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Abstract

A majority of data processing techniques across a wide range of technical disci-

plines require a representation of the data that is meaningful for the task at hand in

order to succeed. In some cases one has enough prior knowledge about the problem

that a fixed transformation of the data or set of features can be pre-calculated, but

for most challenging problems with high dimensional data, it is often not known what

representation of the data would give the best performance. To address this issue,

the field of representation learning seeks to learn meaningful representations directly

from data and includes methods such as matrix factorization, tensor factorization,

and neural networks. Such techniques have achieved considerable empirical success

in many fields, but common to a vast majority of these approaches are the significant

disadvantages that 1) the associated optimization problems are typically non-convex

due to a multilinear form or other convexity destroying transformation and 2) one is

forced to specify the size of the learned representation a priori.

This thesis presents a very general framework which allows for the mathematical

analysis of a wide range of non-convex representation learning problems. The frame-

ii



ABSTRACT

work allows the derivation of sufficient conditions to guarantee that a local minimizer

of the non-convex optimization problem is a global minimizer and that from any

initialization it is possible to find a global minimizer using a purely local descent

algorithm. Further, the framework also allows for a wide range of regularization to

be incorporated into the model to capture known features of data and to adaptively

fit the size of the learned representation to the data instead of defining it a priori.

Multiple implications of this work are discussed as they relate to modern practices

in deep learning, and the advantages of the approach are demonstrated in applica-

tions of automated spatio-temporal segmentation of neural calcium imaging data and

reconstructing hyperspectral image volumes from compressed measurements.

Primary Reader: Dr. René Vidal

Secondary Reader: Dr. Daniel Robinson
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Chapter 1

Introduction

A large majority of modern data processing techniques rely on finding or having

access to a meaningful representation of data in order to make sense of complicated,

high-dimensional datasets. For tasks such as data exploration, finding an easily in-

terpretable and problem-meaningful representation of the data is itself the end-goal,

while more focused tasks, like classifying entries in a dataset into an appropriate

class or removing noise and corruptions from the data, critically depending on the

data representation being suitable for the particular task at hand to ensure success of

the method. In some sense, this idea of needing a useful representation of a dataset

forms a founding principle in many technical disciplines. For example, in classical

signal processing a fundamental concept is the notion that signals can be simultane-

ously represented as either a sequence of values or as the coefficients of a weighted

summation of sinusoids obtained via the Fourier transform. When designing a filter

1



CHAPTER 1. INTRODUCTION

to extract signals with a known frequency spectrum, one derives little insight from

studying a sequence of signal values as a function of time, while similarly one would

be hard pressed to identify if a given image was a dog or a tiger after being shown

an image of Fourier coefficients. Of course, the above example is somewhat contrived

as the Fourier transform provides a simple means to switch between the two repre-

sentations, but it speaks to the importance of choosing a representation of the data

appropriate for the problem one wishes to solve.

To make this idea more concrete, consider the problem of classification using

linear classifiers. The top panel of figure 1.1 shows a collection of 2-dimensional data

points from 3 different classes (red, green, and blue) which are arranged in concentric

rings (left). If we only have access to linear classifiers to separate the 3 classes, one

would have to find many linear decision boundaries (to approximate circular decision

boundaries) to separate the 3 circles using the raw data, but by simply converting

the data to polar coordinates (right) it is easy to separate the classes with 2 linear

decision boundaries. Certainly in this example it is relatively trivial to recognize that

a suitable data representation is to convert the data into polar coordinates, but for

more challenging classification tasks, such as classifying an image as being either a dog

or a tiger (bottom panel of figure 1.1), it is highly non-trivial to find a transformation

of the data that allows the images to be linearly separated.

Historically, a great deal of work has approached such problems by construct-

ing and analyzing “hand-designed” data representations, where one fixes a priori a

2
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Figure 1.1: Classification with Linear Classifiers Top Panel: Hypothetical 2-
dimensional data points from 3 classes (red, blue, and green) in Cartesian (left) and
polar coordinates (right). In polar coordinates the 3 classes are easily separated via
linear classifiers. Bottom Panel: Example images from the dog and tiger classes of
the ImageNet database (left). Separation of dog and tiger classes after applying an
ideal transformation of the data (right).
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transformation of the data or calculates a predetermined set of features from the data

to use in subsequent analysis. Transforming a signal from the time domain to the

frequency domain via a Fourier transform is one such example, as are more modern

signal processing techniques like representing the signal via a collection of wavelets

coefficients [1]. Further, in specific applications one can similarly find a development

of specialized problem-specific transformations. For example, in image classification

one finds techniques and hand-crafted features such as morphological image process-

ing [2], local binary patterns (LBP) [3], histogram of oriented gradients (HOG) [4],

or the scale-invariant feature transforms (SIFT) [5]. While in some cases there is

a strong theoretical justification for choosing a particular data representation based

on known information about the problem, such as a physical model that describes

how the data is generated, often times the practitioner is left with little guidance

as to what features or transformations would be most advantageous for a particular

problem and is forced to perform trial and error to choose the best representation.

Due to the somewhat arbitrary choice of a hand-designed data representation, an

alternative approach is to instead try to find a relevant representation for the data

which is tailored to the task at hand by learning a representation directly from the

dataset. While this idea sounds attractive in principle, there are many challenges that

arise in practice. The first is simply the fact that attempting to learn representations

directly from the data greatly increases the scope of the problem we are trying to

solve. For example, in an image classification task, learning a few parameters for a
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classifier that operates on a predefined set of features typically requires significantly

fewer parameters than learning a full transformation of the input image, which must

then be fed into a classifier (whose parameters also have to be learned). As a result

of this significantly increased problem scope, great care must be taken to ensure that

what one is learning is not simply “over-fitting” to noise in the dataset. This requires

either 1) a very large amount of data (which is becoming more feasible in the era of

“big data”), 2) careful mathematical modeling of the problem to ensure that the rep-

resentations we learn are “good” in some sense, or 3) some combination of the above

two points. Further, beyond the greatly increased scope of the problem and increased

risk of overfitting, another significant challenge to learning representations directly

from the data is the fact that typically one is required to solve a very challenging

optimization problem whose solution cannot be found in polynomial time. However,

despite these numerous practical challenges, learning representations directly from

the data remains a very powerful concept and has achieved very significant empirical

success in multiple real-world applications.

1.1 Relevance to Biology

To motivate the relevance of these general ideas in biology, consider the problem

of processing neural calcium imaging data. Calcium imaging is a recently developed

biological technique that records changes in the intracellular calcium level of individ-

5
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ual cells through the use of either synthetic or genetically encoded calcium sensitive

fluorescent molecules. The most common application of calcium imaging is in elec-

trically excitable cells, such as cardiac myocytes or neurons, where the large changes

in intracellular calcium that occur during a depolarizing action potential can induce

large changes in the fluorescent signal which can be observed by recording videos of

the cells with a fluorescent microscope [6]. Given a movie containing the fluorescent

signals recorded from a population of electrically excitable cells (which from here on

we will assume are neurons), the overall goal when processing a calcium signal movie

is to recover 3 pieces of information. First, we simply need to estimate how many

active neurons are in the movie. Then, for each active neuron, we wish to estimate

both the temporal fluorescent signal of the neuron (and in particular when the action

potentials occur) as well as a segmentation of that neuron in space. This is depicted

in the top panel of Figure 1.2, where for a given neuron, we wish to estimate the tem-

poral signal, which can be completely defined by the action potential times (red dots)

and an (assumed known) model of the calcium dynamics given the action potential

times, as well as the spatial segmentation of the neuron. The bottom panel of figure

1.2 then depicts the estimated temporal signals and spatial segmentations for all 10

neurons in the movie.

The problem of estimating these properties from a given calcium image movie

highlights many of the common challenges one encounters in learning representations

directly from data. First, the size of the representation has to be estimated somehow,

6
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Calcium Movie

All Temporal Signals

Single Neuron 
Temporal Signal

All Segmentations

Single Neuron
Spatial Segmentation

Figure 1.2: Cartoon depiction of a calcium imaging dataset. Top Panel: Estimated
temporal signal (with action potential times shown as red dots) and spatial segmen-
tation of a signal neuron from the calcium imaging movie. Bottom Panel: Estimated
temporal signals and spatial segmentations of all 10 neurons in the dataset.
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which in this case corresponds to estimating the number of active neurons in the data.

However, even if one knows the number of active neurons in the data, it is still unclear

how to estimate both the temporal signals and the spatial segmentations simultane-

ously. If we are provided with the spatial segmentations of all of the neurons, then it

is straight-forward to estimate the temporal signals by averaging the pixels within the

segmentation of a neuron at each frame of the video; then from the temporal signal

there are established techniques to estimate the action potential times [7]. Likewise,

if we were given the temporal signals, one could envision a method to estimate the

spatial segmentations by looking for pixels with strong correlations with the provided

temporal signal. When both components of the representation are unknown, how-

ever, the problem becomes significantly more challenging. This “chicken-or-the-egg”

problem is not unique to calcium imaging but rather encapsulates a fundamental

challenge in almost every technique that seeks to learn meaningful representations

directly from the data. For example, in the case of classifying images, if one wishes

to learn discriminative features directly from the data, one must choose the number

of features to learn, while simultaneously learning parameters that describe both the

features and the classifier (which takes as input the learned features).

8
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1.2 Thesis Contributions

At a high level, this thesis will be largely devoted to addressing the challenges

associated with learning representations directly from high-dimensional data. In par-

ticular, it will focus on how one can model representation learning problems in a

way that allows known prior information to be incorporated into the model to com-

bat the effects of over-fitting while also providing a general mathematical framework

to ensure that the associated mathematical optimization problem has nice properties

that make it conducive to being solved efficiently. While representation learning tech-

niques have achieved great empirical success in many application areas, the examples

above illustrate that in practice there are still a few fundamental challenges one faces

when trying to learn representations directly from the data. The first issue is that

one is must typically select the size of the learned representation a priori. Choosing

too small of a representation will prevent the model from having a sufficient degree

of expressive power to accomplish the task at hand, while choosing too large of a

representation leads to over-fitting the representation to noise in the data. A second

major issue that is common to the vast majority of representation learning techniques

is the fact that the associated optimization problems are non-convex (see section 2.2).

As a result, one is typically only able to find an approximate solution to the proposed

optimization problem, and the approximate solution that is found will heavily de-

pend on the particular choice of initialization one uses and specific details of how one

attempts to solve the optimization problem.
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To address these issues, this thesis will focus largely on how carefully constructed

regularization can be used to improve representation learning techniques. At a high

level, this will afford two major advantages. First, by correct construction of the

regularization function in the representation learning formulations, it will possible to

derive techniques that effectively fit the size of the learned representation to the data

directly, as opposed to forcing one to choose a representation size a priori. Second,

although the overall problem of learning data representations is typically a non-convex

optimization problem, under the conditions of the mathematical framework developed

here, it is possible to provide sufficient conditions to guarantee that local minima are

globally optimal and that a global minimizer can always be found from local descent.

1.3 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 introduces the

necessary mathematical background material and notation. First, an overview of the

basic principles of optimization is provided, which includes the various types of opti-

mality, the benefits of convex optimization problems, and discussion of several forms

of duality. Next, a review of common methods used for representation learning is dis-

cussed, such as matrix factorization, sparse/low-rank methods, tensor factorization,

and both classical and modern developments of neural networks.

Chapter 3 will focus on the problem of solving structured matrix factorization
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problems. By using a particular form of regularization that allows for prior assump-

tions to be placed on the matrix factors, it is shown that a wide range of structured

matrix factorization problems can be done within a framework that guarantees that

local minima will be globally optimal and which fits the size of the learned matrix

factorization to the data. A few practical algorithms are also provided to solve the

matrix factorization problem, and bounds regarding how closely a given approximate

solution of the optimization problem is to the global optimum are derived.

In chapter 4, these ideas are significantly extended and generalized to a wide

range of representation learning problems. In particular, the framework is general-

ized to any mapping which is a positively homogeneous function of the factorized

variables. This includes a wide variety of representation learning problems, such as

tensor factorization and training deep neural networks. Results are again derived

to guarantee that local minima of the non-convex factorization problem are globally

optimal. Moreover, it is shown that if the size of the representation is initialized to

be sufficiently large, then from any arbitrary initialization there must always exist

a non-increasing path to a global minimizer (i.e., from any point one can follow a

path to a global minimizer such that the objective function never increases along

that path). Further, a meta-algorithm is constructed that allows one to use any local

descent strategy to find a global minimizer.

Chapter 5 concludes the thesis by demonstrating the proposed structured matrix

factorization techniques on real-world applications. First, a formulation is derived to

11
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do a spatio-temporal segmentation of neural calcium imaging data, which simulta-

neously estimates neural spike trains and spatial segmentations from a raw calcium

imaging video. Results of the proposed method are provided for both phantom exper-

iments and on real data taken from awake mice. Second, experiments are provided

on the application of recovering hyperspectral images from a series of compressed

measurements.

12



Chapter 2

Mathematical Preliminaries

Before proceeding further, basic relevant mathematical background material will

be introduced, and the notational conventions used in this thesis will be defined.

2.1 Optimization Basics

The topics discussed in this thesis will largely revolve around solving optimization

problems, which take the general form

min
X

f(X) s.t. X ∈ C, (2.1)

where the set C ⊆ RD will be referred to as the constraint set, and the function

f : C → R will be referred to as the objective function. If C = RD then the

optimization problem will be said to be unconstrained, while if C ⊂ RD the opti-

13
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mization problem will be said to be constrained. Note that a constrained problem

can always be converted to an unconstrained problem via the use of the indicator

function, which is defined as follows.

Definition 1 The indicator function of a set C is defined as

δC(x) =

⎧⎪⎪⎨⎪⎪⎩
0 x ∈ C

∞ x /∈ C.
(2.2)

Given this definition, the constrained problem in (2.1) can be rewritten in uncon-

strained form as

min
X

f(X) + δC(X). (2.3)

When solving optimization problems, one can discuss several different types of op-

timality. Outside of the formal optimization literature, the specific type of optimality

being referenced by an author can sometimes be somewhat ill-defined, with various

authors using differing concepts of things such as “local minima”. To ensure clarity,

the definitions assumed by this thesis are formalized below, with the first, and most

straightforward, being global optimality, which is defined as follows:

Definition 2 A point Xopt is said to be a global minimizer of the optimization

problem given in (2.1) if Xopt ∈ C and ∀Z ∈ C we have f(Xopt) ≤ f(Z).

A weaker notion of optimality is that of local optimality.

Definition 3 A point Xlocal is said to be a local minimizer of the optimization

14
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problem given in (2.1) if Xlocal ∈ C and ∃ϵ > 0 such that ∀Z ∈ C∩{X ′ : ∥X ′−X∥ ≤ ϵ}

we have f(Xlocal) ≤ f(Z).

From the definitions, it is clear that local optimality is weaker than global optimality

and all global minimizers must also be local minimizers. A still weaker form of

optimality is the concept of first order optimality, but before discussing this concept,

one must first introduce the notion of a subgradient.

Definition 4 Given a function f : RD → R, Z ′ ∈ RD is said to be a regular

subgradient of f at X, notated as Z ′ ∈ ∂̂f(X), if

lim inf
X′→X:X′ ̸=X

f(X ′)− f(X)− ⟨Z ′, X ′ −X⟩
∥X ′ −X∥

≥ 0. (2.4)

Further, Z ∈ RD is said to be a general subgradient of f at X, notated as Z ∈

∂f(X), if there exists sequences (Xk, Zk) such that Xk → X, f(Xk) → f(X), and

Zk ∈ ∂̂f(Xk)→ Z.

This thesis will only very briefly rely on this general form of the subgradient, which is

mentioned primarily for completeness, and instead a significantly simplified notion of

a subgradient will be discussed below in the context of convex functions. Interested

readers can find an extremely detailed analysis of subgradients in [8], but it is worth

mentioning the basic facts that in general ∂̂f(X) ⊆ ∂f(X) and if f(X) is differentiable

at X with gradient ∇f(X), then ∂̂f(X) = ∂f(X) = ∇f(X).

15
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Having introduced the notion of a subgradient, first order optimality can now

be defined and shown to be a necessary condition for the other forms of optimality

discussed above.

Definition 5 Given a function f : RD → R, a point X̄ is said to be a critical point

of f , or equivalently X̄ is said to satisfy the first order optimality conditions, if

0 ∈ ∂f(X̄).

Theorem 1 [8, Thm. 10.1] If a function f : RD → R has a local minimum at

Xlocal, then Xlocal must be a critical point of f .

If f is a differentiable function, then the above theorem is simply Fermat’s theorem

from basic calculus, but the use of general subgradients allows for the theorem to be

extended to an arbitrary function. Also, recall that with the use of indicator functions

discussed above, this also allows one to consider first order optimality conditions for

constrained optimization problems.

2.2 Convexity and Duality

A fundamental concept in optimization is the notion of convexity, which can be

summarized by the following two definitions:

Definition 6 A set C ⊆ RD is a convex set if ∀(X ∈ C,Z ∈ C) and ∀µ ∈ [0, 1]

we have µX + (1− µ)Z ∈ C.
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Definition 7 Given a convex set C, a function f : C → R is said to be a convex

function on the set C if ∀(X ∈ C,Z ∈ C) and ∀µ ∈ [0, 1] we have f(µX + (1 −

µ)Z) ≤ µf(X) + (1− µ)f(Z).

An optimization problem of form (2.1) is then said to be a convex optimization

problem if C is a convex set and f is a convex function on C. In general, the

difference between a convex and a non-convex optimization problem represents a

major bifurcation in the field of optimization. While a full review of the benefits of

convex optimization is of course beyond the scope of this thesis and can be found in

any optimization text [9, 10], one of the major advantages afforded by convexity is

that first order optimality conditions are sufficient to guarantee global optimality. In

particular, one has the following result.

Proposition 1 [8, Thm. 10.1 and Prop. 8.12] If f : RD → R is a convex function,

then

∂̂f(X) = ∂f(X) = {Z : f(X ′) ≥ f(X) + ⟨Z,X ′ −X⟩ , ∀X ′ ∈ RD} (2.5)

and Xopt is a global minimizer of f if and only if 0 ∈ ∂f(Xopt).
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From the above discussion, the relations between various forms of optimality for

convex and non-convex functions are succinctly described by the relation,

Non-Convex: Global minimizer =⇒ Local minimizer =⇒ Critical point

Convex: Global minimizer ⇐⇒ Local minimizer ⇐⇒ Critical point.

The equivalence between the three forms of optimality in convex optimization is a

major advantage as it guarantees that one needs to only consider local information

about the function to test if the point is globally optimal. For general non-convex

optimization, this fails to be the case, and global optimality can only be assured by

exhaustively exploring the entire search space, which requires performing a number

of computations that potentially grows exponentially with the number of variables.

2.2.1 Fenchel Dual

A second major benefit provided by working with convex optimization problems

is the notion of duality. There are multiple different notions of duality, but the first

that will be discussed is that of Fenchel Duality, which is defined as follows.

Definition 8 Given a function f : RD → R, the Fenchel dual (also sometimes

referred to as the conjugate function) will be notated f ∗ : RD → R and is defined as

f ∗(Z) ≡ sup
X
⟨Z,X⟩ − f(X). (2.6)
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The Fenchel dual has many interesting connections with convex functions, which are

too numerous to describe here (and full details can be found in [8, 9]), but a few

important facts of the Fenchel dual are described in the following theorem:

Theorem 2 [8, Thm. 11.1 and Prop. 11.3] Given a function f : RD → R, then its

Fenchel dual, f ∗, and the dual of the dual, (f ∗)∗, are convex functions; (f ∗)∗ ≤ f ;

and f(X) + f ∗(Z) ≥ ⟨X,Z⟩ for all (X,Z). Further, if f is a convex function, then

(f ∗)∗ = f and the following holds:

Z ∈ ∂f(X) ⇐⇒ X ∈ ∂f ∗(Z) ⇐⇒ f(X) + f ∗(Z) = ⟨X,Z⟩ . (2.7)

The above theorem provides several useful results that will be used in various forms

in this thesis, with the first being the fact that equation (2.7) gives a convenient

means to characterize the subgradients of certain convex functions. Second, the dual

of the dual, (f ∗)∗, often referred to as the convex envelope of the function f ,

can be informally defined as the convex function which most closely lower bounds f

(see [8, Thm. 11.1] for the formal definition). As will be discussed below, replacing

a non-convex function with its convex envelope has led to the development of many

commonly used convex regularizers in sparse and low-rank methods.
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2.2.2 Lagrangian Duality

Another notion that often arises in the context of optimization is that of La-

grangian duality. Lagrangian duality is largely a special case of Fenchel duality,

as many of the results in Lagrangian duality can be derived from the concepts of

Fenchel duality [8,9]. Lagrangian duality is often used in the context of a constrained

optimization problem with the form

min
X

f(X) s.t.
fi(X) ≤ 0 i ∈ {1, . . . ,m}

A(X) = b,

(2.8)

where A denotes a linear operator, b ∈ Rd is a vector of constants, and the fi functions

are used to enforce various inequality constraints1. Given a problem in the above

form, one can introduce additional Lagrange multiplier terms, Λ ∈ Rd and γ ∈

Rm, to enforce the constraints from the original problem (referred to as the primal

problem) and define the Lagrangian function as

L(X,Λ, γ) = f(X) + ⟨Λ,A(X)− b⟩+
m∑
i=1

γifi(X). (2.9)

Given this form, the theory of Lagrange duality guarantees the following:

sup
Λ,γ≥0

inf
X
L(X,Λ, γ) ≤ inf

X
sup
Λ,γ≥0

L(X,Λ, γ). (2.10)

1Note that this is the most common form of Lagrangian duality, but more general forms of
Lagrangian duality also exist [8].
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Note that for any point X which does not satisfy the constraints from the primal

problem, supΛ,γ≥0 L(X,Λ, γ) =∞, while if X is a feasible point of the primal problem

then supΛ,γ≥0 L(X,Λ, γ) = f(X). As a result, the right-hand side of the inequality

in (2.10) is equivalent to the primal problem. The left-hand side of (2.10) is referred

to as the dual problem, and the inequality comes from a property known as weak

duality which holds for any choice of functions f and fi, i = 1, . . . ,m. If f and fi, i =

1, . . . ,m are convex functions, then provided a few technical constraint qualifications

are satisfied, the inequality in (2.10) becomes an equality and the problem is said

to have strong duality [8, 9]. Strong duality thus provides an alternative means to

approach a convex optimization problem, as it guarantees that one can equivalently

solve either the primal or the dual problem. Additionally, strong duality provides a

means of guaranteeing global optimality, as one can verify if the value of the primal

problem equals the value of the dual problem. If the two are not equal, then the given

solution is known to be non-optimal, and the difference between the primal and the

dual values is referred to as the duality gap.

2.2.3 Polar Duality and Gauges

The final form of duality that will be discussed is that of polar duality. Polar

duality is based on the notion of a polar set, which is defined as follows:

Definition 9 Given any set C ⊂ RD such that 0 ∈ C, the polar set of C is notated
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as C◦ ⊂ RD and defined as

C◦ ≡ {Z : ⟨Z,X⟩ ≤ 1 ∀X ∈ C}. (2.11)

Similar to the Fenchel dual function, the polar set will always be convex regardless of

the choice of C, and if C is itself closed and convex then the polar of the polar will

be the original set C. This is formalized by the following theorem.

Theorem 3 [8, Ex. 11.19] Given any set C ⊂ RD such that 0 ∈ C, then C◦ ⊂ RD

is a convex set with 0 ∈ C◦. Further, if C is also closed and convex, then (C◦)◦ = C.

The later case of the above theorem, where C is a closed and convex set which contains

the origin, is particularly useful in convex analysis as it allows one to define a gauge

function.

Definition 10 Given a closed, convex set C ⊂ RD such that 0 ∈ C, the gauge

function on the set C, σC : RD → R+ ∪∞, is defined as

σC(X) ≡ inf{µ ≥ 0 : X ∈ µC}. (2.12)

Note that gauge functions are generalizations of norms, and can be equivalently de-

fined through the following result:

Theorem 4 [11, Chap. 15] A function σ : RD → R+∪∞ is a gauge function if and

only if
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1. σ(0) = 0, and ∀X ̸= 0, σ(X) > 0.

2. ∀(X, Y ), σ(X + Y ) ≤ σ(X) + σ(Y ).

3. ∀α ≥ 0, σ(αX) = ασ(X).

To see how gauge functions are generalizations of norms, note that norms satisfy all

of the above conditions, and for C = {Z : ∥Z∥ ≤ 1} then σC(X) = ∥X∥. Further, for

a gauge function to be a norm, it must also be invariant to negative scaling, σ(−X) =

σ(X), which can be assured if C is a symmetric set, i.e., ∀X, X ∈ C ⇐⇒ −X ∈ C.

Combining the concepts of a polar set, a gauge function, and Fenchel duality, one

can now show many properties regarding the relationships between gauge functions,

their subgradients, and polar sets. For notational purposes, we will notate the gauge

function induced by the polar of set as σ◦
C and refer to it as the polar function,

σ◦
C(X) ≡ σC◦(X). (2.13)

Having introduced the notation, we then have the following results.

Theorem 5 [11] Given a closed, convex set C ⊂ RD such that 0 ∈ C, then one has

the following relations

1. ∀(X,Z) ⟨X,Z⟩ ≤ σC(X)σ◦
C(Z).

2. (σC)
∗(Z) = δC◦(Z) and (σ◦

C)
∗(X) = δC(X).

3. ∂σC(X) = {Z : ⟨X,Z⟩ = σC(X), σ◦
C(Z) ≤ 1}.
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4. ∂σ◦
C(Z) = {X : ⟨X,Z⟩ = σ◦

C(Z), σC(X) ≤ 1}.

To provide some intuition for the above result, consider as an example the case of the

lq norms, defined for q ∈ [1,∞] as

∥x∥q ≡

(
D∑
i=1

|xi|q
)(1/q)

. (2.14)

For a given lq norm, its corresponding dual norm (or equivalently polar function) is

the lq′ norm (∥x∥◦q = ∥x∥q′) where q and q′ are related as 1/q+1/q′ = 1, with the well

known examples of this result being (∥x∥1)◦ = ∥x∥∞, (∥x∥∞)◦ = ∥x∥1, and (∥x∥2)◦ =

∥x∥2. Further, for the lq norms, condition 1 of the above theorem gives the well

known Hölder inequality. Likewise, condition 3 (and 4) gives well known results for

the subgradients of norms, e.g., ∂∥x∥1 = {z : ⟨x, z⟩ = ∥x∥1, ∥z∥∞ ≤ 1} = SGN(x),

where SGN(x) is the point to set mapping

[SGN(x)]i ≡

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1 xi > 0

−1 xi < 0

[−1, 1] xi = 0.

(2.15)

More generally, the basic properties given in Theorem 5 form foundational principles

in convex analysis and will be used multiple times during the development of the

ideas in this thesis.
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2.2.4 Proximal Operators

The final piece of optimization background material that will be necessary to

introduce is the concept of a proximal operator, which is defined as follows:

Definition 11 Given a closed, convex function g, the proximal operator of g is

notated proxg and defined as

proxg(x) ≡ argmin
z

1
2
∥x− z∥2F + g(z), (2.16)

where ∥·∥2F denotes the squared Frobenius norm, ∥z∥2F =
∑

i z
2
i . Further, the Moreau

envelope of g is notatedMg(x) and defined as

Mg(x) ≡ 1
2
∥x− z̄x∥2F + g(z̄x), (2.17)

where z̄x = proxg(x).

Proximal operators arise in a variety of optimization algorithms but are most com-

monly used as a means to optimize non-differentiable objective functions. This is

largely due to the facts that the Moreau envelope is continuous, with gradient equal

to proxg(x), and that the minimum of the Moreau envelope of g is equal to the mini-

mum of g and the minima of the two functions are achieved at the same point [12]. As

a result, if one needs to minimize a function which consists of a convex, differentiable

25



CHAPTER 2. MATHEMATICAL PRELIMINARIES

function f and a convex, non-differentiable function g,

min
x
f(x) + g(x), (2.18)

a common strategy is to update the variables x via the update equation

xk+1 = proxαg(x
k − α∇f(xk)), (2.19)

where α > 0 is some step size parameter. The above iteration is typically referred

to as proximal gradient descent and will converge to the global optimum of the

objective function, provided α is chosen appropriately and f satisfies a few technical

conditions [12]. Proximal gradient descent has many interpretations, but perhaps the

most intuitive is that the xk − α∇f(xk) term is a simple gradient descent step on

the differentiable part of the objective, f . Then, the proximal operator attempts to

minimize g while penalizing solutions that are far from the gradient descent step;

a more formal treatment of proximal descent and further interpretations are given

in [12] and related works.

2.2.4.1 Deriving and Evaluating Proximal Operators

For optimization involving proximal operators to be efficient in practice, one needs

a means to rapidly solve the proximal operator of the function of interest. Fortunately,

due to the relatively simple form of the proximal operator, for a wide range of functions
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the proximal operator can be solved in closed form. A review of all known proximal

operators is beyond the scope of this thesis, but many well known results can be found

in [12, 13]. One property that is particularly useful in deriving proximal operators is

the Moreau identity, given by the equation

proxf (x) + proxf∗(x) = x, (2.20)

where recall that f ∗ denotes the Fenchel dual. As a simple example application of

the Moreau identity, consider the proximal operator of a gauge function.

Proposition 2 Given a gauge function, σC, the proximal operator of σC is given by

proxσC
(x) = x− argmin

z∈C◦
∥x− z∥2F (2.21)

Proof. Recall from Theorem 5 that (σC)
∗(x) = δC◦(x). Thus, from the Moreau

identity, we have

proxσC
(x) = x− proxδC◦ (x) = x− argmin

z

1
2
∥x− z∥2F + δC◦(z), (2.22)

which completes the result as the indicator function can be replaced by the constraint

in the problem statement, and since we are searching for the argmin the 1/2 multiplier

can be removed.
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This above result is well known and can be used to derive many proximal operators.

For example, the proximal operator of the l1 is given by

prox∥·∥1(x) = x− argmin
z
∥x− z∥2F s.t. ∥z∥∞ ≤ 1

= x− CLIP1(x),

(2.23)

where CLIPλ denotes the clipping operator which is given by

CLIPλ(x) = sign(x)⊙min {|x|, λ} , (2.24)

and ⊙ denotes an element-wise product. Likewise, using the above result of the

proximal operator for the l1 norm, one finds that the Moreau envelope of the l1 norm

is given by the once-differentiable Huber function,

Mλ∥·∥1(x) =
∑
i

⎧⎪⎪⎨⎪⎪⎩
1
2
x2i |xi| ≤ λ

λ(|xi| − 1
2
λ) |xi| > λ.

(2.25)

2.3 Representation Learning

As discussed in the introduction, the overall goal of this thesis is to study the

mathematical properties for learning structured representations from data, and this

section will review several well known techniques that have been developed for this

task. These techniques will include both unsupervised learning and supervised
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learning methods. Unsupervised learning methods take a dataset as input and

seek to find a representation that closely (or exactly) approximates the dataset while

ensuring that the representation has particular properties to facilitate subsequent

analysis. Supervised learning methods, on the other hand, require both a dataset

and a corresponding collection of labels or target values, and the overall goal of the

learning method is not to find a close approximation of the data, but rather to find

a data representation which allows one to efficiently and robustly predict the target

value for a given data point from the learned representation. As a result, learning good

representations in a supervised setting largely depends on finding data representations

that preserve the relevant information for the task at hand while at the same time are

stable and robust against noise and corruptions that might be present in the data.

2.3.1 Sparse and Low-Rank Methods

A major focus of research in machine learning, computer vision, signal processing,

and other technical disciplines involving large datasets has been work on a broad array

of techniques referred to as sparse and low-rank methods. As a general definition,

to say that a set of numbers (typically a matrix or vector) is sparse simply implies

that the number of non-zero entries in the set of numbers is much smaller than the

dimensionality of the set (i.e., “most” of the entries in the set are zero), and the term

sparse methods simply refers to methods that model some aspect of the problem

under the assumption that a portion of the model is sparse. Low-rank methods,

29



CHAPTER 2. MATHEMATICAL PRELIMINARIES

as the name implies, are similar to sparse methods except that instead of assuming

a set is sparse, one assumes that a matrix in the model has low-rank. As we will see,

low-rank methods can actually be thought of as a special case of sparse methods, by

assuming sparsity on one specific aspect of the model.

2.3.1.1 Sparsity

The fundamental component of sparse methods is the assumption that some por-

tion of a model is sparse, but to make this concept meaningful, one needs some

measure of how sparse a given signal is. Since sparsity implies a small number of

non-zero entries, a natural measure of sparsity is to simply count the number of non-

zero entries. This is usually notated mathematically with the l0 pseudo-norm, defined

as

∥x∥0 =
∑
i

⎧⎪⎪⎨⎪⎪⎩
1 xi ̸= 0

0 xi = 0.

(2.26)

While the l0 pseudo-norm provides a direct measure of sparsity and is simple to cal-

culate for a fixed vector x, it is not a convex function, and solving problems involving

the l0 pseudo-norm can be very challenging. For example, given an optimization

problem of the form

min
x
f(x) s.t. ∥x∥0 ≤ k, (2.27)

where x ∈ RD is a vector we are trying to solve for and k is a given positive inte-

ger, then one must solve
(
D
k

)
separate optimization problems to minimize f(x) for
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each possible subset of k variables in x that is allowed to be non-zero. Clearly, this

combinatorial search is infeasible for large problems with non-trivial values of k (i.e.,

k ̸= {1, D}), so instead one is typically forced to accept approximate solutions which

might be found through some form of greedy search algorithm.

As an alternative to the l0 pseudo-norm, another popular measure of sparsity is

the l1 norm, defined simply as the sum of the absolute values of x,

∥x∥1 =
∑
i

|xi|. (2.28)

At first, it is not immediately intuitive why the l1 norm should provide a meaningful

measure of sparseness, but the relaxation comes from the fact that the l1 norm is the

convex envelope of the l0 pseudo-norm, i.e., (∥x∥∗0)∗ = ∥x∥1 [14]. As a result, although

the l1 norm does not provide an exact measure of sparseness, it does provide a useful

convex heuristic of sparseness and under certain conditions one can prove that by

relaxing a l0 pseudo-norm into a l1 norm, solutions to the l1 norm regularized problem

will be equal to solutions of the l0 regularized problem. As an example, solutions to

the convex problem

min
x
∥x∥1 s.t. A(x) = b (2.29)

will also be solutions to the non-convex problem

min
x
∥x∥0 s.t. A(x) = b (2.30)
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if A is a linear operator that satisfies certain requirements [15].

2.3.1.2 Structured Sparsity and Low-Rank Models

Extending the idea of using the l1 norm as a measure of sparsity, the l1 norm can

also be composed with other functions to produce sparsity in many different aspects

of the model. For example, if one is given a matrix X ∈ RD×N and an arbitrary

vector norm ∥ · ∥u, one can define the mixed norm ∥X∥u,1 as

∥X∥u,1 =
N∑
i=1

∥Xi∥u, (2.31)

which is essentially just the sum of the ∥ · ∥u vector norms of each column of X.

One interpretation of the ∥X∥u,1 mixed norm is that it first constructs a vector of

all the ∥ · ∥u column norms, z = [ ∥X1∥u, . . . , ∥XN∥u ], and then the mixed norm

is the l1 norm (or sum because the norms are non-negative) of that vector of norms,

∥X∥u,1 = ∥z∥1. With this interpretation, by taking an appropriate choice of ∥·∥u norm

(namely choosing it to be a norm other than the l1 norm) the mixed norm effectively

encourages X to have a small number of columns which are non-zero, but within a

given non-zero column the entries can be dense. Such a structure is typically referred

to as group sparsity or structured sparsity, and the idea can be generalized to

taking the sums of norms of arbitrarily defined groups of variables (other than the

matrix columns) to induce a wide array of sparsity patterns [13].
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Moving beyond sparseness of the variables themselves, consider the singular value

decomposition of a matrix X ∈ RD×N , given by X =
∑min{D,N}

i=1 σiUiV
T
i , where Ui

and Vi denote the singular vectors and σi denotes the singular values. To say that X

is low-rank implies that most of the singular values (σi) are 0 (or the set of singular

values is sparse). Returning to the idea that the l1 norm encourages sparseness,

one could then intuitively expect that taking the l1 norm of the singular values of a

matrix would encourage low-rank matrices, and this is exactly the motivation for the

nuclear norm of a matrix, defined as the sum of the singular values,

∥X∥∗ =
min{D,N}∑

i=1

σi(X). (2.32)

While the above discussion about why one might expect the nuclear norm to en-

courage low-rank solutions is only an intuitive argument, again using the notion of a

convex envelope, one can show that the nuclear norm is the closest convex relaxation

to the rank of a matrix [16], and similar to the l1 case, one can also guarantee correct

recovery of low-rank solutions using the nuclear norm for linear equality constrained

problems provided the linear operator satisfies certain conditions [17].

2.3.2 Matrix Factorization

The next form of representation learning that will be discussed is matrix fac-

torization. As the name suggests, if one is given a data matrix Y , the goal of matrix
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factorization is to find two matrices (U, V ) such that their product closely approxi-

mates Y , i.e., Y ≈ UV T . Of course, for a given matrix Y there are infinitely many

possible factorizations such that Y = UV T , so for the factorization problem to be

well posed, one must look for factorizations (U, V ) which satisfy certain properties

that are beneficial for a particular application. The difference between most matrix

factorization methods rests largely on what properties in particular are enforced on

the factors.

2.3.2.1 Principal Component Analysis

Arguably the most well-known and wide-spread form of representation learning is

principal component analysis (PCA). To understand the intuition behind PCA,

consider a matrix Y ∈ RD×N where the columns of Y are data points in RD, Y =

[Y1, Y2, . . . , YN ], and the rows of Y have zero mean, i.e.,
∑N

i=1 Yi = 0. Now, given

the factorized matrices U ∈ RD×r and V ∈ RN×r, one sees that the approximate

representation for an individual data point, Yn, is given by

Yn ≈ (UV T )n =
r∑

i=1

UiVn,i (2.33)

which implies that each data point in Y is being approximately represented by a linear

combination of the r columns of U , with weight coefficients for the nth data point

contained in the nth row of V . In this sense, the columns of U can be interpreted as a
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set of features (or components) that will be used to represent each of the N points in

the dataset, and information about how to encode the N data points in terms of these

features is stored in the appropriate rows of V . Given this interpretation of matrix

factorization, the PCA model then seeks to find the features, U , and encodings,

V , which will produce the best approximation of the data using a fixed number of

features, r. This is accomplished by minimizing the least-squares error between the

data and the approximation in the optimization problem

min
U∈RD×r,V ∈RN×r

∥Y − UV T∥2F s.t. UTU = I. (2.34)

Note that the above optimization problem is not a convex optimization problem due

both to the multiplication of U and V and the orthonormal constraint on U . However,

from the Eckart-Young theorem [18], the above optimization problem can be solved

via a singular value decomposition of Y and is one of the few examples of a non-convex

optimization problem that can be solved efficiently.

In addition to having an algorithm that can efficiently solve (2.34), PCA also

provides a convenient means to perform dimensionality reduction. In partic-

ular, if the data points that makeup Y lie in a linear subspace with dimension

r ≪ min{D,N}, then each data point in Y can be compactly represented by just

r ≪ min{D,N} parameters. Due to the potential for dimensionality reduction and

the availability of an efficient algorithm to solve (2.34), PCA is a very powerful method
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for representation learning which has seen application in a very wide-range of prob-

lems [19]; however, there are several significant limitations to PCA. The first is that

while PCA is good at finding a set of features, U , which can compactly represent all

of the data points in Y , the learned features typically have little meaningful interpre-

tation in terms of the problem at hand. As a result, one is often forced to do some

sort of post-processing on the PCA representation to obtain useful information. An-

other limitation of PCA is that it is very fragile to corruptions in the dataset. From

a statistical standpoint, one interpretation of PCA is that it assumes the datapoints

are generated as points in a linear subspace with the addition of Gaussian noise,

Yn = Uxn+ ϵ, ϵ ∼ N (0, σ) [19], so when this assumption of Gaussian noise is violated

by the presence of large outliers in the dataset, the representations learned by PCA

can also be grossly corrupted. Due to these limitations, multiple alternative matrix

factorization approaches have been proposed. A few well known approaches are re-

viewed below, and Chapter 3 will develop a significantly generalized and unifying

approach to learning representations via matrix factorization.

2.3.2.2 Non-Negative Matrix Factorization

A well-known alternative to PCA, non-negative matrix factorization (NMF)

operates similarly to PCA, but instead of requiring the features, U , to be orthonormal,

NMF instead requires both the features, U , and the encodings, V , to be non-negative.

In particular, for a given number of features, r, NMF attempts to solve the optimiza-
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tion problem given by

min
U∈RD×r,V ∈RN×r

ℓ(Y, UV T ) s.t. U ≥ 0, V ≥ 0, (2.35)

where ℓ is some form of loss function that measures how closely Y is approximated

by UV T . One example loss function is the Frobenius norm as in PCA, ℓ(Y, UV T ) =

∥Y − UV T∥2F , and another popular loss function in the NMF literature is given by

ℓ(Y,X) = D(Y || X) =
∑
i,j

(
Yi,j log

Yi,j
Xi,j

− Yi,j +Xi,j

)
, (2.36)

which reduces to the Kullback-Leibler divergence when X and Y sum to 1 and is

useful to model mixtures of probability distributions [20].

The motivation behind NMF is that in many applications the data itself is non-

negative (i.e., Y ≥ 0), and by constraining U and V to be non-negative one is search-

ing for a representation that reproduces a datapoint Yn in a purely additive way. As a

result, NMF is often described as learning “parts” of a dataset which then allows one

to unmix a collection of signals into their respective parts [21]. In many applications

this approach has a well founded interpretation for the problem when the data is

known to be generated in an additive manner. For example, in spectrometry, if one is

given different mixtures of r different materials, then the spectrum of each material is

known to be non-negative and the amount of a given material present in each mixture

must also be non-negative, so by performing NMF on a collection of recorded spectra
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from different mixtures, one would then hope to recover the spectra of the various

materials in the columns of U and the rows of V would contain the amount of each

material present in a given mixture [22].

While NMF has many potential applications and better captures the physical

constraints of many problems compared to PCA, NMF also has a few significant

drawbacks. The first is that the number of “parts” that are present in the mixture, r,

is not necessarily known a priori and one must employ some model selection strategy

to determine an appropriate value (note that PCA also requires one to choose an

appropriate value for r). Second, like PCA, the NMF optimization problem in (2.35)

is non-convex, but unlike PCA, there is no known algorithm to efficiently solve the

NMF optimization problem. As a result, in practice one can only obtain approximate

solutions to the optimization problem and choices such as how the optimization al-

gorithm is initialized can have a significant impact on the approximate solution one

obtains [20].

2.3.2.3 Sparse Dictionary Learning

Another approach to representation learning based on matrix factorization is

sparse dictionary learning . The general idea behind sparse dictionary learning

is that instead of trying to find a small number of features with which to represent

the data as in PCA, we will instead try to find a potentially large number of features

(referred to as a dictionary of features), but we will require that the representation
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for each particular data point will be generated by only using a small number of

features (or the representation is sparse). Sparse dictionary learning was first moti-

vated by attempts to model the early stages of the mammalian visual system, where

it was noted that if sparse dictionaries were learned from local patches of natural

images, then the learned features were highly similar to the receptive fields of simple

cells in primary visual cortex [23]. Later work has since established that modeling

small patches of natural images via sparse dictionary learning has many benefits in

application, and such approaches have achieved state-of-the-art results in standard

image processing problems such as image denoising [24] and image in-painting [25].

Mathematically, sparse dictionary learning typically tries to solve an optimization

problem with the form

min
U∈RD×r,V ∈RN×r

1
2
∥Y − UV T∥2F +Θ(V ) s.t. ∥Ui∥2 = 1 ∀i ∈ {1, . . . , r}, (2.37)

where Θ(V ) is some function that promotes V to be sparse, such as the l0 pseudo-norm

or the l1 discussed above.

Despite the success of sparse dictionary learning, it too suffers from many of the

technical challenges associated with techniques like NMF. Namely, one must choose

a priori the size of the dictionary, r, and even if one uses the l1 relaxed form of

sparse dictionary learning, the optimization problem is still non-convex overall and

the success of the method will depend strongly on implementation details like how
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the optimization algorithm is initialized [26,27].

2.3.3 Tensor Factorization

In many applications involving multi-modal data, one would like to find sets of

features that explain the data along multiple modes of the data. For example, in some-

thing like census data a dataset might have entries that depend on spatial, temporal,

and demographic factors, and one would like to find sets of spatial, temporal, and

demographic features to explain a particular aspect of the data. For such multi-modal

data, tensor factorization provides a natural generalization of matrix factorization

and decomposes the data in multiple different types of features. Tensor methods are,

in general, extremely flexible with regards to the dimensionality of both the dataset

as well as the tensors factors that one is trying to recover. As a result, there have been

a large number of different forms of tensor factorization or decomposition proposed

in the literature [28]. Below, the two most common forms of tensor factorization,

the CANDECOMP/PARAFAC factorization and the Tucker decomposition, are re-

viewed, and the notational convention that will be used for tensors in this thesis is

introduced.

2.3.3.1 Tensor Notation

The mathematical formulations considered in this thesis will be very general in

regards to the dimensionality of the data and variables. As a result, the notation
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will be based around the concept of a tensor, which is essentially just a matrix

generalized to more than two dimensions. For example, a matrix with m rows and

n columns, X ∈ Rm×n, is a second order tensor. Generalizing this to a third order

tensor, X ∈ Rm×n×p, results in a cube with height m, width n, and depth p, and this

can be extended to a Kth order tensor, X ∈ Rd1×...×dK . To simplify this notation,

capital letters will be used as a shorthand for a set of dimensions, and individual

dimensions will be denoted with lower case letters. For example, X ∈ Rd1×...×dK ≡

X ∈ RD for D = d1 × . . . × dK ; similarly, X ∈ RD×R ≡ X ∈ Rd1×...×dK×r1×...×rM for

D = d1 × . . . × dK and R = r1 × . . . × rM . The cardinality of X ∈ RD will be

denoted as card(X) =
∏K

i=1 di. Given two tensors with matching dimensions except

for the last dimension, X ∈ RD×rx and Z ∈ RD×rz , [X Z] ∈ RD×(rx+rz) will be used

to denote the concatenation of the two tensors along the last dimension.

A slice of a K
th

order tensor is a (K − 1) order tensor which is a subset of the

original tensor formed by holding one index of the tensor fixed. For example, given

a matrix X ∈ Rm×n, the slices of X along the first dimension correspond to the

m row vectors of X (which are of dimension 1 × n), and the slices of X along the

second dimension correspond to the n column vectors of X (which are of dimension

m× 1). For a multidimensional tensor, X, a single subscript, Xi, will denote a slice

along the last dimension of the tensor. For example, given a matrix X ∈ Rd1×r, then

Xi ∈ Rd1 , i ∈ {1, . . . , r}, denotes the ith column of X and X = [X1 . . . Xr]. Similarly,

given a third order tensor X ∈ Rd1×d2×r then Xi ∈ Rd1×d2 , i ∈ {1 . . . , r}, denotes the
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ith slice along the third dimension. Tensors which have a size of 1 along the last

dimension and are not slices from a larger tensor will be denoted with lower-case

letters. For example, x ∈ RD×1 denotes a tensor of size 1 along its last dimension,

while Xi ∈ RD×1 is a slice from a larger tensor X ∈ RD×r.

2.3.3.2 CANDECOMP/PARAFAC (CP) Factorization

Having introduced the tensor notation, this section returns to the idea of using

tensor factorization to do representation learning by discussing the closest analogue

to PCA for multidimensional tensors, the CANDECOMP/PARAFAC (CP)

factorization of a tensor. In the rank-r CP factorization, one tries to approxi-

mate a multidimensional tensor, Y ∈ Rd1×···×dK , via a factorization into K factors,

(X1, . . . , XK) ∈ Rd1×r × . . .× RdK×r, given by

Y ≈
r∑

i=1

X1
i ⊗ · · · ⊗XK

i , (2.38)

where X1
i ⊗· · ·⊗XK

i denotes the outer product of K vectors; e.g., (a⊗b⊗c⊗d)i,j,k,l =

aibjckdl. The CP factorization clearly generalizes PCA, as if one takes K = 2, then

the CP factorization is equal to the PCA factorization, modulo the fact that the CP

factorization does not have orthogonality constraints on the factors, which PCA in-

cludes to guarantee uniqueness. Based on this analogy, the CP factorization has been

used in a wide range of applications with multi-modal data, such as tracking text
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email conversations over time [29], analyzing functional MRI and electroencephalo-

gram (EEG) data [30, 31], and image classification and compression [32]. However,

despite the close similarity to PCA, the difficulty of the factorization problem in-

creases significantly for factorizations with K > 2 factors. In particular, calculating

the CP factorization of a high dimensional tensor is a known NP-hard problem [33]

and thus there is no known algorithm to calculate it in polynomial time.

2.3.3.3 Tucker Decomposition

Generalizing further, the Tucker decomposition of a tensor again decomposes a

multidimensional tensor into a set ofK factors, but instead of simply taking the sum of

rank-1 tensors, the Tucker decomposition includes a fixed “core tensor”, κ ∈ Rr1,...,rK ,

which models more potential interactions among the various factors. Specifically, the

Tucker decomposition attempts to solve the problem

Y ≈
r1∑

i1=1

· · ·
rK∑

iK=1

(X1
i1
⊗ · · · ⊗XK

iK
)κ(i1, . . . , iK). (2.39)

Note that the Tucker decomposition is a generalization of the CP factorization, as if

one takes the core tensor to be diagonal,

κ(i1, . . . , iK) =

⎧⎪⎪⎨⎪⎪⎩
1 i1 = i2 = · · · = ik

0 else

, (2.40)
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then the Tucker decomposition reverts to the CP factorization. One advantage of

the Tucker decomposition over CP factorization is that it is typically easier to fit

in practice, as for certain choices of core tensors the Tucker decomposition can be

approximated by solving a sequence of PCA problems after reshaping the original

tensor, Y , into a matrix. A discussion of specific algorithms to approximate CP and

Tucker factorizations is beyond the scope of this work but can be found in [28].

In applications, the Tucker decomposition has been used from problems such as

signal processing [34], facial recognition [35], and human motion recognition [36].

Similar to matrix factorization and CP tensor factorizations, solving the Tucker de-

composition problem is also a non-convex optimization problem, and thus one cannot

typically find the globally optimal Tucker decomposition in polynomial time.

2.3.4 Neural Networks

The final form of representation learning that will be discussed is neural net-

works, which seek to perform computations based on roughly approximating the

behavior of neurons in biological nervous systems. The basic computational unit in

neural networks is a simulated neuron, which takes a vector of inputs, z ∈ Rd, and

produces an output x based on the formula

x = ψ(wT z + b) (2.41)
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where w ∈ Rd is a vector of “weight parameters” that model synaptic connection

weights in biological neurons, ψ : R → R is a non-decreasing (typically non-linear)

function to mimic the thresholding behavior of biological neurons, and b ∈ R is a

scalar “bias term” that sets the output for an input z = 0.

While the computation performed by a single artificial neuron is relatively simple,

by forming interconnected networks with large numbers of neurons, artificial neural

networks are capable of performing very complicated computations. The most com-

mon network arrangement for computer science purposes is known as a feed-forward

network. In a feed-forward network, neurons are arranged into layers, and the inputs

of neurons in a given layer only connect to the outputs of the neurons in the layer

below them.

Neural networks are known to be capable of approximating any smooth function

to an arbitrary level of precision provided the network contains enough neurons [37],

but this only guarantees the existence of neuron weights w and bias terms b that

will result in a network which will approximate the function. It says nothing about

how to find such parameters. The task of learning the appropriate network weight

parameters, given a set of training data and corresponding desired outputs, is known

as network training and is the primary computational challenge that must be

solved to apply neural networks to problems in practice. Similar to other forms of

representation learning, training neural networks is an inherently non-convex problem,

and this non-convexity presents a significant challenge. Chapter 4 will address the
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issue of non-convexity and provide a mathematical framework to analyze certain forms

of neural network training formulations and derive sufficient conditions to guarantee

the global optimality of local minimizers.

2.3.4.1 Classical Neural Networks

Classically, the first form of neural network was based on the perceptron, which

is a single neuron that uses a step-function non-linearity [38]. The step-function was

used initially to mimic the “binary” nature of biological neurons “a neuron fires an

action potential or it does not”, but the non-differentiability of the step function and

the fact that the step function has 0 gradient almost everywhere in its domain makes

it very hard to learn the appropriate weight parameters during the network training

stage. In the late 1980s, it was realized that if the non-linearities were changed to be

differentiable then it would be possible to update the network weight parameters by

doing gradient descent on an objective function, which led to smooth approximations

of the step function being used as non-linearities, such as a sigmoid or hyperbolic

tangent function. Due to the feed-forward architecture of the neural network, the

task of calculating the gradient of the objective function with respect to the weights

in the ith layer ends up being independent of the other weights in the network if one

has access to the gradient of the (i + 1)th layer. As a result, the gradients of all the

layers can be calculated sequentially by traversing the network from output-to-input,

which led to the term back-propagation [39]. While back-propagation provided
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a means to train neural networks with differentiable non-linearities, a great deal of

work in the 1990s and 2000s was devoted to “non-neural” learning methods, such

as support vector machines, decision trees, and boosting [40–43]. This was largely

due to the fact that, although neural networks achieved reasonable performance in

certain applications, the large numbers of free parameters that needed to be learned

in neural networks combined with relatively little access to training data limited the

performance of many classical back-propagation networks.

2.3.4.2 Modern Neural Networks and Deep Learning

Over the past several years, large scale neural networks have seen a massive resur-

gence in popularity and achieved state-of-the-art performance in many challenging

machine learning applications, particularly in areas such as image and speech recog-

nition [43–47]. Several factors have been attributed to this recent success. The first

is simply the matter of scale. With access to millions of potential images from which

to train a network and significantly expanded computing power, training very large

scale networks (often referred to as deep learning) with enough training data to

prevent over-fitting is now feasible in a reasonable amount of time. However, beyond

simply training larger networks with more data, many aspects are common to current

state-of-the-art networks.

The first is that most modern networks have replaced traditional sigmoid or hy-

perbolic tangent non-linearities with what is known as the rectified-linear unit

47



CHAPTER 2. MATHEMATICAL PRELIMINARIES

(ReLU), which is simply given by ψ(x) = max{0, x}. One of the initial motivations

for the ReLU non-linearity was that the computation of its gradient is very simple

(just a 1 or a 0 depending on whether x is positive or not) and its gradient does

not saturate for very large inputs; however, in addition to these computational ad-

vantages, ReLU non-linearities have been shown experimentally to achieve significant

performance boosts over more traditional sigmoid-style non-linearities [44–46,48].

Beyond using ReLU non-linearities, many modern networks are convolutional

neural networks, meaning that instead of taking a dot-product between the inputs

to a neuron and the neuron’s weight parameter vector, a convolution between the

inputs to a neuron and a given convolutional kernel is taken. The convolutional

kernel is then shared between all of the neurons in that given layer, which greatly

reduces the number of parameters that need to be learned in the network.

To date, many of the practices common to the deep learning field have been ar-

rived at largely through experimentation, and well founded theoretical principles for

why something like a ReLU non-linearity achieves better performance than a tradi-

tional sigmoid non-linearity are lacking. In Chapter 4 these issues will be explored

in much greater depth, and an initial theoretical framework from which to approach

the analysis of deep neural networks will be presented.
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Structured Matrix Factorization

In many large datasets, relevant information often lies in a subspace of much lower

dimension than the ambient space, and thus the goal of many learning algorithms can

be broadly interpreted as trying to find or exploit this underlying “structure” that

is present in the data. One structure that is particularly useful both due to its

wide-ranging applicability and efficient computation is the linear subspace model.

Generally speaking, if one is given N data points from a D dimensional ambient

space, Y = [Y1, Y2, . . . , YN ] ∈ RD×N , a linear subspace model simply implies that

there exists matrices (U, V ) such that Y ≈ UV T . For problems where either U or V is

known a priori the problem simplifies considerably, but if both U and V are allowed

to be totally arbitrary one can always find an infinite number of (U, V ) matrices that

satisfy this requirement. As a result, to accomplish anything meaningful one must

impose some restrictions on the properties of (U, V ), and this basic idea captures a
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wide variety of common techniques. A few well known examples can be summarized

as follows:

• Principal Component Analysis (PCA): The number of columns, r, in

(U, V ) is typically constrained to be small, r ≪ min{D,N}, and U is con-

strained to have orthonormal columns.

• Non-Negative Matrix Factorization (NMF): The number of columns in

(U, V ) is similarly constrained to be small, and (U, V ) are also required to be

non-negative [20,21].

• Sparse Dictionary Learning (SDL): The number of columns in (U, V ) is al-

lowed to be larger than min{D,N}, but the columns of U are typically required

to have unit Euclidean norm and V is required to be “sparse” as measured by

something like the l1 norm or the l0 pseudo-norm [26,27]1.

Mathematically, the general problem of recovering structured linear subspaces

from a dataset can be captured by a structured matrix factorization problem of the

form

min
U,V

ℓ(Y, UV T ) + λΘ(U, V ), (3.1)

where ℓ is some loss function that measures how well Y is approximated by UV T

and Θ is a regularizer that encourages or enforces specific properties in (U, V ). By

1As a result, in sparse dictionary learning, one does not assume that there exists a single low-
dimensional subspace to model the data, but rather that the data lies in a union of a large number
of low-dimensional subspaces
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taking an appropriate combination of ℓ and Θ one can formulate both unsupervised

learning techniques, such as PCA, NMF, and SDL, or supervised learning techniques

like discriminative dictionary learning [49, 50] and learning max-margin factorized

classifiers [51]. However, while there are wide-ranging applications for structured ma-

trix factorization methods that have achieved good empirical success, the associated

optimization problem (3.1) is non-convex regardless of the choice of ℓ and Θ func-

tions due to the presence of the matrix product UV T . As a result, aside from a few

special cases (such as PCA), finding solutions to (3.1) poses a significant challenge,

which often requires one to instead consider approximate solutions that depend on a

particular choice of initialization and optimization method.

Given the challenge of non-convex optimization, one possible approach to matrix

factorization problems is to relax the non-convex problem into a problem which is

convex on the product of the factorized matrices, X = UV T , and then recover the

factors of X after solving the convex relaxation. As a concrete example, in low-rank

matrix factorization, one might be interested in solving a problem of the form

min
X

ℓ(Y,X) subject to rank(X) ≤ r, (3.2)

which is equivalently defined as a factorization problem

min
U,V

ℓ(Y, UV T ) (3.3)
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where the rank constraint is enforced by limiting the number of columns in the U and

V matrices to be less than or equal to r. However, aside from a few special choices

of ℓ, solving (3.2) or (3.3) is in general a NP-hard problem. Instead, one can relax

(3.2) into a convex problem by using a convex regularization that promotes low-rank

solutions, such as the nuclear norm ∥X∥∗ (sum of the singular values of X), and then

solve

min
X

ℓ(Y,X) + λ∥X∥∗, (3.4)

which can often be done efficiently if ℓ(Y,X) is convex with respect to X [17, 52].

Given a solution to (3.4), Xopt, it is then simple to find a low-rank factorization

UV T = Xopt via a singular value decomposition. Unfortunately, however, while the

nuclear norm provides a nice convex relaxation for low-rank matrix factorization

problems, nuclear norm relaxation does not capture the full generality of problems

such as (3.1) as it does not necessarily ensure that Xopt can be factorized as Xopt =

UV T for some (U, V ) pair which has the desired structure encouraged by Θ(U, V )

(e.g., in non-negative matrix factorization we require U and V to be non-negative),

nor does it provide a means to find the desired factors.

Based on the above discussion, optimization problems in the factorized space, such

as (3.1), versus problems in the product space, with (3.4) as a particular example, both

present various advantages and disadvantages. Factorized problems attempt to solve

for the desired factors (U, V ) directly, provide significantly increased modeling flexi-

bility by permitting one to model structure on the factors (sparsity, non-negativity,
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Table 3.1: Typical properties of problems in the factorized vs product space. (Items
in bold are desirable.)

Product Space (X) Factorized Space (U, V )
Convex Yes No

Problem Size Large Small
Structured Factors No Yes

etc.), and allow one to potentially work with a significantly reduced number of vari-

ables if the number of columns in (U, V ) is ≪ min{D,N}; however, they suffer from

the significant challenges associated with non-convex optimization. Problems in the

product space, on the other hand, can be formulated to be convex, which affords

many practical algorithms and analysis techniques, but one is required to optimize

over a potentially large number of variables and solve a second factorization problem

in order to recover the factors (U, V ) from the solution X. These various pros and

cons are briefly summarized in Table 3.1.

To bridge this gap between the two classes of problems, here we explore the link

between non-convex matrix factorization problems, which have the general form

Factorized Problems: min
U,V

ℓ(Y, UV T ) + λΘ(U, V ), (3.5)

and a closely related family of convex problems in the product space, given by

Convex Problems: min
X

ℓ(Y,X) + λΩΘ(X), (3.6)
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where the function ΩΘ will be defined based on the choice of the regularization func-

tion Θ and will have the desirable property of being a convex function of X. Unfortu-

nately, while the optimization problem in (3.6) is convex w.r.t. X, it will typically be

non-tractable to solve. Moreover, even if a solution to (3.6) could be found, solving

a convex problem in the product space does not necessarily achieve our goal, as we

still must solve another matrix factorization problem to recover the (U, V ) factors

with the desired properties encouraged by the Θ function (sparsity, non-negativity,

etc.). Nevertheless, the two problems given by (3.5) and (3.6) will be tightly coupled.

Specifically, the convex problem in (3.6) will be shown to be a global lower-bound to

the non-convex factorized problem in (3.5), and solutions to the factorized problem

will also be solutions to the convex problem for X = UV T . As a result, we will tailor

our results to the non-convex factorization problem (3.5) using the convex function

(3.6) as an analysis tool. While the optimization problem in the factorized space is

not convex, by analyzing this tight interconnection between the two problems we will

show that local minima of the non-convex factorized problem will be global minima

if the factorized matrices, (U, V ), have sufficiently many columns, and the number

of the columns in (U, V ) can be adapted to the data instead of being fixed a priori.

In addition, a practical optimization strategy that is parallelizable and often requires

a much smaller set of variables is discussed; in chapter 5 experimental results are

presented for several real-world applications.
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3.1 Mathematical Background and Prior

Work

As discussed above, relaxing low-rank matrix factorization problems via nuclear

norm formulations fails to capture the full generality of factorized problems as it does

not allow one to find “structured” factors, (U, V ), with desired properties encouraged

by Θ(U, V ) (sparseness, non-negativity, etc.). To address this issue, several studies

have explored a more general convex relaxation via the matrix norm given by

∥X∥u,v ≡ inf
r∈N+

inf
U,V :UV T=X

r∑
i=1

∥Ui∥u∥Vi∥v

≡ inf
r∈N+

inf
U,V :UV T=X

r∑
i=1

1
2
(∥Ui∥2u + ∥Vi∥2v)

(3.7)

where (Ui, Vi) denote the ith columns of U and V , respectively, ∥ · ∥u and ∥ · ∥v are

arbitrary vector norms, and the number of columns (r) in the U and V matrices

is allowed to be variable [53–57]. The norm in (3.7) has appeared under multiple

names in the literature, including the projective tensor norm, decomposition norm,

and atomic norm, and by replacing the column norms in (3.7) with gauge functions

the formulation can be generalized to incorporate additional regularization on (U, V ),

such as non-negativity, while still being a convex function of X [55]. Further, it is

worth noting that for particular choices of the ∥ · ∥u and ∥ · ∥v vector norms, ∥X∥u,v

reverts to several well known matrix norms and thus provides a generalization of many
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commonly used regularizers. Notably, when the vector norms are both l2 norms, the

form in (3.7) becomes the well known variational definition of the nuclear norm. More

explicitly,

∥X∥∗ = ∥X∥2,2 ≡ inf
r∈N+

inf
U,V :UV T=X

r∑
i=1

∥Ui∥2∥Vi∥2

≡ inf
r∈N+

inf
U,V :UV T=X

r∑
i=1

1
2
(∥Ui∥22 + ∥Vi∥22).

(3.8)

Beyond nuclear norm relaxations, the ∥·∥u,v norm has the appealing property that

by an appropriate choice of vector norms ∥ · ∥u and ∥ · ∥v (or more generally gauge

functions), one can promote desired properties in the factorized matrices (U, V ) while

still working with a problem which is convex w.r.t. X.

3.1.1 Matrix Factorization as Semidefinite Opti-

mization

Due to the increased modeling opportunities it provides, several studies have ex-

plored structured matrix factorization formulations based on the ∥ · ∥u,v norm in a

way that allows one to work with a highly reduced set of variables while still pro-

viding some guarantees of global optimality. In particular, it is possible to explore
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optimization problems over factorized matrices (U, V ) of the form

min
U,V

ℓ(Y, UV T ) + λ∥UV T∥u,v. (3.9)

While (3.9) is a convex function of the product X = UV T , the problem is still

non-convex with respect to (U, V ) jointly due to the matrix product. However, if we

define a matrix Γ to be the concatenation of U and V

Γ ≡

⎡⎢⎢⎣U
V

⎤⎥⎥⎦ =⇒ ΓΓT =

⎡⎢⎢⎣UUT UV T

V UT V V T

⎤⎥⎥⎦ , (3.10)

we see that UV T is a submatrix of the positive semidefinite matrix ΓΓT . After defining

the function H : S+
n → R

H(ΓΓT ) = ℓ(Y, UV T ) + λ∥UV T∥u,v, (3.11)

it is clear that the proposed formulation (3.9) can be recast as an optimization over

a positive semidefinite matrix X = ΓΓT .

57



CHAPTER 3. STRUCTURED MATRIX FACTORIZATION

3.1.1.1 Semidefinite Optimality: Standard Form and Differ-

entiable Problems

At first the above discussion seems to be a circular argument, since while H(X) is

a convex function of (X), this says nothing about finding Γ (or U and V ). However,

results for semidefinite programs in standard form show that one can minimize H(X)

by solving for Γ directly without introducing any additional local minima, provided

that the rank of Γ is larger than the rank of the true solution Xopt [58]. Further, if

the rank of the true solution is not known a priori, if H(X) is a twice differentiable

function, then any local minima w.r.t. Γ such that Γ is a rank-deficient matrix give

a global minimum of H(ΓΓT ). Formally, one has the following result.

Proposition 3 [54] Let H : S+
n → R be a twice differentiable convex function with

compact level sets. If Γ is a rank deficient local minimum of h(Γ) = H(ΓΓT ), then

X = ΓΓT is a global minimum of H(X).

While these results provide encouragement that it is sometimes possible to solve

problems in the factorized domain, the projective tensor norm is, unfortunately, not

twice differentiable in general, so the above result can not be applied directly.
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3.1.1.2 Semidefinite Optimality: Non-Differentiable Prob-

lems

Due to the fact that many problems of interest involve non-differentiable compo-

nents, the above result is often challenging to apply. However, if H(X) is composed

of the sum of a twice differentiable and a non-differentiable convex function, then our

prior work has shown that it is still possible to guarantee that rank-deficient local

minima w.r.t. Γ give global minima of H(ΓΓT ). In particular, the above proposition

can be extended to non-differentiable functions via the following result.

Proposition 4 [56] Let F : S+
n → R be a twice differentiable convex function with

compact level sets and let G : S+
n → R be a proper, lower semi-continuous convex

function that is potentially non-differentiable. If Γ is a rank deficient local minimum

of h(Γ) = H(ΓΓT ) = F (ΓΓT ) + G(ΓΓT ), then X = ΓΓT is a global minimum of

H(X) = F (X) +G(X).

Taken together, these results allow one to solve (3.9) using a potentially highly reduced

set of variables if the rank of the true solution is much smaller than the dimensionality

of X.

Unfortunately, while the above results from semidefinite programming are suffi-

cient if we only wish to find general factors such that UV T = X, for the purposes

of solving structured matrix factorizations, we are interested in finding factors (U, V )

that achieve the infimum in the definition of (3.7), which is not provided by a solution
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to (3.9). To make this point more explicit, note that the problem of optimizing (3.9)

can be equivalently written as

min
U,V

ℓ(Y, UV T ) + λ∥UV T∥u,v =

min
U,V

ℓ(Y, UV T ) + λ inf
U ′,V ′

r∑
i=1

∥U ′
i∥u∥V ′

i ∥v s.t. U ′(V ′)T = UV T .

(3.12)

Note that in the equation above, there is an additional degree of freedom in the

sense that the (U, V ) factors that are found from the semidefinite optimization do

not necessarily need to be the same (U ′, V ′) factors that achieve the infimum in (3.7).

As a result, the results from semidefinite optimization are not directly applicable to

problems such as (3.9) as they deal with different optimization problems. Here we will

show that results regarding global optimality can still be derived for the non-convex

optimization problem given in (3.9) as well as for more general matrix factorization

formulations.

3.2 Structured Matrix Factorization

Problem Formulation

Our analysis will be based on a convex regularization function which is a general-

ization of the ∥·∥u,v norm and is similarly defined in the product space but allows one

to enforce structure in the factorized space. The basic idea behind the regularization
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function is to note that any matrix factorization can be interpreted as the sum of

rank-1 matrices, X = UV T =
∑r

i=1 UiV
T
i , and the number of rank-1 matrices in the

factorization, r, will be fit to the data via a sparsity promoting regularization.

3.2.1 Matrix Factorization Regularizers

To define the regularization, it will be necessary to have a function that regularizes

rank-1 matrices, which can be defined as follows:

Definition 12 A function θ : RD×RN → R+∪∞ is said to be a rank-1 regularizer

if

1. θ(u, v) is positively homogeneous with degree 2: θ(αu, αv) = α2θ(u, v) ∀α ≥ 0.

2. θ(u, v) is positive semi-definite: θ(0, 0) = 0 and θ(u, v) ≥ 0 ∀(u, v).

3. minα>0 θ(αu, α
−1v) = infα>0 θ(αu, α

−1v) > 0 for all {(u, v) : uvT ̸= 0}.

Note that this is a very general set of requirements, and one can propose a very

wide range of rank-1 regularizers that will satisfy these three properties. Specific

examples of regularizers that can be used for well known problems will be described

below, and we will prove our theoretical results using this general definition of a

rank-1 regularizer. Later, when discussing specific algorithms that can be used to

solve structured matrix factorization problems in practice, we will require that θ(u, v)

satisfies a few additional requirements.
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Using the notion of a rank-1 regularizer, we are now prepared to define a regular-

ization function on matrices of arbitrary rank as follows:

Definition 13 Given a rank-1 regularizer θ(u, v) : RD×RN → R+∪∞, the matrix

factorization regularizer Ωθ : RD×N → R+ ∪∞ is defined as

Ωθ(X) ≡ inf
r∈N+

inf
U∈RD×r,V ∈RN×r

r∑
i=1

θ(Ui, Vi) s.t. X = UV T . (3.13)

The function defined in (3.13) is very closely related to other regularizers that have

appeared in the literature. In particular, taking θ(u, v) = ∥u∥u∥v∥v or θ(u, v) =

1
2
(∥u∥2u + ∥v∥2v) for arbitrary vector norms ∥ · ∥u and ∥ · ∥v gives the ∥ · ∥u,v norm

discussed above. Note, however, there is no requirement for θ(u, v) to be convex

w.r.t. (u, v) or to be composed of norms. As long as θ satisfies the requirements from

Definition 12 one can show that Ωθ satisfies the following proposition2:

Proposition 5 Given a rank-1 regularizer θ, the matrix factorization regularizer, Ωθ

satisfies the following properties.

1. Ωθ(0) = 0 and Ωθ(X) > 0 ∀X ̸= 0.

2. Ωθ(αX) = αΩθ(X) ∀α ≥ 0.

3. Ωθ(X + Y ) ≤ Ωθ(X) + Ωθ(Y ) ∀(X, Y ).

2Note that Properties 1-3 almost satisfy the requirements for a gauge function on X. The
missing condition for Ωθ to be a norm is that Ωθ(X) must be invariant w.r.t. negative scaling (i.e.,
Ωθ(−X) = Ωθ(X)), and if θ satisfies the final condition, then it is easily shown that this will be true.
Also in this case, Ωθ becomes a special case of the atomic norm in [57] for atoms {uvT : θ(u, v) ≤ 1}.
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4. Ωθ(X) is convex w.r.t. X.

5. The infimum in (3.13) can always be achieved with r ≤ DN .

6. If θ(−u, v) = θ(u, v) or θ(u,−v) = θ(u, v), then Ωθ is a norm on X.

We do not show the proof here, as proofs for very similar forms can be found in

related works [53–55, 57, 59] and use largely identical arguments. A full proof of the

above results is also provided in Proposition 10 in the next chapter for a more general

regularization function which includes Ωθ as a special case.

From the above proposition, note that the first 3 properties show that Ωθ is a

gauge function on X (and further it will be a norm if property 6 is satisfied), which

also implies that it must be a convex function of X. Note that while Ωθ(X) is a

convex function of X, it can still be very challenging to evaluate or optimize functions

involving Ωθ due to the fact that it requires solving a non-convex optimization problem

by definition. However, by exploiting the convexity of Ωθ, we are able to use it to

study the optimality conditions of many associated non-convex matrix factorization

problems, several examples of which are provided below.

3.2.2 Examples of Structured Matrix Factoriza-

tion Problems

The matrix factorization regularizer provides a natural bridge between convex

formulations in the product space (3.6) and non-convex functions in the factorized
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space (3.5) due to the fact that Ωθ(X) is a convex function of X while from the

definition (3.13) one can induce a wide range of properties in (U, V ) by an appropriate

choice of θ(u, v) function. In what follows, we give a number of examples which lead

to variants of several structured matrix factorization problems that have been studied

previously in the literature.

Low-Rank: The first example of note, which was introduced in the introduction

to this chapter, is to relax low-rank constraints into nuclear norm regularized prob-

lems. Taking θ(u, v) = 1
2
(∥u∥22 + ∥v∥22) gives the well-known variational form of the

nuclear norm, Ωθ(X) = ∥X∥∗, and thus provides a means to solve problems in the

factorized space where the size of the factorization gets controlled by regularization.

In particular we have the conversion,

min
X

ℓ(Y,X) + λ∥X∥∗ ⇐⇒

min
r,U,V

ℓ(Y, UV T ) + λ
2
(∥U∥2F + ∥V ∥2F ) ⇐⇒

min
r,U,V

ℓ(Y, UV T ) + λ

r∑
i=1

∥Ui∥2∥Vi∥2,

(3.14)

where the ⇐⇒ notation implies that solutions to all 3 objective functions will have

identical values at the global minimum and any global minimum w.r.t. (U, V ) will

be a global minimum for X = UV T . While the above equivalence is well known for

the nuclear norm [17, 60], the factorization is “unstructured” in the sense that the

Euclidean norms do not bias the columns of U and V to have any particular properties,
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so to find factors with additional structure, such as non-negativity, sparseness, etc.,

more general θ(u, v) functions need to be considered.

Non-Negative Matrix Factorization: Recall the variational form of the nu-

clear norm from above uses θ(u, v) = 1
2
(∥u∥22 + ∥v∥22) or θ(u, v) = ∥u∥2∥v∥2. If

we extend this to now add non-negative constraints on (u, v), we get θ(u, v) =

1
2
(∥u∥22 + ∥v∥22) + δR+(u) + δR+(v), which acts similar to the variational form of the

nuclear norm in the sense that it limits the number of non-zero columns in (U, V ),

but it also imposes the constraints that U and V must be non-negative. As a result,

one gets a convex relaxation of traditional non-negative matrix factorization

min
U,V

ℓ(Y, UV T ) s.t. U ≥ 0, V ≥ 0 =⇒

min
r,U,V

ℓ(Y, UV T ) + λ
2
(∥U∥2F + ∥V ∥2F ) s.t. U ≥ 0, V ≥ 0.

(3.15)

Now note the =⇒ notation is meant to imply that the two problems are not strictly

equivalent as in the nuclear norm example. The key difference between the two forms

above is that in the top equation the number of columns in (U, V ) is fixed a priori,

while in the bottom form the number of columns in (U, V ) is allowed to be variable

and adapted to the data via the low-rank regularization induced by the two Frobenius

norms on (U, V ).

Row or Columns Norms: Taking θ(u, v) = ∥u∥1∥v∥v is known to result in

Ωθ(X) =
∑D

i=1 ∥(XT )i∥v, i.e., the sum of the ∥ · ∥v norms of the rows of X, while

taking θ(u, v) = ∥u∥u∥v∥1 results in Ωθ(X) =
∑N

i=1 ∥Xi∥u, i.e., the sum of the ∥ · ∥u

65



CHAPTER 3. STRUCTURED MATRIX FACTORIZATION

norms of the columns of X [53, 54]. As a result, the regularizer Ωθ(X) generalizes

the ∥X∥u,1 and ∥X∥1,v mixed norms, but the factorization problem in this case is

relatively uninteresting as taking either U or V to be the identity (depending on

whether the l1 norm is on the columns of U or V , respectively) and the other matrix

to be X (or XT ) results in one of the possible optimal factorizations. The resulting

reformulations into a factorized form gives

min
X

ℓ(Y,X) + λ∥X∥1,v ⇐⇒ min
r,U,V

ℓ(Y, UV T ) + λ

r∑
i=1

∥Ui∥1∥Vi∥v

min
X

ℓ(Y,X) + λ∥X∥u,1 ⇐⇒ min
r,U,V

ℓ(Y, UV T ) + λ
r∑

i=1

∥Ui∥u∥Vi∥1.
(3.16)

Sparse Dictionary Learning: Similar to the non-negative matrix factoriza-

tion case, convex relaxations of sparse dictionary learning can also be obtained

by combining l2 norms with sparsity-inducing regularization. For example, taking

θ(u, v) = 1
2
(∥u∥22 + ∥v∥22 + γ∥v∥21) results in a relaxation

min
U,V

ℓ(Y, UV T ) + λ∥V ∥1 s.t. ∥Ui∥F = 1 =⇒

min
r,U,V

ℓ(Y, UV T ) + λ
2
(∥U∥2F + ∥V ∥2F + γ

r∑
i=1

∥Vi∥21)
(3.17)

which was considered as a convex relaxation of sparse dictionary learning in [54],

where now the number of atoms in the dictionary is fit to the dataset via the low-

rank regularization induced by the Frobenius norms. A similar approach would be to

take θ(u, v) = ∥u∥F (∥v∥F + γ∥v∥1).
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Sparse PCA: If both the rows and columns of U and V are regularized to be

sparse, then one can obtain convex relaxations of sparse PCA [61]. One example of

this is to take θ(u, v) = 1
2
(∥u∥22+γu∥u∥21+∥v∥22+γv∥v∥21). Alternatively, one can also

place constraints on the number of elements in the non-zero support of each column

in (u, v) via a rank-1 regularizer of the form θ(u, v) = 1
2
(∥u∥22 + ∥v∥22) + δ∥·∥0≤k(u) +

δ∥·∥0≤q(v), where δ∥·∥0≤k(u) denotes the indicator function that u has k or fewer non-

zero elements. Such a form was analyzed in [62] and gives a relaxation of sparse PCA

that regularizes the number of sparse components via the Frobenius norms while

requiring that a given component must have the specified level of sparseness.

General Structure: More generally, this theme of using a combination of l2

norms and additional regularization on the factors can be used to model additional

forms of structure on the factors. For example one can take θ(u, v) = ∥u∥2∥v∥2 +

γθ̂(u, v) or θ(u, v) = ∥u∥22 + ∥v∥22 + γθ̂(u, v) with a function θ̂ that promotes the

desired structure in U and V provided that θ(u, v) satisfies the necessary properties

in the definition of a rank-1 regularizer. Additional example problems can be found

in [55,56].

Symmetric Factorizations: Assuming that X is a square matrix, it is also pos-

sible to learn symmetrical formulations with this framework, as the indicator function

δu=v(u, v) that requires u and v to be equal is also positively homogeneous. As a result,

one can use regularization such as θ(u, v) = δu=v(u, v) + ∥u∥22 to learn low-rank sym-

metrical factorizations of X, and adding additional regularization can be done to en-
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courage additional structures. For example θ(u, v) = δu=v(u, v)+∥u∥22+∥u∥21+δR+(u)

learns symmetrical factorizations where the factors are required to be non-negative

and encouraged to be sparse.

3.3 Problem Formation

Returning to the motivation from the introductory discussion, in this section we

describe the link between convex problems (3.6), which offer guarantees of global opti-

mality, and factorized formulations (3.5), which offer additional flexibility in modeling

the data structure and recovery of features that can be used in subsequent analysis.

Using the matrix factorization regularizer introduced in the previous section, we will

consider problems of the form

min
X,Q

F (X,Q) = ℓ(Y,X,Q) + λΩθ(X). (3.18)

Here the term Q allows for modeling additional variables that will not be factorized.

For example in robust PCA (RPCA) [63], the Q term can be used to account for

sparse outlying entries, and a formulation in which the data is corrupted by both

large corruptions and Gaussian noise can be modeled as,

min
X,Q

F (X,Q)RPCA = 1
2
∥Y −X −Q∥2F + γ∥Q∥1 + λ∥X∥∗. (3.19)
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From this convex function, F (X,Q), one can also consider the closely related non-

convex factorized function defined as

min
r,U,V,Q

f(U, V,Q) = ℓ(Y, UV T , Q) + λ
r∑

i=1

θ(Ui, Vi) (3.20)

where recall the number of columns in the U and V matrices (r) is allowed to be

arbitrary. We will assume throughout that ℓ(Y,X,Q) is lower semicontinuous, jointly

convex w.r.t. (X,Q), and once differentiable w.r.t. X.

3.4 Theoretical Results

Given the non-convex optimization problem (3.20), note that from the definition

of Ωθ(X) for any UV T = X we must have Ωθ(X) ≤
∑r

i=1 θ(Ui, Vi), so this also results

in a global lower bound between the convex and non-convex objective functions, i.e.,

for all UV T = X,

F (X,Q) = ℓ(Y,X,Q) + λΩθ(X) ≤ ℓ(Y, UV T , Q) + λ
r∑

i=1

θ(Ui, Vi) = f(U, V,Q).

(3.21)

From this, if we let Xopt denote an optimal solution to the convex optimization prob-

lem minX,Q F (X,Q), then any factorization UV T = Xopt such that
∑r

i=1 θ(Ui, Vi) =

Ωθ(Xopt) will also be an optimal solution to the non-convex optimization problem

minU,V,Q f(U, V,Q). Further this link between the two problems can be analyzed by
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noting that the subgradient of the matrix regularization function can be characterized

as

∂Ωθ(X) =
{
W : ⟨W,X⟩ = Ωθ(X), uTWv ≤ θ(u, v) ∀(u, v)

}
. (3.22)

This result will be shown formally in Lemma 1 of the next chapter, but the in-

tuition for the result can be seen by recalling that Ωθ is a gauge function, so

from Theorem 5 the subgradient will have the form ⟨∂Ωθ(X), X⟩ = Ωθ(X) and

Ω◦
θ(∂Ωθ(X)) ≤ 1. This is exactly the form of (3.22), with the polar function be-

ing given by Ω◦
θ(Z) = supu,v:θ(u,v)≤1 u

TZv. Also note that a factorization UV T = X

is an optimal factorization of X - i.e., it achieves the infimum in (3.13), if and only

if ∃W ′ ∈ ∂Ωθ(X) such that
∑r

i=1 U
T
i W

′Vi =
∑r

i=1 θ(Ui, Vi). Again, these results will

be shown in detail by Lemma 1 in the next chapter and form the foundation of the

following result.

Theorem 6 Given a function ℓ(Y,X,Q) which is lower-semicontinuous, jointly con-

vex in (X,Q), and once differentiable w.r.t. X; a rank-1 regularizer θ which satisfies

the conditions in definition 13; and a constant λ > 0, then local minima of the non-

convex optimization problem

min
U,V,Q

ℓ(Y, UV T , Q) + λ
r∑

i=1

θ(Ui, Vi) (3.23)

are globally optimal if (Ui, Vi) = (0, 0) for some i ∈ {1, . . . , r}.
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Proof. Recall from Section 3.3 that the non-convex factorized objective f(U, V,Q)

provides a global upper bound for convex objective F (X,Q). The result follows

from the fact that a local minimizer of f(U, V,Q) which satisfies the conditions of

the theorem also satisfies the first order conditions for optimality of F (X,Q). More

specifically, from the characterization of the subgradient described in (3.22), we have

that (X,Q) is a global minimum of the convex objective F (X,Q) iff

− 1
λ
∇Xℓ(Y,X,Q) ∈ ∂Ωθ(X)

0 ∈ ∂Qℓ(Y,X,Q).
(3.24)

If (U, V,Q) is a local minimum of (3.23) then it is necessary that 0 ∈ ∂Qℓ(Y, UV T , Q)

from first-order optimality. From the characterization of the subgradient of Ωθ(X)

given if (3.22), we also have that − 1
λ
∇Xℓ(Y,X,Q) ∈ ∂Ωθ(X) is equivalent to the

conditions

uT (− 1
λ
∇Xℓ(Y, Ũ Ṽ

T , Q))v ≤ θ(u, v) ∀(u, v) (3.25)

r∑
i=1

ŨT
i (− 1

λ
∇Xℓ(Y, Ũ Ṽ

T , Q))Ṽi =
r∑

i=1

θ(Ũi, Ṽi). (3.26)

for an optimal factorization X = Ũ Ṽ T , i.e., Ωθ(X) =
∑

i θ(Ũi, Ṽi). Note also that the

condition in (3.26) can also be equivalently stated as

ŨT
i (− 1

λ
∇Xℓ(Y, Ũ Ṽ

T , Q))Ṽi = θ(Ũi, Ṽi) ∀i ∈ {1, . . . , r}. (3.27)
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Considering the local minimum (U, V,Q), recall that we have one column pair

of (U, V ) which is entirely 0, and assume without loss of generality that the final

column of (U, V ) is the one that is all 0. Then, due to the fact that (U, V,Q) is a

local minimum, we have ∀(u, v) there exists δ > 0 such that ∀ϵ ∈ (0, δ)

ℓ(Y, [U1, . . . , Ur−1, ϵ
1/2u][V1, . . . , Vr−1, ϵ

1/2v]T , Q) + λ

r∑
i=1

θ(Ui, Vi) + λθ(ϵ1/2u, ϵ1/2v) =

(3.28)

ℓ(Y, UV T + ϵuvT , Q) + λ
r∑

i=1

θ(Ui, Vi) + ϵλθ(u, v) ≥ (3.29)

ℓ(Y, UV T , Q) + λ
r∑

i=1

θ(Ui, Vi). (3.30)

Rearranging terms and using the positive homogeneity of θ, we then have

−1
λ
[ℓ(Y, UV T + ϵuvT , Q)− ℓ(Y, UV T , Q)]ϵ−1 ≤ θ(u, v). (3.31)

Taking the limit ϵ↘ 0, note that from the differentiability of ℓ(Y,X,Q) w.r.t. X, this

gives
⟨−1

λ
∇Xℓ(Y, UV

T , Q), uvT
⟩
≤ θ(u, v) for any (u, v) vector pair, showing (3.25).

To show (3.26), note again that because we have a local minimum then for ϵ > 0 and
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sufficiently small we must have

ℓ(Y, [(1 + ϵ)1/2U ][(1 + ϵ)1/2V ]T , Q) + λ
r∑

i=1

θ((1 + ϵ)1/2Ui, (1 + ϵ)1/2Vi) =

ℓ(Y, UV T + ϵUV T , Q) + λ(1 + ϵ)
r∑

i=1

θ(Ui, Vi) ≥

ℓ(Y, UV T , Q) + λ
r∑

i=1

(Ui, Vi)

(3.32)

and also

ℓ(Y, [(1− ϵ)1/2U ][(1− ϵ)1/2V ]T , Q) + λ
r∑

i=1

((1− ϵ)1/2Ui, (1− ϵ)1/2Vi) =

ℓ(Y, UV T − ϵUV T , Q) + λ(1− ϵ)
r∑

i=1

θ(Ui, Vi) ≥

ℓ(Y, UV T , Q) + λ
r∑

i=1

(Ui, Vi)

(3.33)

Rearranging terms and taking the limit ϵ↘ 0 as before, we get

r∑
i=1

θ(Ui, Vi) ≤
⟨−1

λ
∇Xℓ(Y, UV

T , Q), UV T
⟩
≤

r∑
i=1

θ(Ui, Vi) =⇒ (3.34)

⟨−1
λ
∇Xℓ(Y, UV

T , Q), UV T
⟩
=

r∑
i=1

UT
i (

−1
λ
∇Xℓ(Y, UV

T , Q))Vi =
r∑

i=1

θ(Ui, Vi) (3.35)

which completes the result.

Note that the above proof also proves a simple corollary that provides sufficient

conditions to guarantee global optimality of any point.

Corollary 1 Given a function ℓ(Y,X,Q) which is lower-semicontinuous, jointly con-
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vex in (X,Q), and once differentiable w.r.t. X; a rank-1 regularizer θ which satisfies

the conditions in definition 13; and a constant λ > 0, then any point (Ũ , Ṽ , Q̃) is a

global minimum of

min
U,V,Q

ℓ(Y, UV T , Q) + λ

r∑
i=1

θ(Ui, Vi) (3.36)

if it satisfies the following conditions:

1. 0 ∈ ∂Qℓ(Y, Ũ Ṽ T , Q̃)

2. ŨT
i (

−1
λ
∇Xℓ(Y, Ũ Ṽ

T , Q̃))Ṽi = θ(Ũi, Ṽi) ∀i ∈ {1, . . . , r}

3. uT (−1
λ
∇Xℓ(Y, Ũ Ṽ

T , Q̃))v ≤ θ(u, v) ∀(u, v).

Condition 1 is fairly easy to verify, as one can hold (U, V ) constant and solve a convex

optimization problem for Q. Likewise, condition 2 is simple to test, and if a (Ui, Vi)

pair exists which does not satisfy the equality, then one can decrease the objective

function by scaling (Ui, Vi) by a non-negative constant. Further, for many problems, it

is possible to show that points that satisfy first-order optimality will satisfy conditions

1 and 2, such as in the following result.

Proposition 6 Given a function ℓ(Y,X,Q) which is lower-semicontinuous, jointly

convex in (X,Q), and once differentiable w.r.t. X; a constant λ > 0; and two gauge

functions (σu(u), σv(v)), then for θ(u, v) = σu(u)σv(v) or θ(u, v) =
1
2
(σu(u)

2+σv(v)
2),
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any first-order optimal point (Ũ , Ṽ , Q̃) of the function

min
U,V,Q

ℓ(Y, UV T , Q) + λ

r∑
i=1

θ(Ui, Vi) (3.37)

satisfies conditions 1 and 2 of Corollary 1.

Proof. Note that condition 1 is trivially satisfied, as this is simply the first-order

optimality requirement w.r.t. Q. Thus, we are left to show that condition 2 is also

satisfied. Let θp(u, v) = σu(u)σv(v) and θs(u, v) =
1
2
(σu(u)

2 + σv(v)
2). Note that the

following are easily shown from basic properties of subgradients of gauge functions

⟨u, ∂uθp(u, v)⟩ = ⟨v, ∂vθp(u, v)⟩ = θp(u, v)

⟨u, ∂uθs(u, v)⟩ = σu(u)
2

⟨v, ∂vθs(u, v)⟩ = σv(v)
2.

(3.38)

Considering the first-order optimality conditions w.r.t. Ui and Vi, one gets

0 ∈ ∇X(Y, Ũ Ṽ
T , Q̃)Ṽi + λ∂uθ(Ũi, Ṽi) (3.39)

0 ∈ ∇X(Y, Ũ Ṽ
T , Q̃)T Ũi + λ∂vθ(Ũi, Ṽi) (3.40)
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and left multiplying the two above inclusions by ŨT
i and Ṽ T

i , respectively gives

0 ∈ ŨT
i ∇X(Y, Ũ Ṽ

T , Q̃)Ṽi + λ
⟨
Ũi, ∂uθ(Ũi, Ṽi)

⟩
(3.41)

0 ∈ Ṽ T
i ∇X(Y, Ũ Ṽ

T , Q̃)T Ũi + λ
⟨
Ṽi, ∂vθ(Ũi, Ṽi)

⟩
. (3.42)

Since this is true for all (Ũi, Ṽi) pairs, substituting (3.38) and rearranging terms

then shows that condition 2 of Corollary 1 is satisfied for both θs(u, v) and θp(u, v),

completing the result.

From this result and the above discussion, it is clear that the primary challenge

in verifying if a given point is globally optimal is to test if condition 3 of Corollary 1

is satisfied. This is known as the polar problem and is discussed in detail below.

3.4.1 Polar Problem

Note that because the overall matrix factorization optimization problem is non-

convex, first-order optimality is not sufficient to guarantee a local minimum, and to

apply these results in practice one needs to verify that condition 3 from Corollary 1 is

satisfied. This problem is known as the polar problem and is a generalization of the

concept of a dual norm. In particular given a matrix factorization regularizer Ωθ(X),

the polar function of Ωθ is denoted as Ω◦
θ, defined as

Ω◦
θ(Z) = sup

u,v
uTZv s.t. θ(u, v) ≤ 1, (3.43)
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and condition 3 of Corollary 1 corresponds to Ω◦
θ(

−1
λ
∇Xℓ(Y, Ũ Ṽ

T , Q̃)) ≤ 1. The

difficulty of calculating the polar problem heavily depends on the particular choice

of the θ function. For example for θ(u, v) = ∥u∥1∥v∥1 the polar problem reduces to

simply finding the largest entry of Z in absolute value, while for θ(u, v) = ∥u∥∞∥v∥∞

solving the polar problem is known to be NP-hard [64].

While for general θ(u, v) functions it is not necessarily known how to efficiently

solve the polar problem, given a point (Ũ , Ṽ , Q̃) that satisfies conditions 1 and 2 of

Corollary 1, the value of the polar problem solution at a given point and how closely

the polar problem can be approximated provides a bound on how far a particular point

is from being globally optimal. This bound is based on the following proposition:

Proposition 7 Given a function ℓ(Y,X,Q) which is lower-semicontinuous, jointly

convex in (X,Q), and once differentiable w.r.t. X; a rank-1 regularizer θ which

satisfies the conditions in definition 13; and a constant λ > 0, let F (X,Q) =

ℓ(Y,X,Q) + λΩθ(X). Then for any point (Ũ , Ṽ , Q̃) that satisfies conditions 1 and

2 of Corollary 1, we have the following bound

ℓ(Y, Ũ Ṽ T , Q̃) + λ
∑
i

θ(Ũi, Ṽi)− F (Xopt, Qopt) ≤

λΩθ(Xopt)[Ω
◦
θ(

−1
λ
∇Xℓ(Y, Ũ Ṽ

T , Q̃))− 1]− mX

2
∥Ũ Ṽ T −Xopt∥2F −

mQ

2
∥Q̃−Qopt∥2F

(3.44)

where mX ≥ 0 and mQ ≥ 0 denote the constants of strong-convexity of ℓ w.r.t. X
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and Q, respectively, (note that both m constants can be 0 if ℓ is not strongly convex)

and (Xopt, Qopt) denotes a global minimizer of F (X,Q).

Proof. Let X̃ = Ũ Ṽ T . From (strong) convexity of ℓ, we have

ℓ(Y,Xopt, Qopt) ≥ℓ(Y, X̃, Q̃) + mX

2
∥X̃ −Xopt∥2F +

mQ

2
∥Q̃−Qopt∥2F

+
⟨
∇Xℓ(Y, X̃, Q̃), Xopt − X̃

⟩
+
⟨
∂Qℓ(Y, X̃, Q̃), Qopt − Q̃

⟩
.

(3.45)

From condition 1 of Corollary 1 we can take 0 ∈ ∂Qℓ(Y, X̃, Q̃), and from condition 2

we have
⟨
−∇Xℓ(Y, X̃, Q̃), X̃

⟩
= λ

∑
i θ(Ũi, Ṽi). Applying these facts and rearranging

terms gives

ℓ(Y, X̃, Q̃)− ℓ(Y,Xopt, Qopt) + λ
∑
i

θ(Ũi, Ṽi)

≤ λ
⟨

−1
λ
∇Xℓ(Y, X̃, Q̃), Xopt

⟩
− mX

2
∥X̃ −Xopt∥2F −

mQ

2
∥Q̃−Qopt∥2F .

(3.46)

Recall that from polar duality we also have ∀(X,Z), ⟨X,Z⟩ ≤ Ωθ(X)Ω◦
θ(Z), which

implies ⟨
−1
λ
∇Xℓ(Y, X̃, Q̃), Xopt

⟩
≤ Ωθ(Xopt)Ω

◦
θ(

−1
λ
∇Xℓ(Y, X̃, Q̃)). (3.47)

Substituting this into (3.46) we then have

ℓ(Y, X̃, Q̃)− ℓ(Y,Xopt, Qopt) + λ
∑
i

θ(Ũi, Ṽi)

≤ λΩθ(Xopt)Ω
◦
θ(

−1
λ
∇Xℓ(Y, X̃, Q̃))− mX

2
∥X̃ −Xopt∥2F −

mQ

2
∥Q̃−Qopt∥2F .

(3.48)
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and subtracting λΩθ(Xopt) from both sides of the above inequality completes the

result.

There are a few interpretations one can draw from the above proposition. First,

if Xopt = 0, then the only (U, V ) pair that will satisfy conditions 1 and 2 of Corollary

1 is the global optimum UV T = 0. Second, for Xopt ̸= 0 recall that Ωθ(Xopt) > 0 and

Ω◦
θ(

−1
λ
∇Xℓ(Y, Ũ Ṽ

T , Q̃)) ≥ 1, since if condition 2 of Corollary 1 is satisfied then the

polar is clearly at least equal to 1 by definition of the polar. Further, from Theorem 6,

if we can find any (u, v) pair such that θ(u, v) ≤ 1 and uT (−1
λ
∇Xℓ(Y, UV

T , Q))v > 1,

then we can decrease the objective function by appending (u, v) to the factorization,

i.e., (U, V )→ ([U ϵu], [V ϵv]) will decrease the objective for some ϵ > 0. As a result,

we always have a means to decrease the objective function by either doing gradient

descent or adding a (u, v) pair to the factorization, unless we arrive at a first-order

optimal point and we cannot find a (u, v) pair such that uT (−1
λ
∇Xℓ(Y, UV

T , Q))v > 1.

If the polar is truly greater than 1, then the [Ω◦
θ(

−1
λ
∇Xℓ(Y, Ũ Ṽ

T , Q̃))−1] in the above

proposition effectively measures the error between the true value of the polar and our

lower-bound estimate of the polar. Further, the maximum difference between a first-

order optimal point and the global minimum is upper bounded by the value of the

polar at that point, and if the loss function ℓ is strongly convex, the error in the

objective function is decreased further. As a result, if one can guarantee solutions

to the polar problem to within a given error level or provide an upper-bound on the

polar problem, one can also guarantee solutions that are within a given error level of
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the global optimum.

A final interpretation of Proposition 7 that can be made is to note that the final

condition of Corollary 1 is essentially a check that the size of the representation

(i.e., the number of columns in U and V ) is sufficiently large to represent the global

optimum. If, instead, we find a local minimum with a smaller representation than

the global optimum, r < ropt, where ropt denotes the number of columns in the global

optimum, then the value of the [Ω◦
θ(

−1
λ
∇Xℓ(Y, Ũ Ṽ

T , Q̃)) − 1] bounds how far from

the global minimum we are by using a more compact representation (i.e., using only

r instead of ropt columns).

As a concrete example of these ideas, consider the case where θ(u, v) = ∥u∥2∥v∥2.

Recall that this choice of θ gives the nuclear norm, Ωθ(X) = ∥X∥∗. From this, the

polar function then is given by

∥Z∥◦∗ = sup
u,v

uTZv s.t. ∥u∥2∥v∥2 ≤ 1 (3.49)

= sup
u,v

uTZv s.t. ∥u∥2 ≤ 1, ∥v∥2 ≤ 1 (3.50)

= σmax(Z), (3.51)

where σmax(Z) denotes the largest singular value of Z (and thus ∥ · ∥◦∗ is the spectral

norm). In this case, given any first order optimal point (Ũ , Ṽ , Q̃), then Proposition 7

guarantees that the distance of the current point from the global minimum is bounded

by λ∥Xopt∥∗[σmax(
−1
λ
∇Xℓ(Y, Ũ Ṽ

T , Q̃)) − 1]. If (Ũ , Ṽ , Q̃) is a global minimizer, then
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the largest singular value term will be equal to 1 (and hence the bound is 0), while

if the largest singular value term is greater than 1 this indicates that (Ũ , Ṽ ) do not

have sufficiently many columns to represent the global optimum, and the size of the

representation should be increased. Further, by appending the largest singular vector

pair (u, v) to the factorization U ← [Ũ τu] and V ← [Ṽ τv] (as this is the vector

pair that achieves the supremum of the polar function) will be guaranteed to reduce

the objective function for some step size τ > 0. This strategy is described in the

meta-algorithm given by Algorithm 2.

3.4.1.1 Upper Bounding the Polar

In many cases, it is possible to derive semidefinite relaxations of the polar problem

that upper-bound the polar solution. Specifically, note that (3.43) is equivalently

reformulated as

Ω◦
θ(Z) = sup

u,v

1
2

⟨⎡⎢⎢⎣ 0 Z

ZT 0

⎤⎥⎥⎦ ,
⎡⎢⎢⎣ uuT uvT

vuT vvT

⎤⎥⎥⎦
⟩

s.t. θ(u, v) ≤ 1. (3.52)

If we make the change of variables M = [u; v][u; v]T , the problem is equiva-

lent to optimizing over rank-1 semidefinite matrices M , provided there exists an

equivalent function θ′(M) to enforce the constraint θ(u, v) ≤ 1 if M is a rank-

1 matrix. For example, consider the case θ(u, v) = 1
2
(∥u∥2F + ∥v∥2F ), which gives

θ(u, v) = 1
2
(Tr(uuT ) +Tr(vvT )) = 1

2
Tr(M), so we have the following equivalent prob-
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lems

Ω◦
θ(Z) =max

u,v
uTZv s.t. 1

2
(Tr(uuT ) + Tr(vvT )) ≤ 1

=max
M

1
2

⟨⎡⎢⎢⎣ 0 Z

ZT 0

⎤⎥⎥⎦ ,M
⟩

s.t. rank(M) = 1, 1
2
Tr(M) ≤ 1, M ≽ 0.

(3.53)

By removing the rank(M) = 1 constraint we then have a convex optimization problem

on positive semidefinite matrices that upper-bounds the polar problem,

Ω◦
θ(Z) ≤ max

M

1
2

⟨⎡⎢⎢⎣ 0 Z

ZT 0

⎤⎥⎥⎦ ,M
⟩

s.t. 1
2
Tr(M) ≤ 1, M ≽ 0 (3.54)

and if the solution to the above problem results in a rank-1 solution matrixM , which

in this special case of θ(u, v) can be shown to be true via the S-procedure [9], then the

inequality becomes an equality and the desired (u, v) factors can be recovered from

the largest singular vector of M .

This same idea can be extended to more general θ(u, v) regularization functions

[55] and has been used in techniques such as sparse PCA [65]. A few example functions

on vectors x and their equivalent function on xxT are provided in Table 3.2, and these

equivalences can be used to derive θ′(M) functions from a given θ(u, v) function.

While, unfortunately, in general there is no guarantee that the solution to the

semidefinite relaxation will be a rank-1 M matrix for an arbitrary θ(u, v) regulariza-
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Table 3.2: Equivalent forms of polar problem regularizers.

f(x) F (xxT )

∥x∥2F Tr(xxT )
∥x∥21 ∥xxT ∥1
∥x∥2∞ ∥xxT ∥∞
∥Ax∥21 ∥AxxTAT ∥1

∥Ax∥1∥x∥F
∑

i ∥(xxTA)i∥F
δR+(x) δR+(xx

T )

tion function, for some cases of θ(u, v) one can prove bounds about how close the

upper-bound of the polar obtained from semidefinite relaxation will be to the true

value of the polar [55].

3.5 Minimization Algorithm

Before we begin the discussion of the algorithm, note that in addition to the

conditions included in Theorem 6, the particular method we present here assumes

that the gradients of the loss function ℓ(Y, UV T , Q) w.r.t. U and w.r.t. V (denoted

as ∇Uℓ(Y, UV
T , Q) and ∇V ℓ(Y, UV

T , Q), respectively) are Lipschitz continuous (i.e.

the gradient w.r.t. U is Lipschitz continuous for any fixed value of V and vice versa).

Under these assumptions on ℓ, the bilinear structure of our objective function (3.20)

gives convex subproblems if we update U or V independently while holding the other

fixed, making an alternating minimization strategy efficient and easy to implement.

Further, we assume that ℓ(Y, UV T , Q) = ℓ̂(Y, UV T , Q) + H(Q) where ℓ̂(Y, UV T , Q)

is a convex, once differentiable function of Q with Lipschitz continuous gradient with
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constants Lk
Q and H(Q) is convex but possibly non-differentiable3.

The updates to our variables are made using accelerated proximal-linear steps

similar to the FISTA algorithm, which entails solving a proximal operator of an

extrapolated gradient step to update each variable [66, 67]. The general structure of

the alternating updates we use is given in Algorithm 1, and the key point is that to

update either U , V , or Q the primary computational burden lies in calculating the

gradient of the loss function and then calculating a proximal operator. The structure

of the non-differentiable term in (3.20) allows the proximal operators for U and V to

be separated into columns, greatly reducing the complexity of calculating the proximal

operator and offering the potential for parallelization.

3.5.1 Proximal Operators of Structured Factors

Recall from the introductory discussion that one means to induce general struc-

ture in the factorized matrices is to regularize the columns of a factorized matrix

with an l2 norm, to limit the rank of the solution, plus a general gauge func-

tion, to induce specific structure in the factors. For example, potential forms of

the rank-1 regularizers could be of the form θ(u, v) = ∥u∥2∥v∥2 + γσu(u)σv(v) or

θ(u, v) = (∥u∥2 + γuσu(u))(∥v∥2 + γvσv(v)), where the σu and σv gauge functions

3Note that the assumption that there is a component of the objective function that is differentiable
w.r.t. Q, ℓ̂, is only needed for use the particular update strategy we describe here. In general one
could also optimize objective functions that are totally non-differentiable w.r.t. Q (but which do
need to be convex w.r.t. Q) by doing a full minimization w.r.t. Q at each iteration instead of just
a proximal gradient update. See [66] for more details.
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Algorithm 1 (Structured Matrix Factorization)

Input: Y , U0, V 0, Q0, λ, NumIter
Initialize Û1 = U0, V̂ 1 = V 0, Q̂1 = Q0, t0 = 1
for k = 1 to NumIter do
\\Calculate gradient of loss function w.r.t. U
\\evaluated at the extrapolated point Û
Gk

U = ∇Uℓ(Y, Û
k(V k−1)T , Qk−1)

P = Ûk −Gk
U/L

k
U

\\Calculate proximal operator of θ
\\for every column of U
for i = 1 to number of columns in A do
Uk
i = proxλθ(·,V k−1

i )/Lk
U
(Pi)

end for
\\Repeat similar process for V
Gk

V = ∇V ℓ(Y, U
k(V̂ k)T , Qk−1)

W = V̂ k −Gk
V /L

k
V

for i = 1 to number of columns in V do
V k
i = proxλθ(Uk

i ,·)/Lk
V
(Wi)

end for
\\Repeat again for Q
Gk

Q = ∇Qℓ̂(Y, U
k(V k)T , Q̂k)

R = Q̂k −Gk
Q/L

k
Q

Qk = proxH(Y,Uk(V k)T ,·)/Lk
Q
(R)

\\Update extrapolation based on prior iterates
\\Check if objective decreased
if obj(Uk, V k, Qk) < obj(Uk−1, V k−1, Qk−1) then
\\The objective decreased, update extrapolation
tk = (1 +

√
1 + 4(tk−1)2)/2

µ = (tk−1 − 1)/2

µU = min{µ,
√
Lk−1
U /Lk

U}

µV = min{µ,
√
Lk−1
V /Lk

V }

µQ = min{µ,
√
Lk−1
Q /Lk

Q}
Ûk+1 = Uk + µU(U

k − Uk−1)
V̂ k+1 = V k + µV (V

k − V k−1)
Q̂k+1 = Qk + µQ(Q

k −Qk−1)
else
\\The objective didn’t decrease.
\\Run again without extrapolation.
tk = tk−1

Ûk+1 = Uk−1

V̂ k+1 = V k−1

Q̂k+1 = Qk−1

end if
end for
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are chosen to encourage specific properties in U and V , respectively. In this case,

to apply Algorithm 1 we need a way to solve the proximal operator of the l2 norm

plus a general gauge function. While the proximal operator of the l2 norm is simple

to calculate, even if the proximal operator of the gauge function is know, in general

the proximal operator of the sum of two functions is not necessarily easy to com-

pute or related to the proximal operators of the individual functions. Fortunately,

however, the following result shows that for the sum of the l2 norm plus a general

gauge function, the proximal operator can be solved by sequentially calculating the

two proximal operators.

Theorem 7 Let σC be any gauge function. The proximal operator of θ(x) = λσC(x)+

λ2∥x∥2 is the composition of the proximal operator of the l2 norm and the proximal

operator of σC, i.e., proxθ(y) = proxλ2∥·∥2(proxλσC
(y)).

Proof. Note that we can equivalently solve the proximal operator by introducing

another variable subject to an equality constraint,

proxθ(y) = argmin
x,z:x=z

1

2
∥y − x∥22 + λσC(z) + λ2∥x∥2. (3.55)

This gives the Lagrangian

L(x, z, γ) =
1

2
∥y − x∥22 + λσC(z) + λ2∥x∥2 + ⟨γ, x− z⟩ . (3.56)
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Minimizing the Lagrangian w.r.t. z, we obtain the negative Fenchel dual of λσC ,

which is an indicator on the polar set

min
z
λσC(z)− ⟨γ, z⟩ = −(λσC(γ))∗ = −δ◦λC(γ). (3.57)

Minimizing the Lagrangian w.r.t. x, we obtain

min
x

1

2
∥y − x∥22 + λ2∥x∥2 + ⟨γ, x⟩ = (3.58)

min
x

1

2
∥y − γ − x∥22 + λ2∥x∥2 + ⟨γ, y⟩ −

1

2
∥γ∥22 = (3.59)⎧⎪⎪⎨⎪⎪⎩

1
2
∥y∥22 ∥y − γ∥2 ≤ λ2

1
2
∥y∥22 − 1

2
(∥y − γ∥2 − λ2)2 else

(3.60)

where the minimum value for x is achieved at x = proxλ2∥·∥2(y − γ). The relation

between (3.58) and (3.59) is easily seen by expanding the quadratic terms, while the

relation between (3.59) and (3.60) is given by the fact that (3.59) is the standard

proximal operator for the l2 norm plus terms that do not depend on x. Plugging the

solution of the proximal operator of the l2 norm (noting that the l2 norm is self dual)

into (3.59) gives (3.60). The dual of the original problem thus becomes maximizing

(3.60) w.r.t. γ subject to σ◦
C(γ) ≤ λ. We note that (3.60) is monotonically non-

decreasing as ∥y − γ∥2 decreases, so the dual problem is equivalent to minimizing

∥y − γ∥2 (or equivalently ∥y − γ∥2F ) subject to σ◦
C(γ) ≤ λ. Combining these results
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with the primal-dual relation x = proxλ2∥·∥2(y − γ), we have

proxθ(y) = proxλ2∥·∥2(y − γopt), (3.61)

where γopt is the solution to the optimization problem

γopt = argmin
γ
∥y − γ∥2F s.t. σ◦

C(γ) ≤ λ. (3.62)

Recall that from the Moreau identity, the proximal operator of the λσC gauge is given

by

proxλσC
(y) = y − argmin

γ
∥y − γ∥2F s.t. σ◦

C(γ) ≤ λ, (3.63)

which completes the result, as the above equation implies proxλσC
(y) = y − γopt.

Combining these results with Theorem 6 and our previously discussed points, we

now have a potential strategy to search for structured low-rank matrix factorizations

as we can guarantee global optimality if we can find a local minimum with an all-zero

column in (U, V ), and the above proposition provides a means to efficiently solve

proximal operator problems that one typically encounters in structured factorization

formulations. However, there are a few critical caveats to note about the optimization

problem. In the next section we discuss these caveats along with a potential meta-

algorithm to address them.
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3.5.2 Optimization Meta-Algorithm

While Algorithm 1 provides an easily implementable algorithm to perform struc-

tured matrix factorization, a critical caveat of the algorithm is that alternating mini-

mization does not necessarily guarantee convergence to a local minimum. It has been

shown that, subject to a few conditions, block convex functions will globally converge

to a Nash equilibrium point via the alternating minimization algorithm we use here,

and any local minima must also be a Nash equilibrium point (although unfortunately

the converse is not true) [66]. A Nash equilibrium point implies that we satisfy first

order optimality, so in general Algorithm 1 will converge to a point that satisfies

conditions 1-2 of Corollary 1, but perhaps not condition 3. From the discussion of

the polar problem above, one can search for (u, v) pairs such that θ(u, v) ≤ 1 and

uT (−1
λ
∇Xℓ(Y, UV

T , Q))v > 1 which can then be used to decrease the objective func-

tion by appending the (u, v) pair to the factorization and the algorithm can be rerun

from that new location. This approach is outlined in the meta-algorithm described

in Algorithm 2.

Note that the main computational challenge from a theoretical standpoint is to

find a (u, v) pair such that θ(u, v) ≤ 1 and uT (−1
λ
∇Xℓ(Y, UV

T , Q))v > 1, as in

general to find such a pair (if a pair exists) we would need to be able to solve the

polar problem, as discussed above. However, from Proposition 7, as it becomes harder

to find (u, v) pairs that can be used to decrease the objective function (i.e., the value

of the polar function moves closed to 1) we are also guaranteed to be closer to the
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Algorithm 2 (Structured Matrix Factorization Meta-Algorithm)

input Initialization for variables, (Uinit, Vinit, Qinit)
while Not Converged do
Do local descent via Algorithm 1 until arriving at a critical point (Ũ , Ṽ , Q̃).
Search for (u, v) such that θ(u, v) ≤ 1 and uT (−1

λ
∇Xℓ(Y, Ũ Ṽ

T , Q̃))v > 1.
if (u, v) found then
Choose a step size τ by line search and append (u, v) to the factorization
U = [Ũτu], V = [Ṽ τv].

else
Return (Ũ , Ṽ , Q̃).

end if
end while

global minimum.

3.6 Conclusions

We have proposed a highly flexible approach to structured matrix factorization,

which allows specific structure to be promoted directly on the factors. While our

proposed formulation is not jointly convex in all of the variables, we have shown

that under certain criteria a local minimum of the factorization is sufficient to find a

global minimum of the product, offering the potential to solve the factorization using

a highly reduced set of variables.
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Chapter 4

Generalized Factorizations

Models involving factorization or decomposition are ubiquitous across a wide vari-

ety of technical fields and application areas. As an example illustrated by the previous

chapter, many forms of matrix factorization, such as Principle Component Anal-

ysis, Non-Negative Matrix Factorization, and Sparse Dictionary Learning, have been

developed and achieved considerable empirical success [21, 26, 27]. However, it was

noted that common to almost all matrix factorization formulations is the significant

disadvantage that the associated optimization problems are typically non-convex in

the factorized space due to the bilinear form of the matrix product.

This issue speaks to an apparent dichotomy one is confronted with when choosing

a model for a particular problem: Should the problem be approached with a non-

convex model which affords greater modeling flexibility and is perhaps better suited

for the problem at hand but leads to significant optimization challenges, or should
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the problem be relaxed into a convex form which provides a set of well developed

optimization tools, guarantees of global optimality, and robustness to choice of ini-

tialization? Seminal work over the past decade in fields such as compressed sensing

and matrix completion has shown that for problems satisfying certain requirements,

solutions to convex relaxations of non-convex problems will faithfully recover the so-

lution of the non-convex problem [15, 68–70], which naturally lead one to question

if more general convex relaxations are possible. However, as was the case in matrix

factorization, solving for X in a relaxed problem is often unsatisfactory at a funda-

mental level, since in many factorization problems we are interested in finding the

factors (U, V ) themselves, which implies that even if we have a solution Xopt for the

relaxed problem, we must still solve yet another non-convex factorization problem to

find (U, V ). In the case of low-rank matrix factorization, one is fortunate in the sense

that since there is no need to enforce any structure on U or V , efficient algorithms

(such as singular value decomposition) exist to solve the non-convex factorization

problem given Xopt. For more general problems (including those possibly beyond

matrix factorization), this quickly fails to be a viable solution, and one is forced to

consider other options.

To address these issues, in this chapter we consider the task of solving non-convex

optimization problems directly in a factorized space with potentially more than 2

factors while using ideas inspired from the convex relaxation of matrix factorizations

as a means to analyze the non-convex factorization problem. This framework includes
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matrix factorization as a special case but also applies much more broadly to a wide

range of non-convex optimization problems, several of which we describe below.

4.1 Generalized Factorization

As we alluded to above, the often unavoidable challenge in optimizing factorization

problems is the fact that the variables we wish to optimize undergo a convexity

destroying transformation (or mapping). In the case of matrix factorization, this

takes the form of the matrix product (U, V )→ UV T , but a natural generalization is to

consider an arbitrary convexity destroying mapping of the variables (X1, . . . , XK)→

Φ(X1, . . . , XK), where now we might be interested in optimizing over K blocks of

variables, for some K ≥ 1.

For example, tensor factorization models provide a natural extension to matrix

factorization and have been employed in a wide variety of applications [28, 71]. The

resulting optimization problem is similar to matrix factorization, with the difference

that we now consider more general factorizations which decompose a multidimensional

tensor Y ≈ Φ(X1, . . . , XK) into a set of K different factors (X1, . . . , XK), where each

factor is also possibly a multidimensional tensor and Φ is an arbitrary multilinear

mapping; i.e., Φ is a linear function of each X i term if the other Xj terms, i ̸= j, are

held constant. Clearly tensor factorization is a generalization of matrix factorization

by taking (X1, X2) = (U, V ) and Φ(U, V ) = UV T . Moreover, similar to matrix
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factorization, the optimization problem will typically be non-convex regardless of the

choice of regularization function, Θ, or loss function, ℓ, due to the presence of the

multilinear mapping Φ.

While the tensor factorization framework is very general with regards to the di-

mensionality of the data and the factors, the mapping Φ from the factorized space to

the output space (the codomain of Φ) is typically assumed to be multilinear. However,

if we consider more general mappings from the factorized space into the output space

(i.e., Φ mappings which are not restricted to be multilinear) then we can capture

a much broader array of models in the “factorized model” family. For example, in

deep neural network training the output of the network is typically generated by

applying an alternating series of linear and non-linear functions. More concretely, if

one is given training data consisting of N data points of dimension d, V ∈ RN×d, the

output of the network in response to the training data is described by the mapping

Φ(X1, . . . , XK) = ψK(ψK−1(. . . ψ2(ψ1(V X
1)X2) . . . XK−1)XK), (4.1)

where each X i factor (the variables we are trying to optimize) is an appropriately

sized matrix which contains the connection weight coefficients between layers i−1 and

i of the network, and the ψi(·) functions apply some form of non-linearity after each

matrix multiplication, e.g., a sigmoid function, rectification, max-pooling. Note that

although here we have shown the linear operations to be simple matrix multiplications
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for notational simplicity (which implies each layer is fully connected), this is easily

generalized to other linear operators (e.g., in a convolutional network each linear

operator could be a set of convolutions with a group of various convolution kernels

with parameters contained in the (X1, . . . , XK) variables).

Clearly there is an extremely broad range of possible Φ mappings that can destroy

convexity, so the focus of this paper will be on one particular family of Φ mappings

which captures many problems of interest (such as those described above) and allows

for an analysis of sufficient conditions to guarantee global optimality of the non-convex

optimization problem.

4.1.1 Contributions

The primary goal of this chapter is to consider non-convex optimization problems

of the form

min
X1,...,XK ,Q

ℓ(Y,Φ(X1, . . . , XK), Q) + λΘ(X1, . . . , XK) +H(Q), (4.2)

where it is assumed that ℓ(Y,X,Q) is jointly convex w.r.t. (X,Q) and once dif-

ferentiable, H(Q) is convex w.r.t. Q, but the overall problem is non-convex due

to the convexity destroying mapping X = Φ(X1, . . . , XK) and possibly non-convex

Θ(X1, . . . , XK). Given a non-convex factorization problem of the form in (4.2), our

first contribution is to show that if Φ and Θ satisfy a few basic properties then (4.2)
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can be recast as the convex problem

min
X,Q

ℓ(Y,X,Q) + λΩΦ,Θ(X) +H(Q), (4.3)

where ΩΦ,Θ is a convex function of X = Φ(X1, . . . , XK) derived from Φ and Θ.

However, as mentioned previously in the context of matrix factorization, solving a

convex relaxation of the original factorization problem in the output space of the

mapping Φ does not achieve our goal, as we still do not know the desired factorization

(X1, . . . , XK) such that Xopt = Φ(X1, . . . , XK). For example, in neural network

training the output of Φ is simply the response of the network to the training data,

and without knowing the factorized variables (X1, . . . , XK) that describe the network

weights it is impossible to apply new input data to the network. As a result, we will

tailor our results to the non-convex factorization problem (4.2) and use the convex

re-formulation (4.3) simply as an analysis tool.

Using this convex framework we are then able to show that local minima of the

non-convex factorization problem achieve the global minimum if they satisfy a simple

condition. Further, we also show that if the non-convex problem is initialized with

factorized variables of sufficient dimension (e.g., in matrix factorization the number of

columns in U and V is sufficiently large; in neural networks the size of network hidden

layers is sufficiently large), then from any initialization of the factorized variables there

must always exist a non-increasing path to a global minimizer and a global minimizer
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can always be found from local descent.

Before proceeding further, we pause for a moment to clarify from the outset what

our results will and also will not imply. First, those wishing to apply our results in

practice should be cautioned that our results apply to local minima of the non-convex

objective function, not critical points. For non-convex optimization problems finding

a local minimum can still be an NP-hard problem in general, and many optimization

methods can only ensure convergence to a critical point of a general non-convex

problem. That being said, however, our results guarantee that the optimization

landscape is significantly simplified for the class of non-convex problems that can

be captured in our framework. Figure 4.1 provides a cartoon depiction of what our

results imply in one dimension. In the left panel, a few possible critical points of a

non-convex function are shown in red; these can include single points (b,e,g,h,i) or

entire regions of the function domain (a,c,d,f). The single point local maxima (e,g)

are of little concern from an optimization standpoint as any reasonable optimization

method will avoid these points with overwhelming probability, but all of the other

critical points/regions, except for the two global optima (b and d), present possible

failure points for an optimization method based on local descent. The right panel

of figure 4.1 shows a depiction of what is guaranteed by our framework. First, local

minima such as (f) and (h), which require that we must increase the objective to

escape from them, are guaranteed to not exist. Second, if we are on one of the
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Critical Points of Non-Convex Function Guarantees of Our Framework

(a) (i)

(b)
(c)

(d)
(e)

(f )

(g)
(h)

Figure 4.1: Left: Example critical points of a non-convex function (shown in red).
(a) Saddle plateau (b,d) Global minima (c,e,g) Local maxima (f,h) Local minima (i
- right panel) Saddle point. Right: Guaranteed properties of our framework. From
any initialization a non-increasing path exists to a global minimum. From points on
a flat plateau a simple method exists to find the edge of the plateau (green points).

non-optimal plateaus (a,c) for which there is no local descent direction1, there is a

simple method to find the edge of the plateau from which there will be a descent

direction (green points). Taken together, these results will imply a theoretical meta-

algorithm that is guaranteed to find a global minimum of the non-convex factorization

problem if from any point one can either find a local descent direction or verify the

non-existence of a local descent direction. The primary challenge from a theoretical

perspective (which is not solved by our results and is potentially NP-hard for certain

problems within our framework) is thus how to find a local descent direction (which

is guaranteed to exist) from a non-globally-optimal critical point.

Two concepts will be key to establishing our analysis framework: 1) the dimen-

sionality of the factorized elements is not assumed to be fixed, but instead fit to

the data through regularization (for example, in matrix factorization the number of

columns in U and V is allowed to change) 2) we require the mapping, Φ, and the

1Note that points in the interior of these plateaus could be considered both local maxima and
local minima as there exists a neighborhood around these points such that the point is both maximal
and minimal on that neighborhood.
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regularization on the factors, Θ, to be positively homogeneous (defined below).

Definition 14 A function g is positively homogeneous with degree p if ∀α ≥ 0,

g(αx1, . . . , αxN) = αpg(x1, . . . , xN).

Interestingly, the deep learning field has increasingly moved to using non-linearities

such as Rectified Linear Units (ReLU) and Max-Pooling, both of which satisfy the

positive homogeneity property. Additionally, it has been noted empirically that both

the speed of training the neural network and the overall performance of the network

is increased significantly when ReLU non-linearities are used instead of the more

traditional hyperbolic tangent or sigmoid non-linearities [44–46,48]. We suggest that

our framework provides a partial theoretical explanation to this phenomena and also

offers guidance on simple concepts to take into consideration in the design of learning

systems to facilitate efficient optimization.

4.2 Prior Work

Despite the significant empirical success and wide ranging applications of the

models discussed above (and many others not discussed), it is not immediately ap-

parent why one should expect them to succeed. From an optimization perspective,

the algorithms often used to solve factorization problems – including (but certainly

not limited to) alternating minimization, gradient descent, stochastic gradient de-

scent, block coordinate descent, back-propagation, and quasi-Newton methods – are
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typically only guaranteed to converge to a critical point or local minimum of the

objective function [10, 26, 39, 72, 73], so the non-convexity of the problem leaves the

model somewhat ill-posed in the sense that it is not just the model formulation that

is important but also implementation details, such as how the model is initialized

and particulars of the optimization algorithm, which can have a significant impact on

the performance of the model. Yet, although there is little in the way of theoretical

guarantees regarding the optimization of these methods, it is often reported empir-

ically that many different solutions achieve equal performance in practice and have

very similar objective values.

In the previous chapter, prior work relating to factorized semidefinite program-

ming (SDP) that guarantees global optimality of non-convex optimization problems

was discussed, and these results provide some initial support for the idea that solving

optimization problems in the factorized domain was possible. Beyond matrix factor-

ization, in the context of neural networks, [74] showed that for neural networks with

a single hidden layer, if the number of neurons in the hidden layer is not fixed, but

instead fit to the data through a sparsity inducing regularization, then the process of

training a globally optimal neural network is analogous to selecting a finite number

of hidden units from a potentially infinite dimensional space of all possible hidden

units. The selected hidden units are then combined by taking a weighted summation
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of these units to produce the output. The specific optimization problem is of the form

min
w
ℓ(Y,

∑
i

hi(V )wi) + λ∥w∥1, (4.4)

where hi(V ) represents one possible hidden unit activation in response to the training

data V from an infinite dimensional space hi(V ) ∈ H of all possible hidden unit acti-

vations. Clearly (4.4) is a convex optimization problem (assuming ℓ(Y,X) is convex

w.r.t. X) and straightforward to solve for a finite set of hi(V ) activations. However,

because H is an infinite dimensional space the primary difficulty lies in how to select

the appropriate hidden unit activations. Nonetheless, by using arguments from gra-

dient boosting, it is possible to show that problem (4.4) can be globally optimized by

sequentially adding hidden units to the network until one can no longer find a hid-

den unit whose addition will decrease the objective function [74–76]. Here, our work

takes a conceptually similar approach while extending and refining these ideas. The

key innovation is that by considering a well defined family of hidden unit mappings

we can analyze the problem directly in the space of the parameters that define the

hidden unit mappings (i.e., the network weight parameters of potentially multilayer

networks). This allows us to show that if the size of the network is sufficiently large

(with an upper bound on the sufficient size of the network that is linearly propor-

tional to the number of training examples) then the non-convex optimization problem

with respect to the network weight parameters directly has the simplified landscape
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outlined in Figure 4.1. Our work also provides sufficient conditions on the network

architecture and regularization of the network weight parameters to guarantee that

from any initialization a globally optimal solution can be found by performing purely

local descent on the network weights.

Finally, we note that several recent works have also explored the error surface of

multilayer neural networks using tools derived from random matrix theory and sta-

tistical physics. Applying ideas from random matrix theory to high-dimensional non-

convex optimization, [77] argue that, under certain assumptions, for high-dimensional

optimization problems if one is given a particular critical point, it is vastly more likely

that the critical point will be a saddle point rather than a local minimum and thus

avoiding saddle points is the key difficulty in high-dimensional, non-convex optimiza-

tion. Using arguments from statistical physics, [78] show that, under certain assumed

distributions of the training data and the network weight parameters, as the number

of hidden units in a network increases the distribution of local minima becomes in-

creasingly concentrated in a small band of objective function values near the global

optimum (and thus all local minima become increasingly close to being global min-

ima). Our results will largely echo these two general ideas, but we note that we take

a markedly different approach. Specifically, we analyze the problem from a purely

deterministic approach which does not require any assumptions regarding the dis-

tribution of the inputs or the network weight parameters. With this approach, we

show that saddle points and plateaus are the only critical points that one needs to
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be concerned with due to the fact that for networks of sufficient size, local minima

that require one to climb the objective surface to escape from, such as (f) and (h) in

Figure 4.1, are guaranteed not to exist.

4.3 Preliminaries

Before we present our main results, we first describe our notation system and

recall a few definitions.

4.3.1 Notation

Our formulation is fairly general in regards to the dimensionality of the data

and factorized variables. As a result, to simplify the notation, we will use capital

letters as a shorthand for a set of dimensions, and individual dimensions will be

denoted with lower case letters. For example, the tensor X ∈ Rd1×...×dN will be

denoted as X ∈ RD for D = d1 × . . . × dN , and the cardinality of X ∈ RD will

be denoted as card(X) =
∏N

i=1 di. Similarly, X ∈ RD×R ≡ X ∈ Rd1×...×dN×r1×...×rM

for D = d1 × . . . × dN and R = r1 × . . . × rM . Given two tensors with matching

dimensions except for the last dimension, X ∈ RD×rx and Z ∈ RD×rz , we will use

[X Z] ∈ RD×(rx+rz) to denote the concatenation of the two tensors along the last

dimension.

Given an element from a tensor space, we will use a subscript to denote a slice of
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the tensor along the last dimension. For example, given a matrix X ∈ Rd1×r, then

Xi ∈ Rd1 , i ∈ {1, . . . , r}, denotes the ith column of X. Similarly, given a third order

tensor X ∈ Rd1×d2×r then Xi ∈ Rd1×d2 , i ∈ {1 . . . , r}, denotes the ith slice along the

third dimension. Tensors which have a size of 1 along the last dimension and are

not slices from a larger tensor will be denoted with lower-case letters. For example,

x ∈ RD×1 denotes a tensor of size 1 along its last dimension, while Xi ∈ RD×1 is a

slice from a larger tensor X ∈ RD×r.

We will denote the dot product between two elements from a tensor space

(X ∈ RD, Z ∈ RD) as ⟨X,Z⟩ = vec(X)Tvec(Z), where vec(·) denotes flattening

the tensor into a vector. For a function g(x), we will denote its image as Im(g)

and its Fenchel dual as g∗(x) ≡ supz ⟨x, z⟩ − g(z). The gradient of a differentiable

function g(x) will be denoted ∇g(x), and the subgradient of a convex (but possibly

non-differentiable) function g(x) will be denoted ∂g(x). For a multivariate differen-

tiable function g(x1, . . . , xK), we will use ∇xig(x1, . . . , xK) to denote the portion of

the gradient corresponding to xi. The space of non-negative real numbers will be

denoted R+, and the space of positive integers will be denoted N+.

4.3.2 Definitions

We now make/recall a few general definitions and well known facts which will be

used in our analysis.

Definition 15 A size-r set of K factors (X1, . . . , XK)r is defined to be a set of K
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tensors where the last dimension of each tensor is equal to r. That is, (X1, . . . , XK)r ∈

R(D1×r) × . . .× R(DK×r).

Definition 16 The indicator function of a set C is defined as

δC(x) =

⎧⎪⎪⎨⎪⎪⎩
0 x ∈ C

∞ x /∈ C
. (4.5)

Definition 17 A function g : RD1 × . . . × RDN → R+ is positive semidefinite if

g(0, . . . , 0) = 0 and g(x1, . . . , xN) ≥ 0, ∀(x1, . . . , xN).

Definition 18 The one-sided directional derivative of a function g(x) at a point

x in the direction z is denoted dg(x)(z) and defined as dg(x)(z) ≡ limϵ↘0 (g(x+ϵz)−

g(x))ϵ−1.

Also, recall that for a differentiable function g(x), dg(x)(z) = ⟨∇g(x), z⟩.

4.4 Problem Formulation

Returning to the problem from the introduction (4.2), we now define the family

of mapping functions from the factors into the output space and the family of regu-

larization functions on the factors (Φ and Θ, respectively) which we will study in our

framework.
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4.4.1 Factorization Mappings

In this paper, we consider mappings Φ which are based on a sum of what we refer

to as an elemental mapping. Specifically, if we are given a size-r set of K factors

(X1, . . . , XK)r, the elemental mapping φ : RD1 × . . .×RDK → RD takes a slice along

the last dimension from each tensor in the set of factors and maps it into the output

space. We then define the full mapping to be the sum of these elemental mappings

along each of the r slices in the set of factors. The only requirement we impose on the

elemental mapping is that it must be positively homogeneous with a positive degree.

More formally,

Definition 19 An elemental mapping, φ : RD1× . . .×RDK → RD is any mapping

which is positively homogeneous with degree p > 0. The r-element factorization

mapping Φr : R(D1×r) × . . .× R(DK×r) → RD is defined as

Φr(X
1, . . . , XK) =

r∑
i=1

φ(X1
i , . . . , X

K
i ). (4.6)

From the definition of Φr it is easy to verify that if φ is positively homogeneous

with degree p, then Φr is also positively homogeneous with degree p and satisfies the

following proposition.

Proposition 8 Given a size-rx set of K factors, (X1, . . . , XK)rx, and a size-rz set
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of K factors, (Z1, . . . , ZK)rz , then ∀α ≥ 0, β ≥ 0 we have

Φ(rx+rz)([αX
1 βZ1], . . . , [αXK βZK ]) = αpΦrx(X

1, . . . , XK) + βpΦrz(Z
1, . . . , ZK)

(4.7)

where recall, [X Z] denotes the concatenation of X and Z along the final dimension

of the tensor.

As we do not place any restrictions on the elemental mapping, φ, beyond the require-

ment that it must be positively homogeneous, there are a wide range of problems that

can be captured by a mapping with form (4.6). Several example problems which can

be placed in this framework include:

Matrix Factorization : The elemental mapping, φ : Rd1 × Rd2 → Rd1×d2

φ(u, v) = uvT (4.8)

is positively homogeneous with degree 2 and Φr(U, V ) =
∑r

i=1 UiV
T
i = UV T is simply

matrix multiplication for matrices with r columns.

Tensor Decomposition - CANDECOMP/PARAFAC (CP): Slightly

more generally, the elemental mapping φ : Rd1 × . . .× RdK → Rd1×...×dK

φ(x1, . . . , xK) = x1 ⊗ · · · ⊗ xK , (4.9)
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where ⊗ denotes the tensor outer product, results in Φr(X
1, . . . , XK) being the

mapping used in the rank-r CANDECOMP/PARAFAC (CP) tensor decomposition

model [28],

Φr(X
1, . . . , XK) =

r∑
i=1

X1
i ⊗ · · · ⊗XK

i , (4.10)

which is visualized for a 3rd order tensor in figure 4.2. Further, instead of choosing

φ to be a simple outer product, we can also generalize this to be any multilinear

function of the factor slices (X1
i , . . . , X

K
i ). For example, the output could be formed

by taking convolutions between the factor slices. We note that more general tensor

decompositions, such as the general form of the Tucker decomposition, do not explic-

itly fit inside the framework we describe here; however, by using similar arguments

to the ones we will develop here, it is possible to show analogous results to those

we derive in this paper for more general tensor decompositions, and we will briefly

discuss these extensions in Section 4.6.2.

Neural Networks with Rectified Linear Units (ReLU): Let ψ+(x) ≡

max{x, 0} be the linear rectification function, which is applied element-wise to a

tensor x of arbitrary dimension. Then if we are given a matrix of training data

V ∈ RN×d1 , the elemental mapping φ(x1, x2) : Rd1 × Rd2 → RN×d2

φ(x1, x2) = ψ+(V x1)(x2)T (4.11)
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Figure 4.2: Rank-r CP decomposition of a 3rd order tensor.

results in a mapping Φr(X
1, X2) = ψ+(V X1)(X2)T , which can be interpreted as

producing the d2 outputs of a neural network with r neurons in a single hidden layer

in response to the input of N data points of d1 dimensional data, V . The hidden

units have a ReLU non-linearity; the other units are linear; and the (X1, X2) ∈

Rd1×r ×Rd2×r matrices contain the connection weights from the input-to-hidden and

hidden-to-output layers, respectively. The left panel of figure 4.3 illustrates such a

network with (r, d1, d2) = (4, 3, 2).

By utilizing more complicated definitions of φ, it is possible to consider a broad

range of neural network architectures. As a simple example of networks with multiple

hidden layers, an elemental mapping such as φ : Rd1×d2 ×Rd2×d3 ×Rd3×d4 ×Rd4×d5 →
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RN×d5

φ(x1, x2, x3, x4) = ψ+(ψ+(ψ+(V x1)x2)x3)x4 (4.12)

gives a Φr(X
1, X2, X3, X4) mapping which is the output of a 5 layer neural network

in response to the inputs in the V ∈ RN×d1 matrix with ReLU non-linearities on all of

the hidden layer units. In this case, the network has the architecture that there are r,

4 layer fully-connected subnetworks, with each subnetwork having the same number

of units in each layer as defined by the dimensions {d2, d3, d4}. The r subnetworks

are all then fed into a fully connected linear layer to produce the output. This is

visualized in figure 4.3 for (d1, d2, d3, d4, d5) = (5, 3, 5, 1, 2) and with r = 4.

More general still, since any positively homogenous transformation is a poten-

tial elemental mapping, by an appropriate definition of φ, one can describe neural

networks with very general architectures, provided the non-linearities in the net-

work are compatible with positive homogeneity (ReLUs are one example, but non-

linearities such as the absolute value, raising each element to a non-zero power, max-

out, and max-pooling are also positively homogeneous). For example, the well-known

“AlexNet” network from [44], which consists of a series of convolutional layers, linear-

rectification, max-pooling layers, response normalization layers, and fully connected

layers, can be described by taking r = 1 and defining φ to be the entire transformation

of the network (with the removal or slight redefinition of the response normalization

layers, which are not strictly positively homogenous, see Section 4.6.3). Note, how-

ever, that our results will rely on r potentially changing size or being initialized to
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Recti�ed Linear Unit (ReLU)
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Figure 4.3: Example ReLU networks. (Left panel) ReLU network with a single hidden
layer with the mapping described by the equation in (4.11) with (r = 4, d1 = 3, d2 =
2). Each color corresponds to one element of the elemental mapping φ(X1

i , X
2
i ). The

colored hidden units have rectifying non-linearities, while the black units are linear.
(Right panel) Multilayer ReLU network with 4 fully connected parallel subnetworks
(r = 4) with elemental mappings defined by (4.12) with (d1 = 5, d2 = 3, d3 = 5, d4 =
1, d5 = 2). Each color corresponds to the subnetwork described by one element of the
elemental mapping φ(X1

i , X
2
i , X

3
i , X

4
i ).

be sufficiently large, which limits the applicability of our results to current state-of-

the-art network architectures with r = 1. Essentially, the main limitation is that

the analysis we develop here relies on a network with multiple parallel subnetworks

which are linearly combined to produce the output. This has potentially interesting

interpretations in relation to techniques such as drop-out [47] as we discuss in Section

4.6.3. Also, in Section 4.6.2 we briefly describe how ideas from our framework can

be extended to more general Φ mappings to capture additional potential network

architectures.
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Here we have provided a few examples of common factorization mappings that

can be cast in form (4.6), but certainly there are a wide variety of other problems for

which our framework is relevant. Additionally, while most of the mappings described

above are positively homogeneous with degree equal to the degree of the factorization

(K), this is not a requirement; p > 0 is sufficient. For example, non-linearities such

as raising each element to a power or convolutional neural network techniques such

as contrast normalization will affect the degree of positive homogeneity but can still

be included in our framework. What will turn out to be essential, however, is that we

require p to match the degree of positive homogeneity used to regularize the factors,

which we will discuss in the next section.

4.4.2 Factorization Regularization

Inspired by the ideas from structured convex matrix factorization, rather than

trying to analyze the optimization over a size-r set of K factors (X1, . . . , XK)r for

a fixed r, we instead consider the optimization problem where r is possibly allowed

to vary and adapted to the data through regularization. To do so, we will define a

regularization function similar to the ∥ · ∥u,v norm discussed in matrix factorization,

which is convex with respect to the output tensor, X = Φr(X
1, . . . , XK), but which

still allows for regularization to be placed on the factors, (X1, . . . , XK)r. Similar to

our definition in (4.6), we will begin by first defining an elemental regularization

function θ : RD1 × . . . × RDK → R+ ∪ ∞ which takes as input slices of the fac-
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torized tensors along the last dimension and returns a non-negative number. The

requirements we place on θ are that it must be positively homogeneous and positive

semidefinite. Formally,

Definition 20 We define an elemental regularization function θ : RD1 × . . .×

RDK → R+ ∪ ∞, to be any function which is positive semidefinite and positively

homogeneous.

Again, due to the generality of our framework, there are a wide variety of possible

elemental regularization functions. We highlight two positive semidefinite, positively

homogeneous functions which are commonly used and note that functions can be

composed with summations, multiplications, and raising to non-zero powers to change

the degree of positive homogeneity and combine various functions.

Norms : Any norm ∥x∥ is positively homogeneous with degree 1. Note that

because we make no requirement of convexity on θ, this framework can also include

functions such as the lq pseudo-norms for q ∈ (0, 1).

Conic Indicators : The indicator function δC(x) of any conic set C is positively

homogeneous for all degrees. Recall that a conic set, C, is simply any set such that if

x ∈ C then αx ∈ C, ∀α ≥ 0. A few popular conic sets which can be of interest include

the non-negative orthant RD
+ , the kernel of a linear operator {x : Ax = 0}, inequality

constraints for a linear operator {x : Ax ≥ 0}, and the set of positive semidefinite

matrices. Constraints on the non-zero support of x are also typically conic sets. For

example, the set {x : ∥x∥0 ≤ n} is a conic set, where ∥x∥0 is simply the number of
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non-zero elements in x and n is a positive integer. More abstractly, conic sets can also

be used to enforce invariances w.r.t. positively homogeneous transformations. For

example, given two positively homogeneous functions g(x), g′(x) with equal degrees

of positive homogeneity, the sets {x : g(x) = g′(x)} and {x : g(x) ≥ g′(x)} are also

conic sets.

From this, we now define our main regularization function:

Definition 21 Given an elemental mapping φ and an elemental regularization func-

tion θ, we define the factorization regularization function, Ωφ,θ(X) : RD →

R+ ∪∞ to be

Ωφ,θ(X) ≡ inf
r∈N+

inf
(X1,...,XK)r

r∑
i=1

θ(X1
i , . . . , X

K
i ) s.t. Φr(X

1, . . . , XK) = X (4.13)

with the additional condition that Ωφ,θ(X) =∞ if X /∈
⋃

r Im(Φr).

For the above Ωφ,θ function to be useful in our analysis, it will be necessary that φ

and θ have equal degrees of positive homogeneity. The necessity of this requirement

will become apparent when we begin our analysis, and we discuss this importance

further in section 4.6.1. A few typical formulations of a θ which are positively ho-

mogeneous with degree K and nondegenerate with the example φ mappings we have
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given might include:

θ(x1, . . . , xK) =
K∏
i=1

∥xi∥(i) (4.14)

θ(x1, . . . , xK) = 1
K

K∑
i=1

∥xi∥K(i) (4.15)

θ(x1, . . . , xK) =
K∏
i=1

(∥xi∥(i) + δCi
(xi)) (4.16)

where all of the norms, ∥ · ∥(i), and conic sets, δCi
, are arbitrary. Forms (4.14) and

(4.15) can be shown to be equivalent, in the sense that they give rise to the same Ωφ,θ

function (see the following proposition) for all of the example mappings φ we have

discussed above. By an appropriate choice of norm one can induce various properties

in the factorized elements (such as sparsity) with forms (4.14) and (4.15), while form

(4.16) is similar but additionally constrains each factor to be an element of a conic

set Ci (see [54–56,62] for examples from matrix factorization).

Proposition 9 For any elemental mapping φ which is positively homogenous with

degree 1 in each factor – that is φ(x1, . . . , αxk, . . . , xK) = αφ(x1, . . . , xk, . . . , xK) ∀α ≥

0 and ∀k ∈ {1, . . . , K}, then the elemental regularization functions (4.14) and (4.15)

produce the same regularization function Ωφ,θ.

Proof. For the case of the ∥·∥u,v norm this result is known and is what allows for the

two equivalent forms of definition in (3.7) [54]. The equivalence between (4.14) and

(4.15) is easily extended to cases with K > 2 by starting from (4.15) and considering
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the following geometric programming optimization problem:

min
α1,...,αK

1
K

K∑
i=1

∥αix
i∥K(i) subject to

K∏
i=1

αi = 1 and αi > 0 ∀i. (4.17)

Making the change of variables zi = ln(αi) we have the equivalent problem

min
z1,...,zK

1
K

K∑
i=1

eziK∥xi∥K(i) subject to
K∑
i=1

zi = 0, (4.18)

which gives the KKT conditions

ezioptK∥xi∥K(i) = γopt ∀i ∈ {1, . . . , K}, (4.19)

where γ is a Lagrange multiplier to enforce the equality constraint. Taking the prod-

uct of (4.19) over i and raising the result to 1/K, we have

γopt = e(z1opt+...+zKopt )
K∏
i=1

∥xi∥(i) =
K∏
i=1

∥xi∥(i) = (4.14), (4.20)

where the second equality is due to the constraint that the z terms sum to 0. Sub-

stituting (4.19), (4.20), and αiopt = eziopt into (4.17) then gives that (4.17) = (4.14).

Due to the requirement that
∏K

i=1 αi = 1 we have φ(α1x
1, . . . , αKx

K) = φ(x1, . . . , xK)

from φ being positively homogeneous with degree 1 in each factor. As a result,

the above discussion has shown that for any θ of form (4.15), for any factorization
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Φ(X1, . . . , XK) = X the infimum will always be achieved when (4.15) = (4.14), since

if the two were not equal we could scale the factors by the alpha constants which are

the solution to (4.17) and decrease the value of the factorization, which completes

the result.

Note that the above proposition is also easily generalized to other positive semidef-

inite functions that are positively homogeneous with degree 1 (other than norms) by

using identical arguments.

4.4.2.1 Nondegenerate Factorization Regularization

While the above forms of elemental regularizers θ result in useful regularizers in

the product space, Ωφ,θ, note that in general simply ensuring that the degrees of

positive homogeneity are matched between φ and θ is not necessarily sufficient to

guarantee a useful factorization regularization function Ωφ,θ. For example, in matrix

factorization with φ(u, v) = uvT , taking θ(u, v) = δC(u)∥v∥2 for any arbitrary norm

and conic set C, we have matched degrees of positive homogeneity between φ and θ

(i.e., 2); however, we can always reduce the value of θ(u, v) by scaling v by a constant

α ∈ (0, 1) and scaling u by α−1 without changing the value of φ(u, v). As such, this

implies that Ωφ,θ(X) = 0 ∀X and the infimum in (4.13) can never be achieved. As

a result, to make the Ωφ,θ function well defined for our analysis purposes, we will

require that the (φ, θ) pair satisfy a nondegeneracy property, defined below:

Definition 22 Given an elemental mapping φ and an elemental regularization func-
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tion θ, will we say that (φ, θ) is a nondegenerate pair if

1. θ and φ are both positively homogeneous with degree p, for some p > 0

2. ∀X ∈ Im(φ)\0, we have

min
(z1,...,zK):φ(z1,...,zK)=X

θ(z1, . . . , zK) = inf
(z1,...,zK):φ(z1,...,zK)=X

θ(z1, . . . , zK) > 0.

(4.21)

(Note that in property 2 this is φ, not Φ).

We will assume for the remainder of this work that φ and θ satisfy this condition.

Assumption 1 (φ, θ) is a nondegenerate pair as defined by Definition 22.

4.4.3 Properties of the Factorization Regulariza-

tion Function

We now show a few properties regarding Ωφ,θ, with the key points being that it is

a convex function of X and in general the infimum in (4.13) can always be achieved

with a finitely sized factorization (i.e., r does not need to approach∞)2. In particular,

Ωφ,θ satisfies the following proposition:

2In particular, the largest r needs to be is card(X), and we note that card(X) is a worst case
upper bound on the size of the factorization. In certain cases the bound can be shown to be lower.
As an example, Ωφ,θ(X) = ∥X∥∗ when φ(u, v) = uvT and θ(u, v) = ∥u∥2∥v∥2. In this case the
infimum can be achieved with r ≤ rank(X) ≤ min{card(u), card(v)}.
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Proposition 10 The factorization regularization function Ωφ,θ : RD → R ∪ ∞ as

defined in (4.13), such that (φ, θ) is a nondegenerate pair, has the following properties:

1. Ωφ,θ(0) = 0 and Ωφ,θ(X) > 0 ∀X ̸= 0.

2. Ωφ,θ is positively homogeneous with degree 1, i.e., Ωφ,θ(αX) = αΩφ,θ(X) ∀α ≥ 0.

3. Ωφ,θ(X + Z) ≤ Ωφ,θ(X) + Ωφ,θ(Z) ∀(X,Z).

4. Ωφ,θ(X) is convex w.r.t. X ∈ RD.

5. ∀X s.t. Ωφ,θ(X) <∞, the infimum in (4.13) can be achieved with r ≤ card(X).

6. If for some k ∈ {1, . . . , K} we have that φ(x1, . . . ,−xk, . . . , xK) =

−φ(x1, . . . , xk, . . . , xK) and θ(x1, . . . ,−xk, . . . , xK) = θ(x1, . . . , xk, . . . , xK),

then Ωφ,θ(X) is also a norm on X.

Before proving the above result, we will first characterize the Fenchel dual of Ωφ,θ,

which will be needed for many points of our analysis.

Proposition 11 The Fenchel dual of Ωφ,θ(X) is given by

Ω∗
φ,θ(W ) =

⎧⎪⎪⎨⎪⎪⎩
0 Ω◦

φ,θ(W ) ≤ 1

∞ otherwise

(4.22)

where

Ω◦
φ,θ(W ) ≡ sup

(z1,...,zK)

⟨
W,φ(z1, . . . , zK)

⟩
s.t. θ(z1, . . . , zK) ≤ 1. (4.23)
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Proof. Recall, Ω∗
φ,θ(W ) ≡ supZ ⟨W,Z⟩−Ωφ,θ(Z), so for Z to approach the supremum

we must have Z ∈
⋃

r Im(Φr). As result, the problem is equivalent to

Ω∗
φ,θ(W ) = sup

r∈N+

sup
(Z1,...,ZK)r

⟨
W,Φr(Z

1, . . . , ZK)
⟩
−

r∑
i=1

θ(Z1
i , . . . , Z

K
i ) (4.24)

= sup
r∈N+

sup
(Z1,...,ZK)r

r∑
i=1

[⟨
W,φ(Z1

i , . . . , Z
K
i )
⟩
− θ(Z1

i , . . . , Z
K
i )
]
. (4.25)

If Ω◦
φ,θ(W ) ≤ 1 then all the terms in the summation of (4.25) will be non-positive,

so taking (Z1, . . . , ZK) = (0, . . . , 0) will achieve the supremum. This can be seen by

noting that because of the balanced degrees of homogeneity, if Ω◦
φ,θ(W ) ≤ 1 then we

will always have
⟨
W,φ(z1, . . . , xK)

⟩
≤ θ(z1, . . . , zK) since we can always rescale the

(z1, . . . , zK) terms by a positive constant α so that θ(αz1, . . . , αzK) = 1. To make this

point explicit, consider any (z1, . . . , zK) and α > 0 such that θ(αz1, . . . , αzK) = 1,

giving

αp
⟨
W,φ(z1, . . . , zK)

⟩
=
⟨
W,φ(αz1, . . . , αzK)

⟩
≤ 1 =

θ(αz1, . . . , αzK) = αpθ(z1, . . . , zK).

(4.26)

The inequality above comes from the fact that Ω◦
φ,θ(W ) ≤ 1, and since αp > 0 we can

cancel it from both sides of the inequality to give
⟨
W,φ(z1, . . . , xK)

⟩
≤ θ(z1, . . . , zK).

Conversely, if Ω◦
φ,θ(W ) > 1, then ∃(z1, . . . , zK) such that

⟨
W,φ(z1, . . . , zK)

⟩
>

θ(z1, . . . , zK). This result, combined with the positive homogeneity of φ and θ gives

that (4.25) is unbounded by considering (αz1, . . . , αzK) as α→∞.
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Having this characterization of the Fenchel dual, we are now prepared to prove

Proposition 10.

Proof. (Proposition 10) Many of these properties can be shown in a similar

fashion to results from the ∥ · ∥u,v norm discussed previously [54, 57, 59]. For brevity

of notation, we will notate the optimization problem in (4.13) as

Ωφ,θ ≡ inf
Φr(X1,...,XK)=X

r∑
i=1

θ(X1
i , . . . , X

K
i ), (4.27)

where recall that r is variable although it is not explicitly notated.

1. By definition and the fact that θ is positive semidefinite, we always have

Ωφ,θ(X) ≥ 0 ∀X. Trivially, Ωφ,θ(0) = 0 since we can always take

(X1, . . . , XK) = (0, . . . , 0) to achieve the infimum. For X ̸= 0, be-

cause (φ, θ) is a non-degenerate pair then
∑r

i=1 θ(X
1
i , . . . , X

K
i ) > 0 for any

(X1, . . . , XK)r s.t. Φr(X
1, . . . , XK) = X and r finite. Property 5 shows that

the infimum can be achieved with r finite, completing the result.

2. The result is easily seen from the positive homogeneity of φ and θ,

Ωφ,θ(αX) = inf
Φr(X1,...,XK)=αX

r∑
i=1

θ(X1
i , . . . , X

K
i ) =

inf
Φr(α−1/pX1,...,α−1/pXK)=X

r∑
i=1

θ(X1
i , . . . , X

K
i ) =

inf
Φr(Z1,...,ZK)=X

α

r∑
i=1

θ(Z1
i , . . . , Z

K
i ) = αΩφ,θ(X),

(4.28)
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where the equality between the middle and final lines is simply due to the change

of variables (Z1, . . . , ZK) = (α−1/pX1, . . . , α−1/pXK).

3. If either Ωφ,θ(X) =∞ or Ωφ,θ(Z) =∞ then the inequality is trivially satisfied.

Considering any (X,Z) pair such that Ωφ,θ is finite for both X and Z, for

any ϵ > 0 let (X1, . . . , XK)rx be an ϵ optimal factorization of X. Specifically,

Φrx(X
1, . . . , XK) = X and

∑rx
i=1 θ(X

1
i , . . . , X

K
i ) ≤ Ωφ,θ(X) + ϵ. Similarly, let

(Z1, . . . , ZK)rz be an ϵ optimal factorization of Z. From Proposition 8 we have

Φrx+rz([X
1 Z1], . . . , [XK ZK ]) = X+Z, so Ωφ,θ(X+Z) ≤

∑rx
i=1 θ(X

1
i , . . . , X

K
i )+∑rz

j=1 θ(Z
1
j , . . . , Z

K
j ) ≤ Ωφ,θ(X) + Ωφ,θ(Y ) + 2ϵ. Letting ϵ tend to 0 completes

the result.

4. Convexity is given by the combination of properties 2 and 3. Further, note that

properties 2 and 3 also show that {X ∈ RD : Ωφ,θ(X) <∞} is a convex set.

5. Let Γ ⊂ RD be defined as

Γ = {X : ∃(x1, . . . , xK), φ(x1, . . . , xK) = X, θ(x1, . . . , xK) ≤ 1}. (4.29)

Note that because (φ, θ) is a nondegenerate pair, for any non-zero X ∈ Γ there

exists α ∈ [1,∞) such that αX is on the boundary of Γ, so Γ and its convex

hull are compact sets.

Further, note that Γ contains the origin by definition of φ and θ, so as a result,
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we can define σΓ to be a gauge function on the convex hull of Γ,

σΓ(X) = inf
µ
{µ : µ ≥ 0, X ∈ µ conv(Γ)}. (4.30)

Since the infimum w.r.t. µ is linear and constrained to a compact set, it must

be achieved. Therefore, there must exist µopt ≥ 0, {β ∈ Rcard(X) : βi ≥

0 ∀i,
∑card(X)

i=1 βi = 1}, and {(Z1
i , . . . , Z

K
i ) : φ(Z1

i , . . . , Z
K
i ) ∈ Γ}card(X)

i=1 such

that X = µopt

∑card(X)
i=1 βiφ(Z

1
i , . . . , Z

K
i ) and σΓ(X) = µopt.

Combined with positive homogeneity, this gives that σΓ can be defined identi-

cally to Ωφ,θ, but with the additional constraint r ≤ card(X),

σΓ(X) ≡ inf
r∈[1,card(X)]

inf
(X1,...,XK)r

r∑
i=1

θ(X1, . . . , XK) s.t. Φr(X
1, . . . , XK) = X.

(4.31)

This is seen by noting that we can take (X1
i , . . . , X

K
i ) =

((µoptβi)
1/pZ1

i , . . . , (µoptβi)
1/pZK

i ) to give

µopt = σΓ(X) ≤
card(X)∑

i=1

θ(X1
i , . . . , X

K
i ) = µopt

card(X)∑
i=1

βiθ(Z
1
i , . . . , Z

K
i )

≤ µopt

card(X)∑
i=1

βi = µopt,

(4.32)

and shows that a factorization of size r ≤ card(X) which achieves the infimum

µopt = σΓ(X) must exist. Clearly from (4.31) σΓ is very similar to Ωφ,γ. To show

that the two functions are, in fact, the same function, recall that the proof of
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the Fenchel dual of Ωφ,θ given in Proposition 11 does not depend on the size of r

but only on the existence (or non-existence) of a single (z1, . . . , zK) element. As

a result, using an identical series of arguments to derive the Fenchel dual of σΓ,

one finds that σ∗
Γ = Ω∗

φ,θ, and since both σΓ and Ωφ,θ are convex function, the

one-to-one correspondence between convex functions and their Fenchel duals

gives that σΓ(X) = Ωφ,θ(X), completing the result.

6. Note that from properties 1-3 we have established all of the requirements for

a norm, except for invariance w.r.t. negative scaling, i.e., we must show that

Ωφ,θ(−X) = Ωφ,θ(X). This is easily seen from the definition of Ωφ,θ and the

conditions of the proposition,

Ωφ,θ(−X) = inf
Φ(X1,...,XK)=−X

r∑
i=1

θ(X1
i , . . . , X

K
i ) =

inf
Φ(X1,...,−Xk,...,XK)=X

r∑
i=1

θ(X1
i , . . . , X

K
i ) =

inf
Φ(X1,...,Z,...,XK)=X

r∑
i=1

θ(X1
i , . . . , Zi, . . . , X

K
i ) = Ωφ,θ(X).

(4.33)

While Ωφ,θ suffers from many of the practical issues associated with the matrix

norm ∥ · ∥u,v discussed earlier (namely that in general it cannot be evaluated in

polynomial time due to the complicated definition), because Ωφ,θ(X) is a convex

function on X, it allows us to use Ωφ,θ as an analysis tool to derive results for a

more tractable factorized formulation. In particular, from the Fenchel dual, one can
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characterize the subgradient of Ωφ,θ(X) through the following result.

Proposition 12 The subgradient of Ωφ,θ(X) is given by

∂Ωφ,θ(X) = {W : ⟨X,W ⟩ = Ωφ,θ(X), Ω◦
φ,θ(W ) ≤ 1}. (4.34)

Proof. This is simply due to the fact that because Ωφ,θ(X) is convex we have W ∈

∂Ωφ,θ(X) ⇐⇒ ⟨W,X⟩ = Ωφ,θ(X) + Ω∗
φ,θ(W ), and since Ω∗

φ,θ is just the indicator

function on the set {W : Ω◦
φ,θ(W ) ≤ 1} we have the stated result.

From this simple result, we now have the basis for the following lemma which will

be used in our main results

Lemma 1 Given a factorization X = Φr(X
1, . . . , XK) and a regularization function

Ωφ,θ(X), then the following conditions are equivalent:

1. (X1, . . . , XK) is an optimal factorization of X; i.e.,
∑r

i=1 θ(X
1
i , . . . , X

K
i ) =

Ωφ,θ(X).

2. ∃W such that Ω◦
φ,θ(W ) ≤ 1 and

⟨
W,Φr(X

1, . . . , XK)
⟩
=
∑r

i=1 θ(X
1
i , . . . , X

K
i ).

3. ∃W such that Ω◦
φ,θ(W ) ≤ 1 and ∀i ∈ {1, . . . , r},

⟨
W,φ(X1

i , . . . , X
K
i )
⟩

=

θ(X1
i , . . . , X

K
i ).

Further, any W which satisfies condition 2 or 3 satisfies both conditions 2 and 3 and

W ∈ ∂Ωφ,θ(X).
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Proof. 2 ⇐⇒ 3) 3 trivially implies 2 from the definition of Φr. For the opposite

direction, recall from the proof of Proposition 11 that because Ω◦
φ,θ(W ) ≤ 1 we have⟨

W,φ(X1
i , . . . , X

K
i )
⟩
≤ θ(X1

i , . . . , X
K
i ) ∀i. Taking the sum over i, we can only achieve

equality in 2 if we have equality ∀i in condition 3. This also shows that any W which

satisfies condition 2 or 3 must also satisfy the other condition.

We next show that if W satisfies conditions 2/3 then W ∈ ∂Ωφ,θ(X). First, from

condition 2/3 and the definition of Ωφ,θ, we have Ωφ,θ(X) ≤
∑r

i=1 θ(X
1
i , . . . , X

K
i ) =

⟨W,X⟩ < ∞. Thus, recall that because Ωφ,θ(X) is convex and finite at X, we have

⟨W,X⟩ ≤ Ωφ,θ(X) +Ω∗
φ,θ(W ) with equality iff W ∈ ∂Ωφ,θ(X). Now, by contradiction

assume W satisfies conditions 2/3 but W /∈ ∂Ωφ,θ(X). From condition 2/3 we have

Ω∗
φ,θ(W ) = 0, so Ωφ,θ(X) = Ωφ,θ(X) + Ω∗

φ,θ(W ) > ⟨X,W ⟩ =
∑r

i=1 θ(X
1
i , . . . , X

K
i )

which contradicts the definition of Ωφ,θ(X).

1 =⇒ 2) Any W ∈ ∂Ωφ,θ(X) satisfies ⟨X,W ⟩ = Ωφ,θ(X) + Ω∗
φ,θ(W ) =∑r

i=1 θ(X
1
i , . . . , X

K
i ).

2 =⇒ 1) By contradiction, assume (X1, . . . , XK)r was not an optimal factor-

ization of X. This gives, Ωφ,θ(X) <
∑r

i=1 θ(X
1
i , . . . , X

K
i ) = ⟨W,X⟩ = Ωφ,θ(X) +

Ω∗
φ,θ(W ) = Ωφ,θ(X), producing the contradiction.

Before presenting our main results, we briefly note that the optimization problem

associated with (4.23) is typically referred to as the polar problem and is a gener-

alization of the concept of a dual norm. In practice solving the polar can be very

challenging (NP-hard in general) and is often the limiting factor in being able to
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escape non-optimal saddle points and applying our results in practice (see [55,79] for

further information on solving matrix factorization polar problems). In the following

sections we will build our analysis of the main problem and discuss these points in

further detail.

4.5 Main Results

In the previous section we introduced and established several properties of the Ωφ,θ

factorization regularization function. In this section we will utilize the Ωφ,θ function

to analyze a wide variety of non-convex factorization problems. To build our analysis,

we will start by defining the convex (but typically non-tractable) problem, given by

min
X,Q

F (X,Q) = ℓ(Y,X,Q) + λΩφ,θ(X) +H(Q). (4.35)

Here X ∈ RD is the output of the factorization mapping X = Φ(X1, . . . , XK) as we

have been discussing. For our analysis we will assume the following:

Assumption 2 ℓ(Y,X,Q) is once differentiable and jointly convex in (X,Q).

Assumption 3 H(Q) is convex (but possibly non-differentiable).

Assumption 4 A minimum of F (X,Q) exists, i.e., ∅ ̸= argminX,Q F (X,Q).

As we have noted on multiple occasions, it is typically impractical to optimize over

functions involving Ωφ,θ(X), and, even if one were given an optimal solution to (4.35),
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Xopt, one would still need to solve the problem given in (4.13) to recover the desired

(X1, . . . , XK) factors. Therefore, we instead focus on the non-convex optimization

problem given by

min
(X1,...,XK)r,Q

fr(X
1, . . . , XK , Q) ≡

ℓ(Y,Φr(X
1, . . . , XK), Q) + λ

r∑
i=1

θ(X1
i , . . . , X

K
i ) +H(Q).

(4.36)

We will show that any local minima of (4.36) is a global minima if it satisfies the

condition that one slice from each of the factorized tensors is all zero. Further, we

will also show that if r is taken to be large enough then from any initialization we

can always find a global minimum of (4.36) by doing an optimization based purely

on local descent.

4.5.1 Local Minima Achieve Global Minima

To show our results, we will rely on the fact that the convex function, F (X,Q), is

a global lower bound of fr(X
1, . . . , XK , Q) for all factorizations X = Φr(X

1, . . . , XK)

due to the definition of Ωφ,θ. As a result, one can use standard first-order optimality

conditions to characterize the globally optimal solutions of minX,Q F (X,Q). Then,

we show that local minima of fr(X
1, . . . , XK , Q) which satisfy the condition that one

slice of the factors (X1, . . . , XK) is all zero will also satisfy the optimality conditions

for F (X,Q), which implies a global minima of both problems due to the global lower

128



CHAPTER 4. GENERALIZED FACTORIZATIONS

bound.

Before showing our main results, we develop one additional lemma.

Lemma 2 If (X1, . . . , XK , Q) is a local minimum of fr(X
1, . . . , XK , Q) as given in

(4.36), then for any β ∈ Rr

⟨
− 1

λ
∇Xℓ(Y,Φr(X

1, . . . , XK), Q),
r∑

i=1

βiφ(X
1
i , . . . , X

K
i )

⟩
=

r∑
i=1

βiθ(X
1
i , . . . , X

K
i ).

(4.37)

Proof. Let (Z1
i , . . . , Z

K
i ) = (βiX

1
i , . . . , βiX

K
i ) for all i ∈ {1 . . . r} and let Λ =∑r

i=1 βiφ(X
1
i , . . . , X

K
i ). From positive homogeneity and the fact that we have a local

minimum, then ∃δ > 0 such that ∀ϵ ∈ (0, δ) we must have

fr(X
1, . . . , XK , Q) ≤ fr(X

1 + ϵZ1, . . . , XK + ϵZK , Q) =⇒ (4.38)

ℓ(Y,Φr(X
1, . . . , XK), Q) + λ

r∑
i=1

θ(X1
i , . . . , X

K
i ) +H(Q) ≤

ℓ

(
Y,

r∑
i=1

(1 + ϵβi)
pφ(X1

i , . . . , X
K
i ), Q

)
+ λ

r∑
i=1

(1 + ϵβi)
pθ(X1

i , . . . , X
K
i ) +H(Q).

(4.39)

Taking the first order approximation (1 + ϵβi)
p = 1 + pϵβi + O(ϵ2) and rearranging
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the terms of (4.39), we arrive at

0 ≤ℓ
(
Y,Φr(X

1, . . . , XK) + pϵΛ +O(ϵ2), Q
)
− ℓ(Y,Φr(X

1, . . . , XK), Q)

+ pϵλ

r∑
i=1

βiθ(X
1
i , . . . , X

K
i ) +O(ϵ2),

(4.40)

After dividing by ϵ and taking limϵ↘0[
(4.40)

ϵ
], we note that the difference in the ℓ(·, ·, ·)

terms gives the one-sided directional derivative dℓ(Y,Φr(X
1, . . . , XK), Q)(pΛ, 0), thus

from the differentiability of ℓ we get

0 ≤
⟨
∇Xℓ(Y,Φr(X

1, . . . , XK), Q), pΛ
⟩
+ pλ

r∑
i=1

βiθ(X
1
i , . . . , X

K
i ). (4.41)

Noting that for ϵ > 0 but sufficiently small, we also must have fr(X
1, . . . , XK , Q) ≤

fr(X
1− ϵZ1, . . . , XK− ϵZK), using identical steps as before and taking the first order

approximation (1− ϵβi)p = 1− pϵβi +O(ϵ2), we get

0 ≤ℓ(Y,Φr(X
1, . . . , XK)− pϵΛ +O(ϵ2), Q)− ℓ(Y,Φr(X

1, . . . , XK), Q)

− pϵλ
r∑

i=1

βiθ(X
1
i , . . . , X

K
i ) +O(ϵ2).

(4.42)

Dividing by ϵ and taking the limit limϵ↘0[
(4.42)

ϵ
], we arrive at

0 ≤
⟨
∇Xℓ(Y,Φr(X

1, . . . , XK), Q),−pΛ
⟩
− pλ

r∑
i=1

βiθ(X
1
i , . . . , X

K
i ) (4.43)

Combining (4.41) and (4.43) and rearranging terms gives the result.
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Based on the above preliminary results, we are now ready to state our main results

and several immediate corollaries.

Theorem 8 Given a function fr(X
1, . . . , XK , Q) of the form given in (4.36), any

local minimizer of the optimization problem

min
(X1,...,XK)r,Q

fr(X
1, . . . , XK , Q) ≡

ℓ(Y,Φr(X
1, . . . , XK), Q) + λ

r∑
i=1

θ(X1
i , . . . , X

K
i ) +H(Q)

(4.44)

such that (X1
i0
, . . . , XK

i0
) = (0, . . . , 0) for some i0 ∈ {1, . . . , r} is a global minimizer.

Proof. We begin by noting that from the definition of Ωφ,θ(X), for any factor-

ization X = Φr(X
1, . . . , XK)

F (X,Q) = ℓ(Y,X,Q) + λΩφ,θ(X) +H(Q) ≤

ℓ(Y,Φr(X
1, . . . , XK), Q) + λ

r∑
i=1

θ(X1
i , . . . , X

K
i ) +H(Q) = fr(X

1, . . . , XK , Q)

(4.45)

with equality at any factorization which achieves the infimum in (4.13). We will show

that a local minimum of fr(X
1, . . . , XK , Q) satisfying the conditions of the theorem

also satisfies the conditions for (Φr(X
1, . . . , XK), Q) to be a global minimum of the

convex function F (X,Q), which implies a global minimum of fr(Y,X
1, . . . , XK , Q)

due to the global bound in (4.45).
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First, because (4.35) is a convex function, a simple subgradient condition gives

that (X,Q) is a global minimum of F (X,Q) iff the following two conditions are

satisfied

− 1
λ
∇Xℓ(Y,X,Q) ∈ ∂Ωφ,θ(X) (4.46)

−∇Qℓ(Y,X,Q) ∈ ∂H(Q), (4.47)

where ∇Xℓ(Y,X,Q) and ∇Qℓ(Y,X,Q) denote the portions of the gradient of

ℓ(Y,X,Q) corresponding to X and Q, respectively. If (X1, . . . , XK , Q) is a lo-

cal minimum of fr(X
1, . . . , XK , Q), then (4.47) must be satisfied at (X,Q) =

(Φr(X
1, . . . , XK), Q), as this is implied by the first order optimality condition for

a local minimum [80, Chap. 10], so we are left to show that (4.46) is also satisfied.

Turning to the factorization objective, if (X1, . . . , XK , Q) is a local minimum of

fr(X
1, . . . , XK , Q), then ∀(Z1, . . . , ZK)r there exists δ > 0 such that ∀ϵ ∈ (0, δ) we

have fr(X
1 + ϵ1/pZ1, . . . , XK + ϵ1/pZK , Q) ≥ fr(X

1, . . . , XK , Q). If we now consider

search directions (Z1, . . . , ZK)r of the form

(Z1
j , . . . , Z

K
j ) =

⎧⎪⎪⎨⎪⎪⎩
(0, . . . , 0) j ̸= i0

(z1, . . . , zK) j = i0

, (4.48)

where i0 is the index such that (X1
i0
, . . . , XK

i0
) = (0, . . . , 0), then for ϵ ∈ (0, δ), we
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have

ℓ(Y,Φr(X
1, . . . , XK), Q) + λ

r∑
i=1

θ(X1
i , . . . , X

K
i ) +H(Q) ≤ (4.49)

ℓ(Y,Φr(X
1 + ϵ1/pZ1, . . . , XK + ϵ1/pZK), Q)+

λ
r∑

i=1

θ(X1
i + ϵ1/pZ1

i , . . . , X
K
i + ϵ1/pZK

i ) +H(Q) =

(4.50)

ℓ(Y,
∑
i̸=i0

φ(X1
i , . . . , X

K
i ) + φ(X1

i0
+ ϵ1/pZ1

i0
, . . . , XK

i0
+ ϵ1/pZK

i0
), Q)+

λ
∑
i̸=i0

θ(X1
i , . . . , X

K
i ) + λθ(X1

i0
+ ϵ1/pZ1

i0
, . . . , XK

i0
+ ϵ1/pZK

i0
) +H(Q) =

(4.51)

ℓ(Y,Φr(X
1, . . . , XK) + ϵφ(z1, . . . , zK), Q)+

λ
r∑

i=1

θ(X1
i , . . . , X

K
i ) + ϵλθ(z1, . . . , zK) +H(Q).

(4.52)

The equality between (4.51) and (4.52) comes from the special form of Z given by

(4.48), the fact that (X1
i0
, . . . , XK

i0
) = (0, . . . , 0), and the positive homogeneity of φ

and θ. Rearranging terms, we now have

ϵ−1[ℓ(Y,Φr(X
1, . . . , XK) + ϵφ(z1, . . . , zK), Q)− ℓ(Y,Φr(X

1, . . . , XK), Q)]

≥ −λθ(z1, . . . , zK).
(4.53)

Taking the limit of (4.53) as ϵ↘ 0, we note that the left side of the inequality is simply

the definition of the one-sided directional derivative of ℓ(Y,Φr(X
1, . . . , XK), Q) in the
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direction (φ(z1, . . . , zK), 0), which combined with the differentiability of ℓ(X,Q), gives

⟨
φ(z1, . . . , zK),∇Xℓ(Y,Φr(X

1, . . . , XK), Q)
⟩
≥ −λθ(z1, . . . , zK). (4.54)

Because (z1, . . . , zK) was arbitrary, we have established that

⟨
φ(z1, . . . , zK),− 1

λ
∇Xℓ(Y,Φr(X

1, . . . , XK), Q)
⟩
≤ θ(z1, . . . , zK) ∀(z1, . . . , zK)

⇐⇒ Ω◦
φ,θ(− 1

λ
∇Xℓ(Y,Φr(X

1, . . . , XK), Q)) ≤ 1,

(4.55)

where the equivalence is seen by identical arguments to those used in the proof of

Proposition 11. Further, if we choose β to be vector of all ones in Lemma 2, we get

r∑
i=1

θ(X1
i , . . . , X

K
i ) =

⟨
Φr(X

1, . . . , XK),− 1
λ
∇Xℓ(Y,Φr(X

1, . . . , XK), Q)
⟩
. (4.56)

This fact, combined with (4.55), Lemma 1, and Proposition 12 shows that

− 1
λ
∇Xℓ(Y,Φr(X

1, . . . , XK), Q) ∈ ∂Ωφ,θ(Φr(X
1, . . . , XK)), completing the result.

From this result, we can then test the global optimality of any local minimum

(regardless of whether it has an all-zero slice or not) from the immediate corollary:

Corollary 2 Given a function fr(X
1, . . . , XK , Q) of the form given in (4.36), any
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local minimizer of the optimization problem

min
(X1,...,XK)r,Q

fr(X
1, . . . , XK , Q) (4.57)

is a global minimizer if fr+1([X
1 0], . . . , [XK 0], Q) is a local minimizer of fr+1.

Proof. Note that from the structure of fr(X
1, . . . , XK , Q) the following two problems

are equivalent

min
(X1,...,XK)r,Q

fr(X
1, . . . , XK , Q) ≡

min
([X1 x1],...,[XK xK ]),Q

fr+1([X
1 x1], . . . , [XK xk], Q) s.t. (x1, . . . , xK) = (0, . . . , 0).

(4.58)

If we remove the equality constraint we then have that min fr+1 ≤ min fr, and if

the condition of the corollary is satisfied, then ([X1 0], . . . , [XK 0], Q) is a global

minimizer for fr+1 due to Theorem 8. This then implies that (X1, . . . , XK , Q) is

global minimizer of fr due to the equivalence in (4.58).

4.5.2 Finding Global Minima

From the results of Theorem 8, we have a sufficient condition to guarantee the

global optimality of a given local minimum. Building on this result, we now are

also able to show that if we let the size of the factorized variables (r) become
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large enough, then from any initialization we can always find a global minimizer

of fr(X
1, . . . , XK , Q) using a purely local descent strategy. Specifically, we have the

following result.

Theorem 9 Given a function fr(X
1, . . . , XK , Q) as defined by (4.36), if r >

card(X) then from any point (Z1, . . . , ZK , Q) such that fr(Z
1, . . . , ZK , Q) < ∞

there must exist a non-increasing path from (Z1, . . . , ZK , Q) to a global minimizer

of fr(X
1, . . . , XK , Q).

Proof. Clearly if (Z1, . . . , ZK , Q) is not a local minimum, then we can follow a de-

creasing path until we reach a local minimum. Having arrived at a local minimum,

(X̃1, . . . , X̃K , Q̃), if (X̃1
i , . . . , X̃

K
i ) = (0, . . . , 0) for any i ∈ {1, . . . , r} then from The-

orem 8 we must be at a global minimum. Similarly, if for any i0 ∈ {1, . . . , r} we

have φ(X̃1
i0
, . . . , X̃K

i0
) = 0 then we can scale the slice (αX̃1

i0
, . . . , αX̃K

i0
) as α goes from

1→ 0 without increasing the objective function. Once α = 0 we will then have an all

zero slice in the factor tensors, so from Theorem 8 we are either at a global minimum

or a local descent direction must exist from that point. We are thus left to show that

a non-increasing path to a global minimizer must exist from any local minima such

that φ(X̃1
i , . . . , X̃

K
i ) ̸= 0 for all i ∈ {1, . . . , r}.

First, note that because r > card(X) there must exist β̂ ∈

Rr such that β̂ ̸= 0 and
∑r

i=1 β̂iφ(X̃
1
i , . . . , X̃

K
i ) = 0. Fur-

ther, from Lemma 2 we must have that
∑r

i=1 β̂iθ(X̃
1
i , . . . , X̃

K
i ) =⟨

− 1
λ
∇Xℓ(Y,Φr(X

1, . . . , XK), Q),
∑r

i=1 β̂iφ(X
1
i , . . . , X

K
i )
⟩

= 0. Due to the non-
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degeneracy of the (φ, θ) pair we must have θ(X̃1
i , . . . , X̃

K
i ) > 0, ∀i ∈ {1, . . . , r},

which implies that at least one entry of β̂ must be strictly less than zero.

Without loss of generality, assume β̂ is scaled so that mini β̂i = −1. Now, for all

(γ, i) ∈ {[0, 1]} × {1, . . . , r}, let us define

(R1
i (γ), . . . , R

K
i (γ)) ≡ ((1 + γβ̂i)

1/pX̃1
i , . . . , (1 + γβ̂i)

1/pX̃K
i ) (4.59)

where p is the degree of positive homogeneity of (φ, θ). Note that by construc-

tion (R1(0), . . . , RK(0)) = (X̃1, . . . , X̃K) and that for γ = 1 there must exist

i0 ∈ {1, . . . , r} such that (R1
i0
(1), . . . , RK

i0
(1)) = (0, . . . , 0).

Further, from the positive homogeneity of (φ, θ) we have ∀γ ∈ [0, 1]

fr(R
1(γ), . . . , RK(γ), Q̃) =ℓ

(
Y,

r∑
i=1

φ(X̃1
i , . . . , X̃

K
i ) + γ

r∑
i=1

β̂iφ(X̃
1
i , . . . , X̃

K
i ), Q̃

)
+

λγ
r∑

i=1

β̂iθ(X̃
1
i , . . . , X̃

K
i ) + λ

r∑
i=1

θ(X̃1
i , . . . , X̃

K
i ) +H(Q̃)

(4.60)

=ℓ(Y,Φr(X̃
1, . . . , X̃K), Q̃) + λ

r∑
i=1

θ(X̃1
i , . . . , X̃

K
i ) +H(Q̃)

(4.61)

=fr(X̃
1, . . . , X̃K , Q̃), (4.62)

where the equality between (4.60) and (4.61) is seen by recalling that∑r
i=1 β̂iφ(X̃

1
i , . . . , X̃

K
i ) = 0 and

∑r
i=1 β̂iθ(X̃

1
i , . . . , X̃

K
i ) = 0.
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As a result, as γ goes from 0→ 1 we can traverse a path from (X̃1, . . . , X̃K , Q̃)→

(R1(1), . . . , RK(1), Q̃) without changing the value of fr. Also recall that by construc-

tion (R1
i0
(1), . . . , RK

i0
(1)) = (0, . . . , 0), so if (R1(1), . . . , RK(1), Q̃) is a local minimizer

of fr then it must be a global minimizer due to Theorem 8. If (R1(1), . . . , RK(1), Q̃) is

not a local minimizer then there must exist a descent direction and we can iteratively

apply this result until we reach a global minimizer, completing the proof.

We note that our proof is constructive in nature and describes a meta-algorithm

(outlined in Algorithm 3) which can be used with any local-descent optimization

strategy to guarantee convergence to a global minimum. Further, note also that

our definition of a local minimum includes the “saddle plateau” critical regions from

Figure 4.1. As a result, our proof also guarantees that for points on such plateaus we

can rescale the tensor slices by the β terms in Algorithm 3 to arrive at a point from

where a descent direction is guaranteed to exist (the green points in figure 4.1), and

finding the necessary β terms is equivalent to finding a vector in the null space of a

card(X)× r matrix.

Corollary 3 Algorithm 3 will find a global minimum of fr(X
1, . . . , XK , Q) as de-

fined in (4.36). If r is initialized to be greater than card(X), then the size of the

factorized variables will not increase. Otherwise, the algorithm will terminate with

r ≤ card(X) + 1.

While in general the size of the factorization (r) might increase as the algorithm

proceeds, as a worst case, it is guaranteed that a global minimum can be found with
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a finite r never growing larger than card(X) + 1. Also note that this is a worst

case upper bound on r for the most general form of our framework and that for

specific choices of φ and θ the bound on the maximum r required can be significantly

lowered. The main requirement for lowering the upper bound on r is whether from

a given local minimum there exists a transformation of the variables that allows us

to set one slice of the tensors to 0 without increasing the objective function. For

example, in nuclear norm matrix factorization problems we have Φr(U, V ) = UV T

and θ(Ui, Vi) =
1
2
(∥Ui∥2F + ∥Vi∥2F ). Due to the rotational invariance of the Frobenius

norm, if either U or V is rank deficient we can multiply by a orthonormal matrix R

to make one of the columns all zeros without changing the objective function, i.e.,

Φr(UR, V R) = Φ(U, V ) and θ(UiR, ViR) = θ(Ui, Vi), which implies a non-increasing

path to a global minimizer must exist as soon as r > min{card(Ui), card(Vi)}.

4.6 Discussion and Conclusions

We begin our discussion by noting the limitations of our results and cautioning

that many challenges still exist to applying them in practice. In particular, many al-

gorithms based on alternating minimization can typically only guarantee convergence

to a critical point, and with the inherent non-convexity of the problem, verifying

whether a given critical point is also a local minima can be a challenging problem

on its own. Further, to use our results to guarantee global optimality, it is necessary
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Algorithm 3 (Local Descent Generalized Factorization Meta-Algorithm)

input p - Degree of positive homogeneity for (φ, θ)
input {(X1, . . . , XK)r, Q} - Initialization for variables
while Not Converged do
Perform local descent on variables {(X1, . . . , XK), Q} until arriving at a local
minimum {(X̃1, . . . , X̃K), Q̃}
if ∃i0 ∈ {1, . . . , r} such that (X̃1

i0
, . . . , X̃K

i0
) = (0, . . . , 0) then

{(X̃1, . . . , X̃K), Q̃} is a global minimum. Return.
else
if ∃β ∈ Rr\0 such that

∑r
i=1 βiφ(X̃

1
i , . . . , X̃

K
i ) = 0 then

Scale β so that mini βi = −1
Set (X1

i , . . . , X
K
i ) = ((1 + βi)

1/pX̃1
i , . . . , (1 + βi)

1/pX̃K
i ), ∀i ∈ {1, . . . , r}

else
Increase size of factorized variables by appending an all zero slice
(X1, . . . , XK)r+1 = ([X̃1 0], . . . , [X̃K 0])

end if
Set Q = Q̃
Continue loop

end if
end while

to verify whether a descent direction exists from a point where one of the tensor

slices is all 0, which is analogous to the results from gradient boosting that require

us to test if adding another element to the factorization can reduce the objective

function [74, 76]. As shown in Theorem 8, in general this requires solving the polar

problem (4.23), which as we noted above can be quite challenging. For example, even

in the seemingly simple case of matrix factorization with the ∥ · ∥u,v norm, choosing

both vector norms to be lq norms with one the commonly used values of q ∈ {1, 2,∞}

results in polar problems with widely varying computational complexity depending

on the particular choice of norm: the ∥X∥1,1 polar is simply the largest absolute value

of all the entries of X; the ∥X∥2,2 polar is the largest singular value of X; but the
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∥X∥∞,∞ polar is NP-hard to compute [64]. More complicated elemental mappings

and regularizers, such as those associated with tensor decompositions or ReLU neural

networks, also typically result in NP-hard polar problems [33,81].

Nevertheless, despite these practical challenges, we emphasize that our results

guarantee that global minimizers can be found from purely local descent if the op-

timization problem falls within the general framework we have described here. As a

result, even if the particular local descent strategy one chooses for a specific problem

does not come with guaranteed convergence to a local minimum, the scope of the

problem is still vastly reduced from a full global optimization. There is no need,

in theory, to consider multiple initializations or more complicated (and much larger

scale) techniques to explore the entire search space. Further, our analysis also pro-

vides multiple insights into the behavior of factorization problems and offers simple

guiding principles regarding the design of factorization problems, several of which we

discuss below.

4.6.1 Balanced Degrees of Homogeneity

The first key principle for our analysis is that balancing the degree of positive ho-

mogeneity between the regularization function and the mapping function is crucial.

Here we have analyzed a mapping Φ with the particular form given in (4.6). We

conjecture our results can likely be generalized to include additional positively homo-

geneous factorization mappings and regularizers (which we briefly discuss in the next
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section), but even for more general mappings and regularization functions, requiring

the degrees of positive homogeneity to match between the regularization function and

the mapping function will be critical to showing results similar to those we present

here. In general, if the degrees of positive homogeneity do not match between the

factorization mapping and the regularization function, then it either becomes im-

possible to make guarantees regarding the global optimality of a local minimum, or

the regularization function does nothing to limit the size of the factorization, so the

degrees of freedom in the model are largely determined by the user defined choice of

r.

As a demonstration of these phenomena, first consider the case where we have

a general mapping, Φ(X1, . . . , XK), which is positively homogeneous with degree p

(but which is not assumed to have form (4.6)). Now, consider a general regularization

function, G(X1, . . . , XK), which is positively homogeneous with degree p′ < p, then

the following proposition provides a simple counter-example demonstrating that in

general it is not possible to guarantee that a global minimum can be found from local

descent from an arbitrary initialization.

Proposition 13 Let ℓ : RD → R be a convex function with ∂ℓ(0) ̸= ∅; let Φ :

RD1 × . . . × RDK → RD be a positively homogeneous mapping with degree p; and let

G : RD1×. . .×RDK → R+ be a positively homogeneous function with degree p′ < p such

that G(0, . . . , 0) = 0 and G(X1, . . . , XK) > 0 ∀{(X1, . . . , XK) : Φ(X1, . . . , XK) ̸=
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0}. Then, the optimization problem given by

min
(X1,...,XK)

f̃(X1, . . . , XK) = ℓ(Φ(X1, . . . , XK)) +G(X1, . . . , XK) (4.63)

has a local minimum at (X1, . . . , XK) = (0, . . . , 0). Additionally, ∀(X1, . . . , XK) such

that Φ(X1, . . . , XK) ̸= 0 there exists a δ such that ∀ϵ ∈ (0, δ) f̃(ϵX1, . . . , ϵXK) >

f̃(0, . . . , 0).

Proof. Consider f̃(ϵX1, . . . , ϵXK)− f̃(0, . . . , 0). This gives

ℓ(Φ(ϵX1, . . . , ϵXK)) +G(ϵX1, . . . , ϵXK)− ℓ(0)−G(0, . . . , 0) = (4.64)

ℓ(ϵpΦ(X1, . . . , XK))− ℓ(0) + ϵp
′
G(X1, . . . , XK) ≥ (4.65)

ϵp
⟨
∂ℓ(0),Φ(X1, . . . , XK)

⟩
+ ϵp

′
G(X1, . . . , XK), (4.66)

where the inequality is simply due to the definition of the subgradient of a convex

function. Recall that p > p′ and Φ(X1, . . . , XK) ̸= 0 ⇐⇒ G(X1, . . . , XK) > 0, so

∀(X1, . . . , XK), f̃(ϵX1, . . . , ϵXK) − f̃(0, . . . , 0) ≥ 0 for ϵ > 0 and sufficiently small,

with equality iff G(X1, . . . , XK) = 0 ⇐⇒ Φ(X1, . . . , XK) = 0, giving the result.

The above proposition shows that unless we have the special case where

(X1, . . . , XK) = (0, . . . , 0) happens to be a global minimizer, then there will always

exist a local minimum at the origin, and from the origin it will always be necessary

to take an increasing path to escape the local minimum. The case described above,
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where p > p′, is arguably the more common situation for mismatched degrees of

homogeneity (as opposed to p < p′), and a typical example might be an objective

function such as

ℓ(Φ(X1, . . . , XK)) + λ

K∑
i=1

∥X i∥p
′

(i), (4.67)

where Φ is a positively homogeneous mapping with degree K > 2 (e.g., the mapping

of a deep neural network) but p′ is typically taken to be only 1 or 2 depending on the

particular choice of norms (e.g., ∥X i∥2F or ∥X i∥1).

Conversely, in the situation where p′ > p, then it is often the case that the

regularization function is not sufficient to “limit” the size of the factorization, in the

sense that the objective function can always be decreased by allowing the size of the

factors to grow. As a simple example, consider the case of matrix factorization with

the objective function

ℓ(UV T ) + λ(∥U∥p′ + ∥V ∥p′). (4.68)

If the size of the factorization doubles, then we can always take

[
√
2
2
U

√
2
2
U ][

√
2
2
V

√
2
2
V ]T = UV T , so if (

√
2
2
)p

′
(∥[U U ]∥p′ + ∥[V V ]∥p′) < ∥U∥p′ + ∥V ∥p′ ,

then the objective function can always be decreased by simply duplicating and

scaling the existing factorization. It is easily verified that the above inequality is

satisfied for many choices of norms (for example, all the lq norms with q ≥ 1) when

p′ > 2. As a result, this implies that the degrees of freedom in the model will be

largely dependent on the particular choice of the number of columns in (U, V ), since
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in general the objective function is typically decreased by having all entries of (U, V )

be non-zero.

4.6.2 Further Generalization

In our analysis we have focused on mappings with the particular form given in

(4.6) for simplicity of presentation, but we note that by similar arguments to those

presented above it is possible to consider many other potential mappings. For exam-

ple, a more general factorization regularizer could be defined as

ΩΦ,Θ(X) = inf
(X1,...,XK):Φ(X1,...,XK)=X

Θ(X1, . . . , XK), (4.69)

where now Φ is an arbitrary positively homogeneous mapping defined over factors

(X1, . . . , XK) that are allowed to change size along multiple dimensions, and Θ is

an arbitrary positively homogeneous, positive semidefinite function. Assuming the

degrees of positive homogeneity match between Φ and Θ, it is easy to show that

(4.69) will be positively homogeneous with degree 1, so if it can also be shown that

for any (X,Z) there must exist a factorization that satisfies the triangle inequality

ΩΦ,Θ(X + Z) ≤ ΩΦ,Θ(X) + ΩΦ,Θ(Z), then ΩΦ,Θ is a convex function and it has a

Fenchel dual which will be an indicator function on a convex set, similar to the form

in Proposition 11. As such generalizations substantially broaden the scope of the work

and require a significantly expanded notational system, we save a full development of
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these ideas for future work in particular application domains.

4.6.3 Implications for Neural Networks

Examining our results specifically as they apply to deep neural networks, we note

that there are a few simple principles suggested by our work to take into consideration

when designing deep neural network systems. First note that from our analysis we

have shown that neural networks which are based on positively homogeneous map-

pings can be regularized in the way we have outlined in our framework so that the

optimization problem of training the network induces a convex regularization on the

output of the network that limits the degrees of freedom within the network. We

suggest that these results provide a partial theoretical explanation of the recently ob-

served empirical phenomenon where replacing the traditional sigmoid or hyperbolic

tangent non-linearities with positively homogeneous non-linearities, such as rectifica-

tion and max-pooling, significantly boosts the speed of optimization and the perfor-

mance of the network [44–46,48]. This has very recently been explored experimentally

by [82] who note that the optimization problem of training a fully connected network

with a single hidden layer using weight decay in the update of the network weights

results in an optimization problem of the form

min
X1,X2

ℓ(Y, ψ+(V X1)(X2)T ) + λ
2
(∥X1∥2F + ∥X2∥2F ) (4.70)
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and has very strong analogies to the variational form of the nuclear norm. They

then show empirically that such a network is robust to over-fitting even in the case

where there are a large number of hidden units and noise deliberately added to the

labels in the training set. Our results provide a generalization of this idea to mul-

tilayer networks, but note that standard weight decay typically implies a squared

Frobenius norm term on the network weight variables as in (4.70), and given our dis-

cussion above regarding the importance of balanced degrees of homogeneity between

the mapping and the regularizer, this is only appropriate for networks which are pos-

itively homogeneous of degree 2. In fact, many works have reported that traditional

regularization on the network weight parameters, such as an l1 or l2 norm, does not

result in good performance with multilayer ReLU networks and use other regulariza-

tion strategies instead [44,47,83], and an immediate prediction of our analysis is that

simply ensuring that the degrees of homogeneity are balanced between the mapping

and the regularizer could be a significant factor in improving the performance of deep

networks.

With regards to the degree of positive homogeneity of a network mapping, it

is clear that adding an extra layer to the network with a positively homogeneous

non-linearity typically increases the overall degree of the mapping by 1, but there

are a few points to consider that can complicate the overall positive homogeneity

of a network mapping. The first is contrast normalization. This is typically used

in convolutional networks and takes the form of applying a transformation such as
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gi = zi/f(N(zi)), where gi denotes the i
th output of the normalization layer, zi denotes

the ith input to the normalization layer, and f(N(zi)) denotes a function of the inputs

to the normalization layer in a neighborhood surrounding zi. If f(N(zi)) is positively

homogeneous with degree p′, such as a norm raised to p′, then the normalization layer

is also a positively homogeneous transformation3, but it “resets” the degree of positive

homogeneity to be 1−p′ at that stage in the network. As a result, care must be taken

to ensure that sufficiently many layers exist following the normalization layer so that

the overall degree of the network mapping becomes larger that 0. The second issue to

consider with regards to staying strictly within the positively homogenous framework

is the use of bias terms. For example, the output of a fully connected ReLU layer

with bias terms is given by G = ψ+(ZW +B), where again G denotes the output of

the layer, Z denotes the input to the layer, W denotes the connection weights, and

B denotes the bias terms. If the input, Z, comes from lower layers of the network

then it can already be a positively homogeneous function of the weight parameters in

the lower layers, so B must be raised to an appropriate power to preserve the overall

homogeneity of the mapping with respect to all the variables we are optimizing over

(including B). For example, if Z is positively homogeneous of degree 3, then we could

instead use bias terms of the form G = ψ+(Z ∗W +B
(4)
p −B(4)

n ), where B(4) denotes

raising each element to the 4’th power entry-wise, and the use of both the Bp and

3Usually, most response normalization layers are not strictly positively homogeneous as they
add a small non-zero constant to the denominator to avoid division by 0, but if the constant is
significantly smaller than the value of f(N(zi)) it is a very close approximation of a positively
homogeneous transformation.
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Bn terms allows for negative bias terms. This then results in a mapping which is

positively homogeneous with respect to all of the connection weights and bias terms

in the network. Note that in this case, the θ regularization should also include the

bias parameters as input.

We conclude by noting that a main limitation of our current framework in the

analysis of currently existing state-of-the-art neural networks is that the form of the

mapping we study here (4.6) implies that the network architecture must consist of

r parallel subnetworks, where each subnetwork has a particular architecture defined

by the elemental mapping φ. While many modern architectures have a certain de-

gree of parallelization (for example, low level convolutional layers are often split onto

multiple GPUs and then combined via fully connected layers), they do not typically

approach the level of parallelization we consider here. Clearly, this is a limitation

of our current results, but it also suggests at several interesting concepts to guide

future work. The first concept is that neural networks which generate the output

by taking the sum of multiple parallel subnetworks are highly conducive to efficient

optimization. This idea, of linearly combining the outputs of multiple subnetworks,

has clear analogies to ensemble methods like boosting and bagging and was a large

motivation in the development of techniques such as drop-out, which stochastically

approximates the average output of an exponential number of subnetworks [47]. The

framework we present here is not an exact analogy to drop-out, as drop-out couples

all of the subnetwork weights by a common parametrization, but combining the con-
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cept of summing multiple subnetworks along with considering more general forms

of network mappings, which allow for common parametrization of the subnetworks,

presents many opportunities for future work. Finally, as our framework is very general

with respect to the particular choice of the elemental mapping, φ, and the elemental

regularizer, θ, there exists a considerable potential for analyzing how these results

can be improved and used in applications by considering specific choices of φ and θ.

4.6.4 Conclusions

We have presented a general framework which allows for a wide variety of non-

convex factorization problems to be analyzed with tools from convex analysis and

induces a convex regularizer on the output of the non-convex mapping. In particular,

we have shown that for problems which can be placed in our framework, any local

minimum can be guaranteed to be a global minimum of the non-convex factorization

problem if one slice of the factorized tensors is all zero. Additionally, we have shown

that if the non-convex factorization problem is done with factors of sufficient size,

then from any feasible initialization it is always possible to find a global minimizer

using a purely local descent algorithm.
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Applications

This chapter will explore applications of the structured matrix factorization theory

introduced in Chapter 3. In particular, the matrix factorization method will be

applied to two image processing problems: spatiotemporal segmentation of neural

calcium imaging data and hyperspectral compressed recovery. Such problems are well

modeled by low-rank linear models with square loss functions under the assumption

that the spatial component of the data has low total variation (and is optionally

sparse in the row and/or column space). Specifically, in this section we consider the

following objective

min
U,V,Q

1

2
∥Y−A(UV T )− B(Q)∥2F + λ

∑
i

∥Ui∥u∥Vi∥v (5.1)

(optionally s.t.) U ≥ 0, V ≥ 0
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where A(·) and B(·) are linear operators, and the ∥ ·∥u and ∥ ·∥v norms have the form

∥ · ∥u = νu1∥ · ∥1 + νuTV
∥ · ∥TV + νu2∥ · ∥2 (5.2)

∥ · ∥v = νv1∥ · ∥1 + νvTV
∥ · ∥TV + νv2∥ · ∥2, (5.3)

for non-negative scalars ν. Recall that the anisotropic total variation of x is defined

as [84]

∥x∥TV ≡
∑
i

∑
j∈Ni

|xi − xj| , (5.4)

where Ni denotes the set of pixels in the neighborhood of pixel i. Further, note that

this objective function exactly fits within the framework introduced in Chapter 3 as

we can define a rank-1 regularizer θ(u, v) = ∥u∥u∥v∥v and optionally add indicator

functions on u and/or v to enforce non-negativity constraints.

5.1 Solving the L1-TV Proximal Opera-

tor

In Chapter 3, Algorithm 1 was introduced as a general algorithm that could be

used to solve structured matrix factorization problems. Further, from Theorem 7 we

have an efficient means to solve the proximal operator of (5.2) and (5.3) optionally

subject to non-negativity constraints, as we can first solve a proximal operator of the
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form

argmin
x

1
2
∥y − x∥2F + ν1∥x∥+ νTV ∥x∥TV (optionally s.t.) x ≥ 0 (5.5)

and then calculate the proximal operator of the l2 norm with the solution to (5.5)

as the argument. The only component that is missing to apply Algorithm 1 to the

proposed objective function (5.1) is how to solve the proximal operator of the l1

norm plus the total-variation pseudo-norm. To address this issue, note that (5.5) is

equivalent to solving the problem

argmin
x

1
2
∥y − x∥2F + ∥Gx∥1 (optionally s.t.) x ≥ 0 (5.6)

G =

⎡⎢⎢⎣ ν1I

νTV∆

⎤⎥⎥⎦ , (5.7)

where ∆ is a matrix that takes the difference between neighboring elements of x.

Using standard Lagrangian duality arguments, such as those presented in [85], it is

easily shown that the dual problem of (5.6) is equivalent to

min
γ

1
2
∥y −GTγ∥2F s.t. ∥γ∥∞ ≤ 1 (5.8)

(optionally s.t.) y −GTγ ≥ 0

with the primal-dual relationship x = y − GTγ. To solve (5.8), we note that due

to the special structure of G, one can calculate the global optimum of an individual
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element of γ extremely quickly if the other elements in γ are held constant. Thus, to

solve (5.8) we cycle through making updates to the elements of γ while checking the

duality gap for convergence. For the values of the ν parameters typically used in our

experiments, this strategy converges after a relatively small number of cycles through

the γ variables, and due to the fact that the updates to the γ variables themselves

are very easy to calculate this strategy provides a very efficient means of solving the

proximal operator in (5.5).

5.2 Neural Calcium Imaging Segmenta-

tion

Returning now to applications of the method, the first application considered is the

segmentation of calcium image data. Calcium imaging is a rapidly growing microscopy

technique in neuroscience that records fluorescent images from neurons that have

been loaded with either synthetic or genetically encoded fluorescent calcium indicator

molecules. When a neuron fires an electrical action potential (or spike), calcium

enters the cell and binds to the fluorescent calcium indicator molecules, changing the

fluorescence properties of the molecule. By recording movies of the calcium-induced

fluorescent dynamics it is possible to infer the spiking activity from large populations

of neurons with single neuron resolution [86]. If we are given the fluorescence time

series from a single neuron, inferring the spiking activity from the fluorescence time
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series is well modeled via a Lasso style estimation,

ŝ = argmin
s≥0

1

2
∥y −Ds∥22 + λ ∥s∥1 , (5.9)

where y ∈ Rt is the fluorescence time series (normalized by the baseline fluorescence),

ŝ ∈ Rt denotes the estimated spiking activity (each entry of ŝ is monotonically related

to the number of action potentials the neuron has during that imaging frame), and

D ∈ Rt×t is a matrix that applies a convolution with a known decaying exponential

to model the change in fluorescence resulting from a neural action potential [7].

One of the challenges in neural calcium imaging is that the data can have a

significant noise level, making manual segmentation challenging. Additionally, it is

also possible to have two neurons overlap in the spatial domain if the focal plane of

the microscope is thicker than the size of the distinct neural structures in the data,

making simultaneous spatiotemporal segmentation necessary. A possible strategy to

address these issues would be to extend (5.9) to estimate spiking activity for the

whole data volume via the objective

Ŝ = argmin
S≥0

1

2
∥Y −DS∥2F + λ ∥S∥1 , (5.10)

where now each column of Y ∈ Rt×p contains the fluorescent time series for a single

pixel and the corresponding column of Ŝ ∈ Rt×p contains the estimated spiking

activity for that pixel. However, due to the significant noise often present in the
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actual data, solving (5.10) directly typically gives poor results. To address this issue,

[87] have suggested adding an additional low-rank regularization to (5.10) based on

the knowledge that if two pixels are from the same neural structure they should

have identical spiking activities, giving S a low-rank structure with the rank of S

corresponding to the number of neural structures in the data. Specifically, they

propose an objective to promote low-rank and sparse spike estimates,

Ŝ = argmin
S≥0

1

2
∥Y −DS∥2F + λ ∥S∥1 + λ2∥S∥∗ (5.11)

and then estimate the temporal and spatial features by performing a non-negative

matrix factorization of Ŝ.

While (5.11) provides a nice model of spiking activity within a dataset, recall from

the introductory discussion that in factorization problems solving a problem in the

product space (i.e. solving for X) is somewhat unsatisfactory as it does not provide

us with the desired factors. Fortunately, it can be shown that problem (5.1) is equiv-

alent to a standard Lasso estimation when both the row space and column space are

regularized by the l1 norm [54], while combined l1, l2 norms of the form (5.2) and (5.3)

with νuTV
= 0 promote solutions that are simultaneously sparse and low rank. Thus,

the projective tensor norm can generalize the two prior methods for calcium image

processing by providing regularizations that are sparse or simultaneously sparse and

low-rank, while also having the advantage of solving for the desired factors directly.
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Further, by working in the factorized space we can also model additional known struc-

ture in the factors. In particular, we extend the two above formulations by noting

that if two pixels are neighboring each other it is likely that they are from the same

neural structure and thus have identical spiking activity, implying low total variation

in the spatial domain. We demonstrate the flexible nature of our formulation (5.1)

by using it to process calcium image data with regularizations that are either sparse,

simultaneously sparse and low-rank, or simultaneously sparse, low-rank, and with low

total variation. Additionally, by optimizing (5.1) to simultaneously estimate temporal

spiking activity U and neuron shape V , with A(UV T ) = DUV T , we inherently find

spatial and temporal features in the data (which are largely non-negative even though

we do not explicitly constrain them to be) directly from our optimization without the

need for an additional matrix factorization step. Finally, note that the B(Q) term

can be used to fit the background intensity of the pixels by taking B(Q) = 1QT for a

vector Q ∈ Rp, and if the data exhibits temporal variations in pixel intensities not due

to calcium activity, such as from slow movements of the sample or photo-bleaching,

this can also be modeled via an appropriate choice of B operator. For the experiments

presented here the data has been normalized by background intensity, so the B(Q)

term is not used.
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5.2.1 Simulation Data

We first tested our algorithm on a simulated phantom dataset which was con-

structed with 19 non-overlapping spatial regions (see Figure 5.4, left panel) and 5

randomly timed action potentials and corresponding calcium dynamics per region.

The phantom was 200 frames of 120x125 images, and the decaying exponentials in D

had a time constant of 1.333̄ sec with a simulated sampling rate of 10Hz. Gaussian

white noise was added to the modeled calcium signal to produce a SNR of approxi-

mately -16dB.

Using this phantom, we used Algorithm 1 to solve the formulation given in

(5.1) with different ν parameters for the norms in (5.2) and (5.3). In particu-

lar we did experiments using just sparse and low-rank regularization by taking

[νu1 , νuTV
, νu2 ] = [νv1 , νvTV

, νv2 ] = [1, 0, 1] and λ = 1.5σ, where σ denotes the stan-

dard deviation of the Gaussian noise. Then, to demonstrate the benefit of adding

total-variation regularization in the spatial domain, we used ν parameters given by

λ = 0.4σ, [νu1 , νuTV
, νu2 ] = [1, 0, 1], and [νv1 , νvTV

, νv2 ] = [1, 1, 1], with an 8-connected

lattice for the total-variation graph1. For the sparse + low-rank condition U was ini-

tialized to be an identity matrix. For the experiments that include the total-variation

regularization we again conducted experiments with U initialized to be an identity

matrix, and to study the effects of different initializations, we additionally also per-

formed experiments with U initialized with 50 columns, where each entry in U was

1The regularization parameters were roughly tuned by hand to produce the best qualitative
results for the two experimental conditions (i.e. sparse + low-rank w/wo total-variation)
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True SignalRaw Data Sparse + Low-Rank + TVSparse +
Low-Rank Uinit = I Uinit = RND50

Figure 5.1: Example reconstructed calcium signal from phantom dataset. The two
rows correspond to two different example image frames. From left to right : Raw data.
True calcium signal. Reconstruction with sparse + low-rank regularization. Recon-
struction with sparse + low-rank + total-variation regularization with U initialized
as an identity matrix. Reconstruction with sparse + low-rank + total-variation reg-
ularization with U initialized as 50 columns of random values uniformly distributed
between [0, 1].

initialized to a random value uniformly distributed between [0, 1] (in all cases V was

initialized as 0).

Figure 5.1 shows two example reconstructions of the calcium signal estimated with

our algorithm with different regularization conditions. Figure 5.2 shows example spa-

tial components recovered by our algorithm as well as spatial components recovered

by PCA for comparison. For each case, the components shown are the first 9 most

significant components (i.e. those with the largest value of ∥Ui∥u∥Vi∥v)2. Note that

2 Note that the differences in the specific components shown in Figure 5.2 between the two
initializations of U is due to the fact that the structure of the objective function (5.1) allows for
components to be duplicated without changing the value of the objective function. For example,
suppose we have U = [U1 U2] and V = [V1 V2], then taking Ũ = [U1 0.2U2 0.8U2] and Ṽ = [V1 V2 V2]
will give identical objective function values.
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Principal Component Analysis 
(PCA)

Sparse + Low-Rank + TV

Sparse + Low-Rank

Uinit = I

Uinit = RND50

Figure 5.2: Example recovered spatial components from phantom dataset. Top Left :
First 9 most significant spatial components recovered via Principal Component Anal-
ysis (PCA). Bottom Left : First 9 most significant spatial components recovered with
sparse and low-rank regularization. Top Right : First 9 most significant spatial com-
ponents recovered using sparse, low-rank, and total variation regularization, with U
initialized as an identity matrix. Bottom Right : Same as the top right panel but with
U initialized as 50 columns of random values uniformly distributed between [0, 1]

.
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although we only show the first 9 spatial components here for compactness, the re-

maining components also closely correspond to the true spatial regions and allow for

the true spatial segmentation to be recovered (see below).

The recovered temporal components for the 9 regions shown in Figure 5.2 are

plotted in Figure 5.3 along with the corresponding true temporal spike times (red

dots) for the sparse + low-rank + total-variation regularization conditions. The final

recovered spatial segmentation is shown in 5.4 for the sparse + low-rank + total-

variation experiments with the two different initializations for U . This segmentation

was generated by simply finding connected components of the non-zero support of

the spatial components, then any two connected components that overlapped by more

than 10% were merged (note that this step is largely only necessary to combine dupli-

cate components – see footnote 2 – and the results are very insensitive to the choice

of the percentage of overlap as any duplicated components had almost identical non-

zero supports). Despite the very high noise level, adding the appropriate structure

of sparse + low-rank + total-variation regularization recovers the true spatial and

temporal components with very high accuracy and faithfully reconstructs the true

calcium signal. Further, this performance is robust to the choice of initialization as

initializing U as either an identity matrix or random values still faithfully recovers

true spatial and temporal components. Additionally, despite the very different initial-

izations, the relative error in the final objective value between the two final objective

values (given as |obj1 − obj2|/min{obj1, obj2}, where obj1 and obj2 denote the final
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True Spike Time Recovered Component

Uinit = RND50Uinit = I

Figure 5.3: Reconstructed spike trains from phantom dataset with sparse + low-rank
+ total variation for the components shown in Figure 5.2. Blue lines are the estimated
temporal components recovered by our algorithm, while the red dots correspond to
the true temporal spike times. Left Panel : Reconstruction with U initialized as an
identity matrix. Right Panel : Reconstruction with U initialized as 50 columns of
random values uniformly distributed between [0, 1].

objective values for the 2 different initializations) was only 3.8833× 10−5.

5.2.2 In vivo Calcium Image Data

We next tested our algorithm on actual calcium image data taken in vivo from

the primary auditory cortex of a mouse that was transfected with the genetic calcium

indicator GCaMP5 [88]. The top panel of Figure 5.5 shows 5 manually labeled regions

from the dataset (top row) and the corresponding spatial features recovered by our

algorithm (bottom 3 rows) under the various regularization conditions. The bottom

panel of Figure 5.5 displays a frame from the dataset taken at a time point when the
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True Labels Recovered Labels Recovered Labels
Uinit = I Uinit = RND50

Figure 5.4: Recovered spatial segmentations from phantom dataset. Left : True spatial
labels. Middle: Spatial labels recovered with sparse + low-rank + total-variation
regularization, with U initialized as an identity matrix. Right : Same as the middle
panel but with U initialized as 50 columns of random values uniformly distributed
between [0, 1].

corresponding region had a significant calcium signal, with the actual data shown in

the top row and the corresponding reconstructed calcium signal for that time point

under the various regularization conditions shown in the bottom 3 rows. We note

that regions 1 and 2 correspond to the cell body and a dendritic branch of the same

neuron. The manual labeling was purposefully split into two regions due to the fact

that dendrites can have significantly different calcium dynamics from the cell body

and thus it is often appropriate to treat calcium signals from dendrites as separate

features from the cell body [89].

The data shown in Figure 5.5 are particularly challenging to segment as the two

large cell bodies (regions 1 and 3) are largely overlapping in space, necessitating a

spatiotemporal segmentation. In addition to the overlapping cell bodies there are
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1 & 2 3 4 5

1 2 3 4 5

Same Neuron

Example Spatial Regions

Example Frames

Manual

Sparse

Sparse + 
Low-Rank

Sparse + 
Low-Rank + TV

Data

Sparse

Sparse + 
Low-Rank

Sparse + 
Low-Rank + TV

Figure 5.5: Results from an in vivo calcium imaging dataset. Top: Demonstration
of spatial features for 5 example regions. (Top Row) Manually segmented regions.
(Bottom 3 Rows) Corresponding spatial feature recovered by our method with various
regularizations. Note that regions 1 and 2 are different parts of the same neurons -
see discussion in the text. Bottom: Example frames from the dataset corresponding
to time points where the example regions display a significant calcium signal. (Top
Row) Actual Data. (Bottom 3 Rows) Estimated signal for the example frame with
various regularizations.
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various small dendritic processes radiating perpendicular to (regions 4 and 5) and

across (region 2) the focal plane that lie in close proximity to each other and have

significant calcium transients. Additionally, at one point during the dataset the an-

imal moves, generating a large artifact in the data. Nevertheless, optimizing (5.1)

under the various regularization conditions, we observe that, as expected, the spa-

tial features recovered by sparse regularization alone are highly noisy (Fig. 5.5, row

2). Adding low-rank regularization improves the recovered spatial features, but the

features are still highly pixelated and contain numerous pixels outside of the desired

regions (Fig. 5.5, row 3). Finally, by incorporating the total variation regularization

our method produces coherent spatial features which are highly similar to the desired

manual labellings (Fig. 5.5, rows 1 and 4), noting again that these features are found

directly from the alternating minimization of (5.1) without the need to solve a sec-

ondary matrix factorization. For comparison purposes, the top 5 spatial components

recovered via PCA along with example image frames that are reconstructed using

the top 20 principal components are shown in Figure 5.6. Note that while the PCA

spatial components have a rough correspondence to the neural structures in the data

a significant amount of post-processing would be required to recover the segmentation

of a specific neural structure from the PCA representation. Likewise, the example

image frames recovered via PCA still contain a very large amount of noise.

To initialize our structured matrix factorization algorithm for the in vivo dataset,

U was initialized to be 100 uniformly sampled columns from an identity matrix (out
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Top 5 Principal 
Components

(PCA)

Reconstructed 
Image Frames

(PCA)

Figure 5.6: Results of PCA applied to an in vivo calcium imaging dataset. Top
Row : The first 5 most significant spatial components from PCA analysis. Bottom
Row : Example image frames reconstructed from the first 20 most significant Principal
Components. The example frames are the same is in Figure 5.5.

Table 5.1: Regularization parameters for in vivo calcium imaging experiments. σ
denotes the standard deviation of all of the voxels in the data matrix, Y .

λ [νu1 , νuTV , νu2 ] [νv1 , νvTV , νv2 ]

Sparse 2σ [1, 0, 0] [1, 0, 0]
Sparse + Low-Rank 1.75σ [1, 0, 1] [1, 0, 1]

Sparse + Low-Rank + TV 0.5σ [1, 0, 2.5] [1, 0.5, 1]

of a possible 559) and V was initialized as V = 0, demonstrating the potential to

reduce the problem size and achieve good results despite a very trivial initialization.

Similar to the phantom experiments, choosing U to be initialized as random variables

in [0, 1] produced nearly identical results (not shown). The regularization parameters

were tuned manually to produce good qualitative performance for each regularization

condition, and the specific values of the parameters are given in Table 5.1.

We conclude by noting that while adding total variation regularization improves

performance for a segmentation task, it also can cause a dilative effect when recon-

structing the estimated calcium signal (for example, distorting the size of the thin
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Figure 5.7: Hyperspectral compressed recovery results. Example reconstructions from
a single spectral band (i = 50) under different subsampling ratios and sampling noise
levels. Compare with [90, Fig. 2].

dendritic processes in the left two columns of the example frames in Figure 5.5). As

a result, in a denoising task it might instead be desirable to only impose sparse and

low-rank regularization. The fact that we can easily and efficiently adapt our model

to account for many different features of the data depending on the desired task

highlights the flexible nature and unifying framework of our proposed formulation

(5.1).

5.3 Hyperspectral Compressed Recovery

The second application we considered is recovering a hyperspectral image volume

from a set of compressed measurements. Hyperspectral imaging (HSI) is similar to

regular digital photography, but instead of recording the intensities of light at just 3
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wavelengths (red, green, blue) as in a typical camera, HSI records images for a very

large number of wavelengths (typically hundreds or more). Due to the way the image

volumes are acquired, the data often displays a low-rank structure. For example,

consider hyperspectral images taken during aerial reconnaissance. If one was given

the spectral signatures of various materials in the hyperspectral image volume (trees,

roads, buildings, dirt, etc.), as well as the spatial distributions of those materials, then

one could construct a matrix U ∈ Rt×r where each column, Ui, contains the spectral

signature of a material (recorded at t wavelengths) along with a matrix V ∈ Rp×r

which contains the spatial distribution of the ith material in the column Vi (where

p denotes the number of pixels in the image). Then, r corresponds to the number

of materials present in the given HSI volume, and since typically r ≪ min{t, p}

the overall HSI volume can be closely approximated by the low-rank factorization

Y ≈ UV T .

This fact, combined with the large data sizes typically encountered in HSI appli-

cations, has led to a large interest in developing compressed sampling and recovery

techniques to compactly collect and reconstruct HSI datasets. Further, an HSI vol-

ume also displays significant structure in the spatial domain, as if two pixels are

neighboring each other it is highly likely that they are the same material [91]. This

combination of low-rank structure along with strong correlation between neighboring

pixels in the spatial domain of an HSI dataset led the authors of [90] to propose a

combined nuclear norm and total variation regularization (NucTV) method to recon-
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struct HSI volumes from compressed measurements with the form

min
X
∥X∥∗+λ

t∑
i=1

∥(X i)T∥TV s.t. ∥Y −A(X)∥2F ≤ ϵ. (5.12)

Here X ∈ Rt×p is the estimated HSI reconstruction with t spectral bands and p

pixels, X i denotes the ith row of X (or the ith spectral band), Y ∈ Rt×m contains

the observed samples (compressed at a subsampling ratio of m/p), and A(·) denotes

the compressed sampling operator. To solve (5.12), [90] implemented a proximal

gradient method, which required solving a total variation proximal operator for every

spectral slice of the data volume in addition to solving the proximal operator of the

nuclear norm (singular value thresholding) at every iteration of the algorithm [92].

For the large data volumes typically encountered in HSI, this can require significant

computation per iteration.

Here we demonstrate the use of our matrix factorization method to perform hy-

perspectral compressed recovery by optimizing (5.1), where A(·) is a compressive

sampling function that applies a random-phase spatial convolution at each wave-

length [90, 93], U contains estimated spectral features, and V contains estimated

spatial abundance features.3 Compressed recovery experiments were performed on

the dataset from [90]4 at various subsampling ratios and with different levels of sam-

3For HSI experiments, we set νu = νv1
= 0 in (5.2) and (5.3).

4The data used are a subset of the publicly available AVARIS Moffet Field dataset. We made an
effort to match the specific spatial area and spectral bands of the data for our experiments to that
used in [90] but note that slightly different data may have been used in our study.
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Table 5.2: Hyperspectral imaging compressed recovery error rates.

Our Method NucTV

Sample Sampling SNR (dB) Sampling SNR (dB)
Ratio ∞ 40 20 ∞ 40 20

4:1 0.0209 0.0206 0.0565 0.01 0.02 0.06
8:1 0.0223 0.0226 0.0589 0.03 0.04 0.08
16:1 0.0268 0.0271 0.0663 0.09 0.09 0.13
32:1 0.0393 0.0453 0.0743 0.21 0.21 0.24
64:1 0.0657 0.0669 0.1010
128:1 0.1140 0.1186 0.1400

pling noise. We limited the number of columns of U and V to 15 (the dataset has

256 × 256 pixels and 180 spectral bands), initialized one randomly selected pixel per

column of V to one and all others to zero, and initialized U as U = 0.

Figure 5.7 shows examples of the recovered images at one wavelength (spectral

band i = 50) for various subsampling ratios and sampling noise levels and Table

5.2 shows the reconstruction recovery rates
Xtrue−UV T


F
/ ∥Xtrue∥F , where Xtrue

denotes the true hyperspectral image volume. We note that even though we optimized

over a highly reduced set of variables ([256 × 256 × 15 + 180 × 15]/[256 × 256 ×

180] ≈ 8.4%) with very trivial initializations, we were able to achieve reconstruction

error rates equivalent to or better than those in [90]5. Additionally, by solving the

reconstruction in a factorized form, our method offers the potential to perform blind

hyperspectral unmixing directly from the compressed samples without ever needing

to reconstruct the full dataset, an application extension we leave for future work.

5The entries for NucTV in Table 5.2 were adapted from [90, Fig. 1]

170



Bibliography

[1] S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way. Academic

Press, 2008.

[2] E. R. Dougherty and R. A. Lotufo, Hands-on Morphological Image Processing.

SPIE Press Bellingham, 2003, vol. 71.
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