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Abstract 

Ultrasound elastography is a technique that is often used to detect cancerous tumors and 

monitor ablation therapy by detecting changes in the stiffness of the underlying tissue. This 

technique is a computationally expensive due to the extensive searching between two raw 

ultrasound images, which are called radio frequency images. This thesis explores various 

methods to accelerate the computation required for the elastography technique to allow use 

during surgery.  

This thesis is divided into three parts. We begin by exploring acceleration techniques, 

including multithreading techniques, asynchronous computing, and acceleration of the 

graphics processing unit (GPU).  Elastography algorithms are often affected by out-of-

plane motion caused by several external factors, such as hand tremors and incorrect 

palpation motion, amongst others. In this thesis, we implemented an end-to-end system 

that integrates an external tracker system to detect the in-plane motion of two radio 

frequency (RF) data slices. This in-plane detection helps to reduce de-correlated RF slices 

and produces a consistent elastography output. We also explore the integration of a da 

Vinci Surgical Robot to provide stable palpation motion during surgery.  

The external tracker system suffers from interference caused by ferromagnetic materials 

present in the operation theater in the case of an electromagnetic tracker, while optical and 

camera-based tracking systems are restricted due to human, object and patient interference 

in the path of sight and complete or partial occlusion of the tracking sensors. Additionally, 

these systems must be calibrated to give the position of the tracked objects with respect to 
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the trackers. Although calibration and trackers are helpful for inter-modality registration, 

we focus on a tracker-less method to determine the in-plane motion of two RF slices. Our 

technique divides the two input RF images into regions of interest and performs 

elastography on RF lines that encapsulate those regions of interest. 

Finally, we implemented the world’s first known five-dimensional ultrasound system. We 

built the five-dimensional ultrasound system by combining a 3D B-mode volume and a 3D 

elastography volume visualized over time. A user controlled multi-dimensional transfer 

function is used to differentiate between the 3D B-mode and the 3D elastography volume. 
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1     Introduction 
 

1.1     Motivation 
 

Ultrasound elastography (USE) is a technique that is used to find a cancerous tumor via 

tissue displacement estimation [1]. In quasi-static elastography, the displacement motion 

of the tissue is achieved by externally inducing palpation of the ultrasound probe [1]. Two 

radio frequency images (one image obtained before compression, and another image 

obtained post-compression) are usually used to generate a displacement map [1]. The 

outliers are removed by subjecting the displacement map to averaging and median 

filters[1]. Finally, the strain map is calculated by linear regression[1].  

This thesis addresses the challenge of using elastography successfully in the operation 

theater to allow surgeons to obtain real-time feedback. Ultrasound elastography is 

computationally expensive, and conventional CPU-based methods are slow. The CPU 

utilization that occurs during elastography leaves the ultrasound system with fewer 

resources for the remainder of the tasks. We have devised a solution that offloads this 

elastography computation task by using a graphics processing unit (GPU). 

Free-hand elastography is challenging, as a trembling hand motion induces out-of-plane 

motion of the US probe. We select in-plane RF frames with the correct displacement 

between two images by using external trackers as an optical tracking system, an 
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electromagnetic tracking system, and in limited scenarios, a robot-actuated stable palpation 

motion. 

The external tracker, as an optical tracker, is obstructed by various objects and staff 

members several times during surgery, while the EM tracker is affected by ferromagnetic 

materials present in the operating room. An image-based search method for calculating 

elastography in a limited ROI is developed to address these challenges. The weighted 

average is calculated for the SNR values and correlation coefficients of these ROIs. The 

system uses these averages to test with a user-defined threshold and select images based 

on the threshold values [2]. 

The 3D elastography technique provides tracking information for the tumor in the elevation 

direction of the US probe, while the 3D B-mode provides contour information for the 

palpated organ. To obtain a better view of both modalities, we combine 3D B-mode and 

3D elastography to visualize the organ over time. We call this new modality the 5D US 

system [3]. 

The use of ultrasound elastography in stiff areas detected inside the tissue is well 

established [1]. A stiff area often corresponds to the cancerous region inside the human 

body [1]. As a result, ultrasound elastography has become a potential non-invasive tool for 

cancerous tumor detection, with the ability to replace biopsy if used in conjunction with 

the B-mode ultrasound method [4]. 

USE has been used to detect cancer in several organs, such as the liver [5][6], breast 

[1][4][7], prostate [8][9][10], kidney [11][12], and spleen [13]. Because USE can 

distinguish soft tissue from hard tissues, this technique has also been applied in the 
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assessment of liver fibrosis caused by Hepatitis infection, which is one of many causes of 

liver tissue hardening [14]–[18]. Recent advances in acoustic radiation force impulse 

elastography have been used to detect liver fibrosis [19][20]. 

Thermal ablation therapy is a popular minimally invasive technique that is used to burn the 

cancerous tissue in an organ [21]. Thermal ablation methods have become adjunct to the 

surgical removal procedure for tumors that are more invasive and require a longer patient 

recovery time [22]. This ablation therapy technique uses a highly targeted system to 

identify the tumor location during preoperative planning and deliver heat using target 

needles [21][22]. Several technologies, such as radio frequency ablation, high-energy 

focused ultrasound (HIFU), microwave technology, and lasers, are used to deliver the 

ablation [21][22]. Such a system requires continuous monitoring of the ablation region to 

ensure that healthy tissues are not accidentally ablated and subsequently killed [21][22]. 

Partial burning of cancerous tumors may result in the recurrence of cancer at a later 

time[21][22]. As many as 34-55% of cases have recurred after RF ablation treatment [21]. 

Real-time thermal monitoring of the ablation therapy is possible with this infrastructure of 

high-speed feedback using elastography on a GPU [21][22]. 

1.2     Thesis Statement 
 

Real-time ultrasound elastography systems can enable the detection of cancerous tumors 

during a biopsy or an intraoperative procedure, providing instantaneous feedback to the 

surgeon. Real-time elastography systems can be achieved by using the many cores of the 

GPU to compute 2D and 3D elastography, developing robust methods to filter bad 
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correlation images, and developing a volumetric visualization system. Fused real-time 3D 

B-mode and elastography data that are updated over time enable a five-dimensional (5D) 

ultrasound system. The 5D ultrasound system will enable the tracking of depth information 

for the tumor in both B-mode and elastography. 

1.3     Hypothesis 
 

I evaluated the hypothesis that a fast, reliable, and real-time elastography system can 

accelerate the delivery of feedback concerning suspected cancerous tissues or ablated 

regions to the surgeon and enable various technologies that are difficult to achieve with 

traditional CPU-based architectures. This hypothesis is realized by achieving the following 

specific aims in this thesis: 

Aim 1. Develop a graphics processing unit (GPU)-based real-time elastography system to 

speed-up the existing elastography algorithm and evaluate clinical feasibility with in-vivo 

animal experiments. 

Aim 2. Integrate the GPU-based elastography system with tracked ultrasound elastography 

using an external tracking system to enable online tracked ultrasound elastography (O-

TRUE). 

Aim 3. Develop an algorithm that performs elastography on limited regions of interest to 

determine whether the future elastography generated for the entire image will result in a 

good elastogram. 
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Aim 4. Fuse 3D B-mode and 3D elastography and visualize over time to realize the first 

five-dimensional ultrasound system, that will provide a combined view of both B-mode 

and elastography modalities that are easily distinguishable via the use of transfer functions. 

 

1.4     Contributions 
 

1. Real-time elastography system pipeline: 

We developed an end-to-end pipeline from RF data acquisition to the elastography 

image visualization system. This system essentially retrieves data from the ultrasound 

machine and sends it to the network using the OpenIGTLinkMUSiiC library [23], that 

has a customized data format for the exchange of ultrasound data [2]. The system is 

modular and allows the elastography component to run on a system equipped with a 

GPU. An external GPU box can be connected to the existing ultrasound system via a 

PCI Express slot [2]. The ability to add extra GPUs using an external PCI Express slot 

helps in the deployment of this system for existing ultrasound systems worldwide [2]. 

2. Integration with a tracking system to maximize the chances of finding correlated 

image pairs: 

The problem with the freehand ultrasound system is that out-of-plane motion and 

decorrelation caused by untrained surgeon hands or trembling hands lead to noisy 

elastography images [2]. Tracked ultrasound elastography [24] helps in selecting in-

plane elastography images. We developed a system that collects data from the US 

machine, collects tracking information from an external tracker connected to the US 



6 
 

machine, combines the US data and the tracking data using MUSiiC Sync, selects in-

plane images from a pool of tracked RF images and then calculates elastography in 

real-time [2]. We developed this innovative pipeline, that we call online tracked 

ultrasound elastography (O-TRUE) [2]. 

3. Integration with the da Vinci surgical systems: 

Advanced surgical robotic systems, such as da Vinci surgical systems, perform 

minimally invasive surgery in which the arms of the robots enter the human body 

without the need to cut open the body [2]. Several advanced robotic surgery systems 

lack the haptic feedback required to understand the stiffness distribution while 

navigating [2]. USE can give the surgeon feedback about the underlying tissue stiffness 

that is hard to see via camera [2]. In this phantom-based study, we integrated USE with 

a da Vinci surgical robot to generate a stable palpation motion [2]. We evaluated 

different palpation frequencies and amplitudes to obtain a stable elastography stream 

quality [2]. 

4. Image-based selection of correlated image pairs by performing elastography on a 

limited area of interest in RF images: 

In this research project, we perform elastography on a limited area of interest. We then 

evaluate SNR and correlation values in those areas of interest to determine whether the 

entire elastography image for the given RF image pair will be of good quality (i.e., with 

high CNR and SNR values). This method eliminates the need for an external tracking 

system to select high-quality RF image pairs. We have developed this system as a real-

time system in which the GPU is used to perform the computation in real-time for these 
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areas of interest. The image-based search is a cost-effective method and requires an 

inexpensive GPU for rapid computation. 

5. Five-dimensional ultrasound system: 

We have combined 3D B-mode with 3D strain images to obtain a 4D ultrasound and 

visualized over time to obtain the fifth dimension [3]. The five-dimensional ultrasound 

system is an end-to-end pipeline for acquiring, processing and visualizing [3]. The 

prime problem with this system is distinguishing between the strain and B-mode data 

[3]. For this reason, we have integrated and built the system using a visualizer [25], that 

helps to distinguish the two modalities with a color code and opacity functions [3]. 

1.5     Outline 
 

The thesis is divided into six primary chapters in addition to the conclusions, the 

bibliography, and the appendix chapters. 

Chapter 1 is the introduction to the thesis and lays out the foundation of the thesis. We 

explain the motivation, thesis statements, and contributions.  

Chapter 2 details the physics of ultrasound to provide readers with the necessary 

background to understand various terminologies in the field of ultrasound research. This 

chapter explains the concept of elastography that is the basis of this thesis.  

Chapter 3 lists various 2D and 3D motion estimation algorithms that provide information 

about the state of the art methods available for motion estimation in ultrasound. This 
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chapter also details the normalized cross correlation method, which is a type of motion 

estimation methods that is used extensively in this thesis.  

In Chapter 4, we detail the multi-stream GPU-based elastography algorithm that is used to 

accelerate the GPU based elastography algorithm. The algorithm involves connecting 

different stages of the elastography computing stages on a GPU using CUDA streams. 

These streams are then executed on different threads that lead to the asynchronous multi-

threaded execution of an elastography computation pipeline. We developed a modular 

framework that allows us to distribute the processes on a single and multiple compute node. 

This approach allows us to easily integrate new modules into the system.  We integrated 

our system with an external tracking system, such as an electromagnetic tracker and 

compared the results with free-hand elastography. We also present a study of integration 

with da Vinci surgical systems, in which palpation motion is induced externally by the 

robotic arm. In this chapter, I contributed to the development (design and implementation) 

of a multi-stream GPU-based elastography algorithm and online tracked ultrasound 

elastography (O-TRuE). I devised a method to measure the performance of a continuous 

stream of elastography for evaluating the quality of an online algorithm. Further, I worked 

in collaboration with Seth Billings and Hyun Jae Kang on the development of integration 

with da Vinci surgical systems. I am the lead analyzer of the data and the writer of the 

journal article that was published as [2].  

In Chapter 5, we present a tracker-less elastography system to detect in-plane motion for 

two RF data frames by performing elastography on the limited regions of interest between 

the two RF image pairs. This system aims to eliminate the use of an external tracking 
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system to correct hand motion. We define fixed regions of interest (ROIs) and compute 

elastography only on the RF lines that encapsulate those ROIs. We then give different 

weights to each ROI and use those weights to compute the weighted average of the signal-

to-noise (SNR) ratio and the cross-correlation value. We compare these weighted averages 

to a threshold and compute elastography only for the RF image pairs that meet these 

threshold values. I developed this method (design and implementation), analyzed the data, 

and wrote the chapter. 

In Chapter 6, which is the final chapter, and we present a five-dimensional (5D) ultrasound 

(US) system that combines 3D strain and 3D B-mode data and visualizes over time to create 

a 5D US system. Surgeons may find it difficult to visualize and correlate two different 

views consisting of 3D strain and 3D B-mode elastography. Additionally, there is an 

inherent research problem with the generation and visualization of elastography at the 

speed of 3D B-mode. We solved this problem by generating the 3D strain images in real-

time using a multi-stream GPU. We scan-converted both volumes so that the final volume 

approximately matches the sector shape of the volume caused by the motion of the 3D 

wobbler probe. A specially developed visualizer, which was published previously in [25], 

distinguishes the two volumes using the transfer functions and was improvised for 

integration with the five-dimensional ultrasound system. The system is an end-to-end 

system from data acquisition to visualization. In this chapter, I implemented (design and 

development) the 5D ultrasound system and the 3D scan conversion code and 3D 

elastography algorithm. I integrated and made substantial changes to a visualizer from a 

previously published work [25] to generate the visualizer for the 5D ultrasound system. I 
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am the lead analyzer of the data and also the lead writer for the published version of this 

chapter [3]. 
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2     Physics of Ultrasound 
 

2.1     Introduction 
 

Sound waves are a mechanical or pressure waves that travel in a medium due to its elastic 

property [26]. Waves are of two types: longitudinal waves and transverse waves [26]. 

Longitudinal waves are the waves that cause particles in the medium to move (oscillate) 

parallel to the direction of propagation [26]. Sound is in the longitudinal category [26]. 

When a sound wave hits a tissue, pressure is created at the boundary of the tissue [26]. This 

pressure causes the tissue molecules to oscillate about their original positions and transfer 

this energy to the neighboring molecules [26]. This transfer propagates inside the tissue in 

the direction perpendicular to the source of sound generation [26]. This oscillating motion 

of the molecules can be measured in terms of recurring cycles [26]. When the medium 

molecules vibrate at a repeated interval, we call the number of repetitions per second or the 

number of cycles per second as the frequency, that is denoted in Hz (Hertz) [26]. A human 

ear can typically hear sound waves between 20 and 20,000 Hz (or cycles/sec) [26]. This 

sound wave is called an audible sound wave or simply sound [26]. Ultrasound is a sound 

wave with a frequency greater than 20 kHz, and infrasound is a sound wave with a 

frequency less than 20 Hz [26]. For clarity sound and ultrasound are used interchangeably 

in this thesis [26]. 

The wavelength is the length of one complete cycle [26]. One cycle is a representation of 

the amplitude change that occurs during regular repetitions [26]. In the case of ultrasound, 
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the amplitude represents a plot of density versus time and represents the variation in density 

[26]. The wavelength can be viewed as the variation in two density zones defined by two 

amplitude peaks [26]. The amplitude can be considered to be a representation of the voltage 

applied to piezoelectric transducer elements [26]. The wavelength can be specified in 

meters (m), centimeters (cm), or millimeters (mm) [26]. When the amplitude is plotted on 

a time scale, the period is the difference in time between two successive rarefactions or 

compressions [26]. The period τ  is specified in second (s) [26]. Acoustic velocity (unit: 

m/s), that is different from particle velocity, is the speed at which a sound wave propagates 

in the medium and is denoted by c [26]. 

Density is defined as the tissue mass per unit volume and directly affects the velocity of 

ultrasound [26]. An increase in density produces more resistance to the propagation of 

sound waves; thus, the speed of sound waves is inversely proportional to the density ρ , 

and the relationship [26] is given by: 

 
1c
ρ

∝                                                                   (1) 

Compressibility (K) is the property of the tissue that compresses or reduces the volume of 

the tissue upon the application of external force [26]. Compressibility is inversely 

proportional to the speed of sound [26]. The bulk modulus β  that determines the elasticity 

of the tissue is also inversely proportional to the compressibility [26]. The relationship 

between the speed of sound, compressibility, and the bulk modulus [26] is given by: 

 1c
K

β∝ ∝                                                                 (2) 
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Acoustic velocity can be derived by combining the relationships of the speed of sound 

with compressibility and density [26]. The revised acoustic velocity is given by 

 1c
K

β
ρρ

= =                                                               (3) 

Dense materials have lower compressibility, that in turn increases the speed of sound in 

the denser medium [26]. 

The relationship between velocity (c), frequency f and wavelength λ   [26] is given by: 

 c f λ=                                                                           (4) 

2.2     Wave Propagation 
 

2.2.1     Acoustic Impedance 
 

The acoustic impedance of the material helps in identifying the difference between the 

tissues along the path of wave propagation [27]. The acoustic impedance is given by  

 Z cρ=                                                                           (5) 

where ρ is the density of the tissue in kg/m3, and c is the speed of sound in the tissue in 

m/sec [27]. The unit for Z is k/(m2sec) or rayls [27]. The acoustic impedance indicates the 

stiffness and flexibility of the medium, such as a tissue or a phantom in our case [27]. A 

large difference in stiffness, as in a bone surrounded by tissue, leads to nearly complete 

reflection of the acoustic waves originating from the tissue [27]. In contrast, when the 
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impedance is small, as in the case of two adjacent organs, the reflection is small [27]. Small 

reflections reduce the difference at a boundary, but a subtle difference may be observed. 

Similarly, reflection and refraction are dependent on acoustic impedance [27]. 

2.2.2     Acoustic Energy and Intensity 
 

Acoustic energy contains two parts, primarily kinetic energy when it is in motion and 

potential energy when it is about to be emitted from the transducer elements [28]. The 

kinetic energy density kw  of the acoustic wave’s kinetic energy [28] is given by  

 21
2kw vρ=                                                                 (6) 

where v  is the velocity of the oscillating particles in the medium [28]. The potential energy 

density pw  of the acoustic wave’s potential energy [28] is given by 

 21
2pw pκ=                                                               (7) 

where κ  is the compressibility of the underlying tissue and p  is the acoustic pressure 

[28]. The total acoustic energy density that covers the energy change at a given point [28] 

is given by 

 k pw w w= +                                                               (8) 

We define the acoustic energy flux I [28] by 

 I pv=                                                                    (9) 
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The acoustic energy flux provides a representation of the energy associated with the wave 

[28]. The acoustic pressure p  [28] is given by   

 p Zv=                                                                   (10) 

Substituting the above value for acoustic pressure p into the acoustic energy flux equation 

[28] gives 

 
2pI

Z
=                                                                 (11) 

The following equation gives the relationship between acoustic energy flux and acoustic 

energy density, that describes the acoustic wave power and energy [28]: 

 0I w
x t
∂ ∂

+ =
∂ ∂

                                                          (12) 

2.2.3     Reflection and Refraction at Plane Interfaces 
 

2.2.3.1     Reflection 

An acoustic wave traveling in the tissue gets reflected due to acoustic impedance mismatch, 

and this reflected wave is detected by the ultrasound transducer [27]. This reflected wave 

helps to locate the boundary of the organ, and a complete B-mode picture reveals the 

contour of the organ [27]. The reflection pressure amplitude coefficient is given by: 

 

 2 1

2 1

r
P

i

P Z ZR
P Z Z

−
= =

+
                                                 (13) 
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where rP  is the reflected pressure and iP  is the incident pressure [27]. The subscripts 1 

and 2 helps to distinguish between media. Medium 2 is proximal, and medium 1 is distal 

to the transducer [27]. The intensity reflection coefficient is given by 

2

2 1

2 1

r
I

i

I Z ZR
I Z Z

 −
= =  + 

                                                (14) 

where rI  is the reflected intensity and iI  is the incident intensity [27]. The intensity 

transmission coefficient, that is the fraction of the incident intensity that is transmitted, is 

given by the law of conservation of energy as: 

1I IT R= −                                                          (15) 

An acoustic coupling gel helps to fill the gap between the surface of the tissue and the 

transducer [27]. The reason for using this gel is that the acoustic waves are reflected almost 

100% back to the transducer due to the high acoustic impedance mismatch between air and 

the transducer element surface [27]. It is very difficult to image organs that contain air 

cavities, such as lungs, due to this impedance mismatch [27]. An acoustic window is 

generated when interconnected tissues inside the lungs transmit the ultrasound [27]. 

For a perpendicular incidence beam and a smooth surface, the beam is reflected back to the 

transducer with a 180-degree shift [27]. This is true with the assumption that the 

wavelength of the ultrasound beam is greater than the surface variation of the boundary 

[27]. This total reflection is possible due to the high impedance mismatch between the two 

tissues, with the beam transmitting from the tissue with low impedance to the tissue with 

high impedance and the impedance mismatch very high [27]. For an ultrasound beam with 
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a high frequency, the inversely proportional wavelength is small and may be smaller than 

the surface variation [27]. In this case, the incident ultrasound beam will diffuse in different 

directions, and not all of the beam is reflected back to the transducer [27]. An ultrasound 

beam that is not perpendicular to the tissue boundary is incident with an angle iθ , that is 

equivalent to the reflected angle rθ [27]. This nonperpendicular incidence also leads to a 

loss of signal returning to the transducer [27]. 

2.2.3.2     Refraction 

When the ultrasound beam is not perpendicular to the boundary between two tissues, the 

transmitted beam changes direction [27]. This attribute is related to the fact that while 

crossing the tissue boundary the frequency remains constant and the speed of sound in the 

two media changes [27]. This difference in the speed of sound in two media coupled with 

the incidence angle helps to calculate the transmitted angle using Snell’s law [27], as 

follows: 

 2

1

sin
sin

t

i

c
c

θ
θ

=                                                        (16) 

Where tθ  is the angle of transmission in medium 2 with speed of sound 2c  and iθ is the 

angle of incidence in medium 1 with speed of sound 1c [27]. 

For a small incidence angle, the transmission angle can be approximated [27] by: 

 2

1

t

i

c
c

θ
θ

≅                                                             (17) 
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As can be seen from the above equation, when the speed of sound in the transmission 

medium 2c   is greater than the speed of sound in the incidence medium 1c  then t iθ θ> , 

and vice-versa for 2 1c c< [27]. 

No refraction occurs when the speed of sound in the two media is identical, on a 

perpendicular incidence where a straight trajectory occurs [27]. An ultrasound machine 

usually assumes straight line propagation but in the presence of refraction, artifacts occur 

[27]. A total reflection occurs when 2 1c c>  and the angle of incidence is above a certain 

angle, that is called the critical angle [27] and is given by: 

 1

2
sin c

c
cθ =                                                        (18) 

At this critical angle, the reflected wave travels along the boundary and does not 

penetrate the second medium [27]. Thus, the critical angle is calculated by setting 90tθ = °

in Snell’s law [27]. 

2.2.3.3     Attenuation 

As the ultrasound wave travels through the tissue, the loss of acoustic energy is termed the 

ultrasound attenuation and is caused by scattering, reflection, refraction and tissue 

absorption [27]. The absorbed energy is converted to heat [27]. This loss leads to a loss in 

the intensity measurement of the ultrasound image [27]. As the depth increases, more 

acoustic energy gets absorbed, resulting in a noisy image at greater depths [27]. The 

relative intensity loss per centimeter of travel is called the attenuation coefficient and is 

denoted by μ [27]. A higher frequency means a lower amplitude and smaller penetration 
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depths, so the attenuation is higher for higher transmission frequencies [27]. For a 2X MHz 

transmission frequency, the attenuation coefficient is approximately twice that of an 

acoustic beam with a 1X MHz transmit frequency [27]. An attenuation coefficient 

expressed in dB increases logarithmically, so the attenuation increases exponentially with 

distance [27]. The half value thickness (HVT) is defined as the distance traveled by the 

sound wave until it is 50% attenuated. The HVT is equivalent to a 3dB drop in intensity 

and a 6 dB drop in pressure amplitude [27]. Naturally, as the frequency increases, the beam 

becomes attenuated at a shorter distance and the HVT decreases [27]. Due to the 

attenuation factor, an ultrasound beam with a lower frequency is used to achieve a greater 

penetration depth [27].  

2.2.3.4     Scattering 

The following factors affect the echo amplitude of the reflected signal: (a) the scatterers 

per unit volume, (b) the acoustic impedance mismatch at the scatterer boundaries, (c) the 

size of the scatterers, and (d) the transducer frequency [27]. An area is termed hyperechoic 

when the scatterer amplitude is higher, in contrast to a hypoechoic area [27]. In a 

hypoechoic area, the scatterer amplitude is lower [27]. This parameter of hyper- and hypo-

echoic describes the scatter characteristics for the signals originating from the background 

area [27]. Specular reflections are from a smooth surface; hence, such reflections are 

independent of the transmission frequency, whereas non-specular reflection is dependent 

on the frequency of the transducer [27]. A higher ultrasound frequency is helpful in 

obtaining a better-scattered echo signal [27]. 
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2.2.3.5     Nonlinear Wave Propagation 

The wave equation in ultrasound assumes the linearity of the system, where the ultrasound 

waves traveling through the medium are reflected back at the same frequencies [28]. 

However, non-linearity is an inherent property of the underlying tissue, especially due to 

the presence of different organs, foreign bodies, contrast agents, and several other factors 

[28]. The wave propagating in the medium may hit a surface or material that has a  higher 

acoustic pressure, that will reflect the wave at a faster rate [28]. Thus, nonlinear or 

harmonic imaging involves sending acoustic waves at identical or different frequencies and 

receiving those waves at different frequencies [28]. 

The speed of sound in a nonlinear environment [28] is given by 

 0
0

p
c c

Z
β= +                                                          (19) 

where p is the acoustic impedance at a given location and time, β is called the coefficient 

of nonlinearity and is dependent on the acoustic medium, 0c is the assumed speed of sound 

for the medium, and 0Z is the assumed acoustic impedance for the medium [28]. 

Nonlinear wave propagation can be useful in microbubble imaging with contrast agents, in 

ablation procedures to monitor various sources of ablation, and to improve the resolution 

of the underlying ultrasound image [28]. 
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2.3     Ultrasound Instrumentation 

2.3.1     Ultrasound Transducer 
 

Ultrasound is produced by a transducer, that can be a linear, phased, or curvilinear array 

[27]. The transducer typically contains ceramic elements that have electromagnetic 

properties [27]. These elements convert electrical energy to mechanical energy and 

mechanical energy into electric energy [27]. A transducer has several components. The 

primary components are piezoelectric materials, resonance transducers, a damping block, 

an acoustic absorber, a matching layer, and insulating covers [27]. 

2.3.2     Piezoelectric Materials 
 

The functional components of the transducer are the elements that contain piezoelectric 

materials [27]. The piezoelectric material converts electrical energy into mechanical energy 

to create a local deformation that generates ultrasound waves [27]. These materials also 

have the reverse property of converting incident mechanical energy that is transferred by 

an ultrasound wave into electrical energy [27]. These materials have electrical dipoles on 

their surfaces, that give a positive and negative charge to the material [27]. These charges 

are equal in quantity to nullify each other and maintain a zero net charge [27]. When a 

mechanical pressure is applied to this material, a deformation occurs on the surface of the 

material [27]. Once there is an imbalance between the positive and negative charges, an 

electrical charge is created which is directly proportional to the amplitude of the incident 
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waves [27]. Similarly, a reverse effect occurs when the electric purse induces a mechanical 

motion in the transducer element, followed by the generation of ultrasound waves [27]. 

A natural piezoelectric crystal, such as quartz crystal, is used in the common watch to 

provide mechanical vibrations at a frequency of 32.768 kHz to measure time [27]. The 

most common piezoelectric material used in ultrasound is lead-zirconate-titanate (PZT), 

that is a synthetic piezoelectric ceramic [27]. These materials acquire a permanent dipole 

orientation after a series of procedures that involve molecular synthesis, heating, the 

application of external voltage, and cooling [27]. The ceramic exhibits piezoelectric 

properties after heating to a “Curie temperature,” and followed by the application of an 

external voltage and cooling [27]. After cooling, the ceramic maintains its piezoelectric 

properties [27].  

2.3.3     Resonance Transducers 
 

In a resonance transducer, the piezoelectric material of the transducer vibrates at the natural 

resonance frequency of the material [27]. This effect can be achieved by applying a small 

voltage (e.g., 150 V) for a very short duration of time (typically one μsec), so that the 

piezoelectric ceramic starts vibrating at the natural resonance frequency after an initial 

contraction [27]. The thickness of the piezoelectric material should be half of the desired 

wavelength of the ultrasound wave [27]. We can achieve higher frequencies by using a 

thinner transducer element and lower frequencies by using a thicker transducer element 

[27]. This effect can be derived from the following equation to calculate frequency [27]: 
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 cf
λ

=                                                           (20) 

where f  is the resonant frequency in MHz, c  is the speed of sound in the piezoelectric 

material in m/sec, and λ   is the wavelength in meters [27]. These transducers transmit 

and receive at the center frequency [27]. 

2.3.4     Damping Block 
 

The back of the transducer must include a wave absorbing material to prevent the 

occurrence of an echo between the back surface and the transducer, that may create 

interference with the receiver system [27]. This damping block is layered at the back of the 

piezoelectric material to attenuate any stray ultrasound waves [27]. This dampening 

material also impacts the resonance frequency of the transducer and the frequency 

spectrum [27]. A broadband frequency spectrum or range of frequencies is observed around 

the center frequency [27]. The bandwidth of the sound emanating from a transducer is 

described by the Q factor [27], as follows: 

 0fQ
Bandwidth

=                                                         (21) 

where 0f  is the center frequency of the transducer element, and the bandwidth is the width 

of the frequency spectrum of the sound wave emanating from the transducer [27].  

Because Q is inversely proportional to the bandwidth, a high Q transducer corresponds to 

a narrow bandwidth and vice versa [27]. To obtain a high spatial resolution along the axial 

direction, the transducer needs a low Q level or a higher bandwidth. In applications such 
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as Doppler imaging, the echo frequency must be preserved about the incident frequency 

due to the motion of the subject and requires a relatively narrow bandwidth transducer [27]. 

A high Q factor is needed for continuous-wave ultrasound transducers [27]. Please note 

that the term Q factor is derived from Quality factor, and a lower value does not indicate a 

reduced image quality [27]. 

2.3.5     Matching Layer 
 

To minimize the occurrence of sudden acoustic impedance differences between the 

transducer element and the patient’s skin, a matching layer is attached to the transducer 

element. This matching layer has approximately half of the impedance difference between 

the two elements [27]. The thickness of this layer is calculated using the center frequency 

and the speed of sound in the matching layer, that gives the wavelength in the matching 

layer [27]. The width of the matching layer is one-fourth of the wavelength of sound waves 

in the matching layer [27]. Additionally, to reduce air pocket between the matching layer 

and the patient’s skin, an acoustic gel is used [27]. 

2.3.6 Non-resonance (Broad-Bandwidth) “Multi-frequency” 
Transducers 

 

A multi-frequency or multi-Hertz transmitting and receiving transducer can be generated 

by changing the design of the transducer elements [27]. The design is changed to allow the 

PZT elements to be machined into a large quantity of small rods on a surface, and the 

surface is made smooth by filling with epoxy resin [27]. This material allows for an 
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acoustic impedance that is closer to the tissue impedance and thus helps in avoiding or 

reducing the need for matching layers [27]. These multi-frequency transducers have larger 

bandwidths than resonance transducers [27]. 

Unlike the resonance transducer, a multi-frequency transducer is excited with a square 

wave of approximately 150 V with 1-3 cycles [27]. The use of this larger square wave 

instead of a spike helps in selecting a range of frequencies as a center frequency within the 

bandwidth of the transducer frequencies [27]. This higher response time also enables the 

reception of multiple frequencies or a different frequency than the transmitted frequency 

[27]. The ability to send the wave pulse with one frequency and receive on another (higher 

or multiple) frequency enables the use of harmonic imaging [27]. Harmonic imaging 

provides the ability to “listen” to a different frequency when the patient is injected with 

contrast agents [27]. The interaction of contrast agents and tissues gives rise to higher 

frequencies [27]. Detecting these frequencies has helped in the use of contrast agents to 

improve the contrast of the ultrasound images [27]. Harmonic imaging allows a better SNR 

ratio for increased depth, noise removal and artifact (clutter) removal in the images [27]. 

2.4      Transducer Arrays 
 

Ultrasound transducers typically have 128 to 512 piezoelectric elements that are 

rectangular in shape [27]. The width of these elements is less than half of the wavelength 

of the transducer sound waves, and the length of these elements is several millimeters [27]. 

Two main activation modes can be used: the linear and phased modes [27]. The arrays are 

called linear and phased arrays [27]. 
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2.4.1     Linear Arrays 
 

In linear arrays, a group of approximately 20 elements is fired simultaneously, generating 

a synthetic aperture equal to the number of elements used at a given time [27]. The echoes 

are detected by these 20 elements and after a short duration of time, the next batch of 

elements are fired with a 1- to 2-element shift [27]. This firing-sensing-shifting cycle 

continues until the end of the array [27]. A linear array typically contains 256 to 512 

elements [27]. Such a rectangular array assembly creates a rectangular field of view, while 

a curvilinear array creates a trapezoidal field of view [27].  

2.4.2     Phased Arrays 
 

In a phased array, the elements are fired with a fixed interval between them, generating a 

steered or focused wave-front [27]. This wavefront is detected by the same elements that 

are activated at a similar fixed interval [27]. Several algorithms then reconstruct the images 

that originate from the returned echoes [27]. 

2.5     Ultrasound Probes 
 

Several different types of ultrasound probes are available for different applications [28]. A 

single-element probe has one lens or a curved crystal to help focus on a specific target 

[28]. Beam steering must be performed to create a sector scan of the underlying body [28]. 

Real-time imaging is hard to achieve with these systems [28]. A mechanical scanner 

contains a rotating or moving transducer that effectively ensures that the elements on the 
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transducer cover different areas of the body [28]. This system effectively ensures a planar 

scan with a little error other than mechanical wheel misalignment [28]. An electronic 

scanner contains an array of elements that electronically swipe through element by 

element, sending and receiving pulses in the medium [28]. 

2.6      Pulse-Echo Imaging 
 

2.6.1     The Pulse-Echo Equation 
 

The received signal waveform can be represented by the following simplified equation 

[28]: 

 1 2
2

0

( ) ( , , ) ( 2 ) ( , , )
( )

acter t K R x y z n t c z q x y z dxdydz
ct

µ ∞ ∞ ∞−
−

−∞ −∞

= −∫ ∫ ∫                    (22) 

where ( , , )R x y z  is the energy of the spherical wave scatterer, n  is the input narrowband 

pulse, aµ  is the attenuation of the ultrasound signal in the underlying tissue, and K  is 

the arbitrary gain factor [28]. In addition, 

 ( , , ) ( , , )q x y z zq x y z=                                                 (23) 

where the transducer field pattern is given by ( , , )q x y z [28].  

To cancel or compensate the default gain outside the integral, we multiply with the gain 

from the time-gain compensation system with which many ultrasound system circuits are 

equipped [28]. One example of such a gain [28] is given by 
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µ

=                                                         (24) 

The gain compensated input signal [28] is given by 

 1 2

0

( ) ( ) ( ) ( , , ) ( 2 ) ( , , )cr t g t r t R x y z n t c z q x y z dxdydz
∞ ∞ ∞

−

−∞ −∞

= = −∫ ∫ ∫                     (25) 

The simplified A-mode signal obtained by a simple AM modulation scheme, which takes 

the absolute value followed by a low pass filter, of ( )cr t  is represented by the following 

equation [28]: 

 1 2 2

0

( ) ( , , ) ( 2 ) ( , , )j kz
c ee t R x y z n t c z e q x y z dxdydz

∞ ∞ ∞
−

−∞ −∞

= −∫ ∫ ∫                          (26) 

where en  is the envelope of the input signal obtained by the complex modulus of the 

narrowband input pulse [28]. In the given system en  is derived from the following 

equation [28]: 

 02( ) ( ) j f tj
en t n t e e πφ −=                                                     (27) 

where 0f  is the central frequency of the transducer, and φ  is the phase angle [28]. 

2.6.2     Transducer Motion 
 

This section gives imaging equations that are needed when the transducer is allowed to 

move in the x-y plane [28]. An A-mode signal for a transducer moving in the 0z =  plane 

(i.e., at position 0 0( , , 0)x y ) [28] is given by: 
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1 2 2
0 0 0 0

0

( ; , ) ( , , ) ( 2 ) ( , , )j kz
c ee t x y R x y z n t c z e q x x y y z dxdydz

∞ ∞ ∞
−

−∞ −∞

= − − −∫ ∫ ∫               (28) 

A signal originating from an echo location at time t must originate from the following 0z  

position [28]: 

 0 2
ctz =                                                               (29) 

We express ce  as a reflective function R̂  to express in 0x , 0y , and 0z  instead of 0x , 0y , 

and t  as [28]: 

 0 0 0
ˆ ( , , ) (2 / ; , )cR x y z e z c x y=                                            (30) 

This substitution yields the following equation [28]: 

 2 2
0 0 0 0 0 0

0

ˆ ( , , ) ( , , ) (2( ) / ) ( , , )j kz
eR x y z R x y z e n z z c q x x y y z dxdydz

∞ ∞ ∞

−∞ −∞

= − − −∫ ∫ ∫              (31) 

2.6.2.1     The Geometric Assumption 

If we assume that the energy propagated in the medium travels down a cylinder with the 

same shape as the transducer then we make the following assumption [28]: 

 ( , , ) ( , )q x y z s x y=                                                          (32) 

This assumption simplifies equation (32) to give: 

 2ˆ ( , , ) ( , , ) * ( , )
/ 2

kz
e

zR x y z K R x y z e s x y n
c

 =  
 

                                 (33) 
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where ( , ) ( , )s x y s x y= − −  is the reflective term of ( , )s x y  and * is the convolution 

reflective coefficient and blurring function [28]. 

We obtain a resolution cell from the equation after ignoring the term 2kze  [28]. This term 

2kze  causes a speckle in the resolution cell [28]. The phase term 2kze , that has multiple 

periodic cycles within the resolution cell multiplies the reflective distribution [28]. This 

phase then generates a Rayleigh random variable after taking the modulus of integration 

over an entire resolution, generating a large number of complex numbers R(x,y,z) 2kze with 

a complete random phase for each resolution cell [28]. This Rayleigh random variable is 

dependent on the underlying reflective distribution hence it produces a spatially matched 

random pattern [28]. This pattern is called a speckle pattern [28]. 

2.6.2.2     Fresnel and Fraunhofer Approximation 

Applying the Fresnel and Fraunhofer approximation to q  simplifies R̂  and gives the 

following expression [28]: 

 
2

2ˆ ( , , ) ( , , ) * ,
/ 2

j kz
e

x y zR x y z R x y z e S n
z z cλ λ

   =    
   

                                (34) 

where S is the approximation of q which is similar to the sync function [28]. The form of 

S(. , .) gives rise to sidelobes that cause artifacts in the resulting image [28]. The speckle 

term 2j kze  is still present, which indicates that we cannot remove the speckles with this 

method [28]. The resolution cell size increases with depth and usually blurs the local object 

at shallower depths [28].  
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2.7      Ultrasound Imaging Modes 

2.7.1     A-mode ultrasound scan 
 

Various interfaces in human body reflects the ultrasound energy burst that is sent by the 

ultrasound transducer at regular short intervals [26]. This reflected energy is detected by 

ultrasound transducer crystal to “induce” radio frequency (RF) signal [26]. This signal is 

amplified and plotted on the display as a short spike [26]. The position of the spike is 

determined by the time delay taken by the ultrasound wave to reflect back [26]. The A-

mode or Amplitude-mode is simply the amplitude of the reflected ultrasound energy that 

represents the reflectivity of the different interfaces from which the wave is reflected [26]. 

The A-mode ultrasound imaging mode helps in scanning an organ along the axial direction 

orthogonal to the transducer plane. A-mode ultrasound has been helpful in diagnosing 

maxillary sinusitis [29], measuring the distribution of cartilage thickness in the knee joint 

in elderly individuals [30], and performing biometric studies of the canine eye to measure 

the axial length, tissue velocity, and differences related to gender [31].  

 

2.7.2     B-mode ultrasound scan 
 

B-mode ultrasound scanning is probably the most widely used imaging mode in ultrasound. 

A B-mode scan is simply a combination of A-mode signals in space such that amplitude is 

reflected by different brightness, with each A-line pointing to the location of transducers 

at a different location. A change in the thickness of arteries observed from a B-mode scan 
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indicates the progression of atherosclerotic lesions in humans [32]. B-mode ultrasound can 

also be used to detect, deep-vein thrombosis [33], measure the skin thickness for 

progressive systemic sclerosis [34], and detect cancerous breast tumors [35]. 

2.7.3     M-mode ultrasound scan 
 

The M-mode ultrasound is simply the plot of motion of B-mode dots displayed over time 

[26]. The data is collected on a single line of sign with the different points getting 

constantly updated at a frequency of 1 kHz [26]. This makes M-mode ideal for tracking the 

motion of beating heart and its aorta valve movement to detect any irregularities [26]. The 

M-mode ultrasound imaging mode has been used to measure the thickness of the 

transversus abdominal in different body positions [36], to perform fetal echocardiography 

[37], [38] to measure the diameters of the right and left ventricular regions, and to measure 

the arterial stiffness to detect the early development of major vascular disease [39]. M-

mode signals are frequently displayed alongside and compared with electromyography 

(EMG) [40] and echocardiography (ECG) [37][41] to determine the presence of any 

diseases. 

2.8      Steering and Focusing 
 

A sector scan is generated by the phased array transducers with the center of the transducer 

array appearing as the source of the origin of the waves [42]. Similar to other scanning 

methods, each line indicates a transmit-receive path of the sound waves [42]. 
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The physical structure of the phased transducer array appears to be similar to that of a linear 

transducer array [42]. The phased array contains approximately 128 rectangular transducer 

elements [42]. The transducer is smaller than the linear transducer array, with a total 

aperture of approximately 30 λ for a square side. λ is the wavelength of the sound wave in 

the PZT material [42]. The size of the individual elements is typically λ/2 width [42]. Each 

element of the phased array system is used as a transmitter and receiver for a scan line [42]. 

However, in the linear array, there is a different set of active elements that receives the 

ultrasound beam echoes [42]. Due to the identical thickness of the element in linear and 

phased arrays, the elevation resolution remains constant for both types of arrays [42]. 

To achieve a good signal to noise ratio, the phased array transducer should be angled on 

the surface of the tissue in such a way that the region of interest is in the center of the field 

of view [42]. This technique also ensures the best lateral resolution, the highest sensitivity, 

and adequate contrast resolution [42]. With an increasing steering angle, the width of the 

beam increases, reducing the lateral resolution at the sides of the sector [42]. The sensitivity 

decreases with an increasing steering angle, as the individual elements are most efficient 

close to the direction perpendicular to the transducer array [42]. 

2.8.1     Transmit Steering and Focusing 
 

To change the FOV of the sweep angle across the medium, a time delay is added 

sequentially to each transducer element [27]. It is preferable to obtain a wave with a very 

large far field for divergence and a short near field [42]. This effect can be achieved with 

the use of very narrow elements [42].  
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2.8.2     Beamforming and Dynamic Focusing 

 

Beamforming and dynamic focusing are the reverse effects of transmit steering and 

focusing where the time delay system in receive mode is delayed to accept acoustic waves 

from a certain direction [27][28][42]. 

2.8.2.1     Depth of Penetration 

The depth of penetration of the given ultrasound B-mode pulse is dependent on the 

attenuation that the ultrasound wave undergoes in the underlying tissue [28]. The depth of 

penetration is given by 

 
2p

Ld
af

=                                                        (35) 

where L is the loss in dB, f is the transmit frequency, and a is the absorption coefficient 

[28]. 

2.8.2.2     Pulse Repetition Rate 

The pulse repetition interval [28] is given by 

 2 p
R

d
T

c
≥                                                        (36) 

The pulse repetition rate [28] is given by 

 
1

R
R

f
T

=                                                          (37) 
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2.8.2.3     Image frame rate 

If N pulses are needed to generate N A-lines of an image, then the B-mode image frame 

rate [28] is given by 

 
1

R

F
T N

=                                                          (38) 

2.9      Image Quality 

2.9.1     Resolution 
 

Spatial resolution can be defined as the lowest possible distance between two 

objects/boundaries in an ultrasound image such that the two objects/boundaries can be 

distinguished [43]. In ultrasound, there are three types of resolution: axial, elevation, and 

lateral [43]. The axial resolution is dependent on the transducer frequency and the 

amplitude of the wave [43]. A higher transducer frequency implies a shorter pulse length 

[43]. The assumption here is that the number of cycles in each pulse is constant for a given 

system [43]. The lateral resolution is the resolution in the ultrasound image plane [43]. The 

lateral resolution depends upon the width of the ultrasound beam and pitch of the 

transducer elements [43]. The elevation resolution is dependent on the beam width in the 

direction perpendicular to the beam [43]. The elevation resolution is dependent on the 

transducer element, and there little a user can do to change this parameter [43].  

Contrast resolution is generated primarily by the acoustic impedance difference that 

reflects ultrasound waves from the organ boundaries [27]. The attenuation difference can 
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be adjusted in the gray scale dynamic range to generate gray scale images [27]. Help from 

contrast agents can also improve the contrast by introducing microbubbles that reflect the 

acoustic waves from their surface and help in visualizing tissue perfusion [27].  

2.9.2     Noise, Artifacts, and Speckle  
2.9.2.1 Noise 

In general, noise can be defined as any random artifact or a pseudo signal that is mistaken 

for the original signal [44]. Several factors contribute to noise, including power 

fluctuations, small noises amplified by the electronic amplifiers, dead transducer elements, 

and equipment malfunction [27]. For a good contrast-to-noise ratio, low noise and a high 

gain amplifier are important, as these parameters often contribute to noise amplification at 

greater depths [27]. A time gain compensation (TGC) technique is used to amplify and 

exponentially attenuate an ultrasound beam [27]. 

2.9.2.2 Artifacts 

Artifacts are generated due variations in the seemingly fixed average wave speed of 1540 

m/s in tissues throughout the body [27]. This variation leads to incorrect application to the 

range equation and the generation of an incorrect map [27]. The generated image map has 

visible artifacts that can sometimes be used for diagnostic purposes, such as speckle [27]. 

When the beam is not perpendicular to the tissue boundary, it can become refracted and, 

deflected to the receiver from neighboring areas of the receiver beam [27]. A nonuniform 

texture is generated based on the improper estimation of TGC [27]. Some of the common 

artifacts are refraction, shadowing and enhancement, reverberation, speed displacement, 
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side lobes and grating lobes, multipath reflection and mirror images, ambiguity, and slice 

thickness [27].  

Anatomic displacement, which changes with different transducer angle and position is 

generated when a transducer pulse hits the boundary of a tissue at a perpendicular angle, 

and the tissues have different speeds of sound [27]. This type of artifact generated by 

refraction [27].  

Highly attenuating objects, such as bones, reflect or highly attenuate incident beams [27]. 

These objects create a shadow that is a hypointense signal [27]. This shadow is created 

away from the center of the object [27]. Streaks are caused when the incident beam hits a 

curved surface [27]. Whereas, enhancement occurs when the incident wave hits a fluid-like 

low attenuation object, generating hyperintense signals [27]. A hyperintense signal has 

increased transmission [27].  

A reverberation artifact is caused by multiple echoes between highly reflective surfaces or 

a highly reflective surface and the transducer [27]. These artifacts appear as multiple 

spaced boundaries of equal length with a width or amplitude that decreases in the direction 

perpendicular to the transducer [27].  

Due to an assumed constant speed of 1450 m/sec, a speed artifact occurs, which causes 

inaccuracy in the spatial measurements made with ultrasound [27]. A subtle difference 

between displaced and non-displaced tissue is observed, where the displaced tissue is 

mapped outwards about its original position [27]. 

Sometimes, an organ, such as the liver, produces multiple reflections and refraction waves 

towards the diaphragm [27]. These waves are exchanged continously between the liver and 
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the diaphragm [27]. After a certain period, the waves are reflected from the diaphragm to 

the transducer [27]. This effect creates a mirror-like image of the organ on the screen [27]. 

The expansion of the piezoelectric element in the orthogonal direction of the beam leads 

to side lobes in the ultrasound image [27]. Echoes from side lobes are imaged in the same 

ultrasound beam, and reflection of such a beam from a highly reflective surface gives the 

appearance of a diffuse echo in normally hypoechoic organs [27]. On the other hand, the 

grating lobes are generated from the many elements on the surface of the transducer 

creating out-of-direction beams that give ghost artifacts that appear as high-contrast objects 

that are not along the same axis [27]. 

2.9.2.3 Speckle 

Speckles are generated from the interference of scattered waves deflected from scatters 

inside a given resolution cell. Fully developed speckle develops when the scatterer density 

inside a given resolution cell is at its maximum [45]. For a fully developed speckle, the 

detected envelope signal possesses a Rayleigh distribution with an SNR of 1.91 and a B-

mode signal with an SNR of 1 [45]. For tissue characterization, speckle statistics below the 

SNR of a Rayleigh distribution are useful [45]. The characterization of the speckle depends 

on the scatterer distribution and the resolution cell volume [45]. Of the scatterer distribution 

and the resolution cell volume, only the resolution cell volume can be controlled by the 

imaging system [45].  

When the same transducer and underlying conditions are utilized, the speckle appears to 

be the same; however, the speckle changes when the transducer and underlying conditions 

change [46]. Hence, speckles are not non-random noise like electronic noise [46]. This 
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property of a speckle can be used to track the movement of tissue inside ultrasound RF or 

B-mode signals [1]. 

A common speckle reduction technique is ultrasound compounding [46]. In ultrasound 

compounding a region under consideration is scanned at a different angle and at different 

amplitudes [46]. The transducer must be translated by half of its width during speckle 

reduction [46].  

2.10      Elastography 
 

Elastography is a relatively new modality in ultrasound that is used for the detection of 

cancerous tumors [1]. Elastography provides information about the stiffness distribution in 

the imaged area [1]. A cancerous region that is less elastic than the surrounding tissue can 

be distinguished [1]. In quasi-static elastography, an external palpation is applied by using 

an ultrasound probe to measure the axial strain profile using motion estimation methods 

[1]. The applied stress distribution can then be used to generate an elastic modulus to 

generate an image called an elastogram [1]. In practice, the inverse elastic modulus is used 

instead to display the elastogram [1]. The inverse elastic modulus has a finite range 

compared to the values generated by the elastic modulus [1]. This finite range is important 

because the strain range has an upper bound that is equal to the applied input strain [1]. To 

generate a strain profile, we measure the local variations of the tissue strain in the axial 

direction as a function of depth [1]. These local axial variations occur due to the application 

of external axial compression [1]. This profiling can be repeated for all of the adjacent axial 

lines to obtain a two-dimensional strain profiles [1]. 



40 
 

Elastography can be broadly categorized into static and dynamic elastography [42]. The 

static elastography technique or strain technique involves the palpation of the tissue 

externally with the transducers and the measurement of elasticity [42]. In contrast, dynamic 

elastography or shear wave elastography involves generating a shear-wave internal to the 

tissue and measuring the velocity of the shear-wave inside the tissue using ultrasound [42].  

Young’s modulus is defined by the ratio of the externally applied stress and the strain 

induced in the tissue [42], as follows: 

 stress E
strain

=                                                  (39) 

The externally applied stress on the tissue can be defined as the ratio of the applied force 

to a given area of the tissue [42], as follows: 

 forcestress
area

=                                                    (40) 

where the force is the applied external force in the given area. The strain in the tissue is 

the ratio of the displacement of the tissue in the direction of the force and the original 

length of the tissue [42] and is given by: 

dstrain
d
∆

=                                                        (41) 

where d is the length of the tissue with a fixed width and d∆  is the increase in the length 

of the tissue after applying the external stress. The axial compression, the compression in 

the direction parallel to the transducer, generates a lateral compression [42]. For every axial 

compression, a lateral compression occurs [42]. Soft lesions expand in the lateral direction 
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more than the surrounding tissue [42]. In contrast, a hard lesion expands less than the soft 

lesion and the surrounding tissue [42]. The value of strain decreases as the stiffness of the 

tissue increases, with zero as the lowest value for strain, which corresponds to very hard 

lesions [42]. The strain-ratio is given by 

 background strainstrain ratio
lesion strain

−
− =

−
                                  (42) 

where the background-strain is the strain calculated in the background region or soft lesion, 

and the lesion-strain is the strain calculated in the target lesion area [42]. Because the 

external stress is difficult to measure in order to quantify the strain profile using the 

Young’s modulus, a strain-ratio can be used as a measure to estimate lesion hardness [42]. 

It may be advantageous to convert the strain profile to the elastic modulus because the 

absolute strain value is proportional to the initial compression, and any defect in the initial 

strain value is propagated along the axial direction [1]. Additionally, the elastic modulus is 

also a reliable tissue property [1]. Strain profiling is a limited measure due to different 

strain profiles across the tissue, and even if the external compression is constant, this 

parameter varies while propagating in the axial direction [1]. For this reason, it is beneficial 

to apply a known stress instead of a known displacement to estimate the elastic modulus 

that is independent of the initial compression [1].  

Ultrasound elastography depends on speckle tracking to find the displacement in the tissue 

along the axial direction [1]. Two scans are needed to perform elastography. One scan is 

performed before the compression of the tissue, and the second scan is performed 

immediately after compressing the tissue [1]. Because the cancerous region is less elastic 

than the surrounding neighboring tissue, the strain can be calculated based on the relative 
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difference in the displacement of different regions in the tissue [1]. This method of 

palpation is similar to hand based palpation observation, in which the presence of a hard 

lump is detected by pressing the skin at different locations [1].  

 

 

 

 

The axial A-line is divided into different segments for the pre- and post-compressed images 

[1]. These segments are compared to pre- and post-compressed images using displacement 

Figure 2.1 Elastography concept: Panel (A) shows the comparison of two RF-lines pre- and post-
compression, that gives a strain profile to indicate the stiffness inside the tissue. Panel (B) shows a side-
by-side comparison of elastography and B-mode data [2]. The ablated region is clearly visible in the 
elastography image, and the B-mode image shows the boundary between two layers [2]. 
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estimation techniques, such as normalized cross-correlation [1]. The segment size defines 

the accuracy of the search. However, a smaller segment size is preferred to improve the 

axial resolution of the elastogram [1]. Similarly, a cross-correlation estimation deteriorates 

with increasing segment size due to error propagation in the axial direction [1]. The 

resolution is also dependent on the sampling rate and can be improved by performing the 

scan using interpolation algorithms [1]. 

A previous axial stress distribution study [1] indicates that the uniform stress distribution 

assumption works well as long as the compressor sizes are greater than or equal to the axial 

depth. The axial stress distribution for a semi-infinite elastic medium [47] is given by  

 3/22

1( ) (0) 1

1

z
a
z

σ σ

 
 
 

= − 
   +       

                                        (43) 

where ( )zσ  is the axial stress, (0)σ is the uniform stress distribution applied by the circular 

compressor, a is the radius of the compressor, and z is the depth of penetration in the axial 

direction [47]. This equation also implies that the strained quality is better near the edge of 

the tissue near the transducer, and the quality decreases with increasing depth [42]. 

The lateral resolution of the elastogram is dependent on the resolution of the underlying 

RF data, typically proportional to the number of transducer elements [1]. The axial 

resolution is dependent upon several factors that affect the quality of elastogram, including 

the desired contrast-to-noise ratio (CNR), the desired signal-to-noise ratio (SNR), the 
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central transducer frequency, the bandwidth, overlapping of the underlying correlation 

function window, and the sampling frequency among many parameters [1].  

The CNR measure of the ultrasound elastography [48] is given by 

 
2

2 2
2( )b t

b t

a aCNR
σ σ

−
=

+
                                                      (44) 

where ba  and ta  are the mean intensity values of the background and the target region 

and bσ  and tσ are the standard deviations of the intensity values of the background and 

the target region [48]. The SNR measure of the ultrasound elastography [48] is given by 

 aSNR
σ

=                                                               (45) 

 where a  and σ  are the mean and standard deviation values of the intensity measures in 

the entire elastogram [48]. 
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3 Motion estimation algorithms for 

displacement and strain estimation in 

elastography 

3.1  Normalized cross-correlation (NCC), sum of 

squared difference (SSD), and sum of absolute 

difference (SAD) 

3.1.1     Spatial Domain 
 

The early implementations of elastography were implemented using a normalized cross-

correlation (NCC) based matching technique [1]. The NCC [49] score can be given by: 
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∑∑ ∑∑
                             (1) 

where X  is the pre-compressed image, Y  is the post-compressed image, X  is the mean of 

the intensity values in the pre-compressed image, Y is the mean of the intensity values in 

the post-compressed image, m and n are the indices of the starting region of the search 
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region in the post-compressed image, and l and k are the axial and lateral dimensions of 

the windowed region [49]. We compare the windowed region of the pre- and post-

compressed images, and we obtain the displacement in that particular window [1]. A cosine 

fit interpolation is applied to obtain a sub-integer estimation, followed by a median and 

moving average reduce the outliers [1]. This refined displacement map generates a strain 

profile after least squares estimation [1]. The small window size is beneficial for obtaining 

better axial resolution [1]. 

Another algorithm that is used to estimate the displacement is the sum of squared 

differences [50][49], given by: 

 ( )
2

, , ,
1 1

l k

m n i j i m j n
i j

SSD X Y + +
= =

= −∑∑                                                 (2) 

Similarly, the sum of absolute differences algorithm [49] is given by: 

 , , ,
1 1

l k

m n i j i m j n
i j

SAD X Y + +
= =

= −∑∑                                                     (3) 

Both SSD and SAD use the windowing techniques highlighted for NCC [50][49]. 

3.1.2     Spectral Domain 
 

Spectral shift elastography involves measuring the shift in the frequency domain to 

estimate the underlying strain. The normalized cross-correlation [51] defined below can be 

used to estimate this shift:  
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where 0S  is the pre-compressed spectral image, 1S  is the post-compressed spectral image, 

N  is the maximum window length of the spectral density, and the limit of / 2N  is based 

on the folding frequency of the power spectra [51]. This equation is evaluated for different 

integer values of k to determine the strain estimate [51] using the following formula: 

  
0

ks
k

= −                                                                   (5) 

where 0k  is the center frequency that corresponds to 0S [51]. 

The sum of squared difference (SSD) [51] method is given by: 

 ( )
/2

2
0 1

1
( ) ( ) ( )

N

SSD
m

R k S m S m k
=

= − +∑                                               (6) 

The sum of absolute difference (SAD) [51] method is given by: 
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1
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N

SAD
m

R k S m S m k
=

= − +∑                                                 (7) 

The NCC, SSD and SAD methods use the same principles for spectral information 

extraction [51]. The spectral information is estimated by dividing the radio-frequency data 

into several windows [51]. An N-length fast Fourier transform is used to extract this 

temporal information. In contrast, to obtain the power spectrum, the magnitude of the 

spectral information is squared and normalized by the length of the spectral window [51]. 
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NCC, SSD, and SAD can be extended to 3D by extending the 2D windows to 3D sub-

volumes and searching in these 3D sub-volumes to obtain the displacement estimates. 

3.1.3     3D cross-correlation method 
 

A small variant of the normalized cross-correlation method for 3D motion estimation was 

presented in a previous study [52].  Every pixel in the pre-compressed radio-frequency 

volume tI  is tracked by defining a 3D kernel with a size of one speckle around that pixel 

[52]. This speckle size is determined from the full-width and half maximum of the pre-

compressed volume [52]. Similarly a 3D kernel in the post-compressed volume is 

represented by *
1tI + [52]. The 3D cross-correlation function is given by: 

 

*
1

11 2 22 2
1

( , , )

( , , ) ( , , )

( , , ) ( , , )

xyz x y z

ijh t t x y zi j h

ijh t ijh t x y zi j h i j h

l l l

W I x i y j z h I x l i y l j z l h

W I x i y j z h W I x l i y l j z l h

ρ

+

+

′ =

 + + + + + + + + + 

  + + + + + + + + +    

∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑
 

(8) 

where ( , , )x y z  is the pixel/voxel location in the given volumes, ( , , )x y zl l l  is the lag or 

displacements at which to start scanning in the post-compressed volume, tI  and 1tI +  are 

the pre-compressed and post-compressed volumes respectively, the index ( , , )i j h  iterate 

through every pixel inside the given 3D kernels, and ijhW  are the weighting functions [52]. 

A unity gain function , , 1i j h ijhF =∑  is used to extract the final 3D correlation coefficient xyzρ

, that is used to estimate the displacement in all the three directions [52]: 
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 , ,( , , ) ( , , )xyz x y z ijh x i y j z h x y zi j h
l l l F l l lρ ρ + + +′ =  ∑ ∑ ∑                               (9) 

3.2      Optical Flow 
 

The optical flow technique was used in a previous study [53] to measure the elastography 

of the patients’ skin using high-definition (HD) cameras. This technique involves subtle 

palpation with the hands on the skin of the patient and cameras to record the movements 

[53]. A dense motion field is created, from which the strain is calculated [53]. This 

technique is non-invasive and is useful when the instruments cannot touch the skin of the 

patients, (e.g. on a burned skin surface) [53]. 

A second order partial differential equation between two consecutive images is used to 

estimate a dense motion field in the optical flow technique [53]. The underlying condition 

for optical flow is the brightness constancy equation [53] given by: 

 ( ) 0T
tg u g∇ + =

                                                       (10) 

where ( , , )g x y t  are the spatial and temporal representation of the input image holding the 

input image with a parameter t  that stands for time and ( , )x y  indicates the spatial location 

for an image with a given t  [53]. In contrast, g∇  is the spatial derivative and tg  is the 

temporal derivative with ( , )Tu u v=
  as the flow vector [53]. For the optical flow to minimize 

errors the necessary conditions are as follows: (a) the brightness or intensity of the object 

in motion inside the image remains constant and (b) the pixels in the given kernel around 

a reference pixel have a similar speed [53].  



50 
 

The strain map can be represented by the Cauchy strain tensor [53] ( )ε : 

 1 ( )
2

Tu uε  = ∇ + ∇ 
                                                       (11) 

where u∇  is defined by [53]:  

 

u u
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u
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∂ ∂ 
 ∂ ∂
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 ∂ ∂ 


.                                                         (12) 

Combining the above two equations, we obtain a revised strain map as follows [53]: 
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                                  (13) 

where the spatial derivatives are given by the convolution of Sobel filters and their 

respective directional components of u  [53], as shown in the following equations: 

 x x
u vS u S v
x x
∂ ∂

= ∗ = ∗
∂ ∂

                                                (14) 

 y y
u vS u S v
y y
∂ ∂

= ∗ = ∗
∂ ∂

.                                               (15) 

The Sobel filters [53] in the ( , )x y  direction are given by 

 
1 0 1 1 2 1
2 0 2 0 0 0
1 0 1 1 2 1

x yS S
−   
   = − =   
− − − −      

                                      (16) 
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Finally, the strain map [53]  is given by 

 2 2 2 2
m xx xy yx yyε ε ε ε ε= + + +                                                (17). 

A large cumulative displacement estimate for better strain imaging can be achieved by 

adding a series of small motions, as follows: 

 ( , ) ( , 1) ( 1, 2) ( 1, )u i i n u i i u i i u i n i n+ = + + + + + + + − +                      (18) 

 ( , ) ( , 1) ( 1, 2) ( 1, )v i i n v i i v i i v i n i n+ = + + + + + + + − +                      (19) 

where the cumulative motion between frames i  and i n+  is given by ( , )u i i n+  and 

( , )v i i n+ . 

3.3      Phase-shift correlation method 
 

In this method, the post-compression image wave 1Ir  is a time-scaled and time-shifted from 

the pre-compression image wave Ir [54], as follows:  

 
1 1

( ) ( )

((1 ) ) ( ))
2 2

I I

I i i I i

r x t n t
T Tr x a t D n t t T

= +

= + + + − ≤ − ≤
                            (20) 

where ( )In t  and 1( )In t  are the random noise in the pre- and post-compressed RF images 

[54]. The displacement and the rate of displacement with respect to time T in the post-

compressed RF image are given by iD  and ia  respectively. The relationship between the 

rate of displacement and the strain s is given by / (1 )a s s= − [54]. 
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The time delay estimate between the initial frame and the ith frame is given by 

multiplying ( )Ir t  and 1( )Ir t by a weighted function ( )w t  and taking the cross-correlation 

[54]  as follows: 

 1
ˆ( ) max ( ) ( ) ( ) ( )rr i i I i ID dt w t T r t w t T r t

τ
φ τ τ

∞

−∞

= + − + × −∫                        (21) 

where D̂i  or the displacement estimate corresponds to the value of τ when rrφ  is 

maximized [54]. 

3.4      Efficient phase zero search algorithm 
 

An efficient phase zero search was introduced in a previous study [55], in which a a 

complex correlation coefficient was calculated as: 

 ( ) *, , ( ) ( )
n t T

t n t
a b n t t a t b t t

∆ +

= ∆

′ ′∆ − = −∑                                      (22) 

where a and b are the input complex signals, T is the window length, the search starts 

from n t∆ ,  and t′  is the displacement of the window in the post-compression image b 

[55]. Here, a is the pre-compression image [55].  

To obtain a better linear interpolation accuracy for subsample precision, a baseband 

analytical signal is calculated with a suitable modulation frequency 0ω [55]. The 

conversion to the baseband analytical signal is given by 

  0( ) ( ) j t
ba t a t e ω−=                                                  (23) 
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The successive iterative displacement estimates kt′  and 1kt +′ for a given window are 

calculated using the iterative gradient descent method [55], as follows: 

 
0

1 2
1

arg( , ( , ))kj t
b b k

k k
c

e x x n t t
t t

ω

ω

′−

+

′∆ −
′ ′= +                             (24) 

where 1bx and 2bx are the pre- and post-compression analytical baseband signals, the local 

frequency centroid is cω , the initial estimate for the 0th frame 0,0t′  is initialized to 0 and 

each consecutive displacement from the previous window is used to initialize the next 

window search (i.e., 0, 1 ,n K nt t+′ ′= ). The arg function returns values in the range π−  to π+

[55].  

3.5      Dynamic Programming 

First we summarize the 1D Dynamic programming method [56]. The sum of absolute 

differences ∆  is given by 

 ( , ) ( ) '( )i d g i g i d∆ = − +                                           (25) 

where ( )g i  and ( )g i′ are the pre- and post-compression RF data images, min maxd d d≤ ≤  

is the displacement of the sample at location i, and mind  and maxd  are the user controlled 

minimum and maximum displacement ranges [56]. To reduce the impact of the change in 

the gain of the RF signals, the pre- and post-compression images are divided by the 

maximum intensity values between the two images [56].  

The smoothness of the displacement [56] is given by  
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 1 1( , ) ( )k
i i i iS d d d d− −= −                                              (26) 

where id  and 1id −  are the displacement of two consecutive samples in the image ( )g i

[56]. To avoid large jumps in S, S should follow the following strictly convex criteria 

[56]: 

 [ ]1 1 2 1 1 2 1( ) (1 )( ) (1 ) ,0 1kk k
i i i i i i id d d d d d dα α α α α− − −− + − − > + − − < <             (27) 

Here the value of k=2 and for the values k>2, the jumps in S can be drastic and affect CNR 

ratio [56]. 

The 1D cost function C for a given sample location i and related displacement di [56] is 

given by 

 1 1( , ) min{ ( 1, ) ( , )} ( , )i i i i iC i d C i d wS d d i d− −= − + + ∆                                (28) 

where w is the regularization weight to control smoothness [56]. The displacement di that 

minimizes Ci is stored in Mi  [56], that is given by:  

  
1

1 1( , ) arg min{ ( 1, ) ( , )}
i

i i i id
M i d C i d wS d d

−
− −= − +                                (29) 

The cost function Ci is calculated for i=1…m where m is the maximum number of 

samples in the axial direction [56]. 

The per sample displacement [56] is calculated as follows: 

 ( ) arg min{ ( , )},
i

id
D i C i d i m= =                                            (30) 

 ( ) ( 1, ( 1)), 1 1D i M i D i i m= + + = −                                       (31)  



55 
 

Similarly, the 2D displacement is generated using the sum of absolute difference in the 

lateral directions [56], as follows: 

 ( , , , ) ( ) ( )
la l j j d ai j d d g i g i d+′∆ = − +                                            (32) 

where ld is the displacement in the lateral direction, ad is the displacement in the axial 

direction, and the index j=1…n traverses the n A-lines [56]. 

The 2D smoothness regularization term [56] is given by: 

 
1 1 1 1

2 2( , , , ) ( ) ( )
i i i i i i i ia l a l a a l lS d d d d d d d d

− − − −
= − + −                                  (33) 

Similar to the 1D case, the 2D cost function [56] is given by 

 1

,

( , , 1) ( , , )
( , , ) ( , , ) min ( , , , )

2a l

j a l j a l
j a l a l a l a l

C i C i
C d d i d d i wS d d

δ δ

δ δ δ δ
δ δ−− + 

= ∆ + + 
 

     (34) 

The displacement map can be generated as described for the 1D case [56]. 

 

3.6      Analytical Minimization 
 

The 2D Analytical minimization method uses the non-integer displacements calculated 

from the integer displacements of the 2D Dynamic programming method via interpolation 

methods, with the initial seed displacements ai and li [57]. The ( , )i id a∆ ∆  values minimize 

the following regularized cost function: 



56 
 

 
[ ]2

1 2

2
1 1 1 11

2 2
1 1 , 1

( , ) ( , )

( , , , , , ) ( )
( ) ( )

i i i i
m

j m m i i i ii

a i i i i l i i i j

I i j I i a a j l l

C a a l l a a a a
l l l l l l l

α

β β
− −=

− − −

 − + + ∆ + + ∆ +
  ∆ ∆ ∆ ∆ = + ∆ − − ∆ + 
 ′+ ∆ − − ∆ + + ∆ −  

∑           

(35) 

where I(i, j) is the ith and jth index in the image, , 1i jl −  is the total lateral displacement of the 

previous A-line, and 0α > , and 0aβ >  are the tunable axial and lateral regularization 

parameter. The parameter lβ ′ helps to reduce the propagation of errors from one RF-line 

to the next RF-line [57] and is given by: 

 
, 11

l
l

i jr
ββ

−

′ =
+

                                                            (36) 

Here , 1i jr −  is the residual associated with the errors from the previous RF-lines [57]. We 

simplify the term related to the post-compressed image by applying Taylor’s expansion 

[57], as follows:  

 2 2 2, 2,( , ) ( , )i i i i i i i a i lI i a a j l l I i a j l a I l I′ ′+ + ∆ + + ∆ ≈ + + + ∆ + ∆                  (37) 

Where 2,aI ′ and 2,lI ′ are the derivatives of 2I for the location ( , )i ii a j l+ + [57]. 

We now arrange the analytical minimization function in the following form 

 2
2 1 2 2 1( )D D d l D d′ ′Ι + + ∆ = Ι −                                       (38) 
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where [ ]1 1 2 2
T

m md a l a l a l∆ = ∆ ∆ ∆ ∆ ∆ ∆ , 

[ ]1 1 2 2
T

me e e e e e=  ,  1 2( , ) ( , )i i ie I i j I i a j l= − + + , D2 is the diagonal matrix 

of size 2 2m m× is given by 2 (0, ,0, , ,0, )l l lD diag β β β′ ′ ′=  , 2
2I ′  is the symmetric tri-

diagonal matrix of size 2 2m m× 2 2 2
2 ( (1) ( ))I diag J J m′ ′ ′=  [57] contains 

 
2

2, 2, 2,2

2, 2, 2,

( ) a a l

a l l

I I I
J i

I I I
′ ′ ′ 

′ =  ′ ′ ′ 
  

where the axial and later derivative of 2I  is given by 2,aI ′ and 2,lI ′  at location ( , )i ii a j l+ +

[57]. The derivative of 2I is given by 

 2 2, 2, 2, 2, 2, 2,( (1), (1), (2), (2) ( ), ( ))a l a l a lI diag I I I I I m I m′ ′ ′ ′ ′ ′ ′=                           (40) 

The inverse gradient estimation and the final 2D AM displacement [57] are derived from 

the following expression: 

 2
1 1 2 1 1( )WI ZD ZD d WI e ZD d s′ ′+ + ∆ = − +                                  (41) 
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4 Elastography using Multi-Stream GPU 
 

This chapter is from [2] and published with the following citation: 

Nishikant P. Deshmukh, Hyun Jae Kang, Seth D. Billings, Russell H. Taylor, Gregory D. Hager, and Emad 
M. Boctor, "Elastography Using Multi-Stream GPU: An Application to Online Tracked Ultrasound 
Elastography, In-Vivo and the da Vinci Surgical System," PLoS ONE 9(12): e115881. 
doi:10.1371/journal.pone.0115881. PLoS ONE is an open access journal and contents are reusable under 
Creative Commons Attribution (CC BY) license. 

 

In this chapter, we present an end-to-end real-time system which improves the speed of 

GPGPU-based implementation of normalized cross-correlation (NCC) elastography using 

the stream capability of CUDA. This real-time system receives radio frequency (RF) data 

from an ultrasound machine and processes it on a GPGPU to compute an elastography 

image. We designed our system to harness the CUDA stream and multiple instruction 

multiple data (MIMD) capability of modern GPGPU architectures. Typical elastography 

calculations involve several computationally intensive components including displacement 

map generation, post processing filters, strain calculation, dynamic range adjustment, and 

scan conversion. Each of these components is mapped to a CUDA kernel within the 

GPGPU. CUDA kernels are the basic parallelizable blocks in the CUDA programming 

language, similar to a function. Using CUDA stream functionality these kernels are 

connected to form an input-output pipeline. A CUDA stream ensures data integrity by 

limiting inter-component data access to within the pipeline, thereby enabling multiple 

CUDA streams to run in parallel. We present the benefit of our work through speed 

comparison of elastography on multi-stream GPU architecture, single-stream GPU 

architecture, and non-stream GPU architecture. The new system has achieved an 
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elastography image generation rate of up to 78 frames per second, nearly matching the RF 

data acquisition rate of ultrasound machines. We further investigate the impact of NCC 

window size on both speed and quality of elastography images using in-vivo pig liver data. 

To showcase the adaptability of our architecture we demonstrate two applications: real-

time elastography by free-hand palpation using external tracking information (Online 

tracked ultrasound elastography (O-TRuE)), and integration with the da Vinci Surgical 

System for elastography by robot-assisted palpation. The original TRuE [58] method was 

an offline system where the RF data and tracking data was collected offline, timestamp 

synchronization was performed in matlab, frame selection was done using TRuE and 

finally the elastography was calculated for the chosen pair of RF data. There was no real-

time feedback to the surgeons, and this problem was solved using O-TRuE method. O-

TRuE is an end-to-end system which involves RF data acquisition from an ultrasound 

machine and tracking data acquisition from an EM tracking device, synchronizing these 

acquired data based on timestamp, passing this data to a selection engine which performs 

in-plane RF data frames search using TRuE, implementation of a queue mechanism to 

streamline TRuE calculation and elastography computation. Furthermore, we devise a 

technique for output elastography image stream analysis, which we use to investigate 

improvement in the output stream quality of O-TRuE relative to untracked free-hand 

palpation. We also apply this analysis to evaluate the quality of output elastography images 

for different palpation motions generated by the da Vinci system. Finally, we demonstrate 

how multiple O-TRuE images combined by weighted averaging produce a higher quality 

elastography image, which we analyze using contrast-to-noise ratio (CNR) and signal-to-

noise ratio (SNR) values. 
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Systems contributions 

The challenge of developing a real-time system is ensuring that there are no blocking 

processes waiting on input data, disk writing or network writing. This is not a trivial 

problem to solve, and major research worldwide is focused on ensuring that the system 

performs in real time. In our case, the challenge complex and noisy dataset of ultrasound, 

a real-time modality. Often, improving the performance of the system involves 

downgrading the quality of the output images. In this chapter, I designed a multi-stream 

elastography system that is geared towards ensuring that there is minimal overhead in the 

system and that the output quality is high. The system that I have designed involves a 

queueing mechanism, a massively multi-threaded system on both CPUs and GPUs, the use 

of data structures to ensure optimal thread utilization, and asynchronous data transfer to 

the GPUs. Much of the discussion can be found in the Methods section and in Pseudocode 

4.1-4.8. 

Summary 

A system for real-time ultrasound (US) elastography will advance interventions for the 

diagnosis and treatment of cancer by advancing methods such as thermal monitoring of 

tissue ablation. A multi-stream graphics processing unit (GPU) based accelerated 

normalized cross-correlation (NCC) elastography, with a maximum frame rate of 78 

frames per second, is presented in this paper. A study of NCC window size is undertaken 

to determine the effect on frame rate and the quality of output elastography images. This 

paper also presents a novel system for Online Tracked Ultrasound Elastography (O-TRuE), 
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which extends prior work on an offline method. By tracking the US probe with an 

electromagnetic (EM) tracker, the system selects in-plane radio frequency (RF) data frames 

for generating high quality elastograms. A novel method for evaluating the quality of an 

elastography output stream is presented, suggesting that O-TRuE generates more stable 

elastograms than generated by untracked, free-hand palpation. Since EM tracking cannot 

be used in all systems, an integration of real-time elastography and the da Vinci Surgical 

System is presented and evaluated for elastography stream quality based on our metric. 

The da Vinci surgical robot is outfitted with a laparoscopic US probe, and palpation 

motions are autonomously generated by customized software. It is found that a stable 

output stream can be achieved, which is affected by both the frequency and amplitude of 

palpation. The GPU framework is validated using data from in-vivo pig liver ablation; the 

generated elastography images identify the ablated region, outlined more clearly than in 

the corresponding B-mode US images. 

4.1      Introduction 
 

Quasi-static elastography involves comparing pre-compression and post-compression 

ultrasound (US) images to measure the displacement of speckles [1]. This measurement is 

used to determine elasticity of the tissue, which is useful in distinguishing hard and soft 

areas [1]. Visualization of the strain map calculated from this displacement can help 

identify tissue features, such as malignant tumors [1]. This technique is commonly known 

as elastography [1]. Elastography can be used as an early diagnosis tool for cancer, where 

early detection is critical in reducing the number of cancer related deaths [59]. 
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Elastography has been evaluated in human trials for breast [60], [61], prostate [62], [63] , 

liver fibrosis [14], [64], ovarian [65], skin [66], and thyroid cancers [67], [68]. Thermal 

ablation monitoring involves ablating the cancer tumor with RF ablator; an ultrasound 

guided needle is placed near the target region predetermined by a CT scan [69]. An ablated 

region increases the stiffness of the burned tissue, which is easier to visualize in 

elastography [69]. Elastography helps to accurately position the needle near the target 

region with the assistance of B-mode images and to monitor the size of the burn [69]. 

Ablation needs to be stopped for the acquisition of RF data; this duration needs to be very 

small to maintain the target ablation curve [69]. Collection of this data and calculating 

elastography in real-time are challenges. 

Newer ultrasound imaging techniques like shear wave elastography [70] (focused 

ultrasound induced shear wave) and vibro-elastography (external vibration with a 

mechanical excitation) [71] can generate very high frame rates of up to 10 kHz and 300 

kHz respectively [70], [71]. These techniques also use correlation to measure elasticity; 

hence a very high speed matching engine is needed. These techniques require special 

devices and US machines to record the RF data. Additionally, these systems are expensive 

and not widely available; hence a low-cost and high performing elastography 

implementation is necessary. 

Elastography is computationally expensive. Given the high acquisition speed of modern 

US systems, there is need for a real-time implementation of elastography. This paper details 

a novel complete system of GPU-based elastography. The first known elastography 

implementation of a general-purpose graphics processing unit (GPGPU, commonly known 
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as GPU) was published by [72]. This implementation was based on time domain analysis 

of RF data. An implementation based on Fourier domain analysis was published in [73], 

where a hybrid CPU-GPGPU model was proposed. In this implementation the GPU 

computes displacement estimation using CUFFT library, whereas median filtering and 

strain estimation is performed by a CPU. This implementation [73] does not have a real-

time pipeline to accept RF data from an acquisition system; moreover, the CPU 

implementation would increase the CPU utilization in an attempt to have a threaded model 

of this pipeline. This work was further extended to calculate the time constant estimator 

for visco-elasticity and poro-elastography [74]. Due to the CPU-GPGPU nature of the 

work, a threading model is difficult to synchronize and requires the stream scheduling 

capacity of Compute Unified Device Architecture (CUDA) [75].  

Field programmable gates array (FPGA) and Digital signal processor (DSP) based 

implementations of elastography and ultrasound systems have been reported by [76]–[78]. 

FPGA are on-board chips which tightly integrate with the underlying ultrasound hardware, 

thereby helping these systems to obtain direct, rapid access to the raw data from the 

ultrasound transducers. This hardware is expensive and difficult to program. A GPU-based 

implementation is a much less expensive and more flexible option. Several ultrasound 

devices by companies such as Ultrasonix, Siemens, Philips, GE, Toshiba, Supersonic, and 

Hitachi come equipped with built-in elastography modules [79]–[81]. These machines 

generally use a CPU implementation, which puts a strain on the system resources. 

However, many of the existing ultrasound systems deployed around the world come 

equipped with external PCI express cards. In these cases, connecting an external GPU card 

to a machine is fairly straightforward. 
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Real-time feedback for intra-operative tasks needs fast elastography in order to correct the 

deformation caused by the movement of the organ, varying compression and the hand 

tremor of the operator [58]. Typically, these corrections need calculation of multiple pairs 

of elastography from a pair of RF data. When tracking information is acquired, good RF 

pairs can be presorted by exploiting the geometric position of the probe with respect to a 

reference tracker. An EM tracked ultrasound elastography method has been introduced by 

[58]. The disadvantages are that EM trackers cannot be used in ferromagnetic 

environments. The use of robot controlled motion inducers is another option. Real-time 

elastography on the da Vinci robotic system and on a snake robot have been integrated in 

[82] and [83], respectively. This system generates a pre-defined palpation motion to 

generate a high quality elastogram, but relies on the assumption that the underlying organ 

is attached to a rigid body. This motion can be compensated by a high speed real-time 

system to generate high-quality elastogram. 

4.2     Background 
 

Several supporting systems and methods are used in the development of this work. This 

section briefly introduces the reader to these concepts. 

4.2.1     General Purpose Graphic Processing Units (GPGPU) 
 

A GPGPU is composed of many core streaming processors working in synchronization 

with each other. Early models of GPGPU’s were single instruction, multiple data (SIMD) 

processors, for which a single CUDA kernel executes on all cores at a given time [2]. 
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Implementations based on this architecture were commonly limited by poor utilization of 

the GPGPU. Newer versions of GPGPU’s, such as the Fermi-architecture from NVidia, 

resolve this problem by introducing multiple instructions, multiple data (MIMD) 

processors [75]. This paper exploits this new capability of the GPGPU by scheduling all 

elastography processing components into individual CUDA streams, which enables greater 

utilization of the GPGPU (henceforth referred to as GPU). 

4.2.2     Normalized Cross-Correlation (NCC) based 
Elastography 

 

Normalized cross-correlation (NCC) is used for calculating tissue displacements between 

pre- and post- compressed RF data images by measuring the speckle shift [72], [84]. 
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Equation 1 defines the NCC function for comparing two RF image regions where f  is a 

template window in the first RF image and t is a target window in the second RF image, 

,f u v  and t  are the mean respective intensities within each window, and x, y, u, and v denote 

pixel position within a windowed region [84]. This window based approach allows 

processing individual window searched on separate CUDA threads [72]. A correlation map 

generated from eq. 1 is used to build a displacement map using cosine fit interpolation [72]. 

Median and moving average filters are applied on this displacement map to remove outliers 

[72]. The median filter and the moving average filter again allow for individual output 
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pixels to be computed on different threads [72]. A strain map is finally generated from the 

displacement map using the least squares approach which can similarly be scheduled on 

individual threads [72]. 

4.2.3     Tracked Ultrasound Elastography (TRuE)  
 

Foroughi et. al. [58] developed and validated TRuE on offline data using electromagnetic 

(EM) tracking of an ultrasound probe. As per [58], a cost function (eq. 2) is used to rank 

the quality of physical alignment between different RF data frame pairs, which is computed 

from the corresponding EM tracking data 

3

22Cos ( ) y opt
x x y z z

y

D t
t D K D K K D

D c
−

= + +
+

                            (2) 

where {( , ), ( , ), ( , )}x x y y z zD K D K D K  are the displacements and sensitivities of the motion in 

the lateral, axial and out-of-plane directions respectively, calculated using tracking 

information in the pair of RF data. A user input 0.2 0.4topt≤ ≤ regulates the maximum 

displacement expected in the axial direction; 0.0001c =  is a small constant to compensate 

for zero compression. The input D to the cost function is the distance vector [ ]T
x y zD D D

, which is calculated as follows: 
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where 1x , 1y , 2x  and 2y  form a region of interest for each frame. The axis-angle 

representation of the rotation between frames is [ ]Ta a a ax y z= and the relative 

translation is [ ]T
x y zt t t t= . In our paper we have used 1 / 2x x′= − , 2 / 2x x′= , 1 0y =  and 

2y y′= , where x′  and y′  denote the image pixel width and height, respectively. These 

values are multiplied by pixel spacing values to convert to millimeter scale. Since we are 

primarily interested in axial motion analysis, the axial sensitivity is controlled as follows 

2 1(4 )y yK τ −=                                                          (6) 

0.1yτ σ= ×                                                          (7) 

where 𝜎𝜎 is a user defined variable of type natural number in the range1 15σ≤ ≤ [58]. The 

value of 1σ =  indicates lower sensitivity in the axial direction and 15σ =  indicates higher 

sensitivity. Similarly, xK  and zK  are defined as 

2 1(4 )x xK τ −=                                                           (8) 

2 1(4 )z zK τ −=                                                           (9) 

where 0.2x zτ τ= =  is fixed in our experiments since we are interested only in axial 

direction and the value of 0.2 can accommodate our small motions in lateral and out-of-

plane directions. Finally, we define pseudo correlation value as the exponential of the 

negative cost value (eq. 2) as 
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Cos ( )( ) t DCrr D e−=                                              (10) 

which provides a value in the range [0, 1] to rank the quality of physical alignment between 

different RF frame pairs. RF frame pairs with high Crr values have image planes closely 

aligned in physical space, making them ideal candidates for elastography image 

computation. As previously described in discussion of eq. 2, from which Crr is derived, the 

Crr value is computed for an RF frame pair by analyzing the tracking information 

associated with each frame. This analysis is performed for all 
2
N 
 
 

 frame pair 

combinations amongst the N most recent RF frames stored in a buffer. The reader is 

referred to [58] for further details. 

4.3     Methods 
 

This section describes our approach to GPU-based elastography. The system setup and 

configuration is presented in subsection System Overview. Subsection Multi-Stream GPU-

based Elastography describes the architecture of the multi-stream implementation of GPU-

based elastography. The online tracking implementation is discussed in subsection Online 

Tracked Ultrasound Elastography. 

4.3.1     Ethical Statement 
 

Experiments were performed on a healthy pig as per the protocol number SW11M128 

approved by Johns Hopkins University Institutional Care and Animal Use Committee.  The 
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experiments were conducted on pig liver since the pig liver is anatomically close to human 

liver. The experiment in-vivo is needed to reflect the conditions during surgery and validate 

the algorithm. The data for this paper was reused from earlier study in [58] to minimize 

animal experiments needed. We also extensively performed experiments on phantom to 

measure speed and define metric for O-TRuE to minimize experiment on animals. 

 

 

 

 

4.3.2     System Overview 
 

Figure 4.1 illustrates the overall system showing the various components comprising the 

real-time multi-stream GPU-based elastography system. This is an application view of the 

system by inclusion of the GPU, ultrasound machine, tracking system, da Vinci Surgical 

Figure 4.1 Overall System Diagram: The figure shows overall system and data flow diagram of 
elastography image server which runs on a machine equipped with a GPU. The system is modular with 
each module configurable to run on different machines or on a same machine (exception is hardware 
dependent da Vinci surgical system, RF Server and EM Tracker Server).  The elastography image server 
is based on multi-stream elastography algorithm and with little change can handle both tracked and 
untracked RF data. The MUSiiC Sync synchronizes tracking and RF data based on timestamp to be 
processed by elastography image server. The system is flexible to be connected with da Vinci Surgical 
console to allow overlay of elastography and b-mode image stream. 
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System, image visualizer, and the MUSiiC Sync application. Communication between all 

system components is accomplished using the OpenIGTLinkMUSiiC library [23]. This 

library assists to make the system highly modular, allowing deployment of the components 

on different machines. The MUSiiC Sync application serves to synchronize all time-

stamped data sources within the system. In our configuration, the MUSiiC RF server and 

MUSiiC EM tracker server were run on the ultrasound machine in order to get 

synchronized timestamps. The MUSiiC RF server, which is part of MUSiiCToolkit [23], 

collects RF data from the ultrasound machine and sends it to the network. This data can be 

collected by several listening clients. Similarly, the MUSiiC EM tracker server sends real-

time tracking information to the network. MUSiiC Sync synchronizes the RF and tracking 

data based on their timestamps and forms a single data packet from each synchronized data 

pair which is sent to the Elastography Image Server. The Elastography Image Server 

processes the synchronized data to choose RF data pairs for elastography computation, 

which it computes using GPU. Output elastography images are then sent from the 

Elastography Image Server to a visualizer. 

The EM tracker, which is attached to the ultrasound probe, provides the position of the 

probe in 3D space. Applying TRuE to the input stream of position data gives the best frame 

selection capability. In the da Vinci Surgical System environment, where usage of an EM 

tracker is not possible due to presence of ferromagnetic materials, we rely on steady 

palpations generated by robot to grant a good quasi-static elastography [82]. When no 

tracking data is available, we do not need MUSiiC sync. In this case, the RF Server directly 

outputs to the Elastography Image Server. An advantage of this system is its high 

modularity, enabling various software modules to lie on the same machine or different 
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machines. In some of the experiments two elastography image servers are run on the same 

computer using different GPU cards; one computing O-TRuE elastography and the other 

computing untracked elastography. 

 

 

 

Figure 4.2 Algorithm of multi-stream GPU elastography and O-TRuE: The multi-stream GPU 
elastography algorithm is described on the left and the corresponding O-TRuE, which reuses several 
components of the multi-stream GPU elastography is on the right.  

 



73 
 

4.3.3     Multi-Stream GPU-based Elastography 
 

Figure 4.2 details the multi-stream GPU-based elastography algorithm. An elastography 

thread is a collection of normalized cross-correlation (NCC) based elastography algorithm 

modules as shown in Fig. 4.3. First, a displacement map is calculated between two RF 

images on GPU using NCC (eq. 1); this data is filtered using a moving average and a 

median filter to remove outliers from the displacement map; then strain estimation is 

performed using least squares fitting, followed by scan conversion. This is an extension of 

the work in [72] with all of these modules executing on the GPU. When multiple threads 

are invoked, a mechanism is needed to ensure data integrity and to prevent threads from 

simultaneous access to the shared data. Instead of implementing a complex mechanism of 

synchronizing data using indexing techniques and monitoring resource allocations, these 

modules are held together by a CUDA stream, which ensures data integrity within a set of 

CUDA kernels. Modern NVidia GPU architectures, such as Fermi, allow multiple CUDA 

kernels to execute in parallel with concurrent IO operations between the GPU and CPU. 

This high-level parallelism enables optimal utilization of GPU resources. 

In our real-time ultrasound elastography system shown in Fig. 4.4, RF data is sent from the 

ultrasound machine to the elastography server. This data is then passed into a queue where 

the RF data is distributed over different elastography threads, each accepting a pair of RF 

data. Queuing mechanism helps receiver and the processing threads to work independently. 

The processing threads simply go to sleep when no data is available. If a data receiver 

thread receives data then it simply invokes a wakeup call to these threads. The Boost thread 

library is used for thread synchronization. The elastography threads dispatch their RF data 
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to the GPU for elastography computation and then send the output elastography data to the 

output data queue of the MUSiiCTCPServer running an independent thread. The 

MUSiiCTCPServer may have several clients connected to it, which are typically visualizers 

for viewing the elastography data. To adapt this system to other usage, the nth thread can 

simply collect n-1 threads data to perform aggregate operations as averaging or weighted 

averaging of selective elastography images. 

 

 

4.3.4     Online Tracked Ultrasound Elastography 
 

In Online Tracked Ultrasound Elastography (O-TRuE), a buffer of n RF data frames is 

analyzed; the Crr value from eq. (10) is calculated for these RF data frames by extracting 

the tracking data embedded in each RF frame. To find well-aligned RF pairs, the Crr is 

computed for all 
2
N 
 
 

 combinations of RF data frames and the top m matches are chosen 

to compute an elastography image. The algorithm is detailed in Fig. 4.2. 

Figure 4.3 Elastography stream pipeline: Figure shows contents of the elastography image stream. 
These are collection of kernel calls in CUDA necessary to generate elastography images [89]. Since these 
streams support data integrity, they can be plugged into distinct threads. 
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4.3.5     O-TRuE Image Fusion 
 

Image fusion of multiple elastography images may be used to compensate for global 

deformation, as well as improve SNR and CNR. By applying a weighted fusion, less weight 

may be given to the noisier images in each fusion [10]. We investigate applying this 

Figure 4.4 Elastography Server: This figure shows real-time pipeline where data is acquired through a 
radio-frequency (RF) server which runs on a US machine. As can be seen, a combination of queue and 
threading mechanism is implemented to connect all the components efficiently. Queuing mechanism 
allows the receiver and processing threads to work independently. The processing threads sleep if there 
is no data available to process and are triggered by data receiving component whenever data is ready. 
Elastography threads are the multiple threads that are spawned per consecutive or selected pair of RF 
data received. Every thread can send out the data over the network using IGTLMessages. The nth thread 
can collect data from all the other n-1 threads to perform aggregate operations as averaging or weighted 
averaging of selective elastography images. 
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technique to each set of m best matches chosen by O-TRuE as described in subsection  

Online Tracked Ultrasound Elastography.  A fused image IF may be defined as  

1

1
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i i i
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i i
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α
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∑∀ =
∑

                                 (11) 

where Ii  are the m images being fused and 𝛼𝛼 is an image weighting factor equal to the 

average of the correlation map generated by NCC (Subsection Normalized Cross-

Correlation (NCC) based Elastography within Background section). Figure 4.5 shows the 

flow of O-TRuE image fusion where the top m strain images are fused together in real-time 

by weighted averaging. We implement the image fusion operation by customizing one 

elastogram thread as an accumulator thread. Once the other m-1 threads have finished 

calculating their elastogram images, they store these images in a shared buffer which is 

then accessed by the accumulator thread to compute the fused image. 

 

 

 

 

Figure 4.5 Real-time Online tracked Ultrasound Elastography (O-TRuE): Figure shows the real-
time online tracked US elastography (O-TRuE) where the cost function is calculated from combinations 
of the tracked RF data. Then the elastography images are computed for the top m RF data pairs according 
to the Crr values. The elastography images can then be fused together by simply averaging the images or 
by weighted averaging based on average correlation values of each elastography image. 
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Function RFDataReceiver 
 
Input: RF data from the RF server in OpenIGTLinkMUSiiC format. In the case of online tracked 
ultrasound elastography, this function receives tracking information embedded inside the RF data 
OpenIGTLinkMUSiiC packet. 
Output: RF data in a local structure format that is easily usable by different EI modules. In the case 
of online tracked ultrasound elastography, this function sends tracking information for each RF data 
packet. 
     i := 0 
     While(true) 
            Sleep on OpenIGTLinkMUSiiC receiver for data over the network 
            Receive RF(i) data image from OpenIGTLinkMUSiiC SmartPointer 
            Allocate GPU CUDA direct memory access (DMA) memory M(i) 
            Transfer RF(i) to M(i) 
            Insert RF(i) into RFInputQueue(x) - Send Wakeup to listening processes 
            Test if RFOutputQueue(y) has any data returning from EI server 
            (Here we do not sleep to avoid race condition) 
            If (y == dataPresent)  
                   Free (y) with special CUDA call 
                   Remove reference to OpenIGTLinkMUSiiC SmartPointer 
           end 
           i := i + 1 
      LoopbackToWhile             
EndFunction RFDataReceiver 

 

 

 

 

 

 

 

Pseudocode 4.1 RFDataReceiver: This module receives the RF data from the RF server or from a 
file and transmits the data to the EI processing engine via a queueing mechanism. This module also 
receives the used RF data images to be freed in the memory. 
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Function EIProcessor 
 
Input: RF data from the RFDataReceiver in simple local structure format. 
Output: Selected RF data image pair (elastography data outputted via EIComputation). RF data 
sent back to RFDataReceiver for recycling. 
          i := 0 
          j := 0 
         Create a threadArray that acts a Queue (maxSize: N) 
         While (true) 
                 Sleep on RFInputQueue(x) to receive RF(i) 
                When RFInputQueue receives data - Wakeup 
                RF (i) = x 
                 i := i + 1 
                Allocate EI_parameters_structure for GPU computation 
               (This structure contains all parameters necessary for EI computation) 
                EIComputation (RF(i-1), RF(i), EI_parameters_structure, j, 'nonThreaded') 
               Send the RF data from this queue to RFOutputQueue(y) 
               j := mod((j + 1), N); 
        LoopbackToWhile 
EndFunction EIProcessor 

 

 

 

 

 

 

 

 

Pseudocode 4.2 EIProcessor: This module receives the RF data from the RFDataReceiver and 
processes the data to compute elastography images and transmit the images over the network. 
This module is the basic version without the CPU threading model. 
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Function EIProcessorAdvanced 
 
Input: RF data from the RFDataReceiver in simple local structure format. 
Output: Selected RF data image pair (Elastography data outputed via EIComputation). RF data 
sent back to RFDataReceiver for recycling. 
        i := 0 
        j := 0 
       Create a threadArray that acts a Queue (maxSize: N) 
       While (true) 
              Sleep on RFInputQueue(x) to receive RF(i) 
              When RFInputQueue receives data - Wakeup 
              RF (i) = x 
              i := i + 1 
             Allocate EI_parameters_structure for GPU computation 
            (This structure contains all parameters necessary for EI computation) 
            threadArray(j) = EIComputation (RF(i-1), RF(i), EI_parameters_structure, j, 'Threaded') 
             for k = 0 to N 
                    Test if threadArray(k) exited 
                    if threadArray(k) exited then free the memory and reuse 
                    Send the RF data from this queue to RFOutputQueue(y) 
             endFor 
             j := mod((j + 1), N); 
      LoopbackToWhile 
EndFunction EIProcessorAdvanced 

 

 

 

 

 

 

 

Pseudocode 4.3 EIProcessorAdvanced: This module receives the RF data from the 
RFDataReceiver and processes the data to compute elastography images and transmit the images 
over the network. This module is the advanced threaded version with the CPU threading model. 
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Function EIProcessorOTruE 
 
Input: a) RF data from RFDataReceiver with tracking information in a simple data structure.  b) 
Buffer size M where M*(M-1)/2 comparisons are made. c) Value of X, that are the top images to 
be selected. 
Output: Selected RF data image pair and tracking information (Elastography data outputed via 
EIComputation). RF data sent back to RFDataReceiver for recycling. 
      i := 0 
      j := 0 
      Create a double array threadArray that acts as a Queue (maxSize: N x X) 
      While (true) 
              Sleep on RFInputQueue(x) to receive RF(i) 
             When RFInputQueue receives data - Wakeup 
              Loop until M RF image buffers are collected 
                     RF (i) = x 
                     i := i + 1 
            endLoop 
            RFdatapairs = CalculateTopXTruE (RF, i-M, i, M, X) 
            m := 0; 
           foreach RFpair in Rfdatapairs 
                  (Here RFpair is a structure that contains an RF pair) 
                 Allocate EI_parameters_structure for GPU computation 
                 (This structure contains all parameters necessary for EI computation) 
                 threadArray(j, m) = EIComputation (RFpair(0), RFpair(1), EI_parameters_structure, j) 
                 m := m + 1 
           endfor 
           for k = 0 to N 
               for n = 0 to X 
                        Test if threadArray(k, n) exited 
                        if threadArray(k, n) exited then free the memory and reuse 
                       Send the RF data from this queue to RFOutputQueue(y) 
               endFor n 
            endFor k 
            j := mod((j + 1), N); 
     LoopbackToWhile 
EndFunction EIProcessorOTruE 

 

 

Pseudocode 4.4  EIProcessorOTruE: This module receives the RF data from 
RFDataReceiver that has a tracking information embedded from a tracking device and 
combined by the MusiiCSync program. This module calculates a permutation of all images 
for a buffer size M and selects the top X images to be sent on the network. 
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Function EIProcessorOTruEAveraging 
 
Input: a) RF data from RFDataReceiver with tracking information in a simple data structure. b) 
Buffer size M where M*(M-1)/2 comparisons are made. c) Value of X that are top images to be 
selected. 
Output:  Weighted average elastography images for the selected RF data image pair and 
tracking information for one of the input RF images (via EIComputationAveraging). 
         i := 0 
         j := 0 
        Create a double array threadArray that acts as a Queue (maxSize: N x X) 
        While (true) 
                Sleep on RFInputQueue(x) to receive RF(i) 
                When RFInputQueue receives data - Wakeup 
                Loop until M RF image buffers are collected 
                          RF (i) = x 
                          i := i + 1 
                endLoop 
                RFdatapairs = CalculateTopXTruE (RF, i-M, i, M, X) 
                m := 0; 
               foreach RFpair in RFdatapairs 
                         (Here, RFpair is a structure that contains an RF pair 
                        Allocate EI_parameters_structure for GPU computation 
                         (This structure contains all parameters necessary for EI computation) 
                        threadArray(j, m) = EIComputationAveraging (RFpair(0), RFpair(1),  
                                                                                               EI_parameters_structure, j, m, X) 
                        m := m + 1 
               endfor 
               for k = 0 to N 
                         for n = 0 to X 
                          Test if threadArray(k, n) exited 
                          if threadArray(k, n) exited then free the memory and reuse 
                          Send the RF data from this queue to RFOutputQueue(y) 
              endFor 
              j := mod((j + 1), N); 
         LoopbackToWhile 
EndFunction EIProcessorOTruEAveraging 

 

 

Pseudocode 4.5 EIProcessorOTruEAveraging: This module receives the RF data from 
RFDataReceiver that has tracking information embedded from a tracking device and combined 
by the MusiiCSync program. This module calculates a permutation of all images for a buffer size 
M and selects the top X images to calculate a weighted average based on the average correlation 
of each image and send the data on the network. 



82 
 

 

 

EIComputationAveraging 
Input: a) RF data from RFDataReceiver with tracking information in a simple data structure.  b) 
Value of X that are top images to be averaged 
Output:  Weighted averaged elastography images for the selected X top RF data image pairs and 
the RF data pairs. 
        Receive RF(n) and RF(n+1) 
        If (modulus(threadID, X) ==  0)  
               First thread,  
                           hence allocate memory for averagingStructure (size: X) 
       endIf 
       (correlationMap, displacementMap) := ComputeEI (RF(n), RF(n+1)) 
       if (average(correlationMap) < 0) 
                   (correlationMap, displacementMap) := ComputeEI (RF(n+1), RF(n)) 
       endIf 
       displacementMapRefined = movingAverage(medianFiltering(displacementMap)) 
       strainMap := strainEstimation (displacmenetMapRefined) 
  
       if (modulus(threadID, X) != X-1) 
                store strainMap in averagingStructure (threadID % X); 
       else 
                sumAverageCorrelation := 0 
                memset(finalAverageStrain, 0) 
                (now calculate weighted average) 
                for i := 0 to X 
                       averageCorrelation(i) := average (correlationMap(i)) 
                       sumAverageCorrelation := sumAverageCorrelation + averageCorrelation(i) 
                endFor 
               for i := 0 to X 
                      finalAverageStrain := averageCorrelation(i) * 
strainMap(i)/sumAverageCorrelation; 
               endFor 
       endIf 
  
       if (clientConnected) 
              send finalAverageStrain on network 
       endIf    
       return RF(n) and RF(n+1) 
EndFunction EIComputationAveraging 

 

Pseudocode 4.6 EIComputationAveraging: This module computes the average of the top X 
ranked elastography images. This module computes the average based on the weighted average 
of the average correlation values. The last Xth thread computes the average. Other threads simply 
deposit their results in a common location. 
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CalculateTopXTruE 
Input: Tracking information of M RF data images, value of M, and value of X 
Output: Top X RF data image pairs and corresponding correlation values 
       i := 0 
       j := 0 
      topXTruECorrelation stores indexes and corresponding TrueCorrelation values 
      for i := 0 to M 
              for j := 0 to M * (M - 1)/2 
                    topXTruECorrelation (i, j).correlation := calculateCorrelation(RF(i).trackingMatrix() 
                                                                                                                           , 
RF(j).trackingMatrix()); 
                    topXTruECorrelation (i, j).index := (i, j); 
             endFor j 
      endFor i 
      sort in descending order topXTruECorrelation based on index values 
      return topXTruECorrelation structure for (0 to X-1) indexes as an array of RFpair 
     (We call the array of RFpair as the RFdatapairs)     
EndFunction CalculateTopXTruE 

 

 

 

 

 

 

 

 

 

Pseudocode 4.7 CalculateTopXTruE: This module returns the Top X RF data image pairs that are 
in close proximity to obtain a good quality elastography output. 
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EIComputation 
Input: RF data to be processed. Here n means any value greater than or equal to 0.  n and n+1 
simply indicate two different RF data images. 
Output: Generated strain image sent over the network and the RF data pairs 
       if 'Threaded' then this function runs on a separate thread 
       Receive RF(n) and RF(n+1) 
      (correlationMap, displacementMap) = ComputeEI (RF(n), RF(n+1)) 
      if (average(correlationMap) < 0) 
               (correlationMap, displacementMap) = ComputeEI (RF(n+1), RF(n)) 
      endIf 
      displacementMapRefined := movingAverage(medianFiltering(displacementMap)) 
      strainMap := strainEstimation (displacmenetMapRefined) 
      if (clientConnected) 
               send strainMap on network 
      endIf 
       Free (strainMap, displacementMap, displacementMapRefined, correlationMap); 
       return RF(n) and RF(n+1) 
EndFunction EIComputation 

 

 

 

 

 

 

 

 

Pseudocode 4.8 EIComputation: This module calculates the elastography. If the average 
correlationMap is less than 0 it means that the comparison was done in wrong direction where it 
recomputes elastography. 
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4.4     Experiments 
 

This section details the experiments performed to show the effectiveness of the multi-

stream elastography algorithm, stability of O-TRuE and stability achieved with da Vinci 

surgical system. Two ultrasound machines are used for the experiments, which are Sonix 

RP (Ultrasonix Co.) for phantom and da Vinci surgical system experiments, and Sonix 

CEP (Ultrasonix Co.) for in-vivo animal experiments. A high-performance Tesla C2070 

GPU card is used for elastography computations. The machine that is running elastography 

computation has 12 GB of RAM and a 2.13 GHz Intel Xeon processor. 

4.4.1     Phantom Experiments 
 

In phantom experiments, a CIRS Elasticity QA Phanton Model 049, which has background 

elasticity of 33 kPa and lesions with 7, 15, 39, and 58 kPa elasticity, is used. The purpose 

of this experiments is to determine speed increment achieved by multi-stream GPU 

approach towards elastography, as compared to single stream and no stream GPU 

approach. We would like to determine whether the performance of the system in speed and 

quality remains stable over time on the given phantom. These results are important to 

establish multi-stream GPU elastography as enabling method for O-TRuE and integration 

with da Vinci surgical systems. In relation to this, we want to see whether O-TRuE 

supported freehand palpation gives any benefits over untracked freehand palpation in terms 

of stable correlation of consecutive images generated by both system.  



86 
 

The experiments are performed on the 58 kPa lesion, measuring 2 cm in diameter. The flat 

upper surface of this phantom helps to ensure that in-plane RF data frame detection by O-

TRuE gives a very high quality elastogram. The O-TRuE algorithm consistency is 

measured by applying the same RF data stream as an input to both tracked and untracked 

version of elastography. This ensures that consistent data is used to compare the two 

methods. The results are saved to the disk as OpenIGTLink message files. These message 

files can be later retrieved for further programmatic analysis. The output elastography 

image is measured for consistency by measuring the correlation value of consecutive 

elastogram generated from O-TRuE and Untracked elastography. To compare actual 

sequential elastography image generation and the ones selected by O-TRuE, we save the 

elastography image for all permutations of the given buffer of RF data frames. We also 

save the information of the ranking of the elastography image frames and corresponding 

Crr values. The elastography frames are arranged in grid form to showcase the 

effectiveness of O-TRuE selection. Fusion data is also generated by combining the top m 

frames and evaluated for varying values of m. Typical values for m are 1, 3 or 5. The same 

RF data is used to compare different values of m to enable direct comparison of the results. 

Multi-stream elastography algorithm speed is measured by inserting timers just before the 

first thread of elastography calculation is fired called 0t  and after Nth elastography thread 

completion. All the thread handles are collected in a dynamic array of size N and passed 

onto a separate thread along with value of 0t . This thread waits for all N thread handles to 

indicate thread execution completion before measuring the time Nt ; this helps to avoid 
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delay in logging the data and prevents the elastography processing from being impacted.  

The time to calculate one elastography image frame is given by  

 0( ) /Nt t t N∆ = − .                                                               (12) 

4.4.2     In-Vivo Animal Experiments 
 

The phantom experiments provide a baseline for comparison of O-TRuE and untracked 

elastography. The animal experiments replicate various conditions that phantom 

experiments cannot demonstrate. Palpation motion is not necessarily parallel to the axial 

motion of the probe, and the organ surface is slippery due to blood or US gel. We want to 

determine whether the real-time elastography implementation, due to it’s high speed, 

compensates for the small lateral and elevational motion to give a good elastography 

image. A few regions of the pig liver were ablated in-vivo using RITA ablator and the 

ablated region was visualized using real-time untracked elastography [58]. The pig was 

euthanized and the liver was extracted for gross pathology study [58]. Data collection was 

performed by connecting a listener to the RF server. This listener saved data from the RF 

server in OpenIGTLink message files. The files were saved with filenames containing 

timestamps or sequence numbers to aid in re-playing the data at a later date. The saved RF 

data files were read by the untracked elastography server in the same order as they were 

generated. The experimental data was collected during offline TRuE evaluation as 

described in [58]. The depth of acquisition is 3 cm. A trend of NCC window size vs. speed 

of elastography image generation and image quality is conducted on the output from this 
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in-vivo data (Table 4.3). The SNR is calculated for the entire image, and CNR is calculated 

for target and background image region of (30x30 pixel square). 

4.4.3     da Vinci Surgical System Experiments 
 

Under some constraints O-TRuE is hard to implement using EM tracker due to presence 

of ferromagnetic materials in the surrounding area. One such case is da Vinci surgical robot 

where the US probe is mounted on one of the arms of the robot [82]. We demonstrate the 

feasibility of  integration of elastography with a da Vinci surgical robot where controlled 

palpation motions are performed. We want to determine what type of palpation motion can 

give a steady elastography image stream and if high speed elastography has any advantage. 

As shown in Fig. 4.6, the da Vinci surgical robot is connected with the US machine using 

OpenIGLTLinkMUSiiC where the B-mode and it’s corresponding elastography images are 

sent over the network. The console of the da Vinci surgical robot has live frames of 

elastography and B-mode overlaid within surgeon’s field-of-view; the enabled status, 

position and size of these frames can be adjusted using the master manipulator of the robot 

to provide the surgeon full control. Palpation motion is generated by the robotic arm of the 

da Vinci using the da Vinci research API to autonomously control thefrequency, amplitude, 

and direction of robot motion [82]. 
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Figure 4.6 Integration with da Vinci surgical systems: Untracked elastography has been integrated 
with da Vinci surgical systems using a laparoscopic probe controlled by an arm of the da Vinci surgical 
robot. (C) Shows the overall setup. (D) Shows the view from surgeon’s console of how B-mode (B) and 
Elastography image (A) appear when overlaid in the console display. 
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    Depth in cm 4 5 6 7 8 9 

    Depth in pixels 1024 1296 1552 1808 2064 2336 

Case  1 normal-128 36.56(±1.75) 31.10(±0.61) 31.56(±0.29) 29.10(±0.39) 25.20(±0.20) 22.39(±0.28) 
Window size 
(pixel) 10 threaded-128 78.02(±0.92) 61.14(±0.53) 48.40(±0.87) 46.19(±0.48) 39.36(±0.58) 34.33(±0.34) 
Displacement 
(mm) 2 streamed-128 36.31(±2.22) 29.01(±6.02) 30.76(±0.97) 29.41(±0.34) 25.19(±0.47) 22.24(±0.11) 

Overlap (%) 98 normal-256 26.10(±0.16) 22.72(±0.41) 19.08(±0.06) 17.80(±0.07) 15.66(±0.32) 13.89(±0.03) 

    threaded-256 42.55(±0.96) 31.48(±0.41) 26.78(±0.63) 24.23(±0.33) 21.78(±0.36) 19.60(±0.09) 

    streamed-256 26.00(±2.49) 22.60(±0.38) 19.13(±0.09) 17.77(±0.19) 15.27(±1.38) 13.75(±0.21) 

Case  2 normal-128 34.74(±1.65) 31.98(±0.32) 30.62(±0.68) 27.71(±0.21) 24.11(±0.26) 21.03(±0.12) 
Window size 
(pixel)  12 threaded-128 72.07(±1.54) 56.43(±0.89) 45.55(±0.70) 42.42(±0.57) 36.72(±0.27) 32.41(±0.22) 
Displacement 
(mm) 2 streamed-128 34.68(±3.02) 31.91(±0.50) 30.56(±1.15) 28.29(±0.79) 24.49(±0.46) 21.20(±0.22) 

Overlap (%) 98 normal-256 24.36(±0.75) 20.52(±0.41) 17.94(±0.07) 16.34(±0.33) 14.64(±0.19) 12.77(±0.03) 

    threaded-256 39.04(±1.34) 28.54(±0.80) 25.55(±0.27) 22.35(±0.44) 20.59(±0.26) 18.27(±0.07) 

    streamed-256 24.16(±2.20) 21.21(±1.57) 18.08(±0.43) 16.53(±0.33) 14.82(±0.05) 12.78(±0.07) 

Case  3 normal-128 21.53(±0.13) 21.54(±0.12) 19.73(±0.08) 19.19(±0.03) 16.98(±0.12) 14.24(±0.04) 
Window size 
(pixel) 14 threaded-128 46.43(±0.44) 35.44(±0.42) 29.53(±0.29) 27.05(±0.20) 24.46(±0.35) 21.30(±0.07) 
Displacement 
(mm) 4 streamed-128 21.76(±0.13) 21.60(±0.13) 19.84(±0.17) 19.33(±0.11) 16.63(±0.25) 14.35(±0.09) 

Overlap (%) 98 normal-256 15.74(±0.07) 13.67(±0.03) 11.56(±0.15) 10.69(±0.03) 9.67(±0.04) 8.12(±0.02) 

    threaded-256 25.89(±0.19) 19.53(±0.15) 16.62(±0.12) 14.47(±0.21) 13.37(±0.12) 11.67(±0.06) 

    streamed-256 15.83(±0.09) 13.68(±0.13) 11.50(±0.04) 10.68(±0.06) 9.68(±0.02) 8.12(±0.01) 

Case  4 normal-128 19.71(±0.09) 16.45(±0.13) 13.65(±0.05) 12.49(±0.08) 11.15(±0.05) 9.71(±0.04) 
Window size 
(pixel) 16 threaded-128 28.93(±0.24) 25.23(±0.68) 20.65(±0.08) 17.73(±0.24) 15.11(±0.09) 14.01(±0.19) 
Displacement 
(mm) 4 streamed-128 19.81(±0.10) 16.24(±0.50) 13.66(±0.19) 12.48(±0.18) 11.12(±0.13) 9.69(±0.04) 

Overlap (%) 99 normal-256 11.64(±0.02) 9.17(±0.02) 7.64(±0.02) 6.82(±0.06) 6.08(±0.02) 5.20(±0.01) 

    threaded-256 15.70(±0.07) 13.02(±0.07) 10.21(±0.11) 9.00(±0.13) 8.10(±0.02) 6.64(±0.04) 

    streamed-256 11.57(±0.31) 9.20(±0.06) 7.65(±0.05) 6.80(±0.08) 6.02(±0.11) 5.19(±0.02) 

 

Table 4.1 Test results for comparing frame rate performance of multi-stream GPU elastography 
(threaded) with single-stream (streamed) and non-stream (normal) GPU elastography. This table 
reports average frames per second (with standard deviation in brackets) of images generated by various 
versions of the elastography program. The term normal-N indicates the basic GPU implementation of 
NCC elastography, streamed-N indicates the streamed GPU implementation, and threaded-N indicates 
the multi-streamed GPU implementation, where N indicates the number of RF lines in each RF image. 
Four test cases were performed at different NCC window sizes, NCC maximum search distances 
(displacements), and NCC search step sizes (specified as percentage of window overlap). The 
computational load increases with larger window size, displacement, and percent overlap. As seen in the 
results, the highest speed obtained is 78 frames per second (fps) running the multi-streamed GPU 
implementation. 
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Figure 4.7  Timing graph to show speed comparison of multi-stream elastography (threaded) and 
non-stream elastography (normal): The graphs indicates run times and standard deviation of run time 
for window size 12, displacement 2 mm, overlap 98% (A, B) and Window size 16, displacement 4 mm, 
overlap 99% (C, D). The results are per 100 frames. The standard deviation is max 0.13 for Fig. (A), 
0.122 for Fig. (B), 0.136 for Fig. (C), 0.167 for Fig. (D), which is very small for 100 frames. This graph 
also shows that the increased window size reduces the performance of the algorithm due to higher serial 
search within the large windows. 
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4.5      Results 

4.5.1    Speed Analysis 
 

Results of a run-time performance comparison of multi-stream GPU elastography with 

single-stream and non-stream GPU elastography is provided in Table 4.1. Frame rate 

averages and standard deviations are computed for each GPU implementation under 

different test cases of varying number of RF lines, NCC window size, NCC maximum 

search distance, and NCC search step size. As seen in Table 4.1, the runtime differences 

between non-stream and single-stream are negligible. This indicates low overhead in our 

implementation of streamed data processing. For the multi-stream implementation, the 

runtime speedup is very significant and in some cases more than double the frame rate of 

the other implementations. In some cases, the multi-stream implementation with 256 RF 

lines is even faster than the normal and single-stream implementations with 128 RF lines. 

This indicates that our multi-streamed implementation provides higher utilization of the 

GPU with greater runtime efficiency, even though the multi-stream implementation is 

controlled from multiple CPU threads. As seen in the Table 4.1, the highest speed achieved 

is 78 fps while running the multi-stream implementation with 128 RF lines. This is a 

significant improvement given that the corresponding rate of elasticity image generation 

nearly matches the image acquisition speed of the RF server as presented in [85]. 

Figure 4.7 provides a graph of inverse results of a subset of Table 4.1, which shows the 

average generation time in seconds for 100 elastography frames estimated over 20 trials. 

Figure 4.7 compares non-stream and multi-stream GPU implemenations, making clear that 
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multi-stream outperforms non-stream. The bars in the figure indicate the standard deviation 

of runtime among the 20 trials. A stable runtime is important to ensure fast system response 

over all periods in time. Figure 4.7 shows that the standard deviation for both GPU 

implementations is stable, the standard deviation is max 0.13 for Fig. 4.7-A, 0.122 for Fig. 

4.7-B, 0.136 for Fig. 4.7-C, 0.167 for Fig. 4.7-D. A worst case standard deviation of 0.167 

seconds to generate 100 elastography frames (Fig. 4.7-D) indicates a stable runtime.

 

 

 

Figure 4.8 Selection map of O-TRuE images: The row above each image sequence indicates the RF 
data pair index. For e.g. the pair identifier (n1, m1) indicates comparison of radio frequency (RF) data 
frame acquired at time  1nt  with that of the frame acquired at time 1mt . The pair (image rank, Crr value) 

below the image sequence indicates the rank and Crr value generated by O-TRuE. The pair (CNR, SNR) 
indicates contrast-to-noise ratio and signal-to-noise ratio values for each image. O-TRuE selected 90% 
good elastography images in top 20 ranked images with good CNR and SNR above 0.51 and 2.37 
respectively. The Crr above 0.457 is observed to provide with good elastography images. 
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4.5.2     Validation of O-TRuE Frame Selection 
 

A validation of O-TRuE is performed by computing a Crr pseudo correlation value (eq. 

10) and a corresponding elastography image for all possible 
2
N 
 
 

 RF frame pairs in an N 

sized buffer with N equal to 10 and σ equal to 1 (see eq. 2 and 7). In a non-validation 

context, only the frames with highest Crr values would have been chosen for computing 

corresponding elastography images. Figure 4.8 presents the generated elastography images 

from this test, which are arranged by order of RF frame acquisition. Visual inspection 

Figure 4.9 Elastography image fusion: The images displayed in (a) is elastography image with single 
image (best O-TRuE) selection, (b) is elastography image for average of top 3 O-TRuE image selections, 
and  (c) is elastography image for average of top 5 O-TRuE image selections. The results indicates that 
the fusion by averaging the top 5 elastography images from O-TRuE gives good quality indicated by the 
average CNR and SNR values of 1.327 and 2.210 respectively. 
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reveals that 90% of the top 20 frames chosen by O-TRuE show clear presence of the lesion 

being imaged. As a quantitative assessment, the CNR and SNR values of each elastography 

image is calculated and listed as a pair (CNR, SNR) below each image. It is found that top 

ranking elastograms have either a very good CNR or a very good SNR value, whereas the 

O-TRuE images of lower rank (i.e. lower Crr) have poorer values of CNR and SNR. For 

example, the image with rank 26 has a very low CNR of 0.13 and SNR of 0.82. It is 

observed that the 10 highest ranking O-TRuE images (shown as red text in the figure) all 

have CNR above 0.51 and SNR above 2.37, which indicates a good elastography result. 

From these tests, we observe that choosing elastography images with Crr values above 

0.457 provides a mostly stable result. There are few anamolies, such as the image with rank 

12 having better image quality than the image of rank 9. Such anomalies could be corrected 

by considering the CNR and SNR values in the ranking system, but at the cost of reduced 

speed due to the added burden of generating additional elastogram images in order to 

compute the CNR and SNR values across an extended range of Crr ranked RF frame pairs. 

In general, these test results show that O-TRuE performs very well in selecting the best RF 

frame pairs to generate high quality elastograms. 

4.5.3     O-TRuE Image Fusion Evaluation 
 

An analysis of the effects of image fusion by averaging is presented in Fig. 4.9 for 

elastography images generated by O-TRuE. As seen in Fig. 4.9, (a) represents the O-TRuE 

output for single elastography image of highest Crr value with no averaging, (b) represents 

the O-TRuE output when averaging the top 3 images of highest Crr value, and (c) 
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represents the O-TRuE output when averaging the top 5 images. Figure 4.9 shows the CNR 

and SNR values of each image, as well as average CNR and SNR values evaluated from 

approximately 220 output images for each case, indicating that fusion by averaging of 5 

images provides the best CNR and SNR with average values of 1.327 and 2.210 

respectively. This indicates that SNR and CNR performance improves by averaging, but it 

may fail in cases where some of the top images are noisy as suggested by Fig. 4.8 where 

images ranked 2 and 3 contain noise in the top right corner of the images. This test indicates 

that averaging of 5 O-TRuE images is useful for performing image fusion. 

4.5.4     Elastography Image Stream Analysis 
 

A consistency analysis is performed for the elastography image streams of both O-TRuE 

and untracked elastography by applying NCC to a sub-region of the output elastography 

images as shown in Fig. 4.10-A, where the left-hand image shows the defined size and 

position of the NCC template window for a given elastography image and the right-hand 

image shows the defined search region for the target window in the subsequent 

elastography image. Similar to eq. (1), a correlation map is generated within the target 

search region and the maximum correlation value is selected from the map as the stream 

quality measurement 
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where l is an output elastography image sequence number with value from 1 to the number 

of RF image pairs minus one, x (lateral) and y (axial) are pixel positions within the template 

window lf  in image l, (x-u) and (y-v) are pixel positions within a target search window 

1lf +  in image (l+1). Note that lf and 1lf + are the mean pixel intensities of the lf  and 1lf +

window regions respectively. The maximum correlation value of the map corresponds to 

the position of optimal alignment between image features contained by the template and 

target windows. 

Thus, the maximum correlation value is the primary value of interest within the map and 

is sufficient to serve as an indicator of stability for the image stream. 

The region of interest (ROI ) in Fig. 4.10-A was manually selected following data 

acqusition in such a way to contain the lesion being imaged while being large enough to 

accommodate small displacements of the lesion due to hand motion. This enables running 

the NCC analysis on a continuous stream of data while ensuring that the lesion remains 

within the imaged area. A larger window size would risk inclusion of noise along the 

boundaries of the elastography image, so the window size and position is appropriately 

defined for the image target in this study. The window size and position is kept constant 

for both O-TRuE and untracked elastography image streams. 
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 Figure 4.10 Elastography image stream analysis of consecutive frames in O-TRuE and Untracked 
elastography: An analysis of consecutive frames is done to understand the quality of strain images 
generated by O-TRuE and untracked elastography. (A) Shows a template region selected in the leftmost 
image and a target region selected in the rightmost image. We apply normalized cross-correlation in these 
regions as shown in eq. 13 to find max correlation value. A max correlation graph for 100 elastography 
image pairs is shown in (B), where the red dashed line is for O-TRuE and a blue dotted line is for untracked 
elastography. O-TRuE has a more consistent high correlation value across consecutive images. As 
indicated in Table 4.2, O-TRuE (β values) performs better than untracked elastography. (C) Shows the 
dataset for frames in range [51, 60]; here O-TRuE has its lowest cross-correlation value from 53 to 54; as 
can be seen, the image quality drastically changes in this range. 
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Figure 4.11 Animal Experiment setup: An in-vivo animal experiment was performed on a pig liver; an 
ablation was induced in the liver using RITA ablator as shown in (C). Elasticity image can be seen in (A), 
corresponding B-mode image in (B). The ablation region was approximately 2 cm in diameter as 
validated by gross pathology of the liver in (D).  
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Figure 4.10-C shows a subset of the sample elastography image stream with corresponding 

quality measurements for the full stream sample in Fig. 4.10-B where consecutive 

elastography images are compared using NCC. When comparing the max correlation of 

consecutive frames obtained from O-TRuE and normal (untracked) elastography, it is 

found from the graph in Fig. 4.10-B that O-TRuE has high and relatively stable correlation, 

whereas untracked elastography has correlations of low and more rapidly varying values. 

We represent the percentage of images having a correlation value above a user-defined 

threshold ρ  for a given value of σ (eq. 2, 7, and 10) as 

#{ | } 100
#{ }

x x
x

σ σ
σ

σ

ρβ >
= ×                                           (14) 

Figure 4.12 Trend of untracked elastography for in-vivo pig data: NCC window size vs. CNR and 
SNR: The graph shows variation of CNR and SNR of individual sample points for different NCC 
window sizes with untracked elastography. The data was obtained from in-vivo experiments on 350 
samples and 199 samples were selected after ignoring invalid strain values. (A) Shows snapshot of CNR 
values and (B) shows snapshot of SNR values varying for a small subset of the 199 samples. The 
average/min/max values of the CNR and SNR are listed in Table 4.3. The CNR and SNR across different 
window sizes are closely related per sample but the global variation in CNR and SNR is high due to wide 
range of values. 
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where xσ  is an array of correlation values for an image stream acquired using the setting σ, 

0 1ρ≤ ≤ is the threshold on the correlation values, and ‘#’ is the standard set notation 

indicating the number of elements in a set. Table 4.2 shows the percentage of frames having 

max correlation values above 0.6 ( 0.6)ρ = for different O-TRuE buffer sizes and for

1 15σ≤ ≤  with step size 1 (see eq. 2, 7, and 10). Figure 4.10 shows results for 1σ = and 

buffer size 10. The last column in the table provides results for normal/untracked 

elastography. Table 4.2 indicates that O-TRuE outperforms untracked elastography at all 

buffer sizes by a factor of ~1.9X to ~2.7X. It is thus observed that O-TRuE is more stable 

than untracked elastography in terms of consistent image quality. A snapshot of an 

elastography image frame sequence for frames 51-60 is shown in Fig. 4.10-C. Due to the 

moving window buffer, O-TRuE sometimes picks up the same RF frame pair as the 

previous image in the stream sequence. It can be observed that the frame correlation for O-

TRuE drops dramatically from 52 to 53. There is a rise between frames 53 and 54 because 

the images are constant although void of features. The correlation drops again from frame  

54 to 55 but is stable for the remainder of the subset. On the other hand, for the untracked 

image stream correlation is low for the majority of frames. 

4.5.5     In-Vivo Animal Experiments 
 

Here we present results from the in-vivo animal ablation study described in subsection In-

Vivo Animal Experiments within Experiments section. As seen in Fig. 4.11-C, a 4DL14-

5/38 probe was placed just above the ablation region of the liver for collecting 2D data. 

Figure 4.11-A shows the elastography image of the ablated region. As can be seen, it has a  
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better contrast than the corresponding B-mode image in Fig. 4.11-B. Figure 4.11-D shows 

the gross pathology of the ablated region, which shows an ablation of approximately 2 cm 

in diameter. In Fig. 4.11-B the contour of the ablated region is not clearly visible since the 

thermal transfer did not drastically change the acoustic impedance of the tissue. 

Elastography images as shown in Fig. 4.11-A clearly shows a better contrast and boundary 

of the ablated region. This indicates that the multi-stream GPU-based elastography 

functions well in in-vivo experiments. 
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Table 4.2 Percentage of consecutive frame pairs above a certain threshold of max correlation for 
varying σ values as described in eq. 2, 7, 10 and eq. 14. As an example 1σ =  ( 1β ) and buffer size 10 

indicates percent of correlation values above the range 0.6 for the graph in Figure 4.10. As can be seen 
in this table, in most cases, the quality of the output system improves with the increasing buffer size. 
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CNR and SNR for the elastography images were calculated at NCC window sizes of 6, 8, 

10, 12, 14, and 16 using a fixed maximum NCC search distance of 2 mm and step-size 

overlap of 98% on 350 images. Around 200 images were chosen after ignoring de-

correlated RF image pairs due to the effect of out-of-plane motion. Elastography 

computation speed was assessed by processing the first 100 RF image pairs 20 times. The 

effect of varying window size on speed and on mean, max, and min CNR and SNR values 

is presented in Table 4.3. It can be seen that optimal mean CNR (3.56) and near-optimal 

mean SNR (0.94) is achieved for window size 10. The SNR value increases as we increase 

the window size; this happens because increasing the window size while keeping the 

percentage of overlap the same results in cross-correlation being computed on a bigger area 

to find the best match between the template and target areas in two images. CNR initially 

increases with window size but decreases moving beyond window size 10. There is a wide 

range of CNR values observed in the images, as evidenced by the high standard deviation 

and min/max values at each window size. A closer look at this variation is provided in 

Figure 4.12, which plots the CNR and SNR computed for each sample image at the first 

three window sizes. 
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    CNR SNR 
window 

size fps min/max mean min/max mean 

6 56.23(±0.71) 0.0027/9.05 2.92(±2.31) 0.3572/1.43 0.82(±0.25) 

8 52.07(±0.96) 0.0054/9.05 3.41(±2.44) 0.3782/1.43 0.90(±0.24) 

10 48.16(±0.57) 0.0075/9.18 3.57(±2.41) 0.4128/1.39 0.94(±0.21) 

12 44.87(±0.57) 0.0091/9.20 3.53(±2.37) 0.4140/1.37 0.95(±0.20) 

14 41.68(±2.47) 0.0396/8.76 3.40(±2.21) 0.3993/1.36 0.97(±0.19) 

16 39.65(±0.66) 0.0673/8.33 3.28(±2.11) 0.3455/1.28 0.97(±0.18) 

4.5.6     da Vinci Surgical Robot Palpation Analysis 
 

We apply elastography stream analysis on untracked elastography images generated by 

robot assisted palpation using the da Vinci Surgical System. The normalized cross-

correlation between matched template and target regions of sequential output elastography 

images for different palpation frequencies and commanded amplitudes is shown in Fig. 

4.13-B. Figure 4.13-A shows the NCC template region and the NCC target search region 

applied to the output elastography images. At a frame rate of 20 fps with a laparoscopic 

ultrasound (LUS) probe, it is observed that a very high β value (as defined in eq.14) of 

96.58  is obtained corresponding to the palpation frequency of 5 Hz and commanded 

amplitude of 3 mm giving the most stable elastography stream. Each β value is calculated 

for 1200 elastography image pairs. The graph in Fig. 4.13 follows a sinusoidal pattern; this 

pattern reflects the sinusoidal motion of the LUS probe attached to the arm of the da Vinci 

Table 4.3 Untracked elastography: NCC window size vs. speed and image quality: The table shows 
the change in frame rate and in CNR and SNR according to NCC window size of the multi-stream 
elastography. We varied the window size while fixing the maximum NCC search distance at 2 mm and 
overlap of 98%. The CNR and SNR were averaged for 198 images. The speed was calculated by 
calculating elastography images for the first 100 RF pairs 20 times. It is found that window size of 10 is 
optimal with high mean CNR and a good mean SNR value; although the highest mean SNR value 
corresponds to window size 14. This table indicates that as the window size increases the mean CNR and 
SNR increase along with a reduction in frame rate. Intermediate frame rates corresponding to window 
sizes 8 and 10 give satisfactory mean CNR and SNR and a high frame rate of 52.07 and 48.16 
respectively. 
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system. This sinusoidal motion is reflected in all the cases presented in Fig. 4.13. The 

results of the remaining combinations of frequency and amplitude are above 0.6. These 

results quantify the quality of the output elastography stream for robot controlled 

elastography. 

4.6     Discussion 
 

This paper presented an exhaustive study of a real-time multi-stream GPU-based 

elastography system with demonstration in three applications including tracked (O-TRuE) 

phantom experiments, untracked in-vivo experiments, and untracked phantom experiments 

with robot controlled palpation. The real challenge is to tune the implementation of the 

complex elastography algorithm to meet the needs of a practical real-time system, i.e. it 

has to be reliable, have constant response time, and provide high-quality results. In 

addition, our system is highly modular and cost effective due to increasing performance of 

main-stream GPGPUs. 

The maximum speed of 78 frames per second achieved by our elastography system 

approaches the RF data acquisition speed of current ultrasound systems. These results were 

obtained by calculating elastography over the entire image. Further performance 

improvement could be achieved by limiting the elastography computation to a sub-region 

of the image once it has been established that a target of interest, such as a tumor, is located 

in a particular area of the image. Initial improvement can be achieved by ignoring the 

border samples of RF data since tissue compression due to transducer motion is more axial 

in the central area of the image.  
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The system is highly modular and connected via the OpenIGTLinkMUSiiC API. This 

grants the ability to connect our system to various open source frontend modules, such as 

3D Slicer for advanced visualization of the image stream. Since tracking information is 

embedded in each frame, advanced visualizers could, for example, allow spatial 

visualization of the elastography data in correspondence with 3D B-mode data. This feature 

also enables the ability to store and retrieve elastography data based on tracked position 

and timestamp. The highly modular framework enables the algorithm to run on multiple 

GPU’s stationed at one or multiple computers and to combine streams of data from various 

sources. Data synchronization and ordered sequencing from multiple GPU’s can be a 

challenge, but it is achievable. 

Our current system suffers from some network latency between the different system 

components, including the ultrasound machine, GPU server, and data synchronizer. One 

potential solution is to integrate the system onto one ultrasound machine and connect 

various components through memory mapped inter-process communication. A clear 

advantage of our current implementation, however, is that the CPU of the ultrasound 

machine is not tasked beyond its primary function of RF data acquisition.  



107 
 

 

 

 

 

 

Figure 4.13 Max cross-correlation graph of consecutive images from robot assisted palpation: 
Max cross-correlation graph performed on consecutive frames for da Vinci surgical system. (A) 
Shows a template region selected in the leftmost image and a target region selection in the rightmost 
image. We apply normalized cross-correlation in these regions as shown in eq. 13 to find max 
correlation value. (B) Shows a mean correlation graph of initial 30 elastography image pairs out of 
1200 elastography image pairs. Palpation parameters is expressed as frequency (f) in Hz and 

amplitude λ in mm. High correlation indicates a good match in consecutive frames; clearly, 5f = , 
3λ =  indicates a very stable and consistent result with 96.58β = , where β  is defined in eq. 14. 

Each β value is calculated for 1200 elastography image pairs. 
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The ranking of O-TRuE images in Fig. 4.8 show that a Crr value above 0.45 provides a 

good quality elastography image. The relatively stable correlation values shown in Fig. 

4.10 for images generated by O-TRuE indicates that the O-TRuE algorithm increases the 

stability of the output image stream over untracked data. A possible optimization of the 

algorithm to further stabilize the output image stream would be to filter out frames having 

poorly correlated RF image pairs by collecting empirical evidence to establish a lower 

threshold on the Crr value required to produce a good elastography result. In addition to 

transducer motion, movement of the patient may also affect the quality of an elastography 

image. Since patient motion is untracked, O-TRuE cannot currently account for this. An 

image based tracking mechanism could be used as an adjunct to detect patient motion, such 

as by applying NCC to a small region in the center of the RF data to compute image motion 

in both lateral and axial directions. This information could then be used by O-TRuE when 

computing Crr values in order to make the algorithm more robust to patient motion. The 

O-TRuE algorithm could also be applied in the context of robot assisted palpation using 

the robot’s kinematics to track the position of the ultrasound probe. 

Image fusion of multiple elastography images helps to improve the quality of the 

elastography image, but can potentially add noise to the image. Possible approaches to 

address this could be enforcing a minimum threshold on the Crr value as discussed earlier 

and increasing the buffer size with the support of multiple GPUs if needed.  

As indicated by our assessment of robot assisted palpation in Fig. 4.13, the stability and 

quality of the output elastography image stream is affected by variation of the palpation 

frequency and displacement. An enhancement to the system would be to use the measured 
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image correlation as feedback to the robot to autonomously vary the frequency and 

amplitude of palpation to determine the optimal setting. A high speed elastography engine 

as we have presented is a necessary prerequisite to enable such an approach. 

The in-vivo animal experiment showed good contrast between the ablated region and 

background tissue. Table 4.3 and Fig. 4.12 indicate that high speed untracked elastography 

provides good quality CNR and SNR values. A more exhaustive study would help to more 

fully understand the effects of window size on speed, CNR and SNR. 
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5 Elastography image pair selection via 
elastography computation on limited 
regions of interest 

 

Summary 

We present a method and a real-time system for selecting a radio frequency (RF) data pair 

to generate high-quality freehand elastography images. We have developed an image-based 

in-plane slice detection method. GPU-based approaches have decreased the computational 

time for computing elastography, and we present a method for pre-computing elastography 

in multiple regions of interest in pre- and post-compressed RF data pairs. The elastography 

computation in the limited region of interest reduces the need to calculate the entire image 

to determine whether an elastography image is good or bad. The average correlation and 

signal-to-noise ratio (SNR) of the elastography map in the region of interest in the RF data 

pair are computed to estimate the quality of the full elastography image. Weighted 

averaging of the different regions of interest is performed to determine the quality of the 

image.  

In this chapter, I designed the algorithm, performed the experiments, analyzed the data, 

and wrote the chapter. Dr. Russell H. Taylor reviewed the work and recommended the 

statistical tests to validate the results for statistical significance. 
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5.1     Introduction  

5.1.1     Motivation 

Ultrasound elastography involves a palpation motion of the ultrasound transducer on the 

surface of the organ. Pre- and post-compression radio frequency (RF) data are collected to 

determine the correlation and generate a displacement map of speckle movement using 

techniques such as normalized cross-correlation (NCC) [1], [84], convolution [73], 

dynamic programming [56], and analytical minimization [86]. The displacement map is 

further processed to calculate the strain to differentiate the soft and hard regions [1]. 

 

The out-of-plane motion of two RF data frames is one of the major causes of de-correlation 

in the RF images, which affects several real-time freehand elastography implementations. 

Surgeon hand tremors, patient movement and organ movement can cause this motion. A 

real-time online tracked ultrasound elastography solution that was implemented in a 

previous study [2] uses external tracking information and robotic palpation to generate in-

plane RF data pairs. External tracker-based in-plane motion detectors require specialized 

hardware, such as an electromagnetic tracker, an optical tracker or a Kinect system. 

However, the in-plane motion of the probe does not guarantee the steadiness of the 

underlying tissue. Apart from this limitation, it is difficult to use an electromagnetic tracker 

in an operating room environment due to the presence of ferromagnetic materials; optical 

tracking systems suffer from full or partial occlusion due to interference from various 

objects between the camera and the optical tracker [2]. An image-based in-plane motion 

estimator is needed to overcome this problem. Due to the high-speed computation achieved 
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using GPU-based elastography methods, it is possible to divide the incoming RF image 

pairs into several regions of interest and compute elastography on those regions of interest. 

These regions of interest can then be analyzed, and only an elastography image with high 

CNR and SNR values may be selected. A previous study [87] involved computing the 

motion estimation using RF data tracking and combining that estimate with the quality of 

the continuous output elastography images. From this assessment, a performance 

descriptor is calculated to give a quantitative measure of the output elastography images. 

A similar study [88] combined the performance of consecutive B-mode images and 

consecutive strain images to obtain a similar performance descriptor. However, these 

methods employ analysis and strain generation for entire RF data images that may lead to 

slower performance. In our method, we calculate elastography on selective RF lines that 

encapsulate the region of interest. By using GPU, we take the advantage of high-speed 

elastography calculation, that allows us to select larger regions of interest. We combine the 

average correlation and SNR values for these regions of interest as a weighted average to 

obtain an assessment of future elastography images. 

5.1.2     Statements of Significance 
 

 In computer-assisted interventions, a very high temporal sensitivity is needed to obtain 

real-time feedback for surgeons. In ideal scenarios, the elastogram displayed in the real-

time elastography system should be correlated, in terms of time, to the RF data collected 

during the palpation motion. The network latency is dynamic but can be considered to be 

constant in our case. A GPU-based elastography algorithm offers rapid computation of 
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NCC elastography [2][89]. We integrated this GPU-based elastography algorithm with 

real-time online tracked ultrasound elastography in a previous study [2]. Assuming that the 

axial motion is parallel to the palpation motion, this system cannot process de-correlated 

frames due to high lateral or elevational motion of the organs. These systems must also be 

calibrated, and errors in calibration can lead to cascaded errors in the tracking data. 

Additionally, we synchronize this tracking data with the RF data based on a timestamp 

[24].  

Several commercially available ultrasound systems perform post-processing of these 

elastography images to filter out low-quality strain output images. Post-processing is a 

time-consuming step in which a processor performs computationally expensive 

elastography image calculation, followed by another layer of computationally expensive 

post-processing operations.  

Despite advancements in GPU-based techniques that accelerate performance, an even 

faster filtering mechanism before computing the GPU-based version will assist in 

improving the response time of the system. We can define the response time as the time 

from ultrasound RF data collection to the display of elastography images on the final 

screen. We must discard low-quality and highly de-correlated elastography images, or the 

gain obtained from GPU acceleration is diminished [69]. 

5.1.3     Contributions 
 

In this chapter, we propose a real-time system that computes elastography for RF lines in 

which the limited regions of interest lie, calculates the average correlation and SNR values 
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in those regions of interest, takes a weighted average of those regions according to their 

locations with respect to a central axial RF line, and filters images above a certain threshold 

of these values. The proposed method will efficiently determine the quality of an 

elastogram through the application of elastography on user-specified regions of interest 

between the images in the incoming RF data pair. This chapter analyzes and validates the 

results using in vivo animal data. 

5.2     Methods 
 

Our method estimates the quality of the elastography image by first calculating 

elastography on RF lines in a given region of interest. If we imagine the free-hand palpation 

motion of an ultrasound transducer, in most cases, the area corresponding to the good 

elastography strain images corresponds to the central RF lines, and this area receives 

predominantly axial motion with a small amount of lateral motion. The areas corresponding 

to the region of interest at the top left and right corners, and at the bottom left and right 

corners are also displaced axially but also experience lateral displacements. Thus, we give 

more weight to the quality of strain at the center of the images to estimate the quality of 

the output strain when we calculate the elastography for the entire sample inside the RF 

data. We define the cumulative weighted average correlation (cCorr) as the weighted 

average of the average correlation (aCorr) values in different regions of interest. The 

following equation gives the cCorr score: 

ii

ii

iaCorr
cCorr

λ

λ

×
=
∑
∑                                                                (1) 
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where λ i , 1i n=    are the weights for the regions of interest with the average correlation 

aCorri . Similarly, we define the cumulative weighted SNR (cSNR) value as the weighted 

average of the SNR values in different regions of interest. This factor is given by 

i ii

ii

SNR
cSNR

γ
γ
×

= ∑
∑                                                         (2) 

where γi , 1i n=   are the weights for the regions of interest with signal-to-noise-ratio 

SNR i .  

As seen in Fig. 5.1 and Algorithm 5.1, the system receives RF image pairs from the 

ultrasound machine and performs elastography on RF lines that encapsulate the region of 

interest. The elastography is computed on the GPU and uses less overhead memory by 

transferring only the RF data for regions of interest rather than the total data for the RF. 

Then, the program extracts the average correlation and SNR values from the calculated 

regions of interest. Figure 5.2 illustrates how this 1:1 correspondence may appear. Using 

Eqs. 1 and 2, we calculate the cCorr and cSNR. If the values of cCorr and cSNR are above 

a certain threshold, then the elastography is calculated for the entire region. This 

verification step is called just before the multistream GPU thread specified in Chapter 4 is 

called by the program. The generated elastography image is then passed on to the network 

or saved in the files. 
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Figure 5.1 System diagram of an image-based elastography quality detection system: The figure 
shows the flow of our method, in which the RF server sends the RF data to the selector, where the 
elastography is computed for a selected region of interest. If the cumulative weighted average correlation 
and the cumulative weighted SNR values pass a certain threshold, then the elastography is computed for 
the full images for the RF image pairs. 
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Algorithm 5.1: Elastography image selection based on elastography on 
the RF lines containing the regions of interest 
1.  Receive RF data pair. 
2.  Select ROIs in both RF data images. 
3.  Compute elastography on the corresponding RF lines such that the 
ROIs are enclosed within those RF lines. 
4.  Calculate the cCorr on the average correlation from the elastography 
on the ROIs, as specified in Eq. 1. 
5.  Calculate the cSNR from the elastography on the ROIs, as specified 
in Eq. 2. 
6.  If cCorr > constant_1 and cSNR > constant_2,  
         calculate elastography for the received RF data pair 
     Otherwise, 
         discard the current RF data pair and go to 1 

 

 

 

Figure 5.2 Elastography on selective regions of interest: The RF images are divided into regions of 
interest, and elastography is computed for the entire RF lines such that the selected regions of interest are 
calculated. We then calculate the average correlation and SNR values in the regions of interest. Greater 
weight is given to values in the regions of interest that are near the central areas of the image. 
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5.3     Results and Discussion 
5.3.1     Experiments 

For the purpose of this experiment, we have reused the animal data as specified in 

Chapter 4.  

The experiments were performed in-vivo on a live animal. Fiducials were artificially 

implanted inside the liver of the pig, and ablation was performed using RITA ablator. 

Palpation was performed, and data were recorded using OpenIGTLinkMusiic protocol to 

be saved on the disk. These data are now reusable, and more information can be found in 

Appendix B. A single ablation burn was used to target one fiducial. Approximately 354 

RF-images were used to evaluate the results. We performed elastography on consecutive 

RF-image pairs. The filtering algorithm filtered most of these consecutive RF-image pairs 

and selected N RF pairs for possible good quality elastography images. The N values are 

reported for each experiment. The threshold values of constant_1 that were compared with 

the cCorr (cumulative weighted average correlation) and the values of constant_2 

(cumulative weighted average SNR values), to be compared with cSNR are also specified 

in the results section. 

Filtered vs. unfiltered elastography 

In this study, we determine how our algorithm (filtered elastography) performs in 

comparison to the unfiltered technique (freehand elastography without any pre-

processing). For the purpose of this study, we calculate the CNR and SNR of the 

elastography output image for both filtered and unfiltered elastography. We plot the 

histogram of the CNR and SNR on separate graphs to determine how both filtered and 
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unfiltered elastography perform. In this experiment, N is 106. The top N EI images are 

selected from unfiltered elastography for comparison with this result.  

Performance for varying widths and heights of the region of interest 

We need to determine what happens when we change the width and height of the regions 

of interest for the same weight values in Eqs. 1 and 2. This study will help determine 

whether a substantial difference occurs when the width and height are changed. We again 

plot CNR and SNR for different widths and heights. In this experiment, N is 106. The top 

N-consecutive EI images are selected from each group for the comparison. 

Performance for varying weights 

To evaluate the performance with different weights, we changed the weights in the center 

of the region of interest because the ultrasound probe pressure is greater towards the central 

axial lines than on the sides. In this experiment, N is 80. The top N consecutive EI images 

are selected from each group for the comparison. 

Visual classification of filtered and unfiltered data 

In this experiment, we laid out the output images obtained via the freehand and filtered 

elastography and visually inspected the quality of the output image. We labeled good 

quality images with 1 (× symbol) and bad quality images with 0 (ο symbol). We then listed 

the CNR and SNR values of these images. The raw data can be found in Figure 10.1-10.6. 

The total number of samples is N=106. The visual classification user is Nishikant 

Deshmukh, and the system is subject to different results for different users. 
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5.3.2     Results 

5.3.2.1 Filtered vs. unfiltered elastography 

 

We performed this experiment to determine how filtered elastography performs in 

comparison with unfiltered elastography. We calculated the CNR of the lesion in 

comparison to its background for both filtered and unfiltered elastography image 

sequences. Then, we created a histogram comparison of filtered vs. unfiltered elastography 

to determine where the distribution lies for the data. Lower values of CNR indicate poor-

quality data. We define A as a filtered elastography image and B as an unfiltered 

Figure 5.3 Comparison of filtered vs. unfiltered elastography based on CNR histograms: For a low 
average CNR value of 0.1804, nearly ~43% of the unfiltered elastography images fall at this average 
CNR value and only ~22% of the filtered elastography images correspond to this average value. For 
values above the good quality CNR value of 2.6982, a total of ~34% of the filtered elastography image 
fall in that region, and a total of only 7.54% of the freehand elastography data correspond to that region. 
This finding indicates that the filtered elastography algorithm performs better than unfiltered 
elastography. 
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elastography image and used the convention (A, B) as the tuple for the frequency count for 

the histogram shown in Fig. 5.3. The centers of each histogram bin are located at {0.1804, 

0.5401, 0.8998, 1.2595, 1.6192, 1.9789, 2.3385, 2.6982, 3.0579, 3.4176, 3.7773, 4.1370, 

4.4966, 4.8563, 5.2160}, with CNR values (as a percentage of the total samples) with the 

corresponding bin tuple, as follows: {(22.64, 43.39), (10.38, 14.15), (4.71, 7.55), (1.89, 

1.89), (9.43, 10.37), (6.6, 8.49), (5.66, 6.6), (6.6, 1.89), (8.49, 3.77), (8.49, 0), (8.49, 1.88), 

(0, 0), (4.72, 0)}. This representation means that the bin with the center value at 0.1804 has 

a percentage of the total samples for A and B that is represented by the tuple (22.64, 43.39). 

The total number of samples is 106.  

 

 

Group Filtered Unfiltered 
Mean 1.9315 0.9795 
Variance 2.1012 0.9581 
SEM 0.1408 0.0951 
p-value 
t-Test <0.0001 
p-value 
ANOVA <0.0001 

 

As shown in Fig. 5.3, in comparison to unfiltered elastography, the filtered elastography 

data show a smaller percentage of samples with CNR values in the range between 0 and 1. 

With an average CNR value of 0.1804, the percentage of samples for the unfiltered 

elastography algorithm is high at 43.39% and the percentage of samples for the filtered 

data is 22.64%. Those figures represent a nearly 50% reduction in the total number of 

images for filtered elastography data in that range. This trend reverses for good average 

Table 5.1 Filtered vs. unfiltered elastography CNR data: Statistical significance results. These 
data correspond to the data displayed in Fig. 5.3, with sample size N = 106. The data were tested for 
using both a t-test and ANOVA to determine the statistical significance of the experiment. With a p-
value < 0.0001, the experiment is extremely statistically significant. These data indicate that filtered 
elastography performs better than unfiltered (freehand) elastography. 
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CNR values above 2.6, indicating that filtered elastography generates a better-quality 

output stream. Above a CNR value of 2.6982, the total percentage of the filtered 

elastography data is 36.79%, and the total percentage of samples for the unfiltered data is 

7.55%.  

Table 5.1 presents the data related to the statistical significance test. The data are also 

presented as a histogram chart of percentage values in Fig. 5.3, and the raw data can be 

found in Tables 10.1-10.2. The sample size is N=106. The mean of the CNR values of the 

filtered elastography algorithm is 1.9315 (±1.44952). For unfiltered freehand elastography, 

this value is 0.9795 (±0.9788). This finding indicates that filtered elastography performs 

better than unfiltered elastography with respect to the mean values. Figure 5.3 shows the 

histogram map that shows the underlying distribution of the values, indicating that filtered 

elastography performs better than freehand elastography. Table 5.1 also presents the p-

value<0.0001 for the t-test and ANOVA, indicating that this experiment was extremely 

statistically significant. This statistical significance result supports our assertion that 

filtered elastography performs better than freehand elastography. 

We define C as filtered elastography images and D as unfiltered elastography images and 

use the Convention (C, D) as the tuple for the percentage of total samples for the histogram 

shown in Fig. 5.4. The {(1.89, 36.79), (2.83, 14.15), (17.92, 15.09), (65.09, 33.02), (10.38, 

0.94)} tuple values (as the percentage of total samples) have {0.4891, 0.6898, 0.8905, 

1.0912, 1.2920} corresponding centers on the x-axis for SNR values. The total number of 

samples is 106; the raw data are located in Tables 10.3-10.4.  



123 
 

As shown in Fig. 5.4, the unfiltered elastography shows higher SNR values in the range of 

0 to 1. Thus, for low SNR values, more data are available for unfiltered elastography. The 

total percentage values are 66.03% for the unfiltered elastography data and 22.64% for the 

filtered elastography data. The trend reverses in the range 1 to 1.5, where the filtered 

elastography SNR values occupy 75.47% of the total sample space, and unfiltered 

elastography occupies 33.96% of the total sample space. This percentile result indicates 

that unfiltered elastography performs better than freehand elastography. 

 

 

 

Table 5.2 indicates the mean SNR values for filtered elastography as 1.0822 (±0.2805) and 

unfiltered elastography as 0.7808 (±0.2773). This result again reflects better performance 

 
Figure 5.4 Filtered vs. unfiltered elastography SNR histogram comparison: For SNR values in the 
range 0 to 1, a total of ~66% of the unfiltered elastography images and 22.64% of the filtered elastography 
fall under these value range. Lower SNR values indicate that more low-quality images are acquired with 
unfiltered elastography. The values change for the range 1 to 1.5, with a total of 75.47% of the filtered 
elastography images falling under the threshold, and the remaining 33.96% of the freehand elastography 
images falling under the threshold. This finding indicates that filtered elastography performs better than 
unfiltered elastography. 
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for filtered elastography in comparison to unfiltered elastography. The p-value<0.0001 for 

the two groups for both the t-test and ANOVA indicate extremely statistically significant 

results. This statistical significance result supports the histogram analysis, as shown in Fig. 

5.4. 

 

 

 

Group Filtered Unfiltered 
Mean 1.0822 0.7808 
Variance 0.0787 0.0769 
SEM 0.0272 0.0269 
p-value 
t-Test <0.0001 
p-value 
ANOVA <0.0001 

 

5.3.2.2 Performance for varying widths and heights of the regions of 

interest 

We compared CNR histograms with varying widths and heights (in pixels) of the 

comparison window to determine if varying the width and height has any effect on the 

CNR values. We define the tuples in the case of Fig. 5.5 as (E = {w=10, h=10}, F = {w=15, 

h=15}, G = {w=20, h=15}, H = {w=25, h=15}). Here, w is the width and h is the height of 

the regions of interest. This w and h are consistent across all regions of interest. 

The tuple values (detailed as the percentage of total samples) shown in Fig. 5.5 are {(33.02, 

27.35, 21.69, 22.64), (8.49, 6.6, 7.55, 6.6), (8.49, 8.49, 9.43, 7.55), (3.77, 3.77, 5.66, 5.66), 

Table 5.2 Filtered vs. unfiltered elastography SNR data: Statistical significance results. The data 
presented in this table correspond to the data displayed in Fig. 5.4. The sample size is N = 106. The 
purpose of this t-test and ANOVA is to determine the statistical significance of this experiment to 
indicate whether the results are repeatable and did not happen by a chance. With p-values for both the t-
test and ANOVA < 0.0001, the experiment is extremely statistically significant. This finding indicates 
better performance for the filtered elastography algorithm than the unfiltered (freehand) elastography 
version. 
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(9.43, 9.43, 11.32, 11.32), (12.26, 12.26, 10.38, 12.26), (6.6, 9.43, 10.38, 8.49), (6.6, 6.6, 

7.55, 7.55), (6.6, 6.6, 4.72, 4.72), (0.94, 0, 0.94, 0.94), (1.89, 4.72, 5.66, 6.6), (0.94, 0.94, 

0.94, 1.89), (0.94, 1.89, 0.94, 0.94), (0, 0.94, 0.94, 0.94), and (0, 0.94, 1.89, 1.89)} located 

at {0.1756,  0.5237,  0.8718,  1.2199, 1.5680, 1.9161, 2.2642, 2.6123, 2.9604, 3.3085, 

3.6566, 4.0047, 4.3528, 4.7009, 5.0490} center locations on the x-axis of the CNR values. 

For the values between region 0 and 1.22, E has a total of 53.77% of its samples, F has 

46.22% of its samples, G has 44.34% of its samples, and H has 42.45% of its samples. For 

CNR values between 1.5 and 3, E has a total of 41.5% of its samples, F has a total of 

44.34% of its samples, G has a total of 44.34% of its samples, and H has a total of 44.34% 

of its samples. For values, above 3, E has a total of 4.71% of its samples, F has a total of 

9.43% of its samples, G has a total of 11.32% of its samples, and H has a total 13.2% of its 

samples. As can be seen from this data, the w and h corresponding to G and H have a slight 

advantage when compared to the values corresponding to E and F. To obtain additional 

insight into this trend, we look at the SNR values in Fig. 5.6. The threshold for cCorr is 

0.15, and the threshold for cSNR is 0.01. 
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In Table 5.3, we calculate the mean and variance of the data that correspond to Figure 5.5, 

for which the sample size N=106 and the raw data can be found in Tables 10.5-10.8.  

The groups in Table 5.3 indicate different width (w) and height (h) values for the ROI used 

in the algorithm for different CNR values. The mean and standard deviation of the data are 

1.2887 (±1.1164) for group 1 (w=10, h=10), 1.5387 (±1.2537) for group 2 (w=15, h=15), 

1.6194 (±1.2517) for group 3 (w=20, h=15), and 1.666 (±1.2848) for group 4 (w=25, 

h=15). These data corresponds to the data shown in Table 5.5, and the raw data can be 

found in Table 10.5-10.8. The sample size is N=106. As can be seen from the mean values, 

groups 3 and 4 fare better than the other groups with group 4 slightly better than rest of the 

Figure 5.5 CNR histogram across different width and height values: We represent width (in pixel) 
with w and height (in pixel) with h for the regions of interest. For the values between region 0 and 1.22, 
a total of 53.77% of images with w = 10 and h = 10 fall in this region, which is higher than the percentage 
observed for other widths and heights. For the CNR values between 1.5 and 3, the total percentage of 
samples for w = 10 and h = 10 is 41.51%. This value is slightly less than observed for other widths and 
heights. For CNR values above 3, w = 25 and h = 15 and w = 20 and h = 15 fare better, with 11.32% and 
13.2% of their images, respectively. From the CNR data, we can conclude that w = 25 and h = 15 has a 
slight advantage than other values. 
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groups. Therefore, we can conclude that group 3 and 4 perform better than the rest of the 

groups. We compare group 1 (with the lowest mean) with the other groups to attempt to 

establish a p-value by doing a t-test. As shown, t-tests for the comparisons of groups 1 and 

3 and groups 1 and 4 are statistically significant. This result indicates that groups 3 and 4 

perform better that the other groups. The ANOVA test with a p-value of 0.11483 test fails 

for all of the groups. This failure of some p-value tests is due to the low sample values for 

four columned data. 

For Fig. 5.6, the tuples are defined as (I= {w=10, h=10}, J= {w=15, h=15}, K= {w=20, 

h=15}, and L= {w=25, h=15}). Here, w and h are again the selected widths and heights of 

the regions of interest. The tuples have corresponding tuple values (percentage of sample 

space) of {(33.96, 24.53, 22.64, 22.64), (63.2, 73.58, 75.47, 76.41), (2.83, 0, 0.94, 0.94)} 

located at the center locations of {0.5828, 1.1149, 1.6469}. As can be seen from the data 

presented in Fig. 5.6, the SNR data corresponding to the width and height of I have the 

highest total, with 33.96% of the samples in the range 0 to 1, while J has a total of 24.53%, 

and K and L each have totals of 22.64% of the samples. For the range 1 to 2, I has a total 

of 66.03% of the samples, J has a total of 73.58% of samples, K has a total of 76.42% of 

samples, and L has a total of 77.36% of samples.  

This finding shows that the width and height values that correspond to K and L give better 

results for SNR. In contrast, for the same width, we have seen that CNR has a slight 

advantage. Thus, it is easy to conclude that for (w=20, h=15) and (w=25, h=15) the 

algorithm gives a better result. 
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Group 1 2 3 4 
ROI 
dimensions w=10, h=10 w=15, h=15 w=20, h=15 w=25, h=15 
Mean 1.2887 1.5387 1.6194 1.6666 
Variance 1.2462 1.5718 1.5666 1.6506 
SEM 0.1084 0.1218 0.1216 0.1248 

p-value 
t-test 
Groups 1 and 3 0.04975 <0.05 

p-value 
t-test 
Groups 1 and 2 0.1166 >0.05 

p-value 
t-test 
Groups 1 and 4 0.0307 <0.05 
p-value 
ANOVA 0.11483 >0.05 

 

Table 5.4 shows the data that correspond to Fig. 5.6, and the corresponding raw data can 

be found in Tables 10.9-10.12 for the SNR data values. The sample size is N=106. The 

purpose of this measurement is to establish t-test and ANOVA test value comparisons to 

determine the statistical significance of the experiment. The mean and standard deviation 

are 0.9013 (±0.2782) for group 1 (w=10, h=10), 1.0335 (±0.8044) for group 2 (w=15, 

h=15), 0.9749 (±0.2697) for group 3 (w=20, h=15), and 0.9601 (±0.2177) for group 4 

(w=25, h=15). As can be seen from the table, the mean value for group 2 is highest, while 

the closest values are those obtained for group 3 and group 4. However, the variance for 

Table 5.3 CNR data for different widths and heights of the region of interest: Statistical significance 
results. The data in this table correspond to the results presented in the Fig. 5.5. The sample size is 
N=106. We performed pairwise t-test comparison between Group 1 (minimum mean value) and the other 
groups 2, 3, and 4. We found statistical significance for the comparison between Groups 1 and 3 and 
Groups 1 and 4, with the values of Groups 3 and 4 higher than the mean values. This finding supports 
our claim that the width and height values that correspond to Group 3 and 4 give better results for the 
CNR values. The ANOVA result of p-value 0.11483 indicates that the overall experiment is not 
statistically significant. This outcome can be attributed to the low sample size for a four-group scenario. 
We expect that the results will improve with more data validation. 
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group 2 is higher than observed for the other groups. As indicated in the histogram analysis 

presented in Fig. 5.6, the ROI w=20, h=15 is preferable. We performed t-tests by making 

pairwise comparisons between groups 1 and 2, groups 1 and 3, and groups 1 and 4 because 

group 1 has the lowest mean value. As shown, the groups 1 and 3 passes the statistical 

significance test. Therefore, we can say that group 3 with ROI w=20, h=15 has the 

preferred ROI dimensions. The t-test failed for the rest of the groups, with an ANOVA p-

value of 0.219. However, this outcome can be improved by obtaining more result sets. 

 

 

 

Group 1 2 3 4 
ROI dimensions w=10, h=10 w=15, h=15 w=20, h=15 w=25, h=15 
Mean 0.9013 1.0335 0.9749 0.9601 
Variance 0.0774 0.6470 0.0727 0.0474 
SEM 0.0270 0.0781 0.0262 0.0211 

p-value 
t-test 
Groups 1 and 3 0.0396 <0.05 

p-value 
t-test 
Groups 1 and 2 0.1274 >0.05 

p-value 
t-test 
Groups 1 and 4 0.085 >0.05 
p-value 
ANOVA 0.219 >0.05 

 

Table 5.4 SNR data for different widths and heights of the region of interest: Statistical significance 
results. The table results presented in the table correspond to the result presented in Fig. 5.6. The t-test 
is statistically significant only for groups 1 and 3. The p-value for groups 1 and 4 is also close to 0.05, 
which is the conventional threshold used to establish statistical significance. Like the histogram, this test 
also indicates that w=20, h=15 fares better that the other groups and yields performance results close to 
w=25, h=15. The ANOVA test fails to establish statistical significance. This failure can be corrected by 
including more samples in the experiments. 
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5.3.2.3     Performance for varying weights 

In Fig. 5.7, we define the tuples as {(M = {1 1 1 2 4 2 1 1 1}, N = {1 1 1 1 8 1 1 1 1}, O = 

{1 1 1 1 12 1 1 1 1})}, where the values for M, N, and O are the weights for the different 

regions of interest, as shown in Fig. 5.2. For shorter representation in Fig. 5.7, we represent 

M as {2, 4, 2}, N as {1, 8, 1}, and O as {1, 12, 1}. The values of the tuples (percentage of 

t) are {(17.5, 15, 23.75), (7.5, 5, 3.75), (8.75, 8.75, 8.75), (6.25, 3.75, 5), (11.25, 6.25, 6.25), 

(8.75, 15, 12.5), (8.75, 13.75, 11.25), (7.5, 10, 6.25), (7.5, 6.25, 7.5), (6.25, 6.25, 6.25), 

(2.5, 3.75, 1.25), (1.25, 1.25, 1.25), (2.5, 2.5, 2.5), (1.25, 1.25, 1.25), (2.5, 1.25, 2.5)}, 

Figure 5.6 SNR histogram across different width and height values: We again represent width (in 
pixels) with w and height (in pixels) with h for the regions of interest. For SNR values between 0 and 1, 
w = 10 and h = 10 has a total frequency of 33.96% of the elastography images falling under the threshold.  
This is higher than the values obtained for the other w and h values. For CNR values between 1 and 2, 
the total frequency values for w = 25 h = 15 and w = 20 h = 15 are 76.41% and 77.35% respectively. 
This finding shows that w = 25 h = 15 and w = 20 h = 15 yield better results than the other width and 
height values. Thus, greater width and height values generate better quality data. 
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which correspond to the central locations {0.1661,  0.4669,  0.7678,  1.0686,   1.3694,  

1.6702, 1.9710, 2.2718,  2.5726, 2.8734, 3.1742, 3.4750, 3.7759, 4.0767, 4.3775} on the 

x-axis of the CNR values. The CNR for window (1, 8, 1) performs better in the range (0, 

0.5). The CNR performs better for the range 1.5 to 2.5, indicating that this window size is 

best. These results are inconclusive and can be indicated as strong in the SNR results. For 

low SNR values (0, 1) and high SNR values (1, 1.5), the window (1, 8, 1) is better in 

comparison to the other window ranges. A total of 80 samples are included in the dataset. 

The region of interest’s width is 25 pixels and the height is 15 pixels. The threshold for 

cCorr is 0.15, and the threshold for cSNR is 0.01. 

In Table 5.5, group 1 indicates the CNR value result for central weights of {2 4 2}, group 

2 indicates the result for central weights of {1, 8, 1}, and group 3 indicates the result for 

weights of {1, 12, 1}. This result corresponds to Fig. 5.7, and the raw data are presented in 

Tables 10.13-10.14. The mean and standard deviation is 1.5967 (±1.1580) for group 1,  

1.6985 (±1.0738) for group 2, and 1.5495 (±1.1774) for group 3. This result supports the 

claim made in the histogram study that the weights that correspond to group 2 (i.e. {1 1 1 

1 8 1 1 1 1}) perform better due to high mean and standard deviation values. The results 

obtained for the t-test and ANOVA (p-value>0.05) fails to establish statistical significance. 

This failure in some p-test results is due to the small sample number of N=80 for three-

column data. From this t-test result, the group pairs 2,3 (p-value 0.4142) and 1,2 (p-value 

0.5126) have lower p-values than the group pair 1,3 (0.7979) in the t-test. The common 

group is group 2, and a low p-value indicates statistically better p-values. This comparison 

is a weak analogy but the results from the histogram in Fig. 5.7 and the high mean value 

for the CNR data show that group 2 {1 8 1} is a preferred weight for these computations. 
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Group 1 2 3 
Weights 2 4 2 1 8 1 1 12 1 
Mean 1.5967 1.6985 1.5495 
Variance 1.3410 1.1530 1.3863 
SEM 0.1295 0.1201 0.1316 

p-value 
t-test 
Groups 2 and 3 0.4142 >0.05 

p-value 
t-test 
Groups 1 and 3 0.7979 >0.05 

p-value 
t-test 
Groups 1 and 2 0.5126 >0.05 
p-value 
ANOVA 0.699 >0.05 

 

For the range of 0 to 1.5, the weights corresponding to M have a total frequency of 41, the 

weights corresponding to N have a total of 38.75% of samples, and the weights 

corresponding to O have a total of 47.5% of samples. For the range 1.6 to 3, M has a total 

of 38.75% of samples, N has a total of 51.25% of samples, and O has a total of 31.25% of 

samples. For CNR values above 3.1, M has a total of 10% of samples, N has a total of 10% 

of samples, and O has a total of 8.75% of samples. These data indicate that the weights 

corresponding to N perform better, as indicated by a low-frequency count for CNR values 

in the range of 0 to 1.5 and a high-frequency count for CNR values in the range of 1.6 to 

3. 

Table 5.5 CNR data with different weights for the region of interest: Statistical significance results. 
The results presented in this table correspond to the data presented in Fig. 5.7. The t-test and ANOVA 
(p-value 0.699) fail to establish any statistical significance for the overall results. However, the low p-
values for group-pairs 2,3 and 1,2 indicate that the common group 2 performs better than the rest of the 
groups in terms of the SNR values. The results can be further improved by increasing the sample size, 
which is N=80 for this experiment. 
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Group 1 2 3 
Weights 2 4 2 1 8 1 1 12 1 
Mean 1.0044 1.0016 0.9574 
Variance 0.1313 0.0344 0.0443 
SEM 0.0405 0.0207 0.0235 

p-value 
t-test 
Groups 2 & 3 0.1429 >0.05 

p-value 
t-test 
Groups 1 & 3 0.3127 >0.05 

p-value 
t-test 
Groups 1 & 2 0.9463 >0.05 
p-value 
ANOVA 0.4531 >0.05 

 

The tuples in Fig. 5.8 that correspond to {P = {1 1 1 2 4 2 1 1 1}, Q = {1 1 1 1 8 1 1 1 1}, 

and R = {1 1 1 1 12 1 1 1 1}} are represented by {P = {2, 4, 2}, Q = {1, 8, 1}, and R = {1, 

12, 1}}. The values of the tuples (percentage of total samples) are (11.25, 6.25, 12.5), (6.25, 

8.75, 8.75), (33.75, 21.25, 28.75), (45, 61.25, 47.5), and (1.25, 2.5, 2.5), with the 

corresponding centers at 0.5229, 0.7256, 0.9283, 1.1310, and 1.3337. The experiment was 

performed on 80 samples.  

For the SNR values from 0 to 0.95, the weights corresponding to P have a total of 51.25% 

of samples. For Q, this value is 36.25%, and for R, this value is 50%. For the SNR values, 

above 1, the weights corresponding to P have 46.25% of samples, the weights 

corresponding to Q have total of 63.75% of samples, and the weights corresponding to R 

Table 5.6 SNR data with different weights for the region of interest: Statistical significance 
results. This table indicates the statistical significance test for the results presented in Fig. 5.8. The t-
test and ANOVA (p-value 0.4531) again fail to establish any statistical significance for the overall 
results. These results may improve with more samples, than the N=80 for this experiment. 
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have 50% of samples. This finding indicates that the weights corresponding to Q (i.e. {1 1 

1 1 8 1 1 1 1}) yield a better result. 

The data in Table 5.6 correspond to the SNR data in Fig. 5.8. The raw data are located in 

Table 10.15-10.16 with sample size N=80. The mean and standard deviation are 1.0044 

(±0.3624) for group 1, 1.0016 (±0.1855) for group 2, and 0.9574 (±0.2104) for group 3. 

This result indicates that the performance of group 1 is better. This finding contradicts our 

earlier assertion in the histogram results. However, the difference in the mean values is not 

highly significant due to the low sampling rate. This small difference in mean values also 

affects the t-test and the ANOVA test because the difference in the mean values is not very 

large. The remedy is to obtain more data samples to better understand the result. Although 

the histogram map of Fig. 5.8 overcomes the shortcoming in the mean value-based results, 

it does not show the distribution of the underlying data. In our case, a histogram is more 

suitable because we are more interested in the skewness and symmetry of the histogram. 

The concentration of certain groups on the left of the histogram indicates their poor 

performance. As can be seen from Fig. 5.8, group 2 {2 4 2} has a high-frequency count at 

the center indicating good SNR values for this particular group. 

5.3.2.4     Visual classification of filtered and unfiltered data 

In Fig. 5.10, we outlay the elastography images according to the CNR (x-axis) and SNR 

(y-axis) values. Each visually good quality elastogram is marked with 1 (× symbol), and 

each bad quality elastogram is marked with 0 (ο symbol). These data help to confirm our 

statistical and histogram data. We found that for filtered elastography, a total of 63.2% of 

samples are of good quality, whereas for unfiltered elastography, 32% of the data is good 
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quality. Thus, filtered elastography performs 2 times better than freehand elastography. 

Horizontal and vertical lines are plotted for the values x = 1 and y = 1. Most of the images 

with CNR and SNR values above 1 are found to be of good quality, whereas bad quality 

images fall below or on the left side of these x = 1 and y = 1 lines. There are few outliers 

but they fall around the horizontal (y = 1) and vertical (x = 1) lines. Regarding, the min and 

max values, the maximum CNR value is 5.4, and the minimum value is 0.0006. In contrast, 

the maximum SNR value is 3.4 and minimum is 0.5.  Figure 5.10 and Fig. 5.11 indicate 

that the filtered elastography algorithm works better than the freehand algorithm. 

Similarly, for Fig. 5.11, the plot shows CNR on the x-axis and SNR on the y-axis, with 

good and bad quality images marked with 1 (× symbol) and 0 (ο symbol), respectively. For 

freehand elastography, a total of 32% of the samples are of good quality, and the rest of 

the samples are of lower quality. Most of the images with CNR and SNR values above 1 

are of good quality. Similar to Fig. 5.10, there are few outliers, but the outliers are close to 

the horizontal and vertical lines at value 1. The maximum CNR value is 6.29, and the 

minimum CNR value is 0.0006. In contrast, the maximum SNR value is 1.35, and the 

minimum SNR value is 0.37.  The sample size is N=106. The overall results indicate that 

filtered elastography performs better than freehand elastography. These experiments prove 

our already established notion that the filtered elastography algorithm performs better than 

unfiltered elastography. The raw data can be found in the Appendix section in Figure 10.1-

10.6. The total number of samples is N=106. 
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5.3.3     Discussion 

 

 

 

 

In this chapter, we present a method for performing elastography on RF lines that cover 

the selected regions of interest and lay out experiments to prove our hypothesis. 

Elastography is performed for all of the RF instead of dividing the RF lines into regions of 

interest and then performing elastography; the latter approach would be computationally 

expensive because data transfer to the GPU is expensive. In addition, the elastography 

Figure 5.7 CNR histogram comparison for different weights: For CNR values in the range of 0 to 1.5, 
a total of 51.25% of the elastography images corresponds to the weights {2 4 2}, which is higher than the 
values obtained for the other weights. For the range 1.6 to 3, the weights {1 8 1} have a total of 51.25% 
of the dataset fall within the range, which is higher than the values obtained for the other weights. For 
CNR values above 3.1, no significant difference in performance was observed. However, overall, the 
weights corresponding to {1 8 1} perform better than the other weights. 
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computation leaves out a few samples at the top and bottom of the resulting elastography 

image due to the overlapping nature of the search.  

 

 

 

 

This method can be extended to collect a buffer and perform permutations for the entire 

pool to obtain better results. After this implementation, it may be possible to compare the 

new algorithm directly with the O-TRuE algorithm presented in Chapter 4, as that method 

uses a buffer for RF data. Similarly, this buffering technique can be used to calculate 3D 

elastography such that the RF image data corresponding to each location of the 2D probe 

Figure 5.8 SNR histogram comparison for different weights: For the SNR range up to 0.95, the 
weights {2,4,2} and {1,12,1} have a total of ~50% of their elastography images in this range. The weight 
{1,8,1} has a lower total percentage (36.25%) of its values in this range. For SNR values, above 1, the 
weights {2,4,2} and {1,12,1} have totals of 46.25% and 50% of the images, respectively. In contrast, the 
weight {1,8,1} has a total of 63.75% of its dataset in this range. This result indicates that the weight 
{1,8,1} performs better than the other weights. 
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in the 4D probe results in the selection of the best elastography image generating an RF 

pair. 

We tested this algorithm with freehand elastography to determine how much data lies in 

the upper and lower ranges of the CNR and SNR values. A higher range of these values 

indicates that the specific parameters of our algorithm result in better quality images. In 

contrast, a higher frequency of occurrence in the lower range of the CNR and SNR values 

indicates that the algorithm works less efficiently and yields more poor-quality images. 

Based on the experiments presented in Section 5.3.2.1 for unfiltered and filtered 

elastography, for both CNR values and SNR values, filtered elastography performs better 

in both the high and low ranges of the spectrum of CNR and SNR values. These results are 

also backed with mean and standard deviation results, which were found to be extremely 

statistically significant for both the SNR and CNR data.  

To better understand the impact of an increase in the width and height of the regions of 

interest, we performed the experiments in section 5.3.2.2 and found that greater width and 

height values perform better. This outcome is obvious given that CNR and SNR analysis 

with the entire elastography image as the region of interest will yield better results. One 

interesting observation from these results is that as the width approached 20 and 25, the 

results stabilized. This finding indicates that we do not need to increase the width and 

height of the region of interest beyond a certain limit, and low values of width 20 pixels 

and height 15 pixels are a good indicator of the values of the resulting elastography images. 

This result was reflected in the mean and standard deviation analysis. We also performed 

a statistical significance test. We again found that the results are better for a width of 20 
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pixels and height of 15 pixels. Similarly, statistical significance was observed 

predominantly for results containing the group with a width of 15 pixels and a height of 20 

pixels. This statistical significance result was observed for both CNR and SNR values. 

 

 

To better understand the weights that will yield a good result, we performed certain 

experiments in section 5.3.2.3 for the weights {1 1 1 2 4 2 1 1 1}, {1 1 1 1 8 1 1 1 1}, {1 1 

1 1 12 1 1 1 1}), with each index corresponding to the index shown in Fig. 5.2. We found 

that the results for the weight {1 1 1 1 8 1 1 1 1} were better than the results obtained for 

the other weights that were studied. The statistical significance and mean and standard 

Figure 5.9 ROI image pair selection output EI images: Figure shows output EI images with varying CNR 
and SNR values. (A) and (B) are good quality elastography images with both CNR and SNR values above 1. 
(C) and (D) are poor quality elastography images with CNR values below 0.25 and SNR values below 0.6. 
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deviation results were in favor of {1 1 1 1 8 1 1 1 1} in the case of CNR values. However, 

in case of SNR values, {1 1 1 2 4 2 1 1 1} with slightly favored. In this situation, the 

histogram map of SNR values in Fig. 5.8 indicates that the map is symmetric {1 1 1 1 8 1 

1 1 1} with an almost normal distribution. Thus, the weight {1 1 1 1 8 1 1 1 1} is 

recommended for future experiments and should be adopted as a standard if this method is 

widely used. 

Figure 5.9 shows some output elastography images. The result clearly shows that the output 

EI has a better quality with CNR and SNR values above 1. Thus, analyzing the skewness 

and symmetry of the histogram hints at the performance of the filtered algorithm. The 

greater the number of images above CNR and SNR values of 1, the better is the 

performance of that particular group. 

Finally, we visually classified the results as described in Section 5.3.2.4, which supports 

our hypothesis that the filtered elastography algorithm performs better than freehand 

elastography algorithms. The experiment also supports our observations that elastography 

images above CNR and SNR values of 1 are good quality images. Further classification 

results can be obtained in the future by performing more user studies. 
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Figure 5.10 Visual classification of the filtered elastography data: In this experiment, we visually marked 
a good quality elastogram with 1 (× symbol) and a bad quality elastogram with 0 (ο symbol). The plot 
shows CNR on the x-axis and SNR on the y-axis, with each point indicating the classification of the 
corresponding elastography image as 0 or 1 depending on the visual quality. For filtered elastography a 
total of 63.2% of the images were found to be good (value 1). That result is 2 times better than the result 
obtained from freehand elastography. Most of the images with CNR and SNR values above 1 are found 
to be of good quality. The maximum CNR value is 5.4, and the minimum value is 0.0006. In contrast, the 
maximum SNR value is 3.4, and the minimum value is 0.5. There are few outliers, but those outliers are 
near the horizontal and vertical lines at value 1. This figure indicates that the filtered elastography 
algorithm works better than the freehand algorithm, as shown in Fig. 5.11. 
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Figure 5.11 Visual classification of the unfiltered (freehand) elastography data: In this experiment, good 
quality elastogram is marked with 1 (× symbol) and a bad quality elastogram is marked with 0 (ο symbol). 
The plot shows CNR on the x-axis and SNR on the y-axis. Each elastography image is plotted at its 
corresponding CNR and SNR values, with 0 or 1 to indicate a good or bad quality image. For freehand 
elastography, a total of 32% of the samples were found to be good quality (× symbol). Most of the images 
with CNR and SNR values above 1 are found to be of good quality. The maximum CNR value is 6.29, 
and the minimum CNR value is 0.0006. In contrast, the maximum SNR value is 1.35, and the minimum 
SNR value is 0.37. Similar to Fig. 5.10, there are few outliers, but the outliers are close to the horizontal 
and vertical lines at value 1. The sample size is N=106. The overall results indicate that filtered 
elastography performs better than freehand elastography. 
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6 Five-Dimensional Ultrasound System 
for Soft Tissue Visualization 

 

This chapter is from [90] and published with the following citation: 

Nishikant P. Deshmukh, Jesus Caban, Russell H. Taylor, Gregory D. Hager, and Emad M. Boctor, “Five 
dimensional Ultrasound Visualization Framework to Guide and Monitor Ablative Therapy,” 
IPCAI/CARS/IJCARS, 2015, doi:10.1007/s11548-015-1277-z . © CARS 2015. Published with permission of 
Springer. 

 

    In this chapter, we present, to the best of our knowledge, the first implementation of a 

real-time 5D US system based on the fusion of 3D B-mode and 3D USE data updated over 

time. The existing 3D US systems display B-mode and elastography volumes in separate 

windows, which make them difficult to view, synchronize, and tag 3D B-mode data with 

strain information. A combined 3D B-mode and elastography visualized over time in 5D 

US solves this problem. The absence of real-time computation hardware limited the 

development of essential components of 5D US system such as a sophisticated real-time 

elastography software, real-time 3D scan conversion, and a real-time visualization system. 

The contributions reported in this paper include GPU-based real-time 3D elastography 

using a multi-stream technique, GPU-based real-time 3D volume scan conversion, and a 

real-time volume renderer that updates every time the 3D USE, and 3D B-mode volume is 

received over the network using the OpenIGTLinkMusiic library [85][23]. The definition 

of a real-time computing system is a system in which all of the components combine to 

finish the task in a given time [91]. In our case, we define the upper bound as any system 

that allows a surgeon to operate the system during the real-time thermal ablation 
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monitoring that takes several minutes to perform [72]. A response time of 5-10 s would be 

sufficient for the 5D US system given that the two RF data volume capture times are in the 

order of 4-6 s (estimate based on 2D acquisition speed [85]). Through this paper, we 

attempt to answer the following questions: (1) Is it possible to achieve a real-time 5D US 

system? and (2) What should we expect the computation time to be? 

    Traditional general-purpose graphic processing units (GPGPUs) have a single 

instruction multiple data (SIMD) architecture. The SIMD allowed only one compute-

unified data architecture (CUDA) kernel to execute on the GPGPU at a given time. With 

the advent of Fermi architecture [92], and the multiple instruction multiple data (MIMD) 

processors, modern GPGPUs now support multiple instructions and multiple data stream 

capability of facilitating the execution of multiple kernels simultaneously. We use the 

multi-stream capability of these GPGPUs to give us a faster 3D USE by extending our 

work in 2D elastography as described in [2]. Scan conversion is essential to convert the 

data acquired in the polar coordinates by a 3D wobbler probe into the Cartesian coordinates 

[93]. This chapter presents a simple GPGPU-based scan conversion to convert 3D B-mode 

and 3D USE data in real time. The 3D USE data have been visualized using a volume 

rendering technique [25], [94], [95], but it lacks a real-time data receiver to refresh the 

volume data. This paper extends the volume renderer in [25] to receive the data in real 

time.  

     The 3D B-mode and USE encounter noise artifacts like speckles and de-correlation-

induced artifacts. A multi-dimensional transfer function [25] is used to reduce this effect 

to map B-mode and USE values as well as different color and opacity values. This transfer 

function gives 5D US the ability to visualize the surface of the tumor and inner-outer 
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surface of the cyst with a particular color and opacity from the USE data. Concurrently, 

the contour of the organ and biopsy/ablation needle can be visualized using different color 

and opacity values derived from the B-mode data. Thus, it is necessary to fuse together the 

3D B-mode and 3D USE values to complement each other. In addition to a feasibility study 

about achieving these updates in real time, this paper also presents a validation study on 

the size of an elastography phantom lesion. While a 5D system based on Doppler 

ultrasound for monitoring the heart to visualize blood flow already exists, it requires 

specialized Doppler hardware [96].  

Individual contributions 
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Systems contributions 

Generating 3D elastography volumes is a challenging problem given that the sequentiality 

and one-to-one correspondence for the comparison of two RF volumes must be maintained. 

Additionally, the multi-threading and combining of this 3D volume data is a challenging 

task. In this chapter, I contributed a 3D elastography volume generation algorithm on a 

GPU that uses a queueing mechanism coupled with multi-threading for efficient 

calculation. The technique involves creating multiple threads to compute each slice of the 

3D elastography volume and assigning the last slice (or any slice) as an aggregator. The 

challenge lies in ensuring that the next volume does not interfere with the threads created 

for the previous volume. Therefore, we created a thread structure to handle such scenarios. 

This approach leads to a minimal wait time for the system because the threads on the CPU 

and GPU run asynchronously to transfer data during processing. The other method 

developed is the 5D US system pipeline, that is based on an event-driven mechanism to 

receive elastography data, receive b-mode data, calculate a 3D scan conversion, select a 

transfer function, and perform volume rendering. The event-driven mechanism helps to 

reduce polling and save CPU cycles. Correctly designing such a system is a challenge 

because the normal workflow of a sequential system is nonexistent and may often lead to 

a race condition if designed incorrectly. The methods section and Pseudocode 6.1-6.5 detail 

the approach used. 
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Summary 

Purpose A five-dimensional ultrasound (US) system is proposed as a real-time pipeline 

involving fusion of 3D B-mode data with the 3D ultrasound elastography (USE) data as 

well as visualization of these fused data and a real-time update capability over time for 

each consecutive scan. 3D B-mode data assist in visualizing the anatomy of the target 

organ, and 3D elastography data adds strain information.  

Methods We investigate the feasibility of such a system and show that an end-to-end real-

time system, from acquisition to visualization, can be developed. We present a system that 

consists of (a) a real-time 3D elastography algorithm based on a normalized cross-

correlation (NCC) computation on a GPU; (b) real-time 3D B-mode acquisition and 

network transfer; (c) scan conversion of 3D elastography and B-mode volumes (if acquired 

by 4D wobbler probe); and (d) visualization software that fuses, visualizes, and updates 

3D B-mode and 3D elastography data in real time.  

Results We achieved a speed improvement of 4.45-fold for the threaded version of the 

NCC-based 3D USE versus the non-threaded version. The maximum speed was 79 

volumes/s for 3D scan conversion. In a phantom, we validated the dimensions of a 2.2-cm-

diameter sphere scan-converted to B-mode volume. Also, we validated the 5D US system 

visualization transfer function and detected 1- and 2-cm spherical objects (phantom lesion). 

Finally, we applied the system to a phantom consisting of three lesions to delineate the 

lesions from the surrounding background regions of the phantom.  
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Conclusion A 5D US system is achievable with real-time performance. We can distinguish 

between hard and soft areas in a phantom using the transfer functions. 

6.1      Introduction 
 

    In 2013, 1,660,290 cancer incidences and 580,350 cancer deaths were reported in the 

USA [97]. Ultrasound elastography (USE) is an imaging tool often used in the diagnosis 

and treatment of cancer [1]. USE involves comparing pre- and post-compression 

ultrasound data to map tissue stiffness [1]. A wide array of applications have emerged using 

USE such as image-guided thermal ablation monitoring [72], neoadjuvant therapy 

monitoring [98], and intraoperative robotic surgery guidance [82][83]. 

    US technology is safe, low cost, mobile, and real-time, and it emits zero ionizing 

radiation [72]. However, 2D US has problems tracking because of the absence of elevation 

information in the image [72]. The introduction of 3D transducers [72] that can give 

information about all three orthogonal planes alleviates this problem. USE combined with 

B-mode scan acts as a complementary technology to reduce the need for unnecessary 

biopsies [99]. 2D/3D B-mode image lacks the ability to differentiate between the 

background tissue and the iso-echoic tumors because the speckle information and 

impedance is the same in tumors and surrounding tissues [100]. The 2D/3D USE systems 

calculate the displacement of speckles in the radio frequency (RF) data and generate a 

strain map; this strain map helps to identify the boundary between the tumor and the 

surrounding tissues providing more accurate information [1]. 3D USE has been used for 
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diagnosis, monitoring and treatment of breast cancer [101][102], testicular adrenal rest 

tumors [103], cervical lymph nodes [104], and ablation monitoring [72][69][105].  

    3D B-mode/USE imaging does not reveal temporal changes in the underlying organ [99], 

but 4D US with scanning 3D B-mode images over time at the same or different locations 

does offer real-time, continuous feedback [99]. 4D US has been used in advanced in vivo 

studies of fetal face expression [106], determination of heart aorta elasticity [107], pelvic 

floor muscle monitoring [108][109], fetal heart monitoring [110], and motion tracking of 

the liver [111], among other applications. 4D volume contrast imaging (VCI) uses contrast 

enhancing measures to either elasticity data [112] or color Doppler data [113]. USE has 

been used in conjunction with B-mode images to increase specificity and maintain the 

sensitivity of tumor detection [99]. Automatic segmentation of the prostate has been 

achieved by the fusion and then extraction of contour boundary information from both B-

mode and vibro-elastography images [114]. 

    Ablation therapy involves detecting the tumor in a preoperative CT/MRI scan and then 

manually registering the location of the tumor intraoperatively using the US B-mode image 

guidance [72]. Ablation therapy involves inserting an ablation needle under this B-mode 

image guidance, and ablating the target tumor using RF ablation or high-intensity focused 

ultrasound (HIFU) [72]. However, there is a risk of incorrect tumor detection and needle 

placement. Furthermore, the treatment may not ablate the entire tumor area or may extend 

to affect surrounding healthy tissues [72]. To minimize this risk, 2D/3D USE-guided 

ablation therapy can offer precise locations of the tumor and the ablated region [72]. 

However, it is difficult for surgeons to monitor two different feedbacks while performing 
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the surgery. There is a need for overlaid mechanisms to precisely locate needle position. 

This requirement also exists with a US-guided biopsy to accurately monitor needle 

placement to extract malignant cells. The feedback needs to be fast enough to allow the 

surgeon to monitor this process in real time. During thermal ablation monitoring, the 

ablation process self-induces noise in the collection of ultrasound RF data; therefore, the 

time window to collect US data is quite small. The system should be fast and efficient 

enough to collect these data and visualize them over time to increase the accuracy of 

thermal ablation. Controlling the transfer function would allow distinction between USE 

and B-mode data because the contour of the organ will encapsulate the lesion/tumor inside 

it. Finally, fast scan conversion is needed to convert both the USE and B-mode volumes 

for the 3D wobbler probe that acquires RF data along a spherical sector.  

    A 5D US system involves the fusion of 3D B-mode images and 3D USE data visualized 

over time. The live feedback of both 3D B-mode and 3D USE data will improve the early 

detection and treatment of cancer. 3D B-mode provides information about hyper- and hypo-

echoic tumors [100]. Apart from enhancing the boundary of the hyper- and hypo-echoic 

tumors, 3D USE can give information about the iso-echoic tumors [100]. The additional 

strain information from 3D USE offers more diagnostic and monitoring information in 

terms of shape, size, and position of the lesion [72]. In the 5D US, a multi-dimensional 

transfer function allows efficient segregation of the B-mode and USE data in a single 

texture volume. This segregation will allow for advanced segmentation where we can 

isolate a tumor, cyst, and organ contour information depending on the transfer function as 

well as a future multi-modality registration [100]. The B-mode modality can be potentially 

replaced with an advanced US time series tissue typing methods [115], [116]. However, in 
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this paper, we focus on the more ubiquitously used B-mode modality for wider acceptance 

and clinical trials. Several reports [117], [118] indicate that both specificity and sensitivity 

is very high considering the relative size of the lesion in strain to that of the B-mode. 

Malignant tumors tend to infiltrate into surrounding healthy tissue that necessitates real-

time visualization with an adapted opacity function to show the extent of strain and B-

mode of an all-in-one, 3D-rendered scene. 

6.1.1   General-purpose graphics processing unit (GPGPU) 

    A GPGPU contains many computation cores that parallel run the similar code. Many of 

the components such as filters, cross-correlation, and scan conversion can independently 

work on subsets of data. A GPGPU allows parallelization of such components and offsets 

the workload from the primary CPU, which allows additional processing for the foreground 

CPU. Many workstations, including the ones embedded in the US systems, have onboard 

GPGPU and also allow the addition of extra GPGPUs via PCI Express slots [2]. The current 

Ultrasonix (Richmond, BC, Canada) ultrasound machine used in our experiments can 

acquire RF data at ~100 frames per second (fps) [23]. In advanced techniques like parallel 

beam forming where envelope detection occurs via onboard hardware, the acquisition rate 

has increased to nearly 860 fps [119], necessitating a real-time GPGPU-based architecture. 

The design choice of the architecture gives us the flexibility to run various components on 

the same machine or different machines depending on resource availability. Apart from 

that, a GPGPU frees the main CPU of the US machine to do other essential tasks; this 

decreases slowdown of the US system. A GPGPU will frequently be referred to as simply 

a GPU in the remainder of this paper. 
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6.1.2 Normalized cross-correlation (NCC)-based elastography 

on GPU 

    NCC helps track speckle movement when the palpation motion displaces the tissue. We 

assume that the direction of palpation motion is parallel to the axial direction of the RF 

images obtained from the ultrasound acquisition system. We calculate displacement along 

the axial direction by selecting a template window in a pre-compression RF image and the 

source window in a post-compression RF image. The template window is searched in the 

source window to estimate displacement using cosine curve fitting [72]. The outliers are 

corrected by median and averaging filters. Strain estimation uses linear regression [1]. The 

following equation defines the NCC score:  
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where f(x, y) is the search window that is searched in the template window t (x, y) for the 

displacement u and v in the x (axial) and y (lateral) directions, respectively. The variables 

,u vf and t   are the mean of the search and template window, respectively. 

    Each NCC window comparison can be computed efficiently on the GPU because there 

is inherent data independence in the processing. This data independence explicitly reduces 

the need to synchronize the elastography image computation. Similarly, the median filter, 

average filter, and strain estimation are independent for every pixel calculation and can be 

efficiently parallelized on the GPU [89]. 
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6.2      Methods 

This section details the data flow diagram of the real-time 5D US with its subcomponents: 

3D USE, 3D B-mode acquisition, 3D scan conversion, and visualization modules. First, 

we explain the overall system diagram followed by the implementation of 3D USE, 3D 

scan conversion, and the visualizer. The most common type of 3D probe is a wobbler probe, 

which has a 2D US array mounted on a motor and is attached to a rotating motor shaft. The 

4D probe creates a scan depicting a spherical sector along the elevational direction. The 

3D B-mode and USE data need to be scan-converted to reflect the correct shape of the 

underlying objects.  

6.2.1     Five-dimensional ultrasound system 
 

Figure 6.1 and Algorithm 6.1 show the overall system diagram and steps needed to create 

the 5D ultrasound system. The system is highly modular, and each component can run on 

the same machine or different machines. The OpenIGTLinkMusiic library [23][85] helps 

us to achieve this modularity. The RF server resides on a US machine and helps to collect 

real-time 3D RF data and 3D B-mode data. These 3D RF data are sent to USE/EI 

(elastography image) server, and the 3D B-mode data are dispatched to a 5D US visualizer. 

The hardware synchronizes the 3D RF data and the 3D B-mode data. Thus, it is not 

necessary to register them separately. After an image pair is received by the 3D EI server, 

it computes 3D USE to give 3D EI data for 5D US visualization.  
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     If we visualize 3D B-mode and 3D EI as stored in the memory, then the data will appear 

as a rectangle. However, in our case, a 4D wobbler probe collects the data. This probe 

requires a 3D scan conversion module to convert the rectangular coordinates to polar 

coordinates depicting a spherical sector. Thus, a GPU-based scan conversion module is 

internally embedded inside the 5D visualizer. The scan conversion module sends scan-

converted 3D B-mode and 3D EI volume to the OpenGL shading language buffer. We 

provide the user with an interactive transfer function mapper to draw 2D transfer function. 

The transfer function assists the ray tracer to assign a color value to the 3D EI and 3D B-

mode voxels. The ray tracer module fuses each voxel from the two 3D datasets and displays 

them on the screen.  

 

 Algorithm 6.1: Five-dimensional ultrasound system 
1: The RF server collects the US machine-generated 3D RF data and 3D 

B-mode data and transfers them to the elastography (EI) server and 5D 
US system, respectively  

2: The EI server generates 3D USE/EI data using the GPU by calculating 
the estimated displacement per slice in the two volumes of the RF data 

3: The 3D EI data are sent to the 5D US system 
4: 5D US system receives 3D B-mode and EI data volumes that are scan-

converted by a GPU to give a fast volumetric scan conversion 
5: The scan-converted 3D volumes of 3D B-mode and 3D USE/EI are then 

passed to the OpenGL shader on the GPU that registers the two volumes 
6: The ray tracer highlights the color values for pixels in the buffer 

depending on the transfer function selection by the user 
7: New data overwrite the buffer, and the pixels are updated as per the 

transfer function values 

6.2.2     Multi-threaded 3D ultrasound elastography 

Figure 6.2 and Algorithm 6.2 detail how we accelerate 3D USE. An earlier version of the 

GPU-based 3D EI server ran on a single operating system thread [72]. A thread controls 
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the entire pipeline of the GPU and consists of tasks such as input/output (I/O), memory 

allocation, kernel function invocation, wait for kernel function invocations, and memory 

de-allocation [2]. Due to the SIMD architecture of the earlier version of the GPU, this 

thread could not be executed in parallel because they would wait for the thread to complete 

their task [2]. In our version, we bind this pipeline together with the help of the CUDA 

stream functionality similar to a previous report [2]. The CUDA streams bind the entire 

GPU pipeline for elastography consisting of several kernels such as displacement 

estimation by NCC, moving the average filter, median filter, and strain [2]. These CUDA 

streams are then assigned to separate threads. The CUDA maintains data independence 

between streams that implies that the threads do not interfere with each other and provide 

a robust implementation. The number of threads that create n matches is the number of 

slices in a scan. The n threads then execute in parallel. If the thread ID starts with 1, we 

assign a thread with an ID equal to n as an accumulator. The accumulator thread waits for 

the other (n-1) threads in a batch to complete execution of elastography for their respective 

assigned pair in the RF frame (slice) in consecutive RF volumes. After execution is 

complete, the n threads store their elastography image into a commonly shared buffer with 

an index as the thread ID. The accumulator thread with ID n after finishing the wait for (n-

1) thread accesses the shared buffer and creates an OpenIGTLink message for volume 

consisting of n elastography image slices. This thread then sends these data over a TCP/IP 

network using an OpenIGTLinkMusiic thread [85][23]. 
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6.2.3     3D Scan conversion     
 

     In the case of 4D wobbler probes, the 2D transducer moves along a spherical sector with 

a fixed step angle. If the number of slices collected is n, then the field of view of the 3D 

scan is equal to n times the step angle. However, the 3D image data are stored in the 

Figure 6.1 Data flow diagram of 5D US: the RF server collects the 3D data using a wobbler probe that 
performs a sector scan using a 2D probe in a particular field of view. The 3D RF data are passed to the 
elastography image (EI) server, which calculates the 3D USE data and passes them to the scan conversion 
module in the 5D US system. The RF server also sends the 3D B-mode data directly to the scan conversion 
module of the 5D US system. The 3D B-mode and the 3D USE scan-converted data are then passed to 
the visualization system.  The users select the transfer function values to highlight different areas of the 
volume with different colors.  

 

 



157 
 

memory as a 2D image per slice in consecutive memory locations. A source transmits these 

3D image data over the network. We performed scan conversion from rectangular 

coordinates to polar coordinates to convert these image data to its correct spherical sector 

shape from the rectangular form when accumulated together. For efficient and real-time 

implementation, we map these 3D image data on the GPU and perform scan conversion. 

This visualizer embeds the scan converter within its structure because of its small execution 

time. A detailed explanation of the 3D scan conversion is in “Appendix.” 

 Algorithm 6.2: Multi-threaded 3D Ultrasound Elastography 

1: Receive 3D RF data from the RF server with n slices 

2: Spawn n threads to calculate 2D elastography on the GPU. The 
components are connected by a CUDA stream to protect the data 
among the threads 

3: The GPU threads execute in parallel calculating strain images and 
scan conversion according to the depth 

4: The nth thread, at the point of its completion, waits for the n-1 thread 
to complete its task and waits on the join command 

5: All n-1 threads deposit their data in the shared buffer, which is 
combined with the nth thread. This volume of size n slices is sent over 
the network 

 

 

6.2.4     Five-dimensional ultrasound visualizer transfer 
function 

 

    The y axis corresponds to the grayscale intensities for B-mode images, and the x axis 

corresponds to the grayscale intensities for the strain (elastography) images. The user can 

draw various shapes such as an ellipse or rectangle of different sizes. The program then 
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creates a Gaussian circle with a radius as the maximum dimension of the ellipse or 

rectangle that, in turn, defines the transfer function. These Gaussian circles have centers 

equal to the center of the corresponding ellipse or rectangle drawn by the user. This transfer 

function maps different intensity values of B-mode and strain images. The user can also 

change the opacity of each ellipse or rectangle and create the corresponding transfer 

function. During the ray tracing, each pixel value is indexed into this transfer function, and 

the corresponding color and opacity value is assigned to that pixel during the accumulation 

process of the ray tracer. 

This ray tracer then displays the combined pixel intensity along a given line in the 

perspective view. This process is repeated for each line path until the entire volume is 

complete. The user can zoom in and out. The user can change the position, color, and 

opacity of each ellipse or rectangle, and the program updates the corresponding 3D volume 

with new values. This highly dynamic visualization system may help in searching for 

different features such as strain, needle, and tissue boundaries as well as any foreign objects 

in the volume depending on the dataset. 
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Function 3DRFDataReceiver 
Input: 3D RF data from the RF server in OpenIGTLinkMusiiC format. 
Output: 3D RF data in a local structure format easily usable by different EI modules. 
3DRFDataReceiver 
       i := 0 
      While(true) 
             Sleep on OpenIGTLinkMuSiiC receiver for data over the network 
             Receive 3D RF(i) data image from OpenIGTLinkMuSiiC SmartPointer 
             Allocate GPU CUDA direct memory access (DMA) memory M(i) 
             Transfer 3D RF(i) to M(i) 
             Insert 3D RF(i) into RFInputQueue(x) - Send Wakeup to listening processes 
             Test if RFOutputQueue(y) has any returning data from EI server 
             (Here we do not sleep to avoid race condition) 
             If (y == dataPresent)  
                      Free (y) with special CUDA call 
                     Remove reference to OpenIGTLinkMuSiiC SmartPointer 
             end 
              i := i + 1 
      LoopbackToWhile             
EndFunction 3DRFDataReceiver 

 

 

 

 

 

 

 

 

Pseudocode 6.1 3DRFDataReceiver: This module receives the 3D RF data from the RF server or 
from a file and transmits it to the EI processing engine via a queueing mechanism. It also receives back 
the used RF data images to be freed in the memory. 
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Function 3DEIProcessor 
Input: 3D RF data from the 3DRFDataReceiver in simple local structure format. 
Output: 3D RF volume pairs and 3D Elastography volume. 3D RF volume sent back to 
3DRFDataReceiver for recycling. 
       i := 0 
       j := 0 
       Sleep on RFInputQueue(x) to receive 3D RF(i) 
       i := i + 1 
      Create a strainArray of size M 
      While (true) 
                 Sleep on RFInputQueue(x) to receive 3D RF(i) 
                 When RFInputQueue receives data - Wakeup 
                 RF (i) = x 
                 i := i + 1 
                Allocate EI_parameters_structure for GPU computation 
               (This structure contains all parameters necessary for EI computation) 
                for j = 0 to M 
                      strainArray(j) = nonThreaded3DEIComputation (RF(i-1), RF(i) 
                                                                                                               , EI_parameters_structure, j) 
                endFor 
                if (clientConnected) 
                       send strainArray over the network 
                 endIf 
      LoopbackToWhile 
EndFunction 3DEIProcessor 

 

 

 

 

 

 

Pseudocode 6.2 3DEIProcessor: This module receives the 3DRF data from the 3DRFDataReceiver 
and processes them to compute elastography images and transmit them over the network. This is the 
basic version without the CPU threading model. 
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Function 3DEIProcessorAdvanced 
Input: 3D RF data from the 3DRFDataReceiver in simple local structure format. 
Output: 3D RF volume pairs (Elastography sent via threaded3DEIComputation). 3D RF volume sent 
back to 3DRFDataReceiver for recycling. 
       i := 0 
       j := 0 
      Sleep on RFInputQueue(x) to receive 3D RF(i) 
      i := i + 1 
      Create a double array threadArray that acts as a Queue (maxSize: N x M) 
      (M is size of the volume) 
     While (true) 
             Sleep on RFInputQueue(x) to receive 3D RF(i) 
             When RFInputQueue receives data - Wakeup 
            3D_RF_structure contains RF(i-1) and RF(i) volumes 
            m := 0; 
            foreach RFpair in 3D_RF_structure 
                  (Here RFpair is a structure contains RF pair from different volumes)  
                  Allocate EI_parameters_structure for GPU computation 
                  (This structure contains all parameters necessary for EI computation)  
                 threadArray(j, m) = threaded3DEIComputation (RFpair(0), RFpair(1) 
                                                                                                          , EI_parameters_structure, j, m, M) 
                  m := m + 1 
             endfor 
             for k = 0 to N 
                   for n = 0 to X 
                          Test if threadArray(k, n) exited 
                                  if threadArray(k) volume exited then free the memory and reuse 
                                  Send the 3D RF data (i-1) to RFOutputQueue(y) 
                   endFor n 
              endFor k 
              j := mod((j + 1), N); 
      LoopbackToWhile 
EndFunction 3DEIProcessorAdvanced 

 

 

 

Pseudocode 6.3 3DEIProcessorAdvanced: This module receives the 3D RF data from the 
3DRFDataReceiver and processes them to compute elastography images and transmit them over the 
network. This is the advanced threaded version with the CPU threading model. 
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threaded3DEIComputation  
Input: RF image pairs althought the Mth thread combines the given set as one volume of size M 
elastography images. Here n means any value greater than or equal to 0. n and n+1 simply indicates 
two different RF data images. 
Output: Elastography image volume computed for the given RF data volume pairs and the RF data 
pairs. 
      Receive RFn and RFn+1 
      If (modulus(threadID, M) ==  0)  
            First thread,  
                          hence allocate memory to hold 3DStrainMap (size: M) 
      endIf 
      (correlationMap, displacementMap) = ComputeEI (RFn, RFn+1) 
      if (average(correlationMap) < 0) 
             (correlationMap, displacementMap) = ComputeEI (RFn+1, RFn) 
      endIf 
      displacementMapRefined = movingAverage(medianFiltering(displacementMap)) 
      StrainMap = strainEstimation (displacmenetMapRefined) 
      if (modulus(threadID, X) != X-1) 
             store strainMap in 3DStrainMap (threadID % M); 
      else 
            memset(3DStrainMap, 0) 
            for i := 0 to M-1 
                      wait for threadIdX(i) to complete 
             endFor 
            store strainMap in 3DStrainMap 
            if (clientConnected && modulus(threadID, X) == X) 
                         send 3DStrainMap on the network 
           endIf 
      endIf 
     return RFn and RFn+1 
EndFunction threaded3DEIComputation  

 

 

 

Pseudocode 6.4 threaded3DEIComputation: This module calculates the elastography. If the average 
correlationMap is less than 0 it means that the comparison was done in wrong direction where it 
recomputes elastography. Note, the threaded version calculates the elastography for individual RF 
image pairs but the last Mth thread waits and collects rest of the threads to construct a volume and send 
it over the network. 
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nonThreaded3DEIComputation 
Input: RF image pairs. Here n means any value greater than or equal to 0. n and n+1 simply indicates 
two different RF data images. 
Output: Elastography image computed for the given RF data pairs and the RF data pairs. 
     Receive RF(n) and RFn+1 
     (correlationMap, displacementMap) = ComputeEI (RFn, RFn+1) 
     if (average(correlationMap) < 0) 
             (correlationMap, displacementMap) = ComputeEI (RFn, RFn+1) 
      endIf 
     displacementMapRefined = movingAverage(medianFiltering(displacementMap)) 
     strainMap = strainEstimation (displacmenetMapRefined) 
     if (clientConnected) 
            send strainMap on network 
      endIf 
     Free (strainMap, displacementMap, displacementMapRefined, correlationMap); 
     return strainMap, RFn and RFn+1 
EndFunction nonThreaded3DEIComputation 

 

 

 

 

 

 

 

Pseudocode 6.5 nonThreaded3DEIComputation: This module calculates the elastography. If the 
average correlationMap is less than 0 it means that the comparison was done in wrong direction where 
it recomputes elastography. Note, the non-threaded version simply computes elastography for only 
one pair and the calling function creates the volume. 
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6.3    Experiments 

    This section details the experimental setup, planning, and expected outcomes regarding 

the experiments and results. We evaluated 3D USE timing information and 5D US 

visualization on a system with Intel Xeon CPU 2.13 GHz, 12 GB RAM, Windows 7 - 64 

Figure 6.2  Data flow diagram of 5D US: a block diagram of the 3D USE system that collects the data. 
The process is distributed among the elastography image (EI) thread to calculate each slice independently. 
These slices are then collected in the accumulator thread that waits for the remaining threads to finish 
their task and then sends these USE data as one volume to the 5D US system. 



165 
 

b, NVidia C2070 GPU. We measured the 3D scan conversion timing information on a 

computer with Intel i7 3.2 GHz, Windows XP 64 b, and an NVidia C1060 GPU. The probe 

used to collect the 3D RF data is Ultrasonix 4DL14-5/38 attached to the Ultrasonix-CEP 

machine. 

    We used a CIRS Elasticity 049A QA phantom with background elasticity of 33 kPa with 

lesions of varying elasticity. We validated the 5D US system with a 1- and 2-cm lesion. 

The elasticity of the lesions is 58 and 39 kPa. While scanning the phantom surface, we 

generated the timing diagram of 3D USE as well as a scan conversion on the 3D B-mode 

data. The phantom setup is shown in Fig. 6.3 (A). The setup used to validate the scan 

conversion module is shown in Fig. 6.3 (B), (C).  

     An offline phantom study has been reported previously [25]. By offline, we mean that 

the data is collected using a staged robot with a 2D transducer. The stage robot performs a 

palpation and sends a signal to the US machine after each pre- and post-compression 

motion. The US machine then collects the corresponding RF data. The B-mode and 

elastography images in this experiment are calculated offline in Matlab because the 

purpose of this experiment is to show the difference between B-mode, elastography, and 

fused volumes as reported in Fig. 6.10. For both the 2D and 4D transducer, the number of 

pixels in the lateral direction of the RF data remains constant at 128 for a 4-cm 2D 

transducer. The number of pixels in the axial direction changes as a function of depth—

this is 1024 pixels for 4 cm, 1296 pixels for 5 cm, 1552 pixels for 6 cm, 1808 pixels for 7 

cm, and 2064 for 8 cm of imaging depth. The voxels per pixel are 1. The size of each pixel 

in the RF data is 16 b. 
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6.4    Results 
 

    We next compare the two 3D USE implementations to understand the advantages of 

threaded versus non-threaded 3D USE application. We set the timer just before 3D RF 

data are passed to 3D USE processing engine, and the program stops the timer just after 

the USE frames are generated. All of the threads finish the execution. In the case of single-

threaded 3D USE application, only one thread calculates the USE for all the slices. Thus, 

we set the timer after the calculation of the whole volume is completed. Similarly, the speed 

of the 3D scan conversion is calculated after the thread that calculates the scan conversion 

has finished. 

    As shown in Fig. 6.4, the non-threaded version of the GPU-based 3D elastography 

(simply referred as non-threaded version) could achieve a maximum averaged runtime of 

3.39 s/volume at 4 cm of imaging depth. The volume contains 30 slices. The corresponding 

average maximum runtime for threaded GPU-based 3D elastography (referred to simply as 

threaded version) is 0.12 s/volume at 4 cm depth. The average execution time increased 

gradually with an increase in depth because the number of samples increases as a function 

of depth. The minimum average runtime recorded for the non-threaded version is 6.06 

s/volume when collected at 8 cm of imaging depth. We observed that the standard 

deviation for the timing value was minimal for the threaded version. This indicates a stable 

execution time where the runtime of generation of volumes remains constant. The 

maximum average standard deviation in the case of the threaded version is 0.041 s/volume 

at 7 cm of imaging depth. The minimum average standard deviation in the case of the non-

threaded version is 0.122 s/volume at 4 cm of imaging depth.  
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     This result suggests that the threaded version performs better in execution time and 

stability than the non-threaded version of the GPU-based 3D elastography. For 5 cm 

imaging depth, the threaded version recorded the lowest standard deviation of 0.015 s and 

the non-threaded version recorded the second lowest standard deviation of 0.17 s. The 

small standard deviation corresponds to an imaging depth of 5 cm—this indicates that 5 

cm of imaging depth is an ideal imaging depth for both cases. It results in a stable stream 

of volumes. Please note that the results are average timing values calculated for just above 

200 volumes. The window size for this result of 3D NCC is 12 with 2 mm maximum 

forward search along the axial direction and 98 % window overlap. As listed in Table 6.1, 

the maximum throughput of 84643.02 kB/s is obtained for imaging depth of 8 cm for a 

threaded version of elastography. This is slightly better than the average throughput of 

80471.80 kB/s for a non-threaded version of the 3D elastography.  

In Fig. 6.5, we further investigated the impact of different window sizes (8, 10, 12, and 14) 

on the runtime of the 3D NCC volume with constant 2 mm maximum forward search in 

the axial direction and 98 % overlap. (Please note that the quality of the resulting 

elastography images changes according to the window size as reported in [2].) Window 

size is equal to the number of samples in the axial direction used for comparison of source 

and target images. The runtime of the 3D NCC elastography is best for window size 8; the 

minimum time is 1.45 s/volume. In terms of average time for all imaging depths, the average 

seconds/volume runtime for window size 8 is 2.16 (±0.13), window size 10 is 2.33 (±0.16), 

window size 12 is 2.45 (±0.13), and window size 14 is 2.62 (±0.14). Here, we can see that 

window size 10 is slightly better than window size 12 and 14, whereas the time is taken for 

window size 8 is clearly much lower. 
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        The 3D scan converter is needed to reconstruct the geometry for 4D wobbler probes 

where the 2D array is moving around a fixed axis of rotation along a spherical sector with 

a limited field of view. As shown in Table 6.2, the maximum speed observed is 79.40 

volumes/s for 8 cm depth for 31 frames per volume. The lowest speed is 13.81 volumes/s 

for 120 frames per volume at 4 cm depth. This result corresponds to the scan conversion 

of B-mode volumes. The speed increases with increasing depth in B-mode volume because 

to adjust the aspect ratio on the display screen the US machine reduces the number of pixels 

in the lateral direction with increasing depth. Thus, the effective size of the volume 

Figure 6.3 Experimental setup: this figure shows the experimental setup for our experiments. (A) 
Experimental phantom setup where a 4D probe is held by a passive arm on top of CIRS Elasticity 049A 
QA phantom. (B), (C) Experimental setup to validate scan conversion of 2.2-cm sphere under water. 
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decreases with an increase in depth. This leads to an increase in speed of scan conversion 

as the imaging depth increases. We validated whether the scan conversion correctly 

converts the dimensions by imaging a solid sphere of 2.2 cm diameter underwater with B-

mode. As shown in Fig. 6.6, the dimension of the sphere in all three views is found to be 

approximately 2.2 cm to the scale.  

    Figure 6.7 shows the effect of choosing different opacity values for ellipse B. As shown 

in Fig. 6.7 (A), the opacity value is set to 3, but it is 50 in Fig. 6.7(B) and 100 in Fig. 6.7 

(C). This shows that region B (indicated by blue arrow) corresponding to ellipse B changes 

the opacity in the output. The two ellipses indicated by label A have constant opacity, and 

the lesions are constant in the output (arrow A in the output). The opacity value of 50 for 

ellipse B in Fig. 6.7 (B) reduces the effect of unneeded noise and B-mode data by increasing 

the transparency. The unneeded noise and B-mode corresponding to ellipse B are further 

diluted by reducing the opacity to 3. This is indicated by label B in the output. This result 

suggests that we can keep the strain or elastography values visible and at the same time 

draw additional circles to illuminate features, objects, and tissues that might be useful in 

the corresponding B-mode images. Figure 6.8 shows a fusion of 3D B-mode and strain 

values where one ellipse highlights maximum possible dynamic range in 3D B-mode and 

3D strain values. The primary strain locations are shown by arrow/label A; B-mode values 

are indicated by label B. 

    In Fig. 6.9, we investigated whether we can differentiate between hard and soft lesions. 

In this case, the soft tissue/lesion has an elasticity value of 39 kPa, and the harder 

tissue/lesion has an elasticity value of 58 kPa. As seen in the transfer function, ellipse A 

corresponds to the hard lesion, and ellipse B corresponds to the soft lesion. From the output, 
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we can see that label B clearly shows a softer lesion. There is an overlap of colors between 

label A and label B due to the small difference in elasticity between lesions. More rigorous 

evaluation of different strain strength will be done in future studies.  

    Figure 6.10 shows the results of a phantom experiment where three lesions are 

surrounded by background material. As shown in the Fig. 6.10 (A) B-mode volume, the 

lesion is slightly visible. In Fig. 6.10 (B), an elastography volume is displayed, and the 

lesion is clearly visible. In Fig. 6.10 (C) the fused B-mode and elastography volume are 

displayed. The selected transfer functions display the lesion region in green and the 

background regions by blue and pink. This verifies our claim that the volume fusion can 

improve the feedback of the underlying parameters in B-mode and elastography volumes. 

6.5    Discussion 
 

     We demonstrated the feasibility of a 5D US system by implementing, evaluating, and 

validating each component of the system. Our highly modular system led to a 5D US 

system. This end-to-end system facilitated data acquisition from a US machine that was 

distributed to various elements. The timing graphs in Figs. 6.4 and 6.5 demonstrate that our 

new 3D elastography algorithm is fast and stable. 3D elastography is computationally 

expensive, and reducing the execution time of a volume comparison was the first step. The 

threaded elastography that we implemented outperformed the non-threaded elastography 

version by a factor of 4.45× . The 3D scan converter on a GPU gave a maximum of 79 

volumes/s. This high-speed and small standard deviation ensured that we could embed the 

scan conversion module inside the 5D visualizer. The multi-stream 3D elastography is 

stable and executes on the same computer where the visualizer was running. Because the 
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GPU performs most workload on the GPU, the US system can also execute all parts if 

equipped with a GPU. Thus, implementation of a 5D US system in the operating room is a 

practical solution.  

     

 

         

 

 

3D USE can be improved by externally tracking the ultrasound probe with an optical 

tracking system. The tracked 3D USE can be an extension of online tracked USE [2]. The 

multi-stream 3D USE introduced here can easily accommodate tracking information, and 

Figure 6.4 Performance of non-threaded versus threaded 3D EI: this figure shows the comparison of 
time taken to compute a volume of elastography for threaded versus non-threaded version to determine 
whether our algorithm led to any improvement in performance. As indicated in this graph, a threaded 
version led to a 4.45× improvement in speed. This proves that our algorithm has managed to keep the EI 
volume generation to just below 1 s for 4 cm imaging depth (approximately 0.75 s/volume) and 1.46 
s/volume for 8 cm imaging depth. 
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each multi-stream thread can then find in-plane slices among the slices across multiple 

scans allocated to it. The transfer function can be improvised in multiple ways to study and 

determine the multi-dimensional transfer functions best suited for the underlying tissue 

conditions.  

 

 

 

 

 

    Throughput (kB/s) 
Imaging Depth Volume size (kB) Non-threaded Threaded 
4 cm 30,720 18,103 (± 607)   80,717 (± 3124) 
5 cm 38,880 19,017 (± 742) 76,973 (± 1112) 
6 cm 46,560 18,763 (± 967) 79,461 (± 2201) 
7 cm 54,240 19,679 (± 776) 80,563 (± 2282) 
8 cm 61,920 20,419 (± 403) 84,643 (± 1689) 

 

  
31 fpv 

(volumes/s) 
60 fpv 

(volumes/s) 
90 fpv 

(volumes/s) 
120 fpv 

(volumes/s) 
4 cm 52.45 (± 2.29) 25.82 (± 0.40) 19.30 (± 0.26) 13.81 (± 0.09) 
5 cm 60.00 (± 2.33) 33.33 (± 0.39) 22.91 (± 0.55) 16.18 (± 0.27) 
6 cm 66.14 (± 2.33) 38.42 (± 1.55) 25.99 (± 0.16) 17.75 (± 0.31) 
7 cm 72.44 (± 3.97) 40.65 (± 0.35) 27.77 (± 0.61) 16.41 (± 0.26) 
8 cm 79.40 (± 2.62) 46.18 (± 0.87) 30.89 (± 0.31) 22.50 (± 0.11) 

Table 6.2 Speed of 3D scan conversion for a B-mode volume: the table lists the speed of real-time 3D 
scan conversion in volumes per second (vps). The columns are arranged per number of frames in each 
volume or frames per volume (fpv). The highest average speed is observed for 8 cm imaging depth at 
79.40 vps for 31 fpv with max of 81.42 vps. The slowest 13.81 vps is observed for 120 fpv at 4 cm 
imaging depth with minimum of 13.62 vps. The result is computed on sample of 15 volume set to get 
time to compute per volume scan conversion in milliseconds, from this we calculated volumes per second 
since the standard deviation is low. 

Table 6.1 Throughput of elastography algorithm: this table lists the average throughput of the input 
RF data volumes for real-time elastography. The values are multiplied by 2 because generating an 
elastography image volume needs a pair of RF data. As can be seen, the 8 cm imaging depth for threaded 
3D EI gives maximum average throughput of 84,643 kB/s. The max throughput obtained is 87273 kB/s. 
The lowest average throughput is 18103 kB/s for 4 cm depth with the minimum throughput value of 
15519 kB/s. The sample size is on an average of approximately 145 volume computations.  
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Figure 6.5 Performance of non-threaded 3D EI for different window sizes of NCC: this figure shows 
comparison between different window sizes of 3D NCC. The forward image search is restricted to 
maximum 2 mm, and window overlap is kept constant at 98 %. It has been observed that the runtime in 
general decreases with decreasing window size. The average standard deviation (0.13 s/volume) is lowest 
for window size 8 and 12 and highest (0.16 s/volume) for window size 10. This indicates that the speed 
for window size 8 is stable and faster than other window sizes. A difference in standard deviation of 0.03 
s/volume is notable because the fastest runtime is 1.45 s/volume. The average sample size is 235 volumes. 
The maximum average time obtained is 3.337 s/volume for window size 8 and depth of 8 cm indicating 
slowest speed, and the maximum runtime is 4.45 s/volume. The minimum average runtime obtained is 
1.45 s/volume for window size 8 and depth of 4 cm, while the minimum runtime is 1.347 s/volume. 
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Figure 6.6 Validation of size after scan conversion: validation of size of an object after scan conversion 
is performed by imaging a 2.2-cm-diameter sphere inside a water tank. The scan-converted output is 
shown in the images with an approximate diameter of 2.2 cm in all the three views. 

                 (A)                                                     (B)                                              (C) 

Figure 6.7 Impact of changing opacity values: ellipse A indicates the region of high strain value where 
the lesion is found; ellipse B indicates the region around ellipse A. The opacity value for (A) is set at 3; 
in (B), it is set at 50; in (C), it is set at 100. The arrow in the output section indicates the corresponding 
regions highlighted by each ellipse. As shown in (A), the low opacity value reduces unneeded noise and 
B-mode values while the lesion indicated by arrow A remains visible. 
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Figure 6.8 B-mode and strain volume fused together: region A on the transfer function map emphasizes 
the hyper-echoic region as a spherical region in the output. The rest of the B-mode values are in the 
surrounding region of the lesion.  

Figure 6.9 Differentiating hard and soft lesion: the soft lesion (elasticity 39 kPa) is highlighted with 
pink color (ellipse B) and hard lesion (elasticity 58 kPa) is highlighted with blue color (ellipse A). We 
can differentiate the soft lesion (label B) from the hard lesion (label A) with a subtle difference. There is 
an overlap of colors where the soft lesion is partially green due to the small difference in elasticity of the 
lesions. 
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Figure 6.10  Differentiating B-mode, elastography and fused volume: this figure shows volume 
rendering with different input data types. (A) shows only B-mode volume to display contour of the lesion, 
(B) shows only elastography volume to show the ablated region, and (C) shows both B-mode and 
elastography fused volume. In (C) the lesion region is displayed as green region surrounded by 
background in blue and pink.  
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7    Conclusions and Future Work 
 

7.1     Conclusions 

Chapter 4, that was originally published separately [2], presents a multi-stream GPU-based 

implementation of elastography, specifically demonstrating how recent advancements in 

GPU hardware may be harnessed to achieve much higher frame rates than previously 

possible. Our system achieves an approximately 2.13X improvement over a conventional 

GPU-based NCC elastography implementation and produces a maximum frame rate of 78 

fps, nearly matching the acquisition rate of typical ultrasound systems. 

We demonstrated the versatility of our architecture by implementing an online version of 

tracked ultrasound elastography (O-TRuE), by performing in vivo animal experiments and 

by integrating the system with the da Vinci Surgical System. We devised a method to 

evaluate the quality of an output elastography stream based on the maximum correlation 

of a windowed region defined in consecutive elastography frames. Using this metric, we 

demonstrated that O-TRuE (with tracked free-hand elastography) produces a more stable 

output stream than untracked free-hand elastography. A comparative study was performed 

to assess the effect of the NCC window size on the elastography frame rate and the image 

quality. With the in vivo pig data, the optimal NCC window size of 10 provided a speed of 

48 fps with a CNR of 3.57 and an SNR of 0.94. The in vivo animal experiment using 

untracked elastography demonstrated better contrast for ablated regions in the elastography 

images in comparison to the corresponding B-mode US images. Integration with the da 



178 
 

Vinci system investigated the effect of the palpation frequency and amplitude on the 

elastography image quality with an elastography phantom and, found a stable output stream 

using values of 5Hz and 3mm, respectively. These experiments demonstrate the practical 

feasibility of using GPUs for intra-operative real-time navigation and monitoring. In this 

chapter, I have developed the multi-stream GPU based elastography algorithm, integrated 

tracked ultrasound elastography in real-time elastography to give Online tracked 

ultrasound elastography (O-TRuE), and worked on integrating the real-time EI with the da 

Vinci surgical systems. Additionally, I developed a technique to analyze and quantify real-

time elastography algorithms.  

  In Chapter 5, we presented a method for detecting a high-quality elastography image 

without the need to perform elastography on the entire RF data image. The results indicate 

that our method performs better than unfiltered or freehand elastography. The CNR and 

SNR values of the resulting elastography images indicate that filtered elastography using 

our method gives a higher frequency of occurrence of images in the higher spectrum of the 

respective values. The result was found to be extremely statistically significant with p-

value<0.0001 for both t-Test and ANOVA test. Experiments that investigated different 

sizes for the region of interest indicate that as the width (w) and height (w) approach 25 

and 15 pixels, respectively, the resulting quality of the elastography images stabilizes. We 

prefer the width and height of 20 and 15 pixels since the results are similar to that of w=25 

and h=15 pixels. This was found from the mean and standard deviation results and pairwise 

group p-value (<0.05) statistical significance results. From the different weight 

experiments, we found that the weight of the central region of interest should be 8 and the 

weight of the rest of the region of interest should be 1 to generate high-quality elastography 
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images. This was found to be true with the histogram analysis after observing the frequency 

distribution of various CNR and SNR values. The mean and standard deviation results 

along with group pairwise p-value (<0.05) for CNR indicated that the central weight of 8 

is a better choice. Although the test failed for SNR analysis. The possible reason is low 

sampling size and mean of all groups very close to each other. We also performed visual 

classification of the unfiltered and filtered data. We found that images above CNR and 

SNR value 1 are predominantly good quality images. I have designed and implemented 

this algorithm for real-time determination of the quality of future elastography image by 

calculating elastography on RF lines encapsulating selected regions of interest using GPU. 

I also analyzed the data and validated it with animal experiments and statistical analysis. 

  In Chapter 6, that was originally published separately [3], we demonstrated the first 

known implementation of a five-dimensional ultrasound system that involves an end-to-

end system for the acquisition of 3D RF and B-mode data. We transferred the data over the 

network, calculated the GPU-based 3D elastography, performed aGPU-based scan 

conversion of volumes and visualized the images using multi-dimensional transfer 

functions. The GPU-based multi-threaded 3D elastography gave us 4.45-fold better 

performance versus single-threaded GPU-based 3D elastography. We achieved a 

maximum speed of 79 B-mode volumes/s for 3D scan conversion. We validated the size 

and shape of the 3D B-mode scan conversion output for a 2.2-cm spherical ball—in 3D 

elastography, we were able to visualize the 1- and 2-cm-diameter phantom lesion. We then 

distinguished between the lesion and the surrounding tissue in the phantom using transfer 

functions. I have designed and implemented using GPUs the world’s first known 
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implementation of the five-dimensional ultrasound system. I have collected and analyzed 

the data. 

7.2     Future Work 

The multistream real-time elastography method presented in Chapter 4 is essentially a 1D 

correlation search. This 1D correlation search can be extended to a 2D correlation search 

to obtain a more accurate displacement estimation. With this 2D correlation search, the 

NCC-based elastography on the GPU can be used to estimate displacement in the axial and 

lateral directions. This displacement estimation can be used to initialize the analytical 

minimization and dynamic programming (AM/DP) elastography [57] method’s initial 

search range. The limited area of interest method from Chapter 5 can also be used to decide 

whether a complete AM/DP elastography method must be calculated. 

The current da Vinci robotic palpation software does not communicate directly with the 

elastography system. A feedback loop can be established, where the elastography system 

receives the frequency and amplitude of palpation information from the palpation software. 

At the same time, the elastography system can also send information about the current 

strain information to the palpation software. Experiments can be performed to determine 

how this feedback mechanism enhances the quality of the elastography images. 

The method outlined in Chapter 5 for determining elastography quality via an image-based 

search uses a simple averaging technique. We can extend this method to a machine 

learning-based approach, where the information from the different regions of interest acts 

as the input for the learning algorithms. Several high-quality strain data sets can be 
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evaluated. The variables in the form of the average correlation and SNR of the region of 

interest and the final SNR, CNR and correlation average can be given as an input to the 

learning algorithm. This method currently compares consecutive RF images that may not 

give the best results because two in-plane RF image pairs may be three to four 

 images apart. We must extend this work to select high-quality images from a pool of 

images. 

The 5D US system must be validated with human data. The implementation of tracked 

ultrasound 3D USE and the corresponding 3D B-mode systems will increase the accuracy 

and stability of the 5D US. The method described in Chapter 5 can also be extended to 

obtain a stable 3D elastography volume. With the advent of virtual reality (VR) systems, 

the 5D US can be easily extended to the VR systems to allow the surgeon can see the layout 

of the patient's body and organs along with the 5D data. 
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9     Appendix A 

9.1      3D scan conversion on GPU 

Scan conversion helps to convert the data collected on the surface of 4D probe that depicts 

spherical sector, which is an array of images, to the appropriate location in space. This 

section details the equations used for scan conversion on GPU. We calculate φ, the angle 

of field of view by 

 Nϕ δ= ×                                                            (1) 

 where N is the number of slices per volume and δ  is the step angle of the motor. We 

then determine the dimension of the scan-converted volume by 
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                                               (2) 

where ( , )x y′ ′ . is the new (elevation, axial) size in pixels. In our case, x′ is user defined, τ is 

the radius of the curvature in pixels and y is the number of pixels in the axial direction in 

the original volume. We then calculate the step size in the axial direction by 

 1ir iτ= + +                                                             (3) 

where is the step size in the axial direction (pixels) from the origin of the probe for all 

= 0 to .  We then calculate the angle jθ from the center slice by 

ir i

y
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θ δ= − + ×                                                           (4) 

where  jθ  is negative or positive on the opposite sides of the center slice,  = 0 to x , 

where  x  is the number of pixels in the elevational direction. Typically x N=  when slice 

thickness is 1 pixel. We now calculate the forward index i′′  into the final volume along the 

axial direction by 
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We now calculate the forward index j′′  in the final volume along the elevation direction 

by 
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                                 (6). 

The following equation gives final scan conversion after substituting values of y′ , i′′ , 

and j′′  from Eqs. (3), (6), and (7) respectively: 

[ ] [ ]output k x y i x j input k x y i x j′ ′ ′′ ′ ′′× × + × + = × × + × +                           (7) 

where output  is the output volume buffer which will contain the scan-converted volume, 

input  is the input volume buffer which contains the US   machine acquired volume, 0k = -

z , z is the number of pixels in the lateral direction. 

j
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    GPU kernels execute Eqs. (1)-(7) that are highly parallel since index mappings are 

independent of each other. In the case of conflict, where multiple pixels from the different 

locations in the original buffer get mapped to the same pixel in the output buffer, we simply 

consider the maximum pixel value. There are holes created into the output slices, which 

are recovered using interpolation by a simple GPU-based averaging filter. 

    For this scan conversion to work and to keep the equations simple, we need to rotate the 

volume around an axis at the center of the volume and axis-align to elevation-axial-lateral 

directions. The rotation depicts swapping of elevation-axial and lateral-axial slices. The 

following equations give us an easy way to swap the values in the 3D buffers: 

[ ] [ ( 1)]postswap j y x k x i preswap i y z k z z j× × + × + = × × + × + − −                  (8) 

[ ( 1)] [ ]preswap j y x k x x i postswap i y z k z j× × + × + − − = × × + × +                  (9) 

where pre- and post-swap are the buffers before and after swapping of the pixels. A GPU 

kernel executes Eq. 8 just before the scan conversion and Eq. 9 after the scan conversion. 
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10     Appendix B 
 

10.1     Data for multi-stream GPU elastography 
The data for experiments in Chapter 4, that is earlier published as [2], can be found at: 

Source code: https://sourceforge.net/projects/multistreamelastography/ 

Data: http://dx.doi.org/10.7910/DVN/28010 

10.2     Data for five-dimensional ultrasound 
system 

The data for experiments in Chapter 6, that is earlier published as [3], can be found at: 

Data: http://dx.doi.org/10.7910/DVN/KZDHYE 
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10.3     Data for elastography image pair selection 
system by computing elastography on limited 
regions of interest 

The data for experiments in Chapter 5, is presented in this section. The data can be found 
at: 

Data: http://dx.doi.org/10.7910/DVN/28010 

 

 

Sr. 
no. Filtered Unfiltered 

Sr. 
no. Filtered Unfiltered 

Sr. 
no. Filtered Unfiltered 

1 0.0157 0.2618 26 4.5279 0.0771 51 4.3686 1.7027 
2 0.9464 0.2184 27 4.5245 2.4621 52 1.6034 2.0861 
3 0.0592 0.1878 28 0.9829 2.3756 53 0.4356 0.7284 
4 2.0861 0.3510 29 2.8279 3.1224 54 1.5652 0.7091 
5 0.2742 0.3193 30 2.6896 0.1052 55 0.0612 0.6997 
6 2.3915 0.1650 31 0.3616 0.3030 56 0.1221 1.9605 
7 2.1633 0.0308 32 2.1416 0.1332 57 5.3959 0.2713 
8 2.1194 0.1073 33 2.6025 0.1786 58 0.2418 0.0336 
9 1.5700 0.1785 34 0.1627 0.0188 59 3.8199 0.0516 

10 2.0082 0.3992 35 0.0572 0.0764 60 4.5812 0.1172 
11 2.9888 0.3457 36 0.1196 0.3226 61 4.5680 2.6734 
12 0.0949 0.4072 37 0.1964 2.3448 62 0.3912 1.8292 
13 3.9217 0.2406 38 2.3416 1.3703 63 0.1614 1.4713 
14 0.6862 0.1604 39 3.8025 0.0319 64 1.7983 0.0853 
15 1.7299 0.4284 40 0.2541 0.3431 65 1.4623 0.5075 
16 1.6597 0.1124 41 3.6489 0.0157 66 3.9524 0.3753 
17 1.8349 0.2572 42 0.3413 0.2383 67 0.2725 0.0153 
18 1.4302 0.0866 43 3.0854 0.6978 68 3.1971 0.3759 
19 0.2933 0.2514 44 3.2571 1.6268 69 3.2868 1.0701 
20 2.4581 0.0774 45 3.3038 0.9464 70 1.0217 2.0011 
21 1.9506 0.5932 46 3.1165 1.6797 71 1.1306 2.9321 
22 1.5164 0.1219 47 2.6262 0.2848 72 0.1773 0.2742 
23 1.6887 0.1307 48 0.6730 0.8689 73 0.8203 1.7992 
24 0.2231 0.1948 49 4.7457 0.0592 74 2.6227 2.3915 
25 1.7900 0.1461 50 3.2294 0.3561 75 2.7102 2.4422 

 

Table 10.1 Unfiltered vs Filtered elastography dataset (Sr. no. 1 – 75) for CNR values and used to 
generate the results in the section 5.3.2.1. 
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Sr. 
no. Filtered Unfiltered 

Sr. 
no. Filtered Unfiltered 

76 0.2150 1.8736 101 1.0180 0.4876 
77 0.1782 2.2093 102 3.0642 1.6658 
78 2.3811 1.7947 103 3.6253 0.9563 
79 3.2566 1.0608 104 3.6583 1.4360 
80 3.6077 1.6875 105 3.2873 1.7299 
81 3.8252 2.1633 106 0.5087 1.6597 
82 0.3724 2.1194       
83 3.2844 1.5700       
84 2.3671 2.0015       
85 2.1410 2.0082       
86 2.9623 1.4874       
87 0.2647 0.5378       
88 0.0006 0.7058       
89 0.4206 2.8579       
90 0.2031 2.9888       
91 0.1244 0.0949       
92 3.1522 0.1283       
93 0.6124 3.7848       
94 2.6108 3.9217       
95 0.6954 3.0546       
96 3.2973 0.6862       
97 3.4205 0.8640       
98 2.9129 0.6544       
99 3.3271 0.9548       

100 0.6528 0.2649       

 

 

 

 

 

 

Table 10.2 Unfiltered vs Filtered elastography dataset (Sr. no. 76 – 106) for CNR values and used to 
generate the results in the section 5.3.2.1. 
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Sr. 
no. Filtered Unfiltered 

Sr. 
no. Filtered Unfiltered Sr. no. Filtered Unfiltered 

1 1.0057 0.5458 26 0.8872 0.5360 51 1.1247 1.1076 
2 1.1439 0.4851 27 0.9450 1.0261 52 0.8352 1.1296 
3 1.0521 0.4593 28 0.9195 1.0097 53 0.4986 0.7588 
4 1.1296 0.5526 29 1.1353 1.1018 54 1.1207 0.7636 
5 0.9585 0.4485 30 1.1061 0.6653 55 0.9125 0.6915 
6 1.1587 0.4372 31 1.0361 0.5360 56 1.2551 0.6794 
7 1.1552 0.4518 32 1.1391 0.4957 57 1.0132 0.4494 
8 1.1399 0.4434 33 1.1140 0.7194 58 0.6337 0.4597 
9 1.0414 0.4475 34 1.3502 0.5014 59 1.1055 0.4134 

10 1.1584 0.4157 35 0.9645 0.6161 60 0.9819 0.4511 
11 0.8663 0.4566 36 0.5608 0.7613 61 1.1145 1.1348 
12 0.5932 0.4048 37 1.2962 1.0502 62 1.0031 1.0847 
13 1.0031 0.4005 38 1.2974 1.0076 63 1.6765 1.1118 
14 1.2463 0.4173 39 1.1370 0.5046 64 1.0010 0.6699 
15 1.0956 0.4702 40 0.8554 0.8634 65 0.8967 0.6533 
16 1.1385 0.4595 41 1.0923 1.0057 66 1.0229 0.6274 
17 1.1156 0.4545 42 1.1871 0.9729 67 0.9448 0.5738 
18 1.0778 0.3888 43 1.0615 1.0059 68 0.9504 0.6303 
19 3.3994 0.4936 44 1.1892 1.1380 69 1.0389 0.8544 
20 1.1459 0.4696 45 1.1729 1.1439 70 1.0468 1.1626 
21 1.1246 0.5772 46 1.1558 1.1127 71 0.7996 1.1364 
22 1.0332 0.4639 47 1.0710 0.8840 72 0.9437 0.9585 
23 1.1976 0.5316 48 0.6800 0.9295 73 0.9278 0.9784 
24 1.0666 0.4512 49 1.1652 1.0521 74 1.0079 1.1587 
25 1.0629 0.5099 50 1.0326 0.9295 75 1.0187 1.1175 

 

 

 

 

 

 

Table 10.3 Unfiltered vs Filtered elastography dataset (Sr. no. 1 – 75) for SNR values and used to 
generate the results in the section 5.3.2.1. 
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Sr. 
no. Filtered Unfiltered 

Sr. 
no. Filtered Unfiltered 

76 1.3654 0.9602 101 0.9158 0.6319 
77 1.0025 1.0930 102 1.0793 0.9176 
78 1.0075 1.1335 103 1.1534 0.9265 
79 1.1459 1.0397 104 1.1101 1.0684 
80 1.1212 1.1461 105 1.1553 1.0956 
81 1.1334 1.1552 106 1.1849 1.1385 
82 1.2238 1.1399       
83 1.1673 1.0414       
84 1.1077 1.1526       
85 1.0229 1.1584       
86 0.9938 1.0336       
87 0.8267 0.5107       
88 1.2904 0.4513       
89 1.2712 0.9016       
90 1.0095 0.8663       
91 1.3077 0.5932       
92 1.1192 0.4215       
93 1.0535 0.9860       
94 1.0727 1.0031       
95 0.9178 1.1115       
96 1.0882 1.2463       
97 1.1332 0.8563       
98 1.1661 0.4826       
99 1.0305 0.8444       

100 1.0043 0.7000       

 

 

 

 

 

 

Table 10.4 Unfiltered vs Filtered elastography dataset (Sr. no. 76 – 106) for SNR values and used to 
generate the results in the section 5.3.2.1. 



208 
 

 

 

Sr. 
no. 

w=10 
h=10 

w=15 
h=15 

w=20 
h=15 

w=25 
h=15 

1 0.2618 0.2618 0.2618 0.1029 
2 0.2184 0.1604 0.0866 0.1461 
3 0.3193 0.2572 0.1307 2.4621 
4 0.4072 0.1461 0.1461 0.7023 
5 0.1604 2.4621 2.4621 0.1052 
6 0.2572 2.3756 2.3756 0.3226 
7 0.0866 3.1224 3.1224 1.3703 
8 0.5932 0.3226 0.1052 0.0157 
9 0.1307 2.3448 0.3226 0.2383 

10 0.1461 1.3703 2.3448 0.6978 
11 2.4621 0.0157 0.0492 1.6268 
12 2.3756 0.2383 0.0157 0.9464 
13 3.1224 0.6978 0.6978 1.6797 
14 0.0188 1.6268 1.6268 0.0592 
15 0.3226 0.9464 0.9464 0.3561 
16 2.3448 0.0592 0.0498 1.7027 
17 1.3703 0.3561 0.3561 2.0861 
18 0.3431 1.7027 1.7027 0.7284 
19 0.0157 2.0861 2.0861 0.6997 
20 0.2383 0.7284 0.7284 1.9605 
21 0.6978 0.6997 0.6997 0.1172 
22 1.6268 1.9605 1.9605 2.6734 
23 0.9464 0.0516 0.1172 1.4713 
24 1.6797 0.1172 1.8292 1.0701 
25 0.2848 2.6734 1.4713 2.0011 

 

 

 

 

 

 

Table 10.5 Varying size of region of interest to calculate elastography dataset (Sr. no. 1 – 25) for CNR 
values and used to generate the results in the section 5.3.2.2. 
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Sr. 
no. 

w=10 
h=10 

w=15 
h=15 

w=20 
h=15 

w=25 
h=15 

26 0.0592 1.8292 1.0701 2.9321 
27 0.3561 1.4713 2.0011 0.2742 
28 1.7027 2.9321 2.9321 2.3915 
29 2.0861 0.2742 0.2742 2.4422 
30 0.7284 2.3915 2.3915 1.8736 
31 0.7091 2.4422 2.4422 2.2093 
32 0.6997 1.8736 1.8736 1.7947 
33 1.9605 2.2093 1.7947 1.0608 
34 0.2713 1.7947 1.0608 1.6875 
35 0.0516 1.0608 2.1633 2.1633 
36 0.1172 1.6875 2.1194 2.1194 
37 2.6734 2.1633 1.5700 1.5700 
38 1.8292 2.1194 2.0082 2.0015 
39 1.8292 1.5700 1.4874 2.0082 
40 0.0853 2.0015 2.8579 1.4874 
41 0.5075 2.0082 0.0949 2.8579 
42 0.3753 1.4874 3.7848 2.9888 
43 2.0011 2.8579 3.9217 0.0949 
44 2.9321 2.9888 3.0546 0.1283 
45 0.2742 0.0949 0.6862 3.7848 
46 2.3915 0.1283 0.8640 3.9217 
47 2.4422 3.7848 0.9548 0.6862 
48 0.0549 3.9217 0.2649 0.0730 
49 1.7947 3.0546 0.4876 0.2649 
50 1.0608 0.6862 1.6658 1.6658 

 

 

 

 

 

 

Table 10.6 Varying size of region of interest to calculate elastography dataset (Sr. no. 26 – 50) for CNR 
values and used to generate the results in the section 5.3.2.2. 
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Sr. 
no. 

w=10 
h=10 

w=15 
h=15 

w=20 
h=15 

w=25 
h=15 

51 2.1194 0.8640 0.9563 1.4360 
52 1.5700 0.2649 1.4360 1.7299 
53 2.0082 0.4876 1.7299 1.6597 
54 1.4874 0.1348 1.3641 1.8349 
55 0.7058 0.9563 1.8349 2.4035 
56 2.8579 1.4360 2.4035 0.1774 
57 2.9888 1.7299 1.4302 2.7782 
58 0.0949 1.6597 2.7782 0.9135 
59 0.1283 0.0891 0.9135 0.2065 
60 3.7848 1.8349 2.4581 1.9506 
61 3.9217 2.4035 0.1661 1.5164 
62 3.0546 1.4302 1.9506 0.1767 
63 0.6862 0.2935 1.5164 0.2231 
64 0.8640 0.9135 1.6887 1.7900 
65 0.2210 0.2029 0.2231 2.6018 
66 0.2649 1.9506 1.7900 2.3245 
67 0.4876 0.1470 2.6018 4.5279 
68 1.6658 0.2231 2.3245 4.5245 
69 0.3232 1.7900 4.5279 3.5382 
70 1.4360 2.6018 4.5245 2.6064 
71 1.7299 2.3245 3.5382 3.1633 
72 1.8349 4.5279 2.6064 0.9829 
73 2.4035 4.5245 3.1633 2.8279 
74 0.1789 3.5382 0.9829 0.1440 
75 2.7782 2.6064 2.8279 0.1453 

 

 

 

 

 

 

Table 10.7 Varying size of region of interest to calculate elastography dataset (Sr. no. 51 – 75) for CNR 
values and used to generate the results in the section 5.3.2.2. 
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Sr. 
no. 

w=10 
h=10 

w=15 
h=15 

w=20 
h=15 

w=25 
h=15 

76 2.4581 0.9829 0.1440 0.0678 
77 1.9506 2.8279 0.0678 4.1361 
78 1.5164 0.1453 0.0975 0.3554 
79 1.6887 0.0678 0.3554 0.7026 
80 1.0591 0.1078 0.7026 2.6896 
81 0.0381 0.7026 2.6896 2.9270 
82 1.7947 2.6896 1.3264 2.0489 
83 2.3245 2.9270 1.2976 1.3264 
84 4.5245 2.0489 1.7443 1.2976 
85 3.5382 0.1061 0.3616 1.7443 
86 3.1633 1.2976 2.1307 0.3616 
87 0.9829 1.7443 1.7247 0.0129 
88 2.8279 0.3616 2.1416 2.1416 
89 0.1440 2.1307 2.6025 2.6025 
90 0.1453 0.0016 0.1627 0.1627 
91 0.0678 2.1416 2.3342 2.3342 
92 2.0650 2.6025 0.3667 0.3667 
93 0.3554 0.1627 0.6134 2.0874 
94 0.7026 0.0443 0.1196 0.6134 
95 2.6896 0.3667 0.1367 0.1196 
96 2.9270 2.0874 1.0898 0.1367 
97 2.0489 0.6134 3.5876 1.0898 
98 1.2976 0.1196 5.0051 3.5876 
99 1.7443 0.1367 5.2231 5.0051 

100 0.0195 1.0898 0.6571 5.2231 
101 2.1416 3.5876 0.1959 0.6571 
102 2.6025 5.2231 2.3416 3.5137 
103 0.1627 4.2633 3.8025 2.3416 
104 0.0778 0.6571 0.1181 3.8025 
105 0.1527 3.5137 3.6075 3.5946 
106 0.3667 3.8025 3.6489 3.6075 

 

 

 

Table 10.8 Varying size of region of interest to calculate elastography dataset (Sr. no. 76 – 106) for 
CNR values and used to generate the results in the section 5.3.2.2. 
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Sr. 
no. 

w=10 
h=10 

w=15 
h=15 

w=20 
h=15 

w=25 
h=15 

1 0.5458 0.5458 0.5458 0.5624 
2 0.4851 0.4173 0.3888 0.5099 
3 0.4485 0.4545 0.5316 1.0261 
4 0.4048 0.5099 0.5099 0.6694 
5 0.4173 1.0261 1.0261 0.6653 
6 0.4545 1.0097 1.0097 0.7613 
7 0.3888 1.1018 1.1018 1.0076 
8 0.5772 0.7613 0.6653 1.0057 
9 0.5316 1.0502 0.7613 0.9729 

10 0.5099 1.0076 1.0502 1.0059 
11 1.0261 1.0057 0.5115 1.138 
12 1.0097 0.9729 1.0057 1.1439 
13 1.1018 1.0059 1.0059 1.1127 
14 0.5014 1.138 1.138 1.0521 
15 0.7613 1.1439 1.1439 0.9295 
16 1.0502 1.0521 1.8075 1.1076 
17 1.0076 0.9295 0.9295 1.1296 
18 0.8634 1.1076 1.1076 0.7588 
19 1.0057 1.1296 1.1296 0.6915 
20 0.9729 0.7588 0.7588 0.6794 
21 1.0059 0.6915 0.6915 0.4511 
22 1.138 0.6794 0.6794 1.1348 
23 1.1439 0.4134 0.4511 1.1118 
24 1.1127 0.4511 1.0847 0.8544 
25 0.884 1.1348 1.1118 1.1626 

 

 

 

 

 

 

Table 10.9 Varying size of region of interest to calculate elastography dataset (Sr. no. 1 – 25) for SNR 
values and used to generate the results in the section 5.3.2.2. 
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Sr. 
no. 

w=10 
h=10 

w=15 
h=15 

w=20 
h=15 

w=25 
h=15 

26 1.0521 1.0847 0.8544 1.1364 
27 0.9295 1.1118 1.1626 0.9585 
28 1.1076 1.1364 1.1364 1.1587 
29 1.1296 0.9585 0.9585 1.1175 
30 0.7588 1.1587 1.1587 0.9602 
31 0.7636 1.1175 1.1175 1.093 
32 0.6915 0.9602 0.9602 1.1335 
33 0.6794 1.093 1.1335 1.0397 
34 0.4494 1.1335 1.0397 1.1461 
35 0.4134 1.0397 1.1552 1.1552 
36 0.4511 1.1461 1.1399 1.1399 
37 1.1348 1.1552 1.0414 1.0414 
38 1.0847 1.1399 1.1584 1.1526 
39 1.0847 1.0414 1.0336 1.1584 
40 0.6699 1.1526 0.9016 1.0336 
41 0.6533 1.1584 0.5932 0.9016 
42 0.6274 1.0336 0.986 0.8663 
43 1.1626 0.9016 1.0031 0.5932 
44 1.1364 0.8663 1.1115 0.4215 
45 0.9585 0.5932 1.2463 0.986 
46 1.1587 0.4215 0.8563 1.0031 
47 1.1175 0.986 0.8444 1.2463 
48 1.5377 1.0031 0.7 0.5918 
49 1.1335 1.1115 0.6319 0.7 
50 1.0397 1.2463 0.9176 0.9176 

 

 

 

 

 

 

Table 10.10 Varying size of region of interest to calculate elastography dataset (Sr. no. 26 – 50) for 
SNR values and used to generate the results in the section 5.3.2.2. 
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Sr. 
no. 

w=10 
h=10 

w=15 
h=15 

w=20 
h=15 

w=25 
h=15 

51 1.1399 0.8563 0.9265 1.0684 
52 1.0414 0.7 1.0684 1.0956 
53 1.1584 0.6319 1.0956 1.1385 
54 1.0336 1.3407 1.0462 1.1156 
55 0.4513 0.9265 1.1156 1.1117 
56 0.9016 1.0684 1.1117 0.5289 
57 0.8663 1.0956 1.0778 1.0943 
58 0.5932 1.1385 1.0943 0.891 
59 0.4215 0.6793 0.891 1.0614 
60 0.986 1.1156 1.1459 1.1246 
61 1.0031 1.1117 0.5669 1.0332 
62 1.1115 1.0778 1.1246 1.4325 
63 1.2463 3.9715 1.0332 1.0666 
64 0.8563 0.891 1.1976 1.0629 
65 0.4061 8.2975 1.0666 0.9573 
66 0.7 1.1246 1.0629 0.8535 
67 0.6319 0.3168 0.9573 0.8872 
68 0.9176 1.0666 0.8535 0.945 
69 0.4734 1.0629 0.8872 0.8631 
70 1.0684 0.9573 0.945 0.9055 
71 1.0956 0.8535 0.8631 1.1262 
72 1.1156 0.8872 0.9055 0.9195 
73 1.1117 0.945 1.1262 1.1353 
74 0.622 0.8631 0.9195 0.5974 
75 1.0943 0.9055 1.1353 0.5898 

 

 

 

 

 

 

Table 10.11 Varying size of region of interest to calculate elastography dataset (Sr. no. 51 – 75) for 
SNR values and used to generate the results in the section 5.3.2.2. 
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Sr. 
no. 

w=10 
h=10 

w=15 
h=15 

w=20 
h=15 

w=25 
h=15 

76 1.1459 0.9195 0.5974 0.5989 
77 1.1246 1.1353 0.5989 1.0672 
78 1.0332 0.5898 0.9002 1.0429 
79 1.1976 0.5989 1.0429 0.8751 
80 1.0058 0.9601 0.8751 1.1061 
81 1.5123 0.8751 1.1061 1.1213 
82 1.1335 1.1061 1.0092 1.1886 
83 0.8535 1.1213 1.0758 1.0092 
84 0.945 1.1886 1.0569 1.0758 
85 0.8631 0.5432 1.0361 1.0569 
86 1.1262 1.0758 1.1303 1.0361 
87 0.9195 1.0569 1.0775 0.6545 
88 1.1353 1.0361 1.1391 1.1391 
89 0.5974 1.1303 1.114 1.114 
90 0.5898 0.795 1.3502 1.3502 
91 0.5989 1.1391 1.1071 1.1071 
92 1.0048 1.114 0.5947 0.5947 
93 1.0429 1.3502 0.6135 0.9975 
94 0.8751 0.9878 0.5608 0.6135 
95 1.1061 0.5947 0.508 0.5608 
96 1.1213 0.9975 0.8086 0.508 
97 1.1886 0.6135 0.8794 0.8086 
98 1.0758 0.5608 1.1327 0.8794 
99 1.0569 0.508 0.9528 1.1327 

100 0.7192 0.8086 0.5524 0.9528 
101 1.1391 0.8794 1.3005 0.5524 
102 1.114 0.9528 1.2974 1.0775 
103 1.3502 1.0168 1.137 1.2974 
104 1.4927 0.5524 2.4012 1.137 
105 0.5579 1.0775 1.0891 1.1217 
106 0.5947 1.137 1.0923 1.0891 

 

 

 

Table 10.12 Varying size of region of interest to calculate elastography dataset (Sr. no. 76 – 106) for 
SNR values and used to generate the results in the section 5.3.2.2. 
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Sr. 
No. 2 4 2 1 8 1 1 12 1 

Sr. 
No. 2 4 2 1 8 1 1 12 1 

1 0.2618 3.1224 0.1029 26 0.2742 2.2093 2.9321 
2 0.5932 0.1052 0.1461 27 2.3915 1.7947 0.2742 
3 0.1461 0.3226 2.4621 28 2.4422 1.0608 2.3915 
4 2.4621 2.3448 0.7023 29 1.8736 1.6875 2.4422 
5 2.3756 0.0498 0.1052 30 1.7947 2.1633 1.8736 
6 3.1224 0.2383 0.3226 31 1.0608 2.1194 2.2093 
7 0.3226 0.6978 1.3703 32 2.1633 1.57 1.7947 
8 2.3448 1.6268 0.0157 33 1.57 2.0015 1.0608 
9 1.3703 0.9464 0.2383 34 2.0082 2.0082 1.6875 

10 0.0157 1.6797 0.6978 35 1.4874 1.4874 2.1633 
11 0.2383 0.0592 1.6268 36 2.8579 2.8579 2.1194 
12 0.6978 1.7027 0.9464 37 2.9888 2.9888 1.57 
13 0.9464 2.0861 1.6797 38 0.0949 3.7848 2.0015 
14 0.3561 0.7284 0.0592 39 3.7848 3.9217 2.0082 
15 2.0861 0.6997 0.3561 40 3.9217 3.0546 1.4874 
16 0.7284 1.9605 1.7027 41 0.6862 0.6862 2.8579 
17 0.6997 0.1172 2.0861 42 0.864 0.864 2.9888 
18 0.1172 1.8292 0.7284 43 0.9548 0.2649 0.0949 
19 2.6734 1.4713 0.6997 44 0.4876 0.4876 0.1283 
20 1.8292 2.0011 1.9605 45 0.0773 1.6658 3.7848 
21 1.4713 2.9321 0.1172 46 0.323 1.436 3.9217 
22 0.0853 0.2742 2.6734 47 1.436 1.7299 0.6862 
23 1.0701 2.3915 1.4713 48 1.7299 1.6597 0.073 
24 2.0011 2.4422 1.0701 49 1.6597 1.8349 0.2649 
25 2.9321 1.8736 2.0011 50 1.3641 2.4035 1.6658 

 

 

 

 

 

 

Table 10.13 Varying weight for the region of interest to calculate elastography dataset (Sr. no. 1 – 50) 
for CNR values and used to generate the results in the section 5.3.2.3. 
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Sr. 
No. 2 4 2 1 8 1 1 12 1 

51 1.8349 1.4302 1.436 
52 2.4035 2.7782 1.7299 
53 1.4302 0.9135 1.6597 
54 0.2937 2.4581 1.8349 
55 0.9135 1.9506 2.4035 
56 0.2039 1.5164 0.1774 
57 0.165 1.6887 2.7782 
58 1.9506 0.2231 0.9135 
59 1.5164 1.79 0.2065 
60 1.6887 2.6018 1.9506 
61 1.79 2.3245 1.5164 
62 2.6018 4.5279 0.1767 
63 2.3245 3.5382 0.2231 
64 4.5279 3.1633 1.79 
65 4.5245 0.9829 2.6018 
66 3.5382 0.144 2.3245 
67 2.6064 0.1453 4.5279 
68 1.5597 0.0678 4.5245 
69 3.1633 4.1361 3.5382 
70 0.9829 0.3554 2.6064 
71 2.8279 0.7026 3.1633 
72 0.144 2.6896 0.9829 
73 0.0678 2.927 2.8279 
74 4.1361 2.0489 0.144 
75 0.3554 0.3616 0.1453 
76 0.7026 1.7247 0.0678 
77 2.6896 2.1416 4.1361 
78 2.927 2.6025 0.3554 
79 1.3264 0.1627 0.7026 
80 1.2976 2.3342 2.6896 

 

 

 

Table 10.14 Varying weight for the region of interest to calculate elastography dataset (Sr. no. 51 – 80) 
for CNR values and used to generate the results in the section 5.3.2.3. 
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Sr. 
No. 2 4 2 1 8 1 1 12 1 

Sr. 
No. 2 4 2 1 8 1 1 12 1 

1 0.5458 1.1018 0.5624 26 0.9585 1.093 1.1364 
2 0.5772 0.6653 0.5099 27 1.1587 1.1335 0.9585 
3 0.5099 0.7613 1.0261 28 1.1175 1.0397 1.1587 
4 1.0261 1.0502 0.6694 29 0.9602 1.1461 1.1175 
5 1.0097 0.4589 0.6653 30 1.1335 1.1552 0.9602 
6 1.1018 0.9729 0.7613 31 1.0397 1.1399 1.093 
7 0.7613 1.0059 1.0076 32 1.1552 1.0414 1.1335 
8 1.0502 1.138 1.0057 33 1.0414 1.1526 1.0397 
9 1.0076 1.1439 0.9729 34 1.1584 1.1584 1.1461 

10 1.0057 1.1127 1.0059 35 1.0336 1.0336 1.1552 
11 0.9729 1.0521 1.138 36 0.9016 0.9016 1.1399 
12 1.0059 1.1076 1.1439 37 0.8663 0.8663 1.0414 
13 1.1439 1.1296 1.1127 38 0.5932 0.986 1.1526 
14 0.9295 0.7588 1.0521 39 0.986 1.0031 1.1584 
15 1.1296 0.6915 0.9295 40 1.0031 1.1115 1.0336 
16 0.7588 0.6794 1.1076 41 1.2463 1.2463 0.9016 
17 0.6915 0.4511 1.1296 42 0.8563 0.8563 0.8663 
18 0.4511 1.0847 0.7588 43 0.8444 0.7 0.5932 
19 1.1348 1.1118 0.6915 44 0.6319 0.6319 0.4215 
20 1.0847 1.1626 0.6794 45 1.194 0.9176 0.986 
21 1.1118 1.1364 0.4511 46 0.4432 1.0684 1.0031 
22 0.6699 0.9585 1.1348 47 1.0684 1.0956 1.2463 
23 0.8544 1.1587 1.1118 48 1.0956 1.1385 0.5918 
24 1.1626 1.1175 0.8544 49 1.1385 1.1156 0.7 
25 1.1364 0.9602 1.1626 50 1.0462 1.1117 0.9176 

 

 

 

 

 

 

Table 10.15 Varying weight for the region of interest to calculate elastography dataset (Sr. no. 1 – 50) 
for CNR values and used to generate the results in the section 5.3.2.3. 
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Sr. 
No. 2 4 2 1 8 1 1 12 1 

51 1.1156 1.0778 1.0684 
52 1.1117 1.0943 1.0956 
53 1.0778 0.891 1.1385 
54 3.4623 1.1459 1.1156 
55 0.891 1.1246 1.1117 
56 2.0939 1.0332 0.5289 
57 0.5654 1.1976 1.0943 
58 1.1246 1.0666 0.891 
59 1.0332 1.0629 1.0614 
60 1.1976 0.9573 1.1246 
61 1.0629 0.8535 1.0332 
62 0.9573 0.8872 1.4325 
63 0.8535 0.8631 1.0666 
64 0.8872 1.1262 1.0629 
65 0.945 0.9195 0.9573 
66 0.8631 0.5974 0.8535 
67 0.9055 0.5898 0.8872 
68 1.023 0.5989 0.945 
69 1.1262 1.0672 0.8631 
70 0.9195 1.0429 0.9055 
71 1.1353 0.8751 1.1262 
72 0.5974 1.1061 0.9195 
73 0.5989 1.1213 1.1353 
74 1.0672 1.1886 0.5974 
75 1.0429 1.0361 0.5898 
76 0.8751 1.0775 0.5989 
77 1.1061 1.1391 1.0672 
78 1.1213 1.114 1.0429 
79 1.0092 1.3502 0.8751 
80 1.0758 1.1071 1.1061 

 

 

 

Table 10.16 Varying weight for the region of interest to calculate elastography dataset (Sr. no. 51 – 80) 
for CNR values and used to generate the results in the section 5.3.2.3. 
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 Figure 10.1 Raw dataset for visual classification of filtered elastography dataset (1-35): This figure 
shows the dataset classified by visual inspection on the resulting output of filtered elastography 
algorithm. The tuples below each image are (Image sequence number, CNR value, SNR value, group). 
The group contains value 0 or 1, where 1 indicates that the image appears to be a good quality elastogram 
as per the reference user and 0 indicates that the image appears to be a bad elastogram. 
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 Figure 10.2 Raw dataset for visual classification of filtered elastography dataset (36-70): This figure 
shows the dataset classified by visual inspection on the resulting output of filtered elastography 
algorithm. The tuples below each image are (Image sequence number, CNR value, SNR value, group). 
The group contains value 0 or 1, where 1 indicates that the image appears to be a good quality elastogram 
as per the reference user and 0 indicates that the image appears to be a bad elastogram. 
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 Figure 10.3 Raw dataset for visual classification of filtered elastography dataset (71-106): This figure 
shows the dataset classified by visual inspection on the resulting output of filtered elastography 
algorithm. The tuples below each image are (Image sequence number, CNR value, SNR value, group). 
The group contains value 0 or 1, where 1 indicates that the image appears to be a good quality elastogram 
as per the reference user and 0 indicates that the image appears to be a bad elastogram. 
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 Figure 10.4 Raw dataset for visual classification of freehand elastography dataset (1-35): This figure 
shows the dataset classified by visual inspection on the resulting output of freehand elastography 
algorithm. The tuples below each image are (Image sequence number, CNR value, SNR value, group). 
The group contains value 0 or 1, where 1 indicates that the image appears to be a good quality elastogram 
as per the reference user and 0 indicates that the image appears to be a bad elastogram. 
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Figure 10.5 Raw dataset for visual classification of freehand elastography dataset (36-70): This figure 
shows the dataset classified by visual inspection on the resulting output of freehand elastography 
algorithm. The tuples below each image are (Image sequence number, CNR value, SNR value, group). 
The group contains value 0 or 1, where 1 indicates that the image appears to be a good quality elastogram 
as per the reference user and 0 indicates that the image appears to be a bad elastogram. 
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Figure 10.6 Raw dataset for visual classification of freehand elastography dataset (71-106): This figure 
shows the dataset classified by visual inspection on the resulting output of freehand elastography 
algorithm. The tuples below each image are (Image sequence number, CNR value, SNR value, group). 
The group contains value 0 or 1, where 1 indicates that the image appears to be a good quality elastogram 
as per the reference user and 0 indicates that the image appears to be a bad elastogram. 
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	Figure 2.1 Elastography concept: Panel (A) shows the comparison of two RF-lines pre- and post-compression, that gives a strain profile to indicate the stiffness inside the tissue. Panel (B) shows a side-by-side comparison of elastography and B-mode data [2]. The ablated region is clearly visible in the elastography image, and the B-mode image shows the boundary between two layers [2]. 42
	Figure 4.1 Overall System Diagram: The figure shows overall system and data flow diagram of elastography image server which runs on a machine equipped with a GPU. The system is modular with each module configurable to run on different machines or on a same machine (exception is hardware dependent da Vinci surgical system, RF Server and EM Tracker Server).  The elastography image server is based on multi-stream elastography algorithm and with little change can handle both tracked and untracked RF data. The MUSiiC Sync synchronizes tracking and RF data based on timestamp to be processed by elastography image server. The system is flexible to be connected with da Vinci Surgical console to allow overlay of elastography and b-mode image stream. 70
	Figure 4.2 Algorithm of multi-stream GPU elastography and O-TRuE: The multi-stream GPU elastography algorithm is described on the left and the corresponding O-TRuE, which reuses several components of the multi-stream GPU elastography is on the right. 72
	Figure 4.3 Elastography stream pipeline: Figure shows contents of the elastography image stream. These are collection of kernel calls in CUDA necessary to generate elastography images [89]. Since these streams support data integrity, they can be plugged into distinct threads. 74
	Figure 4.4 Elastography Server: This figure shows real-time pipeline where data is acquired through a radio-frequency (RF) server which runs on a US machine. As can be seen, a combination of queue and threading mechanism is implemented to connect all the components efficiently. Queuing mechanism allows the receiver and processing threads to work independently. The processing threads sleep if there is no data available to process and are triggered by data receiving component whenever data is ready. Elastography threads are the multiple threads that are spawned per consecutive or selected pair of RF data received. Every thread can send out the data over the network using IGTLMessages. The nth thread can collect data from all the other n-1 threads to perform aggregate operations as averaging or weighted averaging of selective elastography images. 75
	Figure 4.5 Real-time Online tracked Ultrasound Elastography (O-TRuE): Figure shows the real-time online tracked US elastography (O-TRuE) where the cost function is calculated from combinations of the tracked RF data. Then the elastography images are computed for the top m RF data pairs according to the Crr values. The elastography images can then be fused together by simply averaging the images or by weighted averaging based on average correlation values of each elastography image. 76
	Figure 4.6 Integration with da Vinci surgical systems: Untracked elastography has been integrated with da Vinci surgical systems using a laparoscopic probe controlled by an arm of the da Vinci surgical robot. (C) Shows the overall setup. (D) Shows the view from surgeon’s console of how B-mode (B) and Elastography image (A) appear when overlaid in the console display. 89
	Figure 4.7  Timing graph to show speed comparison of multi-stream elastography (threaded) and non-stream elastography (normal): The graphs indicates run times and standard deviation of run time for window size 12, displacement 2 mm, overlap 98% (A, B) and Window size 16, displacement 4 mm, overlap 99% (C, D). The results are per 100 frames. The standard deviation is max 0.13 for Fig. (A), 0.122 for Fig. (B), 0.136 for Fig. (C), 0.167 for Fig. (D), which is very small for 100 frames. This graph also shows that the increased window size reduces the performance of the algorithm due to higher serial search within the large windows. 91
	Figure 4.8 Selection map of O-TRuE images: The row above each image sequence indicates the RF data pair index. For e.g. the pair identifier (n1, m1) indicates comparison of radio frequency (RF) data frame acquired at time   with that of the frame acquired at time. The pair (image rank, Crr value) below the image sequence indicates the rank and Crr value generated by O-TRuE. The pair (CNR, SNR) indicates contrast-to-noise ratio and signal-to-noise ratio values for each image. O-TRuE selected 90% good elastography images in top 20 ranked images with good CNR and SNR above 0.51 and 2.37 respectively. The Crr above 0.457 is observed to provide with good elastography images. 93
	Figure 4.9 Elastography image fusion: The images displayed in (a) is elastography image with single image (best O-TRuE) selection, (b) is elastography image for average of top 3 O-TRuE image selections, and  (c) is elastography image for average of top 5 O-TRuE image selections. The results indicates that the fusion by averaging the top 5 elastography images from O-TRuE gives good quality indicated by the average CNR and SNR values of 1.327 and 2.210 respectively. 94
	Figure 4.10 Elastography image stream analysis of consecutive frames in O-TRuE and Untracked elastography: An analysis of consecutive frames is done to understand the quality of strain images generated by O-TRuE and untracked elastography. (A) Shows a template region selected in the leftmost image and a target region selected in the rightmost image. We apply normalized cross-correlation in these regions as shown in eq. 13 to find max correlation value. A max correlation graph for 100 elastography image pairs is shown in (B), where the red dashed line is for O-TRuE and a blue dotted line is for untracked elastography. O-TRuE has a more consistent high correlation value across consecutive images. As indicated in Table 4.2, O-TRuE (β values) performs better than untracked elastography. (C) Shows the dataset for frames in range [51, 60]; here O-TRuE has its lowest cross-correlation value from 53 to 54; as can be seen, the image quality drastically changes in this range. 98
	Figure 4.11 Animal Experiment setup: An in-vivo animal experiment was performed on a pig liver; an ablation was induced in the liver using RITA ablator as shown in (C). Elasticity image can be seen in (A), corresponding B-mode image in (B). The ablation region was approximately 2 cm in diameter as validated by gross pathology of the liver in (D). 99
	Figure 4.12 Trend of untracked elastography for in-vivo pig data: NCC window size vs. CNR and SNR: The graph shows variation of CNR and SNR of individual sample points for different NCC window sizes with untracked elastography. The data was obtained from in-vivo experiments on 350 samples and 199 samples were selected after ignoring invalid strain values. (A) Shows snapshot of CNR values and (B) shows snapshot of SNR values varying for a small subset of the 199 samples. The average/min/max values of the CNR and SNR are listed in Table 4.3. The CNR and SNR across different window sizes are closely related per sample but the global variation in CNR and SNR is high due to wide range of values. 100
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	Figure 5.2 Elastography on selective regions of interest: The RF images are divided into regions of interest, and elastography is computed for the entire RF lines such that the selected regions of interest are calculated. We then calculate the average correlation and SNR values in the regions of interest. Greater weight is given to values in the regions of interest that are near the central areas of the image. 117
	Figure 5.3 Comparison of filtered vs. unfiltered elastography based on CNR histograms: For a low average CNR value of 0.1804, nearly ~43% of the unfiltered elastography images fall at this average CNR value and only ~22% of the filtered elastography images correspond to this average value. For values above the good quality CNR value of 2.6982, a total of ~34% of the filtered elastography image fall in that region, and a total of only 7.54% of the freehand elastography data correspond to that region. This finding indicates that the filtered elastography algorithm performs better than unfiltered elastography. 120
	Figure 5.4 Filtered vs. unfiltered elastography SNR histogram comparison: For SNR values in the range 0 to 1, a total of ~66% of the unfiltered elastography images and 22.64% of the filtered elastography fall under these value range. Lower SNR values indicate that more low-quality images are acquired with unfiltered elastography. The values change for the range 1 to 1.5, with a total of 75.47% of the filtered elastography images falling under the threshold, and the remaining 33.96% of the freehand elastography images falling under the threshold. This finding indicates that filtered elastography performs better than unfiltered elastography. 123
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