50.38±9.36

Table 5.2: Average classification rates for the Suturing task using a 1-NN classifier.
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KernelSVM – Suturing Task

Metric Macro-avg Micro-avg Macro-avg Micro-avg

LOSO Kinematic Video

Martin 80.92±3.71 63.56±6.15 81.12±6.25 65.56±8.35

Frobenius 90.67±3.85 81.58±8.60 82.95±4.99 69.89±6.20

Align 83.20±3.71 64.97±5.39 90.73±4.53 80.65±6.94

BC-Det 39.16±7.09 20.14±3.02 20.38±0.86 10.74±0.69

BC-Trace η = 1
2 82.59±2.71 66.08±3.09 82.80±4.88 67.00±7.43

BC-Trace η = 1 85.63±2.84 71.00±4.49 83.08±5.47 67.56±8.56

LOUO Kinematic Video

Martin 72.82±9.37 58.78±10.67 71.82±8.18 57.68±9.35

Frobenius 81.57±10.23 68.50±9.11 72.18±7.58 60.56±6.92

Align 72.25±12.04 52.79±9.28 79.57±8.81 65.78±11.18

BC-Det 29.29±5.59 16.41±3.37 20.13±1.44 11.49±0.91

BC-Trace η = 1
2 78.44±8.63 61.94±10.02 70.27±8.28 54.27±8.44

BC-Trace η = 1 80.26±8.23 63.47±10.42 70.49±8.19 54.99±8.91

Table 5.3: Average classification rates for the Suturing task using RBF and BC kernels

on LDSs.
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DynamicSVM – Suturing Task

Metric Clusters Macro-avg Micro-avg Macro-avg Micro-avg

LOSO Kinematic Video

Martin 01 81.01±5.14 65.11±4.91 61.30±6.27 49.55±6.09

Martin 03 82.28±3.68 65.76±4.28 73.05±6.44 61.68±8.11

Align 01 80.92±3.01 64.68±2.11 56.53±4.16 45.79±6.61

Align 03 81.32±3.67 64.88±4.93 72.35±3.53 60.28±3.59

LOUO Kinematic Video

Martin 01 73.67±8.89 59.29±12.07 51.67±6.58 40.56±8.88

Martin 03 75.14±8.11 56.58±8.99 60.65±10.09 46.63±9.34

Align 01 76.07±9.48 61.30±11.37 48.29±13.01 37.16±10.15

Align 03 76.39±9.80 62.19±13.59 60.98±8.32 47.95±9.97

Table 5.4: Average classification rates for the Suturing task using the DynamicSVM

approach.
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1-NN – Knot Tying Task

Metric Macro-avg Micro-avg Macro-avg Micro-avg

LOSO Kinematic Video

Martin 74.23±4.72 70.03±7.41 63.54±8.05 65.30±9.69

Frobenius 83.02±1.50 75.69±4.03 72.24±3.20 74.43±2.74

Align 68.91±3.99 63.90±3.61 75.43±7.80 75.09±10.59

BC-Det 79.38±6.29 72.07±7.97 67.19±6.46 67.34±8.50

BC-Trace η = 1
2 77.77±5.92 73.27±7.21 72.90±5.05 76.36±4.45

BC-Trace η = 1 81.62±3.45 76.97±5.14 73.77±6.19 76.96±5.17

LOUO Kinematic Video

Martin 62.45±3.50 59.76±5.41 55.21±10.74 56.58±10.40

Frobenius 65.16±12.94 59.41±12.56 59.19±10.62 62.44±13.09

Align 56.93±10.67 52.61±11.83 58.43±11.00 58.90±13.55

BC-Det 63.11±7.47 58.30±6.68 58.31±8.75 58.96±7.35

BC-Trace η = 1
2 72.01±5.17 66.30±6.12 65.70±12.11 66.96±11.43

BC-Trace η = 1 68.08±10.17 61.94±8.13 65.92±11.27 67.50±10.92

Table 5.5: Average classification rates for the Knot Tying task using a 1-NN classifier.
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Kernel SVM – Knot Tying Task

Metric Macro-avg Micro-avg Macro-avg Micro-avg

LOSO Kinematic Video

Martin 78.79±2.61 68.19±1.55 80.57±2.12 82.35±3.33

Frobenius 85.95±3.13 76.20±2.75 81.07±3.17 80.68±1.43

Align 81.67±4.07 71.42±4.44 89.41±1.90 87.79±2.64

BC-Det 26.94±0.96 17.13±0.64 26.39±0.69 16.67±0.00

BC-Trace η = 1
2 79.59±4.06 72.26±4.55 78.27±4.87 77.54±4.84

BC-Trace η = 1 86.32±3.07 81.99±3.83 78.83±3.82 78.59±3.69

LOUO Kinematic Video

Martin 74.96±5.19 68.75±6.38 72.10±12.30 70.61±12.72

Frobenius 82.94±8.64 75.63±10.26 74.73±10.28 70.90±10.02

Align 77.56±7.34 70.45±8.94 82.30±7.31 79.14±9.45

BC-Det 26.60±3.29 17.50±1.54 26.60±3.29 17.50±1.54

BC-Trace η = 1
2 74.02±8.88 66.90±9.06 73.43±7.54 73.02±6.99

BC-Trace η = 1 75.11±10.40 67.16±10.77 72.13±8.40 71.58±7.57

Table 5.6: Average classification rates for the Knot Tying task using RBF and BC

kernels on LDSs.

95



CHAPTER 5. SURGICAL GESTURE CLASSIFICATION

DynamicSVM – Knot Tying Task

Metric Clusters Macro-avg Micro-avg Macro-avg Micro-avg

LOSO Kinematic Video

Martin 01 79.82±1.65 72.94±1.97 65.62±4.52 66.44±3.50

Martin 03 79.90±3.56 73.01±3.87 67.39±7.05 69.35±4.92

Align 01 76.65±4.35 69.90±3.66 57.44±7.54 59.79±9.23

Align 03 79.30±2.82 73.97±1.22 64.85±8.63 64.16±8.34

LOUO Kinematic Video

Martin 01 67.75±8.43 62.18±9.03 61.33±6.30 61.00±8.10

Martin 03 71.26±12.45 64.85±12.48 64.82±6.13 65.36±8.65

Align 01 70.57±7.97 63.44±9.60 56.55±9.13 57.80±7.37

Align 03 74.29±7.78 67.61±9.76 62.23±9.16 62.45±10.75

Table 5.7: Average classification rates for the Knot Tying task using the Dynam-

icSVM approach.

96



CHAPTER 5. SURGICAL GESTURE CLASSIFICATION

1-NN – Needle Passing Task

Metric Macro-avg Micro-avg Macro-avg Micro-avg

LOSO Kinematic Video

Martin 64.32±5.05 54.08±4.69 54.27±6.52 52.86±8.31

Frobenius 69.32±6.99 61.20±7.08 52.81±6.98 50.06±10.00

Align 61.60±6.55 52.16±7.81 56.81±5.95 53.38±7.25

BC-Det 66.04±5.35 55.80±6.89 50.77±8.83 51.86±9.48

BC-Trace η = 1
2 68.62±5.49 57.94±4.31 54.52±5.94 53.11±7.69

BC-Trace η = 1 71.16±6.78 63.12±7.49 54.62±6.36 53.20±7.68

LOUO Kinematic Video

Martin 57.59±6.58 48.88±8.23 43.94±4.61 43.78±6.40

Frobenius 60.67±8.92 52.00±8.54 37.10±8.14 37.88±6.48

Align 52.60±7.30 40.55±6.85 43.39±10.50 44.24±8.90

BC-Det 56.91±8.68 45.70±7.82 32.66±6.75 39.00±5.85

BC-Trace η = 1
2 60.60±7.28 50.66±7.49 42.28±6.51 46.14±11.42

BC-Trace η = 1 62.43±9.12 54.78±9.19 43.19±7.01 46.79±11.91

Table 5.8: Average classification rates for the Needle Passing task using a 1-NN

classifier.
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Kernel SVM – Needle Passing Task

Metric Macro-avg Micro-avg Macro-avg Micro-avg

LOSO Kinematic Video

Martin 68.51±4.48 50.66±2.40 63.26±4.66 50.60±7.65

Frobenius 80.23±6.52 69.24±6.83 60.36±3.31 52.88±5.35

Align 74.95±4.98 58.89±4.52 67.49±4.41 57.25±6.42

BC-Det 22.43±1.22 12.83±0.30 21.91±1.03 12.50±0.00

BC-Trace η = 1
2 67.87±4.88 51.76±3.64 59.15±6.34 48.50±7.05

BC-Trace η = 1 70.86±6.73 59.32±7.25 58.54±6.25 48.03±6.67

LOUO Kinematic Video

Martin 64.70±10.13 50.33±8.81 56.41±6.39 45.43±8.95

Frobenius 73.06±10.17 60.78±9.81 49.14±8.06 37.43±8.12

Align 69.35±8.63 53.85±7.73 56.54±7.51 46.37±8.88

Det 54.86±13.00 37.50±11.46 22.83±1.48 13.62±1.60

BC-Det 21.94±0.97 13.10±1.57 21.94±0.97 13.10±1.57

BC-Trace η = 1
2 60.95±9.56 47.11±6.53 50.76±11.20 43.64±9.67

BC-Trace η = 1 62.93±8.61 51.41±7.29 50.15±10.87 42.97±9.62

Table 5.9: Average classification rates for the Needle Passing task using RBF and BC

kernels on LDSs.
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DynamicSVM – Needle Passing Task

Metric Clusters Macro-avg Micro-avg Macro-avg Micro-avg

LOSO Kinematic Video

Martin 01 60.94±7.83 45.28±5.63 44.27±1.21 40.03±3.81

Martin 03 62.78±9.31 47.25±7.56 49.46±5.16 48.17±4.56

Align 01 63.32±7.88 50.31±7.28 42.74±7.91 37.85±7.01

Align 03 65.43±6.58 49.89±4.34 46.54±2.42 42.50±1.66

LOUO Kinematic Video

Martin 01 52.85±16.94 40.37±9.58 40.14±8.77 42.52±8.74

Martin 03 55.41±11.29 43.49±8.77 42.11±8.00 44.84±9.41

Align 01 57.31±17.03 41.99±12.74 32.30±7.34 33.29±11.71

Align 03 59.76±7.78 48.67±6.20 37.74±10.37 39.81±12.21

Table 5.10: Average classification rates for the Needle Passing task using the Dynam-

icSVM approach.
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Conclusions

In this thesis we have proposed the use of linear dynamical systems as discrimina-

tive models for the purpose of surgical gesture classification. These models allow the

use of different metrics and a large variety of kernels in the space of LDSs to perform

the classification task and their utility has been validated through experiments in

both synthetic and real data. One of the advantages of using LDSs is that they can

be used for both video and kinematic data. We have validated by means of simula-

tions that the both types of data can be equally discriminative in a typical surgical

training-test setup. Additionally, the present work has made several contributions to

the problem of statistical analysis using LDSs. This contributions are general and can

thus be applied to different problems related to the analysis of time series. We have

proposed a new averaging method based on the minimization of the extrinsic mean

with respect to the Martin distance. The method outperforms existing approaches
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based on approximate averaging with the Martin distance and has comparable perfor-

mance to the state of the art. Another advantage of our formulation is that it is able

to generate novel LDSs. These averaging method can be used for clustering purposes

(e.g., extraction of representative points) and for building meaningful representations

using the bag of dynamical systems approach. We have also proposed a new method

for the computation of the Align distance using the ADMM method. This approach

is particularly attractive since an iterative procedure with closed-form updates is pos-

sible. The method provides better averages than the state of the art but it suffers

from a higher complexity. However, the algorithm can still be improved for further

efficiency. Finally, we have proposed a new classification method for time series gen-

erated from an LDS. The approach relies on the idea of working directly in the space

of infinite dimensional sequences generated by an LDS and defining a linear classifier

in such space. By doing this, one ends up with the definition of the Binet-Cauchy

kernels, that require the solution of a Sylvester equation for each entry of the kernel

matrix. If we fix some of the parameters of the classifier to some restricted subset

of representative points and optimize over the initial conditions, then the problem

can be cast as a linear SVM problem in Euclidean space. Effectively, we are defining

a map from the space of parameters to an Euclidean space. This map requires the

solution of a Sylvester equation between any sample in our training-test set and the

set of representatives. Since the number of representatives per class is typically much

smaller than the number of samples, this approach constitutes a computational ad-
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vantage over the Binet-Cauchy kernels. The final kernel is then computed as an inner

product of the mapped features. However, this computational advantage comes at the

expense of some degradation in the classification accuracy. This effect is particularly

accentuated when working with video signals of very high dimensions. At the same

time we have also observed that the number of representatives per class affects the

final performance, and that increasing the number of representatives, yields better

results. Not surprisingly, these facts suggest that for high-dimensional signals the

number of representative points should be larger than for signals of much smaller

dimension.

There exist several ways in which our methods could be improved. For example,

we have extracted the exemplars in a completely unsupervised fashion (i.e., using

generalized K-means) by considering all the samples in the training set. However,

we know that in SVMs the separating hyperplane is defined by those points close

to the decision boundary. This suggests that it might be beneficial to extract the

exemplars not from all the points in the dataset but from those that lie “close” to the

decision boundary (e.g., those that are not too far from the other cluster). Despite

the fact that we have used fairly low-level features in our analysis we have obtained

very high classification performance. However, the dataset used in the simulations

has been generated in a very controlled environment. This is not the case when

coming to real surgeries where there are different factors that make the scene more

variable. Factors such as blood, moving organs, smoke, changes in the viewpoint of
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the camera, occlusions, etc, may require an additional step of pre-processing in order

to extract better features before its use as time serie data. Towards the end goal of

having an automated system for training and skill assessment, it would be desirable

to jointly perform segmentation and categorization of the time series. Therefore, as a

future line of research, it would be interesting to study the capability of such models

to jointly segment and classify time-series data since the current approaches assume

segmented data.
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[11] B. Béjar, L. Zappella, and R. Vidal, “Surgical gesture classification from video

data,” in Medical Image Computing and Computer-Assisted Intervention – MIC-

CAI 2012, ser. Lecture Notes in Computer Science, N. Ayache, H. Delingette,

P. Golland, and K. Mori, Eds., vol. 7510. Springer, 2012, pp. 34–41.

[12] N. Padoy, T. Blum, S. Ahmadi, H. Feussner, M. Berger, and N. Navab, “Sta-

tistical modeling and recognition of surgical workflow,” Medical Image Analysis,

vol. 16, no. 3, pp. 632 – 641, 2012.
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