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Abstract 
The molecular mechanisms that drive bacterial cytokinesis are attractive antibiotic targets that 

remain poorly understood. The machinery that performs cytokinesis in bacteria has been 

termed the 'divisome' (see Chapter 1 for description). The most widely-conserved divisome 

protein, FtsZ, is an essential tubulin homolog that polymerizes into protofilaments in a 

nucleotide-dependent manner. These protofilaments assemble at midcell to form the ‘Z-ring’, 

which has been the prevailing candidate for constrictive force generation during cell division. 

However, it has been difficult to experimentally test proposed Z-ring force generation models in 

vivo due to the small size of bacteria (< 1 μm diameter for E. coli) compared to the diffraction-

limited resolution of light (~ 0.3 μm). 

In this work, quantitative superresolution and time-lapse microscopy were applied to examine 

whether Z-ring structure and function indeed play limiting roles in driving E. coli cell constriction 

(Chapter 2). Surprisingly, these studies revealed that the rate of septum closure during 

constriction is robust to substantial changes in many Z-ring properties, including the GTPase 

activity of FtsZ, molecular density of the Z-ring, the timing of Z-ring disassembly, and the 

absence of Z-ring assembly regulators. Further investigation revealed that  septum closure rate 

is instead highly coupled to the rate of cell wall growth and elongation, and can be modulated 

by coordination with chromosome segregation. Taken together, these results challenge the Z-

ring centric view of constriction force generation, and suggest that cell wall synthesis and 

chromosome segregation likely drive the rate and progress of cell constriction in bacteria. 

These investigations were made possible by advancements in quantitative superresolution 

microscopy techniques (see Chapter 3 for overview). One major obstacle encountered during 
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the course of this work, and shared by those utilizing localization-based superresolution 

microscopy techniques, was the overestimation of molecule numbers caused by fluorophore 

photoblinking. Thus, Chapter 4 describes a systematic characterization of the effects of 

photoblinking on the accurate construction and analysis of superresolution images.  These 

characterizations enabled the development of a simple method to identify the optimal 

clustering thresholds and an empirical criterion to evaluate whether an imaging condition is 

appropriate for accurate superresolution image reconstruction. Both the threshold selection 

method and imaging condition criterion are easy to implement within existing PALM clustering 

algorithms and experimental conditions. 

Primary Reader: Jie Xiao 

Secondary Reader: Christian Kaiser 
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The Bacterial Divisome 
During cell division, a mechanical force is required to constrict the cell envelope against the 

turgor pressure of the cytoplasm. In bacteria, this force is supplied by the highly conserved 

'divisome' machinery, which assembles at midcell prior to the onset of cell division (Adams and 

Errington 2009). Although many molecular constituents of the divisome have been identified, 

the mechanism by which it generates a constrictive force remains unclear.  

Divisome constituents can be divided into three groups according to their locations and 

functions during cell division. The first group forms a dynamic, cytoplasmic scaffold to recruit all 

other divisome constituents (Figure 1.1, blue). The second group encompasses a large ensemble 

of transmembrane and periplasmic proteins that are involved in the synthesis and remodeling of 

the septal cell wall (Figure 1.1, orange). The third group of divisome proteins coordinates cell 

constriction with chromosome segregation (Figure 1.1, magenta). The members of each of these 

groups in E. coli are described below.  
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Figure 1.1 Schematic representation of the divisome. 
Divisome constituents can be divided into three groups: the membrane-tethered Z-ring (blue shades), the periplasmic 
peptidoglycan modifiers (orange shades), and the factors that link the Z-ring to the chromosome (magenta shades).  
 

 

The cytoplasmic scaffold 

The first group of divisome proteins to arrive at midcell (Figure 1.1, blue) comprises the highly-

conserved tubulin homolog, FtsZ, and its membrane tethers (FtsA and ZipA in E. coli (Pichoff and 

Lutkenhaus 2002))_ENREF_1. FtsZ is the most widely-conserved divisome protein found in 

almost all prokaryotes in addition to some archaea, chloroplasts, and mitochondria (Erickson 

1997). As a tubulin homolog, FtsZ can hydrolyze GTP and polymerize in a nucleotide-dependent 

manner (de Boer, Crossley et al. 1992; RayChaudhuri and Park 1992; Chen, Bjornson et al. 2005; 

Erickson, Anderson et al. 2010). These protofilaments can adopt different curvatures depending 

on the bound nucleotide (Erickson and Stoffler 1996; Lu, Reedy et al. 2000; Mingorance, Tadros 
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et al. 2005) as the monomer-monomer interface is more bent in the presence of GDP than in the 

presence of GTP (Chen and Erickson 2011; Li, Hsin et al. 2013). Lateral affinity between FtsZ 

protofilaments (Lu, Stricker et al. 2001; Shin, Vollmer et al. 2013) allows them to further 

assemble into a variety of bundles, sheets, and helices under different in vitro conditions (Popp, 

Iwasa et al. 2010). 

FtsA and ZipA bind to the same region of FtsZ, its C-terminal tail, to recruit FtsZ subunits to the 

membrane (Haney 2001; Pichoff and Lutkenhaus 2005). This membrane tethering promotes 

polymerization of FtsZ molecules into a ring-like structure, or 'Z-ring', at the cytoplasmic face of 

the inner membrane. This Z-ring is very dynamic, with all three components turning over with 

half times between 10 - 30 s (Mosyak, Zhang et al. 2000; Stricker, Maddox et al. 2002; Anderson, 

Gueiros-Filho et al. 2004; Geissler, Shiomi et al. 2007).  

In addition to this tethering role, FtsA and ZipA are also required for recruitment of the 

'downstream' membrane-associated and periplasmic divisome constituents (Egan and Vollmer 

2013) . This recruitment is achieved through an extensive protein interaction network (Figure 

1.2) that spans the cell envelope (Goehring and Beckwith 2005; Egan and Vollmer 2013).  

 

 
Figure 1.2 Interactions between divisome constituents. 
Protein names are colored according to the scheme in Figure 1.1: 
FtsZ and its membrane tethers (blue shades), periplasmic 
peptidoglycan modifiers (orange shades), and factors that link the Z-
ring to the chromosome (magenta shades).  Only interactions 
verified by non two-hybrid assays are shown. Adapted from (Egan 
and Vollmer 2013). 
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Although both FtsA and ZipA are essential and required to recruit the downstream divisome 

proteins in E. coli, ZipA is only conserved in γ-proteobacteria (Hale and de Boer 1997) while FtsA 

is more widely conserved. Furthermore, the mutation ftsA* has been shown to bypass the 

essentiality of ZipA in E. coli (Geissler, Elraheb et al. 2003). This finding suggests that ZipA may 

serve to regulate the polymerization state, and thus interaction capability, of FtsA and/or FtsZ, 

rather than to directly recruit the downstream proteins (Pichoff, Shen et al. 2012).  

The periplasmic cell wall modifiers 

Subsequent to Z-ring assembly at midcell, the downstream divisome proteins (Figure 1.1 and 

Figure 1.2, orange) arrive at midcell after a delay that spans ~ 20 % of the cell cycle (Aarsman, 

Piette et al. 2005). The cause of this delay remains unclear as the current model for the 

recruitment of these proteins relies on protein-protein interactions (Figure 1.2), which should be 

established very quickly in a small bacterial cell (Aarsman, Piette et al. 2005). This downstream 

class of divisome proteins include the enzymes FtsI (aka PBP3) and PBP1b, which perform the 

majority of septal peptidoglycan (PG) synthesis during cell constriction (Sauvage, Kerff et al. 

2008). FtsI is a transpeptidase that generates peptide cross-links between glycan chains in the 

cell wall (Begg, Takasuga et al. 1990; Nguyen-Disteche, Fraipont et al. 1998; Sauvage, Derouaux 

et al. 2014). PBP1b interacts with FtsI at midcell (Figure 1.2) and has bifunctional 

glycosyltransferase and transpeptidase activity (Suzuki, Nishimura et al. 1978; Sung, Lai et al. 

2009). 

The PG synthesis activities of FtsI and PBP1b are regulated by interactions with FtsW, FtsN, and 

the FtsQLB complex (Egan and Vollmer 2013). The function of the FtsQLB complex is least 

understood among these divisome proteins, but recent findings that the Staphylococcus aureus 
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FtsQ homolog (DivIB) can directly bind PG (Bottomley, Kabli et al. 2014) suggests a direct role in 

sensing or modifying PG structure.  One established role of FtsQLB is the recruitment of FtsW to 

midcell (Mercer and Weiss 2002). FtsW is an integral membrane protein (Lara and Ayala 2002) 

that is required for the recruitment of FtsI to midcell (Mercer and Weiss 2002; Pastoret, Fraipont 

et al. 2004). The interactions that establish this recruitment may allow FtsW to regulate FtsI 

activity during PG synthesis. Originally, FtsW was given a more definite role in PG synthesis 

when it was classified as the flippase that transfers lipid II, a cell wall precursor, from the inner 

leaflet of the inner membrane to the outer leaflet (Mohammadi, van Dam et al. 2011). However, 

recent work suggests that lipid II is transferred by the protein MurJ rather than FtsW (Sham, 

Butler et al. 2014). Thus, the full role of FtsW in PG synthesis remains unclear.    

FtsN is one of the most abundant periplasmic divisome proteins, at ~ 1000 copies per cell 

(Aarsman, Piette et al. 2005). Through its interaction with FtsA, FtsN serves as the major 

connection point between the cytoplasmic Z-ring scaffold and the downstream periplasmic 

proteins (Figure 1.2). In addition to these extensive protein-protein interactions, FtsN is able to 

bind PG through its SPOR domain (Ursinus, van den Ent et al. 2004; Gerding, Liu et al. 2009; 

Arends, Williams et al. 2010). This ability of FtsN to interact with the Z-ring, downstream 

divisome proteins, and PG suggest that it may be primed to serve two roles. First, its ability to 

sense whether all parts of the divisome have 'matured' (recruited all necessary components) 

would allow it to serve as an ideal trigger for cell constriction (Lutkenhaus 2009; Weiss 2015). 

Second, FtsN may serve in a quality control role to ensure that septal PG is well-formed during 

the progress of constriction (Gerding, Liu et al. 2009). This role is supported the fact that FtsN 

overexpression leads to a prolonged constriction time (Aarsman, Piette et al. 2005). 
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The chromosomal linkage 

The third group of divisome proteins (Figure 1.1 and Figure 1.2, magenta) links the divisome to 

the chromosome to coordinate cell wall constriction with chromosome segregation. The first 

identified protein in this category was FtsK, which is a transmembrane protein (Bigot, Saleh et al. 

2005) that interacts with and recruits many periplasmic divisome components (Figure 1.2). The 

cytoplasmic domain of FtsK is an AAA+ ATPase with DNA translocation activity (Vale 2000; 

Aussel, Barre et al. 2002; Bigot, Saleh et al. 2005) that aids in chromosome dimer resolution 

(Aussel, Barre et al. 2002) and efficient chromosome segregation (Liu, Draper et al. 1998; Stouf, 

Meile et al. 2013).  

Recently, another DNA-binding protein, MatP, was identified as a component of the divisome 

through its interaction with the divisome protein, ZapB (Mercier, Petit et al. 2008; Espeli, Borne 

et al. 2012) (Figure 1.2). ZapB forms polymeric structures that interact with ZapA to promote 

proper Z-ring organization at midcell (Galli and Gerdes 2010; Galli and Gerdes 2012; Buss, 

Coltharp et al. 2013). Together, FtsZ, ZapA, and ZapB form a multi-layered protein network 

which is connected to the chromosome via the ZapB-MatP interaction (Buss, Coltharp et al. 

2015). This connection plays an important role in positioning the Z-ring properly at midcell and 

in coordinating cell constriction with chromosome segregation (Espeli, Borne et al. 2012; Bailey, 

Bisicchia et al. 2014; Buss, Coltharp et al. 2015). 

Proposed Force Generation Mechanisms 
Among the three groups of divisome proteins, the Z-ring has been regarded as the primary force 

generator—its contraction is thought to actively drive inner membrane invagination, which is 

then followed by new septal PG growth (Erickson, Anderson et al. 2010). This primary role for 
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FtsZ in constrictive force generation is suggested by FtsZ’s homology with eukaryotic tubulin, 

GTPase activity, nucleotide-dependent polymerization, and wide genetic conservation among 

bacteria (Erickson, Anderson et al. 2010). Experimentally, this role is supported by in vitro 

observations that purified, membrane-tethered FtsZ can assemble into ring-like structures to 

deform and constrict liposome membranes (Osawa, Anderson et al. 2008; Osawa, Anderson et 

al. 2009; Osawa and Erickson 2011) (Osawa and Erickson 2013; Szwedziak, Wang et al. 2014).  

The cytoskeletal homology of FtsZ naturally suggested that bacteria may utilize a motor-driven 

cytokinetic ring analogous to the eukaryotic actomyosin ring, and initially prompted a period of 

unfruitful search for a Z-ring-associated motor protein (Bramhill and Thompson 1994; Osawa 

and Erickson 2006). Today, the field has turned to more FtsZ-centric mechanisms, in which a 

constrictive force is generated by FtsZ alone (Erickson 2009). These proposed mechanisms by 

which FtsZ could generate force arise from two well-studied features of FtsZ filaments. The first 

is the inherent curvature of FtsZ filaments, which should cause preferential alignment of 

membrane-tethered filaments along the curved, circumferential cell axis rather than the straight, 

longitudinal axis (Erickson, Anderson et al. 2010; Sun and Jiang 2011). This inherent curvature 

should also cause aligned FtsZ filaments to impose a bending force when tethered to less-curved 

surfaces (Erickson, Anderson et al. 2010). The typical curvature radius of purified FtsZ filaments 

from E. coli is 100 nm (Chen, Bjornson et al. 2005; Gonzalez, Velez et al. 2005; Mingorance, 

Tadros et al. 2005), which is smaller than the typical E. coli cell radius (400 - 500 nm). This 

curvature difference indicates that FtsZ bending forces are possible in vivo, at least until the 

radius of the constricting midcell septum decreases to ~ 100nm. 
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One prominent class of proposed bending mechanisms is the so-called "hydrolyze-and-bend 

hypothesis," which contends that chemical energy from GTP hydrolysis drives FtsZ filaments into 

higher curvature conformations, leading to membrane constriction (Allard and Cytrynbaum 

2009; Erickson 2009). The preference of GDP-bound FtsZ for higher-curvature conformations 

than those of GTP-bound FtsZ is supported by electron micrographs and crystal structures of 

purified FtsZ (Lu, Reedy et al. 2000; Chen and Erickson 2011; Li, Hsin et al. 2013). However, in 

vitro liposome deformation is still observed using slowly-hydrolyzable GTP analogs or using FtsZ 

variants with negligible GTPase activity (Osawa, Anderson et al. 2008; Osawa, Anderson et al. 

2009; Osawa and Erickson 2011; Szwedziak, Wang et al. 2014), suggesting that GTP hydrolysis is 

not required for force generation. Furthermore, genetic studies with FtsZ mutants indicate that 

dysfunctions due to diminished GTPase activity can be readily suppressed by mutations 

elsewhere in the chromosome (Mukherjee, Saez et al. 2001; Osawa and Erickson 2006). These 

studies suggest that cell division is not primarily driven by GTP hydrolysis, but the direct effect of 

GTPase activity on constriction rate has not yet been tested. 

The second feature of FtsZ filaments that may provide constrictive force is their ability to 

associate with each other laterally (Lan, Daniels et al. 2009). The fast turnover of FtsZ filaments, 

combined with their lateral affinity for each other, should drive them into more condensed 

arrangements, maximizing the number of lateral interactions. Given a fixed number of FtsZ 

subunits and a fixed slice of cellular space in which they can polymerize, this condensation could 

generate a constrictive force tending toward smaller and smaller ring diameters (Lan, Daniels et 

al. 2009). In vivo, condensation of FtsZ filaments could additionally be driven by proteins shown 

to promote Z-ring bundling: ZapA (Gueiros-Filho and Losick 2002; Low, Moncrieffe et al. 2004; 

Small, Marrington et al. 2007; Mohammadi, Ploeger et al. 2009; Dajkovic, Pichoff et al. 2010), 
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ZipA (RayChaudhuri 1999; Hale, Rhee et al. 2000), and FtsA (Dai and Lutkenhaus 1992; Pichoff 

and Lutkenhaus 2002). Evidence that over-expression of any of these proteins leads to 

disruption of normal cell division (Dai and Lutkenhaus 1992; Ma, Ehrhardt et al. 1996; Hale and 

de Boer 1997; Galli and Gerdes 2012) suggests that an overly-dense Z-ring may not be functional 

(Lan, Daniels et al. 2009), but the influence of FtsZ density on constriction progress has not been 

directly assessed.  

Importantly, the bending- and condensation-induced forces are not mutually exclusive, and 

have been combined in computation models (Ghosh and Sain 2008; Horger, Velasco et al. 2008; 

Surovtsev, Morgan et al. 2008; Paez, Mateos-Gil et al. 2009). Furthermore, these FtsZ-centric 

mechanisms most likely also exist within the context of other force-generation systems in vivo. 

The Z-ring may deform the inner membrane and guide the positioning of periplasmic divisome 

proteins, which in turn direct inward growth of peptidoglycan and generate a pushing force at 

midcell (Lan, Wolgemuth et al. 2007; Meier and Goley 2014). Observations that cell wall 

constriction is stalled in the absence of peptidoglycan remodeling indeed argue for a substantial 

contribution from the peptidoglycan remodeling machinery in cell wall constriction (Wientjes 

and Nanninga 1989; Pogliano, Pogliano et al. 1997). However, the relative contribution, and thus 

physiological relevance, of either the FtsZ-centric force or that provided by peptidoglycan 

synthesis and remodeling remains unknown. 

Although FtsZ-centric constrictive force generation has been the prevailing hypothesis in the 

field, these proposed mechanisms have been difficult to test in vivo due to the essentiality of 

FtsZ, the limited ability to spatially resolve the small Z-ring structure, and the lack of sensitive 

methods to monitor Z-ring contraction and septum closure rates during constriction. Thus, in 
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the following work, superresolution fluorescence microscopy was applied to resolve both Z-ring 

structure and septum closure rates with high precision.  
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Introduction 
This chapter describes the application of quantitative superresolution imaging in combination 

with other biophysical techniques and genetic manipulations to determine whether the Z-ring 

indeed plays a rate-limiting role in driving cell wall constriction in E. coli cells. These analyses 

revealed that the rate of septum closure is unaffected by many substantial alterations to the Z-

ring. These alterations include FtsZ’s GTPase activity, FtsZ density in the Z-ring, the timing of Z-

ring disassembly, and the absence of Z-ring assembly regulators. Instead, the rate of septum 

closure was determined to be proportional to the rate of cell elongation prior to and during 

constriction. This finding suggests that cell wall PG synthesis, the activity carried out by the 

second group of divisome proteins, plays a limiting role in septum closure. Furthermore, in the 

absence of MatP, a key chromosome-binding protein in the third group of divisome constituents, 

the septum closes significantly faster than the corresponding cell elongation rate. This effect 

cannot be explained by altered Z-ring structure, density, or dynamics, thus indicating a 

significant role for chromosome segregation in regulating septum closure.  

Taken together, the results described below challenge the FtsZ-centric view of constrictive force 

generation, highlight the role of septal PG synthesis and chromosome segregation in driving and 

modulating septum closure during constriction, and support a holistic view of constrictive force 

generation by the divisome.  

Results 
3D structure of the E. coli Z-ring  

As described in Chapter 1, proposed Z-ring force generation models predict that Z-ring structure 

would be remodeled in different ways during constriction (i.e. thickening (Ghosh and Sain 2011), 
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widening (Horger, Velasco et al. 2008), condensing (Lan, Daniels et al. 2009), or disassembly 

(Ghosh and Sain 2008; Surovtsev, Morgan et al. 2008; Allard and Cytrynbaum 2009)). To 

determine whether the Z-ring undergoes such structural remodeling in vivo, the single-molecule 

based superresolution technique, photoactivated localization microscopy (PALM)(Betzig, 

Patterson et al. 2006) was applied. Previously, two-dimensional (2D) PALM imaging of the E. coli 

Z-ring was conducted using a photoactivatbale fluorescent protein fusion FtsZ-mEos2 (Fu, Huang 

et al. 2010; Coltharp, Kessler et al. 2012; Buss, Coltharp et al. 2013; Buss, Coltharp et al. 2013; 

Buss, Coltharp et al. 2015). Those studies showed that the Z-ring is not a smooth structure, but 

instead comprises clusters of FtsZ protofilaments that loosely associate into a three-dimensional 

(3D) bundle(Fu, Huang et al. 2010; Buss, Coltharp et al. 2013). This heterogenous morphology 

has also been observed with several different fluorescent protein tags(Buss, Coltharp et al. 

2013), in different bacterial species (Leisch, Verheul et al. ; Strauss, Liew et al. 2012; Holden, 

Pengo et al. 2014; Rowlett and Margolin 2014), by immuno-superresolution imaging targeting 

native FtsZ (Leisch, Verheul et al. 2012; Buss, Coltharp et al. 2013; Coltharp, Buss et al. 2015), 

and by superresolution imaging of FtsZ-binding proteins (Buss, Coltharp et al. 2013; Rowlett and 

Margolin 2014; Coltharp, Buss et al. 2015), and in an early electron cryotomography  (ECT) study 

(Li, Trimble et al. 2007).  Figure 2.1 further demonstrates that an FtsZ-GFP fusion co-localizes 

with native FtsZ in midcell clusters by performing two-color superresolution imaging using 

antibodies against native FtsZ and GFP. These new results further indicate that the cluster-like 

organization of the Z-ring is not caused by fluorescent protein fusion, but is likely an intrinsic 

property of FtsZ polymerization and dynamics in vivo. 
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Figure 2.1 Two-color immuno-superresolution imaging of FtsZ and FtsZ-GFP. 
Representative images are shown of wt E. coli BW25113 cells expressing FtsZ-GFP labeled with rabbit anti-FtsZ and 
mouse anti-GFP primary antibodies, then Alexa Fluor® 568 goat anti-rabbit (magenta) and Alexa Fluor® 488-goat anti-
mouse (green) secondary antibodies. White regions indicate co-localization of labeled FtsZ and FtsZ-GFP. Cell 
boundaries are approximated by gray dotted outlines. Scale bars, 500 nm. 
 
 
 

To provide a nanoscale characterization of the Z-ring structure in 3D, iPALM (interferometric 

PALM) imaging (Shtengel, Galbraith et al. 2009; Buss, Coltharp et al. 2015) was applied to E. coli 

Z-rings labeled with FtsZ-mEos2. iPALM identifies a molecule’s z-position using the interference 

of its emitted light along two optical paths and provides the best z-resolution currently available 

to fluorescence-based superresolution imaging (Klein, Proppert et al. 2014). Using the mEos2 

fusion protein, spatial resolutions of ~33 nm, ~26 nm, and ~ 18 nm in the x, y, and z, dimensions, 

respectively, were achieved (Table 2.1,Figure 2.2).  
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Table 2.1 Spatial resolution and Z-ring dimensions from iPALM and PALM measurements.  

a. 3D fixed iPALM 

 

resolution  
FWHM (nm) 

n 

apparent ring 
width FWHM 

(nm) 

apparent ring 
thickness FWHM 

(nm) strain media fusion construct x y z 

DH5α  
wt 

M9 FtsZ-mEos2 28 22 16 105 103 ± 3 67 ± 2 

BW25113  
wt 

M9 FtsZ-mEos2 32 23 16 63 104 ± 4 61 ± 2 

BW25113  
wt 

M9 mEos2-ZapA 29 26 17 43 90 ± 4 54 ± 2 

b. Live-cell 2D PALM 

 
resolution  

FWHM (nm) 

n 

apparent ring 
width FWHM 

(nm) 

deconvolved ring 
width FWHM a 

(nm)  strain media fusion construct xy 

BW25113  
wt 

M9 FtsZ-mEos2 55 81 93 ± 2 73 ± 3 

BW25113  
wt 

M9 mEos2-ZapA 41 126 79 ± 2 67 ± 2 

BW25113  
wt 

EZ-RDM FtsZ-mEos2 44 59 85 ± 2 71 ± 3 

DH5α  
wt 

M9 FtsZ-mEos2 60 116 107 ± 2 87 ± 3 

BW25113 
ΔminC  

M9 FtsZ-mEos2 51 100 94  ± 2 78 ± 2 

BW25113 
ΔmatP  

M9 FtsZ-mEos2 41 112 84  ± 2 73 ± 3 

MC4100  
wt 

M9 FtsZ-mEos2 59 98 95  ± 3 71 ± 4 

MCZ84 
ftsz84 

M9 FtsZ84-mEos2 51 219 91  ± 2 73 ± 2 

a The deconvolved FWHM allows comparison of dimensions acquired with varying spatial resolutions (see Materials 
and Methods). 
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Figure 2.2 Measurement of spatial resolution.  
(a) Equations describing the distribution (p) of distances (r) between nearest neighbors in adjacent frames of live 
PALM or iPALM data with a given localization precision, σres. The equation for distances measured using two 
dimensions (p2D) (i) was adapted by Endesfelder et al. (Endesfelder, Malkusch et al. 2014) from the distribution of 2D 
distances expected for repeat localizations of the same molecule (Churchman, Flyvbjerg et al. 2006; Coltharp, Kessler 
et al. 2012) to account for the possibility that a localization's nearest neighbor in an adjacent frame may be a different 
molecule. This adaptation is represented in the 2nd and 3rd terms of the equation in (i) by the Gaussian parameters ω 
and dc, and the relative weighting factors A1, A2, and A3. Because the spatial resolution in iPALM measurements is not 
isotropic, here the equation describing distances measured in one dimension (p1D) (ii) was adapted in the same 
manner from the expected distribution of 1D distances between repeat localizations of the same molecule 
(Churchman, Flyvbjerg et al. 2006) with analogous parameters  ω, dc, A1, and A2. This new equation allows separate 
measurement of the X, Y, and Z resolutions. (b) Representative distribution of XY distances between nearest 
neighbors in adjacent frames (gray bars) for 2D PALM localizations FtsZ-mEos2 in live BW25113 cells. The distribution 
was fit (blue) with the equation in (ai) to yield a Gaussian localization precision of σres = 23.5 ± 1.1 nm, which 
corresponds to a spatial resolution (FWHM of the Gaussian localization precision) of 55 nm. (c) Representative 
distributions of X (i), Y(ii), Z (iii), XY(iv), XZ (v), and YZ (vi) distances between nearest neighbors in adjacent frames 
(gray bars) for 3D iPALM localizations of FtsZ-mEos2 in fixed BW25113 cells. The 1D distributions (i - iii) were fit with 
the equation in (aii) to generate the green curves and σres values of 13.8 ± 1.1 nm, 9.7 ± 0.7 nm, and 6.7 ± 0.6 nm in X, 
Y, and Z, respectively. These correspond to resolution values of 32 nm, 23 nm, and 16 nm, respectively. The 2D 
distributions (iv - vi) were fit with the equation in (ai) to generate the black curves and σres values of 13.9 ± 0.5 nm, 
10.7 ± 0.5 nm, and 9.1 ± 1.1 nm in the XY, XZ, and YZ planes, respectively. These 2D σres  should represent the root-
mean-square (RMS) average (σpredict) of the 1D σres  values. The best fit to each 2D distribution using a fixed σpredict 
value is shown as the dashed green line. The similarity between the σpredict and fitted 2D σres  values in (iv - vi) validates 
the relationship between the equations in (a). 
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Figure 2.3 shows representative iPALM images of fixed E. coli BW25113 and DH5α cells 

ectopically expressing FtsZ-mEos2. These images show the punctate structure of the Z-ring, 

which is normally blurred into a smooth ring when viewed under a conventional fluorescence 

microscope(Fu, Huang et al. 2010; Buss, Coltharp et al. 2013). Interestingly, the images reveal 

non-midcell clusters of FtsZ-mEos2 located either near the cell periphery (Figure 2.3a, white 

arrows), or clearly displaced from the membrane (Figure 2.3a, cyan arrows), indicating the 

presence of oligomeric FtsZ species outside the Z-ring. 

 

 

Figure 2.3 3D images of the E. coli Z-ring.  
(a) iPALM images of three fixed DH5α E. coli cells expressing FtsZ-mEos2 shown as xy (bottom) and xz (top) 
projections. Arrows illustrate cytoplasmic (cyan) and membrane-proximal (white) clusters of FtsZ-mEos2 outside the 
Z-ring. Cell outlines approximated by white dotted lines. (b) Cropped Z-rings of DH5α cells shown as yz projections. 
Fitted ring diameters are shown below each Z-ring. Rings outlined in dashed boxes correspond to those shown in (a). 
(c) Cropped Z-rings of BW25113 cells shown as yz projections. Fitted ring diameters are shown below each Z-ring. 
Scale bars, 300 nm. 
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The cluster-like distributions of FtsZ-mEos2 within the ring are more apparent when the cropped 

midcell regions are projected onto the cell cross-section (Figure 2.3b-c). These projections show 

that FtsZ clusters are confined to a toroidal zone that defines the Z-ring. The apparent width and 

thickness of this zone was similar in the two E. coli strains (Table 2.1), with a combined mean Z-

ring width of 103 ± 3 nm (n = 168, Figure 2.4a), consistent with previous measurements of 60 - 

120 nm in E. coli (Fu, Huang et al. 2010; Carmon, Fishov et al. 2012; Buss, Coltharp et al. 2013) 

and C. crescentus (Biteen, Goley et al. 2012; Holden, Pengo et al. 2014). The mean Z-ring 

thickness in the radial direction was significantly smaller than the width (65 ± 1 nm, p < 1x10-30, 

n = 168, Figure 2.4a), but larger than the resolution-limited size of a single protofilament layer (< 

35 nm). This result suggests that the Z-ring can accommodate multiple layers of FtsZ 

protofilaments along the radial direction of the cell.  

 

 

Figure 2.4 Z-ring dimensions.  
(a) Distributions of Z-ring width (blue) and thickness (red) (n = 168) measured from iPALM images of FtsZ-mEos2 in 
DH5α and BW25113 cells. Each histogram bin width is 20 nm. (b) Measured Z-ring width (blue) and thickness (red) 
plotted against corresponding Z-ring diameter (n = 168). Measurements for individual cells are shown as small, 
transparent, filled circles. Average measurements for cells binned by ring diameter (bin edges: 0, 300, 400, 500, 600, 
700, 800, and 1000 nm) are shown as larger filled circles with black outlines. Error bars represent standard error of 
the mean. 
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To characterize the size and distribution of FtsZ clusters, autocorrelation and density histogram 

analyses (Veatch, Machta et al. 2012; Sengupta, Jovanovic-Talisman et al. 2013; Coltharp, Yang 

et al. 2014) of FtsZ clusters projected along the Z-ring’s circumference were performed. These 

distributions were well-described by a model in which, on average, 10 - 20 FtsZ clusters (µm-1) of 

30 – 50 nm length (FWHM) are randomly distributed along the Z-ring (Figure 2.5). Confinement 

of these clusters to a ~ 65 x 100 nm Z-ring cross-section (Table 2.1) indicates that FtsZ filaments 

typically do not grow longer than 100 nm in any direction, consistent with the 100 - 200 nm 

protofilament length observed in vitro (Romberg, Simon et al. 2001; Chen, Bjornson et al. 2005; 

Huecas, Llorca et al. 2008). 
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Figure 2.5 Cluster simulations that best replicate Z-rings observed by iPALM. 
(a) Similarity between cluster simulations (see Supplementary Note 1 for simulation description) and the true 
distribution of molecules with the Z-ring was assessed using two measurements: (i) the spatial autocorrelation (acf) of 
molecule density along each ring's circumference, and (ii) the probability distribution of molecule density (calculated 
as the fraction of a single Z-ring's molecules residing in each 10 nm stretch of Z-ring circumference). The average 
distributions for experimental Z-rings are shown as filled circles for FtsZ-mEos2 expressed in DH5α (green, n = 100) 
and BW25113 (black, n = 60) cells. The distributions arising from the best-fit simulation (lowest combined residuals 
for the acf and density distribution out of 8,500 simulations) is shown as correspondingly-colored solid lines. For 
DH5α, the best-fit simulation was generated using a 13 cluster/μm density and 32.5 nm cluster length with 75% of Z-
ring molecules located in clusters and the remainder distributed uniformly around the ring. For BW25113, the best-fit 
simulation was generated using a 7 cluster/μm density and 47.5 nm cluster length with 70% of Z-ring molecules 
located in clusters and the remainder distributed uniformly around the ring. (b) Schematic representations of the best 
fit simulations in (a), which define the typical spacing of the randomly-distributed clusters and their lengths along the 
circumference. The radial thickness of clusters in the schematic was defined by the average measured Z-ring thickness 
for each strain (Table 2.1). Although both cluster length and Z-ring thickness were defined as FWHM of normal 
distributions, these schematics depict the 95-percentile dimensions calculated from those FWHM values to better 
resemble the visualization of iPALM data as in Figure 1. (c) Distribution of cluster simulation parameters (i: cluster 
density, ii: cluster length, and iii: clustered fraction) for simulations with combined SSE values in the lowest 1 
percentile (85 out of 8,500 simulations). These distributions are well-defined near the best fit values (a). Limits of the 
x-axes in (c) are defined by the parameter space sampled by all simulations. 
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Z-ring width and thickness remain constant during contraction 

To investigate whether the Z-ring cross-sectional dimensions change during its contraction, 

pseudo time-lapse sequences were generated by arranging individual Z-rings according to their 

diameters (representative images shown in Figure 2.3b-c). Qualitative inspection shows that the 

Z-ring remains heterogeneous throughout the course of Z-ring contraction, and that the ring 

does not appreciably expand or decrease in size. Plotting measured Z-ring width and thickness 

values against the corresponding ring diameters of individual cells confirms that both 

dimensions remain largely constant during ring contraction (Figure 2.4b).  

To verify that the observed trend is representative of native, unlabeled FtsZ, a similar analysis 

was performed on the ring structures formed by the Z-ring associated protein, ZapA, using an 

mEos2-ZapA fusion protein (Buss, Coltharp et al. 2015).  ZapA binds to FtsZ to promote Z-ring 

assembly (Small, Marrington et al. 2007; Dajkovic, Pichoff et al. 2010), and has been used as a 

marker for FtsZ localization and dynamics (Monahan, Robinson et al. 2009; Peters, Dinh et al. 

2011). Previously, the mEos2-ZapA fusion protein was shown to rescue the elongated cell 

phenotype of the zapA null mutant (Buss, Coltharp et al. 2015). iPALM images of mEos2-ZapA 

showed punctate structures similar to those of FtsZ-mEos2 (Figure 2.6a) (Buss, Coltharp et al. 

2015). Dimension measurements revealed that these mEos2-ZapA clusters are confined to a 

zone of slightly smaller size than that of FtsZ-mEos2 (mean width of 90 ± 4 nm and thickness of 

54 ± 2 nm, n = 43, Table 2.1, Figure 2.6b). Importantly, no significant changes in either the width 

or thickness of ZapA-rings were observed across cells of different diameters (Figure 2.6c), 

confirming that the Z-ring cross-sectional dimensions remain constant during ring contraction.  
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Figure 2.6 3D images and dimensions of ZapA-rings.  
(a) iPALM images of cropped rings formed by mEos2-ZapA in BW25113 cells shown as yz projections. . Fitted ring 
diameters are shown below each Z-ring. (c) Distributions of measured ZapA-ring width (blue) and thickness (red) (n = 
43). (d) Measured ZapA-ring width (blue) and thickness (red) plotted against corresponding ring diameter (n = 43) 
showing that both dimensions remain stable throughout ring. Measurements for individual cells are shown as small, 
transparent, filled circles. Average measurements for cells binned by ring diameter (bin edges: 0, 400, 500, 600, 700, 
800, and 1200 nm) are shown as larger filled circles with black outlines. Error bars represent standard error of the 
mean. 
 

The Z-ring contracts in two apparent phases 

iPALM imaging revealed the structure of the Z-ring during contraction with high precision, but 

the nature of fixed-cell imaging does not allow examination of the time course of Z-ring 

contraction during the cell cycle. Therefore, time-lapse fluorescence imaging was performed on 

dividing BW25113 cells expressing FtsZ-GFP (Figure 2.7a). Figure 2.7b shows a representative 

time trace in which the percentage of FtsZ-GFP localized to the midcell is plotted against cell 

cycle time for a single cell. This percentage value normalizes for FtsZ expression levels in 

different cells and has been used as an indicator of the amount of FtsZ in the Z-ring (Anderson, 

Gueiros-Filho et al. 2004; Geissler, Shiomi et al. 2007; Fu, Huang et al. 2010), as it is unaffected 
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by overexpression of up to 8-fold the endogenous FtsZ level (Fu, Huang et al. 2010), and the 

expression level of FtsZ throughout the cell cycle is constant (Rueda, Vicente et al. 2003; Weart 

and Levin 2003). The total expression level of FtsZ (endogenous FtsZ + FtsZ-mEos2, or 

endogenous FtsZ + FtsZ-GFP) in this study was generally less than 2-fold the endogenous FtsZ 

level (see Materials and Methods). 

 

Figure 2.7 Time-lapse analysis of Z-ring dynamics during the cell cycle.  
(a) Time-lapse fluorescence (top) and bright-field (bottom) montage of BW25113 E. coli expressing FtsZ-GFP. Arrows 
indicate cell cycle landmarks for the top cell: i, cell birth; ii, ring stabilization; iii, onset of visible constriction; iv, 
beginning of Z-ring disassembly; v, completion of cell division. Time-stamp (bottom right) displayed as minutes 
relative to cell birth. (b) Time-dependent Z-ring fluorescence (percentage of fluorescence in the ring relative to that of 
the whole cell) during the cell cycle of the top cell shown in (a). (c) Average durations of each cell cycle period for 
BW25113 cells growing in M9 medium at room temperature. Scale bar, 1 μm.  
 
The mean cell cycle time of BW25113 cells under this growth condition (room temperature (RT), 

M9 medium) is τ = 193 ± 12 min (n = 98,Table 2.2). Based on the fluorescence measurement, Z-

ring dynamics during the cell cycle can be divided into three periods as observed previously 

(Erickson, Anderson et al. 2010; Tsukanov, Reshes et al. 2011): Z-ring Assembly (the time 

between cell birth and stabilization of the Z-ring at midcell), Z-ring Maintenance (during which Z-

ring intensity remains largely constant), and Z-ring Disassembly (during which Z-ring intensity 

decreases, concluded by cell separation) (Figure 2.7c).  Interestingly, corresponding bright-field 

images of cell contours revealed that visible indentation of the cell wall (Figure 2.7a, iii) does not 

coincide with, but precedes, the Z-ring Disassembly period (Figure 2.7a, iv) by 35 ± 2 min, on 



26 
 

average. Note that cell wall constriction actually initiates earlier than can be detected with 

diffraction-limited identification of cell wall indentation (Reshes, Vanounou et al. 2008). Thus, Z-

ring contraction and septum closure begin prior to Z-ring disassembly, suggesting that GTPase-

induced Z-ring disassembly does not drive septum closure as previously proposed in some 

theoretical models (Ghosh and Sain 2008; Surovtsev, Morgan et al. 2008; Allard and Cytrynbaum 

2009).  

Table 2.2 Durations of Z-ring cell cycle periods.   

strain media n 

Assembly a 
min 

(% cycle) 

Maturation a,b 
min 

(% cycle) 

Contraction I a,b 
min 

(% cycle) 

Contraction II a,c 
min 

(% cycle) 

τ d 

min 

BW25113 
wt M9 98 91 ± 5 

(45 ± 1) 
52 ± 3 

(27 ± 1) 
35 ± 2 

(19 ± 1) 
16 ± 1 
(9 ± 1) 

193 ± 12 

MC4100 
wt M9 78 51 ± 3 

(42 ± 2) 
32 ± 2 

(29 ± 2) 
22 ± 1 

(20 ± 1) 
10 ± 1 
(9 ± 1) 

114 ± 3 

DH5α 
wt M9 40 96 ± 8 

(51 ± 2) 
54 ± 4 

(31 ± 2) 
17 ± 2 

(10 ± 1) 
14 ± 1 
(8 ± 1) 

181 ± 8 

BW25113 
wt 

EZ-
RDM 

80 39 ± 3 
(39 ± 2) 

27 ± 2 
(30 ± 2) 

16 ± 1 
(18 ± 1) 

13 ± 1 
(14 ± 1) 

94 ± 2 

MCZ84 
ftsz84 M9 77 66 ± 5 

(51 ± 2) 
25 ± 2 

(21 ± 2) 
19 ± 1 

(16 ± 1) 
13 ± 1 

(11 ± 1) 
123 ± 4 

BW25113 
ΔmatP 
 

M9 37 114 ± 10 
(53 ± 3) 

54 ± 5 
(27 ± 2) 

25 ± 3 
(13 ± 1) 

15 ± 1 
(8 ± 1) 

208 ± 9 

BW25113 
ΔminC M9 45 108 ± 7 

(50 ± 3) 
51 ± 5 

(24 ± 3) 
36 ± 3 

(17 ± 1) 
19 ± 1 
(9 ± 1) 

215 ± 8 

a. Durations of cell cycle periods measured from time-lapse analyses as in Figure 2.7. All values listed as mean ± 
standard error. 
b. Combined duration of Maturation and Contraction I periods constitute the Z-ring Maintenance period. 
c. Contraction II is equivalent to the Z-ring Disassembly period. 
d. Total cell lifetime. 
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To facilitate the description of this process, the period between the first visible cell wall 

indentation until the initiation of Z-ring disassembly will be referred to as Z-ring Contraction 

Phase I, and the subsequent Z-ring Disassembly period as Contraction Phase II. Note that by 

using this terminology, the Z-ring Maintenance period has been divided into two apparent 

phases: Z-ring Maturation and Contraction Phase I.  

The Z-ring condenses as it contracts 

The observation that the Z-ring contracts before disassembling suggests that Z-ring density (i.e. 

FtsZ concentration in the ring) likely increases during early stages of contraction. Previously it 

was proposed that condensation of the Z-ring, caused by favorable lateral interactions between 

FtsZ protofilaments, could generate a constrictive force during cell division (Lan, Daniels et al. 

2009). However, quantifying Z-ring density requires measurement of both the amount of FtsZ in 

the Z-ring and Z-ring volume in the same cell. This was achieved by performing 2D PALM and 

ensemble fluorescence imaging of live cells. 2D PALM imaging allows precise measurement of Z-

ring diameter, which is proportional to Z-ring volume throughout contraction as ring width and 

thickness do not change significantly (Figure 2.3d). This measurement, combined with 

measurements of FtsZ percentage at midcell from ensemble fluorescence images, provides the 

ability to compare relative Z-ring density at different contraction stages. 

Live-cell PALM images of BW25113 expressing FtsZ-mEos2 revealed similar discontinuous, 

heterogeneous Z-ring morphologies (Figure 2.8c) as those in fixed-cell iPALM images (Figure 

2.3a-b). The measured Z-ring width from live-cell PALM images (93 ± 2 nm, n = 81) also did not 

show any appreciable change at different diameters (Figure 2.8d), confirming the iPALM results  

(Figure 2.3d).  
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Figure 2.8 Analysis of Z-ring density and time-dependent septum closure rate for BW25113 cells.  
(a-c) Corresponding bright-field (a), conventional green fluorescence (b), and superresolution PALM (c) images of live 
BW25113 cells expressing FtsZ-mEos2 grouped by measured Z-ring diameter. Cell outlines approximated by dashed 
lines. (d) PALM images of live BW25113 cells expressing mEos2-ZapA grouped by ring diameter as in (c). (e-g) Ring 
width (e), intensity (f), and density (g) in BW25113 cells expressing FtsZ-mEos2 (filled, n = 66) or mEos2-ZapA (empty, 
n = 82) plotted against and binned by corresponding ring diameter. Bin edges: 0, 200, 300, 400, 500, 600 nm. (h) 
Equation (top) describing the monotonic decrease in Z-ring diameter over time, and table describing the different α 
regimes.  (i) Z-ring intensity plotted against ring diameter as in (e) overlaid with best-fit (solid black, α = 1.33 ± 0.08), α 
= 1 (dashed gray), and α = 2 (dotted gray) models generated from time-lapse parameters of BW25113 cells  (Table 
2.2) using equation in (g). (j-k) Time-dependent change in septum area (j, magenta), septum diameter (j, cyan), rate of 
septum area increase (k, magenta), and rate of septum diameter closure (k, cyan) for the models shown in (i): best-fit 
(solid), α = 1 (dashed), and α = 2 (dotted).  
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The amount of FtsZ in the Z-ring was measured as the percent of FtsZ-mEos2 fluorescence 

localized to midcell from ensemble images acquired prior to live PALM imaging. This 

measurement was made in the same manner as that in Figure 2.7b, and avoids the limited 

detection efficiency of PALM imaging as all fluorescent molecules are detected simultaneously 

in the ensemble image. The measurements revealed that the midcell percentage of FtsZ 

remained constant until the Z-ring diameter reached ~ 250 nm (Figure 2.8e), consistent with 

previous observations that the total intensity of fluorescently-labeled Z-rings stays relatively 

constant during early contraction (Z-ring diameter > 300 nm) in both E. coli (Lan, Daniels et al. 

2009) and B. subtilis (Strauss, Liew et al. 2012) cells. In cells with smaller diameters, however, 

the midcell percentage of FtsZ precipitously decreased (Figure 2.8e). This behavior is consistent 

with that observed in time-lapse experiments (Figure 2.7b), and supports the existence of two Z-

ring contraction phases. 

The relative density of each ring was calculated by dividing the percentage of FtsZ-mEos2 at 

midcell (Figure 2.8e, y-axis) by the corresponding Z-ring diameter (x-axis), which is proportional 

to Z-ring volume. Figure 2.8f shows that Z-ring density continuously increases as its diameter 

decreases, reaching up to ~ 2.5-fold its initial value, even as the percentage of FtsZ decreases at 

the end of contraction (Figure 2.8e). Identical behavior was also observed in the absence of 

fluorescently-labeled FtsZ using the mEos2-ZapA construct in the same BW25113 background 

strain (Figure 2.8e-f, empty circles), suggesting that the endogenous, unlabeled Z-ring behaves 

similarly. Thus, the Z-ring condenses throughout its contraction.  
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Measuring septum closure rate  

Next, to assess whether any of the observed Z-ring behaviors play limiting roles in driving 

septum closure, methods to measure both the average and time-dependent septum closure 

rate (vc) were established. The average septum closure rate was determined by first estimating 

the starting septum diameter, D0, as the mean Z-ring diameter measured from PALM images of 

cells identified to be at constriction onset by their corresponding brightfield images. The 

diameter of the membrane-associated Z-ring should closely reflect that of the growing septum. 

The starting diameter of BW25113 cells under the examined growth condition (RT, M9 medium) 

was determined to be  <D0> = 573 ± 27 nm. Dividing this average D0 by the constriction period, τc 

(Contraction Phase I + II), of individual cells observed by time-lapse microscopy results an 

average septum closure rate of vc = <D0>/τc = 12.5 ± 0.4 nm/min (n = 98, Table 2.3).  
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Table 2.3 Rates of septum closure and cell elongation. 

strain media 
Do 

a 
nm (n) α b 

vc 
 c 

nm/min 

vep 
d 

nm/min 
(n) 

vec 
d 

nm/min 
(n) vc / vep 

e vc / vec 
e 

BW25113 
wt M9 578 ± 27 

(13) 
1.3 ± 0.1 12.5 ± 0.4 

7.9 ± 0.3 
(98) 

12.1 ± 0.5 
(98) 

1.7 ± 0.1 1.2 ± 0.1 

MC4100 
wt M9 546 ± 36 

(12) 
1.9 ± 0.3 19.3 ± 0.7 

15.0 ± 0.4 
(78) 

21.2 ± 0.9 
(78) 

1.4 ± 0.1 1.2 ± 0.2 

DH5α 
wt M9 447 ± 20 

(15) 
1.4 ± 0.4 17.0 ± 1.2 

10.8 ± 0.4 
(40) 

17.5 ± 0.9 
(40) 

1.6 ± 0.1 1.1 ± 0.1 

BW25113 
wt 

EZ-
RDM 

652 ± 34 
(11) 

1.3 ± 0.3 25.5 ± 1.0 
18.5 ± 0.5 

(80) 
25.9 ± 0.9 

(80) 
1.4 ± 0.1 1.2 ± 0.1 

MCZ84 
ftsz84 M9 519 ± 24 

(15) 
1.4 ± 0.2 18.0 ± 0.7 

12.6 ± 0.4 
(77) 

18.1 ± 0.8 
(77) 

1.5 ± 0.1 1.1 ± 0.1 

BW25113 
ΔmatP M9 503 ± 26 

(12) 
1.4 ±  0.3 14.2 ± 0.9 

6.4 ± 0.5 
(37) 

9.6 ± 0.7 
(37) 

2.4 ± 0.2 1.8 ± 0.2 

BW25113 
ΔminC M9 496 ± 22 

(12) 
1.6 ± 0.6 10.2 ± 0.6 

7.2 ± 0.3 
(45) 

13.2 ± 1.3 
(45) 

1.5 ± 0.1 0.9 ± 0.1 

a. Do is average starting diameter measured from n PALM images. 
b. Acceleration parameter (α) fit using Equation 1 (see Methods). Reported error is 95% confidence fitting error. 
c. Average septum closure rate (vc) measured as <Do>*<1/τc> where τc is the duration of Contraction Phase I + II (Table 
2.2). Standard error value propagated from those of Do and 1/τc. 
d. Elongation rates measured for n cells observed by time-lapse as vep= <ΔLp/(τ - τc)> and vec= < ΔLc/τc > where ΔLp is the 
change in cell length from cell birth to constriction onset and ΔLc is the change in cell length during constriction.  
e. Ratios calculated as <Do>*<(1/τc)*(1/vep)> or <Do>*<(1/τc)*(1/vec)>. Standard error propagated from those of Do and 
(1/τc)*(1/vep) or (1/τc)*(1/vec). 

 

Direct measurement of the time-dependent septum closure rate is difficult because prolonged 

superresolution imaging of the same cell leads to phototoxicity and is thus unreliable. This 

problem was circumvented by taking advantage of the fact that the same quantity, the midcell 

localization percentage of fluorescently labeled FtsZ (p), was measured in two separate 
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experiments against different experimental axes: cell cycle time (t) in time-lapse fluorescence 

imaging (Figure 2.7b) and septum diameter (D) in PALM imaging of different cells (Figure 2.8e). 

These two datasets were combined using a generic, monotonic septum closure model: 

�𝐷(𝑡)
𝐷𝑜
�
α

= 1 − � 𝑡
𝜏𝑐
�
α

       (1) 

which depicts the time-dependent change in septum diameter D. In this model, D0 is the 

diameter at constriction onset, τc is the duration of constriction, and t is the time elapsed since 

constriction onset. The exponent variable, α, reflects the change in closure rate over time 

(Figure 2.8g), with a value of α = 1 corresponding to constant closure rate (Figure 2.8h-j, dashed 

lines). A value of α = 2 corresponds to a model in which septum closure accelerates such that 

the rate of septum surface area addition remains constant (Figure 2.8h-j, dotted lines) (Reshes, 

Vanounou et al. 2008). 

Simulations were performed to transform the time-lapse traces of FtsZ percentage at midcell 

onto the diameter axes of the live PALM data using Equation 1. Using least-squared fitting, an α 

value of 1.3 ± 0.1 was found to best describe the behavior of BW25113 cells under this condition 

(RT, M9 medium, Figure 2.8h-j, solid lines), corresponding to a rate regime where closure of the 

septum diameter accelerates, while addition of septum surface area decelerates during 

constriction (Figure 2.8h). Previous attempts to measure time-dependent septum closure rates 

have produced mixed results, likely because different stages of the contraction process were 

examined (Reshes, Vanounou et al. 2008; Stromqvist, Skoog et al. 2010). 

90% reduction in FtsZ GTPase activity alters Z-ring density and dynamics, 
but not septum closure rate 
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The established methods to characterize Z-ring contraction and septum closure rates were next 

applied to mutations causing perturbations to Z-ring structure and function. The first examined 

perturbation was reduced FtsZ GTPase activity, as GTP hydrolysis-dependent FtsZ protofilament 

bending and/or disassembly have been prominent hypotheses for force generation by the Z-ring 

(Ghosh and Sain 2008; Surovtsev, Morgan et al. 2008; Allard and Cytrynbaum 2009). 

Lowered GTPase activity was achieved using a mutant strain, MCZ84, which expresses an FtsZ 

variant (FtsZ84) from the native ftsZ locus (Dai, Xu et al. 1993). The G105S mutation of FtsZ84 

confers a 90% reduction in GTPase activity (Bi and Lutkenhaus 1990; de Boer, Crossley et al. 

1992; RayChaudhuri and Park 1992). Live-cell PALM imaging of an FtsZ84-mEos2 fusion protein 

expressed in MCZ84 revealed that the morphology and dimension of FtsZ84-rings were similar 

to those of its wt parent strain, MC4100 (Figure 2.9a-c). However, FtsZ84-rings exhibited higher 

midcell levels of FtsZ84-mEos2 (Figure 2.9d-e), as observed previously(Stricker, Maddox et al. 

2002), resulting in higher ring densities throughout contraction (Figure 2.9f).  
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Figure 2.9 Analysis of Z-ring dimension, density, and time-dependent septum closure rate for MC4100 and MCZ84 
cells. 
(a-b) Superresolution PALM images of live MC4100 (a) and MCZ84 (b) cells expressing FtsZ-mEos2  or FtsZ84-mEos2, 
respectively, grouped by measured Z-ring diameter. Cell outlines approximated by dashed lines. (c-f) Ring width (c), 
intensity (d-e), and density (f) in MC4100 (black, n = 83) and MCZ84 (red, n = 154) cells expressing FtsZ-mEos2 or 
FtsZ84-mEos2, respectively, plotted against and binned by corresponding ring diameter. Bin edges: 0, 200, 300, 400, 
500, 600 nm. Z-ring intensity measurements in (d) and (e) are overlaid with best-fit (solid), α = 1 (dashed gray), and α 
= 2 (dotted gray) models generated from time-lapse parameters of corresponding strain  (Table 2.2).  
 
 

Time-lapse analyses revealed that FtsZ84-GFP took significantly longer to stabilize at midcell in 

MCZ84 than wt FtsZ-GFP in MC4100 (66 ± 5 min, n = 77 vs. 51 ± 3 min, n = 78 for wt, p = 0.01, 

Table 2.2). However, the average septum closure rates measured in MCZ84 and MC4100 strains 

were not significantly different from each other (18.0 ± 0.7 nm/min, n = 77 for MCZ84 and 19.3 

± 0.7 nm/min, n = 78 for MC4100, respectively, p = 0.34). In addition, in both strains the time-

dependent septum closure rates accelerate during the constriction period, although to different 

degrees (α = 1.4 ± 0.2 vs. 1.9 ± 0.3 for MCZ84 and MC4100, respectively, Figure 2.9d-e, Table 
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2.2). These results suggest that the GTPase activity of FtsZ influences Z-ring assembly and 

density, but does not alter the rate of septum closure during cell constriction.  

minC and matP deletions alter Z-ring density and dynamics similarly, but 
septum closure rate oppositely 

Next, the Z-ring was perturbed by removing either MinC, a negative regulator of FtsZ 

polymerization, or MatP, a positive Z-ring assembly regulator. In E. coli, MinC oscillates between 

the cell poles to prevent aberrant, polar Z-ring formation (Raskin and de Boer 1999; Hu and 

Lutkenhaus 2000; Shiomi and Margolin 2007; Dajkovic, Lan et al. 2008; Shen and Lutkenhaus 

2010). MatP is a DNA-binding protein involved in proper chromosome segregation (Mercier, 

Petit et al. 2008; Espeli, Borne et al. 2012; Stouf, Meile et al. 2013). MatP stabilizes Z-ring 

positioning at midcell through its interaction with the Z-ring associated proteins, ZapA and ZapB 

(Buss, Coltharp et al. 2013; Buss, Coltharp et al. 2015). The higher tendency of FtsZ to 

polymerize at places other than midcell in the absence of MinC or MatP should thus alter Z-ring 

density and the timescale of Z-ring assembly or disassembly, allowing assessment of the 

influence of these properties on the rate of septum closure. 

Z-ring structures and dynamics were examined in a BW25113ΔminC or BW25113ΔmatP strain 

using the FtsZ-mEos2 or FtsZ-GFP fusions. As expected, PALM images of FtsZ-mEos2 in 

BW25113ΔminC cells (Figure 2.10a) often showed non-midcell FtsZ clusters, consistent with the 

role of MinC in preventing polar Z-ring formation (Guberman, Fay et al. 2008). The Z-ring also 

took longer to stabilize at midcell (108 ± 7 min, n = 45 vs. 91 ± 5 min, n = 98 for wt BW25113, p = 

0.01). Interestingly, the effects of matP deletion on Z-ring morphology (Figure 2.10b) and 

assembly time (114 ± 10 min, n = 37, p = 0.01) were similar to those of minC deletion.  
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Figure 2.10 Analysis of Z-ring dimension, density, and time-dependent septum closure rate for ΔminC and ΔmatP 
cells.  
(a-b) Superresolution PALM images of live BW25113ΔminC (a) and BW25113ΔmatP (b) cells expressing FtsZ-mEos2, 
grouped by measured Z-ring diameter. Cell outlines approximated by dashed lines. (c-f) Ring width (c), intensity (d-e), 
and density (f) in BW25113ΔminC (purple, n = 73) and BW25113ΔmatP (green, n = 68) cells expressing FtsZ-mEos2 
plotted against and binned by corresponding ring diameter. Bin edges: 0, 200, 300, 400, 500 nm. Z-ring intensity 
measurements in (d) and (e) are overlaid with best-fit (solid line) models generated from time-lapse parameters of 
corresponding strain (Table 2.2). Results for wt BW25113 (gray) are replicated from Figure 3 for comparison.  
 
 

Further quantification revealed that the Z-ring began to disassemble at larger diameters in the 

absence of either MinC or MatP than in the wt BW25113 parental strain (Figure 2.10d-e), and 

that the relative Z-ring density remained 20 - 40% lower in either mutant than that in wt cells 

(Figure 2.10f). However, the Z-ring width remained unchanged (Figure 2.10c). Surprisingly, 

despite exhibiting similar effects on Z-ring structure and assembly dynamics, the two mutants 

exhibited different effects on septum closure rate: BW25113ΔminC cells exhibited significantly 

slower rates (vc = 10.2 ± 0.6 nm/min, n = 45, p = 0.004) compared to wt BW25113 (vc = 12.5 ± 0.4 

nm/min, n = 98), while BW25113∆matP cells exhibited significantly higher rates (vc = 14.2 ± 0.9 

nm/min, n = 37, p = 0.02). The fact that similar decreases to Z-ring density and increases in 
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assembly time caused by deletion of matP or minC result in opposite changes to the rate of 

septum closure suggests that these Z-ring properties may not be limiting factors in driving 

septum closure.  

Septum closure rate is coupled to cell elongation rate  

The characterizations above have revealed that altered Z-ring structures, densities, and 

dynamics during the cell cycle do not result in systematic changes to septum closure rates. This 

lack of a unifying, FtsZ-centric theme prompted exploration of whether the other two divisome 

components may play more dominant roles in driving septum closure. To examine the 

relationship between septum closure and PG synthesis, the function carried out by the second 

group of divisome proteins (see 'Chapter 1:  

 

Introduction to Bacterial Cytokinesis'), individual cell septum closure rates (vc) were compared 

to cell elongation rates (ve), calculated as cell length added per unit time. Under balanced 

growth, cell elongation is rate-limited by cell wall PG synthesis(Lee, Tropini et al. 2014; Rojas, 

Theriot et al. 2014), and thus cell elongation in rod-shaped E. coli directly reflects PG synthesis 

activity. As the topography of PG synthesis activity switches from lateral to septal localization at 

constriction onset (Wientjes and Nanninga 1989), elongation rates were calculated both prior to 

(vel) and during (vec) constriction, reflecting the rate of lateral and septal PG synthesis, 

respectively. 

Single cell elongation rates were measured for the two wt strains tested (BW25113 and 

MC4100) and two additional conditions: wt DH5α grown in M9 at RT (τ = 181 ± 8 min, n = 40) 

and the same BW25113 strain growing faster in rich defined medium (EZ-RDM) at RT (τ = 94 ± 2 
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min, n = 80). Time-lapse analyses and live-cell PALM imaging of the two additional strains 

showed similar Z-ring assembly dynamics (Table 2.2), two-phase Z-ring contraction (Figure 2.11), 

and continuous increase of Z-ring density throughout contraction (Figure 2.12). The two strains 

exhibited different average septum closure rates (vc = 17.0 ± 1.2 nm/min and 25.5 ± 1.0 nm/min 

for DH5α and BW25113 (EZ-RDM), respectively), but similar rate accelerations (α = 1.40 ± 0.44 

and 1.28 ± 0.30, respectively). 

 

 

 

 

 

 

 

 

 

 

Figure 2.11 Time-lapse analysis of FtsZ-GFP in other wt and mutant strains (see next page). 
(a) Representative time-lapse fluorescence (top) and bright-field (bottom) montages of wt and mutant E. coli 
expressing FtsZ-GFP. Strain names are indicated above each montage. Arrows indicate cell cycle landmarks for a single 
cell, sequentially: cell birth; ring stabilization; onset of visible constriction; beginning of Z-ring disassembly; 
completion of cell division. Time-stamps displayed as minutes relative to cell birth. (b) Representative time-
dependent Z-ring fluorescence (percentage of fluorescence in the ring relative to that of the whole cell) traces for wt 
and mutant strains. Z-ring intensity was calculated as in Figure 2, but then normalized such that the values varied 
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from 0 to 1 to allow easier comparison of different cells. Each color represents a different cell. All time-lapse traces 
are temporally aligned such that the time of constriction onset coincides with t = 0. In all strains, time traces 
exhibiting a delay between constriction onset (t = 0) and Z-ring disassembly (decay in normalized ring intensity) can be 
observed. Scale bars, 1 μm.  
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Figure 2.12 Analysis of Z-ring dimension and density for all wt strains 
and conditions.  
Ring width (a), intensity (b), and density (c) plotted against and binned by 
corresponding ring diameter for live BW25113 (gray, n = 66), DH5α 
(magenta, n = 65), and MC4100 (blue, n = 83) cells grown in M9 media, 
and BW25113 cells grown in EZ-RDM media (black, n = 36), all expressing 
FtsZ-mEos2.  The BW25113 (M9) dataset (gray) replicates those in Figures 
3 and 5 for comparison.  Bin edges: 0, 200, 300, 400, 500, 600 nm. The 
first bin (500 - 600 nm) was not used for DH5α due to its smaller starting 
diameter. 
 

 

 

 

 

 

Comparison of septum closure rates and elongation rates for all four wt conditions revealed that 

the average rate of septum closure scales with both vel and vec for all wt strains and conditions 

studied (Figure 2.13a-b, r = 0.98 and 0.99, p = 0.02 and 0.01, respectively). These correlations 

suggest that the different septum closure rates observed can indeed be attributed to differences 

in PG synthesis rates under different growth conditions, and that the chemical processes limiting 

the rate of cell wall PG synthesis before and during cell constriction may also limit the rate of 

septum closure. 
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Figure 2.13 Comparison of septum closure and cell elongation rates.  
(a-b) Average septum closure rate (<vc>) plotted against cell elongation rate prior to (<vel>, a) or during (<vec> b) 
constriction for all wt (gray) and mutant (colored) E. coli strains. Color code corresponds to those in (c) and (d). Linear 
trend lines were fit using only wt strains. (c-d) Average ratio of septum closure rate relative to cell elongation rate 
prior to (<vc/vel>, a) or during (<vc/vec>, b) constriction for all wt (gray) and mutant (colored) E. coli strains. Dotted line 
illustratse <vc/vec> = 1 ratio.  
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Interestingly, the average ratio of vc/vec, which compares the total diameter of the septum 

closed during constriction with the cell length added during that time, is close to unity for the 

four wt strains and conditions (Figure 2.13d). This unity ratio can be explained by the growth of 

hemispherical poles in E. coli, in which the starting septum diameter is equivalent to the final 

combined length of the poles. Thus, our measurements indicate that cell elongation occurs 

predominately through septal synthesis during constriction, as substantial contributions from 

lateral cell growth would result in vc/vec < 1. This finding is consistent with previous 

measurements of PG synthesis activity, which was shown to switch from lateral to septal 

localization at constriction onset (Wientjes and Nanninga 1989). 

Absence of MatP modulates the coupling between cell wall elongation 
and septum closure rate 

Applying the same comparison of cell elongation and septum closure rates to the three mutant 

strains (Figure 2.13c-d, Table 2.2), revealed that the relative ratios <vc/vel> and <vc/vec> of 

MCZ84 and ∆minC cells were similar to those of their respective wt parent (< 20 % difference, 

Table 2.2), but that those of ∆matP cells were substantially larger than all the other strains, with 

<vc/vel> = 2.18 ± 0.17 (vs. 1.69 ± 0.06 for wt BW25113 in M9, p = 2.5e-4) and  <vc/vec> = 1.75 ± 

0.15 17 (vs. 1.16 ± 0.05 for wt BW25113 in M9, p < 5e-5), respectively (Figure 2.13b-d,Table 2.3). 

Thus, the septum closure rate observed in ∆matP cells is significantly faster than expected given 

its elongation rate and PG synthesis activity. Given that deletion of matP leads to defects in 

chromosome segregation (Espeli, Borne et al. 2012), deviation of the two ratios from all other 
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strains suggests that chromosome segregation can likely modulate the coupling between septal 

PG synthesis and septum closure during constriction. 

Discussion 
Z-ring Organization 

This work has illustrated the 3D structural organization and remodeling of the contracting Z-ring 

with unprecedented resolution. The E. coli Z-ring was demonstrated to be composed of 

discontinuous, heterogeneously distributed FtsZ clusters loosely confined in a toroidal zone of ~ 

100 nm in width and ~ 65 nm in thickness. Similar Z-ring heterogeneity has also been observed 

previously (Leisch, Verheul et al. ; Li, Trimble et al. 2007; Fu, Huang et al. 2010; Strauss, Liew et 

al. 2012; Buss, Coltharp et al. 2013; Holden, Pengo et al. 2014; Rowlett and Margolin 2014). The 

mean thickness of the toroidal zone FtsZ clusters occupy (~ 65 nm) is significantly larger than 

that of a single layer of FtsZ protofilaments, which would appear < 30 nm under the iPALM 

resolution. A multi-layered Z-ring, as suggested by the thickness measurement, is consistent 

with previous predictions (Fu, Huang et al. 2010; Carmon, Fishov et al. 2012). Although the 

resolution achieved here did not allow direct observation of the number or orientation of FtsZ 

protofilaments within the heterogeneous Z-ring, the small cluster size observed (30 - 50 nm, 

Figure 2.5) supports heterogeneity in FtsZ protofilament orientation, as the membrane 

curvature preference of short, ~ 50 nm protofilaments was estimated to be only ~ 0.1 kT (Sun 

and Jiang 2011). 

While this large body of studies using different methodology in different organisms supports a 

punctate, clustered organization of the Z-ring, in vitro, membrane-attached FtsZ can form long, 

continuous protofilaments that wrap around liposomes (Milam, Osawa et al. 2012; Szwedziak, 
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Wang et al. 2014), and a recent ECT study observed long, single-layered protofilaments at cell 

division sites (Szwedziak, Wang et al. 2014). These studies support a smooth, continuous Z-ring 

organization. However, a continuous ring is not required for Z-ring function, as incomplete Z-

rings can lead to cell wall indentation (Addinall and Lutkenhaus 1996). Both organizations are 

possible in vivo and likely reflect two dynamic states of the Z-ring modulated by the GTPase 

activity of FtsZ. It is known that GTP hydrolysis promotes the fracture of long FtsZ polymers 

(Mateos-Gil, Paez et al. 2012) and that subunit turnover dynamics are reduced in FtsZ GTPase 

mutants (Stricker, Maddox et al. 2002). Thus, active GTP hydrolysis may result in constant 

structural remodeling, and consequently a discontinuous, clustered Z-ring organization. This 

may explain why long FtsZ protofilaments were predominately observed with an overexpressed 

FtsZ GTPase mutant (D212A) background (Szwedziak, Wang et al. 2014). A discontinuous, 

dynamic structure may allow the Z-ring to reorganize promptly in response to cellular cues such 

as the SOS stress response (Dajkovic, Mukherjee et al. 2008; Chen, Milam et al. 2012) or changes 

in nutrient availability (Weart, Lee et al. 2007; Hill, Buske et al. 2013).   

If Z-ring discontinuity is indeed important for Z-ring function, then the multi-layer configuration 

observed here can be viewed as a buffering system against fluctuations in FtsZ levels. Because 

the percentage of cellular FtsZ localized to the Z-ring is known to remain at ~ 30 % in E. coli, 

even when FtsZ is over-expressed 8-fold (Fu, Huang et al. 2010), any increase in cellular FtsZ 

levels should cause a corresponding increase in FtsZ levels within the Z-ring. If FtsZ filaments 

could only form a single layer, an 8-fold increase in FtsZ levels would in turn lead to an 8-fold 

increase in the membrane-exposed Z-ring surface area, greatly reducing its discontinuity. Thus, 

by accommodating multiple layers, FtsZ clusters can maintain their discontinuity under 

increased FtsZ levels, which can occur when checkpoints related to nutrient availability or DNA 
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damage temporarily postpone cell division (Hill, Buske et al. 2013; Jonas 2014). The existence of 

a buffering system for increased FtsZ levels is supported by the higher tolerance of  E. coli for 

FtsZ overexpression (viable at levels up to 8-fold (Fu, Huang et al. 2010)) compared to FtsZ 

depletion (not viable below ~ 50% FtsZ levels (Palacios, Vicente et al. 1996)). 

Constriction Initiation 

During the cell cycles of all wt and mutant E. coli strains, the first detectable cell wall indentation 

precedes the initiation of Z-ring Disassembly (Table 2.2). This finding suggests that disassembly 

of the Z-ring does not serve as a trigger to initiate cell wall constriction. An alternative triggering 

mechanism is suggested by the fact that the relative time spent in the Z-ring Maturation phase, 

prior to constriction, is very tightly-distributed (~ 30% of the cell cycle, CV = 0.03) compared to 

the other phases (CV > 0.1, Table 2.2). This tight distribution suggests that the Z-ring maturation 

process is closely coupled to the cell growth rate.  It is possible that this conserved Z-ring 

Maturation time represents a preparation phase prior to the onset of visible constriction. 

What might this preparation phase entail? Previous studies indicate that some periplasmic 

components of the E. coli divisome (FtsI, FtsN, FtsQ, and FtsW) arrive at the Z-ring after a 

substantial delay, on the order of tens of minutes, or ~ 20% of the cell cycle time (Aarsman, 

Piette et al. 2005). This delay is longer than that expected for the kinetics of protein interactions, 

so it is unclear why the recruitment of these 'late' divisome proteins is delayed (Aarsman, Piette 

et al. 2005). One possibility is that the recruitment of these periplasmic proteins, some of which 

bind peptidoglycan, is facilitated by a particular peptidoglycan composition. The finding that FtsZ 

can direct peptidoglycan synthesis in the absence of these 'late' division proteins (de Pedro, 

Quintela et al. 1997; Varma, de Pedro et al. 2007; Potluri, de Pedro et al. 2012) suggests that 
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some alterations to midcell peptidoglycan may occur during this Z-ring Maturation phase to 

promote the recruitment of late division proteins. The involvement of peptidoglycan synthesis 

would explain the minutes-scale delay and our observed tight coupling of Z-ring Maturation 

time to growth rate, given that cell wall synthesis is limiting for cell growth (Rojas, Theriot et al. 

2014). Thus, constriction initiation in E. coli may be modulated by division site preparation by 

FtsZ and early divisome constituents, followed by recruitment of late division proteins. The 

transient arrival of late divisome proteins may then positively reinforce their own recruitment 

by additional modification of the cell wall until visible constriction finally ensues (Gerding, Liu et 

al. 2009). This coupling between cell wall growth and constriction initiation is an attractive 

mechanism to ensure that the cell is properly doubled before dividing (Campos, Surovtsev et 

al. ; Weart, Lee et al. 2007). 

Z-ring function during constriction 

 As a large body of work has already demonstrated, the Z-ring is the essential scaffold to recruit 

all other division proteins to initiate constriction (Adams and Errington 2009). The force-

generating function and mechanisms of the Z-ring, however, have been highly debated (Erickson 

2009). This work attempted to determine how the Z-ring generates constrictive force, if it does 

indeed drive septum closure, by observing the consequences of a perturbed Z-ring on septum 

closure rates. However, the observed effects consistently supported a contrary model in which 

the Z-ring does not drive septum closure.  

First, the driving force generation mechanism cannot be limited by FtsZs GTPase activity, 

because the ftsz84 mutant showed essentially the same septum closure rate as its wt parent 

strain. Second, the mechanism cannot be dependent on Z-ring disassembly because cell wall 
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constriction initiated significantly earlier than Z-ring disassembly under all conditions (Table 2.2) 

and because the diameter at which individual Z-rings started to disassemble varied widely (from 

600 nm to 250 nm) among different conditions (Figure 2.8d-e, Figure 2.9d-e,  Figure 2.10b, and 

Figure 2.12b). Third, the driving mechanism cannot be dependent on Z-ring density (FtsZ 

concentration in the ring), because increased density in the ftsz84 mutant strain did not alter 

septum closure rate, while reduced density in the ∆minC and ∆matP strains led to opposite 

changes in septum closure rate. Fourth, the driving mechanism cannot be dependent on FtsZ’s 

assembly dynamics during the cell cycle, as the three mutations (ftsz84, ∆minC, ∆matP) all 

resulted in delayed Z-ring stabilization at midcell, but did not lead to systematic changes in the 

septum closure rate. These results indicate that the chemical process responsible for septum 

closure is most likely not driven by a process that is governed by FtsZ activity or concentration at 

the midcell.   

The role of FtsZ's GTPase activity 

If the GTPase activity of FtsZ is not a major driver of cell constriction, then what is its role? 

GTPase activity has been clearly implicated in modulating FtsZ dynamics within the Z-ring 

(Anderson, Gueiros-Filho et al. 2004). These dynamics may influence the force-generation ability 

of the Z-ring (Allard and Cytrynbaum 2009), but may also influence its ability to transduce any 

force generated by other cellular processes. Previous studies have shown that the same amount 

of force applied at different frequencies can generate different cellular outcomes, suggesting 

that turnover dynamics within a force-transducing structure could act as a band-pass filter 

(Hoffman, Grashoff et al. 2011). In the case of divisome dynamics, this band-pass feature could 

mean that only forces applied (from cell wall modification) at a proper frequency can be 

transduced efficiently by the Z-ring, or vice versa. Thus, the GTPase activity of FtsZ, and divisome 
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dynamics in general, may be an important regulatory system to help coordinate force 

generation across the cell envelope. This is supported by the similarity in turnover dynamics (10 

- 30 s)  between FtsZ and the other divisome proteins investigated so far (ZapA, ZapB, FtsA, ZipA, 

EzrA, PBP2) (Mosyak, Zhang et al. 2000; Anderson, Gueiros-Filho et al. 2004; Geissler, Shiomi et 

al. 2007; Buss, Coltharp et al. 2015). 

The concept of harmonized dynamics between cytoplasmic and periplasmic divisome 

constituents is also related to the properties of a visco-elastic material, which behaves as a solid 

on timescales faster than its turnover dynamics, but as a fluid on longer time-scales that allow 

molecule turnover. This visco-elastic nature would allow the Z-ring to gradually adapt to the 

geometry of the invaginating septum on the minutes scale, while still maintaining a stiffness on 

short timescales to transduce or generate force. The observation that the Z-ring does not shown 

appreciable disassembly  in the MCZ84 mutant strain until much smaller ring diameters than the 

corresponding wt strain (Figure 2.9d vs. e) supports a role for FtsZ's GTPase activity in the 

gradual Z-ring remodeling required to accommodate the contracting ring diameter. 

Factors driving cell constriction 

While Z-ring perturbations showed no clear influence on septum closure rates, a strong 

correlation was observed between septum closure rate and cell elongation rate (Figure 2.13a-b). 

In particular, the rate of cell length elongation during constriction is identical to the rate of 

septum closure for wt cells (Figure 2.13d), suggesting that PG synthesis limits the rate of septum 

closure during constriction. This interpretation is also supported by early observations of 

prolonged constriction periods caused by mutations to FtsI or FtsQ (Taschner, Huls et al. 1988; 

Huls, Vischer et al. 1999; Aarsman, Piette et al. 2005), or by overexpression of FtsN (Aarsman, 
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Piette et al. 2005); these three proteins are all essential components of the divisome that are 

involved in new septum PG synthesis (Egan and Vollmer 2013). Consistent with this notion, 

analysis of the time-dependent change in septum closure rate was consistent with slowing 

septal surface area addition, but accelerating septum closure rate (α  < 2) in most cases (Table 

2.2).  

This study also shed light on another important factor that can modulate the rate of septum 

closure. The ∆matP strain modulated the coupling between septum closure rate and cell 

elongation rate during constriction as measured by the ratio of septum closure to cell elongation 

rate (Figure 2.13c-d). This effect is likely not caused by changes to Z-ring architecture because 

the same structural alterations were seen in the ∆minC strain, which did not show significant 

deviations from wt strains (Figure 2.13c-d). Because MatP is involved in nucleoid segregation 

(Espeli, Borne et al. 2012), and also has a role in stabilizing the Z-ring through its interaction with 

ZapB (Buss, Coltharp et al. 2015), this result likely suggests that the progress of cell envelope 

constriction and septum closure is coordinated with the progress of chromosome segregation so 

that the septum does not close over unsegregated chromosomes (Buss, Coltharp et al. 2015). 

This coordination is most likely mediated through DNA-binding divisome components (FtsK and 

MatP in E. coli (Mercier, Petit et al. 2008; Deghorain, Pagès et al. 2011; Espeli, Borne et al. 

2012)), which have synergistic effects (Stouf, Meile et al. 2013). 

It remains possible that the Z-ring does indeed generate a constrictive force during cell division, 

but that this force is not rate-limiting. The observed increase in Z-ring density during septum 

closure (Figure 2.8b) supports the existence of Z-ring condensation proposed to generate 

constrictive force (Ghosh and Sain 2008; Surovtsev, Morgan et al. 2008; Lan, Daniels et al. 2009; 
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Szwedziak, Wang et al. 2014). It is also possible, however, that the observed condensation is a 

natural consequence of lagging Z-ring remodeling in response to the gradually reducing septum 

diameter during cell wall constriction.  

If the Z-ring does generate a small, non-rate-limiting force during constriction, it may serve 

primarily to direct the spatial and temporal activity of divisome constituents rather than to 

directly constrict the cell envelope. A recent computational modeling study has shown that a 

substantial force (> 400 pN) would be needed to constrict a static E. coli cell wall, but that the 

existence of cell wall turnover and remodeling can reduce the required force to as little as ~ 8 

pN (Lan, Wolgemuth et al. 2007). This small contribution relative to that of cell wall remodeling 

is consistent with our finding that cell wall synthesis has a larger influence on the rate of septum 

closure than does Z-ring structure and function. This reasoning is further supported by the fact 

that the estimated magnitude of deformation force generated by FtsZ filaments reconstituted 

on liposomes is only on the order of 20 - 90 pN (Paez, Mateos-Gil et al. 2009; Horger, Campelo 

et al. 2010).  

Summary 

To summarize, these findings support a model in which the roles of cell wall synthesis and 

chromosome segregation dominate that of the Z-ring in defining the rate of septum closure. 

These results challenge the FtsZ-centric view of constrictive force generation in bacteria, and 

suggest that FtsZ should be viewed as a key regulator and mediator rather than major force 

generator. 

 



52 
 

Materials and Methods 
Bacterial strains and plasmid construction. 

All strains and plasmids used in this study are listed in  
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Table 2.4. 

Plasmid pTH025 that expresses ftsZ84-mEos2 was generated circuitously from pCH027 (Buss, 

Coltharp et al. 2013) as follows. The tagRFP-T gene was amplified from pCP-TagRFP-T (gift of 

Roger Tsien) by PCR using PfuTurbo (Agilent) with primers 

ATTAGAGCTCGATGCGGGAGGCCTTGGTGGTGCAATGGTGTCTAAGGGCGAAGAG and 

AATTGCGGCCGCTTACTTGTACAGCTCGTCCATGCCA, restricted with SacI and NotI (New England 

Biolabs), then ligated into pCH027 restricted likewise to generate pCH033 expressing ftsz-

tagRFP-T. The ftsz84 mutation (g310a ->  G105S) was constructed in pCH033 using the 

QuikChange protocol (Agilent) for site-directed mutagenesis with primers 

TGCTGCGGGTATGAGTGGTGGTACCGG and CCGGTACCACCACTCATACCCGCAGCA to generate 

pTH024 expressing ftsz84-tagRFP-T. Subsequently, a portion of the ftsz gene containing the 

ftsz84 mutation was restricted from pTH024 with XhoI and SacII (New England Biolabs) and 

ligated into pJB042 restricted likewise to generate pTH025. 

The ftsz84 mutation (g310a ->  G105S) was constructed in plasmid pXY021 from JW0093 

(Kitagawa, Ara et al. 2005) using the QuickChange protocol (Agilent) for site-directed 

mutagenesis with primers TGCTGCGGGTATGAGTGGTGGTACCGG and 

CCGGTACCACCACTCATACCCGCAGCA. 
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Table 2.4 Strains and plasmids used in this study 

Strain  Genotype Reference/source 

BW25113  F- Δ(araD-araB)567 ΔlacZ4787(::rrnB-3) rph-1 Δ(rhaD-
rhaB)568 hsdR514 

(Datsenko and Wanner 
2000) 
CGSC #7636 

JW1165 BW25113 ΔminC::kan (Baba, Ara et al. 2006) 
CGSC #9075 

JW0939 BW25113 ΔmatP::kan (Baba, Ara et al. 2006) 
CGSC #12061 

DH5α F– Δ(argF-lac)169 φ80dlacZ58(M15) ΔphoA8 
glnV44(AS) deoR481 rfbC1 gyrA96 recA1 endA1 thiE1 
hsdR17 

Life Technologies 

JOE309 MC4100 ara+ 
(MC4100: F–araD139 Δ(argF-lac)169 flhD5301 fruA25 
relA1 rpsL150(strR) rbsR22 Δ(fimB-fimE)632(::IS1) 
deoC1) 

(Chen and Beckwith 2001) 
Gift of Jon Beckwith 

MCZ84 MC4100 ftsz84(Ts) leu-260::Tn10 (Dai, Xu et al. 1993) 
CGSC #8259 

   

Plasmid Relevant genotype Reference/source 

pJB042 ColEl, PT5-lac::ftsz-mEos2 cat (Buss, Coltharp et al. 2013) 

pJB051 ColEl, PT5-lac::mEos2-zapA cat (Buss, Coltharp et al. 2015) 

pTH025 ColEl, PT5-lac::ftsz84-mEos2 cat This study 

JW0093 ColEl, PT5-lac::6xHis-ftsz-gfp cat  (Kitagawa, Ara et al. 2005) 

pXY021 ColEl, PT5-lac::6xHis-ftsz84-gfp cat This study 

 

 

Growth conditions and sample preparation 

For imaging studies, cell cultures grown as described previously (Buss, Coltharp et al. 2015). 

Briefly, saturated LB cultures were diluted by at least 1:100 in either M9+ (M9 supplemented 
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with MEM vitamins, MEM amino acids, and 0.4% glucose) or EZ-RDM media (Teknova) 

supplemented with 0.4% glucose and grown at room temperature (RT) until they reached OD600 

between 0.2 and 0.5. Antibiotics were added when appropriate: 150 µg ml-1 chloramphenicol 

and/or 50 µg ml-1 kanamycin. For iPALM and live PALM imaging, expression of FtsZ-mEos2 

(pJB042), FtsZ84-mEos2 (pTH025), and mEos2-ZapA (pJB051) were induced with 20 µM IPTG for 

two hours. Cells were then washed and allowed to grow for 1.5 - 2 hours or 3 hours at RT 

without inducer before collection for imaging (live PALM) or fixation (iPALM), respectively. FtsZ-

GFP and FtsZ84-GFP were imaged using basal expression from JW0093 or pXY021, respectively.  

The level of FtsZ-mEos2 expression achieved with the 3 hour growth without inducer for iPALM 

was assessed previously to be ~ 25 % of total FtsZ (Buss, Coltharp et al. 2015). The levels of FtsZ-

mEos2 and FtsZ84-mEos2 achieved using the 1.5 - 2 hour growth without inducer for live PALM 

were assessed by quantitative immunoblotting as described previously (Buss, Coltharp et al. 

2013) to be ~ 70% of total FtsZ in all strains (Figure 2.14). Levels of FtsZ-GFP and FtsZ84-GFP 

achieved by basal expression were similar to or lower than that of FtsZ-mEos2 and FtsZ84-

mEos2 used for live PALM in all strains (Figure 2.14).  
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Figure 2.14 Immunoblot analysis of FtsZ, FtsZ-mEos2, and FtsZ-GFP expression levels.  
(a) (i) Representative immunoblot of BW25113 cells expressing FtsZ-mEos2 in M9 prepared in the same manner used 
for live cell PALM imaging: 2 hour induction with 20 μM IPTG followed by 2 hour growth without inducer (left lane). 
The right three lanes contain purified FtsZ and FtsZ-mEos2 as standards to quantify the relative amounts of FtsZ and 
FtsZ-mEos2 in the left lane.  (ii) The relative band intensity of FtsZ-mEos2 compared to the total intensity of FtsZ-
mEos2 and FtsZ in the BW25113 cells (top, ratio = 0.44 ± 0.01, n = 2) corresponds to a relative concentration of FtsZ-
mEos2 relative to total FtsZ-mEos2 and FtsZ concentration of 0.69 ± 0.02 (bottom, n = 2). (b) (i) Immunoblots of all 
strains and conditions used in this study. Abbreviations: BW, BW25113; Zg, FtsZ-GFP; Zm, FtsZ-mEos2. (ii) Relative 
band intensities for all strains and conditions used in this study are similar to that measured for BW25113 grown in 
M9 (a) with the exception of FtsZ84-GFP expression in MCZ84, which may be lower. 
 
 

Fixation was performed using 4% (v/v) paraformaldehyde in PBS (pH 7.4) for 45 min at RT. 

Immuno-fluorescence samples were prepared as described previously (Buss, Coltharp et al. 

2013) using 1:100 and 1:150 dilutions of rabbit α-FtsZ (a gift from H. Erickson) and mouse α-GFP 

(Life Technologies, A-11120), respectively. Secondary antibodies, Alexa Fluor® 568 goat α-rabbit 
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IgG (Life Technologies, A-11011) and Alexa Fluor® 488 goat α-mouse IgG (Life Technologies, A-

11001) were subsequently applied at 1:140 and 1:200 dilutions, respectively. 

Fluorescence imaging 

iPALM data collection was performed as previously described (Buss, Coltharp et al. 2015). 

Several datasets used in this study overlap with those used to examine different phenomena in 

a previous study (Buss, Coltharp et al. 2015). Molecule localizations from iPALM data were 

identified using PeakSelector v9.3 software (Shtengel, Galbraith et al. 2009). Live PALM and 

immuno-superresolution image acquisition and molecule localization were performed using 

custom MATLAB routines as described previously (Buss, Coltharp et al. 2013; Buss, Coltharp et al. 

2013; Buss, Coltharp et al. 2015). Prior to live PALM imaging, a green fluorescence and 

brightfield snapshot of each cell was acquired for determination of cell morphology and Z-ring 

intensity. The resolution achieve for iPALM and PALM data was measured from the 

displacements of nearest neighbors in adjacent frames (Endesfelder, Malkusch et al. 2014) 

(Figure 2.2) and are listed in Table 2.1. Simultaneous two-color acquisition of immuno-

superresolution data was achieved using an OptoSplit II (Cairn Research) device and overlaid 

using registration transformations obtained from images of multi-emission TetraSpeck beads 

(Life Technologies, T-7279) as described previously (Buss, Coltharp et al. 2015). The image 

registration error was 4.6 nm. All iPALM and live PALM images were visualized using the ViSP 

representation software (Beheiry and Dahan 2013) where each molecule was colored according 

to the local molecule density (neighbors within 30 nm). Immuno-fluorescence images were 

visualized using custom MATLAB (MathWorks) routines (Buss, Coltharp et al. 2013; Buss, 

Coltharp et al. 2015) and ImageJ (Schneider, Rasband et al. 2012). Time-lapse imaging of FtsZ-
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GFP was performed at 4- to 8-minute time intervals as described previously (Buss, Coltharp et al. 

2015).  

FtsZ cluster simulation 

Simulations of FtsZ clusters were generated by Monte Carlo methods with the following 

parameters. Z-rings were represented as one-dimensional (1D) structures in which all FtsZ 

molecules are projected onto the circumferential dimension of the ring. Each simulation 

condition was defined by three parameters: cluster density (ρc, number of clusters per μm), 

cluster length (lc, FWHM of a cluster in which molecules are normally distributed about its 

center), and fclustered (the fraction of Z-ring molecules localized to clusters; the non-clustered 

molecules are assumed to be uniformly distributed around the ring). A fourth parameter, FtsZ 

molecule density (ρm, molecules per μm), was applied in the same manner for all simulation 

conditions. For each set of three simulation parameters, 500 Z-rings were simulated as follows: 

1. Initialize Z-ring circumference, circum = 3.14 μm. 

2. Sample molecule density ρm with replacement from the distribution of experimental 
measurements for the strain of interest (BW25113 or DH5α).  

3. Sample the number of clusters in this ring, nc, from a Poisson distribution with mean, 
ρc*circum*ρm/<ρm>. Simulations with higher values of ρm will have more clusters such 
that the average number of molecules in clusters remains similar across different rings 
in this simulation. 

4. For each of nc clusters: 

• Sample its center position (pcenter) from a uniform random distribution between 
0 and circum. 

• Sample its FWHM, sizeFWHM, from an exponential distribution with mean, lc. This 
exponential distribution of cluster sizes and molecules (next line) resembles a 
random aggregation model.  
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• Sample the number of molecules in this cluster, nm-clust,  from an exponential 
distribution with mean, fclustered*ρm/ρc 

• For each of nm-clust molecules: 

• Sample its center position from a normal distribution with mean, pcenter, 
and σ = sizeFWHM/2.35. This results in clusters with Gaussian shapes as 
observed in iPALM images. These cluster sizes thus include size 
amplification caused by finite localization precision, and the dimensions 
of the underlying structure is sqrt(sizeFWHM

2
 - resolutionFWHM

2). 

5. Sample the number of non-clustered molecules in this ring nm-non, from a Poisson 
distribution with mean, ρm*circum*(1 - fclustered)  

6. For each of nm-non molecules: 

• Sample its center position from a uniform random distribution between 0 and 
circum. 

The result of each simulation is a set of molecule coordinates for 500 simulated rings. The 

properties of these simulated coordinates and those of the experimental datasets were 

assessed as follows: 

1. Crop each simulated or experimental ring to the central 600 nm to avoid edge effects. 

2. Calculate the normalized molecule density histogram along the ring circumference: 
fraction of molecules residing in each 10 nm stretch of Z-ring circumference. 

3. From this histogram, calculate (i) the spatial autocorrelation (acf) of molecule density 
along the circumference and (ii) the probability distribution of normalized molecule 
density (see Figure 2.5).  

4. For each simulated or experimental condition, calculate the average of both curves 
calculated in 3. 

Each simulation condition (set of parameters for ρc, lc, and fclustered ) was compared to an 

experimental condition by assessing the sum of the squares of the residuals (SSRs) for both the 

acf (Figure 2.5a) and molecule density histogram (Figure 2.5b). Each SSR value was normalized 

by the median SSR value for that curve in all simulations. Then, the normalized SSR values for 
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the acf and density histogram of each simulation were combined as the root mean squared sum 

to generate SSRcombined. This combined value thus represents the collective deviation of each 

simulation from the experimental result. The distribution of simulation parameters resulting the 

lowest SSRcombined values are shown in Figure 2.5c. 

Additional image processing,  data analysis, and simulation 

For iPALM images, Z-ring width was measured from the x-y projection as the full width at half 

maximum (FWHM) of molecule density. The molecule positions were then projected onto the 

cell's cross-section (x-z plane) and fit with a circle, whose diameter represents that of the Z-ring. 

Lastly, the apparent Z-ring thickness was measured as the FWHM of molecule density projected 

along the circumference of the fitted circle. See Figure 2.15a for an example. Note that the 

apparent ring width and thickness measured using the toroidal zone are generally larger than 

those of individual FtsZ clusters as some clusters are not perfectly aligned with each other.  

Measurements of Z-ring width and diameter from live PALM images was performed using 

custom MATLAB software as described previously (Buss, Coltharp et al. 2015) and illustrated in 

Figure 2.15b. Because the spatial resolution of the optical setup used to perform the live PALM 

experiments improved during the course of this work, resulting in systematic changes to the 

apparent ring width values, Table 2.1 also lists 'deconvolved widths' for comparison. The 

deconvolved width was calculated by assuming that the measured ring FWHM is the root-mean-

square sum of the deconvolved width and the spatial resolution, as would be expected if the 

underlying Z-ring profile is Gaussian (Coltharp, Yang et al. 2014).  
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Figure 2.15 Dimension measurements from superresolution data. 
(a) (i) For iPALM data, coordinates of molecules within the ring (blue) were cropped out to measure the ring 
dimensions. (ii) Ring width was measured by projecting all coordinates within the ring onto the Y axis (longitudinal cell 
axis), then fitting the molecule density histogram (gray bars) with a Gaussian distribution (black line) to obtain the 
FWHM dimension.  (iii) Ring diameter (dashed black line) was measured by fitting a circle (left, solid black line) to the 
XZ projection of molecule coordinates (blue). This fitting worked well even if only a portion of the circle is sampled (as 
in TIRF imaging).  Ring thickness was measured by generating a histogram of the distance of each coordinate within 
the ring from the fitted circumference (Δr, gray bars). The FWHM of a Gaussian (solid black line, right) fitted to this 
distribution was defined as the ring thickness.  (b) (i) From live PALM images, ring dimensions was calculated from 
cropped ring images (magenta box). (ii) Ring diameter was determined as the distance between the two distal peaks 
(dashed lines) in the projected ring intensity along the X axis (cell width). Ring width was measured as the FWHM of a 
Gaussian (solid black line) fit to the ring intensity projected along the Y axis (longitudinal cell axis).  
 
 

Measurements of the percent of FtsZ-mEos2 or FtsZ-GFP fluorescence localized to midcell 

relative to that in the whole cell were made from the green fluorescence image acquired prior 

to live PALM imaging with user-defined regions defining the ring and cell outlines. This value is 

30 - 40 % prior to the start of cell division, irrespective of the fluorescent protein fusion, and 
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unaffected by overexpression of up to 8-fold the endogenous level of FtsZ (Anderson, Gueiros-

Filho et al. 2004; Geissler, Shiomi et al. 2007; Fu, Huang et al. 2010). As the endogenous FtsZ 

concentration remains constant throughout the E. coli cell cycle (Rueda, Vicente et al. 2003; 

Weart and Levin 2003), this relative fluorescence measurement should reflect FtsZ quantities in 

the Z-ring proportionately throughout the entire contraction process, and allows direct 

comparison of cells with varying expression levels. Because growth in EZ-RDM resulted in higher 

cellular autofluorescence background than growth in M9, midcell percentage of FtsZ-mEos2 in 

BW25113 cells was calculated using a corrected total cell intensity calculated by subtracting the 

average total intensity of BW25113 cells not expressing fluorescent protein fusions from the 

measured total cell intensity. 

Time-lapse montages were generated in ImageJ (Schneider, Rasband et al. 2012) using the 

StackReg plugin (Thevenaz, Ruttimann et al. 1998) to spatially align adjacent frames. The length 

of each Z-ring period was determined from time-lapse fluorescence and brightfield images of 

cells expression FtsZ-GFP. The end of a mother cell cycle (and thus daughter cell birth) was 

identified as the frame at which FtsZ-GFP fluorescence disappears completely (Figure 2.7) (Buss, 

Coltharp et al. 2015). Z-ring stabilization was defined as the frame after which the fluorescent Z-

ring no longer sampled non-midcell regions. The first frame of visible constriction was 

determined from brightfield images.  The beginning of Z-ring disassembly was defined as the last 

frame before continuous decrease in Z-ring fluorescence intensity at the end of the cell cycle. To 

avoid extensive signal overlap from adjacent cells, only cells located at the micro-colony 

periphery were analyzed. In mutant strains, only cells exhibiting normal, midcell division were 

analyzed. 
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Conversion of time-lapse traces of the percentage of FtsZ at midcell vs. time into traces of the 

percentage of FtsZ at midcell vs. septum diameter was achieved by simulation. For each strain, 

2000 traces were generated by sampling with replacement from the duration distributions of 

Contraction Phase I and Contraction Phase II. Each time trace was generated by assuming that 

the percentage of FtsZ at midcell, p, remained constant at p0 for the duration of Contraction 

Phase I, then decreased linearly to pf during Contraction Phase II to generate p vs. t traces that 

are smoothed mimics of the time-lapse trajectories (Figure 2.7b and Figure 2.11b). The values of 

p0 and pf were taken from the starting and ending y-values of the p vs. D plots (e.g. Figure 2.8f). 

The time values of the simulated traces were then converted to diameter, D(t), values according 

to Equation 1 to generate p vs. D traces using varying values of α. The τc value for each trace is 

the sum of the durations of its sampled Contraction Phase I and II periods. The D0 value for each 

trace was taken as the average D0 value for each strain.  

Statistics 

All reported errors are standard errors of the mean. All reported correlation values are 

Pearson's r. Two-tailed p-values for comparison of structural dimensions and time-lapse period 

durations were calculated using Student's t. Two-tailed p-values for comparison of septum 

closure rates (vc) and rate ratios (<vc/vep> and <vc/vec>) were calculated using randomization 

tests with 20,000 iterations. 

  



64 
 

 

 

 

  

Part II: 
 

Quantitative Superresolution 
Fluorescence Microscopy 
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Chapter 3 : 
 

Overview of Superresolution Fluorescence 
Microscopy 

Adapted with permission from: 

 Coltharp, C., Xiao, J. Superresolution microscopy for microbiology. Cellular Microbiology 

(2012).  

and  

Coltharp, C. Yang, X.,  Xiao, J. Quantitative analysis of single-molecule superresolution 

images. Current Opinion in Structural Biology (2014). 
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Introduction 
Light microscopy is a powerful and widely-used research tool in biology that has profoundly 

increased our understanding of cell biology. It employs visible light to resolve small cellular 

objects and dynamic processes in biological samples. The biological questions that can be 

investigated with light microscopy are limited by the imaging resolution, which defines the 

minimum distance between two distinguishable features. For conventional optical microscopes, 

the resolution is bounded by the diffraction of light, which causes the signal from a point source 

to spread as it travels to the detector.  The shape of the resulting signal is termed the 'point 

spread function (PSF)' and can be well-approximated by a Gaussian distribution.  The FWHM of 

this Gaussian determines the 'diffraction limit' of resolution, which is approximately half the 

wavelength of detected light (>250nm for most biocompatible fluorophores) (Rayleigh 1896; 

Katsu, Tsuchiya et al. 1984). 

Electron microscopes (EM) can achieve superior resolution because the wavelength of an 

electron is subnanometer.  However, it is difficult to specifically label proteins to allow their 

unambiguous identification under EM. Additionally, fixation or vitrification of samples, which is 

required for EM, is not compatible for live cell imaging.  

Recently, a variety of superresolution fluorescence microscopy techniques have been developed 

to take advantage of the specific labeling and live-cell compatibility afforded by fluorescent light 

miscopy, while achieving resolutions (10-50 nm) approaching that of electron microscopy.  

These  techniques can be divided into three categories:  first, methods based on single-molecule 

localization such as photoactivated localization microscopy (PALM) (Betzig, Patterson et al. 

2006) and stochastic optical reconstruction microscopy (STORM) (Rust, Bates et al. 2006; Bates, 
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Huang et al. 2007); second, derivations of structured illumination microscopy (SIM) (Heintzmann 

and Cremer 1999; Frohn, Knapp et al. 2000; Sharonov and Hochstrasser 2006; Folling, Bossi et 

al. 2008); and third, point-scanning methods such as stimulated emission-depletion (STED) 

microscopy (Burnette, Sengupta et al. 2011; Bakshi, Siryaporn et al. 2012).  

Single Molecule Localization Methods 
Photoactivatable and photoswitchable fluorophores are the key to implementing localization-

based superresolution techniques.  These fluorophores can transition stochastically between 

bright and dark emission states by exposure to specific wavelengths of light.  During 

superresolution imaging, activation light is kept at a low level such that within a diffraction-

limited area only a single fluorophore is fluorescing at a time (Figure 3.1A). The positions of 

these single molecules are then localized with nanometer accuracy by fitting their intensity 

profiles with a Gaussian function that approximates the microscope's PSF.  Positions collected 

from thousands of frames are then overlaid to reconstruct a superresolution image. During this 

acquisition time, fiducial beads are often added to the sample to track and calibrate stage drift.  

This principle was first demonstrated in 2006 using photoactivatable fluorescent proteins 

(PALM)(Betzig, Patterson et al. 2006) and cyanine dye pairs (STORM) (Rust, Bates et al. 2006), 

and resolutions of 10nm and 20nm were achieved, respectively.  Later, this principle was 

extended to conventional organic dyes, which have been shown to photoswitch robustly under 

proper buffer conditions (Fleming, Shin et al. 2010; Fu, Huang et al. 2010; Plass, Milles et al. 

2011). The general principle of isolating single fluorophores can be further extended to 

nonphoton-driven switching. For example, PAINT (Point Accumulation for Imaging in Nanoscale 
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Topography) utilizes fluorophores that can only be detected when their fluorescence is 

enhanced ~1000 fold by binding reversibly to a lipid membrane (Zhu, Zhang et al. 2012).  

 

 

Figure 3.1 Key concepts and acquisition schematics for each superresolution technique.   
In each schematic, molecule positions are shown as white circles, excitation light is represented in green, depletion 
light is represented in red, and fluorescing molecules are highlighted in yellow. In acquisition schematics, molecule 
positions mimic cellular distributions of the FtsZ protein, which is the only bacterial protein to be analyzed by all three 
methods. (A) Single-molecule localization-based techniques such as PALM and STORM apply low levels of activation 
light (violet arrow) so that single molecules are stochastically activated and localized.  An activated molecule produces 
a diffraction-limited spot (diffuse yellow circle), which is fit with a Gaussian function to localize the molecule's 
position with nanometer precision. After hundreds to thousands of molecules have been localized, their positions are 
superimposed to create the superresolution image (bottom).  (B) SIM utilizes the moiré effect, which results when an 
illumination pattern (green stripes) is applied to a specimen with fine structures that are smaller than the diffraction 
limit (e.g. closely-spaced yellow stripes or molecule positions).  Interference between the illumination pattern and the 
sample produces moiré fringes (two are shown as diagonal black lines) that are spaced further apart than the 
underlying sample spacing, thus visualizing sub-diffraction-limited features. Several illumination patterns are applied 
to the sample, then spatial information extracted from the Fourier transforms of each image is combined to generate 
the superresolution image (bottom).   Although the emission from fluorescing molecules (yellow circles) is diffraction-
limited, the diffraction-limited profiles are omitted for clarity. (C) For STED imaging, concentric excitation and 
depletion beams (green circle and red donut, respectively) are projected onto a sample.  Although fluorophores are 
excited throughout the diffraction-limited excitation spot (large green circle), the depletion beam (red donut) 
stimulates molecules outside the central 30-80nm region back to the ground state before they fluoresce, generating a 
superresolution PSF (small green circle). These beams are scanned across the specimen to collect the superresolution 
image (bottom).  
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Structured Illumination Microscopy (SIM) 
SIM achieves superresolution by extracting fine structural details from the interference of a 

structure with predetermined illumination patterns.  When a sinusoidal illumination pattern 

(Figure 3.1B, green shading) is applied to a fluorescent sample, an interference pattern results. 

The diffraction-limited fringes of this interference pattern, called moiré fringes, contain 

information about the underlying structural pattern of the sample that cannot by observed with 

conventional light microscopy. By applying a set of illumination patterns of different spacing and 

rotation angles to the same sample (Figure 3.1B), sub-diffraction-limited structural information 

of the sample can be extracted from Fourier transforms of the resulting interference patterns. 

(Lukosz 1963; Heintzmann and Cremer 1999; Frohn, Knapp et al. 2000; Gustafsson 2000). 

Standard implementations of SIM achieve two-fold improvement in lateral resolution (Frohn, 

Knapp et al. 2000; Sharonov and Hochstrasser 2006), but finer resolution can be achieved by 

taking advantage of nonlinear fluorescence responses (Shroff, Galbraith et al. 2007; Folling, 

Bossi et al. 2008). Thus far, applications of SIM in bacterial cells have employed the two-fold 

improvement afforded by commercial systems: Applied Precision DeltaVision OMX (Westphal, 

Rizzoli et al. 2008; Lieberman, Frost et al. 2012) and Nikon N-SIM (Kner, Chhun et al. 2009).  The 

main advantage of SIM is that superresolution can be achieved with any conventional 

fluorescent protein because the resolution enhancement comes solely from the patterned 

illumination and image processing. 

Stimulated Emission Depletion Microscopy (STED) 
STED microscopy was the earliest far-field superresolution technique developed (Burnette, 

Sengupta et al. 2011; Bakshi, Siryaporn et al. 2012). The instrumentation is similar to a confocal 
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microscope with the addition of a depletion laser, which stimulates excited molecules back to 

the ground state in a donut-shaped region around the central confocal spot (Figure 3.1C).  In this 

way, only molecules within 30 - 80 nm of the center of the excitation spot are detected.  This 

depletion concept was extended to fluorophore photoswitching by using the donut-shaped 

depletion beam to switch fluorophores into the off state instead of stimulating emission 

(Grotjohann, Testa et al. 2011).  This process, termed Reversible Saturable Optical Fluorescence 

Transitions (RESOLFT), mitigates the detrimental effect that the high power depletion beam may 

have on cell viability because the RESOLFT depletion beam is used at much lower power (~ 1 

kW/cm2) than the stimulated depletion laser (100 - 500 MW/cm2) (Grotjohann, Testa et al. 

2011). 

Practical Considerations for Microbiology 
Time Resolution  

Because each superresolution image is the combined result of multiple frames or scans, the 

acquisition time for a complete superresolution image relative to the timescale of dynamics 

associated with a protein of interest is important for live cell imaging. In this regard, bacterial 

cells are ideal specimens for superresolution imaging because of their small sizes, which allow 

very small scanning or illumination areas to increase imaging speed and probe the real-time 

dynamics of bacterial proteins and cellular structures in live cells.  

SIM has the fastest time resolution of the three categories described in this review.  Each 2D 

SIM image requires only 5-20 frames for reconstruction, so one superresolution image can be 

generated in a few seconds, and imaging rates of up to 11Hz (one complete SIM image in 90ms) 

have been achieved for fields of view sufficient for bacterial samples (13μm x 13μm)(Kner, 
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Chhun et al. 2009). STED and RESOLFT microscopy have slower time resolutions than SIM due to 

the requirement for point-scanning.  However, the small size of bacterial cells makes this much 

less of an issue, so STED images can be collected in several seconds, and a 1.8 x 2.5 μm2 area has 

been imaged at up to 28 Hz (one complete STED image in 36ms) (Ando, Mizuno et al. 2004).   

Single molecule localization-based methods have the slowest time resolution because 

thousands of frames are required to sufficiently sample a structure of interest.  The Nyquist 

sampling criterion states that a desired resolution of X nm will be achieved if the sampling 

frequency is at least X/2 nm (Shannon 1949; Biteen and Moerner 2010; Coltharp, Yang et al. 

2014). For example, to achieve a resolution of 30 nm, a structure should be labeled with one 

molecule every 15 x 15 nm2. Because of this criterion, compact structures are ideal candidates 

for live-cell superresolution imaging as they require fewer localizations for sufficiently sampling 

(e.g. a 45 x 45 nm2 structure requires 9 molecules and a 450 x 450 nm2 structure requires 900 

molecules to achieve 30 nm resolution).  Consequently, tight clusters and cytoskeletal elements 

can be sufficiently sampled in under a minute (Gustafsson 2005; Hein, Willig et al. 2008). 

Imaging Duration 

Another component of live-cell imaging is the number of time-lapse superresolution images that 

can be acquired.  For SIM and STED imaging, the number of superresolution images that can be 

acquired is usually limited by fluorophore photobleaching.  This can be very problematic for 

bacterial structures, which are often made up of only a few hundred of molecules.  This 

limitation can be overcome by ectopically overexpressing the proteins of interest, but as 

described below, protein overexpression may limit the biological conclusions that can be drawn. 

For STED, it was reported that up to 30 superresolution images can be acquired without 
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significant photobleaching in live mammalian cells using the fluorescent protein citrine (Hein, 

Willig et al. 2008). However, this extended imaging time remains to be demonstrated in 

bacterial cells where protein expression levels are generally lower.  

When imaging live cells by single-molecule localization-based techniques, the number of 

superresolution images that can be acquired is also limited by the protein expression level 

because each image needs to have sufficient sampling of the visualized structure.  An additional 

constraint for these techniques is the cell viability under continuous laser exposure throughout 

the imaging sequence.  Although the intensity of 405 nm light typically used to induce 

photoactivation and photoswitching is relatively low (1 - 5 kW/cm2) (Liu, Xing et al. 2014), 

prolonged exposure can result in reactive oxygen species that cause DNA damage.   Since the 

transcriptional response to DNA damage begins at approximately 20 min after exposure to UV 

light in E. coli (Klein, Proppert et al. 2014), the duration of live-cell PALM imaging is typically kept 

to less than 15 minutes (Friedman, Vardi et al. 2005; Gustafsson 2005; Hein, Willig et al. 2008; 

Heilemann, van de Linde et al. 2009; Holden, Uphoff et al. 2011). 

Probe Selection 

The three methods described here have different fluorophore requirements, and the properties 

of these probes have been reviewed elsewhere (Fernandez-Suarez and Ting 2008; Kopek, 

Shtengel et al. 2012). Below is a brief account of the types of probes suitable for the three 

imaging categories with emphasis on specific probe selection considerations associated with 

bacterial cells.  

Among the three methods described here, SIM has the most lax probe requirements, allowing 

any combination of excitation and emission wavelengths that can be accommodated by a 
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widefield fluorescence microscope. As mentioned above, photostability is crucial for time-lapse 

and 3D SIM imaging, and consequently most studies utilize bright organic dyes and, more 

recently, EGFP.  STED requires dyes that can be specifically excited and depleted by spectrally-

separated lasers (e.g. Alexa647N or citrine) and RESOLFT requires fluorophores that can be 

photoswitched thousands of times (e.g. rsEGFP). For single-molecule based localization 

methods, photoactivatable and photoswitchable proteins such as Dendra, Dronpa, mEos2, and 

PAmCherry are common genetic labels for PALM, while (d)STORM utilizes organic dyes such as 

the Cy3-Cy5 pair or Alexa647, which have been extensively characterized to determine optimal 

buffer conditions (Strahl and Hamoen 2010). 

Improving the stability or photoswitching kinetics of superresolution fluorophore can vastly 

improve data throughput and quality.  For example, because the precision of single-molecule 

localization is determined by the number of photons collected (Thompson, Larson et al. 2002), 

the frame rate of PALM/STORM measurements is limited by the exposure time required to 

collect sufficient photons from a single molecule. In addition, the prevalence of photoblinking 

among most fluorophores, which can cause false measurements of molecule density, must be 

taken into consideration or accounted for by the superresolution image reconstruction 

algorithm (Annibale, Vanni et al. 2011; Annibale, Vanni et al. 2011). Hence, the ideal fluorescent 

protein for PALM would have a high quantum yield during a single fluorescence burst, and 

photobleach very quickly so that new molecules can be activated at a faster rate.   

Most superresolution studies in bacteria have used genetically-encoded fluorescent proteins.  

Although organic dyes often have superior photophysical properties, it is very difficult to achieve 

high efficiency labeling of intracellular proteins due to low cell wall permeability.  Thus, most 
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dye-labeling schemes require cell wall permeabilization via lysozyme and detergent treatment, 

and are only compatible with fixed cells.   Schoen et al. demonstrated this method using 

PicoGreen, which becomes 1000-fold brighter upon binding DNA (Shannon 1949). 

Functionality of Labeled Protein 

Fusing a fluorescent protein to a protein of interest may affect its function and localization 

pattern, especially if the fluorescent protein has a tendency to oligomerize (Zhang, Chang et al. 

2012). To test for functionality, the fusion protein should be expressed and examined for full 

recovery of physiological activity in a null mutant of the native protein (Friedman, Vardi et al. 

2005; Dempsey, Vaughan et al. 2011; Patterson 2011). If full activity recovery cannot be 

achieved, the fusion protein can be expressed ectopically so that it decorates the endogenous 

structure as long as the subcellular localization of the fusion protein is identical to that of 

unlabeled protein (Gustafsson 2005; Hein, Willig et al. 2008; Westphal, Rizzoli et al. 2008; 

Dempsey, Vaughan et al. 2011).  Because each fluorescent protein may have a different 

interaction with a given protein or its cellular surroundings, probe selection may require testing 

several different fluorescent proteins (Dempsey, Vaughan et al. 2011) or linkers (Sengupta, 

Jovanovic-Talisman et al. 2011).  

Expression Level 

In general, superresolution techniques are more successful for proteins with naturally high 

expression levels. For both STED and SIM, higher expression levels provide higher contrast and 

allow acquisition of more image stacks for 3D or time-lapse imaging.  For PALM and STORM, 

expression levels determine the degree of sampling within a structure and thus directly 

influence the effective imaging resolution. Overexpression of a protein of interest can enhance 
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image quality, but can also result in aberrant structures or measurements because most 

biological systems are fine-tuned to operate within a given concentration range.  Whenever 

possible, superresolution studies should be conducted at physiological expression levels 

(Gustafsson 2005; Greenfield, McEvoy et al. 2009; Patterson 2011), and careful controls should 

be performed if overexpression is required.  

Fixation 

Although live cells provide the most physiological conditions for imaging, fixation is often 

necessary for some samples and measurements.  For structures that move on the time-scale of 

imaging, fixation may be the only way to 'freeze' the movement and capture true structural 

dimensions without motion-induced blur.  Fixation may also be required to localize fast-moving 

cytoplasmic proteins, which are  usually undetectable in live PALM experiments. Furthermore, 

the most suitable way to measure molecule density is from fixed cells where molecule 

movement cannot obstruct counting measurements.  

As with high-resolution EM samples, caution must be taken to avoid fixation-induced distortions 

to cellular structures, especially for membrane-associated proteins.  Although formaldehyde and 

glutaraldehyde are common fixatives for EM, formaldehyde is most common for fluorescence 

imaging because glutaraldehyde often generates a high autofluorescence background (Fischer, 

Jacobson et al. 2008).  Because fixation is reversible, fixed samples should be stored at 4°C and 

imaged as soon as possible (Fischer, Jacobson et al. 2008). If the imaged structures do not move 

on the timescale of imaging, comparison of fixed and live samples can provide assurance that 

fixation has not introduced noticeable aberrations (Lee et al., 2011, Fu et al., 2010). 

Sample Immobilization 
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Preparation of bacterial samples is similar among all superresolution techniques, which have 

utilized two main methods of cell immobilization: adherence via Poly-L-Lysine (PLL) and 

compression via agarose gel pad. PLL adherence is very convenient, but has been shown to the 

affect the proton-motive force (McKinney, Murphy et al. 2009; Fu, Huang et al. 2010) and 

protein localization (Fu, Huang et al. 2010; Buss, Coltharp et al. 2013) in E. coli.  As a result, most 

live-cell studies immobilize cells with 1.5%-3% agarose gel pads (Gustafsson 2005; Biteen, 

Thompson et al. 2008; Hein, Willig et al. 2008; Westphal, Rizzoli et al. 2008; Kner, Chhun et al. 

2009; Holden, Uphoff et al. 2011; Sengupta, Jovanovic-Talisman et al. 2011; Wheeler, Mesnage 

et al. 2011; Biteen, Goley et al. 2012; Szwedziak, Wang et al. 2012). Detailed instructions 

regarding sample preparation, imaging, and data analysis for PALM studies in bacterial cells 

have been described for C. crescentus (Greenfield, McEvoy et al. 2009) and E. coli (Colville, 

Tompkins et al. 2009). 

Hardware and Software Complexity 

Although the localization-based methods were the latest to be developed, their incorporation 

into microbiological study has far outpaced the other two methods as evidence by the number 

of studies reviewed here. This is most likely because of the minimal hardware modifications and 

expertise required to implement a PALM or STORM system. Construction of a STED microscope 

requires considerable investment and expertise, but the availability of commercial systems for 

both SIM (Applied Precision DeltaVision OMX and Nikon N-SIM) and STED (Leica TCS STED) make 

these methods viable options for shared facilities. 

Image processing is conversely much simpler for STED than for localization methods or SIM.  

Because the superresolution information of STED is encoded in the scanning beams, almost no 
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image processing is required and superresolution images can be observed in real time.  SIM 

images can only be viewed after deconvolving the high resolution information from each set of 

fringes, and PALM/STORM experiments require detection and localization of hundreds to 

thousands of spots per bacterial cell. Improvement of the analysis algorithms for both SIM and 

PALM/STORM is ongoing, with several new publications per year.  For PALM and STORM, 

improvements have focused on accurate localization of overlapping emitters (Holden, Uphoff et 

al. 2011; Zhu, Zhang et al. 2012) to improve imaging speed and correcting for overcounting 

artifacts caused by photoblinking (Annibale, Vanni et al. 2011; Sengupta, Jovanovic-Talisman et 

al. 2011; Veatch, Machta et al. 2012).  

Quantitative Analyses 
The single-molecule methods, PALM and STORM, are unique because they provide lists of 

molecule coordinates in addition to intensity-based superresolution images.  Proper analysis of 

the molecule coordinates enables quantitative characterization of the density, size, composition, 

and spatial distributions of cellular structures at near-molecular precision.  Such quantitative 

information is difficult to obtain by other imaging techniques.   

Image-based Analyses 

Rendering PALM and STORM images. The output data of single-molecule localization 

algorithms contain molecule coordinates and their associated localization precisions, which are 

used to render a superresolution image. An intuitive method to represent this data is by super-

imposing unit Gaussian distributions centered on each molecule’s coordinates. These Gaussian 

distributions are analogous to the PSFs that cause the familiar blur in conventional images 

(Figure 3.2Ai), but with standard deviations specified by each molecule's estimated localization 
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precision (Figure 3.2Aii).  Because the localization precision represents the uncertainty of each 

molecule's position, the intensities in this accumulated image represent relative probabilities 

that the detected molecules are located in each pixel but not the absolute number of molecules. 

  

 

Figure 3.2 Super-resolution image generation and dimension measurement.   
(A) Simulated clusters (70 nm FWHM) displayed as a diffraction-limited image (i), superresolution Gaussian plot (ii), 
and superresolution 2D histogram (iii). Sigma for each Gaussian spot in (ii) is specified as 15 nm localization precision. 
(B) Underlying structural cross section profiles (green) are convolved with Gaussian-distributed localization precision 
(magenta) to generate apparent profiles in superresolution images (gray). Fitting the apparent profile with a Gaussian 
distribution (cyan) yields the apparent width, FWHMapp. The true FWHM can be inferred using the relationship 

𝑭𝑾𝑯𝑴𝒕𝒓𝒖𝒆  = �𝑭𝑾𝑯𝑴𝒂𝒑𝒑
𝟐 −  𝑭𝑾𝑯𝑴𝒍𝒐𝒄

𝟐 , which is only valid for inherently Gaussian-distributed structures (iii and 

iv), and yields erroneous measurements for other structures (i and ii). Prior knowledge of the underlying structures 
can yield the correct width via deconvolution (widthdecon and FWHMdecon). (C) Cluster FWHM measured from the 2D 
histogram (red) and Gaussian plot (blue) plotted against true FWHM. Insets: representative measurements of 70 nm 
clusters (white dotted outlines in A). Y-intercepts represent smallest measurable FWHM by each method, which is 
determined by localization precision (magenta). 
 
 

An alternative representation that allows comparison of molecule counts is a two-dimensional 

histogram of number of molecules per pixel (Figure 3.2Aiii). Molecules can only be confidently 

assigned to a particular pixel in this histogram if the pixel size is larger than the typical 

localization precision.  Quantifying the absolute number of molecules in a structure from this 
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histogram requires correction for over- and under-counting artifacts (see 'Counting Molecule 

Numbers' below).  However, these artifacts apply universally to the entire image, so relative 

molecule counts within different regions and features can still be measured directly from a 

sufficiently-sampled histogram without further correction (Coltharp, Kessler et al. 2012).   

Measuring structural dimensions. The dimension of a cellular structure is commonly 

measured from its cross-sectional projection (Bates, Huang et al. 2007; Fu, Huang et al. 2010; 

Wang, Quan et al. 2012). With sufficient sampling frequency, this apparent cross-section is the 

result of the convolution of the true structural profile and the Gaussian distribution defined by 

localization precision (Figure 3.2B) (Bates, Huang et al. 2007). Prior knowledge of structural 

shape can thus be used to deconvolve the true structural dimension from the apparent cross-

section profile (see examples in Error! Reference source not found.Bi and ii).  In the absence of 

prior structural knowledge, the underlying structure can be approximated by a Gaussian-

distribution (Figure 3.2Biii and iv), in which case the measured apparent full-width at half-

maximum (FWHMapp) is related to the true dimension (FWHMtrue) and the localization precision 

(𝐹𝑊𝐻𝑀𝑙𝑜𝑐 = 2.35𝜎𝑙𝑜𝑐) by 𝐹𝑊𝐻𝑀𝑎𝑝𝑝 = �𝐹𝑊𝐻𝑀𝑙𝑜𝑐
2 + 𝐹𝑊𝐻𝑀𝑡𝑟𝑢𝑒

2 ). Generally, dimensions of 

previously-uncharacterized structures are reported as fitted FWHMapp because it allows 

convenient comparison of different structures observed with similar localization precision 

without imposing an assumption of structural shape (Fu, Huang et al. 2010; Buss, Coltharp et al. 

2013).  As illustrated in Figure 3.2C, the deviation of FWHMapp from the true dimension is most 

apparent for dimensions comparable or smaller than 𝐹𝑊𝐻𝑀𝑙𝑜𝑐, while measurements of larger 

structures are closer to their true values.   
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It is important to note that an additional systematic error is introduced when images are 

rendered by superimposing Gaussian distributions (Figure 3.2Aii).  This rendering method 

effectively convolves the localization precision twice and further increases apparent structural 

dimensions. However, this effect is only evident for structures having sizes comparable to or 

smaller than 𝐹𝑊𝐻𝑀𝑙𝑜𝑐 (Figure 3.2C, blue curve) (Baddeley, Cannell et al. 2010). Furthermore, 

because fitting the Gaussian-blurred image is more robust to factors such as sampling frequency 

and pixel size than fitting a molecule density histogram (Figure 3.2C, insets), dimensions are 

often still measured from the Gaussian-blurred image.  

Counting Molecule Numbers 

Correcting for overcounting due to fluorophore blinking. One important prerequisite for 

absolute molecule counting is to correct for multiple observations of the same molecule due to 

fluorophore blinking. Blinking results in overcounting and false clustering of molecules (Annibale, 

Vanni et al. 2011). All current methods that correct for blinking require characterization of 

fluorophore properties using a monomeric, sparsely-distributed control sample (Controlmon) 

imaged under the same optical and chemical conditions as experimental samples (Coltharp, 

Kessler et al. 2012; Sengupta and Lippincott-Schwartz 2012). 

A straightforward method to alleviate blinking artifacts is to identify spots localized close in 

space and time as those originating from a single molecule (see 'Chapter 4:  

 

Accurate Construction of Photo-activated Localization Microscopy (PALM) Images for 

Quantitative Measurements'). If the spot grouping method cannot be applied (e.g. when fast 

activation is required), true molecule clustering can be distinguished from blinking-related self-
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clustering using a pair-correlation function (PCF) (Veatch, Machta et al. 2012). The PCF describes 

the pair-wise distance correlation between all localized spots (see 'Identifying Spatial 

Distribution Patterns' below), which is the sum of the true spatial correlation function and the 

self-correlation function caused by blinking. The self-correlation PCF can be measured from the 

control sample (Controlmon) and subtracted from the experimental PCF to characterize true 

molecule clustering (Veatch, Machta et al. 2012).  

Finally, the absolute number of detected molecules in a region can be estimated by dividing the 

number of localized spots by the average number of localizations per molecule (determined 

from Controlmon) without applying other blinking corrections (Coltharp, Kessler et al. 2012; Buss, 

Coltharp et al. 2013). This method only corrects mean molecule numbers and does not remove 

false clustering, so should not be used for analysis of spatial distribution patterns or clustering. 

Correcting for undercounting due to inefficient molecule detection. Inefficient 

fluorophore labeling and detection lead to undercounting of molecules in a structure.  Because 

antibody binding often results in large variability in labeling efficiency, studies concerning 

absolute stoichiometry of complexes often use genetic labels such as fluorescent protein or 

affinity tag fusions (Puchner, Walter et al. 2013). The labeling efficiency of genetic fusions can 

approach unity, but detection efficiency remains  a major concern with any fluorescent label 

(Durisic, Laparra-Cuervo et al. 2014; Wang, Moffitt et al. 2014). To calibrate for detection 

efficiency, a tandem dimer of two fluorophores, either the same or of different colors, can be 

constructed (Annibale, Scarselli et al. 2012; Renz, Daniels et al. 2012; Nan, Collisson et al. 2013; 

Puchner, Walter et al. 2013; Zhao, Roy et al. 2014).  The construct should not self-associate and 

should be imaged under the same condition as the experimental samples. Assuming identical 
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detection efficiency, p, for each fluorophore, the frequency of singularly-detected dimers (Ns) 

and dually-detected dimers (Nd) follows a binomial distribution (Puchner, Walter et al. 2013; 

Durisic, Laparra-Cuervo et al. 2014).  The detection efficiency can be estimated from the ratio 

𝑁𝑑/𝑁𝑠 = 𝑝2/2𝑝(1 − 𝑝) or by fitting to a binomial distribution (Puchner, Walter et al. 2013). 

Then, the true number of molecules in a structure can be determined by dividing the observed 

number of molecules in a structure by the detection efficiency. 

Identifying Spatial Distribution Patterns  

A list of corrected molecule coordinates can be used to characterize the spatial arrangement or 

clustering of detected molecules. In general, two classes of methods, correlation- or threshold-

based, are used. Correlation-based methods use unbiased statistical analyses to describe overall 

clustering of molecules in an image.  Threshold-based methods use experimenter-defined 

thresholds to segment clusters in an image and hence allow characterization of individual 

cluster properties. 

Quantification of average cluster properties using correlation-based analyses. One 

common correlation-based method is the aforementioned pair-correlation function (PCF). The 

PCF calculates the probability of one molecule appearing at a certain distance r from another 

one (Sengupta, Jovanovic-Talisman et al. 2011) and can be computed using 2D FFT (fast Fourier 

transform) (Veatch, Machta et al. 2012). For randomly distributed molecules, the PCF curve is 

constant (related to the density of molecules) at different r (Figure 3.3Ci). For molecules 

distributed in clusters, the probability of finding molecules within clusters (smaller r) is higher 

than that outside (larger r), and hence the PCF curve has higher values at short distances and 

decays at longer distances (Figure 3.3Ci, blue and purple lines). Theoretically, analytical or 
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simulated PCF models can be generated by defining the form of cluster size and separation 

distributions (e.g. exponential or Gaussian).  These models can then be fit to experimental 

curves to extract properties such as the average number of molecules per cluster and the mean 

cluster size (Sengupta, Jovanovic-Talisman et al. 2011; Veatch, Machta et al. 2012). However, 

prior knowledge of how clusters are distributed is often not clear, making interpretation of PCF 

curves highly model-dependent. 

 

 

Figure 3.3 Analysis of molecule clustering.  
(A) Simulated superresolution images of molecules distributed randomly (i), in small clusters (ii), in large clusters (iii), 
and in clusters of multiple sizes (iv). (B) Cluster identification and analysis from local density maps. (i) Local density of 
molecules is represented by the number of molecules within 100 nm × 100 nm pixel. (ii) Clusters are clearly 
distinguished after removing molecules below a local density threshold (in this example, the threshold is the mean 
local density value).  (iii) Clusters are segmented from a binary image generated from ii.  The number of constituent 
molecules are shown for two clusters. (iv) Coloring each cluster by its area illustrates three populations of cluster 
sizes: large (white), medium (orange), and small (red). (C)  Statistical analyses by pair-correlation function (PCF) (i) and 
Ripley’s functions (ii) show distinct curve shapes for the simulations shown in A. For homogenous cluster distributions 
(blue, purple), cluster sizes can be approximated from the pair-correlation decay length (i) or the peak position of 
Ripley’s H function (ii).  However, extracting the mixed cluster sizes (red) is not intuitive for either curve.  Scale bars, 
500 nm.  
 
 

Another method, Ripley's K function, K(r), describes the average number of  molecules that exist 

near another molecule within different radius (r) (Penttinen and Stoyan 2000). Conceptually it 

can be regarded as the cumulative form of the PCF.  Similar to the PCF, Ripley's K function can 

easily discriminate clustered distributions from uniform distributions. In a uniform distribution, 
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K(r), the number of molecules within a radius of r, is proportional to πr2. Normalization of K(r) 

gives rise to Ripley's H function ( rrKrH −= π/)()( ), which is zero across all distances for a 

uniform distribution (Figure 3.3Cii, black curve). For a clustered distribution, H(r) peaks at a 

characteristic r, which is related to the cluster size; the peak height depends on the mean 

molecule density in clusters (Figure 3.3Cii, blue and purple curves). Lagache et al. suggested 

another normalization of the Ripley's function for quantitative model fitting and easier 

parameter extracting (Lagache, Lang et al. 2013).   

Both the PCF and Ripley's functions have been widely used to analyze different types of protein 

clusters such as membrane receptors (Kiskowski, Hancock et al. 2009; Sengupta, Jovanovic-

Talisman et al. 2011; Lee, Shin et al. 2012; Veatch, Machta et al. 2012). This is because both 

functions' shape and amplitude can be intuitively compared with that expected from theoretical 

calculations to discriminate different models (Sengupta, Jovanovic-Talisman et al. 2011; Veatch, 

Machta et al. 2012).  However, it is important to account for the self-clustering effect due to 

fluorophore blinking to avoid misinterpretation of clustering at short distances (see 'Counting 

Molecule Numbers' above). In addition, both methods work best when there is only one type of 

cluster —heterogeneous distributions of multiple cluster types in the same image result in PCF 

and Ripley's H curves that are difficult to interpret (Figure 3.3Ci and ii, purple curves). 

Additionally, quantitative parameter extraction from either function is highly model-dependent, 

and different cluster properties can generate similar curves with both methods. Thus a prior 

biological understanding of cluster properties is often required (Hess, Gould et al. 2007; 

Kiskowski, Hancock et al. 2009). Finally, it is important to note that these functions exhibit edge 

effects when the neighbor-search region defined by r extends beyond the image boundaries. 

This results in significant underestimation of clustering and correlation at large r values. Thus, 
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PCF or Ripley's functions should not be interpreted at r values greater than ~1/3 of the smallest 

image dimension without first applying edge-correction methods (Ripley 1989; Haase 1995). 

Detection and quantification of individual clusters using threshold-based methods. 

Threshold-based methods are model-independent and rely on segmentation of images or 

grouping of spots from coordinate lists to isolate individual clusters. When clusters are sparsely 

distributed, molecules within the same cluster can be grouped together by their proximity using 

a distance threshold similar to that used for blinking correction (see 'Counting Molecule 

Numbers' above) (Gunzenhauser, Olivier et al. 2012; Nan, Collisson et al. 2013).  When clusters 

are densely-distributed and/or when their sizes have wide distributions, more sophisticated 

methods are required. For example, tree-clustering methods based on informational theory can 

be used to group molecules belonging to the same cluster (Greenfield, McEvoy et al. 2009).  

Cluster boundaries can also be determined using thresholds of fluorescence intensity (Buss, 

Coltharp et al. 2013) or the local density of each molecule (e.g. number of nearby molecules or 

nearest neighbor distance) (Figure 3.3B) (Bar-On, Wolter et al. 2012; Scarselli, Annibale et al. 

2012; MacGillavry, Song et al. 2013; Nan, Collisson et al. 2013; Ori, Banterle et al. 2013; 

Tarancon Diez, Bonsch et al. 2014). These thresholds can be normalized (e.g. local density 

normalized by the average local density) for application to samples with different expression 

levels or sampling, and are often optimized using simulations that mimic the experimental data 

(MacGillavry, Song et al. 2013). 

Once cluster boundaries are identified, properties such as cluster area, molecule density, and 

symmetry can be characterized to describe how different biological states affect these features 

(Buss, Coltharp et al. 2013) (Figure 3.3B, iii-iv).  These measurements can reveal assembly 
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mechanisms (Bar-On, Wolter et al. 2012), differences in oligomeric states (Nan, Collisson et al. 

2013; Puchner, Walter et al. 2013) or relative constituent stoichiometry (Ori, Banterle et al. 

2013) in different biological conditions.  Ligand binding affinities have also been directly 

measured in individual cells by counting the number of sparsely-distributed receptor-ligand 

complexes at different concentrations of fluorescent ligand (Dietz, Fricke et al. 2014). 

Colocalization  

Multicolor superresolution imaging provides the ability to quantify colocalization with spatial 

resolutions that approach molecule dimensions. Colocalization observed at this scale is more 

likely to indicate true molecular interactions than colocalization detected with conventional 

fluorescence microscopy. This precision also results in higher sensitivity to chromatic 

aberrations between different fluorescence channels. These aberrations can be computationally 

corrected if first characterized using multi-colored fluorescent beads (Fletcher, Scriven et al. 

2010). Another important consideration is that low sampling frequency caused by inefficient 

labeling and detection of fluorophores can decrease the apparent colocalization, leading to false 

negatives. Control experiments for measuring labeling and detection efficiency should be 

introduced to verify the colocalization results (Annibale, Scarselli et al. 2012; Renz, Daniels et al. 

2012; Zhao, Roy et al. 2014).  

Colocalization between different species can often be visually identified as intensity overlap in 

superresolution images (Figure 3.4Aiii) (Ribeiro, Vagnarelli et al. 2010; Lew, Lee et al. 2011; Zhao, 

Bruck et al. 2013). Comparing colocalization under different conditions, however, requires 

statistical analysis of the fluorescence intensity or molecule coordinates of each species. 

Intensity-based metrics used in conventional fluorescence microscopy have been critically 



87 
 

reviewed and compiled into an ImageJ plug-in by Bolte and Cordelieres (Bolte and Cordelieres 

2006), and can be easily applied to superresolution images (Zhao, Bruck et al. 2013; Bielopolski, 

Lam et al. 2014).  For example, the Manders' coefficient calculates the correlation between pixel 

intensities recorded in two different channels (Figure 3.4B, magenta bars). This metric is robust 

to regions of different sizes used for analysis (Figure 3.4B i vs. ii), but can produce false-

negatives with under-sampled images (Figure 3.4B iii vs. iv). 

 

 

Figure 3.4 Colocalization analysis.  
(Ai to Avi) Representative superresolution images with two simulated species (green and purple; white represents 
overlap). (i and ii) The two species form self clusters and are randomly distributed with respect to each other in a 
large region (i) or a small region (ii).  (iii and iv) The two species form self clusters and colocalize with each other, but 
are detected with high (iii) and low (iv) efficiency respectively. (v and vi) the two species do not form self clusters, are 
randomly distributed, and detected with high (v) and low (vi) efficiency. (B). Comparison of the coordinate-based 
colocalization (CBC) algorithm (Malkusch, Endesfelder et al. 2012) and Manders' Coefficient analysis of images Ai to 
Avi. CBC values were calculated using Rmax = 1/3 of the maximum distance between any two molecules. (C) 
Comparison of cross-correlation analysis of images Ai to Avi. 
 
 

Coordinate-based methods analyze the distances between molecules to determine whether two 

species localize near each other (Malkusch, Endesfelder et al. 2012; Rossy, Cohen et al. 2014). 

Malkush et al. developed a coordinate-based colocalization (CBC) algorithm to assign a 
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colocalization value for each molecule using the ranked correlation between the number of 'self' 

vs. 'other' molecules located within varying r values (Malkusch, Endesfelder et al. 2012). In 

addition to allowing comparison of average colocalization values of different images (Figure 

3.4B), this method can provide a histogram or colocalization map, in which areas of high 

colocalization between two species can be visually identified (Malkusch, Endesfelder et al. 2012). 

Note that this method can exhibit edge effects for the same reasons outlined for the Ripley's 

and PCF functions above. Because edge effects influence both 'self' and 'other' molecules 

similarly, the two species can seem highly correlated at large r values, resulting in artificially high 

CBC values for small region sizes. Thus, it is a good practice to limit the maximum r value (Rmax) 

used for the CBC calculations to 1/2 or less of the maximum observed distance between any two 

molecules (Figure 3.4B), and it may be useful to adapt an edge-correction method from Ripley's 

analysis (Ripley 1989; Haase 1995). Additionally, region size itself should also be considered 

when interpreting colocalization values provided by this and other coordinate-based methods. 

For example, although the two species of clusters in  Ai are not coincident, they exhibit high 

colocalization values (Figure 3.4Bi) because both species are localized to the same general sub-

region (Figure 3.4Bii). When only the sub-region is analyzed, low colocalization values are 

observed (Figure 3.4Bii). Hence, region size affects the interpretation of the colocalization values, 

and direct comparison between different images requires comparable region selection. 

Other commonly-used coordinate-based methods are the aforementioned Ripley's functions 

and PCF (see 'Identifying Spatial Distribution Patterns' above).  Both methods can be derived to 

accommodate multiple species and thus describe the degree of colocalization (Lehmann, Rocha 

et al. 2011; Sherman, Barr et al. 2011; Notelaers, Rocha et al. 2014). These methods generate 

distance-dependent cross-correlation curves of the whole image rather than providing 
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colocalization values for individual molecules (Figure 3.4C). Although the amplitudes of these 

cross-correlation curves depend on the size of the region of interest (Figure 3.4C i vs. ii), the 

distance value at which maximal correlation values are observed, or the average correlation 

decay length, is absolute and indicative of the average colocalization displacement between the 

two species (Veatch, Machta et al. 2012). Cross-correlation analysis is also robust to under-

sampling, which adds noise but does not alter curve shapes (Figure 3.4C iii vs. iv). Moreover, 

cross-correlation analysis can distinguish random colocalization that results from high molecule 

densities from co-clustering (Figure 3.4C iii vs v). Note that these cross-correlation-based 

methods are not affected by the overcounting artifacts caused by fluorophore blinking, as they 

all calculate the correlation of one species with the other but not with itself (Veatch, Machta et 

al. 2012). This feature could be utilized to analyze whether a single species self-clusters with 

itself by labeling the same species with two different labels. 

Outlook 
The next revolution in superresolution imaging will likely involve the ability to simultaneously 

determine the activity of single molecules in addition to their locations, perhaps by 

incorporating other fluorescence techniques such as FRET (Grecco and Verveer 2011) or 

fluorescent protein complementation (Liu, Xing et al. 2014; Nickerson, Huang et al. 2014). In the 

more immediate future, the growing number of 3D implementations of PALM and STORM (Klein, 

Proppert et al. 2014) will require rapid adaptation of these techniques to 3D structural analyses.  

Furthermore, to increase the accessibility of these future advancements and the quantitative 

analyses presented here, the field requires development of robust toolkits to generate reliable 

control constructs (Schmied, Raab et al. 2014).  
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For microbiological specimens, superresolution imaging would benefit from several areas of 

fluorescent probe development.  First, development of dyes that efficiently penetrate the cell 

wall would allow implementation of dSTORM investigations in live bacterial cells and the use of 

smaller genetic tags as binding targets.  Furthermore, fluorescent probes that can be efficiently 

controlled with wavelengths of light longer than the commonly used 405nm will extend the 

time-lapse, live-cell imaging capability of localization-based methods. Finally, labeling strategies 

involving unnatural amino acids (Plass, Milles et al. 2011; Milles, Tyagi et al. 2012; Plass, Milles 

et al. 2012) or protease cleavage (Chattopadhaya, Abu Bakar et al. 2008), which entail single 

amino acid substitutions, may provide ways to perform superresolution imaging with minimal 

perturbations to protein function.  
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Chapter 4 :  
 

Accurate Construction of Photo-activated 
Localization Microscopy (PALM) Images for 

Quantitative Measurements 

Adapted with permission from: 

 Coltharp, C., Kessler, R., Xiao, J. Accurate construction of photoactivated localization 

microscopy (PALM) images for quantitative measurements. PloS one (2012).  



92 
 

Introduction  
Localization-based superresolution methods such as Photoactivated Localization Microscopy 

(PALM),  Stochastic Optical Reconstruction Microscopy (STORM), and direct STORM (dSTORM) 

utilize the stochastic switching of fluorophores between dark and bright emission states to 

visualize fluorophore-labeled single molecules sequentially from the ensemble pool (Betzig, 

Patterson et al. 2006; Rust, Bates et al. 2006; Heilemann, van de Linde et al. 2008).  The position 

of each molecule is localized with nanometer precision by fitting its spot intensity profile to a 

two-dimensional Gaussian function that approximates its point spread function (PSF) 

(Thompson, Larson et al. 2002). A superresolution image is then generated by overlaying the 

detected molecule positions.  From the superresolution image or the original list of molecule 

positions, one can quantitatively measure the dimensions and molecule density (number of 

molecules per unit area) of nanometer-scale cellular structures.  

Other PALM and (d)STORM studies have resolved the dimensions of structures such as the ParA 

bundles that segregate Caulobacter crescentus chromosomes (Ptacin, Lee et al. 2010), 

microtubule filaments (Bates, Huang et al. 2007; Heilemann, van de Linde et al. 2008), actin 

filaments (Heilemann, van de Linde et al. 2008), clathrin pits (Huang, Wang et al. 2008), budding 

HIV-1 virions (Lehmann, Rocha et al. 2011; Lelek, Di Nunzio et al. 2012), clusters of bacterial 

histone-like proteins (Wang, Li et al. 2011), and membrane receptor clusters (Geisbrecht, 

Bouyain et al. 2006; Hsu and Baumgart 2011).  Furthermore, molecule density measurements 

have allowed investigation of the maturation (Shroff, Galbraith et al. 2008) and mechanical load 

(Chien, Kuo et al. 2011) of focal adhesions, the assembly of microclusters following T cell 

activation (Geisbrecht, Bouyain et al. 2006; Hsu and Baumgart 2011; Sherman, Barr et al. 2011), 

assembly of bacterial chemotaxis clusters (Greenfield, McEvoy et al. 2009), and the 
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reorganization of membrane protein clusters upon cholesterol addition or depletion (Sengupta, 

Jovanovic-Talisman et al. 2011). The growing body of examples highlights the great potential of 

obtaining quantitative information such as structural dimensions, stoichiometry, and molecule 

density from localization-based superresolution studies. However, care must be taken to ensure 

the reliability of superresolution data. Many factors influence the resulting superresolution 

images, including the method of image reconstruction (Baddeley, Cannell et al. 2010), 

acquisition conditions (van de Linde, Wolter et al. 2010; Wolter, Endesfelder et al. 2011), and 

movement of the structure of interest.  This  chapter focuses on one issue that significantly 

affects the accuracy of quantitative density measurements in PALM imaging — fluorophore 

blinking. 

 

 
Figure 4.1 Fluorophore blinking affects superresolution image quality.  
(A) Simplified kinetic scheme of a photoactivatable fluorophore such as mEos2.  The fluorophore is irreversibly 
photoactivated with rate constant k1, can transiently access a nonfluorescent state with rate constant k2, return to 
the fluorescent state with rate constant k3, and irreversibly photobleach with rate constant k4. (B) Superresolution 
image of an E. coli cell expressing FtsZ-mEos2 generated with conventional clustering thresholds: spots within 167nm 
(1 camera pixel) and 50ms (1 frame) of each other were grouped together and plotted once. The cytoplasmic cluster 
(left inset) consists of spots detected very closely in time, suggesting that they came from the same fluorophore, 
whereas a dense section inside the Z-ring (right inset) contains spots detected throughout the experiment. Scale bar, 
500nm. Inset grid size, 30nm.  
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Many photoactivatable fluorescent proteins have recently been shown to fluoresce 

intermittently, or “blink”, once activated (Annibale, Vanni et al. 2011; Annibale, Vanni et al. 

2011; Endesfelder, Malkusch et al. 2011). Figure 4.1A shows a simplified reaction scheme of the 

intermittent fluorescing behavior of a generic photoactivatable fluorescent protein.  An 

activated fluorophore can reversibly transit between a nonfluorescent state (white) and a 

fluorescent state (red), or can be irreversibly photobleached (black) from the fluorescent state.  

Intermittent fluorophore blinking leads to overcounting artifacts where single molecules are 

represented multiple times, resulting in images that are often characterized by a punctate 

quality (Annibale, Scarselli et al. 2010; Annibale, Vanni et al. 2011; Annibale, Vanni et al. 2011; 

Sengupta, Jovanovic-Talisman et al. 2011).  

To illustrate this point, Figure 4.1B shows a superresolution image of an Escherichia coli cell 

expressing the FtsZ protein fused to mEos2, a photoactivatable fluorescent protein and a 

popular choice for PALM imaging (McKinney, Murphy et al. 2009). In addition to the expected 

midcell Z-ring formed by FtsZ, the image shows bright cytoplasmic clusters of FtsZ-mEos2.  The 

time-coded insets show that some of these clusters are comprised of spots that were detected 

very closely in time, in contrast to a region inside the Z-ring where multiple localizations were 

randomly detected in time. As the activation rate of new fluorophores is usually kept very low in 

superresolution imaging, these multiple localizations in the cytoplasmic cluster likely come from 

the same mEos2 molecule rather than multiple molecules. 

In various attempts to account for photoblinking so that each molecule in a superresolution 

image is represented only once, several studies have employed a simple clustering algorithm to 

group multiple localizations of a single molecule based on the occurrence of these localizations 
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within certain time and distance thresholds (tThresh and dThresh) — if two localizations occur within 

tThresh and dThresh, they likely come from the same molecule and should be grouped together 

(Greenfield, McEvoy et al. 2009; Lillemeier, Mortelmaier et al. 2010; Annibale, Vanni et al. 2011; 

Sengupta, Jovanovic-Talisman et al. 2011; Lando, Endesfelder et al. 2012). Each group is then 

plotted only once in the superresolution image. This type of clustering algorithm was employed 

in the original demonstrations of STORM and PALM, where fluorescence spots detected within 

one camera pixel (dThresh = 167nm for our system) and separated by up to one or three frames, 

respectively, were grouped together (Betzig, Patterson et al. 2006; Bates, Huang et al. 2007).  

Generous values for both thresholds can ensure that multiple molecule localizations are 

grouped together, but may result in false grouping of separate molecules and underestimation 

of molecule density. It was noted that these thresholds should be optimized based on each 

fluorophore's photophysical properties (Betzig, Patterson et al. 2006; Annibale, Scarselli et al. 

2010), but a procedure to identify optimal tThresh and dThresh values that accurately group localized 

spots has yet to be developed.  

In this study, experimental and simulated data were analyzed to determine how photoblinking 

kinetics and threshold selection affect the dimension and molecule density measurements 

described above. These analyses were performed on superresolution images of fixed E. coli cells 

expressing FtsZ-mEos2, whose heterogeneous distribution between midcell and cytoplasmic 

populations presents a challenging, but ideal, test case for the clustering algorithm. The 

observed effects were then explored and corroborated using simulated datasets in which 

fluorophore blinking was simulated according to the kinetic scheme shown in Figure 4.1A.  
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The simulations confirm that blinking-related overcounting increases absolute density 

measurements, but measurements of dimension and relative density are not affected. They also 

reveal that applying a clustering algorithm can result in inaccurate measurements of both 

density and dimension measurements unless proper threshold values are chosen and 

fluorophore activation is slow enough to allow accurate grouping of molecule localizations.  

The above analyses identified a simple method for determining the maximum activation rate for 

a given sample and for selecting optimal tThresh and dThresh values to generate reliable 

superresolution images. The generality of this method was also explored using simulations of 

circular clusters of various sizes, which yielded similar results to the FtsZ simulations, suggesting 

that these principles are applicable to the measurements of cellular structures of different 

geometries.   

In contrast to other recent methods that account for photoblinking (Annibale, Vanni et al. 2011; 

Sengupta, Jovanovic-Talisman et al. 2011), which summarize structural properties with global 

parameters, the optimized clustering method presented here provides the full, corrected, 

superresolution image and list of molecule positions, which can be quantified in various ways 

depending on the unique properties of different biological structures.  This flexibility is 

especially useful for heterogeneous cellular structures with regions of high and low molecule 

density or unusual geometries.   Lastly, because this method is a simple improvement of existing 

PALM clustering algorithms, its implementation is simple and straightforward. 
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Results 
Dimension measurements are not affected by fluorophore blinking, but 
can be affected by applying a clustering algorithm 

Structural dimensions are often measured from superresolution images by fitting feature 

intensity (or density) profiles to Gaussian distributions and extracting the full width at half 

maximum (FWHM) (Bates, Huang et al. 2007; Fu, Huang et al. 2010; Wang, Li et al. 2011). Figure 

4.2A shows an example of how the width of the Z-ring is measured in this way. It is important to 

note that the measured FWHM of a feature is a convolution of the actual feature dimension 

with the achievable spatial resolution often described as a Gaussian function, the standard 

deviation of which is determined by the positional variation of multiple localizations of the same 

molecule (see 'Appendix 1').  The observed FWHM can be further broadened by the image 

construction method, which often entails plotting each localized molecule as a Gaussian spot 

with standard deviation equal to the localization precision (Baddeley, Cannell et al. 2010). 

Nevertheless, even with these statistical broadening effects, the FWHM serves as a convenient 

measurement for structural dimension comparison.  Furthermore, with prior knowledge of the 

distribution of molecules within a structure, the true dimension can be deconvolved (Bates, 

Huang et al. 2007). For simplicity, in the following analyses Z-ring width is quantified as the 

apparent FWHM from a single Gaussian fit.   
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Figure 4.2 Effects of threshold selection on Z-ring width measurement.  
(A) Representative Z-ring width measurement of a simulated image where each molecule is only represented once.  
The intensity along the short axis of the cell is projected onto one dimension (red circles), and then fit to a Gaussian 
distribution (gray line).  The FWHM (97nm, blue dotted line) is calculated as 2.35*σ, where σ is the fitted Gaussian 
standard deviation. (B) and (C) Z-ring width values (indicated by the heat map) calculated from images generated by 
applying different threshold pairs for an experimental dataset (B) and a simulated dataset (C).  The simulated dataset 
was generated using the following parameters: Ntotal = 2000 (50% in the Z-ring), σ = 15nm, <nblink> = 2, <τoff> = 1 frame, 
<τon> = 1 frame, <τ0

act> = 5 frames (1 frame = 50ms).  The Z-ring width calculated from the reference image (A), where 
each molecule is represented only once, is 97nm, which is similar to the measurements made from images 
constructed using low values of tThresh  or dThresh.  
 
 

To determine the effect of threshold selection on dimension measurement, the clustering 

algorithm (see 'Clustering algorithm' in Methods section) was applied with varying tThresh and 

dThresh values to both experimental and simulated data. Different threshold pairs were applied to 

a single experimental dataset obtained with FtsZ-mEos2 to generate a series of superresolution 

images. Across the investigated threshold range (tThresh: 0 - 4 sec, dThresh: 0 - 450nm), Z-ring width 

varied approximately 1.5-fold (60 - 90 nm) with larger threshold values resulting in smaller width 

measurements (Figure 4.2B). The same trend was observed with measurements made from a 

simulated dataset (Figure 4.2C) where molecules were allowed to blink according to the kinetic 

scheme in Figure 4.1A (see 'Simulation of fluorophore blinking kinetics' in the Methods section 

for simulation procedure and parameters). Measurement of the "true" Z-ring width were 

measured from a reference image in which each molecule is only localized once.  The Z-ring 

width measured from this reference image (97nm) represents the expected value from an image 
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with no photoblinking artifacts.  Widths measured from images generated with most small 

threshold pairs (tThresh < 1 s and dThresh < 100 nm) were within the 95% confidence interval for the 

fitted Z-ring width in the reference image (94nm - 100nm), while extremely high threshold 

values yielded much smaller Z-ring width measurements.  

The general decrease in Z-ring width measurement at large thresholds is due to false grouping of 

localizations that originated from multiple molecules, which affects dimension measurements in 

two ways.  First, because the convolved Z-ring profile is described by a Gaussian distribution, 

groups that are comprised of multiple molecules have centroid positions weighted toward the 

center of the Z-ring.  Plotting these centroid positions tightens the spatial distribution of the Z-

ring and results in smaller width measurements.  Second, very large thresholds can cause 

insufficient sampling of the Z-ring, resulting in further reduced width measurements. 

Note that when no clustering is applied (tThresh and dThresh values of 0), the Z-ring width measured 

from the simulated data approximates that measured from the reference image. This can be 

understood if multiple localizations of the same molecule result in an increased amplitude but 

unchanged standard deviation of the Z-ring Gaussian distribution. This observation is consistent 

with previous studies where it was shown that multiple localizations of fluorophores improves 

the statistical sampling of underlying structures and can increase the apparent spatial resolution 

of a superresolution image (van de Linde, Wolter et al. 2010; Dempsey, Vaughan et al. 2011; 

Jones, Shim et al. 2011). Therefore, reliable dimension measurements can be obtained from a 

superresolution image that has not been processed using a clustering algorithm, as long as the 

structure of interest is sampled sufficiently.  It is also evident that, if a clustering algorithm is 

applied, the thresholds should be low enough to avoid underestimation due to false clustering. 
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Effects of fluorophore blinking and clustering thresholds on density 
measurements  

Counting the number of fluorescent molecules detected within a given structure provides 

information about the molecule density of the protein of interest when labeling stoichiometry 

and the fraction of fluorophores detected are taken into account. In a PALM experiment, the 

fraction of detected fluorophores is limited because not every fluorescent molecule can be 

activated and visualized on a finite timescale, and because a substantial fraction (up to 20%) 

may not be activatable due to misfolding or incomplete fluorophore maturation (Garcia-Parajo, 

Koopman et al. 2001; Ulbrich and Isacoff 2007). However, even with these limitations, molecule 

counting can still inform structural models by providing a lower bound of molecule density, 

which can suggest a minimum number of layers or subunits within a structure. 

Fluorophore blinking results in erroneous amplification of fluorophore density due to repeat 

localizations. The following characterizations explore how tThresh and dThresh selection affects three 

types of measurements: mean density, relative density, and density distribution measurements. 

Mean density is a bulk measurement of the average number of molecules per unit area; relative 

density reports the fraction of molecules confined to a particular region of the structure; and 

the density distribution is described by the histogram of number of molecules detected per unit 

area. Fluorophore blinking amplifies both mean density and density distributions, which are 

absolute measurements of molecule counts, but relative density, which is the ratio between 

molecule counts in different regions, should not be affected if all molecules have the same 

ensemble blinking properties.  
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Mean density measurements are affected by fluorophore blinking and by applying a 
clustering algorithm 

The effect of tThresh and dThresh selection on mean density (molecules per unit area) was examined 

using the same experimental and simulated datasets shown in the dimension measurement 

analysis in Figure 4.2 by analyzing how the total number of molecules (N) in the same cell area 

varies with different tThresh and dThresh pairs. Both experimental (Figure 4.3A) and simulated 

(Figure 4.3B) datasets display the same trend: larger thresholds yield lower mean densities 

(N/cell area) because more spots are grouped together. For the simulated dataset, determining 

the fractional difference of N from the true value obtained from the reference image, |(N-

Nref)/Nref| revealed that reasonably accurate mean density measurements (<10% difference 

from Nref) can be achieved by multiple threshold pairs along two valleys that intersect at tThresh ≈ 

0.4 s and dThresh ≈ 60 nm  (Figure 4.3C).   
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Figure 4.3 Effects of threshold selection on mean and relative molecule density.  
(A) and (B) Total number of molecules, N, in images generated by applying different threshold pairs to an 
experimental dataset (A) and a simulated dataset (B). (C) Fractional difference |(N-Nref)/Nref| between each 
reconstructed simulated image and the number of molecules in the reference simulated image (Nref = 1248). Images 
with small fractional differences (dark areas) are generated from threshold pairs found along two intersecting valleys. 
(D) and (E) Fraction of molecules located at the midplane (fmidcell) in images generated by applying different threshold 
pairs for an experimental dataset (D) and a simulated dataset (E). In the reference image, fmidcell = 0.53, which is most 
similar to the values calculated from images generated using low values of both dThresh and tThresh. Datasets analyzed 
are the same as those shown in Figure 4.2. 
 

Relative density measurements are not affected by fluorophore blinking, but can be 
affected by applying a clustering algorithm 

The effect of tThresh and dThresh selection on relative density measurements was examined by 

measuring fmidcell, the fraction of molecules detected in the Z-ring relative to the whole cell.  

Increasing values of both tThresh and dThresh resulted in smaller fmidcell values for both experimental 

(Figure 4.3D) and simulated (Figure 4.3E) datasets. Comparison with the fmidcell value calculated 

from the reference image (0.53) revealed that images generated with smaller thresholds yielded 

reasonably accurate relative density measurements (< 10% difference for tThresh < 1 s and dThresh < 
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105 nm).  This is because molecules within and outside the structure of interest have the same 

blinking properties, allowing the effect of multiple molecule localizations to cancel out in a 

relative measurement. The underestimation of fmidcell for larger threshold values is due to the 

greater likelihood of falsely grouping molecules in denser regions such as the Z-ring.  These 

results confirm that, as with the Z-ring width measurement, relative density can be accurately 

measured from a superresolution image that has not been processed using a clustering 

algorithm (tThresh and dThresh equal to 0), as long as the structure of interest is sampled sufficiently.  

Molecule density distributions are affected by fluorophore blinking and by applying a 
clustering algorithm 

While mean and relative molecule densities describe global structural properties, the molecule 

density distribution provides additional information about the uniformity or heterogeneity of 

molecule positions within a structure. If molecules are uniformly distributed throughout the 

structure, the molecule density histogram should be well described by a Poisson distribution.  

Figure 4.4A shows the histogram of molecules detected per superresolution pixel (15 nm x 15 

nm) within the Z-ring of the simulated dataset before any clustering algorithm is applied.  A 

Pearson Χ2 goodness-of-fit test (Pearson 1900) shows that this distribution deviates from a 

Poisson distribution significantly (pGOF = 0). This seemingly heterogeneous distribution of 

molecules inside the Z-ring, as judged by the significant deviation from Poisson distribution, is 

actually caused by multiple localizations of single molecules due to photoblinking. Figure 4.4B 

shows that the Z-ring molecule density of the corresponding reference image where each 

molecule is only localized once can be described by a Poisson distribution adequately (pGOF = 

0.74). 
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Figure 4.4 Effects of threshold selection on molecule density distribution in the Z-ring. 
(A) Histogram (gray bars) of molecules per pixel (15nm x 15nm) inside the Z-ring of a simulated image that was not 
processed with a clustering algorithm. (B) Histogram (gray bars) of molecules per pixel of the corresponding reference 
image, where each molecule is represented only once.   Poisson distributions simulated with the sample means, 3.9 
(A) and 1.2 (B) molecules per pixel, are shown in red.  The ratio of mean values reflects the localization of each 
molecule approximately three times due to the simulated photoblinking kinetics (<nblink> = 2, <τoff> = 1 frame, <τon> = 
1 frame).  Poisson goodness-of-fit tests resulted in pGOF = 0 for distribution in (A), suggesting that blinking results in 
deviations from a Poisson density distribution (pGOF = 0.74 for the reference distribution in (B)).  Insets show the 
cropped Z-ring regions used to generate the histograms. (C) p-values from the KS-test when the molecule density 
distribution of the Z-ring generated by the reference image (B) is compared with distributions in images generated 
with different threshold pairs. Distributions that resulted in pKS > 0.05 are not significantly different from the 
distribution in the reference image.  Dataset analyzed is the same simulated dataset shown in Figure 4.2 and Figure 
4.3. 
 

To identify the clustering thresholds that generate the correct molecule density distributions, Z-

ring molecule density distributions generated with different tThresh and dThresh pairs were 

compared to the distribution from the reference image using the Kolmogorov–Smirnov (KS) test 

(Massey 1951). As with mean density, density distributions are similar to the reference 

distribution (pKS > 0.05) along two intersecting ridges (Figure 4.4C), indicating that the thresholds 

in this region generate images that most faithfully represent the true molecule distributions. 

Multiple threshold pairs can result in accurate measurements of both 
dimension and density measurements 

This study has shown that the mean molecule density and density histogram measurements are 

significantly affected by fluorophore blinking, while dimension and relative density 

measurements are not. However, all four measurements are affected by the selection of tThresh 
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and dThresh. These measurements can be made within a reasonable range of the true value if 

correct threshold values are chosen. To find the threshold region that simultaneously represents 

all four measurements with reasonable accuracy, the relative errors obtained at different 

threshold pairs were combined for each measurement made from the simulated images 

described in Figure 4.2, Figure 4.3, and Figure 4.4. Figure 4.5A shows the region (white squares) 

where Z-ring width, fmidcell, and N measurements are within 10% of the reference values and 

density distributions were not significantly different from the reference distribution (pKS > 0.05).  

 

 

Figure 4.5 Accuracy of images generated with different threshold pairs.  
(A) Region of threshold space (white squares) that resulted in < 10% difference from the reference measurements of 
Z-ring width, N, and fmidcell, and that yielded Z-ring density distributions not significantly different from the reference 
distribution (pKS > 0.05). (B) Jaccard index values at each threshold pair. Higher Jaccard index values indicate more 
accurate single-molecule clustering.  (C) The peak of the Jaccard index plot (B, white squares) is within the region 
where all four quantitative measurements are within 10% of the reference measurements (A). Dataset analyzed is the 
same simulated dataset shown in Figure 4.2, Figure 4.3, and Figure 4.4.  
 
 

The  Jaccard Index identifies images that are accurate on both the 
ensemble and single-molecule level 

The combined error analysis selected a limited threshold range rather than a unique, optimal 

threshold pair.  While this range of thresholds can satisfy all investigated quantitative 

measurements simultaneously, some threshold pairs in this range may not generate accurate 
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superresolution images in which the molecule counts and positions are correctly identified.  This 

is because each of the measurements described above quantifies an ensemble structural 

property and may not be sensitive to errors at the individual molecule level.  

To find the optimal threshold pair that not only provides reliable quantitative measurements, 

but also an accurate image at the single-molecule level, the clustering accuracy of each 

threshold pair was further assessed using the Jaccard index (Gower and Legendre 1986; Jackson, 

Somers et al. 1989).  The Jaccard index compares how frequently localizations of the same 

molecule are correctly grouped together (true positives), how frequently localizations of 

different molecules are incorrectly grouped together (false positives), and how frequently 

localizations from the same molecule are not grouped together (false negatives) (see Methods 

for details). The Jaccard index, therefore, reflects clustering accuracy at the individual molecule 

level; higher Jaccard index values indicate more accurate grouping, and consequently more 

accurate image reconstruction.  

The Jaccard Index was calculated as a function of tThresh and dThresh (Figure 4.5B) for the simulated 

dataset described above and observed a clear peak at tThresh = 0.4 s and dThresh = 60 nm.  This peak 

position is within the optimal threshold region selected by the combined measurement error 

plot (Figure 4.5A).  This agreement, illustrated by the overlay plot in Figure 4.5C, confirms that 

the tThresh and dThresh pair that most correctly groups localizations (maximizes Jaccard index) also 

generates an image that provides accurate quantification of dimension and density.  
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Structural geometry does not affect the positions of the optimum 
threshold pair and Jaccard index peak  

Simulations of circular clusters were also examined to test whether differences in structural 

geometry or dimension can alter the observed effects of photoblinking or threshold selection on 

quantitative measurements.  Figure 4.6 shows the quantitative analyses of one simulation that 

was generated with the same photoblinking parameters as the FtsZ simulation discussed in 

Figure 4.2, Figure 4.3, Figure 4.4, and Figure 4.5, but with molecules distributed among several 

clusters (Figure 4.6A) rather than a single Z-ring.   

 

Figure 4.6 Quantitative measurements of a simulated cluster dataset. 
(A) Representative cluster diameter measurement for a reference image with no repeat localizations.  Each cluster is 
identified by eye, and then fit to a two-dimensional, symmetrical Gaussian distribution (blue mesh).  The cluster 
diameter is measured as the FWHM, calculated as 2.35*σ, where σ is the fitted Gaussian standard deviation. The 
average FWHM of these four clusters is 74 ± 1 nm.  (B) Cluster diameter values (average of four clusters) calculated 
from images generated by applying different threshold pairs to the same simulated dataset.  The measured diameters 
decrease with increasing threshold values, similarly to the Z-ring width measurement.  (C) The fraction of molecules 
located in clusters (fcluster) is most similar to that measured in the reference image (0.47) for low values of both dThresh 
and tThresh.  (D) As with the Z-ring simulation, fractional difference between each reconstructed image and the number 
of molecules in the reference image (Nref = 1212) is lowest along two intersecting valleys. (E) The Jaccard index peak 
position for the cluster simulation is similar to that in the Z-ring simulation where identical kinetic parameters were 
used (Figure 5B). This simulated dataset was generated using the following parameters: Ntotal = 2000 (50% in clusters), 
<molecules/cluster> = 200, FWHMcluster = 50nm, σ = 15nm, <nblink> = 2, <τoff> = 1 frame, <τon> = 1 frame, <τ0

act> = 5 
frames (1 frame = 50ms).   
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Despite the structural difference, the cluster simulation showed a similar trend when different 

threshold pairs are applied. Figure 4.6B and Figure 4.6C reproduce the general trends that larger 

threshold values result in smaller dimension measurements and relative density measurements, 

respectively. The intersection of valleys in the|(N-Nref)/Nref| plot (Figure 4.6D) and the Jaccard 

index peak (Figure 4.6E) coincide with those observed for the Z-ring simulation (Figure 4.3C and 

Figure 4.5B, respectively). The shared peak positions between simulations with different 

underlying structure suggests that structural geometry does not affect the position of the 

optimum thresholds (see Discussion). 

Low measurement error is not sufficient to guarantee high Jaccard index 

To further illustrate the relationship between Jaccard index and measurement error under a 

variety of conditions, simulated datasets were generated with different structural geometries, 

molecule densities, fluorophore blinking properties, and activation rates. For each simulation, 

the combined measurement error, εall (worst fractional error among the three bulk 

measurements: N, fmidcell or fcluster, and ring width or cluster diameter)  was measured for each 

threshold pair. Figure 4.7A shows the relationship between εall generated by the minimum-error 

threshold pair and the corresponding Jaccard Index achieved by that threshold pair. Across a 

large range of fluorophore blinking properties and activation rates examined, most Z-ring (blue) 

and cluster (red) simulations could generate images with low measurement error (< 10%) using 

at least one threshold pair.  However, not all of these images achieved high accuracy at the 

single molecule level (Jaccard index > 0.8). This result suggests that achieving accurate ensemble 

measurements is not sufficient to ensure that the corresponding list of molecule positions is 

reliable.   
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Figure 4.7 Relationship between Jaccard index, measurement error, and activation rate across different simulated 
datasets.  
(A) Minimum combined measurement error, εall,  for each dataset plotted against and the corresponding Jaccard 
index value. εall was defined as the worst fractional measurement error of the three bulk measurements: N, fmidcell, 
and ring width when compared to the reference image. Images with low measurement error do not always correlate 
with high clustering accuracy (Jaccard index), and thus cannot ensure reliable lists of molecule counts and positions. 
(B) Maximum Jaccard index plotted against the ratio of the average time between localizations in the 255nm x 255nm 
maximum density region, Δtmax, and the average time between repeat localizations of the same molecules, Δtrepeat, 
calculated for each simulated dataset.  Simulations with higher ratios of Δtmax /Δtrepeat  result in higher Jaccard index 
values. (C) Comparison of maximum Jaccard index with Jaccard index identified at the intersection of the |(N-
Nref)/Nref| plot for each simulated dataset. The two values  agree well when the maximum Jaccard index is greater 
than 0.8. In all plots, Z-ring simulations are shown in blue and cluster simulations are shown in red. 
 
 

Fluorophore blinking kinetics and activation rate determine achievable 
accuracy in superresolution image reconstruction 

As shown by the region where the maximum Jaccard index is < 0.8 in Figure 4.7A, some 

simulations could not yield high Jaccard indices regardless of threshold selection. This 

observation indicates that some combinations of fluorophore blinking properties and activation 

rates do not allow accurate image reconstruction using the clustering algorithm.  This most likely 

occurs when the probability of molecule activation within a diffraction-limited area (255 x 255 

nm2 for mEos2 in our imaging condition) becomes comparable to the probability that a molecule 

blinks back on, making it difficult for the clustering algorithm to discriminate a repeat 
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localization of an activated molecule from the first localization of a new molecule, resulting in 

separate molecules falsely grouped as single molecules more frequently.  

Two experimentally-measureable parameters allow investigation of which combinations of 

fluorophore blinking rate and activation rate ensure high achievable accuracy in superresolution 

image reconstruction. The parameter  Δtmax defines the average time between subsequent 

localizations of all molecules within the diffraction-limited region of highest molecule density in 

a superresolution image.  Δtmax can be easily calculated by dividing the total imaging acquisition 

time by the number of localizations detected in the maximum density region (see '' in the 

Methods section). Δtmax therefore increases when activation is slower given the same 

fluorophore properties, and serves as a convenient measurement of activation rate.  The second 

parameter, Δtrepeat , represents the average time between subsequent localizations of the same 

molecule, which is determined by fluorophore blinking kinetics, and can be measured from in 

vitro or in vivo experiments where single fluorophores are clearly identifiable (Figure 4.8A).  

 

Figure 4.8 Characterization of Δtrepeat for mEos2.  
Histogram of time (in frames) between sequential molecule localizations, Δtrepeat , from 1743 molecules resulting in 
3815 localized spots and 2072 intervals between sequential localizations of the same molecules. Data from both in 
vitro samples and fixed cells expressing low levels of mEos2 were combined to generate this histogram. Most repeat 
localizations occur in consecutive frames (first bin, Δtrepeat = 1), but long dark intervals (> 10 frames) are sometimes 
observed. The sample mean is <Δtrepeat> = 2.1 ± 3.3 frames (0.11 ± 0.17 seconds). 



111 
 

To explore the relationship between these two parameters and achievable Jaccard index, Δtmax 

and Δtrepeat were calculated for the simulations analyzed in Figure 4.7A and plotted the 

maximum Jaccard index achieved for each simulation against the ratio of Δtmax /Δtrepeat (Figure 

4.7B). Simulations of both FtsZ (blue) and clusters (red) display a clear increase in maximum 

Jaccard index with increasing Δtmax /Δtrepeat, such that accurate clustering (Jaccard index > 0.8) 

can be achieved when the ratio is kept above 40, regardless of the underlying structure. This 

observation provides a simple criterion for screening imaging conditions, specifically activation 

rates, in order to reconstruct a highly accurate superresolution image. 

Identifying the optimal threshold pair from an experimental dataset 

Although the optimal tThresh and dThresh pair can be easily identified from the plot of Jaccard 

indices at various tThresh and dThresh values (Figure 4.5B and Figure 4.6E), the Jaccard Index cannot 

be calculated for experimental data where the photoblinking behavior of individual molecules is 

unknown.  The overlap of the intersection of valleys in the |(N-Nref)/Nref| plot (Figure 4.3C and 

Figure 4.6D) with the Jaccard peak position (Figure Figure 4.5B and Figure 4.6E), however, may 

allow the identification of the optimal thresholds using an experimental observable.  

To examine the correlation between the intersection of the valleys in the |(N-Nref)/Nref| plot and  

the threshold pair that gives rise to the peak Jaccard index value, the maximum Jaccard index of 

different simulations was next compared with the Jaccard index achieved using the threshold 

pair at the intersection of valleys in the |(N-Nref)/Nref| plot identified by eye (see Figure 4.9 for 

examples of intersection identification).  Figure 4.7C shows that the maximal Jaccard index and 

the Jaccard index achieved at the intersection are in excellent agreement when the maximal 

Jaccard index is greater than 0.8. At these high values, the Jaccard index peaks are in general 
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broader, such that threshold pairs nearby the peak provide similar clustering accuracy.  At low 

maximum Jaccard indices, the peak becomes sharper, leading to higher variability in achieving 

the maximum value by visual inspection.  These results indicate that near-optimal threshold 

values can be identified from the intersection of the valleys in the |(N-Nref)/Nref| plot under the 

ideal experimental conditions described above (Δtmax /Δtrepeat > 40, Jaccard index > 0.8). 

 

Figure 4.9 Examples of intersection identification in the |(N - Nref) / Nref| plot.  
Among the 92 simulations investigated, three categories of plot shapes were observed: symmetric (A), asymmetric (B),  
and diffuse (C). The optimal threshold pair identified by eye for each example is shown as a blue circle. For symmetric 
plots, the optimal threshold pair should be selected in the center of the intersection point. For asymmetric plots, the 
optimal threshold pair should be selected at the inflection point with the longest tThresh value.  The identification of 
the intersection point in diffuse plots (C) may be difficult because the intersection area is broad.  However, these 
plots result from kinetic parameters that yield very broad and high Jaccard peaks such that a broad range of 
thresholds around the intersection points yield almost equivalent and sufficient accuracy in resulting images. These 
representative plots were generated from simulated datasets with the following parameters (Ntotal-midplane %-
<nblink>,<τoff>,<τon>,<τ0

act>) : 500-30%-1,4,1,1 (A), 1000-30% -2,8,1,1 (B), 500-50%-3,4,1,20 (C) -- all τ values are 
reported in frames; 1 frame = 50ms) .  
 
 

Generation of the |(N-Nref)/Nref| plot requires knowledge of the true number of molecules, Nref. 

This number can be calculated by dividing the total number of localized spots in the 

unprocessed image (Nunprocessed) by the average number of localizations per molecule (α) under a 

given imaging condition (illumination power, exposure time) such that Nref = Nunprocessed / α 

(Lehmann, Rocha et al. 2011; Sengupta, Jovanovic-Talisman et al. 2011; Lando, Endesfelder et al. 
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2012). An alternative method developed by Annibale et al. extracts Nref from fitting a semi-

empirical equation to the dependence of N on tThresh at a fixed dThresh (Annibale, Vanni et al. 2011). 

The parameter α is a bulk fluorophore property that can be obtained experimentally.  Here, 

αmEos2 was measured by imaging sparsely distributed, immobilized mEos2 molecules in vitro 

under the same buffer and imaging conditions used for fixed cells. Individual mEos2 molecules 

could be clearly distinguished as well-separated clusters of localizations (Figure 4.10A). Figure 

4.10B shows that the distribution of localizations per molecule approximates an exponential 

distribution with a fitted mean of 0.9 ± 0.1. This fitted mean includes the population of 

molecules that did not last long enough to be detected in one frame, while α reflects the 

number of localizations per molecule that lasted long enough to be detected in at least one 

frame.  Consequently, the value of α calculated by dividing the total number of localizations by 

the number of molecules is larger than the fitted mean. Under our imaging condition, αmEos2 = 

2.4 ± 2.8 (s.d., N= 515) for purified mEos2. Furthermore, fixed E. coli cells expressing low levels 

of untagged mEos2 protein at extremely low activation level resulted in a similar value (αmEos2 = 

2.1 ± 4.3, N= 1228) (Figure 4.11), suggesting that the blinking properties of mEos2 are similar in 

vitro and in fixed cells under the same buffer conditions. Therefore, the datasets were combined 

to obtain αmEos2 = 2.2 (Figure 4.11C), which is within the range of values reported in previous 

studies under different conditions (αmEos2 = 1-3) (Lehmann, Rocha et al. 2011; Lando, Endesfelder 

et al. 2012). 
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Figure 4.10 In vitro characterization of mEos2.  
(A) A typical in vitro image of purified mEos2 molecules sparsely 
distributed on a cover glass, acquired using the same PALM imaging 
condition as the in vivo cell sample. All localized positions are indicated 
by small, filled circles that are colored by detection time.  Localizations 
belonging to the same molecule are enclosed in a larger, open circle, 
which is colored by the mean detection time of all the enclosed 
localizations.  The inset shows details of a single cluster, which contains 
four localizations (filled circles with black outlines). (B) Histogram of 
localizations per molecule from 515 molecules fitted with an exponential 
distribution (red line), which yielded a mean of 0.9 ± 0.1 localizations per 
molecule.  The value of α (2.4 ± 2.8) represents the mean of observed 
molecules that lasted at least one frame, and is consequently larger than 
the fitted mean. 
 

 

 

 

 
Figure 4.11 Characterization of mEos2 in fixed E. coli cells.  
(A) Representative images from a single E. coli cell expressing mEos2.  The brightfield (top left) and green 
fluorescence (bottom left) images are shown for comparison.  The scatter plot (right) shows single molecule 
localizations (small dots) colored by detection time.  Localizations that originated from the same molecule are 
grouped together (large circles).  The cell outline is shown in white.  (B) Histogram (gray) of localizations per mEos2 
molecule (α) in fixed E. coli cells with the corresponding single-exponential fit (red). The fitted mean is 0.5 ± 0.1 
localizations per molecule.  The ensemble average is 2.1 ± 4.3 (std. dev., N = 1228) localizations per molecule. (C) 
Histogram (gray) and single-exponential fit (red) calculated after combining in vitro (B) and in vivo (Figure 8B) datasets, 
which yielded similar values.  The fitted mean is 0.6 ± 0.1 localizations per molecule.  The ensemble average is 2.2 ± 
3.9 (std. dev., N = 1743) localizations per molecule. 
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Application of the optimal threshold pair to experimental data 

The experimentally-determined value of αmEos2 were used to calculate the true Nref for the 

experimental dataset described in Figure 4.2 and Figure 4.3, which was collected under the 

same imaging condition as the sparse mEos2 samples (Nref = Nunprocessed / αmEos2 = 1204/2.2 = 547).  

Both tThresh and dThresh were then varied to generate the plot of |(N-Nref)/Nref| (Figure 4.12A), 

which is qualitatively indistinguishable from that generated from simulated data (Figure 4.3C). 

From this plot, the intersection of the two valleys (tThresh = 0.4 s and dThresh = 60 nm) was 

identified as the optimal threshold pair, which was used to generate the optimal 

superresolution image (Figure 4.12B). The images generated using unoptimized clustering 

thresholds (tThresh = 0.05s (1 frame) and dThresh = 167nm) (Figure 4.1B) and without applying any 

clustering algorithm (Figure Figure 4.12C) exhibit several bright cytoplasmic clusters, some of 

which are almost completely removed in the optimal image (white arrows) while a few remain 

(green arrows). It was previously suspected that FtsZ forms polymeric structures outside the Z-

ring (Erickson, Anderson et al. 2010), but because of the blinking-related artifacts described 

above, it has been difficult to interpret the cytoplasmic clusters observed in superresolution 

images. The optimal image clearly shows selective removal of blinking-related clusters, 

increasing our confidence in assigning the remaining cytoplasmic clusters to oligomeric states of 

FtsZ-mEos2 molecules.   
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Figure 4.12. Determination and application of optimal threshold pair to an experimental image.   
(A) |(N-Nref)/Nref| plot of the experimental dataset used in Figure 1-3. The plot was generated using the Nref number 
(547) calculated from the measured α value from combined in vitro and in vivo characterizations of mEos2 (Figure 8 
and Figures S4). The optimal threshold pair was identified at 0.4 s and 60 nm (blue circle). (B) and (C) Images 
constructed using the optimal threshold pair (B) and without any clustering algorithm (C).  Clusters that are reduced 
by the optimized clustering algorithm are indicated by white arrows.  Clusters that remain bright in the optimal image, 
which may represent oligomeric states of FtsZ-mEos2, are indicated by green arrows. Scale bars, 500nm. 
 
 

This dataset was acquired over 20 minutes, resulting in Δtmax = 87 frames. Using the mEos2 

characterization data described above (Δtrepeat =  2.1 ± 3.3 frames,  Figure 4.8A), the ratio Δtmax 

/Δtrepeat can be calculated to be ~41, which is similar to the criterion provided in Figure 4.7B 

(Δtmax /Δtrepeat > 40). Consequently, the Z-ring width, fmidcell, and mean molecule density are 

within 15% of the expected values (Table 4.1). The Z-ring density distribution from both images 

was also analyzed using the Poisson goodness-of-fit test.  In this case, both the original and the 

optimal image were well-described by a Poisson distribution (pGOF = 0.14 and 0.56, respectively). 

This result suggests that the blinking behavior of mEos2 does not affect the molecule density 
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distribution of the Z-ring significantly at the achieved level of sampling (<molecules/pixel> = 0.5 

in the Z-ring).   

Table 4.1 Quantitative measurements made from the optimized experimental image. 
 Original image  True value  Optimal image  % difference from true value  

Ring width  84nm  84nm*  77nm  8%  
f

midcell 
 35%  35%*  30%  14%  

N  1204  547**  517  5%  
*True values for ring width and fmidcell are those measured from the original image.  **True value for N is the number 
of molecules in the original image divided by αmEos2 (1204/2.2 = 547).  

 

Discussion 
Selection of  localization-based superresolution imaging method 

This work has shown that reliable dimension and relative density measurements can be made 

from superresolution images with multiple fluorophore localizations due to photoblinking. For 

(d)STORM imaging, it has been shown that multiple localizations of single fluorophores can 

actually enhance image quality because repetitive sampling of the same molecule averages out 

the stochasticity in individual localizations, leading to convergence on the true molecule position 

(van de Linde, Wolter et al. 2010; Dempsey, Vaughan et al. 2011; Jones, Shim et al. 2011). 

Therefore, if the goal of a superresolution imaging experiment is to visualize overall structural 

dimensions and obtain relative density measurements, no clustering algorithm should be 

applied. In this regard, organic dyes that can undergo hundreds of switching cycles, such as 

those used in (d)STORM, are especially advantageous.  The high photon yields of these dyes also 

improves the accuracy in localizing single molecules, hence  enhancing the spatial resolution of 

the superresolution image (10 - 20 nm (Bates, Huang et al. 2007)). 
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If the goal of a superresolution experiment is to count the number of molecules accurately in a 

cellular structure so that stoichiometric information of molecular components can be obtained, 

photoactivatable fluorophores that are irreversibly activated and exhibit only a few localizations 

before permanent photobleaching are desirable. Photoactivatable fluorescent proteins such as 

mEos2 yield only a few localizations per molecule and provide the benefit of stoichiometric 

labeling via genetic fusion to a protein of interest, improving the accuracy of counting molecules. 

This works has shown that photoactivatable fluorescent proteins can yield accurate density 

measurements if activation is kept adequately slow and a clustering algorithm with carefully-

selected thresholds is applied. Because conditions and fluorophores for (d)STORM are often 

optimized to yield long dark times between reversible switching events (large values of Δtrepeat) 

(van de Linde, Wolter et al. 2010; Dempsey, Vaughan et al. 2011), these experiments require 

prolonged imaging time if the goal is to achieve accurate clustering (see below). Therefore, 

PALM experiments employing photoactivatable fluorescent proteins such as mEos2, mEos3, and 

PAmCherry are better suited for molecule-counting than reversibly switchable dyes. 

In a live-cell superresolution experiment, an additional consideration for accurate molecule 

counting is the movement of single molecules. These movements often occur on the millisecond 

imaging timescale, resulting in single molecules localized at multiple positions throughout a 

structure.  In a similar manner to reversibly switching dyes, this can be beneficial because it 

allows for faster sampling of the entire structure with fewer fluorophores (Biteen, Thompson et 

al. 2008). However, molecule movement makes application of the clustering algorithm 

described above difficult because the optimal distance threshold will depend on the molecule's 

diffusion rate. Therefore, to obtain accurate molecule counting and absolute density within a 

structure, fixed-cell PALM experiments with carefully optimized fixation protocols that minimize 
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structural aberrations are most suitable.  Further considerations and limitations in applying the 

clustering algorithm for fixed-cell PALM experiments are discussed below. 

Achievable clustering accuracy is dependent on imaging acquisition 
condition 

The method described here the optimal values of tThresh and dThresh from visual inspection of the 

|(N-Nref)/Nref| plot.  The optimal values of tThresh and dThresh ensure that most repeat localizations 

are grouped together, minimizing false identification of repeat localizations as separate 

molecules. However, successful application of the optimized clustering algorithm requires low 

activation rates, where the probability that a new molecule will be photoactivated nearby an 

activated molecule before it is photobleached is low. High activation rates result in false 

grouping of separate molecules.  

To minimize false molecule grouping, Δtmax needs to be more than 40-fold longer than Δtrepeat 

(Figure 4.7B).  For the mEos2 protein characterized in this study, Δtrepeat = 2.1 frames in the 

(Figure 4.8). Consequently, a minimum Δtmax of 84 frames between localizations in the 225 x 225 

nm2 square of highest density is required. This criterion can be converted into a maximum 

detection rate of 0.24 molecules/µm2 per frame in the maximum density region (1 / 0.05um2 / 

84 frames), which also satisfies the conditions previously reported to avoid detection of 

overlapping fluorescent molecules (< 0.5 molecules/µm2 per frame on average (Wolter, 

Endesfelder et al. 2011)).  

Physical meaning of optimal threshold values 

Under an imaging condition that allows accurate superresolution reconstruction, the optimal 

values for tThresh and dThresh are related to the mean off time of fluorophore blinking (<τoff>) and 



120 
 

the spatial resolution, respectively.  Longer <τoff> values require larger values of tThresh to 

accommodate the longer dark times between spots so that most repeat localizations of the 

same molecule are grouped into the same cluster (Figure 4.13).  Likewise, the dThresh value 

increases with the value of spatial resolution (Error! Reference source not found.), which is 

defined as the FWHM of Gaussian-distributed fluorophore localizations around the central 

molecule position, and determines the average distance between repeat molecule localizations 

(see 'Appendix 1'). The optimal dThresh value is approximately twice the spatial resolution, which 

is large enough to account for most repeat localizations of the same molecule (Figure 4.15E). 

The values obtained for the experimental image described above (tThresh = 0.4 s, dThresh = 60 nm) 

agree with the <τoff> timescale of mEos2 blinking kinetics observed in our study (0.10 s, Figure 

4.15B) and previous studies (0.1 - 0.4 s)(Annibale, Vanni et al. 2011), as well as the typical spatial 

resolution of mEos2 molecules in our setup (42m; Figure 4.15D). Although this general 

correlation (Figure 4.13 and Figure 4.14) could also be used to estimate optimal threshold values, 

substantial variations in corresponding optimal threshold values exist due to other fluorophore 

photoproperties or structural parameters. Generation of the |(N-Nref)/Nref| takes all of these 

factors into account, while requiring similar effort in fluorophore characterization.  

 

Figure 4.13 Optimal tThresh values are related to the mean off time.   
Datasets from both Z-ring and cluster simulations were grouped by 
simulated fluorophore off-time, τoff, then tThresh values at the Jaccard index 
peak of each simulation were averaged (blue circles; error bars represent 
standard deviation) and plotted against the fluorophore off-time. The two 
parameters show a clear correlation, suggesting that the optimum tThresh 
value is largely determined by the mean fluorophore off time (linear fit: Y = 
3.3X + 0.14, R2 = 0.99). However, the large variation at some τoff values 
suggest that other experimental factors affect the optimal tThresh value. A 
list of simulations used in this analysis can be found in Table S1 and S2. 
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Figure 4.14 Optimal dThresh values are related to the spatial resolution.  
Datasets from Z-ring and cluster simulations were grouped by simulated 
spatial resolution (FWHM), then the dThresh values at the Jaccard index 
peak of each simulation were averaged (blue circles; error bars 
represent standard deviation) and plotted against the simulated spatial 
resolution. Spatial resolution was calculated as 2.35σ, where σ is the 
Gaussian standard deviation used to scatter localizations around the 
central molecule positions (see Methods and Text S1). The two 
parameters show a clear correlation, indicating that larger spatial 
resolutions result in larger values for optimum dThresh (linear fit: Y = 1.4X 
+ 10.2, R2 = 0.96).  This plot was generated using the same datasets 
analyzed in Figure S5 (see Table S1 and S2 for parameter list). 

 

 

 

Figure 4.15 Validation of kinetic and spatial simulation parameters.   
Combined datasets from both in vitro and in vivo characterizations of mEos2 were used to generate histograms of 
nblink (A), τoff (B), and τon(C), which are all described well by single-exponential distributions, validating the simple 
kinetic scheme used to simulate fluorophore dynamics in this work.  Red curves indicate single-exponential fits that 
yielded mean values of:  <nblink> = 0.44 ± 0.03 (A), <τoff> = 2.0 ± 0.2 frames (B), and <τon> = 0.56 ± 0.03 frames (C). (D-E) 
Histograms of the pair-wise distances between repeat localizations of the same molecule for experimental (D) and 
simulated (E) datasets.  The histograms were fit to Equation 2 from Text S1 (p(Δr) = (r/2σ2)*exp(-r2/4σ2) ; red lines), 
yielding standard deviation, σ, of 18 ± 1 nm (D) and 15 ± 1 nm (E), respectively.  The experimental dataset is the same 
combined dataset characterized in (A-C) above.  The simulated dataset had a nominal σ of 15nm, and is the same 
dataset analyzed in Figures 2-5 (Ntotal = 2000 (50% midplane), σ = 15nm, <nblink> = 2, <τoff> = 1 frame, <τon> = 1 frame, 
<τ0

act> = 5 frames (1 frame = 50ms)).   
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Fluorophore characterization 

Two fluorophore properties need to be determined to implement the method described.  First, 

the average time between repeat molecule localizations, Δtrepeat, should be compared with the 

activation rate to identify  imaging conditions that are suitable for accurate superresolution 

image reconstruction as described above.  Second, the average number of observations per 

molecule, α, is required to generate the |(N-Nref)/Nref| plot. Both of these parameters should be 

determined using the same exposure time and excitation intensity as those used for the 

superresolution imaging.  This can be done with either purified fluorophore or, ideally, with a 

fixed biological sample of low labeling density that is activated extremely slowly. It is also 

important to characterize a fluorophore under the same buffer conditions used for 

superresolution imaging because blinking kinetics are highly dependent on a fluorophore’s 

chemical environment (Endesfelder, Malkusch et al. 2011).  The conditions inside fixed cells 

should be equilibrated with external buffer conditions, but this is not the case for live cells.  

Since movement can complicate fluorophore characterization in live cells, fixed cells are ideal 

for the purposes of accurate molecule counting and density measurements. 

The kinetic scheme used to described the blinking behavior of mEos2 in this work is relatively 

simple and has been previously shown to sufficiently describe mEos2 (Annibale, Vanni et al. 

2011).  Although more complex schemes, in which multiple pathways lead to the observed dark 

or fluorescent states (Habuchi, Ando et al. 2005; McAnaney, Zeng et al. 2005; Yeow, Melnikov et 

al. 2006; Annibale, Scarselli et al. 2010; David, Dedecker et al. 2012), may also be applicable to 

mEos2 and other photoactivable fluorophores, this work has shown that the distributions of τon, 

τoff,and nblink observed from individual mEos2 molecules can be approximated well by single 

exponential distributions (Figure 4.15A-C). 
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Comparison with other superresolution processing algorithms 

A few recent methods have addressed some of the effects of photoblinking on superresolution 

images.  The method developed by Annibale et al. identifies the correct number of molecules 

(Nref ) in a superresolution image by fitting the dependence of N on tThresh to a semi-empirical 

function (Annibale, Vanni et al. 2011).  In addition to providing an unambiguous way to 

determine the true Nref in a heterogeneous image, the method presented here provides optimal 

tThresh and dThresh values to generate a reliable image that can be quantified in many different 

ways, and identified a quantitative criterion (Δtmax /Δtrepeat > 40) under which optimal image 

reconstruction is possible.   

Other studies have applied pair correlation analyses to images of membrane clusters to extract 

mean density and cluster size (Sengupta, Jovanovic-Talisman et al. 2011; Veatch, Machta et al. 

2012).  By analyzing correlation functions of distances between detected spots, these studies 

have elegantly determined the relative contribution of blinking and true molecular interactions 

to the observed clusters in their superresolution images.  Because the pair correlation analysis 

does not require classification of each localized spot, it can accommodate faster activation rates 

than the method described here.  However, features of irregular shape and heterogeneous 

density may not be sufficiently characterized by the pair correlation analysis, which summarizes 

an entire image into a few parameters.  

The optimized clustering algorithm described in this work complements these methods by 

generating a full superresolution image and accurate list of molecule positions that provide 

additional qualitative and quantitative information that cannot be described by one or a few 

global parameters. This study has examined a few quantitative analyses that can be performed 
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(dimension, mean density, relative density, and density distribution analysis), but each biological 

system may be characterized by unique quantitative features that can be measured from the 

images and list of positions our method provides.  Additionally, because the method presented 

here is a simple modification to the superresolution image analysis algorithm first developed for 

PALM (Betzig, Patterson et al. 2006), it can be conveniently implemented in commonly used 

algorithms.   

Methods 
Simulation of FtsZ structures 

Based on previous experimental PALM images (Fu, Huang et al. 2010), FtsZ molecules were 

simulated FtsZ in the cell as two populations: midplane and cytoplasmic. Positions for 

cytoplasmic molecules were sampled from a uniform distribution across the entire cell area (1 

μm x 3 μm rectangle).   Positions for midplane molecules were sampled from a uniform 

distribution in a 110 nm x 1 μm rectangle at the midcell. Figure 4.16A shows a representative 

simulation of distributed midplane (red) and cytoplasmic (blue) molecules. Simulations 

presented in this work were comprised of 1000, 2000, or 5000, total molecules that were 

distributed with 30%, 50%, or 75% in the midplane population. 
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Figure 4.16 Representative simulations of superresolution images.  
(A) Representative simulation of FtsZ locations within an E. coli cell.  The total number of molecules, N, is 500.  
Molecules are divided into 50% midplane (red) and 50% cytoplasmic (blue). (B) Superresolution image generated from 
the data in (A) after simulating the following kinetic parameters: <nblink> = 3, <τoff> = 4 frames, <τon> = 1 frame, <τ0

act> 
= 7 frames, and applying the same clustering algorithm used to generate Figure 1B: spots within 167nm (1 camera 
pixel) and 50ms (1 frame) of each other were grouped together and plotted once.  The simulated image reproduces 
the time-correlated clusters observed in the experimental image (Figure 1B).  (C) Representative simulation of clusters 
within an E. coli cell.  The total number of molecules, N, is 2000.  Molecules are divided into 50% clustered (red) and 
50% cytoplasmic (blue) molecules, with the cluster diameter designated as 50nm FWHM.  The number of molecules 
per cluster was sampled from an exponential distribution with <molecules/cluster> = 200.  (D) Superresolution image 
generated from the data in (C) after simulating the following kinetic parameters: <nblink> = 2, <τoff> = 1 frames, <τon> = 
1 frame, <τ0

act> = 5 frames, but plotting only the first localization of each molecule. Scale bars, 500nm. Grid size, 30nm. 
 

Simulation of circular clusters 

Each simulation of circular clusters required designation of the following parameters: total 

number of molecules in a cell, fraction of molecules within clusters, mean number of molecules 

per cluster, and cluster FWHM.  The positions of molecules that were not within clusters 

(cytoplasmic molecules) were sampled in the same manner as described for the cytoplasmic 

molecules in the FtsZ simulation.   
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The integer number of clusters in a given simulation was calculated by dividing the total number 

of molecules in all clusters by the mean number of molecules per cluster.  Then, the number of 

molecules in each cluster was sampled from an exponential distribution.  The molecules within 

each cluster were scattered according to a symmetrical, two-dimensional Gaussian distribution 

with the designated FWHM, and the center of each cluster was distributed uniformly 

throughout the cell. Figure 4.16C shows a representative simulation of distributed clustered 

(red) and cytoplasmic (blue) molecules.  

Simulation of fluorophore blinking kinetics 

The kinetics of fluorophore activation and blinking were simulated by varying the following 

parameters: 

1. Activation rate (k1): rate at which new molecules are activated; inversely proportional to 

the number of unactivated molecules remaining 

2. Blink off rate (k2):  rate at which a molecule is reversibly converted to the transient ‘off’ 

state 

3. Blink on rate (k3):  rate at which a molecule is turned on from the transient ‘off’ state 

4. Bleaching rate (k4):  rate at which a molecule is irreversibly turned off by 

photobleaching 

Figure 4.1A shows a diagram of this simple kinetic scheme. Experimentally, k1 is controlled by 

the intensity of the activation laser and k4 is controlled by the intensity of the excitation laser.  

The kinetic parameters were simulated using MATLAB® via Monte-Carlo simulations of 

fluorophore dynamics where exponential probability distributions were assigned for each of the 

following parameters: 
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1. Lag time between molecule activations (τact) was sampled from an exponential 

probability distribution with expected value of τact
0(Ninitial/Nremaining), which increases as 

the number of remaining molecules (Nremaining) that have not been activated decreases. 

τact
0 is the expected lag time at the initial number of molecules (Ninitial). 

2. The duration of each blink (τon).  

3. The duration of dark times between blinks (τoff).  

4. Number of blinks per molecule (nblink).  

All times were rounded to the nearest integer number of frames (presented figures plot time in 

seconds using a 50 ms exposure time). Note that the kinetic parameters used in these 

simulations reflect observed fluorescence time traces that are highly dependent on 

experimental conditions such as excitation/activation light intensity, pixel size, background noise, 

frame rate, spot detection algorithm, and spot fitting algorithm.  This scheme was validated by 

verifying that the observed time traces of individual mEos2 molecules under the experimental 

conditions were well-described by exponential distributions of τon, τoff,and nblink (Figure 4.11A-C). 

Molecules were iteratively activated with lag times sampled from the updated τact distribution.  

Once activated, the number of blinks for a given molecule was sampled from the nblink 

distribution.  For each blink event, the on-time was sampled from the τon distribution and the 

time until the next blink was sampled from the τoff distribution.  The lag time (τact) until the next 

molecule activation was calculated from the start of the previously activated molecule such that 

blinking events from multiple molecules could overlap in time.  

For low expected values, sampling from an exponential distribution often resulted in values less 

than one frame.  A value of nblink < 0.5 (rounded to nblink = 0) means that the molecule was 
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activated but never ‘observed’ in the simulation due to fast photobleaching. This was also true 

for low values of mean on-time (τon), which resulted in some blinks not being recorded.  These 

properties mimic experimental conditions and highlight the fact that not every activated 

fluorophore or blinking event will be visualized. 

Once the blinking time trace was established for each molecule, its multiple localizations were 

scattered around the original molecule position according to a two-dimensional normal 

distribution with a standard deviation, σ, between 7 - 37nm.  For the simulation described in 

Figure 4.2, Figure 4.3, Figure 4.4, and Figure 4.5, σ = 15nm, which results in a FWHM spatial 

resolution of 35nm.  The position distributions generated by the simulation were similar to 

those observed for experimental mEos2 localizations by plotting the histograms of distances 

between repeat localizations of the same molecule that result from the simulation (Figure 

4.15E) and from experimental data (Figure 4.15D).  The shape and peak position of both 

distributions are similar, suggesting that the simulation with σ = 15nm approximates our 

experimental data. 

Superresolution image reconstruction with localization-based PSFs 

Superresolution images of both simulated and experimental data were generated in MATLAB® 

with a pixel size of 15 nm. Each localized spot was plotted as a symmetrical 2D Gaussian 

distribution with total intensity equal to 1 and σ equal to the experimental or simulated 

localization precision.  For simulated data, the localization precision was equivalent to the 

standard deviation, σ, used to simulate the scatter of localizations around the molecule position . 

For experimental data, only molecules with localization precisions smaller than 20 nm were 
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plotted. Superresolution images were pseudocolored using the ‘Red Hot’ lookup table in ImageJ 

software (NIH). 

Superresolution molecule density measurement 

For density measurements, superresolution molecule density images of both simulated and 

experimental data were generated in MATLAB® with a pixel size of 15 nm.  The intensity of each 

pixel in the density image represents the number of molecules detected within the pixel's 

boundaries, and hence represents a two-dimensional histogram of molecule counts.  For 

experimental data, only molecules with localization precisions smaller than 20 nm were included.  

Boundaries of the Z-ring or cluster regions of each density image were identified as polygons by 

eye. Relative density within the Z-ring (fmidcell) was calculated by dividing the summed intensity 

within the Z-ring region by the total intensity of the density image (total number of localized 

spots). Similarly, relative density within clusters (fcluster) was calculated by dividing the summed 

intensity within all clusters by the total intensity of the density image. Z-ring density histograms 

were generated by binning pixels within the Z-ring region by intensity. 

Calculation of maximal activation rate 

The average time between molecule activations, Δtmax, was calculated from the time intervals 

between localizations within the 225nm x 225nm square of maximum density, which was 

identified by applying a mean filter to the superresolution density image (see above) using the 

'nlfilter' function in MATLAB with a 17pixel x 17pixel sliding window (15 nm pixel size). The 

maximum density square is centered at the maximum intensity pixel in the filtered image.  This 

calculation is identical for both simulated and experimental data. 
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Clustering algorithm 

Both simulated and experimental time traces were clustered in MATLAB® using two thresholds: 

any spot that occurred within time, tThresh, and distance, dThresh, of a previous spot was grouped 

into the same cluster as that previous spot (see Figure 4.17 for flowchart).  The resulting cluster 

was assigned a spatial position equal to the centroid position of all the spots included in the 

cluster. 

 

Figure 4.17 Schematic of spot clustering algorithm.  
After spot identification and localization, the set of spots is processed iteratively such that any previous spot 
(“forerunner spot”) that occurred within tThresh and dThresh of a given spot (“spot i”) are grouped together.  Each group 
is then plotted only once in the final superresolution image at the calculated centroid position.  
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Jaccard index of cluster accuracy 

The Jaccard index (Gower and Legendre 1986; Jackson, Somers et al. 1989) of clustering 

accuracy was calculated for each clustering result as TP / (TP +FP + FN). TP is the number of pairs 

of localizations that came from the same molecule, and were grouped into the same cluster; FP 

is the number of pairs of localizations that did not come from the same molecule, but were 

grouped into the same cluster; and FN is the number of pairs of localizations that came from the 

same molecule, but were grouped into different clusters.  The Jaccard index varies from 0 to 1, 

where a value of 1 represents perfect clustering. 

Preparation and purification of mEos2 

The mEos2 gene was amplified using primers AATTGTCGACAATGAGTGCGATTAAGCCAGACA and 

TTAAGCGGCCGCTTATCGTCTGGCATTGTCAG.  The PCR product was restricted using SalI and NotI  

restriction enzymes (New England Biolabs), and cloned into the same sites of plasmid pT7HMT 

(Geisbrecht, Bouyain et al.) . The inserted sequence was confirmed via sequencing and the 

resulting plasmid was transformed into BL21-Gold(DE3) cells (Stratagene). To purify his-mEos2, 

cells were cultured overnight at 37°C in LB (Luria Broth) media. The culture was then diluted 

1:200 in 200 mL LB media, grown at 37°C to an OD600 of 0.8, then induced for 2 hours with 0.5 

mM IPTG (Isopropyl β-D-1-thiogalactopyranoside). Cells were collected at 4100 rpm for 20 min 

in a Sorvall Legend RT bench top centrifuge at 4°C. Cells were lysed using sonication and 

repeated freeze thaw cycles and subsequently purified on Ni-NTA beads (Invitrogen) at 4°C 

according to the ProBond™ native protocol.  Protein was buffer-exchanged and concentrated 

from elution buffer to pH 7.4 phosphate buffer saline using a Vivaspin 500 concentrator (GE 

Healthcare) with a 5,000 MW cutoff.  Purified his-mEos2 was checked for purity by running Mini-

PROTEAN TGX Gels (BIO-RAD), and concentration was determined in a Nanodrop 
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spectrophotometer using absorption coefficient of 5,600M-1cm-1 at 280 nm(McKinney, Murphy 

et al. 2009). His-tagged mEos2 was diluted 1:10,000 from a stock concentration of 13.5 µM, then 

frozen in an ethanol dry-ice bath and stored at -80°C in 2 µL aliquots.  

In vitro sample preparation 

A 12% NiCl2 aqueous solution was prepared and filtered to sterilize and remove aggregates.  A 

coverslip was secured via Scotch tape (3M) to a Mini Mouse II (Denville scientific) centrifuge 

with the 1.5 mL tube attachment.  While spinning at 6000 RPM, 50 µL of the NiCl2 solution was 

slowly pipetted to the center of the spinning coverslip through a ~1 cm hole in the plastic cover.  

The spin coating was visually inspected for evenness.  Next, 0.5 µL of purified his-mEos2 sample 

(1.35 nM) was pipetted to the center of the NiCl2-coated coverslip without spinning.  Sample 

was allowed to dry, then topped with an agarose gel pad to mimic the PALM image acquisition 

setup described previously (Fu, Huang et al. 2010). 

E. coli sample preparation and fixation 

E. coli B/rA cells containing plasmid pCA24N-FtsZ-mEos2 (Fu, Huang et al. 2010) were grown in 

M9 media supplemented with glucose at 25°C to an OD600 of 0.2, then induced with 20µM IPTG 

for 2hrs.  Cells were then collected via centrifugation, resuspended in fresh M9 media, grown at 

25°C for 90 minutes, and fixed with 4% formaldehyde at 25°C for 40min. The fixed E. coli cells 

were mixed with 50 nm gold fiducial beads (Microspheres-Nanospheres, Mahopac, NY), then 

sandwiched between an agarose gel pad and a cleaned coverslip as described previously (Fu, 

Huang et al. 2010).  
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PALM Imaging conditions 

Images were acquired using an Olympus IX-71 inverted microscope, equipped with a 60x, 1.45 

NA TIRFM objective. A 405nm laser (CUBETM, Coherent, Santa Clara, CA) was used to activate 

mEos2. The green and red fluorescence of mEos2 was excited via epi-illumination with  488nm 

and 561nm solid state lasers (Sapphire, Coherent, Santa Clara, CA) and emission was collected 

on an EMCCD camera (iXon DU897E, Andor Technology, Belfast, Northern Ireland) after passing 

through a dual-band emission filter (510/19 and 620/20, Chroma Technology, Rockingham, VT). 

During the imaging sequence, the sample was illuminated continuously with both 405nm and 

561nm lasers. The exposure time was 50 ms per frame (20 Hz) with a 100pixel × 100pixel 

imaging area. The intensity of the 405nm activation laser was increased stepwise as the number 

of unactivated mEos2 molecules decreased during data acquisition.  

Molecule detection in experimental data 

Molecules were detected and localized as described previously (Fu, Huang et al. 2010).  Briefly, 

intensity and area thresholds were used to identify potential fluorescence spots, which were fit 

to a symmetric, two-dimensional Gaussian function using a nonlinear least squares algorithm in 

MATLAB.  Localization precision was calculated from the photon counts according to the 

theoretical formula (Thompson, Larson et al.). Sample drift was calibrated by applying the 

frame-to-frame displacement of 50nm gold beads, which were localized in the same manner as 

single molecules of mEos2. 
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Appendix 1: Calculation of Spatial Resolution 
The spatial resolution of PALM or STORM experiments is determined by several factors.  

The theoretical upper bound of spatial resolution is related to the localization precision 

(σ), which primarily depends on the number of photons detected per localized spot 

(Lehmann, Rocha et al. 2011): 

                             𝜎2 =  𝑠
2+𝑎2 12⁄

𝑁
+ 8𝜋𝑠4𝑏2

𝑎2𝑁2
                                          (1) 

where s is the standard deviation of the Gaussian point spread function, α is the image 

pixel size, N is the number of photons detected from the molecule, and b is the 

background noise.   The upper bound of spatial resolution is then the FWHM (full width 

at half maximum) of a Gaussian distribution with localization precision, σ, as the 

standard deviation. 

 

In practice, the experimental spatial resolution is often defined as the positional 

variability in repeat localizations of the same molecule, which can deviate from the 

theoretical localization precision value due to thermal fluctuations and nonidealities in 

the detection system. For molecules that are localized many times (such as STORM 

dyes), this positional variability can be measured by first identifying the mean position of 

each molecule, then superimposing localizations of many molecules such that the mean 

positions of every molecule are aligned. The FWHM of the resulting Gaussian 

distribution of positions is the maximum achievable spatial resolution (Coltharp and Xiao 

2012), given sufficient sampling (see below).  When each molecule is only localized a 

few times (as with PALM fluorophores), however, the mean position of each molecule is 

less well-defined and this method is not as reliable.  
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For PALM fluorophores, measurement of positional variability can be made from the 

distribution of pair-wise displacement between repeat localizations of the same molecule.  

This measurement is more applicable for fluorophores that are only localized a few times 

because the results from many molecules can be combined into a single distribution 

without alignment. The distribution of distances between two localized spots is given by 

the following equation (Stirling Churchman, Flyvbjerg et al. 2006):  

𝑝(𝑟) = � 𝑟
𝜎12+𝜎22

� 𝑒
�− 𝜇2+𝑟2

2�𝜎1
2+𝜎2

2�
�
𝐼0 �

𝑟𝜇
𝜎12+𝜎22

�    (2) 

where p(r) is probability of observing displacement, r, in two dimensions; σ1 is the 

standard deviation in localized positions for spot 1; σ2 is standard deviation in localized 

positions for spot 2; μ is the true distance between the two spots; and I0 is the modified 

Bessel function of integer order zero. For calculation of spatial resolution, the true 

distance between repeat localizations of the same molecule is zero (μ = 0) and the 

standard deviations in localized positions for both spots are identical (σ1 = σ2 = σ), so 

Equation 2 simplifies to: 

𝑝(𝑟) = � 𝑟
2𝜎2

𝑒
−𝑟2

4𝜎2�      (3) 

where p(r) is probability of observing displacement, r, between repeat localizations. The 

achieved spatial resolution is then the FWHM calculated from the measured σ (FWHM = 

2.35σ). Equation 3 was used to fit the distribution of distances between repeat 

localizations for both experimental (Figure 4.15D) and simulated (Figure 4.15E) datasets 

to extract the spatial resolution.  For the simulated dataset, the fitted spatial resolution (σ 

= 15 ± 1nm; FWHM = 35 ± 2nm) was in excellent agreement with the nominal spatial 

resolution (σ = 15nm; FWHM = 35nm).  



136 
 

 

The measurements of spatial resolution provided above all reflect the precision of 

identifying a single molecule's location. It is important to note that the spatial resolution 

needed to resolve a given structural feature is also related to the sampling of the 

structure by the Nyquist-Shannon criterion, which states that a structure needs to be 

sampled at greater than twice the desired resolution (Shannon 1949; Biteen and 

Moerner 2010; Coltharp, Yang et al. 2014). For example, to achieve a precision-dictated 

FWHM resolution of 35nm, a structure needs to be sampled once every 17.5 nm on 

average.  Thus, a 350 x 350 nm2 structure would require 400 molecules to achieve 35nm 

resolution, and detection of only 100 molecules would yield 70nm resolution. 
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