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Abstract 

 Approximately 3.2 billion people worldwide are at risk of contracting malaria.  

In 2013, there were 200 million cases and close to 600,000 deaths, most of which 

occurred in sub-Saharan Africa and affected mainly children, denoting the disease as 

a major public health problem. In Nchelenge District, Zambia, there is holoendemic 

transmission of Plasmodium falciparum, vectored by Anopheles funestus sensu stricto 

and An. gambiae s.s. mosquitoes. Since 2006, the Zambian government has provided 

LLINs, providing approximately one net per person, and has implemented IRS 

campaigns in Nchelenge.  Despite the use of vector control, the prevalence of malaria 

has not reduced, making it necessary to define and characterize the Anopheles 

mosquitoes involved in transmission to better develop strategies for control. 

Therefore, the specific aims of this study were: 1) to identify and characterize the 

anopheline mosquitoes and their respective roles in P. falciparum transmission both 

temporally and spatially, 2) to determine the extent of underestimation of Anopheles 

foraging behavior by standard field methods across the three southern Africa ICEMR 

field sites, and 3) to investigate multiple blood feeding behavior and human gender 

preference of human fed mosquitoes, and P. falciparum complexity of infection 

(COI) in infected anophelines in Nchelenge District.  

CDC LT and PSC trap methods were performed over three consecutive wet 

and dry seasons in three villages lakeside and two villages streamside, revealing An. 

funestus and An. gambiae as the dominant vectors.  Both vectors were also highly 

anthropophilic.  Temporally, An. funestus is the primary vector year round, whereas 

An. gambiae is more abundant during the wet season compared to the dry season. 
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Spatially, during the wet season, An. funestus is the predominant vector inland and 

along the stream, whereas An. gambiae is the predominant vector along Lake Mweru.  

Additionally, the abundances of both An. funestus and An. gambiae streamside are 

higher than lakeside. Throughout all three collections, An. funestus had the highest 

transmission intensity, indicating its important role in maintaining transmission year 

round.   When investigating the foraging behavior of malaria vectors across the three 

southern Africa ICEMR sites, it was found that by not including visually “unfed” 

mosquitoes in host blood meal PCR assays, the overall proportion of fed vectors is 

underestimated by up to 18.7%, and that this can have potential effects on the human 

blood index (HBI), human biting rate (HBR), and entomological inoculation rate 

(EIR). Finally, Anopheles mosquito foraging behavior in Nchelenge was further 

defined through multiple blood feeding behavior, human gender preference, and COI 

studies. Both An. funestus and An. gambiae displayed multiple blood feeding rates of 

23.2% and 25.7% respectively, rates that are among the highest recorded in sub-

Saharan Africa and lead to an underestimation of the EIR. There was a trend towards 

both vectors feeding on human males more so than females. Furthermore, the P. 

falciparum COI in infected mosquitoes was 6.4, suggesting a high transmission 

setting and supports the inoculation of multiple clones in a single mosquito bite in 

Nchelenge District. The studies described in this dissertation have provided a 

foundation for future entomological studies on mosquito vectors in Nchelenge 

District, Zambia, as well as vector control evaluation and development of effective 

intervention programs. 
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Chapter I 

 Introduction  

Malaria in Sub-Saharan Africa is a major public health problem, affecting an 

estimated 198 million people and killing approximately 584,000 each year, primarily 

children under the age of five years [1].  In 2010, it was shown that at the country-level in 

Africa, an estimated 80% of malaria fatalities occur in just 14 countries and 80% of 

malaria cases occur in 17 countries [2].  Globally, the Democratic Republic of Congo and 

Nigeria together account for 40% of malaria deaths [2].  The burden of malaria also 

significantly affects the political and economic climate of endemic countries.  The loss of 

productivity due to illness and death caused by the parasite has been implicated in an 

estimated 1.3% decrease of Gross Domestic Product (GDP) [2].  The long-term effect 

will continue to be a substantial increase in the economic disparity between countries 

with and without malaria.  Therefore, it is necessary to conduct malaria research studies 

in endemic areas to inform intervention strategy for effective control. 

 Renewed interest and increased funding has directed an aggressive malaria 

control scale-up campaign in Africa.  The 2005-2015 Roll Back Malaria (RBM) 

Partnership has committed to achieving 80% coverage of preventative interventions in 

malaria at-risk populations, and a 50% decrease in malaria cases worldwide [3].  

Specifically in Zambia, efforts to increase malaria control interventions have been 

particularly successful.  During the period 2003-2008, the Zambia Ministry of Health 

distributed approximately 5.9 million insecticide-treated bed nets (ITNs), most of which 

were long-lasting insecticide-treated nets (LLINs) [4].  Additionally, increased 
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microscopy training, rapid diagnostic test (RDT) use, and availability of artemesinin-

based combination therapy (ACT) in all health clinics were implemented [4].  By 2008, 

ITN coverage according to national surveys was 68%, of which 62.3% owned more than 

one ITN and 30.9% owned more than two ITNs [4].  Furthermore, indoor residual spray 

(IRS) coverage increased 66% between 2006 and 2008 in targeted districts [4]. During 

this time period, the malaria prevalence decreased by 53% in children under the age of 

five years, but it is unclear if the reduction is entirely the result of the malaria control 

scale-up initiative [4].  

 A second analysis of malaria epidemiology in Zambia showed that while there 

was a significant impact on malaria prevalence from 2000-2008, resurgence did occur in 

2009-2010 [5].  The resurgence lead to the classification of three epidemiological zones 

based on malaria parasite prevalence in children under five years old [5]: Zone I is low 

transmission (<1% prevalence; Lusaka Province), Zone II is moderate transmission (2-

4% prevalence; Northwestern, Copperbelt, Central, Western, and Southern Provinces), 

and Zone III is high transmission (>15% prevalence; Luapula, Northern, Muchinga, and 

Eastern Provinces). In particular, Zone III experienced a large-scale increase in malaria 

cases [5].  The reasons behind the increase remain undefined, but it has been suggested 

that factors such as insufficient LLIN and IRS coverage, damaged and ineffective LLINs, 

insecticide resistance in mosquito vectors, and anti-malarial immunity due to decreasing 

transmission may be involved [5]. These factors highlight the importance of performing 

studies that can direct resources for implementation of successful interventions.  

 Since 2012, the Johns Hopkins Southern Africa International Centers for 

Excellence in Malaria Research (ICEMR) project has been investigating the high malaria 
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burden in one of the areas in Zone III, Nchelenge District in Luapula Province. The 

Southern Africa ICEMR is a seven-year project in three distinct epidemiological settings 

in Zambia and Zimbabwe (Figure 1.3).  In Zambia, Macha and Nchelenge represent 

successful and unsuccessful malaria control respectively.  Mutasa in Zimbabwe 

represents resurgent malaria. The ICEMR project utilizes a multidisciplinary approach 

that includes understanding local malaria epidemiology, vector biology, and parasite 

genomics. One of the goals of the project is to develop recommendations for effective 

and sustainable malaria control strategies.  

Nchelenge District 

 The studies that comprise this dissertation were done in association with the 

Southern Africa ICEMR project to further the entomological research component in 

Nchelenge District, Luapula Province, Zambia. Nchelenge experiences holoendemic 

Plasmodium falciparum malaria transmission.  Although there have not been any formal 

entomological studies in Nchelenge, preliminary collections in 2011 have suggested that 

An. funestus s.s. and An. gambiae s.s. are the major malaria vectors (Personal 

communication with Mbanga Muleba, Tropical Disease Research Centre, Ndola, 

Zambia). The current control measures include treatment of malaria cases with 

artemether-lumefantrine, as well as IRS and LLIN distribution campaigns. In Nchelenge, 

LLIN ownership was less than 10% in 2001 [6]; LLIN distribution began in 2006 and 

coverage increased dramatically to 65%, and then decreased to 56% in 2010, which was 

one of the lowest rates in Zambia [6]. From 2006 to 2012, 429,753 nets were distributed 

resulting in approximately one net per two people in 2007, which then increased to 1.24 

LLIN per person by 2012 [7].  An upcoming LLIN distribution campaign is scheduled for 
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2015 (Personal communication with Dr. Mike Chaponda, Tropical Disease Research 

Centre, Ndola, Zambia).  In 2008, IRS in Nchelenge formally began and reached 49% of 

households in 2010 [6]. Between 2006 and 2012, IRS was implemented in 109,095 

houses, or approximately 80% coverage of eligible targeted structures [7]. IRS 

insecticides that have been used since 2008 include pyrethroids (alphacypermethrin, 

lambdacyhalothrin) and a carbamate (bendiocarb) [8].  Another IRS campaign began in 

October 2014 and utilized an organophosphate (pyrimiphos-methyl) (Personal 

communication with Dr. Douglas Norris, JHSPH).  Despite these interventions, 

Nchelenge District continues to have high parasite prevalence of approximately 64% 

(Personal communication with Dr. Jessie Pinchoff, JHSPH). According to the District 

Health Information System (DHIS) data from 11 health facilities, prevalence of malaria 

increased from 38% in 2006 to 53% in 2012 and continued to increase in 2013 [7]. 

Clearly, the burden of malaria in Nchelenge is a major public health problem despite the 

use of vector control. It will therefore be essential to characterize the mosquito vectors in 

this area to understand why vector control is ineffective and to use that knowledge to 

develop successful control strategies.  

Study Area 

 Nchelenge District is located in Luapula Province, Zambia (9° 19.115’S, 28° 

45.070’E) (Figure 1.1).  The area lies along the eastern perimeter of Lake Mweru, which 

separates the southwestern part of the Democratic Republic of Congo (DRC) from the 

northeastern part of Zambia.  There is also a large stream known as Kenani Stream that 

flows roughly south to north into Lake Mweru.  The mean altitude is 807 meters above 

sea level and the area has a marsh ecotype. There is a single rainy season from November 
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to May, followed by a cool dry season from May to August and a hot dry season from 

August to November (Figure 1.2). Rainfall follows a seasonal pattern, with a peak of 

2700 mm during the rainy months and close to 0 mm during the dry months (Figure 1.2).  

 As in the rest of Luapula Province, Nchelenge is populated primarily by the 

Bemba-speaking peoples.  In these villages, autonomous households are loosely 

organized under a headman, who is mainly seen as a mediator or ceremonial leader.  A 

regional chief provides leadership to headmen and is consulted for important decisions 

within the geographical area.  A household consists of a husband, wife, and children.  A 

typical household has one hut, which is constructed with mud brick and a thatch or tin 

sheet roof.  The most common means of livelihood for people in Nchelenge are fishing 

and agriculture.  A majority of people engage in fishing in Lake Mweru and then move 

inland to participate in agricultural endeavors when fishing is seasonally (annually) not 

permitted, often for several months.  The most important crop in this area is maize, but 

other crops such as peanuts, sugarcane, and sweet potatoes are also farmed.  Interestingly, 

this part of Zambia is a cattle-free zone, as it is illegal to have cattle due to the presence 

of tsetse flies and risk of trypanosome transmission. Other animals kept in or associated 

with the household may include cats, dogs, goats, chickens, and guinea pigs.   

Specific Aims 

 There is little information about the mosquito vectors and their role in human 

malaria transmission in Luapula Province. Over the last decade, a dozen entomological 

studies have been published in Zambia [4, 9-20], but none have investigated the vectors 

in Nchelenge District, where the prevalence of malaria is currently among the highest in 
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the country.  The specific aims of this dissertation were to conduct mosquito collections 

in Nchelenge that would (1) define the dynamics and bionomics of malaria vectors 

temporally, and characterize the micro-spatial heterogeneity of An. funestus sensu stricto 

and An. gambiae s.s. during the wet season, (2) assess the disparity in visual 

identification and polymerase chain reaction (PCR) identification of fed and unfed 

mosquitoes across the three ICEMR field sites, and (3) characterize the multiple blood 

feeding behavior by malaria vectors during a single gonotrophic cycle and P. falciparum 

complexity of infection in infected mosquitoes to more accurately define transmission 

intensity.   

Hypotheses 

 For the first aim, it is predicted that An. funestus sensu stricto and An. gambiae 

s.s. are the primary and secondary vectors of malaria transmission in Nchelenge District.  

Temporally, An. funestus will dominate throughout the year, whereas An. gambiae will 

proliferate in the wet season and declines in the dry season. Furthermore, there will be 

spatial heterogeneity of both proportions of mosquitoes and their entomological 

inoculation rates (EIRs).  The hypothesis of the second aim is that both visually fed and 

unfed mosquitoes contain host blood meals when tested by PCR at all three ICEMR field 

sites in southern Africa. The proportion of blooded mosquitoes and the human blood 

index (HBI) will change when accounting for the visually “unfed” mosquitoes that are 

actually fed by PCR. The third hypothesis is that An. funestus and An. gambiae take 

multiple blood meals during a single gonotrophic cycle at high rates, resulting in an 

underestimation of the EIR.  Additionally, infected Anopheles mosquitoes will harbor 
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multiple clones of P. falciparum that are transmitted with each bite, further characterizing 

foraging behavior in the context of multiple blood feeding and intensity of transmission.  

Entomological Studies in Zambia 

 Before the 21st century, there was a scarcity of knowledge about malaria vector 

biology and distribution of vectors in Zambia.  The flight ranges of An. gambiae sensu 

lato and An. funestus s.l. were studied in the copper mining town N’kana in northern 

Zambia and bordering the Democratic Republic of Congo [21].  However, the exact 

species of Anopheles was not determined as those respective complexes had not yet been 

defined [21].  Breeding site surveys from 1944-1946 were performed in northern 

Rhodesia (Zambia) and showed the presence of An. gambiae s.l. and An. funestus s.l., but 

the various locations were not well documented [22].  Further studies between 1962 and 

1964 described the coexistence and potential hybridization of members A, B, and C of 

the An. gambiae species complex in Chirundu, Northern Rhodesia [18].  The An. 

gambiae species complex is made up of six members and at the time, the distinctness of 

members A, B, and C were defined by examination of male mosquitoes and sex-ratios in 

offspring of wild-mated female mosquitoes collected from households in areas where it 

was thought that all three members exist sympatrically [18]. A decade later, polytene 

chromosome analysis showed that An. gambiae sensu stricto (A) was not in the 

aforementioned locale, but instead An. arabiensis (B) and the non-vector species An. 

quadriannulatus (C) [19].  It is important to note that the complex was under selection 

pressure in Chirundu during the aforementioned studies as this may have affected the 

species composition over time (Personal communication with Dr. Clive Shiff, 2014). 

Many of the entomological studies during this time took place in southern Zambia, and 
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the identification of malaria vectors and their behavior in the northern part was not well 

documented.     

 Over the last decade, extensive entomological studies have been performed in 

Zambia to inform vector control strategies [12, 15, 23, 24]. Many of these studies were 

focused in Choma District, Southern Province (2004-Present) and were among the first to 

use molecular tools to investigate the entomological parameters of malaria transmission.  

An initial collection spanning from 2004-2006 identified An. arabiensis by both 

morphology and molecular techniques as the primary malaria vector at this southern 

Zambia site [13]. The role of An. arabiensis in an area with hypoendemic malaria 

transmission were also investigated, and revealed that An. arabiensis is highly 

anthropophilic, and in later studies, remained anthrophophilic despite a large ITN 

distribution campaign in 2007 [11, 13].  Additionally, it was observed that An. arabiensis 

had a multiple blood-feeding rate of 18.9% pre-ITN distribution, and then reduced to 9% 

after the introduction of ITNs, suggesting a strong heterogeneity in biting behavior by 

this vector and that ITNs had a significant effect on mosquito foraging behavior [15].  

Although insecticide resistance was not detected in An. arabiensis in this study area, the 

East allele for the knock down resistant (kdr) gene mutation and upregulation of 

metabolic detoxification enzymes were observed in sympatric Culex quinquefasciatus, an 

arbovirus and filarial vector [16]. The knock down resistance gene, kdr, which affects the 

sodium voltage gated channel in insects, is a genetic resistance mechanism that confers 

cross resistance to pyrethroids and DDT. The kdr gene has two alleles, East and West, 

based on mutations that result in a leucine to serine or phenylalanine amino acid change 

respectively [25]. The detection of kdr in Cx. quinquefasciatus suggests that selection 
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pressure for insecticide resistance was present, but that the An. arabiensis population was 

apparently escaping this selection. The population genetic structure of An. arabiensis was 

also investigated after a severe drought in 2004-2005 in Choma District, Southern 

Province, Zambia; the results showed very little evidence of genetic structuring and no 

significant changes in allele frequency distributions or observed heterozygosity [23]. 

Despite these findings, it is crucial to understand the genetic population structure and 

barriers to gene flow of potential vectors in order to strengthen our understanding of 

malaria epidemiology and predict the flow of genes that could confer insecticide 

resistance or phenotypic changes within and between vector populations [26, 27]. 	  

 More recently, an entomological study over a wider geographic scale took place 

at 18 sentinel sites in Zambia from 2008-2010, and helped define the main anopheline 

species found within the country [28].  These species included members of the An. 

funestus s.l. and An. gambiae s.l. complexes; Specifically, An. gambiae s.s., An. 

arabiensis, and An. quadrannulatus in the An. gambiae s.l. complex, and An. funestus 

s.s., An. parensis, An. rivulorum, An. leesoni, An. vaneedeni, An. longipalpis, An. 

funestus-like in the An. funestus s.l. complex, as well as An. squamosus, An. coustani, and 

An. nili s.s. [12, 13, 28]. In many of those surveyed areas with endemic malaria, An. 

gambiae, An. arabiensis, and/or An. funestus were found to be highly anthropophilic, 

endophilic, and harboring Plasmodium falciparum sporozoites [10, 11, 24, 28]. Such 

information is relevant for identifying the vectors and determining their role, if any, in 

human malaria transmission.  

 In addition to identifying major malaria vectors in Zambia, other countrywide 

studies have focused on insecticide resistance surveillance in areas where IRS and LLIN 
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distribution campaigns have occurred [28-30]. Insecticide resistance threatens to 

undermine vector control efforts by becoming ineffective against the malaria vectors and 

in some cases, causing an increase in human malaria rates [24].  The selection pressure 

resulting from widespread use of DDT previously, and more recently, pyrethroids and 

carabamates have resulted in the development of phenotypic, genetic, and metabolic 

resistances by An. gambiae s.s. and An. funestus s.s. in Zambia [28, 30].  The WHO bottle 

assay, which exposes mosquito samples to a series of different insecticides at standard 

doses to test for mortality (susceptibility) [31], performed in several parts of Zambia have 

suggested partial or complete phenotypic resistance of An. gambiae to deltamethrin, 

lambdacyhalothrin, alphacypermethrin, DDT, and carbamates and of An. funestus to the 

same pyrethroids and carbamates [28]. The genetic mutation, kdr-West, which confers 

resistance to pyrethroids and DDT, has only been observed in An. gambiae in Nchelenge, 

as well as the eastern areas of Zambia [8, 28].  Furthermore, throughout Zambia, 

increases in metabolic enzyme activity such as cytochrome P450s and glutathione s-

transferases (GSTs), which metabolize insecticides such as pyrethroids, organochlorines, 

and carbamates, have been detected in An. funestus [30]. Due to these findings in 

Nchelenge District, there has been a shift to the organophosphate pirimiphos methyl 

(ACTELLIC 300 CS, Syngenta Limited) for IRS because both An. funestus and An. 

gambiae remain susceptible to it [32] (Personal correspondence with Mbanga Muleba, 

Tropical Disease Research Centre, Ndola, Zambia).  However, to date, the primary 

vectors of malaria and their role in transmission have not been well defined in Nchelenge 

District despite LLIN campaigns since 2007, and IRS with alphacypermethrin (2008-

2009), lambdacy halothrin (2010-2011), and carbamate (2012-2013) (Personal 
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correspondence with Mbanga Muleba, Tropical Disease Research Centre, Ndola, 

Zambia).  It is therefore necessary for the malaria vector dynamics and bionomics in 

Nchelenge District to be characterized so that future control efforts are effective and can 

be evaluated.   

Entomological Inoculation Rate (EIR) as a measure of malaria transmission 

intensity 

 The importance of vectors that drive transmission in a defined area can be 

determined by comparing their relative contribution to the intensity of Plasmodium 

transmission in a given area.  The measure of human exposure to Plasmodium parasites 

via mosquito bites is known as the entomological inoculation rate (EIR), which is defined 

as the number of infectious bites per person per unit of time [33].  The utility of the EIR 

is that it can indicate which Anopheles species are important and unimportant vectors, 

and which vector has the greatest contribution to transmission in a particular locale 

during a time period.  The EIR is conceptually straightforward and is measured by 

multiplying the sporozoite infection rate in the vector population by the nightly human 

biting pressure (human biting rate) for each mosquito species under investigation.  Many 

researchers have noted variability and challenges in methods used to determine values for 

infection and biting rates [34-42].  Therefore, the EIR should only be considered an 

estimated measure of malaria parasite transmission.  Additionally, the EIR does not take 

into account the infectivity success rate, or the number of infectious bites required to 

result in human infection [43]; In a laboratory setting, An. stephensi with P. falciparum 

sporozoites successfully transmitted the malaria parasite to only 5 out of 10 volunteers 

that received 1-2 infectious bites [43]. The infectivity success rate has been known to 
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range from 5% to 26% in endemic areas and is negatively associated with the EIR due to 

higher protective immunity, exposure to multiple infections, and longer occurrences of 

parasitemia [44, 45]. In Africa, transmission intensity as measured by EIR can vary from 

<1 to >1,000 infective bites per year.  The EIRs can also fluctuate based on the 

geographical region, anopheline vectors, human behavior, and length of the transmission 

season [46-49]. It has been shown that even EIR levels of <5 infectious bites per person 

per year can sustain an excess of 40% P. falciparum prevalence [50].  At any level of 

transmission, malaria endemic areas are associated with heavy disease burden [50-54].  

Models of transmission in highly endemic areas suggest that EIR can be dramatically 

reduced by 30- to 50- fold if bed nets and IRS are used, and can be further impacted by 

larviciding or a reduction in breeding sites, and by a decrease in the disease prevalence in 

humans [55].  Undoubtedly, significant reductions in transmission intensity are required 

to negate the public health consequences of endemic malaria in Sub-Saharan Africa [55, 

56].     

 An assumption of the EIR is that mosquitoes take only one blood meal/bite per 

gonotrophic cycle.  However, due to natural disturbances in the environment or the need 

for more blood to finish oogenesis, mosquitoes actually take multiple blood meals [57]. 

Multiple blood feeding behavior varies by species, and has been observed throughout 

Africa and even in other parts of the world.  Aedes aegypti is well known for its high rate 

of multiple blood feeding and has been observed to have taken a second blood meal 45% 

and 18% of the time in south central Thailand and Puerto Rico respectively [58, 59]. In 

Western Kenya, the multiple blood feeding rates for the two dominant vectors An. 

gambiae s.s. and An. funestus s.s. was 11% and 14% respectively [57]. Infection status of 
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mosquitoes can also affect the number of blood meals taken during a gonotrophic cycle.  

An. gambiae s.s. has been reported to take more than one blood meal when infected due 

to P. falciparum mediated decrease in salivary gland apyrase activity, an anti-coagulant, 

at the bite site [60]. In southern Zambia, it was observed that the multiple blood feeding 

decreased from 18.9% to 9% pre- and post-ITN campaigns respectively [15]. Overall, 

multiple blood feeding behavior has serious implications for EIR estimates and 

mathematical models of malaria transmission because it not only increases the likelihood 

of a vector becoming infected, but may also increased the number of individuals exposed 

to the parasite during a single gonotrophic cycle.  Thus, entomological studies that 

characterize local mosquito vectors foraging behaviors and account for multiple blood 

feeding behavior are key for understanding transmission intensity of Plasmodium by each 

vector.   

 In many parts of Africa where both An. gambiae sensu stricto and An. funestus s.s. 

are present, such as in the case of Nchelenge, the EIRs of both mosquito species indicate 

the primary and/or secondary roles in Plasmodium transmission [41, 61-70]. In Kenya, 

mosquito collections were performed in three epidemiologically and ecologically distinct 

districts.  Collections in Malindi District, Kenya revealed that both An. gambiae s.s. and 

An. funestus s.s. equally contributed to transmission with daily EIRs of 0.48 and 0.50 

[63].  Whereas in Kilifi District (urban), Kenya, An. funestus had a slightly higher daily 

EIR of 0.50 than An. gambiae, which had a daily EIR of 0.40.  In the more rural district 

of Kwale, Kenya, An. funestus  predominated with a daily EIR of 0.75 and An. gambiae 

had a daily EIR of 0.42 [63].  Studies in other areas of Kenya have revealed the important 

role of spatial-temporal dynamics in malaria vector composition and human malaria 



 14 

intensity [66].  In the Kenyan highland site, Iguhu, An. gambiae s.s. was the dominant 

vector and An. funestus s.s. was the secondary vector with annual EIRs of 13.1 and 3.5 

respectively.  In the lowland site, however, An. funestus was the primary vector and An. 

gambiae was a minor vector with annual EIRs of 21 and 10.1 respectively [66].  In 

Uganda, An. gambiae s.s. was the dominant vector and very few An. funestus s.l. were 

caught at three sites (two urban and one rural sites) [64].  As a result, only the EIRs of 

An. gambiae were measurable and compared among collection methods.  Although the 

EIR differed among all three sites and also within each site, the range of EIRs was larger 

for the rural area with 70-95 infectious bites per person per year than the urban areas with 

an of EIR of 73 infectious bites per person per year [64].  At all three sites, the EIRs 

fluctuated with season, but it was only in the rural site where seasonality of transmission 

was significant [64].  The relative roles of multiple vectors in each locale can also 

fluctuate due to environmental factors such as precipitation, temperature, specific 

humidity, vegetation, as well as elevation [63]. Although many endemic areas with 

sympatric An. gambiae s.l. and An. funestus s.l. may predict that An. gambiae s.s. is the 

dominant vector with some secondary contribution from An. funestus s.s., it has actually 

been observed that An. funestus most often predominates in rural areas of Sub-Saharan 

Africa [63].  Therefore, in an area like Nchelenge, where holoendemic malaria is 

maintained by both An. gambiae s.s. and An. funestus s.s., it is crucial to identify the 

extent to which each vector contributes to Plasmodium transmission and if there are any 

spatial and/or temporal dynamics in transmission intensity.  
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Plasmodium falciparum complexity of infection (COI) and Anopheles mosquitoes 

 The Plasmodium falciparum sporozoite infection rate (SIR), a major component 

of the EIR, is the proportion of mosquitoes found to harbor sporozoites in the salivary 

gland and therefore infectious to human hosts. The Plasmodium sporozoites themselves 

can be composed of multiple clones in an endemic area, defined as the complexity of 

infection (COI). The COI may influence clinical outcomes, and can be used to to 

determine if genetic diversity is associated with high or low malaria prevalence in a 

particular locale [71-74].  In chronic asymptomatic infections, which often occur in high 

transmission settings, large numbers of clones persist as asexual forms and gametocytes 

[75]. On the other hand, a smaller number of parasite clones are found in low 

transmission settings where symptomatic infections are often observed [75]. One of the 

fundamental characteristics of the malaria parasite’s multiple clones in natural infections 

is its ability to produce gametocytes with subsequent recombination in the mosquito 

midgut, a process that produces novel parasite clones and contributes to the parasite’s 

overall evolutionary success [76]. The complexity of P. falciparum clones has been 

correlated to the frequency of crossing when a mosquito acquires an infectious human 

blood meal [77-80]. The level of transmission intensity directly affects the number of 

infected hosts and the number of parasite clones per individual [81].  This in turn, 

depending on the endemic setting, influences parasite population genetic structure, 

potentially resulting in the development of virulence, drug resistance, and changes in the 

parasite’s ability to evade the human host immune system [81].  In Tanzania, the Gambia, 

and Sudan, where the EIRs vary from high to low respectively, the average number of 

clones was 3.3, 2.3, and 1.3 respectively, suggesting that there is equal transmissibility of 
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the clones with each bite [82].  However, equal transmissibility of parasite clones has not 

been supported in cases where the observed rate of crossing was lower than expected 

based on transmission intensity, suggesting that only a proportion of transmitted clones 

are able to reach the erythrocytic stage in humans [76, 78, 83]. When parasite genotypes 

were compared between infected anopheline vectors and humans in the Gambia, a variety 

of clones were found in the mosquito, but not in infected human blood upon which the 

mosquitoes had fed on [76]. The authors suggested that the levels of particular clones in 

human blood decrease to undetectable levels due to the host immune response, but upon 

entering the mosquito midgut, the clones are able to cross-mate and produce many clones 

[76].  Additionally, some clones detected in the mosquito did not reach the human blood-

stage [84]. Clearly, the interplay of P. falciparum infection complexity in mosquitoes, 

transmission intensity, and subsequent development in the human blood stage are not 

well defined. 

P. falciparum COI and Anopheles Multiple Blood Feeding Behavior 

In the context of multiple blood feeding behavior, which results in an 

underestimation of the EIR, multiple clones of the parasite are transmitted to more than 

one person by a single mosquito during a gonotrotrophic cycle. These multiple clones 

may harbor genetic changes that allow for its survival, and are constantly accumulating 

mutations that allow the parasite to adapt to new conditions during recombination events 

in the mosquito midgut. Using the mosquito to detect multiple clones may be an 

additional tool for evaluation of vector control measures, whereby a decrease in the 

transmission intensity is also associated with a decrease in the COI, indicative of a lower 

transmission setting. This may be especially useful in endemic areas where there may not 
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be reliable health center reporting, limited resources for malaria testing, and/or 

unwillingness by individuals to give blood samples. The COI of malaria in infected 

mosquitoes may also be a useful surveillance system for identifying and predicting 

potential parasite clones that may successfully circulate through the human population 

and association novel clones with clinical malaria cases. While multiple blood feeding 

behavior affects the EIR estimates, it is equally important to understand how anopheline 

vector transmission intensity affects the COI of the malaria parasite. It is therefore crucial 

to molecularly identify P. falciparum clones transmitted by an infectious mosquito to 

further our understanding of Anopheles foraging behavior in an endemic area.  

Anopheles funestus and An. gambiae Host-Seeking Behavior 

 Host choice by mosquitoes is often mediated by olfactory signals, as well as 

physical indicators including temperature and humidity [42].  Carbon dioxide, 1-octen-3-

ol [85], L-lactic acid [86, 87], acetone [85], and carboxylic acids [88] have been 

identified as a strong olfactory stimuli for mosquitoes, and have been detected in human 

and animal sweat, skin, and breath [89].  The attraction to these olfactory signals by 

mosquitoes differs by species.  For example, it has been shown in laboratory conditions 

that An. gambiae s.s. is more attracted to acetone and CO2 in human breath, whereas An. 

stephensi, which is more zoophilic, responded strongly to CO2 and 1-octenol-3-ol from 

cattle [85].  Other factors that may mediate mosquito biting behavior include host size 

and even infection status; previous studies have suggested that An. gambiae s.s. is more 

attracted to adults than infants, men than women [90], and individuals with gametocytes 

are more likely to be bitten by malaria vectors than those who are not infected or only 
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have blood stage malaria only [91].  Other factors yet to be identified are also likely 

playing a role in mosquito host choice.	  

	   	   The feeding preferences of Anopheles mosquitoes are especially important to 

define because they offer valuable insight into P. falciparum transmission intensity in a 

given location. The proportion of fed vectors with human blood meals, also known as the 

human biting index (HBI), is measured to better understand host preference and vectorial 

capacity. The efficiency of transmission, also known as the vectorial capacity, as well as 

the reproductive ratio Ro, varies as the square of the HBI [92, 93]. If a vector changes its 

feeding preference to non-human hosts, then transmission efficiency to humans is 

reduced. Many studies have observed a decrease in HBI as a response to vector control 

interventions [94-96].  As a result, HBI is useful in evaluating malaria control programs. 

In Sub-Saharan Africa, entomological studies have identified Anopheles gambiae s.s. and 

An. funestus s.s. as the most dangerous and medically relevant vectors of malaria [70, 97, 

98].  Both vectors present a threat to malaria control efforts because of their expansive 

distribution throughout the African continent, highly anthropophilic and endophilic 

behavior, and ability to develop both genetic and behavioral resistances to commonly 

used insecticides [16, 28, 99-101].  Furthermore, local socio-economic and environmental 

factors contribute to the extent of disease transmission by anopheline mosquitoes [13, 99, 

102].   

 The HBI can also indicate heterogeneity, or inequality in risk, in foraging 

behaviors, which substantially affect EIR estimates and ultimately malaria risk.  For 

example, some people may be bitten more than others due to house construction, sleeping 

patterns, use of vector control such as LLINs or IRS, or proximity to larval breeding sites 
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[15, 103].  When heterogeneity has been included in malaria models, the results in 

Zambia have indicated that approximately 20% of people receive 80% of infectious 

mosquito bites [104].  As a result, the individuals who are bitten more often are suspected 

to contribute more to infecting the vector population and also receive more infectious 

mosquito bites [104].  These individuals may also serve as the reservoirs of malaria 

parasite during the dry season, which then allows infected vectors to continue 

transmission into the wet season.  In addition, other models have suggested that in areas 

with high EIRs (>100), biting heterogeneity increases the basic reproductive rate (Ro), or 

the number of infected cases originating from one infectious individual, whereas in 

localities with low or moderate EIRs, biting heterogeneity is predicted to lead to lower 

transmission rates [105]. In fact, heterogeneity in biting can alter the Ro approximately 2-

4 times [106, 107].  Regardless of transmission intensity, accounting for heterogeneity is 

crucial when developing and implementing control efforts because resources can be 

targeted towards high-risk individuals and populations with the highest disease burden.  

This strategy is not only cost-effective, but can also be the difference between failure and 

success of malaria control efforts [105]. On the other hand, a disproportionate impact on 

a community may be observed in the presence of targeted control efforts because infected 

vectors may shift to nearby areas that did not receive any interventions [104].  

  In Kenya, it was observed that between 1990 and 2000, the An. gambiae and An. 

funestus densities increased [108].   However, almost a decade later and with 

implementation of vector control, both An. gambiae and An. funestus populations 

declined dramatically, almost to undetectable levels at times [108].  Similarly, the HBI of 

An. gambiae and An. funestus in 1990 was 99% and 100% respectively, but then 
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decreased to 16% and 3% respectively between 1997 and 2008 [108].  These once highly 

anthropophilic vectors shifted to being zoophilic, feeding on mainly bovine, as well as 

goat, donkey, and chicken hosts [108].  While the primary vectors were declining 

between 1997 and 2008, an upward trend was observed in An. arabiensis, which became 

the dominant malaria vector in late 2000, and An. merus, and An. quadriannulatus also 

increased in relevance [108].  The changes in vector dynamics over a period of twenty 

years has been attributed to many factors such as vector control, housing construction, 

and man-made ecological disturbances [108, 109].  This is a primary example of the 

importance of vector identification because control measures often lead to the emergence 

of other Anopheles species that may contribute to malaria transmission, as well as 

discerning shifts in biting behavior of the predominant vectors [110].  Another study in 

western Kenya showed that both An. gambiae s.s. and An. funestus s.s. had similar HBIs 

of 60-70% across three villages and were endophilic, but An. funestus was the 

predominant malaria vector because it was 6.6-8.2 times as likely to bite a person indoors 

than An. gambiae [111].  Furthermore, the effect of permethrin-impregnated sisal curtains 

placed under eaves of houses led to An. gambiae to display anthropophily and exophily 

[111].  Surprisingly, An. funestus switched its preferred host to cattle [111].  When 

exposed to vector control, there were shifts in both vectors’ behaviors that are relevant 

for surveillance and implementation of future interventions. Spatial and temporal 

variables, malaria control interventions, ecological changes, and human behavior and 

patterns across Africa influence the variability of An. gambiae and An. funestus foraging 

behavior in various locales.  By understanding the occurrence of An. gambiae and An. 
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funestus in a malaria endemic area and their feeding behavior, prevention tools that 

reduce human-vector contact can be better designed and implemented.   

Summary	  

	   This dissertation represents some of the first vector studies in Nchelenge District, 

Zambia that address the role of anopheline mosquitoes in an area with holoendemic 

malaria.  Data are presented on the spatial and temporal dynamics of malaria vectors, 

transmission intensity, and blood feeding behavior.  Additionally, the field and molecular 

techniques used to score unfed and fed Anopheles species are investigated to assess more 

accurate measurements of the human blood indices across three epidemiologically 

distinct sites in Zambia and Zimbabwe.  Lastly, heterogeneity in foraging behavior by 

both An. gambiae sensu stricto and An. funestus s.s. are explored by assessing the spatial 

and temporal changes in multiple blood feeding behavior, human gender preference, and 

determining the complexity of infection in infected mosquitoes.  Collectively, these 

studies have succeeded in initiating advanced entomological research in northern Zambia, 

contributing to the training of local personnel in both entomology and field techniques, 

and generating awareness about entomology and its crucial role in malaria transmission 

in Nchelenge. 

 

 

 

 



 22 

 

 

 

 

 

  

 

Figure 1.1. Satellite image of the study area in Nchelenge District. The initial 1-km2 grids 

for ICEMR epidemiological and entomological surveys are highlighted in green. The 

white areas on the left side of the image represent Lake Mweru. The yellow arrows point 

to Kenani Stream that flows into Lake Mweru. The red circles denote the grids where 

mosquito collections were performed for thesis research: Katuna, Yenga, and Malulu 

villages are located in grids r34c5 and r34c6, Kapande B village is located in grid r29c10, 

and Kapande B village is located in grid r26c11. 
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Rainfall is seasonal, but transmission is 
year-round!

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Seasons and Average Monthly Rainfall in Nchelenge District.  The wet 

season is from November to May, the cool dry season is from May to August, and the hot 

dry season is from August to November.  The rainfall also follows a seasonal pattern in 

Nchelenge. 
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Figure 1.3. The southern Africa ICEMR field sites.  Nchelenge District is in northern 

Zambia and represents unsuccessful malaria control, Choma District is in southern 

Zambia and represents successful malaria control, and Mutasa District is in eastern 

Zimbabwe and represents resurgent malaria. 
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Chapter II  
 
 

Spatial and Temporal Dynamics of Malaria Vectors in Nchelenge District, Zambia  
 

Abstract. Located along Lake Mweru and bordering the Democratic Republic of Congo 

(DRC) in Luapula Province, northern Zambia, Nchelenge District experiences 

holoendemic malaria transmission despite the implementation of control measures such 

as long lasting insecticide treated bed nets (LLINs) and indoor residual spraying (IRS).  

The dominant malaria vectors that contribute to Plasmodium falciparum transmission in 

this area had not previously been defined.  This study identified the malaria vectors, their 

feeding behavior, and entomological inoculation rates (EIR) both spatially and 

temporally.  Three collections were performed using both Center for Disease Control 

light traps (CDC LTs) and pyrethroid spray catches (PSCs): March-April 2012 (wet 

season), August-September 2012 (dry season), and March-April 2013 (wet season) at 

three villages along Lake Mweru and two villages along Kenani Stream, a large stream 

that flows from south to north into Lake Mweru.  The collections revealed that Anopheles 

funestus sensu stricto and An. gambiae s.s. are the main malaria vectors, are highly 

anthropophilic, and An. funestus has the higher EIR year-round. Temporal and spatial 

changes in vector dynamics and other entomological parameters were observed within 

Nchelenge District. During both wet season collections, it was observed that An. gambiae 

was the predominant vector in villages along Lake Mweru, whereas An. funestus was the 

predominant vector inland and along Kenani Stream.  During the dry season collection, 

An. gambiae population decreases dramatically and An. funestus is the primary vector in 

all areas.  Additionally, the abundances of Anopheles vectors were higher along Kenani 
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Stream than Lake Mweru. Together, the vector data in Nchelenge present unique 

opportunities to further our understanding of malaria transmission and the implications 

for malaria control in high-risk areas. 
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Introduction 

 Anopheles funestus sensu stricto and An. gambiae s.s. are the most notorious 

vectors of Plasmodium falciparum malaria transmission in sub-Saharan Africa.  Each of 

these species’ distributions, their abilities to transmit the malaria parasite, and other 

demographic and environmental factors are heterogeneous and influence the intensity of 

malaria transmission [63].  The relative composition of the vectors in areas where both 

An. funestus and An. gambiae are sympatric and their respective feeding behaviors vary 

from region to region in Africa. When both An. funestus and An. gambiae are present in a 

community, disease transmission can be exceedingly high.  This often occurs because 

both vectors exploit different breeding habitats and may appear at different times, which 

can prolong the transmission season [63].  For example, An. gambiae tends to oviposit in 

temporary breeding sites such as puddles and animal foot prints, which are abundant 

during the rainy season [26, 97, 112].  On the other hand, An. funestus, which prefers 

more permanent breeding sites, peaks at the end of the rainy season and the beginning of 

the dry season [26, 97, 112].  Both vectors have been shown to be highly anthropophilic, 

expressing a tendency to feed on humans.  In addition, An. funestus and An. gambiae are 

considered to be endophagic and endophilic, feeding and resting indoors respectively [26, 

112].   

However, there may be variability in these foraging behaviors for both vectors. 

Field sampling in Uganda revealed that An. gambiae s.s. had a greater tendency to bite 

humans outside versus An. funestus s.s. [67].  Conversely, after the implementation of 

long-lasting insecticide-treated nets (LLINs) in Benin, there was a shift in An. funestus 

s.s. peak biting period to early morning, which is alarming because in rural Africa, 
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villagers often awake pre-dawn to work and are therefore no longer protected by bed nets 

[65]. In communities where both vector species contribute to transmission, there may be 

differences in the dominant and secondary vectors depending on the season and the 

geography.  In western Kenya, it was found that An. gambiae s.s. was the major vector 

species driving transmission in the lowlands and highlands, but in one of the lowland 

villages which had experienced recent larval habitat changes, An. funestus s.s. was found 

to be the major vector species [66].  There was pronounced spatial heterogeneity in 

vector composition and transmission rates in the lowland areas [66].  Differences in 

vector composition, biting behaviors, and transmission intensities among study sites that 

also vary temporally and spatially suggest unequal risk of malaria transmission within an 

area.   

Heterogeneity in malaria risk have implications for developing and targeting 

interventions because a single vector control measure such as indoor residual spraying 

(IRS) may successfully interrupt transmission in a low transmission setting, whereas 

multiple vector control measures such as IRS, LLINs, larviciding, and/or larval habitat 

source reduction may be needed to have an impact in high transmission settings [55, 102, 

113-117].   A recent study by Coetzee et al. (2014) demonstrated that both An. funestus 

s.s. and An. gambiae s.s. showed a high level of resistance to pyrethroid and carbamate 

insecticides in northern Zambia and eastern Zimbabwe [8] (Personal communication with 

Dr. Maureen Coetzee).  In those same locations, An. gambiae also displayed resistance to 

DDT, while An. funestus remained susceptible [8] (Personal communication with Dr. 

Maureen Coetzee).  The mechanisms of resistance in both of these vectors have been 

investigated; resistance by An. funestus appears to be mediated by up regulation of 
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detoxification enzymes, while An. gambiae has the kdr-west mutation that confers cross-

resistance to pyrethroid and DDT insecticides [8]. Both vectors remain susceptible to the 

organophosphate class of insecticide, prompting the recent IRS campaign with Actellic 

300 CS (Syngenta Limited).  Therefore, it is necessary to identify the vectors, 

characterize their feeding behaviors, and determine their roles in malaria transmission in 

each locale using traditional field sample techniques, and ultimately use the findings to 

inform successful control strategies. 

 Nchelenge District in Luapula Province, northern Zambia experiences 

holoendemic transmission of Plasmodium falciparum [7].  Despite clinical evidence of 

high transmission rates, the mosquito vectors and their characteristics that influence 

transmission have not been well characterized in Nchelenge.  Recent studies over the last 

decade have investigated An. arabiensis extensively in Southern Province, as well as An. 

funestus s.s. and An. gambiae s.s. mainly in the context of country-wide vector control 

and insecticide resistance surveillance and management, but none of the country-wide 

study sites were in Nchelenge District [11, 13, 17, 23, 29, 30, 32]. Preliminary mosquito 

collections by the southern Africa ICEMR in-country partner Tropical Disease Research 

Centre (Ndola, Zambia) suggested that An. funestus s.s. and An. gambiae s.s. are the 

primary and secondary vectors respectively and together, contribute to the maintenance 

of year-round transmission in Nchelenge.   

 The specific aims of this study were to investigate the spatial and temporal 

compositions of the malaria vectors An. funestus s.s. and An. gambiae s.s. in two 

ecologically distinct habitats within Nchelenge District. We also sought to characterize 

the blood feeding behavior by determining the human blood index (HBI). each vector’s 
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contribution to transmission intensity through estimation of the entomological inoculation 

rate (EIR) was determined. This study provides fundamental information on both the 

spatial and seasonal heterogeneities in vector dynamics and transmission intensities of 

An. funestus s.s. and An. gambiae s.s. populations in Nchelenge District.  

 

Materials and Methods 

Study Area.  

This study was carried out in association with the Johns Hopkins Southern Africa 

International Centers of Excellence for Malaria Research (ICEMR) project that is being 

carried out at three field sites: Choma District, southern Zambia (16.39292°S, 

26.79061°E), Nchelenge District, northern Zambia (9° 19.115’S, 28° 45.070’E), and 

Mutasa District, eastern Zimbabwe (18° 23.161’S, 32° 59.946’E) (See Figure 2.1).  The 

focus of the research reported here is Nchelenge District, Luapula Province, in Zambia at 

an elevation of approximately 807 meters above sea level and in a marsh ecotype (Figure 

2.2).  The district lies along the eastern perimeter of Lake Mweru, which serves as the 

border between the southwestern part of the Democratic Republic of Congo (DRC) and 

the northeastern part of Zambia. Flowing from south to north into Lake Mweru, Kenani 

Stream is also found in the area.  There is a single rainy season from November to May, 

followed by a cool dry season from May to August and a hot dry season from August to 

November (Figure 2.3). Rainfall follows a seasonal pattern, with a peak of 2700 mm 

during the rainy months and close to 0 mm during the dry months (Figure 2.3). Passive 

surveillance of health centers in the district have revealed that there is some seasonality in 

confirmed malaria cases, but the overall rates throughout the year remain high (Figure 
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2.4). Longitudinal and cross-sectional households that were already enrolled in the 

ICEMR program, easily accessible, and were also located within two defined 1-km2 grids 

along both Lake Mweru and Kenani Stream were chosen for mosquito sampling. 

Mosquito collections were conducted at three villages in grids r34c5 and r34c6 (Katuna, 

Yenga, and Malulu) along Lake Mweru and two villages in grids r29c10 and r26c11 

(Kapande B and Mutepuka) near Kenani Stream (Figure 2.2).  These villages are 

representative of the local demography and landscape, reflect the migration of local 

people from fishing to farming livelihoods (seasonally) annually, have a high malaria 

incidence, accessible and willing to participate in the study.  Both long-lasting insecticide 

treated nets (LLINs) and IRS programs have been implemented in Nchelenge District 

starting in 2006 and 2007 respectively.  The LLIN distribution campaign in Nchelenge 

took place in 2012 and resulted in an average 1.24 nets per person [7].  Indoor residual 

spraying was performed primarily in areas along a major road near Lake Mweru in 2013 

using a carbamate insecticide (Personal communication with Dr. Mike Chaponda, TDRC, 

2014) (Figure 2.5).  

Mosquito Collection and Handling. 

   Mosquitoes were collected by Center for Disease Control light trap (CDC LT) and 

pyrethroid spray catch (PSC) in three villages (Katuna, Yenga, and Malulu) near Lake 

Mweru and two villages (Kapande B and Mutepuka) inland and near Kenani Stream 

during the periods March 24-April 10, 2012 (wet), August 27-September 9, 2012 (dry), 

and March 5-April 25, 2013 (wet). Additionally, aspiration collections were performed in 

the March-April 2012 and August-September 2012, and were only included for 

determining vector abundances. Collection methods were approved by the Johns Hopkins 
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Bloomberg School of Public Health IRB (#00003467) and in Zambia 

(TDRC/ERC/2010/14/11).  During the March-April 2012 (wet) and August-September 

2012 (dry) collections, lakeside and streamside villages were sampled on alternate days 

each week. For March-April 2012 collection, sampling took place at 11 households near 

the lake and 11 households along the stream.  In the August-September 2012, collections 

took place at 21 households lakeside and 15 households streamside. From March-April 

2013, 39 lakeside households and 38 streamside households were sampled on alternate 

weeks.  During each collection week, CDC LTs were performed on Monday, Wednesday, 

and Friday, and PSCs on Tuesday, Thursday, and Saturday.  CDC LTs were hung indoors 

next to sleeping persons, approximately 1 m above the floor, and would typically run 

from 6:00pm to 6:00am.  PSCs were performed in the morning (6:00am-10:00am) in 

selected households, where white sheets were placed over all surfaces and a 100% 

synthetic aerosol pyrethroid was applied towards the ceiling, eaves, walls, and the home 

closed.  After approximately 15 minutes, the sheets were taken out of each household and 

knocked down mosquitoes were collected.  All field-caught mosquitoes were killed 

immediately by freezing.  The female anopheline mosquitoes were then morphologically 

identified to species using a dichotomous key [97, 118] and dissecting microscope (both 

vectors and non-vectors). Up to three mosquitoes were placed in each labeled 0.6 mL 

microcentrifuge tube containing silica gel desiccant and cotton wool, and stored either at 

room temperature or frozen at -20°C until laboratory processing, which took place at 

Johns Hopkins University Bloomberg School of Public Health in Baltimore, Maryland.   
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DNA Preparation and PCR. 

 For all collected anophelines, the head and thoraces were separated from the 

abdomen, and DNA extraction of the abdomen was performed using a modified salt 

extraction [119].  The morphological identification of anopheline mosquitoes was 

confirmed using a polymerase chain reaction (PCR) specific for members of the An. 

gambiae or An. funestus complexes [120-123].  If a mosquito sample could not be 

identified by the An. gambiae complex and An. funestus complex-specific PCRs, then an 

ITS2 PCR was used [121].  The ITS2 PCR utilized amplifies the intergenic spacer region 

2 of the ribosomal DNA, and has a range of base pair sizes that are specific to other 

anopheline species [121]. The mosquitoes that were molecularly confirmed as An. 

gambiae s.s. were also tested for molecular M- (also known as An. coluzzii) or S- form 

using the Favia et al. 2001 protocol.  Briefly, the 5’ end of the intergenic rDNA spacer 

region is amplified to produce a 727 base pair band for M-form, 475 base pair band for S-

form, and both bands for hybrid specimens [124]. 

 All specimens, regardless of being visually fed or unfed, were then tested for host 

animal by PCR using the Kent et al. (2005) multiplex PCR, which amplifies the 

cytochrome b gene of the mitochrondrial genome producing a range of mammalian host 

specific bands from 132 to 680 base pairs [13].  A modification to the Kent et al. PCR 

was made to better detect a human host blood meal; the original Kent et al. forward 

primer to detect human blood meal was replaced with another forward and reverse primer 

set that amplifies a 193 base pair region of the cytochrome B gene.  The forward primer 

is FOR16068: 5’- GAC TCA CCC ATC AAC AAC CG -3’ and the reverse primer is 

REV16260: 5’- GGC TTT GGA GTT GCA GTT GA -3’. 
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Samples that did not amplify a band(s) for host blood meal were then tested with 

a more sensitive PCR [11], which amplifies a 98 base pair region of the cytochrome b 

gene of the mitochondrial genome of the mammalian host, followed by a restriction 

fragment length polymorphism (RFLP) assay specific to an animal host of interest [11].   

The abdominal DNA for each anopheline was then tested for the presence of the 

P. falciparum parasite.  The Norris et al. PCR, amplifies a small portion of the 

cytochrome b gene of P. falciparum, and is more sensitive than the commonly used 

Snounou et al. (1993) PCR, and has an expected size of 183 base pairs [125].   

Enzyme-linked Immunosorbent Assay (CSP-ELISA) for Plasmodium falciparum 

Detection 

The CSP-ELISA method as described by the Malaria Research and Reference 

Reagent Resource Center (MR4) was used to detect P. falciparum circumsporozoite 

protein (CSP) in the mosquito head and thorax.  Briefly, a 96-well U-bottom plate is 

incubated overnight with P. falciparum CSP capture antibody.  Then, each mosquito head 

and thorax is homogenized using a pestle, and added to the plate (38 mosquitoes per 

plate) with CSP capture monoclonal antibody.  Following a two-hour incubation, the 

plate is washed 7 times, and then the CSP monoclonal antibody with a conjugated 

peroxidase tag is added to the plate and incubated for one hour.  The plate is then washed 

7 times, and ABTS solution is added to visualize the presence of CSP in the mosquito 

head and thorax for one hour.  If CSP protein is present in the mosquito head and thorax, 

then the well containing an individual mosquito will turn green and suggests that the 

mosquito was infectious.  The plate is placed in a spectrophotometer set at 400-

nanometer wavelength for analysis.  The values associated with each mosquito that are 
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two times the average of the negative controls on the plate are considered to be CSP or P. 

falciparum positive.  CSP-ELISA was performed on all Anopheles mosquitoes in the 

March-April 2012 and August-September 2012.  However, due to the large number of 

anophelines caught during the March-April 2013 collection, a representative subsample 

form all collection households was used for the assay.  

Spatial and Temporal Mapping of Malaria Vectors 

In order to map the presence of malaria vectors and their proportions within each 

household in Nchelenge District both spatially and temporally, Geographic Information 

Systems (GIS) methods were utilized.   Specifically, ArcMap 2.0 (ESRI ArcGIS) 

software was used to create a layer with a satellite image of Nchelenge District.  

Individual households with unique GPS coordinates where collections took place were 

added to the map, and then the vector species and their abundances relative to each 

household were added as pie charts.  This was done for the Nchelenge March-April 2012 

(wet), August-September 2012 (dry), and March-April 2013 (wet) collections to make 

observations about changes in vector composition and abundances spatially and 

temporally.   

Human biting rate (HBR) and Entomological Inoculation Rate (EIR) 

The average number of bites per person per night was calculated based on two 

collection methods.  First, the number of foraging An. funestus and An. gambiae vectors 

from CDC LTs were divided by the number of people sleeping the prior night in the 

household.  Second, the number of human fed An. funestus and An. gambiae from PSCs 

were divided by the number of inhabitants in each household.  Because CDC LT and PSC 

collections attempt to identify foraging or fed and resting mosquitoes respectively, and 
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were performed at households unsystematically and not always repeated, the two 

methods and their estimates of HBR were not compared statistically.   

The annual EIR for each vector species per household was calculated as the 

product of the human biting rate, sporozoite infection rate, and 180 days (6 months for 

each season), as collections were conducted in either the wet or dry seasons.  Both the 

HBR and EIR were estimated using CDC LT only, CDC LT and PSC, and PSC only 

collections to observe variation in measurements. The average of all household EIRs was 

the overall EIR estimated for Nchelenge District.  For the March-April 2013 collection, 

lakeside and streamside villages further defined the overall EIR calculations.  

Statistical Analysis 

The abundances, SIR, and EIR of An. funestus sensu stricto and An. gambiae s.s. 

within and among the March-April 2012 (wet), August-September 2012 (dry), and 

March-April 2013 (wet) collections were compared using STATA version 11.  For 

comparison of vector abundances and EIRs, the negative binomial regression model for 

over-dispersed data was used.  Logistic regression model was used to compare SIRs. A P 

value less than 0.05 was considered statistically significant.  Using an Excel spreadsheet, 

the kappa statistic was calculated to classify the agreement between CSP-ELISA and 

PCR method results as “poor” (< 0.40), “fair” (0.40-0.70), and “excellent” (> 0.70).  

 

Results 

Seasonal and Spatial Variation 

From March 24-April 10, 2012 (wet season), a total of 411 Anopheles mosquitoes 

were collected using CDC LTs, PSCs and aspirations, and was composed of 83.5% (n = 
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343) An. funestus s.s., 8.8% (n = 36) An. gambiae s.s., and 7.7% (n = 32) An. leesoni. 

Within the collection, there was an overall and significantly higher number of An. 

funestus caught per household, 9.5 times that of An. gambiae (Ratio= 9.5, 95% CI: 4.8, 

19.1, P= 0.00).  

The August 27-September 9, 2012 (dry season) collection from CDC LTs, PSCs, 

and aspirations was composed of 1324 anophelines, of which 99.3% (n = 1315) were An. 

funestus s.s. and 0.6% (n = 8) were An. gambiae s.s., and 0.1% (n = 1) An. leesoni.  There 

were 161 times more An. funestus caught per household per trap night or morning than 

An. gambiae (Ratio= 161, 95% CI: 66.8, 387.9, P= 0.00).   

A total of 2989 Anopheles mosquitoes were caught from March 5-April 25, 2013 

(wet season) using CDC LTs and PSCs. The majority of the collection was made up of 

An. funestus s.s. (80.9%, n = 2417), followed by An. gambiae s.s. (18.9%, n = 564) and 

An. leesoni (0.2%, n = 8).  Within the collection, the number of collected An. funestus 

was 4.3 times that of An. gambiae (Ratio= 4.3, 95% CI: 3.1, 6.0, P= 0.00).  

Compared to the March-April 2013 collection, there were 0.53 and 2.6 times the 

number of An. funestus collected per household per trap night or morning in the March-

April 2012 (Ratio= 0.53, 95% CI: 0.30, 0.92, P=0.023) and August-September 2012 

collections (Ratio= 2.6, 95% CI: 1.4, 4.8, P= 0.002).  The August-September 2012 

collection had 5.1 times the number of An. funestus caught per household in the March-

April 2012 collection, and was also statistically significant. (Ratio= 5.1, 95% CI: 2.9, 9.0, 

P= 0.00). There were 3.2 and 13.8 times the number of collected An. gambiae in the 

March-April 2012 (Ratio= 3.2, 95% CI: 1.3, 8.3, P= 0.013) and March-April 2013  

(Ratio= 13.8, 95% CI: 6.1, 31.5, P= 0.00) collections respectively compared to August-



 38 

September 2012. The March-April 2012 collection had 3.2 times the number of An. 

gambiae caught in the August-September 2012 collection (Ratio= 3.2, 95% CI: 1.1, 10.1, 

P= 0.038).  

Furthermore, the March-April 2013 (wet) collection also revealed spatial 

differences in vector composition between villages near Lake Mweru and more inland 

villages along Kenani Stream (Figure 2.8).  Collections at the lakeside villages (Katuna, 

Yenga, and Malulu) resulted in a total of 133 anophelines caught, of which the majority 

was An. gambiae (85.7%, n = 114), with the remainder An. funestus (14.3%, n = 19).   In 

contrast, in roughly the same number of collections, 2847 anophelines were collected at 

the streamside villages (Kapande B, Mutepuka), which were composed of 2397 An. 

funestus (84.2%) and 450 An. gambiae (15.8%).  The streamside collection revealed 

significantly higher numbers of An. funestus caught per household per trap night or 

morning in the streamside collection, 59.5 times more than the lakeside collection 

(Ratio= 59.5, 95% CI: 33.3, 106.4, P= 0.00).  Similarly, the streamside had 1.9 times 

collected An. gambiae compared to the lakeside collections (Ratio= 1.9, 95% CI: 1.27, 

2.84, P= 0.002).   

Additionally, in the March-April 2013 collection, there were statistically 

significant differences in the abundance of An. funestus and An. gambiae caught within 

the lakeside and streamside areas. In the lakeside collection, 5.9 times An. gambiae were 

caught than An. funestus (Ratio= 5.9, 95% CI: 3.3, 10.5, P= 0.00). Conversely, in the 

streamside villages, the number of An. funestus caught per household per trap night or 

morning was 5.3 times that of An. gambiae (Ratio= 5.3, 95% CI: 3.9, 7.3, P= 0.00).  
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Although both malaria vector species appear to be abundant and contribute to 

transmission during the wet season, they differ in composition and abundance spatially.  

Along Lake Mweru, overall vector numbers are very low and An. gambiae is the most 

abundant malaria vector during the wet season.  However, in areas near Kenani Stream, 

overall vector numbers are very large with An. funestus serving as the most abundant 

vector and An. gambiae is secondary in abundance. 

The majority of the collected An. gambiae were identified as S-form (527/564; 

93.4%).  The unidentified molecular forms of An. gambiae were due to failed PCRs that 

were repeated twice.  Assays for detection of fixed nucleotide differences on the X 

chromosome using molecular form diagnostic SNPs (MFDS) could potentially better 

detect the molecular forms or lack thereof in the unknown samples, but were not 

performed in this study [126].  

The collections revealed that during the wet season, both An. funestus and An. 

gambiae are important vectors of P. falciparum transmission, whereas during the dry 

season, An. funestus is the primary vector and likely continues transmission into the 

following wet season (See Figures 2.6-2.8).   

Blood feeding behavior 

For all collections, regardless of being classified as morphologically fed, all 

mosquitoes were tested using the Kent et al. (2005) PCR and the Fornadel et al. (2010) 

PCRs to test for mammalian host blood meal.  This was performed due to the possibility 

that there may be mosquitoes that appear “unfed”, but are actually fed as determined by 

molecular assays.  Additionally, the identification of the mammalian host in a blood meal 

was used to calculate the human blood index (HBI), which is the proportion of human 
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blood meals relative to the total blood meals, for each vector species.  For mixed blood 

meals, they were counted as blood meals for each host animal.  

Of the visually fed mosquitoes from the March-April, 2012 (wet) collection, 

111/343 An. funestus (32.4%), 9/36 An. gambiae (25%), and 6/32 An. leesoni (18.8%) 

that were visually fed.  All blood meals for An. funestus and An. gambiae were identified 

as human, whereas 5 of the An. leesoni fed on humans and 1 An. leesoni had fed on goat.  

Of those anophelines that were visually “unfed”, 5 were found to have human blood 

meals: 2/232 An. funestus (0.9%), 1/27 An. gambiae, (3.7%) and 2/26 An. leesoni (7.7%).  

No other mammalian hosts were detected in the visually “unfed” mosquitoes. The HBI 

for both An. funestus and An. gambiae was 1.0, whereas the HBI for An. leesoni was 

0.88.   

The August-September 2012 (dry) revealed 215/1315 An. funestus (16.5%), 2/8 

An. gambiae (25%), and 0/1 An. leesoni (0%) were visually fed.  With the exception of 

two An. funestus blood meals belonging to goat, all fed mosquitoes had taken human 

blood meals. Of those anophelines that were visually “unfed”, 45/1098 (4.1%) were 

identified as An. funestus and were human fed.  No blood meals from other hosts were 

identified.  The HBIs for An. funestus and An. gambiae were 0.99 and 1.0 respectively.   

The March-April 2013 (wet) collection had 544/2989 (18.2%) visually fed 

Anopheles mosquitoes.  Of the collected An. funestus and An. gambiae mosquitoes, 

444/2417 (18.4%) and 100/564 (17.7%) were visually fed respectively and were 

identified as human and/or goat.  No visually fed An. leesoni were observed. A majority 

of the “fed” An. funestus and An. gambiae had taken blood meals from human hosts, but 

mixed human and goat blood meals were detected in 24 An. funestus and 6 An. gambiae.  
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One An. funestus mosquito fed on a goat exclusively.  Of the anophelines that were 

classified as “unfed”, 164/2437 (6.7%) fed on human and/or goat hosts: 153 An. funestus 

and 11 An. gambiae.  146/153 (95.4%) and 8/11 (72.7%) of An. funestus and An. gambiae 

respectively were human fed. 7 blood meals taken by An. funestus and 3 blood meals 

taken by An. gambiae were mixed blood meals of human and goat. The HBIs for An. 

funestus and An. gambiae were 0.95 and 0.93 respectively.   

CSP-ELISA versus PCR Detection of P. falciparum 

The CSP-ELISA method of P. falciparum detection was compared to the PCR 

method by calculating the kappa value for each collection.  The kappa values for the 

March-April 2012 (wet), August-September 2012 (dry), and March-April 2013 (wet) 

collections are 0.0, 0.23 (SE = 0.073; 95% CI = 0.092-0.380), and 0.20 (SE = 0.067; 95% 

CI = 0.071-0.334) respectively, suggesting poor agreement between the two methods for 

all field collections. 

EIR by Collection Method 

The sporozoite infection rate (SIR) and seasonal EIR within and among 

collections varied by trapping method (See Tables 2.10-2.14).  Because CDC LTs have 

been shown previously in Zambia to be a good alternative for estimating the human 

biting rate when human landing catches (HLC) cannot be performed, EIR calculations 

from CDC LT collections only were regarded as the best measurement of transmission 

intensity by each species [34].   

CDC LT Collections only 

When the SIR and EIR were measured for the March-April 2012 (wet) based on CDC LT 

collections only, An. funestus had a SIR of 1.8% and a seasonal EIR of 3.7 ib/p/6mo 
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(Table 2.10).  No infectious An. gambiae by CSP-ELISA were detected and the EIR was 

0.0 ib/p/6mo. There was no statistical significance between both vector’s SIRs and EIRs 

(P> 0.05).  

The August-September 2012 (dry) collection revealed that An. funestus had an 

SIR of 2.4% and an increased seasonal EIR relative to the previous wet season collection 

at 41.5 ib/p/6mo (Table 2.11).  During this collection, only 6 An. gambiae were caught by 

CDC LT and both the SIR and seasonal EIR were 0.0 ib/p/6mo. There was no statistical 

significance between both vector’s SIRs and EIRs (P> 0.05). 

In the March-April 2013 (wet) collection, both An. funestus and An. gambiae had 

SIRs of 3.0% and 2.5% respectively (Table 2.12).  The resulting EIR for An. funestus was 

39.6 ib/p/6mo and for An. gambiae was 5.9 ib/p/6mo. The comparison of each vector’s 

SIR revealed that there is a decreased risk of collecting infectious An. gambiae in a 

household per trap night than An. funestus (OR= 0.29, 95% CI: 0.09- 0.92, P= 0.035).  In 

contrast, there was no statistical significance observed between each vector’s EIR (P> 

0.05).   

The SIRs for each vector were compared among collections.  There were 

significant differences in the SIRs among all collections.  The was a lower risk of 

collecting infectious An. funestus in the March-April 2012 collection than in August-

September 2012 (OR= 0.16, 95% CI: 0.03-0.85, P= 0.031) Similarly, there was a lower 

risk of collecting infectious An. funestus in March-April 2013 than in the August-

September 2012 collection (OR= 0.16, 95% CI: 0.04-0.63, P= 0.009). There was no 

statistical significance in the SIRs of An. funestus between the March-April 2012 and 
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March-April 2013 collections (P> 0.05) and also An. gambiae SIRs among all collections 

(P> 0.05).   

The EIRs among collections were also examined and compared for any 

significant changes in transmission intensity. There was no statistical significance in EIRs 

among collections for both An. funestus and An. gambiae (P> 0.05), but there is a trend 

that An. funestus has a greater EIR than An. gambiae year round.   

Interestingly, the seasonal EIRs for both species varied during the 2013 (wet) 

collection based on geographical location: Lake Mweru villages versus Kenani Stream 

villages (Tables 2.13-2.14).  Along the lakeside, P. falciparum was detected by CSP-

ELISA in only An. gambiae s.s., resulting in an SIR of 1.5% and an EIR of 0.60 ib/p/6mo 

(Table 2.13).  In contrast, both An. funestus s.s. and An. gambiae s.s. near the stream were 

found to be infectious and at much higher rates than the anopheline vectors found along 

the lakeside: 3.9% and 3.4% respectively (Table 2.14).  The seasonal EIRs in the 

streamside collections were also higher than the lakeside collections for An. funestus and 

An. gambiae, 51.2 ib/p/6mo and 10.1 ib/p/6mo respectively.  There were no statistical 

significance between lakeside and streamside areas for An. funestus and An. gambiae 

SIRs and EIRs (P> 0.05).  In the lakeside collection, there was also no statistical 

significance between the An. funestus and An. gambiae SIRs and EIRs (P> 0.05). In the 

streamside, there was a lower risk of collecting infectious An. gambiae per trap night than 

An. funestus (OR=0.32, 95% CI: 0.12-0.83, P= 0.019). There was statistically significant 

difference in EIRs between the two vectors in the streamside collections (Ratio=0.11, 

95% CI: 0.014, 0.79, P= 0.028).  
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CDC LT and PSC Collections 

When PSC collections were combined with CDC LT collections, the SIRs for An. 

funestus and An. gambiae in the March-April 2012 (wet) collection were 1.3% and 0% 

respectively. The seasonal EIR for An. funestus was 5.9 ib/p/6mo (See Table 2.10). There 

was no statistically significance between the SIRs and EIRs of An. funestus and An. 

gambiae (P>0.05). 

During the August-September 2012 (dry) collection, the SIR and EIR of An. 

funestus were 2.4% and 41.3 ib/p/6mo (Table 2.11).  None of the An. gambiae 

mosquitoes were found to harbor P. falciparum.  There was no statistical significance in 

the SIR and EIR measurements between An. funestus and An. gambiae (P> 0.05). 

In the March-April 2013 (wet) collection, the SIRs for An. funestus and An. 

gambiae were 3.0% and 2.5% respectively and the EIRs were 39.6 ib/p/6mo and 5.9 

ib/p/6mo respectively (Table 2.12). In this collection, households per trap night or 

morning were 0.27 times more likely to have infectious Anopheles gambiae than An. 

funestus (95% CI: 0.11- 0.66, P= 0.004). The EIR of An. funestus was 6.6 times that of 

An. gambiae per household, and was close to significance (Ratio= 6.6, 95% CI: 0.94, 

47.1, P= 0.058) 

The SIRs calculated per household for An. funestus and An. gambiae among the 

three collections were explored, and there was no statistical significance among 

collections (P> 0.05).  

The seasonal EIRs among collections were also calculated and compared for 

differences temporally. For An. funestus, a significant difference in seasonal EIRs was 

detected between the March-April 2012 and March-April 2013 collections only, where 
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the March-April 2012 collection had an EIR incidence rate of 0.16 times that of the 

March-April 2013 collection (Ratio= 0.16, 95% CI: 0.03, 0.88, P= 0.035).  There was no 

statistical significance in seasonal EIRs of An. funestus between the March-April 2012 

and August-September 2012 collections and the August-September 2012 and March-

April 2013 collections (P> 0.05). There was also no statistically significance in An. 

gambiae seasonal EIRs per household per trap night or morning across collections (P> 

0.05).  

Differences in SIR and EIR between the lakeside and streamside villages during 

the March-April 2013 (wet) were investigated (Tables 2.13-2.14).  The SIR and EIR of 

lakeside An. funestus were 0.0% and 0.0 ib/p/6mo respectively.  The An. gambiae SIR 

was 1.2% and the EIR was higher at 2.8 ib/p/6mo.  The streamside An. funestus and An. 

gambiae had SIRs of 3.8% and 3.4% respectively. Additionally, An. funestus and An. 

gambiae collected at the streamside villages had EIRs of 54.2 ib/p/6mo and 10.8 

ib/p/6mo respectively. No statistical significance found in both An. funestus and An. 

gambiae SIRs and seasonal EIRs between the lake and streamside collections (P> 0.05). 

Within the lakeside collection, there were also no statistical significance between An. 

funestus and An. gambiae SIRs and EIRs (P> 0.05).  In the streamside collection, there 

was a statistically significant difference in EIRs between An. gambiae and An. funestus 

(Ratio= 0.11, 95% CI: 0.014, 0.079, P= 0.028). Additionally, there was a lower risk of 

trapping infectious An. gambiae than An. funestus (OR=0.32, 95% CI: 0.12- 0.83, P= 

0.019) 
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PSC Collections Only 

For the majority of the collections, the SIRs and seasonal EIRs for both 

anopheline vectors in the PSC only collections were higher than both the CDC LT only 

and CDC LT and PSC collections.  In the March-April 2012 (wet) collection, the SIRs 

for An. funestus and An. gambiae were 0.8% and 0.0% and the EIRs were 10.6 ib/p/6mo 

and 0.0 ib/p/6mo respectively (Table 2.10). There was no statistical significance in the 

SIRs and EIRs of both vectors (P> 0.05).  

Similarly, the August-September 2012 (dry) collection revealed the SIR and 

seasonal EIR for An. funestus as 2.4% and 41.1 ib/p/6mo respectively (Table 2.11).  The 

SIR and EIR for An. gambiae were 0.0% and 0.0 ib/p/6mo respectively.  When the SIRs 

and EIRs of the anopheline vectors were compared, there was no statistical significance 

(P> 0.05).  

In the March-April 2013 (wet) collection, the SIR and seasonal EIR were 3.7% 

and 58.5 ib/p/6mo for An. funestus.  Similarly, when measurements were performed 

based on PSC only collections, the SIR and EIR for An. gambiae were slightly higher 

than the other methods, 2.6% and 8.5 ib/p/6mo respectively. The risk of trapping 

infectious An. gambiae was 0.17 times that of An. funestus (OR=0.17, 95% CI: 0.04-0.75, 

P= 0.02).  However, the EIRs of both vectors were not statistically significant (P> 0.05).  

The SIRs of An. funestus and An. gambiae were compared among seasons to 

observe any temporal patterns. The March-April 2013 and March-April 2012 collection 

had a lower risk of collecting infectious An. funestus in a trap morning compared to An. 

funestus in the August-September 2012 collection (OR=0.13, 95% CI: 0.02-0.81, P= 

0.029). There was no statistical significance in the An. funestus SIRs between the March-
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April 2012 and March-April 2013 collections (P> 0.05). Statistical significance in An. 

gambiae SIRs among seasons was not observed (P> 0.05). The seasonal EIRs for both 

anopheline vectors were also compared among collections.  For both vectors, no 

significance in EIRs was observed (P> 0.05).      

The lakeside villages where sampling occurred from March-April 2013 (wet) 

revealed that there were no P. falciparum infected vectors leading to 0.0% SIR, and the 

transmission intensity at the lakeside was 0.0 ib/p/6mo for both An. funestus and An. 

gambiae (Table 2.13).  This differs from the other collection methods, where An. 

gambiae was found to contribute to transmission near the lake. In the streamside villages, 

the SIR of An. funestus was high at 4.4% and the EIR of An. funestus was 58.5 ib/p/6mo 

(Table 2.14).  The SIR was 3.6% and the EIR was 11.9 ib/p/6mo for An. gambiae 

collected along Kenani Stream. Comparisons of the SIRs and EIRs of each vector species 

in the lakeside and streamside areas did not yield any statistically significant differences 

(P>0.05). Within the lakeside area, there was no statistical significance in the SIR of An. 

funestus and An. gambiae (P> 0.05).  In contrast, in villages along the stream, there is a 

decreased risk in finding infectious An. gambiae in a trap morning than An. funestus 

(OR=0.20, 95% CI: 0.04-0.96, P= 0.044).  There was no statistical significance in the 

EIRs of An. funestus and An. gambiae (P> 0.05).  

CDC LT only vs. CDC LT and PSC vs. PSC only collections 

 The SIRs and EIRs measured according to three collection methods (CDC LT 

only, CDC LT and PSC, and PSC only) for both An. funestus and An. gambiae were 

compared to observe any differences. In the March-April 2012, August-September 2012, 

and March-April 2013 collections, the An. funestus and An. gambiae SIRs (An. funestus; 
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CDC LT: 1.8%, CDC LT and PSC: 1.3%, PSC only: 0.8%, An. gambiae; CDC LT only: 

0%, CDC LT and PSC: 0%, and PSC only: 0%) were not statistically significant among 

methods (P> 0.05) (See Table 2.10-2.12). Similarly, there was no statistical significance 

in the An. funestus and An. gambiae EIRs (An. funestus; CDC LT only: 3.7 ib/p/6mo, 

CDC LT and PSC: 7.3 ib/p/6mo, PSC only: 10.6 ib/p/6mo, An. gambiae; CDC LT only: 

0 ib/p/6mo, CDC LT and PSC: 0 ib/p/6mo, PSC only: 0 ib/p/6mo) among trapping 

methods (P> 0.05) (See Table 2.10-2.12).  

 

Discussion  

In this study, we characterize the malaria vector transmission dynamics in 

Nchelenge District, Zambia over three consecutive seasons: March-April 2012 (wet), 

August-September 2012 (dry), and March-April 2013 (wet). The preliminary collection 

in March-April 2012 (wet) suggested that An. funestus is the primary vector and An. 

gambiae is the secondary vector, and the subsequent collections through the August-

September 2012 (dry) and March-April 2012 (wet) confirmed those vector roles.   An. 

leesoni mosquitoes were also identified among the three collections, but too few were 

caught to draw any conclusions regarding the role of An. leesoni in malaria transmission.  

Additional indoor and outdoor collections will be needed to obtain enough An. leesoni to 

detect malaria parasite and better assess their foraging behavior in Nchelenge.  

The densities of An. funestus and An. gambiae varied seasonally and all 

collections revealed micro-spatial dynamics of An. funestus and An. gambiae relative to 

villages located along Lake Mweru and Kenani Stream.  During the wet seasons, An. 

gambiae was the primary vector found in lakeside villages, while An. funestus and An. 
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gambiae were the primary and secondary vectors respectively in interior streamside 

villages.  The dry season collection revealed that An. funestus is the dominant vector of 

transmission at both the lakeside and streamside villages, while only a few An. gambiae 

were caught in those same areas.  It should also be noted that lakeside mosquito densities 

were a fraction of inland and streamside densities, regardless of season. The relative 

abundance of An. funestus was significantly larger in the August-September 2012 

collection compared to both wet season collections, suggesting that the An. funestus 

population increases dramatically during the dry season [97, 127].  The abundance of An. 

funestus per trap night or morning was also significantly higher in the March-April 2013 

collection compared to the March-April 2012 collection, but this is likely due to a smaller 

collection period and that only one village near the streamside was sampled in the March-

April 2012 collection. In contrast, the abundance of An. gambiae in the March-April 2012 

and March-April 2013 collections was significantly higher when compared to the August 

2012 collection. The trend of the An. gambiae population proliferating at the beginning of 

the wet season, while the An. funestus population increases towards the end of the wet 

season and continues malaria transmission through the dry season, has been observed in 

many places in sub-Saharan Africa [108, 128].   

The increases in An. gambiae mosquitoes throughout the collection sites during 

the wet seasons are likely due to a wide range of temporary sunlit breeding habitats found 

throughout Nchelenge District such as animal footprints, puddles, and ground depressions 

formed due to heavy rains [97, 129, 130].  In villages near Lake Mweru, An. gambiae 

larvae and pupae in oviposition surveys have been collected in puddles and boats onshore 

along the lake, as well as in ditches along the main road (Personal observation and 
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personal communication with Drs. Douglas Norris, JHU, and Jenny Stevenson, MRT). In 

contrast, An. funestus typically prefer vegetated, semi-permanent to permanent breeding 

sites such as swamps and marshes, which may be found along large streams [97, 129, 

131].  Overall, An. funestus was found throughout all collection seasons at high densities, 

especially near Kenani Stream, which is likely the breeding site area that is stable with 

viable breeding sites such as permanent marsh and swamps along the stream through the 

dry season.  

 The foraging behavior of both An. funestus and An. gambiae was determined.  

Both species were found to be highly anthropophilic, although a few mixed human/goat 

and goat only blood meals were identified in both vectors.  In Nchelenge District, goats 

are occasionally kept indoors at night, and may serve as an incidental host to both An. 

funestus and An. gambiae, but should be explored further (personal observation).  An. 

funestus and An. gambiae are widely known for their anthropophilic, as well as 

endophilic and endophagic behavior.  It is not surprising that in Nchelenge District, both 

vectors have a tendency to feed almost exclusively on humans.  However, it should be 

noted that inhabitants often do not sleep at dusk, but rather stay up for social gatherings 

into the late evening.  As a result, we cannot overlook the possibility of outdoor biting 

behavior by the two vectors that may contribute to malaria transmission by the major 

Anopheles species at this field site.  A major limitation of this study is that we were 

unable to perform outdoor collections to be able to observe if An. funestus and An. 

gambiae, as well as other Anopheles species, participate in outdoor biting. 

The Plasmodium falciparum infection rate, or the sporozoite infection rate (SIR), 

of Anopheles mosquitoes is a critical measurement because it provides evidence of vector 



 51 

involvement in malaria parasite transmission.  Moreover, the SIR is required to calculate 

the entomological inoculation rate (EIR), a valuable measurement of vector transmission 

intensity in an affected area.  The SIR was determined for both An. funestus and An. 

gambiae using the CSP-ELISA and PCR methods for each collection, and the agreement 

between the two methods was considered “poor” for all collections. There have been 

several studies that have reported false CSP-ELISA positive results compared to 

microscopy and PCR [40, 132-135].  The discrepancy may be attributed to the 

advantages and disadvantages of both methods. The main advantage of CSP-ELISA is 

that it is faster and more efficient than dissection, especially because mosquitoes can be 

stored and processed later [132]. However, a limitation of CSP-ELISA is that it is not as 

sensitive as dissection when there are low numbers of sporozoites in the salivary gland, 

resulting in false negatives [132].  Additionally, the CSP-ELISA may not only detect 

CSP in the salivary gland, but also in mosquito tissues, which may result in an 

overestimation of the SIR [132].  Another method to detection Plasmodium spp. in 

mosquitoes is polymerase chain reaction (PCR), which can detect as little as 10 

sporozoites, while CSP-ELISA requires at least 100 sporozoites for detection [132]. A 

major disadvantage of PCR is that it detects all stages of Plasmodium spp., making CSP-

ELISA the more preferred method as it detects only the infectious stage of the parasite.  

The PCR performed in this study was done on the mosquito abdomen only because there 

is currently no effective method of extracting DNA from ELISA homogenate of mosquito 

head and thorax. It was assumed that a positive result by PCR implied salivary gland 

infection. However, this may not be the case, and could lead to overestimation of the SIR. 

Other studies have been unable to identify the cross-reacting antigens suspected of 
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leading to false CSP-ELISA results, but have shown that the unknown antigen is heat-

unstable and can be removed by heating the CSP-ELISA homogenate to 100°C for 10 

minutes [8, 132].  Because this method of heating CSP-ELISA homogenate was not 

performed for this study, it is essential that future research confirm initial CSP-ELISA 

results with a second heated CSP-ELISA.   

The SIRs and EIRs reported in this study are based on the CSP-ELISA because 

the assay detects only infectious sporozoites that that are ultimately transmitted and cause 

human disease. The CSP-ELISA was performed on both CDC LT and PSC collections, 

and various combinations of CDC LT and PSC results were examined for differences in 

SIRs and EIRs based on trapping method. The SIR based on CDC LT only collections 

revealed that the An. funestus SIR was significantly higher during the August-September 

2012 collection compared to the March-April 2012 and March-April 2013 collections. 

This suggests that a higher number of infected An. funestus are found within a household 

during the dry season than the wet season, which may be due to stable breeding habitats 

and low rainfall that support survival of the An. funestus population.  The increased 

longevity of An. funestus during the dry season is particularly important because the 

malaria parasite can successfully develop, invade the salivary gland, and propagate 

transmission into the wet season.  During the March-April 2013 (wet) collection, only 

infected An. gambiae were found in the lakeside relative to An. funestus, whereas both 

An. funestus and An. gambiae had higher SIRs near the streamside.  This is likely due to 

the relatively fewer numbers of An. funestus and low densities of mosquitoes in general 

along Lake Mweru, and the much higher densities of An. funestus and An. gambiae 

inland near Kenani Stream. In the streamside villages, the An. funestus SIR was higher 
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than that of An. gambiae. The large numbers of both An. funestus and An. gambiae in the 

streamside collections helped define patterns in SIRs and EIRs, whereas differences in 

the smaller lakeside collection were not significant, but there are trends that suggest 

predominately infected An. gambiae near the lake. Furthermore, the EIR of An. funestus 

was higher in the March-April 2013 collection than the March-April 2012 collection, 

which was likely due to a shorter collection period in 2012. In the streamside villages, the 

An. funestus EIR was higher than An. gambiae.  

When An. funestus and An. gambiae SIR and EIR measurements were 

investigated for CDC LT and PSC and PSC only collections, a variety of differences 

within and among collection periods was observed and was distinct from CDC LT only 

measurements. However, when each method, CDC LT only, CDC LT and PSC, and PSC 

only, was statistically compared among each other, the SIRs and EIRs of both An. 

funestus and An. gambiae were not statistically different.  This preliminary data suggests 

that the method used does not affect the SIR and EIR outcomes, but further studies with 

larger numbers of infectious Anopheles vectors need to be performed to support this 

view.   

General trends for An. funestus and An. gambiae in each collection period show 

that the EIR of An. funestus is highest during the dry season when An. gambiae is 

generally absent.  Throughout the wet seasons, An. funestus remains the dominant vector 

of transmission, but at a lower intensity than in the dry season.  On the other hand, An. 

gambiae contributes to almost no transmission during the dry season, and then serves as a 

secondary vector with an EIR similar to An. funestus in the wet season.  As a result, 

malaria transmission is maintained year-round, likely by An. funestus.  Spatially, 
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transmission of malaria primarily occurs in the inland streamside villages at high EIRs by 

both An. funestus and An. gambiae.  In the lakeside villages, An. gambiae is the dominant 

malaria vector, while no infectious An. funestus were detected, which may be an artifact 

of the small sample size.  

 One of the limitations of the crude EIR calculations is the use of CDC LT 

collections to estimate the HBR.  In theory, the CDC LT collection method attracts 

foraging mosquitoes, and thus should be an adequate alternative to the human landing 

catch (HLC) collection method because it is more cost-effective, exposure-free, and can 

be performed at any field site [34].  By nature, HLCs, although often considered the 

“gold standard”, are unreliable because they are non-standardized due to variability in 

host attractiveness, the collection method is labor intensive, and there is an ethical 

dilemma about exposing individuals to infectious mosquitoes, especially in light of the 

possibility of emergent drug resistant parasite strains [34, 35, 37, 39, 136].  However, 

studies comparing CDC LT and HLC collections to estimate HBR and eventually EIR 

have been ambiguous and produce varying sampling efficiencies.  CDC LTs produced 

poor estimates of human biting rate compared to HLCs in Dar es Salaam [36], which was 

attributed to an illuminated and urban environment that reduces the attractiveness of the 

light trap.  When comparisons between HLC and CDC LT methods were performed in 

Bioko Island, Papua New Guinea, it was observed that the efficiencies derived from 

various and appropriate statistical tests produced variable and inconsistent results [137].  

As a result, it was decided that CDC LTs could not be calibrated to give HBR estimates 

reliably.  However, in Macha, Southern Province, Zambia, it was shown that in an area of 

low vector density and high bednet use, the CDC LT captured an average of two times 
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the number of An. arabiensis caught per night by HLC collections, was not density 

dependent, and deltamethrin-treated bednets compared to untreated nets did not affect the 

number of vectors caught [34]. An. funestus and An. gambiae vectors caught in CDC LTs 

collections were found to be directly proportional to HLC collections regardless of 

mosquito densities in Lwanda, western Kenya.  Additionally, there were no differences in 

SIR and parity rates of collected vectors in Lwanda [38].  In western Kenya, six trapping 

methods were performed to compare with HLC collections for HBR estimation [138].  

CDC LT collections were found to be an effective method for large-scale vector 

sampling, especially in areas with high vector densities of An. funestus and An. gambiae 

[138].  In summary, the sampling efficiency of CDC LT collections compared to HLCs 

appears to be largely dependent on the study site, and may underestimate, be about the 

same, or overestimate the annual EIR for each vector relative to HLC-derived EIRs. In 

Nchelenge District, where there are high vector densities of An. funestus and An. 

gambiae, CDC LTs were used to determine the HBR as estimated in Zambia, Kenya, and 

Tanzania, where CDC LTs were confirmed to produce reliable HBRs.  Further studies 

using indoor and outdoor HLCs should be performed in Nchelenge to further evaluate 

measurements of vector EIRs as compared to other collection methods.      

Together, the EIRs of An. funestus and An. gambiae strongly suggest that both 

vectors play major roles in malaria transmission during the wet season.  During the dry 

season, however, An. funestus appears to maintain transmission; no P. falciparum 

infected An. gambiae were detected.  Moreover, the villages found along Kenani Stream 

are much more vulnerable to infectious bites by An. funestus and An. gambiae than the 

areas along Lake Mweru, where the primary vector is An. gambiae.  The spatial and 
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temporal differences in vector composition during both the wet and dry seasons have 

been observed elsewhere in sub-Saharan Africa [139-144], data that has been used in the 

development of recommendations for vector control strategies that will account for these 

heterogeneities. Similarly, the microspatial heterogeneity in vector composition and 

transmission intensity in Nchelenge is especially concerning because of high year-round 

human infection rates, disparate IRS and LLINs coverage, and insecticide resistance in 

both vectors.  Moreover, inhabitants transit between the lakeside and streamside area 

throughout both seasons, which further complicates vector control programs when 

infected individuals travel back and forth between these transmission zones.  It will also 

be relevant to identify if one or both vectors take multiple blood meals and if there is any 

preference for a particular host gender or age-group.  If so, this behavior would 

underestimate the crude EIRs reported in this study [15]. In conclusion, our findings 

suggest that malaria vector control interventions such as LLIN distribution and IRS using 

effective insecticides should be implemented at high year-round coverage throughout 

Nchelenge District, especially in inland villages where access by spray teams may be 

limited, in order to reduce vector populations and transmission intensity.  
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Figure 2.1. The southern Africa ICEMR field sites.  Nchelenge District is in northern 

Zambia and represents a site with unsuccessful malaria control, Choma District in 

southern Zambia represents successful malaria control, and Mutasa District in eastern 

Zimbabwe represents resurgent malaria. 
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Figure 2.2. Satellite image of the study area in Nchelenge District. The initial 1-km2 grids 

for ICEMR epidemiological and entomological surveys are highlighted in green. The 

white areas on the left side of the image represent Lake Mweru. The yellow arrows point 

to Kenani Stream that flows into Lake Mweru. The red circles denote the grids where 

mosquito collections were performed for thesis research: Katuna, Yenga, and Malulu 

villages are located in grids r34c5 and r34c6, Kapande B village is located in grid r29c10, 

and Kapande B village is located in grid r26c11. 
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Rainfall is seasonal, but transmission is 
year-round!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Seasons and Average Monthly Rainfall in Nchelenge District.  The wet 

season is from November to May, the cool dry season is from May to August, and the hot 

dry season is from August to November.  The rainfall also follows a seasonal pattern in 

Nchelenge. 
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Figure 2.4. Reported counts of confirmed malaria by 11 health centers from April 2012 to 

December 2013.  The number of malaria cases remains high throughout both the wet and 

dry seasons (southern Africa ICEMR REDCap data). 
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Figure 2.5. ICEMR surveyed households from 2012-2013 that reported ever receiving 

IRS.  The majority of households are found along the main road that runs parallel to Lake 

Mweru. In contrast, fewer households in inland villages received IRS (Courtesy of Dr. 

Jessie Pinchoff, JHSPH). 
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Figure 2.6.  The proportion of Anopheles species caught per household that were sampled 

during the March 24-April 10, 2012 (wet) collection.  Households were also sampled 

outside of study 1-km2 grids (red), but were not included in this study.   Species are 

denoted by color: An. funestus s.s. (green), An. gambiae s.s. (yellow), and An. leesoni 

(purple). 



 63 

 

Figure 2.7.  The proportion of Anopheles species caught per household that were sampled 

during the August 27-September 9, 2012 (dry) collection. Species are denoted by color: 

An. funestus s.s. (green), An. gambiae s.s. (yellow), and An. leesoni (purple). 
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Figure 2.8.  The proportion of Anopheles species caught per household that were sampled 

during the March 5-April 25, 2013 (wet) collection. Species are denoted by color: An. 

funestus s.s. (green), An. gambiae s.s. (yellow), and An. leesoni (purple). 
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Nchelenge March 24-April 10, 2012 (Wet): EIR Summary 

 

*CDC LT (Standard) 

Species Total Samples SIR (%) EIR (ib/p/6mo) 
Overall 158   

An. funestus s.s. 134 1.8 3.7 
An. gambiae s.s. 24 0.0 0.0 

 

 

*CDC LT + PSC 

Species Total Samples SIR (%) EIR (ib/p/6mo) 
Overall 358   

An. funestus s.s. 324 1.3 7.3 
An. gambiae s.s. 34 0.0 0.0 

 

 

* PSC only 

Species Total Samples SIR (%) EIR (ib/p/6mo) 
Overall 200   

An. funestus s.s. 190 0.8 10.6 
An. gambiae s.s. 10 0.0 0.0 

 

Table 2.1.  Total abundance, sporozoite infection rate (SIR), and entomological 

inoculation rate (EIR) for An. funestus s.s. and An. gambiae s.s. based on collection 

method (CDC LT only, CDC LT + PSC, PSC only) from March 24-April 10, 2012 (wet). 
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Nchelenge August 27-September 9, 2012 (Dry): EIR Summary 

 

 

*CDC LT only (Standard) 

Species Total Samples SIR (%) EIR (ib/p/6mo) 
Overall 787   

An. funestus s.s. 781 2.4 41.5 
An. gambiae s.s. 6 0.0 0.0 

 

 

*CDC LT and PSC 

Species Total Samples SIR (%) EIR (ib/p/6mo) 
Overall 1296   

An. funestus s.s. 1288 2.4 41.3 
An. gambiae s.s. 8 0.0 0.0 

 

 

*PSC only 

Species Total Samples SIR (%) EIR (ib/p/6mo) 
Overall 509   

An. funestus s.s. 507 2.4 41.1 
An. gambiae s.s. 2 0.0 0.0 

 

Table 2.2.  Total abundance, sporozoite infection rate (SIR), and entomological 

inoculation rate (EIR) for An. funestus s.s. and An. gambiae s.s. based on collection 

method (CDC LT only, CDC LT + PSC, PSC only) from August 27-September 9, 2012 

(dry). 
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Nchelenge March 5-April 25, 2013 (Wet): EIR Summary 

 

*CDC LT only (Standard) 

Species Total Samples SIR (%) EIR (ib/p/6mo) 
Overall 856   

An. funestus s.s. 480 3.0 39.6 
An. gambiae s.s. 376 2.5 5.9 

 

 

*CDC LT and PSC  

Species Total Samples SIR (%) EIR (ib/p/6mo) 
Overall 1216   

An. funestus s.s. 695 3.2 45.8 
An. gambiae s.s. 521 2.5 6.7 

 

 

*PSC only 

Species Total Samples SIR (%) EIR (ib/p/6mo) 
Overall 360   

An. funestus s.s. 215 3.7 58.5 
An. gambiae s.s. 145 2.6 8.5 

 

Table 2.3.  Total abundance, sporozoite infection rate (SIR), and entomological 

inoculation rate (EIR) for An. funestus s.s. and An. gambiae s.s. in a subsample based on 

collection method (CDC LT only, CDC LT + PSC, PSC only) from March 5-April 25, 

2013 (wet).   
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Nchelenge March 5-April 25, 2013 (Wet): LAKESIDE EIR 

 

*CDC LT only (Standard) 

Species Total Samples SIR (%) EIR (ib/p/6mo) 
Overall 117   

An. funestus s.s. 19 0.0 0.0 
An. gambiae s.s. 98 1.5 0.60 

 

 

*CDC LT and PSC 

Species Total Samples SIR (%) EIR (ib/p/6mo) 
Overall 133   

An. funestus s.s. 19 0.0 0.0 
An. gambiae s.s. 114 1.2 0.60 

 

 

*PSC only 

Species Total Samples SIR (%) EIR (ib/p/6mo) 
Overall 16   

An. funestus s.s. 0 0 0 
An. gambiae s.s. 16 0 0 

 

Table 2.4.  Total abundance, sporozoite infection rate (SIR), and entomological 

inoculation rate (EIR) for An. funestus s.s. and An. gambiae s.s. in the lakeside villages 

(r34c5, r34c6; Katuna, Yenga, Malulu) based on collection method (CDC LT only, CDC 

LT + PSC, PSC only) from March 5-April 25, 2013 (wet).  A subsample was performed 

for the entomological measurements. 
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Nchelenge March 5-April 25, 2013 (Wet): STREAMSIDE EIR 

 

*CDC LT only (Standard) 

Species Total Samples SIR (%) EIR (ib/p/6mo) 
Overall 739   

An. funestus s.s. 461 3.9 51.5 
An. gambiae s.s. 278 3.4 10.1 

 

 

*CDC LT and PSC 

Species Total Samples SIR (%) EIR (ib/p/6mo) 
Overall 1083   

An. funestus s.s. 676 3.8 54.2 
An. gambiae s.s. 407 3.5 10.8 

 

 

*PSC only 

Species Total Samples SIR (%) EIR (ib/p/6mo) 
Overall 344   

An. funestus s.s. 215 4.4 58.5 
An. gambiae s.s. 129 3.6 11.9 

 

Table 2.5.  Total abundance, sporozoite infection rate (SIR), and entomological 

inoculation rate (EIR) for An. funestus s.s. and An. gambiae s.s. in the streamside villages 

(r29c10, r26c11; Kapande B and Mutepuka) based on collection method (CDC LT only, 

CDC LT + PSC, PSC only) from March 5-April 25, 2013 (wet).  A subsample was 

performed for the entomological measurements. 
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Chapter III  
 

Underestimation of Foraging Behavior by Standard Field Methods in Malaria 

Vector Mosquitoes in Southern Africa 

Abstract.  Defining the anopheline mosquito vectors and their foraging behavior in 

malaria endemic areas is crucial for disease control and surveillance.  The standard 

protocol for molecular identification of host blood meals in mosquitoes is to 

morphologically identify fed mosquitoes and then perform polymerase chain reaction 

(PCR), precipitin tests, or ELISA assays.  The purpose of our study was to determine the 

extent to which the feeding rate and human blood indices (HBIs) of malaria vectors were 

underestimated when molecular confirmation by PCR was performed on both visually 

fed and unfed mosquitoes.   

In association with the Southern Africa International Centers of Excellence for 

Malaria Research (ICEMR), mosquito collections were performed at three sites: Choma 

District in southern Zambia, Nchelenge District in northern Zambia, and Mutasa District 

in eastern Zimbabwe. All anophelines were classified visually as fed or unfed, and tested 

for blood meal species using PCR methods.  The HBIs of visually fed mosquitoes were 

compared to the HBIs of overall PCR confirmed fed mosquitoes by Pearson’s chi-square 

test of independence. 

The mosquito collections consisted of Anopheles arabiensis from Choma, An. 

funestus sensu stricto, An. gambiae s.s., and An. leesoni from Nchelenge, and An. 

funestus s.s. and An. leesoni from Mutasa.  The malaria vectors at all three sites had large 

human blood indices (HBI) suggesting high anthropophily.  When only visually fed 
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mosquitoes tested by PCR for blood meal species were compared to testing those 

classified as both visually fed and unfed mosquitoes, it was found that the proportion fed 

was underestimated by up to 18.7%.  For most Anopheles species at each site, there was a 

statistically significant relationship (P < 0.05) between the HBIs of visually fed 

mosquitoes and that of the overall PCR confirmed fed mosquitoes. 

The impact on HBI of analyzing both visually fed and unfed mosquitoes varied 

from site to site. This discrepancy may be due to partial (interrupted) blood feeding 

behavior by mosquitoes, digestion of blood meals, sample condition, and/or expertise of 

entomology field staff.  It is important to perform molecular testing on all mosquitoes to 

accurately characterize vector feeding behavior and develop interventions in malaria 

endemic areas.   
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Introduction 

Malaria is a significant public health problem in Africa, killing hundreds of 

thousands of children annually [145].  In sub-Saharan Africa, Plasmodium falciparum 

malaria is the most common malaria parasite and is transmitted by mosquito species 

belonging to the Anopheles genus. The extent of vector-host association is one of the 

most important factors in predicting vectorial capacity [146, 147] and forms the basis for 

the Ross-MacDonald model and other contemporary models that estimate malaria 

transmission intensity [148-151].  The human blood index (HBI), or the proportion of 

blood meals taken on humans by mosquitoes, varies dramatically even within a single 

taxon, across localities and between seasons [149], and reflects differences in intrinsic 

host preferences, host availability, and accessibility [48, 152-155].  The HBI of malaria 

vectors is used to determine anthropophily, changes in feeding behavior, and even 

multiple blood feeding frequency [15, 153, 156-158].  Host preference studies have also 

been used to monitor the effectiveness of vector control programs by observing a 

reduction in blood feeding behavior, and have even served as evidence of control failure 

[159-162]. Additionally, the counts of fed mosquitoes from pyrethrum spray catches 

(PSCs) have been used as a correlate of biting rate in the estimation of the entomological 

inoculation rate (EIR), or the number of infectious bites per person per time period.  

Measurement of EIRs gives an estimation of transmission intensity in an area [163] and 

can be used to determine the contribution of each vector species to malaria transmission 

in a particular locale [99, 164].  Variation in EIRs over time and space is therefore often 

used to assess effectiveness of control and identify malaria foci [165]. 
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In the field, one of the first steps in ascertaining the blood meal host is to visually 

identify and separate collected mosquitoes based on species morphology and feeding 

status.  The mosquitoes that appear to be blooded are labeled as “fed” and it is these 

samples that are usually separated for blood meal analysis for identification of the host or 

simply counted if exclusive host association is assumed or capacity for host 

determination is unavailable.  However, the possibility remains that some collected 

mosquitoes may have taken a small or partial blood meal or may have partially digested 

the blood and are indeed fed, but morphologically appear “unfed”.  Most importantly, 

these mosquitoes represent vectors that have bitten a host and therefore could have 

potentially vectored pathogens, but have evaded the “fed” count during field 

investigations. By not evaluating these mosquitoes for blood meal host, the blood feeding 

frequency and EIR may be significantly underestimated and HBI miscalculated leading to 

inaccurate interpretations of vector foraging behavior, parasite transmission, and malaria 

control.  In this study, we performed mosquito collections in three distinct 

epidemiological areas in southern Africa: (1) Choma District, Southern Province, Zambia 

(controlled malaria transmission), (2) Nchelenge District, Luapula Province, Zambia 

(uncontrolled malaria transmission), (3) Mutasa District, Manicaland Province, 

Zimbabwe (resurgent malaria transmission).  The specific aim was to estimate the 

disparity in morphological and molecular assessments of anopheline feeding status at all 

sites. 
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Materials and Methods 

Study area. 

These studies were carried out in association with the Johns Hopkins Southern Africa 

International Centers of Excellence for Malaria Research (ICEMR) project at three field 

sites: Choma District, southern Zambia (16.39292°S, 26.79061°E), Nchelenge District, 

northern Zambia (9° 19.115’S, 28° 45.070’E), and Mutasa District, eastern Zimbabwe 

(18° 23.161’S, 32° 59.946’E) (Figure 3.1) [166]. 

Choma District 

In Choma District, collections were done within the catchment area of the Macha Mission 

Hospital, approximately 65 kilometers northeast from Choma town, Southern Province at 

a mean altitude of 1100 meters above sea level.  Extensive malaria entomological and 

epidemiological studies have been conducted in this area since 2003 [166].  This area 

consists of mainly scrub bushland interspersed with seasonal streams (Miombo 

woodland) and the population consists of mainly cattle herders and subsistence farmers.  

There is a single rainy season each year (November to May), followed by a cool dry 

season (May to August) and a hot dry season (August to November).  Vector control in 

the area relies on the use of long lasting insecticide-treated nets (LLINs).  Household 

ownership of LLINs is estimated to be more than 90% and usage greater than 75% for 

across all age groups (unpublished data).  Malaria transmission at this site is restricted to 

the rainy season.  Households were randomly selected from a grid overlaid on satellite 

imagery and were either assigned to a longitudinal cohort of houses followed every other 

month or for cross-sectional studies samples in the interim months. 
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Nchelenge District 

The field site in Nchelenge District, Luapula Province borders the Democratic 

Republic of Congo and lies along Lake Mweru.  The area is located at a mean elevation 

of 807 meters above sea level in a marsh ecotype. The majority of the population in this 

area participates in subsistence farming and fishing.  The seasons closely follow that of 

Choma District, although malaria transmission occurs year-round with a seasonal peak 

during the rains. Current vector control in this area includes LLIN distribution and indoor 

residual spraying (IRS) with an organophosphate.  Net ownership and usage amongst 

study households is lower than that of Macha, with approximately 70% of households 

owning LLINs and usage across all age groups of approximately 50% (unpublished data).  

Longitudinal and cross-sectional households that were already enrolled in the ICEMR 

program and were also located within two defined 1-km2 grids along both Lake Mweru 

and Kenani Stream were chosen for mosquito sampling. 

Mutasa District 

The study site in Mutasa District, Manicaland Province, Zimbabwe bordering 

Mozambique is an area marked by broad elevation changes, with a range of 

approximately 600 to 1300 meters above sea level.  The majority of the population lives 

in Honde Valley. Subsistence farming occurs along streams and rivers, but there are 

several large tea estates within the district.  Malaria transmission is seasonal, occurring 

most intensively during the wet season between November and April.  Cool dry and hot 

dry seasons occur similarly to the study sites in Zambia.  This area is targeted annually 

for IRS, and LLIN ownership is estimated at 88% and usage across all age groups at 70% 
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for the study households (unpublished data).  Mosquito collections took place in ICEMR 

longitudinal and cross-sectional households that were randomly selected from 1-km2 

grids similar to the other sites. 

Mosquito collection and handling. 

Field collections took place from January 2012-December 2013 in Macha, March-

April 2012 in Nchelenge, and December 2012-February 2013 in Mutasa.   Mosquitoes 

were collected from consenting households using Center for Disease Control miniature 

light traps (CDC LTs; John W. Hock Ltd, Gainesville, FL, USA) at all sites, and 

additionally by PSCs in Nchelenge and Mutasa.  Collection methods were approved by 

the Johns Hopkins Bloomberg School of Public Health IRB (#00003467) and in Zambia 

(TDRC/ERC/2010/14/11) and Zimbabwe (BRTI AP102/11).  CDC LTs were hung 

indoors next to sleeping persons under LLINs, approximately 1.5 m above the floor, and 

would typically run from 6:00pm to 6:00am.  PSCs were performed in the morning 

(6:00am-10:00am) in selected households, where white sheets were placed over floors 

and furniture, and an aerosol insecticide (100% synthetic pyrethroid) was applied towards 

the ceiling, eaves, and walls.  After approximately 15 minutes, the sheets were taken out 

of each household and knocked down mosquitoes were collected.   

Visual classification of bloodfed status. 

All collected mosquitoes were killed by freezing.  Using a dissecting microscope, 

female anopheline mosquitoes were morphologically identified to species (both vectors 

and non-vectors) using standard keys [156] and visually classified to feeding (abdominal) 

status (“fed” or “unfed”).  Each mosquito was placed individually into a labeled 0.6 mL 
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microcentrifuge tube containing silica gel desiccant and cotton wool, and stored either at 

room temperature or frozen at -20°C until laboratory processing, which took place at both 

the Johns Hopkins University Bloomberg School of Public Health in Baltimore, 

Maryland and the Macha Research Trust in Macha, Zambia.   

Classification of blood fed status by DNA techniques. 

The head and thoraces of all anopheline mosquitoes were separated from the 

abdomen of each mosquito and DNA extraction of the abdomens was performed using a 

modified salt extraction [119].  Morphological identification of anopheline mosquitoes 

was confirmed using a PCR specific for members of the An. gambiae complex or An. 

funestus complex [121, 122].  All specimens collected in Nchelenge and Mutasa were 

tested for blood meal species by PCR whilst in Macha only those determined to be the 

vector An. arabiensis were analyzed due to the large number of specimens collected over 

the 2-year period.  Specimens were tested using the Kent et al. multiplex PCR, which 

differentiates potential mammal host bloods through amplification of the cytochrome b 

gene of the mitochondrial genome producing a range of species specific bands from 132 

to 680 base pairs [119].  Samples that did not amplify a band(s) for blood meal host were 

then tested with a more sensitive Fornadel et al. PCR and restriction fragment length 

polymorphism (RFLP) assay [167].  In brief, the Fornadel et al. PCR is used to amplify a 

98 base pair region from the cytochrome b gene of the mitochondrial genome of the 

mammalian host, followed by a restriction enzyme digest that is specific to that animal 

host [167]. 
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Statistical analysis. 

Pearson chi-square test of independence using STATA version 11 was performed 

to determine if the proportion of fed mosquitoes is the same or different between methods 

(visual classification or the overall PCR confirmation). A P value less than 0.05 was 

considered statistically significant.  

Results 

Composition of Anopheles species. 

Choma District 

From January 2012 to December 2013, 643 female An. arabiensis were collected 

from 113 traps across 69 different households in Choma District.  All collected 

anophelines had their morphological identities confirmed by molecular methods, of 

which An. arabiensis comprised 67%, and the other 33% was made up of other non-

vector anophelines. 

Nchelenge District 

From March-April 2012 in Nchelenge District, 411 Anopheles were collected 

from 18 CDC light traps and 15 PSCs from 31 households and morphological identity 

was confirmed by PCR analysis.   Anopheles funestus s.s. accounted for 83.4% of the 

total collection followed by An gambiae s.s. (8.8%) and An. leesoni (7.8%).   

Mutasa District 

From December 2012-February 2013, 84 Anopheles were collected in Mutasa 

District from 43 CDC light traps and 14 PSCs from 13 households.  Morphological 
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identifications in the field were confirmed by molecular methods.  The collection was 

composed of 97.6% An. funestus s.s. and 2.4% An. leesoni.  

Determination of blood feeding frequency, blood meal source, and HBI for visually fed 

anophelines. 

Choma District 

In the collection, 11.7% (75/643) of An. arabiensis were classified visually as fed 

and of those 75, 48 (64%) were confirmed by both the Kent et al. PCR and Fornadel et al. 

PCR methods, giving a feeding rate of 7.5% (Table 3.2).  Of the 48 blood fed confirmed 

An. arabiensis, 46 had fed on humans or mixed human/animal blood meal to give an HBI 

of 0.96.  One of these specimens was found to have a mixed blood meal of human and 

goat.   

Nchelenge District 

Of the collected Anopheles species, 32.4% (111/343) of An. funestus, 25% (9/36) 

of An. gambiae, and 18.8% (6/32) of An. leesoni were scored as visually fed and all were 

molecularly confirmed by both the Kent et al. and Fornadel et al. PCR methods (Table 

3.2).  Of 126 blood fed Anopheles, 111 An. funestus, 9 An. gambiae, and 5 An. leesoni 

had fed on humans.  One specimen of An. leesoni had also taken a goat blood meal.  The 

HBIs for both An. funestus and An. gambiae were 1.00.  An. leesoni had a lower human 

blood index of 0.75.   
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Mutasa District 

Of the collected Anopheles species, 30.5% (25/82) of An. funestus were scored as 

visually fed and all were molecularly confirmed by both the Kent et al. and Fornadel et 

al. PCR methods (Table 3.2).  None of the collected An. leesoni were visually fed.  Of the 

25 blood fed An. funestus, 24 had fed on human blood and 1 had fed on goat.  The 

resulting HBI was 0.96 for An. funestus. None of the An. leesoni caught were classified as 

fed by any method. 

Determination of blood feeding frequency and blood meal source for visually unfed 

anophelines.   

Choma District 

The Kent et al. PCR method revealed 3.9% (22/568) of An. arabiensis previously 

scored visually as unfed had actually taken blood meals (Table 3.2). It was also found 

that one An. arabiensis had fed on cow and two An. arabiensis had fed on goat.  There 

was also one mixed human and dog blood meal detected. Of those classified as unfed by 

both morphology and the Kent et al. PCR, the more sensitive Fornadel et al. PCR method 

revealed that a further 11.5% (63/546) of An. arabiensis had actually taken human or 

other non-human blood meals. 

Nchelenge District 

Of those Anopheles that appeared unfed in the field which were subsequently 

tested for blood meal source by the Kent et al. PCR method, 0.9% (2/232), 3.7% (1/27), 

and 7.7% (2/26) of unfed An. funestus s.s., An. gambiae s.s., and An. leesoni respectively 
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were positive for human and goat blood meals in Nchelenge (Table 3.2).  No other 

animal host was detected. The Fornadel et al. PCR method revealed that further 8.3% 

(19/230), 15.4% (4/26), and 16.7% (4/24) of An. funestus, An. gambiae, and An. leesoni 

respectively, previously classified as unfed by morphology and the Kent et al. PCR had 

actually taken human and/or goat blood meals.   

Mutasa District 

Unlike Choma District and Nchelenge District, molecular testing of visually 

unfed Anopheles by the Kent et al. PCR did not reveal any additional fed mosquitoes.  

However, the Fornadel et al. PCR revealed that 5.3% (3/57) of the visually unfed An. 

funestus had taken human (2/3) and goat blood meals (1/3) (Table 3.2).  No additional 

blood meals were detected by the Kent et al. or the Fornadel et al. PCR methods in the 

visually unfed An. leesoni.    

Overall blood feeding frequency and HBI of Anopheles.   

Choma District 

Combining the outcomes of the PCRs carried out on anophelines visually scored 

as fed and unfed revealed that the actual proportions of fed An. arabiensis was 22.1% 

(Table 3.2).  Therefore, visual scoring alone may result in blood feeding rates being 

underestimated as much as 10.4% compared to PCR detection of blood meals.  If 

determination of host by Kent et al. PCR was limited to those mosquitoes determined 

visually as fed, HBI was calculated as 0.96, but if all mosquitoes were analyzed using 

both PCR methodologies, 124/142 An. arabiensis had fed on humans, some with mixed 

animal/human blood meals.  This resulted in a reduction in the estimated HBI for An. 
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arabiensis to 0.87.  Chi-square test results for An. arabiensis detected a significant 

relationship between the visually fed status and the overall PCR confirmed fed status (df 

= 1; X2 = 144.4; P < 0.05). 

Nchelenge District 

Of those Anopheles specimens classified visually both as fed and unfed, 

combining the results of the Kent et al. and Fornadel et al. PCR methods, revealed that 

the actual proportions of fed An. funestus s.s., An. gambiae s.s., and An. leesoni were 

38.5%, 38.9%, and 37.5% respectively in Nchelenge (Table 3.2). Using just visual 

assessment of blood feeding status could, therefore, underestimate blood feeding 

frequency by as much as 18%.  After accounting for these blood meals detected in 

visually unfed Anopheles, the HBIs for An. funestus and An. gambiae remained at 1.00, 

whereas An. leesoni was higher at 0.80.   Chi-square test results indicate a significant 

relationship between the visually fed status and the overall PCR confirmed fed status for 

all malaria vectors in this area (An. funestus s.s.: df = 1, X2 = 267.7;  P < 0.05; An. 

gambiae s.s.: df =1, X2 = 21.2; P < 0.05; An. leesoni: df = 1, X2 = 16.2;  P < 0.05 ). 

Mutasa District 

The PCR results for both visually fed and unfed Anopheles reveals that the overall 

proportion of fed mosquitoes was 35.4%, suggesting that visual assessment alone 

underestimated blood feeding rates by up to 4.9% (Table 3.2).  After detection of goat 

blood meals in visually unfed An. funestus, the HBI for An. funestus was reduced to 0.96. 

Chi-square test revealed a significant relationship between the visually fed status and the 
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overall PCR confirmed fed status for An. funestus in this area (df = 1; X2 = 168.3;  P < 

0.05). 

Discussion 

Through entomological investigations in Choma, An. arabiensis has been 

identified as the primary malaria vector of P. falciparum transmission and analysis of 

blood feeding was restricted to samples identified as this vector [168].  Although this 

vector is known for its zoophilic behavior in many parts of Africa, it has been found to be 

highly anthropophilic in Choma.  After molecular testing, the human blood index of An. 

arabiensis decreased due to the identification of blood meals from other animal hosts 

such as goats and cows in the mosquitoes that were visually unfed.  This indicates that 

An. arabiensis takes occasional blood meals on non-human hosts, although many of these 

may be small meals where the mosquito does not feed to repletion or is partially digested.  

Although still highly anthropophilic, these previously undetected blood meals dilute the 

reported rates of anthropophily for this species [167]. 

In Nchelenge, An. funestus s.s. is the most abundant species followed by An. 

gambiae s.s. and An. leesoni. Preliminary field collections in the area have confirmed An. 

funestus s.s. and An. gambiae s.s. to be the primary and secondary vectors of P. 

falciparum transmission (See Chapter II).  The malaria parasite has not been detected in 

An. leesoni in Nchelenge.  However, the role of An. leesoni as a malaria vector in other 

parts of Africa suggests its potential as a secondary vector in this region and further 

investigation is warranted [169].  The human blood indices of both An. funestus s.s. and 

An. gambiae s.s. remained the same after molecular testing on all mosquitoes regardless 
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of abdominal status, indicating that they are highly anthropophilic vectors.  However, 

after testing all An. leesoni for blood meal host, the updated HBI increased suggesting 

greater anthropophily than would have been estimated if only visually classified 

specimens had been analyzed.  

In Mutasa District, the primary malaria vector of P. falciparum is An. funestus s.s. 

(unpublished data).  The human blood index of An. funestus was reduced slightly after 

molecular testing of both visually fed and unfed mosquitoes due to detection of additional 

goat blood meals, but confirms the high anthropophily of this species in eastern 

Zimbabwe.  None of the collected An. leesoni were visually fed or molecularly confirmed 

as fed.  As a result, we were not able to determine the blood meal source and resulting 

HBI of this potential vector species.  

For basic malaria vector studies, identifying the host of mosquito blood meals is a 

crucial step in estimating vector transmission potential and intensity of malaria 

transmission.  When mosquito collections take place in the field, it is common practice to 

have trained personnel identify each mosquito and classify the abdominal status by 

morphology.  Once in the laboratory setting, normally only those mosquitoes labeled as 

“fed” are tested for blood meal host, and even then only if the infrastructure and financial 

support exists to conduct these assays.  However, in this study, we demonstrated that a 

significant proportion of visually classified “unfed” mosquitoes have detectable blood 

meals by PCR methods.  The Kent et al. and Fornadel et al. PCR protocols used in this 

study amplify different portions of the cytochrome B gene, but the Fornadel et al. PCR is 

more sensitive by being able to detect small and/or degraded blood meals up to 60 hours 

post-feeding in laboratory experiments [119, 167].  A large proportion of visually 
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“unfed” mosquitoes were found to be blooded by the Kent et al. PCR and a further 

number were found to be fed by the Fornadel et al. PCR assay. By only testing the 

visually “fed” mosquitoes for blood meal host identification, the true proportion of fed 

mosquitoes in a collection may be underestimated by as much as 18%. We have 

demonstrated this trend in three epidemiological distinct sites in southern Africa.  

Conversely, it was also observed in the Choma site that a small proportion of the visually 

fed mosquitoes did not contain a blood meal as determined by the Kent et al. and 

Fornadel et al. PCR protocols.  This may occur because of incorrect classification of the 

specimen, desiccation of specimens resulting in dark pigmentation that can be mistaken 

for blood in mosquitoes, specimens with enlarged abdomens may actually be gravid or 

half gravid, or contain a sugar meal.  It may also be due to the inherent limitation of the 

PCR assays used [119, 167]. 

The molecular confirmation of “unfed” mosquitoes actually being fed may be due 

to several reasons. Firstly, it may indicate partial or interrupted feeding behavior, 

resulting in a blood meal size that is undetectable by the human eye.  In the field, host 

defensive behaviors can interrupt a mosquito’s ability to reach repletion [170].  Previous 

field studies using unrestrained hosts in stable traps found that a large proportion of Culex 

tarsalis mosquitoes were attracted to the bait, but took partial or no blood meals [171, 

172].  Similarly, laboratory-reared mosquitoes also experienced decreased feeding 

success due to defensive host behaviors [170, 173, 174].  Another factor that may result 

in partial or reduced blood feeding is vector control; at all three sites of our study, vector 

control such as LLINs and/or IRS have been implemented in response to which 

mosquitoes may limit their duration of contact with a host to avoid insecticides [169].  
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Consequently, mosquitoes may be unable to reach repletion during feeding and must take 

multiple blood meals during a gonotrophic cycle.  This has important implications for 

estimating vector potential and malaria transmission risk in endemic areas [15, 170, 175].  

However, this study was not designed to assess feeding behavior pre- and post-

intervention. Clearly, further research needs to be done to ascertain the extent of 

anopheline partial blood feeding behavior in Africa.  In addition to partial feeding, 

mosquitoes may have undergone partial digestion of the blood meal such that the volume 

remaining is not easily detectable by eye. Visual assessment of blood feeding status may 

also be hindered by sample condition such as desiccation or damage.  Additionally, 

personnel must be trained to correctly assess the abdominal status. 

Overall, if all collected mosquitoes are not tested for blood meal host, then the 

proportion fed, HBI, and even EIR may be miscalculated and the accuracy of vector 

studies may be diminished.  The proportion fed in a collection can be an important 

component for testing and evaluating vector control interventions such as LLINs, IRS, or 

spatial repellants.  Efficacy may be determined by observing a reduction in feeding 

behavior by vectors as well as changes in other parameters such as deterrency, entry/exit 

behavior and mortality rates [176-180].  The HBI, a component of vectorial capacity, 

provides crucial information about mosquito feeding patterns and vector-host association 

[181]. Furthermore, an incorrect estimate of the number of fed mosquitoes can lead to a 

miscalculation of biting rates and therefore EIR. The relationship between EIR and 

malaria prevalence is not direct, but EIR can range from 0 to 1500 infective bites per 

person per year in endemic parts of Africa [182, 183].  Thus, it can be a useful 

measurement in relating malaria endemicity and transmission intensity [182, 184].  
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Accuracy in the calculations for HBI and EIR are essential for defining malaria 

transmission and dynamics in affected locales [185], and for guiding appropriate control 

strategies and assessing their effectiveness.  Based on this study, we predict that in areas 

with highly anthropophilic vectors such as Nchelenge and Mutasa Districts, the HBI will 

show little or no change, but a potentially large effect on the EIR, when testing for blood 

meal source in all mosquitoes.  However, in areas with both anthropophilic and zoophilic 

vectors such as Choma, testing the blood meal source in all mosquitoes could affect both 

the HBI and EIR.  

The present study illustrates the importance of testing morphologically unfed and 

fed mosquitoes for identification of host blood meal.  By not testing all mosquitoes in a 

collection, inaccurate measurement of the HBI and even the EIR may result.  We showed 

that misestimation of the HBI occurred when restricting testing to only those visually fed, 

even at sites with very different vector compositions and epidemiology.  Both the HBI 

and EIR contribute to our understanding of malaria transmission intensity by Anopheles 

mosquitoes; these parameters not only help direct control efforts, but also provide tools 

for surveillance by assessing potential changes in foraging behavior in response to vector 

control or other ecological changes. The visually unfed mosquitoes that have detectable 

blood meals by molecular methods may suggest partial feeding behavior, a response to 

vector control measures, partial blood meal digestion that is undetectable by eye, or 

errors in interpreting unfed or fed abdomens by personnel.  Although performing 

molecular techniques to identify host blood meals in both morphologically fed and unfed 

mosquitoes is ideal for increased accuracy in measurements of anopheline foraging 

behavior and estimation of EIR, it may pose a challenge for resource limited countries to 
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be able to perform such extensive testing.  As a result, it is suggested that sub-sampling 

and extrapolation can be used for morphological and molecular determination of host 

blood meal in order to more accurately characterize mosquito feeding behavior in malaria 

endemic areas. 
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Figure 3.1. The southern Africa ICEMR field sites.  Nchelenge District is in northern 

Zambia and represents unsuccessful malaria control, Choma District is in southern 

Zambia and represents successful malaria control, and Mutasa District is in eastern 

Zimbabwe and represents resurgent malaria. 

 

 



 
 

 

90 

 

 
Collection An. Vector 

Species 
Fed 

visually 
(%) 

Fed visually 
and 

confirmed 
molecularly#

(%) 

HBI* Unfed 
Visually 
but Fed 
by Kent 
PCR(%) 

Unfed 
Visually and 
by Kent PCR 

but Fed by 
Fornadel 
PCR (%) 

Combined
PCR 

confirmed 
Feda (%) 

Underestimation 
of blood feeding 
frequencyb (%) 

Updated 
HBIc 

Macha 
(n=643†) 

arabiensis 
(n=643) 

11.7 7.5   0.96 3.9 11.5 22.1 10.4 0.87 

Nchelenge 
Mar-Apr 

2012 
(n=411) 

funestus s.s. 
(n=343) 

32.4 32.4 1.00 0.86 8.26 38.5 6.1 1.00 

gambiae s.s. 
(n=36) 

25.0 25.0 1.00 3.7 15.4 38.9 13.9 1.00 

leesoni 
(n=32) 

18.8 18.8 0.75 7.7 16.7 37.5 18.7 0.80 

Mutasa 
Dec 2012 
(n= 84) 

funestus s.s. 
(n=82) 

30.5 30.5 0.96 0.0 5.26 35.4 4.9 0.93 

leesoni 
(n=2) 

0.0 0.0 --- 0.0 0.0 0.0 --- --- 

† Restricted to An. arabiensis 
# Confirmation by both Kent et al. [119] and/or Fornadel et al. [167] PCRs 
* HBI based on Kent et al. PCR of visually fed mosquitoes 
a Combined results of Kent et al. and Fornadel et al. PCRs run on visually fed and unfed mosquitoes 
b Difference in blood feeding frequency of only visually fed mosquitoes and the combined PCR confirmed fed mosquitoes 
c HBI based on molecularly determined fed mosquitoes (e.g. Analyzing all mosquitoes caught, whether visually fed or unfed) 

Table 3.1. Abdominal status and human blood indices (HBI) determined by molecular assays of visually fed and unfed 

anophelines at three field sites in southern Africa 



 91 

Chapter IV  

Multiple Blood Feeding Behavior and Plasmodium falciparum Infection Complexity 

in Anopheles Mosquitoes in Northern Zambia 

Abstract.  The interactions among Anopheles mosquitoes, the human host, and the 

malaria parasite were investigated by characterizing multiple blood feeding behavior and 

the genetic diversity of Plasmodium falciparum in infected mosquitoes in Nchelenge 

District, Zambia.  Located in the northern part of Zambia in Luapula Province and 

borders the Democratic Republic of Congo (DRC), Nchelenge experiences holoendemic 

transmission despite the use of vector control methods.  Mosquito collections were 

performed from March-April 2013 (wet season) using Center for Disease Control light 

traps (CDC LTs) and pyrethroid spray catch (PSC) collections.  The dominant malaria 

vectors of P. falciparum are Anopheles funestus sensu stricto and An. gambiae s.s. during 

the wet season. In addition, the entomological inoculation rate (EIR) was 39.6 infectious 

bites/person/6 months (ib/p/6mo) for An. funestus and 5.9 ib/p/6mo for An. gambiae.  

However, the EIR, a measure of transmission intensity by malaria mosquitoes, makes the 

assumption that a mosquito takes only one bite per gonotrophic cycle.  In Nchelenge 

District, it was demonstrated that in the March-April 2013 wet collection, both An. 

funestus and An. gambiae take multiple human blood meals at similar rates, 23.2% and 

25.7% respectively, and that both vectors have a tendency to bite human males.  A crucial 

component in the calculation of EIR is the sporozoite infection rate (SIR), or the 

proportion of mosquitoes that are infected with the malaria parasite.  Interestingly, the 

parasite within the mosquito can be genetically diverse. In the March-April 2013 

collection, the overall P. falciparum complexity of infection (COI) in infected 
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mosquitoes was 6.4 with a range of 1-14 clones. Together, multiple blood feeding 

behavior and P. falciparum COI may be used for surveillance of vector behavior, 

especially in response to control, and also emerging parasite clones that may successfully 

be vectored to the human population.    
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Introduction 

Affecting an estimated 198 million people worldwide, malaria is a major public 

health problem and the burden is disproportionately higher in sub-Saharan Africa, where 

Anopheles funestus sensu stricto and An. gambiae s.s. are the most important vectors of 

Plasmodium falciparum [1].  Between 2000 and 2013, there was a 58% decrease in 

malaria cases in children under the age of 5 years in Africa and despite a 43% increase in 

population over the last ten years, the infection rate of both symptomatic and 

asymptomatic decreased from 173 million to 128 million, a 26% reduction [1].  Many of 

these improvements are attributed to increased coverage of vector control interventions 

(Long lasting insecticide-treated nets and indoor residual spray), accessibility to rapid 

diagnostic tests (RDTs), and artemisinin-based combination therapy (ACT) [1].  

Especially as implementation of vector control continues, it will be imperative to 

continue surveillance activities of vector foraging behavior and malaria parasite 

transmission to assess the effectiveness of control measures.   

The proportion of human blood meals in a mosquito collection, the human blood 

index (HBI), has been used to monitor the success of control programs, changes in 

foraging behavior, and even the multiple blood feeding rate [15, 108, 118, 158].  

Moreover, the entomological inoculation rate (EIR), the number of infectious bites per 

person per time period, is an essential measurement of transmission intensity by 

anopheline vectors and is calculated as the product of the human biting rate and the P. 

falciparum sporozoite infection rate (SIR) [163, 186].  A basic assumption of the EIR is 

that a mosquito bites once and takes a single blood meal per gonotrophic cycle [15, 187].  

However, if mosquitoes exhibit multiple blood feeding behavior, then the human biting 
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rate increases and subsequently the EIR are underestimated, and most importantly the 

increased risk of malaria transmission within the human population goes unrecognized 

[15, 187]. Furthermore, an increased biting rate decreases the vector population size 

needed to sustain malaria parasite transmission, and smaller populations tend to be more 

difficult to control and eliminate [188]. Accordingly, vector control programs that aim to 

reduce human infection by decreasing the Anopheles population may not be effective 

because a single mosquito can contribute to multiple human infections. Basic ecological 

modeling of arthropod disease vectors has demonstrated that an underestimation of the 

proportion of people bitten may lead to a 2-4 fold increase in the basic reproductive 

number (Ro), the number of infected individuals resulting from a single infectious person 

[106, 107].  When the EIR is less than 100 ib/p/yr in an endemic area, and immunity and 

a finite population are included in a malaria transmission model, the basic Ro in a 

population may actually decrease.  This suggests that more bites are focused on 

individuals who are already infected [105].  If the annual EIR is higher, then the Ro will 

increase with little to no heterogeneity in biting behavior [105].  Thus, it is crucial to take 

into account multiple blood feeding behavior when calculating the EIR to better define 

the Ro of malaria transmission and the extent of heterogeneity, or inequality of risk.  

  Multiple blood feeding can occur due to natural disturbances in the environment, 

as well as host defensive behaviors that affect the ability of mosquitoes to take a single 

full blood meal for oogenesis [57, 172].  Vector control measures such as indoor residual 

spraying (IRS) and long-lasting insecticide treated nets (LLINs) may also deter 

mosquitoes from reaching repletion in order to avoid contact with insecticides [169]. 

Interestingly, laboratory reared insecticide resistant An. arabiensis were found to 
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maintain metabolic resistance with age when taking multiple blood meals versus those 

that did not feed or took only a single blood meal, suggesting that taking more than one 

blood meal is beneficial for the longevity of female anopheline mosquitoes [189]. 

Heterogeneity in malaria transmission risk can also result from inherent host 

attractiveness to mosquitoes, proximity to breeding sites, host age and body size, and bed 

net use and quality [15]. The rate at which mosquitoes take multiple blood meals differs 

among species and may be further driven by ecology.  In places where Aedes aegypti 

reside and dengue virus is the major public health concern, multiple blood feeding 

behavior has been routinely observed and associated with heterogeneities in biting 

behavior, where a certain proportion of individuals or gender are bitten more often [58].  

For example, Ae. aegypti in Puerto Rico and south central Thailand were found to have 

multiple blood feeding rates of 18% and 45% respectively [58, 59].  In Puerto Rico, it 

was found that there was a feeding bias towards young adults and males, whereas in 

south central Thailand, it was found that non-residents visiting collection households 

were more likely to be bitten, highlighting the importance of human movement among 

and within communities in dengue transmission [58, 59]. Similarly, multiple blood 

feeding and heterogeneity in foraging behavior has also been detected in Anopheles 

vectors of malaria in Africa.   In western Kenya, DNA profiling of human blood samples 

and mosquito blood meals within a household was performed, and it was found that the 

multiple blood feeding frequency of An. funestus and An. gambiae was 14% and 11% 

respectively [57].  The same study also revealed that only 20% of profiled human hosts 

were contributing to more than 50% of all blood meals, and young adults were more 

likely to be bitten than older adults and children [57].  If adults were sleeping under an 
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untreated bed net, while children remained unprotected, it appeared that the bites were 

redirected to children [57]. There were no epidemiological or ecological differences in 

human-vector contact between highland and lowland areas [57].  Similarly, multiple 

blood feeding rates and inequality in biting behavior were investigated in southern 

Zambia pre- and post- insecticide treated net (ITN) distribution.   The dominant vector in 

Macha, Southern Province, Zambia is An. arabiensis and is anthropophilic despite high 

coverage of ITNs.  The multiple blood feeding rate decreased from 18.9% to 9.1% pre- 

and post- ITN distribution, and it was demonstrated that the difference was due to 

heterogeneity in biting behavior, where mosquitoes fed on people who were not protected 

[187].   Before ITN distribution in 2007, 20% of individuals contributed to 40% of 

mosquito blood meals, whereas post ITN distribution, 25% of individuals contributed to 

78.1% of mosquito blood meals [187].  Although there were no differences observed in 

the human gender preference by the population of An. arabiensis, there was significant 

spatial clustering of households with large densities of An. arabiensis, which may make 

those households appropriate targets for future malaria control activities [187].   By 

characterizing Anopheles multiple blood feeding behavior, the EIR and heterogeneity in 

risk are better defined to focus interventions on high-risk individuals and/or households. 

Though the effect of the malaria parasite on mosquito feeding behavior has not 

been well studied in the field [15, 190], research has revealed that the foraging behavior 

of Leishmania-infected sandflies, Yersinia pestis-infected rat fleas, and trypanosome-

infected tsetse flies is impaired, leading to an inability to obtain full blood meals and 

increased probing.  Laboratory-based studies of altered feeding behavior by parasites in 

the malaria system have shown that sporozoites can lower apyrase activity, as well as 
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increase duration of probing, number of probes, and the likelihood of probing occurring 

[60, 190, 191]. However, the aforementioned studies were conducted using unnatural 

vector-host systems and anesthetized hosts, and the number of probes does not increase 

the likelihood of an infection event [60]. A field study in Tanzania demonstrated that P. 

falciparum infected An. gambiae sensu lato were more likely to feed on more than one 

host than uninfected An. gambiae s.l., 22% versus 10% respectively [60].  Likewise, both 

naturally infected An. gambiae s.l. and An. funestus were likely to probe more often and 

for a longer duration than their uninfected counterparts in western Kenya [190]. 

Accordingly, P. falciparum’s ability to manipulate Anopheles foraging behavior may be a 

key mechanism of ensuring endemicity within a human population.    

The P. falciparum sporozoites found in infected Anopheles mosquitoes can be 

further characterized in the context of multiple blood feeding behavior.  The P. 

falciparum complexity of infection (COI) is defined as the genetic diversity of a single 

malaria parasite species [83, 192].  The production of multiple parasite clones occurs 

exclusively in the mosquito midgut and has been correlated with the frequency of cross-

mating and subsequent meiotic recombination [76, 82]. Studies in Cameroon have 

suggested that in comparison to monoclonal infections, multiclonal infections in 

mosquitoes are found at lower parasitemias, more likely to evade the mosquito immune 

defenses, and perhaps be more efficiently vectored to human hosts [74]. This may also 

lead to competition among clones that have the potential to influence parasite structure 

and result in the transmission of parasites that confer drug resistance or changes in 

virulence [74, 76, 193, 194]. Circulation through the vector-host-parasite system relies on 

the proportion of clones that successfully survive the liver and blood stages to produce 
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gametocytes [195].  Both the mosquito biting rate and liver stage immunity vary with age 

and environment such that spatial and temporal dynamics are important to capture in COI 

studies [195, 196].  In the holoendemic village of Dielmo in Senegal, it was found that 

infection complexity in asymptomatic individuals was related to the number of parasite 

clones that were able to successfully begin the blood stage cycle [196].  In a malaria 

transmission model where multiclonal infection occurs due to super infection, or multiple 

mosquitoes with different clones contribute to human infection, a lower number of 

infective mosquito bites reflects a lower number of clones detected in peripheral 

circulation [196]. Recently, however, it has been observed that the parasite clones in 

infected individuals are actually related haplotypes, suggesting that an infectious 

mosquito can successfully transmit multiple clones in a single bite [197].  A major 

drawback to these studies is that they do not account for multiple blood feeding behavior 

by mosquitoes, which increases the human biting rate, and thus a potential increase in the 

number of different clones received or frequency of clones transmitted by a mosquito.  

As a result, the anopheline multiple blood feeding frequency and P. falciparum COI 

together in infected mosquitoes can provide crucial information about foraging behavior 

and our understanding of parasite transmission. 

Located along Lake Mweru in northern Zambia and bordering the Democratic 

Republic of Congo (DRC), Nchelenge District experiences intense malaria transmission 

year-round.  Both LLIN distributions and IRS campaigns have been implemented in 

Nchelenge since 2006, but the area still remains at high risk for malaria [7].  Collections 

in 2012 and 2013 have shown that the major vectors of P. falciparum transmission in this 

area are An. funestus and An. gambiae, both of which are highly anthropophilic and 
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display both spatial and temporal dynamics (See Chapter II).  Temporally, An. funestus is 

the dominant vector and has a higher entomological inoculation rate than An. gambiae in 

both the wet and dry seasons. In contrast, An. gambiae population increases in abundance 

during the wet season, but then decreases dramatically to almost zero and has no 

contribution to transmission in the dry season. Spatially, during the wet season, An. 

funestus is the dominant vector in villages near Kenani Stream, a large stream that flows 

into Lake Mweru, and An. gambiae is the dominant vector in villages along Lake Mweru 

(See Chapter II) (Figure 4.5). Despite LLIN and IRS programs, An. funestus and An. 

gambiae together maintain high year-round transmission. 

The specific aims of this study were to investigate the overall multiple blood 

feeding frequency of An. funestus and An. gambiae and its impact on EIR, host gender 

preference by both vector species, and the COI in mosquitoes harboring the malaria 

parasite in Nchelenge District, Zambia.   Additionally, we investigated if P. falciparum 

infection in mosquitoes influences multiple blood feeding behavior.  We sought to 

identify any multiple blood meals in morphologically unfed but PCR confirmed fed 

mosquitoes, and performed comparisons of vector multiple blood feeding rates based on 

collection methods (CDC LT only, CDC LT and PSC, PSC only). This study provides 

evidence of one of the highest rates of multiple blood feeding behavior by major 

anopheline vectors in sub-Saharan Africa, as well as a description of multiple P. 

falciparum clones present in mosquitoes and presumably transmitted with each bite in 

Nchelenge District.  This information will be especially important as future vector control 

programs are implemented in Nchelenge. Our findings may be valuable for surveillance 
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of Anopheles foraging behavior and infection complexity of the malaria parasite 

circulating in other parts of Africa.  

Materials and Methods 

Study Area. 

This study was conducted in collaboration with the Johns Hopkins Southern 

Africa International Centers for Excellence in Malaria Research (ICEMR) project which 

is run at three field sites: Choma District, southern Zambia, Nchelenge District, northern 

Zambia, and Mutasa District, eastern Zimbabwe (See Figure 4.1). The focus of the 

research reported here is in Nchelenge District, Luapula Province, in Zambia (9° 

19.115’S, 28° 45.070’E) at an elevation of approximately 807 meters above sea level and 

marsh ecotype (Figure 4.2). Nchelenge District lies along the eastern perimeter of Lake 

Mweru, which serves as a border between the southeastern part of the Democratic 

Republic of Congo (DRC) and the northern part of Zambia.  Kenani Stream, a large 

stream that flows from south to north through the study area into Lake Mweru. The 

region experiences three seasons: a single rainy season from November to May, a cool 

dry season from May to August, and a hot dry season from August to November (Figure 

4.3).  Annual rainfall follows a seasonal pattern, with a peak of 2700 mm during the rain 

months and approximately 0 mm during the dry months (Figure 4.3). Although passive 

surveillance data from 11 health centers in the district suggest some seasonality in 

confirmed malaria cases, the overall rates throughout the year are high and characterize 

the region as holoendemic (Figure 4.4). Mosquito sampling was performed at 

longitudinal and cross-sectional households enrolled in the ICEMR program located 
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within two defined 1-km2 grids along both Lake Mweru and another two 1-km2 grids 

inland near Kenani Stream.  Five villages were involved in this study: three villages in 

grids r34c5 and r34c6 (Katuna, Yenga, and Malulu) near the lake and two villages in 

grids r29c10 and r26c11 (Kapande B and Mutepuka) inland along the stream (Figure 

4.2). These villages are representative of the local demography and landscape, and 

frequent movement of local people from fishing to farming (seasonally), as well as high 

malaria incidence. LLIN and IRS programs were initiated in 2006 and 2007 respectively 

[6]. In 2012, another LLIN distribution campaign took place and resulted in an average 

coverage of 1.24 nets per person [7]. IRS with a carbamate insecticide was conducted in 

2013, but was applied mainly to households found along the major road that runs along 

Lake Mweru (personal communication with Dr. Mike Chaponda, TDRC, 2014).  

Recently, an IRS campaign with the organophosphate pirimiphos methyl (Actellic 300 

CS, Syngenta Limited) began in September 2014 and was chosen due to high resistance 

of Anopheles vectors in the area to most insecticide classes (Personal communication 

with Dr. Douglas Norris, JHBSPH, and Mbanga Muleba, TDRC, 2014).  

Mosquito Collection and Handling. 

From March 5-April 25, 2013 (wet), mosquitoes were collected by Center for 

Disease Control light traps (CDC LTs) and pyrethroid spray catches (PSCs) in three 

villages along Lake Mweru (Yenga, Katuna, and Malulu) and two inland villages along 

Kenani Stream (Kapande B and Mutepuka). Collection methods were approved by the 

Johns Hopkins Bloomberg School of Public Health IRB (#00003467) and by a Zambian 

IRB (TDRC/ERC/2010/14/11). In the March-April 2013 collection, lakeside and 

streamside villages were sampled intensely on alternate days each week. CDC LTs were 
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performed on Monday, Wednesday, and Friday, and PSCs on Tuesday, Thursday, and 

Saturday during each collection week.  Briefly, CDC LTs were hung indoors next to 

sleeping persons under LLINs, approximately 1.5 m above the floor and would typically 

run from 6:00pm to 6:00am.  PSCs were performed in the morning, between 6:00am and 

10:00am, in selected households where white sheets were placed over all surfaces and a 

100% synthetic aerosol pyrethroid was applied towards the ceiling, eaves, and walls,after 

which the home was closed. After approximately 15 minutes, the sheets were removed 

from the homes and knocked down mosquitoes were collected. All field-caught 

mosquitoes were killed immediately by freezing.  The female anopheline mosquitoes 

were separated and morphologically identified to species using a dissecting microscope 

and dichotomous key [97]. Up to three mosquitoes were placed in each labeled 0.6 mL 

microcentrifuge tube containing silica gel desiccant and cotton wool, and stored either at 

room temperature or frozen at -20°C until laboratory processing, which took place at 

Johns Hopkins University Bloomberg School of Public Health in Baltimore, Maryland.  

DNA Preparation and PCR. 

The head and thorax of each collected anopheline were separated from the 

abdomen and a modified salt extraction method was used to extract DNA from the 

abdomen.  The morphological identification of anopheline mosquitoes was confirmed 

using a polymerase chain reaction (PCR) specific for members of the An. gambiae 

complex or An. funestus complex [121, 122]. If neither PCR was able to identify the 

mosquito species, then a PCR targeting the ITS2 gene was used [198]. The ITS2 PCR 

amplifies a portion of the intergenic spacer region 2 of the ribosomal DNA, and has a 
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range of base pair sizes that are specific to Anopheles species outside of the An. gambiae 

and An. funestus complexes [121].  

All specimens, both morphologically fed and unfed, were tested for blood meal 

host using the Kent al. 2005 multiplex PCR, which targets the cytochrome b gene of the 

mitochondrial genome producing a range of mammalian host specific bands from 132-

680 base pairs [119]. A modification to the Kent PCR enhanced detection of the human 

host; the original Kent et al human forward primer was replaced with a pair of forward 

and reverse primers that amplify a unique 193 base pair region of the human cytochrome 

b gene. The forward primer is FOR16068: 5’- GAC TCA CCC ATC AAC AAC CG -3’ 

and the reverse primer is REV16260: 5’- GGC TTT GGA GTT GCA GTT GA -3’.  

A more sensitive PCR was performed on samples that did not amplify a band(s) 

for blood meal host by Kent et al PCR [11].  The Fornadel et al. 2010 PCR amplifies a 98 

base pair region of the cytochrome b gene of the mitochondrial genome of the 

mammalian host, followed by a restriction fragment length polymorphism (RFLP) assay 

specific to an animal host of interest [11].  

DNA from mosquito abdomens was also used to test for the presence of the P. 

falciparum parasite by PCR. The Norris et al. PCR, which was developed in the 

laboratory, amplifies a small portion of the cytochrome b gene of P. falciparum, is more 

sensitive and reliable than the commonly used Snounou et al. PCR, and has an expected 

fragment size of 183 base pairs [34, 125].  
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Enzyme-linked Immunosorbent Assay (CSP-ELISA) for Plasmodium falciparum 

Detection 

The CSP-ELISA method as previously described by the Malaria Research and 

Reference Reagent Resource Center (MR4) was used to detect P. falciparum 

circumsporozoite protein (CSP) in the mosquito head and thorax.  Briefly, a 96-well U-

bottom plate is incubated overnight with P. falciparum CSP capture antibody.  Then, 

each mosquito head and thorax is homogenized using a pestle, and added to the plate (38 

mosquitoes per plate) with CSP capture monoclonal antibody.  Following a two-hour 

incubation, the plate is washed 7 times, and then the CSP monoclonal antibody with a 

conjugated peroxidase tag is added to the plate and incubated for one hour.  The plate is 

then washed 7 times, and ABTS solution is added to visualize the presence of CSP in the 

mosquito head and thorax for one hour.  If CSP protein is present in the mosquito head 

and thorax, then the well containing an individual mosquito will turn green and suggests 

that the mosquito was infected with sporozoites and therefore infectious.  The plate is 

then placed in a spectrophotometer set at 400-nanometer wavelength for analysis.  The 

values associated with each mosquito that are two times the average of the negative 

controls on the plate are considered to be CSP or P. falciparum positive. Due to the large 

number of anophelines caught in the March-April 2013 collection, a representative sub-

sample of mosquitoes was chosen for CSP-ELISA. The sporozoite infection rate (SIR) 

was calculated as the proportion of infectious mosquitoes confirmed by ELISA and the 

total mosquitoes tested in each collection.  
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Microsatellite analysis. 

Multiple blood feeding behavior was determined by amplifying and sequencing 

human microsatellites in human fed anophelines. A subsample of human blooded 

Anopheles mosquitoes was used for microsatellite analysis. Four loci were used to 

determine alleles, as well as the gender of the host. Primers fluorescently labeled with 

HEX and FAM were used to amplify the CTT (CSF1PO, THO1), Penta D STR (Penta 

D), and Silver-STR (D13S317) loci [15, 57-59, 199]. Minor modifications of the primers 

by Jiang et al. 2012 [199] were made to all primers compared to those used in previous 

studies [15, 57-59, 199] (Table 4.6). The 20 µl PCR reaction for each microsatellite 

contained 10 mM Tris, pH 8.3, 50 mM KCl, 1.5 mM MgCl2, 0.01% gelatin, 200 µM 

dNTPs, 2.0 units Taq polymerase, 20 pmol each forward and reverse primers, and 2 µl 

template DNA.  

To determine the gender of human blood meals, the Amelogenin locus was 

amplified using FAM-labeled primers as previously described [200] (Table 4.6). The 50 

µl PCR reaction for Amelogenin contained 10 mM Tris, pH 8.3, 50 mM KCl, 1.5 mM 

MgCl2, 0.01% gelatin, 400 µM dNTPs, 2.0 units Taq polymerase, 25 pmol each forward 

and reverse primers, and 2 µl template DNA. One microliter from the CSF1PO, THO1, 

Penta D, and D13S317 PCR reactions, and 2 µl of the Amelogenin PCR reaction were 

multiplexed together with 15 µl formamide and 0.5 µl GeneScan-500 Rox size standard 

(Applied Biosystems Inc., Foster City, CA), and incubated at 95°C for 5 minutes. The 

samples were then prepared for shipment and subsequent fragment analysis to the DNA 

Analysis Facility on Science Hill at Yale University, New Haven, Connecticut. 
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Sequencing results were sent back to and analyzed at Johns Hopkins Bloomberg School 

of Public Health, Baltimore, Maryland.   

Plasmodium falciparum complexity of infection (COI) 

Using mosquito specimens that were positive for P. falciparum by PCR and/or 

ELISA, the COI was determined by genotyping the polymorphic loci of merozoite 

surface proteins 1 and 2 (msp1 and msp2) and the glutamate receptor protein (glurp) of 

the parasite [194].  The repetitive regions block 2 of msp1 and block 3 of msp2 were 

amplified by nested PCR, and the RII repeat region of glurp by semi-nested PCR [194].  

In the first nested reaction, the primer pairs correspond to conserved regions of the 

polymorphic regions of each gene [194, 201]. The first reaction product was then used in 

the second nested reaction as the template for six subsequent and separate reactions, each 

of which uses a specific primer pair to detect allelic variants from the K1, MAD20, and 

RO33 families of msp1 block 2, the FC27 and 3D7/IC families of msp2 block 3, and the 

RII block of glurp [194].  Following gel electrophoresis, the genotypes were 

characterized by the base pair sizes using FluorChem Image Analyzer (Protein Simple).  

For each isolate, the number and size of genotypes, as well as the msp1 and msp2 allelic 

families were described.  

An infection was considered monoclonal if a single PCR fragment was detected 

for at least one locus [194].  If more than one PCR fragment was detected for any of the 

loci:  msp1, msp2, or glurp, then the infection was considered polyclonal [194].  The 

number of bands for msp1 and msp2 were determined by adding the bands observed for 

the K1, MAD20, RO33 families, and the FC27 and 3D7/IC families respectively [74, 75, 
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194, 202].  The largest number of bands at whatever locus was considered the overall 

COI of that infection [74, 75, 194, 202]. The alleles for each family were placed into bins 

with a 40 bp width to determine the number of distinct alleles [203-207]. The mean COI 

was calculated by dividing the sum of each sample’s overall COI by the number of 

positive samples.  

Statistical Analysis. 

Pearson’s chi-square test of independence was used to compare the multiple blood 

feeding rates between An. funestus and An. gambiae in Nchelenge District during the 

March-April 2013 collection.  Differences in gender preference by each vector species 

were determined by exact binomial test where P=0.50. Due to small sample sizes, 

Fisher’s exact test was used to determine any overall relationships in multiple blood 

feeding rates of P. falciparum infected mosquitoes, “unfed” but fed mosquitoes, and 

among the COI of each loci. Negative binomial regression was used to further investigate 

the overall COI among antigenic markers, as well as to compare the COI of each locus 

and the overall COI measurements between An. funestus and An. gambiae. Detection of 

parasite clones at each locus was compared by logistic regression. Statistical significance 

was defined as a p-value less than or equal to 0.05. All statistical analyses were 

performed using STATA version 11.   

Results 

Species Identification. 

In the March 5-April 25, 2013 collection (wet), 2989 Anopheles mosquitoes were 

caught from 77 households, a majority of which were An. funestus (80.9%, n=2417), 
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followed by An. gambiae (18.9%, n=564), and An. leesoni (0.2%, n=9). Overall, An. 

funestus was the most abundant anopheline species in the 2013 wet season collection, 

followed by An. gambiae and An. leesoni (See Chapter II).  

Spatial differences in Anopheles abundances were observed between the villages 

along Lake Mweru and inland villages near Kenani Stream in the March-April 2013 

collection (See Chapter II).  A total of 133 anopheline were collected in the lakeside 

villages (Katuna, Yenga, and Malulu) and composed of mainly An. gambiae (85.7%, 

n=114), with the remainder An. funestus (14.3%, n=19). In contrast, in roughly the same 

number of collections, 2,856 anophelines were collected at the streamside villages 

(Kapande B and Mutepuka), which were composed of 2,397 An. funestus (83.9%), 450 

An. gambiae (15.8%), and 9 An. leesoni (0.32%). In the lakeside villages during the wet 

season, the most abundant anopheline species was An. gambiae, but was the second most 

abundant species in the streamside villages. An. funestus, however, was the most 

abundant species in the streamside villages and the second most abundant species in the 

lakeside villages.  An. leesoni was only found in the streamside collections.  

Blood feeding behavior. 

Regardless of being morphologically classified as fed, all Anopheles mosquitoes 

were tested for mammalian host blood meal using the Kent et al. 2005 and the Fornadel 

et al. 2010 PCRs. This was performed due to the possibility that there may be mosquitoes 

that appear “unfed”, but are actually fed as determined by the molecular assays.  

In the March-April 2013 collection, 18.4% (444/2417) An. funestus and 17.7% 

(100/564) An. gambiae were visually fed and positive for human and/or goat blood 
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meals. Of the anophelines that were classified as “unfed”, 6.7% (164/2437) fed on human 

and/or goat hosts: 153 An. funestus and 11 An. gambiae. Human blood meals were 

detected in 95.4% (146/153) and 72.7% (8/11) of An. funestus and An. gambiae 

respectively. Mixed human and goat blood meals were detected in 7 An. funestus blood 

meals and 3 An. gambiae. No fed An. leesoni were identified.  The HBIs for An. funestus 

and An. gambiae were 0.95 and 0.93 respectively.  

Plasmodium falciparum detection. 

Both PCR and ELISA methods were used to detect Plasmodium falciparum in the 

abdomen and the head and thorax of collected anophelines respectively. In the March-

April 2013 collection, P. falciparum was detected in 60 mosquitoes composed of 39 An. 

funestus and 21 An. gambiae: 27 ELISA positive, 25 PCR positive, and 8 ELISA and 

PCR positive.  

Multiple blood feeding. 

A subsample of human blooded An. funestus and An. gambiae were used for 

human microsatellite genotyping in all collections.  An. leesoni was not included because 

of small sample size. In the March-April 2013 collection, 491 human fed Anopheles 

mosquitoes were analyzed for human microsatellites, of which 376 (76.6%) were 

successfully genotyped at more than one locus. This sample set was composed of 263 An. 

funestus and 113 An. gambiae from both CDC LTs and PSC traps. Fed mosquitoes that 

were detected by the Fornadel et al. PCR made up 71.3% of the failed samples (82/115). 

Of the four loci, CSF1PO had the lowest failure rate, 35.8% (176/491), and PentaD had 

the highest failure rate, 58% (285/491).  The overall multiple blood frequencies for An. 
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funestus and An. gambiae were 23.2% (n=61/263) and 25.7% (n=29/113), and were not 

statistically significant (P>0.05). The multiple blood feeding frequencies of An. funestus 

and An. gambiae collected by CDC LT only or PSC only were also determined. In CDC 

LT only collections, 26.9% (18/67) of An. funestus and 28.9% (11/38) of An. gambiae 

took more than one blood meal (P>0.05). In PSC only collections, 21.9% (43/196) of An. 

funestus and 24.0% (18/75) of An. gambiae took more than one blood meal (P>0.05). 

When collection methods were compared for An. funestus and An. gambiae, there was no 

statistical significance in the multiple blood feeding rates (P>0.05).  

When the multiple blood feeding frequencies for each species were compared 

between the lakeside and streamside villages in the March-April 2013 collection, the 

rates were similar between both areas, though it must be noted that the collection sizes of 

each vector for the lakeside was small: 22.2% (2/9) lakeside and 23.2% (59/254) 

streamside for An. funestus respectively and 25% (7/28) lakeside and 26.8% (22/85) 

streamside for An. gambiae respectively.  There was no statistical significance in multiple 

blood feeding rates between the lakeside and streamside for An. funestus (P>0.05).  An. 

gambiae near the stream were 0.15 times less likely to have taken multiple blood meals 

than near the lake (95% CI: 0.05-0.46, P<0.05). The multiple blood feeding behavior was 

then measured for P. falciparum positive and human fed mosquitoes to determine if the 

parasite modulates feeding behavior; the rates were 42.9% (3/7) and 20% (1/5) for An. 

funestus and An. gambiae respectively, but were not significant between species 

(P>0.05).  Like the lake versus stream comparison, the sample size for malaria parasite 

positive mosquitoes was small for each anopheline species. Surprisingly, multiple blood 

meals were found in visually “unfed” mosquitoes, 3.8% (2/52) An. funestus and 26.8% 
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(11/41) An. gambiae, but the proportion of multiple blood meals detected was not 

statistically significant within species (P>0.05). 

Human Gender Preference. 

The gender of human blood meals detected in Anopheles mosquitoes collected in 

March-April 2013 collection was determined by genotyping the Amelogenin locus, a 

single copy gene located on the human X and Y chromosomes and can be used to 

differentiate human sex. Of the 491 samples tested, 399 (81.3%) successfully amplified 

the Amelogenin locus. The proportion of human blood meals identified as male was 

higher than that of females: 53.5% (154/283) and 45.6% (129/116) for An. funestus and 

56.9% (66/116) and 43.1% (50/116) for An. gambiae respectively, but were not 

significant (P>0.05). When the proportion of male blood meals taken by An. funestus and 

An. gambiae were compared, they were not different (P>0.05). The same trend of 

predominately male blood meals was observed for human fed An. funestus and An. 

gambiae in the CDC LT only and PSC only collections, lakeside and streamside villages, 

P. falciparum infected mosquitoes, and visually “unfed” but fed mosquitoes, but were not 

found to be statistically different (P>0.05 within and among species).   

P. falciparum complexity of infection (COI) in Anopheles mosquitoes. 

Both PCR and ELISA P. falciparum confirmed anophelines were used to 

investigate the complexity of infection (COI). In the March-April 2013 collection, the 

rate of successful amplification of msp1, msp2, and glurp loci in 60 P. falciparum 

infected mosquitoes was 71.7% (n=43), 78.3% (n=47), and 40% (n=24) respectively, and 

only 16.9% (n=11) samples failed when all four loci were combined. The genotyped 
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mosquitoes comprised of 21 An. gambiae and 39 An. funestus. In the successfully 

amplified samples, multiple clones and single clones were detected in 46 (93.9%) and 3 

(6.1%) infected mosquitoes respectively.  The overall range of parasite clones for An. 

funestus and An. gambiae were similar: 1-12 and 1-14 parasite clones respectively.  The 

mean COIs of An. funestus and An. gambiae were 6.1 and 6.8 respectively (P>0.05), and 

the overall mean COI was 6.4.  

The mean COIs of the msp1, msp2, and glurp loci were investigated for 

relationships and differences. The mean COI was 5.3, 5.4, and 1.6 for msp1, msp2, and 

glurp respectively. The msp1 and msp2 COIs were found to be independent of each other 

(P>0.05), whereas there was a statistical association between the msp1 and glurp COIs, 

and the msp2 and glurp COIs (P<0.05).  Differences in COIs among antigen markers 

revealed that the msp1 and msp2 COIs were 5 times and 5.3 times that of the overall 

glurp COI (P<0.05), but there was no statistical significance between the msp1 and msp2 

COIs (P>0.05).  

The COIs of the three loci were compared for each vector species, as well as 

between species.  In An. funestus, the COIs of msp1 and msp2 were 6.3 and 6.2 times 

higher than that of glurp (P<0.05), but there was no statistical significance between msp1 

and msp2 COIs (P>0.05).   Similarly, in infected An. gambiae, the msp1 and msp2 COIs 

were 5.5 and 7.6 times that of glurp (P<0.05), but no statistical significance was observed 

between msp1 and msp2 (P>0.05). When the msp1, msp2, and glurp loci were compared 

between An. funestus and An. gambiae, no statistical significance in COI was observed 

(P>0.05).   
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Detection of clones among the msp1, msp2, and glurp markers, as well as allelic 

families within a locus was compared. For each allelic family, the numbers of 

successfully genotyped samples were 40 (66.7%) for K1, 24 (40%) for MAD20, 26 

(43.3%) for RO33, 45 (75%) for FC27, and 38 (63.3%) for IC/3D7. Parasite clones were 

more likely to be detected at the msp1 and msp2 loci than glurp (OR=4.5, 95% CI: 2.06-

9.81, P<0.05 for msp1; OR=5.4, 95% CI: 2.43-12.10, P<0.05 for msp2).  There was no 

significant significance in the ability to detect parasite between the msp1 and msp2 loci 

(P>0.05). When the presence of parasite in the msp1 locus was further defined, there was 

a lower chance of detecting clones in the MAD20 and RO33 loci compared to K1 

(OR=0.33, 95% CI: 0.16-0.70, P>0.05 for MAD20; and OR=0.38, 95% CI: 0.18-0.80, 

P<0.05 for RO33). The FC27 and 3D7 families of msp2 did not differ in the detection of 

the malaria parasite in infected mosquitoes (P>0.05).  

Spatial differences in the lakeside and streamside COIs were also explored.  In the 

lakeside villages, only 3 infected Anopheles mosquitoes were collected, all of which were 

An. gambiae.  In the streamside villages, 57 infected anophelines were collected and 

composed of 39 An. funestus and 18 An. gambiae. The average COI between the lake and 

stream for both vectors species was 12.3 and 5.1 respectively, and was close to 

significance (P=0.055). There was no statistical significance in infected An. gambiae 

collected at lakeside and streamside villages (P>0.05) 

The number of distinct genotypes detected at each antigen marker was observed.  

Twenty-nine msp1 genotypes were detected: 11 (37.9%) K1, 8 (27.6%) MAD20, and 10 

RO33 (34.5%) (Table 4.7). Additionally, there were 36 distinct msp2 genotypes: 20 

(55.6%) FC27 and 16 (44.4%) 3D7 (Table 4.7). For glurp, 12 unique genotypes were 
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observed (Table 4.7).  The K1 and FC27 families showed greater parasite diversity, 

suggesting that these two families were predominant during the March-April 2013 

collection.  

Discussion 

 The foraging behavior of Anopheles vectors in Nchelenge District was 

investigated, especially in the context of malaria parasite transmission intensity.   The 

March-April 2013 collection revealed An. funestus s.s. and An. gambiae s.s. as the 

primary and secondary malaria vectors respectively, both of which were highly 

anthropophilic. It was found that An. funestus and An. gambiae exhibit multiple blood 

feeding behavior at rates of 23.2% and 25.7% respectively when CDC LT and PSC 

collections were combined.   Statistical differences in the multiple blood feeding 

frequencies between vectors was not observed, indicating that An. funestus and An. 

gambiae feed on more than one person at relatively the same rates.  These rates are much 

higher than the 11-14% multiple feeding rates for An. gambiae s.s. and An. funestus s.s. 

reported from western Kenya [57], 10% rate for An. gambiae s.s. in Nigeria [208], as well 

as the 9% rate for An. funestus s.l. in Tanzania [209]. Spatially, it was predicted that there 

would be differences in multiple blood feeding behavior for both vectors because of the 

relative abundances of each vector in the lakeside and streamside villages (See Chapter 

II).  Our results demonstrate that there was no difference in the multiple blood feeding 

frequencies of An. funestus between the lakeside and streamside sites, whereas An. 

gambiae had a higher rate in the lakeside villages, though the small sample size should be 

noted. Multiple blood feeding rates of both vectors were also compared among collection 

methods: CDC LT only, CDC LT and PSC, and PSC only, and no differences were 
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observed.  This suggests that the multiple blood feeding rates of both Anopheles 

mosquitoes are consistent across these common collection methods, a finding that has not 

been explored elsewhere. The presence of multiple blood meals in CDC LT collections, 

which theoretically target foraging unfed mosquitoes, is unexpected and should be 

studied further. An increase in the frequency of blood meals taken by a mosquito can be 

due to several factors including host defensive behavior, response to vector control, 

and/or P. falciparum infection, all of which reduce interactions between the host and 

vector such that the vector must bite multiple times in order to get a full blood meal.  

Host defensive behaviors can influence the number of blood meals taken by a 

single mosquito. Previous field studies with Culex tarsalis mosquitoes showed attraction 

of unrestrained host baits in stable traps, but only partial or no blood meals were detected 

[210].  Laboratory studies have also illustrated the effect of host defensive behavior on 

feeding failure of Anopheles mosquitoes [170, 172, 210, 211].  It is also important to 

acknowledge differences in human behavior, sleeping arrangements, body size within a 

population.  

Furthermore, vector control measures, which limit human-vector contact, can be 

detrimental to An. funestus and An. gambiae [209].  In Tanzania, multiple blood meals in 

An. funestus s.l. and An. gambiae s.l. were detected in households without insecticide 

treated nets (ITNs) compared to households with ITNs, suggesting that ITNs provided 

substantial personal protection from mosquito bites [209]. Additionally, in western 

Kenya, An. funestus and An. gambiae also bit more than one person in areas where people 

do not sleep under bed nets or have any other means of disrupting mosquito contact [57]. 

There have been instances where blood fed anophelines were collected regardless of 
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control measures such as ITNs and/or indoor residual spraying (IRS), but multiple blood 

feeding behavior was not investigated in those studies [15, 41, 180, 187, 209]. Control 

efforts can alter the feeding behaviors of Anopheles mosquitoes, demonstrating their 

remarkable ability to adapt to various conditions. In Senegal, it was observed that after an 

ITN distribution campaign, pyrethroid resistant An. gambiae shifted from being 

endophagic in the late night to exophagic in early evening.  Likewise, An. funestus and 

An. gambiae had greatly reduced nocturnal feeding activity inside households and 

increased biting rate outdoors after ITN distribution in Tanzania [212]. An. faurauti in the 

Soloman Islands has become a predominately outdoor feeder after the introduction of 

ITNs and IRS [176]. In contrast, An. funestus and An. gambiae in Kenya continued to bite 

indoors and late night despite the use of ITNs [168]. Unfortunately, the multiple blood 

feeding frequencies of anophelines in these studies were not investigated pre-ITN and 

pre-IRS. The collection performed in this study took place in households with long 

lasting insecticide treated nets (LLINs) and IRS. Insecticide resistance testing in 

Nchelenge has revealed high resistance to pyrethroid and carbamate by An. funestus and 

An. gambiae, as well as DDT by An. gambiae [8]. The dramatically reduced effect of the 

insecticides may not only be a factor in continued indoor feeding, but may have also 

contributed to the high multiple blood feeding rates of both vectors due to partial or 

interrupted feeding such that they must bite more than once in order to reach repletion. 

There has also been some evidence that the malaria parasite in An. gambiae may increase 

multiple blood feeding behavior [60, 190], but this was not observed in a recent study of 

An. arabiensis in southern Zambia [15].  In Nchelenge, although the sample size was 

small, there was no apparent effect of P. falciparum infection and multiple blood feeding 
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behavior compared to uninfected An. funestus and An. gambiae. Surprisingly, multiple 

blood meals were detected in morphologically unfed mosquitoes that were PCR 

confirmed as fed.  This may indicate the sensitivity of the assay to detect multiple meals 

in a digested blood meal, which may suggest an increased frequency of disruptions in a 

vector’s ability to fully imbibe its human host due to a variety of aforementioned 

influences (ie. Host defensive behavior, vector control, and parasite modulation of vector 

feeding behavior).  

The method used to observe multiple hosts in a single blood meal was based on 

the three-allele method previously described by Norris et al. 2010 [15]. Previous multiple 

blood feeding studies in Kenya and Tanzania used 6-locus and 8-locus fingerprints 

respectively because several loci increase the detection of numerous alleles that can be 

matched to fingerprints of human blood samples [207, 209]. By using the three-allele 

method, two biases are present that underestimate the true proportion of blood meals 

from multiple humans; first, inbreeding in a population decreases the number of distinct 

alleles present in a blood meal [15] and second, PCRs that fail lead to decreased detection 

of unique alleles and thus exaggerate the bias [15]. The simulation model ultimately 

showed that with a missed detection rate of 30-32%, the bias is only 3-5% percent as long 

as three or more loci are included [15]. In the method used for this study, the missed 

detection rate was smaller, 23%, suggesting that the bias will be lower than that predicted 

by the Norris et al. 2010 simulation model. It should be noted that a large proportion of 

failed samples were anophelines that were visually unfed but PCR confirmed fed; 

genotyping failure was likely due to low human DNA concentration in these mosquito 

abdomens. 
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The epidemiologic impact of multiple blood feeding behavior by accounting for 

an increase in the human biting rate results in a significant increase in the reproductive 

number Ro, the number of new infections that arise from a single infected individual. For 

example, when a 20% daily multiple blood feeding rate is accounted for in the vectorial 

capacity equation, the predicted result is a 44% increase in the number of new infectious 

bites [92, 213]. Accordingly, the human biting rate (HBR) is a relatively sensitive 

component of the vectorial capacity equation. A simpler, more practical method that 

directly corresponds to malaria risk is the entomological inoculate rate (EIR). The EIR is 

defined as the number of infective bites per individual per time period, and is used to 

define the intensity of malaria transmission by a vector species.  The EIR is calculated by 

multiplying the HBR measured from CDC LT collections and the P. falciparum 

sporozoite infection rate in mosquitoes. If CDC LT raw counts are used for the HBR, the 

EIR will be underestimated if mosquitoes bite more than once in a single gonotrophic 

cycle.  The high multiple blood meal rates observed in An. funestus and An. gambiae has 

a potentially large effect on the EIR. In Nchelenge District from March-April 2013, the 

EIRs for An. funestus and An. gambiae were 39.6 ib/p/6mo and 5.9 ib/p/6mo respectively.  

If multiple blood feeding is taken into account, 23.2% for An. funestus and 25.7% for An. 

gambiae, the human biting rate and therefore EIR increases.  The resulting EIRs would 

increase to 48.8 ib/p/6mo for An. funestus and 7.4 ib/p/6mo for An. gambiae. The risk of 

malaria transmission by Anopheles vectors in an endemic area is severely underestimated 

if multiple blood meals are excluded from EIR measurements.  

The detection of P. falciparum sporozoites in Anopheles mosquitoes not only 

provides the sporozoite infection rate for EIR calculations, but it can also reveal the 
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diversity of the parasite transmitted to the human host.  In the context of multiple blood 

feeding behavior, malaria parasite infection complexity highlights the important role that 

mosquitoes play in the production of unique clones in the midgut and successful survival 

of those clones through effective transmission to multiple humans due to an increased 

human biting rate.   The March-April 2013 collection revealed multiple clones in over 

90% of infected anophelines.  The number of clones detected ranged from 1-12 and 1-14 

clones in An. funestus and An. gambiae respectively.  The overall COI in infected vectors 

was 6.4, signifying a very high transmission setting, and no spatial differences in COI 

between the lakeside and streamside villages was observed [75, 192, 214]. The parasite 

COI reported in this study is higher than the COIs reported in infected human blood 

samples in other parts of Africa, 3.7 in Tanzania, 3.4 in Cote d’Ivoire, 3.2 in Mauritania, 

3.0 in Uganda, 2.0 in western Kenya, 1.9 in eastern Sudan, 1.5 in Nigeria and the Gambia 

[75, 76, 194, 202, 204, 207, 215, 216]. Both infected An. funestus and An. gambiae in 

Nchelenge have similar COIs 6.1 and 6.8 respectively, which is consistent with vector 

distributions and their implicit interactions with human hosts. Additionally, 77 unique P. 

falciparum genotypes were identified; a large number of different genotypes were 

detected at the msp1 and msp2 loci. There have been recent reports of P. falciparum and 

P. ovale co-infections (Personal communication with Dr. Douglas Norris), and detection 

of mixed infections and its influence on P. falciparum COI would certainly add to the 

body of knowledge regarding the complex interaction of multiple infections, 

development of clones in the mosquito, and possible clinical outcomes. 

 Infection multiplicity in mosquitoes can be used to test the effectiveness of vector 

control efforts on chronic infection as it reflects the potential number of clones 
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circulating throughout a population, as well as novel clones that may contribute to 

clinical outbreaks. For example, in Tanzania, there was a 17% decrease in malaria 

infection prevalence in ITN users, but there was no difference in P. falciparum COI 

between users and non-users [217].  A similar finding was also observed in western 

Kenya [81].  Both studies suggest that ITNs may not have any effect on the protective 

immunity established in high transmission settings. The effectiveness of ITNs against a 

vector population is not only threatened by insecticide resistance, but also undermined by 

the ability of mosquitoes to take single or multiple blood meals and thus allowing 

continued transmission of parasite clones. Identification of genetically distinct malaria 

parasite clones in mosquitoes may also be used to predict the potential inoculation of 

novel clones that may exhibit resistance to drugs, increased virulence, or other variations 

that may produce clinical outbreaks [74, 76, 193, 194].  Several studies have suggested 

that multiclonal infections can predict the risk of clinical malaria, which is established by 

the rate of new infections, the number of clones inoculated at each mosquito bite, and the 

duration of infections [195, 218-221]. Multiclonal infections have been associated with 

chronic asymptomatic human infection, which has been the predominant outcome 

observed in infected individuals residing in Nchelenge (personal communication with Dr. 

Mike Chaponda, TDRC) [75, 192, 214]. Because COI is known to decrease in adults 

compared to children due to age and acquired immunity of P. falciparum, it will be 

interesting to investigate this difference in Nchelenge and the influence of mosquito 

foraging behavior. In Senegal, the infection complexity in asymptomatic individuals was 

related to the parasite clones that were able to reach the human blood stage; this 

suggested that a lower number of infective bites would lead to a lower number of clones 
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being detected in human peripheral blood [196]. However, multiple blood feeding 

behavior by a vector may actually lead to numerous clones being received from 

infectious individuals; conversely, a single infectious vector biting multiple humans may 

lead to a large number of clones detected in human blood circulation, inoculation of 

novel clones with varying potential to influence clinical outcome, and may actually 

contribute to stable circulation of numerous clones.  It will also be important to assess the 

importation of novel parasite clones due to migration patterns of individuals living in 

Nchelenge, where movement between the lake and stream areas is common. 

Because the genotyping experiments were performed on the abdominal DNA of 

PCR and/or ELISA confirmed anophelines, it is possible that the observed COI is an 

overestimation due to meiotic recombination and simply provides the maximum number 

of clones that could be transmitted to the human population.  However, a study in the 

Gambia observed multiple parasite clones in infected mosquitoes that were not detected 

in infected human blood samples and determined that the rate of distinct parasite alleles 

in mosquitoes was much higher than expected by P. falciparum meiotic recombination 

patterns [76]. As a result, they concluded that there are parasite clones that exist below 

the limit of detection, but thrive inside the mosquito and contribute to the production of 

new genetically diverse clones [76].  It will therefore be crucial in future studies to 

compare the parasite diversity between infected mosquitoes and infected human blood 

samples. The number of distinct genotypes may have been underestimated by choosing a 

conservative bin width of 40 bp, which was used to discern bands on multiple gels with 

varying electrophoretic migration of DNA fragments [206]. 



 122 

The identification of human male or female blood in fed Anopheles vectors can 

reveal heterogeneities in risk and potentially target control strategies. In Nchelenge 

District, An. funestus and An. gambiae took a slightly larger proportion of blood meals 

from males than females, but it was not significant, suggesting that both males and 

females are bitten approximately equally. There were also no spatial differences of male 

and female blood meals between the lake and stream. Similar research in southern 

Zambia also found no significant difference in the biting preference of An. arabiensis 

[187], whereas other studies of An. funestus and An. gambiae in Kenya and Tanzania 

observed a feeding bias towards young children and males respectively [207, 209]. DNA 

profiling of household inhabitants would have provided further details about the human 

age groups of human blood meals. Our finding is not concordant with a Nchelenge 

human malaria risk model that suggests that adolescent males are at greater risk of being 

infected than other age groups, likely due to decreased ITN use (unpublished, Dr. Jessie 

Pinchoff). Further studies will need to be conducted to better understand gender 

preference of mosquitoes, household members, ITN use, and human malaria 

epidemiology.  

The characterization of multiple blood feeding behavior and P. falciparum 

infection complexity in An. funestus and An. gambiae in Nchelenge District from March-

April 2013 revealed substantially high rates and P. falciparum complexity respectively 

compared to other parts of Africa. It was also shown that both human males and females 

receive approximately the same number of bites from both vectors. In combination with 

multiple blood feeding behavior, the COI results suggest that a tremendous number of 

clones are undergoing recombination events in the mosquito and being transmitted to 
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multiple hosts per gonotrophic cycle. Considering a recent IRS campaign and LLIN 

distribution, it will be crucial to investigate any spatial and temporal changes in the 

multiple blood feeding frequencies of both anopheline vectors, human gender preference, 

and P. falciparum genetic diversity post-control to identify heterogeneities in malaria risk 

and changes in parasite COI that may contribute to our understanding and development 

of effective malaria control.   
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Figure 4.1. The southern Africa ICEMR field sites.  Nchelenge District is in northern 

Zambia and represents a site with unsuccessful malaria control, Choma District in 

southern Zambia represents successful malaria control, and Mutasa District in eastern 

Zimbabwe represents resurgent malaria. 

 

 



 125 

 

 

  

 

 

 

Figure 4.2. Satellite image of the study area in Nchelenge District. The initial 1-km2 grids 

for ICEMR epidemiological and entomological surveys are highlighted in green. The 

white areas on the left side of the image represent Lake Mweru. The yellow arrows point 

to Kenani Stream that flows into Lake Mweru. The red circles denote the grids where 

mosquito collections were performed for thesis research: Katuna, Yenga, and Malulu 

villages are located in grids r34c5 and r34c6, Kapande B village is located in grid r29c10, 

and Kapande B village is located in grid r26c11. 

 

 

 

 



 126 

© 2014, Johns Hopkins University. All rights reserved. 

Rainfall is seasonal, but transmission is 
year-round!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Seasons and Average Monthly Rainfall in Nchelenge District.  The wet 

season is from November to May, the cool dry season is from May to August, and the hot 

dry season is from August to November.  The rainfall also follows a seasonal pattern in 

Nchelenge. 
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Figure 4.4. Reported counts of confirmed malaria by 11 health centers from April 2012 to 

December 2013.  The number of malaria cases remains high throughout both the wet and 

dry seasons (southern Africa ICEMR REDCap data). 
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Figure 4.5.  The proportion of Anopheles species caught per household that were sampled 

during the March 5-April 25, 2013 (wet) collection. Species are denoted by color: An. 

funestus s.s. (green), An. gambiae s.s. (yellow), and An. leesoni (purple). 
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Primer Primer Sequence 

CSF1PO A 

CSF1PO B 

5’- /5HEX/ACT CCA GGG CAG TGT TCC A -3’ 

5’- AGC CCA TTC TCC AGC CTC C -3’ 

D13S317 A 

D13S317 B 

5’- /5HEX/CAT GGT ATC ACA GAA GTC T -3’ 

5’- CCA AAA AGA CAG ACA GAA AGA TAG -3’ 

PentaD A 

PentaD B 

5’-/5HEX/AAG TAG GAT CAC TTG AGC CTG -3’ 

5’-CAA GTC CTT TTT TAG ATA TGT GA -3’ 

THO1 A 

THO1 B 

5’- /56-FAM/ATT CAA AGG GTA TCT GGG CTC TG -3’ 

5’- TGG GCT GAA AAG CTC CCG ATT AT -3’ 

Amelogenin A 

Amelogenin B 

5’- /56FAM/CCC TGG GCT CTG TAA AGA ATA GT -3’ 

5’- ATC AGA GCT TAA ACT GGG AAG CTG -3’ 

 

Table 4.1.  Microsatellite loci and their corresponding primers for multiple blood feeding 

assay and gender preference from human engorged Anopheles mosquitoes. 
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Table 4.2. Overview of P. falciparum complexity of infection (COI) in Anopheles 

mosquito vectors in Nchelenge District. 

 

 

 

 

Nchelenge District: Mar-May 2013 (wet) 

 
Genes 

 
# Positive (%) 

 
COI 

 
# Fragments 

# Distinct 
genotypes 

msp1 

 
K1 

 
MAD20 

 
RO33 

 5.3  29 

40 (66.7)  65 11 

24 (40)  47 8 

43.3 (26)  44 10 

msp2 

 
FC27 

 
IC/3D7 

 5.4  36 

45 (75)  108 20 

38 (63.3)  62 16 

glurp 24 (40) 1.6 38 12 

Overall COI  6.4  77 
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Chapter V  

Conclusions 

This dissertation is the first intense evaluation of mosquito vectors and their roles 

in a high malaria transmission setting in northern Zambia. Mosquito collections were 

performed in Nchelenge District, Luapula Province, to determine the major anopheline 

species contributing to transmission, their foraging behaviors, and the intensity of 

transmission of each species in the wet and dry seasons.  Temporal and spatial dynamics 

of the malaria vectors were also explored to understand their contributions to year-round 

transmission.  The traditional field method for the classification of engorged Anopheles 

mosquitoes and subsequent PCR determination of the mammalian host were examined, 

and its implications for the entomological inoculation rate (EIR) and human blood index 

(HBI) were acknowledged. Additionally, the foraging behavior was further defined to 

expose heterogeneities in malaria transmission, as well as to characterize P. falciparum 

infection complexity in anophelines to better understand their roles in the continued 

circulation of parasite clones within a human population.  

 There is a scarcity of research on the vectors and their contribution to 

holoendemic malaria in Nchelenge District. During the 20th century, there were few 

publications regarding the flight ranges of unidentified mosquitoes, the identification of 

An. funestus sensu lato and An. gambiae s.s. breeding sites, and the potential panmictic 

population made up of An. gambiae complex members A, B, and C, which are recognized 

as An. gambiae, An. arabiensis and An. quadriannulatus. More extensive research over 

the last decade has been performed in primarily in southern Zambia and also at sentinel 
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sites for detection of vector insecticide resistance.  In Nchelenge District, long lasting 

insecticidal net (LLIN) and indoor residual spray (IRS) campaigns have been 

implemented since 2007, but the area still experiences some of the highest disease 

prevalence rates in the country.  As a result, it has been imperative to identify and 

characterize the malaria vectors in Nchelenge to guide more effective control measures in 

this highly endemic area.  

Preliminary collections revealed that the potential vectors could be An. funestus 

s.s. and An. gambiae s.s., but more extensive collections were needed to confirm the two 

species and examine their behaviors in context of human malaria transmission. The work 

in this dissertation supports the hypothesis that the two main mosquito vectors of P. 

falciparum malaria in Nchelenge District are An. funestus and An. gambiae, both species 

are highly anthropophilic, and transmit malaria intensely year-round.  An. leesoni was 

also collected, but in lesser numbers than An. funestus and An. gambiae, and none were 

infected, suggesting that it is a non-vector or at most an infrequent vector.  

Additionally, there are temporal and spatial heterogeneities of malaria vector 

composition. During the wet season, An. funestus is the predominant vector with 

secondary contribution from An. gambiae.  The EIR for An. funestus was also 

significantly higher than that of An. gambiae.  Whereas, during the dry season, An. 

funestus remains the dominant vector, while the An. gambiae population severely 

declines. This is likely due to differences in breeding site preferences of both Anopheles 

mosquitoes and changes that occur at each site in the dry season, which will require 

extensive oviposition surveys and hydrology studies. In general, An. funestus tends to 

breed in vegetative, semi-permanent or permanent water bodies such as swamps and 
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ponds; such an area in Nchelenge is Kenani Stream that flows into Lake Mweru. In 

contrast, An. gambiae prefers temporary sunlit breeding habitats such as puddles, animal 

footprints, and ground depressions formed by heavy rains.  During the dry season, these 

temporary breeding sites disappear, affecting the growth of the An. gambiae population. 

As a result, An. funestus continues to transmit P. falciparum into and through the wet 

season.   Within Nchelenge District, there are two ecologically distinct areas that affect 

vector species composition and transmission impact: Areas along Lake Mweru and areas 

located inland and near Kenani Stream. The hypothesis was further supported by the 

observation of An. gambiae predominately near Lake Mweru, whereas An. funestus and 

An. gambiae are the main vectors along Kenani Stream.  The difference in abundances 

between the two geographically distinct locations was significant during the wet season, 

where the abundances of both An. gambiae and An. funestus found in lakeside villages 

was lower than those of the streamside villages. Together with the EIR, streamside 

villages where collections took place are considered areas to have more intense parasite 

transmission by anophelines than the villages along the lake.  The same pattern was 

observed during the dry season, except there were few An. gambiae caught in households, 

suggesting that An. funestus was transmitting effectively at areas near both the lake and 

stream.  

One of the most crucial entomological measurements is the HBI, human biting 

rate (HBR), and subsequent EIR.  Collectively, these parameters help elucidate vector 

foraging behavior and transmission potential by identification of the host blood meal, the 

average number of bites taken by a single mosquito that is used for defining the intensity 

of transmission, EIR. We sought to determine if traditional field methods of 
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morphological classification of blood fed mosquitoes and separation of those samples for 

PCR confirmation underestimate the true proportion of engorged mosquitoes.  This 

premise was substantiated by the finding that visually unfed mosquitoes contained blood 

meals that were detected by PCR at all three ICEMR sites in southern Africa, including 

Nchelenge, and that there was a significant relationship between visually fed mosquitoes 

and overall PCR confirmed mosquitoes. As a result, it was deduced that depending on the 

transmission setting and the presence of both anthropophilic and zoophilic Anopheles 

species, the HBI could be underestimated.  Additionally, if pyrethroid spray catch (PSC) 

collections are used to determine the human biting rate, not testing the morphologically 

unfed vectors will lead to an underestimation of the number of mosquitoes taking human 

blood meals. Since the HBR is an essential component of the EIR, the result may be 

inaccurate measurements of mosquito transmission intensity. Moreover, the proportion of 

human fed mosquitoes can be an important component of vector control testing and 

evaluation, whereby efficacy is determined by a reduction in feeding behavior as well as 

other changes such as mortality rates, entry/exit behavior, and deterrency.  

Previous work in southern Zambia demonstrated changes in multiple blood 

feeding behavior and human gender preference of An. arabiensis pre- and post-ITN 

distribution; There was a reduction in multiple blood feeding that reflected heterogeneity 

of risk in individuals protected and not protected by nets, as well as no significant bias for 

human gender. Our study demonstrated that both An. funestus and An. gambiae take 

multiple blood meals per gonotrophic cycle, and the frequencies, 23.2% and 25.7% 

respectively, are among the highest recorded in sub-Saharan Africa. There was no 

significant difference in multiple blood feeding between both species. The implication of 
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this finding is that by biting multiple individuals, the human biting rate increases and 

results in a dramatic underestimation of the EIR.  The reproductive ratio Ro, the number 

of individuals that become infected from a single infected individual, is also 

underestimated as an infectious mosquito that takes multiple blood meals transmits the 

malaria parasite to more than one person. Furthermore, studies in Kenya, Tanzania, and 

southern Zambia have investigated the possibility of human gender preference by 

Anopheles mosquitoes. In Nchelenge, it was revealed that both An. funestus and An. 

gambiae bite both males and females at approximately the same rate.  However, the lack 

of human DNA fingerprints from collection households makes it difficult to conclude that 

all males and females are at risk because it may differ depending on other factors such as 

age group and inherent human behaviors that place people at risk.  

Another crucial component of the EIR is the sporozoite infection rate (SIR), or the 

proportion of infected mosquitoes in a collection. A more detailed look at the 

transmission of P. falciparum in infected mosquitoes revealed the presence of multiple 

clones.  In An. funestus and An. gambiae, the overall complexity of infection (COI), 6.1 

and 6.8 respectively, of the malaria parasite did not differ statistically and ranged from 1-

12 and 1-14 clones respectively.  The overall COI was 6.4, an exceptionally high number 

of potential clones circulating within Nchelenge District.  It should be noted that there 

could be potential overestimation of the overall COI in infected mosquitoes because of 

the inability to distinguish haploid and diploid parasites by PCR. However, the 

implication of the COI is the transmission of multiclonal parasites with each mosquito 

bite.  In the context of multiple blood feeding behavior, each bite has the potential to 

transmit an average of 6 parasite clones in Nchelenge, resulting in the accelerated spread, 
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development and stability of various P. falciparum clones.  Additionally, when an 

Anopheles mosquito takes a blood meal from an infectious individual, the various clones 

undergo meiotic recombination events in the mosquito midgut and are also in competition 

with each other, resulting in a potential change in parasite structure and production of 

novel clones that confer drug resistance and/or virulence. The frequency of these new 

clones is largely dependent on the number of infective bites received by an individual and 

the number of clones transmitted with each bite.  Accordingly, an infectious vector that 

bites multiple humans could influence the rate of development of novel clones with 

undefined clinical outcomes. The detection of P. falciparum clones in the mosquito could 

be a possible method for surveillance of emergent medically relevant clones and as a 

measure of endemicity temporally and spatially, especially in response to vector control.  

The anopheline foraging behavior studies presented in this dissertation have 

opened new avenues for future malaria research in Nchelenge District and for malaria 

control efforts throughout the country. The spatial differences in species abundance 

between the lake and stream for both An. funestus and An. gambiae introduces the 

questions of where oviposition sites are located, ecological differences between locations, 

and if there is heterogeneity in risk for households located closest to those oviposition 

areas.  Furthermore, the identification of mosquito breeding sites may lead to 

recommendations for or against larvaciding as an appropriate intervention to reduce the 

burden of risk in some areas. Also, CDC LT and PSC traps in Zambia captured a large 

proportion of human fed anophelines that also took multiple blood meals despite the use 

of LLINs by household inhabitants.  As a result, there is a need to better understand the 

use and effectiveness of LLINs in households, and to also identify which individuals are 
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bitten more often than others. Genetic profiling of blood from household members would 

provide important information to identify individuals who are bitten, therefore harboring 

and donating P. falciparum gametocytes, and direct interventions to limit human 

exposure.  The considerable COI detected in Anopheles mosquitoes should be compared 

to the COI in infected human blood samples for agreement, spatial and temporal changes, 

and also to determine if meiotic recombination overestimated the COI or if there is equal 

transmissibility of parasite clones.  Furthermore, cytogenetics of P. falciparum clones in 

Anopheles mosquitoes would reveal patterns of gene exchange among clones within the 

mosquito that vary by geographical location and/or season, as well as provide evidence of 

previous bottlenecks. It would also be interesting to verify if infected individuals who are 

bitten more often than others by DNA fingerprinting of mosquito blood meals have 

different infection complexities than others.  

The recent IRS campaign implemented after this dissertation’s studies requires an 

assessment of Anopheles in sprayed households, their foraging behavior, and contribution 

to transmission intensity, as well as spatial and temporal changes. The IRS campaign has 

focused on households located along Lake Mweru, but the results of this dissertation 

indicate that areas more inland and along the stream would benefit the greatest from 

vector control due to the greater abundance of and higher intensity of transmission by 

Anopheles funestus and An. gambiae. There have been reports in other African countries, 

where vector control lead to shifts in mosquito feeding behavior, such that people 

remained at risk. As such, our research findings have set the baseline vector dynamics 

and bionomics for comparisons with future vector control campaigns. The collections 

performed for this dissertation were conducted indoors. Accordingly, it will be crucial to 
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also perform outdoor HLCs, exit/entry and resting traps post-IRS. Moreover, changes in 

the multiple blood feeding frequency post-IRS may indicate heterogeneity of risk for 

certain individuals, which may also affect the parasite complexity of infection. In 

addition to vector measures, COI in infected mosquitoes may also indicate the effect of 

vector control on the malaria parasite, by either reducing or maintaining existing clones. 

Any changes observed will be important for surveillance and strategy for future malaria 

control efforts. 

The studies performed as part of this dissertation have provided the framework for 

future vector research in Nchelenge District by characterizing the foraging behavior of 

An. funestus and An. gambiae in detail to determine their roles in intense malaria 

transmission in this area, any inequalities of risk both temporally and spatially, and 

identification of parasite clones inoculated with each infectious bite. The knowledge 

gained from these studies has also established a reference point for evaluation of the 

long-term impact of IRS or other control efforts. Overall, the findings of this dissertation 

have resulted in the establishment of baseline research for future entomological studies, 

and more importantly, recommendations for future vector control in Nchelenge. 
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Appendix A 

Differentiation of the Anopheles gambiae complex by PCR 

This PCR uses 4 primers that in combination produce three differentially-sized amplicons 
of the ribosomal DNA spacer region of An. gambiae complex mosquiotoes. The expected 
product sizes are as follows: An. gambiae s.s. (~390 bp), An. arabiensis (~315 bp), and 
An. quadriannulaus (~150 bp).  

Primers: 

UN: 5’- GTG TGC CCC TTC CTC GAT GT -3’ 
GA: 5’- CTG GTT TGG TCG GCA CGT TT -3’ 
AR: 5’- AAG TGT CCT TCT CCA TCC TA -3’ 
QD: 5’- CAG ACC AAG ATG GTT AGT AT -3’ 

PCR Program: (SCOTT) 
 
1. 94ºC 2 min 
2. 94ºC 30 sec 
3. 50ºC 30 sec 
4. 72ºC 30 sec 
5. Go to 2, 29x 
6. 72ºC 7 min 
7. 4ºC forever 

Reaction Mixture:   25 µL 20 µL     12 µL 

10X                        2.5 µL       2.0 µL         1.25 µL 
dNTPs 2.5 mM        2.0 µL            1.6 µL        1.0 µL (final conc 200 µM each) 
AR          3.0 µL               2.4 µL       1.5 µL (150 pmol) 
QD          3.0 µL                2.4 µL       1.5 µL (150 pmol) 
GA          0.5 µL               0.4 µL       0.25 µL (25 pmol) 
UN          1.0 µL               0.8 µL       0.5 µL (50 pmol) 
Taq         0.75 µL (1.5 U)  0.6 µL     0.38 µL 
dH20                            fill to total reaction mix volume 

Use between 0.5 and 1 µL of template DNA. 

Reference: 

Scott, J.A., W.G. Brogdon and F.H. Collins.  1993.  Identification of single specimens of 
the Anopheles gambiae complex by the polymerase chain reaction. Am. J. Trop. 
Med. Hyg. 49(4): 520-529.  
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Appendix B 

Differentiation of the Anopheles funestus complex by PCR 

This PCR differentiates species of the An. funestus complex based on variation in the 
ITS2 region of nuclear rDNA. There is a universal forward primer and seven species-
specific primers. The expected product sizes are as follows: An. funestus (505 bp), An. 
leesoni (146 bp), An. vaneedeni (587 bp), An. parensis (252 bp), An. rivulorum (411 bp), 
An. rivulorum-like (313 bp), and An.funestus-like (390 bp). Because the expected 
amplicons from An. rivulorum and An. funestus-like are too close in size to be effectively 
visualized on an agarose gel, only one of these primers should be used at a time in the 
reaction mixture. 

Primers: 
UV:     5’- TGT GAA CTG CAG GAC ACA T -3’ 
FUN:  5’- GCA TCG ATG GGT TAA TCA TG -3’ 
VAN: 5’- TGT CGA CTT GGT AGC CGA AC -3’  
RIV:    5’- CAA GCC GTT CGA CCC TGA TT -3’ 
PAR: 5’- TGC GGT CCC AAG CTA GGT TC -3’ 
LEES: 5’- TAC ACG GGC GCC ATG TAG TT -3’ 
RIVLIKE:  5’- CCG CCT CCC GTG GAG TGG GGG -3’ 
FUNLIKE (MalaFB) 5′- GTT TTC AAT TGA ATT CAC CAT T -3′ 

PCR Program: (FUNESTUS) 

1. 94ºC   2 min 
2. 94ºC  30 sec 
3. 45ºC 30 sec 
4. 72ºC 40 sec 
5.  Go to 2  29x 
6. 72ºC 5 min 
7.  4ºC forever 

Reaction Mixture:     25 µL 

10X   2.5 µL 
dNTPs 2.5 mM 2.0 µL (final conc 200 µM each) 
UV   0.3 µL (33 pmol each primer) 
FUN   0.3 µL 
VAN   0.3 µL 
RIV (or FUNLIKE) 0.3 µL 
PAR   0.3 µL 
LEES                         0.3 µL 
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RIVLIKE  0.3 µL 
Taq   0.8 µL (1.6 U) 
dH20   16.9 µL  

Use 1 µL of template DNA 

References: 

Cohuet, A. F. Simard, J.C. Toto, P. Kengne, M. Coetzee, D. Fontenille. 2003. Species 
 identification within the Anopheles funestus group of malaria vectors in 
 Cameroon and evidence for a new species. Am. J. Trop. Med. Hyg. 69(2): 200-5. 

Koekemoer, L.L., L. Kamau, R.H. Hunt, M. Coetzee.  2002.  A cocktail polymerase 
chain reaction assay to identify members of the Anopheles funestus (Diptera: 
Culicidae) group.  Am. J. Trop. Med. Hyg. 6(6): 804-811. 

Spillings, B.L., B.D. Brooke, L.L. Koekemoer, J. Chiphwanya, M. Coetzee, R.H. Hunt. 
 2009. A new species concealed by Anopheles funestus Giles, a major malaria 
 vector in Africa. Am. J. Trop. Med. Hyg. 81(3): 510-5.  
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Appendix C 
 

ITS2 rDNA PCR 
              
This PCR is very robust and therefore can be used to check the quality of DNA 
extractions. It targets the ITS2 region of nuclear rDNA and produces amplicons of 
varying sizes depending on mosquito species.  It can be used in tandem with the Funestus 
PCR to identify ambiguous samples.  Because ITSA binds to the conserved 5.8S rDNA 
and ITS2B binds to the 28S rDNA, this PCR can be used to sequence samples from 
almost any anopheline mosquito for species identification.  ITS2B1, a novel, alternate 
primer, binds slightly downstream from ITS2B and produces a slightly larger amplicon 
that can be used to sequence through the entire ITS2. 
 
Expected product sizes for different mosquito species: 
Funestus group: 
An. leesoni ~520 bp                       An. rivulorum and rivulorum-like ~520 bp 
An. parensis ~ 620 bp    An. longipalpis ~620 bp and ~900 bp 
An. vaneedeni ~ 830 bp   An. funestus and funestus-like ~850 bp 
 
Other species: 
An. rufipes, maculipalpis, and pretoriensis ~500 bp 
An. theileri ~ 520 bp    An. gambiae complex ~600 bp        
An. coustani ~620 bp    An. squamosus – doesn’t react        
 
Primers: 
ITS2A:  5’- TGT GAA CTG CAG GAC ACA T -3’ 
ITS2B:   5’- TAT GCT TAA ATT CAG GGG GT -3’ 
ITS2B1:  5’- GTC CCT ACG TGC TGA GCT TC -3’ 
 
Note: Only the ITS2B and ITS2B1 primers work well for sequencing. 
 
PCR Program: (ITS2) 
1. 94ºC  2 min 
2. 94ºC  30 sec 
3. 50ºC  30 sec 
4. 72ºC  40 sec 
5. Go to step 2  39x 
6. 72ºC  10 min 
7. 4ºC  forever 
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Reaction Mixture:  25 µL 
10X  2.5 µL 
dNTPs 2.5 mM    2.0 µL (final conc. 200 µM each) 
ITS2A   0.3 µL (30 pmol) 
ITS2B     0.3 µL (30 pmol) 
Taq  2.0 U 
dH20   fill to 25 µL 
 
Use 1 µL of template DNA.  
 
Reference: 
Koekemoer, L.L., L. Kamau, R.H. Hunt, M. Coetzee. 2002. A cocktail polymerase chain 

reaction assay to identify members of the Anopheles funestus (Diptera: Culicidae) 
group. Am. J. Trop. Med. Hyg. 6(6): 804-811. 
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Appendix D 

M/S Form Differentiation of Anopheles gambiae s.s. by PCR 

This PCR diagnostic differentiates the M-form and S-form of An. gambiae s.s. by 
amplifying the a portion at the 5’ end of the rDNA intergenic spacer region.  The S-form 
will have a band at 475 bp and the M-form will have a band at 727 bp.  Hybrid M/S form 
will have two bands at 475 bp and 727 bp.   
 
Primers 
R5:  5’- CGA ATT CTA GGG AGC TCC AG - 3’ 
R3:  5’ - GCC AAT CCG AGC TGA TAG CGC - 3' 
Mopint:  5’ - GCC CCT TCC TCG ATG GCA T - 3’ 
B/Sint:  5’ - ACC AAG ATG GTT CGT TGC - 3’ 
 
PCR Program (MSDIFF) 
1.  94°C  10 min 
2.  94°C  30 s 
3.  63°C  30 s 
4.  72°C   30 s 
5.  Go to Step 2 x24 
6.  72°C  7 min 
7. 4°C  forever 
 
Reaction Mixture 25 µL 
10X   2.5 µL  
dNTPs 2.5 mM  1.0 µL 
R5   0.5 µL 
R3   0.5 µL 
Mopint   0.4 µL 
B/Sint   0.25 µL 
Taq   2 U 
dH2O   17.35 µL 
 
Use 2 µL DNA (from abdomen extraction eluted in 50 µL dH2O). 
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Reference   
Favia, G et al., 2001.  Molecular characterization of ribosomal DNA polymorphisms 

discriminating among chromosomal forms of Anopheles gambiae s.s. Insect 
Molecular Biology 10(1): 19-23. 
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Appendix E 
 

Mammalian host blood meal species identification by PCR 
 
This multiplexed PCR diagnostic differentiates between potential mammal host bloods in 
engorged mosquitoes. Species-specific products are amplified from the cytochrome b 
gene of the mitochondrial genome. Expected product sizes are as follows: Human (334 
bp), Cow (561 bp), Dog (680 bp), Goat (132 bp), Pig (453 bp). Host source can be 
detected out to 30 hours post feeding. 
 
Primers: 
PIG573F:  5’- CCT CGC AGC CGT ACA TCT C -3’ 
HUMAN741F:  5’- GGC TTA CTT CTC TTC ATT CTC TCC T -3’ 
GOAT894F:  5’- CCT AAT CTT AGT ACT TGT ACC CTT CCT C -3’ 
DOG368F:        5’- GGA ATT GTA CTA TTA TTC GCA ACC AT -3’ 
COW121F:       5’- CAT CGG CAC AAA TTT AGT CG -3’ 
UNREV1025:  5’- GGT TGT CCT CCA ATT CAT GTT A -3’            
 
PCR Program: (BLOOD) 
1. 95ºC  5 min 
2. 95ºC  1 min 
3. 56ºC  1 min 
4. 72ºC  1 min 
5. Go to step 2 39x 
6. 72ºC  7 min 
7. 4ºC  forever 
 
Reaction Mixture:  25 µL 
10X   2.5 µL 
dNTPs 2.5 mM   1.0 µL (final conc. 100 µM each) 
UNREV1025   0.5 µL (50 pmol of each primer) 
PIG573F   0.5 µL  
HUMAN741F   0.5 µL 
GOAT894F   0.5 µL 
DOG368F   0.5 µL 
COW121F    0.5 µL 
Taq   2.0 U 
dH20                                  fill to 25 µL 
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Use up to 3 µL of template DNA (from abdomen extraction eluted in 50 µL dH20). 
Reference: 
Kent RJ, Norris DE, 2005. Identification of mammalian blood meals in mosquitoes by a 

multiplexed polymerase chain reaction targeting cytochrome b. Am J Trop Med Hyg 
 73: 336-342. 
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Appendix F 
 

Mammalian small blood meal species PCR and RFLP 
 
This PCR targets the cytochrome b gene and produces a 98 bp amplicon that can be 
differentially digested or sequenced to identify host species.  The enzyme digest allow 
identification of mammalian host sources from partially digested mosquito blood meals 
(out to 60 hours post feeding), as well as partially degraded DNA extractions. 
 
Primers: 

UNIFORA:       5’- TCC AAA CAA CRM AGC ATA ATA TT -3’ 
UNREV1025:   5’- GGT TGT CCT CCA ATT CAT GTT A -3’ 
 
Note: both primers work for sequencing 
 
PCR Program:   (BLOOD55) 
1. 95ºC  5 min 
2. 95ºC  1 min 
3. 55ºC  1 min 
4. 72ºC  1 min 
5. Go to step 2 39x 
6. 72ºC  7 min 
 
Reaction Mixture:  25 µL 
10X    2.5 µL 
dNTPs 2.5 mM 1.0 µL (final conc. 100 µM each) 
UNIFORA  0.5 µL (50 pmol) 
UNREV1025   0.5 µL (50 pmol) 
Taq    2.0 U 
dH20    fill to 25 µl 
 
Use 2 µL of DNA template (from abdomen extraction eluted in 50 µL dH20)  
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Enzyme Digests: 
Save 6 µL of the PCR products to run as undigested controls on a 3% agarose gel 
alongside the digested amplicons.  
 
Fnu4HI digest –  human 
Buffer 4 2.5 µL  
dH20  7.5 µL 
1 U enzyme 0.2 µL 
PCR product 15 µL  
 
BanII digest – cow 
Buffer 4 2.5 µL 
dH20  7.5 µL 
1 U enzyme 0.1 µL 
PCR product 15 µL 
 
MspI digest – dog 
Buffer 2 2.5 µL dH20  7.5 µL 
2 U enzyme 0.1 µL PCR product 15 µL 
 
NsiI digest – goat 
Buffer 3 2.5 µL 
dH20  7.5 µL 
1 U enzyme 0.1 µL  
PCR product 15 µL 
 
SpeI digest – pig 
Buffer 2 2.5 µL 
dH20  7.5 µL 
BSA (100x) 0.025 µL 
1 U enzyme 0.1 µL 
PCR product 15 µL 
 
All digests are carried out at 37°C for at least 3 hrs but can be left overnight.  
 
Notes: 
1. For field-collected mosquitoes digests can be done sequentially in order of the most 
likely host sources. 
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2. Master mix can be tripled for a total reaction volume of 78 µL. This will allow one to 
perform up to 4 digests of the amplified product with enough undigested sample leftover 
as a control. 
3. Some cows have a point mutation in the BanII target site, so that the PCR product will 
not be digested.  These can be identified by sequencing. 
 
Reference: 
Fornadel, C.M., D.E. Norris. 2008. Increased endophily by the malaria vector Anopheles 

arabiensis in southern Zambia and identification of digested blood meals. Am. J. 
Trop. Med. Hyg. 79(6): 876-80. 
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Appendix G 
 

Universal vertebrate cytochrome b PCR 
 

This PCR has an expected product size of 358 base pairs and can be used to amplify any 
vertebrate cytochrome b gene for ID by sequencing.  This PCR can be used to amplify 
blood meal DNA from host species not recognized by the avian or mammalian blood 
PCRs. 
 
Primers:  
L14816: 5′-CCATCCAACATCTCAGCATGATGAAA-3′ 
H15173: 5′- CCCCTCAGAATGATATTTGTCCTCA-3′ 
 
PCR Program: (UNIVCYTB) 
1. 95ºC  11 min 
2. 94ºC  30 sec 
3. 50ºC  45 sec 
4. 72ºC  45 sec 
5. Go to step 2  29x 
6. 72ºC  5 min 
7.  4ºC  forever 
 
Reaction Mixture:   25 µL  
10X                        2.5 µL   
dNTPs 2.5 mM        2.5 µL (final conc. 250 µM each) 
L14816        0.3 µL (30 pmol) 
H15173        0.3 µL (30 pmol) 
Taq         2.0 U 
dH20                          fill to 25 µl 
 
Use between 2 µL of template DNA. 

 
Reference: 
W. Parson, K. Pegoraro, H. Niederstätter, M. Föger and M. Steinlechner. 2002. Species 

identification by means of the cytochrome b gene. International Journal of Legal 
Medicine. 114: 23-28.  
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Appendix H 
 

Small Plasmodium product PCR diagnostic 
 
This PCR specifically reacts with a portion of the cytochrome b gene of Plasmodium 
falciparum and can be used to test for infected mosquitoes. The expected product size is 
183 bp.  Plasmodium vivax cross-reacts with these primers and will produce a similarly-
sized amplicon. 
 
Primers: 
PFcytbLongF: 5’- ATACATGCACGCAACAGGTGCTTCTC -3’  
PFcytbLongR: 5’- CAATAACTCATTTGACCCCATGGTAAGAC -3’       
 
PCR Program:  (PFNEW1) – 3 hrs 17 min 
1. 95ºC  5 min 
2. 95ºC  30 sec 
3. 58ºC  50 sec 
4. 72ºC  40 sec 
5. Go to step 2    59x 
6. 72ºC  5 min 
7. 4ºC  forever 
 
Reaction Mixture:     25 µL 
10X     2.5 µL 
dNTPs 2.5 mM 1.5 µL (final conc. 150 µM each) 
cytbLongF   0.5 µL  (50 pmol) 
cytbLongR   0.5 µL  (50 pmol) 
Taq    2.0 U 
dH20    fill to 25 µl 
 
Use 1-2 µL DNA template (from abdomen extraction eluted in 50 µL dH20). 
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Figure O.1. Comparison of Snounou et al. PCR and PFcytb PCR. Snounou et al. 
products run on a 2% agarose gel. Lanes 1 and 7, HPLC H20; Lanes 2 and 8, 104 
parasites/µL; Lanes 3 and 9, 103 parasites/µL; Lanes 4 and 10, 102 parasites/µL; Lanes 5 
and 11, 10 parasites/µL; Lanes 6 and 12, 1 parasites/µL; Lane 13, 100 bp DNA ladder 

       Snounou        PFcytb 

1  2  3  4  5  6  7  8  9 10 11 12 13 
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Appendix I 
 

Multiplicity of Infection (MOI) of Plasmodium falciparum in Infected Mosquitoes 
 
Distinct strains of P. falciparum can be distinguished by genotyping of the polymorphic 
regions msp1, msp2, glurp, and csp loci. A nested PCR strategy is used for all loci, except 
for CSP which is a single PCR reaction.  The primary round amplifies parasite DNA 
using Plasmodium-specific oligonucleotide primers. Product from the primary round is 
subsequently used as template for secondary amplification using P. falciparum family-
specific primers, yielding size variants within distinct allelic families of MSP1 (K1, 
MAD20, RO33), MSP2 (FC27 and IC/3D7) and GLURP. These size polymorphs can be 
resolved by simple agarose electrophoresis and visualized under UV transillumination. 
The purpose of this protocol is to determine multiplicity of infection of P. falciparum in 
infected anopheline mosquitoes (confirmed by ELISA and/or PCR). 
 
Primary Reaction Primers 
MSP1 
M1-OF: 5- CTAGAAGCTTTAGAAGATGCAGTATTG -3 
M1-OR: 5- CTTAAATAGTATTCTAATTCAAGTGGATCA -3 
MSP2 
M2-OF: 5- ATGAAGGTAATTAAAACATTGTCTATTATA -3 
M2-OR: 5- CTTTGTTACCATCGGTACATTCTT -3 
GLURP 
G-OF: 5- TGAATTTGAAGATGTTCACACTGAAC -3 
G-OR: 5- GTGGAATTGCTTTTTCTTCAACACTAA -3 
 
Secondary Reaction Primers 
MSP1 
 K1-family specific 
M1-KF: 5- AAATGAAGAAGAAATTACTACAAAAGGTGC -3 
M1-KR: 5- GCTTGCATCAGCTGGAGGGCTTGCACCAGA -3 
MAD20-family-specific 
M1-MF: 5- AAATGAAGGAACAAGTGGAACAGCTGTTAC -3 
M1-MR: 5- ATCTGAAGGATTTGTACGTCTTGAATTACC -3 
RO33-family-specific 
M1-RF: 5- TAAAGGATGGAGCAAATACTCAAGTTGTTG -3 
M1-RR: 5- CATCTGAAGGATTTGCAGCACCTGGAGATC -3 
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MSP2 
FC27-family-specific 
M2-FCF: 5- AATACTAAGAGTGTAGGTGCARATGCTCCA -3 
M2-FCR: 5- TTTTATTTGGTGCATTGCCAGAACTTGAAC -3 
3D7/IC-family-specific 
M2-ICF: 5- AGAAGTATGGCAGAAAGTAAKCCTYCTACT -3 
M2-ICR: 5- GATTGTAATTCGGGGGATTCAGTTTGTTCG -3 
GLURP 
G-NF: 5- TGTTCACACTGAACAATTAGATTTAGATCA -3 
G-OR: 5- GTGGAATTGCTTTTTCTTCAACACTAA -3 
 
PCR Program: (PfMOIM1-GL) 
1. 94ºC              2 min 
2. 94ºC                45 sec 
3. 60.0ºC             45 sec 
4. 65ºC                 1 min 
5. Go to Step 2         x39 
6. 65ºC                 3 min 
 
Reaction Mixture:        25ul 
10X                  2.5 ul 
dNTPs                 2.0 ul 
Forward Primer           0.3 ul 
Reverse Primer            0.3 ul 
Taq                  1.0 U 
dH20                  Fill to 25 ul 
DNA                  3.0 ul 

Reference:  
Southern Africa ICEMR SOP Number S0001:  Plasmodium falciparum  MSP1, MSP2 
and GLURP  Genotyping. 

Kiwuwa, MS, Ribacke, U, Moll, K, Byarugaba, J, Lundblom, K, Farnert, A, Fred, K, and 
Mats Wahlgren, 2013. Genetic diversity of Plasmodium falciparum infections in 
mild and severe malaria of children from Kampala, Uganda. Parasitol Res 112: 
1691-1700. 
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Appendix J 

Human Microsatellite PCR for Multiple Blood Feeding Analysis 

This PCR can be used to amplify human microsatellite DNA from mosquito blood meals 
for molecular fingerprinting and detection of multiple blood meals and sex 
differentiation.  CSF1PO, D13, THO1, and Penta D work best for differentiating 
individuals in the Nchelenge population.  Each PCR is run separately, and then 
multiplexed together. 

Expected PCR product sizes: 
HEX-labeled 
CSF1PO: 280-308 bp 
D13S317: 173-205 bp 
Penta D: 373-446 bp 

FAM-labeled 
THO1: 159-198 bp 
Amel: 104, 109 

Primer sets: 

CSF1PO A:  5’- /5HEX/ACT CCA GGG CAG TGT TCC A -3’ 
CSF1PO B: 5’- AGC CCA TTC TCC AGC CTC C -3’ 
D13S317 A: 5’- /5HEX/CAT GGT ATC ACA GAA GTC T -3’ 
D13S317 B: 5’- CCA AAA AGA CAG ACA GAA AGA TAG -3’ 
Penta D A: 5’-/5HEX/AAG TAG GAT CAC TTG AGC CTG -3’  
Penta D B: 5’-CAA GTC CTT TTT TAG ATA TGT GA -3’ 

THO1 A: 5’- /56-FAM/ATT CAA AGG GTA TCT GGG CTC TG -3’ 
THO1 B: 5’- TGG GCT GAA AAG CTC CCG ATT AT -3’ 
AMEL A: 5’- /56FAM/CCC TGG GCT CTG TAA AGA ATA GT -3’ 
AMEL B: 5’- ATC AGA GCT TAA ACT GGG AAG CTG -3’ 
 
PCR Program: (HMNMICR) 

1. 96ºC  4 min 
2. 94ºC  1 min 
3. 60ºC  1 min 
4. 70ºC  1.5 min 
5. Go to Step 2 39x 
6. 70ºC  45 min 
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7. 4ºC  forever 
 

Reaction Mixture:  20 ul 
10X   2.0 ul 
dNTPs 2.5 mM 1.6 ul (final conc. 200 uM each) 
forward primer 0.2 ul (20 pmol) 
reverse primer  0.2 ul (20 pmol) 
Taq   2.0 U 
dH20   fill to 20 ul 
 
Use 2.0 ul DNA template. 
 
Multiplex 1.0 ul each PCR product (CSF1PO, D13S317, THO1, Penta D) and 1.5 ul 
Amelogenin product with 15 ul formamide and 0.5 ul ROX ladder.  Incubate at 95ºC for 
3 minutes.  HEX-labeled samples will be green, FAM-labeled samples will be blue. 
 
Package and send samples to Yale University DNA Analysis Facility on Science Hill by 
FedEx, UPS, or DHL (Attn: Carol Mariani, 170 Whitney Ave., ESC Room 150, New 
Haven, CT 06511; phone- 203-432-7394).  
 
References: 
Norris, LC, Fornadel, CM, Hung WC, Pineda, FJ, and DE Norris. 2010. Frequency of 
multiple blood meals taken in a single gonotrophic cycle by Anopheles arabiensis 
mosquitoes in Macha, Zambia. Am J Trop Med Hyg. 83(1):33. 
 
Scott, TW, Githeko, AK, Fleisher, A, Harrington, LC, and G Yan. 2006. DNA profiling 
of human blood in Anophelines from lowland and highland sites in western Kenya. Am J 
Trop Med Hyg. 75: 231-237. 
 
Jiang, X, He, J, Jia, F, Shen, H, Zhao, J, Chen, C, Bai, L, Liu, F, Hou, G, and F Guo. 
2012. An integrated system of ABO typing and multiplex STR testing for forensic DNA 
analysis. Forensic Science International: Genetics. 6: 785-797. 
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Appendix K 

Marriott DNA extraction procedure 

1. If specimens are dried, rehydrate them in a 1.5 mL microfuge tube containing 20 µL 
HPLC H20 for 10 minutes. If specimens are frozen begin the procedure from Step 2. 
2. Add 100 µL of Bender buffer directly into the tube with the specimen and homogenize 
until there are no recognizable mosquito parts. Place used pestles in 1M NaOH.  
3. Incubate homogenized samples at 65ºC for 1 hour.  
4. Add 15 µL cold 8M potassium acetate to each sample. Mix gently and incubate on ice 
for 45 minutes. (Procedure may be stopped here overnight.) 
5. Spin samples in a microcentrifuge (14,000 rpm) for 10 minutes, and then transfer the 
supernatant to a new 1.5 mL microfuge tube.  
6. Add 300 µL 100% ethanol (2X volume) to each supernatant to precipitate DNA. Mix 
well by inverting the tube. Incubate samples at room temperature for 5 minutes.  
7. Centrifuge samples (14,000 rpm) for 15 minutes. Following this spin there should be a 
small pellet of DNA at the bottom of the tube.  
8. Carefully remove the supernatant and discard it, leaving the pellet behind in the tube. 
Let the pellets dry completely before resuspending – residual ethanol can interfere with 
PCR later.  
9. Resuspend pellets in 50 µL HPLC H20 for head/thorax or abdomen extractions (100 µL 
for whole mosquitoes). Ideally, store overnight at 4ºC before use. Store DNA 
permanently at -20ºC.  

Pestle washing: To prevent DNA contamination in PCR-based analyses, pestles should 
be soaked in 1M NaOH after use. They should then be washed in soapy water, rinsed off 
in distilled water, and autoclaved before they are used again.  

Required solutions:  

1. Bender Buffer  
0.1 M NaCl (5 mL from a 1M stock solution – need to make this stock solution)  
0.2 M sucrose (3.42 grams)  
0.1 M Tris-HCl (5 mL from a 1M stock)  
0.05 M EDTA ph 9.1 (5 mL from a 0.5M stock)  
0.5% SDS in DEPC water (0.25 mL from a 0.1M stock)  

Making up 50 mL Bender buffer. First add 3.42 grams dry sucrose to a 50 mL conical 
tube. Then add the proper amounts of the other ingredients, listed above in parentheses. 
Fill to a final volume with DEPC water and filter with a 0.2 micron filter before using. 
Store at room temperature.  
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To make 1 M NaCl stock solution, add 2.9 grams dry NaCl into 50 mL HPLC H20 and 
vortex. Stock solutions of the liquid reagents should come in the molar concentrations 
listed.  
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Appendix L 

CSP (Circumsporozoite protein) ELISA 

This assay detects Plasmodium falciparum CSP protein in mosquito samples.  CSP is 
only expressed during the sporozoite stage of malaria development, so this assay detects 
only sporozoite-positive mosquitoes, which are capable of transmitting malaria.  The 
monoclonal capture antibody nonspecifically binds to the ELISA plate, after which the 
addition of blocking buffer prevents nonspecific binding of other proteins.  After the 
addition of mosquito homogenate, the capture antibody binds to CSP and holds it during 
subsequent wash steps.  After the monoclonal antibody is added, it also binds CSP and 
remains after washing.  This antibody is conjugated to a peroxidase which catalyzes 
ABTS indicator solution, turning the solution green, while negative samples remain 
uncolored.  

Adapted from the Malaria Research and Reference Reagent Resource Center (MR4) 
Methods in Anopheles Research Manual, available at 
http://www.mr4.org/Publications/MethodsinAnophelesResearch/tabid/336/Default.aspx 
Limited amounts of Plasmodium falciparum positive controls, capture antibodies, and 
conjugated antibodies are available free of cost through the MR4 website ((MR #890)). 

Materials 
PBS (phosphate buffered saline, available from MMI Dept.) 
BSA (bovine serum albumin) (A7906) 
Casein (Sigma C7078) 
Phenol red (Sigma P4758) 
IGEPAL CA-630 (Sigma I3021) 
Tween (Fisher BP337) 
P.f. capture MAb (MR #890) 
P.f. conjugate MAb (MR #890) 
P.f. CSP positive control (MR #890) 
Glycerol (Sigma G6279) 
ABTS solution (Kirkegaard Perry) 
10% SDS (sodium dodecyl sulfate) (Gibco #15553-035) 
96-well U bottom vinyl ELISA plates (Corning #2797) 

Solutions 
Blocking Buffer (BB):  250 mL 
250 mL PBS  
2.5 g BSA 
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1.25 g casein 
50 µl 0.1 g/mL phenol red stock 

Stir ~3 hours until dissolved.  Store overnight at 4°C or freeze for future use.  Store BSA 
at 4°C. 

BB: IG-630 (mosquito grinding buffer): 5 mL 
5 mL BB 
25 µl IGEPAL CA-630 detergent 

PBS: Tween (wash buffer): 500 mL 
500 mL PBS 
0.25 mL Tween 

MAb (monoclonal antibody) stock 
Dissolve lyophilized antibody in 1:1 dH2O: glycerol, following instructions on the bottle. 
Store antibody at -20°C. Make the following antibody dilutions immediately prior to use:  
Capture antibody:  40 µl stock in 5 mL PBS—this is enough for one 96-well plate 
Conjugated antibody:  10 µl stock in 5 mL BB—this is enough for one 96-well plate 

P.f. positive control stock 
Resuspend Plasmodium falciparum CSP protein in 250 µl BB (vial I) 
Take 10 µl from vial I, dissolve in 990 µl BB (vial II, 100x dilution) 
Take 10 µl from vial II, dissolve in 990 µl BB for working stock (vial III, 10,000x 
dilution) 

For the positive control serial dilution, add 100 µl from vial III to a plate well.  Transfer 
50 µl of this to the next well down, mix well with 50 µl BB.  Using a new pipet tip, 
transfer 50 µl to the next well down, mix well with 50 µl BB, etc., resulting in 1X, 2X, 
4X, 8X, 16X, 32X, 64X, and 128X positive control dilutions. 

Mosquito homogenate 
Grind each whole mosquito in 50 µl BB: IG-630.  Rinse pestle twice with 100 µl BB, for 
a total of 250 µl mosquito homogenate.  Mosquito homogenates can be prepared in 
advance and stored at -20°C. 

Negative controls 
Homogenize uninfected colony mosquitoes as above for negative controls. 

ABTS solution 
Immediately before use, mix 1:1 Solution A (ABTS) and Solution B (Hydrogen 
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Peroxide), 100 µl per well, 10 mL total per 96-well plate.  Store at 4°C, throw away 
remaining solution after assay is finished. 

Stop Solution 
1% SDS (1 mL 10% SDS in 9 mL dH2O for one 96-well plate) 

Plate Setup 

 1 2 3 4 5 6 7 8 9 10 11 12 
A neg  (+) 1x (+) 1x 3 7 7 15 15 23 23 31 31 
B neg  (+) 2x (+) 2x 3 8 8 16 16 24 24 32 32 
C neg  (+) 4x (+) 4x 4 9 9 17 17 25 25 33 33 
D neg  (+) 8x (+) 8x 4 10 10 18 18 26 26 34 34 
E 1 (+) 16x (+) 16x 5 11 11 19 19 27 27 35 35 
F 1  (+) 32x (+) 32x 5 12 12 20 20 28 28 36 36 
G 2 (+) 64x (+) 64x 6 13 13 21 21 29 29 37 37 
H 2 (+) 128x (+) 128x 6 14 14 22 22 30 30 38 38 

 
ELISA Protocol 
Note:  All incubations are carried out at room temperature. 

1.  Add 50 µl capture MAb solution to each well (40 µl MAb in 5 mL PBS). Cover and 
incubate overnight. 

2. Remove solution by knocking plates upside-down. Fill wells with BB (~220-250 µl) 
and incubate for 1 hour. 

3. Remove solution and add 50 µl mosquito homogenate, positive controls, and negative 
controls to their respective wells. Run all mosquito samples in duplicate. Add 50 µl 
BB to any empty wells. Incubate for 2 hours. 

4. During the 2 hour incubation: 
- Prepare the ABTS solution (mix solutions A and B) 
- Dilute the conjugate MAb in BB as described above (10 µl MAb in 5 mL BB). 
- Confirm enzyme activity by mixing 5 µl conjugate MAb with 100 µl ABTS. A 

dark green color should begin developing within a few minutes. 
5.  Remove mosquito homogenate. Wash plate 7 times with PBS-Tween using a plate 

washer. 
6. Add 50 µl conjugate MAb to each well, incubate for 1 hour. 
7. Remove conjugate MAb, wash 7 times with PBS-Tween. 
8. Add 100 µl ABTS solution to each well and incubate for 60 minutes. 
9. Add 100 µl Stop Solution to each well and read plate absorbance at 405 nm.  
10.  The absorbance cut-off for positive samples in 2X the average absorbance of the 

negative controls 
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Appendix M 

Centers for Disease Control light trap field protocol 

Centers for Disease Control (CDC) light traps (John W. 
Hock Company, Gainesville, Florida) are employed to 
collect host-seeking mosquitoes. Mosquitoes are lured to 
the trap by a combination of light and attractive bait (e.g., 
a person under a bed net). When mosquitoes fly towards 
the light bulb, a small fan blows them down into a 
collection cup.   

1. Charge all batteries that will be needed for a night’s 
collections. 
2.  Hang CDC traps in selected sleeping houses 
approximately 1.5 meters off the floor next to a bed net. 
Place a piece of paper with the traps location (household 
and sleeping house number) inside the cup before 
hanging. 
3. Instruct the owner of the house to connect the battery 
to the trap before they go to sleep around 19:00. 
4. Make sure the owner understands that all people sleeping in the trapping room need to 
sleep under a bed net. If extra bed nets are needed they will be provided for the night. 
5. The trap should be left in place until a JHMRI field team member returns the next 
morning by 07:00. First tie the bag shut to prevent mosquitoes from escaping. Next, 
unhook the battery and take down the trap. 
6. Bring the traps back to the lab and kill the mosquitoes by placing the cups in a freezer. 
7. Recharge the batteries. 

References 

Lines, J.D., C.F. Curtis, T.J. Wilkes, and K.J. Njunwa.  1991.  Monitoring human-biting 
mosquitoes (Diptera: Culicidae) in Tanzania with light traps hung beside 
mosquito nets.  Bulletin of Entomological Research 81: 77-84. 

Shiff, C.J., J.N. Minijas, T. Hall, R.H. Hunt, and S. Lyimo.  1995.  Malaria infection 
potential of anopheline mosquitoes sampled by light trapping indoors in coastal 
Tanzanian villages.  Medical and Veterinary Entomology 9: 256-262. 
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Appendix N 

Pyrethroid spray catch field protocol 

Pyrethrum spray catches are used for estimating 
the relative population densities of mosquitoes 
that rest indoors after taking a blood meal. 
Engorged specimens may also be used to 
determine the human blood indices of different 
species. Collections need to be conducted 
during the morning hours before mosquitoes 
move outside to find other resting or breeding 
sites.   

1. Collection teams of 3-4 people will perform 
spray catches from 06:00-10:00 in selected 
sleeping houses. 
2. A white sheet will be spread inside the 
sleeping room to cover the entire floor and furniture, including beds and tables. Food, 
drinking water, and animals should be removed before spraying. In addition, windows 
and large gaps under the eves should be blocked to prevent mosquito escape.   
3. Once the room is prepared a team member will spray the ceiling and walls with a 
pyrethroid spray (e.g., locally-purchased DOOM Super® (Adcock Ingram Ltd., 
Bryanston, South Africa)). 
4. Close the door to the room or block the doorway with a curtain of material.  
5. Let the room sit for 15 minutes undisturbed while the aerosol kills the insects.  The 
collection team will be able to work on multiple houses at one time. 
6. After the 15 minutes, enter the sleeping room with torches and carefully remove and 
take the white sheets outdoors. Using forceps, collect all mosquitoes that are on the sheet. 
All mosquitoes from each house should be placed in the same tube with a slip of paper 
indicating the household and house number of the collection. 
7. Once back in the lab collection tubes are placed in the freezer to kill any mosquitoes 
that might have just been knocked down. 

Reference 

Service, M.W. 1976. Mosquito Ecology: Field Sampling Methods.  Second ed. Elsevier 
Applied Science. 
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