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Abstract  

 
The prerequisite of establishing Ultra Violet photo-responsive soft materials is to find out 

a suitable photoinitiator triggered by visible light. In this thesis, we introduced a blue-light-

absorbing (peak absorbance at 470nm) photoinitiator system, camphorquinone and 

triethanolamine, to overcome the drawbacks of widely used UV photoinitiators that are 

incompatible with biomolecules like DNA and will crosstalk with UV photo-cleavable 

chemistry we utilized. We optimized the formulation to photopattern PEGDA-DNA co-

polymerized hydrogel for high pattern fidelity and mechanical property to be isolated from 

microfluidic devices. Digital maskless photolithography enables the immobilization of 

acrylate-modified oligonucleotides within patterned hydrogels at a dimension of tens of 

microns. To demonstrate the control of UV photo-cleavage, we used an acrylate-modified DNA 

strand containing a 1-(2-nitrophenyl) ethyl spacer to selectively cleave and release 

oligonucleotide segments from a region inside a PEGDA hydrogel. This UV responsive co-

PEGDA-DNA hydrogel fabrication approach can be used in performing pattern-transformation 

algorithms such as edge detection or as a trigger for downstream sequential release cascades 

on micron scale. 
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1, Introduction  

 

1.1, DNA functionalities  

1.1.1, Basic characteristics 

DNA has long been known as a powerful genetic information carrier and as the 

translational code for the synthesis of proteins. Briefly, a double-stranded DNA molecule forms 

because of the Watson-Crick hybridization of two polynucleotide strands composed of 

monomeric units called nucleotides. Each nucleotide is composed of i) one of four nucleobases 

(cytosine [C], guanine [G], adenine [A] or thymine [T]), ii) a deoxyribose, and iii) a phosphate 

group. The backbone of polynucleotides is formed via covalent bonds, and the bases of the two 

separate strands are joint together, according to base pairing rules (A with T and C with G), by 

hydrogen bonds into a Watson-Crick double helix structure. Genetic and other kinds of 

information including substantial structural and functional information is encoded in the 

sequence of DNA bases [1]. These fundemental characteristics makes DNA an excellent 

engineering macromolecule not only because its biological nature enables applications in vivo, 

but also its programmable feature enables predictable molecular behavior by DNA sequence 

design [2]. Based on this, DNA have been used to develop logic gates, computational circuits, 

and chemical programming that are capable of implementing intricate algorithms with simple 

reactions [3].  

Nowadays, more features of DNA are explored and exploited, making DNA a major class 

of natural macromolecules for designing functional materials [4]. Triple helix CGC+ and TAT 
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are known and Soto et al found that the formation of triplexes CGC+ and its transition to duplex 

are driven by environmental pH [5]. Another pH stimulated structure is the i-motif 

configurations, an assembly of C-rich strands into a four-stranded quadruplex structure. 

Similarly, the G-rich strand will transfer into G-quadruplex triggered by K+ [6]. Metal ion-base 

interactions can stabilize DNA by forming metal ion bridges in some cases such as C-Ag+-C 

or T-Hg2+-T. Generally, these structures and motifs can be removed by counter signals, 

indicating reversible structural changes. 

Other than structural motifs, DNA can act as aptamers that specifically recognize targets 

such as virus [7] and epithelial cell adhesion molecules [8]. DNA also possesses catalytic 

functions, for example, Travascio et al. found that DNA G-quadruplex aptamer/hemin 

complexes greatly enhanced the peroxidase activity compared with hemin alone [9,10].  

1.1.2, Modifications for crosslinking with polymers: Acrydite 

Due to its tunable multifunctionality, convenient programmability, adequate 

biocompatibility, and biodegradability, as well as its precise molecular recognition, DNA is 

esteemed by scientists for interfacing biology with material science to construct hydrogels with 

broad applications in the biomedical area. Luo et al. have successfully built pure DNA 

hydrogels from branched DNA building blocks with sticky ends, X- and Y- junctions [11]. Noll 

et al. developed a simplified strategy for DNA-based hydrogel that relies on the self-assembly 

of short linear double-stranded DNA building blocks with sticky ends [12]. However, pure DNA 

hydrogel preparation and production on a large scale is far too expensive. Thus, the most 

common thoughts to fabricate hydrogel with versatile functionality of DNA are integrating 

DNA strand onto the hydrogel backbone to form hybrid hydrogels.  



3 
 

DNA modification is required to cooperate with 

synthetic polymers such as polyacrylamide and PEGDA. 

Acrydite is a phosphoramidite that allows the synthesis 

of oligonucleotides with a methacrylate group at the 5' end (less commonly 3' or internal). 

Acrydite-modified oligonucleotides can react with nucleophiles such as thiols (Michael 

addition chemistry). More importantly, Acrydite-modified oligonucleotides can be 

incorporated, stoichiometrically, into hydrogels such as polyacrylamide, using standard 

free radical polymerization chemistry, where the double bond in the Acrydite group reacts with 

other activated double-bond containing compounds. 

1.1.3, Modifications for photo-sensitive reactions  

Modification of the DNA backbone can also endow DNA with multiple functionalities. 

To design UV responsive materials, several Photo-active linkers have been developed including 

o- nitrobenzyl, azobenzene, and triphenylmethane. The o-nitrobenzyl ester was widely used for 

the study of photolability (photocleavage) because of its low degradation kinetics and fast 

decomposition at photoirradiation (3.5mW/cm2, 365nm) comparing with 1-o-phenylethyl ester 

[13,14]. Another kind of UV photo-sensitive reagent is the azobenzene derivatives. This 

photosensitive molecule can isomerize between cis- and trans-state upon UV-Visible irradiation. 

When exposed to visible light, azobenzene is in trans-state and will induce DNA hybridization 

with complementary sequences, and this transition is reversible. UV photosensitive reactions 

have promising applications such as drug delivery, sensors, and soft robots. The spacer we used 

in this thesis is 1-(2-nitrophenyl) ethyl, a o-nitrobenzyl derivative. 

1.1.4, Modifications for RGD peptides: SMCC/ Click chemistry 

Acrydite structure 

https://en.wikipedia.org/wiki/Phosphoramidite
https://en.wikipedia.org/wiki/Oligonucleotides
https://en.wikipedia.org/wiki/Methacrylic_acid
https://en.wikipedia.org/wiki/Nucleophile
https://en.wikipedia.org/wiki/Thiol
https://en.wikipedia.org/wiki/Michael_addition
https://en.wikipedia.org/wiki/Michael_addition
https://en.wikipedia.org/wiki/Polyacrylamide
https://en.wikipedia.org/wiki/Radical_polymerization
https://en.wikipedia.org/wiki/Double_bond
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Peptide-oligonucleotide conjugates are constructed covalently linking DNA strand to 

synthetic peptide sequences. POCs are envisioned diverse applications in following areas: 

simultaneously control of multiple input signals, hierarchical self-assembly across multiple 

length scales, synthesis of functional proteins from synthetic peptide components, and artificial 

antibodies and active sites organized by DNA scaffolds. In this section, we will briefly 

introduce two approaches to POC fabrication: solid-phase synthesis of the entire hybrid 

molecules, and separate synthesis and then coupling. The first method is synthesizing peptides 

or oligonucleotides by protected monomers on a solid resin and then deprotecting and cleaving 

the entire hybrid strand off the resin. The drawback of this method is that the conditions for 

cleavage and deprotection are not compatible with the molecule because the strong acidity will 

damage oligonucleotides, therefore it's not commonly used. The second approach including the 

direct coupling of modified peptides and oligonucleotides and crosslinking two segments 

together by bifunctional linkers. In most cases, bifunctional linkers can react with thiol and 

amine on each end to connect oligonucleotides and peptides such as sulfo-SMCC, SPDP, and 

DBCO-maleimide. To mention that recently click chemistry has been widely utilized for 

bioconjugation for its high efficiency, minimal byproducts and low toxicity (azide and alkyne) 

[15]. 

1.2, DNA Stimuli-responsive hydrogels  

As we mentioned in section 1.1, structural and functional information is encoded in the 

base sequence of nucleotides, therefore, when external stimuli such as pH, metal ions, light 

irradiation, force, or molecules are exerted, DNA can undergo structural changes. Such changes 

include i-motifs, triplex DNA, metal-ion-bridged duplexes, G-quadraplex, unzipping of DNA 
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hairpins or programmed hybridization. The integration of stimuli-responsive oligonucleotides 

with biopolymers to form a co-DNA-polymer hydrogel provides the opportunity to exploit the 

functional information in DNA strands as well as the specific properties of the polymer to yield 

stimuli-responsive hydrogels. These hydrogels have a variety of applications, such as drug 

delivery, biosensing, soft robots, tissue engineering, 3D cell culture, catalysis, etc.  

pH-Responsive DNA hydrogels  

pH-responsive DNA hydrogels are usually used as shape-memory hydrogels that undergo 

gel-to-solution transitions by the reversible DNA transition between original state and i-motif 

or triple complex structures when environmental pH changes. Guo et al copolymerized 

acrylamide with acrydite modified C-rich nucleotides to form a pH-responsive hydrogel. The 

C-rich strands can self-assemble into an i-motif at pH = 5 and dissociate to a random coil at pH 

= 8, leading to the transition of the hydrogel to a “quasi- liquid” state [16]. Wilson et al found 

that an anticancer drug Coralyne preferentially binds to TA•T triplex, and the release rate from 

hydrogel increased as triplex dissociates with pH changing from 7 to 10 [17], thus they can 

potentially be used in drug delivery. 

Temperature-responsive DNA hydrogels 

In most cases, thermosensitive DNA hydrogel always possesses multiple responsiveness 

such as metal ion/temperature and photothermal stimuli. For the first kind, Guo et al. used 

poly(N-isopropylacrylamide) (pNIPAM), a thermosensitive polymer that undergoes reversible 

gel to solution transition at 32℃. Combining with Ag+ triggered solution to gel transition, the 

DNA hydrogels undergo reversible transition across solution-gel-solid states [18]. Yata et al used 

AuNPs and AuNRs to produce thermo-responsive DNA hydrogels for photothermal cancer 
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immune therapy. Gold nanoparticles are modified with oligonucleotides and then mixed with 

hexapodnas DNA to form a hydrogel that will trigger immune responses in vivo upon laser 

irradiation at 532nm [19]. (Mention that in the second example, no polymer is in the hydrogel.) 

Photo-responsive DNA hydrogels 

Photo-responsive DNA hydrogels can be divided into two categories, one where the 

responsive group (nitrobenzyl or azobenzene) are located on the DNA strands, the other one is 

that the photosensitive components are the polymer. Kang et al. incorporated azobenzene into 

the backbone of the crosslinker DNA strand and polymerize in visible light to form a hydrogel. 

When the hydrogel was exposed to UV light, the azobenzene isomerizes from cis- state to trans-

state and break the crosslinking. Another study used ethylene glycol diglycidyl ether (EDGE) 

to bind with G bases of the DNA to form a photosensitive hydrogel. The UV light will degrade 

the polymer, leading to a lower degree of crosslinking and larger mesh size and inducing the 

release of DNA and other molecules from the hydrogel network [20]. 

In this thesis, we utilized a nitrobenzyl derivative-modified ssDNA and copolymerized it 

with PEGDA to form a UV photo-responsive hydrogel that oligonucleotides segments can be 

cleaved under UV exposure and diffuse out of the gel.  

1.3, Hydrogel fabrication 

1.3.1, PEG and PEG derivatives  

Polyethylene glycols (PEGs) are hydrophilic oligomers or polymers synthesized from 

ethylene oxide consisting of the repeat unit of – (O– CH2 – CH2) –. Attaching a variety of 

reactive functional groups to the terminal sites of PEG polymers (hetero- or homo-

bifunctional derivatives) can greatly expand their ability to crosslink agents, forming 
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hydrogel networks or act as spacers between two chemical entities [21]. PEG-based hydrogels 

have advantages over natural hydrogels, such as the ability for photopolymerization, tunable 

mechanical properties and easy control of scaffold structure and functionalization [22]. So, 

PEG hydrogels are excellent for tissue engineering and stimuli-responsive biomaterials. In 

this thesis, we utilized polyethylene glycol diacrylate (PEGDA) with a molecular weight of 

575 for hydrogel fabrication.  

1.3.2, Peptide-PEG conjugation  

Though PEGs possess various advantages, they cannot provide us with an ideal 

environment to support cell adhesion and further applications due to their bio-inert nature. To 

improve the cell adhesion ability of PEG hydrogel, a frequently used method is to incorporate 

the cell adhesion peptide containing Arg-Gly-Asp (RGD) sequence into the network [23]. The 

most commonly used approaches to conjugate PEG molecules to peptides involve forming 

covalent bonds with (i) thiols in cysteine residues [24,25] or (ii) primary amines in lysine [26] 

residues or in the amino-terminal end of the molecule. In this thesis, we utilized a cysteine 

containing RGD peptides to directly react with acrylate group on PEGDA by thiol-ene 

reaction (a kind of click chemistry), and then the Acrylate-PEG-RGD and PEGDA will 

polymerize and form a hydrogel. With this method, we can build stimuli-responsive co-DNA-

PEG hydrogels that can response to input signals from cells.  

1.3.2, Photo-initiators 

In the photopolymerization process of hydrogels, photoinitiators are important for 

Basic schematic of thiol-ene addition reaction 
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absorbing irradiation and form free radicals to initiate chain propagation and crosslinking into 

a network. Generally, photoinitiators are classified into two categories, UV photoinitiators, and 

visible light initiators. UV light photoinitiators are the most commonly used initiators for 

hydrogel fabrication especially when the size or the resolution requirement of the gel is down 

to micron scale such as in 3D printing. Though UV photoinitiators such as Irgacure 2100 and 

Irgacure 2959 have very high efficiency and supports high precision polymerization, several 

drawbacks impede its versatile use in biomaterial or biomedical areas. For example, most UV 

initiators are cytotoxic. Also, the UV light will cause biomolecules denaturalization including 

DNA and proteins and UV have limited penetration depth [27]. Visible light initiators are widely 

used in dentistry for dental composite resins curing, some examples of vis-initiators including 

camphorquinone (blue light), phenylpropanedione, monoacrylphosphine oxide (TPO), 

bisacrylphosphine oxide, Irgacure 847 (green light) [28], eosin Y (green light) [29], riboflavin, 

tris(2,2-bipyridyl) dichlororuthenium(II) hexahydrate / sodium persulfate (abbreviation: 

Ru/SPS, wavelength 400-450nm)[30] and so on. Visible light initiators provide us with the 

possibility to integrate UV photosensitive reactions onto the hydrogel network. Here, the most 

commonly used camphorquinone/amine system will be highlighted in this section and its 

mechanism and kinetics will be briefly introduced. 

        In the CQ/amine system, the absorption of one quantum of radiation promotes the 

carbonyl group to an excited singlet. The excited singlet may also undergo intersystem crossing 

to the triplet state. Then the excited triplet (as the electron acceptor) forms an exciplex with the 

readily reduced amine (as the electron donor) by charge transfer from nitrogen lone pair to the 

carbonyl and thus producing two radical ions [31] and the polymerization rate is approximately 
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proportional to the square root of radiation intensity (Rp∝I0
1/2). It has been shown by Cook 

and Davidenko et al that amines with an abstractable proton on the -carbon undergo significant 

rates of polymerization and comparing the efficiency of different amine in enhancing initiation, 

they found that tertiary > secondary > primary amine [32,33]. They also demonstrate that for CQ 

concentrations of 0.05 -1.0 wt%, at low amine concentrations the polymerization rate grows 

and approach a peak value (≈0.6wt% of amine) and then at higher amine contents it decreases. 

The reason for this effect is that excess of amine will retard the polymerization in terms of a 

chain transfer process where the rate of the addition of amine radical to the monomer is slower 

than that of the chain propagation reaction. Therefore, in this thesis, we chose triethanolamine, 

a tertiary amine as the co-initiator at a concentration close to its maximum, 0.5 w/v %, and the 

concentration of CQ we chose was 0.8wt %.  

1.4, Microfluidic devices  

Microfluidics is the science of manipulating and controlling fluids, usually in the range of 

microliters (10-6L) to picoliters (10-12L), in networks of channels with dimensions from tens to 

hundreds of micrometers. The benefits of microfluidics include (i) reduced sample and reagent 

volumes, (ii) fast sample processing, (iii) high sensitivity, (iv) low cost, (v) portability, (vi) the 

potential to be highly integrated and automated that can prevent errors from manual 

manipulation. Based on these advantages, microfluidics is always considered as a platform for 

point of care biomedical and chemical applications, called lab-on-a-chip (LOC). For example, 

inertial microfluidic devices have been widely used in extraction of blood plasma, separation 

of particles and cells, solution exchange, isolation of target cell type, cell encapsulation, etc. 

[34] As a clinical diagnostics and detection platform, a variety of procedures can be arranged 
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side-by-side inside the device while the fluid flow throughout the chip. Yoav et al developed a 

valve-controlled LOC biosensor with ssDNA probes functionalized onto the patterned gold 

electrodes, such device allowed determination of DNA hybridization [35]. In recent years, with 

the development of bioprinting technology, microfluidic devices are used as a printing nozzle 

integrated within a custom 3D bioprinter that allows for the decomposition of multi materials 

in a single scaffold by rapidly switching between bio-inks or extruding multiple ingredients 

simultaneously [36,37]. Also, microfluidic systems are the most suitable platforms for research 

based on concentration gradient such as cell migration behaviors under diffusion controlled 

chemical gradient and DNA reaction-diffusion mechanisms [38,39]. In this work, we focused on 

the diffusion behavior of DNA molecules within PEGDA hydrogels. Therefore, we utilized 

microfluidic chips for two main benefits: precise hydrogel patterning with fixed height and a 

closed system with convenient solution switching function that suitable for diffusion. 

1.5, Maskless photolithography: DMD  

A digital micromirror device (DMDTM, Texas Instrument) is a dynamic mask generator 

and is frequently used in 2D and 3D bioprinting with resolution requirement down to the 

micron scale. The mechanism of DMD is as follow, 

firstly, the desired pattern is designed into CAD model 

and then dynamically generates as a bitmap image on a 

programmable array of digital micro-mirrors on the 

DMD chip. The light illuminated on the chip is shaped 

into the pattern and transfer through the lens, thus, an 

image is formed on the hydrogel precursor solution [40]. 
Diagram of DMD mechanism [30] 
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DMD is an excellent tool for cell-laden tissue construction because it allows fabrication of 

complex internal features along with precise spatial distribution of biological features in a 

single scaffold [41,42]. In this work, we used DMD to fabricate 2D patterned hydrogel in 

microfluidic channels. 

1.6, The scope of my thesis  

Emerging stimuli-responsive DNA biomaterials offer the possibility of integrating 

synthetic materials with biological molecules to regulate function and modulate biochemical 

signaling processes on a cellular level. Advances in fabrication techniques and the development 

of new biocompatible chemistries suggest new ways of tuning a material’s responsiveness to 

different stimuli and broaden the applications of the materials. Digital maskless 

photolithographic patterning is becoming an increasingly powerful tool for the construction of 

two and three-dimensional soft biomaterials with specific architectures for applications such 

as lab-on-chip devices, engineering tissue scaffolds, drug delivery, and micromechanical and 

chemo-mechanical systems. Ultraviolet wavelength-absorbing photoinitiators are widely 

utilized in DNA-based hydrogel fabrication but have significant drawbacks, such as 

compatibility with biomolecules including DNA and crosstalk with many UV-photosensitive 

chemistries. In this thesis, we aimed at developing a method for the UV-photocleavable DNA-

based hydrogel fabrication with digital maskless photolithography techniques. First, we 

optimized the formulation of camphorquinone, triethamolamine, and PEGDA (Mw = 575) 

suitable for the digital micro-mirror device to obtain well-patterned co-PEGDA-DNA 

hydrogels. Then, we demonstrated the control of UV-cleavage of acrylate modified DNA with 

a 1-(2-nitrophenyl) ethyl spacer to cleave DNA from selected regions. 
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Diagram of UV photocleavable hydrogel fabrication 

 

2, Methods and results 

2.1, Hydrogel Fabrication 

Our goal is to create a patterning method for hydrogels which satisfies the following three 

criteria: 

i) The capability of integrating DNA into the hydrogel network.  

ii) Enabling oligonucleotides diffusion (both inward and outward). 

iii) The hydrogel is stiff enough to be isolated from microfluidic devices. 

Our first step was to determine an optimal formulation for our hydrogel. To start with, a 

precursor mixture consists of 30v/v% PEGDA, 0.8w/v% CQ, 0.5v/v% TEA and 10v/v% 10x 

TAE Mg2+ buffer (Tris base, acetic acid, EDTA) is used and polymerized in a 100μm height 

microfluidic chip based on the formulation with another initiator - Irgacure 2959 (λ= 365nm). 

TAE buffer is needed for further experiments to ensure homogeneous mixtures of hybridized 

DNA. Optimal CQ and TEA concentrations were obtained from literature by Cook [39] and 

Jakubiak [40]. However, the efficiency of blue light (λ= 470nm) initiator CQ is lower than that 

of Irgacure 2959 and other UV photo-initiator [41], leading to a low polymerization rate and 
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much webbing around the desired pattern. Therefore, we increased the PEGDA percentage and 

adjusted the exposure time until it reached the ideal resolution. A formulation of 75v/v% 

PEGDA and 4sec exposure time produced gels with clear boundaries. However, the mesh size 

of our hydrogel will also decrease when increasing the monomer (PEGDA 575) content, which 

will impede oligonucleotides diffusion. In addition, we implemented a new setup to isolate the 

hydrogels from microfluidic devices, where we first cut the previous channel in half and anneal 

it with glass slide to make an open channel. The gels should be stiff enough to maintain its 

shape during the washing-out step. 

With the optimal gel formulation, we successfully obtained patterned gels of high fidelity 

isolated from the microfluidic channels. Wide field images are showed in Figure 1. The small 

dots inside the hydrogel were the polystyrene particles (diameter = 5.11μm) we used for 

focusing. 

However, when 1μM Cy3 fluorophore was added to the prepolymer solution, we 

observed phase separation phenomenon through Cy3 filter on the microscope, illustrating that 

prepolymer solution with high percentage as 75% PEGDA is heterogeneous. (In our first 

attempt of 30% PEGDA in the formulation with 1μM Cy3, we did not observe phase-separation 

phenomenon.) 

 
Figure 1. (a) Gel image of the phase-separation of 75% PEGDA with 1μM Cy3 (1xTAE Mg2+ buffer). (b) 

Homogeneous gel of 75%PEGDA with 1μM Cy3 (no buffer). 
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Figure 1. Gel patterns. The first column showed the patterned gels in the channel using DMD. The second column 

showed the top views of isolated gels in a 10mm diameter dish. The third column showed the side looks of gels 

in the dish. ( Scale bar = 500μm) 

    Our theory was that the TAE buffer is the cause of phase-separation. To eliminate this 

effect, we reduced 10xTAE Mg2+ dosage by half (final buffer concentration is 0.5xTAE Mg2+) 

in our prepolymer solution, sonicated for 10min and vortexed for 1min to make sure the 

prepolymer solution was well-mixed. Results showed that the phase-separation was reduced 

but still existed, which supported our theory. We next removed TAE Mg2+ from the formulation, 

and the effect was successfully eliminated. The effect of removing salt (Mg2+) on double-
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stranded DNA stability was not a concern because TAE Mg2+ buffer can be injected in the 

microfluidic devices and diffuse into the hydrogel afterward. 

2.2, Measurements of DNA diffusion rates (with circular gels D=500um)  

After proving that we have achieved ideal pattern-fidelity and stiffness of the assembled 

hydrogels, the next step was to test the rates of DNA diffusion inside the hydrogels. Diffusion 

was tested in two ways, outward and inward. Passive diffusion was carried out by polymerizing 

a gel with Cy3 modified DNA (5 base pairs and 31 base pairs in length), washing with 1xTAE 

Mg2+ to remove uncrosslinked prepolymer solution and then stopping the flow to see if the 

DNA can diffuse out. The inward diffusion was tested by polymerizing a ‘blank gel’, washing 

with 1xTAE Mg2+ and then injecting a DNA solution into a microfluidic chip containing the 

patterned hydrogel. The experimental setup is illustrated in as follows. Based on our 

experimental setup, diffusion was driven by the concentration gradient only. 

 

Schematic of the experimental setup 

2.2.1 Factors that affect the rate at which DNA molecules diffuse into the gel  
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2.2.1.1 Comparison of gel mesh size and DNA hydrodynamic radius 

As I stated in the previous section, increasing the PEGDA 575 percentage will cause a 

decrease in hydrogel mesh size due to higher crosslinking density. To check the feasibility of 

DNA diffusion from the most straightforward manner is to compare the gel mesh size and the 

DNA hydrodynamic radius. If DNA hydrodynamic radius is larger than the mesh size, diffusion 

will not occur in our gel. 

 

Schematic of the crosslinked structure of a hydrogel, indicating the crosslinks (a), the crosslinked chains (b), and 

the average mesh size ξ. 

As demonstrated in the schematic above, when polymer chains are crosslinked in a 

thermodynamically good solvent, they attain a configuration of the solvated state. The 

characteristic correlation length, ξ, defines the average distance of the consecutive crosslinks 

and is also known as the mesh size in the theory of solute diffusion in polymers [42]. The 

equilibrium degree of swelling, q, is required to estimate the structural parameters such as 

molecular weight between crosslinks. However, at this stage, we didn’t measure the actual 

swelling ratio, the value we used for calculation was based on literature and speculation. The 

polymer volume fraction before and after swelling is normally written as ν2,r, and ν2,s. In our 
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setup, ν2,r = 0.75. The polymer volume fraction after swelling was developed by Peppas[43,44] :  

υ2,𝑠
−1 = 𝑞 ∙

𝜌𝑃𝐸𝐺𝐷𝐴

𝜌𝑔𝑒𝑙

[1] 

Where 𝜌𝑃𝐸𝐺  is the density of the PEGDA 575 (1.12 g/cm3), 𝜌𝑔𝑒𝑙 is the density of the 

hydrogel (assume to be 1 g/cm3). Based on the observation of our experiment, the swelling 

ratio of our gel was small. Therefore, I postulate the value range to be [2, 2.5]. Then 𝜐2,𝑠 has 

the range of [0.357, 0.446].  

Then we calculated the number average molecular weight between crosslinks [6]: 

1

�̅�𝑐

=
2

�̅�𝑛

−
(

�̅�
𝑉1

) [ln(1 − 𝜐2,𝑠) +  𝜐2,𝑠 +  𝜒𝜐2,𝑠
2 ]

𝜐2,𝑟[(
𝜐2,𝑠

𝜐2,𝑟
)

1
3⁄

−
𝜐2,𝑠

2𝜐2,𝑟
 ]

[2] 

Here, �̅�  is the specific volume of amorphous PEGDA (0.892 mL/g), 𝑉1  is the molar 

volume of water (18.1 mL/mol), 𝜒  (0.426) is the PEGDA-water Flory-Huggins interaction 

parameter which can be found in tables. 

Mesh size was then determined by Canal and Peppas [43]. The root-mean-square end to 

end distance of the polymer chain can be calculated by the following equation: 

(𝑟�̅�
2)

1
2⁄

= 𝑙 ∙ 𝐶𝑛

1
2⁄

∙ 𝑛
1

2⁄ [3] 

Where 𝑙 is the average bond length of one repeat unit, in our case is 0.297 nm (the sum 

of C-C bond, 0.154nm, and C-O bond, 0.143nm), Cn is the characteristic ratio of the polymer 

(here we used the value for PEG 6.9 as estimation), and n is the number of bonds in the 

crosslink: 

𝑛 =  2 ∙
�̅�𝑐

𝑀𝑟

[4] 

Where 𝑀𝑟 is the molecular weight of the repeat unit (44 for PEGDA). Mesh size was 

then be calculated by the following equation:  
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𝜉 =  𝜐2,𝑠

−1
3⁄

∙ (𝑟�̅�
2)

1
2⁄

[5] 

The mesh size of our gel according to our assumption should be in the range of [3.52nm, 

5.17nm].  

The next step was to estimate the size of DNA molecules where we consider DNA 

hydrodynamic diameter as the main parameter. When nucleic acids are dissolved in solutions, 

their chains will coil and form a structure that we assume to be a sphere, also, nucleic acids 

are highly hydrated and at least the first hydration shell of the water moves hydrodynamically 

with the macromolecule [45]. The hydrodynamic radius R is often called the Stokes radius and 

can be related to other molecular parameters. Generally, a polymer with molecular weight 𝑀 

and partial specific volume �̅�2 has minimum molecular volume and radius 𝑉𝑚𝑖𝑛 =
𝑀�̅�2

𝑁𝐴
=

 
4

3
𝜋𝑅𝑚𝑖𝑛

3 , where 𝑁𝐴 is Avogadro’s number so the minimum radius is  

𝑅𝑚𝑖𝑛 = (
3𝑀�̅�2

4𝜋𝑁𝐴
)

1
3⁄

[6] 

 If we replace �̅�2 with the hydrated specific volume, �̅�2 +  𝛿1𝜈1
0, based on the 

assumption that 𝛿1 grams of water (specific volume 𝜈1
0) are associated with 1g of dry 

polymer, the hydrated radius can be calculated by the following equation: 

𝑅0 = 𝑅𝑚𝑖𝑛 (1 +
𝛿1𝜈1

0

�̅�2
) [7] 

For nucleic acids, 𝛿1 = 0.5g/g, 𝜈1
0 = 1.0cm3/g, and �̅�2 = 0.56 cm3/g, the ratio was 

found to be 𝑅0/𝑅𝑚𝑖𝑛 = 1.24.  

In our experiment, we used two single strand DNA. The molecular weight of the two 

strands is 1520 g/mol for polyT5 and 9345.63g/mol for 31 bases strand. The diameters of the 

molecules are 1.726nm and 3.16nm. 
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    The calculation showed that the diameter of DNA is slightly smaller than the mesh size. 

Therefore, it is expected that diffusion can occur in our hydrogel.  

2.2.1.2, Calculating DNA diffusion constants using Fick’s law of diffusion 

To quantify the DNA diffusion rate within our hydrogels, we need to build a model based 

on the accurate description of our experimental conditions. A circular gel is simple enough to 

fabricate as well as to obtain an analytical solution for data fitting. By assuming the gel is 

radially uniform, we can create a 2-D cylindrical model with two variables, r, and θ, where r is 

the distance of an arbitrary position from the center, θ is the angle of the position with respect 

to a starting radius. Therefore, the temporal concentration inside the gel is a function of spatial 

variable r and time variable t, that is, C(r, t). Here, the spatial dependence of concentration has 

been simplified to a 1D system where θ is not taken into consideration due to the radial 

homogeneous attribute. In a cylindrical coordinate system, the Fick’s second law of diffusion 

has the following form: 

𝜕𝐶

𝜕𝑡
= 𝐷

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑐

𝜕𝑟
) [8] 

Based on our experiment setup, taking passive diffusion as an example, the gels were 

polymerized in the microfluidic channel with 1uM Cy3 modified DNA in the prepolymer 

solution, and then we pumped in the buffer to wash out the pre-gel solution and surround the 

gel with buffer and start image, recording t = 0. Under this circumstance, the initial and 

boundary conditions are: 

I.C.: C(r, t = 0) = 1, 𝑟 < 𝑅;       C(r, t = 0) = 0 , 𝑟 ≥ 𝑅 . 

B.C: C(r = R, t) = 0;           
𝜕𝐶(𝑟=0,𝑡)

𝜕𝑟
= 0 . 

The first step to seek for a solution is to separate the variables. We postulate a solution 
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that is the product of two functions, T(t), a function of time only and P(r), a function of radial 

coordinate r only. With this assumption, the solution can be written as: 

C(r, t) = 𝑃(𝑟) ∙ 𝑇(𝑡)   [9]                            

Substituting equation [2] for C in diffusion equation [1], we can obtain: 

Left hand side: 

𝜕𝐶

𝜕𝑡
=  

𝜕[𝑃(𝑟)∙𝑇(𝑡)]

𝜕𝑡
= 𝑃(𝑟) ∙

𝜕𝑇(𝑡)

𝜕𝑡
[10] 

Right hand side: 

𝐷
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑐

𝜕𝑟
) = 𝐷

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕[𝑃(𝑟)∙𝑇(𝑡)]

𝜕𝑟
) =  𝐷 ∙ 𝑇(𝑡)

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑃(𝑟)

𝜕𝑟
) [11] 

Equation [10] equals [11], divide the both sides by D•P(r)T(t), we can obtain the 

following result: 

1

𝐷

1

𝑇(𝑡)

𝜕𝑇(𝑡)

𝜕𝑡
=  

1

𝑃(𝑟)

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑃(𝑟)

𝜕𝑟
) =  −𝜆2 [12] 

The LHS is a function of t only and the RHS is a function of r only, therefore the only 

way this can be right is both sides equal a constant, which we assign it to be -λ2. 

The general solution for 
𝜕𝑇(𝑡)

𝜕𝑡
=  −𝜆2𝐷𝑇(𝑡) is 𝑇(𝑡) = 𝐴𝑒−𝜆2𝐷𝑡.  

The RHS equation can be written as: 𝑟2 𝜕𝑃(𝑟)2

𝜕2𝑟
+ 𝑟

𝜕𝑃(𝑟)

𝜕𝑟
+ 𝜆2𝑟2𝑃(𝑟) = 0. The general 

solution to this equation is P(r) = 𝐵𝐽0(𝜆𝑟) + 𝐶𝑌0(𝜆𝑟), where J0 and Y0 are the Bessel 

Functions of the first and second kind with zero order. Thus, the general solution for 

concentration becomes: 

C(r, t) = 𝑃(𝑟) ∙ 𝑇(𝑡) =  𝐴𝑒−𝜆2𝐷𝑡[𝐵𝐽0(𝜆𝑟) + 𝐶𝑌0(𝜆𝑟)] =  𝑒−𝜆2𝐷𝑡[𝐶1𝐽0(𝜆𝑟) + 𝐶2𝑌0(𝜆𝑟)] [13] 

In our case, at any time t, lim
r→0

C(r, t) = 𝑓𝑖𝑛𝑖𝑡𝑒, whereas lim
r→0

𝑌0(𝜆𝑟) =  −∞, therefore 

C2=0. Apply boundary condition C(r = R, t) = 0, we get following equation: 

𝑒−𝜆2𝐷𝑡[𝐶1𝐽0(𝜆𝑅)] =  0 [14] 
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    The solution for 𝐽0(𝜆𝑅) = 0 can be found in tables that give the zero points for Bessel 

functions. We use symbol αm0 to indicate the mth zero point of J0, with 𝜆𝑚𝑅 =  𝛼𝑚0, we can 

get a complete set of solution for equation [14]: 

C(r, t) =  ∑ 𝐶𝑚

∞

𝑚=1

𝑒−𝜆𝑚
2 𝐷𝑡𝐽0(𝜆𝑚𝑟) [15] 

Apply the initial condition C(r, t = 0) = 1: 

C(r, 0) = 1 =  ∑ 𝐶𝑚

∞

𝑚=1

𝐽0(𝜆𝑚𝑟) [16] 

The constants value Cm can be found from the general equation of orthogonal 

eigenfunction expansions including the weighting function equaling to r. 

𝐶𝑚 =  
∫ 𝑟𝐽0(𝜆𝑚𝑟)

𝑅

0
𝑑𝑟

∫ 𝑟[𝐽0(𝜆𝑚𝑟)]2𝑅

0
𝑑𝑟

=  

𝑅𝐽1(𝜆𝑚𝑅)
𝜆𝑚

𝑅2

2
[𝐽1(𝜆𝑚𝑟)]2

=  
2

𝜆𝑚𝑅𝐽1(𝜆𝑚𝑅)
=  

2

𝛼𝑚0𝐽1(𝛼𝑚0)
[17] 

Put [17] into equation [15], and substitute 
𝛼𝑚0

𝑅
 for 𝜆𝑚, the final solution for passive 

diffusion equation is obtained: 

C(r, t) =  ∑
2

𝛼𝑚0𝐽1(𝛼𝑚0)

∞

𝑚=1

𝑒
−𝛼𝑚0

2 𝐷𝑡
𝑅2𝐽0 (𝛼𝑚0

𝑟

𝑅
) [18] 

In a similar way, the inward diffusion equation has a solution as: 

C(r, t) = 1 − ∑
2

𝛼𝑚0𝐽1(𝛼𝑚0)

∞

𝑚=1

𝑒
−𝛼𝑚0

2 𝐷𝑡
𝑅2𝐽0 (𝛼𝑚0

𝑟

𝑅
) [19] 

Equation [11] and [12] are the diffusion data fitting models in the following sections. 

2.2.2, Single-stranded DNA diffusion  

2.2.2.1, Passive diffusion of PolyT5 

The experiment was implemented as illustrated in the schematic in section 2.2, and 1μM 

of Poly T5 was mixed in the pregel solution for photopolymerization and image every 3 
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minutes to capture the diffusion profile (Figure 2). 

 

Figure 3. Diffusion profile across the diameter 

Figure 3 showed the fluorescent count of the gel and the surrounding solution. After 

about 33 minutes, polyT5 molecules fully diffused out of the hydrogel. The first time point 

illustrates that right after polymerization, there is a strange effect inside the gel leading to higher 

counts inside than that of the surrounding solution. Our conjecture was that the optical property 

of the hydrogel is different from pregel solution. However, our main purpose focused on the 

diffusion, the optical effect wasn't our concern.   
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Figure 4. Normalized data fitting for polyT5 

    Fitting the data to the model we built in section 2.2.1.2 using a least square curve fit to a 

single variable, diffusion coefficient D, which gave us a result with standard deviation of D = 

41.828 ± 3.7896 μm2/s for polyT5 within 75% PEGDA, 0.8% Camphorquinone, 0.5% TEA 

at a radiant exposure of 45.6 mJ/cm2 from a blue LED light guide intensity of 11.4 mW/cm2 

for an exposure of 4 seconds.   

2.2.2.2, Passive diffusion of 31 bases ssDNA  

The same setup was implemented to measure the diffusion constant of a 31 base ssDNA 

molecule. Different dosages of blue light were used during patterning to get a better 

understanding of how the rates at which DNA molecules diffuse into hydrogels as a function 

of hydrogel density. 1μM of DNA was mixed in pregel solution and exposed using blue LED 

for 1 second (11.4 mJ/cm2), 2 seconds (22.8 mJ/cm2), 3 seconds (34.2 mJ/cm2), and 4 seconds 

(45.6 mJ/cm2). The first image was taken right after photopolymerization, rest of images were 

taken immediately after buffer injection and repeatedly every 5 minutes. 
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Figure 5. Diffusion profile across the diameter for 1 second-exposure gel 

 

Figure 6.Diffusion profile across the diameter for 2 second-exposure gel 

 

Figure 7. Diffusion profile across the diameter for 3 second-exposure gel 
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Figure 8. Diffusion profile across the diameter for 4 second-exposure gel 

Comparing Figure 5-8, we can find out that increasing the exposure time of 

polymerization, the diffusion rate decreased, which is reasonable. As I mentioned in section 

1.3.2, the level of excited photo-initiator is relevant to the radiant dosage, the longer the 

exposure time, the more camphorquinone molecules were excited, and the higher density of 

crosslinking, leading to a smaller mesh size which will retard diffusion. 

 Similarly, strange effects were also observed after polymerization and buffer injection, 

also at the gel boundaries. Those effects will impede us from obtaining accurate diffusion 

coefficients in the data fitting process. Therefore, the inward diffusion experiment described  

in the next section was used to measure diffusion rates. 

2.2.2.3, Diffusion of 31 base single strand DNA  

The same DNA strand was used as in section 2.2.2.1. Prepolymer solution with no test 

DNA was injected and photo-polymerized for 1 second, 2 seconds, 3 seconds or 4 seconds. 

The excess prepolymer was washed by the 1xTAE buffer, and then 1uM of 31 bases ssDNA 

was injected to the device and imaged every 5 minutes. 

•Plotting the fluorescent counts cross the diameter: 
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Figure 9. Diffusion profile across the diameter for 1 second-exposure gel 

 

Figure 10. Diffusion profile across the diameter for 2-second-exposure gel 

 

Figure 11. Diffusion profile across the diameter for 3-second-exposure gel 
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Figure 12. Diffusion profile across the diameter for 4-second-exposure gel 

At equilibrium, large offsets between equilibrium fluorescent count inside the gel and in 

surrounding solution. Amsden explained solute behavior in hydrogels in terms of reduction in 

hydrogel free volume, enhanced hydrodynamic drag on the solute, longer path length due to 

obstruction and a combination of both hydrodynamic drags and obstruction. The last two 

theories explain the reason for the retarded solute diffusion rate within hydrogels comparing 

within the liquid phase [46]. Free volume theory describes solute diffusion as jumping into voids 

formed in the solvent space, where the voids are pictured to be formed by a general withdrawal 

of liquid molecules due to thermal motion and then the voids are filled in by solute molecules. 

The available free volume for solute diffusion inside the gel including the redistribution of 

water molecules and the redistribution of polymer molecules, whose contribution is tiny, and 

the polymers can be considered as immobile network inside the hydrogel. Therefore, the 

volume accessible for solutes are the voids between the polymer chains. There are several 

definitions used for solute concentration within the gels, including solute per unit volume of 

gel (denoted CG), the amount of solute per unit void volume (denoted CV), and the amount of 

solute per unit gel volume at the equilibrium (denoted CE). For porous media like hydrogel, 
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𝐶𝐺 = (1 − 𝜑) ∙ 𝐶𝑉 is always satisfied, where 𝜑 stands for the polymer volume fraction. To 

describe the relationship between CE and CG, Muhr et al. [47] introduce partition coefficient K 

defined by 𝐶𝐺 = 𝐾𝐶𝐸. In most cases, the solutes won’t be adsorbed by polymer chains, the 

prediction of K is the geometric exclusion effect that the fractional volume for large solute 

molecules (denoted 1 − Φ) is less than that of smaller molecules (denoted 1 −  φ), meaning 

that smaller molecules can reach close to the void boundaries. Thus, for smaller molecules K =

 1 −  φ, while for larger solutes K =  1 − Φ. In our cases, the dimension of DNA molecules is 

close to the mesh size of the hydrogel (calculated in section 2.3.1.1), which means the available 

fractional volume for DNA was small and caused the offset. Also, increasing exposure time 

lead to smaller mesh size and larger Φ, resulting in a decrease in the equilibrium concentration. 

We took 𝐶𝐸 = 1 𝜇𝑀, and fit the data to the model (Equation [19]): 

 

Figure 13. Normalized data fitting for 1-sec-exposure gel 
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Figure 14. Normalized data fitting for 2-sec-exposure gel 

 

Figure 15. Normalized data fitting for 3-sec-exposure gel 

 

Figure 16. Normalized data fitting for 4-sec-exposure gel 

    Figure 12-15 gave us diffusion coefficients with stand deviations of 16.0075 ± 
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5.88μm2/s, 17.9953 ± 6.9591μm2/s, 14.8833 ± 5.6579μm2/s, and 10.4274 ± 5.1823μm2/s 

for 1 second (11.4 mJ/cm2), 2 seconds (22.8 mJ/cm2), 3 seconds (34.2 mJ/cm2), and 4 seconds 

(45.6 mJ/cm2) exposure. 

2.2.3, Double-stranded DNA diffusion 

Double-stranded DNA was made by hybridizing 31 base DNA (same strand used in 

2.3.2.2) with R4 anchor strand. Diffusion experiment for dsDNA was carried out with the same 

setup, but injecting 500nM of DNA. 

 

Figure 17. Diffusion profile across the diameter for 1-second-exposure gel 

 

Figure 18. Diffusion profile across the diameter for 2-second-exposure gel 
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Figure 19. Diffusion profile across the diameter for 3-second-exposure gel 

 

Figure 20. Diffusion profile across the diameter for 4-second-exposure gel 

     

2.3, DNA acrydite retention  

DNA retention was quantified by mixing 2μM acrydite-modified Cy3 labeled fluorescent 

DNA strand in the prepolymer solution and photopolymerizing to integrate DNA onto the 

hydrogel network. The fluorescent count level was obtained after washing by 20mL 1xTAE 

Mg2+ using a syringe pump programmed at a flow rate of 1mL/hr. Assuming that the 

concentrations have a linear correlation with Cy3 fluorescence with the camera setting we used, 

we can normalize the data by the following equation: 
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𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑐𝑜𝑢𝑛𝑡𝑠 =  
𝑅𝑎𝑤 𝑖𝑚𝑎𝑔𝑒 − 𝑑𝑎𝑟𝑘 𝑖𝑚𝑎𝑔𝑒 

𝑅𝑎𝑤 𝑖𝑚𝑎𝑔𝑒(𝑡 = 0) − 𝑑𝑎𝑟𝑘 𝑖𝑚𝑎𝑔𝑒
 

    Where 𝑅𝑎𝑤 𝑖𝑚𝑎𝑔𝑒 is the raw data of average fluorescence within the gel, 𝑑𝑎𝑟𝑘 𝑖𝑚𝑎𝑔𝑒 

is the average fluorescent counts of the surrounding solution, and 𝑅𝑎𝑤 𝑖𝑚𝑎𝑔𝑒(𝑡 = 0) is the 

initial fluorescent level before wash. Standard deviation was calculated from 3 replicates.  

 

Figure 21. DNA acrydite retention 

    For the given formulation of 75% PEGDA, 0.8% camphorquinone, 1% TEA, and 4-

second exposure at 11.4 mW/cm2 from blue LED, Figure 20 showed the percentage of DNA 

anchored is about 12%, which is very low compared with other photoinitiators such as Irgacure 

2100 which can give us a DNA retention percentage about 55%, indicating the low efficiency 

of camphorquinone.  

2.4, Measurements of DNA UV photo-cleavage  

We identified Cyanine 3 as a DNA dye modification that exhibited minimal 

photobleaching when exposed to UV-A light. To verify our consideration, solutions of Cyanine 

3 labeled DNA was exposed to UV-A light emitted from a UVP transilluminator for 2 hours. 

We observed a 4.25% average change in the fluorescent level of the solution over that period. 
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To check whether camphorquinone potentially degraded Cy3 dye fluorescence activity during 

excitation under UV light, we also exposed solutions of Cyanine 3 labeled DNA mixed with 

0.8 % (w/v) CQ for 2 hours and observed an average reduction in fluorescence intensity of 

35.4% (Figure 21). Based on the ‘bleach’ effect of CQ on Cy3-labeled DNA, we washed 75% 

(v/v) PEDGA hydrogels containing crosslinked Cy3-labeled DNA with butanol for more than 

10 hours to remove residual camphorquinone. We performed control UV exposure experiments 

where we polymerized co-PEGDA-DNA hydrogels at 470 nm light containing acrydite 

polyT10-Cy3 oligonucleotide with no photocleavable spacer and 

camphorquinone/triethanolamine; after performing a butanol wash, the gels were exposed to a 

200 m diameter circular pattern UV light (Dosage = 180 J cm-2). An average intensity change 

of 0.015 is observed in the exposed regions of the gel which is small enough to be ignored. It 

is important to note that it was not the aim of this work to identify DNA fluorophore 

modifications that are compatible with CQ, this examination was to determine a protocol to 

obliviate the degradation as much as possible and obtain more accurate results. 

 

Figure 22.Relative intensity after UV-A exposure 

To determine the efficiency of UV-triggered photo-cleavage by cleaving a 1-(2-

nitrophenyl)ethyl spacer in the backbone of anchored fluorophore-modified oligonucleotides, 
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we first crosslinked of 5’ acrydite-polyT10 DNA (2 μM concentration in the prepolymer) 

within 400 μM diameter circles inside the branched flow cell using a 75%(v/v) PEGDA 

formulation exposed to 470 nm light (dosage = 57 mJ cm-2) and wash with water overnight 

letting uncrosslinked DNA to diffuse out. The polyT10 strand contained an internal UV-

photocleavable spacer inserted in the middle of the 10 bases, and a 3’ Cy3 dye modification. 

We exposed UV light in a 200 μM diameter circle pattern onto each hydrogel. To estimate the 

efficiency of the UV-triggered photocleavage process as a function of energy dosage, different 

sets of hydrogels within the flow cell were exposed for dosages of 45 J cm-2, 90 J cm-2, and 

135 J cm-2 (intensity = 25 mW cm-2 at 365 nm). 

 

Figure 23. The average center intensity of hydrogels after UV exposure as a function of UV dosage 

 (average ± s.d.). 
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Figure 24. Prior and after exposure. Patterned 75% (v/v) co-PEGDA-Cy3 DNA hydrogel prior to (a) UV 

exposure and after exposure (b) to a 200 m diameter UV pattern, dosage = 1350 J cm-2 (scale bars = 100 m). 

 

Fluorescent images of the 75% (v/v) co-PEGDA-DNA hydrogels after UV exposure 

showed decreased fluorescent intensity in the exposed regions (Figure 23 a-b). The average 

normalized intensities in the center of the hydrogels immediately after exposure to the UV light 

were 0.80 ± 0.01, 0.72 ± 0.01, and 0.68 ± 0.01, corresponding to UV dosages of 45 (30min), 

90 (1 hr), and 135 J cm-2 (1.5hr) (Figure 22). Reduction in the relative intensity in UV exposed 

areas indicated that fluorescence decrease resulted from the photocleavage of 1-(2-nitrophenyl) 

ethyl linker, as well as the diffusion of the fluorophore fragments from out of the gel. We have 

stated that the average intensity change of 0.015 in co-PEGDA-DNA hydrogel containing 

acrydite polyT10-Cy3 DNA with no photocleavable spacer can be neglected. We attribute the 

decrease in intensity due to cleavage and diffusion of the fluorophore from the center of the gel 

and not due to changes in gel structure or photo-induced degradation of Cy3 dye. 

2.5, Cell culture on PEGDA gel  

Inspired by the co-DNA-PEGDA hydrogel force sensor work 

in our lab, we hope that we can detect and even measure cell 

adhesion force exerted on the gel surface. In this section, we tried 

a cyclo RGD peptide containing Cystine that can react bind to Structure of cycloRGD 
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acrylate ends on PEGDA through thiol-ene reaction to support cell adhesion. The hydrogel 

formulation was obtained from our group member working on force sensor project. Here, we 

used the formulation of 20v/v% PEGDA, 0.5v/v% Irgacure 2100, 10v/v% 10x TAE Mg2+, 

5mM cycloRGD (cycloRGD was pretreated by TCEP for thiol deprotection). Prepolymer 

solution was added into a PDMS mold to make hydrogel square sheet (0.5mm x 0.5mm x 600 

μm), polymerized on a UV transilluminator at 365nm for 30min (dosage of 450 J/cm2). 

Hydrogels were soaked into MilliQ water for 24 hours to remove residual reagents, and then 

we seeded HeLa cells (green fluorophore protein (GFP) labeled) in the 48 well plates.     

 

Figure 25. (a) Control group after 12 hours culture. (b) Cell culture after 12 hours on RGD-PEGDA hydrogel. 

(c) Cell culture after 36 hours on RGD-PEGDA hydrogel. 

From the image, we found that after 12 hours of culture, HeLa cells adhered to the RGD-

PEGDA hydrogel surface and proliferated in the following 24 hours, indicating that our method 

can successfully conjugate RGD with PEGDA and improve cell adhesion. 

 

3, Conclusion and future perspective  

 

The ability to photo-pattern hydrogels with a visible light initiator gives rise to a new 

category of smart materials. In this work, we first demonstrated that the co-PEGDA-DNA 
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hydrogel formulations composed of blue LED initiator system, camphorquinone and 

triethanolamine allows high-resolution patterned hydrogel fabrication with the help of digital 

maskless photolithography. Then we showed that we are able to trigger DNA photocleavage 

reaction in the UV exposed pattern. The technique provides us with the opportunity to assemble 

structurally complex stimuli-responsive DNA-based hydrogel that won't crosstalk with UV-

sensitive photolabile chemistries. Furthermore, with our method, microgels are no longer 

restricted within the microfluidics device, leading to more freedom of utilization. However, 

there is still room for improvement in our work, for example, we have found that the 

polymerization efficiency of camphorquinone and triethanolamine was pretty low which will 

cause a waste of DNA and an excessive need of PEGDA in order to obtain the desired pattern. 

Future works will focus on finding more efficient visible light photoinitiators for the system. 

Such a platform may promote studies in pattern sensing and transmitting algorithms and UV 

triggered spatial programmable DNA reaction cascades. 
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Appendices: DNA Sequences 

[1] 31 bases single-stranded oligonucleotides: CATCT CATAA CACAT CTCAC AATCC 

ATCTC A  

[2] Photocleavable DNA: 5’ Acrydite-TTTTT/PC spacer/TTTTT-3’Cy3  
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