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ABSTRACT 

Attention deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental 

disorders that imposes an enormous cost to individual, family and society across lifespan and 

generations in the U.S. This dissertation sought to systematically examine three potentially 

important early life factors in relation to ADHD, specifically, maternal cholesterol levels, early 

childhood lead exposure, and maternal acetaminophen use, using the data of mother-infant pairs 

already enrolled and followed in the Boston Birth Cohort (BBC), a high risk, predominantly 

urban low income minority population.  

First, I investigated the prospective association of maternal cholesterol levels measured within a 

few days of delivery with the risk of offspring ADHD diagnosis among 1479 mother-infant pairs 

of the BBC. A low maternal high-density lipoprotein level (≤60 mg/dL) was associated with an 

increased risk of ADHD. A “J” shaped relationship was observed between triglycerides and 

ADHD risk. These associations were more pronounced among boys.  

Second, I investigated the prospective associations between early childhood lead exposure and 

ADHD diagnosis and its potential effect modifiers among 1479 mother-infant pairs in the BBC. I 

found that the elevated lead levels (5-10µg/dL) in early childhood was associated with a 66% 

increased risk of ADHD. Boys were more vulnerable than girls at a given lead level. This risk of 

ADHD was reduced by half if the mother had adequate high-density lipoprotein level or low 

stress.  

Third, I examined the prospective association between maternal plasma biomarkers of 

acetaminophen intake measured within a few days of delivery and offspring ADHD diagnosis 
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among 1180 mother-infant pairs of the BBC. There were significant dose-response associations 

between ADHD diagnosis and each maternal acetaminophen biomarker; and such associations 

were specific to ADHD, rather than other neurodevelopmental disorders.   

These findings not only raise a new mechanistic perspective for understanding the origins of 

ADHD but also shed new light on the sex difference in ADHD and point to opportunities for 

early risk assessment and primary prevention of ADHD.  

Advisor: Xiaobin Wang, MD, ScD, MPH 
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Chapter 1 INTRODUCTION 

  



 

2 

 

1.1 BACKGROUND 

Attention deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental 

disorders in the U.S.; its prevalence has increased significantly from 7.0% to 10.2% among 

children ages 4-17 years during the past two decades.1 ADHD is defined as a chronic 

neurobehavioral disorder,2-4 which can be categorized into three major presentations: 

predominantly hyperactive/impulsive, predominantly inattentive, and combined.5 Previous 

studies have primarily shown that ADHD is much more common among males, while the range 

of rates varies greatly by studies.6,7 Approximately 66% to 85% of ADHD children will carry 

their disorder into adolescence and adulthood.8,9 The high prevalence along with a tendency for 

the disorder to persist into later life have serious short-term and long-term consequences. At a 

young age, children diagnosed with ADHD have been shown to be more likely to miss school, 

encounter learning difficulties, have tense relationships with others, engage in more spontaneous 

sexual activities, and suffer from more motor vehicle accidents and/or unintentional injuries.4,8,10-

13 As they age into adulthood, individuals with ADHD not only have a higher risk of 

oppositional, conduct, and substance abuse disorders, but also tend to have a poorer 

psychological adaptation to the social environment, and as a result, their chances to hold a job 

and expand their professional career have been shown to be significantly affected by their 

disorder.14 Additionally, adults diagnosed with ADHD have been shown to be likely to have 

comorbidities associated with a range of other mental and substance-related disorders.15 The 

most recent estimation of the annual cost of ADHD to society, including costs related to health 

care utilization, medication, education, crime, and unemployment is $14,500 USD per individual 

($42.5 billion USD in total).16 Moreover, as the prevalence of ADHD diagnosis has been 
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increasing by nearly 5% each year since 2003,17 the annual health care costs attributable to 

ADHD have been rising in parallel with the increasing prevalence of ADHD. 8,16,18 

Unfortunately, the current understanding of this highly prevalent and costly disorder is 

insufficient. The exact cause of ADHD is still unknown, not to mention the biological 

mechanisms behind the sex difference in ADHD risk. Gene variants, brain structural 

abnormalities, and neurotransmitter deficiency and deregulation are potential etiological 

mechanisms.19,20 However, no study to date has identified any specific gene that could explain a 

large amount of variation in the probability of ADHD development. On the other hand, multiple 

social and environmental risk factors can potentially influence the development of ADHD, 

including family-related factors,21-33 maternal obesity,34 maternal smoking,26,35,36, maternal 

drinking,26 low birthweight and preterm birth,37 and exposure to phthalates,38 bisphenol A,39 

organophosphates,40 polychlorinated biphenyls,41,42 and lead. 41,43-45 My recent analyses on 

maternal stress and child ADHD has lent further support to the role of early life psychosocial 

factors in child risk of ADHD. However, it has been difficult to identify which factors are in the 

causal pathways of ADHD.46 This is partly due to limitations in previous clinical and 

epidemiological studies of ADHD, including a lack of accurate ADHD measurement, biased 

sample selection, unmeasured confounders, and cross-sectional or retrospective study designs. 

To avoid those limitations, my studies described here used a large, prospective birth cohort 

design to examine several understudied, but potentially important and modifiable, early life risk 

factors of ADHD, taking into account multiple pre-/perinatal and early childhood factors 

previously reported as risk factors for ADHD.46 While a comprehensive review of each of the 

previously studied risk factors of ADHD is beyond the scope of this dissertation, below is a 

review of the major risk factors of interest, specifically maternal cholesterols (an exmaple of 
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maternal nutrition), early childhood blood lead levels (environmental toxin), and maternal 

acetaminophen levels (maternal medication). Table 1-1 provides a snapshot of the available 

published findings for each of these factors. 

Table 1-1 Summary of current findings. 

T
o

p
ic

 

Author, 

year 
Population 

Study 

design 

Sample 

size 

ADHD 

measurement 
Finding Limitation 

M
a

ter
n

a
l 

ch
o

leste
ro

ls 

Rodriguez, 

200834 

North 

European 
Cohort 12556 Teacher-rated score 

Risk of ADHD for both 

maternal overweight 

and large weight gain 

during pregnancy is two 

folds of normal weight 

mother 

No biomarker 

of cholesterols 

measured; no 

clinical ADHD 

diagnosis 

E
a

rly
 ch

ild
h

o
o

d
 lea

d
 

Braun, 

200643 

United 

States 

Cross-

sectional 
4704 

Parent-reported 

ADHD and 

reported stimulant 

medication use 

Higher current blood 

lead levels were 

independently 

associated with ADHD. 

No sex or prenatal 

smoking modification 

Late lead 

measurement; 

no clinical 

ADHD 

diagnosis 

Froehlich, 

200944 

United 

States 

Cross-

sectional 
2588 

Structured 

diagnostic 

interview with a 

caregiver; caregiver 

reports of ADHD 

medication use and 

previous diagnosis 

Higher current blood 

lead levels were 

independently 

associated with ADHD; 

the multiplicative 

interaction between 

high current lead and 

prenatal smoking 

Late lead 

measurement; 

self-reported 

ADHD 

diagnosis; 

 did not test the 

lead-sex 

interaction 

Wang, 

200847 
China 

Matched 

case-control 

630 

ADHD 

630 non-

ADHD 

Structured 

diagnostic 

interview to 

children, one of 

their parents, 

and their teachers 

Even current blood lead 

less than 10 µg/dL is 

associated with higher 

risk of ADHD; sex did 

not modify the 

association 

Late lead 

measurement 
M

a
ter

n
a

l a
ce

ta
m

in
o

p
h

en
 

Ystrom, 

201748 
Norway Cohort 112973 

Electronic medical 

record 

There is a significant 

positive association 

between long-term 

maternal use of 

acetaminophen during 

pregnancy and ADHD 

even after adjusting for 

potential confounders 

Self-reported 

use; lack of 

dose 

quantification 

Stergiakou

li, 201649 
England Cohort 7796 

Maternal reports of 

behavioral 

problems using 

Strengths and 

Difficulties 

The multiple behavior 

difficulties in offspring 

were associated with 

prenatal acetaminophen 

exposure 

Outcome is not 

assessed by 

health care 

professionals; 

self-reported 
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Questionnaire 

(SCQ) at age 7 

years 

use; lack of 

dose 

quantification 

Avella-

Garcia, 

201650 

Spain Cohort 2195 

Teacher-rated 

ADHD related 

symptoms 

Prenatal acetaminophen 

exposure was 

significantly associated 

with more hyperactivity 

/impulsivity symptoms 

Outcome is not 

assessed by 

health care 

professionals; 

self-reported 

use; lack of 

dose 

quantification 

Liew, 

201451 
Denmark Cohort 64322 

Parental report of 

ADHD symptoms 

at age 7; electronic 

medical record 

after age 5; use of 

ADHD medications 

Hyperkinetic disorders 

and ADHD like 

behaviors in offspring 

were significantly 

associated with prenatal 

acetaminophen use 

Self-reported 

use; lack of 

dose 

quantification 

Thompson

, 201452 

New 

Zealand 
Cohort 871 

Parental report of 

ADHD symptoms 

at age 7 and both 

parent- and child-

report at the age of 

11 

Prenatal acetaminophen 

exposure was 

significantly associated 

with increased risk of 

ADHD symptoms at 

age 7 and 11 

Outcome is not 

assessed by 

health care 

professionals; 

self-reported 

use; lack of 

dose 

quantification 

Brandlistu

en, 201353 
Norway 

Sibling-

controlled 

cohort 

2919 

same-sex 

sibling 

pairs 

Maternal reports of 

behavior and 

temperament 

problems using 

questionnaire at the 

age of 3 

Long-term prenatal 

acetaminophen 

exposure is significantly 

associated with adverse 

developmental 

outcomes at the age of 3 

Outcome is not 

assessed by 

health care 

professionals; 

self-reported 

use; lack of 

dose 

quantification 

 

The maternal nutrient condition at each reproductive stage can have a profound impact on the 

development and well-being of the offspring.54 During pregnancy, fetal neurodevelopment is 

dependent on stable and optimal levels of nutrients from the mother. Recent studies have 

reported prenatal exposure to maternal metabolic syndrome could influence children’s 

neurodevelopment outcomes, including autism spectrum disorder (ASD) and ADHD.34,55,56 As 

the major biomarker of metabolic syndrome, the maternal cholesterol profile might play essential 

roles in maintaining fetal neurodevelopment. To date, the role of the maternal cholesterol profile 

in child ADHD has been mainly unexplored yet biologically plausible because of its essential 
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roles in development and maintenance of the neural system.57,58 Moreover, maternal cholesterol 

levels increase with gestational age during healthy pregnancy and are transferred to the fetus via 

the placenta;59 this synchronized increase indicates that the cholesterols are essential for the 

proper development of the fetus.59 However, no published study was found to investigate the 

relationship between maternal cholesterol profiles and childhood ADHD.  

While lead has been extensively studied in relation to neurodevelopmental outcomes, its 

association with ADHD as a clinical entity has not been well studied. To date, only three large 

studies have investigated this association.43,44,47 These studies showed a strong dose-response 

association between lead levels and risk of ADHD. However, there were multiple drawbacks in 

these existing studies. First, the outcome assessment may have been flawed: all existing large 

sample studies defined ADHD cases via caregiver/school report, stimulant medication use 

record, or diagnostic interview by the researcher. No large study used the clinical specialist 

diagnosis as their case definition. Second, none of the studies investigated if lead affected boys 

and girls differently or had a large enough sample size to test the potential interaction between 

lead and sex on ADHD. Lastly, while both prenatal and postnatal lead exposures may affect 

ADHD risk, most study designs were either cross-sectional or retrospective. Most studies 

examined childhood lead exposure, with a mean age of measurement ranging from 7-14 years,60 

and the time of the lead measurement was either at the same time or after the ADHD diagnosis. 

There has not been a large longitudinal study designed to investigate the prospective association 

between early life lead exposure (before the age of 2) and the development of ADHD in 

childhood. 

Acetaminophen is a widely used and highly recommended medication for fever and pain relief 

during pregnancy. The percentage of pregnant women who use acetaminophen during pregnancy 
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is over 65% in the U.S. and over 50% in Europe.61,62 Since 2013, multiple independent research 

studies analyzing five prospective cohorts from Europe and New Zealand have consistently 

shown a positive association between maternal intake of acetaminophen during pregnancy and 

increased risk of ADHD and its related symptoms.48-53 However, the Society for Maternal-Fetal 

Medicine and the Food and Drug Administration both have issued statements regarding their 

belief that the evidence from those studies is inconclusive for showing a causal relationship 

between prenatal acetaminophen use and ADHD in the offspring.63,64 Their primary criticisms 

include self-reported exposure, lack of dose quantification, unmeasured confounders, and lack of 

adjustment for multiple testing.63 However, given its widespread usage, it is too risky to ignore 

any potential unknown side effects of this drug considering the health consequences of exposed 

fetus.65 Given the infeasibility of conducting any randomized trial, a well-designed prospective 

birth cohort with measurements of acetaminophen blood biomarker levels is needed. Currently, 

no published such study exists. 

In summary, to date, there remains insufficient knowledge regarding the role of maternal blood 

cholesterol profiles, early childhood blood lead levels, and maternal blood acetaminophen levels 

in the development of ADHD. Likewise, although remarkable sex difference in ADHD has been 

well observed, the cause for male dominance in ADHD is still unknown. Additionally, there is a 

paucity of prospective birth cohort studies designed to investigate the influences of these factors 

on the risk of physician-diagnosed ADHD in the U.S., especially among high risk, low-income 

urban minority populations. To fill in these significant research gaps, I used the data of mother-

infant pairs already enrolled and followed from birth up to age of 21 years in the Boston Birth 

Cohort (BBC), along with maternal cholesterols levels measured in blood samples collected 1-3 

days postpartum, early childhood blood lead levels measured before the age of 2 years, and 
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maternal acetaminophen levels measured in blood samples collected 1-3 days postpartum. The 

study participants of the BBC are primarily drawn from an urban, low-income and minority 

setting, which has much higher rates of maternal obesity66, elevated lead exposure67, and ADHD 

as compared to U.S. general populations. As detailed in the subsequent chapters, this dissertation 

leveraged the BBC’s extensive molecular, epidemiological, and clinical databases and 

biospecimen repository to address the following novel specific aims.  

1.2 SPECIFIC AIMS AND HYPOTHESES 

Aim 1. To investigate the role of maternal cholesterol (total cholesterol (TC), high-density 

lipoprotein (HDL), low-density lipoprotein (LDL), and triglycerides (TG)), independently and 

jointly, in the development of ADHD in childhood, adjusting for pertinent pre- and peri-natal and 

childhood factors. In addition, I aimed to investigate whether the associations differ by sex. 

Hypotheses: Maternal dyslipidemia during pregnancy can increase the risk of ADHD in 

childhood, and there is a sex difference in the association.    

Aim 2a. To investigate the role of early childhood lead exposure, independently and jointly, in 

the development of ADHD in childhood, adjusting for pertinent pre- and peri-natal and 

childhood factors. In addition, I aimed to investigate whether the associations differ by sex. 

Hypotheses: Lead exposure during early childhood can independently and jointly 

increase the risk of ADHD in childhood, and there is a sex difference in the association.    

Aim 2b. To investigate the potential protective effects of optimal maternal cholesterol levels in 

reducing the risk of ADHD associated with lead exposure. 
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Hypotheses: Optimal maternal cholesterol levels during pregnancy can mitigate the 

adverse effect of lead exposure on the risk of ADHD in childhood. 

Aim 3a. To investigate the role of maternal plasma levels of acetaminophen metabolites, 

independently and jointly, in the development of ADHD in childhood, adjusting for pertinent 

pre- and peri-natal and childhood factors.  

Hypotheses: Maternal plasma levels of acetaminophen metabolites during the perinatal 

period can increase the risk of ADHD in childhood.   

Aim 3b. To investigate the potential protective effects of optimal maternal cholesterol levels in 

reducing the risk of ADHD caused by maternal acetaminophen exposure. 

Hypotheses: Optimal maternal cholesterol levels during pregnancy can mitigate the 

adverse effects of maternal acetaminophen exposure on the risk of ADHD in childhood. 

1.3 CONCEPTUAL FRAMEWORK 

 

Figure 1-1 Conceptual framework. 

Figure 1-1 illustrates the conceptual framework for the three studies presented in this 

dissertation. This framework serves as a visual aid that supports the rationale for the specific 

aims mentioned above. By linking multiple early life risk factors (the dark blue boxes) with 
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childhood ADHD diagnosis (the bottom grey box), this framework illustrates the potential actors 

in the early life origin of ADHD development using a life-course perspective. 

1.4 DISSERTATION OVERVIEW 

This dissertation is arranged as follows. Chapter 1 provides the background and significance of 

this topic, major research gaps, and specific aims designed to fill in the research gaps on this 

topic.  It also provides an overview of the entire dissertation structure. In Chapter 2, the current 

understanding of ADHD and the major risk factors of interest are described in detail. Chapter 3 

provides a description of the measurements and methods used related to each specific aim. 

Chapter 4 presents the manuscript that was developed in support of Aim 1 with the title “Do 

maternal cholesterol levels affect attention deficit hyperactivity disorder in offspring? A 

prospective birth cohort study”. Chapter 5 presents the manuscript that was developed in support 

of Aim 2 with the title “A prospective birth cohort study on early childhood lead levels and 

attention deficit hyperactivity disorder: new insight on sex differences.” Chapter 6 presents the 

manuscript that was developed in support of Aim 3 with the title “Maternal biomarkers of 

acetaminophen use and offspring attention deficit hyperactivity disorder.” Chapter 7 addresses 

the implications of findings presented in this dissertation in terms of public health and clinical 

research. Chapter 8 synthesizes the major findings across each specific aim and discusses the 

strengths and limitations of the studies that are presented in the dissertation. 
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2.1 BACKGROUND AND SIGNIFICANCE 

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder, which is 

highly prevalent in the U.S. The prevalence of ADHD has increased significantly from 7.0% to 

10.2% among children aged 4-17 years during the past two decades.1 This chronic 

neurobehavioral disorder is characterized by inattention, hyperactivity, or impulsiveness.2-4 

Although stimulant medications are used as first-line treatment for ADHD, their potential side 

effects short and long-term on health outcomes are of concern.5,6 For example, taking these 

medications for ADHD can cause sleep disturbances, reduced appetite, and suppressed growth, 

which has been shown to impact on ADHD children’s development and quality of life.7 Like 

autism spectrum disorder (ASD), ADHD diagnosis is also disproportionately high among boys,8-

11 with a three times higher risk compared to girls per most recent estimates.10,12 ADHD can 

affect multiple aspects of a child’s life, such as school performance, social involvement, and 

overall quality of life.13-17 In the school setting, children diagnosed with ADHD tend to leave 

their seat frequently, talk incessantly, play loudly, and call out answers before question are stated 

completely. It is also harder for ADHD children to organize tasks and sustain attention during 

schoolwork or extracurricular activities.18 Due to their disruptive and aggressive behaviors, 

ADHD children are likely to be alienated by their classmates as early as the first day of school.19 

Thus, ADHD children are more liable to miss school, encounter learning difficulties, have tense 

relationships with others, engage in more spontaneous sexual activities, and suffer from more 

motor vehicle accidents and unintentional injuries.4,10,13,20-22  

Approximately 66% to 85% of ADHD children will carry their disorder into adolescence and 

adulthood.10,23 The high and rising prevalence of ADHD along with a tendency for it to persist 

into later life has serious short- and long-term consequences. As those diagnosed as children get 
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older, ADHD adults not only have an increased risk of oppositional, conduct, and substance 

abuse disorders but also have a poorer psychological adjustment. As a result, their chances to 

hold a job and advance their professional career are significantly affected by their ADHD.24 

Additionally, ADHD adults are likely to share comorbidities with many other mental and 

substance-related disorders.25 These coexisting disorders not only aggravate the deterioration 

linked with ADHD during adulthood but also inflate the economic burden.26 For instance, 

ADHD students contribute to a higher annual cost to the U.S. education system due to special 

education placement, grade retention, and disciplinary incidents.27 Moreover, studies have shown 

that those with ADHD had higher annual medical costs than those without ADHD due to higher 

utilization of hospitalization, primary care visits, outpatient mental health visits, and pharmacy 

fills.18 Claims data indicate that the excess medical costs of ADHD were $31.6 billion in the U.S. 

in 2000.28 The most recent estimation of the annual total cost of ADHD to society, including 

costs related to health care utilization, medication utilization, education, crime, and 

unemployment, is $14,500 per individual and $42.5 billion in total.29 Moreover, as the 

prevalence of ADHD diagnosis has been increasing by nearly 5% each year since 2003,8 the 

annual health care costs attributable to ADHD and related ambulatory care visits are becoming 

synchronized with the increasing prevalence of ADHD.10,29,30  

2.2 DEFINITION AND DIAGNOSIS 

ADHD is defined as a behavioral disorder characterized by symptoms of inattention, impulsivity, 

and hyperactivity.2 Based on these characteristics, ADHD is categorized into three major 

presentations: predominantly hyperactive/impulsive, predominantly inattentive, and combined.31 

Moreover, one presentation might shift to another one as the disorder progresses over time.32 

Currently, there are no reliable neuroimaging markers for diagnosing ADHD.33-35 Clinicians in 
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the U.S. currently use the Diagnostic and Statistical Manual of Mental Disorders, 5th edition 

(DSM-5) to diagnose ADHD.31 The DSM-5 criteria for ADHD in children up to age 16 are “six 

or more symptoms of inattention” (symptoms present over six months) and/or “six or more 

symptoms of hyperactivity-impulsivity” (symptoms present over six months).31 For an individual 

aged 17 years and older, the criteria are “five or more symptoms of inattention” (symptoms 

present over six months) and/or “five or more symptoms of hyperactivity-impulsivity” 

(symptoms present over six months).31 Based on these two types of symptoms, the DSM-5 

categorizes ADHD into three presentations: predominantly hyperactive-impulsive, 

predominantly inattentive, and a combined presentation.31 Moreover, those symptoms should 

clearly interfere with or reduce the quality of functioning in two or more settings, such as social, 

academic or occupational; a symptom would not be counted if it only occurs in one of these 

settings.31 In addition, a symptom would not be counted if it occurs exclusively in other mental 

disorders or is better explained by another mental disorder.31 Noteworthy, the ASD diagnosis is 

no longer an exclusion criterion for ADHD diagnosis.31 

In 2002, Vanderbilt ADHD Diagnostic Rating Scale (VADRS), a toolkit for assessment and 

treatment of ADHD in children between the ages of 6 and 12 in primary care settings, was 

developed jointly by American Academy of Pediatrics and National Initiative for Children’s 

Healthcare Quality.36-38 This toolkit consists of two versions: a parent version with 55 questions 

and a teacher version with 43 questions.37 Both the parent and teacher versions consists of two 

sections: symptom assessment and performance impairment.37 The VADRS has screening items 

corresponding to the ADHD diagnostic criteria in DSM-IV.38,39 Having at least 6 positive 

responses towards either the core 9 inattentive symptoms or core 9 hyperactive symptoms, or 

both would meet ADHD diagnosis criteria. 37 Because of its strong psychometric capacity in 
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ADHD assessment, 39,40 VADRS is a commonly used diagnostic scale for physicians.41 

Moreover, VADRS also includes symptoms screening items for three common comorbidities for 

ADHD, including oppositional defiant disorder, conduct disorder, and anxiety/depression.39 By 

calculating the scores for each comorbidity domain, VADRS could provide possibility of 

comorbidity according to the recommended threshold.39 

In addition to clinical diagnosis, behavior rating scales have become great additions for 

providing information about children’s symptoms in different settings, such as home and 

school.42 Because they are cost-efficient and easily administrable, the Child Behavior Checklist–

Attention Problem (CBCL-AP) subscale 43 and Conners Rating Scale-Revised (CRS-R)44 are the 

commonly used ADHD assessment tools for children and adolescents in schools and 

communities.42,45 While CBCL-AP has strong discriminatory power for screening ADHD among 

children and adolescents, CRS-R is more suitable for assessing ADHD and related behavioral 

problems.42 For instance, the CRS-R has an ADHD index, different length versions for parents 

and teachers, and various subscales for various behavioral domains, such as oppositional 

disorders, cognitive problems or inattention, and hyperactivity subscales.42 Based on meta-

analysis results, the sensitivity and specificity for ADHD diagnosis are moderate for both the 

CBCL-AP and CRS-R.42 Furthermore, the Conners’ Abbreviated Symptom Questionnaire 

(ASQ), an abridged version of the CRS-R, is considered to be the most effective diagnostic tool 

for assessing ADHD because of its high accuracy and conciseness.42 

2.3 CURRENT UNDERSTANDING OF ADHD ETIOLOGY 

Brain Structure and Function: Brain structural abnormalities, and neurotransmitter deficiency 

and deregulation have been found to be potential etiological mechanisms.46,47 Scientists have 
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observed global reduced volume and/or functionality of gray, especially in the right lentiform 

nucleus and extending to the caudate nucleus,48 and white matter among ADHD patients.49 

Moreover, ADHD patients have also shown smaller volume and/or reduced activity in the 

prefrontal cortex (PFC), caudate, and cerebellum areas, which are primarily in charge of 

attention, thoughts, emotions, behaviors, and actions.50,51 The functionalities across those areas 

are sensitively controlled by neurotransmitters, such as dopamine (DA) and norepinephrine 

(NE), through multiple receptors.52-57 Specifically, too little DA/NE release will cause an 

individual to become easily distracted and impulsive, while too much release will cause 

misguided attention and responses.58 Several studies have found reductions in DA and/or NE 

functioning in those diagnosed with ADHD.49,50,59-61 In contrast, several other studies have 

identified a hyperactive DA response in ADHD.56,62,63 These findings suggest a U-shaped 

relationship between the functioning level of DA/NE and ADHD symptoms, that is, the complex 

etiology of ADHD involves both hypoactive and hyperactive DA/NE systems.58  

Genetic Factors: One meta-analysis of 20 twin studies from the U.S., Australia, Scandinavia, 

and the European Union indicated that ADHD is a highly heritable psychiatric disorder with a 

mean heritability estimate of 76%.47 Although this study showed that the genes coding for 

SNAP25, DRD4, SLC6A3, HTR1B, SLC6A4, and DBH might play pivotal roles in the etiology 

of ADHD, single nucleotide polymorphisms (SNPs) in these genes and many biologically 

plausible genes did not show genome-wide significance (i.e., a P-value of <5×10−8) in the 

International ADHD Genetics (IMAGE) project that included 909 family trios.64 Moreover, 

grouped SNPs only showed weak associations with ADHD. These findings indicate that the 

highly heritable condition presumed of ADHD cannot be fully explained by genetics. 
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Epigenetics and gene-environment interactions should be investigated in future studies to expand 

the understanding of the role of genetics in the etiology of ADHD.  

Environmental Factors: Growing evidence suggests that environmental factors may also play a 

major role. The longitudinal, randomized control treatment trials, the quasi-experimental, and 

genetically informative studies have all shown that negative parenting, maltreatment, and 

poverty are strongly associated with the risk of ADHD, especially among a genetically 

susceptible population.65-68. In addition to those factors, other well-recognized environmental 

risk factors include family-related factors,65-77 maternal obesity,78 maternal smoking,70,79,80 

maternal drinking,70 low birthweight and preterm birth,81 and exposure to phthalates,82 bisphenol 

A,83 organophosphates,84 polychlorinated biphenyls,85,86 and lead.85,87-89 My recent analyses on 

maternal stress and child ADHD lend further support for the role of early life psychosocial 

factors in child risk of ADHD. It has been difficult to identify which among them are definitively 

causal;90 this is in part due to the limitations of previous clinical and epidemiological studies of 

ADHD, including lack of accurate ADHD measurements, biased sample selection, unmeasured 

confounders, and non-longitudinal designs. For instance, multiple studies using a genetically 

sensitive design have shown that the effect of maternal smoking is mostly confounded by genetic 

or other unidentified environmental factors.91,92 Furthermore, the possibility of reverse causality 

could not be excluded. For instance, a longitudinal study using a twin design found that it is 

more likely that the child’s ADHD symptoms are the causes for mother-son hostility rather than 

that hostility is the cause of ADHD.93 Moreover, another study showed that ADHD children 

identified from a nonclinical setting were more likely to show a sex difference in levels of 

impairment.94 Since it is not feasible or ethical to use randomized controlled trials (RCTs) to 
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examine the potential environmental risks and their modifications on ADHD, a large, prospective 

birth cohort design is needed to overcome these confounding and reverse causality issues. 

Sex Difference: Like ASD, ADHD diagnosis is also disproportionately high among boys,8-11 

with a three times higher risk compared to girls per most recent estimates.10,12 The results from 

two recent meta-analyses indicated that this sex difference in prevalence is caused by “potential 

confounding effects of referral bias, comorbidity, developmental patterns, diagnostic procedures, 

and rater source.”94,95 For instance, ADHD girls were shown to have a more severe intellectual 

impairment, lower level of hyperactivity, and less externalizing behaviors compared to ADHD 

boys.94 Those differences strongly indicate that sex-specific biological mechanisms are 

underlying the neurodevelopmental factors and interaction with environmental factors. However, 

there is still no well-established biological theory to help unravel the exact etiology of sex 

difference in ADHD.   

In the following, I will further elaborate on the three early life factors that this dissertation will 

focus on. 

2.3.1 Maternal nutrition 

The maternal nutrient condition at each reproductive stage can have a profound impact on the 

development and well-being of offspring.96 During pregnancy, fetal neurodevelopment is 

dependent on stable and optimal levels of nutrients from the mother. A suboptimal maternal 

nutrient condition during critical developmental periods could drastically increase the risk of 

multiple adverse neurodevelopmental problems, such as neural tube defects and schizophrenia.97 

Previous studies have shown that maternal nutrient imbalance or deprivation, especially during the 

fast growth period that demands a high nutrient supply, can seriously affect the structure and function 
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of the fetal brain.98,99 Thus, maternal nutritional status during pregnancy is biologically plausible to 

influence neurodevelopment in the offspring.  

Recent studies have reported that prenatal exposure to maternal metabolic syndrome could 

influence a child’s neurodevelopment outcomes, including ASD and ADHD.78,100,101 A study 

using BBC data showed a strong association between maternal obesity and diabetes and 

increased risk of ASD.100 Moreover, a vast longitudinal study, using prospective pregnancy 

cohorts from the Nordic Network, showed that both overweight moms and moms with excessive 

weight gain during gestation had an over 2-fold higher risk of having ADHD children.78 

However, these studies did not specifically examine a major component of metabolic syndrome, 

the maternal cholesterol profile, and it remains unclear what is the role of maternal cholesterols 

in fetal neurodevelopment.  

Cholesterol plays multiple essential functions in the human body. 102 First, it is the building 

block for synthesizing steroids or cortisone-like hormones, such as vitamin D and the sex 

hormones testosterone, estrogen and cortisone.102 Those steroids or hormones, in turn, regulate 

development and metabolism. Second, it assists in digestion and absorption of fat-soluble 

vitamins including vitamin A, D, E and K.102 Third, it is the critical component for stabilizing 

cell membranes and facilitating inter-cellular communication. Lastly, it plays crucial roles in 

myelin sheath formation, which is a neuron in charge of aiding the route of electrical impulses.102 

As such, a lack of abundant cholesterol might on its own lead to memory loss and focus problem. 

High-density lipoproteins (HDL) and low-density lipoproteins (LDL) are both complex particles 

composed of multiple fat-transporting proteins.103 As shown in Figure 2-1, HDL plays essential 

roles in transporting excess cholesterol from the periphery to the liver via a reverse cholesterol 

transport mechanism.103-105 HDL can carry cholesteryl ester to hepatocytes, steroid-producing 



 

24 

 

cells, and adipocytes through Scavenger receptor class B member 1 (SR-BI), a receptor for 

HDL.103 In addition to HDL, LDL is another crucial player in reverse cholesterol transport. LDL 

could exchange cholesteryl esters (CE), triglycerides (TG) and phospholipids (PL) with HDL via 

Cholesteryl ester transfer protein (CETP). Next, the LDL receptors (LDLR) recognize and take 

up LDL in hepatocytes.103 The central nervous system contains nearly 25% of the un-esterified 

cholesterol in the entire body, while it only accounts for 2% of bodyweight.106 Those sterols 

primarily reside in two locations in the brain: 1) plasma membranes of glial cells and neurons; 2) 

specialized membranes of myelin.106  

While the cholesterol in the CNS is primarily synthesized locally in the brain, the evidence for 

cholesterol transfer from maternal plasma into the brain of a fetus or newborn is limited.106 The 

formation and excretion of 24S-hydroxycholesterol out of the brain is the primary mechanism for 

eliminating excessive cholesterol and keeping a steady state in the brain.106 Indirect findings 

show that a significant amount of cholesterol recycling occurs among glial cells and neurons 

during neurodevelopment and neuron repair and remodeling.106 Ligands, such as apolipoproteins 

E and AI, and membrane transport proteins, such as HDL and LDL, may be involved in the 

sterol recycling process for both the brain and other parts of the body.107,108 Although there is no 

direct transport of sterol across the brain, studies suggest that an imbalance of cholesterol in the 

body may alter internal sterol recycling within the CNS, which would affect the integrity of both 

neurons and myelin.106 Moreover, another biological study showed that diabetes could cause a 

wide-spectrum of changes in sterol regulatory element-binding protein 2 (SREBP-2) and its 

downstream cholesterol synthetic genes expression in brain.109 As shown in Figure 2-2, those 

changes would result in a low production of brain cholesterol and its precursors, which in turn 

could lead to disruptions in synaptic formation and function.109 Thus, dysregulated brain 
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cholesterol metabolism presents another potential biological pathway leading to 

neurodevelopmental disorders. 
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Figure 2-1 Role of HDL and LDL in lipoprotein metabolism. (adapted from 103) 

 

Figure 2-2 Diabetes and Insulin in Regulation of Brain Cholesterol Metabolism (adapted from 109) 
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In sum, maternal cholesterols have important biological functions as outlined above. In fact,  

maternal cholesterol levels increase with gestational age during normal pregnancy and are 

transferred to the fetus via the placenta; 110 and this increase in normal pregnancy indicates that 

the cholesterols are essential for the proper development of the fetus.110 Moreover, the clinical 

cut points for abnormal levels of cholesterol may not apply to the unique physiological 

conditions during pregnancy, given it was derived for preventing cardiovascular diseases in 

adults. As such, a prospective birth cohort study is critically needed to investigate the association 

between maternal cholesterol levels and offspring ADHD risk.  

2.3.2 Environmental toxins 

Maternal exposure to chemical agents and pollutants have a potential negative impact on the 

nervous system of the developing fetus. Moreover, environmental toxins could further have a 

postnatal influence through the daily use of contaminated soil, water and air.111 For instance, 

exposure to pesticides, herbicides, and polychlorinated biphenyls has been associated with 

increased risk of perinatal mortality, growth restriction, and intellectual function.112 Specifically, 

growing evidence indicates a link between the risk of ADHD and multiple environmental toxin 

exposures, including phthalates,82 bisphenol A,83 organophosphates,84 polychlorinated 

biphenyls,85,86 and lead.85,87-89  

Lead will be the primary research focus of this dissertation. Lead has the potential to damage 

multiple organ systems within the human body across the lifespan. 113 The toxicity of lead 

exposure on the central neuron system makes it extremely harmful during infancy and childhood, 

which is the critical period for neurodevelopment.114 As the understanding of lead’s toxicity 

advances, the threshold to define lead toxicity has been revised from as high as 30 μg/dL in 1975 

to 5 μg/dL in 2012 to the current understanding that there is no safe level of exposure for the 
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fetus or young child.115-119 High exposures to lead could result in grave outcomes, including 

neurological impairments, coma, and even death.118 Even under low levels of lead exposure, 

increased risks have been identified for multiple outcomes including intellectual reduction,120,121 

executive functioning impairment,122 and socio-behavioral problems.123 Furthermore, 

accumulating literature suggests that lead exposure is associated with the core symptoms of 

ADHD.113  

Although lead has been extensively studied for neurodevelopmental outcomes, its association 

with ADHD as a clinical entity has not been well studied. Currently, only three large sample 

sized studies have investigated this association.87,88,124 Two large cross-sectional studies using 

different time periods of National Health and Nutrition Examination Survey (NHANES) data 

consistently showed a dose-response relationship between childhood blood lead level and ADHD 

diagnosis.87,88 The adjusted odds ratios between the highest lead group and the lowest lead group 

were 4.1 (95%CI, 1.2–14.0)87 and 2.3 (95%CI, 1.5–3.8),88 respectively. This dose-response trend 

was still observed for the group of children with blood lead levels lower than 2 µg/dL.87 A 

relatively large matched case-control study in China also observed a similar dose-response 

relationship.124 However, there have been multiple drawbacks in these existing studies. First, the 

definition of ADHD in the sizable studies was mainly based on caregiver/school report, stimulant 

medication use record, or diagnostic interview by the researcher. No large study used the clinical 

specialist diagnosis as their case definition. Second, none of these studies investigated the lead-

sex interaction or had a large enough sample size to test the potential interaction. Lastly, while 

there has been plenty of evidence to support the link between the effects of both prenatal and 

postnatal lead exposure and risk for ADHD, most studies only examined the consequences of 

postnatal lead exposure, when the mean age of measurement ranged from age 7-14 years,113 such 
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that the time of measurement was either at the same time or after the ADHD diagnosis. So far, 

there has been no large longitudinal study to investigate ADHD in relation to blood lead levels 

measured before the age of 2. 

The neurotoxicity induced by lead is determined by both age125 and lead level.126 Compared to 

adults, children absorb more lead into the brain due to higher potential intake from the 

environment and an underdeveloped blood-brain barrier.127,128 The lead-induced damage in the 

developing brain preferentially occurs in the prefrontal cortex (PFC), hippocampus, and 

cerebellum,129-131 while the brains of ADHD individuals also show a reduction in the volume and 

activity of the PFC and cerebellum.58 Although the exact neurotoxicological pathways induced 

by lead exposure are still understudied, current biological studies suggest that lead disrupts the 

hippocampus region through interacting with the NMDA receptor both synaptically and extra-

synaptically.132 Figure 2-3 summarizes the detailed mechanisms of synaptic interactions between 

lead and the NMDA receptor.132 When the Pb+2 ion enters the hippocampus synaptic region, it 

binds to the NMDA receptor with a much higher affinity compared to glutamate.132 The Pb-

NMDA complex formed by this binding causes a low release of the Ca+2 ion. When there is a 

lack of Ca+2 ion, the Ca+2 dependent pathways, such as calmodulin-II (CAM-II), neuronal nitric 

oxide synthase (n-NOS) and cAMP response element-binding protein (CERB), are inhibited, 

which can lead to long-term potentiation (LTP) dysfunction.133 Figure 2-4 summarizes the lead-

NMDA receptor interactions in the extra-synaptic region.132 In the extra-synaptic region, the 

picomolar level of Pb+2 can efficiently substitute a micromolar level of Ca+2 on the NMDA 

receptor’s NR2 B subunit, which induces an inflow of Ca+2.134 However, in this case, the 

increased level of Ca+2 can activate both protein kinase-C (PKC) and calmodulin (CAM) mRNA 
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expression.134 Overactivation of these two pathways can cause an imbalance between apoptosis 

factors and antioxidants factors, which leads to neuron cell death.134 

 

Figure 2-3 The synaptic interaction between lead and the NMDA receptor. (adapted from 132) 

 

Figure 2-4 The extra-synaptic interaction between lead and the NMDA receptor. (adapted from 132) 
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Although lead exposure in children has declined in the U.S. since the ban on leaded gasoline.117 

lead has remained an important risk factor for certain children for two important reasons. First, 

accumulating evidence has revealed that even low-level lead exposure still has adverse effects on 

neurodevelopment. In agreement with this finding, the blood lead level of concern was reduced 

from 30 μg/dL in 1975 to 5 μg/dL in 2012 in the U.S.118,135 Even further, accumulating new 

findings together with recent CDC guidelines suggest that there is no threshold for the adverse 

health effects of lead exposure.117,136 Second, there still is a profound disparity of lead exposure 

in the U.S. A study conducted in South Carolina showed that the soil lead concentration was 

much higher in the urban areas because of more potential lead sources, such as road networks 

and industries.137 In relation to this, low-income and racial/ethnic minority individuals including 

children younger than 6 years old have a much higher risk of lead exposure because they tend to 

live in urban areas and in neighborhoods that are closer to these lead sources;137 this is not a 

matter of choice; these are the urban areas in which low-income individuals can afford to and 

hence are forced to live. Consistently, many other studies have also found that low-income 

minority populations are more likely to live in the highly lead-contaminated regions and have 

higher median blood lead concentrations, particularly among children, as a result.137-140 The 

Flint, Michigan drinking water crisis is a clear example of the deep disparity of lead exposure in 

the U.S. Before the water source was switched, the population of Flint, which is home to many 

low-income minority populations, had already suffered multiple risks due to high lead exposure, 

including poor nutrition, condensed poverty, and older housing, which also increases the 

potential for lead exposure.141 Data shows that there was already 2.4% of children who had 

elevated blood lead levels (>5 µg/dL) before the water source switch, while the percentage 

outside of Flint was 0.7%.141 With a limited alternative water supply, the already higher 
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proportion of children with elevated blood lead levels was shown to be doubled after the water 

crisis.141 The latest CDC report shows that the percentage of children in the U.S. with a 

confirmed blood lead level higher than 10 μg/dL increased from 7.6% to 13.4% from 2009-

2011.142 In the BBC, all of the cord blood samples had detectable levels of lead. The high 

prevalence of lead exposure along with exposures to other psychosocial and environmental 

toxins could have an enormous negative impact on children’s neurodevelopment, particularly 

among most vulnerable segments of populations in the U.S.141  

In sum, early life exposure to lead remains a clinical and public health concern in the US, 

especially, among disadvantaged populations. The role of early life exposure to lead in ADHD is 

biologically plausible, but not well-established.  As such, a prospective birth cohort study is 

critically needed to investigate the association between early life exposure to lead and ADHD 

risk. Such investigation will be most relevant and revealing among high-risk U.S. populations 

such as urban, low income, minority children. 

2.3.3 Maternal medication use 

The average childbearing age in North America and Europe overlaps with the typical age of drug 

misuse.143 According to the 2013 National Survey on Drug Use and Health in the U.S., 5.4% of 

pregnant women aged 15 to 44 in 2012-2013 reported as current illicit drugs users.144 Given the 

underestimated nature of self-reported illicit drug use into consideration,145 the true prevalence of 

drug misuse is likely much higher. Due to challenges associated with lifestyle changes in the face 

of addiction as well as both a lack of timely awareness about conception and the potential 

toxicity of drugs on the fetus, women might keep using harmful medications before and during 

pregnancy.111 The potential fetal toxicity as a result of maternal illicit drug and medication 

exposure has been well-established.143 One study provided evidence for the transplacental 
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transfer of gestational drug exposure by identifying detectable levels of illicit drugs, medications, 

tobacco ingredients, and alcohol metabolites from neonatal hair samples.146 Heroin and 

methadone exposure during pregnancy have both been linked to an increased risk of neonatal 

abstinence syndrome, preterm birth, low birthweight, and even perinatal mortality.143 At the 

same time, the prenatal use of anticonvulsants, a group of medications prescribed for the 

treatment of epileptic seizures, could lead to multiple congenital disabilities, including neural 

tube defects and developmental delays.147  

Accumulating literature suggests that early child neurodevelopment could be highly influenced 

by prenatal prescribed and over-the-counter medication exposure.148,149 One example is 

acetaminophen. Since 2013, multiple independent research studies analyzing five prospective 

cohorts from Europe and New Zealand have consistently shown a positive association between 

maternal intake of acetaminophen during pregnancy and risk of ADHD and its related symptoms 

in offspring.150-154 The most recent study investigated the relationship between maternal 

acetaminophen intake during pregnancy and risk of ADHD in offspring further adjusting for 

familial risk for ADHD and acetaminophen-related indications.150 This study, using the 

Norwegian Mother and Child Cohort Study (MoBa), collected data on maternal acetaminophen 

use through MoBa questionnaires at week 18, week 30, and 6 months after delivery. Children’s 

ADHD diagnosis (2246 ADHD cases identified out of 112973 children) was based on the 

electronic medical record. Cox proportional hazard model results showed that short-term 

maternal acetaminophen use during pregnancy was negatively associated with the risk of ADHD, 

while long-term use was strongly associated with the risk of ADHD after adjusting for major 

known risk factors and other potential confounders. However, both the Society for Maternal-

Fetal Medicine and the Food and Drug Administration both have issued statements indicating a 
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belief that the findings from these current studies are still too inconclusive to draw any causal 

inference between prenatal acetaminophen use and ADHD in the offspring.155,156 Their primary 

criticisms include the use of self-reported exposure, lack of dose quantification, unmeasured 

confounders, and lack of model adjustment for multiple testing.155 Given the infeasibility of 

conducting any randomized clinical trial, a well-designed prospective birth cohort with 

acetaminophen levels measured in maternal blood samples will be needed to address the noted 

concerns about previous studies and improve the understanding of acetaminophen’s effects 

during pregnancy. Currently, no such study of this kind exists. 

Acetaminophen is a widely used and commonly recommended medication for fever and pain 

relief for mother during pregnancy157 and for babies in early life.158 The percentage of pregnant 

women who use acetaminophen during pregnancy is over 65% in the U.S. and over 50% in 

Europe.157,159 Starting from the early 1980s, acetaminophen replaced the carcinogenic and toxic 

phenacetin, which can be metabolized into acetaminophen in the human body.160 The liver is the 

primary location for metabolism of acetaminophen.161 As illustrated in Figure 2-5, the main 

metabolites of acetaminophen include unchanged acetaminophen, acetaminophen glucuronide, 

acetaminophen sulfate, and hepatotoxic N-acetyl-p-benzoquinone imine (NAPQI).162 Under a 

therapeutic dose, the majority of acetaminophen is converted into nontoxic glucuronide (52-57% 

of urine metabolites) and sulfate (30-44%) conjugates.162 However, 5-10% of acetaminophen is 

processed into highly toxic metabolite NAPQI, which is responsible for the major hepatotoxicity 

of acetaminophen.162 The process of NAPQI detoxification is a glutathione-dependent process. 

Within the glutathione capacity, NAPQI is ultimately excreted in the urine as acetaminophen 

mercapturate.161,163 In contrast, under supra-therapeutic doses of acetaminophen, the production 

of toxic NAPQI drastically increase to over 15% of total metabolites.162 As the depletion of 
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glutathione proceeds, the undetoxified NAPQI leads to energy production loss, ion channel 

disturbance, and cell death.161,163,164 

 

 

Figure 2-5 Pathways of acetaminophen metabolism. 

 

Although the causality and biological mechanisms underlying the maternal acetaminophen and 

child ADHD association remain to be determined, its potential neurotoxicity is plausible 

according to previous findings. First, acetaminophen can be transferred through the placenta and 

stays in the infant’s circulation much longer than in adults.165 One study showed that maternal 

intake of phenacetin (which can be converted into acetaminophen rapidly in adults) containing 

tablets 5.5 hours before delivery can lead to detectable acetaminophen and its metabolites in an 

infant’s 47-hour urine.165 The prolonged detection of acetaminophen among children is due to 
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their undeveloped livers, which is in charge of  acetaminophen metabolism.166 On one hand, 

children’s low metabolic capacity makes it safer for them to use acetaminophen, while on the 

other hand, it makes the fetus more vulnerable to maternal metabolized toxic NAPQI during 

pregnancy. The challenge that remains is that, while current opinions supporting 

acetaminophen’s safety are based on findings related to the low toxic burden of the liver, kidney, 

and intestines in the short-term,167,168, the long-term neurodevelopmental outcomes related to 

acetaminophen exposure have remained to be clarified.169 

Second, as illustrated in Figure 2-6, the therapeutic effect of acetaminophen involves inhibition 

of prostaglandin production.170 Prostaglandin H2 is the precursor of prostaglandin, which is 

converted from arachidonic acid by membrane-bound enzyme cyclo-oxygenase (COX).171 COX 

exists in two major isoforms: COX-1 and COX-2.172 COX-1 isoform is detectable in most 

tissues, while COX-2 isoform is only detectable in neuronal tissues under normal physiological 

conditions.173 The therapeutic effect of acetaminophen can selectively inhibit COX-2.174 As a 

result, the inhibition of prostaglandin production by acetaminophen primarily occurs in the 

brain.174 However, prostaglandin synthesis in the brain involves multiple essential biological 

processes underlying the function and development of neural systems, such as long-term 

potentiation,175 learning,176 and cerebellar development.170 While acetaminophen has some 

therapeutic effects, these disruptions in neuronal development and regulation caused by 

acetaminophen provide an additional plausible explanation for its potential neurotoxicity.   
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Figure 2-6 Action and metabolism of acetaminophen in babies and children. (adapted from 169) 

Third, accumulating studies have shown that acetaminophen not only rapidly enters the 

cerebrospinal fluid but also shows a profound influence on adult brain function. Again, except 

for its therapeutic effect, acetaminophen can also reduce adults’ response to stimuli and social 

rejection, and make them less likely to be aware of mistakes made during simple tasks.177-180 

These impacts on neural function also provide indirect evidence in support of acetaminophen’s 

potential neural toxicity.  

In sum, long-term exposure to maternal acetaminophen metabolites during pregnancy combined 

with a lack of metabolic capacity within the fetus might lead to both direct toxic damage from 

maternal NAPQI exposure and potential disruption in neurodevelopment due to prostaglandin 

inhibition. Considering the widespread use of acetaminophen in pregnant and peripartum women 

and growing concerns about its potential adverse effect on the developing brain and ADHD, 
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Prospective birth cohort study using objective biomarkers of exposure is critically needed to 

investigate the association between maternal acetaminophen and offspring ADHD risk.  
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Chapter 3 METHODOLOGY  
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3.1 DATA SOURCE AND STUDY SAMPLE 

The Boston Birth Cohort (BBC) is an ongoing prospective birth cohort, which was initiated by 

Dr. Xiaobin Wang at the Boston Medical Center (BMC) in 1998. This cohort was initially 

designed to support a molecular epidemiological study to capture the risk factors for low 

birthweight and prematurity among an urban, low-income, minority population in the Boston 

region. Since 1998, the BBC has used a rolling enrollment. To date, the BBC has successfully 

recruited over 8500 mother-infant pairs at birth; the participation rate was about 90% among 

eligible mothers approached by the research staff. Since 2003, a subset of children of BBC who 

continue to receive primary pediatric care at BMC are being enrolled in a postnatal follow-up 

study: Children’s Health Study.1-3 Besides collecting extensive demographic and environmental 

exposure assessments, the BBC has significantly benefited from the implementation of EMR 

since 2003 and the clinical data warehouse since 2005, which allows to access electronic medical 

records of the study children, including inpatients, outpatients, the emergency room, the 

operating room and billing, along with physician diagnoses based on the International 

Classification of Diseases, Ninth Revision or Tenth Revision (ICD-9 or ICD-10) for each 

postnatal visit were obtained from each child’s EMR from 2003 through 2016.  

The analyses presented here use data from the Children’s Health Study (n~=3000). The sample 

size for each aim is presented in Table 3-1, and a power calculation is provided in  

Table 3-2. 
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Table 3-1 Sample size calculation. 

  N 

Any 

ADHD 

diagnosis 

Neurotypical 

Other 

developmental 

disorder 

diagnosis 

Sample size for Aim 1     

 Maternal cholesterol biomarkers 1479 303 1176  

Sample size for Aim 2     

 Early childhood lead exposure 

(before age 2 years) 
1479 299 1180  

Sample size for Aim 3     

 Maternal acetaminophen 

metabolites 
1180 188 604 388 

 

Table 3-2 Power calculation. 

Alpha 

(α) 

Effect Size for acetaminophen 

(ψ) 
Power 

Ratio of non-ADHD to ADHD 

children 
N1 N2 

0.05 
0.21 

0.7385 5.44 176 957 

0.10 0.8301 5.44 176 957 

Note: The power calculation for acetaminophen (Aim 3b) is presented above. Aim 3b for 

maternal blood unchanged acetaminophen was chosen to demonstrate the power since this sub-

aim has the smallest sample size (n=1133). Due to a lack of appropriate data from other sources, 

BBC data was used for the power calculation. The mean difference in maternal unchanged 

acetaminophen levels between non-ADHD children and those with ADHD was 0.21 (inverse 

transformed intensity). The prevalence of ADHD in the BBC is 12%. Using a two-tailed alpha of 

0.05 and 0.10, detecting an effect size of 0.21, with an N2/N1 ratio of 5.44 yielded a power of ~ 

0.7385-0.8301%. 

3.2 DATA COLLECTION 

After obtaining informed consent and recruiting mothers into the BBC within a few days of 

delivery, a standard questionnaire interview was used to collect data on maternal demographics, 

smoking status, drug use, alcohol consumption, and several other variables. A medical 

abstraction form was used to review and collect clinical-related data from the maternal and 

newborn medical records, including parity, pre-pregnancy weight and height, gestational weight 

gain, pregnancy-related complications, intrauterine infection, and birth outcomes, such as 

gestational age and birthweight. Maternal blood samples collected shortly after delivery were 
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analyzed for maternal plasma HDL, LDL, TG, and acetaminophen metabolites. ADHD diagnosis 

and early childhood blood lead levels were obtained from the EMR at every postnatal clinical 

visit since 2003.  

The study was approved by the Institutional Review Boards of the Johns Hopkins Bloomberg 

School of Public Health and Boston University Medical Center. 

3.3 MEASURES 

3.3.1 Primary outcomes 

The primary outcome of this dissertation is ADHD. ADHD cases in this study are defined by 

clinician diagnosis based on ICD codes in the EMR. Specifically, ICD-9 codes 314.0-314.9 or 

ICD-10 codes F90.0-F90.9 documented by developmental-behavioral specialists or general 

physicians in each child’s EMRs. The developmental-behavioral specialists included 

developmental-behavioral pediatricians, pediatric psychologists, pediatric neurologists, and child 

psychiatrists; general physicians were pediatricians and family medicine physicians. While there 

is a possibility of under- or misdiagnosis of ADHD, the validity of such diagnosis should be high 

in the BBC, given that most of the ADHD diagnoses in the BBC were made by developmental-

behavioral specialists (301 out of 418 ADHD diagnosis). Prescribed medications documented in 

the EMR can further verify the ADHD diagnoses.  

The ICD-9 codes have been listed in the Diagnostic and Statistical Manual of Mental Disorders 

(DSM) since 1980. The Diagnostic and Statistical Manual of Mental Disorders, 5th edition 

(DSM-5) is the latest DSM version published, on May 18, 2013, which lists both ICD-9 and 

ICD-10 codes for transitional purposes.4 Starting from October 1, 2015, all entities covered by 

HIPAA (Health Insurance Portability and Accountability Act of 1996) must use ICD-10 codes.5  
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Clinicians in the U.S. currently use the DSM-5 to diagnose ADHD, superseding the DSM-IV-TR 

published in 2000.4 The diagnostic criteria for ADHD in the DSM-5 are similar to those in the 

DSM-IV. For example, the same 18 symptoms are divided into two symptom domains 

(inattention and hyperactivity-impulsivity), of which at least six symptoms in each domain are 

required for diagnoses of children less than 17 years of age. However, several changes were 

made in the DSM-5: 1) criterion items now are applicable across the life span; 2) the cross-

situational requirement has been strengthened to “several” symptoms in each setting; 3) the onset 

criterion has been changed from “symptoms that caused impairment were present before age 7 

years” to “several inattentive or hyperactive-impulsive symptoms were present prior to age 12”; 

4) subtypes have been replaced with presentation specifiers that map directly to the prior 

subtypes; 5) a comorbid diagnosis of autism spectrum disorder is now allowed; and 6) a 

symptom threshold change has been made from six required symptoms to five for adults, both 

for the inattention and for the hyperactivity–impulsivity domain. Finally, ADHD is placed in the 

neurodevelopmental disorders chapter in DSM-5 to reflect brain developmental correlates with 

ADHD.4,6 Because the study population of this dissertation is younger than age 17 years, the 

transition from DSM-IV to DSM-5 is not expected to have an impact on my ADHD diagnosis 

determination.   

The primary outcomes are listed in   
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Table 3-3. Figure 3-1 presents the distribution of diagnosis age for the first and last ADHD 

diagnosis. Age of diagnosis information can be used for sensitivity analysis by using survival 

analysis or more stringent ADHD case criteria (such as excluding the last diagnosis age younger 

than 6 years old). 
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Table 3-3 List of primary outcomes. 

Name Case definition N Non-case definition N 

Any ADHD 

diagnosis 

Having at least one 

ADHD clinician 

diagnosis from any of 

the postnatal visits 

418 Not having any ADHD 

clinician diagnosis through 

all the postnatal visits 

2680 

Any specialist 

diagnosis 

Having at least one 

ADHD specialist 

diagnosis from any of 

the postnatal visits 

301 Not having any ADHD 

clinician diagnosis through 

all the postnatal visits 

2680 

Any general 

physician 

diagnosis 

Having at least one 

ADHD general 

physician diagnosis 

from any of the 

postnatal visits 

117 Not having any ADHD 

clinician diagnosis through 

all the postnatal visits 

2680 

Any ADHD 

diagnosis with 

strict case and 

non-case 

definition 

Having at least one 

ADHD specialist 

diagnosis from any of 

the postnatal visits 

301 Not having any ASD, 

ADHD, DD clinician 

diagnosis through all the 

postnatal visits 

1800 

  

  

Figure 3-1 The age distributions of first and last ADHD diagnosis. 

 

3.3.2 Primary exposures 

The primary exposures are listed in Table 3-4. Maternal plasma total cholesterol, HDL, LDL, 

TG, and biomarkers of acetaminophen use were measured using nonfasting blood samples 
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obtained between 24 to 72 hours after delivery. Early childhood blood lead levels were obtained 

from the EMR of postnatal clinical visits.  

Table 3-4 List of primary exposures. 

Primary exposures N Distribution, median (IQR) 

Aim 1   

  Maternal total cholesterol (mg/dL) 2126 213.8 (175.6-254.1) 

  Maternal HDL (mg/dL) 2125 60.3 (49.9-72.7) 

  Maternal LDL (mg/dL) 2127 121.0 (95.9-150.4) 

  Maternal TG (mg/dL) 2124 176.7 (134.6-231.2) 

Aim 2   

  Early childhood lead (μg/dL) 2276 2 (1-3) 

Aim 3  Percentage detectable 

  Unchanged acetaminophen 1412 100% 

  Acetaminophen glucuronide 1412 62.6% 

  3-(N-Acetyl-L-cystein-S-yl) acetaminophen 1412 55.0% 

3.3.3 Other covariates 

Table 3-5 provides a list of pertinent pre- and peri-natal and child factors that could potentially 

confound the relationship between maternal cholesterol, early childhood lead, maternal 

acetaminophen and ADHD risk; these factors will be adjusted for in the multivariate models. 

Table 3-5 Pertinent pre- and peri-natal and child factors to be adjusted in the models. 

Variables  Definition Type 

Pre- and peri-natal factors   

Maternal age Maternal age at the time of enrollment Continuous 

Parity Number of previous deliveries not including index 

pregnancy - nulliparous vs. multiparous 

Binary 

Maternal education Below college degree vs. college or more Binary 

Maternal race/ethnicity Black, White, Hispanic and Other Categorical 

Smoking during pregnancy Whether mother ever smoked 3 months before 

pregnancy/during pregnancy - never, quit, 

continuous 

Categorical 

Intrauterine infection Maternal intrauterine infection during pregnancy Binary 

Child factors     

Sex Child's sex  Binary 

Delivery type C-section vs. vaginal Binary 

Gestational age Preterm (<37 weeks) vs. term delivery Binary 

Birthweight Low birthweight (<2500 g) vs. normal birthweight Binary 

Breastfeeding Bottle fed or both vs. exclusively breastfed Binary 
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3.4 DATA ANALYSIS 

3.4.1 General analytical approach 

Descriptive data analyses: The primary outcomes are binary (any ADHD diagnosis). The 

primary exposures of interest, such as maternal total cholesterol, HDL, LDL, TG (Aim 1), early 

childhood lead (Aim 2) and maternal acetaminophen metabolites (Aim 3), were analyzed as 

continuous, categorical, or binary variables. For key exposures, I first delineated their ranges and 

distributions and then determined appropriate transformations (i.e., natural logarithm 

transformation) to render the distributions approximately Gaussian as well as to stabilize the 

variance, if necessary. Group comparisons used ANOVA for continuous variables and Chi-

square or Fisher’s exact tests for categorical variables.  

Consideration of pertinent covariates: Due to different biological theories and previous 

literature findings, the selection of pertinent covariates in each aim was different. The initial 

analysis started with a saturated model, which included all the potential covariates and 

interaction terms. After that, I gradually eliminated insignificant terms with the help of model 

comparison tools such as the likelihood ratio test.  

3.4.2 Analysis for Aim 1 

Aim 1 intended to investigate the role of maternal cholesterols (total, HDL, LDL, TG), 

independently and jointly, on the development of ADHD in childhood, adjusting for pertinent 

pre- and peri-natal and childhood factors. I further investigated whether the associations differed 

by sex. I hypothesized that maternal dyslipidemia during pregnancy can increase the risk of 

ADHD in childhood and that there is a sex difference in the association.  

The relationship between maternal cholesterol biomarkers and ADHD was explored using a 

lowess plot with and without adjustment for other covariates, with each exposure considered a 
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continuous variable. With the visual aid of the lowess plot, each cholesterol biomarker was 

grouped into categorical variables using both clinical cut-off points and other cut-points (e.g., 

tertiles, quintiles, quartiles).  

Generalized linear models (GLM) were used to analyze exposure-outcome associations 

systematically. GLM represent a large model class with well-established methods for model 

fitting and statistical inference.7 I chose appropriate models from the class depending on the data 

type of the outcomes. For example, I used logistic regression for a binary outcome. The logit-

transformed event probability was assumed to be a function of exposure and covariates: ln (Pr(Yi 

= ADHD)/Pr(Yi = non-ADHD))= β0 + β1Ei+ βcCi+εi  , where Yi is the outcome for subject i, Ei 

and Ci are exposures and a set of covariates for subject i, and β1 and βc are the corresponding 

regression coefficients. After accounting for confounding covariates, the exposure-outcome 

associations can be studied using a maximum likelihood estimate, hypothesis test, and 

confidence interval of β1. The odds ratio (OR) can be estimated based on exp(β1), which, for a 

common binary outcome, relative risk (RR) can be estimated as RR=OR/[(1-P0)+(P0*OR)], 

where P0=prevalence of the outcome in the unexposed group.8  

With the help of the GLM method, a set of sequential models were executed in STATA. Below 

is the detailed sequential analytical plan:   

Aim 1: 

Analytical goal 𝐥𝐧⁡(
𝐏𝐫(𝐘𝐢 = 𝐀𝐃𝐇𝐃)

𝐏𝐫(𝐘𝐢 = 𝐧𝐨𝐧 − 𝐀𝐃𝐇𝐃)
) = β0 + β1Ei + βcCi + β2Ei*sex + εi 

Independent effect of HDL 

Crude     HDL       

Adjusted     HDL  covariates     

Adjusted+interaction     HDL  covariates  interaction   

Independent effect of LDL 

Crude     LDL       

Adjusted     LDL  covariates     

Adjusted+interaction     LDL  covariates  interaction   
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3.4.3 Analysis for Aim 2 

Aim 2a intended to investigate the role of early childhood lead exposure on the development of 

ADHD in childhood, adjusting for pertinent pre- and peri-natal and childhood factors. I further 

investigated whether the associations differed by sex. Aim 2b intended to investigate the 

potential protective effects of optimal maternal cholesterols in reducing the risk of ADHD 

associated with lead exposure. My hypotheses were as follows: lead exposure during early 

childhood can independently increase the risk of ADHD in childhood, and there is a sex 

difference in the association. Additionally, optimal maternal cholesterol during pregnancy can 

mitigate the adverse effect of lead on the risk of ADHD in childhood.      

The relationship between early childhood lead exposure and ADHD was explored using a lowess 

plot with and without adjustment for other covariates, with each exposure considered to be a 

continuous variable. With the visual aid of the lowess plot, lead levels were grouped into 

categorical variables using multiple cut-off points (e.g., tertiles, quintiles, quartiles).  

As described previously, the GLM was also used as the primary analytical method for Aim 2. 

The sequential analysis plan is provided below:   

Independent effect of TG 

Crude     TG       

Adjusted     TG  covariates     

Adjusted+interaction     TG  covariates  interaction   

Independent effect of total cholesterol 

Crude     total 

cholesterol 

      

Adjusted     total 

cholesterol 

 covariates     

Adjusted+interaction     total 

cholesterol 

 covariates  interaction   

Joint effect of cholesterol 

     Based on 

findings 
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Aim 2a: 

 

Aim 2b: 

3.4.4 Analysis for Aim 3 

Aim 3a intended to investigate the role of maternal blood acetaminophen metabolites, 

independently and jointly, on the development of ADHD in childhood, adjusting for pertinent 

pre- and peri-natal and childhood factors. I further investigated whether the associations differed 

by sex. Aim 3b intended to investigate the potential protective effects of optimal maternal 

cholesterols in reducing the risk of ADHD associated with maternal acetaminophen exposure. 

My hypotheses were as follows: maternal acetaminophen exposure during the perinatal period 

could independently and jointly increase the risk of ADHD in childhood, and there is a sex 

difference in the association. Additionally, optimal maternal cholesterol during pregnancy can 

reduce the adverse effect of maternal acetaminophen exposure on the risk of ADHD in 

childhood.      

The relationship between each maternal acetaminophen metabolite and ADHD was explored 

using a lowess plot with and without adjustment for other covariates, with each maternal 

acetaminophen metabolite considered to be a continuous variable. Based on previous findings 

regarding the proportions of acetaminophen metabolites typically found in blood samples,9 I 

Analytical goal 𝐥𝐧⁡(
𝐏𝐫(𝐘𝐢 = 𝐀𝐃𝐇𝐃)

𝐏𝐫(𝐘𝐢 = 𝐧𝐨𝐧 − 𝐀𝐃𝐇𝐃)
) = β0 + β1Ei + βcCi + β2Ei*sex + εi 

Independent effect of early childhood lead 

Crude     early childhood lead       

Adjusted     early childhood lead  covariates     

Adjusted+interaction     early childhood lead  covariates  interaction   

Analytical goal 𝐥𝐧⁡(
𝐏𝐫(𝐘𝐢 = 𝐀𝐃𝐇𝐃)

𝐏𝐫(𝐘𝐢 = 𝐧𝐨𝐧 − 𝐀𝐃𝐇𝐃)
) = β0 + β1Ei + βcCi + β2Ei*cholesterol + εi 

Test the interaction between optimal cholesterol and lead on ADHD 

Early childhood lead* 

optimal cholesterol 

    Early 

childhood 

lead 

 covariates  interaction   
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further calculated a variable to reflect overall “acetaminophen burden” by combining all of the 

acetaminophen metabolite levels with a weight based on their proportions in the acetaminophen 

metabolic pathway [acetaminophen burden=(unchanged acetaminophen/5%+ acetaminophen 

glucuronide/50%+ 3-(N-Acetyl-L-cystein-S-yl) acetaminophen/5%)/60%].9 With the visual aid 

of the lowess plot, each maternal acetaminophen metabolite level was grouped into categorical 

variables using multiple cut-off points (e.g., tertiles, quintiles, quartiles).  

As described previously, the GLM was also used as the primary analytical method for Aim 3. 

The sequential analysis plan is provided below:   

Aim 3a: 

 

Aim 3b: 

Analytical goal 𝐥𝐧⁡(
𝐏𝐫(𝐘𝐢 = 𝐀𝐃𝐇𝐃)

𝐏𝐫(𝐘𝐢 = 𝐧𝐨𝐧 − 𝐀𝐃𝐇𝐃)
) = β0 + β1Ei + βcCi + β2Ei*sex + εi 

Independent effect of unchanged acetaminophen 

Crude     unchanged 

acetaminophen 

      

Adjusted     unchanged 

acetaminophen 

 covariates     

Adjusted+interaction     unchanged 

acetaminophen 

 covariates  interaction   

Independent effect of acetaminophen glucuronide 

Crude     acetaminophen 

glucuronide 

      

Adjusted     acetaminophen 

glucuronide 

 covariates     

Adjusted+interaction     acetaminophen 

glucuronide 

 covariates  interaction   

Independent effect of 3-(N-Acetyl-L-cystein-S-yl) acetaminophen 

Crude     3-(N-Acetyl-L-cystein-

S-yl) acetaminophen 

      

Adjusted     3-(N-Acetyl-L-cystein-

S-yl) acetaminophen 

 covariates     

Adjusted+interaction     3-(N-Acetyl-L-cystein-

S-yl) acetaminophen 

 covariates  interaction   

Independent effect of acetaminophen burden 

Crude     acetaminophen burden       

Adjusted     acetaminophen burden  covariates     

Adjusted+interaction     acetaminophen burden  covariates  interaction   
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Analytical goal 𝐥𝐧⁡(
𝐏𝐫(𝐘𝐢 = 𝐀𝐃𝐇𝐃)

𝐏𝐫(𝐘𝐢 = 𝐧𝐨𝐧 − 𝐀𝐃𝐇𝐃)
) = β0 + β1Ei + βcCi + β2Ei*cholesterol + εi 

Test the interaction between optimal cholesterol and maternal acetaminophen metabolite on ADHD 

maternal 

acetaminophen 

metabolite * optimal 

cholesterol 

    maternal 

acetaminophen 

metabolite 

 covariates  Interaction   
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Chapter 4 AIM 1: A PROSPECTIVE BIRTH COHORT STUDY 

ON MATERNAL CHOLESTEROL LEVELS AND OFFSPRING 

ATTENTION DEFICIT HYPERACTIVITY DISORDER: NEW 

INSIGHT ON SEX DIFFERENCES  

This work has been published, and citation is below: 
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TR, Paige D, Fallin MD, Zuckerman B, Wang X. Do maternal cholesterol levels affect attention 

deficit hyperactivity disorder in offspring?  Brain Sci. 2017 Dec 23;8(1). pii: E3. doi: 
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4.1 ABSTRACT  

Growing evidence suggests that maternal cholesterol levels are important in the offspring’s brain 

growth and development. Previous studies on cholesterols and brain functions were mostly in 

adults. We sought to examine the prospective association between maternal cholesterol levels 

and the risk of attention deficit hyperactivity disorder (ADHD) in the offspring. We analyzed 

data from the Boston Birth Cohort, enrolled at birth and followed from birth up to age 15 years. 

The final analyses included 1479 mother-infant pairs: 303 children with ADHD, and 1176 

neurotypical children without clinician-diagnosed neurodevelopmental disorders. The median 

age of the first diagnosis of ADHD was seven years. The multiple logistic regression results 

showed that a low maternal high-density lipoprotein level (≤60 mg/dL) was associated with an 

increased risk of ADHD, compared to a higher maternal high-density lipoprotein level, after 

adjusting for pertinent covariables. A “J” shaped relationship was observed between triglycerides 

and ADHD risk. The associations with ADHD for maternal high-density lipoprotein and 

triglycerides were more pronounced among boys. The findings based on this predominantly 

urban low-income minority birth cohort raise a new mechanistic perspective for understanding 

the origins of ADHD and the gender differences and future targets in the prevention of ADHD. 

Keywords: high-density lipoprotein; triglyceride; sex difference; ADHD 
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4.2 INTRODUCTION 

In the U.S., attention deficit hyperactivity disorder (ADHD) is one of the most common 

neurodevelopmental disorders in children; its prevalence has risen from 7.0% to 10.2% among 

children aged 4-17 years during the past two decades1 representing a nearly 5% increase each 

year since 2003.2  ADHD is characterized by inattention, hyperactivity, or impulsiveness,3-5 and 

is three times more common among males than females.6 Approximately 66% to 85% of children 

diagnosed with ADHD will carry their disorder into adolescence and adulthood.7,8 A 2007 

estimation of the annual cost of ADHD in the U.S., including the cost of related health care 

utilization, medication, education, crime, and unemployment, was $14500 per child ($42.5 

billion in total).9 While ADHD medications have shown to be effective in controlling ADHD 

symptoms, they neither preclude the rising incidence of ADHD nor cure ADHD, not to mention 

that they are also the causes for additional costs and potential side effects.2 Given its high 

prevalence and continuously rising trend, the impact of ADHD on individual families and society 

is expected to increase dramatically.7,9,10  

At present, our knowledge regarding the biological mechanisms of ADHD development and 

effective ways to prevent ADHD is insufficient. While research has identified several potential 

etiological mechanisms, such as gene variants, brain structural abnormalities, and 

neurotransmitter deficiency and dysregulation,11,12 much more work is needed to fully 

understand the early life determinants of ADHD and significant sex differences in ADHD risk. 

There is an urgent need to identify modifiable early life risk factors for ADHD, which are 

essential to the primary prevention efforts. Well-recognized environmental risk factors for 

ADHD include parent-related factors,13-25 low birthweight and preterm birth,26 exposure to 

organophosphates,27 polychlorinated biphenyls,28,29 and lead.28,30-32 Besides those factors, 
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multiple recent studies indicate that maternal metabolic profiles may also influence offspring’s 

neurodevelopment. For example, findings in the Boston Birth Cohort showed a strong 

association between maternal obesity and diabetes and increased risk of autism in childhood. 33 

A large longitudinal study, using prospective pregnancy cohorts from the Nordic Network, 

showed that both overweight moms and moms with excessive weight gain during gestation had 

an over 2-fold higher risk of having ADHD children. 34 However, no study has investigated the 

role of maternal dyslipidemia (a condition often associated with obesity or metabolic syndrome) 

in offspring’s ADHD development.  

Maternal cholesterol levels are biologically plausible to influence neurodevelopment in the 

offspring. 33-40 Besides cholesterol’s key functions, such as hormone synthesis, fat-soluble 

vitamin digestion and absorption, cell membrane stabilization, and inter-cellular communication, 

it is essential for normal brain development, especially during in-utero and early childhood. 

36,41,42 Nearly 70% to 80% of brain cholesterol is present in myelin. 43 While fetal cholesterol can 

be synthesized endogenously 38, the placenta also delivers cholesterol from maternal circulation 

to the fetus through multiple cholesterol-carrying lipoproteins, such as low-density lipoproteins 

(LDL), high-density lipoproteins (HDL) and very low-density lipoproteins (VLDL). 39,40 It was 

estimated that up to 20% of fetal cholesterol in the first trimester is derived from maternal 

cholesterol via the placenta. 38  

During normal pregnancy in humans, maternal blood cholesterol levels increase with gestational 

age to meet the increasing demands of fetal growth and development, especially with regards to 

the fetal brain.44-46 Conceivably, dysregulation in the amount and the type of cholesterol during 

critical developmental windows could lead to suboptimal neurodevelopment, and subsequently, 

ADHD symptoms in childhood. However, this possibility remains to be explored. To our 
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knowledge, existing cholesterol studies in humans have mainly focused on mental health 

outcomes in adults, in which HDL levels have been found to be associated with multiple 

cognitive impairments and neurodegenerative diseases.47-49 Particularly, there is a lack of 

prospective birth cohort study to investigate the inter-generational impact of cholesterol on 

ADHD.  

To fill in the aforementioned knowledge gaps, in this study, we sought to examine the 

prospective association between maternal cholesterol levels 24-72 hours after delivery and the 

development of ADHD in the offspring using a longitudinal birth cohort design. Findings from 

such a study have important clinical and public health implications. The current clinical 

guidelines for optimal cholesterol levels have been set for non-pregnant women based on cardio-

metabolic outcomes, aiming to control cholesterol levels. However, the requirements for optimal 

nutrition, including cholesterols, are higher during pregnancy due to the increasing demands of 

the uterus, placenta, and fetal growth. Furthermore, no guidelines for cholesterol levels have 

been established for pregnant women in the context of fetal brain growth and long-term 

neurodevelopmental outcomes. 

4.3 MATERIALS AND METHODS 

4.3.1 Study Sample 

The Boston Birth Cohort (BBC) has successfully recruited mother-infant pairs at birth; the 

participation rate has been >90% among eligible mothers approached by the research staff. 

Details of the recruitment of the BBC were published previously.50,51 Eligible mothers were 

those who delivered a single live birth at Boston Medical Center (BMC). Pregnancies resulting 

from in vitro fertilization, multiple-gestation pregnancies, deliveries induced by maternal trauma, 
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or newborns with substantial congenital disabilities were not eligible for enrollment. The 

Institutional Review Board (IRB) of the Boston University Medical Center and Johns Hopkins 

Bloomberg School of Public Health approved the BBC study. Informed consent was obtained 

from each participant under the IRB approved protocol (IRB No. 00003966). 

Of enrolled mother-infant pairs at birth in the BBC, 3098 who continued to receive pediatric 

primary care at BMC were enrolled in a postnatal follow-up study.33,50,52 Our study sample 

excluded participants who had missing maternal cholesterol measurements and key covariates. 

We further excluded children with physician-diagnosed neurodevelopmental disorders other than 

ADHD (Table S1). Our final analyses consisted of 1479 mother-infant pairs, including 303 

children with ADHD and 1176 neurotypical children (Figure 4-1). The maternal and child 

characteristics for participants excluded and included are compared in Table S2. 



 

69 

 

 

Figure 4-1 Flowchart of the sample included in the analyses. 

4.3.2 Data Collection Procedures and Measures of Key Variables 

Mother-infant pairs were enrolled 24 to 72 hours after birth. After obtaining informed consent, 

face-to-face interviews using a standardized questionnaire were conducted to collect mothers’ 

reports on family socio-demographics, substance use, and other prenatal exposure information. 

The maternal and newborn medical records were extracted using a standardized abstraction form. 

Since 2003, electronic medical records (EMRs) became part of routine clinical data collection for 

the BBC, including both well-child and specialty medical visits at BMC. For each primary care 

visit, the EMRs contain the primary and secondary diagnoses from the International 

Classification of Diseases, Ninth Revision (ICD-9) (before October 1, 2015) and ICD-10 (after 

October 1, 2015). 

Maternal serum total cholesterol (TC), triglycerides (TG), and high-density lipoprotein (HDL) 

levels were measured using nonfasting blood samples obtained between 24 to 72 hours after 
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delivery. Serum low-density lipoprotein (LDL) levels were calculated using the Friedwald 

equation. The detailed measurement and calculation methods are described in our previous 

publication.53 Of note, nonfasting samples primarily impact TC and TG levels, which may be 

higher than in a fasting state. 

The “ADHD group” was defined as having any of the following clinician-diagnosed ICD-9 

codes: [314.0 (Attention deficit disorder of childhood), 314.00 (Attention deficit disorder without 

mention of hyperactivity), 314.01 (Attention deficit disorder with hyperactivity), 314.1 

(Hyperkinesis with developmental delay), 314.2 (Hyperkinetic conduct disorder), 314.8 (Other 

specified manifestations of hyperkinetic syndrome), and 314.9 (Unspecified hyperkinetic 

syndrome)], or any of the following ICD-10 codes: [F90.0 (ADHD, predominantly inattentive 

type), F90.1 (ADHD, predominantly hyperactive type), F90.2 (ADHD, combined type), F90.8 

(ADHD, other type), and F90.9 (ADHD, unspecified type)] as documented in the child’s EMRs. 

The “neurotypical (NT) group” was defined as not having any clinician diagnosis of autism 

spectrum disorder, ADHD, conduct disorders, developmental delays, intellectual disabilities, 

failure to thrive, or congenital anomalies. This definition was established by clinical experts and 

has been applied by multiple published papers. 54,55 The ICD-9 and ICD-10 codes for the 

diagnoses of these developmental disorders are listed in Table S1. 

4.3.3 Statistical Analysis 

The characteristics of the study sample between the “ADHD” and the “NT” groups were 

examined by t-test for continuous variables and χ2 test for categorical variables. TC, HDL, LDL, 

and TG were further analyzed as categorical variables based on clinically-established cut-off 

points,56,57 in addition to quartiles and the linear trend test. The clinical cut-off point for low 

HDL for women is <50 mg/dL.57 The clinical cut-off point for non-fasting high TG is ≥200 
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mg/dL.56 The quartile cut-off points were: TC (<176 mg/dL, 176-214 mg/dL, 215-254 

mg/dL, >254 mg/dL), TG (<135 mg/dL, 135-176 mg/dL, 177-232 mg/dL, >232 mg/dL), HDL 

(<50 mg/dL, 50-60 mg/dL, 61-73 mg/dL, >73 mg/dL), and LDL (<96 mg/dL, 96-121 mg/dL, 

122-150 mg/dL, >150 mg/dL). Next, we conducted multiple logistic regression (MLR) to 

examine the association between TC, HDL, LDL, and TG and the risk of ADHD diagnosis, both 

categorically and continuously, adjusting for maternal age at delivery, maternal race/ethnicity, 

maternal education, smoking during pregnancy, intrauterine infection, parity, child's sex, mode 

of delivery, preterm birth, and birthweight. The effect of the interaction between child’s sex and 

each type of lipid or lipoprotein level on the risk of ADHD was tested using MLR and adjusted 

for the same set of covariates. Similarly, the joint effect of the child's sex with each type of lipid 

or lipoprotein on the risk of ADHD was tested using MLR and adjusted for the same set of 

covariates except for child’s sex. In the sensitivity analyses, stratified analysis by each major 

covariate was conducted for the association between maternal HDL and ADHD. Furthermore, 

we repeated the above analyses within two subsets. One subset only included specialist-

diagnosed ADHD as cases, while the other subset only included the ADHD cases whose age of 

last ADHD diagnosis was 6 years or older. All analyses were performed using STATA® version 

14.0 software (Stata Corporation, College Station, TX, USA). 

4.4 RESULTS 

There were 303 children with a clinician diagnosis of ADHD. Of these, 214 were diagnosed by a 

developmental specialist and 89 only by a general pediatrician. The median age at the first 

ADHD diagnosis was seven years. Table 4-1 presents the bivariate comparisons of maternal and 

child characteristics between the “ADHD” and “NT” groups. The mothers of children with an 

ADHD diagnosis were more likely to have below college degree education, ever smoke before or 
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during pregnancy, C-section delivery, lower TC, lower HDL, and lower LDL, compared with the 

neurotypical group. The children with any ADHD diagnosis were more likely to be male, born 

prematurely and have had low birthweight, compared with the neurotypical group. The 

comparison results of major characteristics between excluded and included samples indicate that 

the included sample had less exposure to multiple risk factors, such as smoking during 

pregnancy, C-section delivery, lower gestational age, and lower birthweight (Table S2). 

Table 4-1 Maternal and child characteristics for children with any ADHD diagnosis and neurotypical children (NT). 

Variable Total, No. (%) NT, No. (%) ADHD, No. (%) P-valueǂ 

Total 1479 (100) 1176 (79.5) 303 (20.5)  

Maternal Age     0.317 

  <20 148 (10.0) 111 (9.4) 37 (12.2)  

  20-34 1080 (73.0) 867 (73.8) 213 (70.3)  

  >=35 251 (17.0) 198 (16.8) 53 (17.5)  

Education level     0.022 

  Below college degree 1278 (86.4) 1004 (85.4) 274 (90.4)  

  College degree or above 201 (13.6) 172 (14.6) 29 (9.6)  

Race-ethnicity     0.230 

  Black 968 (65.5) 759 (64.5) 209 (69.0)  

  White 74 (5.0) 56 (4.8) 18 (5.9)  

  Hispanic 357 (24.1) 293 (24.9) 64 (21.1)  

  Others 80 (5.4) 68 (5.8) 12 (4.0)  

Parity     0.901 

  Nulliparous 625 (42.3) 496 (42.2) 129 (42.6)  

  Multiparous 854 (57.7) 680 (57.8) 174 (57.4)  

Smoking during pregnancy    <0.001 

  Never 1229 (83.1) 998 (84.9) 231 (76.2)  

  Quitter 111 (7.5) 72 (6.1) 39 (12.9)  

  Continuous 139 (9.4) 106 (9.0) 33 (10.9)  

Intrauterine infection     0.060 

  No 1292 (87.4) 1037 (88.2) 255 (84.2)  

  Yes 187 (12.6) 139 (11.8) 48 (15.8)  

Child's sex    <0.001 

  Female 749 (50.6) 664 (56.5) 85 (28.1)  

  Male 730 (49.4) 512 (43.5) 218 (71.9)  

Delivery type     0.008 

  C-section 500 (33.8) 378 (32.1) 122 (40.3)  

  Vaginal 979 (66.2) 798 (67.9) 181 (59.7)  

Season of child's birth     0.797 
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  Jan to March 333 (22.5) 264 (22.5) 69 (22.8)  

  April to June 350 (23.7) 279 (23.7) 71 (23.4)  

  July to September 402 (27.2) 314 (26.7) 88 (29.0)  

  October to December 394 (26.6) 319 (27.1) 75 (24.8)  

Preterm birth (<37 weeks)     0.005 

  No 1125 (76.1) 913 (77.6) 212 (70.0)  

  Yes 354 (23.9) 263 (22.4) 91 (30.0)  

Low birthweight (<2500 g)     0.028 

  No 1148 (77.6) 927 (78.8) 221 (72.9)  

  Yes 331 (22.4) 249 (21.2) 82 (27.1)  

Gestational age, week    <0.001 

  Mean (SD) 38.1 (3.1) 38.2 (2.9) 37.5 (3.8)  

Birthweight, g     0.007 

  Mean (SD) 2996.7 (754.0) 3023.3 (716.4) 2893.5 (878.9)  

Maternal TC, mg/dL     0.018 

  Mean (SD) 219.6 (60.9) 221.5 (61.3) 212.2 (58.9)  

Maternal TG, mg/dL        0.838 

  Mean (SD) 191.9 (80.6) 192.2 (80.1) 191.1 (83.0)  
Maternal HDL, mg/dL       <0.001 

  Mean (SD) 62.0 (17.6) 62.8 (17.9) 58.8 (15.8)  

Maternal LDL, mg/dL     0.011 

  Mean (SD) 126.6 (41.8) 128.0 (42.1) 121.2 (39.9)   

NT was defined as without any mental disorder diagnosis; ADHD was defined as any ADHD diagnosis; ǂThe p-values were obtained 

from chi-square tests or t-tests between children with and without any ADHD diagnosis. 

Table 4-2 shows the MLR results for the effects of TC, HDL, LDL, and TG on the risk of any 

ADHD diagnosis, after adjusting for pertinent covariates. HDL <50 mg/dL, indicating a 

moderate risk of heart disease, was not associated with an increased risk of ADHD diagnosis 

(OR=1.30, 95% CI (0.96, 1.74)). When HDL levels were analyzed as quartiles, mothers with 

first or second quartile HDL levels showed a similarly increased odds of having a child with any 

ADHD diagnosis compared to those with fourth quartile HDL levels (Q2 vs. Q4: OR=1.42, 95% 

CI (0.96, 2.09); Q1 vs. Q4: OR=1.54, 95% CI (1.04, 2.28)). Mothers with ≤ median HDL levels 

had a 39% increased odd of having a child with any ADHD diagnosis as compared to mothers 

with > median HDL levels (OR=1.39, 95% CI (1.06, 1.82)). When HDL was analyzed as a 

continuous variable, the average odds of having a child with any ADHD diagnosis dropped 19% 

for every 20 mg/dL increase in maternal HDL levels (OR=0.81, 95% CI (0.69, 0.95)).  
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Table 4-2 The association between maternal cholesterol and the risk of ADHD in offspring. 

Maternal cholesterols 
ADHD, No. 

(%) 
NT, No. (%) 

Crude 

OR 
95% CI P-value 

Adjusted 

OR 
95% CI P-value 

HDL clinical 

cut-off 
≥ 50 mg/dL 213 (19.2) 898 (80.8) 1.00    1.00    

 < 50 mg/dL 90 (24.5) 278 (75.5) 1.36 1.03 1.81 0.030 1.30 0.96 1.74 0.085 

HDL quartiles 
Q4 (>73 

mg/dL)  
55 (15.3) 304 (84.7) 1.00    1.00    

 Q3 (61-73 

mg/dL)  
67 (18.1) 304 (81.9) 1.22 0.82 1.80 0.322 1.11 0.74 1.67 0.606 

 Q2 (50-60 

mg/dL) 
91 (23.9) 290 (76.1) 1.73 1.20 2.51 0.004 1.42 0.96 2.09 0.079 

 Q1 (< 50 

mg/dL)  
90 (24.5) 278 (75.5) 1.79 1.23 2.60 0.002 1.54 1.04 2.28 0.031 

HDL binary 
> median (60 

mg/dL) 
122 (16.7) 608 (83.3) 1.00    1.00    

 ≤ median (60 

mg/dL) 
181 (24.2) 568 (75.8) 1.59 1.23 2.05 <0.001 1.39 1.06 1.82 0.016 

HDL linear trend (every 20 

mg/dL increase) 
303 (20.5) 1176 (79.5) 0.76 0.65 0.88 <0.001 0.81 0.69 0.95 0.011 

           

TG clinical cut-

off 
< 200 mg/dL 184 (19.8) 744 (80.2) 1.00    1.00    

 ≥ 200 mg/dL 119 (21.6) 432 (78.4) 1.11 0.86 1.44 0.415 1.26 0.94 1.68 0.118 

TG quartiles 
Q1 (<135 

mg/dL) 
90 (23.9) 287 (76.1) 1.00    1.00    

 Q2 (135-176 

mg/dL) 
58 (16.3) 297 (83.7) 0.62 0.43 0.90 0.012 0.63 0.43 0.93 0.020 

 Q3 (177-232 

mg/dL) 
76 (20.7) 291 (79.3) 0.83 0.59 1.18 0.300 0.88 0.61 1.27 0.495 

 Q4 (>232 

mg/dL) 
79 (20.8) 301 (79.2) 0.84 0.59 1.18 0.309 0.98 0.66 1.44 0.909 

TG binary Q2 58 (16.3) 297 (83.7) 1.00    1.00    

 Q1, Q3, Q4 245 (21.8) 879 (78.2) 1.43 1.04 1.96 0.027 1.51 1.08 2.10 0.015 

TG linear trend (every 20 

mg/dL increase) 
303 (20.5) 1176 (79.5) 1.00 0.97 1.03 0.838 1.02 0.98 1.06 0.348 

           

LDL quartiles 
Q1 (<96 

mg/dL) 
87 (23.6) 282 (76.4) 1.00    1.00    

 Q2 (96-121 

mg/dL) 
80 (21.8) 287 (78.2) 0.90 0.64 1.28 0.565 0.91 0.63 1.31 0.603 

 Q3 (122-150 

mg/dL) 
67 (18.2) 301 (81.8) 0.72 0.50 1.03 0.074 0.82 0.57 1.20 0.316 

 Q4 (>150 

mg/dL) 
69 (18.4) 306 (81.6) 0.73 0.51 1.04 0.083 0.76 0.52 1.11 0.153 

LDL linear trend (every 20 

mg/dL increase) 
303 (20.5) 1176 (79.5) 0.92 0.87 0.98 0.011 0.93 0.87 0.99 0.033 

           

TC quartiles 
Q1 (<176 

mg/dL) 
92 (24.6) 282 (75.4) 1.00    1.00    

 Q2 (176-214 

mg/dL) 
73 (20.3) 287 (79.7) 0.78 0.55 1.10 0.161 0.82 0.57 1.18 0.289 

 Q3 215-254 

mg/dL) 
72 (19.9) 290 (80.1) 0.76 0.54 1.08 0.125 0.86 0.59 1.25 0.424 

 Q4 (>254 

mg/dL) 
66 (17.2) 317 (82.8) 0.64 0.45 0.91 0.013 0.73 0.50 1.08 0.111 

TC linear trend (every 20 

mg/dL increase) 
303 (20.5) 1176 (79.5) 0.95 0.91 0.99 0.018 0.96 0.92 1.01 0.099 
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NT was defined as without any mental disorder diagnosis; ADHD was defined as any ADHD diagnosis; the multiple logistic 

regression model was adjusted for maternal age at delivery, maternal race/ethnicity, maternal education, smoking during pregnancy, 

intrauterine infection, parity, child's sex, mode of delivery, preterm birth, and birthweight. 

For TG, the risk of ADHD diagnosis for the children whose maternal TG levels were ≥200 

mg/dL (indicating marginal risk of heart disease) was not statistically significantly different to 

those children whose mothers with <200 mg/dL TG levels (OR=1.26, 95% CI (0.94, 1.68)). 

Compared to mothers with second quartile TG levels, the mothers with first, third or fourth 

quartile TG levels had a 51% increased odds of having a child with any ADHD diagnosis 

(OR=1.51, 95% CI (1.08, 2.10)), suggesting a “J” shaped association.  

When LDL was analyzed as a continuous variable, the average odds of having a child with any 

ADHD diagnosis dropped 7% for every 20 mg/dL increase in maternal LDL levels (OR=0.93, 

95% CI (0.87, 0.99)). The MLR results for maternal TC levels did not show any significant 

association with the child’s ADHD diagnosis.  

Table 4-3 shows the associations between maternal HDL levels and the risk of any ADHD 

diagnosis stratified by the child’s sex and the joint effect of maternal HDL levels and the child’s 

sex on ADHD risk. As expected, compared to girls, boys had 3 times higher risk of ADHD 

(OR=3.25, 95% CI (2.45, 4.30)). The joint effects of maternal HDL and sex showed that boys 

whose mothers had ≤ median HDL levels had increased odds of having any ADHD diagnosis 

(OR=4.25, 95% CI (2.88, 6.26)), compared to girls whose mothers had > median HDL levels. 

The interaction term between sex and HDL was not statistically significant (OR=1.35, 95% CI 

(0.77, 2.37)). Table S3 shows the stratified analysis results for the association between maternal 

HDL and ADHD. The results indicate that, besides child’s sex, smoking during pregnancy, 

intrauterine infection, parity, mode of delivery, gestational age, and birthweight also influence 

the association between maternal HDL and ADHD. Higher maternal HDL was more likely 
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associated with a reduced risk of ADHD in the following stratum: boy, none smoker during 

pregnancy, no intrauterine infection during pregnancy, multiparous, vaginal delivery, full term 

and normal birth weight.  

Table S4 shows the sensitivity analysis results on the joint effect of maternal HDL and sex by 

comparing children with specialist ADHD diagnosis and neurotypical children; and the findings 

were similar. Table S6 shows the results of the sensitivity analyses on the joint effect of maternal 

HDL and sex by excluding the children whose age of last ADHD diagnosis is under 6 years old; 

and the findings were also similar.  

Table 4-3 The joint association of maternal HDL levels and child's sex with the risk of ADHD in offspring. 

Sex Maternal HDL  ADHD, No. (%) NT, No. (%) Adjusted OR 95% CI P-value 

Female  85 (11.4) 664 (88.6) 1.00    

Male  218 (29.9) 512 (70.1) 3.25 2.45 4.30 <0.001 

Joint effects of maternal HDL and sex     

Female > median 42 (10.5) 359 (89.5) 1.00    

 ≤ median 43 (12.4) 305 (87.6) 1.14 0.72 1.81 0.564 

Male > median 80 (24.3) 249 (75.7) 2.75 1.82 4.16 <0.001 
 ≤ median 138 (34.4) 263 (65.6) 4.25 2.88 6.26 <0.001 

NT was defined as without any mental disorder diagnosis; ADHD was defined as any ADHD diagnosis; covariates included 

maternal age at delivery, maternal race/ethnicity, maternal education, smoking during pregnancy, intrauterine infection, parity, 

child's sex, mode of delivery, preterm birth, and birthweight. 

Table 4-4 shows the association between maternal TG levels and the risk of any ADHD 

diagnosis, stratified by the child’s sex and the joint effect of maternal TG levels and the child’s 

sex. The joint effects results showed that boys whose mothers had first, third or fourth quartile 

TG levels had a 394% increased odd of having any ADHD diagnosis (OR=4.94, 95% CI (2.84, 

8.58)), as compared to girls whose mothers had second quartile TG levels. The interaction term 

between sex and TG was not statistically significant (OR=1.03, 95% CI (0.51, 2.07)). Table S5 

shows the results of the sensitivity analyses on the joint effect of maternal TG and sex by 

comparing children with specialist ADHD diagnosis and neurotypical children; and the findings 
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were similar. Table S7 shows the results of the sensitivity analyses on the joint effect of maternal 

TG and sex by excluding the children whose age at the last ADHD diagnosis was under 6 years 

old; and the findings were also similar. These joint effects across HDL, TG, and sex are further 

illustrated in Figure 4-2 using MLR estimation and adjusting for the same covariates. 

Table 4-4 The joint association of maternal TG levels and child's sex with the risk of ADHD in offspring. 

Sex Maternal TG ADHD, No. (%) NT, No. (%) Adjusted OR 95% CI P-value 

Female  85 (11.4) 664 (88.6) 1.00    

Male  218 (29.9) 512 (70.1) 3.31 2.50 4.39 <0.001 

Joint effects of maternal TG and sex      

Female Q2 16 (8.8) 166 (91.2) 1.00    

 Q1, Q3, Q4 69 (12.2) 498 (87.8) 1.48 0.83 2.65 0.184 

Male Q2 42 (24.3) 131 (75.7) 3.25 1.73 6.09 <0.001 
 Q1, Q3, Q4 176 (31.6) 381 (68.4) 4.94 2.84 8.58 <0.001 

NT was defined as without any mental disorder diagnosis; ADHD was defined as any ADHD diagnosis; covariates included 

maternal age at delivery, maternal race/ethnicity, maternal education, smoking during pregnancy, intrauterine infection, parity, 

child's sex, mode of delivery, preterm birth, and birthweight. 

 

 
(a) 

 
(b) 
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Figure 4-2 (a) The odds ratio of any ADHD diagnosis across maternal HDL and child’s sex groups using multiple 

logistic regression estimation; (b) the odds ratio of any ADHD diagnosis across maternal TG and child’s sex groups 

using multiple logistic regression estimation. 

4.5 DISCUSSION 

Despite the notion that cholesterol is essential for brain health, few prospective birth cohort 

studies have examined the effect of maternal cholesterol on offspring’s neurodevelopment. In the 

Boston Birth Cohort, we found a significant association between maternal cholesterol levels, 

particularly HDL and TG measured 24-72 hours after delivery (a proxy of peripartum maternal 

cholesterol levels), and ADHD risk in offspring. Furthermore, our study sheds new light on the 

ADHD sex difference by demonstrating that boys are more vulnerable than girls to suboptimal 

maternal cholesterol levels.  

Our study findings were further strengthened by several aspects of our study design. We used 

clinician diagnosis extracted from the EMRs to define ADHD cases. More than half of the 

children in the ADHD group had over 3 ADHD clinician diagnoses in their EMRs. Additionally, 

over 80% of ADHD cases in the BBC were diagnosed by a neurodevelopmental specialist, thus, 

with much higher specificity and less probability of case misclassification. The results of our 

sensitivity analyses, which restricted ADHD cases to those with a neurobehavioral specialist 

diagnosis and excluded those with a diagnosis at an age younger than 6 years old, showed similar 

effect sizes and levels of significance as for our major findings. 

While we cannot make a causality inference, and although biological mechanisms underlying the 

maternal HDL and child ADHD association remain to be determined, our findings are 

biologically plausible and in alignment with previous research. The central nervous system 

(CNS) is insulated from the systemic circulation by the blood-brain barrier (BBB). Cholesterol 

and its carrying lipoproteins in the CNS are mainly synthesized locally within the brain58,59 while 
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cholesterol carried by plasma lipoproteins cannot move freely across the BBB.37,60 Most 

lipoproteins found in the brain are synthesized by glial cells and astrocytes.59 Additionally, the 

apolipoprotein B-containing lipoproteins, such as LDL, VLDL, and chylomicron cannot enter the 

brain via the BBB.59 Nevertheless, studies have suggested that plasma-based cholesterol may still 

affect the integrity and function of neurons and myelin.36,59 For instance, the discoidal 

apolipoprotein A-I-containing HDL particles may enter the brain through scavenger receptor 

class B type I (SR-BI)-mediated uptake and transcytosis.59,61 Notably, apolipoprotein A-I, which 

is the major component of plasma HDL, cannot be synthesized in the CNS.62,63 After entering the 

CNS, it can further collect phospholipids and unesterified cholesterol and undergo maturation 

into HDL-like lipoproteins in the brain.59 In addition to small plasma HDL particles, the side-

chain oxidized oxysterols, such as 27-hydroxycholesterol, can also cross the BBB.64 Moreover, 

peripheral HDL, even without crossing the BBB, may still influence fetal brain development due 

to its potential protective effect on cerebrovascular endothelial cell function.65 In sum, the 

available evidence supports our findings regarding the protective effect of higher maternal HDL 

levels against ADHD risk in offspring. 

The mechanism underlying the actions of maternal TG appears to be different from that 

underlying HDL. TG cannot cross the BBB but can influence multiple hormonal transportations 

across the BBB. For example, TG can effectively inhibit leptin transport across the BBB.66 

Besides the beneficial role in reducing obesity risk, leptin is also a multifunctional hormone that 

influences many brain functions including appetite, motivation, learning, memory, and 

cognition.67  

If further confirmed by future investigation, our findings may have important research, clinical 

and public health implications. First, our data suggest that pregnant women should maintain a 
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relatively higher level of HDL to meet the need for rapid fetal brain development during 

pregnancy and to reduce ADHD risk; this is particularly important for male fetuses. Our data 

indicate that the current clinical cut-off point for HDL (>50 mg/dL) for nonpregnant women, as 

recommended by the American Heart Association for reducing the risk of heart disease56,57 may 

not be adequate for protecting against ADHD in offspring; thus, a higher cut-off point (>60 

mg/dL) may be needed for identifying the fetus at risk for future ADHD. Lipid screening is not 

currently part of prenatal care guidelines, but it is relatively inexpensive and easily measured. 

Low HDL is modifiable by dietary and lifestyle changes and is treatable with pharmaceuticals.  

The long-observed and striking sex difference in ADHD risk continues to be poorly understood. 

Our study revealed that the maternal HDL and TG effects on ADHD are most pronounced 

among boys. This sex differences in response to suboptimal nutritional status are also found in 

other chronic diseases. For example, both human and animal studies showed that male fetuses 

are more likely to develop hypertension in response to the mother’s unfavorable nutrition and 

metabolic status during pregnancy.68-72 One potential explanation is that male fetus is more 

vulnerable to suboptimal maternal nutrition due to their more rapid in-utero growth compared to 

females.68-72 

Our study had the following limitations. First, our study only included a single measurement of 

maternal cholesterol, taken 24-72 hours after delivery. Ideally, a serial collection of lipid levels 

throughout pregnancy would best inform our hypotheses. At best, our one-time measurement 

reflects maternal cholesterol levels during peripartum. Second, our study used non-fasting blood 

samples. The values for TC and TG levels may have been inflated in non-fasting blood samples, 

and thus may have biased our study results towards the null. Further studies using fasting blood 

samples should be conducted to provide a more precise assessment of optimal TG levels during 
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pregnancy. Third, our study was conducted in a U.S. urban, low-income primarily minority 

setting; thus, this was a population at higher risk of exposure to other risk factors for ADHD. Our 

analyses adjusted for known risk factors of ADHD, but could not adjust for multiple parent-

related factors identified in previous studies such as poor parenting,13,14 maltreatment,15 

conflict/parent-child hostility,23 and severe early deprivation.24,25 Although our study sample is 

not representative of the general U.S. population, research in urban minority populations is 

limited, and our study findings help to fill in this important data gap. Finally, our adjustment for 

known risk factors did not include some post-natal factors that could be related to both maternal 

cholesterol levels and ADHD risk, such as the child’s lipid levels. Although it is beyond the 

scope of this report, a study of the joint effects of cholesterol with other components of 

metabolic syndrome such as obesity, diabetes, and hypertension, may help to provide greater 

understanding about the associations between the maternal metabolic constellation and child 

neurodevelopmental outcomes. A previously published study did show that diabetes could cause 

a low production of brain cholesterol and its precursors, which in turn could lead to disruptions 

in synaptic formation and function.73 Although our study occurred during the transition of the 

American Psychiatric Association’s Diagnostic and Statistical Manual (DSM) from the IV to the 

V edition, the diagnosis of ADHD in children did not change appreciably.74 Moreover, the DSM-

V lists both ICD-9 and ICD-10 codes for transition purposes.75   

4.6 CONCLUSIONS 

In this large, prospective, predominantly U.S. urban, low income, minority birth cohort, we 

found that suboptimal maternal cholesterol levels, in particular, low HDL, may increase the risk 

of ADHD in offspring. The male fetus appears to be particularly vulnerable to suboptimal 

maternal cholesterol levels. Our findings raise new hypothesis for understanding of origins of 
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ADHD, gender differences and future targets in the prevention of ADHD, and warrant additional 

investigation. 
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4.7 SUPPLEMENTARY MATERIALS 

Table S1. ICD-9 and ICD-10 codes for the diagnosis of each neurodevelopmental disorder. 

Neurodevelopmental disorder ICD-9 codes ICD-10 codes 

ASD 299.0, 299.00, 299.01, 299.8, 

299.80, 299.81, 299.9, 299.90, 

299.91 

F84.0, F84.8, F84.9 

ADHD 314.0, 314.00, 314.01, 314.1, 

314.2, 314.8, 314.9 

F90, F90.0, F90.1, F90.2, F90.8, 

F90.9 

Disturbance of conduct 312.0-312.9 F91, F91.0, F91.2, F91.3, F91.8, 

F91.9 

Delays in development 315.0-315.9 F81.0, R48.0, F81.81, F81.2, 

F81.89, F80.1, F80.2, H93.25, 

F80.4, F80.81, F80.0, F80.82, 

F80.89, F82, F88, F81.9, F89 

Intellectual disabilities 317-317 F70, F71, F72, F73, F78, F79 

Failure to thrive 783.4, 783.40, 783.41, 783.42, 

783.43 

R62.50, R62.51, R62.0, R62.52 

Congenital anomalies 740-759.9 Q00-Q99 
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Table S2. Maternal and child characteristics for participants excluded and included in the analysis. 

Variable Total, No. (%) Excluded, No. (%) Included, No. (%) P-valueǂ 

Total 3098 (100) 1619 (52.26) 1479 (47.74)  

Maternal Age    0.209 

  <20 288 (9.30) 140 (8.65) 148 (10.01)  

  20-34 2246 (72.50) 1166 (72.02) 1080 (73.02)  

  >=35 556 (17.95) 305 (18.84) 251 (16.97)  

Education level    0.844 

  Below college degree 2642 (85.28) 1364 (84.25) 1278 (86.41)  

  College degree or above 420 (13.56) 219 (13.53) 201 (13.59)  

Race ethnicity    <0.001 

  Black 1965 (63.43) 997 (61.58) 968 (65.45)  

  White 227 (7.33) 153 (9.45) 74 (5.00)  

  Hispanic 682 (22.01) 325 (20.07) 357 (24.14)  

  Others 209 (6.75) 129 (7.97) 80 (5.41)  

Smoking during pregnancy   0.045 

  Never 2496 (80.57) 1267 (78.26) 1229 (83.10)  

  Quitter 238 (7.68) 127 (7.84) 111 (7.51)  

  Continuous 330 (10.65) 191 (11.80) 139 (9.40)  

Child's sex    0.181 

  Female 1529 (49.35) 780 (48.18) 749 (50.64)  

  Male 1567 (50.58) 837 (51.70) 730 (49.36)  

Delivery type    0.008 

  C-section 1116 (36.02) 616 (38.05) 500 (33.81)  

  Vaginal 1967 (63.49) 988 (61.03) 979 (66.19)  

Season of child's birth    0.697 

  Jan to March 721 (23.27) 388 (23.97) 333 (22.52)  

  April to June 725 (23.40) 375 (23.16) 350 (23.66)  

  July to September 848 (27.37) 446 (27.55) 402 (27.18)  

  October to December 802 (25.89) 408 (25.20) 394 (26.64)  

Gestational age, week    <0.001 

  Mean (SD) 37.6(3.5) 37.2(3.8) 38.1(3.1)  

Birthweight, g    <0.001 

  Mean (SD) 2898.3(819.7) 2808.3(865.9) 2996.7(754.0)  

ǂThe p-values were obtained from chi-square test or t-test between children with and without any ADHD diagnosis. 
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Table S3. The stratified analysis results on the association between maternal HDL levels (every 20 mg/dL 

increase) and the risk of ADHD in offspring.  

 
Covariates included maternal age at delivery, maternal race/ethnicity, maternal education, smoking during pregnancy, 

intrauterine infection, parity, baby's gender, mode of delivery, preterm birth, birthweight. 
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Table S4. The Joint association of child's gender and maternal HDL levels with the risk of any specialist ADHD 

diagnosis. 

Gender Maternal HDL Level ADHD, No. (%) NT, No. (%) OR 95% CI P-value 

Female  59 (8.16) 664 (91.84) 1.00      

Male  155 (23.24) 512 (76.76) 3.26 2.35 4.53 <0.001 

Maternal HDL effects within gender        

Female   Q4 9 (4.59) 187 (95.41) 1.00      

   Q3 19 (9.95) 172 (90.05) 2.24 0.98 5.16 0.057 

   Q2 17 (10.83) 140 (89.17) 2.59 1.10 6.09 0.029 

   Q1 14 (7.82) 165 (92.18) 1.65 0.68 3.99 0.266 

Male   Q4 29 (19.86) 117 (80.14) 1.00      

   Q3 28 (17.50) 132 (82.50) 0.80 0.44 1.46 0.474 

   Q2 48 (24.24) 150 (75.76) 1.21 0.70 2.07 0.494 

   Q1 50 (30.67) 113 (69.33) 1.65 0.95 2.86 0.073 

Joint effects of maternal HDL and gender        

Female   > median 28 (7.24) 359 (92.76) 1.00      

   ≤ median 31 (9.23) 305 (90.77) 1.24 0.72 2.12 0.440 

Male   > median 57 (18.63) 249 (81.37) 2.87 1.77 4.67 <0.001 

    ≤ median 98 (27.15) 263 (72.85) 4.44 2.81 7.02 <0.001 

NT was defined as free of any mental disorder diagnosis; ADHD was defined as any specialist ADHD diagnosis; 

covariates included maternal age at delivery, maternal race/ethnicity, maternal education, smoking during pregnancy, 

intrauterine infection, parity, baby's gender, mode of delivery, preterm birth, birthweight. 
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Table S5. The Joint association of child's gender and maternal TG levels with the risk of any specialist 

ADHD diagnosis. 

Gender Maternal TG Level ADHD, No.(%) NT, No.(%) OR 95% CI P-value 

Female  59 (8.16) 664 (91.84) 1.00      

Male  155 (23.24) 512 (76.76) 3.31 2.39 4.59 <0.001 

Maternal TG effects within gender        

Female   Q1 14 (8.05) 160 (91.95) 1.24 0.55 2.77 0.605 

   Q2 13 (7.26) 166 (92.74) 1.00      

   Q3 13 (7.30) 165 (92.70) 1.01 0.45 2.27 0.984 

   Q4 19 (9.90) 173 (90.10) 1.50 0.68 3.31 0.310 

Male   Q1 45 (26.16) 127 (73.84) 1.54 0.90 2.65 0.116 

   Q2 30 (18.63) 131 (81.37) 1.00      

   Q3 40 (24.10) 126 (75.90) 1.39 0.80 2.42 0.242 

   Q4 40 (23.81) 128 (76.19) 1.40 0.79 2.49 0.245 

Joint effects of maternal TG and gender        

Female   Q2 13 (7.26) 166 (92.74) 1.00      

   Q1, Q3, Q4 46 (8.46) 498 (91.54) 1.17 0.61 2.24 0.631 

Male   Q2 30 (18.63) 131 (81.37) 2.87 1.43 5.76 0.003 

    Q1, Q3, Q4 125 (24.70) 381 (75.30) 4.04 2.20 7.41 <0.001 

NT was defined as free of any mental disorder diagnosis; ADHD was defined as any specialist ADHD diagnosis; 

covariates included maternal age at delivery, maternal race/ethnicity, maternal education, smoking during pregnancy, 

intrauterine infection, parity, baby's gender, mode of delivery, preterm birth, birthweight. 
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Table S6. The Joint association of child's gender and maternal HDL levels with the risk of any ADHD 

diagnosis (last diagnosis older than 6 years old). 

Gender Maternal HDL Level ADHD, No.(%) NT, No.(%) OR 95% CI P-value 

Female  51 (7.13) 664 (92.87) 1.00      

Male  132 (20.50) 512 (79.50) 3.22 2.27 4.57 <0.001 

Maternal HDL effects within gender        

Female   Q4 8 (4.10) 187 (95.90) 1.00      

   Q3 17 (8.99) 172 (91.01) 2.19 0.91 5.27 0.081 

   Q2 14 (9.09) 140 (90.91) 2.30 0.92 5.76 0.075 

   Q1 12 (6.78) 165 (93.22) 1.49 0.58 3.83 0.411 

Male   Q4 23 (16.43) 117 (83.57) 1.00      

   Q3 24 (15.38) 132 (84.62) 0.85 0.44 1.61 0.612 

   Q2 40 (21.05) 150 (78.95) 1.23 0.68 2.20 0.492 

   Q1 45 (28.48) 113 (71.52) 1.83 1.02 3.31 0.043 

Joint effects of maternal HDL and gender        

Female   > median 25 (6.51) 359 (93.49) 1.00      

   ≤ median 26 (7.85) 305 (92.15) 1.14 0.64 2.03 0.662 

Male   > median 47 (15.88) 249 (84.12) 2.63 1.57 4.41 <0.001 

    ≤ median 85 (24.43) 263 (75.57) 4.26 2.63 6.90 <0.001 

NT was defined as free of any mental disorder diagnosis; ADHD was defined as any ADHD diagnosis; covariates 

included maternal age at delivery, maternal race/ethnicity, maternal education, smoking during pregnancy, intrauterine 

infection, parity, baby's gender, mode of delivery, preterm birth, birthweight. 

  



 

90 

 

Table S7. The Joint association of child's gender and maternal TG levels with the risk of any ADHD 

diagnosis (last diagnosis older than 6 years old). 

Gender Maternal TG Level ADHD, No.(%) NT, No.(%) OR 95% CI P-value 

Female  51 (7.13) 664 (92.87) 1.00      

Male  132 (20.50) 512 (79.50) 3.25 2.30 4.61 <0.001 

Maternal TG effects within gender        

Female   Q1 12 (6.98) 160 (93.02) 1.16 0.49 2.74 0.727 

   Q2 12 (6.74) 166 (93.26) 1.00      

   Q3 11 (6.25) 165 (93.75) 0.90 0.38 2.14 0.817 

   Q4 16 (8.47) 173 (91.53) 1.29 0.56 2.98 0.546 

Male   Q1 40 (23.95) 127 (76.05) 1.71 0.96 3.05 0.070 

   Q2 24 (15.48) 131 (84.52) 1.00      

   Q3 31 (19.75) 126 (80.25) 1.32 0.72 2.43 0.371 

   Q4 37 (22.42) 128 (77.58) 1.58 0.85 2.91 0.146 

Joint effects of maternal TG and gender        

Female   Q2 12 (6.74) 166 (93.26) 1.00      

   Q1, Q3, Q4 39 (7.26) 498 (92.74) 1.05 0.53 2.07 0.892 

Male   Q2 24 (15.48) 131 (84.52) 2.48 1.18 5.20 0.016 

    Q1, Q3, Q4 108 (22.09) 381 (77.91) 3.68 1.95 6.93 <0.001 

NT was defined as free of any mental disorder diagnosis; ADHD was defined as any ADHD diagnosis; covariates 

included maternal age at delivery, maternal race/ethnicity, maternal education, smoking during pregnancy, intrauterine 

infection, parity, baby's gender, mode of delivery, preterm birth, birthweight. 
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5.1 ABSTRACT 

Objective: To investigate the prospective associations between early childhood lead exposure 

and subsequent risk of ADHD in childhood and its potential effect modifiers.  

Study design: We analyzed data from 1479 mother-infant pairs (299 ADHD, 1180 neurotypical) 

in the Boston Birth Cohort (BBC). The child’s first blood lead measurement and physician-

diagnosed ADHD was obtained from electronic medical records. Graphic plots and multiple 

logistic regression were employed to examine dose-response association between lead exposure 

and ADHD and potential effect modifiers, adjusting for pertinent covariables. 

Results: Our findings show that 8.9% of BBC children had elevated lead levels (5-10µg/dL) in 

early childhood, which was associated with a 66% increased risk of ADHD (OR=1.66, 

95%CI:1.08, 2.56). Among boys, the association was significantly stronger (OR: 2.49, 

95%CI:1.46, 4.26); in girls, the association was largely attenuated (p-value for sex-lead 

interaction: 0.017). The odds ratio of ADHD associated with elevated lead levels among boys 

was reduced by half if mothers had adequate high-density lipoprotein (HDL) levels compared to 

low HDL, or if mothers had low stress compared to high stress during pregnancy. 

Conclusions: Elevated early childhood blood lead levels increased the risk of ADHD. Boys were 

more vulnerable than girls at a given lead level. This risk of ADHD in boys was reduced by half 

if the mother had adequate HDL levels or low stress. These findings shed new light on the sex 

difference in ADHD and point to opportunities for early risk assessment and primary prevention 

of ADHD.  
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5.2 INTRODUCTION 

Lead is a recognized environmental toxin.1-5 Since the removal of lead from paints and gasoline 

and the adoption of other environmental safety measures, environmental lead exposure has 

declined significantly over the past decades.6 However, exposure to low lead levels continues to 

be widespread in the general U.S. population, particularly in urban low-income populations.7  

To date, critical questions remain regarding the role of early life lead exposure in the 

development of ADHD.8-10 There are multiple drawbacks in the existing studies. First, they used 

cross-sectional designs.2,3,5 Lead measurement occurred either simultaneous to or after the 

ADHD diagnosis, thus the temporal relationship between lead exposure and ADHD could not be 

established. Second, despite the well-observed higher likelihood of ADHD in males compared to 

females, few studies have investigated if lead affects boys and girls differently.2 Additionally, 

most studies on ADHD only have examined lead exposure late in childhood (mean age of 

measurement ranging from 7 to 14 years).10 Lastly, prior studies did not consider potential 

modifiers of the lead-ADHD association, which is necessary both in terms of understanding the 

etiology of ADHD and informing intervention strategies. 11  

In this study, we sought to examine the association between early childhood lead exposure and 

development of ADHD using a prospective birth cohort design. We were particularly interested 

in identifying early life factors that could modify lead-ADHD associations in a predominantly 

urban low-income minority population in the U.S. We hypothesized that there is a significant 

association between early childhood blood lead levels and the risk of developing ADHD. 

Motivated by findings from our previous work, we further hypothesized that this association 

might be modified by prenatal factors, including child sex, maternal high-density lipoprotein 

(HDL) levels12 and degree of stress during pregnancy.  
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5.3 METHODS 

This study used data from the Boston Birth Cohort (BBC), which recruited mother-infant pairs at 

birth from Boston Medical Center (BMC) since 1998, using a rolling enrollment. Details of the 

BBC recruitment have been published previously.13,14 Eligible mothers delivered a single live 

birth at Boston Medical Center (BMC). Pregnancies resulting from in vitro fertilization, 

multiple-gestation pregnancies, deliveries induced by maternal trauma, or newborns with 

substantial congenital disabilities were not eligible for enrollment. BBC mother-infant pairs who 

continued to receive pediatric primary care at BMC were enrolled in a postnatal follow-up 

study.13,15,16 The Institutional Review Board (IRB) of Boston University Medical Center and the 

IRB of Johns Hopkins Bloomberg School of Public Health approved the BBC study. Informed 

consent was obtained from each participant under the IRB approved protocol. 

There were 3098 mother-infant pairs enrolled in the postnatal follow-up study at BMC at the 

time of the study. Our study sample excluded participants who had missing data for lead 

measurements and key covariates. We further excluded those with lead measurement after 

ADHD diagnosis, incorrect lead measurement dates, lead measurement age older than 4 years, 

and a lead level higher than 10 µg/dL (to focus on the effects in the low lead exposure range). 

Since many neurodevelopmental disorders may have common risk factors, we excluded those 

with neurodevelopmental disorders diagnoses other than ADHD (Figure 5-1). Our final analyses 

consisted of 1479 mother-infant pairs, who were enrolled at birth from 1998 to 2013 and 

followed-up prospectively until the end of 2016 (Figure 5-1). Additionally, these mother-infant 

pairs consisted of 299 children with ADHD and 1176 neurotypical children (Figure 5-1).  

After recruiting mothers within 24 to 72 hours after delivery, a standard questionnaire interview 

was used to collect data on maternal demographic characteristics, smoking status, and stress 
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during pregnancy. Stress during pregnancy was defined according to the response to the 

following question: “How would you characterize the amount of stress in your life during 

pregnancy?” The responses to the question included: “not stressful,” “average stressful,” and 

“very stressful.” A medical abstraction form was used to review participants’ medical records 

and collect clinical-related data including parity, pregnancy-related complications, intrauterine 

infection, and birth outcomes such as gestational age and birthweight. Since 2003, electronic 

medical records (EMRs) were implemented for routine clinical data collection at BMC, 

including both well-child and specialty medical visits. For each primary care visit, the EMRs 

contain the primary and secondary diagnoses from the International Classification of Diseases, 

Ninth Revision (ICD-9) (before October 1, 2015) and ICD-10 (after October 1, 2015). In this 

study, we extracted EMR data until the end of 2016. 

Maternal plasma HDL levels and lead levels in red blood cells were measured using non-fasting 

blood samples obtained between 24 to 72 hours after delivery. The child postnatal screening 

records of blood lead levels were obtained from the EMRs. The low detection limit of lead was 2 

µg/dL; 659 children had blood lead levels below this threshold. The below threshold lead level 

was coded as 1 µg/dL when lead was analyzed as a continuous variable. For each child with 

repeated measurements of lead levels, the level measured at the earliest age was selected for 

analysis in this study. 

In our study, the “ADHD” was defined as having any of the following ICD-9 codes: [314.0, 

314.00, 314.01, 314.1, 314.2, 314.8, and 314.9], or any of the following ICD-10 codes: [F90.0, 

F90.1, F90.2, F90.8, and F90.9] as documented in the child’s EMRs. The “neurotypical (NT)” 

was defined as not having any diagnosis of ASD, ADHD, conduct disorders, developmental 

delays, intellectual disabilities, failure to thrive, and/or congenital anomalies. The ICD-9 and 
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ICD-10 codes for these neurodevelopmental disorders diagnosis are listed in 

 

Figure 5-6 online. Conceptual framework for the prospective association of early childhood lead 

exposure and development of ADHD in childhood from a life course perspective. 
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Table 5-1. 

The characteristics of the study sample for the ADHD and the NT groups were compared using t-

tests for continuous variables and χ2 tests for categorical variables. Variables with a p < 0.05 

were included in the subsequent multivariate logistic regression (MLR) analyses as covariates. 

The key predictor analyzed in this study was the child’s lead level, which was natural log-

transformed to approximate the normal distribution. Lead level was also analyzed as a binary (5 

µg/dL as the cutoff) and categorical variable (<2 µg/dL, 2-4 µg/dL, and 5-10 µg/dL) based on 

cut points used in previous studies and CDC guidelines.2,8 Maternal HDL levels were analyzed 

as a binary variable cut at the median (60.7 mg/dL).12 Maternal stress during pregnancy was 

converted from a three-category variable (not stressful, average, very stressful) into a binary 

variable (not stressful vs. stressful) for analysis.17 

We conducted multiple logistic regression (MLR) to examine the association between early 

childhood lead level and the risk of having ADHD, both categorically and continuously, 

adjusting for maternal age at delivery, maternal race/ethnicity, maternal education, smoking 

during pregnancy, intrauterine infection, parity, child's sex, mode of delivery, preterm birth, and 

birthweight. Gender-stratified analyses and the joint effect of the child's sex with lead levels on 

the risk of ADHD diagnosis were tested using MLR, and adjusted for the same covariates except 

for child’s sex. The interaction between child’s sex and lead level on the risk of ADHD was then 

tested using MLR and adding the interaction term into the model while adjusting for the same 

covariates. We further tested the joint associations among maternal HDL level, maternal stress 

during pregnancy, and early childhood lead level with the risk of ADHD diagnosis both across 

and within the child’s sex groups, adjusting for the same covariates except for child’s sex. For 

the sensitivity analyses, we repeated the above analyses within three subsets. One analysis did 
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not exclude the samples with other neurodevelopmental disorders. One analysis included the 

samples with early childhood lead levels measured at age ≤ 2 years. The other analysis further 

adjusted for maternal lead levels (treated as a binary variable cut at 5 µg/dL) measured right after 

delivery, using the samples that had measurements for both maternal and early childhood lead 

levels. All analyses were performed using STATA® version 14.0 software (Stata Corporation, 

College Station, TX, USA).  

5.4 RESULTS 

Data from 1,479 mother-child pairs were analyzed in this study. The median age of the study 

children by our latest EMR extraction date (31 December 2016) was 9.6 years (inter-quartile 

range 7.4 to 12.5 years). Among them, 299 children (13.9% (before removing children with 

neurodevelopmental disorders diagnoses other than ADHD)) had a physician diagnosis of 

ADHD, and 131 children (8.9%) had lead levels of 5-10 µg/dL; 9.4% in boys and 8.3% in girls. 

The median age of the first diagnosis of ADHD was six years. The median age of the first lead 

measurement was 0.84 years (inter-quartile range 0.77 to 1.03 years). The comparison results of 

major characteristics between excluded and included samples indicate that the included sample 

had less exposure to multiple risk factors, such as less educational attainment, shorter gestational 

age, and lower birthweight (Table 5-2). Table 5-3 presents the bivariate comparisons of maternal 

and child characteristics between the “ADHD” and “NT” groups. Mothers of children with any 

ADHD diagnosis were more likely to have less than a college degree, ever smoked before or 

during pregnancy, delivered with a C-section, had high stress during pregnancy, and low HDL 

compared with the NT group. Children with an ADHD diagnosis were more likely to be male, 

born prematurely, and had low birthweight, compared with the NT group.  
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Table 5-4 shows the results for both the crude and adjusted associations of early childhood lead 

levels with the risk of ADHD diagnosis. When lead levels were analyzed as three categories, 

compared to those with < 2 µg/dL lead levels, the adjusted OR for children with 2-4 µg/dL and 

5-10 µg/dL lead levels was 1.08, 95% CI (0.81, 1.44)) and 1.73, 95% CI (1.09, 2.73), 

respectively. The natural log-transformed linear trend of lead levels was significantly associated 

with an increased risk of ADHD diagnosis (adjusted OR=1.25, 95% CI (1.01, 1.56)). When lead 

was analyzed as a binary variable, children with 5-10 µg/dL lead levels had 66% increased odds 

of having any ADHD diagnosis as compared to children with < 5 µg/dL lead levels (adjusted 

OR=1.66, 95% CI (1.08, 2.56)). A test of interaction between sex and lead level (binary) was 

statistically significant (p-value for interaction was 0.017), which was further explored as 

described below. 

Figure 5-2 shows that the crude percentage of ADHD diagnosis was higher among boys 

compared to girls within each lead exposure level. Figure 5-3 (Lowess plot) shows a positive 

linear trend with the risk of ADHD diagnosis among boys, while the trend was flat among girls. 

Table 5-5 shows the adjusted associations between child’s lead levels and the risk of any ADHD 

diagnosis stratified by the child’s sex and the joint effect of child’s lead levels and the child’s sex 

on ADHD risk. When simultaneously considering child sex and lead levels, boys with 5-10 

µg/dL lead levels had 648% increased odds of having any ADHD diagnosis (adjusted OR=7.48, 

95% CI (4.29, 13.02)), compared to girls with < 5 µg/dL lead levels. Table 5-6 shows the results 

of the sensitivity analyses on the joint effects of early childhood lead exposure on ADHD 

diagnosis comparing to no ADHD group; and the findings were similar to those shown in Table 

5-5. Table 5-7 shows the results of the sensitivity analyses on the joint effects of early childhood 

lead exposure by restricting the analysis to children with lead measurements at age ≤ 2 years; and 
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the findings were similar. Table 5-8 shows the results of the sensitivity analyses on the joint 

effects of early childhood lead exposure by further adjusting for maternal lead measurements 

right after delivery; and the findings were also similar. Figure 5-4 displays the crude relationship 

between maternal lead and early childhood lead levels, which do not show correlation. 

Table 5-9 shows the joint association of child's sex, maternal HDL level, maternal stress during 

pregnancy, and early childhood lead measurement with the risk of ADHD diagnosis. Compared 

to girls with low lead levels (< 5 µg/dL) and adequate maternal HDL levels (> 60.7 mg/dL), boys 

with high lead levels and lower maternal HDL levels had 903% increased odds of having any 

ADHD diagnosis (OR=10.03, 95% CI (4.38, 22.97)). This increased risk was reduced by more 

than half if the mother had adequate maternal HDL levels (OR=4.77, 95% CI (1.76, 12.90)).  

Similarly, boys with high lead levels and high maternal stress during pregnancy had 1394% 

increased odds of having any ADHD diagnosis, compared to girls with low lead levels and low 

maternal stress (OR=14.94, 95% CI (6.88, 32.41)). This increased risk was reduced by more than 

half if the mother had low maternal stress during pregnancy (OR=6.10, 95% CI (2.18, 17.08)). 

Figure 5-5 shows the percentage of ADHD diagnosis by maternal HDL level, maternal stress 

during pregnancy, and early childhood lead measurement groups among boys. The within sex 

group comparison together with the findings shown in Figure 5-5 also indicate that the risk of 

ADHD diagnosis was lower for those born to mothers with adequate maternal HDL and low 

maternal stress during pregnancy given the same level of lead exposures for boys. 

Table 5-10 and Table 5-11 show the additional sensitivity analyses to examine the independent 

and joint effect of gestational age and birthweight with early childhood lead exposure on ADHD. 

There was no indication of interaction between early childhood lead exposures and gestational 

age on ADHD, and the same is true for birthweight. 
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5.5 DISCUSSION 

To our knowledge, this is the first large prospective birth cohort study to demonstrate a positive 

association between early childhood lead exposure and risk of developing ADHD in a U.S. 

predominantly urban, low-income minority cohort. Our findings are consistent with previous 

research regarding the effects of lead exposure on the risk of ADHD, although existing data were 

mostly cross-sectional in design.10 Our study has contributed the following new information to 

the field.  

We revealed a significant sex difference in the association between lead exposure and the risk of 

ADHD. When we stratified the MLR analysis by sex, we found no significant association 

between elevated lead levels (5-10 μg/dL) and ADHD among girls, but a strong association with 

ADHD among boys. This finding cannot be explained by a sex difference in lead exposure. In 

fact, the lead level distribution was similar between girls and boys: the percentages of elevated 

lead levels (5-10 μg/dL) were 8.3% and 9.4% for girls and boys, respectively, which is consistent 

with previous studies, indicating that there is no sex difference in blood lead levels among young 

children.18,19 Moreover, a small prospective study (n=195) also found similar boy-specific lead 

effects, which revealed that both prenatal and childhood average lead levels (<78 months) were 

associated with attention factor of neuropsychological measures only within boys.20 Taken 

together, the findings from previous studies and ours suggest that boys are more vulnerable than 

girls to the adverse effects of early life low level lead exposures. 

In the context of early childhood lead exposure and ADHD in boys, we identified several 

potential protective factors that may attenuate the lead-ADHD association. We found that high 

maternal HDL levels and low maternal stress during pregnancy could partially counteract the 

increased odds of ADHD associated with early life lead exposure in boys. Except for the 
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subgroups with sample sizes that were too small, our findings showed that high maternal HDL 

levels and low maternal stress during pregnancy could reduce the odds of ADHD by more than 

half compared to their counterparts. Conversely, boys born to mothers with low HDL and high 

stress during pregnancy were more vulnerable to the adverse effects of lead exposure on the risk 

of ADHD, given their level of lead exposure.  

Within a subset of samples with both early childhood and maternal blood lead levels measured at 

delivery, we further explored if the association we identified could be altered if we further 

adjusted for maternal lead levels. We found that the sex-specific relationship between the early 

childhood lead level and the risk of ADHD remained even after adjusting for maternal lead 

levels. Furthermore, we found no significant correlation between maternal lead levels and early 

childhood lead levels. This finding is consistent with the correlation results reported in a 

previous study, which measured the lead levels of nearly 100 mother-child pairs from 

Montevideo, Uruguay.21  

Although lead exposure in children has declined in the U.S. since the ban of leaded gasoline,9 

lead exposure has remained a significant risk factor for certain segments of children for two 

major reasons. First, accumulating evidence has revealed that even low-level lead exposures still 

have adverse effects on neurodevelopment. As a result, the identified blood lead level of concern 

for the fetus or young child has been revised many times from 40 µg/dL to the current CDC 

guidelines which specify that there is no safe level of exposure.6,9,22-24 Indeed, more recent  

research lends even further support for the CDC guidelines that there is no threshold for the 

adverse health effects of lead exposure.8,9  

Second, while any exposure is considered unsafe, there still are profound disparities in who is 

more exposed to lead in the U.S. A study conducted in South Carolina showed that the soil lead 
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concentration was much higher in urban areas because of more potential lead sources based 

there, such as road networks and industries.25 Related to this, low-income and racial/ethnic 

minority individuals, including children aged younger than 6 years, have a much higher risk of 

lead exposure because they are the ones who tend to live in these urban areas and in 

neighborhoods that are closer to these lead sources.25 Additionally, children are more 

biologically susceptible to the toxic effects of lead compared to adults due to their much higher 

gastrointestinal bioaccessibility to lead.26 In the BBC, about 9% of children had blood lead levels 

above 5 µg/dL. Consistently, many other studies have also found that low-income minority 

populations are more likely to live in highly lead-contaminated areas and have higher median 

blood lead concentrations, particularly among children.25,27-29 Thirdly, our data suggest that 

urban low-income populations may be more vulnerable to lead toxicity due to other risk factors 

including maternal dyslipidemia and high stress, as we demonstrated in this study. As such, lead 

remains a significant public health concern, especially for poor pregnant mothers and their 

children living in lead-contaminated areas. 

The exact neurotoxicological pathways by which lead exposure affects ADHD risk remain 

unclear. Current biological studies suggest that lead disrupts the hippocampal region of the brain 

through interaction with the N-methyl-D-aspartate receptor both synaptically and extra-

synaptically.30 The lead-induced damage in the developing brain preferentially occurs in the 

prefrontal cortex (PFC), hippocampus, and cerebellum,31-33 and not surprisingly the brains of 

individuals with ADHD also show a reduction in the volume and activity of the PFC and 

cerebellum.34 The neurotoxicity induced by lead depends on both age35 and lead exposure 

level.36 Compared to adults, children not only absorb more lead, but they do so directly into the 

brain due to a higher potential intake from the environment and an underdeveloped blood-brain 
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barrier.37,38 Moreover, the fetus is also at a high risk of lead exposure via transplacental transfer 

during pregnancy, which is a particularly sensitive period for fetal central nervous system 

development.39,40 

The striking sex difference in ADHD is well-observed but poorly understood. An animal study 

showed that lead toxicity behaves differently in males and females.41 After treating with lead 

acetate, female rabbits showed an earlier and higher increase in Zn protoporphyrin (a screening 

marker for lead poisoning42) than males.41 However, to date, no study has explained the 

biological mechanism behind male dominance in ADHD and sex differences in lead 

neurotoxicity in humans. Some have postulated that the sex difference in the lead-ADHD 

association might be explained by the sex difference in lead metabolism.43,44 Over 90% of lead is 

stored in bone with an average of a 10 year half-life.43 A study on occupational lead exposure 

showed that  the rate of bone lead release for women is slower than it is for men.44 Moreover, a 

study of Swedish twins showed that the genetic factors related to lead uptake and storage explain 

nearly 60% of the blood lead levels among nonsmoking women. In contrast, nonsmoking men’s 

blood lead levels mainly reflect environmental exposures. One study identified three 

polymorphic genes that influence lead accumulation and toxicokinetics.45 These genes are 

responsible for encoding enzyme delta-aminolevulinic acid dehydratase (ALAD), the vitamin D 

receptor (VDR), and the human hemochromatosis (HFE) protein.45 It is possible that the weak 

association between blood lead levels and risk of ADHD among girls might be due to a sex 

difference in the frequency and expression of these genes.46 

Our study had several limitations. First, the early childhood blood lead measurements obtained 

during routine pediatric screening could not precisely assess the very lowest lead exposures due 

to a detection limit of 2 μg/dL. As a result, we could not examine the dose-response relationship 
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between lead levels below 2 μg/dL and ADHD.2 Second, the EMR data used in our study (2003-

2016) spanned the transition of the diagnostic and statistical manual (DSM) from the DSM-IV-

TR to the DSM-V edition.47 However, this transition did not affect our ADHD determination48 in 

children, since the main changes from DSM-IV-TR to DSM-V were more relevant to the adult 

diagnostic criteria. Third, missing information on lead levels and major covariates can cause 

selection bias if the missing is not at random. However, we compared children with and without 

lead measurements and did not find a systematic difference among major covariates. Lastly, 

although we adjusted for multiple major risk factors identified in previous studies, data related to 

multiple family-related factors such as poor parenting,49,50 maltreatment,51 conflict/parent-child 

hostility,52 and severe early deprivation53,54 were not available in BBC. Thus, we could not 

wholly eliminate potential residual confounding in this study. However, those factors are less 

likely to share the same biological mechanism in their effect on neurodevelopment. Thus, would 

not anticipate any impact on the association between early childhood lead and risk of ADHD 

even if it was possible to adjust for those factors. 

5.6 CONCLUSIONS 

In this urban, low income, high-risk minority birth cohort, we found that about 9% of children 

had elevated early childhood blood lead levels (5-10 µg/dL), and that these moderately elevated 

levels were associated with an increased risk of ADHD in childhood, in particular, among boys. 

As illustrated in Figure 6, while early childhood lead levels are our primary exposure of interest, 

multiple pre-, peri- and post-natal risk factors of ADHD, such as child’s sex, maternal HDL, and 

maternal stress during pregnancy could also affect the risk of ADHD either in the context of risk 

factors, effect modifiers or confounders (Figure 6; online).  In our study population, boys were at 

much higher risk of ADHD than girls, given the same levels of lead exposure. Furthermore, our 
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analysis suggested that maternal factors could alter this risk. For example, the risk could be 

reduced by more than half if the mother had adequate HDL levels or had low stress during 

pregnancy. These findings shed new light on the sex difference seen in ADHD and its effect 

modifiers, and, if confirmed, may offer new opportunities for early risk assessment and primary 

prevention of ADHD.  
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5.7 TABLE AND FIGURES 

 

Figure 5-1 online. Flowchart of the Child Health Study and the sample included in the analysis. 
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Figure 5-2 The percentage of ADHD diagnosis in the BBC children, stratified by child's sex and early childhood 

lead measurement groups. 
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Figure 5-3 online. The crude relationship between early childhood lead exposure and ADHD diagnosis by child’s 

sex. 
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Figure 5-4 online. The crude relationship between maternal lead levels and early childhood lead levels. 
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Figure 5-5 online. The percentage of ADHD diagnosis within maternal HDL level (top), maternal stress during 

pregnancy (bottom), and early childhood lead measurement groups among boys.  
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Figure 5-6 online. Conceptual framework for the prospective association of early childhood lead exposure and 

development of ADHD in childhood from a life course perspective. 
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Table 5-1 online. List of ICD-9 and ICD-10 codes for the diagnosis of each neurodevelopmental disorder. 

Neurodevelopmental disorder ICD-9 codes ICD-10 codes 

ASD 299.0, 299.00, 299.01, 

299.8, 299.80, 299.81, 

299.9, 299.90, 299.91 

F84.0, F84.8, F84.9 

ADHD 314.0, 314.00, 314.01, 

314.1, 314.2, 314.8, 314.9 

F90, F90.0, F90.1, F90.2, 

F90.8, F90.9 

Disturbance of conduct 312.0-312.9 F91, F91.0, F91.2, F91.3, 

F91.8, F91.9 

Delays in development 315.0-315.9 F81.0, R48.0, F81.81, 

F81.2, F81.89, F80.1, 

F80.2, H93.25, F80.4, 

F80.81, F80.0, F80.82, 

F80.89, F82, F88, F81.9, 

F89 

Intellectual disabilities 317-317 F70, F71, F72, F73, F78, 

F79 

Failure to thrive 783.4, 783.40, 783.41, 

783.42, 783.43 

R62.50, R62.51, R62.0, 

R62.52 

Congenital anomalies 740-759.9 Q00-Q99 
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Table 5-2 online. Maternal and child characteristics for participants excluded and included in the analysis. 

Variable Total Excluded Included P-valuea 

Total 3098 (100) 1619 (52.26) 1479 (47.74)  

Maternal Age (years, n (%))    0.106 

  <20 288 (9.30) 138 (8.52) 150 (10.14)  

  20-34 2246 (72.50) 1165 (71.96) 1081 (73.09)  

  >=35 556 (17.95) 308 (19.02) 248 (16.77)  

Education level, n (%)    <0.001 

  Below college degree 2642 (85.28) 1401 (86.53) 1241 (83.91)  

  College degree or above 420 (13.56) 182 (11.24) 238 (16.09)  

Maternal race, n (%)    <0.001 

  Black 1965 (63.43) 940 (58.06) 1025 (69.30)  

  White 227 (7.33) 115 (7.10) 112 (7.57)  

  Hispanic 682 (22.01) 448 (27.67) 234 (15.82)  

  Others 209 (6.75) 101 (6.24) 108 (7.30)  

Smoking during pregnancy, 

n (%) 
   0.412 

  Never 2496 (80.57) 1277 (78.88) 1219 (82.42)  

  Quitter 238 (7.68) 128 (7.91) 110 (7.44)  

  Continuous 330 (10.65) 180 (11.12) 150 (10.14)  

Child's sex, n (%)    0.008 

  Female 1529 (49.35) 762 (47.07) 767 (51.86)  

  Male 1567 (50.58) 855 (52.81) 712 (48.14)  

Delivery type, n (%)    0.057 

  C-section 1116 (36.02) 606 (37.43) 510 (34.48)  

  Vaginal 1967 (63.49) 998 (61.64) 969 (65.52)  

Gestational age, week    <0.001 

  Mean ± SD 37.6 ± 3.5 37.1 ± 3.9 38.2 ± 3.0  

Birthweight, g    <0.001 

  Mean ± SD 2898.3 ±819.7 2794.7 ±881.7 3011.6 ± 729.5  

Note: aThe p-values were obtained from chi-square test or t-test between children included and 

excluded in the main analysis. 
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Table 5-3 Maternal and child characteristics for children with any ADHD diagnosis (ADHD) and neurotypical (NT) 

children. 

Variable Total NT ADHD 
P-

valuea 

Total 1,479 (100) 1,180 (79.78) 299 (20.22)  

Maternal Age (years, n (%))    0.094 

  <20 150 (10.14) 110 (9.32) 40 (13.38)  

  20-34 1,081 (73.09) 874 (74.07) 207 (69.23)  

  >=35 248 (16.77) 196 (16.61) 52 (17.39)  

Education level, n (%)    0.033 

  Below college degree 1,241 (83.91) 978 (82.88) 263 (87.96)  

  College degree or above 238 (16.09) 202 (17.12) 36 (12.04)  

Maternal race, n (%)    0.137 

  Black 1025 (69.30) 811 (68.73) 214 (71.57)  

  White 112 (7.57) 96 (8.14) 16 (5.35)  

  Hispanic 234 (15.82) 181 (15.34) 53 (17.73)  

  Others 108 (7.30) 92 (7.80) 16 (5.35)  

Parity, n (%)    0.715 

  Nulliparous 649 (43.88) 515 (43.64) 134 (44.82)  

  Multiparous 830 (56.12) 665 (56.36) 165 (55.18)  

Smoking during pregnancy, 

n (%) 
   <0.001 

  Never 1219 (82.42) 995 (84.32) 224 (74.92)  

  Quitter 110 (7.44) 71 (6.02) 39 (13.04)  

  Continuous 150 (10.14) 114 (9.66) 36 (12.04)  

Intrauterine infection, n (%)    0.073 

  No 1283 (86.75) 1033 (87.54) 250 (83.61)  

  Yes 196 (13.25) 147 (12.46) 49 (16.39)  

Child's sex, n (%)    <0.001 

  Female 767 (51.86) 681 (57.71) 86 (28.76)  

  Male 712 (48.14) 499 (42.29) 213 (71.24)  

Delivery type, n (%)    0.021 

  C-section 510 (34.48) 390 (33.05) 120 (40.13)  

  Vaginal 969 (65.52) 790 (66.95) 179 (59.87)  

Season of child's birth, n 

(%) 
   0.077 

  Jan to March 346 (23.39) 282 (23.90) 64 (21.40)  

  April to June 355 (24.00) 282 (23.90) 73 (24.41)  

  July to September 400 (27.05) 303 (25.68) 97 (32.44)  

  October to December 378 (25.56) 313 (26.53) 65 (21.74)  

Preterm birth (<37 weeks, n 

(%)) 
   <0.001 

  No 1,156 (78.16) 954 (80.85) 202 (67.56)  

  Yes 323 (21.84) 226 (19.15) 97 (32.44)  
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Low birthweight (<2,500 g, 

n (%)) 
   <0.001 

  No 1,164 (78.70) 963 (81.61) 201 (67.22)  

  Yes 315 (21.30) 217 (18.39) 98 (32.78)  

Stress during pregnancy, n 

(%) 
   <0.001 

  Not stressful 562 (38.00) 475 (40.25) 87 (29.10)  

  Stressful 909 (61.46) 700 (59.32) 209 (69.90)  

Gestational age, week    <0.001 

  Mean ± SD 38.2 ± 3.0 38.5 ± 2.5 37.1 ± 4.2  

Birthweight, g    <0.001 

  Mean ± SD 3011.6 ±729.5 3069.9 ± 665.4 2781.6 ± 906.3  

Early Childhood lead, 

µg/dL 
   0.009 

  Mean ± SD 2.2 ± 1.6 2.1 ± 1.5 2.4 ± 1.9  

Maternal HDL, mg/dL    0.001 

  Median (25th-75th quantile) 60.7 (50.3-72.3) 61.5 (51.0-73.9) 57.4 (49.3-67.5)  

Note: NT was defined as without any neurodevelopmental disorder diagnosis; ADHD was 

defined as any ADHD diagnosis; aThe p-values were obtained from chi-square tests for 

categorical variables or t-tests for continuous variables, between children with ADHD and the 

NT controls. 
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Table 5-4 The association of early childhood lead levels with the risk of ADHD diagnosis. 

  

Variables 
ADHD, 

n (%) 

NT, 

n (%) 

Crude 

OR 
95% CI 

P-

value 

Adjusted 

OR 
95% CI 

P-

value 

Lead log linear trend 299 (20.22) 1180 (79.78) 1.24 (1.01, 1.53) 0.037 1.25 (1.01, 1.56) 0.045 

Lead: 

three 

categories 

  <2 µg/dL  125 (18.97) 534 (81.03) 1.00   1.00   

  2-4 µg/dL  136 (19.74) 553 (80.26) 1.05 (0.80, 1.38) 0.720 1.08 (0.81, 1.44) 0.622 

  5-10 µg/dL  38 (29.01) 93 (70.99) 1.75 (1.14, 2.67) 0.010 1.73 (1.09, 2.73) 0.019 

Lead: 

binary 

  <5 µg/dL  261 (19.36) 1087 (80.64) 1.00   1.00   

  5-10 µg/dL  38 (29.01) 93 (70.99) 1.70 (1.14, 2.54) 0.009 1.66 (1.08, 2.56) 0.020 

Note: NT was defined as without any neurodevelopmental disorder diagnosis; ADHD was defined as any ADHD 

diagnosis; the multiple logistic regression model was adjusted for maternal age at delivery, maternal race/ethnicity, 

maternal education, smoking during pregnancy, intrauterine infection, parity, child's sex, mode of delivery, preterm birth, 

and birthweight. 
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Table 5-5 The joint association of child's sex and early childhood lead levels with the risk of ADHD diagnosis. 

  

Sex Lead Level 
ADHD, n 

(%) 
NT, n (%) 

Crude 

OR 
95% CI 

P-

value 

Adjusted 

OR 
95% CI 

P-

value 

Female  86 (11.21) 681 (88.79) 1.00   1.00   

Male  213 (29.92) 499 (70.08) 3.38 (2.57, 4.45) <0.001 3.42 (2.57, 4.55) <0.001 

Test for sex-based lead (binary) interaction    3.58 (1.25, 10.20) 0.017 

Lead effects within child’s sex        

Female   <5 µg/dL 80 (11.38) 623 (88.62) 1.00   1.00   

   5-10 µg/dL 6 (9.38) 58 (90.63) 0.81 (0.34, 1.93) 0.627 0.68 (0.27, 1.69) 0.401 

Male   <5 µg/dL 181 (28.06) 464 (71.94) 1.00   1.00   

   5-10 µg/dL 32 (47.76) 35 (52.24) 2.34 (1.41, 3.90) 0.001 2.49 (1.46, 4.26) 0.001 

Joint effects of child’s sex and lead        

Female   <5 µg/dL 80 (11.38) 623 (88.62) 1.00   1.00   

   5-10 µg/dL 6 (9.38) 58 (90.63) 0.81 (0.34, 1.93) 0.627 0.69 (0.28, 1.71) 0.426 

Male   <5 µg/dL 181 (28.06) 464 (71.94) 3.04 (2.27, 4.06) <0.001 3.02 (2.24, 4.06) <0.001 
   5-10 µg/dL 32 (47.76) 35 (52.24) 7.12 (4.18, 12.13) <0.001 7.48 (4.29, 13.02) <0.001 

Note: NT was defined as without any neurodevelopmental disorder diagnosis; ADHD was defined as any ADHD 

diagnosis; the multiple logistic regression model was adjusted for maternal age at delivery, maternal race/ethnicity, 

maternal education, smoking during pregnancy, intrauterine infection, parity, child's sex, mode of delivery, preterm birth, 

and birthweight. 
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Table 5-6 online. The joint association of child's sex and early childhood lead levels with the risk of ADHD 

diagnosis comparing to no ADHD group. 

  

Sex Lead Level 
ADHD, n 

(%) 

No ADHD, 

n (%) 

Crude 

OR 
95% CI 

P-

Value 

Adjusted 

OR 
95% CI 

P-

Value 

Female  86 (8.05) 982 (91.95) 1.00   1.00   

Male  213 (19.54) 877 (80.46) 2.77 (2.12, 3.62) <0.001 2.84 (2.16, 3.72) <0.001 

Test for sex-based lead (binary) interaction    3.13 (1.15, 8.48) 0.025 

Lead effects within child’s sex        

Female <5 µg/dL 80 (8.06) 912 (91.94) 1.00   1.00   

 5-10 µg/dL 6 (7.89) 70 (92.11) 0.98 (0.42, 2.32) 0.958 0.82 (0.34, 2.01) 0.668 

Male <5 µg/dL 181 (18.03) 823 (81.97) 1.00   1.00   

 5-10 µg/dL 32 (37.21) 54 (62.79) 2.69 (1.69, 4.29) <0.001 2.80 (1.74, 4.52) <0.001 

Joint effects of child’s sex and lead        

Female <5 µg/dL 80 (8.06) 912 (91.94) 1.00   1.00   

 5-10 µg/dL 6 (7.89) 70 (92.11) 0.98 (0.41, 2.32) 0.958 0.89 (0.37, 2.15) 0.802 

Male <5 µg/dL 181 (18.03) 823 (81.97) 2.51 (1.90, 3.32) <0.001 2.54 (1.91, 3.37) <0.001 
 5-10 µg/dL 32 (37.21) 54 (62.79) 6.76 (4.12, 11.06) <0.001 7.10 (4.29, 11.75) <0.001 

Note: No ADHD was defined as without any ADHD diagnosis; ADHD was defined as any ADHD diagnosis; the multiple 

logistic regression model was adjusted for maternal age at delivery, maternal race/ethnicity, maternal education, smoking 

during pregnancy, intrauterine infection, parity, child's sex, mode of delivery, preterm birth, and birthweight. 
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Table 5-7 online. The joint association of child's sex and early childhood lead levels (age≤2 years) with the risk of 

ADHD diagnosis. 

  

Sex Lead Level ADHD, n (%) NT, n (%) 
Crude 

OR 

95% 

CI 

P-

Value 

Adjusted 

OR 
95% CI 

P-

Value 

Female  81 (11.11) 648 (88.89) 1.00   1.00   

Male  203 (29.90) 476 (70.10) 3.41 
(2.57, 

4.53) 
<0.001 3.51 

(2.62, 

4.70) 
<0.001 

Test for sex-based lead (binary) interaction    8.60 
(2.24, 

33.00) 
0.002 

Lead effects within child’s sex        

Female <5 µg/dL 78 (11.61) 594 (88.39) 1.00   1.00   

 5-10 µg/dL 3 (5.26) 54 (94.74) 0.42 
(0.13, 

1.39) 
0.155 0.34 

(0.10, 

1.16) 
0.085 

Male <5 µg/dL 173 (27.86) 448 (72.14) 1.00   1.00   

 5-10 µg/dL 30 (51.72) 28 (48.28) 2.77 
(1.61, 

4.78) 
<0.001 3.02 

(1.70, 

5.34) 
<0.001 

Joint effects of child’s sex and lead        

Female <5 µg/dL 78 (11.61) 594 (88.39) 1.00   1.00   

 5-10 µg/dL 3 (5.26) 54 (94.74) 0.42 
(0.13, 

1.39) 
0.155 0.35 

(0.10, 

1.18) 
0.091 

Male <5 µg/dL 173 (27.86) 448 (72.14) 2.94 
(2.19, 

3.95) 
<0.001 2.95 

(2.18, 

3.99) 
<0.001 

 5-10 µg/dL 30 (51.72) 28 (48.28) 8.16 
(4.63, 

14.38) 
<0.001 8.88 

(4.92, 

16.03) 
<0.001 

Note: NT was defined as without any neurodevelopmental disorder diagnosis; ADHD was defined as any 

ADHD diagnosis; the multiple logistic regression model was adjusted for maternal age at delivery, maternal 

race/ethnicity, maternal education, smoking during pregnancy, intrauterine infection, parity, child's sex, mode 

of delivery, preterm birth, and birthweight. 
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Table 5-8 online. The joint association of child's sex and early childhood lead levels with the risk of ADHD 

diagnosis (further adjusted for maternal lead levels immediately after delivery). 

  

Sex Lead Level ADHD, n (%) NT, n (%) 
Crude 

OR 
95% CI P-Value 

Adjuste

d OR 
95% CI P-Value 

Female  22 (11.06) 177 (88.94) 1.00   1.00   

Male  60 (31.91) 128 (68.09) 3.77 
(2.20, 

6.46) 
<0.001 3.66 

(2.07, 

6.46) 
<0.001 

Test for sex-based lead (binary) interaction    2.79 
(0.23, 

33.98) 
0.421 

Lead effects within child’s sex       

Female   <5 µg/dL 21 (11.35) 164 (88.65) 1.00   1.00   

   5-10 µg/dL 1 (7.14) 13 (92.86) 0.60 
(0.07, 

4.83) 
0.632 0.53 

(0.06, 

5.02) 
0.578 

Male   <5 µg/dL 54 (31.40) 118 (68.60) 1.00   1.00   

   5-10 µg/dL 6 (37.50) 10 (62.50) 1.31 
(0.45, 

3.79) 
0.617 1.58 

(0.50, 

5.03) 
0.436 

Joint effects of child’s sex and lead       

Female   <5 µg/dL 21 (11.35) 164 (88.65) 1.00   1.00   

   5-10 µg/dL 1 (7.14) 13 (92.86) 0.60 
(0.07, 

4.83) 
0.632 0.54 

(0.06, 

5.01) 
0.586 

Male   <5 µg/dL 54 (31.40) 118 (68.60) 3.57 
(2.05, 

6.24) 
<0.001 3.42 

(1.91, 

6.15) 
0.001 

    5-10 µg/dL 6 (37.50) 10 (62.50) 4.69 
(1.55, 

14.21) 
0.006 5.14 

(1.57, 

16.84) 
0.007 

Note: NT was defined as without any neurodevelopmental disorder diagnosis; ADHD was defined as any ADHD 

diagnosis; the multiple logistic regression model was adjusted for maternal lead levels right after delivery, maternal 

lead levels, maternal age at delivery, maternal race/ethnicity, maternal education, smoking during pregnancy, 

intrauterine infection, parity, child's sex, mode of delivery, preterm birth, and birthweight. 
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Table 5-9 online. The joint association among child's sex, maternal HDL level, maternal stress during pregnancy, 

and early childhood lead levels with the risk of ADHD diagnosis. 

  

Sex Lead Level 

HDL or 

Stress 

level 

ADHD, n 

(%) 
NT, n (%) 

Across sex group Within sex group 

Adjusted 

OR 
95% CI P-Value 

Adjusted 

OR 
95% CI P-Value 

Joint effects of child’s sex, lead, and maternal HDL 

Female   <5 µg/dL ≤ median 30 (12.88) 203 (87.12) 1.06 (0.62, 1.82) 0.833 1.06 (0.61, 1.85) 0.827 
   <5 µg/dL > median 33 (11.46) 255 (88.54) 1.00   1.00   

   5-10 µg/dL ≤ median 2 (8.00) 23 (92.00) 0.62 (0.14, 2.84) 0.539 0.52 (0.11, 2.49) 0.414 
   5-10 µg/dL > median 3 (11.54) 23 (88.46) 0.80 (0.22, 2.97) 0.739 0.79 (0.20, 3.04) 0.730 

Male   <5 µg/dL ≤ median 91 (33.96) 177 (66.04) 3.55 (2.25, 5.59) <0.001 1.45 (0.96, 2.19) 0.075 
   <5 µg/dL > median 56 (25.00) 168 (75.00) 2.49 (1.53, 4.03) <0.001 1.00   

   5-10 µg/dL ≤ median 17 (56.67) 13 (43.33) 10.03 (4.38, 22.97) <0.001 4.02 (1.79, 8.99) 0.001 
   5-10 µg/dL > median 8 (40.00) 12 (60.00) 4.77 (1.76, 12.90) 0.002 1.94 (0.73, 5.18) 0.187 

Joint effects of child’s sex, lead, and maternal stress 

Female   <5 µg/dL 
Not 

stressful 
21 (7.50) 259 (92.50) 1.00   1.00   

   <5 µg/dL Stressful 59 (14.05) 361 (85.95) 2.00 (1.17, 3.41) 0.011 1.89 (1.09, 3.28) 0.023 

   5-10 µg/dL 
Not 

stressful 
0 (0.00) 19 (100.00) NA   NA   

   5-10 µg/dL Stressful 6 (13.33) 39 (86.67) 1.68 (0.62, 4.57) 0.310 1.59 (0.57, 4.42) 0.374 

Male   <5 µg/dL 
Not 

stressful 
59 (24.48) 182 (75.52) 4.18 (2.43, 7.20) <0.001 1.00   

   <5 µg/dL Stressful 121 (30.17) 280 (69.83) 5.10 (3.08, 8.44) <0.001 1.21 (0.83, 1.77) 0.312 

   5-10 µg/dL 
Not 

stressful 
7 (31.82) 15 (68.18) 6.10 (2.18, 17.08) 0.001 1.53 (0.58, 4.05) 0.389 

    5-10 µg/dL Stressful 23 (53.49) 20 (46.51) 14.94 (6.88, 32.41) <0.001 3.53 (1.75, 7.14) <0.001 

Note: NT was defined as without any neurodevelopmental disorder diagnosis; ADHD was defined as any ADHD 

diagnosis; the multiple logistic regression model was adjusted for maternal age at delivery, maternal race/ethnicity, 

maternal education, smoking during pregnancy, intrauterine infection, parity, child's sex, mode of delivery, preterm birth, 

and birthweight. 
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Table 5-10 online. Joint effect of gestational age and early childhood lead levels on the risk of ADHD diagnosis. 

 
  

Gestational age 

(<37 weeks) 
Lead Level 

ADHD, No. 

(%) 

NT, No. 

(%) 

Crude 

OR 
95% CI 

P-

Value 

Adjusted 

OR 
95% CI 

P-

Value 

Term  202 (17.47) 954 (82.53) 1.00   1.00   

Preterm  97 (30.03) 226 (69.97) 2.03 (1.53, 2.69) <0.001 1.94 (1.43, 2.63) <0.001 

Test for gestational age lead (binary) interaction      0.715 

Lead’s effect within gestational age group        

Term <5 µg/dL 177 (16.73) 881 (83.27) 1.00   1.00   

 5-10 µg/dL 25 (25.51) 73 (74.49) 1.70 (1.05, 2.76) 0.030 1.75 (1.06, 2.89) 0.030 

Preterm <5 µg/dL 84 (28.97) 206 (71.03) 1.00   1.00   

 5-10 µg/dL 13 (39.39) 20 (60.61) 1.59 (0.76, 3.35) 0.219 1.63 (0.71, 3.71) 0.246 

Joint effect of gestational age and lead        

Term <5 µg/dL 177 (16.73) 881 (83.27) 1.00   1.00   

 5-10 µg/dL 25 (25.51) 73 (74.49) 1.70 (1.05, 2.76) 0.030 1.76 (1.06, 2.91) 0.028 

Preterm <5 µg/dL 84 (28.97) 206 (71.03) 2.03 (1.50, 2.74) <0.001 2.61 (1.80, 3.78) <0.001 

 5-10 µg/dL 13 (39.39) 20 (60.61) 3.24 (1.58, 6.62) 0.001 3.76 (1.69, 8.36) 0.001 

Note: NT is defined as without any mental disorder diagnosis; ADHD is defined as any ADHD diagnosis; the multiple 

logistic regression model was adjusted for maternal age at delivery, maternal race/ethnicity, maternal education, smoking 

during pregnancy, intrauterine infection, parity, child's sex, and mode of delivery. 
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Table 5-11 online. Joint effect of birthweight and early childhood lead levels on the risk of ADHD diagnosis. 

 

Birthweight 

(<2500g) 
Lead Level 

ADHD, 

No. (%) 

NT, No. 

(%) 

Crude 

OR 
95% CI P-Value 

Adjusted 

OR 
95% CI P-Value 

Normal  201 

(17.27) 
963 (82.73) 1.00   1.00   

Low  98 (31.11) 217 (68.89) 2.16 (1.63, 2.87) <0.001 2.10 (1.54, 2.85) <0.001 

Test for birthweight lead (binary) interaction      0.421 

Lead’s effect within birthweight group        

Normal <5 µg/dL 
174 

(16.38) 
888 (83.62) 1.00   1.00   

 5-10 µg/dL 27 (26.47) 75 (73.53) 1.84 (1.15, 2.94) 0.011 1.89 (1.16, 3.09) 0.011 

Low <5 µg/dL 87 (30.42) 199 (69.58) 1.00   1.00   

 5-10 µg/dL 11 (37.93) 18 (62.07) 1.40 (0.63, 3.08) 0.407 1.22 (0.51, 2.90) 0.658 

Joint effect of birthweight and lead        

Normal <5 µg/dL 
174 

(16.38) 
888 (83.62) 1.00   1.00   

 5-10 µg/dL 27 (26.47) 75 (73.53) 1.84 (1.15, 2.94) 0.011 1.88 (1.15, 3.07) 0.012 

Low <5 µg/dL 87 (30.42) 199 (69.58) 2.23 (1.65, 3.01) <0.001 2.69 (1.86, 3.90) <0.001 
 5-10 µg/dL 11 (37.93) 18 (62.07) 3.12 (1.45, 6.72) 0.004 3.16 (1.37, 7.26) 0.007 

Note: NT is defined as without any mental disorder diagnosis; ADHD is defined as any ADHD diagnosis; the multiple 

logistic regression model was adjusted for maternal age at delivery, maternal race/ethnicity, maternal education, smoking 

during pregnancy, intrauterine infection, parity, child's sex, and mode of delivery. 
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6.1 TABLE OF CONTENTS SUMMARY 

This birth cohort study investigated the prospective association between maternal plasma 

acetaminophen metabolites and attention deficit hyperactivity disorder (ADHD) diagnosis in the 

offspring. 

 

6.2 WHAT’S KNOWN ON THIS SUBJECT 

Multiple large prospective studies have suggested a positive association between self-reported 

maternal acetaminophen use during pregnancy and ADHD diagnosis in offspring. The major 

limitations of these studies were self-reported use, lack of dose quantification, and unmeasured 

confounders. 

 

6.3 WHAT THIS STUDY ADDS 

This study provides the first evidence of the association between maternal biomarkers of 

acetaminophen use (an objective measurement within 1-3 days postpartum) and offspring ADHD 

diagnosis. Such a link is specific to ADHD diagnosis and is in a dose-response manner.    
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6.4 ABSTRACT 

Background and Objective: Previous studies have suggested a positive association between self-

reported maternal acetaminophen use during pregnancy and risk of attention deficit hyperactivity 

disorder (ADHD) in offspring. We sought to examine the prospective association between 

maternal plasma biomarkers of acetaminophen intake and ADHD diagnosis in the offspring.  

Method: This report analyzed 1180 children enrolled at birth and followed prospectively as part 

of the Boston Birth Cohort, including 188 with ADHD diagnosis based on electronic medical 

record review of all the study children at Boston Medical Center. Maternal biomarkers of 

acetaminophen intake were measured in plasma samples obtained within 1-3 days postpartum. 

Odds ratios (ORs) for having ADHD diagnosis or other developmental disorders were estimated 

using multinomial logistic regression models, adjusting for pertinent covariables.   

Results: Compared to neurotypical children, we observed significant positive associations with 

ADHD diagnosis for each maternal acetaminophen biomarker: unchanged acetaminophen (Third 

tertile vs. First tertile): OR=2.05, 95% confidence interval [CI] 1.27-3.32; 3-(N-Acetyl-L-

cystein-S-yl) acetaminophen (Above median vs. No detection): OR=2.03, 95% CI 1.26-3.27; and 

acetaminophen glucuronide (Above median vs. No detection): OR=2.00, 95% CI 1.26-3.18. The 

dose-response associations persisted after adjusting for pertinent covariables; and were specific 

to ADHD, rather than other neurodevelopmental disorders. In the stratified analyses, differential 

point estimates of the associations were observed across some strata of covariates. However, 

these differences were not statistically significant.   
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Conclusions: Maternal acetaminophen biomarkers were explicitly associated with increased risk 

of ADHD diagnosis in offspring. Additional clinical and mechanistic investigations are 

warranted.  
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6.5 INTRODUCTION 

Attention deficit hyperactivity disorder (ADHD) is one of the most common lifelong 

neurodevelopmental disorders in the world. Its prevalence among children ages 4-17 years in the 

U.S. increased significantly from 7.0% to 10.2% during the past two decades.1 The rapid rise of 

ADHD cannot be attributed to genetic mutations. Indeed, multiple social and environmental risk 

factors have been associated with the development of ADHD, including family-related factors,2-

14 maternal obesity,15 maternal smoking,7,16,17, maternal drinking,7 low birthweight and preterm 

birth,18 exposure to organophosphates,19 polychlorinated biphenyls,20,21 and lead exposure.20,22-24  

These findings underscore the role of environmental factors in the etiology of ADHD, and the 

need to explore other important yet unknown risk factors for ADHD.25 Acetaminophen is widely 

used and recommended over-the-counter medication for fever and pain relief during pregnancy. 

The extent of acetaminophen use during pregnancy is over 65% in the U.S. and over 50% in 

Europe.26,27 The inhibition of prostaglandin synthesis is part of the therapeutic effect of 

acetaminophen.28 Prostaglandins not only act as fever determinants but also play essential roles 

in brain function, including long-term potentiation,29 learning,30 and cerebellar development.28 

Because of its widespread use and role in brain function, the potential unknown adverse effects 

of acetaminophen use on developing fetal brain need to be clarified.31  

Since 2013, research studies analyzing five prospective cohorts from Europe and New Zealand 

have consistently shown a positive association between maternal intake of acetaminophen during 

pregnancy and increased risk of ADHD and its related symptoms in offspring.32-36 The Society 

for Maternal-Fetal Medicine and the Food and Drug Administration expressed concern that the 

data from these recent studies are still too inconclusive to draw any causal inference between 

prenatal acetaminophen use and ADHD development in offspring.37,38 Their primary criticisms 



 

139 

 

included the use of self-reported exposure, lack of dose quantification, and unmeasured 

confounders.37 To address the concerns and criticisms related to previous studies and improve 

our understanding of acetaminophen’s effect during pregnancy, there is need for a well-designed 

prospective birth cohort study with blood samples available to measure maternal acetaminophen 

levels. Currently, no such study exists. In this study, using the data from the Boston Birth 

Cohort, we sought to examine the prospective association between maternal plasma 

acetaminophen metabolites levels measured within a few days after delivery and ADHD 

diagnosis in the offspring. We hypothesized that maternal levels of acetaminophen biomarkers 

are positively associated with risk of offspring ADHD diagnosis.  

6.6 METHODS 

6.6.1 Sample 

Since 1998, mother/infant pairs were recruited at birth from the Boston Medical Center (BMC) 

for participation in the Boston Birth Cohort (BBC).39,40 The BMC serves a predominately low 

income, urban, minority population and is also the largest safety net hospital in New England. 

Eligible mothers were those who delivered a singleton live birth at BMC. They were approached 

for consent and enrollment within 24 to 72 hours after delivery. Infants who continued to receive 

primary or specialty care at BMC were invited (beginning at age 6 months) to participate in the 

follow-up study in which they are prospectively followed from birth onwards.39,41,42 After 

obtaining informed consent, a standardized questionnaire was administered by trained research 

staff and a maternal venous blood sample was obtained. Mothers who conceived via in vitro 

fertilization, multiple-gestation pregnancies, deliveries induced by maternal trauma, and/or 

newborns with substantial congenital disabilities were not eligible for participation. Both the 
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baseline and the follow-up study have been approved by the Institutional Review Boards (IRB) 

of Boston University Medical Center and Johns Hopkins Bloomberg School of Public Health. 

As illustrated in the study flowchart, of the 3098 children followed in the BBC, we excluded 

1686 participants who had missing data for maternal acetaminophen metabolites measurements 

and 232 participants who had missing data for key covariates. Our final sample comprised 1180 

mother-infant pairs with pertinent data (Supplemental Figure 1). This sample was similar to the 

excluded sample in terms of baseline maternal and newborn characteristics (Supplemental Table 

2), except for having a slightly higher percentage of black children, longer gestation and higher 

birthweight.    

6.6.2 Definitions for ADHD, ASD, other DD, and Neurotypical Children 

We extracted information regarding each child’s neuro-developmental diagnoses as documented 

in their EMRs. Beginning in 2003, BMC implemented EMR as part of routine data collection for 

both well-child and specialty clinical visits. The primary and secondary diagnoses for each 

clinical visit were coded in the EMR using the International Classification of Diseases, Ninth 

Revision (ICD-9) (before October 1, 2015) and ICD-10 (after October 1, 2015). Thus, all 

children in the BBC postnatal follow-up study with a related ICD-9 (314.0, 314.00, 314.01, 

314.1, 314.2, 314.8, or 314.9) or ICD-10 (F90.0, F90.1, F90.2, F90.8, or F90.9) code included in 

their EMR between 2003 and 2016 were classified as having ADHD. Similarly, children with an 

ICD-9 (299.0, 299.00, 299.01, 299.8, 299.80, 299.81, 299.9, 299.90, or 299.91) or ICD-10 

(F84.0, F84.8, or F84.9) code were classified as having an autism spectrum disorder (ASD). 

Furthermore, children with any of following developmental disorder diagnoses noted in their 

EMR were classified as having other developmental disorders (other DD): conduct disorders, 

developmental delays, intellectual disabilities, failure to thrive, or congenital anomalies. Children 
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without any diagnosis of ASD, ADHD, conduct disorders, developmental delays, intellectual 

disabilities, failure to thrive, or congenital anomalies were classified as neurotypical (NT). 

Supplemental Table 1 lists the ICD-9 and ICD-10 codes for each developmental disorder 

diagnosis. 

6.6.3 Maternal biomarkers of acetaminophen use 

Maternal plasma biomarkers of acetaminophen use were measured using nonfasting blood 

samples obtained within 1-3 days postpartum. As illustrated in Figure 6-1, the main metabolites 

(and proportion) of acetaminophen include unchanged acetaminophen (~5%), acetaminophen 

glucuronide (52-57%), acetaminophen sulfate (30-44%), and hepatotoxic N-acetyl-p-

benzoquinone imine (NAPQI) (5-10%). NAPQI can be further detoxified as 3-(N-Acetyl-L-

cystein-S-yl) acetaminophen.43 The peak intensity of unchanged acetaminophen, acetaminophen 

glucuronide, and 3-(N-Acetyl-L-cystein-S-yl) acetaminophen in maternal blood was measured 

using liquid chromatography tandem-mass spectrometry (LC-MS) techniques at the MIT Broad 

Institute Metabolite Profiling Laboratory. All the intensity levels were inverse normal 

transformed for the subsequent statistical analyses. 

6.6.4 Covariates 

Based on previous literature,32-36 the following covariates were included as potential 

confounders: maternal age at delivery, maternal race/ethnicity, maternal education, smoking 

from 6 months before pregnancy to birth (never smoked, quit during this period, continued to 

smoke during this period), ever drank alcohol from 6 months before pregnancy to birth, maternal 

pre-pregnancy BMI, parity, maternal fever during pregnancy, intrauterine 

infection/inflammation, baby's sex, delivery type, gestational age, birthweight, breastfeeding, and  

early childhood  lead levels. . Maternal demographic covariates were collected using a standard 
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questionnaire interview. Maternal and child clinically-related covariates were abstracted from 

their medical records, respectively. The lead levels of the children were collected as part of the 

pediatric routine lead screening and extracted from their EMRs. The first lead levels measured 

were chosen for the analysis. 

6.6.5 Statistical analyses 

The characteristics of the study sample for the ADHD, ASD (excluding participants with ADHD 

diagnosis), other DD, and NT groups were compared using one-way ANOVA for continuous 

variables and χ2 tests for categorical variables. The main exposures analyzed in this study were 

maternal acetaminophen metabolite levels, which were inverse normal transformed to 

approximate the normal distribution. The inverse normal transformed unchanged acetaminophen 

levels were also categorized into tertiles. Due to the high rate of non-detection, the inverse 

normal transformed acetaminophen glucuronide and 3-(N-Acetyl-L-cystein-S-yl) acetaminophen 

levels were categorized into three groups: no detection, below the median, and above the median 

of detected values. Based on previous findings regarding the proportions of acetaminophen 

metabolites typically found in blood samples,43 we further calculated a variable to reflect overall 

“acetaminophen burden” by combining all of the acetaminophen metabolites  levels with a 

weighting of their proportions in the acetaminophen metabolic pathway [acetaminophen 

burden=(unchanged acetaminophen/5%+ acetaminophen glucuronide/50%+ 3-(N-Acetyl-L-

cystein-S-yl) acetaminophen/5%)/60%].43 The acetaminophen burden levels were then also 

categorized into three groups: no detection, below median, above median. Each child’s early life 

lead level was converted into a binary variable (5 µg/dL as the cutoff) for analysis based on CDC 

guidelines.44  
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We conducted sequential multinomial logistic regression models to examine the association 

between maternal acetaminophen metabolite levels and the risk of having ADHD diagnosis, 

ASD diagnosis (excluding ADHD diagnosis), or other DD diagnosis in offspring. Models 

included a crude model (Model 1); a model adjusted for maternal age at delivery, maternal 

race/ethnicity, maternal education, smoking during pregnancy, drinking during pregnancy, 

parity, maternal pre-pregnancy BMI, baby's sex, delivery type, gestational age, and birthweight 

(Model 2); and models further adjusted for maternal fever during pregnancy (Model 3), 

intrauterine infection/inflammation (Model 4), and breastfeeding (Model 5), respectively and 

combined (Model 6). We also performed stratified analyses by each stratum of covariates for 

binary acetaminophen burden (detected vs. no detection) using simple logistic regression 

comparing those with an ADHD diagnosis to the NT group. For the sensitivity analyses, we 

repeated the sequential models for each of the following outcomes: “ADHD only” (excluding 

ASD diagnosis), “ASD only” (excluding ADHD diagnosis), and “ADHD and ASD” (having 

both diagnoses), all compared to the NT group. STATA® version 14.0 software was used to 

perform all analyses (Stata Corporation, College Station, TX, USA). 

6.7 RESULTS 

In the final sample there were 188 children with a diagnosis of ADHD, 44 children with a 

diagnosis of ASD (without ADHD diagnosis), 344 children with a diagnosis of other DD, and 

604 NT children (without any diagnoses of developmental disorders). The median age at first 

ADHD diagnosis was 7 years. Figure 6-2 shows the distribution of each acetaminophen 

metabolite and acetaminophen burden across diagnosis groups. Both the ADHD diagnosis and 

ASD diagnosis (without ADHD diagnosis) groups had more mothers with higher levels of 

acetaminophen metabolites compared to the NT and other DD diagnosis groups. Table 6-1 
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presents the crude comparisons of maternal and child characteristics among the ADHD 

diagnosis, ASD diagnosis (without ADHD diagnosis), other DD diagnosis, and NT groups. The 

ADHD and ASD groups had the highest percentage of detectable unchanged acetaminophen and 

its metabolites.  Mothers of children with any ADHD diagnosis were also more likely to have 

below college degree education, ever smoked before or during pregnancy, and C-section 

delivery, compared with the NT group. Children with any ADHD, ASD, or any other DD 

diagnosis were more likely to be male, born prematurely and have had low birthweight, 

compared with the NT group.  

Table 6-2 shows the sequential multinomial logistic regression model results for the relationship 

between acetaminophen metabolites and the risk of ADHD diagnosis, ASD diagnosis (excluding 

ADHD), or other DD diagnosis, before and after adjusting for pertinent covariates. The group 

with the highest plasma level of each acetaminophen metabolite was significantly associated 

with the risk of ADHD diagnosis, and the effect size was similar across all models. Moreover, 

we identified dose-responsive patterns across all acetaminophen metabolites and burden. 

Compared to levels in the non- detection category, below median and above median levels of 

maternal acetaminophen burden were associated with a 58% and 88% increase in the odds of 

ADHD diagnosis respectively (Model 6: OR for below median =1.58, 95% CI (1.02, 2.46); OR 

for above median =1.88, 95% CI (1.18, 3.00)). In contrast, the risks of ASD diagnosis and other 

DD diagnoses were not significantly associated with maternal plasma levels of acetaminophen 

metabolites across all models. Supplemental Table 3 further confirms that in our sensitivity 

analyses the acetaminophen metabolite levels were explicitly associated with the risk of having 

an ADHD diagnosis (without ASD diagnosis).   
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We also explored if the associations between acetaminophen metabolites and ADHD varied by 

strata of covariables. Figure 6-3 presents the forest plot of the stratified analyses for binary 

acetaminophen burden (detected vs. non-detection) by each stratum of covariates using simple 

logistic regression comparing ADHD diagnosis to NT. The point estimates of the acetaminophen 

burden-ADHD associations were similar among strata of maternal age, smoking before or during 

pregnancy, and maternal obesity. On the other hand, larger difference in the point estimate of the 

odds ratios was observed across strata of child’s sex, alcohol drinking before or during 

pregnancy, intrauterine infection/inflammation, delivery type, birthweight, gestational age, and 

breastfeeding. However, tests of interaction between each covariate and binary acetaminophen 

burden (detected vs. non-detection) were not significant. 

I further did stratified analysis and interaction test to investigate the potential protective effects 

of optimal maternal cholesterol levels in reducing the risk of ADHD caused by maternal 

acetaminophen exposure. Supplemental Table 4 presents the association between maternal 

acetaminophen burden and the risk of ADHD diagnosis in offspring by maternal HDL levels 

groups. The maternal acetaminophen levels only significantly associate with the risk of ADHD 

diagnosis when maternal HDL ≥60 mg/dL (OR=1.57, 95% CI (1.12, 2.22)). There is no 

indication of interaction between maternal HDL levels and maternal acetaminophen levels on the 

risk of ADHD diagnosis. This result is not presented in the manuscript for Pediatric.   

6.8 DISCUSSION 

In this prospective birth cohort study, we found a significant positive association between 

maternal blood acetaminophen metabolite levels measured within 1-3 days postpartum and 

ADHD diagnosis in offspring; such an association was not observed for other developmental 
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disorders. This association remained even after adjusting for potential confounders including 

indications of acetaminophen use such as maternal fever and intrauterine infection/inflammation 

during pregnancy. This study has contributed the following new information to the field. 

Even though positive associations between maternal reported intake of acetaminophen during 

pregnancy and risk of ADHD diagnosis in their offspring have been reported by multiple 

independent large cohort studies, 32-36 there has been a dearth of prospective birth cohort studies 

to examine the biomarkers of acetaminophen use to address specific concerns about self-reported 

exposure and lack of dose quantification in those studies.  

To our knowledge, this is the first prospective birth cohort study to examine the association 

between maternal plasma biomarkers of acetaminophen and offspring ADHD diagnosis, and to 

take into account a large number of potential covariables. Our study was further strengthened by 

the diagnosis of ADHD by both general pediatricians and developmental specialists. By 

demonstrating a prospective and dose-response relationship using biomarkers specific to 

acetaminophen intake, our study findings lend further support to the previous studies that found a 

positive association between self-report of acetaminophen and ADHD. 

Although the causality and biological mechanisms underlying the maternal acetaminophen and 

child ADHD association remain to be determined, the potential for neurotoxicity is plausible 

according to previous findings. First, acetaminophen can be transferred through the placenta and 

remains in fetal/infant circulation much longer than it does in adults.45 The prolonged detection 

of acetaminophen among children is due to their undeveloped liver, which slowly metabolizes 

the acetaminophen.46 On the one hand, the low metabolic capacity in early life makes it safer for 

children to use acetaminophen because of slower production of toxic NAPQI, but on the other 

hand, it makes the fetus more vulnerable to maternal metabolized toxic NAPQI during 
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pregnancy. Second, the therapeutic effect of acetaminophen inhibits prostaglandin production.28 

Prostaglandin synthesis involves multiple essential biological processes underlying the function 

and development of the brain, such as long-term potentiation,29 learning,30 and cerebellar 

development.28 Third, accumulating studies have shown that acetaminophen not only rapidly 

enters the cerebrospinal fluid but also shows a profound influence on adult brain function. 47-50 

Thus, the long-term exposure of the fetus to maternal acetaminophen metabolites during 

pregnancy in addition to limited metabolic capacity might lead to both direct toxic damage from 

maternal NAPQI and potential disruption in neurodevelopment function due to prostaglandin 

inhibition. 

While tests of interaction were not significant (likely due to lack of power), our stratified 

analyses identified multiple maternal and fetal factors that may enhance the association between 

maternal acetaminophen metabolites and ADHD diagnosis in offspring. There is biological 

plausibility for their influence on the association, which is worthwhile for future studies to 

investigate. For instance, we found that the effect size of acetaminophen use on the risk of 

ADHD diagnosis is more pronounced among women who drank alcohol 6 months before or 

during pregnancy. Effect modification by alcohol is supported by biological studies.51,52 A 

mechanistic study showed that ethanol could cause induction of cytochrome P450 2E1 and 

selective depletion of mitochondrial glutathione, which could lead to limited clearance capacity 

of the toxic NAPQI.52 Additionally, the stronger and more significant acetaminophen-ADHD 

association among male children indicates the need to investigate further the potential sex-

specific biological mechanism underlying the acetaminophen exposure.  

Our study also had some limitations. First, this study only included a one-time measurement of 

maternal acetaminophen metabolite levels within 1-3 days postpartum. The findings would be 
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strengthened if we could have included maternal acetaminophen metabolite measures taken at 

least once for each trimester. Given the fact that the rate of prenatal acetaminophen use during 

pregnancy is over 65% in the U.S.,27 the one-time measurement in our study at best reflects 

maternal acetaminophen use around the time of delivery. Second, although we adjusted for major 

known risk factors of ADHD, we could not adjust for multiple familial factors identified in 

previous studies such as maternal personality,53 poor parenting,2,3 maltreatment,4 conflict/parent-

child hostility,12 and severe early deprivation.13,14 We also cannot rule out the possibility of 

unmeasured or unknown residual confounding. Lastly, our study sample consists of the 

predominantly urban low-income minority population. This characteristic may limit the 

generalization of our results to all pregnant women living in the U.S. However, longitudinal 

research on this topic using biomarker data did not exist in the past. Our study findings help to 

fill in this critical data gap, with particular relevance to an urban low-income minority 

population, a population known at high risk of ADHD. 

6.9 CONCLUSION 

Maternal plasma biomarkers of acetaminophen use measured within a few days of delivery were 

associated with higher risk of ADHD diagnosis in offspring, but they were not associated with 

other developmental disorders. This association remained after adjusting for multiple previously 

identified potential confounders. While our study provides the first biomarker evidence of the 

relationship between prenatal acetaminophen use and ADHD diagnosis in offspring, we could 

not provide definitive support for a causal inference of this relationship, given the observational 

nature of this study and the limitations outlined above. However, by specifically addressing 

concerns raised by the Society for Maternal-Fetal Medicine and the Food and Drug 

Administration,37,38 our findings lent further support for the association between acetaminophen 
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and ADHD. Taking past findings together with the novel findings from this study, the potential 

adverse effect of maternal acetaminophen use on ADHD risk in offspring warrants additional 

investigations.         
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6.10 TABLES AND FIGURES 

Table 6-1 Maternal and child characteristics for children with ADHD diagnosis, ASD diagnosis (excluding ADHD), 

other developmental disorder diagnosis (other DD), and neurotypical children (NT). 

Variable Total, N (%) NT, N (%) ADHD, N (%) ASD, N (%) Other DD, N (%) P-valueǂ 

Total 1180(100) 604(51.19) 188(15.93) 44(3.73) 344(29.15)  

Maternal Age      0.101 

  <35 965 (81.78) 510(84.44) 151 (80.32) 34 (77.27) 270 (78.49)  

  ≥35 215 (18.22) 94(15.56) 37 (19.68) 10 (22.73) 74 (21.51)  

Maternal 

race/ethnicity 
     0.073 

  Black 809 (68.56) 425(70.36) 126 (67.02) 26 (59.09) 232 (67.44)  

  White 48 (4.07) 24(3.97) 11 (5.85) 2 (4.55) 11 (3.20)  

  Hispanic 256 (21.69) 112(18.54) 44 (23.40) 15 (34.09) 85 (24.71)  

  Others 67 (5.68) 43(7.12) 7 (3.72) 1 (2.27) 16 (4.65)  

Education level      0.208 

  Below college 

degree 
1033 (87.54) 520(86.09) 172 (91.49) 37 (84.09) 304 (88.37)  

  College degree 

or above 
147 (12.46) 84(13.91) 16 (8.51) 7 (15.91) 40 (11.63)  

Smoking before or during pregnancy    0.018 

  Never 977 (82.80) 520(86.09) 141 (75.00) 38 (86.36) 278 (80.81)  

  Quitter 90 (7.63) 38(6.29) 18 (9.57) 3 (6.82) 31 (9.01)  

  Continuous 113 (9.58) 46(7.62) 29 (15.43) 3 (6.82) 35 (10.17)  

Drinking before or during pregnancy    0.491 

  No 1086 (92.03) 560(92.72) 173 (92.02) 38 (86.36) 315 (91.57)  

  Yes 94 (7.97) 44(7.28) 15 (7.98) 6 (13.64) 29 (8.43)  

Parity      0.484 

  Nulliparous 527 (44.66) 281(46.52) 85 (45.21) 18 (40.91) 143 (41.57)  

  Multiparous 653 (55.34) 323(53.48) 103 (54.79) 26 (59.09) 201 (58.43)  

Child's sex      <0.001 

  Female 576 (48.81) 351(58.11) 49 (26.06) 14 (31.82) 162 (47.09)  

  Male 604 (51.19) 253(41.89) 139 (73.94) 30 (68.18) 182 (52.91)  

Delivery type      0.008 

  C-section 426 (36.10) 192(31.79) 75 (39.89) 22 (50.00) 137 (39.83)  

  Vaginal 754 (63.90) 412(68.21) 113 (60.11) 22 (50.00) 207 (60.17)  

Maternal fever      0.594 

  No 1108 (93.90) 570(94.37) 178 (94.68) 42 (95.45) 318 (92.44)  

  Yes 72 (6.10) 34(5.63) 10 (5.32) 2 (4.55) 26 (7.56)  

Intrauterine infection/inflammation    0.136 

  No 1023 (86.69) 537(88.91) 157 (83.51) 38 (86.36) 291 (84.59)  

  Yes 157 (13.31) 67(11.09) 31 (16.49) 6 (13.64) 53 (15.41)  

Maternal BMI      0.304 

  <18.50 41 (3.47) 20(3.31) 9 (4.79) 2 (4.55) 10 (2.91)  

  18.50-24.99 514 (43.56) 284(47.02) 72 (38.30) 15 (34.09) 143 (41.57)  
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  25-29.99 337 (28.56) 164(27.15) 58 (30.85) 11 (25.00) 104 (30.23)  

  >30 288 (24.41) 136(22.52) 49 (26.06) 16 (36.36) 87 (25.29)  

Breastfeeding      0.351 

  Bottle only 286 (24.24) 142(23.51) 55 (29.26) 9 (20.45) 80 (23.26)  

  Both or 

breastfed only 
894 (75.76) 462(76.49) 133 (70.74) 35 (79.55) 264 (76.74)  

Unchanged acetaminophen*     0.027 

  First tertile 411 (34.83) 227(37.58) 46 (24.47) 13 (29.55) 125 (36.34)  

  Second tertile 375 (31.78) 192(31.79) 66 (35.11) 12 (27.27) 105 (30.52)  

  Third tertile 394 (33.39) 185(30.63) 76 (40.43) 19 (43.18) 114 (33.14)  

3-(N-Acetyl-L-cystein-S-yl) acetaminophen*    0.013 

  No detection 441 (37.37) 248(41.06) 51 (27.13) 15 (34.09) 127 (36.92)  

  Below median 361 (30.59) 182(30.13) 62 (32.98) 10 (22.73) 107 (31.10)  

  Above median 378 (32.03) 174(28.81) 75 (39.89) 19 (43.18) 110 (31.98)  

Acetaminophen glucuronide*     0.018 

  No detection 531 (45.00) 299(49.50) 68 (36.17) 15 (34.09) 149 (43.31)  

  Below median 315 (26.69) 152(25.17) 52 (27.66) 15 (34.09) 96 (27.91)  

  Above median 334 (28.31) 153(25.33) 68 (36.17) 14 (31.82) 99 (28.78)  

Acetaminophen burden**     0.027 

  No detection 531 (45.00) 299(49.50) 68 (36.17) 15 (34.09) 149 (43.31)  

  Below median 315 (26.69) 151(25.00) 54 (28.72) 14 (31.82) 96 (27.91)  

  Above median 334 (28.31) 154(25.50) 66 (35.11) 15 (34.09) 99 (28.78)  

Gestational age, week     <0.001 

  Mean (SD) 37.9(3.3) 38.5(2.5) 37.3(3.6) 37.0(4.6) 37.2(4.0)  

Birthweight, g      <0.001 

  Mean (SD) 2966.2(789.9) 3085.5(669.7) 2865.0(819.4) 
2860.9(1026.2

) 
2825.5(898.0)  

Note: NT was defined as free of any developmental disorder diagnosis; ADHD was defined as any ADHD 

diagnosis; ASD was defined as any ASD diagnosis without having an ADHD diagnosis; other DD was defined as 

any developmental disorder diagnosis other than ASD and ADHD; ǂThe p-values were obtained from χ2 tests or one-

way ANOVA among the four diagnosis groups. 

* Inverse normal transformed intensity 

** Sum of all the acetaminophen metabolites   
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Table 6-2 The association between maternal acetaminophen metabolites and the risk of ADHD diagnosis, ASD 

diagnosis (excluding ADHD), and other DD diagnosis in offspring. 

Model 
ADHD, 188(15.9%) ASD, 44(3.7%) Other DD, 344(29.2%) 

Odds 

Ratio 
95% CI P-value 

Odds 

Ratio 
95% CI P-value 

Odds 

Ratio 
95% CI P-value 

Unchanged acetaminophen* 

Model 1   Second tertile 1.70 (1.11,2.59) 0.014 1.09 (0.49,2.45) 0.832 0.99 (0.72,1.37) 0.967 

   Third tertile 2.03 (1.34,3.07) 0.001 1.79 (0.86,3.73) 0.118 1.12 (0.81,1.54) 0.490 

Model 2   Second tertile 1.72 (1.10,2.70) 0.018 0.98 (0.43,2.27) 0.970 0.99 (0.71,1.40) 0.977 

   Third tertile 2.08 (1.29,3.35) 0.003 1.38 (0.60,3.18) 0.451 0.94 (0.65,1.35) 0.732 

Model 3   Second tertile 1.73 (1.10,2.72) 0.017 0.99 (0.43,2.30) 0.989 0.97 (0.69,1.37) 0.883 

   Third tertile 2.08 (1.29,3.35) 0.003 1.39 (0.60,3.20) 0.443 0.93 (0.65,1.35) 0.706 

Model 4   Second tertile 1.71 (1.09,2.68) 0.020 0.98 (0.42,2.27) 0.968 0.98 (0.70,1.39) 0.931 

   Third tertile 2.06 (1.28,3.33) 0.003 1.38 (0.60,3.18) 0.453 0.93 (0.65,1.35) 0.705 

Model 5   Second tertile 1.72 (1.10,2.70) 0.018 0.98 (0.42,2.26) 0.961 0.99 (0.70,1.39) 0.958 

   Third tertile 2.06 (1.28,3.32) 0.003 1.40 (0.61,3.23) 0.432 0.94 (0.65,1.36) 0.749 

Model 6   Second tertile 1.74 (1.10,2.73) 0.017 0.99 (0.43,2.29) 0.979 0.97 (0.69,1.37) 0.869 

   Third tertile 2.05 (1.27,3.32) 0.003 1.40 (0.60,3.24) 0.433 0.93 (0.65,1.35) 0.718 

3-(N-Acetyl-L-cystein-S-yl) acetaminophen* 

Model 1   Below median 1.66 (1.09,2.51) 0.018 0.91 (0.40,2.07) 0.819 1.15 (0.83,1.58) 0.399 

   Above median 2.10 (1.40,3.14) <0.001 1.81 (0.89,3.65) 0.100 1.23 (0.90,1.70) 0.198 

Model 2   Below median 1.68 (1.08,2.61) 0.021 0.73 (0.31,1.72) 0.474 1.08 (0.77,1.52) 0.644 

   Above median 2.06 (1.28,3.31) 0.003 1.21 (0.53,2.75) 0.653 0.96 (0.66,1.40) 0.835 

Model 3   Below median 1.70 (1.09,2.65) 0.020 0.74 (0.31,1.75) 0.494 1.05 (0.75,1.48) 0.763 

   Above median 2.06 (1.28,3.31) 0.003 1.22 (0.53,2.78) 0.640 0.95 (0.65,1.38) 0.789 

Model 4   Below median 1.66 (1.06,2.58) 0.025 0.73 (0.31,1.72) 0.468 1.06 (0.76,1.49) 0.716 

   Above median 2.04 (1.27,3.28) 0.003 1.20 (0.53,2.75) 0.661 0.95 (0.65,1.38) 0.785 

Model 5   Below median 1.67 (1.07,2.60) 0.024 0.74 (0.31,1.75) 0.497 1.09 (0.78,1.53) 0.619 

   Above median 2.04 (1.27,3.28) 0.003 1.23 (0.54,2.82) 0.621 0.97 (0.67,1.41) 0.868 

Model 6   Below median 1.68 (1.08,2.63) 0.022 0.75 (0.32,1.78) 0.513 1.06 (0.75,1.49) 0.734 

   Above median 2.03 (1.26,3.27) 0.004 1.23 (0.54,2.82) 0.626 0.96 (0.66,1.39) 0.811 

Acetaminophen glucuronide* 

Model 1   Below median 1.50 (1.00,2.27) 0.051 1.97 (0.94,4.13) 0.074 1.27 (0.92,1.75) 0.150 

   Above median 1.95 (1.33,2.88) 0.001 1.82 (0.86,3.88) 0.118 1.30 (0.94,1.79) 0.110 

Model 2   Below median 1.49 (0.96,2.31) 0.074 1.47 (0.68,3.19) 0.332 1.14 (0.81,1.60) 0.465 

   Above median 2.03 (1.28,3.22) 0.003 1.26 (0.53,2.99) 0.602 1.07 (0.73,1.55) 0.738 

Model 3   Below median 1.51 (0.97,2.34) 0.068 1.50 (0.69,3.29) 0.306 1.11 (0.78,1.56) 0.569 

   Above median 2.03 (1.28,3.23) 0.003 1.28 (0.54,3.04) 0.579 1.05 (0.72,1.53) 0.787 

Model 4   Below median 1.47 (0.95,2.29) 0.085 1.47 (0.67,3.21) 0.333 1.12 (0.80,1.58) 0.516 

   Above median 2.01 (1.26,3.18) 0.003 1.26 (0.53,3.00) 0.599 1.05 (0.73,1.53) 0.784 

Model 5   Below median 1.49 (0.96,2.31) 0.075 1.47 (0.68,3.20) 0.330 1.13 (0.81,1.59) 0.466 

   Above median 2.01 (1.27,3.19) 0.003 1.27 (0.54,3.02) 0.584 1.07 (0.74,1.55) 0.726 

Model 6   Below median 1.51 (0.97,2.35) 0.068 1.50 (0.69,3.28) 0.308 1.11 (0.78,1.56) 0.564 

   Above median 2.00 (1.26,3.18) 0.003 1.28 (0.54,3.05) 0.578 1.05 (0.73,1.53) 0.780 

Acetaminophen burden** 
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Model 1   Below median 1.57 (1.05,2.36) 0.029 1.85 (0.87,3.93) 0.110 1.28 (0.92,1.76) 0.139 

   Above median 1.88 (1.28,2.78) 0.001 1.94 (0.92,4.08) 0.080 1.29 (0.94,1.78) 0.119 

Model 2   Below median 1.56 (1.01,2.42) 0.045 1.39 (0.63,3.06) 0.410 1.14 (0.81,1.61) 0.439 

   Above median 1.91 (1.21,3.04) 0.006 1.36 (0.58,3.20) 0.477 1.05 (0.73,1.53) 0.779 

Model 3   Below median 1.58 (1.02,2.45) 0.041 1.43 (0.64,3.15) 0.381 1.11 (0.79,1.57) 0.543 

   Above median 1.92 (1.21,3.05) 0.006 1.38 (0.59,3.25) 0.457 1.04 (0.72,1.52) 0.824 

Model 4   Below median 1.54 (1.00,2.39) 0.052 1.39 (0.63,3.08) 0.411 1.13 (0.80,1.59) 0.488 

   Above median 1.89 (1.19,3.01) 0.007 1.37 (0.58,3.22) 0.475 1.04 (0.72,1.51) 0.826 

Model 5   Below median 1.56 (1.01,2.41) 0.045 1.39 (0.63,3.07) 0.409 1.14 (0.81,1.61) 0.442 

   Above median 1.90 (1.20,3.02) 0.007 1.38 (0.59,3.25) 0.459 1.06 (0.73,1.54) 0.763 

Model 6   Below median 1.58 (1.02,2.46) 0.040 1.43 (0.64,3.15) 0.382 1.11 (0.79,1.57) 0.539 

    Above median 1.88 (1.18,3.00) 0.008 1.39 (0.59,3.27) 0.456 1.05 (0.72,1.52) 0.815 

Note: NT was defined as free of any developmental disorder diagnosis; ADHD was defined as any ADHD 

diagnosis; ASD was defined as any ASD diagnosis without having an ADHD diagnosis; other DD was defined as 

any developmental disorder diagnosis other than ASD and ADHD;  

Model 1: Multinomial logistic regression without adjustment;  

Model 2: Model 1 further adjusted for maternal age at delivery, maternal race/ethnicity, maternal education, 

smoking before or during pregnancy, drinking before or during pregnancy, maternal BMI, parity, child's sex, 

delivery type, preterm birth, and birthweight;  

Model 3: Model 2 further adjusted for maternal fever during pregnancy;  

Model 4: Model 2 further adjusted for maternal intrauterine infection/inflammation during pregnancy;  

Model 5: Model 2 further adjusted for breastfeeding;  

Model 6: Model 2 further adjusted for maternal fever, maternal intrauterine infection/inflammation during 

pregnancy, and breastfeeding.  

* Inverse normal transformed intensity ** Sum of all the acetaminophen metabolites. 

Unchanged acetaminophen: first tertile as reference; For other exposures: no detection as reference
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Figure 6-1 Pathways of acetaminophen metabolism. 

Note: Bolded metabolites were measured in this study.   
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Figure 6-2 Comparison of the distributions of acetaminophen metabolites and acetaminophen burden by specific 

diagnosis groups. 
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Figure 6-3 The forest plot for the crude association between maternal binary acetaminophen burden (detected vs. no 

detection) and the risk of ADHD diagnosis in offspring across each stratum of pertinent covariables. 
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6.11 SUPPLEMENTARY MATERIALS 

Supplemental Table 1. List of ICD-9 and ICD-10 codes for the diagnosis of each developmental disorder. 

Developmental disorder ICD-9 codes ICD-10 codes 

ASD 299.0, 299.00, 299.01, 299.8, 

299.80, 299.81, 299.9, 299.90, 

299.91 

F84.0, F84.8, F84.9 

ADHD 314.0, 314.00, 314.01, 314.1, 

314.2, 314.8, 314.9 

F90, F90.0, F90.1, F90.2, 

F90.8, F90.9 

Disturbance of conduct 312.0-312.9 F91, F91.0, F91.2, F91.3, 

F91.8, F91.9 

Delays in development 315.0-315.9 F81.0, R48.0, F81.81, F81.2, 

F81.89, F80.1, F80.2, H93.25, 

F80.4, F80.81, F80.0, F80.82, 

F80.89, F82, F88, F81.9, F89 

Intellectual disabilities 317-317 F70, F71, F72, F73, F78, F79 

Failure to thrive 783.4, 783.40, 783.41, 783.42, 

783.43 

R62.50, R62.51, R62.0, 

R62.52 

Congenital anomalies 740-759.9 Q00-Q99 
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Supplemental Table 2. Maternal and child characteristics for participants excluded and included in the 

analysis.  

Variable Total, N (%) Excluded, N (%) Included, N (%) P-valueǂ 

Total 3098 (100) 1918 (61.91) 1180 (38.09)  

Maternal Age    0.796 

  <35 2534 (81.79) 1569 (81.80) 965 (81.78)  

  ≥35 556 (17.95) 341 (17.78) 215 (18.22)  

Education level    0.109 

  Below college degree 2642 (85.28) 1609 (83.89) 1033 (87.54)  

  College degree or above 420 (13.56) 273 (14.23) 147 (12.46)  

Maternal race/ethnicity    <0.001 

  Black 1965 (63.43) 1156 (60.27) 809 (68.56)  

  White 227 (7.33) 179 (9.33) 48 (4.07)  

  Hispanic 682 (22.01) 426 (22.21) 256 (21.69)  

  Other 209 (6.75) 142 (7.40) 67 (5.68)  

Smoking before or during pregnancy   0.222 

  Never 2496 (80.57) 1519 (79.20) 977 (82.80)  

  Quitter 238 (7.68) 148 (7.72) 90 (7.63)  

  Continuous 330 (10.65) 217 (11.31) 113 (9.58)  

Drinking before or during pregnancy    0.627 

  No 2740 (88.44) 1654 (86.24) 1086 (92.03)  

  Yes 247 (7.97) 153 (7.98) 94 (7.97)  

Child's sex    0.617 

  Female 1529 (49.35) 953 (49.69) 576 (48.81)  

  Male 1567 (50.58) 963 (50.21) 604 (51.19)  

Delivery type    0.930 

  C-section 1116 (36.02) 690 (35.97) 426 (36.10)  

  Vaginal 1967 (63.49) 1213 (63.24) 754 (63.90)  

Gestational age, week    0.003 

  Mean (SD) 37.6(3.5) 37.5(3.6) 37.9(3.3)  

Birthweight, g    <0.001 

  Mean (SD) 2898.3(819.7) 2856.5(834.9) 2966.2(789.9)  

Note: ǂThe p-values were obtained from χ2 tests or t-tests between children included in and excluded from the main 

analysis. 
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Supplemental Table 3. The association between maternal acetaminophen metabolites and the risk of 

ADHD diagnosis only, ASD diagnosis only, and diagnoses of both ADHD and ASD in offspring. 

Model 

ADHD only, N=166 ASD only, N=44 ADHD and ASD, N=22 

Odds 

Ratio 
95% CI P-value 

Odds 

Ratio 
95% CI P-value 

Odds 

Ratio 
95% CI P-value 

Unchanged acetaminophen* 

Model 1 Second tertile 1.92 (1.22,3.01) 0.005 1.09 (0.49,2.45) 0.832 0.79 (0.28,2.25) 0.657 

 Third tertile 2.29 (1.47,3.57) <0.001 1.79 (0.86,3.73) 0.118 0.95 (0.35,2.61) 0.928 

Model 2 Second tertile 1.96 (1.20,3.20) 0.007 0.96 (0.41,2.25) 0.932 0.85 (0.28,2.64) 0.785 

 Third tertile 2.32 (1.38,3.89) 0.001 1.32 (0.57,3.07) 0.523 0.92 (0.27,3.20) 0.901 

Model 3 Second tertile 1.96 (1.20,3.20) 0.007 0.97 (0.41,2.28) 0.947 0.91 (0.29,2.83) 0.868 

 Third tertile 2.32 (1.38,3.89) 0.001 1.32 (0.57,3.08) 0.516 0.92 (0.26,3.21) 0.891 

Model 4 Second tertile 1.95 (1.19,3.18) 0.008 0.96 (0.41,2.25) 0.926 0.85 (0.27,2.63) 0.778 

 Third tertile 2.30 (1.37,3.86) 0.002 1.31 (0.56,3.05) 0.534 0.91 (0.26,3.14) 0.884 

Model 5 Second tertile 1.97 (1.21,3.22) 0.007 0.96 (0.41,2.24) 0.920 0.85 (0.28,2.64) 0.783 

 Third tertile 2.29 (1.37,3.85) 0.002 1.33 (0.57,3.10) 0.509 0.93 (0.27,3.24) 0.912 

Model 6 Second tertile 2.01 (1.22,3.29) 0.006 0.98 (0.42,2.29) 0.958 0.91 (0.29,2.85) 0.872 

 Third tertile 2.28 (1.36,3.84) 0.002 1.33 (0.57,3.10) 0.516 0.92 (0.26,3.22) 0.892 

3-(N-Acetyl-L-cystein-S-yl) acetaminophen* 

Model 1 Below median 1.82 (1.17,2.83) 0.008 0.91 (0.40,2.07) 0.819 0.91 (0.32,2.60) 0.858 

 Above median 2.31 (1.50,3.55) <0.001 1.81 (0.89,3.65) 0.100 1.11 (0.41,3.03) 0.841 

Model 2 Below median 1.90 (1.18,3.05) 0.008 0.77 (0.33,1.82) 0.557 0.98 (0.32,2.99) 0.974 

 Above median 2.28 (1.37,3.80) 0.002 1.19 (0.52,2.73) 0.688 0.90 (0.26,3.13) 0.868 

Model 3 Below median 1.91 (1.18,3.08) 0.008 0.78 (0.33,1.86) 0.576 1.12 (0.37,3.43) 0.843 

 Above median 2.28 (1.37,3.81) 0.002 1.19 (0.52,2.75) 0.680 0.91 (0.26,3.18) 0.888 

Model 4 Below median 1.87 (1.16,3.01) 0.010 0.76 (0.32,1.80) 0.537 1.00 (0.33,3.07) 0.996 

 Above median 2.25 (1.34,3.76) 0.002 1.17 (0.51,2.70) 0.717 0.89 (0.26,3.08) 0.860 

Model 5 Below median 1.88 (1.17,3.03) 0.009 0.78 (0.33,1.85) 0.576 1.00 (0.33,3.05) 0.994 

 Above median 2.25 (1.35,3.75) 0.002 1.21 (0.52,2.78) 0.660 0.91 (0.26,3.18) 0.882 

Model 6 Below median 1.93 (1.19,3.11) 0.008 0.80 (0.33,1.89) 0.604 1.15 (0.37,3.53) 0.812 

 Above median 2.24 (1.34,3.76) 0.002 1.20 (0.52,2.78) 0.676 0.91 (0.26,3.20) 0.889 

Acetaminophen glucuronide* 

Model 1 Below median 1.69 (1.09,2.60) 0.018 1.97 (0.94,4.13) 0.074 0.66 (0.21,2.07) 0.471 

 Above median 2.16 (1.44,3.26) <0.001 1.82 (0.86,3.88) 0.118 0.98 (0.36,2.65) 0.964 

Model 2 Below median 1.67 (1.04,2.68) 0.033 1.39 (0.63,3.07) 0.411 0.51 (0.15,1.79) 0.293 

 Above median 2.30 (1.40,3.78) 0.001 1.20 (0.50,2.88) 0.680 0.88 (0.24,3.20) 0.845 

Model 3 Below median 1.67 (1.04,2.69) 0.034 1.42 (0.64,3.15) 0.390 0.56 (0.16,2.00) 0.373 

 Above median 2.30 (1.40,3.78) 0.001 1.22 (0.51,2.92) 0.663 0.88 (0.24,3.22) 0.851 

Model 4 Below median 1.66 (1.04,2.66) 0.035 1.38 (0.63,3.05) 0.422 0.51 (0.14,1.79) 0.293 

 Above median 2.26 (1.37,3.72) 0.001 1.19 (0.49,2.86) 0.702 0.88 (0.24,3.17) 0.845 

Model 5 Below median 1.68 (1.05,2.69) 0.032 1.39 (0.63,3.06) 0.418 0.51 (0.15,1.78) 0.290 

 Above median 2.28 (1.38,3.75) 0.001 1.21 (0.50,2.91) 0.668 0.89 (0.24,3.25) 0.858 

Model 6 Below median 1.74 (1.08,2.81) 0.023 1.44 (0.65,3.20) 0.373 0.56 (0.16,2.02) 0.378 

 Above median 2.26 (1.37,3.73) 0.001 1.21 (0.50,2.92) 0.675 0.88 (0.24,3.24) 0.852 

Acetaminophen burden** 



 

160 

 

Model 1 Below median 1.77 (1.15,2.71) 0.009 1.85 (0.87,3.93) 0.110 0.66 (0.21,2.08) 0.478 

 Above median 2.08 (1.38,3.14) 0.001 1.94 (0.92,4.08) 0.080 0.97 (0.36,2.64) 0.954 

Model 2 Below median 1.76 (1.10,2.80) 0.018 1.32 (0.59,2.95) 0.495 0.52 (0.15,1.81) 0.303 

 Above median 2.16 (1.31,3.55) 0.003 1.30 (0.55,3.08) 0.553 0.86 (0.24,3.12) 0.819 

Model 3 Below median 1.76 (1.10,2.82) 0.019 1.35 (0.60,3.02) 0.471 0.57 (0.16,2.03) 0.387 

 Above median 2.16 (1.31,3.55) 0.003 1.31 (0.55,3.12) 0.539 0.86 (0.24,3.14) 0.822 

Model 4 Below median 1.74 (1.09,2.79) 0.020 1.31 (0.59,2.93) 0.506 0.52 (0.15,1.82) 0.303 

 Above median 2.12 (1.28,3.50) 0.003 1.28 (0.54,3.06) 0.572 0.86 (0.24,3.09) 0.819 

Model 5 Below median 1.77 (1.11,2.82) 0.017 1.31 (0.59,2.93) 0.505 0.52 (0.15,1.80) 0.299 

 Above median 2.13 (1.29,3.52) 0.003 1.31 (0.55,3.12) 0.539 0.87 (0.24,3.17) 0.832 

Model 6 Below median 1.84 (1.14,2.96) 0.012 1.37 (0.61,3.07) 0.452 0.57 (0.16,2.05) 0.392 

 Above median 2.11 (1.27,3.49) 0.004 1.30 (0.55,3.12) 0.550 0.86 (0.24,3.15) 0.823 

Note: NT was defined as free of any developmental disorder diagnosis; ADHD only was defined as any ADHD 

diagnosis without having an ASD diagnosis; ASD only was defined as any ASD diagnosis without having an 

ADHD diagnosis; ADHD and ASD was defined as having both ADHD and ASD diagnosis;  

Model 1: Multinomial logistic regression without adjustment;  

Model 2: Model 1 further adjusted for maternal age at delivery, maternal race/ethnicity, maternal education, 

smoking before or during pregnancy, drinking before or during pregnancy, maternal BMI, parity, child's sex, 

delivery type, preterm birth, and birthweight;  

Model 3: Model 2 further adjusted for maternal fever during pregnancy;  

Model 4: Model 2 further adjusted for maternal intrauterine infection/inflammation during pregnancy;  

Model 5: Model 2 further adjusted for breastfeeding;  

Model 6: Model 2 further adjusted for maternal fever, maternal intrauterine infection/inflammation during 

pregnancy, and breastfeeding.  

* Inverse normal transformed intensity ** Sum of all the acetaminophen metabolites. 

Unchanged acetaminophen: first tertile as reference; For other exposures: no detection as reference  
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Supplemental Table 4. The stratified analysis results on the association between maternal 

acetaminophen burden and the risk of ADHD in offspring by maternal HDL groups 
  ADHD otherDD 

Variable  OR 95% CI P-value OR 95% CI P-value 

Maternal HDL ≥60 mg/dL 1.57 (1.12,2.22) 0.010 1.17 (0.90,1.52) 0.231 
 <60 mg/dL 1.10 (0.82,1.48) 0.532 0.85 (-0.67,1.07) 0.170 

Interaction    0.074   0.111 
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Supplemental Figure 1. Flowchart of the sample included in the analysis. 
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Chapter 7 CONCLUSIONS 
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7.1 OVERVIEW 

This chapter begins with a summary of my key findings, followed by a discussion of the 

strengths and limitations of the research approach, then a summary of the research, policy, and , 

clinical and public health implications of this work, and ends with the conclusions reached based 

on the research findings.  

7.2 KEY FINDINGS 

7.2.1 Aim 1: Prospective association between maternal cholesterol levels and ADHD in 

the offspring 

The multiple logistic regression results showed that a low maternal high-density lipoprotein level 

(HDL) (≤60 mg/dL) was associated with an increased risk of ADHD, compared to a higher 

maternal HDL level, after adjusting for pertinent covariables. A “J” shaped relationship was 

observed between triglycerides (TG) and ADHD risk. The associations with ADHD for maternal 

HDL and TG were more pronounced among boys. 

7.2.2 Aim 2: Prospective association between early childhood lead levels and ADHD in the 

offspring 

Nearly one-tenth of BBC children had elevated lead levels (5-10µg/dL) in early childhood, 

which was associated with a 66% increased risk of ADHD. Among boys, the association was 

significantly stronger (p-value for sex-lead interaction: 0.017). The odds ratio of ADHD 

associated with elevated lead levels among boys was reduced by about half if mothers had 

adequate HDL levels compared to low HDL, or if mothers had low stress compared to high 

stress during pregnancy. 
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7.2.3 Aim 3: Prospective association between maternal blood acetaminophen metabolites 

levels and ADHD in the offspring 

Compared to neurotypical children, significant positive associations with ADHD diagnosis were 

identified for each maternal acetaminophen biomarker: unchanged acetaminophen (Third tertile 

vs. First tertile): OR=2.05, 95% CI: 1.27-3.32; 3-(N-Acetyl-L-cystein-S-yl) acetaminophen 

(Above median vs. No detection): OR=2.03, 95% CI: 1.26-3.27; and acetaminophen glucuronide 

(Above median vs. No detection): OR=2.00, 95% CI: 1.26-3.18. The dose-response associations 

persisted after adjusting for pertinent covariables; these associations were specific to ADHD 

rather than other neurodevelopmental disorders.  

7.3 STRENGTHS AND LIMITATIONS 

7.3.1 Strengths 

Study design: This study used a prospective longitudinal birth cohort established in the U.S. to 

investigate the development of ADHD. The birth cohort design makes it feasible to investigate 

early life factors on ADHD during the critical neurodevelopmental window. Moreover, the 

temporal nature between the exposure and outcome measurements help us to understand better 

the temporal and causal pathways underlying the development of ADHD. Additionally, the large 

sample size of male and female ADHD cases in this study made it possible to investigate sex 

interactions with the risk factors of interest. 

ADHD diagnosis: This study used physician diagnosis extracted from the EMR to define 

ADHD cases. More than half of the children with ADHD had over three ADHD diagnoses in 

their EMRs. Additionally, over 80% of ADHD cases in the BBC were diagnosed by a 
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neurobehavioral specialist, thus, with much higher specificity and lesser probability of case 

misclassification.  

High-risk population: The BBC’s study population is mainly comprised of a low-income, 

urban, minority population from the Boson area. The mothers from this population have much 

higher rates of obesity1 and lead exposure2 than the national average. As such, higher rates for 

these adverse conditions provided greater power to investigate their potential effects on ADHD 

in offspring. 

Cholesterol biomarkers: This is the first study to investigate the inter-generational effect of 

maternal lipid profiles on the risk of ADHD in offspring. Moreover, this is the first study to 

illustrate the potential protective effects of maternal cholesterols against lead toxicity. 

Early lead measurement: Most previous studies examined the consequences of postnatal lead 

exposure either at the time of ADHD diagnosis (cross-sectional) or after the diagnosis 

(retrospective), with a mean age of measurement ranged from age 7-14 years.3 This is the first 

large longitudinal study to investigate ADHD with lead levels measured before the age of 2 

years. 

Sex-specific effects: This is the first study to show that boys are more vulnerable than girls to 

suboptimal maternal cholesterol levels and early childhood lead exposure in terms of ADHD 

development. 

Acetaminophen metabolites: This is the first prospective birth cohort study to examine the 

association between maternal plasma biomarkers of acetaminophen and offspring ADHD 

diagnosis, and to take into account a large number of potential confounders including indications 
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of acetaminophen use such as maternal fever and intrauterine infection/inflammation during 

pregnancy. 

7.3.2 Limitations 

Transition from DSM-IV to DSM-V and from ICD-9 to ICD-10: this study occurred during 

the transition of the American Psychiatric Association’s Diagnostic and Statistical Manual 

(DSM) from the 4th to the 5th edition. The transition to DSM-5 and ICD-10 raises concerns 

about the consistency of the diagnoses over time.  Fortunately, this transition did not affect the 

ADHD determination in children, since the main changes from DSM-IV-TR to DSM-5 were 

more relevant to the adult diagnostic criteria. 4 

Generalizability of the study findings: The study population mainly consisted of urban, low-

income, minority women who live in the Boston area. This population has been shown to have 

much higher levels of exposure to common ADHD risk factors and other risk factors of interest 

compared to the general U.S. population. Since this sample is not representative of the US 

general population, caution is needed to generalize the findings beyond US urban low-income 

setting. 

Unmeasured confounders: Although adjustments for major known risk factors were made 

during the analyses, there may still have been unmeasured or unknown factors that may have 

influenced levels of exposure and/or outcomes. My analyses adjusted for known risk factors of 

ADHD, but could not adjust for multiple familial factors identified in previous studies such as 

maternal personality,5 poor parenting,6,7 maltreatment,8 conflict/parent-child hostility,9 and 

severe early deprivation.10,11  Moreover, the adjustment for known risk factors did not include 

some post-natal factors that could be related to both maternal cholesterol levels and ADHD risk, 

such as the child’s cholesterol levels. 
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One-time measurement of biomarkers of interest: This study only had a one-time 

measurement of maternal cholesterol and acetaminophen metabolite levels within 1-3 days 

postpartum. In the ideal situation, maternal cholesterol and acetaminophen metabolites would be 

collected at least once for each trimester. However, this was not feasible for my study sample. 

The one-time measurement for these exposures can at best reflect these two exposures around the 

time of delivery. 

Non-fasting blood samples: This study used non-fasting blood samples. The values for total 

cholesterol and TG levels may have been inflated in non-fasting blood samples and thus may 

have biased my study results towards the null. Further studies using fasting blood samples should 

be conducted to provide a more precise assessment of optimal TG levels during pregnancy. 

7.4 STUDY IMPLICATIONS 

This research provides new insights into the effects of maternal cholesterol levels, early 

childhood lead and maternal acetaminophen use on the risk of ADHD diagnosis in the offspring. 

Additionally, these investigations have for the first time identified sex-specific effects of 

maternal cholesterol and early childhood lead exposure on ADHD. As detailed below, these 

findings, if further confirmed, would have tremendous implications for research, policy, and 

clinical intervention. 

7.4.1 Research implications 

7.4.1.1 Understanding of ADHD etiology 

This dissertation research has provided multiple new insights into the role of early life factors in 

the development of ADHD.  
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Aim 1 was the first study designed to explore the prospective relationship between 

maternal cholesterols and childhood ADHD. The findings provided several lines of support for 

casual evidence, such as a strong dose-responsive HDL-ADHD association, temporal 

relationship between maternal HDL and offspring ADHD, and sex-specific responses to maternal 

HDL levels.  

Aim 2 was the first birth cohort study in a US urban low-income minority population to 

examine the lead-ADHD relationship. The findings provided several supports for casual 

evidence, including a temporal relationship, sex difference, and biological plausibility.  

Aim 3 was the first study to investigate prospective relationship between maternal 

acetaminophen biomarkers and offspring ADHD risk.  The findings provided several supports 

for casual evidence, including temporal and dose-response associations. Moreover, these 

associations are ADHD-specific.  

However, given that this is an observational study, the findings be regarded as hypothesis 

generating, rather than conclusive. To establish a causal relationship between risk factors and 

ADHD, it requires multiple levels of evidence, including a strong association, consistency across 

different situations, specificity between exposure and outcome, as well as a temporal 

relationship, a dose-responsive relationship, biological plausibility and coherence, outcome 

changes after exposure manipulation, and analogy to other comparable situation with better 

understanding of risk factors. 12  As such, the study findings warrant additional investigation.   

7.4.1.2 Need of Repeated Cholesterol and Acetaminophen measurements 

The study findings suggest that maternal HDL and acetaminophen levels may influence ADHD 

development in offspring. However, due to the use of one-time plasma measurements taken 
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within 1-3 days postpartum, these biomarkers at best reflect the exposure during the perinatal 

period. Under ideal conditions, maternal blood samples be collected at least once for each 

trimester, and this should be considered in future studies. Using such detailed data on lipid 

profiles and medication use specific to each trimester, future studies could identify critical period 

when fetal development is most vulnerable to suboptimal HDL and acetaminophen exposure. 

Moreover, with the help of OMICs technology, the multipoint measurements across pregnancy 

might ultimately help to unravel the biological pathways of ADHD development.   

7.4.1.3 Study population 

As mentioned above, the study population had much higher levels of exposure to common 

ADHD risk factors and other risk factors of interest compared to the general U.S. population. 

Future research could attain more generalizable findings by studying a nationally representative 

population. 

7.4.1.4 New insights in sex difference in ADHD risk 

The long-observed and striking sex difference in ADHD risk remains poorly understood. The 

study findings included here reveal that boys and girls respond differently to prenatal and 

postnatal factors. In Aim 1 and Aim 2, I found that the effects of maternal HDL, maternal TG, 

and early childhood lead levels on ADHD were most pronounced among boys. Sex differences 

in response to prenatal suboptimal nutritional status are also found in other chronic diseases such 

as hypertension. Both human and animal studies have shown that the male fetus is more likely to 

develop hypertension in response to the mother’s unfavorable nutrition and metabolic status 

during pregnancy.13-17 These sex differences have been explained by hypotheses that male 

fetuses are more vulnerable to suboptimal maternal nutrition due to their more rapid in-utero 

growth than females.13-17 While only a few biological theories have been identified for prenatal 
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sex differences, studies on postnatal sex-specific responses are extremely rare. In the future, new 

studies on early life risk factors should focus more on the sex-risk interactions, by including 

enough female ADHD cases to make those analyses feasible.   

In summary, based on the collective findings generated from this dissertation, I have the 

following research recommendations: 

• Additional studies should be pursued to provide evidence of consistency across different 

populations with different socio-demographic characteristics. 

• Additional studies should be conducted among a nationally representative population. 

• Maternal plasma should be collected at least once for each trimester. 

• Future studies should also consider potential interaction between sex and early life risk 

factors. 

7.4.2 Policy implications 

7.4.2.1 labeling change for acetaminophen and searching for alternatives 

Although multiple previous large cohort studies have provided consistent self-reported evidence 

for potential acetaminophen neurotoxicity during pregnancy,18-22 the Society for Maternal-Fetal 

Medicine (SMFM) and the Food and Drug Administration (FDA) have issued statements 

regarding their belief that current studies are still too inconclusive to draw any causal inference 

between prenatal acetaminophen use and ADHD in offspring. 23,24 Their primary criticism 

included self-reported exposure, lack of dose quantification, unmeasured confounders, and lack 

of adjustment for multiple testing. 23 In fact, the findings detailed in this dissertation provide 

dose-responsive evidence in support of acetaminophen’s neurotoxicity, even after adjusting for 

several previously identified potential confounders. My research findings lent further support to 

the concern that prenatal acetaminophen use may increase the risk of ADHD in offspring. The 

impulse to reject the possible causality must be supported by stronger evidence than opinion.25 

As a widely used over-the-counter medication among pediatric and pregnant populations, current 
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labels for acetaminophen state that they are “safe, gentle, and effective”. 26 Given the fact that no 

other ‘safer’ medications are available for use during pregnancy, two steps are needed for 

government to minimize the impact of the potential neurotoxicity of acetaminophen. First, the 

FDA should request that pharmaceutical manufacturers add information to the labels of 

acetaminophen-containing medications, which should state that acetaminophen is not 

recommended for the pregnant women if their symptom or discomfort has no strong indication or 

presents little risk. 25 Taking it under unnecessary condition could harm the neurodevelopment of 

the fetus. 25 Second, the FDA should create fast approval incentives to inspire the search for safer 

alternative treatments. 

7.4.2.2 Correcting dyslipidemia as a potential intervention target  

ADHD is one of the most common and costly neurodevelopmental disorders in the U.S. Nearly 

one-tenth of children ages 4-17 are diagnosed with ADHD in the U.S, and most of their 

symptoms will be carried into adolescence and adulthood. This high prevalence and these 

persistent symptoms across the lifespan can have a severe impact on both the individuals 

themselves and on society. The most recent estimation of the annual cost of ADHD to society, 

including costs related to health care utilization, medication utilization, education, crime, and 

unemployment, is $14,500 per individual ($42.5 billion in total). 27 Currently, the most common 

clinical practice is still symptom control using behavioral or pharmaceutical interventions. At 

such a high prevalence, clearly this type of symptom control practice has and will likely continue 

to lead to a huge financial burden to society. To reverse the rising trend of ADHD and associted 

rising costs to manage ADHD, the government should allocate more resources to the primary 

prevention of ADHD. For instance, the study findings included herein show that maternal 

dyslipidemia might increase the risk of ADHD in offspring. Considering that the global obesity 
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and diabetes epidemics are growing, the percentage of pregnant women with dyslipidemia during 

pregnancy is also likely to increase. If the government invests more resources in pre- and 

perinatal dyslipidemia control programs, the incidence of ADHD and related financial burden are 

likely to decrease. For instance, the government can optimize the Women, Infants, and Children 

(WIC) program’s food voucher selections to make it more beneficial for maintaining healthy 

cholesterol levels. Moreover, given the essential role of cholesterol in brain development, this 

change might also reduce other neurodevelopment risks.  

In summary, based on the collective findings generated from the studies presented in this 

dissertation, I have the following policy recommendations: 

• The FDA should discourage the use of acetaminophen for minor symptoms and 

discomforts during pregnancy and peripartum, by requesting additional warning to be 

added to the labels of acetaminophen-containing medications. 

• The FDA should create fast approval incentives to accelerate the search for safer 

alternative treatments. 

• If further confirmed by future studies, the government should invest more resources in 

pre- and perinatal dyslipidemia control programs as a primary prevention strategy to 

reduce the incidence of ADHD. 

7.4.3 Clinical and Public Health Implications 

7.4.3.1 Limiting acetaminophen use in obstetrics and gynecology practice 

Acetaminophen is a widely used and recommended over-the-counter medication for fever and 

pain relief during pregnancy. The percentage of pregnant women who use acetaminophen during 

pregnancy is over 65% in the U.S. and over 50% in Europe.28,29 The primary concern is related to 

the fact that the inhibition of prostaglandin synthesis is part of the therapeutic effect of 

acetaminophen. 30 Biological evidence suggests that prostaglandins not only act as a fever 

determinant but also play essential roles in brain function, including long-term potentiation,31 

learning,32 and cerebellar development.30 Hence, given its widespread usage and influence in 
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neuronal function, it is too risky to ignore any potential unknown side effects.25 As a result, 

based on the findings presented here I strongly urge clinicians to provide advice to pregnant 

women about using this drug carefully, avoiding overdose and high-frequency use as well as 

unnecessary use for minor conditions. 

7.4.3.2 An emphasis of primary prevention of ADHD 

The hope is that the findings presented here may help to transform clinical practice from 

secondary- and tertiary-prevention into primary prevention of ADHD. Currently, major clinical 

practice is still focused on symptom control using behavioral or pharmaceutical interventions. 

Clearly, as ADHD prevalence continues to increase, this practice will not be sustainable due to a 

growing financial burden on individuals, families and society. Moreover, the ADHD medications 

in use today not only cannot cure the disease but also have multiple side effects. Shifting to 

primary prevention of ADHD by reducing the major modifiable risk factors and optimizing 

maternal nutritional profiles as early as the prenatal period would largely reduce the onset of 

ADHD in the future. For instance, the findings for Aim 1 of the research strategy indicate that 

maternal dyslipidemia is an important risk factor for ADHD diagnosis in offspring. Dyslipidemia 

is modifiable by dietary and lifestyle changes and is treatable with pharmaceuticals. Thus, adding 

lipid screening to the prenatal care guidelines would offer a relatively inexpensive way to move 

toward the primary prevention of ADHD.   

7.4.3.3 Guideline changes for cholesterol levels during pregnancy 

The findings for Aim 1 underscore the need to refine the cholesterol level cut-off points for 

pregnant women in consideration of the potential adverse impact on fetal and child 

neurodevelopment. For instance, my data suggest that pregnant women should maintain a 

relatively higher level of HDL to meet the need for rapid fetal brain development during 
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pregnancy and to reduce ADHD risk; this is particularly important for the male fetus. My data 

indicate that the current clinical cut point for HDL (>50 mg/dL) for nonpregnant women, as 

recommended by the American Heart Association for reducing the risk of heart disease 33,34 may 

not be adequate for pregnant women for protecting against ADHD in offspring; thus, a higher 

cut-off point (>60 mg/dL) may be needed for identifying the fetus at risk for future ADHD. 

In summary, based on the collective findings generated from the studies presented in this 

dissertation, I have the following clinical recommendations: 

• Clinicians should provide advice to pregnant women about how to use drugs containing 

acetaminophen carefully. 

• Clinical practice should shift from secondary- and tertiary-prevention to the primary 

prevention of ADHD by controlling major modifiable risk factors. 

• Pregnancy-specific guidelines for optimal cholesterol levels should be developed. 

7.5 CONCLUSIONS 

ADHD is one of the most common neurodevelopmental disorders that imposes an enormous cost 

on individual, family, and society in the U.S. Unfortunately, the current understanding of this 

highly prevalent and costly disorder is insufficient. The exact cause of ADHD is still unknown, 

not to mention the biological mechanisms behind the sex difference in ADHD risk. My thesis 

research revealed that maternal cholesterol levels,35 early childhood lead exposure,36-38 and 

maternal plasma acetaminophen metabolite levels18-22,39 are each highly possible to influence the 

risk of ADHD in offspring, using the data of mother-infant pairs already enrolled and followed in 

the Boston Birth Cohort (BBC). 

First, I evaluated the prospective association of maternal cholesterol levels measured within a 

few days of delivery with the risk of ADHD diagnosis among 1479 mother-infant pairs from the 
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BBC. I  showed that suboptimal maternal cholesterol levels might increase the risk of ADHD in 

offspring and that the male fetus appeared to be particularly vulnerable to suboptimal levels. 

Second, I investigated the prospective associations between early childhood lead exposure and 

ADHD diagnosis and its potential effect modifiers among 1479 BBC mother-infant pairs. 

Elevated early childhood blood lead levels increased the risk of ADHD, and boys were more 

vulnerable than girls at a given lead level. This risk of ADHD was reduced by half if the mother 

had adequate high-density lipoprotein (HDL) levels or low stress during pregnancy. 

Third, I examined the prospective association between maternal plasma biomarkers of 

acetaminophen intake measured within a few days of delivery and ADHD diagnosis in the 

offspring among 1180 BBC mother-infant pairs. Maternal acetaminophen use was specifically 

associated with a higher risk of ADHD diagnosis in offspring, not with other developmental 

disorders.  

In conclusion, maternal low HDL levels, early childhood lead exposure, and perinatal 

acetaminophen use were associated with a higher risk of ADHD. The male fetus was more 

sensitive to both low levels of HDL and lead exposure. Maternal adequate HDL levels and low-

stress levels could reduce the adverse effect of lead on the risk of ADHD. Given the 

observational nature of these studies, the findings are regarded as hypothesis generating rather 

than definitive support for causal inference. As such, these novel findings warrant additional 

investigations. 
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