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Abstract 
 

Microelectromechanical systems (MEMS) have transformed consumer and industrial 

products through the integration of mechanical and electrical components within a single 

package. MEMS are ubiquitous in society, found predominantly in consumer electronics and 

automotive industries, providing interconnectivity across a wide variety of devices and 

everyday objects. To date, the materials selection for the structural element of many MEMS 

devices has been limited to a relatively small subset of materials, with silicon being the 

dominant choice. Employing MEMS sensors and switches in extreme environments will need 

advanced materials with a synergistic balance of properties, e.g. high strength, density, 

electrical conductivity, dimensional stability, and microscale manufacturability, but MEMS 

materials with this suite of properties are not readily available. Metallic systems are 

especially attractive for these applications due to their high density, strength and electrical 

conductivity. For this reason, metal MEMS materials are the motivation and focus for this 

dissertation. 

The synthesis of nanotwinned nickel-molybdenum-tungsten (Ni-Mo-W) alloys resulted in 

thin films with a very favorable suite of properties. Combinatorial techniques were employed 

to deposit a compositional spread of Ni85MoxW15-x, alloys and to investigate their physical 

and mechanical properties as a function of alloy chemistry. The addition of Mo and W was 

shown to significantly decrease the coefficient of thermal expansion (CTE) and provide a 

route for tailoring the CTE and its temperature dependence with compositional control. The 

measured CTE values for Ni-Mo-W matched that of commercial glass substrates currently 

employed in MEMS devices, broadening the spectrum of materials with the requisite 

dimensional stability for use in layered structures. Microscale mechanical testing was used to 
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measure the in-plane tensile properties; a linear-elastic response with fracture strengths 

ranging from 2-3 GPa was uncovered. The ultrahigh tensile strengths are attributed to the 

presence of highly-aligned nanotwins and their effectiveness as obstacles to dislocation 

motion. In situ micropillar experiments demonstrated compressive strengths of 3-4 GPa and 

extremely localized plasticity, both of which are strongly orientation dependent. The 

nanoscale twins underpinning this mechanical behavior do not impede motion of electrons, 

and nanotwinned Ni-Mo-W thin films were found to posses the electrical conductivity of 

bulk Ni alloys. Taken as a whole, this study highlights the balance of physical, thermal and 

mechanical properties for Ni-Mo-W, driven by nanoscale twin formation.  

Deposition of Ni-Mo-W films displayed a wide processing window for the formation of 

the requisite nanotwinned microstructure and attendant properties (CTE, strength, ductility 

and electrical resistivity). Microcantilever beams were designed and fabricated using 

traditional integrated circuit processing to translate thin film properties into prototype MEMS 

device structures.  Laser interferometry was used to certify the dimensional stability of the 

cantilever beams as-fabricated and after thermal exposure at elevated temperatures associated 

with wafer bonding. Micromachined cantilever beams showed excellent dimensional stability 

with beam deflection profiles on the order of tens of nanometers, elucidating a path beyond 

outstanding material properties to actual device structures for next generation metal MEMS 

devices. 

 

 

Advisor: Professor Kevin J. Hemker 
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CHAPTER 1: INTRODUCTION AND BACKGROUND 
 

1.1 Motivation 

Over the past several decades, microelectromechanical systems (MEMS) have 

revolutionized consumer and industrial products through the integration of mechanical and 

electrical components onto a single platform. These miniaturized devices have the ability to 

sense and actuate on the micrometer scale (10-6 or one millionth of a meter), while generating 

an effect on the macroscopic scale [1]. Among the first to conceptualize MEMS devices was 

world-renown physicist and Nobel laureate Richard Feynman. In December 1959, he 

delivered his seminal lecture at the annual American Physical Society meeting, titled 

“There’s Plenty of Room at the Bottom”, where he proposed the feasibility of manipulating 

and controlling materials on the nanometer scale (10-9 or one billionth of a meter). He 

concluded his talk by issuing a challenge to the scientific community, offering a $1,000 prize 

to the first person to construct an electrical motor smaller than 1/64th of an inch (around 400 

micrometers).  

MEMS have since become an integral part of a multi-billion dollar per year industry with 

numerous sensors, actuators and resonators [2, 3]. The onset of the computer age in the early 

1990’s [4] sparked a societal shift towards miniaturization and the advent of the “Internet of 

Things” (IoT), where MEMS have the potential to provide ubiquitous sensing and 

connectivity across both consumer and industrial sectors [5]. To date, the materials available 

for the structural element of MEMS devices has been limited to a relatively small subset, 

with silicon (Si) being the dominant choice. However, future MEMS devices can and will 
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benefit from high temperature structural materials with potential applications in aviation, 

power generation [6, 7], sub-sea drilling and high frequency switches [8].  

A broader variety of MEMS materials would offer a wider range of functionality and 

stimulate an increasingly expanding assortment of applications. The vast majority of 

commercial MEMS devices are still fabricated out of Si due the availability of integrated 

circuit (IC) foundries and photolithography techniques, providing the ability to shape 

structures on the micrometer scale in batch processing. Si also exhibits an extremely 

repeatable and predictable linear-elastic mechanical response and low coefficient of thermal 

expansion (CTE). However, poor mechanical properties at elevated temperatures hinder its 

use at these temperatures [9, 10]. Employing MEMS in extreme environments requires a 

broader spectrum of materials with a balance of physical, electrical and mechanical 

properties. Advanced metallic systems are especially attractive for these applications because 

they offer high density, strength and electrical and thermal conductivity. This dissertation 

describes the efforts to develop and characterize metallic materials with a superior balance of 

physical, electrical and mechanical properties for use in high temperature MEMS 

applications. Particular attention in this dissertation has been given to the careful control and 

design of the underlying microstructure that facilitates the desired suite of properties. 

1.2 Background 

Fundamentally, MEMS consist of micrometer scale structures, sensors, actuators and 

electronics all wrapped into the same package, Figure 1.1. Materials performance criteria 

vary depending on the application, but structural stability is critical in most applications.  
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Figure 1.1: A schematic representation of the components of MEMS, adapted from [1]. 

 

Dimensional stability is particularly important in capacitive-based sensors and guidance, 

where shape changes caused by thermal expansion or microstructural evolution must be 

significantly less than the expected changes induced during operation of the device. For this 

reason, Si is often chosen for its low CTE, but temperatures above 120°C have significant 

junction leakage [11] and Si exhibits poor creep strength at elevated temperatures. Although 

silicon-based devices currently dominate the market, there is increasing interest in 

developing emerging materials for high temperature MEMS applications [12-14]. Krogstad 

et al. reviewed the current materials available for high temperature MEMS [13], finding very 

few materials that possess a balance of thermal and mechanical stability above 200°C, Figure 

1.2. The use of ceramics, such as silicon carbide (SiC) and silicon carbon nitride (SiCN), 

have emerged as suitable materials for high temperature MEMS, but inherent residual 

stresses and complex fabrication techniques have limited their widespread use [11-13].  

MEMS 
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Figure 1.2: Examples of existing and potential MEMS materials for different temperature 
applications [13].  

 

1.2.1 LIGA Ni 

MEMS in extreme environments may also require the structural material to be both 

mechanically robust and electrically conductive, which points to metals. LIGA, which is a 

German acronym for lithography, electroplating and molding, was developed as a technique 

to produce high aspect ratio structural elements with complex shapes. The basic methodology 

is described in Figure 1.3 [15], where X-ray synchrotron radiation is used to expose thick 

polymer resist to create a mold in the desired shape, followed by electroplating and 

separation to release the newly shaped structure.  

 

Despite the ability to create precise and highly com-
plex geometries, the limited range of material properties
currently accessible is insufficient for many next gener-
ation applications, especially those subject to elevated
temperatures. These applications will not only require
operation in a harsher environment but will also require
MEMS devices that can sustain movement, including
surfaces that contact and wear. For example, power
MEMS, such as microturbines or miniature internal
combustion engines, are regarded as a highly promising
frontier in the MEMS community.11,12 Several examples
have been successfully developed; however, these proto-
types are severely limited in their capacity and efficiency
due to material deficiencies in high temperature mechan-
ical integrity and surface wear.13,14 Power MEMS have
received a considerable amount of attention in the last
decade, but even greater potential for expansion of
the field exists at more intermediate temperatures
(200–800 °C) as illustrated in Fig. 1.15 Unfortunately,
there are fewer economical material choices in this
temperature range that exhibit the combination of thermal
resistance, creep resistance, mechanical integrity, and
wear that will be required for the future sensors.

This has prompted renewed interest in exploring
a broader range of structural materials for intermediate
and high temperature MEMS applications and has illu-
minated the challenges associated with integrating new
materials into such a highly refined process. In particular,
well-defined material properties of materials that can be
fabricated and shaped on the microscale and used at
elevated temperatures are needed. Reliable definition of
such properties is a formidable challenge and further
refinement of micromechanical characterization techni-
ques is ongoing.16 This review was written to highlight
emerging materials suitable for elevated temperature
MEMSs from the perspective of processing and charac-
terization efforts. Si-based devices are introduced first to

provide a baseline for properties, processing routes, and
challenges. The following section covers other Si-based
material systems that are already in use or under
development such as silicon carbide (SiC) and silicon
carbonitrides (SiCN). The final section focuses on
Ni-based systems including the popular LIGA Ni, efforts
to modify pure nickel via vapor phase routes as well as
more complex chemistries ranging from Ni–W to conven-
tional Ni-based superalloys.

II. Si-BASED DEVICES

At the core of Si-based MEMS are the well-documented
electronic and mechanical properties of single-crystalline
and polycrystalline silicon (polysilicon). Integrated circuit
(IC) foundries provide access to two key processing
routes—surface and bulk micromachining—that have
played an important role in the development of Si-based
MEMS.17,18 An attractive aspect of silicon as a mechanical
MEMS material is the cross wafer uniformity of its
properties and its reproducibility that leads to a level of
predictability. Even within these sophisticated fabrication
approaches, there remain some challenges specific to
MEMS development. Surface micromachining is often
limited to a depth of several micrometers, which is
insufficient for delivery of compressive or bending
mechanical loads or to define the necessary channels or
voids necessary for fluidic chemical or biological appli-
cations. This can be addressed through bulk micromachin-
ing; however, the deep etching process may result in
undercutting or preferential etching and ultimately limits
the aspect ratio of certain features. Progress towards
higher aspect ratios through techniques like DRIE or
UV-photolithography is on going.19–21 Developing the
correct combination of materials, etchants and etch stops
must be considered for new configurations and are
especially important when introducing unconventional
complementary metal oxide semiconductor (CMOS) mate-
rials. Regardless of these drawbacks, Si-based fabrication
methods represent the most complete and well-understood
toolset for MEMS development.

Mechanical characterization of single-crystalline and
polycrystalline-Si has been the subject of numerous
studies; many of the results have been compiled by
Sharpe.16,22 Awide range of values for the elastic modulus
was initially published for both materials, but with time
both experimental measurements and numerical predic-
tions have converged on a Young’s modulus of between
160 and 166 GPa for randomly oriented and ,110.
textured polysilicon.23,24 The Young’s modulus of single-
crystalline Si is a function of orientation and can be
predicted from single crystal anisotropic elastic constants.
The fracture strength is less well characterized, largely
because brittle failure is dependent on flaw size and
distribution, which has been shown to vary significantly

FIG. 1. Examples of existing and potential MEMS materials with
respect to different applications and operating regimes.

J.A. Krogstad et al.: Emerging materials for microelectromechanical systems at elevated temperatures
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Figure 1.3: (a) Illustration of the basic workflow of the LIGA process, where (b) describes 
all of the steps needed to achieve the high aspect ratio structure [15]. 

 

 

deep etch X-ray lithography], and subsequent additive
processing of plating-through-mask and molding [2], has
moved from emerging microfabrication technology to well-
established non-silicon alternative microfabrication tech-
nology for MEMS. The LIGA technology provides unique
advantages over other manufacturing methods in the
fabrication of microstructures. LIGA-based technologies
are used and further developed in a number of R&D
institutes around the world. Spin-off companies and
commercial companies have also evolved around large-
scale synchrotron facilities. Commercial application of the
LIGA process is occurring.

This short review will not go back to the physical and
technological fundamentals of the technique [3–5]; it is
rather intended to recall the essential steps of the process
sequence and focus on a number of selected examples from
recent work performed in various LIGA groups around the
world and show the usefulness and advantages of this
technology.

The LIGA technology has been developed over a rather
long time span of two decades. During that time other high-
aspect-ratio technologies such as UV photolithography in
thick resist like SU8, often referred to as ‘UV–LIGA’ and
Deep Reactive Ion Etching (DRIE) of silicon have evolved
as well and challenge LIGA successfully in some specific
application areas. For planning LIGA role in future
manufacturing, a review of potential applications may
serve as a basis.

The fabrication of LIGA-parts concerning in particular
the lithographic aspect, materials base expansion through
replication technologies such as electroplating and mould-
ing and some associated challenges, as well as some
materials issues was reviewed in a former article by one of
the authors [6].1 The basic LIGA process and some aspects
of the process are recalled here to illustrate its strengths and
discuss challenges, not in terms of materials properties [7]
but in terms of applications. The purpose of this article is
thus providing input on the discussion of the LIGA potential
by summarizing proposals and ideas for LIGA applications
found in literature.

2. LIGA process and strengths

2.1. Basic process

The basic LIGA process is described in Fig. 1. In the first
step of the LIGA process, an X-ray sensitive polymer (resist)
layer up to several millimeters thick, typically polymethyl-
methacrylate (PMMA) is coated onto a conductive substrate.
A pattern from a mask is therefore transferred into the thick
resist layer via a 1:1 shadow proximity printing scheme using
hard X-rays from a synchrotron radiation source. After
exposure, selective dissolution of the chemically modified

irradiated parts of the resist layer in a chemical developer
results in a polymeric relief replica of themask pattern. Then,
depending on the material and number of parts selected for
the final product, different fabrication routes can be chosen,
which may include further steps of microreplication through
electroforming and/or a variety of molding techniques
(injection molding, embossing, casting, compression mold-
ing, etc.). The polymeric microstructure can be used:

† Simply as-is;
† As a lost mold for the formation of ceramic microparts;
† As an electroplating template to generate metallic

microparts. The microstructures are often further defined
by precision lapping to control thickness.

† As an electroplating template to produce a metallic
master mold, which can then be used multiple times
to mold cost-effective replicates in other materials,
primarily polymers. When producing large numbers of
electroplated components, the molded polymer parts
are used as lost molds for a second plating process.

The unique processing feature that enables the manu-
facture of thick microstructures characterized by very steep
walls and very tight tolerances is the creation of highly

Fig. 1. (a) Illustration of the basic LIGA process steps. The six panels stand
for lithography, polymer components after development, electroplating and

overplating the polymer template, a metal mold, and replication. (b) Basic

LIGA process sequence.

1 Many references are not repeated in this review.

C. Khan Malek, V. Saile / Microelectronics Journal 35 (2004) 131–143132
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Nickel (Ni) is very easily electrodeposited and has been well explored using the LIGA 

technique to offer a balance of electrical conductivity and load bearing capacity in high 

aspect ratio parts [16], see for example Figure 1.4 [17]. Reduced grain sizes (<100 nm) have 

been shown to dramatically increase the room temperature strength of LIGA Ni [18], but 

these small grain sizes exhibited poor thermal stability leading to grain growth and a 

significant loss in strength at temperatures as low as 200°C [19]. Moreover, the as-deposited 

microstructure and properties have been shown to vary dramatically with exact deposition 

conditions [17], and LIGA Ni has shown significant room temperature creep [20]. The use of 

LIGA Ni for commercial MEMS has been limited by this debilitating loss of microstructural 

stability and attendant properties at relatively low temperatures.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.4: Example of a microsystem consisting of LIGA Ni components; an escapement 
mechanism used for damping of a spring-mass-accelerometer structure through a rack-and-
pinion coupling [17]. 

which examines electrodeposits plated from clean single
metal-ion solutions at moderate pH levels, and current densi-
ties designed to deposit pure fully dense nickel.
Electrodeposited columnar and acicular nickelmicrostruc-

tures invariably have crystallographic texture that is often
associated with the electric field defined by the plating proc-
ess. In thick deposits, greater than 10 mm, crystallographic
texture of nickel deposits is completely independent of sub-
strate orientation and is thought to be controlled primarily
by plating bath current density, pH, and organic bath addi-
tives, such as levelers and brighteners.[11] Nickel elec-
trodeposited from a Watts bath, free of organic additives
and with pH, current density, and plating bath temperature
optimized for deposition rate, has been found to have a
strong ^100& crystallographic texture, allowing previous
investigators to distinguishing ^100& as the “free growth”Fig. 1—An example of a microsystem composed of LIGA components:
mode in Ni electrodeposition.[12] Adjustments in pH, currentescapement mechanism used to provide damping for a spring-mass acceler-

ometer structure via a rack-and-pinion coupling. density, and/or inclusion of organic additives in the bath
chemistry tend to inhibit nickel growth through formation
of H2, Hads, and Ni(OH)2 species on or very near the platingengineering impact. The objective of this article is to con- substrate. These inhibitors greatly affect the texture of the

sider the microstructural features and mechanical properties deposition, and ^110&, ^211&, and ^210& crystallographic tex-
of LIGA-fabricated nickel parts electrodeposited from two tures relative to the plating direction have been observed in
commonly employed plating electrolytes: a Watts bath and electrodeposited nickel from inhibited deposition proc-
a nickel sulfamate bath. Specifically, this study considers esses.[12,13,14] Very recently, a small volume fraction of pre-
how the different depositions respond to annealing, a prelude cipitates were observed in nickel electrodeposited from a
to an investigation to the diffusion bonding characteristics Watts-type bath. They were thought to be g -NiOOH, but
of microsystems fabricated from these materials. The the suggestion in the investigation was that a variety of
remainder of this section reviews previous characterization oxides, hydrides, or hydroxides could be codeposited withand properties work on electrodeposited nickel and small- nickel during inhibited electrodeposition.[14]scale direct-testing techniques necessary to evaluate the Many sources for mechanical properties measurementsmechanical properties of LIGA materials. The article then on electrodeposited nickel are cited in books and summaryproceeds into the fabrication, results, and analyses of the articles on electrodeposition.[9,11,15] Table I summarizes thoseLIGA nickel electrodeposited from the sulfamate and Watts measurements on nickel deposits from sulfamate and Wattsbath chemistries. bath chemistries and compares them with two examples ofElectrodeposited nickel has several well-known engi- bulk fabricated nickel.[16] The significant range of mechani-neering uses (aside from LIGA), and a significant amount cal properties given in Table I is caused by relatively smallof literature devoted to the properties and microstructure variations in bath chemistry and plating conditions used inof nickel electrodepositions has been published, e.g., 233 different reported results, illustrating the high sensitivity ofreferences given in Chapter 13 of Reference 9. Nickel elec- the mechanical properties of electrodeposited materials ontrodeposits can have structure and property characteristics

plating bath variables, such as bath chemistry, agitation, andcommon to many electrodeposited metals, such as high ten-
current density. The difficulties associated with controllingsile strength imparted by a fine grain structure and a response
those variables is the greatest drawback of electrodepositionto heat treatments similar to that of cold-worked metals. Four
as a structural component fabrication technique. Previouscommon types of microstructures found in electrodeposited
researchers have cited a Hall–Petch relationship betweenmetals, including nickel and nickel alloys, are: columnar,
the grain size, or grain width in the cases of columnar andfibrous, fine-grained, and banded. Columnar microstructures
acicular grains, and strength of the deposits.[17,18] Also, theare characteristic of deposits plated at low current densities
highly textured-oriented grain morphology in electrodepos-from simple ion-acidic solutions that contain no additives
ited nickel suggests a significant amount of anisotropy inand are controlled at slightly elevated temperatures.[11]
the mechanical response of this material, and variability ofGrains often nearly extend through the thickness of the
mechanical properties between electrodeposits of the samedeposit with widths that can exceed 10 mm. Fibrous, or
material suggests variability in their microstructure. In thisacicular, structures represent a refinement of columnar struc-
study, LIGA tensile-specimen thicknesses range from 150tures: they result from changes in certain parameters of the
to 250 mm, precluding reported dependences on mechanicaldeposition process, such as the presence of organic additives
properties measurements in free-standing thin films within the electrolyte solution that are thought to promote forma-
thicknesses less than about 10 mm.[19] To account for anytion of new nuclei rather than growth of existing grains. The
possible size effects and following the efforts of researcherstypical needlelike morphology has grain widths, or diame-
who have recently developed direct, mechanical test tech-ters, on the order of a few microns and grain lengths 10 to
niques of other MEMS materials,[20–25] this study attempts20 times the diameter. Ultrafine-grained and banded struc-
to perform mechanical testing on specimens with dimensiontures are obtained from more chemically complex solutions
that roughly scale with the size of typical LIGA compo-containing multiple metal ions or those with impurities.

These types of materials are not addressed in this article, nents,[22,25] i.e., 100s of microns.

540—VOLUME 33A, MARCH 2002 METALLURGICAL AND MATERIALS TRANSACTIONS A
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1.2.2 Ni alloys 

1.2.2.1 Electrodeposition 

Significant efforts have been made to improve the thermal stability of LIGA Ni through 

alloying with various solutes, such as tungsten (W) [21-24], cobalt (Co) [25, 26] and 

manganese (Mn) [25, 27, 28]. The binary Ni alloys showed improved room temperature 

stability compared to nanocrystalline LIGA Ni. At elevated temperatures Ni-Co alloys 

exhibited grain coarsening [25, 26] and Ni-Mn alloys retained much of its as-deposited 

strength, but the magnetic properties and low density limited their implementation into 

MEMS [25]. Haj-Taieb et al. demonstrated the enhanced thermal and mechanical stability 

achieved by alloying with 12-15 at.% W, as shown in Figure 1.5 [21]. The increased strength 

was largely due to the fine nanometer grain size achieved through electrodeposition, which 

appears to stabilize with small additions of W in solid solution [22, 23].  

 

 

 

 

 

 

 

 

 

 

Figure 1.5: Microhardness of LIGA Ni and different alloy content LIGA Ni-W alloys as a 
function of annealing temperature (2 hour duration) [21]. 

3 Results and discussion

The deposited material shows a relatively homogenous

thickness and composition along the wafer and within

cross-section of the specimens, as shown in (Haseeb 2008).
In Fig. 4 the microhardness values of Ni–W layers

versus the annealing temperature are shown for different

compositions. The behaviour of these alloys is compared to
pure nickel electrodeposited from sulfamate electrolyte.

The microhardness values of pure nickel drop strongly

after annealing and reach a plateau at the value of
*100 HV which represents only 33% of the initial value

(before annealing) as shown in (Bacher 1998).

In contrast, the Ni–W layers show much higher micro-
hardness values at the as-deposited state compared to pure

nickel. After annealing, the microhardness values increase

slightly at intermediate temperatures (300–500!C) reaching
a maximum at 400!C and decrease a little at higher

annealing temperatures. We notice that the microhardness

values of Ni–W layers after annealing are higher than the
values of pure nickel even at the as-deposited state.

Yamasaki also presented in previous work (Yamasaki

1998) the microhardness values of electrodeposited Ni–W
with higher tungsten content in dependence of the

annealing duration. The curves show similar behaviour to

the microhardness curves presented in this work. However,
they reach higher values, probably due to their higher

tungsten content.
The FIB images presented in Fig. 5 show plan views and

cross views of pure nickel annealed at 700!C and Ni-15

at% W annealed at 500 and 700!C. In Fig. 5a the
remarkable grain growth of the annealed electrodeposited

pure nickel compared to the initial grain size at the

Fig. 3 Schematic view of the microsample testing set-up

Fig. 4 Microhardness of LIGA Ni and different LIGA Ni-W alloys
and its dependence on the annealing temperature (2 h duration)

Fig. 5 Focused ion beam (FIB)
microscopy images showing the
microstructures of annealed
LIGA Ni and LIGA Ni-W after
annealing in plan (above) and
cross (below) views

Microsyst Technol (2008) 14:1531–1536 1533

123
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Although electrodeposition can be integrated with MEMS processing, precise compositional 

control is challenging when depositing a multi-alloy system. Additionally, the attendant 

properties are highly sensitive to deposition conditions, requiring optimization for each new 

composition. For example, in Figure 1.6 LIGA Ni-5at%W and Ni-15at%W alloys were 

deposited with modest variations in parameters but displayed a 2x change in strength [23]. 

The authors note that the decrease in strength between the two alloys cannot be explained by 

the solute content, but instead by the microporosity associated with the processing 

parameters. 

 

 

 

 

 

 

 

Figure 1.6: Uniaxial tension stress-strain curves for as-deposited and annealed Ni-W with (a) 
Ni-5at.%W and (b) Ni-15at.%W [23]. 

 

1.2.2.2 Vapor-phase-aluminization 

Burns et al. proposed the use of pure LIGA Ni enhanced by vapor-phase-aluminization to 

impart the multiphase strengthening behavior commonly associated with Ni-base superalloys 

[29]. The resultant dual phase Ni-Ni3Al (γ-γ’) microstructure shown in Figure 1.7 showed 

astounding microstructural stability compared to LIGA Ni with a 3-4x increase in strength. 

However, the multi-step fabrication process and long heat treatments at high temperature (62 

conclusive evidence to indicate whether the attendant
microstructural stability is due to solute drag, thermody-
namic stabilization or a combination of the two.

The stress–strain response of LIGA Ni–5 at.% W and
Ni–15 at.% W microtensile samples were obtained and
representative curves are given in Figure 3. The Young’s
modulus (E) was determined by linear regression of the
initial straight part of the curves and found to be consis-
tent with measurements made by nanoindentation
(Table 1). The measured modulus of the Ni–15 at.% W
samples is in good agreement with literature values of
E for Ni [26] and with simple Voigt–Reuss bounds for
Ni and W. The reduced value for the Ni–5 at.% W
samples is similar to what has previously been reported
for LIGA Ni and is associated with microporosity [8].
The as-deposited Ni–W samples all exhibited brittle fail-
ure at room temperature and it is interesting to note that
the fracture strength of the Ni–5 at.% W samples was
found to be significantly lower than for the Ni–15 at.%
W samples (Fig. 3 and Table 1). The difference in
mechanical properties can be attributed to the variation
in the processing parameters used in electrodeposition,
which have been shown to have an important effect on
both the underlying microstructure and the mechanical
properties of LIGA Ni structures [9,13]. The reduced
stiffness and strength observed in the Ni–5 at.% W
samples can both be attributed to the presence of
microporosity.

Figure 3 illustrates the positive effect of annealing on
the mechanical behavior of the LIGA Ni–W samples.
Heat treatment increased the yield strength, ultimate
tensile strength and the tensile elongation to failure of
all Ni–W alloys. The Ni–5 at.% W samples annealed at
400 !C remained quite brittle but the Ni–15 at.% W
samples showed significant plasticity, strain hardening
and a tensile strength of 2 GPa. Annealing at 600 !C
increased the ductility of both samples but deceased
the strength of the Ni–15 at.% W samples. Annealing
at 700 !C further increased the ductility and decreased
the strength, although the strength of these samples
was markedly higher than was reported for pure LIGA
Ni samples [8–10,13].

The strength of Ni–W alloys scales with the amount
of W in the alloy and may be related to solid solution,
precipitation or grain boundary strengthening. The lack
of precipitates precludes precipitation strengthening.
The strength can be modeled using the well-known
Hall–Petch relationship:

ry ¼ r0 þ kd#1=2;

where r0 is the intragranular strength of the alloy, d is
the average grain size and k is a material constant.
Hall–Petch plots for pure LIGA Ni, LIGA Ni–5 at.%
W and LIGA Ni–15 at.% W are compared in Figure 4.
The yield strength of each material appears to vary with
reciprocal square root of grain size, which indicates that
grain boundary strengthening is active in each of the
alloys. The data for the LIGA Ni samples, which was
taken from Ref. [12], appears to have a different magni-
tude and slope than the Ni–W alloys that were measured
in the current study. This difference may be related to
variations in processing as the underlying microstruc-
ture of electrodeposited Ni is very sensitive to deposition
parameters. This difference may also be related to micro-
structural differences in the alloys. The limited range in
grain size does not allow for accurate extrapolation to
single-crystalline values of the intrinsic (intragranular)
strengths of the alloys. The magnitude of the measured
strength appears to scale with W content, but this could
be explained by changes in slope (the effect of W on
grain boundary strengthening) as well as solid-solution
strengthening. We note that Schuh et al. [17] have
modeled the effect of solid-solution strengthening of W
in Ni and predicted it to be very small ($40 MPa). In
this light, the most prominent effect of W on the strength
of electrodeposited Ni–W alloys seems to be related to
intergranular strengthening.

Figure 3. Uniaxial tensile stress–strain curves for as-deposited and
annealed Ni–W samples: (a) Ni–5 at.% W and (b) Ni–15 at.% W.

Table 1. Fracture stress, hardness and elastic modulus of the as-deposited LIGA Ni–W obtained from microtensile and nanoindentation tests.

Samples No. Fracture strength (MPa) Hardness (GPa) E from tension test (GPa) E from hardness tests (GPa)

Ni–5 at.% W 8 764 ± 27 7.03 ± 0.35 180 ± 12 179 ± 7
Ni–15 at.% W 8 1049 ± 40 7.96 ± 0.21 204 ± 5 222 ± 5

Figure 4. Hall–Petch plot showing the measured yield strength of
Ni–W samples as a function of the inverse square root of grain size.
For comparison, data for pure LIGA Ni [12] are also shown.

S. J. Suresha et al. / Scripta Materialia 63 (2010) 1141–1144 1143
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hours at 1200°C) required for homogenization would be detrimental for integration with 

electrical components in MEMS devices.  

 

 

 

 

 

 

 

 

 
Figure 1.7: Aluminized LIGA Ni-Al, showing two phase Ni-Ni3Al  (γ-γ’) microstructure 
after homogenizing for 62 hours at 1200°C, adapted from [29]. 

 

1.2.2.3 Sputter deposition 

Sputter deposition methods have the ability to maintain multi-alloy compositions with 

ease and are commonly used in MEMS fabrication to deposit sacrificial or conductive layers 

[30]. Binary Ni-W alloys have demonstrated a wide range of compositions, beyond the 

equilibrium solubility limits, with enhanced microstructural control [31, 32]. Continued 

efforts from Burns et al, demonstrated the ability to sputter the desired composition of a Ni-

base superalloy, Inconel 718, with a balance of thermal and mechanical properties [33]. The 

as-sputtered microstructure was shown to have small nanocrystalline grains, providing 

fracture strength slightly higher than the bulk value. After standard aging procedures for 

and ductility are observed to decrease with increasing
amounts of Al. Bulk Ni-based superalloys generally con-
tain 60–70 vol.% c0 precipitates, and similar volume
fractions are achieved by aluminizing to Al contents of
!20 at.%. Al concentrations below this amount produce
too few precipitates, whereas concentrations approach-
ing 25 at.% overload the matrix with c0 precipitates,
which are relatively brittle in their polycrystalline form
at room temperature. The scatter in these plots can be
attributed to lingering porosity, which could be reduced
by optimizing the vapor-phase aluminization and
homogenization processes or by hot isostatic pressing.
Nevertheless, the impressive strength enhancements
realized over standard LIGA Ni point to the potential
use of vapor-phase aluminization of LIGA Ni parts as
a viable processing route for increasing the strength
and thermal stability of microprocessed metallic materi-
als for MEMS and other microscale applications.

In summary, the results presented in this letter con-
firm that LIGA Ni microcomponents can be aluminized
and heat treated to produce c-c0 microstructures. The re-
duced size of these components facilitated uniform dis-
tribution of Al and the creation of superalloy
microstructures with bi- and trimodal c0 distributions.
These microscale Ni-based superalloys exhibit signifi-
cant improvements in both thermal stability and
room-temperature mechanical properties. Variations in
Ni–Al stoichiometry and ternary additions remain to
be optimized, but are expected to provide viable process-
ing routes for tailoring the strength and ductility of
metallic microcomponents.

This work was supported by a Materials World
Network grant with support from the National Science
Foundation under grant number 0806753 and from
the Deutsche Forschungsgemeinschaft under grant
number AK27/4-1. The Karlsruhe Nano Micro Facility,
a Helmholtz Research Infrastructure at the Karlsruhe
Institute of Technology, provided the LIGA Ni. Special
thanks to Tresa Pollock and Sara Perez-Bergquist for
their guidance with the aluminization process.
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Figure 4. (a) Room temperature stress–strain plot comparing an Ni–
18 at.% Al specimen and a standard LIGA Ni specimen subjected to
the same homogenization heat treatment. Compilation of room-
temperature tests conducted on Ni–Al specimens showing (b) the
ultimate tensile strength and (c) the strain to failure as a function of
aluminum content.
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the relative rates of interdiffusion. Conditions where the
outward diffusion ofNi is greater than the inward diffusion
of Al would result in the formation of internal porosity
and should therefore be avoided. Conditions that favor
the inward diffusion of Al are much more favorable.
Whatever the cause, the quality of the samples associated
with the higher-temperature heat treatment is clear, and
the remainder of the samples characterized for this study
were homogenized at 1200 !C for 62 h.

TEM foils were polished with a Struers twin-jet elec-
tropolisher and an electrolyte of 15 vol.% perchloric acid
and 85 vol.% ethanol. TEM observations of the alumi-
nized and heat treated microtensile specimens provided
clear evidence of c0-Ni3Al precipitation (Fig. 3) and for-
mation of the c-c0 microstructure in a MEMS material
– which was the primary goal of this study. The superlat-
tice reflections in the {110} and {100} diffraction
patterns, shown as insets in Figure 3(a) and (c) respec-
tively, are produced by the ordered L12 c0 precipitates.
The dark-field images shown in these figures were created
using superlattice reflections that cause the c0 precipitates
to appear bright on the dark face-centered cubic c-Ni ma-
trix. The volume fraction of c0 precipitates was observed
to vary with Al content. For example, the specimen im-
aged in Figure 3(a), with 24 at.% Al, contained over
60 vol.% precipitates, while that in Figure 3(c), with
15 at.% Al, contained !25 vol.% precipitates.

The size of the c0 precipitates was observed to be tri-
modal in the specimen containing 24 at.% Al, with large
(!600 nm) coherent (blocky) precipitates, a significant
number of smaller (!50 nm) precipitates and even finer
sized (<50 nm) precipitates in the channels between the
larger precipitates (Fig. 3(a) and (b)). The largest precip-
itates appear to have formed and coarsened during the
homogenization process at 1200 !C because no solvus
temperature exists for binary Ni–24 at.% Al. The smal-
ler (!50 nm) precipitates can be associated with cooling
to and ageing at 900 !C. The finest precipitates, <50 nm
in size, likely formed on cooling to room temperature
from 900 !C. This trimodal distribution is similar to
what can be seen in commercial subsolvus Ni-based
superalloys [15]. In bulk superalloys, primary c0 precip-
itates form during the initial processing steps, secondary
c0 precipitates emerge during subsequent ageing heat
treatments and tertiary c0 precipitates form during cool-
ing. The high Al content LIGA Ni specimens show a
similar trimodal precipitate distribution, but in these al-
loys the largest or “primary” c0 precipitates form during
the homogenization heat treatment, thus allowing for
formation of a trimodal distribution with a single heat
treatment and cooling sequence.

In the case of the specimen containing 15 at.% Al, a bi-
modal precipitate distribution was observed (Fig. 3(c)).
The solvus temperature for binary Ni–15 at.% Al is
1060 !C. As a result, this sample was solutionized at the
homogenization temperature of 1200 !C and no large
precipitates were observed in this sample. After cooling
and ageing at 900 !C, the precipitates started to nucleate
and grow, forming !50 nm sized precipitates just like in
the 24 at.% Al sample. Further cooling to room tempera-
ture resulted in very fine precipitates, <20 nm in size.
These results show that the homogenization heat treat-
ment of LIGA Ni provides an advantageous methodol-
ogy for producing extremely fine-scale bi- and trimodal
microstructures. Optimized microstructures require full
homogenization and subsequent ageing heat treatments,
but the processing window for the formation of fine bi-
and trimodal c-c0 microstructures follows naturally from
the processing routes employed in this study.

Quasi-static microtensile experiments were employed
at room temperature to measure and compare the
mechanical response of standard and aluminized LIGA
Ni microtensile specimens with compositions ranging
from 0 to 27 at.% Al. All specimens were heat treated
at 1200 !C for 62 h and subjected to the cooling se-
quence outlined above. They were pulled to failure at
a strain rate of 2 " 10#4 s#1. The difference in strength
between the standard and aluminized specimens is illus-
trated in the stress–strain curve presented in Figure 4(a),
where the yield and ultimate tensile strengths of an alu-
minized specimen containing 18 at.% Al can be seen to
be three to four times higher than the standard LIGA
Ni specimens. This increase in strength has been realized
while maintaining similar tensile ductility.

These trends are further explored in Figure 4(b) and
(c), in which the ultimate tensile strength and strain to
failure are plotted as a function of Al content. The
strength appears to increase with Al content up to a
maximum at !20 at.%. The ductility also remains quite
high up to !20 at.%. Beyond this point, both strength

600 nm

200 nm

(c)

(a)

(b)

200 nm

 

Figure 3. TEM micrograph of the Ni–Ni3Al microstructure present
after homogenization of: (a) an Ni–24 at.% Al microtensile specimen
with a {110} Ni diffraction pattern containing superlattice spots
corresponding to Ni3Al (inset); (b) an Ni–24 at.% Al specimen
magnified to show secondary and tertiary c0 precipitates; and (c) an
Ni–15 at.% Al microtensile specimen with a {100} Ni diffraction
pattern showing Ni3Al superlattice spots (inset).

D. E. Burns et al. / Scripta Materialia 67 (2012) 459–462 461
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Inconel 718, far superior strength (2 GPa) was observed and attributed to the fine grain 

structure that did not coarsen during heat treatment (Figure 1.8).  

 

 

 

 

 

 

 

 

 

 

Figure 1.8: Sputter deposited commercial Ni alloy 718 aged at 720°C for 8 hours and 620°C 
for 8 hours, adapted from [33]. The high strength of 2 GPa is far superior to the bulk reported 
value and retains a moderate 3% ductility. 

 
The high strength and tailorable microstructure realized in both Inconel 718 and the 

supersaturated binary Ni-W alloys suggest that sputtering offers unique opportunities for 

developing novel far-from-equilibrium microstructures and properties of multi-component 

alloys.  

1.3 Sputter deposited Ni-Mo-W alloys 

The evolution of metal MEMS materials has demonstrated huge advances from the 

instabilities associated with LIGA Ni. Sputter deposition offers the most flexibility and 

compatibility with existing MEMS processes. However, the use of metal alloys in high 

temperature MEMS will require more than a balance of physical and mechanical properties. 

were conducted to measure and compare their mechanical response.
Microtensile results revealed that 718 films exhibit outstanding room
temperature mechanical properties after aging (Fig. 2(b)). The strength

of the aged films approach 2 GPa, which is higher than the strength ob-
served in the as-deposited films and that reported for aged bulk 718
[14]. More striking than the strength was the fact that the sputtered
heat-treated films possessed an elastic–perfectly plastic response with
several percent plastic strain to failure. The observed increases in
strength, plasticity, and toughness suggest that this alternate precipita-
tion pathway could be beneficial for room temperature MEMS
applications.

In two-phase bulk alloys, increases in strength are generally associat-
ed with precipitation strengthening, but the relatively large size and
spacing of δ precipitates in the aged 718 films suggested that the ob-
served increase in strength cannot solely be attributed to precipitation
strengthening. The grain size is still very refined after the heat treatment,
and thus grain boundary strengthening was expected to play a signifi-
cant role. The average grain size of bulk alloy 718 in plate form is approx-
imately 45 μm. Given that the average grain size of the aged films was
200 nm, and assuming a Hall–Petch coefficient of 750MPa μm1/2, typical
of many Ni-base superalloys [15], the refined grain size is expected to
provide a strengthening increment of approximately 1500 MPa. Thus,
grain boundary strengthening can account for the very high strengths
observed in these films. The ductile behavior of the heat-treated films
may be attributed to the increased grain size and the observation of
cleaner, more relaxed grain boundaries.

The elevated temperature behavior of the heat-treated films was
measured with microtensile experiments performed at 700 °C
(Fig. 2(c)). These experiments were conducted using the same
microtensile setupmentioned abovewith the addition of grips that per-
mit resistive heating of the sample and a pyrometer tomeasure temper-
ature. The results indicate that the heat-treated films maintain a
strength of approximately 750 MPa at 700 °C, while exhibiting several
percent ductility. It is worth noting that resistive heating is likely re-
sponsible for early necking and the drop in strength later in the test.
The observed elevated strength and ductility (toughness) are very
promising when compared to current MEMS materials. Nevertheless,
the ultimate tensile strength measured for these films is approximately
100MPa lower than the value reported for bulk alloy 718 at 700 °C [14].
This lower strength is likely associatedwithmicrostructural differences.
The bulk alloy was optimized to produce a dense population of finely
dispersed γ″ precipitates, which are most favorable for high tempera-
ture operation [10,16]. The larger, more sparsely distributed δ-phase
precipitates observed in agedfilms appear to be less effective.Moreover,
the reduced grain size and increased grain boundary strengthening that
governed the room temperature properties is not as effective at elevat-
ed temperatures.

The diffusion pathways of the sputtered 718 thin films were further
investigated by subjecting the as-deposited films to a high temperature
heat treatment (8 h at 1200 °C) prior to the standard 718 aging proce-
dure. The 1200 °C heat treatment was introduced to grow the grain
size and thus mitigate the nucleation of δ-phase precipitates at grain
boundaries. An unintended consequence of the heat treatment was
the loss of some Al and Nb as reported in Table 2. TEM observations
(Fig. 3(a–c)) of the films demonstrate that the high temperature heat
treatment produces a drastically different microstructure after aging
compared to films without the heat treatment (Fig. 2(a)). A fine distri-
bution of γ″ precipitates were observed in the bright and dark field mi-
crographs (Fig. 3(a,c) respectively) of 718 films that were subject to the
high temperature heat treatment at 1200 °C for 8 h before standard 718
aging. The presence of γ″ precipitates was confirmed by {1/2 1 0}

Table 2
Chemical compositions of bulk alloy 718, as-sputtered alloy 718, and sputtered and heat-treated (1200 °C for 8 h followed by standard aging) alloy 718. The bulk 718 served as a standard.

Al (at.%) Nb Mo Ti Cr Fe Ni

Bulk 718 1.2 ± 0.1 2.9 ± 0.1 2.1 ± 0.1 1.7 ± 0.1 19.4 ± 0.1 21.1 ± 0.2 51.6 ± 0.2
As-sputtered 718 1.0 ± 0.1 3.0 ± 0.1 2.2 ± 0.1 1.6 ± 0.1 19.5 ± 0.1 21.3 ± 0.1 51.2 ± 0.3
Sputtered and heat treated 718 0.6 ± 0.1 2.6 ± 0.1 2.3 ± 0.1 1.7 ± 0.1 20.1 ± 0.1 22.5 ± 0.2 50.2 ± 0.3
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Fig. 2. Results after aging an as-deposited 718 film at 720 °C for 8 h and 620 °C for 8 h:
(a) Brightfield TEM micrograph revealing coarse δ precipitates (black arrows). (b) Room
temperature stress–strain curves. The dotted line corresponds to the reported room tem-
perature strength of aged bulk alloy 718. (c) Stress–strain curves from microtensile tests
conducted at 700 °C. The dotted line corresponds to the reported strength of bulk alloy
718 tested at 700 °C.
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were conducted to measure and compare their mechanical response.
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several percent plastic strain to failure. The observed increases in
strength, plasticity, and toughness suggest that this alternate precipita-
tion pathway could be beneficial for room temperature MEMS
applications.

In two-phase bulk alloys, increases in strength are generally associat-
ed with precipitation strengthening, but the relatively large size and
spacing of δ precipitates in the aged 718 films suggested that the ob-
served increase in strength cannot solely be attributed to precipitation
strengthening. The grain size is still very refined after the heat treatment,
and thus grain boundary strengthening was expected to play a signifi-
cant role. The average grain size of bulk alloy 718 in plate form is approx-
imately 45 μm. Given that the average grain size of the aged films was
200 nm, and assuming a Hall–Petch coefficient of 750MPa μm1/2, typical
of many Ni-base superalloys [15], the refined grain size is expected to
provide a strengthening increment of approximately 1500 MPa. Thus,
grain boundary strengthening can account for the very high strengths
observed in these films. The ductile behavior of the heat-treated films
may be attributed to the increased grain size and the observation of
cleaner, more relaxed grain boundaries.

The elevated temperature behavior of the heat-treated films was
measured with microtensile experiments performed at 700 °C
(Fig. 2(c)). These experiments were conducted using the same
microtensile setupmentioned abovewith the addition of grips that per-
mit resistive heating of the sample and a pyrometer tomeasure temper-
ature. The results indicate that the heat-treated films maintain a
strength of approximately 750 MPa at 700 °C, while exhibiting several
percent ductility. It is worth noting that resistive heating is likely re-
sponsible for early necking and the drop in strength later in the test.
The observed elevated strength and ductility (toughness) are very
promising when compared to current MEMS materials. Nevertheless,
the ultimate tensile strength measured for these films is approximately
100MPa lower than the value reported for bulk alloy 718 at 700 °C [14].
This lower strength is likely associatedwithmicrostructural differences.
The bulk alloy was optimized to produce a dense population of finely
dispersed γ″ precipitates, which are most favorable for high tempera-
ture operation [10,16]. The larger, more sparsely distributed δ-phase
precipitates observed in agedfilms appear to be less effective.Moreover,
the reduced grain size and increased grain boundary strengthening that
governed the room temperature properties is not as effective at elevat-
ed temperatures.

The diffusion pathways of the sputtered 718 thin films were further
investigated by subjecting the as-deposited films to a high temperature
heat treatment (8 h at 1200 °C) prior to the standard 718 aging proce-
dure. The 1200 °C heat treatment was introduced to grow the grain
size and thus mitigate the nucleation of δ-phase precipitates at grain
boundaries. An unintended consequence of the heat treatment was
the loss of some Al and Nb as reported in Table 2. TEM observations
(Fig. 3(a–c)) of the films demonstrate that the high temperature heat
treatment produces a drastically different microstructure after aging
compared to films without the heat treatment (Fig. 2(a)). A fine distri-
bution of γ″ precipitates were observed in the bright and dark field mi-
crographs (Fig. 3(a,c) respectively) of 718 films that were subject to the
high temperature heat treatment at 1200 °C for 8 h before standard 718
aging. The presence of γ″ precipitates was confirmed by {1/2 1 0}
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Chemical compositions of bulk alloy 718, as-sputtered alloy 718, and sputtered and heat-treated (1200 °C for 8 h followed by standard aging) alloy 718. The bulk 718 served as a standard.

Al (at.%) Nb Mo Ti Cr Fe Ni

Bulk 718 1.2 ± 0.1 2.9 ± 0.1 2.1 ± 0.1 1.7 ± 0.1 19.4 ± 0.1 21.1 ± 0.2 51.6 ± 0.2
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Fig. 2. Results after aging an as-deposited 718 film at 720 °C for 8 h and 620 °C for 8 h:
(a) Brightfield TEM micrograph revealing coarse δ precipitates (black arrows). (b) Room
temperature stress–strain curves. The dotted line corresponds to the reported room tem-
perature strength of aged bulk alloy 718. (c) Stress–strain curves from microtensile tests
conducted at 700 °C. The dotted line corresponds to the reported strength of bulk alloy
718 tested at 700 °C.
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MEMS devices depend on the ability to shape features on the micrometer scale and hold the 

requisite dimensional stability during device operation. The quest for metal MEMS materials 

with dimensional stability leads to a discussion of the CTE. Most MEMS are composed of 

multi-layered structures, where matching the CTE of individual layers to the substrate 

provides a pathway to reduce thermal distortions. Nickel-molybdenum (Ni-Mo) alloys have 

been shown to reduce the CTE and improve creep and corrosion resistance when compared 

to pure Ni [34-37]. Pavlovic et al. has shown Mo to be an effective alloying element for 

reducing the CTE of Ni [37], as shown in Figure 1.9.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9: Coefficient of thermal expansion versus temperature for Ni and Ni-Mo alloys 
determined from commercial dilatometer methods, adapted from [37]. 
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Figure 5. The coefficient of thermal expansion versus temperature for Ni, NiCr, NiRe and
NiMo alloys as determined from polynomial fitting of the data in figure 4.

the NiCr, NiMo and NiRe alloys (reproduced from Mei et al 1994) are shown in figure 6.
As noted earlier, the accuracy of these classical simulations is most reliable well above the
Debye and Curie temperatures (450 and 630 K respectively for Ni). Consequently, we plot
in figure 7 the variation of the ↵s with x (at.% of Cr, Mo and Re) at 903 K, the highest
temperature of our measurements, and compare these results with the theoretical predictions
of Mei et al for 903 K. Examining these comparisons in figures 5–7, the following points
are noted.

(i) The best quantitative agreement between theory and experiment, in terms of variations
with both x and T , is observed for the NiMo system. The prediction of the theory of a
nearly temperature-independent ↵ for the 15% Mo alloy at high temperatures and a strongly
temperature-dependent ↵ for the 10% Mo alloy are clearly borne out by the experiments. It
is noted that the NiMo system also yields the best quantitative agreement in the a0 versus
x data (figure 2).

(ii) For the NiCr alloys, the agreement is considered fair, in that similar trends of the
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The ability to hold geometrical tolerances and mechanical integrity are paramount for the 

design of MEMS, which motivated the development of sputter deposited nickel-

molybdenum-tungsten (Ni-Mo-W) thin films. The improved stability of Ni-W, outlined in 

section 1.2.2.1, combined with the CTE benefit of Mo was hypothesized to further decrease 

the CTE of Ni while retaining its stable thermal and mechanical behavior.  

Initial studies on sputter deposited solid solution Ni83.6Mo14W2.4 have shown exceptional 

strength and linear-elastic behavior to 3.5 GPa, as shown in Figure 1.10 [38]. The enhanced 

strength was found to evolve from high density of growth nanotwins and stacking faults that 

form perpendicular to the <111> face-centered cubic (fcc) growth direction (Figure 1.11) 

[38].  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.10: Uniaxial tension stress-strain curve for Ni83.6Mo14W2.4 compared to polysilicon, 
nanocrystaline Ni, Ni-15.at%W and nanotwinned copper (Cu) to demonstrate the ultrahigh 
3.5 GPa strength. Adapted from [38]. 
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Figure 1.11: (a) Cross-sectional focused ion beam channeling contrast image of the 
Ni83.6Mo14W2.4 films. (b) Transmission electron microscope (TEM) bright field micrograph 
with a selected area electron diffraction pattern inset, showing the matrix and twin. (c) High 
resolution TEM image of the matrix (red), twins (blue) and stacking faults (yellow). Adapted 
from [38]. 

 

The mechanical response was attributed to the combined solid solution strengthening, 

described using the well-known Fleischer model [39] that accounts for dislocation-solute 

interactions from local changes in elastic modulus and atomic spacing, and twin boundary 

strengthening using the confined layer slip (CLS) model [40]. The nanotwins do not impede 

electron motion, offering high electrical conductivity while retaining the small planar defect 

spacing that underpins the ultrahigh strengths [38]. The underlying microstructure has been 

shown to have stability through 600°C and undergo significant recrystallization only after 

800-1000°C, as shown in Figure 1.12 [41]. The thermal, mechanical and electrical properties 

of Ni83.6Mo14W2.4 are largely attributed to the unexpected nanotwin formation. A review of 

other nanotwinned fcc metals showing similar strength and stability will be discussed in 1.4.   
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Figure 1.12: Plane view bright field transmission electron microscopy image of the 
Ni83.6Mo14W2.4 films (a) as-deposited, heat treated at (b) 600°C, (c) 800°C and (d) 1000°C 
[41]. 

 

1.4 Nanotwinned fcc metals 

Nanostructured materials have received considerable attention in recent years for various 

engineering applications [42]. The design of these nanoscale materials is grounded in the 

exploitation of the processing-structure-properties relations to achieve a balance of strength 

and ductility [43-47]. Nanocrystalline materials typically exhibit higher strength than their 

more conventional microcrystalline counterparts, but the suppression of the dislocation-based 

plasticity at such small grain sizes inhibits significant ductility and work hardening [42, 46]. 

Despite their improved hardness and strength, nanocrystalline metals are often susceptible to 

3.2. Microstructure of the films

Plane-view, bright-field TEM images of the as-deposited films
and the films heat-treated at different temperatures are shown in

Fig. 2. As-deposited samples had an in-plane grain size of approx-
imately 100 nm. Extensive grain growth was previously reported
for Ni thin films that were annealed in a relatively low temperature
regime (below 500 !C) [35], but TEM observations of the Ni-Mo-W

Fig. 1. (a) XRD data showing a strong (111) out-of-plane texture for the as-deposited Ni83.6Mo14W2.4 films and evidence of recrystallization in the films annealed above 600 !C. (b)
Magnified view indicating formation of M6C type carbides. XRD data for polycrystalline Ni is included for reference.

Fig. 2. Plane view bright field TEM images of the Ni83.6Mo14W2.4 films (a) as-deposited, heat-treated at (b) 600 !C, (c) 800 !C, and (d) 1000 !C.

G.-D. Sim et al. / Acta Materialia 144 (2018) 216e225218
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thermal and mechanical microstructural instabilities [48-54] with lower electrical 

conductivity. In comparison, nanotwinned fcc metals offer strength enhancements similar to 

those for nanocrystalline materials, while also maintaining a more beneficial suite of 

properties.  

Significant interest in nanostructured materials synthesis was focused on nanotwinned 

metals after the realization of the ultrahigh strength and electrical conductivity achievable 

with nanotwinned Cu [55]. The unusually high strength (~1 GPa) and ductility for 

nanotwinned Cu have been attributed to a high density of coherent twin boundaries (CTBs) 

spaced a few nanometers apart, within sub-micrometer grains. CTBs are predicted to be more 

stable against migration than conventional grain boundaries since their excess energies are 

much lower than that of grain boundaries [56, 57]. The dependence on nanotwin thickness 

has been shown to be analogous to the well-known Hall-Petch relation [58], where fine twin 

lamella are pivotal to maximizing both strength and ductility [59, 60]. Figure 1.13 shows the 

tensile stress-strain response of nanotwinned Cu for various twin thickness [59]. The 

dependence on twin spacing is clear and post-mortem transmission electron microscopy 

(TEM) observations of these samples revealed dislocation pile-ups at the twin boundaries, 

suggesting that the enhanced strength is associated with the effectiveness of twin boundaries 

as obstacles to dislocation motion. This is consistent with the “smaller is stronger” 

phenomenon, but below a critical twin thickness partial dislocation nucleation and glide on 

the twin planes can result in a degradation of strength [60, 61]. 
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Figure 1.13: Uniaxial tension stress-strain response for nanotwinned Cu specimens showing 
the effect of twin spacing, taken from [59].  

 

The orientation of the CTBs with respect to the loading direction determines the active 

deformation mechanism for nanotwinned metals. CTBs can confine dislocation motion 

within the twin, provide easy dislocation glide along the twin planes or act as barriers to 

dislocation transmission. You et al. demonstrated anisotropic plasticity in columnar-grained 

nanotwinned Cu by loading at 0°, 45° and 90° with respect to the CTBs and identifying the 

dominant active mechanisms for each orientation [62]. Furthermore, nanopillar compression 

experiments and molecular dynamics simulations have been used to investigate the role of 

twin thickness in the absence of grain boundaries on the operative deformation mechanisms 

[63]. Dislocation transmission across the CTB was observed when loading perpendicular to 

either from prior work (for the fine and coarse twin struc-
tures [6]) or from new results (for the medium twin struc-
ture) obtained in this study. Statistical analysis of the
spacing of nanotwins along the [110] direction from the
TEM observation show that the average twin spacing is
about 15 nm for nt-Cu-fine sample, and about 35 and
100 nm for nt-Cu-medium and nt-Cu-coarse, respectively.
From TEM observations and statistical measurements of
twins, it is found that only one twin variant is observed
within each grain in the as-deposited Cu specimen in most
cases. From these measurements, the probability of only
one twin variant occurring in the as-deposited nt-Cu is esti-
mated to be more than 95%. It is therefore reasonable to
assume in the computational model that each twin-com-
prising grain contains only one twin variant. To better
understand the influence of TBs on mechanical behavior,
the ufc-Cu without twins, but having essentially the same
average grain size prepared by direct current (DC) electro-
deposition from the same solution, is selected for compar-
ison (referred to as ufc-Cu-control). Note that all four Cu
specimens examined in this paper have the similar average
grain size of approximately 400–500 nm. Further details on
specimen preparation methods, microstructure character-
ization and mechanical testing of the specimens can be
found elsewhere [7,8].

Fig. 1 shows the variation of true stress as a function of
true strain for the four specimens deformed in uniaxial ten-
sion. Table 1 provides a detailed quantitative summary of
the experimental results for all the tensile tests and includes
details of grain size, twin spacing, yield strength, tensile
strength, strain at tensile strength and tensile strain to fail-
ure. Also included are the strain rate sensitivity exponent,
m, determined at different strain rates from the uniaxial
tensile tests and strain rate jump tests [9]. A clear effect
of twin spacing on the mechanical properties is evident
from these results. There are three distinctive trends in
terms of twin lamellar spacing:

1. The yield strength and tensile strength increase with
decreasing twin spacing.

2. The ductility increases significantly with decreasing twin
spacing.

3. When the strain-rate is increased by several orders of
magnitude, a significant strain-rate sensitivity is detected
in the Cu with nano-sized twins, and the rate sensitivity
exponent m (defined in the footnote to Table 1) increases
significantly with decreasing twin spacing.

For nt-Cu-coarse, the yield strength is close to 500 MPa
and quite limited ductility (about 3%) is obtained from ten-
sile tests. However, for nt-Cu-fine, the yield strength is
close to 900 MPa, which is about 4.5 times higher than that
of ufc-Cu-control with about the same grain size, but the
ductility is comparable at 13–16%.

As noted earlier, the increase in strength, hardness and
strain-rate sensitivity of deformation caused by the intro-
duction of nanoscale twins mirrors that observed in Cu
when the grain size is refined to the nanoscale dimensions.
However, enhancements in strength with the introduction
of nanoscale growth twins in ufc-Cu occurswithout any con-
comitant reduction in ductility. In the case of grain refine-
ment, by contrast, the reduction in the structural feature
size into the nanometer regime leads to a significant reduc-
tion in ductility, as summarized in Table 2 from the available
results for polycrystalline Cu (from Refs. [7,10,18–25]).

2.2. Post-deformation microstructure observation

The post-tensile TEM microstructure observations sug-
gest that the interaction of dislocations with TBs plays a
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Fig. 1. Tensile stress–strain curves of as-deposited nt-Cu specimens tested
at different strain-rates (as indicated) at room temperature. The average
grain size and twin spacing of the specimens are listed in Table 1.

Table 1
Summary of microstructure characteristics, such as grain size and twin lamellar spacing, and mechanical properties, such as yield strength (ry), tensile
strength (rts), ductility (e (%)) and strain rate sensitivity exponent (m), of the nt-Cu samples and ufc-Cu-control from the tensile tests at a constant strain
rate of 6 · 10!3 s!1

Sample Grain
size (nm)

Twin
spacing (nm)

ry (MPa) rts (MPa) e (%) m (uniaxial
tensile test)a

m (tensile strain-rate
jump test [9])ets efailure

nt-Cu-fine 400 ± 20 15 ± 5 857 ± 50 1118 11.6 14 0.037 ± 0.014 0.035–0.046
nt-Cu-medium 450 ± 20 35 ± 10 701 ± 50 897 5.6 8.0 0.026 ± 0.012 –
nt-Cu-coarse 425 ± 20 100 ± 20 488 ± 30 552 2.2 2.2 0.012 ± 0.010 0.015–0.020
ufc-Cu-control 400 ± 20 – 198 ± 10 371 15.2 15.7 0.005 ± 0.001 0.005
a The strain rate sensitivity exponent m is defined as [17] m ¼ o lnr

o ln _e je;T , where r is the flow stress and _e is the strain rate.

M. Dao et al. / Acta Materialia 54 (2006) 5421–5432 5423
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the CTBs, while those with inclined CTBs experienced detwinning. The various interactions 

between dislocations and CTBs define the anisotropic nature of the deformation. 

To date, most investigations of nanotwinned materials have been focused on Cu and low 

stacking fault energy (SFE) fcc metals and alloys [64-67], such as austenitic stainless steel 

[68] and Ag [68-71]. The formation of nanotwins in higher SFE materials, such as Ni, Al or 

Pd, would be highly desirable but is recognized to be very difficult [65]. Dahlgren et al. 

reported the formation of irregularly spaced 0.17 µm twins in sputter deposited Ni, which 

was attributed to the very high deposition rates [72]. Binary Ni-W [23, 73, 74] and Ni-Mo 

[73] alloys have also been shown to produce sporadic nanotwins. The observation of 

nanotwins in Ni83.6Mo14W2.4 was fortuitous, but might have been predictable since Shang et 

al. performed a first-principles calculation for 26 different alloying elements in binary 

Ni71X28, finding that Mo and W reduce the SFE of Ni by 20%. This appears to promote the 

formation of very fine nanotwins.  

1.5 Thesis overview  

This thesis work originated from an interdisciplinary team of engineers and scientists 

from General Electric Global Research (GEGR) and Johns Hopkins University (JHU) who 

undertook a study to develop metal alloys for high temperature MEMS sensors and micro-

switches. It was funded by the National Science Foundation – Grant Opportunities for 

Academic Liaison with Industry (NSF-GOALI). The primary objective of the project was to 

“expand the MEMS material set beyond silicon to materials that can be deposited and shaped 

on the micro-scale and offer an attractive balance of properties: electrical and thermal 

conductivity, high density, low thermal expansion, strength, ductility, and toughness”. The 

overall goal of this work is to characterize and synthesize a broad spectrum of materials with 
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properties that can be used as the structural component in high temperature MEMS 

applications (300-500°C). The initial observation of nanotwins in sputter deposited 

Ni83.6Mo14W2.4 (outlined in section 1.3) was unexpected, but subsequent characterization of 

the material suggests that the nanotwins are responsible for the overall strength and stability. 

This work motivated an additional study to elucidate the fundamental deformation 

mechanisms governing nanotwinned Ni-Mo-W alloys, which is funded by the Department of 

Energy. The overarching aim of this investigation is to “develop the techniques and conduct 

the experiments that will lead to a deeper fundamental understanding of the underlying 

mechanisms that govern the enhanced mechanical behavior and microstructural stability of 

nanotwinned Ni-Mo-W”. The chapters ahead will detail advances made in thermal and 

mechanical characterization for a combinatorial study of nanotwinned Ni-Mo-W alloys and 

their integration into MEMS.  

Chapter 1 outlines the history of metal MEMS and the motivation for Ni-Mo-W alloys. 

Chapter 2 introduces a non-contact technique developed to measure the CTE in thin films. 

Results from sputter deposited Ni85MoxW15-x alloys are presented and their compatibility 

with conventional MEMS substrates discussed. Chapter 3 details the microstructural 

characterization of a combinatorial spread of Ni85MoxW15-x alloys and the effect of 

composition on tensile properties. Heat treatment temperatures of 400°C were investigated to 

demonstrate their thermal and mechanical stability. Chapter 4 demonstrates the extremely 

anisotropic plasticity observed when the loading orientation is perpendicular with respect to 

the twin boundaries. In situ micropillar compression of nanotwinned Ni-Mo-W alloys was 

coupled with post-mortem TEM analysis to identify the operative deformation mechanisms. 

Chapter 5 investigates the formation of growth nanotwins in Ni-Mo-W as a function of the 
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sputter deposition rate. Fixed alloy chemistry was deposited with different direct current 

powers and bright field TEM micrographs were used to quantify the average nanotwin 

thickness. Instrumented nanoindentation was used to measure the compressive yield strength 

and to determine its evolution with deposition rate. Chapter 6 describes the detailed 

fabrication process and requisite characterization to manufacture and shape Ni-Mo-W alloys 

into actual devices structures for future integration into MEMS. Finally, Chapter 7 provides a 

summary of the key findings from this dissertation. 
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CHAPTER 2: TAILORING THE COEFFICIENT OF 
THERMAL EXPANSION OF Ni-Mo-W ALLOYS  

WITH CHEMISTRY 
 

2.1 Introduction 

Everyday household objects produce elongations or contractions when exposed to 

different temperatures, this is called thermal expansion. The dimensional change is fully 

reversible, such that upon cooling, the material exhibits thermal contraction. The magnitude 

of the shape change is different for each material, governed by the atomic bonding, and it can 

vary directionally depending on the material symmetry. It is worth noting that there are some 

materials that display the opposite behavior and shrink when exposed to temperature [1], but 

these materials are beyond the scope and focus of this thesis.  

The small thermal expansion of materials commonly goes unnoticed in everyday life, but 

when considering microelectromechanical systems (MEMS), where feature sizes are smaller 

than the diameter of a human hair, these thermally induced shape changes are significant and 

can be detrimental to device function. MEMS devices are inherently grounded by their 

dimensional stability, a requisite for providing reliable sensing and actuation. Shape changes 

caused by differences in thermal expansion can be equivalent to or larger than the 

movements induced by device operation, which precludes use of those materials in sensors. 

Dimension stability of layered structures requires matching the coefficient of thermal 

expansion (CTE) of various layers with their substrates. Therefore, a thorough understanding 

of the CTE and its evolution with temperature is required for MEMS applications.  

This chapter focuses on the dimensional stability of sputter deposited nickel-

molybdenum-tungsten (Ni-Mo-W) alloy thin films as determined through CTE 
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measurements. The Ni-Mo-W films were deposited as single-phase solid solution alloys with 

a high density of nanotwins that give the films ultrahigh strength [2, 3]. Electrical resistivity 

measurements show good agreement with bulk Ni alloys, suggesting the nanotwins do not 

impede electron movement. The CTE measurements were performed using a novel, planar 

method via non-contact optical techniques. Calibrations and distortion corrections associated 

with high temperature imaging and digital image correlation (DIC) were addressed and 

implemented, facilitating the CTE measurement of a series of chemical compositions of Ni-

Mo-W alloys. The results of this study suggest that the CTE of ternary alloys of Ni-Mo-W is 

considerably lower than that of pure Ni and can be tailored with composition, offering a 

balance of physical properties that broadens the design space for future high temperature 

MEMS applications.  

2.2 Experimental procedure 

2.2.1 Methods 

A non-contact method of measuring CTE was developed to avoid the buckling of 

freestanding thin films under compressive loading. Thin film buckling would be a problem in 

commercial dilatometers. A non-contact method for measuring CTE was developed and 

implemented at JHU in 2007 [4], but the very large thermal mass of the furnace and lengthy 

cool-down cycles made it impractical for thin film use. In this chapter, a furnace based off of 

a similar device implemented in Christoph Eberl’s research group [5] was customized with a 

smaller thermal mass and optical windows for improved measurements of thermal 

displacements. This custom-built clamshell furnace has multiple optical ports for lighting and 

imaging. Figure 2.1a shows a schematic of the bottom of the furnace, with a coiled Kanthal 

Al resistance-heating wire around the inner diameter of the furnace base. The heating 
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element is connected to an external power supply and has a maximum operational 

temperature of 1100°C. The center cylindrical post serves as the specimen holder and is 

made of quartz, chosen for its low CTE and high melting temperature. Thin film specimens 

sit on the surface of the holder with a thermocouple positioned in the same plane as the 

specimen, but without touching it, to ensure accurate temperature readings. The furnace lid 

(Figure 2.1b) was designed with two angled ports at 35° with respect to the horizontal and fit 

with quartz rods for illuminating the inside of the furnace with a LED source. The central 

port on the furnace lid is used to image the specimen in the furnace through use of a long 10 

cm, double-side polished optical-quality quartz rod. 

Images are captured over a prescribed temperature range with a 6.6 megapixel camera 

(Pixelink Model B782) and a fixed magnification 4x telecentric lens (Edmund Optics Model 

No. 59838). The high-resolution camera was specifically chosen to resolve the small 

thermally induced displacements, whereas the telecentric lens was selected to increase the 

depth of field and reduce small out-of-plane perspective errors that contribute to a decrease in 

dimensional accuracy. The optics provide a 2 mm x 2.6 mm field of view. Figure 2.1c shows 

the full CTE setup with all the components interfaced through a National Instruments DAQ 

in LabVIEW, automating the entire test procedure. Typical furnace temperatures ramp from 

room temperature to the maximum prescribed temperature at a rate of 1°C/minute, and once 

the maximum temperature is achieved, the same rate of 1°C/minute is used to cool to room 

temperature.  The slow heating and cooling cycles were chosen to ensure thermal stability 

and equilibrium. However, it could be increased to a maximum of 3°C/minute, with the 

limiting factor the ability to control the ramp down temperature accurately given the thermal 

mass of the furnace.  
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Figure 2.1: Design of a CTE furnace for planer specimen testing. (a) Schematic of the 
furnace base with heating coils, quartz rod specimen holder and thermocouple. (b) Schematic 
of furnace lid with central viewport (optical quality quartz) and two angled quartz rods for 
illumination. (c) Full setup with camera imaging through the central viewport, illuminated 
via LED. 

 

2.2.2 Materials 

Ternary alloys of nickel-molybdenum-tungsten (Ni-Mo-W) thin films were fabricated by 

Jessica Krogstad using direct current (dc) magnetron sputter deposition in a custom-built 

chamber designed for high deposition rates, located in Timothy Weihs’ laboratory (Figure 

2.2a). A large custom alloy target 12 inch x 5 inch was designed with binary Ni-Mo and Ni-

W alloys joined on a bias, illustrated in Figures 2.2b and 2.3a.  
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Figure 2.2: (a) Custom-built sputtering chamber in Timothy Weihs’ laboratory at JHU and 
(b) custom alloy target with binary alloys Ni-Mo and Ni-W joined on a bias. 

 
 

 

 

 

 

 

 

 

 

Figure 2.3: (a) Schematic of alloy target geometry and (b) Ni-Mo-W film on the brass 
substrate after sputter deposition. 
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Ni-Mo-W alloys were deposited using 2500 W power and 1 mTorr argon gas pressure onto a 

12 inch x 7 inch brass substrate with stationary deposition to create a gradient in chemical 

composition (Figure 2.3). Single-phase solid solution face centered cubic (fcc) films with  

<111> out-of-plane texture [2] were achieved from alloy targets with nominally 85 atomic 

percent (at.%) Ni and Mo and W contents ranging from Mo13W2 to Mo2W13. Films were 

grown to a thickness of 20-30 µm to achieve robust freestanding films. Calibrated 

wavelength-dispersive spectroscopy (WDS) with Ni, Mo, and W crystals was used to 

determine the atomic composition of each alloy and the associated electrical resistivity was 

measured using four-point probe methods. CTE specimens were sectioned into 2 mm x 2 mm 

square and required no additional polishing or thinning. Calibration testing was performed 

using a National Institute of Standards and Technology (NIST) stainless steel standard 

reference material (SMR 738) for thermal expansion [6]. The cylindrical bar of SMR 738 is 

typically used for calibrating dilatometers, but in the current study a rod was sectioned, with 

wire electrical discharge machining (EDM) and a diamond wire, saw to create planar thin 

film specimens, Figure 2.4. The bulk SMR 738 was cut to a cross-sectional area of 2 mm x 2 

mm and mechanically polished to a thickness of 100 µm. 

 

 

 

 

 

 

Figure 2.4: Cylindrical bar of SMR 738 sectioned into 2 mm x 2 mm using wire EDM. 
Individual specimens were sliced from the bar using a diamond wire saw. 

5 mm 



	 31 

2.2.2.1 Wavelength-dispersive spectroscopy (WDS) 

The principle of WDS comes from Bragg’s law (𝜆 = 2𝑑 sin𝜃), where 𝜆 is the X-ray 

wavelength, 𝑑 is the interplanar spacing of the crystal and 2theta (2θ) is the scattering angle. 

When electrons interact with a specimen, characteristic X-rays are emitted and used to 

quantify the element from which they were emitted. A single crystal of a calibration material 

is placed equally between the X-ray detector and the specimen of interest on a Rowland 

circle (Figure 2.5), which implements spherical gratings that combine diffraction and 

focusing of X-rays [7]. Measuring the angle of diffraction (θ) from the crystals allows for 

precise measurements of the wavelength (𝜆). 

 

 

 

 

 

 

 

 

 

Figure 2.5: Principle of wavelength dispersive spectroscopy [7]. 

 

2.2.2.2 Four-point probe electrical resistivity 

The electrical resistivity was measured using four-point probe geometry shown in Figure 

2.6. The four probes are evenly spaced and the outer probes (1 and 4) apply a current (𝐼) to 

the specimen, while the inner probes (2 and 3) measure the voltage (𝑉) change in the 
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material. The sheet resistance (𝜌!) was measured using Equation 2.1 and the bulk resistance 

(𝜌) was calculated using the film thickness (𝑡) in Equation 2.2.  

 

 𝜌! =
𝜋

ln 2
𝑉
𝐼  (2.1) 

 

 𝜌 = 𝜌!𝑡 (2.2) 

 

The units of bulk resistance are typically reported Ω-m, which more specifically comes from 

the specimen’s resistance, the cross-sectional area and length, such Ω-m2/m. However, for 

sheet resistance the bulk resistance is scaled by the thickness, providing units conventionally 

noted “ohms per square” (Ω/☐) that is dimensionally equivalent to units of Ω. 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Four-point probe measurement setup, where four probes are equally spaced and 
current is applied through probes 1 and 4 while the associated voltage change is measured 
with probes 2 and 3.   
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2.2.3 Measuring thermal displacements 

The detailed experimental setup in Figure 2.1 is designed to capture images of the 

specimen surface during the entirety of the experiment and post-process them with the 

popular non-contact method of DIC. Sutton and his colleagues at the University of South 

Carolina developed DIC [8-11] in the 1980’s and it has since been widely accepted and 

implemented in the scientific community. This technique uses the digital images captured 

during the experiment and tracks pixel intensities between subsequent images. A randomized 

pattern of markers (speckle pattern) is applied to the specimen surface before imaging to 

create good contrast between the markers and the specimen surface. Images are captured at 

room temperature (reference image) and consecutively every 2 minutes while heating the 

furnace. Post-processing DIC algorithms sub-divide each image into smaller subsets that are 

tracked throughout the deformation. The black and white pixel intensity distribution inside 

each of the subsets is tracked from the reference image and matched to the next image 

(current image). The quality of matching is evaluated by maximizing the 2D cross correlation 

coefficient (𝐶!"), defined in Equation 2.3. The gray scale value of the individual pixel 

intensities in the reference image are represented by 𝐹 𝑥! ,𝑦! , where 𝑥! and 𝑦! are the pixel 

locations in the reference image. Similarly, the gray scale value of the individual pixel 

intensities in the current image are represented by 𝐺 𝑥!∗,𝑦!∗ , where 𝑥!∗ and 𝑦!∗ are the pixel 

locations in the current image. The values 𝐹 and 𝐺 are the mean values of the gray scale 

pixel intensity matrices 𝐹 and 𝐺, respectively. 
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𝐶!" =

𝐹 𝑥! ,𝑦! − 𝐹 × 𝐺 𝑥!∗,𝑦!∗ − 𝐺!!

𝐹 𝑥! ,𝑦! − 𝐹 !
!! × 𝐺 𝑥!∗,𝑦!∗ − 𝐺 !

!!

 (2.3) 

 

Pixel displacements of the center of the subset (𝑢, 𝑣) are outputs of the DIC used for further 

analysis, which is determined through deformation mapping from the reference coordinates 

(𝑥! ,𝑦! ) to the current coordinates (𝑥!∗,𝑦!∗ ). The mapping for in-plane deformation is 

approximated by a 2D affine transform, where ∆𝑥 and ∆𝑦 are the distances between the 

center of the subset and the point (𝑥,𝑦) and !"
!"

, !"
!"

, !"
!"

, !"
!"

 are the displacement gradients, 

shown in Equation 2.4.  

 

 𝑥∗ = 𝑥 + +
𝜕𝑢
𝜕𝑥 ∆𝑥 +

𝜕𝑢
𝜕𝑦 ∆𝑦 

(2.4) 
 𝑦∗ = 𝑦 + 𝑣 +

𝜕𝑣
𝜕𝑥 ∆𝑥 +

𝜕𝑣
𝜕𝑦 ∆𝑦 

 

Therefore, to assure good correlation between subsequent images, it is critical to obtain 

distinct black and white contrast with the surface speckle pattern. Traditionally this is 

achieved using black and white paint, where the specimen surface is coated in white and then 

speckled with random black markers. However, most paints cannot withstand high 

temperatures, precluding the use of paint for CTE measurements. Instead, specimens were 

speckled using fused silica powders (Aremco Ceramacast™ 645N) dispersed in acetone to 

create a suspension that evenly distributed particles onto the surface. This speckling method 

provided an average speckle size of 10 µm, which could be imaged with the optics outlined 

in the section 2.2.1. 
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The pixel displacements were obtained using a MATLAB based DIC code [12] written 

and developed by previous students and postdocs at JHU. In-plane thermal displacements 

were used to calculate the thermally induced strains (𝜀!!). Since CTE is isotropic for all 

cubic materials, measurements of individual 𝑥  and 𝑦 thermal strains are redundant. For 

simplicity, the thermal strains in the 𝑥-direction will be denoted going forward. In-plane 

thermal strains were calculated using Equation 2.3, where 𝑢  is the measured pixel 

displacement and 𝑥∗ is the current pixel position both in the in the 𝑥-direction, obtained from 

DIC. Figure 2.7 shows a representative plot of the pixel displacement (𝑢) versus current pixel 

position (𝑥∗) for SRM 738 at image number 300 (385°C).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: A representative displacement versus position plot from SRM 738 at image 300 
(385°C). More than 4700 DIC tracking markers are fit to a linear line (red) and the measured 
slope provides a one-dimensional strain value with a resolution of ±10-5.  

 

400 600 800 1000 1200 1400 1600 1800

−20

−15

−10

−5

0

5

10

15

Position, x* [pixel]

D
isp

la
ce

m
en

t, 
u 

[p
ix

el
]

εth = 0.00507 ±10-5  

Tracked DIC points 
Linear fit 



	 36 

A linear line is fit through the tracked DIC points and the slope is recorded as the one-

dimensional average thermal strain, similar to Equation 2.5.  

 

 𝜀!! =
𝜕𝑢
𝜕𝑥∗ 

(2.5) 

 

 
𝛼 =

𝑑𝜀!!

𝑑𝑇 =
𝑑
𝑑𝑇  

𝜕𝑢
𝜕𝑥∗  

(2.6) 

 

This procedure was carried out for each image acquired and the resultant thermal strain as a 

function of image number was generated for SRM 738, Figure 2.8.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: The calculated thermal strain as a function of image number for SRM 738 while 
heating from room temperature, 505°C and cooling down. 
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The timestamp of each image was matched to the associated temperature output recorded 

during data acquisition to achieve the thermal strain as a function of temperature, illustrated 

in Figure 2.9. Thermally induced strains are inherently reversible, providing fully recoverable 

expansion from the ramp up and ramp down temperature cycles.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: The calculated thermal strain as a function of temperature for SRM 738 while 
heating from room temperature, 505°C (ramp up) and cooling down (ramp down). 

 

The two strain curves can be averaged to provide a mean strain, Figure 2.10. CTE (𝛼) was 

calculated as a function of temperature using Equation 2.6 by taking the derivative of a third-

order polynomial fit [13] to the mean strain dataset. The resultant CTE for SRM 738 is 

plotted as a function of temperature in Figure 2.11. 
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Figure 2.10: Third-order polynomial fitting of the mean strain for SRM 738. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 2.11: Calculated CTE of SRM 738 from the derivative of the polynomial fit with 
respect to temperature. 
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2.3 Calibration 

Monitoring thermal displacements of SRM 738 involved the use of DIC, and well-

focused images at a constant magnification were needed to obtain the requisite DIC 

resolution for the entire duration of image collection. Therefore, correcting for the optical 

distortions in the experimental setup was vital to obtaining adequate images for correlation. 

Out-of-plane displacements during image acquisition degrade image quality and DIC 

tracking and resolution. These effects were minimized by use of a low-expansion quartz 

holder and a fixed magnification telecentric lens, but additional distortions can arise. 

Convection currents in the furnace will lead to a circular flow of air and cause the blurring of 

images during acquisition. Commercial clamshell furnaces typically employ optically 

transparent plates or viewing windows that allow one to peer into the furnace. We found that 

reducing the air gap between the specimen and the viewing window greatly reduces the effect 

of convection on the image quality. Positioning a long cylindrical optical-quality quartz rod 

above the specimen, as close as possible, such that it extends through the furnace wall and 

has one polished face outside the furnace, greatly reduces the air gap and the shimmer 

associated with convection. Moreover, the fact that the image on the bottom face is 

transferred to the top face allows the camera to be focused on the top face, greatly 

simplifying the image acquisition. 

Even with the quartz cylinder, imaging distortions related to temperature gradients in the 

air on the top of the cylinder can also affect the fidelity of the DIC measurements. These 

distortions are caused by changes in the refractive index of air with temperature [14] and heat 

that escapes from the furnace viewport. It has been suggested that using a fan or air knife to 

mix and cool the air above the furnace will mitigate this problem and greatly improve the 
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imaging quality [15]. For the CTE setup built and employed for this study, an Exair Air 

Knife was integrated to blow compressed air between the quartz cylinder and the camera lens 

to cool the air for enhanced accuracy of the DIC measurements. 

An additional unforeseen problem was uncovered in the calibration, for example the 

measured values for the thermal strain of a SRM 738 specimen is plotted as a function of 

temperature in Figure 2.12. The raw data measurements made with our setup had the same 

general trend as the NIST certified data [6], but the absolute values of the data are offset by 

10% at temperatures below 250°C and as much as 20-28% at higher temperatures. The 

reason for this apparent increase in thermal strain eluded explanation until it was realized that 

the refractive index of the quartz cylinder varies as a function of temperature.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12: Strain versus temperature measured thermal displacements (raw) for SRM 738 
compared to NIST standard data for comparison [6]. 
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In the current setup, the vertical quartz rod has a temperature gradient, from highest inside 

the furnace to lowest outside the furnace. This gradient in temperature causes a gradient in 

refractive index along the length of the cylinder, distorting the images and producing 

fictitious displacements. Lyons et al. made note of the quality of the viewport and its effect 

on image quality [15], but they did not discuss the consequences of temperature and 

refractive index gradients along the optical path of the viewport. In practice, these 

temperature gradients are highly variable and difficult to accurately measure and predict.  

To address this challenge, a speckle pattern was applied to the top surface of the quartz 

specimen holder such that DIC could be used to compare direct measurements of the thermal 

displacement of the quartz holder with the SRM 738 specimen. The prescribed field of view 

contained both the SRM 738 specimen and a portion of the quartz holder, allowing for 

simultaneous imaging (Figure 2.13).  

 

 

 

 

 

 

 

 

 

 

 
Figure 2.13: Representative image with DIC speckle pattern applied to both the specimen 
holder (red) and the NIST SRM 738 (yellow). 

200 µm 
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The quartz holder displacements were tracked and used to determine an offset correction that 

could then be applied to the raw SRM 738 data. Subtracting this measured offset correction 

from the raw stainless steel strain data, where the investigated temperature ranged from room 

temperature to the maximum calibrated temperature (505°C), resulted in the corrected dataset 

(Figure 2.14). The corrected strain dataset is in very good agreement with the NIST 

calibration values [6].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14: Strain versus temperature for SRM 738. The corrected data, obtained by 
subtracting the measured offset from the raw data, is compared to NIST [6]. 
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Differentiating the thermal strain data with the method outlined in section 2.2.3 provides the 

associated CTE as a function of temperature, and curves made by differentiating the raw and 

corrected datasets are plotted in Figure 2.15. The measured and corrected dataset for thin fiml 

specimens yielded a CTE that matches bulk dilatometer measurements [6] with an accuracy 

of ± 0.4×10-6 /°C, ensuring a well calibrated setup.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.15: Calculated values of CTE determined from the measured thermal displacements 
for SRM 738. The corrected data is compared to NIST standard data [6].  
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2.4 The Influence of Alloy Chemistry 

2.4.1 Measured physical properties 

Combinatorial subsets of the Ni-Mo-W films were cut from the gradient film and 

analyzed for their physical properties. The chemical composition measured via WDS and the 

bulk electrical resistivity obtained with four-point probe measurements are reported in Table 

2.1. The electrical resistivity showed minimal fluctuations with composition and are 

comparable to the values reported for bulk nickel-base superalloys (120-133 µΩ-cm), nickel-

molybdenum alloys (118-135 µΩ-cm) and nickel-chromium alloys (103-129 µΩ-cm) [16]. 

The fact that the thin film electrical resistivity is on par with that of bulk Ni alloys suggests 

that the underlying microstructure does not impede electron motion [17].  

 

Table 2.1: Electrical resistivity measured using four-point probe technique. All compositions 
have a maximum standard deviation of ± 0.1 atomic percent Ni, Mo and W. 

 
Composition 

[at.%] 
Film thickness 

[µm] 
Sheet resistance  

[Ω/☐] 
Bulk resistance 

[µΩ-cm] 
Ni85.4Mo3.3W11.3 19.7 ± 0.1 0.0591 116.4 ± 1.9 
Ni85.1Mo4.6W10.3 20.6 ± 0.2 0.0505 104.1 ± 0.6 
Ni85.4Mo5.9W8.7 23.2 ± 0.1 0.0472 109.4 ± 2.1 
Ni84.3Mo8.9W6.8 22.0 ± 0.3 0.0491 108.1 ± 0.9 
Ni84.4Mo10.7W4.9 21.4 ± 0.1 0.0503 107.6 ± 0.6 
Ni84.2Mo11.8W4.0 20.6 ± 0.1 0.0554 114.1 ± 1.3 
Ni85.2Mo12.7W2.1 20.2 ± 0.1 0.0519 104.9 ± 2.1 
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The CTE of Ni-Mo-W alloy films with compositions ranging from nearly Ni85Mo15 to 

Ni85W15 were investigated from room temperature up to 625°C. Figure 2.16 displays a 

representative dataset of the measured thermal strains as a function of temperature for the 

alloy Ni85.1Mo4.6W10.3. Individual data points are magnified and shown in the inset, 

demonstrating the smooth thermal loading achievable with minimal scatter. The thermal 

strains were used to calculate CTE by measuring the slope of the strain dataset, as outlined in 

section 2.2.3, resulting in a CTE that ranged from 8.87-13.0×10-6 /°C between room 

temperature and 600°C.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.16: Thermal strain measurements as a function of temperature for Ni85.1Mo4.6W10.3. 
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The CTE for different alloy compositions is plotted as a function of temperature and 

compared to the CTE for pure Ni [18], in Figure 2.17. The chemistry of each alloy and CTE 

values measured at room temperature (RT) and at 600°C are given in Table 2.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.17: CTE versus temperature for compositional spread of Ni-Mo-W alloys, with 
associated at.% composition, compared to pure Ni [18]. 
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It is clear from the results presented in this figure and table that alloying with Mo and W are 

both effective ways of decreasing the overall CTE as compared to pure Ni and that the effect 

on CTE differs with alloying content. For illustration, W-rich alloys and Mo-rich alloys are 

plotted as a function of temperature in Figures 2.18 and 2.19, respectively.  

 

 

Table 2.2: Alloy composition and CTE values from room temperature (RT) and 600°C for 
the sputter deposited Ni-Mo-W films.  

Alloy Composition 
[at.%] 

RT CTE 
[10-6/°C] 

600°C CTE 
[10-6/°C] 

Ni85.4Mo3.3W11.3 8.87 13.0 
Ni85.1Mo4.6W10.3 8.16 13.5 

Ni85.3Mo5.9W8.8 8.51 13.0 

Ni84.3Mo8.9W6.8 10.5 12.7 
Ni84.4Mo10.7W4.9 10.0 11.7 
Ni84.1Mo11.8W4.1 10.7 12.5 
Ni85.2Mo12.7W2.1 11.9 12.1 
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Figure 2.18: CTE versus temperature for W-rich alloys, compared to pure Ni [18]. 

  

 

 

 

 

 

 

 

 

 

 

 
Figure 2.19: CTE versus temperature for Mo-rich alloys, compared to pure Ni [18]. 
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Most MEMS devices are composed of layered structures, and matching the CTE of 

individual layers to the substrate is a highly desirable way of mitigating thermal distortions. 

In recent years, glass substrates have replaced silicon as the substrate of choice for many 

applications, in part because of its tailorable properties. Unlike silicon, commercial glass 

substrates display a wide range of CTE values, which depend on the glass composition. 

Substantial advantages for the packaging industry came when the CTE of glass substrates 

could be reduced to that of silicon, eliminating warping during multi-stack processes [19]. It 

has been shown that changing the chemical composition of glass substrates can vary the CTE 

from 3.0-12.0×10-6 /°C [20-22]. All the RT CTE values reported for Ni-Mo-W in Table 2.2 

fall within the range of achievable values for glass substrates. Therefore, Ni-Mo-W alloys 

can be paired with a glass substrate that matches its CTE, reducing the geometric changes 

that would otherwise arise during heating. 

2.4.2 Tailorable CTE 

A simple rule-of mixtures, Equation 2.7, can be used to predict the CTE as a function of 

alloy concentration, where each element (𝑛) has a respective CTE (𝛼!) and volume fraction 

(𝑉! ). The CTE for Ni has been reported to range from 12.4-13.4×10-6 /°C at room 

temperature and 15.3-17.5×10-6 /°C at 600°C [18, 23, 24]. For the rule-of mixtures 

calculation, the average values of 13×10-6 /°C and 16.4×10-6 /°C will be used for the CTE of 

Ni at room temperature and 600°C, respectively. Suh et al. measured and reported the 

thermal expansion coefficients for pure Mo and W using standard dilatometer methods [23]. 

These pure metal values can be used in Equation 2.7 to predict CTE values for various alloy 

compositions as a function of temperature. The volume of Ni, Mo and W atoms are 

calculated by the method outlined by King [25], where the atomic volume of a solute atom is 
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measured while dissolved into a particular solvent. Since CTE inherently is based upon 

volumetric changes in a crystal rather than an atomic volume average, the effective volumes 

of Mo and W in the Ni lattice were chosen rather than their own atomic volumes. It can be 

assumed that the solute atoms in single-phased solid solution Ni-Mo-W [3] are substitutional 

in the Ni lattice, due to similar or larger atomic radii of Mo and W compared that of Ni [26]. 

 

 𝛼 = 𝛼!𝑉!
!

 (2.7) 

 
𝑉!" =

𝑉∗ − 𝑉!"
𝑉!"

 (2.8) 

 

The effective volume of a substitutional atom (𝑉∗) in the Ni lattice is defined by the volume 

size factor (𝑉!") in Equation 2.8, where  𝑉!" is the atomic volume of Ni [27] and 𝑉!" for Mo 

and W solutes are reported by King [25]. Binary Ni85Mo15 and Ni85W15 were investigated as 

the upper bounds for the ternary Ni-Mo-W alloy system and their predicted CTE values are  

11.6 and 11.4 ×10-6 /°C, as given in Table 2.3.  

Table 2.3: Predicted CTE values at room temperature (RT) and 600°C for Ni85Mo15 and 
Ni85W15 using the rule-of mixtures. 

 
Ni 

[18, 23, 34] 
Mo 
[23] 

W 
[23] 

Ni85Mo15  Ni85W15  

RT CTE 
[10-6 /°C] 13.0 5.08 4.97 11.6 11.4 

600°C CTE 
[10-6 /°C] 16.4 6.59 8.63 14.7 14.9 

Volume size factor, VSF [25] --- +22.27% +36.93% --- --- 
Atomic Volume in Ni lattice [25] 

[Å3] 10.94 13.37 14.98 --- --- 
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This prediction suggests that the addition of Mo and W should have an almost identical 

effect, reducing the CTE by 10% compared to that of Ni, independent of composition. 

However, experimental investigations on binary Ni-Mo and Ni-W alloys showed a 

compositionally dependent behavior. For example, Pavlovic et al. showed that Ni85Mo15 

reduced the CTE of Ni by 23%[18], whereas Dosovitskiy et al. shows that Ni95W5 reduced 

the CTE of Ni by 17% [28]. Similarly, the measurements of the sputter deposited 

combinatorial Ni85MoxW15-x thin films indicate that the composition of the ternary alloying 

elements does play an important role in determining the CTE. The measured CTE values are 

plotted as a function of solute concentration MoxW15-x and compared with the rule-of-

mixtures predictions in Figure 2.20.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.20: Variations of the CTE at room temperature (RT) and 600°C against the 
concentration of Mo and W for the calculated rule-of mixtures and the sputtered Ni-Mo-W 
alloys, where Ni85MoxW15-x with x ranging 2-13 at. % Mo. 
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All of the experimental data falls at or below the predicted values of CTE given by the rule-

of-mixtures. The experimental values also show greater variation with composition. At room 

temperature the Mo-rich films have a CTE similar to what was predicted, but the CTE of the 

W-rich films was measured to be considerably lower. The inverse was observed at 600°C 

where the Mo-rich films were lower. 

The fact that the reduction of the CTE for all of the Ni85MoxW15-x films was measured to 

be greater than what was predicted and the finding that the temperature dependence of the 

CTE is compositionally dependent both have significant technological ramifications. The 

observed overlap of the CTE of Ni-Mo-W metallic thin films and glass substrates provides an 

opportunity to dramatically reduce the residual stresses. The ability to tailor the temperature 

dependence of the film CTE with alloy composition provides an additional design element 

for engineering dimensional stability into MEMS devices.  

The scientific mechanisms and physics that underpin these enhanced and tailorable 

properties are not yet fully understood. The microstructure of the Ni-Mo-W films have been 

shown to possess strong {111} texture with numerous nanotwins and stacking faults aligned 

parallel to the plane of the thin film [2, 3]. This results in local non-cubic symmetry that 

could lead to an anisotropic CTE, which is not incorporated in the rule-of mixtures 

calculation. Localized and preferential solute atom segregation could also play a role in 

modifying local bonding and CTE values. We note that Kurz et al. reported that for binary Ni 

alloys with twins and stacking faults, Mo solute atoms segregate to the grain boundaries at 

elevated temperatures whereas W segregation was kinetically hindered [29]. The temperature 

invariant CTE shown for Mo-rich Ni-Mo-W films could be the result of local bonding 

variations from Mo segregation, which may provide the requisite local anisotropic CTE for a 
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temperature independent behavior that is not observed in W-rich films. The compositional 

control of sputter deposited Ni-Mo-W alloys provided the combined benefits of overall 

reduction in CTE as compared to pure Ni and tailorable CTE at elevated temperatures, 

supporting a more expansive materials selection for high temperature MEMS applications. 

2.5 Chapter summary 

A non-contact optical method based on digital image correlation was developed to 

measure the coefficient of thermal expansion of thin film specimens as a function of 

temperature. NIST stainless steel (SRM 738) was used to correct for imaging aberrations that 

led to erroneous displacement measurements and to calibrate the system with an accuracy of 

±0.4×10-6 /°C. This non-contact DIC-based technique can be applied to materials where 

conventional dilatometry is impractical. Metal MEMS Ni-Mo-W films were sputter 

deposited with a combinatorial range of compositions (Ni85MoxW15-x) and demonstrated to 

have a CTE that is well matched to commercial glass substrates for MEMS-based micro-

sensors and switches. The non-contact measurements showed the CTE of all Ni85MoxW15-x 

films to be significantly lower than that of pure Ni. The room temperature CTE was found to 

be lowest for W-rich alloys, while the Mo-rich alloys were found to have a temperature 

invariant CTE. The dual benefits of reduced and compositionally tailorable CTE suggest that 

Ni-Mo-W alloys are promising candidates for metal MEMS applications. 
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CHAPTER 3: MICROSTRUCTURAL EFFECTS ON THE 
THERMAL AND MECHANICAL BEHAVIOR  

OF Ni-Mo-W ALLOYS 

3.1 Introduction 

The most universal mechanical testing technique is the tensile test, where a specimen 

with known dimensions is loaded in uniaxial tension while monitoring the associated 

elongation (or vice versa). A wide variety of mechanical properties can easily be measured 

from a single test, such as Young’s modulus, yield strength, ultimate tensile strength and 

elongation to failure. However, as materials approach the micrometer or nanometer length 

scales, their properties have been shown to deviate from those measured at the bulk size scale 

[1-3]. The grain structure as well as internal defects, voids and porosity [4] can dominate the 

mechanical response. This is especially important at the small length scales associated with 

thin films.  

The underlying microstructure associated with the physical vapor deposition (PVD) of 

thin films has been shown to depend heavily on the material and the conditions in which they 

were deposited [4-7]. A number of nanocrystalline metals have shown higher hardness and 

strength [8, 9], but lower ductility and microstructural instability [10-17] compared to their 

more coarse-grained counterparts. In contrast, nanotwinned Cu has shown strength 

enhancements similar to those for nanocrystalline materials while also maintaining a more 

beneficial balance of properties. The seminal paper by Lu et al. highlighting the ultrahigh 

strength and high electrical conductivity of nanotwinned Cu [18] has created a wave of 

research to understand the thermal and mechanical stability of nanotwinned metals, as 

outlined in section 1.4.  
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In a quest to find materials suitable for high temperature microelectromechanical systems 

(MEMS), Sim et al. showed remarkable tensile strength for nanotwinned Ni83.6Mo14W2.4, 

exceeding 3 GPa, with a balance of properties and microstructural stability [19, 20]. The 

presence of the nanotwins was fortuitous and provided the attendant properties. However, 

MEMS devices will require a larger design space than one specific alloy, necessitating the 

development of an expansive set of materials.  

This chapter presents a compositional spread of single-phased Ni85MoxW15-x alloys to 

investigate their mechanical properties as a function of chemistry and underlying 

microstructure. Uniaxial tension specimens, representing a range of compositions, were 

evaluated in the as-deposited state and after a 1 hour heat treatment at 400°C. Ultrahigh 

tensile strengths (2-3 GPa) were observed for both sets of specimens. As-sputtered 

microstructures were investigated using focused ion beam (FIB) channeling contrast 

techniques and the crystallographic texture was quantified using X-ray diffraction (XRD) 

before and after the thermal exposure at 400°C. Modest variations in mechanical properties 

were found to depend on alloy microstructure rather than alloy chemistry. This study 

suggests that careful control and design of the underlying microstructure can be used to tailor 

the strength of Ni-Mo-W alloys. The wide compositional spread of mechanically robust and 

thermally stable Ni-Mo-W films greatly expands the breadth of structural materials available 

for MEMS applications at elevated temperatures.  

3.2 Experimental methods 

3.2.1 Specimen fabrication and characterization 

Ni-Mo-W thin films were fabricated using a custom magnetron sputter deposition 

chamber to achieve dense films at high deposition rates. Thin films were deposited using 
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direct current (dc) power of 2500 W and 1.0 mTorr high purity argon sputtering gas in a 

custom-built chamber in Timothy Weihs’ laboratory at JHU. A compositional spread of 

Ni85MoxW15-x alloys, with x ranging from 2-13 atomic percent, were grown on brass 

substrates using a custom alloy target, as described in section 2.2.2. Figure 3.1 shows the 

sputtering chamber schematic from an overhead view. The combinatorial Ni85Mo15 and 

Ni85W15 target is mounted on the inside wall of the chamber and the substrates are fixed to 

the central rotatable carousel. The desired compositional gradient across the substrate was 

achieved though stationary deposition. Post deposition films were peeled from the substrate 

and sectioned vertically for further analysis.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: A schematic of the sputtering chamber (top-down view) with Ni-Mo-W target 
mounted on the outside wall and brass substrates mounted on the rotatable carousel. 
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The chemical composition was identified using wavelength dispersive spectroscopy 

(WDS) in a JEOL 8600 Superprobe instrument, calibrated with standard crystals of Ni, Mo 

and W, as outlined in section 2.2.2.1. All values are reported in atomic percent (Figure 3.2) 

and the films are enumerated 1-8, representing the most W-rich to the most Mo-rich alloys.  

 

 

 

 

 

 

 

 

 

 

Figure 3.2: A representation of the sputtered films, sectioned and labeled 1-8 with their 
chemical composition (atomic percent) for identification.  

 

Ion beam channeling contrast images [21] were investigated to determine the cross-sectional 

grain morphology in a FEI Strata DB235 Dual-Beam scanning electron microscope (SEM) 

and focused ion beam (FIB). The phase and crystallographic texture were obtained through 

the use of XRD (Figure 3.3) using Bragg’s law (𝜆 = 2𝑑 sin𝜃), where 𝜆 is the X-ray 

wavelength generated from a Cu K-α source (1.5406 Å), 𝑑 is the interplanar spacing of the 

crystal and 2𝜃 is the scattering angle [22].  
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Figure 3.3: Principle of symmetric X-ray diffraction (XRD), where the incident angle and 
the diffracted angle are the same throughout the scan [22]. 

 

Transmission electron microscopy (TEM) specimens were prepared using conventional FIB 

lift-out techniques and the microstructure was characterized using selected area electron 

diffraction (SAED) patterns and bright field imagining in a Thermo Scientific TF30 TEM. 

The phase and crystallographic texture were obtained through XRD and confirmed with 

electron backscattered diffraction (EBSD) in a Tescan Mira field emission SEM. One-hour 

vacuum heat treatments at 400°C were carried out inside a custom-built vacuum tube furnace 

evacuated to 10-6 Torr, shown in Figure 3.4. The Ni-Mo-W films were sandwiched between 

two 0.635 mm thick alumina plates, with dimensions 114 mm x 35 mm, to prevent the films 

from curling during the heating cycle. 

 

 

 

 

3-4] X-RAY SPECTROSCOPY 85

(100)

(200)

FIG. 3-3. Equivalence of (a) a second-order 100 reflection and (b) a first-order

200 reflection.

lengths. If there is no real plane of atoms between the (100) planes, we
can always imagine one as in Fig. 3-3 (b), where the dotted plane midway
between the (100) planes forms part of the (200) set of planes. For the
same reflection as in (a), the path difference DEF between rays scattered

by adjacent (200) planes is now only one whole wavelength, so that this

reflection can properly be called a first-order 200 reflection. Similarly,

300, 400, etc., reflections are equivalent to reflections of the third, fourth,

etc., orders from the (100) planes. In general, an nth-order reflection

from (hkl) planes of spacing df may be considered as a first-order reflection

from the (nh nk nl) planes of spacing d = d'/n. Note that this convention
is in accord with the definition of Miller indices since (nh nk nl) are the

Miller indices of planes parallel to the (hkl) planes but with 1/n the spacing
of the latter.

3-4 X-ray spectroscopy. Experimentally, the Bragg law can be uti-

lized in two ways. By using x-rays of known wavelength X and measuring
6, we can determine the spacing d of various planes in a crystal: this is

structure analysis and is the subject,
in one way or another, of the greater

part of this book. Alternatively, we
can use a crystal with planes of known
spacing d, measure 0, and thus deter-

mine the wavelength X of the radia-

tion used: this is x-ray spectroscopy.
The essential features of an x-ray

spectrometer are shown in Fig. 3-4.

X-rays from the tube T are incident

on a crystal C which may be set at

any desired angle to the incident FIG. 3-4. The x-ray spectrometer.
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Figure 3.4: (a) Vacuum tube furnace used for heat treatments and (b) magnified image of the 
Ni-Mo-W films sandwiched between alumina plates inside the evacuated tube.  

 

3.2.1.1 EBSD sample preparation 

EBSD is a surface-sensitive technique that uses Kikuchi diffraction patterns generated by 

coherent backscattered electrons to determine the orientation of crystalline materials. The 

specimen surface quality is paramount to obtaining suitable diffraction signals for post-

processing. Analysis of the Kikuchi patterns is typically performed using commercial 

software, where the user identifies the crystallographic phase(s) in the material and Hough 

transforms are used to index the experimental pattern with a bank of idealized crystal 

orientations [23]. All EBSD characterization was performed using the OIM Analysis™ 

(EDAX-TSL) software. Preparing the Ni-Mo-W freestanding films for EBSD began with 

sandwiching the films between two Ni bars using Quick-Cure™ 5-minute epoxy (Bob Smith 

Industries Inc.) mixed with graphite powder for electrical conductivity. After the epoxy 

cured, the cross-sectional films were mechanically polished to a mirror-like surface finish. 

First, the surface was made flat by grinding with 200 grit silicon carbide paper. The 

remaining polishing recipe was carried out with 150 rotations per minute for 45 minutes at 

each step: 400, 600, 800 and 1200 grit. Immediately before performing EBSD, final 

(a) (b) 

50mm 



	 63 

polishing with 5 nm colloidal silica was performed for 30 minutes and the specimens were 

rinsed with tap water and ethanol.  

3.2.2 Mechanical testing 

A representative subset of Ni-Mo-W alloys was extracted from the range of chemical 

compositions that span from W-rich to Mo-rich, as illustrated in Figure 3.2. Tensile 

specimens were designed for room temperature testing in a custom built microsample frame 

[24] with a 25 pound (111 N) load cell, linear actuator and air bearing. A high-resolution 

camera was used to capture images every 1 s for digital image correlation (DIC) post-

processing [25], as outlined in section 2.2.1. The specimen was illuminated with a ring light 

attached to the lens (Edmund Optics R-200 rear assembly and OBJ-9 front objective) with a 

5.25 mm x 3.86 mm field of view. The full mechanical and optical setup is shown in Figure 

3.5. Tensile geometries were machined using wire electrical discharge machining (EDM) to 

achieve gage widths and lengths of 460 µm and 1.6 mm, respectively. During machining Ni-

Mo-W films were secured between two Ni plates with silver paint adhesive to insure 

conductivity and good surface finish. The tensile geometry was modified to have an 

elongated grip section that could be clamped between flat plats during loading (Figure 3.6). 

Specimen gage sections were speckled with 10 µm silica powders suspected in acetone and 

loaded at a nominal strain rate of 10-5 s-1. In total, 24 room temperature tensile tests were 

conducted on Ni-Mo-W films in either the as-deposited state or heat treated conditions. 
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Figure 3.5: Microtensile load frame, adapted from [24]. 

 
 

 

 

 

 

 

 

 

 

 

 
 
Figure 3.6: Microtensile specimen clamped between two flat plates during mechanical 
testing. 
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3.3 Microstructural morphology 

3.3.1 Cross-sectional microstructure 

Cross-sectional FIB channeling contrast images shown in Figure 3.7 are representative of 

the Ni-Mo-W films that were prepared for mechanical testing. Figures 3.7a-d are the most 

W-rich alloys and Figures 3.7e-f are the most Mo-rich alloys. The bottom of all films show 

evidence of equiaxed nanocrystalline grains from initial growth on the brass substrate, which 

is entirely consistent with observations of room temperature PVD films [4, 26]. The 

nanocrystalline regions accounted for 31-37% of the overall Ni-Mo-W film thickness, largely 

due to the high deposition rate and low sputtering temperature. When the substrate 

temperature is significantly less than the material melt temperature, the adatom mobility is 

considered low and the incoming deposition atoms are essentially frozen where they land. 

Upon thickening the heat generated by the deposition process increases the substrate 

temperature and surface diffusion, which leads to the columnar grain structure [26]. The bulk 

of the films display long columnar grains oriented towards the vertical growth direction, but 

they are not always perpendicular to the film. For example, alloy 6 (Ni84.4Mo10.7W4.9) in 

Figure 3.7e has columnar grains that are tilted 11° with respect to the normal, while alloy 4 

(Ni85.4Mo5.9W8.7) in Figure 3.7d seems well aligned and perpendicular to the film. Other 

films, such as alloy 2 (Ni85.4Mo3.3W11.3), show discrete interfaces through the thickness 

(Figure 3.7b). The observed interfaces are attributed to an out-of-plane tilt of the columnar 

grains that is not observable in this cross-sectional view. The projected dimensions of the 

columnar grains in Figure 3.7b have an aspect ratio about 4:1, which can be used to 

approximate the out-of-plane viewing tilt to 15° or more. A summary of the film thickness 

and columnar tilt alignment with respect to the films perpendicular is summarized in Table 
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3.1. The implications of the columnar tilt on the mechanical properties will be discussed in 

section 3.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Cross-sectional FIB channeling contrast images for a subset of the as-deposited 
Ni-Mo-W films with increasing Mo-content: (a) alloy 1 (Ni84.9Mo2.1W13), (b) alloy 2 
(Ni85.4Mo3.3W11.3), (c) alloy 3 (Ni85.1Mo4.6W10.3), (d) alloy 4 (Ni85.4Mo5.9W8.7), (e) alloy 6 
(Ni84.4Mo10.7W4.9), and (f) alloy 7 (Ni84.2Mo11.8W4.0).  All cross-sections show a 31-37% 
nanocrystalline layer at the bottom of the films, with the remainder columnar grains oriented 
along the growth direction.  
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Table 3.1: Summary of 
the subset of Ni-Mo-W 
alloys tested in uniaxial 
tension with reported 
fracture strength and 
elastic modulus for films 
as-deposited and heat 
treated for 1 hour at 
400°C. Film thickness, 
the contribution of the 
nanocrystalline (nc) 
region and the columnar 
tilt angles were measured 
from FIB channeling 
contrast images (Figure 
3.7). 
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Bright field TEM micrographs in Figure 3.8 display the columnar grain structure filled with a 

high density of perpendicular nanotwins for W-rich alloy 2 (Ni85.4Mo3.3W11.3) and Mo-rich 

alloy 6 (Ni84.4Mo10.7W4.9). SAED patterns were indexed on a [011] zone axis and found to 

have diffraction spots with mirror symmetry parallel to (1-11), indicating a twin plane. 

Throughout the columnar grains, SAED pattern analysis demonstrated growth nanotwins for 

both Mo-rich and W-rich compositions, as shown in the inset of Figures 3.8a and 3.8b. 

Similar nanotwinned micrographs were observed in all films prepared in this study. 

 

 

 

 

 

 

 

 

 

Figure 3.8: Bright-field TEM micrographs of columnar grains filled with nanotwins and an 
inset of a selected-area electron diffraction pattern indexed for the twin and the matrix. (a) 
W-rich alloy 2 (Ni85.4Mo3.3W11.3) and (b) Mo-rich alloy 6 (Ni84.4Mo10.7W4.9). 
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sputtering, typically the magnetic field creates a circular erosion racetrack in the disk-shaped 

target and a uniform plasma is generated. The densest part of the plasma is produced 

perpendicular to the surface of the target and hence, the substrate is typically positioned 

parallel to the target during deposition. The resulting microstructure grows perpendicular to 

the film surface. However, the combinatorial Ni85Mo15 and Ni85W15 rectangular target shown 

in Figure 2.2b creates an asymmetric Ni-Mo-W plasma due to the elliptical erosion racetrack 

and sputter yield differences between Mo and W. The most dense and most uniform Ni-Mo-

W plasma is generated at the center of the target, where Mo and W contents are relatively 

equal. In comparison, the top and bottom of the target generates a less dense and less uniform 

Ni-Mo-W plasma due to the transverse location of Mo and W in the target and the 

differences in their sputter yields. As a result, the top and bottom of the rectangular substrate 

(Figure 3.2) are no longer positioned perpendicular to the dense and uniform plasma, but are 

at some angular tilt. The thin film growth direction would then match the angle of the 

impinging atoms on the substrate rather than the substrate normal, creating a variation in the 

growth direction across the length of the substrate. Additionally, the vertical mounting of the 

substrate and target for the custom sputtering chamber shown in Figure 3.1 involves a 

rotating carousel, which allows multiple substrates to be loaded at once without having to 

vent and pump down the chamber between subsequent depositions. However, any 

misalignments between the target and the substrate from imprecise rotations of the carousel 

can also cause variations in the microstructure. Similar reports of this phenomenon for PVD 

techniques have been explored in the literature. The commonly referred “tangent rule” 

describes the effect of angular alignment between the substrate normal and the vapor flux 

concentration with respect to grain morphology [27]. The resulting microstructure has an 
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inclination of columnar grains with respect to the substrate normal. This is often referenced 

as shadowing, where the geometric constraint influences the microstructure formation [4, 

28].  

It is clear from the film cross-sections in Figure 3.7 that the columnar grains exhibit a 

variety of tilt angles as a result of the unique alloy target geometry and small misalignments 

between the brass substrate and the Ni-Mo-W target during deposition. The transverse 

location of the sectioned film shown in Figure 3.2 will govern the columnar tilt angle. For 

example, alloy 4 thin film with well aligned microstructure to the film normal was sectioned 

from the center portion of the substrate that was aligned with the uniform and dense plasma, 

whereas alloy 2 thin film with a large out-of-plane tilt was sectioned from the top of the 

substrate, significantly further and more tilted from the impinging atoms in the dense plasma. 

Had a symmetric target geometry and its associated plasma been utilized, the microstructural 

variations in Figure 3.7 would likely not be present.  

The effect of the tilted microstructure on crystallographic texture deserves a closer look. 

Materials with high melting temperatures such as Ni, Mo and W, have low adatom mobility 

during the sputtering process and surface quenching during deposition allows texture to 

develop along columnar grains, even when tilted [29]. EBSD analysis of thin film cross-

sections determined {111} texture across all Ni-Mo-W compositions, however a subtle but 

important distinction has been noted. The inverse pole figures (IPFs) indicate that the 

intensity of {111} texture is not at the same strength for all of the as-deposited films. For 

example, Figure 3.9 gives the IPF’s for three films of alloys 2, 4 and 6.  
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Figure 3.9: IPF plotted for the direction perpendicular to the as-deposited films. (a) Alloy 2 
(Ni85.4Mo3.3W11.3) with a ~15° columnar tilt with respect to the surface normal, (b) alloy 4 
(Ni85.4Mo5.9W8.7) with nominally aligned grains with the surface normal and (c) alloy 6 
(Ni84.4Mo10.7W4.9) with 11° columnar tilt with respect to the surface normal. 

 

The IPF for alloy 4 (Ni85.4Mo5.9W8.7) shown in Figure 3.9b shows the strongest {111} 

texture, which matches the observations that its columnar grains are closely aligned 

perpendicular to the film surface (Figure 3.7d). The IPF for alloy 6 (Ni84.4Mo10.7W4.9) shown 

in Figure 3.9c has slightly weaker {111} texture, which is consistent with the 11° measured 

rotation of the columnar grains relative to the surface normal (Figure 3.7e). Most notably, the 

IPF for alloy 2 (Ni85.4Mo3.3W11.3) shown in Figure 3.9a displays the weakest {111} texture 

and this specimen was found to have its columnar grains oriented ~15° out-of-plane tilt 

(Figure 3.7b). These microstructural variations do not appear to have any fundamental 

correlation with alloy composition and are instead taken to be a direct result of the 

combinatorial alloy target geometry and its plasma disparities during sputtering. These 

variations in texture and columnar alignments can be expected to affect the mechanical 

behavior of the thin films and is explored further in section 3.4 
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3.3.3 XRD texture analysis 

3.3.3.1 Lattice constant 

XRD data from the both sides of the planar freestanding as-deposited Ni-Mo-W films are 

compared with standard polycrystalline Ni diffraction peak positions in Figure 3.10. The 

pronounced (111) and (222) diffraction peaks are consistent with the crystallographic texture 

associated with high quench rates and energies during sputter deposition [4]. The {111} 

peaks agree with single-phase face-centered cubic (fcc) Ni, but very few other peaks were 

observed. The Bragg angle associated with the full width at half maximum value was used to 

calculate the lattice constant across each of the alloys. Minimal changes in the lattice 

constant were measured across the eight alloys, with an averaged value of 3.61±0.01 Å. The 

larger atomic sizes of Mo and W dissolved in the Ni lattice cause a lattice expansion and an 

associated peak shift with respect to Ni reflections.  Since the atomic size of Mo and W are 

similar, there is little variation in the lattice parameter with respect to composition. Given the 

larger atomic size of Mo and W compared to that of Ni, the solute atoms are substitutional in 

the Ni lattice, and therefore, the effective volume of Mo and W atoms can be calculated 

through the formulation proposed by King [30, 31]. Extending this binary alloy formulation 

to the ternary alloy regime, the average atomic volume can be written as Equation 3.1; Ω!" is 

the atomic volume of pure Ni and 𝜒 is the atomic fraction of Ni, Mo and W atoms in the 

alloy. The effective volume of the solute atoms in the Ni solvent is represented by Ω!"∗  and 

Ω!∗  [30].  

 

 Ω χ = 𝜒!"Ω!" + 𝜒!"Ω!"∗ + 𝜒!Ω!∗   (3.1) 
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Figure 3.10: XRD peaks for the as-deposited freestanding Ni-Mo-W alloys with (a) the 
substrate side upwards showing a more balance of diffraction peaks for and (b) the columnar 
grain side upward with exclusively (111) diffraction peaks across all eight investigated 
compositions. XRD peaks for polycrystalline Ni (black) are shown for comparison.  
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The fractional change in volume, or volume size factor, is defined using the effective volume 

of substitutional atom A in the Ni solute lattice (Equation 3.2), where the measured values of 

the size factor Ω!" are obtained experimentally from King [31].  

 

 
Ω!" =

Ω!∗ − Ω!"
Ω!"

  (3.2) 

 

For a Ni solvent, King reported Ω!"  of +22.37% and +36.93% for Mo and W solutes, 

respectively [31]. The average atomic volume for fcc Ni is Ω = !!

!
, combined with Equations 

3.1 and 3.2 enables calculations for the average crystal volume for the various Ni-Mo-W 

alloys reported in Figure 3.2. The predicted lattice constant calculated from the King method 

is 3.58±0.01 Å across all eight chemical compositions of Ni-Mo-W alloys, showing 

invariance with composition. This closely matches the experimental value 3.61 Å and 

literature reported values for solid solution Ni-W alloys [32-34] and Ni-Mo alloys [33, 35]. 

Even after heat treating for 1 hour at 400°C (Figure 3.11), there was no significant change in 

lattice parameter.   

 

 

 

 

 

 

 



	 75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: XRD peaks from a subset of the freestanding Ni-Mo-W alloys after 1 hour 
400°C heat treatment with (a) the substrate side upwards and (b) the columnar grain side 
upwards. XRD peaks for polycrystalline Ni (black) are shown for comparison. 
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3.3.3.2 Texture gradient 

The effect of the initial nanocrystalline grains is realized from Figure 3.10a, where the 

diffraction peaks are more evenly distributed than the columnar grain side. W-rich alloys 

show {200} and {311} crystallographic peaks, indicating that the initial growth stage has 

more randomized crystallographic texture compared to the columnar grain side of the film 

(Figure 3.10b) with exclusively {111} peaks. Although the X-ray penetration depth cannot 

be exactly determined, methods for estimating the depth of penetration were given by Cullity 

[22] and derived in Appendix 1. For pure Ni and 1.5406 Å Cu K-α X-rays, 50% of the XRD 

information comes from the first 3-6 µm of the specimen and 95% of the information is 

gathered from the first 13-25 µm. The distinction between the two sides of the 21 µm thick 

films is significant, but some overlap can be expected. Quantification of the observable 

texture gradient is demonstrated by defining the fractional intensity of the {111} peaks from 

the XRD datasets in Figure 3.10. Equation 3.3 defines the fraction of the {111} peak 

intensities (𝐼!!!) as a ratio to the sum of all measured peak intensities.  

 

 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 {111} =
𝐼!!!

𝐼!!! + 𝐼!""+ . .
  (3.3) 

 

The results are summarized for both sides of the freestanding as-deposited films in Figure 

3.12a. As expected, the bottom portion of the Ni-Mo-W films showed modest decrease in the 

fractional intensity of {111} due to the more randomly oriented nanocrystalline grains. The 

symmetric XRD geometry illustrated in Figure 3.3 only allows the measurements of 

crystallographic planes that are parallel to the film surface. For the films with large off-axis 

<111> tilts, symmetric XRD will naturally reveal more randomized crystallographic peaks 
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from the planes parallel to the film surface. For the data presented in Figure 3.12a, alloy 2 

(Ni85.4Mo3.3W11.3) again appeared to be an outlier, showing the largest difference in fractional 

intensity of {111}. Figure 3.7b displayed this particular film to have the largest 

nanocrystalline region (37%) through the thickness, which is consistent with the findings 

from XRD.  The combined effect of the ~15° columnar tilt and the more randomly oriented 

nanocrystalline region is expected to affect the mechanical behavior for this particular film. 

By comparison, most films showed minimal difference in the fractional intensity of {111} 

orientation through the thickness.  

The XRD profiles for Ni-Mo-W films heat treated for 1 hour at 400°C are shown in 

Figure 3.11. Interestingly the substrate side of the films that previously showed (200) and 

(311) peaks for W-rich alloys are no longer are apparent. For ease of comparison, the 

fractional intensity of the {111} peaks is plotted as a function of solute concentration in 

Figure 3.12b. For the bottom portion of the films with nanocrystalline grains, the fractional 

intensity of {111} displayed a modest increase from the as-deposited films. Specifically, 

alloy 2 (Ni85.4Mo3.3W11.3) with the largest contribution of nanocrystalline grains across all of 

the alloys showed a dramatic 25% increase in {111} texture after the 1 hour heat treatment at 

400°C. Multiple studies have reported on the poor thermal stability of nanocrystalline Ni, 

finding grain growth, recrystallization and reorientation in temperatures as low as 80-300°C 

[12, 36, 37]. Curiously, the nanocrystalline region in alloy 6 (Ni84.4Mo10.7W4.9) displayed a 

decrease in the fractional intensity of the {111} after heat treatment. The reason behind this 

behavior is not well understood and might be attributed to measurement error.  
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Figure 3.12: Fractional intensity of {111} peaks obtained via XRD for the (a) as-deposited 
and (b) heat treated at 400°C freestanding Ni-Mo-W films. The bottom portion of the film 
showed some randomized nanocrystalline (nc) grains while the continued growth and top 
portion of the film has long columnar grains.  
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More cross-sectional analysis would be needed to understand the apparent texture change. 

However, the bulk of the films are governed by the columnar grains, which showed no 

change in texture with thermal exposure. A recent investigation on Ni83.6Mo14W2.4 

demonstrated the stability of the nanotwinned columnar microstructure with temperatures as 

high as 800°C [20]. Thus, engineering Ni-Mo-W alloys without the nanocrystalline region 

would provide long and continuous columnar grains that are more microstructurally stable 

through the thickness. 

 

3.4 Mechanical response  

3.4.1 Fracture strength 

The stress-strain response of a representative set of Ni-Mo-W alloys demonstrates 

extraordinarily high strengths, as shown in Figure 3.13. The tensile strengths are even higher 

than what has been reported for nanocrystalline Ni and binary Ni-W [38, 39]. The as-

deposited films have a nearly linear-elastic behavior with no macroscopic plasticity, which is 

a highly desirable behavior for MEMS. For each alloy composition investigated, at least two 

specimens were tested and showed repeatable behavior. The limited microplasticity at very 

high stresses may impart some toughness through crack tip blunting.  

 

 

 

 

 



	 80 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13: Stress-strain response for a representative subset of the as-deposited Ni-Mo-W 
films showing brittle linear-elastic behavior. Elastic modulus is measured from the slope of 
each curve and the fracture strength is taken as the maximum value before fracture. For each 
alloy, two to three specimens were tested. 
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The cross-sectional failure morphology in Figure 3.14 demonstrates the brittle nature of the 

columnar grains with cleavage along the grain boundaries, similar to what has been observed 

for electrodeposited Ni-W alloys [40]. Many sputter deposited Ni alloys show brittle fracture 

in the as-deposited state, without significant ductility until annealed at temperatures greater 

than 600°C [19, 20, 39, 41]. However, the bottom portion of the film in Figure 3.14 displays 

brittle equiaxed grain fracture with some evidence of dimpling, indicating moderate 

microplasticity in the deformed specimen. This region of the film consists of nanocrystalline 

grains, where dimpling is commonly associated with grain boundary mediated plasticity 

mechanisms [42, 43].  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: Cross-sectional SEM of the fracture surface of as-deposited Ni-Mo-W alloy 4 
(Ni85.4Mo5.9W8.7) with brittle failure. Cleavage along the columnar grain boundaries is 
highlighted in red. The nanocrystalline portion (yellow) shows modest evidence of dimpling. 
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In the absence of significant plasticity, the maximum tensile stress at fracture is reported as 

the fracture strength for the Ni-Mo-W alloys, summarized in Table 3.1. The W-rich films 

have a fracture strength ranging 1.9-2.2 GPa with variability as high as 0.5 GPa. By 

comparison, the Mo-rich films display a higher fracture strength ranging 2.6-2.7 GPa with 

variability less than 0.2 GPa. Films annealed for 1 hour at 400°C in 10-6 Torr vacuum (Figure 

3.15) were completely linear-elastic, but the fracture strength decreased compared to the as-

deposited films.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15: Stress-strain response for a representative subset of heat treated films for 1 hour 
at 400°C in 10-6 Torr vacuum showing brittle linear-elastic behavior. Elastic modulus is 
measured from the slope of each curve and the fracture strength is taken as the maximum 
value before fracture. For each alloy, two to three specimens were tested. 

0

500

1000

1500

2000

2500

3000

3500

0 0.01 0.02 0.03 0.04 0.05

St
re

ss
 [M

Pa
]

Strain

Ni85.4Mo3.3W11.3 

Ni85.1Mo4.6W10.3 

Ni85.4Mo5.9W8.7 

Ni84.4Mo10.7W4.9 

Ni84.2Mo11.8W4.0 

W-rich 

Mo-rich 



	 83 

Specimen fabrication and preparation can contribute to the overall strength of a material 

at micrometer length scales. Sputtering is inherently a line-of-sight deposition technique, 

which creates a directional dependence of the film growth and causes non-uniform 

thicknesses. For example, Ni-Mo-W alloy 1 was sectioned from the top edge of the sputtered 

film (Figure 3.2) and measured only 10.3 µm in thickness compared to the other 21 µm Ni-

Mo-W films investigated.  

Wire EDM is widely known to create a recast damage layer onto the cut part. Sidewall 

roughness can create stress concentrations, causing premature failure. For alloy 1 

(Ni84.9Mo2.1W13) with 10.3 µm, high variability in the fracture strength was observed with 

frequent premature failure in the grip section of the tensile specimen due to machining flaws, 

see for example Figure 3.16. As a result, more variability was observed in these films.  

 

 

 

 

 

Figure 3.16: Tensile specimen with thickness variation 10.3 ± 0.3 µm failed in the grip 
section during loading due to sidewall roughness from wire EDM machining.  

 

Improved micro-machining techniques exist to provide pristine surfaces, such as 

femtosecond laser machining. This machining technique was found to increase the fracture 

strength of Ni83.6Mo14W2.4 from 3.27 GPa to 3.44 GPa (5.2%) with the addition of 

microplasticity, illustrated by the failure morphology in Figure 3.17 [44]. Employing this 

460 µm 
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technique for future mechanical characterization could give greater insight into the brittle 

behavior currently observed and potentially increases the already high strength.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17: Cross-sectional SEM micrograph of the fracture surface exhibiting dimpling, 
indicating microplasticity, for a laser machined Ni83.6Mo14W2.4 tensile specimen. 

 

3.4.2 Elastic modulus 

The elastic modulus was determined by measuring the slope of the linear-elastic portion 

of the tensile stress-strain curve. The value remained unchanged between the films as-

deposited and after the 400°C heat treatment, therefore, the measured values were averaged 

for each film and reported in Table 3.1 The in-plane elastic modulus for <111> Ni is 

calculated to be 232 GPa from reference values of the stiffness matrix (Cij’s) [45]. In 

comparison, the Ni-Mo-W films with well-aligned vertical columnar grains from alloy 4 

5 µm 
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(Ni85.4Mo5.9W8.7) have a measured elastic modulus of 220 GPa. The slight 5% decrease in 

expected modulus could emanate from non-uniform thickness in the sputtered films. 

However, other Ni-Mo-W films with columnar tilt angles 4-11° resulted in a significant 

reduction of the elastic modulus, with measured values ranging from 194-206 GPa. An even 

more dramatic reduction in modulus was observed for Ni-Mo-W alloy 2 (Ni85.4Mo3.3W11.3), 

where the large columnar tilt corresponded to the lowest modulus, 180 GPa. The measured 

elastic moduli have a wide variability from 180-220 GPa that does not scale with the alloy 

composition. Instead, the tilted microstructure with inclined columnar grains and off-axis 

<111> orientation facilitates the measured differences in the moduli. Lintymer et al. 

systematically changed the substrate angle with respect to the vapor flux during sputter 

deposition to create a variety of microstructural tilt angles, finding that large columnar tilt 

angles above 20° caused more than 30% decrease in modulus due to the formation of void 

structures from self-shadowing [46]. This method of void formation has been observed in 

oblique angle deposition [47], particularly in thicker films [28]. However, for columnar tilts 

less than 20°, Lintymer et al. reported modulus variations within 12% of the well-aligned 

columnar value [46]. This is consistent with the spread of Ni-Mo-W columnar tilts 4-11° 

with an elastic modulus 13% lower than the calculated 232 GPa value. It is likely that the 

columnar tilt angle of alloy 2 is approaching the critical angular tilt where shadowing 

dominates the growth process, creating open void boundaries [28]. Thus, the wide 

distribution of elastic moduli is driven directly by the underlying microstructure, namely the 

tilted <111> columnar grains.  
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3.4.3 Nanotwins 

Ultrahigh tensile strengths of 1.9-2.7 GPa were observed across the different Ni-Mo-W 

compositions. Variations in the fracture strength were found to depend on the columnar tilt 

angle, but the overall strengthening mechanism relies on the nanotwinned microstructure, 

Figure 3.8. Representative W-rich and Mo-rich films were shown to have a high density of 

finely spaced growth twins. Similar findings for nanotwinned Cu have demonstrated 

increases in strength [18, 48, 49] and orientation dependent mechanisms. By changing the 

loading orientation with respect to the twin boundaries, different dislocation interactions 

facilitate the mechanical response. You et al. reported that loading 0° and 90° with respect to 

the twin boundary orientation provided hard deformation modes due to the confinement and 

blockage of dislocations, whereas loading at 45° activated easy dislocation glide along the 

twin boundary, which facilitated soft deformation [50]. Sim et al. reported the hard 

deformation mode when loading parallel to twin boundaries in Ni83.6Mo14W2.4, exhibiting 

nearly 3 GPa of tensile strength [19, 20]. For the Ni-Mo-W films in this study with off-axis 

columnar tilts, the associated twin boundaries also have a tilt angle with respect to the 

loading direction. As a result, there is a small resolved shear stress on the tilted twin plane. 

Using the measured columnar tilts (0-15°) and assuming the associated twin boundaries are 

at the same tilt, the Schmid factors range from 0-0.25. This crude calculation indicates a low 

spread in Schmid factor, which would inhibit easy glide as the dominant mechanism. The 

hard deformation mode, where dislocations are confined between the twin boundaries, is 

suspected to govern the high tensile strengths. 
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3.5 MEMS integration 

Incorporating Ni-Mo-W alloys into existing MEMS platforms requires the requisite 

dimensional stability, electrical conductivity and mechanical strength. Ni-Mo-W alloys 

displayed linear-elastic deformation with exceptionally high tensile strengths due to the 

presence of nanotwins. Thermal and dimensional stability was demonstrated through control 

of the coefficient of thermal expansion (CTE) in Chapter 2, finding that Ni-Mo-W alloys 

have reduced CTE and compatibility with conventional MEMS substrates. Here, specimens 

heat treated at 400°C were investigated to illustrate the mechanical behavior and 

microstructural stability of the Ni-Mo-W films. Measured tensile strengths after heat 

treatments of 400°C showed an overall 24% decrease as compared to the as-sputtered films. 

A high concentration of quenched vacancies is common with films deposited at high rates. At 

400°C it is likely that the vacancies are mobile, while lattice diffusion is not yet thermally 

active. Figure 3.18 displays a representative film surface after a 1 hour heat treatment at 

400°C, illustrating a random distribution of surface voids. This state of unbalanced diffusion 

can facilitate micro-void formation at the surface or at grain boundaries, attributing to a 

reduction in the overall mechanical strength, as shown in Figure 3.15. Similar mechanisms 

were described by Sim et al. for Ni83.6Mo14W2.4 heat treated to 600°C, where a much more 

severe drop in tensile strength was observed, ~78% [20]. The dramatic loss in strength was 

restored at higher temperatures (800-1000°C) and the stress-strain response displayed up to 

10% ductility, where lattice diffusion is active to promote recrystallization and grain growth, 

mitigating void formation [20]. Thus, this study suggests that 400°C marks the beginning of 

this small thermal window for which unstable diffusion occurs in the bulk film over the short 

heating time. Identifying the onset of this thermal window provides a complete picture of the 
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upper and lower bounds for the unbalanced diffusion in Ni-Mo-W, where the mechanical 

behavior can be tailored from ultrahigh strength with linear-elasticity to moderate strength 

with enhanced plasticity [20]. This design consideration is pivotal for engineering MEMS 

devices with the intended suite of properties.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.18: Micrograph of the in-plane surface morphology of alloy 7 (Ni84.2Mo11.8W4.0) 
displaying a random distribution of voids after heat treatment for 1 hour at 400°C. 
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3.6 Chapter summary 

A combinatorial study of Ni85MoxW5-x alloys, where x ranges 2-13 atomic percent, 

elucidated extraordinary strength and a balance of physical properties with promise to 

broaden the available materials for high temperature MEMS applications. Characterization 

revealed a slightly tilted <111> columnar structure as an artifact of the sputtering process. 

The stress-strain response displayed an attractive linear-elastic behavior for MEMS, while 

maintaining high tensile strengths of 2-3 GPa owing to a high density of nanotwins. 

Variations in the fracture strength and the elastic moduli were driven by the microstructure 

morphology rather than alloy chemistry. The wide compositional stability and mechanical 

integrity at temperatures up to 400°C exemplifies the potential of Ni-Mo-W alloys for metal 

MEMS applications. 
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CHAPTER 4: LOCALIZED ANISOTROPIC PLASTICITY  
IN NANOTWINNED Ni-Mo-W 

 

4.1 Introduction  

The tensile testing described in Chapter 3 highlighted the microstructural effects on the 

in-plane mechanical properties of nanotwinned Ni-Mo-W alloys. The improper alignment 

during sputter deposition resulted in a variety of off-axis <111> columnar grains (0-15°) that 

exhibited linear-elastic behavior when loaded in uniaxial tension. Although this behavior is 

desirable for MEMS applications, an important scientific question arises from these results. 

Given the complex microstructure consisting of nanotwins and highly textured grains, would 

the same brittle behavior be apparent if loaded in a different orientation?  

The extensive research on nanotwinned copper (Cu) has focused on understanding the 

deformation mechanisms associated with concurrent high strength and ductility, as outlined 

in section 1.4. Jang et al. performed in situ nanopillar compression on nanotwinned Cu and 

showed that pillars with twin boundaries aligned perpendicular to the loading axis involve 

dislocation transmission across twin boundaries, while those with inclined twin boundaries 

are dominated by easy glide [1]. An additional study by You et al. proposed that the 

dominant deformation mechanism for nanotwinned Cu can be switched among dislocation 

modes by changing the loading orientation with respect to the twin planes [2]. They studied 

three load orientations (0°, 45°, 90°) and reported that the yield strength and strain hardening 

have a marked dependence on these orientations. The various interactions between 

dislocations and twin boundaries define the anisotropic nature of the deformation. Nanotwin 

formation is typically associated with low stacking fault energy (SFE) materials, such as Cu, 

Ag or Au, but the synthesis of Ni-Mo-W alloys has demonstrated similar microstructures. 
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Thus, an understanding of their deformation would elucidate the mechanisms operative in 

higher SFE nanotwinned metals, where dislocation cores are likely to be more compact and 

their interactions with twin boundaries are more profound. 

This chapter outlines an experimental investigation of the active deformation mechanisms 

for nanotwinned Ni-Mo-W and how they are affected by twin boundary orientation. 

Micropillar compression experiments were carried out inside of the scanning electron 

microscope (SEM) to observe the deformation when loading near perpendicular to the twin 

boundaries. The results from post-mortem transmission electron microscopy (TEM) and 

automated crystal orientation mapping (ACOM) are presented and discussed in detail in 

section 4.4. The initial experiments conducted in this chapter were carried out at the 

University of Tennessee during a nanoindentation training session hosted by George Pharr 

and Warren Oliver. Their knowledge of indentation mechanics provided a foundation for 

much of the methods described below.  

4.2 Materials and methods 

4.2.1 Material fabrication and characterization 

Ni-Mo-W films were sputter deposited onto a brass substrate by Jessica Krogstad using a 

direct current power of 2500 W and argon sputtering gas pressure of 1 mTorr, with details 

outlined in sections 2.2.2 and 3.2.1. Unlike the study presented in the previous chapters, a 

single alloy of Ni84.4Mo10.7W4.9 was chosen for investigation. During the sputtering process, 

small regions of nanocrystalline grains developed at the bottom of the film due to the high 

energy quench rates, but after that columnar grains grew through the thickness of the films 

(section 3.3.1). The freestanding Ni84.4Mo10.7W4.9 films were investigated using X-ray 

diffraction (XRD) to determine which side of the film was nanocrystalline versus the 
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columnar microstructure, as shown in section 3.3.3. The Ni84.4Mo10.7W4.9 films were mounted 

on SEM stubs using epoxy mixed with graphite powder for conductivity and oriented with 

the columnar side upward. All mechanical testing presented in this chapter was conducted on 

the columnar grain side of the films.  

4.2.2 Mechanical testing 

4.2.2.1 Nanoindentation 

Instrumented nanoindentation was employed using the Oliver-Pharr method [3] to 

measure the hardness of the thin film at nominal indentation strain rate (𝜀), defined by 

Equation 4.1 [4], where ℎ is indentation depth, 𝑡 is time and 𝑃 is applied load. 

 

 𝜀 =
1
ℎ  
𝜕ℎ
𝜕𝑡 =

1
2
1
𝑃
𝜕𝑃
𝜕𝑡  (4.1) 

 

A typical indentation experiment is shown in Figure 4.1a, where the contact stiffness (𝑆) is 

measured with the initial unloading slope at the maximum load (𝑃!"#) [3]. The indentation 

curve is most often associated with measures of the elastic modulus (𝐸) and the hardness (𝐻) 

of a material, defined in Equations 4.2 and 4.3. 

 

 
𝐸! =

𝜋
2

𝑆
𝐴
  

(4.2) 
 1

𝐸!
=
1− 𝜈!

𝐸 +
1− 𝜈!!

𝐸!
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 𝐻 =
𝑃!"#
𝐴  (4.3) 

 

Measuring the contact stiffness (𝑆) and the projected area of the elastic contact (𝐴) provides a 

direct measure of the reduced modulus (𝐸!). The reduced modulus represents the total elastic 

deformation occurring from both the specimen and the indenter tip, which is related to the 

elastic modulus and Poisson’s ratio of the specimen (𝐸 and 𝜈) and of indenter (𝐸! and 𝜈!). 

The hardness in Equation 4.3 is calculated from the maximum load (𝑃!"#) and the projected 

area (𝐴). Figure 4.1b illustrates a schematic of an indent cross-section with the various 

quantities used for analysis [3]. The projected area (𝐴) is a function of contact depth (ℎ!), 

defined as the vertical distance along which contact is made between the specimen and the 

indenter tip. This is one of the most important quantities as it is used in all of the analysis 

calculations. Quality measurements of the elastic modulus and the hardness require an 

accurate measurement of the projected area, known as the tip area function, which is a 

representation of the tip geometry. Calibration is typically performed on a specimen with 

known elastic modulus and the data is fit to a polynomial function [3]. However, using all of 

these quantities from the indentation curve in Figure 4.1a only provides one measurement of 

modulus and hardness at the maximum load (𝑃!"#). By comparison, the continuous stiffness 

measurement (CSM) provides a nanometer amplitude oscillation during loading, such that 

the indenter is continually unloading to calculate the contact stiffness as a function of depth. 

Thus, use of the CSM enables property measurement as a function of depth.  
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Figure 4.1: (a) A schematic of the load-displacement curve obtained during a typical 
indentation experiment, labeled with the quantities: Pmax is the maximum load reached during 
indentation, hmax is the indenter displacement at the maximum load, hf is the final depth of the 
contact impression after unloading and S is the initial unloading stiffness. (b) The contact 
depth hc is defined as the vertical distance along which contact was made, while hs is the 
displacement of the surface at the perimeter of contact. Adapted from [3].  
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spheres in the limit of small displacements, and m = 1.5
for paraboloids of revolution.

Modeling indentation contact in a way that includes
plasticity is a much more complex problem. Since the
constitutive equations are nonlinear and a number of ma-
terial parameters must be included to describe material
behavior (e.g., yield strength and work hardening coeffi-
cient), analytical solutions are not easily obtained.15 As
a result, much of our understanding of the importance of
plasticity in indenter contact problems has been derived
through experimentation and finite element simulation.

The earliest experiments in which load and displace-
ment sensing indentation methods were used to mea-
sure mechanical properties were performed by Tabor,18

who studied the indentation of a number of metals
deformed by hardened spherical indenters. A similar
study was subsequently undertaken by Stillwell and
Tabor to examine the behavior of conical indenters.19

One particularly important observation resulting from
these studies concerns the shape of the hardness im-
pression after the indenter is unloaded and the material
elastically recovers. The experiments revealed that, at
least in metals, the impression formed by a spherical
indenter is still spherical with a slightly larger radius
than the indenter, and the impression formed by a
conical indenter is still conical with a larger included
tip angle. The importance of these experiments is that
since elastic contact solutions exist for each of these
geometries (i.e., a spherical indenter in a spherical hole
and a conical indenter in a conical hole), the ways
in which plasticity affects the interpretation of elastic
unloading data can be dealt with by taking into account
the shape of the perturbed surface in the elastic analysis.
Tabor used these results to show that the shape of the
entire unloading curve and the total amount of recovered
displacement can be accurately related to the elastic
modulus and the size of the contact impression for
both spherical and conical indenters. Other important
observations resulting from these studies include (1)
the diameter of the contact impression in the surface
formed by conical indenters does not recover during
unloading—only the depth recovers; (2) the indentation
must be loaded and unloaded a few times before the load-
displacement behavior becomes perfectly reversible; i.e.,
a limited amount of plasticity sometimes occurs in each
of the first few loadings and unloadings; and (3) effects
of non-rigid indenters on the load-displacement behavior
can be effectively accounted for by defining a reduced
modulus, Er, through the equation

1
E~r E (2)

Interest in load and displacement sensing indentation
testing as an experimental tool for measuring elastic
modulus began in the early 1970's with the work of
Bulychev, Alekhin, Shorshorov, and co-workers.20"24

These investigators used instrumented microhardness
testing machines to obtain indentation load-displacement
data like that shown schematically in Fig. 1 which was
then analyzed according to the equation

(3)

Here, S — dP/dh is the experimentally measured
stiffness of the upper portion of the unloading data, Er

is the reduced modulus (previously defined), and A is
the projected area of the elastic contact. By measuring
the initial unloading stiffness and assuming that the
contact area is equal to the optically measured area of the
hardness impression, the modulus can thus be derived.

Equation (3) has its origins in elastic contact the-
ory. While originally derived for a conical indenter,
Buylchev et al. showed that Eq. (3) holds equally well
for spherical and cylindrical indenters and speculated
that Eq. (3) may apply to other geometries as well.21

Pharr, Oliver, and Brotzen have subsequently shown that
Eq. (3) applies to any indenter that can be described as
a body of revolution of a smooth function.25 Bulychev
et al. also argued that significant deviations from the
behavior predicted by Eq. (3) should not occur for

Q

g

where E and v are Young's modulus and Poisson's ratio
for the specimen and Et and vi are the same parameters
for the indenter.

DISPLACEMENT, h
FIG. 1. A schematic representation of load versus indenter displace-
ment data for an indentation experiment. The quantities shown are
Pm a x: the peak indentation load; hm.dX: the indenter displacement at
peak load; hf. the final depth of the contact impression after unloading;
and S: the initial unloading stiffness.
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during unloading. An analysis .of the geometry that
works best is presented in the next section by compar-
ing predictions of the method with actual experimental
results.

An important fundamental assumption in the de-
velopment is that the equations describing the elastic
unloading of a flat, semi-infinite half space are the same
as those for an indented surface; that is, Sneddon's
solutions apply equally well to a flat surface or a surface
with a hardness impression. The justification for this as-
sumption is based largely on the empirical observations
discussed in the introduction that hardness impressions
formed in metals by conical and spherical indenters are
also conical and spherical with slightly different included
tip angles and radii. As discussed in greater detail
elsewhere,25 the mathematical description of the elastic
loading and unloading of these perturbed surfaces is
exactly the same as that for the flat surface if adjustments
are made to the geometrical parameters describing the tip
angle of the cone and the effective radius of the sphere.
Since spherical and conical indenters represent two very
different geometries, i.e., one very sharp and one very
blunt, it seems reasonable that this behavior may hold
for other axisymmetric indenters as well.

Figure 19 shows a cross section of an indentation
and identifies the parameters used in the analysis. At
any time during loading, the total displacement h is writ-
ten as

h = hc + hs (5)

where hc is the vertical distance along which contact
is made (hereafter called the contact depth) and hs is
the displacement of the surface at the perimeter of the
contact. At peak load, the load and displacement are
•Pmax and hmax, respectively, and the radius of the contact
circle is a. Upon unloading, the elastic displacements are
recovered, and when the indenter is fully withdrawn, the
final depth of the residual hardness impression is hf.

SURFACE PROFILE AFTER
LOAD REMOVAL

INDENTER

SURFACE PROFILE
UNDER LOAD

The experimental parameters needed to determine
hardness and modulus are shown in the schematic load-
displacement data shown in Fig. 20. The three key
parameters are the peak load (Fmax)> the depth at peak
load (/imax), and the initial unloading contact stiffness
(Smax)- ft should be noted that the contact stiffness is
measured only at peak load, and no restrictions are
placed on the unloading data being linear during any
portion of the unloading.

The analysis begins by rewriting Eq. (3) as

Er = (6)

which relates the reduced modulus, Er, to the contact
area, A, and the measured stiffness, S. As discussed
previously, this relationship holds for any indenter that
can be described as a body of revolution of a smooth
function and is thus not limited to a specific geometry.25

Measurement of the initial unloading slope can thus be
used to determine the reduced modulus if the contact
area at peak load can be measured independently.

The area of contact at peak load is determined by
the geometry of the indenter and the depth of contact, hc.
Following Oliver et al.,1'2 we assume that the indenter
geometry can be described by an area function F(h)
which relates the cross-sectional area of the indenter to
the distance from its tip, h. Given that the indenter does
not itself deform significantly, the projected contact area

Q_

O

LOADING

UNLOADING

POSSIBLE
RANGE FOR

h c FOR e=i
h c FOR 8=0.72

FIG. 19. A schematic representation of a section through an indenta-
tion showing various quantities used in the analysis.

DISPLACEMENT, h
FIG. 20. A schematic representation of load versus indenter displace-
ment showing quantities used in the analysis as well as a graphical
interpretation of the contact depth.
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In this study, the NanoMechanics Inc. iNano instrument with a 50 mN load cell and a 

diamond Berkovich tip was used with CSM methods. Tip calibrations were performed using 

fused silica before each set of indentation experiments to assure an accurate measure of the 

tip area function. A custom machined puck that is compatible with the iNano holder was 

designed with a central hole and side screw to secure a SEM stub, Figure 4.2. Although the 

specimen is secure, this method of mounting changes the frame stiffness and needs to be 

accounted for. The total stiffness (𝐾∗) during indentation is comprised of the contact stiffness 

(𝑆) and the frame stiffness (𝐾!), defined in Equation 4.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Nanomechanics Inc. iNano system, equipped with a 50 mN load cell and a 
custom machined puck equipped for mounting SEM stubs. 

5 cm 
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Substituting the relations for contact stiffness (𝑆) and hardness (𝐻) in Equations 4.2 and 4.3 

provides the expression in Equation 4.5 for the total stiffness (𝐾∗) as a function of the applied 

load (𝑃).  

 1
𝐾∗ =

1
𝑆 +

1
𝐾!

 (4.4) 

 

 1
𝐾∗ =

𝜋𝐻
2𝐸!

1
𝑃

+ 1/𝐾! (4.5) 

 

For Equation 4.5, if the reduced modulus (𝐸!) and hardness (𝐻) are constant values, then a 

plot of the total compliance (1/𝐾∗) versus (1/ 𝑃) is a linear line with an intercept of the 

frame compliance (1/𝐾!). An example frame stiffness calculation from the custom machined 

puck is shown in Figure 4.3 and used to recalculate all measured values.   

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Representative frame stiffness (Kf) calibration for the custom machined puck 
(Figure 4.2) using the intercept of the linear fit.  
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4.2.2.2 In situ compression 

Micrometer-sized pillars were fabricated using annular milling with a FEI Strata DB235 

Dual-Beam SEM and FIB. Large 100 µm outer trench diameters were milled using 20 nA 

current to provide fiducial markers for easy identification. Micropillars with a mid-point 

diameter of 3.0±0.1 µm, overall length of 6.9±0.1 µm and 1-2° taper angle were fabricated in 

the center of the large 100 µm plateaus using a final milling current of 300 pA. 

In situ micropillar compression was performed with 50 mN and 1 N load cells in the 

NanoMechanics Inc. NanoFlip (at University of Tennessee) and inSEM (at JHU) shown in 

Figures 4.4a and b, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 4.4: NanoMechanics Inc. in situ compression stages. (a) The NanoFlip has a 50 mN 
load cell and also allows the user to flip the specimen 90° for easier imaging in the SEM. (b) 
InSEM has a 1 N load cell, but cannot flip the specimen. 

(a) 

(b) 
Load cell 

Specimen 

Flat punch 

50 mm 



	 102 

The load frames in Figure 4.4 were placed inside the SEM with the mounted specimen. A 10 

µm x 10 µm diamond flat punch was used to compress the pillars to a user prescribed depth, 

held for 1 s at the maximum load and then unloaded. Loading was performed at a nominal 

indentation strain rate of 10-3 and 10-4 s-1 with a data acquisition rate of 500 Hz. A series of 

load-unload-reload tests were performed by increasing the maximum depth in subsequent 

trials and the incremental deformation was examined. 

4.2.3 Post-mortem characterization 

Berkovich tip shaped nanoindents were imaged using a Tescan Mira field emission SEM 

to examine the surface impressions for each of the investigated strain rates. Conventional FIB 

lift-out techniques were used to extract cross-sections of the deformed micropillars in the 

loading direction, thinning the specimens to electron transparency. The thin films extracted 

post-mortem from pillars were analyzed using a FEI Tecnai G2 F20 Super-Twin FE-TEM at 

200 kV to obtain bright field images and selected area electron diffraction (SAED) patterns. 

TEM-based ACOM was used in a Thermo Scientific TF30 to determine the crystal 

orientation after deformation and investigate any changes in the overall microstructure.  

4.2.3.1 TEM-based orientation mapping 

Microstructural characterization using TEM provides incredible spatial resolution, near 

the atomic scale. Orientation mapping using the TEM requires scanning a small, converged 

electron beam across the specimen and the collection of SAED patterns at each point. The 

SAED patterns are imaged from the phosphor screen in the TEM, using an external camera. 

After collecting all the SAED patterns over the specified area, the user identifies the expected 

phase(s) in the specimen and the software cross-references each pattern to a library of 

thousands of simulated SAED patterns. Equation 4.6 defines the reliability (𝑅) as a measure 
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of how well the experimentally captured SAED pattern matched to the simulated SAED 

pattern, where 𝑄! is the correlation index of the assigned orientation (best guess) and 𝑄! is 

the correlation index of the second-best guess. 

 

 𝑅 = 100 1−
𝑄!
𝑄!

 (4.6) 

 

A reliability value close to 0 indicates that multiple orientations fit the experimental SAED 

equally well, indicating poor confidence that the proper orientation was chosen, whereas a 

reliability value of 100 indicates a completely unique solution. In general, a reliability value 

of 15 is sufficient to assure the validity of the match [5], but a value greater than 30 is 

preferred. This process is repeated for each SAED pattern to generate a full orientation 

dataset across the acquired region of interest. The ACOM system at JHU was purchased and 

developed by NanoMEGAS and sold as a system known as ASTAR.  

The resultant data can be interfaced with OIM AnalysisTM software (EDAX-TSL) to 

perform graphical analysis, such as grain size. Each pixel of data collected is assigned to a 

crystallographic orientation, determined by the SAED pattern collected. The OIM software 

defines a grain as a group of points with similar orientation; each point is checked with its 

neighbors to determine if they are within a specified grain tolerance angle, and if so, it is 

considered part of the grain. The user can set a minimum grain size value, such that each 

grain is required to have a particular number of points to be considered a grain, which is 

useful for eliminating noise in the dataset. For the data reported in this chapter, a grain 

tolerance angle of 4° and a minimum grain size of 10 nm were used. The average grain size 

(𝑑) can be determined by a number fraction, where grain size is numerically averaged, or by 
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an area fraction, where the grain size area is a weighted average. These calculations are 

shown in Equations 4.7 and 4.8, respectively, where N is the total number of grains, 𝑑! is the 

diameter and 𝐴! is the area for grain 𝑖. Since the Ni-Mo-W grains have a high aspect ratio 

because of their columnar shape, all grain sizes are reported as the area fraction rather than 

the number fraction.  

 

 
𝑑 =

1
𝑁 𝑑!

!

!!!

 (4.7) 

 
𝑑 =

𝐴!𝑑!!
!!!

𝐴!!
!!!

 (4.8) 

 

4.3 Hardness and local instabilities in nanoindentation 

To measure the hardness of the Ni-Mo-W films, load-depth data at four strain rates (0.02, 

0.1, 0.2 and 1 s-1) were analyzed and calibrated for the frame stiffness according to the 

methods described in section 4.2.2.1. For each strain rate, 20 indents were performed and the 

hardness values were extracted from a depth of 200-250 nm to reduce the substrate effects 

and surface roughness, as illustrated in Figure 4.5. Table 4.1 summarizes the Ni-Mo-W alloy 

composition and the average measured hardness values, ranging from 8.17-9.67 GPa with 

increasing strain rate.  
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Figure 4.5: Representative plot of the measured hardness as a function of depth at strain rate 
0.1 s-1. Average hardness is reported from depths 200-250 nm.  

 
 
 
 
 
 
Table 4.1: Alloy composition and calculated activation volume from the hardness 
measurements at different strain rates. For each strain rate, 20 indents were performed. 

Alloy composition 
[at.%] 

Hardness [GPa] Activation  
volume 
[b

3
] 𝜺 = 0.02 s

-1 0.1 s
-1 0.2 s

-1 1 s
-1 

Ni84.4±0.2Mo10.7±0.1W4.9±0.2 8.17±0.59 8.75±0.53 9.51±0.71 9.67±0.61 2.82 
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The loading portion of the load-depth curves used to calculate the hardness is shown in 

Figure 4.6. Small perturbations are observed during loading and appear to have similar 

frequency and size across the different strain rates investigated, displaying no significant 

strain rate dependence. Local perturbations in the loading curves of nanoindentation are 

commonly associated with dislocation activity and shear localizations [6]. Examples of these 

instabilities are indicated in Figure 4.6 with arrows.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Instrumented nanoindentation load-depth curves during loading of 
Ni84.4Mo10.7W4.9 films, offset 100 nm for visualization, at strain rates 0.02-1 s-1. Arrows point 
to examples of local instabilities.  
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SEM micrographs of the residual surface impressions are displayed in Figure 4.7. The 

micrographs show small ridges in the pile-up region next to the indent and in the interior 

regions of the impression, consistent across all strain rates. These local features are 

commonly associated with shear band formation and indicative of unstable plastic flow [6, 

7]. Extensive shear banding during nanoindentation is commonly observed in metallic 

glasses, but has also been reported for very fine nanocrystalline grain sizes [7-9]. Although 

the Ni-Mo-W films are fully crystalline with grain sizes upward of 100 nm, the formation of 

shear bands is not completely unexpected due to the finely spaced nanotwins. Numerous 

observations of shear banding have been reported for nanotwined Cu [1, 10-12] and finely 

spaced nanoscale multilayers [13]. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.7: SEM micrographs of the Berkovich indent at strain rates 0.02, 0.1, 0.2 and 1 s-1 
showing evidence of shear banding.  
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The apparent activation volume (𝑉∗) was calculated to determine the thermally activated 

deformation processes, using the strain rate sensitivity of the hardness and Equation 4.9, 

where 𝑘! is the Boltzmann constant, 𝑇 is temperature, 𝜀 is strain rate and 𝜎 is the flow stress 

(assuming the flow stress is 1/3 of the hardness, 𝐻).  

 

 𝑉∗ = 3𝑘!𝑇
𝜕 ln 𝜀
𝜕𝜎 = 3 3𝑘!𝑇

𝜕 ln 𝜀
𝜕𝐻  (4.9) 

  

Figure 4.8 was used to find the slope of the natural log of the strain rate (ln 𝜀) versus the 

hardness (𝐻), with a measured value of 2.19×10-9 Pa-1.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Natural log of strain rate versus the hardness for Ni84.4Mo10.7W4.9 films. Linear 
line fit through the data has a slope of 2.19×10-9 Pa-1, which is used to calculate the activation 
volume. 
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The activation volume was calculated using Equation 4.9 and reported in Table 4.1, using 

values 𝑘!=1.38×10-23 J/K and 𝑇=298 K. The activation volume has conventional units of b3, 

where b is the magnitude of the Burgers vector. For Ni84.4Mo10.7W4.9 films in section 3.3.3.1, 

the lattice parameter was measured 3.61 Å and can be used to calculate the magnitude of the 

Burgers vector, 0.255 nm. The calculated activation volume of 2.82b3 is very small and 

differs by two or three orders of magnitude from traditional fcc dislocation glide 

mechanisms.  

Other nanotwinned metals such as Cu, have a reported activation volume range of 3-20b3, 

where dislocation nucleation mechanisms are believed to govern the deformation [14, 15]. 

Experimental evidence and MD simulations by You et al. showed that when loading 

perpendicular to the twin boundaries in nanotwinned Cu, dislocation pile-up and slip 

transmission at the twin boundaries were observed, indicating that the twin boundary 

obstruction of dislocation glide facilitated the strengthening mechanisms [2]. Similarly, in 

nanoscale multilayers the interface boundary has been shown to suppress dislocation glide 

mechanisms. Zhang et al. investigated gold-copper multilayers and found that as the layer 

size decreased, the hardness increased but dislocation plasticity is hindered and 

inhomogenous plastic deformation develops through shear banding [13]. The hard glide 

mechanism described by You et al. and the refined multilayer spacing described by Zhang et 

al. are consistent with the ultrahigh hardness values and small activation volume of 

Ni84.4Mo10.7W4.9, suggesting that the suppression of dislocation glide by twin boundaries may 

be responsible for the observed strengthening and shear banding.  
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4.4 Micropillar compression 

4.4.1 In situ mechanical loading 

The FIB machined micropillars were loaded onto the compression stage and the 

alignment was checked between the flat punch and the specimen surface. Figure 4.9 displays 

a symmetric imprint that was found by pressing the flat punch into the surface adjacent to the 

pillars, indicating proper alignment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Symmetric impression made by pressing the flat punch into the Ni-Mo-W film 
surface at high load ~45 mN, indicating proper alignment between the tip and the specimen 
surface during in situ compression loading. Plastic deformation and extruded material are 
observed locally around the indenter impression.  
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Compression experiments were then carried out by loading the micropillars to a depth of 1 

µm at a nominal strain rate of 10-3 s-1. A representative stress-strain response is shown in 

Figure 4.10, exhibiting high flow strengths exceeding 3.5 GPa. The mechanical response 

showed elastic loading until 3.5 GPa, where a discrete strain bust was first observed. The 

yield point of the micropillars is defined by the onset of plastic flow, which is the stress 

associated with the first strain burst. After the burst event, the pillar exhibits “hardening” to 

accommodate additional deformation. It is important to note that the term hardening is being 

used in the most general sense and does not necessarily refer to classical strain hardening, 

governed by strain-driven dislocation storage [16]. Since the first report of a size-scale 

dependency on crystal plasticity [17], various computational studies [18-20], in situ TEM 

[21] and post-mortem TEM [22] investigations have shown the breakdown of classical strain-

hardening mechanisms at small length scales. A more detailed discussion on the hardening 

mechanisms in Ni-Mo-W will be discussed in section 4.4.3. Visual examination of the 

deformed micropillar (Figure 4.11) revealed plasticity localized at the top of the pillar with 

no visible deformation in the lower portion. A similar behavior was observed in four 

different micropillars, with their mechanical behavior detailed in Appendix 2.  
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Figure 4.10: The stress-strain response of a micropillar compressed to a depth of 1 µm at a 
nominal strain rate of 10-3 s-1 showing extremely high flow strength and discrete strain bursts. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: A deformed micropillar after being compressed to a depth of 1 µm at a constant 
nominal strain rate of 10-3 s-1, with associated mechanical response in Figure 4.10.   
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In order to investigate and understand the anisotropic deformation further, additional in 

situ compression experiments were conducted by loading in smaller steps. Micropillars were 

incrementally loaded to depths of 50 nm, unloaded and reloaded an additional 50 nm and this 

process was repeated multiple times. For example, Figure 4.12 has 10 different load-unload-

reload curves that form the engineering stress-strain response for a single micropillar. The 

pillar displayed high flow stress, strain bursts and high hardening, similar to that observed in 

Figure 4.10. The first two loading steps in Figure 4.12 showed nominally elastic deformation, 

but by the third loading step the onset of plastic flow was accompanied by a strain burst, 

followed by hardening. Each of the loading steps showed a repeatable 3.51±0.23 GPa yield 

point, followed by either another strain burst or hardening. The stress required for subsequent 

deformation after reloading was found to be below the maximum stress in the previous 

unloading, indicating that either some relaxation occurred in the pillar or that a new 

nucleation step formed between loading steps.  

The deformed micropillar is displayed in Figure 4.13, where SEM images were taken at 

the end of the different loading cycles. The first band of localized deformation (or shear 

band) was imaged after loading to 4.5% strain (Figure 4.13b), which corresponds to the first 

strain burst in the mechanical response. When reloaded further, deformation occurred in a 

different portion of the pillar and another burst occurred with an associated shear band and 

subsequent hardening. The continued incremental loading and the increase in deformation 

resulted in the extrusion of material at the top of the pillar, with no apparent plasticity in the 

rest of the pillar, Figure 4.13. The combined effects of modest taper and friction might 

explain why the deformation initiated at the top of the pillar. Inherently from the annular 

milling process, small amounts of taper were introduced to the geometry. Using the average 
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pillar dimensions of 3.0 µm diameter, 6.9 µm length and 1-2° taper angle, the difference in 

stress at the top versus the bottom of the pillar is calculated 15-27%. Additionally, the 

contribution from the friction between the diamond flat punch and the pillar surface could 

lead to a multi-axial stress state at the top of the pillar and the evolution of geometrically 

necessary dislocations [17, 23, 24]. However, with subsequent deformation these effects 

should become less significant. Given the extremely localized and highly deformed top 

portion of the micropillar, it is not likely that the 15-27% difference in stress or the friction 

are enough to cause the severity of anisotropic plasticity with no deformation transferred to 

the remainder of the pillar.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.12: Stress-strain curve of a micropillar that was loaded-unloaded-reloaded for 10 
cycles at a nominal strain rate of 10-3 s-1. Ultrahigh flow strengths have a repeatable 
3.51±0.23 GPa yield point. 
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Figure 4.13: In situ pillar compression associated with incremental load-unload-reload 
cycles (Figure 4.12) with representative deformed images taken at (a) 0%, (b) 4.5%, (c) 
12.2%, (d) 21.1% and (e) 31.8% nominal strain. All of the deformation is highly localized at 
the top of the pillar and has a directional dependence.  
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All micropillars that were loaded in compression showed a high concentration of plastic 

deformation at the top of the pillar and extruded material predominately off to one side. This 

behavior was highly repeatable for a total of 12 deformed micropillars, with examples 

illustrated in Figure 4.14 and Appendix 2. The symmetric surface impression in Figure 4.9 

indicates that the deformed directionality of the extruded material is not an artifact of the tip 

alignment. Instead, it appears to be related to the underlying microstructure, which requires a 

re-evaluation of the Ni-Mo-W films.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14: Four deformed micropillars exhibiting repeatable highly localized anisotropic 
plasticity. 
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The as-deposited microstructures were previously characterized in section 3.3.1 and found to 

have long columnar <111> grains that were aligned in the growth direction and filled with a 

high density of very fine nanotwins. For the Ni84.4Mo10.7W4.9 films used to machine 

micropillars in this study, a cross-sectional FIB channeling contrast image in Figure 4.15a 

indicates that the roughly 100 nm wide columnar grains that were formed grew on an 11° tilt 

with respect to the film perpendicular. Nanotwins and stacking faults were confirmed with 

SAED patterns indexed for the matrix and the twin, shown in Figure 4.15b. A more detailed 

analysis of the twin spacing will be presented in section 5.3.3, but for this discussion they 

will be quoted as ~3.5 nm thick. The realization of the tilted microstructure provided a 

loading orientation that was at an 11° angle with respect to the columnar grains and their 

perpendicular twin boundaries, shown in Figure 4.16a. This suggests that the directionality of 

the extensive plastic deformation observed in the top of the micropillars may be attributed to 

the underlying tilted microstructure. Cross-sectional TEM micrographs confirming this 

observation will be presented and discussed in section 4.4.2.  

 

 

 

 

 

 

 

 
Figure 4.15: (a) FIB channeling contrast image of a cross-section of the Ni-Mo-W film used 
to machine micropillars and (b) representative SAED pattern, indexed for the matrix and the 
twin, with streaking that is representative of stacking faults.  
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Figure 4.16: Schematic of the microstructural geometry with respect to the compression 
loading direction. (a) Columnar grains and nanotwins at a slight 11° tilt with respect to the 
compression axis and (b) nanotwins aligned perpendicular to the compression axis. 

 

The intended loading orientation was perpendicular to the twin boundaries (Figure 4.16b) 

to investigate the hard glide mechanisms. Additional micropillars were fabricated from well-

aligned columnar grains and twins to compare with the unintentional 11° micropillars. Figure 

4.17 details five different load-unload-reload curves displaying the initial two loading steps 

with nominally elastic deformation, while the remaining three loading steps showed a 

repeatable 3.55±0.13 GPa yield point followed by discrete strain bursts and hardening. The 

flow strengths for the well-aligned pillar are comparable to what was observed for the 

micropillars at 11°, but the amount of hardening seems more variable in the well-aligned 

pillar. The resultant deformed well-aligned micropillar displayed highly localized 

deformation with material extrusion at the top of the pillar, shown in Figure 4.18.  
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Figure 4.17: Stress-strain curve of a micropillar with well-aligned columnar grains and 
perpendicular nanotwins with the compression axis. Five different loaded-unloaded-reloaded 
cycles were performed at a nominal strain rate of 10-4 s-1. Ultrahigh flow strengths with a 
very repeatable 3.55±0.13 GPa yield point was observed for each of the loading steps. 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 4.18: In situ pillar compression of the well-aligned microstructure, associated with 
incremental load-unload-reload cycles (Figure 4.17) with representative deformed image 
taken at 14% nominal strain. All of the deformation is highly localized at the top of the pillar, 
but the deformation spread more evenly about the transverse direction. 
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The directionality of the extruded portion appears to spread more evenly about the transverse 

direction, compared to those observed in Figures 4.11, 4.13, 4.14, which have a clear 

directional dependence predominantly to one side. A similar behavior was observed for a 

total of 3 well-aligned pillars, shown in Appendix 2. 

4.4.2 TEM observations of plasticity in deformed micropillars 

Further characterization focused on the micropillar with a columnar tilt of 11°, where a 

cross-sectional thin foil of a deformed Ni84.4Mo10.7W4.9 pillar compressed to 30% strain was 

formed using convention FIB lift-out techniques. Due to the large extruded region at the top 

of the pillar, the entire trenched area surrounding the pillar required lift-out and thinning. 

Consequently, a large amount of material (platinum (Pt) and Ni-Mo-W) was re-deposited 

into the trench of the pillar during this process. Figure 4.19 exhibits the vast re-deposition in 

the originally empty cavity, which now has Ni-Mo-W and Pt surrounding the micropillar.  

 

 

 

 

 

 

 

 

 

Figure 4.19: Cross-sectional TEM lift-out of a deformed micropillar, before final thinning. 
Vast amounts of material re-deposition is observed around the micropillar. Platinum re-
deposition is visibly lighter in color, outlining the micropillar, whereas the Ni-Mo-W re-
deposition is darker in color and fills in the empty cavity surrounding the micropillar.   
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The TEM micrographs are quite complex because of localized deformation at the top portion 

of the pillar and required non-uniform thinning to achieve the requisite spatial resolution. Tilt 

angles less than one degree were needed to adequately thin the top portion of the pillar. Once 

the pillar was sufficiently thinned, the re-deposition was edited out of the TEM micrograph 

in Figure 4.20a to isolate and focus on the micropillar and its deformation characteristics. 

The pillar taper angle appears more extreme in the bright field micrograph compared to the 

1-2° previously measured, but this is simply an artifact of the thinning protocol.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20: (a) Cross-sectional TEM lift-out of a deformed micropillar thinned to electron 
transparency. The bottom portion of the micropillar displays the tilted columnar gains at an 
11° tilt. SAED patterns taken in the starred regions show (b) the nanotwinned (red) and (c) 
the nanocrystalline (yellow) microstructures. 
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The tilted columnar grains are visible in the base of the pillar in Figure 4.20a. The large 

extruded area at the top of the pillar displays discrete regions that sheared off during 

deformation. The interiors of these sheared regions also appear to maintain the nanotwinned 

grains, but the boundaries between the sheared regions look different. SAED patterns were 

collected throughout the micropillar to better characterize the deformed microstructure. 

Careful analysis of the SAED patterns revealed that the regions that sheared off during 

deformation did in fact retain their nanotwinned structure. Red stars in Figure 4.20a represent 

these areas with the associated SAED pattern in Figure 4.20b. Regions of highly 

concentrated shear deformation, or shear bands, were observed along the boundary between 

adjacent regions of nanotwinned grains. Investigation of the SAED patterns obtained in these 

highly sheared regions, indicated by yellow stars in Figure 4.20a, shows that the 

microstructure recrystallized and no longer contains nanotwins. The representative SAED 

pattern in Figure 4.20c demonstrates randomly oriented nanocrystalline grains with rings that 

index to the fcc structure.  

Geometric shear bands are commonly described as bands of localized plastic flow that 

arise from strain softening, without necessarily requiring the material to macroscopically 

soften [25]. Shear band formation arises from plastic instabilities that develop at high strains 

and are noted by bands that traverse multiple grain boundaries without deviating on different 

crystallographic orientations [26]. This description is similar to the phenomenon found for 

the deformed Ni-Mo-W micropillars. After deforming the micropillars to the first strain 

burst, an associated shear band extends the entire diameter of the pillar, independent of 

individual grain orientations (Figure 4.13b). Subsequent deformation causes high hardening 

rates until an additional shear band is formed, with an associated strain burst (Figure 4.13c). 
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The incremental deformation behaves in this pattern and the extruded material grows 

laterally, while the remainder of the pillar shows no signs of plasticity (Figures 4.11, 4.13, 

4.14).  

ACOM was used to investigate microstructural changes locally at the boundary between 

the nanocrystalline shear band and neighboring nanotwinned columnar structure. Figure 4.21 

shows an inverse pole figure (IPF) map of the first shear band region, overlaid on a bright 

field micrograph. The crystallographic orientations are rotated to the loading direction, 

labeled “z”. Regions marked (i) indicate the bulk nanotwinned columnar structure that 

sheared off the pillar during deformation, whereas the region marked (ii) represents the 

recrystallized shear band microstructure. A reorientation of the initial <111> textured 

columnar grains occurred without signs of detwinning in region (i). In the portions of the IPF 

map marked (i), only a few twins were recognized by ACOM due to the resolution of the 

microscope and spot size. The small average twin spacing of 3.5 nm is just below the 

detectable limit for ACOM, however, SAED patterns identified nanotwins everywhere in 

these regions. The columnar grain size measured from ACOM is 91±47 nm, which is in 

agreement with the as-sputtered grain size of 100 nm.  
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Figure 4.21: Bright field micrograph with IPF mapping from ACOM overlaid in the region 
of the first shear band. The IPF is shown for the loading direction (z) orientation and the inset 
is used for location identification. Regions marked (i) indicate columnar grains with 
nanotwins, whereas regions marked (ii) indicate nanocrystalline fcc shear band, separated by 
dashed lines. 

 

 

Region (i) did not indicate any changes in grain size or shape but did rotate 14° as a result of 

deformation. Combining the deformed columnar grain rotation with the 11° grain tilt of the 

undeformed pillar, the deformed columnar grains are rotated a total of 25° to achieve 

perfectly aligned <111> with the loading direction, illustrated in Figure 4.22.  
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Figure 4.22: (a) Pole figure (PF) for the nanotwinned regions marked (i) in the z-direction 
and (b) PF for nanotwinned region rotated 25° about the x-direction. (c) Bright field 
micrograph with the 25° rotated IPF in the z-direction. 

 

The shear band region (ii) displayed a remarkably different microstructure. Within the 

highly deformed shear band region (ii), the deformation was so intense that the original 

columnar nanotwinned grains recrystallized to form nanocrystalline grains without any 

indication of twins. The grains are elongated in the direction of the shear with an aspect ratio 

nearly 4:1 and average grain size 68.3±38.8 nm. Similar findings have been reported for 

cold-rolled 70:30 brass, where grains inside a shear band with aspect ratios 2:1-3:1 are 

elongated in the direction of shear [26, 27]. The directionality of the shear bands with respect 

to the loading direction is complicated by the incremental deformation caused by the most 

recent shear band compared to those that were initially formed and subsequently rotated 

towards the loading direction. Examining the first shear band that formed in Figures 4.21 and 

(a) 

x 

y 

(b) 

x 

y 

17 

0 

250 nm 

(i) 

(i) 

(ii) 

(c) 

2 µm 

z

yx



	 126 

4.22, the 300 nm wide shear band is oriented 45° from the loading. However, examining the 

final shear band that formed above the base of the micropillar in Figure 4.20a, the shear band 

is oriented at 78° from the loading direction. The twin boundaries in the pillar are 

perpendicular to the columnar grains and thus 79° from the loading orientation. Therefore, 

the final shear band in Figure 4.20a occurred in the direction that is parallel to the twin 

boundaries. 

4.4.3 Hardening and strengthening due to nanotwins 

Understanding the high hardening rates of the Ni-Mo-W micropillars requires the 

consideration of both the very small microstructural features (e.g. 3.5 nm twin spacing) and 

the moderate micropillar dimensions (e.g. 3 µm diameter). Uchic et al. found that size effects 

play a considerable role even at large sample sizes, indicating that both the external geometry 

and the internal structure are pivotal length scale parameters that can be used to characterize 

the strength of a material [17]. Significant hardening rates have been reported for single 

crystals with small sample sizes, where a transition from classical Taylor hardening to 

exhaustion hardening is observed due to a reduction of dislocation sources [19]. Greer et al. 

suggest that if the conditions for dislocation interaction and multiplication (e.g. Taylor 

hardening) are not met, the dislocations would leave the small crystals before multiplying, 

creating a dislocation-starved criteria [28, 29]. From this point of view, each of the strain 

bursts would correspond to a sudden motion of dislocations moving to the free surface 

without accumulating inside of the pillar, where the end of the burst event would correspond 

to the exhaustion of mobile dislocations [30]. Consequently, very high stresses would be 

necessary to activate a new source and eventually an associated strain burst. Although the 

observed stress-strain response in Figures 4.10 and 4.12 appear consistent with the 
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exhaustion hardening mechanism, more than 30 <111> oriented grains span the 3 µm 

diameter pillars, meaning that the deformation is a true polycrystalline response. It is unlikely 

that the high density of planar defects would allow dislocations to easily move to the free 

surface because numerous grain boundaries are present, although it is possible that these 

grain boundaries could provide such a dislocation source-limited effect.  

Because Ni-Mo-W has such a fine 3.5 nm twin spacing, single dislocation-based 

mechanisms are thought to govern the deformation rather than dislocation pile-up. The 

transition from classical dislocation pile-up to single dislocation-based mechanisms has been 

observed in nanoscale multilayers with layer thicknesses on the order of tens of nanometers 

[31, 32]. Twin boundaries are effective barriers to the transmission of single glide 

dislocations due to the large geometric misorientation angle between the {111}<110> slip 

systems on either side of the twin boundary [33]. Zhang et al. investigated the transmission 

of a single dislocation across a coherent twin boundary in Ni using molecular dynamics 

(MD) simulations loaded in uniaxial and biaxial tension parallel to the twin boundary [34, 

35]. They reported that when loaded under uniaxial tension, a resolved shear stress of 1.77 

GPa is required to move a dislocation on a {111} glide plane across the twin boundary 

interface and onto a complementary {111} glide plane on the other side of the twin boundary 

[35]. In contrast, loading under biaxial tension provided no net force to move the dislocation 

from a {111} glide plane across the twin boundary interface to a complementary {111} glide 

plane [33, 34]. Instead, the dislocation transmits onto an atypical {200} plane and required a 

very large resolved shear stress (3 GPa) [34]. This resolved shear stress is similar to the yield 

point of the Ni-Mo-W pillars, except the loading orientations are different. You et al. 

reported that loading perpendicular to the twin boundaries provides a 10-30% increase in 
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strength compared to loading parallel to the twin boundaries in Cu [2]. This suggests that the 

resolved shear stress to transmit a single dislocation across a coherent twin boundary 

obtained from MD simulations would be even higher when loaded perpendicular to the twin 

boundaries, closely matching the 3.5 GPa onset of plastic flow observed in the Ni-Mo-W 

micropillars. 

Overall, micropillar compression of nanotwinned Ni-Mo-W revealed the inhomogeneous 

and highly localized nature of the plasticity. For fcc materials, dislocation plasticity is driven 

by the {111}<110> slip systems with four possible {111} close packed slip planes. 

Assuming perfect {111} out-of-plane texture with perpendicular twin boundaries throughout 

the microstructure, three {111} slip planes are highly inclined to the twin boundaries and one 

lies parallel to it. As a result, dislocations on the inclined slip planes must cut across the twin 

boundaries in hard slip mode. Conversely, the {111} slip plane oriented parallel to the twin 

boundaries allows for easy glide and provides a soft slip mode for dislocation slip. In 

nanotwinned Cu the hard deformation modes are associated with higher strengths, whereas 

the soft mode displays enhanced plasticity due to the motion of twin boundaries [2, 36]. The 

ultrahigh strength observed in the nanotwinned Ni-Mo-W micropillars may be associated 

with activation of hard slip modes because the loading orientation is nearly perpendicular to 

the twin boundaries. However, the hard deformation modes require almost no resolved shear 

stress on the soft mode. It is evident from the deformed micropillars with an 11° tilt (Figures 

4.11, 4.13, 4.14) and the well-aligned microstructure (Figure 4.18) that a significant amount 

of shear is active.  

Post-mortem observations of the micropillars with an 11° tilt revealed highly localized 

and intense shear bands that resulted in recrystallized grains, initiating along the slight twin 
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boundary misorientation. Hatherly and Malin noted that for metallic materials with twinned 

microstructures, small crystallites form when aligned twin structures are swept into the shear 

band, and the bands themselves act as favored sites for nucleation of recrystallized grains 

[26, 27]. From the TEM investigations in Figures 4.20-4.22, it is likely that the shear band in 

Ni-Mo-W started along the twin boundary orientation, but after subsequent deformation and 

recrystallization, it rotated to the plane of maximum shear (45° from the loading direction). 

However, additional in situ TEM pillar compression experiments are needed to confirm this 

behavior, the dislocation activity and the role of twin boundary motion with the observed 

shear banding.  

4.5 Chapter summary 

In summary, we report the ultrahigh strength of nanotwinned Ni84.4Mo10.7W4.9 in 

compression and the unusual highly localized plasticity governing the deformation. High 

hardness value 8-9.7 GPa and a small activation volume of 2.82b3 were measured via 

nanoindentation while loading perpendicular to the twin boundaries, underpinned by the 

finely spaced twin boundaries hypothesized to suppress dislocation glide mechanisms. Local 

instabilities consistent with shear banding were observed, suggesting concurrent active 

mechanisms for this loading orientation. Similarly, micropillar compression provided yield 

strengths of 3.5 GPa, suggesting single dislocation-based mechanisms associated with 3.5 nm 

twin spacing. However, an extraordinary amount of localized shear and plasticity points to 

easy dislocation glide mechanisms. The anisotropic nature of the deformation is intimately 

related to the anisotropic microstructure. Pillar compression perpendicular to the twin 

boundaries showed highly localized deformation that was symmetric in its lateral shear, 

while the micropillars with a modest twin inclination displayed highly localized deformation 
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that was directionally dependent. The resolve shear stress on the twin planes is higher for the 

inclined orientation, suggesting soft mode dislocation glide. However, no direct evidence of 

detwinning was observed. Instead, bulk regions of the nanotwinned microstructure sheared 

laterally, in the direction of the inclined twin boundaries, and a geometric shear band formed. 

Substantial shear banding was observed to facilitate local softening mechanisms and lateral 

shear. The physics enabling the formation of shear bands in crystalline Ni-Mo-W films is not 

fully understood, but the role of the twin orientation is shown to be an important factor.  
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CHAPTER 5: THE EFFECT OF DEPOSITION RATE ON  
NANOTWIN FORMATION IN Ni-Mo-W 

 

5.1 Introduction 

The electrical, thermal and mechanical properties of Ni-Mo-W alloys presented in this 

thesis rely heavily on the underlying nanotwinned microstructure. This chapter aims to 

investigate the role of sputter deposition rate on the stability of growth twin formation in Ni-

Mo-W alloys. Growth nanotwins have historically been observed in low stacking fault 

energy (SFE) fcc metals and alloys, with most studies focused on nanotwinned Cu [1-8]. 

Zhang et al. developed a model to predict the nanotwin formation during sputter deposition, 

finding that nanotwins will form in either low SFE materials or during very high deposition 

rates [9]. In addition to forming nanotwins, Lu et al. showed that it was possible to decrease 

the twin thickness in electrodeposited Cu by either increasing the deposition rate or by 

decreasing the SFE through alloying with Al or Zn [5]. 

Pure Ni has a high SFE that inhibits the formation of nanotwins, but there has been some 

report of nanotwin formation in Ni films deposited at very high rates of 11-30 nm/s [10]. By 

contrast, the work outlined in this thesis has shown that alloying with Mo and W appears to 

promote the formation of very fine nanotwins in our Ni-Mo-W system, with deposition rates 

in the range of 2.2-2.6 nm/s. However, the role of sputter deposition rate on the nanotwin 

formation in Ni-Mo-W alloys was unknown. 

This chapter aims to investigate processing-nanostructure-properties relations for 

nanotwinned Ni-Mo-W alloys. A fixed alloy chemistry of Ni84Mo11W5 was sputter deposited 

at different deposition rates between 0.5-2.3 nm/s to determine how the variation of rate 

affects the nanotwin formation, the defect density and the mechanical behavior of a single 
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alloy Ni84Mo11W5. X-ray diffraction (XRD) was used to verify the phase and texture of the 

films, while transmission electron microscope (TEM) was implemented to measure in-plane 

grain sizes and nanotwin thicknesses. In addition to the governing nanostructure, the 

compressive yield strength was measured via nanoindentation for films deposited at different 

deposition rates. 

5.2 Materials and methods 

Ni-Mo-W thin films were fabricated using two different magnetron sputtering chambers 

to enhance the spread of direct current (dc) power. The custom sputtering system described 

in section 2.2.2 was used to deposit Ni84.4Mo10.7W4.9 films at a rate of 2.3 nm/s with a dc 

power of 2500 W, argon (Ar) sputtering gas pressure of 1.0 mTorr and base pressure of 1 × 

10-7 Torr. Additional films were deposited using a 3-inch single alloy target of Ni84Mo11W5 

and a commercial sputtering chamber AJA International Inc. ATC 1800 UHV located in 

Jessica Krogstad’s laboratory at The University of Illinois Urbana-Champaign. The 

Ni84Mo11W5 films were deposited onto 4-inch (100) Si wafers at room temperature with 

deposition rates of 0.5, 0.7 and 0.9 nm/s with a base pressure of 1 × 10-8 Torr. The dc power 

was varied from 200 to 600 W while the Ar pressure remained a constant 1.0 mTorr. Table 

5.1 summarizes the deposition conditions that were investigated. 
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Table 5.1: Summary of the deposition conditions used for the Ni84Mo11W5 (at. %) films, all 
deposited at room temperature.  

Power 
[W] 

Ar pressure 
[mTorr] 

Film thickness 
[µm] 

Duration 
[min] 

Deposition rate 
[nm/s] 

200 1.0 2.7 ± 0.1 85 0.5 

400 1.0 2.6 ± 0.3 60 0.7 

600 1.0 2.3 ± 0.2 40 0.9 

2500 1.0 21.1 ± 0.2 150 2.3 
 
 

 

The phase and crystallographic texture were characterized through XRD and confirmed 

with TEM-based automated crystal orientation mapping (ACOM) techniques, outlined in 

section 4.2.3.1. In-plane grain size was measured from TEM specimens prepared using Ar 

ion milling, with liquid nitrogen to prevent heat-induced damage caused by the ion 

bombardment. Twin thickness distributions were measured via cross-sectional TEM foils 

prepared by focused ion beam (FIB) lift-out using FEI Strata DV235 Dual-Beam and FEI 

Helios G4 UC. Instrumented nanoindentation was used with the Oliver-Pharr method [11] to 

measure the hardness for the sputtered thin films. A diamond Berkovich indenter tip was 

used with a 50 mN load cell on the iNano instrument (NanoMechanics Inc.), as discussed in 

section 4.2.2.1. A constant indentation strain rate of 0.2 s-1 was used across 20 indents per 

thin film. Hardness values were averaged between depths of 200-250 nm from the surface of 

the film to minimize the substrate effects and surface roughness.  
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5.3 Microstructural characterization 

5.3.1 Texture and grain size 

XRD scans of all four as-deposited Ni-Mo-W films showed a dominant peak at 43.4° and 

a much smaller peak at 95.6°, which corresponds to a single-phase fcc crystal structure with a 

lattice parameter of 3.61 Å and very strong {111} texture. Figure 5.1 displays the XRD 

profiles normalized to the (111) peak for ease of comparison. The measured (111) and (222) 

peaks display a shift from the polycrystalline Ni diffraction peaks, indicating a lattice 

expansion in the Ni-Mo-W due to the Mo and W atoms dissolved into the Ni lattice.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: XRD data of the Ni-Mo-W films across the deposition rates, with polycrystalline 
Ni peaks (black) shown for reference. Intensity is normalized to the (111) peak for 
comparison and a strong (400) Si peak is evident for the films attached to their substrate. 
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The films sputtered at 2500 W were significantly thicker than those sputtered at lower 

powers, due to their high deposition rate and longer duration while sputtering (Table 5.1). 

After deposition, the thicker films deposited at 2500 W were removed from their substrate 

and investigated as freestanding films. All other films were characterized on their Si 

substrate, which is evident from the strong (400) Si peak observed in Figure 5.1.  

TEM-based ACOM maps confirmed the strong {111} out-of-plane texture across all 

deposition conditions, illustrated in Figure 5.2, and provided a direct measure of in-plane 

columnar grain diameters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Inverse pole figure (IPF) mapping overlaid with the confidence index (CI), 
showing strong {111} texture oriented parallel to the growth direction, for films sputtered at 
(a) 0.5, (b) 0.7, (c) 0.9, and (d) 2.3 nm/s. 

200 nm 

200 nm 

200 nm 

200 nm 

(a) (b) 

(c) (d) 



	 139 

To better visualize the grain diameter, the in-plane inverse pole figure (IPF) maps are shown 

in Figure 5.3. The average in-plane grain size is measured using the OIM AnalysisTM 

software, with the method outlined in section 4.2.3.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: IPF mapping overlaid with the CI showing the in-plane direction for films 
sputtered at (a) 0.5, (b) 0.7, (c) 0.9, and (d) 2.3 nm/s. 
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other but a constant trend towards larger diameters was observed. During film deposition, 

atoms are quenched onto the substrate surface with high energy and low surface mobility. As 
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sputtering continues, modest amounts of heat build up, increasing the overall substrate 

temperature. Increasing the deposition rate provides higher energy for the atoms impinging 

on the surface, causing more substrate heating when compared to the lower rates. Thornton 

has shown that films sputtered with a low homologous temperature (T/Tm) have an increase 

in columnar width as the temperature increases [12, 13], similar to the observed grain sizes in 

Figure 5.4. Higher temperatures lead to grain growth and it is worth noting that the average 

diameter of the grains in the films sputtered at 2500 W were 50% larger than those sputtered 

at 200 W.  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 5.4: Average in-plane grain size for the films sputtered at different deposition rates. 
The error bars represent one standard deviation from the average grain size. 

 

 

0

50

100

150

0 0.5 1 1.5 2 2.5 3

A
ve

ra
ge

 g
ra

in
 s

iz
e 

[n
m

]

Deposition rate [nm/s]

200 W 
400 W 

600 W 
2500 W 



	 141 

5.3.2 Nanotwin thickness 

Bright field TEM images and selected area electron diffraction (SAED) patterns in Figure 

5.5 were used to investigate the nanotwinned microstructure in the as-deposited films. Long 

columnar grains were observed parallel to the growth direction and a very high density of 

planar features was found to be oriented perpendicular to the growth direction and along a 

(111) plane.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.5: Bright field TEM micrographs of the films sputtered at (a) 0.5, (b) 0.7, (c) 0.9 
and (d) 2.3 nm/s with upward growth direction. Insets of SAED patterns on the [011] zone 
axis are indexed for twin and matrix orientations.  
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SAED patterns confirmed the presence of nanotwins, see for example the insets in Figure 

5.5, which were all indexed for both the matrix and the twin orientations. Notable streaking 

of the diffraction spots, indicative of the presence of stacking faults, are also observed. The 

bright field micrographs were used to measure the twin thickness by mapping the gray scale 

intensity across twin boundaries, as shown in Figure 5.6. A region was selected with a linear 

line (Figure 5.6b) and the gray scale intensity from black (0) to white (255) was plotted as a 

function of the distance along the prescribed line (Figure 5.6a). The edge-to-edge distance 

between adjacent peaks was measured and recorded as the twin thickness. This procedure 

was repeated for more than 100 twins in multiple grains for each deposition condition and the 

distributions are illustrated in Figure 5.7. All deposition rates displayed fine nanotwin 

thicknesses, below 11 nm, and their average values are shown in Figure 5.8. The average 

twin thickness was found to be less than 4 nm across the deposition conditions with minimal 

variations as a function of deposition rate.  

 

 

 

 

 

 

 

 

 
Figure 5.6: (a) Representative gray scale intensity used to measure the twin thickness from 
(b) along the red line in the bright field micrograph for films sputtered at a deposition rate of 
0.9 nm/s.  
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Figure 5.7: Distribution of nanotwin spacing for films sputtered at (a) 0.5, (b) 0.7, (c) 0.9, 
and (d) 2.3 nm/s. 

 

 
 
 
 
 

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11

N
um

be
r 

fr
ac

tio
n 

[%
]

Twin thickness [nm]

Average = 3.2 nm 

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11

N
um

be
r 

fr
ac

tio
n 

[%
]

Twin thickness [nm]

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11
N

um
be

r 
fr

ac
tio

n 
[%

]
Twin thickness [nm]

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11

N
um

be
r 

fr
ac

tio
n 

[%
]

Twin thickness [nm]

Average = 3.7 nm 

Average = 3.4 nm Average = 3.3 nm 

(a) (b) 

(c) (d) 



	 144 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.8: The average nanotwin thickness as a function of deposition rate, with error bars 
representing one standard deviation.  

 
 
 
 
 
 
 
 
 

5.4 Mechanical strength 
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Figure 5.9: Scanning electron microscopy (SEM) micrographs of the surface impressions 
left behind from nanoindentation for films with deposition rates (a) 0.5, (b) 0.7, (c) 0.9, and 
(d) 2.3 nm/s. 
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Figure 5.10: The hardness measured from instrumented nanindentation as a function 
deposition rate, with error bars representing one standard deviation. 

 
 
 
Table 5.2: A summary of the in-plane grain size, nanotwin thickness, hardness and 
calculated compressive yield strength as a function of deposition rate. 

 

Deposition rate 
[nm/s] 

In-plane  
grain size 
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Twin 
thickness  
[nm] 
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Compressive 
 yield strength 

[GPa] 
0.5 58.4 ± 30.5 3.2 ± 1.3 9.9 ± 0.2 3.3 ± 0.1 

0.7 65.5 ± 39.1 3.7 ± 1.9 9.4 ± 0.2 3.1 ± 0.1 

0.9 74.5 ± 31.5 3.4 ± 1.8 9.8 ± 0.2 3.3 ± 0.1 

2.3 88.8 ± 38.6 3.3 ± 1.7 10.2 ± 0.7 3.4 ± 0.2 
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The average compressive yield strength for the Ni84Mo11W5 alloy was measured to be greater 

than 3.1 GPa for all deposition rates, which is similar to what was reported for more Mo-rich 

Ni83.6Mo14W2.4 [16, 17] and similar to the micropillar compressive strength observed in 

Chapter 4. The measured compressive yield strength is more than 3x higher than that of 

sputter deposited Ni [10] and even 1.5x higher than sputter deposited Ni-base superalloy 718 

[18]. The compressive yield strength of Ni-Mo-W is also 2-3x higher than what has been 

reported for nanostructured materials, such as nanocrystalline Ni [19] and nanotwinned Cu 

[2, 6, 20].  

The ultrahigh strength of nanotwinned metals has been closely associated with 

dislocation interactions with the twin boundaries (TBs) and the orientation of the TBs 

relative to the applied load [4, 8]. Of the four possible {111} slip planes, only one is oriented 

parallel to the highly-aligned TBs and capable of easy glide. The other three are inclined to 

the TBs and dislocation glide on them requires cutting of TBs; they are commonly referred to 

as hard modes of deformation. For the nanoindentation performed in this study, the loading 

direction is perpendicular to the TBs, but the stress state under the indenter tip is complicated 

and contains multiple components of stress that likely activates multiple deformation modes. 

Thus, the yield strength estimated from nanoindentation would contain and be representative 

of the hard deformation modes.  

5.5 Microstructural stability 

The Ni-Mo-W films deposited with a range of deposition rates between 0.5-2.3 nm/s 

showed consistent nanotwin thickness and high compressive yield strengths, independent of 

the deposition rate. Table 5.2 illustrates that the measurable variations in twin thickness and 

hardness cannot be attributed to changes in the deposition rate. Instead, the twin thickness 
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appears inversely proportional to the hardness, such that smaller twin thicknesses produce 

slightly higher hardness values. Ott et al. investigated the effect of deposition rates 1.5-5.4 

nm/s on sputter deposited Ag, finding that there were no changes in twin thickness across 

these different rates, but there was a change in twin density and texture that attributed to a 

variation in strength [21]. At the lower deposition rates, they found more randomly textured 

grains with less twin density across the films, contributing to a decrease in strength [21]. This 

phenomenon was not observed in the Ni-Mo-W alloy deposited in this study at even lower 

rates of 0.5-0.9 nm/s. The XRD results in Figure 5.1 show consistent strong {111} texture, 

without any other diffraction peaks present. Similar texture was observed in the IPF maps in 

Figure 5.2 and quantified using the pole figure (PF) for each ACOM scan in Figure 5.11, 

suggesting that the Ni-Mo-W films have good texture stability over a large range of 

deposition conditions 0.5-2.3 nm/s.  

 

 

 

 

 

 

 

 

 

 

Figure 5.11: PF showing strong texture of the {111} columnar grains for films with 
deposition rates (a) 0.5, (b) 0.7, (c) 0.9, and (d) 2.3 nm/s.  
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Similarly, nanotwin formation was demonstrated to be extremely stable over these deposition 

rates. A representative low magnification bright field micrograph in Figure 5.12 displays a 

high density of nanotwins throughout the many columnar grained structures for the lowest 

deposition rate, 0.5 nm/s. The high density of finely spaced nanotwins and the high hardness 

values suggest that the underlying nanostructure is distributed throughout the columnar 

grains for all deposition conditions. Thus, this Ni84Mo11W5 alloy has a broad stability range 

(0.5-2.3 nm/s) for nanotwin formation, where the grains remained strongly {111} textured 

with a high twin density and strength.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12: Representative low-magnification bright field micrograph from the films 
deposited at 0.5 nm/s, indicating a high density of nanotwins spanning across several grains. 
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The mechanistic reason behind this broad stability range for nanotwin formation is not 

clear, but a re-evaluation of the growth twin formation will help speculate. Shang et al. 

performed first-principles calculations of 26 different alloying elements with Ni and found 

that Mo and W were two of the most effective elements in reducing the SFE of pure Ni, 

which is reported as 130 mJ/m2 [22]. For a composition of binary alloy Ni71X29, the DFT 

simulations suggest that alloying with Mo and W reduced the SFE to 102 mJ/m2 and 104 

mJ/m2, respectively [22]. It is predicted that the twin boundary energy (𝛾!) is half of the SFE 

[23], which would equate to approximately 50 mJ/m2 for binary Ni71Mo29 and Ni71W29 

alloys. In comparison, low SFE materials such as silver and copper have SFE of 22 mJ/m2 

and 78 mJ/m2, respectively [24, 25]. Zhang et al. used an analytical model to understand 

growth twin formation by calculating the critical radius of perfect nucleus and twinned 

nucleus as a function of deposition rate and SFE [9]. Coupling this model with experiments 

for 330 austenitic stainless steel, Zhang et al. found that twin densities and strength decreased 

when deposition rates were 0.2 nm/s and below [26]. The yield strength and nanotwin 

formation of the Ni-Mo-W films explored were invariant to the sputter deposition rate in the 

range of 0.5-2.3 nm/s. These deposition rates are within the region of stability that Zhang et 

al. reported, suggesting that Ni-Mo-W may have a similar SFE as the 330 austenitic stainless 

steel, 𝛾! = 20 mJ/m2 [26]. Although there is evidence that binary Ni-Mo and Ni-W alloys 

have lower SFE than Ni, it has not been quantified for the atomic chemistry of ternary 

Ni84Mo11W5.  

5.6 Chapter summary 

In summary, Ni84Mo11W5 films were deposited at a range of deposition rates, 0.5-2.3 

nm/s, and characterized to determine the effect of nanotwin formation on the compressive 
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yield strength. Films were highly {111} textured in the growth direction with similar in-plane 

grain sizes. Very fine nanotwins were observed in all films with no apparent change in twin 

density. High compressive yield strengths of 3.1-3.4 GPa were uniform in the range of 

explored deposition rates, purportedly governed by the dislocation interactions with the 3.2-

3.7 nm spaced twins. The results suggest that the deposition rate is less significant in the 

formation of nanotwins and enhanced strength for the Ni-Mo-W alloys than the alloy 

chemistry. Alloying with Mo and W appears to reduce the SFE as compared to pure Ni, 

which enables ubiquitous nanotwin formation. The prolific formation of the nanotwins 

precludes use of deposition rate as a means for tailoring twin spacing or density and attendant 

mechanical properties, but it does provide a wide processing window for making 

nanotwinned Ni-Mo-W films for MEMS devices.  
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CHAPTER 6: FABRICATION AND CHARACTERIZATION 
OF Ni-Mo-W MICROCANTILEVER BEAMS 

 

6.1 Introduction 

The majority of this thesis work was spent on characterizing and understanding the 

outstanding balance of physical and mechanical properties of nanotwinned Ni-Mo-W alloys. 

However, the motivation for synthesizing Ni-Mo-W alloys is grounded in the ability to 

integrate them into high temperature microelectromechanical systems (MEMS) applications. 

This chapter focuses on moving beyond the exceptional suite of properties to demonstrate the 

feasibility of fabricating prototype MEMS device structures. Cantilever beams are the most 

ubiquitous structures in MEMS, with applications in sensors, actuators, switches and 

resonators [1, 2]. Because of their widespread use, the attention will be focused on 

fabricating Ni-Mo-W cantilever structures.  

Silicon-based MEMS cantilevers currently dominate the industry and are commonly 

fabricated in cleanrooms to control the level of contaminants introduced during the 

fabrication process. Any organic matter introduced to MEMS devices can impact the 

reliability and function due to the size of the contaminants relative to the micrometer sized 

features. In addition, these particles can act as insulators and cause an electrical short circuit 

during use, diminishing the quality and function of the device. Cleanrooms are subjected to 

different classifications, quantified by the number of particles per cubic meter. If we consider 

particle sizes greater than 500 nm, the everyday air we breathe contains more than 30 million 

particles per cubic meter. In comparison, typical MEMS fabrication is performed in class 100 

cleanrooms, where the maximum particle content is only 3.5 thousand per cubic meter [3]. 

Depending on the device sensitivity to contaminants, industries sometimes require use of 
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class 10 cleanrooms that have only 350 particles per cubic meter [3], but these concentrations 

are extremely expensive to maintain. All Ni-Mo-W fabrication techniques outlined in this 

chapter were carried out in a class 100 cleanroom to demonstrate the applicability of 

conventional MEMS fabrication methods. This work was carried out at the Singh Center for 

Nanotechnology at the University of Pennsylvania.  

Exceptional dimensional stability and control is required for MEMS sensors and 

actuators [4, 5] but can be difficult to achieve. Previous studies on metallic Ni components 

have demonstrated the micromachining capabilities needed to fabricate microcantilever 

beams [6-10], but their relatively low temperature microstructural instabilities limited 

widespread use [11, 12]. The primary goal and achievement of this chapter is to demonstrate 

that the robust mechanical and thermal properties of nanotwinned Ni-Mo-W thin films can 

translate into high temperature MEMS structures. This chapter describes the detailed 

fabrication process and requisite characterization to ensure flat and stable microcantilever 

beams with required dimensional control. 

6.2 Fabricating Ni-Mo-W microcantilevers 

6.2.1 Blanket thin films 

Direct current (dc) magnetron sputtering chambers were used to deposit Ni-Mo-W thin 

films, and various powers and argon (Ar) pressures were used to control the residual stresses. 

All thin film fabrication was performed in one of two commercial sputtering chambers: an 

AJA International Inc. ATC 1800 UHV, located at the University of Illinois Urbana 

Champaign (UIUC) in Professor Jessica Krogstad’s laboratory (Figure 6.1a) and a Kurt J. 

Lesker Pro Line PVD 75, located at The University of Pennsylvania’s (UPenn) Singh Caner 

for Nanotechnology (Figure 6.1b). The two chambers were equipped with a centralized gun 
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at the bottom of the chamber to hold a 3-inch single alloy target of Ni84Mo11W5 (at. %) from 

ACI Alloys, Inc. A custom order was placed from WRS Materials for (100) Si wafers with 

100 mm diameter and 300±25 µm thickness were double-side polished and 300±15 nm of 

super low stress silicon nitride (Si3N4) was deposited on both sides via low pressure chemical 

vapor depositions (LPCVD). The Ni-Mo-W thin films were deposited at room temperature 

with a base pressure of 10-7-10-8 Torr and a substrate rotation of 40 rpm. These deposition 

conditions were held constant throughout the different deposition runs. A wide range of dc 

powers (200-600 W) and Ar pressures (1-4 mTorr) were explored to produce nominally 2.5 

µm thick films.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: (a) AJA International Inc. ATC 1800 UHV located at UIUC in Jessica 
Krogstad’s laboratory and (b) Kurt J. Lesker Pro Line PVD 75 located inside the cleanroom 
at UPenn Singh Center for Nanotechnology.   
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Ni-Mo-W films for previous studies had been sputtered at high power (2500 W) in a 

custom chamber with a low Ar pressure of 1 mTorr and contained a strong {111} out-of-

plane texture with a very fine nanotwinned microstructure, as detailed in Chapters 2-4. The 

current study was undertaken to survey lower and more conventional powers to determine if 

the desirable texture and nanotwins were still present. Initial characterization of the sputter-

deposited thin films was performed prior to any microfabrication. Focused ion beam (FIB) 

lift-out techniques were employed to make electron transparent foils for transmission 

electron microscopy (TEM). Bright field micrographs and selected area electron diffraction 

(SAED) patterns provided a direct indication of the underlying as-sputtered microstructure. 

Representative cross-sectional TEM images taken from a film deposited at 400 W with 1 

mTorr Ar pressure are shown in Figure 6.2. The entire film thickness is captured in Figure 

6.2a and long columnar grains parallel to the growth direction are clearly visible. These 

columnar grains start at the substrate with no evidence of a nanocrystalline seed layer at the 

substrate-film interface. Higher magnification images of the columnar grains provide clear 

evidence of nanotwins (Figures 6.2b and 6.2c), which was confirmed by SAED pattern 

analysis, as shown in Figure 6.2d. Similar microstructures and planar defects were observed 

for all films sputtered in the specified power and pressure range (200-600 W and 1-4 mTorr) 

for this study. More detailed microstructural analysis was provided previously in Chapter 5. 

The broad processing window for sputtering nanotwinned Ni-Mo-W ensures robust control 

of the material composition, microstructure and properties for commercial deposition 

protocols.  
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Figure 6.2: TEM micrograph of (a) entire film thickness on 300 nm of silicon nitride and 
silicon, (b) magnified bright field image of columnar grain with (c) magnified view of 
nanotwins and (d) the associated selected area electron diffraction pattern indexed for the 
matrix and twins.  
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The effect of Ar sputtering gas pressure is important in the development of the overall 

film microstructure and physical properties [13-15]. An overview of the stresses in sputtered 

deposited films is necessary to understand the choice of 1-4 mTorr Ar pressures. Ohring 

provides a detailed analysis on the development of internal stresses in sputtered films and the 

correlation with the deposition parameters [13]. A brief review of important sources of stress 

and their effect of the Ni-Mo-W films are outlined below: 

 

i. CTE mismatch between substrate and film: For a film deposited at elevated 

temperature with a different CTE than the substrate, a misfit strain develops when 

the system is cooled back to room temperature due to the CTE mismatch. For the Ni-

Mo-W films sputtered at room temperature, minor substrate heating of less than 

15°C was observed. As a result, stresses due to CTE mismatch are expected to be a 

small contribution in this study.  

ii. Grain growth: Room temperature deposition of materials with high melting 

temperatures results in low adatom mobility during the sputtering process and tensile 

stresses develop. Use of a high Ar pressure further decreases the adatom mobility, 

creating more tensile stresses. However, decreasing the Ar pressure has an associated 

increase in the mean free path for the sputtered atoms. This allows for less atomic 

collisions so that atoms are more energetic when arriving at the substrate, with 

increased adatom mobility and compressive stresses. The development of growth 

stress in the Ni-Mo-W is expected to be the most important contribution during 

deposition.  
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Figure 6.3a shows the relative contributions of the intrinsic stress compared to the stresses 

due to CTE mismatch, as a function of deposition temperature. The growth stress is expected 

to have the largest impact on the Ni-Mo-W films with small contributions from the CTE 

mismatch. The goal of tuning the Ar pressure variable during deposition was to transition the 

internal stresses from highly tensile to moderately compressive. Ohring describes this 

compressive transition to have films with near-bulk values of electrical resistivity, deposited 

with parameters of low Ar pressure, high-mass sputtering target (Ni-Mo-W) and low 

deposition rates [13]. From Figure 6.3b the transition Ar pressure is predicted to be 3 mTorr 

for Ni. Hence, the small window of Ar pressures investigated was restricted to 1-4 mTorr in 

this study. Wafer curvature was used to quantify the average residual stress of the as-

deposited films. Curvature profiles were obtained using a KLA Tencor P7 2 Profilometer 

(Figure 6.4). Measurements were taken on the Si/Si3N4 substrate both before and after Ni-

Mo-W deposition to isolate the film stresses, Figure 6.5. The Stoney equation [16, 17] was 

used to calculate the film stresses reported in Table 6.1. Deposition rates varied from 0.4-1 

nm/s and the sputter duration was adjusted to achieve ~2.5 µm thick films. In these specified 

power and pressure ranges, all films had a compressive stress state with representative wafer 

curvature profile shown in Figure 6.5 concave down.  
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Figure 6.3: (a) The relative contributions from the intrinsic growth stress compared to the 
CTE thermally induced stress [15]. (b) The tensile to compressive transition Ar pressure for 
different sputter deposited metals, adapted from [13], highlighted for Ni.  
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Figure 6.4: (a) KLA Tencor P7 2 Profilometer located inside the cleanroom at UPenn Singh 
Center for Nanotechnology and (b) magnified image of the probe tip scanning a silicon wafer 
to measure its curvature.  

 
 

 

 

 

 

 

 

 

 

 

 
Figure 6.5: Wafer curvature measurement for the blank Si/Si3N4 substrate, the curvature 
after Ni-Mo-W film deposition and the difference between the two. The Ni-Mo-W has an 
average radius of curvature  -4.537 m, used to calculate the residual stress. 
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Table 6.1: Average film stress from wafer curvature measurements for various Ni-Mo-W 
films as-deposited. Deposition rates calculated from ~2.5 µm thick films with dc powers 200-
600 W and Ar gas pressures 1-4 mTorr. 

Power 
[W] 

Ar pressure 
[mTorr] 

Deposition rate 
[nm/s] 

Average film stress  
[MPa] 

200 3 0.46 -249 
200 3.5 0.55 -221 
200 4 0.57 -181 
400 1 0.91 -405 
400 2 0.88 -386 
400 3.5 0.83 -267 
600 1 1.10 -467 

 
 
 
 

6.2.2 Micromachining 

Blanket Ni84Mo11W5 films were patterned, etched and shaped in a class 100 cleanroom 

using conventional semiconductor device fabrication techniques. Figure 6.6 outlines the 

general microfabrication process, but the full procedure can be found in Appendix 3. Blank 

Si wafers were coated with Si3N4 to provide a potassium hydroxide (KOH) etch stop (Step 

1), followed by Ni84Mo11W5 sputter deposition (Step 2). Photolithography was used to 

pattern the front side of the wafer with the sputtered film using a chromium mask (Figures 

6.7a and b), consisting of arrays of cantilever beams with different aspect ratios, to determine 

the effect of geometry on the dimensional stability. The lithographic mask was donated by 

General Electric Global Research (GEGR) for use at Johns Hopkins University.  



	 164 

 

 

 

 

 

 

 

 

 

 

Figure 6.6: Process for fabricating micro-cantilever beams though lithography and etching 
blanket Ni-Mo-W thin films.  

 

The design of the chromium mask combines cantilevers of varying lengths (0.01-1 mm) and 

widths (10-100 µm) with a constant spacing of 100 µm between adjacent beams. Positive 

photoresist S1818 (Microposit) was spin-coated onto the front of the Ni-Mo-W film and 

exposed to UV light using the lithographic mask to pattern the shape the film (Step 3). Ni-

Mo-W films were selectively wet etched using Nichrome etchant TFN (Transene Inc.) at 

40°C to achieve an etch rate of 104±21 nm/min. For this etch rate, 25 minutes was sufficient 

to etch through the entire 2.5 µm thick Ni-Mo-W film. The Nichrome etchant only etched the 

Ni-Mo-W films, producing perpendicular sidewalls with no visible undercut, as shown in 

Figure 6.8. Once the fully etched structures were formed, the photoresist was removed and 

profilometer scans were used to determine the thickness of the cantilever beams.  

 

Si Si3N4 Ni-Mo-W S1818 ProTEK B3 

(1) Nitride (300 nm) coated Si wafer 
 

(2) Sputter Ni-Mo-W 

(3) Front & back lithography  

(4) Wet etch Ni-Mo-W, back side RIE 

(5) KOH etch from back 

(6) RIE from back  
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Figure 6.7: (a) Front chromium lithographic mask consisting of hundreds of arrays of 
microcantilevers, donated from GEGR. (b) Repeated arrays of micro-cantilever beams from 
the front chromium lithographic mask. (c) Empty windows representing the 
back lithographic mask. 
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Figure 6.8: Cross-sectional view of 20 µm long cantilevers, demonstrating the perpendicular 
sidewalls achieved using the Nichrome wet etchant. No visible undercut was observed.    

 

At this point, the wafer was flipped to the backside and photolithography was repeated 

using the back mask (Figure 6.7c). The backside Si3N4 was selectively etched using reactive 

ion etching (RIE) to expose the underlying Si substrate. The RIE process used 

trifluoromethane and oxygen (CHF3/O2), with an etch rate of 21±0.7 nm/min, followed by 

tetrafluoromethane (CF4) for cleaning at an etch rate of 43±2 nm/min. Removal of the 

backside 300 nm Si3N4 layer was achieved after 10 minutes of CHF3/O2 and two minutes of 

CF4 cleaning (Step 4). The photoresist was removed and protective alkaline coating ProTEK 

B3 (Brewer Science) with its primer was spin-coated onto the front of the wafer prior to the 

KOH wet etch. This alkaline coating prevented the KOH from etching the metallic Ni-Mo-W 

cantilevers. The 30% concentration KOH was heated to 90°C, producing a Si etch rate of 2.3 

µm/min. A full through wafer etch was achieved after 135 minutes (Step 5). The remaining 

5 µm 

1 µm 
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Si3N4 layer was removed via RIE to release the microcantilevers from the backside. Finally, 

the wafer was diced using a class 1 IPG Photonics IX200F laser system inside of the 

cleanroom at UPenn. The green laser (532 nm) was used with a power of 150 kW and 100 

passes to cut out individual dies, through the entire 300 µm Si wafer. After each die was 

sectioned, the ProTEK was removed using ProTEK B3 Remover 100 (Brewer Science), 

exposing freestanding microcantilever beams (Step 6).  

6.3 Characterizing dimensional stability 

6.3.1 Interferometry 

A Michelson interferometer was used to measure the out-of-plane deflection of the beams 

using a custom-built setup at GEGR. Interferometry is a measurement technique that uses 

electromagnetic light waves to measure changes in displacement or surface topology. Figure 

6.9 illustrates the Michelson interferometer setup, where a coherent light source is split into 

two different beam paths. One beam travels towards the reference mirror, while the other 

beam travels towards the movable mirror. The individual beams are reflected back towards 

the beamsplitter and are recombined prior to arriving at the detector. The optical path 

difference between the two beams creates a phase difference and produces an interference 

fringe pattern. The motion of interferometric fringes was used to monitor changes in beam 

path length and with it, deflection of the cantilever at various positions along its length.  
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Figure 6.9: Principle of a Michelson interferometer, consisting of a beamsplitter and two 
mirrors (or reflectors).  

 

The out-of-plane cantilever deflection profiles were fit to a second-order polynomial 

equation using traditional small deformation beam bending theory. With the coordinate 

system shown in Figure 6.10, 𝑢! is the out-of-plane deflection, 𝑥 the position along the 

beam, 𝑅 the radius of curvature, 𝜃! the takeoff angle at the point of attachment and 𝐶 is an 

arbitrary fitting constant.  

 

 𝑢! =
1
2𝑅 𝑥

! + 𝜃!𝑥 + 𝐶 (6.1) 

 

The maximum deflection values at the end of the cantilever beam (𝑥 = 𝐿) are directly 

measured. First order differentiation of the deflection provides the takeoff angle, measured at 

Coherent 
laser 

Detector 

Beamsplitter 

Movable 
mirror 

Reference 
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the fixed end (𝑥 = 0), whereas second order differentiation is related to the microcantilever 

beam curvature, 𝜅 = 1/𝑅. Hundreds of microcantilevers were characterized with a variety of 

length and width ratios. Considering the practicality and feasibility of MEMS devices, only 

beam lengths of 20 to 100 µm with associated widths of 10 to 100 µm were investigated with 

the interferometer. Six individual dies consisting of 30 microcantilever beams were 

characterized in the as-fabricated state. Dies were also heat treated at 200°C and 400°C for 1 

hour in 10-6 Torr vacuum. After cooling, interferometer measurements of beam deflections of 

these heat treated microcantilevers were used to demonstrate thermal stability.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.10: Interferometry measurement of the out-of-plane deflection profile measured 
along the length of a 50 µm cantilever beam compared with a polynomial fit. 
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6.3.2 Released beam deflections 

A candidate set of films deposited using conditions of 200 W power and 3.5 mTorr Ar 

pressure for 80 minutes, achieving a thickness of 2.7±0.05 µm, were characterized. Wafer 

curvature measurements were used to determine the average residual stress in the as-

deposited blanket films, as noted in Table 6.1. Freestanding arrays of microcantilever beams 

were fabricated using the process detailed in Figure 6.6, and a representative set of 

cantilevers with different aspect ratios is shown in Figure 6.11a. The deflection was 

measured and recorded along the length of each beam and used to determine the maximum 

deflection at the free end, the takeoff angle at the fixed end and the uniform curvature. An 

example set of interferometry fringes (Figure 6.11b) and associated deflection profiles 

(Figure 6.12) are displayed for 100 µm beams. Deflection profiles for beam lengths of 50 µm 

and 20 µm are shown in Figure 6.13 and Figure 6.14, respectively. It is clear from Figure 

6.12-6.14 that for a given beam length, the deflection profiles are invariant with respect to the 

beam widths. As a result, all cantilever beam deflections were averaged across the associated 

widths and reported as the averaged deflection for each beam length. For example, Figure 

6.15 shows the averaged deflection profiles for cantilever beam lengths of 20, 50 and 100 

µm. The different length beams have the same curvature of 420 m-1, but the magnitude of the 

maximum deflection scales with the beam lengths. The raw deflection profiles from 20 µm 

beam lengths show considerably more scatter and noise than beams of length 100 and 50 µm, 

but the averaged values align well with those in Figure 6.15. The spatial resolution of the 

interferometer setup is ~10 nm, which gives rise to the small perturbations observed for 

smaller 20 µm beams.  
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Figure 6.11: (a) SEM image of array of freestanding microcantilever beams group by length 
(500, 200, 100, 50 and 20 µm) with a range of widths (100, 50, 40, 30, 20, 10 µm) for each 
length. (b) Interferometry fringes for 100 µm long cantilevers with widths of 100, 50, 40, 30 
and 20 µm. Spacing between cantilevers is 100 µm, not shown to scale 
here.  
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Figure 6.12: As-fabricated micro-cantilever beam deflection profiles for 100 µm long beams 
with different widths ranging from 10-100 µm. 

 
 

 

 

 

 

 

 

 

 

 

 
Figure 6.13: As-fabricated micro-cantilever beam deflection profiles for 50 µm long beams 
with different widths ranging from 10-100 µm. 
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Figure 6.14: As-fabricated micro-cantilever beam deflection profiles for 20 µm long beams 
with different widths ranging from 10-100 µm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.15: The average across different beam widths (10-100 µm) for three different beam 
lengths (20, 50 and 100 µm).  
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Table 6.2 summarizes the maximum deflections for more than 100 different as-fabricated 

microcantilevers across the wafer. The associated takeoff angle and curvature values were 

calculated using Equation 6.1 and presented in Table 6.3.  

 

 

 

Table 6.2: Summary of micro-cantilever beam deflections for beams of length 100, 50 and 
20 µm averaged over the respective widths for the as-fabricated and heat treated beams at 
200°C and 400°C for 1 hour.  

 Beam length [µm] 
Maximum Deflection at the End of the Cantilever [µm] 
As-fabricated 200°C 400°C 

100 2.17 ± 0.23 2.45 ± 0.06 1.79 ± 0.14 

50 0.597 ± 0.12 0.685 ± 0.06  0.432 ± 0.04 

20 0.107 ± 0.04 0.157 ± 0.01 0.050 ± 0.01 
 

 

Table 6.3: Summary of micro-cantilever beam takeoff angles, curvatures and maximum 
stress gradients averaged over all beam lengths for the as-fabricated and heat treated beams at 
200°C and 400°C for 1 hour.  

Heat treatment Takeoff angle 
[rad × 10-3] 

Curvature 
[1/m] 

Maximum σ1 
[MPa] 

As-fabricated 3.0 ± 2.6 419.7 ± 64.5 166.9 ± 25.7 

200°C 2.6 ± 0.9 486.3 ± 57.0 193.4 ± 22.6 

400°C 3.1 ± 2.2 358.8 ± 92.1 142.7 ± 36.6 
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6.3.3 Deflections associated with thermal exposure 

Deflection profiles were measured after 1-hour heat treatments at 200°C and 400°C for 

30 different microcantilever beams at each temperature to determine any dimensional 

changes. The maximum beam deflections, the associated takeoff angles and the curvatures 

are recorded in Tables 6.2 and 6.3, respectively. A small but measurable increase in the 

deflections was observed after the 200°C heat treatment compared to the as-fabricated 

microcantilever beams. The increase in deflections is associated with the increase in beam 

curvature after thermal exposure to 200°C. The takeoff angle at the fixed end of the 

microcantilever remained essentially the same. A different behavior was revealed for 

cantilevers heat treated at 400°C. The beam deflections and curvatures both decreased as a 

result of the 400°C heat treatment, while the takeoff angles remained the same. 

Understanding the relaxation of the microcantilever beam deflections at 400°C but not 200°C 

requires a closer investigation of the underlying mechanisms. The dimensional changes in 

deflection and its evolution with heat treatment temperature will be discussed below.  

6.4 Mechanistic interpretation of dimensional changes 

6.4.1 Quantifying intrinsic stresses 

Geometric changes in the microcantilevers are intimately affected by changes in the 

residual stress, and thus, an understanding of the factors that underpin residual stress is 

imperative for dimensional and thermal control. The measured deflection profiles can be 

used to quantify the residual stresses in the microcantilevers and track its progression with 

thermal exposure. Small deformation beam bending assumptions were used with Hooke’s 

law to express the microcantilever axial stress and relate it to the residual stress in the film. 

For a thin film in plane stress (𝜎! = 0) with an in-plane biaxial stress (𝜎! = 𝜎!), Hooke’s law 
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can be rewritten in terms of the axial strain 𝜀! =
!
!
 and the transversely isotropic properties 

(𝐸! = 𝐸! = 𝐸!, 𝜈!" = 𝜐!" = 𝜐!).  

 

 𝜎! =
𝐸!

1− 𝜐!
𝑦
𝑅 (6.2) 

 
𝑀! =  −

𝐸!
12 1− 𝜈!

𝑤𝑡!

𝑅   (6.3) 

 

The moment (𝑀!) for pure bending of a rectangular beam is shown in Equation 6.3 where 

𝐸!, 𝜈!, 𝑡 and 𝑤 are the in-plane Young’s modulus, Poisson’s ratio, beam thickness and beam 

width, respectively. Prior to releasing the microcantilever beams, the total axial residual 

stress (𝜎!!"#$% ) for thin films is often simplified to a first order linear approximation 

(Equation 6.4), where 𝜎! is the uniform film stress and 𝜎! is the maximum magnitude of the 

residual stress gradient [18]. The constant tensile or compressive stress (𝜎!) is typically due 

to lattice or CTE mismatch between the film and the substrate, whereas the linear stress 

gradient (𝜎!) is a result of the growth process. 

 

 𝜎!!"#$% = 𝜎! + 𝜎!
𝑦
𝑡/2 (6.4) 

 
𝑀! = −

𝑤𝑡!

6 𝜎! (6.5) 

 𝜎! =
𝐸!

2 1− 𝜈!

𝑡
𝑅 (6.6) 
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Balancing the moment using the total axial residual stress provides an expression (Equation 

6.5), which is equated with the bending moment from Equation 6.3 to provide an expression 

for the maximum magnitude of the stress gradient (Equation 6.6). Second order 

differentiation of the measured deflection profile allows for calculation of the curvature. 

Implementing this value with Equation 6.6, the maximum stress gradient was computed by 

assuming an in-plane Young’s modulus of 232 GPa (calculated for {111} out-of-plane 

texture using the stiffness matrix for single-crystal Ni [19]) and a  Poisson’s ratio of 0.3. 

Table 6.3 details the magnitude of the stress gradient as a function of heat treatment 

temperature. The as-fabricated stress gradient can be used for comparison, revealing that 

after heating at 200°C there is an increase of ~30 MPa whereas at 400°C there is a ~25 MPa 

decrease from the as-fabricated magnitude.  

In addition to the residual stress gradient, the uniform compressive stress affects the 

overall geometry of the microcantilever beam. Figure 6.16 shows a schematic of a series of 

thought experiments adapted from [18] to decouple these effects. Figure 6.16a represents an 

as-fabricated film on a substrate with a schematic of the axial stresses in the film. For 

simplicity, the substrate and thin film are drawn as being completely flat, but the wafer 

curvature measurements indicated that they are curved concave down. In the first thought 

experiment, removing a portion of the substrate to create a freestanding cantilever beam will 

result in a slight lengthening of the beam to relieve the uniform compressive stress (𝜎!). 

However, the stress gradient is still maintained and the beam remains flat. For this 

hypothetical intermediate stage, the cantilever will kink (𝜃!) as a result of the boundary 

conditions at the point where the film is fixed to the substrate, Figure 6.16b.  
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Figure 6.16: Schematic of a freestanding microcantilever and stress state prior to release, 
during hypothetical intermediate stages and after release, adapted from [18]. (a) As-
fabricated stress gradient and uniform compressive stress in the thin film prior to release, (b) 
the effect of relieving the uniform compressive stress (σ0) but maintaining the gradient (σ1), 
(c) the effect relieving the stress gradient (σ1) but maintaining the uniform compressive stress 
(σ0) and (d) the geometric shape of the fully stress-relieved cantilever with zero stresses 
throughout the beam.  
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In the second thought experiment, removal of the substrate below the cantilever and relaxing 

only the stress gradient (𝜎!) causes beam bending with constant radius of curvature, shown in 

Figure 6.16c. This hypothetical intermediate stage retains the uniform compressive stress 

(𝜎!) and original beam length while the bending relieved the initial stress gradient. Assuming 

that the intrinsic stress gradient has a larger contribution than the uniform compressive stress 

(𝜎! > 𝜎!) prior to release, the overall shape of the freestanding cantilever resembles Figure 

6.16d. The combined effects of the two hypothetical scenarios detailed in Figures 6.16b and 

6.16c create the bending and lengthening observed in Figure 6.16d, providing there is zero 

stress everywhere in the beam. It is worth noting that the total takeoff angle in the fully 

released cantilever beam (𝜃!) has a combination of the takeoff angle from the uniform stress 

(𝜃!) relaxation and the stress gradient (𝜃!) relaxation, such that 𝜃! = 𝜃! + 𝜃!. The angles 

measured in Table 6.3 display the total takeoff angles as being close to zero and nominally 

unchanged with thermal exposure. The modest positive angle suggests that the contribution 

from the stress gradient was large enough to offset the contribution from the constant 

compressive stress, 𝜃! > 𝜃!. Thus, the dimensional changes observed in microcantilever 

deflections are driven by the ability to control the stress gradient and its development with 

temperature. 

6.4.2 Effect of temperature 

The residual stress evolution that occurs during thermal exposure, e.g. that associated 

with packaging, bonding and elevated temperature service, is needed for future MEMS 

integration. Freestanding microcantilevers require dimensional stability in the as-fabricated 

state in addition to the temperatures compatible with bonding techniques. Typical bonding 

temperature are in the range of 180-300°C for solder reflow [20], 300-400°C for 



	 180 

thermocompression [21, 22] and 400-450°C for glass frit bonding [23]. Heat treatments of 

200°C and 400°C were examined to mimic these bonding temperatures and the results 

exhibited relatively flat microcantilever beams with subtle geometric changes. The evolution 

of microcantilever deflections is grounded in the as-sputtered residual stress gradient. 

Various papers in the literature examine the different stages of growth for physical vapor 

deposition [24, 25] and attribute the initial region to island growth on the substrate, followed 

by grain boundary formation or coalescence and film thickening. The final growth region is 

highly dependent on the deposition parameters and the material being deposited [15]. The 

measured values of maximum residual stress gradient in the Ni84Mo11W5 films are consistent 

with metallic thin films of similar deposition rates [25].  

The structure zone model proposed by Thornton [14] describes the microstructure of 

sputter deposited thin films as a function of Ar pressure and deposition temperature, shown 

in Figure 6.17. According to the structure zone model, the Ni84Mo11W5 films sputtered at 

room temperature and 3.5 mTorr Ar pressure borders on the edge of two zones: zone T 

(transition) formed with a low Ar pressure at a low homologous temperature (T/Tm), creating 

dense columnar grains with a smooth surface, whereas zone 1 formed with higher Ar 

pressure at low T/Tm, results in rougher surfaces with columnar grains separated by open 

void containing boundaries [15]. During heat treatments, quenched vacancies from sputtering 

can annihilate at the surface or the grain boundaries and the free surfaces of the cantilever 

beam provide a high density of fast diffusion pathways. The increase in deflection observed 

after the 200°C heat treatment indicates that at this temperature there is sufficient thermal 

activation for local atomic rearrangement but not for extensive vacancy diffusion across the 

cantilever beam.  
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Figure 6.17: The structure zone model for sputter deposited films, adapted from [14]. 

 

 

However, at 400°C there is more thermal energy for overall vacancy annihilation throughout 

the microcantilever beam, promoting stress relaxation and an associated decrease in the 

deflection. The nanometer scale deflections of the microcantilevers demonstrate the potential 

for moving beyond blanket film deposition to the fabrication of geometrically stable, 

freestanding microcantilever beams. Careful control of the residual stresses was found to be 

critical for device uniformity and repeatability. 
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6.5 Chapter summary 

The current study goes beyond the demonstration of enhanced material properties to 

demonstrate and elucidate of a path for micromachining dimensionally stable 

microcantilevers of nanotwinned Ni-Mo-W. The fact that Ni-Mo-W microcantilever can be 

reliably etched and shaped with wafer uniformity using conventional semiconductor 

processes greatly facilitates integration into existing manufacturing foundries and processes. 

Deflections of the as-fabricated cantilevers were measured to be on the order of hundreds of 

nanometers for smaller length beams (20-50 µm), whereas the longest cantilevers (100 µm) 

deflected a few micrometers. The nanotwinned Ni-Mo-W microcantilevers are shown to be 

dimensionally stable when exposed to processing and packing thermal cycles. It is noted that 

relaxation during thermal exposure to 400°C actually flattened the microcantilevers and 

resulted in increased dimensional stability, with beam deflection profiles of tens of 

nanometers. It is anticipated that the successful fabrication of nanotwinned Ni-Mo-W 

microcantilever arrays and demonstration of good dimensional control and stability will lay 

the groundwork for next generation metal MEMS design and fabrication.  
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CHAPTER 7: SUMMARY AND FINDINGS 
 

This thesis work was undertaken to expand the current set of materials available for 

elevated temperature (300-500°C) microelectromechanical systems (MEMS). The enhanced 

microstructural and thermal stability of sputter deposited Ni-W [1, 2] was combined with Mo 

to reduce the coefficient of thermal expansion (CTE) [3], producing ternary Ni-Mo-W alloys. 

Initial characterization of candidate alloy Ni83.6Mo14W2.4 revealed ultrahigh strengths, 

electrical conductivity and tailorable mechanical behavior derived from the formation of 

growth nanotwins [4, 5]. The goal of the research presented in this dissertation was to 

investigate a broader set of Ni-Mo-W alloys with the requisite nanotwinned microstructure 

and determine their applicability for the structural material in MEMS.  

7.1 Review of key findings 

A compositional spread of nanotwinned Ni-Mo-W alloys was sputter deposited from a 

combinatorial target of Ni85Mo15 and Ni85W15 (at.%). Thin films were sectioned into different 

regions with chemical compositions ranging from Ni85MoxW15-x, where x is 2-13 at.%W, to 

measure their physical properties, such as electrical resistivity and coefficient of thermal 

expansion (CTE). The measured electrical resistivity ranged from 104-116 µΩ-cm, which are 

comparable to the values reported for bulk Ni alloys, suggesting that the underlying 

microstructure does not impede electron motion. A non-contact method using digital image 

correlation (DIC) was developed for measuring the CTE of thin films and used to determine 

the effectiveness of alloying with Mo to reduce the overall CTE of Ni-Mo-W. The results can 

be summarized as follows: 

• The experimental measure of all Ni85MoxW15-x films resulted in a CTE that 

ranged from 8.9-13.0×10-6 /°C between room temperature and 600°C. This is 
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dramatically reduced compared to the reported CTE of pure Ni, 13.0-16.4×10-6 

/°C, in this same temperature range [3, 6, 7].  

• The effect on CTE was observed to differ with alloying content. Room 

temperature CTE was found to be lowest for the W-rich alloys 8.2-8.9×10-6 /°C, 

while the Mo-rich alloys were found to have a temperature independent CTE. The 

ability to tailor the temperature dependence of CTE provides additional design 

flexibility for engineering dimensional stability into MEMS.  

• The reduced CTE of Ni85MoxW15-x films was found to match the CTE of 

commercial glass substrates commonly used in MEMS-based switches and micro-

actuators, providing a pathway to mitigate the thermal distortions that would 

otherwise develop from CTE mismatch.  

In addition to the physical properties, the mechanical properties of sputter deposited 

Ni85MoxW15-x alloys were investigated as a function of their chemistry and underlying 

microstructure. Uniaxial tension specimens were evaluated for a representative set of 

Ni85MoxW15-x films in the as-deposited state and after heat treatments for 1 hour at 400°C. 

The microstructural characterization and the mechanical results can be summarized as 

follows: 

• Cross-sectional transmission electron microscopy (TEM) demonstrated the 

columnar grains oriented in the growth direction filled with perpendicular 

nanotwins. X-ray diffraction (XRD) was used to measure the crystallographic 

peaks of the films, revealing a strong {111} texture out-of-plane associated with 

face centered cubic (fcc) single-phase Ni. The columnar grains were found to 

have a tilted <111> direction that developed as an artifact of the sputtering 
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process. These microstructural variations did not appear to have any fundamental 

correlation with alloy composition and instead were a result of the custom 

combinatorial alloy target geometry and its generated plasma during sputtering.  

• Fluctuations in the measured fracture strengths (2-3 GPa) and the associated 

elastic moduli (180-220 GPa) were found to vary as a function of the 

microstructure morphology rather than alloy chemistry. Had the artifacts in 

sputtering not been present, the microstructural variations causing changes in 

fracture strengths and elastic moduli would likely not be present.  

• The stress-strain tensile response displayed a linear-elastic behavior, which is 

attractive for MEMS because it is extremely reproducible and easy to model. 

High tensile strengths of 2-3 GPa were measured and facilitated by a high density 

of nanotwins. The careful control and design of the underlying microstructure 

facilitated the strengthening behavior observed in Ni85MoxW15-x alloys with 

mechanical integrity at temperatures up to 400°C.  

Changing the loading orientation with respect to the twin boundaries led to an in situ 

study on micropillar compression, where the loading axis is perpendicular to the film surface 

and the associated twin boundaries. Post-mortem characterization with TEM techniques was 

used to investigate microstructural changes after deformation and the results can be 

summarized as follows: 

• In situ compression displayed anisotropic plasticity that was highly localized to 

the top portion of the micropillar, with no visible deformation in the remainder of 

the pillar. Ultrahigh compressive strengths were measured greater than 4.5 GPa 

and are attributed to dislocation pile-up and slip transfer across twin boundaries.  
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• When the underlying twin boundaries were oriented perpendicular to the loading 

direction, the extruded localized plasticity was symmetric in nature, whereas twin 

boundaries with a slight inclination showed highly directional deformation. 

Extensive shear banding was found to facilitate the localized softening 

mechanisms and lateral shear parallel to the twin planes. All deformation was 

localized inside the shear band, which displayed recrystallized grains with a 4:1 

aspect ratio, elongated in the direction of shear. However, no direct evidence of 

detwinning was observed. The nanotwinned microstructure facilitated the 

interaction between hard and soft deformation modes, providing a tailorable 

mechanical response for nanotwinned materials.  

The effect of deposition rate on the formation of the highly beneficial nanotwins in Ni-

Mo-W was investigated. Constant alloy composition Ni84Mo11W5 was sputter deposited at 

rates of 0.5, 0.7 0.9 and 2.3 nm/s and the associated grain diameter, twin thickness and 

hardness were measured and the results can be summarized as follows: 

• Highly textured <111> oriented columnar grains were observed for all deposition 

conditions with in-plane columnar grain diameters ranging from 58-89 nm. Grain 

diameter was shown to increase with deposition rate, as a result of more substrate 

heating at higher rates.  

• Bright field TEM images were used to quantify the average nanotwin thickness, 

ranging from 3.2-3.7 nm across all deposition conditions with a maximum 

standard deviation of 2 nm. The dislocation interactions with the fine nanotwin 

spacing facilitated high hardness values and estimated compressive yield 

strengths 3.1-3.4 GPa across all films. 
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• The results suggest that the deposition rate is less significant in the formation of 

nanotwins and instead, the atomic chemistry from alloying with Mo and W is 

hypothesized to considerably reduce the stacking fault energy (SFE) compared to 

pure Ni, as predicted by Shang et al. [8].  

Translation of the exceptional suite of properties was undertaken to move beyond thin 

films characterization and to fabricate prototype MEMS device structures. Microcantilever 

beams were fabricated and characterized to determine their geometrical changes with thermal 

exposure temperatures that mimic wafer bonding. The results are summarized as follows: 

• Ni-Mo-W microcantilevers were reliably etched and shaped using conventional 

semiconductor processes (e.g. lithography, wet etchants, dry etchants) with wafer 

uniformity. The microfabrication process was carried out in a class 100 cleanroom 

such that the entire workflow can be integrated into existing manufacturing 

processes.  

• Laser interferometry measurements were used to quantify the microcantilever out-

of-plane deflection and showed deflection measurements on the order of hundreds 

of nanometers for the smaller length beams (20-50 µm) and a few micrometers for 

the longest length beams (100 µm).  

• The curvature of the deflection profiles was used to quantify the magnitude of the 

stress gradient, which showed relaxation after thermal exposure to 400°C, 

flattening the microcantilevers and resulting in increased dimensional stability.  

Taken as a whole, the experiments performed in this study highlight the importance of 

alloy chemistry and nanotwin formation on the balance of physical and mechanical properties 
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in Ni-Mo-W alloys. The wide range of Ni85MoxW15-x alloys characterized with outstanding 

properties and manufacturability lays the groundwork for next generation metal MEMS 

design and fabrication.  

7.2 Future directions  

The results and conclusions presented in this dissertation help advance the available 

materials for high temperature MEMS applications and provide an understanding of the 

mechanical behavior and stability of nanotwinned Ni-Mo-W alloys. The findings also 

motivate future investigations that could be undertaken to promote a more fundamental 

understanding of the nanotwinned microstructure and its behavior at high temperatures. Key 

areas of focus are discussed as follows: 

• All mechanical testing presented in this dissertation was conducted at room 

temperature, however the application of high temperature MEMS would require 

the device to be in service at the prescribed elevated temperature. Using the 

detailed study presented in this work for high temperature digital image 

correlation (DIC) aberration corrections provides an easy path to integrating DIC 

into an existing high temperature load frames to provide accurate strain 

measurements. A more expansive set of tensile testing at elevated temperature 

(300-500°C) would further reinforce nanotwinned Ni-Mo-W alloys for high 

temperature MEMS use. More specifically, performing these experiments in 

vacuum would provide the most realistic environmental conditions, where 

oxidation is hindered. MEMS devices are typically hermetically sealed during the 

packaging process to eliminate humidity and organic matter that can act as 
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insulators and cause electrical short circuits. These contaminants can diminish the 

quality and function of the device, which is mitigated through the hermetic seal.  

• An important quantification in MEMS devices is the reliability and longevity of 

their mechanical parts, which points to an experimental study of the creep 

behavior. High temperature creep and fatigue studies on LIGA Ni [9] provide an 

experimental precursor to this investigation, but the role of the thermally and 

mechanically stable nanotwins in Ni-Mo-W has not been demonstrated. A recent 

review article on the fracture, fatigue and creep of nanotwinned metals notes that 

very few investigations have been performed to investigate the creep behavior of 

nanotwinned metals [10], and those that have all focused on low SFE materials 

such as Cu and Ag. For example, Bezares et al. used nanoindentation to measure 

the creep behavior of nanotwined Cu and Ag [11]. Their results compared 

nanotwinned Cu films electrodeposited and sputtered, finding that the sputtered 

films showed enhanced stability due to the finer twin lamellae achievable with 

sputtering. Additionally, Jiao and Kulkarni performed MD simulations on 

nanotwinned Cu with fine twin spacing (less than 5 nm) and found a new 

mechanism at high stresses, governed by twin boundary migration from partial 

dislocation nucleation from the twin boundary-grain boundary junction [12]. 

Because Ni has a higher SFE than Cu, the mechanisms governing the high 

temperature creep behavior of Ni-Mo-W may be completely different than those 

proposed for nanotwinned Cu and may even offer superior stability.  

• In this work, micropillar compression was used to elucidate the anisotropic 

deformation mechanisms when changing the loading direction with respect to the 
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twin boundaries; however, only one tilt angle was investigated. A more extensive 

set of micropillars with different loading orientations with respect to the twin 

boundaries would provide a more comprehensive overview of the active 

mechanisms. Specifically, loading at 45° with respect to the twins, where the 

maximum resolved shear stress is on the twin plane, would provide the most 

intriguing results. You et al. demonstrated this loading orientation as a soft mode, 

where easy dislocation glide on the twin planes promotes detwinning [13]. Since 

Ni-Mo-W has displayed superior mechanical strength and stability than 

nanotwinned Cu, it remains to be demonstrated whether the same mechanisms 

would be active. 

• The deformed micropillar compression presented in this dissertation showed shear 

banding as a dominant mechanism through post-mortem TEM characterization. 

The results suggested that the shear band started parallel to the modest twin 

boundary inclination and developed a band of recrystallized grains. There was no 

evidence of detwinning observed post-mortem, but it is unclear whether the shear 

band initiated from the twin boundary, as reported by Hatherly and Malin [14], or 

from some other interaction. In situ TEM pillar compression would be needed to 

confirm this behavior and would be an exciting area for future research to 

determine the role of twin boundary orientation and motion with the observed 

deformation. 

• Most of the beneficial properties presented in this dissertation were attributed to 

the finely spaced nanotwins in the Ni85MoxW15-x alloys. In this thesis work, it was 

suggested that the small additions of Mo and W were sufficient enough to lower 
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the SFE of pure Ni, enabling the twin formation. An interesting question arises 

from these results; what alloying content of Mo and W is needed to promote the 

reduction of the SFE in Ni and to produce nantwins? Increasing the alloying 

content beyond 15 at.% would likely result in amorphous alloys or promote 

segregation and complex intermetallic phases [15, 16]. However, decreasing the 

alloying content could provide a critical solute concentration to facilitate 

nanotwin formation in Ni alloys. The effect of alloy chemistry in Ni-Mo-W may 

also provide a pathway to tailor the nanotwin thickness.  
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APPENDIX 1: X-RAY PENETRATION DEPTH 
 

The penetration depth in XRD is not precisely known, especially for metallic materials 

that strongly absorb X-rays. The intensity of the incident X-rays exponentially decreases with 

specimen thickness. However, an approximation can be made of the specimen depth from 

which the diffraction peaks were obtained, assuming an infinitesimally thin layer below the 

surface. Equation A1.1 defines the integrated intensity diffracted by the thin layer at depth x 

below the surface for the powder diffraction configuration. I0 is the incident beam intensity, 

ID the diffracted beam intensity, µ the linear absorption coefficient of the material, a the 

volume fraction of the specimen with planes oriented for reflection of the incident beams, b 

the fraction of the incident energy that is diffracted by unit volume and θ the scattering angle 

[1].  

 

 𝑑𝐼! =
𝐼!𝑎𝑏
sin𝜃 𝑒

! !!"!"#!𝑑𝑥  (A1.1) 

 

By defining a ratio, 𝐺!, of the intensity diffracted by a specified layer x to the total intensity 

diffracted over the entire specimen, constants I0, a and b will cancel (Equation A1.2) [1]. 

This can be rewritten to a form to facilitate calculations, where 𝐾! = ln !
!!!!

, as in 

Equation A1.3. 

 

 
𝐺! =

𝑑𝐼!
!!!
!!!

𝑑𝐼!
!!!
!!!

= 1− 𝑒!
!!"
!"#!   (A1.2) 
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 𝑥 =
𝐾! sin𝜃
2𝜇   (A1.3) 

 

The linear absorption coefficient was calculated from mass absorption coefficients and 

densities obtained from literature [2, 3]. Assuming that 95% of the intensity diffracted was 

due to the information from depth x, then it can easily be calculated for the various 

crystallographic peaks. Using the powder diffraction file values of pure Ni, the depth was 

calculated for each crystallographic peak. For example, 2𝜃 !!! = 44.497° corresponds to 

95% of the diffracted intensity from depth 12.94 µm, but 50% of that information comes 

from the first 2.98 µm). Using this calculation, we can conclude that 50% of the XRD 

information comes from the first 3-6 µm depth of the film and the rest of the information 

comes from 13-25 µm deep into the film. The large spread in penetration depth is due to the 

varying 2theta, from smallest to largest. 
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APPENDIX 2: MICROPILLAR COMPRESSION 

Additional micropillar experiments were carried out for a loading orientation that was at 

an 11° angle with respect to the columnar grains and their perpendicular twin boundaries. 

Figures A2.1-A2.8 detail the stress-strain response of the compressed micropillars.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A2.1: Stress-strain curve of a micropillar with an 11° columnar grain tilt that was 
loaded-unloaded-reloaded for 3 cycles in increments of 1 µm at a nominal strain rate of 10-3 
s-1.  
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Figure A2.2: Stress-strain curve of a micropillar with an 11° columnar grain tilt that was 
loaded-unloaded-reloaded for 3 cycles in increments of 1 µm at a nominal strain rate of 10-3 
s-1.  

 
 

 

 

 

 

 

 

 

 

 
Figure A2.3: Stress-strain curve of a micropillar with an 11° columnar grain tilt that was 
loaded to a depth of 2 µm at a nominal strain rate of 10-3 s-1.  
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Figure A2.4: Stress-strain curve of a micropillar with an 11° columnar grain tilt that was 
loaded-unloaded-reloaded for 2 cycles in increments of 1 µm at a nominal strain rate of 10-3 
s-1. 

 

 

 

 

 

 

 

 

 

 

Figure A2.5: Stress-strain curve of a micropillar with an 11° columnar grain tilt that was 
loaded-unloaded-reloaded for 5 cycles in increments of 100 nm at a nominal strain rate of 10-

3 s-1.  
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Figure A2.6: Stress-strain curve of a micropillar with an 11° columnar grain tilt that was 
loaded-unloaded-reloaded for 9 cycles in increments of 50 nm at a nominal strain rate of 10-4 
s-1, where loading step 1 started at 150 nm. 

 

 

 

 

 

 

 

 

 

 
 
Figure A2.7: Stress-strain curve of a micropillar with an 11° columnar grain tilt that was 
loaded-unloaded-reloaded for 3 cycles in increments of 100 nm at a nominal strain rate of 10-

4 s-1, where loading step 1 started at 200 nm. 
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Figure A2.8: Stress-strain curve of a micropillar with an 11° columnar grain tilt that was 
loaded-unloaded-reloaded for 12 cycles in increments of 50-100 nm at a nominal strain rate 
of 10-4 s-1, where loading step 1 started at 200 nm. Pillar diameter was 5 µm instead of 3 µm 
to examine size effects.  

 

 

Similarly, additional micropillar experiments were carried out for well-aligned columnar 

grains and their perpendicular twin boundaries to the loading orientation. Figures A2.9 and 

A2.10 detail the stress-strain response of the compressed micropillars. All compression 

experiments show discrete strain bursts, high hardening and flow strengths exceeding 3.5 

GPa.  
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Figure A2.9: Stress-strain curve of a micropillar with well-aligned columnar grains and 
perpendicular nanotwins with the compression axis. Six different loaded-unloaded-reloaded 
cycles were performed in 50 nm increments at a nominal strain rate of 10-4 s-1.  

 

 

 

 

 

 

 

 

 

 
 
Figure A2.10: Stress-strain curve of a micropillar with well-aligned columnar grains and 
perpendicular nanotwins with the compression axis. Six different loaded-unloaded-reloaded 
cycles were performed in 50 nm increments at a nominal strain rate of 10-4 s-1, where loading 
step 1 started at 100 nm. 
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APPENDIX 3: MICROCANTILEVER FABRICATION 
 

 
The detailed step-by-step process flow for fabricating freestanding microcantilever beams 

is given below. Substrate preparations were performed inside the class 100 cleanroom at 

UPenn and wafers were either sputtered in the chamber inside the cleanroom or shipped to 

UIUC for sputter deposition. The chamber as UIUC was equipped with a higher dc power 

supply (maximum 600 W) compared to the chamber at UPenn (maximum 400 W), so often 

the UIUC chamber was chosen for deposition. All post-film-deposition processing was 

performed inside of the cleanroom at UPenn, where all necessary tools, chemicals and data 

sheets are available.  

1. Take a clean Si wafer (100 mm diameter, 300±25 µm thickness, <100> orientation, 

double-side polished with 300±15 nm super low stress silicon nitride) and rinse in 

acetone, isopropyl alcohol (IPA) and deionized (DI) water. Blow dry via compressed 

air and dehydrate the wafer for 10 minutes at 200°C on a hot plate. Allow the wafer 

to cool to room temperature (RT).  

2. Measure the bare wafer curvature using the KLA Tencor P7 2 Profilometer about the 

flat of the wafer. Rotate the wafer 90° to obtain wafer curvature measurements about 

the perpendicular direction. It is important to take note of which side of the wafer 

measurements were obtained for later thin film deposition.  

3. Sputter deposit Ni-Mo-W films on the same side of the wafer that profilometer scans 

were measured. Using the desired power (200-600 W) and Ar pressure (1-4 mTorr) 

settings to obtain ~2.5 µm, depositions were performed at room temperature with a 

base pressure of 10-8 Torr and a substrate rotation of 40 rpm.  
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4. Using the KLA Tencor P7 2 Profilometer to measure the wafer curvature post-film-

deposition, both in the direction of the wafer flat and the perpendicular direction, 

provides average film stress measurements. 

5. Spin-coat positive photoresist S1818 (without primer) on the Ni-Mo-W side of the 

wafer (referred to as the frontside hereafter) in a two step process: 

i. 5 second at 500 rpm. 

ii. 45 second at 3000 rpm.  

6. Perform a soft-bake at 115°C for 1 minute, then cool to RT. 

7. Use the SUSS MicroTec MA-6 mask aligner to pattern arrays of microcantilever 

beam geometries into the resist with the following settings: top-side alignment 

process, vacuum contact and exposure at a constant dose 100 mJ/cm2 for 5 seconds. 

8. Develop the photoresist using Microposit MF-319 developer for 45 seconds with mild 

agitation. Remove the wafer from the developer and thoroughly rinse in DI water and 

blow dry via compressed air.  

9. Perform a hard-bake for 1 minute at 115°C, then cool to RT.  

10. Setup a bath of Nichrome etchant TFN (Transene Inc.) at 40°C and submerge the 

wafer with the frontside facing upward. Leave wafer in the etchant for 25 minutes (or 

until the Ni-Mo-W appears fully etched).  

11. Remove wafer from the acid bath and thoroughly rinse with DI water. Check under 

the Zeiss Axio Imager M2m microscope to ensure all of the Ni-Mo-W metal is fully 

etched in the areas not protected by the photoresist. If needed, repeat step 10 until all 

of the Ni-Mo-W is etched, but do not over-etch the wafer.  
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12. Remove the photoresist from the frontside of the wafer by submerging in a bath of 

IPA for 1 minute with gentle agitations. Rinse with acetone, IPA and DI water. Blow 

dry with compressed air to reveal the patterned Ni-Mo-W microcantilevers. 

13. Measure microcantilever beam thickness using the KLA Tencor P7 2 Profilometer. 

Take several measurements at different locations across the wafer to determine the 

uniformity and provide accurate film stress measurements.   

14. Flip the wafer over to the backside of the wafer with blank silicon nitride. Spin-coat 

primer SurPass 4000 on the backside using the two step process below. During the 

last 15 seconds, rinse with IPA while its spinning. 

15. Soft-bake the primer for 1 minute at 115°C, then cool to RT. 

16. Spin coat positive photoresist S1818 on top of the primer using the two step process:  

i. 5 second at 500 rpm. 

ii. 45 second at 3000 rpm.  

17. Soft-bake the photoresist for 1 minute at 115°C, then cool to RT. 

18. Use the SUSS MicroTec MA-6 mask aligner to pattern windows for etching on the 

backside of the wafer with the following settings: back-side alignment process, 

vacuum contact and exposure at a constant dose 100 mJ/cm2 for 5 seconds.  

19. Develop the photoresist using Microposit MF-319 developer for 45 seconds with mild 

agitation. Remove the wafer from the developer and thoroughly rinse in DI water and 

blow dry via compressed air.  

20. Use reactive-ion etching (RIE) to dry etch through the silicon nitride layer that is not 

protected by photoresist. The following process was used: 
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o Trifluoromethane and oxygen (CHF3/O2) with 100 standard cubic centimeters 

per minute (sccm) of CHF3 and 4 sccm of O2 at a pressure of 50 mTorr and 

radio frequency (RF) power 150 W. Capacitor starting points: capacitor #1: 

60%, capacitor #2: 80%.  

o Tetrafluoromethane (CF4) with 20 sccm of CF4 at a pressure of 65 mTorr and 

RF power of 150 W. Capacitor starting points: capacitor #1: 80%, capacitor 

#2: 60%. 

i. CHF3/O2 etch for 8 minutes. 

ii. Vent the chamber so it does not overheat and rotate the wafer 180°. 

iii. CHF3/O2 etch for another 2 minutes. 

iv. CF4 etch for 2 minutes. 

21. Check under the Zeiss Axio Imager M2m microscope to ensure all of the silicon 

nitride is fully etched in the areas not protected by the photoresist. If needed, repeat 

CHF3/O2 for 1 minute followed by CF4 for 1 minute. 

22. Remove the photoresist from the backside of the wafer by submerging in a bath of 

IPA for 1 minute with gentle agitations. Rinse with acetone, IPA and DI water. Blow 

dry with compressed air. 

23. Flip the wafer back to the frontside, with Ni-Mo-W cantilevers, and spin-coat 

protective alkaline coating ProTEK primer (Brewer Science) onto the cantilevers with 

the following two step process: 

i. 5 second at 500 rpm. 

ii. 60 second at 1500 rpm. 

24. Bake on the hot plate for 1 minute at 205°C and let cool to RT. 
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25. Spin-coat protective alkaline coating ProTEK B3 onto primer with the following two 

step process: 

i. 5 second at 500 rpm. 

ii. 60 second at 3000 rpm. 

26. Bake on the hot plate for 2 minutes at 115°C and then an additional 1 minute at 

205°C. Let the wafer cool to RT. 

27. Prepare a 30% concentration potassium hydroxide (KOH) bath heated to 90°C. 

Submerge the wafer into the KOH bath with the ProTEK side facing upward. Keep 

submerged for 135 minutes (or until the full Si wafer is completely etched).  

28. Remove the wafer from the KOH bath and rinse thoroughly using DI water.  

29. Carefully rinse the only the backside with a cycle of acetone, IPA and DI water. Blow 

dry via compressed air. Note that the ProTEK is attacked when exposed to IPA and 

acetone, so care must be taken for this step. 

30. Use reactive-ion etching (RIE) to dry etch through the silicon nitride layer from the 

backside. The following process was used: 

o Trifluoromethane and oxygen (CHF3/O2) with 100 standard cubic centimeters 

per minute (sccm) of CHF3 and 4 sccm of O2 at a pressure of 50 mTorr and 

radio frequency (RF) power 150 W. Capacitor starting points: capacitor #1: 

60%, capacitor #2: 80%.  

o Tetrafluoromethane (CF4) with 20 sccm of CF4 at a pressure of 65 mTorr and 

RF power of 150 W. Capacitor starting points: capacitor #1: 80%, capacitor 

#2: 60%. 
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i. CHF3/O2 etch for 8 minutes. 

ii. Vent the chamber so it does not overheat and rotate the wafer 180°. 

iii. CHF3/O2 etch for another 2 minutes. 

iv. CF4 etch for 2 minutes. 

31. Check under the Zeiss Axio Imager M2m microscope to ensure all of the silicon 

nitride is fully etched. 

32. Dice individual dies using the class 1 IPG Photonics IX200F green laser (532 nm) 

system. Ablation power of 150 kW was used with 100 passes needed to cut through 

the entire Si wafer.  

33. Remove the ProTEK using ProTEK B3 Remover 100 (Brewer Science) with the 

following multistep process:  

i. Immerge individual dies in a bath of ProTEK B3 Remover 100 for 20 minutes 

at 23°C. 

ii. Remove the dies and immerge them into a second bath of ProTEK B3 

Remover 100 for 20 minutes at 23°C. 

iii. Remove the dies and rinse with IPA for 5 minutes. 

iv. Rinse the dies with DI water for 2 minutes and gentle dry with compressed 

air. 

The above micromachining workflow can be summarized into the frontside lithography 

(Figure A3.1) and backside lithography (Figure A3.2).  
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Figure A3.1: Frontside lithography processes with: (a) the blank wafer, (b) Ni-Mo-W thin 
film deposition, (c) spin-coated photoresist, (d) patterned photoresist, (e) wet etch to shape 
the Ni-Mo-W cantilevers and (f) removal of the photoresist.  
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Figure A3.2: Backside lithography processes with: (a) spin-coated photoresist, (b) patterned 
photoresist, (c) backside RIE to remove silicon nitride, (d) spin-coated ProTEK B3, (e) KOH 
wet etch of Si and (f) removal of the ProTEK.  
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