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Abstract

We extend the results of [ES] to show that for a continuous initial map f with bounded

pointwise energy from a flat, compact, admissible polyhedron to a smooth compact

Riemannian manifold with non-positive sectional curvature, there exists a heat flow

beginning at f that converges uniformly and in energy to a harmonic map. We

show that this heat flow is in C1+α,1+β, α, β > 0, on open sets bounded away from

the (n − 2)-skeleton, satisfies a natural balancing condition on the (n − 1)-skeleton,

and solves the harmonic map heat flow equation pointwise on the interior of top-

dimensional simplexes. We develop Gaussian-type estimates for the gradient of heat

kernel on a flat, compact, admissible polyhedron, and methods to address existence

and regularity of partial differential equations on admissible polyhedra.
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1 Introduction

1.1 Overview

We extend the results of [ES] to show that for a continuous initial map f with bounded

pointwise energy from a flat, compact, admissible polyhedron to a smooth compact

Riemannian manifold with non-positive sectional curvature, there exists a heat flow

beginning at f that converges uniformly and in W 1,2 to a harmonic map. We show

that this heat flow is in C1+α,1+β, α, β > 0, on open sets bounded away from the (n−

2)-skeleton, satisfies a natural balancing condition on the (n− 1)-skeleton, and solves

the harmonic map heat flow equation pointwise on the interior of top-dimensional

simplexes. We develop Gaussian-type estimates for the gradient of heat kernel on a

flat, compact, admissible polyhedron, and methods to address existence and regularity

of partial differential equations on admissible polyhedra.

1.2 Main Results

We consider an admissible Riemannian polyhedron X (see Definition 2.2 on page 22)

and a compact smooth Riemannian manifold N with non-positive sectional curvature.

In Proposition 5.45, Corollary 5.46 and Theorem 5.47, we obtain the following.

Theorem. Let X be compact and simplex-wise flat and let ι : N ↪→ Rq be a smooth

isometric embedding. Let F0 : X → ι(N) ⊂ Rq be in C1(X) and have bounded energy

density. There exists a strong embedded solution W to the harmonic map heat flow

problem with initial value F0 on X × [0,∞) with the following properties:

i. W is continuous on X×[0,∞); W ∈ C1+α,1+β
loc (X\X(n−2)×[0,∞), N), α, β > 0;
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1.2 Main Results

for each t > 0, W is balanced (defined below); and W satisfies at manifold points

∂

∂t
W = τ(W ),

where τ = traceg∇dW and g is the metric tensor.

ii. As t goes to infinity, W (·, t) converges uniformly and in W 1,2 to a harmonic

map.

iii. F0 is free-homotopic to a harmonic map.

W has the balancing condition if, at any point p on an (n − 1)-face with adjoining

n-simplexes s1, . . . , sk and for every coordinate γ in a neighborhood of W (p)

k∑
i=1

∂W γ

∂ni
(p) = 0,

where ∂
∂ni

is the normal to the edge of si that contains p (we presume the normals to

point towards the interior of si).

As there are many results involving energy flow methods where one begins with

a specified map that converges under the flow to harmonic map, we refer to our

subsequent section to describe the history and relevance of these results. As far as

we are aware, this is the strongest regularity result that exists for heat flows in the

context of an admissible polyhedron as the domain and a smooth nonpositively curved

manifold as the target.

We also develop strong regularity results for the heat kernel on X and new

Gaussian-type estimates for the gradient of the heat kernel. In particular we prove the

following in Proposition 4.11 and Theorem 4.18 (on pages 62 and 67, respectively).

2



1.3 Approach

Theorem. Let h(z, v, t) be the heat kernel on X, an admissible Riemannian polyhe-

dron. For t > 0,

i. h(z0, v0, t) is C∞((0,∞)) with respect to t for z0, v0 ∈ X.

ii. For any compactly contained open set V ⊂ X bounded away from X(n−2),

h(z0, v, t0) ∈ C∞(V ), for any z0 ∈ X.

iii. For any compactly contained open set V ⊂ X bounded away from X(n−2),

h(z, v0, t0) ∈ C∞(V ), for any v0 ∈ X.

iv. h(z, v, t) is balanced in both z and v.

Additionally, assume that X is compact and simplex-wise flat and let {Zi}ni=1 be an

orthonormal basis as in Definition 2.5. Then, for any R > 0, there exists positive

constants B, {Cj} only dependent on X and R such that for all z, v ∈ X,

∣∣∣∣DZ
∂j

∂tj
h(z, v, t)

∣∣∣∣ ≤ Cj

min {t, R}
n
2

t−j−
1
2 e−

d(z,v)2

Bt

where {Cj} are dependent on j,X and R.

1.3 Approach

We show the existence of a flow between an admissible Riemannian polyhedron and a

compact Riemannian manifold with nonpositive sectional curvature by following the

results of [ES, PSC, St2]. In [St1, St2, St3], Sturm shows methods of defining weak

solutions to the heat flow when the domain is a Dirichlet space with conditions and

the target is R; specifically, the domain must satisfy a volume doubling property

and have a uniform lower bound for Poincaré constants on balls. In [PSC], Pivarski
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1.3 Approach

and Saloff-Coste show that an admissible Riemannian polyhedron with reasonable

geometric restrictions satisfies these conditions. Also in [St1, St2, St3], Sturm shows

the existence of a heat kernel that satisfies many of the properties expected in the

case when the domain is a region in Rn, and shows that this heat kernel satisfies

a parabolic Harnack inequality and hence is Hölder continuous in time and space.

Other Gaussian-type estimates for the heat kernel are given. Clearly, using heat

kernels, which take values in R, will not directly solve the heat flow problem when

the target is a compact Riemannian manifold unless it is Rn. By embedding the

target isometrically in Euclidean space and following the arguments of [ES], we show

that this heat kernel can be used to build a sequence of maps that converge to one

that solves the heat flow problem in the style of [ES] and converges in time to a

harmonic map. In the event that the energy density of the map under flow does not

stay bounded, we appeal to [Ma]. We adapt the results and methods of [BSCSW]

and [DM3] to obtain strong regularity results for the heat flow.

We presume that the target, N , a smooth compact Riemannian manifold with

nonpositive sectional curvature is embedded in Rq for some q ∈ N. We also presume

that our initial map F0 is continuous and has continuous, bounded first order deriva-

tives on each n-simplex. The heart of the argument is the existence and properties

of a solution W : X × [0,∞)→ N ⊂ Rq defined in each coordinate γ by

W γ(z, t) =

∫ t

0

∫
X

h(z, v, t− τ)Gγ(v, τ) dµ(v)dτ

+

∫
X

h(z, v, t)F γ
0 (v) dµ(v), (1.1)
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1.3 Approach

where, in local coordinates,

Gγ(v, τ) := Aγαβ(W )
∂Wα

∂vi
∂W β

∂vj
gij,

and A is the trace of the second fundamental form of the nearest-point projection

map (see Proposition 5.8) with Aγαβ as the coefficients of Aγ(dW, dW ); also h(z, v, t)

is the heat kernel on defined on X ×X × (0,∞), which we explore later.

We note that terms of W appear on both sides of equation (1.1), and it is not

obvious at all that such a W should exist that satisfies it. However, once existence is

established, we can show from the properties of the heat kernel that is a solution as

noted in our main theorem.

We break the approach into four steps.

i. Linear case: we consider the case where the target is R and show the existence

and regularity of weak solutions and of a heat kernel that will be a fundamental

tool in the non-linear case. See Sections 3 and 4.

ii. Short time existence: we show for a continuous initial map F0 : X → N ⊂ Rq

in C1, there exists an ε > 0 dependent on the energy density of F0 such that a

solution W exists on the time interval [0, ε). We also establish a Gaussian-type

gradient estimate for the heat kernel. See Section 5.4.

iii. Long time existence: we show that if there exists a solution on an open time

interval [0, T ) it can be extended to a longer interval [0, T + δ), which give

existence of a solution in infinite time. See Section 5.6

iv. Convergence to a harmonic map: by long time existence, we show that as

5



1.3 Approach

t→∞, W must converge to a harmonic map. We show that this constitutes a

free homotopy from the initial map to the harmonic map. See Section 5.6.

Each of these steps deserves a more through explanation, which we give below,

and we reserve discussion regularity for the end of this section.

The linear case We use the results of [St2,PSC] to show that for f ∈ L2(X) there

exists a solution u : X × [0,∞)→ R that weakly satisfies

(
∂

∂t
−∆

)
u = 0.

and limt→0 u = f in L2 (see Section 3.1 for definitions, and Section 4.1 for proofs).

Such solutions are given by an integral kernel h : X ×X × (0,∞)→ R such that

u(z, t) :=

∫
X

h(z, v, t)f(v) dv.

h is called the heat kernel (see Section 4.2 for definition and existence). The existence

of such solutions are dependent on the existence of a Dirichlet form corresponding to

energy (see Section 2.2), and on X having a volume doubling property and a lower

bound on Poincaré inequality of balls of a fixed radius (see Section 2.3). In [PSC],

Pivarski and Saloff-Coste show that an admissible polyhedron X has both properties

and that there exists a Dirichlet form that corresponds to the Korevaar-Schoen-type

energy functional (see [DM2] for an example). We develop regularity results for this

linear, homogeneous setting (see Section 3) to show that the heat kernel and weak

solutions of the heat equation are balanced and highly regular away from the (n−2)-

skeleton of X. Our regularity approach follows from the work of [BSCSW], where a
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1.3 Approach

so-called strip complex is considered.

Short time existence We now consider the non-linear case where the target is

a smooth compact manifold, N , with non-positive sectional curvature. To show the

existence of a solution to the heat flow on a small interval, we do not attempt to

solve equation (1.1) directly. Instead, we follow the approach of [ES] and show there

is always a small interval [0, ε), where ε > 0 is dependent on the energy density of

the initial map, such that a sequence of approximating maps converge in energy to

a continuous limit. We define our sequence of approximating maps,
{
W l
}∞
l=0

, as

follows. In each coordinate and for each l ∈ N, let

W 0,γ(z, t) =

∫
X

h(z, v, t)F γ
0 (v) dv,

W l,γ(z, t) =

∫ t

0

∫
X

h(z, v, t− τ)Gl−1,γ(v, τ) dv dτ +W 0,γ(z, t),


where

Gl,γ(v, τ) = Aγαβ(W l)

(
∂W l,α

∂vi

)(
∂W l,β

∂vj

)
gij.

We describe the details of the convergence and the existence of a positive ε in Sec-

tion 5.4. Crucial to the convergence of these maps is a Gaussian-type estimate for

the gradient of the heat kernel. Specifically, for a fixed R > 0, there exists B,C > 0

such that the following holds:

|∇zh(z, v, t)| ≤ C

min {t, R}
n
2

t−
1
2 e−

d(z,v)2

Bt ,

where ∇z denotes the gradient with respect to the z-slot. This is a new result and

we give proofs in Section 4.4.
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1.3 Approach

Long time existence Our approach to show that a solution as in equation (1.1)

can be extended to exist on all of [0,∞) works by contradiction. We show that if

a solution exists on an open-ended interval [0, T ), then it must exist on [0, T ] which

means that by our result for short term existence, it must exist on [0, T + ε). To show

this convergence of a solution on a closed interval, we develop regularity results in

Section 4.5 that we can use with the Arzelà-Ascoli theorem. Specifically, if W is a

solution on some interval [0, T ), then we show that for any open set A bounded away

from the (n− 2)-skeleton,

W |A ∈ C1+α,1+β(A× [0, T ), N),

for some α, β > 0. We also show that, in finite time, the pointwise energy of the flow

must stay bounded.

Convergence to a harmonic map To show convergence to a harmonic map as t

goes to ∞, we split our consideration into two cases. In the first case, we presume

that the energy density remains bounded as t→∞ and, in the second case, we allow

the possibility that the supremeum of energy density goes to infinity, but the total

energy remains bounded.

In the first case, we use an approach similar to the one used to show long time

existence. However, to be able to use the Arzelà-Ascoli theorem, we need to develop

Schauder-type estimates for regions bounded away from the (n − 2)-skeleton of X.

Specifically, for an open set Ω bounded away from the (n− 2)-skeleton of X and for
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1.3 Approach

T > 0, we have for a solution W to the flow,

|u(·, t)|C1+α(Q′T ,Rq) ≤ C,

where Ω′ ⊂ Ω is compactly contained, QT := Ω × (0, T ), Q′T := Ω′ × (0, T ), and C

is dependent on X,N, α, dist(∂Ω,Ω′), |u|C0(QT ), |∇u|C0(QT ), |∇f0|Cβ(Ω). Most impor-

tantly, we show that C is not dependent on T and that the other terms on which C

is dependent are bounded. See Section 5.5. Our approach is based on a technique

used in [DM2]. This result along with the Arzelà-Ascoli theorem allows us to show

convergence in energy to a harmonic map, which is proven in Section 5.6.

In the case that the supremum of the energy density goes to ∞ (but the density

is in L1(X)), we show that the flow is identical to a Gradient-of-Energy flow defined

in [Ma] and thus use results about this flow to get convergence to a harmonic map in

energy. The regularity results away from the (n− 2)-skeleton remain the same as in

the case with bounded energy density.

Regularity For regularity for linear, homogeneous elliptic- and parabolic-type equa-

tions of the form (
∂
∂t
−∆

)
f = 0 and ∆u = 0,

we adopt the results of [BSCSW] nearly directly. See Section 3. Their main tool is

a hypoellipticity-type result for manifolds that is then adapted for neighborhoods on

the singular set, which are manifolds of codimension 1. Specifically, they are able to

show the following: let M be a manifold, f ∈ L2(M) and F a distribution defined by

F =
(

Id +
√
−∆M

)
f,

9



1.3 Approach

where ∆M is the Laplacian on M and
√
−∆M is a hypoelliptic operator. Also, let

Ω ⊂ Ω′ both be compactly contained open sets in M . If F (φ) = 0 for all φ ∈ C∞c (Ω)

and there exists u ∈ L2(M) such that

F (u) =

∫
M

φu dM

for all φ ∈ C∞c (M \ Ω′), then f ∈ C∞loc(Ω). We apply this result to the setting of the

domain being an admissible complex to neighborhoods of (n− 1)-skeleton, bounded

away from the (n − 2)-skeleton. We extend this result to show that it applies in

our setting to nonhomogeneous and non-linear equations such as the harmonic map

equation and the heat flow equation. See Sections 4.5 and 3.5.

We also find it necessary to develop Schauder estimates for neighborhoods on the

(n − 1)-skeleton but away from the (n − 2)-skeleton. It is tempting to use global

Schauder estimates where a region of the (n − 1)-skeleton may be considered the

boundary. This has the disadvantage of requiring boundedness of high-order deriva-

tives of the solution on the (n − 1)-skeleton. We instead use a “folding” technique

of [DM3] to redefine the heat flow on such a neighborhood, and transform it to a

heat-type equation in a region of Rn, where n is the dimension of our domain. This is

achieved by taking a solution to the flow, showing it is balanced, and then construct-

ing a different solution to a differential equation on a ball in Euclidean space by taking

linear combinations of the nonlinear solution near a point on the (n − 1)-skeleton.

We can then apply standard results from [LSU] to achieve Schauder estimates that

do not require control of high order derivatives of solutions on the (n − 1)-skeleton.

We present this approach in Section 5.5.

10



1.4 History and Relevance

1.4 History and Relevance

As of the writing of this paper, there are a number of results on heat flows between

metric spaces of various smoothness. They may roughly be divided into a set of

classical results, where the domains are smooth manifolds, and more modern results

on spaces with a variety of singularities. We give a history of results and end this

section with an exposition on the relevance of our results.

Classical results The classical result is the heat flow described by Eells and Samp-

son in [ES]. The assumptions are that the domain and target are smooth, compact

Riemannian manifolds. Additionally, there are assumptions of nonpositive sectional

curvature on the target and that the domain has no boundary. In this case, given a

smooth initial map f0, they show the existence of a smooth heat flow u that satisfies

pointwise

∂

∂t
u(z, t) = τ(u(z, t)),

(τ is the torsion field of the map u(·, t)) and that converges to a harmonic map with

strong regularity properties. Given additional or weaker assumptions, a variety of

other results can be shown. This method, however, does not include the case of a

domain with boundary. In [H], Richard Hamilton showed that flow methods can be

used in this case, too, to achieve similar results, including boundary regularity.

Modern Results Recent results aim to extend the flow-like properties of the ap-

proach of [ES] from the setting of manifolds to a setting where the domain and target

may have singularities. As in the case with the setting of [ES], the goal is to show

that flows exist in long time and that as time goes to infinity a limit exists and is har-

11



1.4 History and Relevance

monic. Specifically, there are the results of [C], where the domain is an orbifold and

the target is a compact Riemannian manifold with nonpositive sectional curvature.

Also, in [CR], Chiang and Ratto consider the case where the domain is a compact

manifold with a finite number of conical singularities and the target is a compact

Riemannian manifold with nonpositive sectional curvature. In [Ma], Mayer shows

a very general result for a gradient-of-energy flow where the domain is merely an

Alexandrov space with non-positive curvature (in the sense of Alexandrov) supplied

with a lower-semicontinuous functional. The works of [AGS1,AGS2,St1,St2,St3,St4]

can be divided into two categories. In one case, flows are considered when the domain

is singular and the target is R and the other when the target is a locally compact

length space with nonpositive curvature (a subset of the cases considered by Mayer

in [Ma]). We give more details of each approach below.

Remark 1.1. We note that although we cite [AGS1, AGS2, St1, St2, St3, St4] as ex-

amples of results for flows when the domain is singular and the target is R, it is hardly

exhaustive. Rather we choose these as seminal representations of the expansive body

of literature on the matter.

The Results of Mayer Mayer’s results in [Ma] only assume that there is a complete

length space (M, d) nonpositively curved in the Alexandrov sense and that there is a

lower semicontinous, convex functional F : (M, d)→ R ∪∞. From this it is possible

to define a flow on (M, d) such that, given an an element u ∈ L with F (u) <∞, there

is a flow {ut}t>0 ⊂ M that satisfies some global properties similar to those satisfied

by a map between two compact, smooth manifolds where the target as nonnegative

sectional curvature. This is the Gradient-of-Energy Flow, which we review in more

12



1.4 History and Relevance

detail in Section 5.3. As part of this program, Mayer defines a so-called norm of the

gradient vector. We summarize the results as follows.

Definition. Let (M, d) be a complete, nonpositively curved length space and let

F : M→ R ∪∞ be a lower semi-continuous, convex functional. We define the norm

of the gradient vector at f0 as

|∇−F |(f0) := max

{
lim sup
f→f0,f∈M

Fε(f0)− Fε(f)

d(f0, f)
, 0

}
.

Theorem. For a complete NPC space (M, d) and a lower semi-continuous, convex

functional F : M→ R ∪∞, there exists a map

(·)t : M× R≥0 →M

that has the following properties:

i. For f ∈M, f0 = f

ii. lim
s→0

dL2(ft+s, fs)

s
= |∇−F |(ft), for all t

iii. sup
s>0

dL2(ft+s, fs)

s
= |∇−F |(ft), for all t

iv. − d
dt
F (ft) = |∇−F |2(ft), for almost all t > 0

v. t 7→ |∇−F |(ft) is right continuous

vi. t 7→ F (ft) is convex and uniformly Lipschitz continuous on [t0, t1] for all 0 <

t0 < t1 <∞

vii. |∇−F |(ft) is monotonically non-increasing in t and lim
t→∞
|∇−F | = 0.

13



1.4 History and Relevance

Following a lemma in the work of Korevaar and Schoen (see [KS]), we note that if

the domain, X, is an admissible simplicial n-complex and Y is a complete length space

nonpositively curved in the sense of Alexandrov, the space of L2 maps between X and

Y is itself a complete length space nonpositively curved in the sense of Alexandrov,

and the Korevaar-Schoen energy is indeed a convex, lower semicontinuous functional

on L2(X, Y ). Hence, there is a flow between X and Y .

One way of demystifying Mayer’s definition of the norm of the gradient vec-

tor is to apply it to the case when (X, g) and (Y, h) are compact, smooth mani-

folds and Y additionally has nonnegative sectional curvature. Let f ∈ C2(X, Y )

and let the metric on C2(X, Y ) be the L2 distance. Also, let the torsion of f be

τ(f) := traceg∇df ∈ Γ(f−1(TY )) and let E be the Dirichlet energy, a convex, lower

semicontinuous functional on C2(X, Y ). We can compute

|∇−E|(f) =

(∫
X

|τ(f)|2 dXg

) 1
2

.

Although this is the most general result for heat-type flows between metric spaces,

it gives almost no information about local phenomena, such as smoothness or whether

or not it satisfies some weak definition of a parabolic equation. It may be possible

to obtain such local results whenM is a particular space of maps between smoother

geometric spaces, but it is not obvious.

We do, however, prove that for an initial C1 map the Gradient-of-Energy flow

defined by Mayer agrees with the harmonic map heat flow that we define in this paper.

This is a new result and, as far as the author is aware, the first example showing that

another flow coincides with Mayer’s Gradient-of-Energy flow. This allows us to obtain

certain results for free, mostly revolving around the behavior of energy under the flow,
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1.4 History and Relevance

and convergence as time goes to infinity. We show the equivalence in Section 5.3.

It is worth noting that using the idea of “nonlinear” Dirichlet forms, Jost obtained

similar results in [J1].

Results of Sturm when the Target is NPC Sturm’s work in [St4] on flows

between a domain, possibly with boundary, that admits a Markov semigroup (on the

set of functions on the domain, not on the set of maps between the domain and

target) and a target that admits a barycenter contraction (defined as a contracting

map that maps each measure on the space to a single point, the barycenter with

respect to the measure). The Markov semigroup on domain is additionally required

to satisfy a contraction property in terms of the Wasserstien distance, dW (see [St4]),

given as follows:

dW (h(z, ·, t), h(v, ·, t)) ≤ eCtd(z, v)

where C is bounded, and h is the heat kernel. This condition replaces the assumption

in the smooth case of Ricci curvature bounded below. It is uncertain whether or not

the domain may be an admissible simplicial n-complex, as it is generally not even an

Alexandrov space with curvature bounded below in the sense of Alexandrov. However,

as Sturm notes in [St4], a complete, nonpositively curved Alexandrov space always

admits a barycenter contraction. In this setting, Sturm proves that a limit map exist

(i.e. a harmonic map), and this map is Lipschitz continuous in the interior and Hölder

continuous on the boundary.

Results of Chiang and Ratto The methods of Mayer and Sturm (see [Ma] and

[St4]) provide weak regularity results for their respective flows because their assump-

tions do not restrict them to spaces with large, open sets of manifold points. We turn
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1.4 History and Relevance

to the results of [C] and [CR], where their results are more “local” in nature.

In [C] and [CR], the authors achieve results similar to [ES]. In the assumptions of

[C], the domain, X, is a compact orbifold. In the assumptions of [CR], the domain,

X, is a compact metric space containing a finite set of points {pj}Ni=1 such that

X \{pj}Ni=1 is an open, smooth manifold, and {pj}Ni=1 are conical singularities. In both

[C] and [CR], the target Y is a compact, smooth manifold with nonpositive sectional

curvature, and is considered embedded in some higher dimensional Euclidean space.

They show the existence of a heat flow similar to Eells and Sampson with many of

the same properties. Specifically, they show via heat flow the existence of a harmonic

representative in every homotopy class. Also, they show strong regularity for the flow

and for harmonic maps in these settings.

X is a metric measure space with singularities the target is R There are

many results for singular domains in this case. They are distinguished by the type

of domain. When the domain is a Dirichlet space, we primarily have the results by

Sturm (see [St2]). In [St1,St2,St3], Sturm shows methods of defining weak solutions

to the heat flow when the domain is a Dirichlet space and satisfies a volume doubling

property and have a uniform lower bound for Poincaré constants on balls. When

the domain is a metric measure space, often considered with a lower bound on the

Alexandrov curvature or a lower bound on a metric definition of Ricci curvature, there

are results by Ambrosio, Gigli, and Savaré (see [AGS1] and [AGS2]). In all cases, a

gradient flow is defined and its properties expounded. In [AGS1] and [AGS2], the

results are presented with attention to applications in probability spaces.
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The Results of Pivarski and Saloff-Coste In [PSC], Pivarski and Saloff-Coste

use the results of Sturm [St2] to show the existence of a heat semigroup on a suit-

able space of functions on an admissible n-complex and a corresponding heat kernel.

Specifically, in [St2], Sturm shows that a suitable Dirichlet space has a semigroup on

a suitable space of functions that satisfies a weak parabolic equation. The Dirichlet

space must have a uniform lower bound for the Poincaré constants on geodesic balls

of fixed radius and must also satisfy a volume doubling property. Pivarski and Saloff-

Coste show that an admissible n-complex satisfies both of these conditions and hence

Sturm’s results apply. They continue to show properties of the heat semigroup and

the heat kernel.

Many of the results of [PSC] are dependent on a paper by Bendikov, Saloff-Coste,

Salvatori, and Woess (see [BSCSW]) in which they consider “strip complexes” which,

roughly speaking, is an analogue of a polyhedra in which all singularities are manifolds

of codimenion 1. Concepts that are briefly covered in [PSC] receive a deeper treatment

in [BSCSW].

The Results of Brin and Kifer In [BK], Brin and Kifer focus on Brownian motion

on admissible 2-complexes, and show that a heat semigroup can be built out of the

probability transition functions and densities (roughly speaking, the probability that

a particle starting at a particular point in the domain and then moving randomly

is in a specified set at a positive time). They show the existence of a kernel and a

pointwise definition of Laplacian that is valid on all points that are not vertices. They

show strong regularity properties for the kernel, and that the heat semigroup has a

Laplacian-type operator as its infinitesimal generator.
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Metric Spaces and Geometric Group Theory Our work in this paper is de-

signed with applications to Geometric Group Theory in mind. We present a fact

and an example of the place of heat flows and harmonic maps in Geometric Group

Theory.

Theorem. Let G be a finitely presented group. Then there exists an admissible 2-

complex X such that π1(X, x0) = G.

Hence, let G be a finitely presented group and let Y be a metric measure space

with isometry group Isom(Y ). Let H ⊂ Isom(Y ) be a subgroup, and let ρ : G → H

be a group homomorphism. Let X̃ be the covering space of the admissible 2-complex

X with π0(X, x0) = G. A map f : X̃ → Y is called ρ-equivariant if for all x ∈ X and

all g ∈ G,

f(g · x) = ρ(g) · f(x),

where G acts on X̃ by deck transformations. If the set of ρ-equivariant maps can

be proven to be non-empty, it is possible to extract information about ρ from the

set of ρ-equivariant maps (or visa versa). When the domain and target are smooth

compact manifolds and the target additionally has non-positive sectional curvature,

it is known that every continuous map is homotopic to a harmonic map. Hence, to

explore the behavior of ρ, it is often useful to examine the properties of the harmonic

ρ-equivariant maps. Although we have presented a simple example of the approach

here, it gives a sense of the approach of many papers in the field and we cite in

particular [DM1,DM2,DM3,GS, IN,W1,W2].

The difficultly of using the flow methods described above when the domain X

is an admissible 2-complex is that simplicial complexes generally are not Alexandrov
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spaces with curvature bounded below. This is only possible when X is also a topolog-

ical manifold, which presents a grave restriction on X. Specifically, this topological

restriction restricts the fundamental groups that X can have. Many of the methods

described above require that the domains have their Alexandrov curvature bounded

from below or that they have some variant of a metric definition of Ricci curvature

bounded below. We wish to be able to define a flow when X is an arbitrary admis-

sible n-complex. This leaves only a few of the cited the methods as possibilities for

the extension of the results of [ES]. Indeed, our approach is essentially to extend the

results of [St2]. However, to be able to apply these methods, we must show that an

admissible complex is a Dirichlet space that satisfies a volume doubling condition and

that, for a fixed radius, has a lower bound on Poincaré constants on balls. This is

exactly what is shown in [PSC]. [BK] gives a similar result in the 2-dimensional case.

However, in both cases, the target considered is R. There is not much richness to the

isometry group of R, so we desire to have a target with more complexity.

Our results in context As noted above, we wish to be able to obtain results

about the heat flow when the domain is a compact admissible complex and the target

is a smooth compact manifold with non-positive sectional curvature. Also as noted

above, we are largely motivated by applications to Geometric Group Theory. To that

end, we avoid using methods that restrict the domain excessively. Hence, we avoid

[AGS1,AGS2,St4] as they make assumptions about various types of curvature being

bounded below, which excludes most admissible complexes, as we have described

before. We also do not rely entirely on the methods of [Ma], as it provides no local

information about the flow, and hence very weak regularity results; however, it does

provide convergence results we shall find useful, and so we show that the Gradient-
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of-Energy flow of Mayer is equivalent to our heat flow given a suitable initial map.

The closest in nature to our results involving flow methods from from [C] and [CR],

as they consider domains with large, open sets of manifold point and targets that are

smooth Riemannian manifolds with non-positive sectional curvature. Their methods

generally follow the approach of [ES], but to obtain information on heat kernels, they

use spectral methods that do not appear applicable to the case we consider here. We

instead use the results of [St2] and [PSC] to develop methods that give existence of

a heat kernel.

A focus of our work involves finding regularity of solutions to Partial Differential

Equations on an admissible complex. These do not follow from any of the results

of any work cited in the preceding paragraph, but rather come from the work of

[BSCSW]. As far as we know, their technique to obtain regularity is novel, and our

contribution here is to show that it can be used on other spaces with singularities

that are manifolds of codimension 1, such as an admissible complex, and that they

can be extend to hold for non-linear and non-homogeneous equations such as the heat

flow into a manifold. Our other main regularity result appears to be entirely new.

We provide Schauder estimates (of elliptic and parabolic type) on neighborhoods

intersecting the (n− 1)-skeleton of the domain (but away from the (n− 2)-skeleton)

that do not involve bounds on higher order derivatives on the (n− 1)-skeleton. Our

approach has been motivated by a construction in [DM3].
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2 Preliminaries

2.1 Riemannian Polyhedra

Fundamentally, we define a simplicial complex as a topological space.

Definition 2.1. We define the following:

i. A set of points s ⊂ Rn+1 is an n-simplex if there exist n+1 points, {x0, . . . , xn},

in general position such that s is equal to the closed convex hull of {x0, . . . , xn}.

ii. s is a face of simplex t if s is a k-simplex and s ⊂ t.

iii. X is a simplicial complex if it contains a set of simplexes with the following

relations:

(a) If t ∈ X and s is a face of t, then t ∈ X.

(b) If s, t ∈ X then s ∩ t ∈ s, t.

iv. X [k] denotes the set of all k-simplexes of X.

v. X(k) denotes the k-skeleton, which is defined as the union of all closed k-

simplexes contained in X (i.e. X(k) = ∪s∈X[k]s)

vi. If X is a simplicial complex, it is an n-complex if every simplex is contained in

an n-simplex.

There are additional properties that can be imposed on a simplicial complex so

that we may have enough structure to introduce a meaningful sense of harmonic maps

and other considerations for later.
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Definition 2.2. Let X be a simplicial complex.

i. An n-complex is dimensionally homogeneous if every simplex s ∈ X is contained

in an n-simplex.

ii. The (closed) star of s ∈ X, denoted St(s), is the union of all simplexes that

contain s. The open star of s ∈ X, denoted st(s), is the union of the interiors

of all simplexes that contain s.

iii. The link of s ∈ X, denoted Lk(s), is the set of simplexes that are in St(s) but

not in st(s).

iv. If X is a dimensionally homogeneous n-complex, X is locally (n− 1)-chainable

if for every p ∈ X(n−2), any two n-simplexes s0, s1 ∈ St(p) can be chained : there

exists a finite sequence of n-simplexes {Ai}Ki=1 ⊂ St(p) such that A1 = s0 and

AK = s1 and
⋃
Ai \ {p} is simply connected.

v. X is an admissible n-complex if X is a simplicial complex that dimensionally

homogeneous of dimension n and is (n− 1)-chainable.

It will additionally be useful to put a metric on a simplicial complex so that we

may define a length space that, in the interior of each simplex, resembles a manifold.

Definition 2.3. Let X be an admissible n-complex.

i. X is a Riemannian polyhedron if there exist a metric g such that for an open

k-simplex s, 1 ≤ k ≤ n, g|s is a Riemannian metric in the sense of a manifold.

ii. X is a smooth Riemannian polyhedron if

(a) the metric g is smooth on the interior of each simplex;
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2.1 Riemannian Polyhedra

(b) for any two k-simplexes, s0, s1 with a common (k−1)-face, F , g|F is induced

by the limits of g|s0 , g|s1 ;

(c) the sectional curvature is bounded uniformly on the interior of every n-

simplex.

It is obvious how to define coordinates on sufficiently small neighborhoods com-

pactly contained in a single n-simplex, but it will often be useful to be able to define

coordinates in a compactly neighborhood of an (n − 1)-simplex, which we shall call

edge coordinates.

Definition 2.4. Let X be a Riemannian polyhedron, and let p ∈ X(n−1) \ X(n−2).

Pick an open neighborhood V such that V ∩ X(n−2) = ∅. Let {sj}Jj=1 denote all of

the n-simplexes containing p, and let E be their common face (i.e. E = ∩Jj=1sj).

We define edge coordinates about p ∈ V so that p = (0, . . . , 0) and for q ∈ E,

q = (x1, x2, . . . , xn−1, 0). The nth coordinate denotes the direction normal to E. If

we wish to refer to a point in V in a specific n-simplex, sj, we may denote the nth

coordinate, xnj .

To make clear what is meant by kth-order derivatives on functions in the case of

a Riemannian polyhedron, we provide the following.

Definition 2.5. LetX be an admissible smooth Riemannian polyhedron of dimension

2 or greater. We define the following.

i. Z is a vector field on X if it is a vector field when restricted to any n-simplex,

considered here as a Riemannian manifold.

ii. Additionally, let X be simplex-wise flat, {Zi}ni=1 is an orthonormal basis if its
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2.1 Riemannian Polyhedra

restriction to any n-simplex induces orthonormal coordinates (note that they

will not necessarily match on X(n−1)).

iii. For k ∈ N, define

Ik :=

{
(a1, . . . , an) ∈ Nn |

n∑
i=1

ai = k

}
,

and for a set of vector fields Z = {Zi}, define

|Dk
Zf(z)| :=

 ∑
(a1,...,an)∈Ik

|(Z1)a1 · · · (Zn)anf(z)|2
 1

2

.

In the event k = 1, we write simply

|DZf(z)| :=

(
n∑
i=1

|Zif(z)|2
) 1

2

.

Definition 2.6. LetX be an admissible smooth Riemannian polyhedron of dimension

n. Let A ⊂ X, we define the following spaces of functions.

i. Let Sk(A) denote the set of functions defined on A ⊂ X that, when restricted to

A \X(n−1), are bounded and continuous with bounded and continuous deriva-

tives up to order k.

ii. Let Ck(A) denote the subset of Sk(A) in which each function is continuous and

bounded on A.

iii. Let BC0(A) denote the set of f ∈ C1(A) such that for p ∈ A∩ (X(n−1) \X(n−2)),
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2.2 Dirichlet Spaces & Energy

and with edge coordinates about p,

l∑
i=1

∂f

∂ni
(p) = 0

Where ∂
∂ni

are the (inward pointing) normals of the edge of each n-simplex, si,

containing p. This is the so-called balancing condition.

iv. Let Ck
loc(A) be the set of functions such that, if f ∈ Ck

loc(A), then for each

compactly contained A′ ⊂ A and each n-simplex, S, f |A′∩S ∈ Ck(A′ ∩ S).

We note that we may let k =∞ to denote that derivatives of all orders exist, according

to the context. We will also append the subscript c to denote compactly supported

functions, e.g. Ck
c (X) denotes the subset of functions of Ck(A) that are compactly

supported.

For a subset A ⊂ X, and interval I ⊂ R, we also define analogous spaces on A×I.

Indeed, let Ck,l(A×I) denote the set of functions on such that if f ∈ Ck,l(A×I), then

for each t0 ∈ I, f(·, t0) ∈ Ck(A) and
(
∂
∂t

)m
f is continuous on A × I for 1 ≤ m ≤ l.

We similarly extend these definitions to apply to Ck,l
loc(A× I).

2.2 Dirichlet Spaces & Energy

Our approach to defining a heat flow from an admissible complex to a nonpositively

curved smooth manifold begins by building on the work of [St2], where Sturm provides

a setting in which a Laplacian can be defined on spaces more general than manifolds.

We begin with the basic definitions.

Definition 2.7. Let X be a separable, measureable space with measure µ. We define

the following:
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• For p ∈ [1,∞), let Lp(X) :=
{

measurable f |
∫
X
|f |p dµ <∞

}
• For p =∞, let L∞(X) := {measurable f | ess supX |f | <∞}

• If X is an admissible polyhedron with simplex-wise metric tensor g, then the

induced measure for an open set A is

µg :=
∑
S∈X[n]

µg|S(A ∩ S),

where µg|S is the induced measure on the Riemannian manifold A ∩ S with

metric g|S.

Definition 2.8 (See [EF, Chapter 2]). Let X be a separable, measurable, locally

compact space. A Dirichlet form E on X with domain Dom(E) ⊂ L2(X) is a sym-

metric bilinear map E : Dom(E) × Dom(E) → R which is nonnegative definite. For

f ∈ Dom(E), let E(f) := E(f, f). We assume that

i. Dom(E) is dense in L2(X).

ii. Dom(E) is complete in the inner product

〈f, g〉Dom(E) = 〈f, g〉L2(X) + E(f, g), f, g ∈ Dom(E)

and is hence a Hilbert space.

iii. For any normal contraction T and f ∈ Dom(E),

E(T ◦ f) ≤ E(f),
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2.2 Dirichlet Spaces & Energy

where a normal contraction of R is a map T : R → R such that T (0) = 0 and

|T (s)− T (t)| ≤ |s− t| for all s, t ∈ R.

X is a Dirichlet space if there exists a Dirichlet form defined on X. Additionally, for

f, g ∈ Dom(E) we say that E is strongly local if E(f, g) = 0 whenever f is constant

in some neighborhood of the support of g (or, by symmetry, vice versa).

For our purposes, we wish to define a strongly local Dirichlet form as in [PSC,

Definition 1.12], such that for f ∈ W 1,2(X) (defined formally below), E(f, f) coincides

with the Korevaar-Schoen-type energy (see [EF, Chapter 9; DM2; KS]) up to a fixed

dimensional constant. We show there are equivalent ways of defining the domain of

this form. We follow the approach of [PSC].

Definition 2.9. Let X be an admissible Riemannian polyhedron of dimension n with

metric g and volume measure µg. For two Lipshitz functions f, g, define

Eε(f, g) :=

∫
X

∫
B(p,ε)\{p}

(f(p)− f(q)) (g(p)− g(q))

dX(p, q)2

2n dµ(p)dµ(q)

µ(B(p, ε)) + µ(B(q, ε))
,

where µ is the measure induced by the metric g (see above), and B(p, r) is the geodesic

ball about p of radius r.

We cite without proof the following.

Lemma 2.10. [PSC, Definition 1.12] Let X be an admissible Riemannian polyhedron

with metric g and volume measure µg, and let Eε(·, ·) be as above. Then, as ε goes

to 0, there exists a limit Dirichlet form in the sense of Dal Maso (see [PSC, DMa])

whose closure, denoted E(·, ·), is a strongly local Dirichlet form on L2(X) with a dense

subset of compactly supported Lipschitz functions.
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2.2 Dirichlet Spaces & Energy

There is an alternate Dirichlet form that one may define. We shall see later that

the two forms are essentially the same.

Definition 2.11 (See [PSC, Definition 1.13, Lemma 1.14]). Let X be an admissible

Riemannian polyhedron, and let f, g : X → R be Lipschitz and compactly supported,

and let

E0(f, g) :=
∑
s∈X[n]

∫
s

〈∇f,∇g〉 dµ,

where X [n] is the set of all n-simplexes of X. Then E0(·, ·) is a closable form whose

domain is the set of compactly supported Lipschitz functions on X. Let its closure

be denoted (E ,Dom(E)).

Remark 2.12. The above definition makes sense as, for Lipschitz f , |∇f | exists

almost everywhere.

Definition 2.13. For an admissible Riemannian polyhedron X, and E(·, ·) as in

Definition 2.11, and

W 1,2(X) :=
{
f ∈ L2(X) | ∀s ∈ X [n], f |s ∈ W 1,2(s), E(f, f) <∞, and

Tr(f|s) = Tr(f|s′) on e = s ∩ s′; s, s′ ∈ X [n]
}
,

where X [n] is the set of all n-simplexes of X and Tr: W 1,2(s) → L2(∂s) is the trace

map on s ∈ X [n].

Note that we can naturally extend the definition for a domain A ⊂ X.

Proposition 2.14 (See [PSC, Lemma 1.15, Theorem 1.17]). For E, E, and X as

above,

Dom(E) = Dom(E) = W 1,2(X).
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2.2 Dirichlet Spaces & Energy

Also, for any f ∈ Dom(E),

E(f, f) = E(f, f).

From general theory and as a consequence of the Riesz representation theorem,

we have the following:

Proposition 2.15. Let X be an admissible Riemannian polyhedron, E be a Dirichlet

form with domain Dom(E) ⊂ L2(X). There is a unique, self-adjoint, negative opera-

tor ∆, called the Laplacian, with domain Dom(∆) ⊂ Dom(E) defined in the following

way.

Dom(∆) := {f ∈ Dom(E) | ∃C s.t. E(f, g) ≤ C‖g‖L2 ,∀g ∈ Dom(E).}

Remark 2.16. From here forward, we shall fix the Dirichlet, E, to be defined as

in Lemma 2.10, and for ∆ to be the Laplacian associated to E. We note that by

Proposition 2.14, we may equivalently use the Dirichlet form from Definition 2.11.

Referring to the above theorem, we note that by the Riesz representation theorem,

this theorem implies the existence of a function v ∈ L2(X) such that E(f, g) =∫
X
fv dµ. Such a function we denote v = −∆g.

Following the observation that for φ ∈ C∞(Int(s)), where s is an n-simplex, ∆|φ is

the Laplace-Beltrami operator and as a consequence of Green’s identity and Propo-

sition 2.14, we have the following proposition.

Proposition 2.17 (See [PSC, Prop. 1.21]). For a function f ∈ C2
c (X), and Dirichlet

form E as defined in Lemma 2.10 with associated Laplacian ∆, f ∈ Dom(∆) if and

only if f has the balancing condition.
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2.3 Volume Doubling & Poincaré Inequalities

2.3 Volume Doubling & Poincaré Inequalities

In the work of Sturm (see [St1,St2,St3]), the principles of volume doubling and local

Poincaré inequalities are necessary tools to be able to define heat operators with good

properties. We define them here.

Definition 2.18. A metric space X has the volume doubling property if there exists

a constant N , dependent on X such that for all balls in B(p, 2r) ⊂ X,

Vol(B(p, 2r)) ≤ 2NVol(B(p, r)).

Note that this definition permits N to change if one inputs a different r, i.e. N is

not global for 0 < r <∞.

Definition 2.19. A metric space X with Dirichlet form E has a the uniform lower

bound on local Poincaré constants if there exists a constant C dependent on X such

that for all balls in B(p, r) ⊂ X and for all u ∈ Dom(E),

∫
B(p,r)

|u− ūp,r|2 dµ ≤ Cr2

∫
B(p,r)

|∇u|2 dµ,

where |∇u|2 is the density function with respect to E and

ūp,r = Vol(B(p, r))−1

∫
B(p,r)

u dµ.

For a smooth Riemannian manifold, if compactness is not assumed, the satisfac-

tion of the volume doubling property and the strong local Poincaré inequality are

dependent on a lower bound on the Ricci curvature.
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2.4 Other Spaces of Functions and Maps and their Energy

Of course, we now ask if an admissible Riemannian polyhedron has the volume

doubling property and the strong local Poincaré inequality. The volume doubling

property is quite easily satisfied, and we refer to [PSC] for the answer to the other

question:

Proposition 2.20. Let X be an admissible Riemannian polyhedron of dimension n

(n ≥ 2) with the following additional properties:

i. the metric tensor on X is uniformly elliptic on each n-simplex with constant Λ,

ii. for any k-simplex s0, 0 ≤ k ≤ n − 1, the number of n-simplexes containing s0

is bounded above by a constant M ,

iii. the distance between any two vertexes is bounded below by L,

iv. the interior angles of any n-simplex is bounded below by α > 0.

For such an X, X satisfies the volume doubling property and the strong local Poincaré

inequality.

Proof. The satisfaction of the volume doubling property is immediate. For a proof

of the satisfaction of the strong local Poincaré inequality, we refer to [PSC, Corollary

2.10].

2.4 Other Spaces of Functions and Maps and their Energy

Our ultimate consideration is flows for maps from smooth Riemannian polyhedra to

smooth Riemannian manifolds with nonpositive sectional curvature. Crucial to this

program are the balancing condition and regularity. As we will often be referring to
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2.4 Other Spaces of Functions and Maps and their Energy

the balanced maps and maps that are continuous across the faces, we formally define

them when the target is a manifold other than R.

Definition 2.21. Let X be an admissible smooth Riemannian polyhedron of dimen-

sion n, (n ≥ 2), and N a finite dimensional smooth Riemannian manifold. Let A ⊂ X

be an open set. We define the following spaces of maps between X and N .

i. Let Sk(A,N) denote the set of maps that, when restricted on the domain to

A∩
(
X \X(n−1)

)
, are bounded and continuous and have bounded and continuous

derivatives of all orders less than or equal to k.

ii. Let Ck(A,N) denote the subset of Sk(A,N) that is bounded and continuous on

all A ⊂ X.

iii. Let Ck
loc(A,N) be the set of maps such that, if f ∈ Ck

loc(A,N), then for each

compactly contained A′ ⊂ A and each n-simplex, S, f |A′∩S ∈ Ck(A′ ∩ S,N).

For a subset A ⊂ X, and interval I ⊂ R, we also define analogous spaces on A × I.

Indeed, let Ck,l(A×I,N) denote the set of functions on such that if f ∈ Ck,l(A×I,N),

then for each t0 ∈ I, f(·, t0) ∈ Ck(A,N) and
(
∂
∂t

)m
f is continuous on A × I for

1 ≤ m ≤ l. We similarly extend the definition of Ck,l
loc(A× I,N).

Definition 2.22. Let X be an admissible smooth Riemannian polyhedron of di-

mension n, (n ≥ 2), and N a finite dimensional smooth Riemannian manifold. Let

ι : N ↪→ Rq be a smooth isometric embedding. Let f : X → N be continuous with

first order derivatives continuous on the interior of the n-simplexes and up to the

faces. Let p ∈ X(n−1) \ X(n−2) and let V be a neighborhood of p with edge coordi-

nates. Also, Let F γ
j =

(
ι ◦ f |sj

)γ
, 1 ≤ j ≤ J and 1 ≤ γ ≤ q. Such map f has the
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2.4 Other Spaces of Functions and Maps and their Energy

balancing condition if for all p ∈ X(n−1) \X(n−2) and V as above,

J∑
j=1

∂F γ
j

∂xn
(x1, . . . , xn−1, 0) = 0

for each γ. For open A ⊂ X, we shall denote the subspace of C1(A,N) that has the

balancing condition on A,

BC0(A,N) :=
{
f ∈ C1(A,N) | f has the balancing condition

}
.

We also extend the definition of energy to maps between polyhedra and manifolds.

We follow the style of [EF, Chapter 9].

Definition 2.23. Let X be an admissible smooth Riemannian polyhedron of dimen-

sion n, (n ≥ 2), and N a finite dimensional smooth Riemannian manifold. Let g

denote that simplex-wise smooth metric tensor of X and let h denote the metric ten-

sor of N . For a map f : X → N we define the energy density of f at z ∈ X \X(n−1)

relative to coordinates {zi} near z and {fγ} near f(z) to be

e(f)(z) = gij(z)
∂fα

∂zi
∂fβ

∂zj
(z)hαβ(f(z)).

If e(f) is locally integrable, we define the (global) energy of f to be

E(f) :=

∫
X

e(f) dX;
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2.4 Other Spaces of Functions and Maps and their Energy

otherwise, we define E(f) :=∞. We define

W 1,2(X,N) :=
{
f ∈ L2(X,N) such that E(f) <∞

}
.

We can connect the definition of energy for maps to the Dirichlet form for functions

according to the following proposition (see [EF, Lemma 9.3] for proof).

Proposition 2.24. Let X be an admissible smooth Riemannian polyhedron of di-

mension n, (n ≥ 2), and N a finite dimensional smooth Riemannian manifold. Let

ι : N ↪→ Rq be a smooth isometric embedding. Let f : X → N and for each 1 ≤ γ ≤ q,

define F γ to be the γth component of F : X → ι(N)(⊂ Rq), where F := ι ◦ f . Then,

f is in W 1,2(X,N) if and only if F γ is in W 1,2(X) for each 1 ≤ γ ≤ q.

Additionally, if f is in W 1,2(X,N), then the energy density is given by

e(f)(z) =

q∑
γ=1

〈∇F γ(z),∇F γ(z)〉 ,

for z ∈ X \X(n−1).

Corollary 2.25. Let X be an admissible smooth Riemannian polyhedron of dimension

n, (n ≥ 2), and N a finite dimensional smooth Riemannian manifold. Let ι : N ↪→ Rq

be a smooth isometric embedding. Let f ∈ W 1,2(X,N) and for each 1 ≤ γ ≤ q, define

F γ to be the γth component of F : X → ι(N)(⊂ Rq), where F := ι ◦ f . Then,

E(f) =

q∑
γ=1

E(F γ, F γ),

where E(·, ·) is the Dirichlet form given in either Lemma 2.10 or Definition 2.11.

Proof. This is an immediate consequence of Propositions 2.24 and 2.14.
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2.4 Other Spaces of Functions and Maps and their Energy

We have the usual properties expected from this energy functional, which we again

state from [EF].

Proposition 2.26 (Lower-semicontinuity of Energy). Let X be an admissible smooth

Riemannian polyhedron of dimension n, (n ≥ 2), and N a finite dimensional smooth

Riemannian manifold, and let E : W 1,2(X,N) → [0,∞) be the energy functional of

Definition 2.23. Then E is lower-semicontinous in the following sense: for any se-

quence of maps {fi} ⊂ W 1,2(X,N) with uniformly bounded energy that converges in

L2 to a map f ,

E(f) <∞ and E(f) ≤ lim inf E(fi).

Proposition 2.27 (Poincaré Inequality). Let X be an admissible smooth Riemannian

polyhedron of dimension n, (n ≥ 2), N a finite dimensional smooth Riemannian

manifold, and let g denote the simplex-wise smooth metric tensor on X. Let e(·)

be the energy density of Definition 2.23. Then for any open, compactly contained

subset X ′ ⊂ X, there is a constant C > 0 dependent on X,X ′, N and the constant of

ellipticity on X ′ with respect to g such that for any B(p, r) ⊂ X ′

∫
B(p,r)

dN(f(z), f̄)2 dX(z) ≤ Cr2

∫
B(p,r)

e(f) dX(z), (2.1)

where f̄ ∈ N is the barycenter of f on B(p, r). The barycenter is defined as

∫
B(p,r)

dN(f(z), f̄)2 dX(z) = inf
y0∈N

∫
B(p,r)

dN(f(z), y0)2 dX(z).

Remark 2.28. We note that variations of this statement exist. Sharper constants

C can be found if the radius of the ball of the expression of the left-hand side of

35



Equation (2.1) is shrunk by half. We refer to [EF, Proposition 9.1 & Remark 9.6].

There is an additional precompactness result similar to the one of [KS], which we

review later in Proposition 5.21 (see page 102).

3 Partial Differential Equations on Polyhedra

Our ultimate goal is to show the existence of a heat flow between admissible smooth

Riemannian polyhedra and smooth Riemannian manifolds with nonpositive sectional

curvature. As we will eventually be embedding the manifold isometrically into some

higher dimensional Euclidean space, we of course will be curious about parabolic-type

differential equations where the target is R. Sturm has treated this subject extensively

for Dirichlet spaces with volume doubling conditions and with uniform lower bounds

for Poincaré constants on balls (see [St1, St2, St3]). Hence, we can apply this to the

case of Riemannian polyhedra.

Assumptions. Unless otherwise specified, we shall assume in this section that X is

an admissible smooth Riemannian polyhedron that satisfies the conditions of Propo-

sition 2.20 with Dirichlet form E(·, ·) and Laplacian ∆ as in Section 2.2, and energy

E(·) as in Section 2.4.

3.1 Elliptic & Parabolic Equations on Riemannian Polyhedra

We define some additional function spaces which we shall need to rigorously define

differential equations on Dirichlet spaces and to show existence of solutions.
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3.1 Elliptic & Parabolic Equations on Riemannian Polyhedra

Definition 3.1 (following [St2, Sect. 1.3(A)]). For a function u : X × R≥0 → R, we

define the following norms and spaces. Let I = (a, b) ⊂ R.

i. For the Dirichlet form on X, E(·, ·), (as defined in Lemma 2.10) with domain

W 1,2(X), W 1,2(X) is a Hilbert space with norm

‖f‖W 1,2(X) :=
(
E(f, f) + ‖f‖2

L2(X)

) 1
2
.

We note that W 1,2(X) ⊂ L2(X) ⊂ W 1,2(X)∗, where W 1,2(X)∗ is the dual of

W 1,2(X).

ii. C(I → L2(X)) is the set of continuous and bounded functions with respect to

t, where u ∈ C(I → L2(X)) is of the form u : I → L2(X), t 7→ u(t, ·) with the

(sup) norm

‖u‖L∞(I) := sup
t∈I

(∫
X

u(t, x)2 dµ(x)

) 1
2

iii. L2(I → W 1,2(X)) is the space of functions u : I → W 1,2(X) with norm

‖u‖L2(I) :=

(∫
I

‖u(t, ·)‖W 1,2(X) dt

)1/2

iv. H1(I → W 1,2(X)∗) is the space of functions of the form u : I → W 1,2(X)∗ with

distributional time derivative ∂
∂t
u ∈ L2(I → W 1,2(X)∗), where W 1,2(X)∗ is the

dual to the space W 1,2(X) with the usual L2 inner product. This space has

norm

‖u‖H1(I) :=

(∫
I

‖u(t, ·)‖2
W 1,2(X)∗ + ‖ ∂

∂t
u(t, ·)‖2

W 1,2(X)∗ dt

)1/2

.
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3.1 Elliptic & Parabolic Equations on Riemannian Polyhedra

v. F(I ×X) := L2(I → W 1,2(X)) ∩H1(I → W 1,2(X)∗) with norm

‖u‖F(I×X) :=

(∫
I

‖u(t, ·)‖2
W 1,2(X) + ‖ ∂

∂t
u(t, ·)‖2

W 1,2(X)∗ dt

)1/2

.

It can be shown that

F(I ×X) ⊂ C(I → L2(X)).

Now that we have defined the function spaces, we have a sense of what a solution

to a parabolic equation might be. Specifically, we have the following. We provide

existence proofs later.

Definition 3.2 (See [St2, Section 1.4(C)]). Let I = (a, b) ⊂ R.

i. A function u is a weak solution of the parabolic equation

∂

∂t
u = ∆u,

on I ×X, where I is an interval, if and only if u ∈ F(I ×X) and u satisfies

∫
I

E(u, φ) dt+

∫
I

〈
∂
∂t
u, φ
〉
L2(X)

dt = 0,

for all φ ∈ F(I ×X). u is a weak subsolution (super-) if

∫
I

E(u, φ) dt+

∫
I

〈
∂
∂t
u, φ
〉
L2(X)

dt ≤ (≥)0,

for all φ ∈ F(I ×X).
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3.1 Elliptic & Parabolic Equations on Riemannian Polyhedra

ii. Let f ∈ L2(X). u is a weak solution to the initial value problem

∂

∂t
u = ∆u on I ×X

ua = f on X


if and only if u is a solution as above, and limt→a+ u = f in L2(X).

The weak solution being in F(I×X) as defined above seems to be a bit cryptic. We

give another equivalent condition for u being a weak solution later in Proposition 4.3.

We are also interested in non-homogeneous parabolic-type equations.

Definition 3.3. Let I = (a, b) ⊂ R, and f ∈ L2 ((a, b) 7→ W 1,2(X)).

i. A function u is a weak solution of the non-homogeneous parabolic equation

(
∂

∂t
−∆

)
u = f,

on I ×X, where I is an interval, if and only if u ∈ F(I ×X) and u satisfies

∫
I

E(u, φ) dt+

∫
I

〈
∂
∂t
u, φ
〉
L2(X)

dt =

∫
I

〈f, φ〉L2(X) dt,

for all φ ∈ F(I ×X).

ii. Let f ∈ L2 ((a, b) 7→ W 1,2(X)) such that limt→a f(z, t) = g(z), g ∈ L2(X). u is

a weak solution to the initial value problem

(
∂

∂t
−∆

)
u(z, t) = f(z, t) on (z, t) ∈ X × (a, b)

u(z, a) = g(z) on X


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3.1 Elliptic & Parabolic Equations on Riemannian Polyhedra

if and only if u is a solution as above, and limt→a+ u = g in L2(X).

As time will no longer be a concern, it is far easier to define solutions, weak and

otherwise, to elliptic-type equations.

Definition 3.4. Let f ∈ L2(X).

i. u is a weak solution to the non-homogeneous elliptic-type equation

∆u = f

if u ∈ W 1,2(X) and for all φ ∈ W 1,2(X),

∫
X

E(f, φ) + fφ dµ = 0.

ii. u is a (strong) solution to the non-homogeneous elliptic-type equation

∆u = f

if u ∈ C2
loc(X \X(n−1)) and is balanced and continuous on X, and

∆gu(z) = f(z) on X \X(n−1),

where ∆g is the Laplace-Beltrami operator with respect to the metric tensor g.

We treat existence of these equations (elliptic-/parabolic-type and homogeneous

/non-homogeneous) in Section 4.
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3.2 The Parabolic Harnack Inequality

3.2 The Parabolic Harnack Inequality

As in the case of parabolic equations defined on bounded open regions in Euclidean

space, we can show the existence of a parabolic Harnack inequality for weak solutions

which can be used to retrieve many of the properties of solutions. Certainly, it may

be used to show Hölder continuity of solutions.

Definition 3.5 (See [St3, Property II]). A non-negative weak solution, u, of ∂
∂t
u = ∆u

on Q = (t− 4r2, t)×B(p, 2r) satisfies the parabolic Harnack inequality if there exists

a constant C dependent on X such that for all balls B(p, 2r) ⊂ X and all t ∈ R,

sup
(s,y)∈Q−

u(s, y) ≤ C · inf
(s,y)∈Q+

u(s, y),

where Q− = (t− 3r2, t− 2r2)×B(p, r) and Q− = (t− r2, t)×B(p, r).

Proposition 3.6 (See [St3, Theorem 3.5]). For a Dirichlet space X, the volume

doubling property and the strong local Poincaré inequality hold if and only if the

parabolic Harnack inequality holds true for weak solutions to ( ∂
∂t
−∆)u = 0 on R×X.

Proposition 3.7 (See [PSC, Cor. 3.4], also [St3, Prop. 3.1]). Let X be as in the

assumptions of this section. For all R > 0, there exists C, dependent on X and R,

and α ∈ (0, 1) such that for all p ∈ X and T ∈ R and 0 < r < R,

|u(s, x)− u(t, y)| ≤ C sup
Q
|u|

(
|s− t| 12 + |y − z| 12

r

)
,

where u is a weak solution of ∂
∂t
u = ∆u on Q = (t−4r2, t)×B(p, 2r), s, t ∈ (T−r2, T )

and y, z ∈ B(p, r).
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3.3 Maximum Principles

3.3 Maximum Principles

Again, as in the case of parabolic differential equations defined on bounded open

regions in Euclidean space, we can show the existence of a version of the maximum

principle for balanced solutions on suitable polyhedra.

Lemma 3.8. Let f ∈ C2,1
loc (X× [0, T )) and let f be balanced. If for all p ∈ X \X(n−1)

and t ∈ [0, T ), (
∂

∂t
−∆

)
f(x, t) ≤ 0,

then

max
X×[0,T )

f(z, t) = max
(X×{t=0})

∪(X(n−2)×[0,T ])

f(z, t).

Proof. We note that we do not have a Laplacian defined pointwise on X(n−1). How-

ever, we can use the balancing condition to retrieve the result by the method described

in at the beginning of [BSCSW, Section 7(B)].

We note that once we have knowledge about the deeper properties of parabolic-

type equations, we will have other results similar to maximum principles, notably

Proposition 4.4 and Proposition 5.31.

3.4 Higher Regularity of Solutions to Parabolic Equations

Definition 3.9. Let k ∈ N be fixed and let T > 0 be fixed, too. Let A ⊂ X be open.

For the parabolic equation (
∂

∂t
−∆

)
u = 0,
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3.4 Higher Regularity of Solutions to Parabolic Equations

a weak solution u : A × (0, T ) → R is time regular to order k on X × (0, T ) if u is a

weak solution to the parabolic equation above as given in Definition 3.2 (see page 38)

and for all integers 0 ≤ m ≤ k,
(
∂
∂t

)m
u is also a weak solution on A× (0, T ).

Our main result on the regularity of solutions to parabolic-type equations as above

follows. We start here as it is the most difficult case and the elliptic case and non-

homogeneous cases are modifications or simplifications of this argument.

Proposition 3.10. Let (0, T ) ⊂ (0,∞) and let A ⊂ X be open such that d(A,X(n−2)) >

0. If u is a weak solution to ( ∂
∂t
−∆)u = 0 on (0, T )×A and is time regular to order

k then u satisfies the following:

i. For each m, 0 ≤ m ≤ k,
(
∂
∂t

)m
u is continuous on (0, T ) × A. Specifically, for

fixed 0 < t < T ,
(
∂
∂t

)m
u(·, t) ∈ Ck−m+α(A), where 0 < α < 1.

ii. For any open n-simplex S with metric g,

(
∂

∂t
−∆g

)
u|S = 0

on (0, T ) × A ∩ S pointwise, where ∆g is the Laplace-Beltrami operator on S.

Also, for any 0 < t < T , u|S(·, t) ∈ C∞(A ∩ S).

iii. For each m, 0 ≤ m ≤ k,
(
∂
∂t

)m
u is balanced on A ∩ X(n−1). If m = k, then(

∂
∂t

)m
u is weakly balanced.

We require some lemmas to prove this proposition, and the proof of this proposi-

tion (see proof on page 50) follows these lemmas.
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3.4 Higher Regularity of Solutions to Parabolic Equations

Lemma 3.11. Let F be an (n−1)-face and let U ⊂ F be a compactly contained open

subset. Consider the sets

Ω+ := (0, L)× U ⊂ (0,∞)× F,

and

Ω0 := {0} × U.

Also let h1 ∈ Ck+α(Ω+) and h2 ∈ Ck+α(U), where k is a nonnegative integer and

α ∈ (0, 1). Let f be in C∞(Ω+) ∩ Ck+α(Ω+) and let it satisfy

((
∂
∂xn

)2
+ ∆F

)
f = h1 on Ω+

∂f

∂xn
= h2 on Ω0,

where ∂
∂xn

is the inward direction normal to Ω0. If the above holds then, for any set

Ω′+ = (0, L′)×U ′ where L′ < L and U ′ ⊂ U is an open and compactly contained, then

f is in Ck+1+α(Ω′+).

Proof. This is the proof of [BSCSW, Proposition 5.15]. We begin by showing that

this is equivalent to proving the same proposition where f instead solves

((
∂
∂xn

)2
+ ∆F

)
f = 0 on Ω+

∂f

∂xn
= h on Ω0,

 (3.1)

for some h ∈ Ck+α(U), where ∂
∂xn

denotes the inward direction normal to Ω0. With-

out loss of generality, we assume there exists a compactly supported function h ∈

Ck+α(R×F ) such that h1 = h|Ω+ . This is justified by extension theorems across half
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3.4 Higher Regularity of Solutions to Parabolic Equations

spaces as in [S]. So, let B ⊂ R × F be a ball such that supp(h) ⊂ B. Note that we

may assume that B is a geodesic ball with respect to the metric on R × F given by

φ
(
( ∂
∂xn

)2 + gF
)

as in Proposition 3.10, where φ and the coordinate xn are smoothly

extended to all of R×F . There is a Green’s function g(z, v) on B with respect to the

operator
(

∂
∂xn

)2
+ ∆F . Let H(z) :=

∫
B
g(z, v)h(v) dv, and note that H ∈ Ck+2+α(B)

and

((
∂
∂xn

)2
+ ∆F

)
(f +H) = 0 on Ω+

∂

∂xn
(f +H) |Ω0 = h2 +

∂H|Ω0

∂xn
on Ω0.

Since f+H is in Ck+α(Ω+) and h2 +
∂H|Ω0

∂xn
is in Ck+α(Ω0), we may replace f by f+H

and examine instead equation (3.1) above. Pick L′ and U ′ as in the statement of the

proposition, so

Ω′+ = (0, L′)× U ′ ⊂ (0, L)× U ⊂ (0,∞)× F.

For some U ′′ ⊂ U such that U ′ ⊂ U ′′, there exists f1 ∈ Ck+α
c ({0} × F ) such that

f1|{0}×U ′′ = f |{0}×U ′′ . Then let f2 be a function on Ω′′0 := {0} × U ′′ such that

f2 := f1 − f on Ω0;

then, f2 = 0 on Ω′′0. Given f1 as above on {0}×F , let F1 be a function on [0,∞)×F

such that

((
∂
∂xn

)2
+ ∆F

)
F1 = 0 on [0,∞)× F
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3.4 Higher Regularity of Solutions to Parabolic Equations

and

F1 = f1 on {0} × F.

As F is an open (n−1)-simplex with a smooth metric, F is a manifold, as is [0, L′)×F

(which has a boundary). Also, (( ∂
∂xn

)2 + ∆F ) is an elliptic operator with constant

coefficients, so the existence of F1 is guaranteed. Hence, there is an F2 such that

f = F1 + F2,

where F2 satisfies
((

∂
∂xn

)2
+ ∆F

)
F2 = 0 on Ω+ and F2|Ω0 ≡ 0. By standard el-

liptic PDE theory for domains with boundary, F2 must have continuous, bounded

derivatives of all orders on [0,∞) × U ′′. Thus, if it can be proven that F1 is in

Ck+1+α(Ω′+), then f must be in Ck+1+α(Ω′+) and the proof is complete. We concen-

trate our efforts there. We recall that F is a smooth open manifold with Riemannian

metric g and a corresponding Laplace-Beltrami operator ∆F . Thus, there exists a

fractional Laplacian,
√
−∆F that satisfies for u ∈ C2(F )

(√
−∆F

)2
u = −∆Fu (we

refer to [BSCSW, Appendix A] for a tidy summary of the existence and properties of

fractional Laplacians on manifolds). We observe that on U ′′,

h =
∂f

∂xn

= −
√
−∆Ff1 +

∂

∂xn
F2.

By rearrangment,

(
Id +

√
−∆F

)
f1

∣∣∣
Ω′′0

=
(
h+ f1 + ∂

∂xn
F2

)∣∣
Ω′′0
.
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3.4 Higher Regularity of Solutions to Parabolic Equations

By assumptions on h and f1 and F2,
(
h+ f1 + ∂

∂xn
F2

)
|Ω′′0 ∈ C

k+α
loc (U ′′). So, let U ′′′ ⊂

U ′′ be an open set such that U ′ ⊂ U ′′′. Then there exists f3 ∈ Ck+α
c (U ′′) such that

f3|U ′′′ =
(
h+ f1 + ∂

∂xn
F2

)∣∣
U ′′′

.

Extend f3, originally defined on U ′′, trivially to all of U ′′ (as supp(f3) ⊂ U ′′), and let

f4 =
(

Id +
√
−∆F

)−1

f3.

We note that by Appendix A in [BSCSW],
(
Id +

√
−∆F

)−1
is a well defined operator

on F , with an kernel given by

G(x, y) =
1√
π

∫ ∞
0

e−t
∫ ∞

0

e−u√
u
hF (x, y, t

2

4u
) du dt,

where hF is the heat kernel on F . By f3 ∈ Ck+α
c (U ′′), f3 is also in L2(F ) and

f4 ∈ Ck+1+α
loc (F ) ∩ L2(F ). By definition of f4, we note

(
Id +

√
−∆F

)
(f1 − f4) = 0 on U ′′′.

As F is not compact (its closure is and has a piecewise smooth boundary),

(
Id +

√
−∆F

)
(f1 − f4)

as a function can be extended outside of U to be in L2(F ), as in U it is continuous

and compactly supported. Thus, we can apply Theorem A.4 of [BSCSW], and f1 −

f4 ∈ C∞loc(U
′′′). Since f4 ∈ Ck+1+α

loc (F ), f1 must have the same regularity and f1 ∈
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3.4 Higher Regularity of Solutions to Parabolic Equations

Ck+1+α
loc (U ′′′). As U ′ ⊂ U ′′′, f1 is in Ck+1+α(U ′) and F1 must be in Ck+1+α(U ′), too.

As F2 is has continuous, bounded derivatives of all orders, f = F1 + f2 must be in

Ck+1+α(Ω′+), where Ω′+ = (0, L′)× U ′ ⊂ (0, L)× F , as stated in the proposition.

Lemma 3.12. Let F be an (n − 1)-face, and let U ⊂ F be a compactly contained

open set. Consider the sets

Ω+ := (0, L)× U ⊂ (0,∞)× F,

and

Ω0 := {0} × U.

Let J be a fixed positive integer, and for all 1 ≤ i, j ≤ J , let δj, δ̃j, cij ∈ R be constants

such that δj, cij > 0. For all 1 ≤ i, j ≤ J , let wj, w̃j ∈ C∞(Ω+) and also let them

satisfy the following properties.

i. For every j, 1 ≤ j ≤ J , wj, w̃j ∈ Ck+α(Ω+) for some nonnegative integer k and

α ∈ (0, 1). Also, for all 1 ≤ e, j ≤ J ,

wi|Ω0 = cijwj|Ω0 ,

and wi|Ω0 ∈ Ck+α(U).

ii.
((

∂
∂xn

)2
+ ∆F

)
wj = w̃j on Ω+.

iii. On U , for each 1 ≤ j ≤ J , wj weakly satisfies

J∑
j=1

δj
∂wj
∂xn

=
J∑
j=1

δ̃jwj.
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3.4 Higher Regularity of Solutions to Parabolic Equations

If all of the above hold, then for all 1 ≤ j ≤ J , wj ∈ Ck+1+α([0, L) × U) where

α ∈ (0, 1).

Proof. Define a continuous function, W , on Ω+ as

W :=
J∑
j=1

δjwj.

One can verify that W satisfies

((
∂
∂xn

)2
+ ∆F

)
W = W1 on Ω+

∂W

∂xn
= W2 on U,

 (3.2)

where, by hypothesis,

W1 =
J∑
j=1

δjw̃j

W2 =
1

δ

J∑
j=1

δ̃jwj,

with δ :=
∑J

j=1 δj. We note that W1 ∈ Ck+α(Ω+) and W2 ∈ Ck+α(U). As W satisfies

equation 3.2, we note that the conditions of Lemma 3.11 are satisfied and we may

apply it to W . Hence, for Ω′′+ = (0, L′′) × U ′′ where L′′ ∈ (0, L′) and U ′′ ⊂ U ′

compactly contained, we have W ∈ Ck+1+α(Ω′′+). Since our choice of L′′, U ′′ were

arbitrary, we may say W ∈ Ck+1+α(Ω′+) for any (0, L′)× U ′ relatively compact with

respect to the initial set U . We now must prove similar regularity for the functions

wj. We recall that

wi|Ω0 = cijwj|Ω0 ,
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3.4 Higher Regularity of Solutions to Parabolic Equations

and thus, given the definition of W , each wj must equal some multiple of W on Ω0.

Hence, as W |Ω0 ∈ Ck+1+α(U), for all 1 ≤ j ≤ J , wj|Ω0 ∈ Ck+1+α(U). Now we must

obtain regularity on the interior, Ω+. We note that each wj satisfies

((
∂
∂xn

)2
+ ∆F

)
wj = w̃j on Ω+

wj = CjW on U.


Hence, we may repeat the arguments of Lemma 3.11 to obtain that for a relatively

compact Ω′+, wj ∈ Ck+1+α(Ω′+) for each j, 1 ≤ j ≤ J .

Proof of Proposition 3.10 (p. 43). The second part of the proposition follows from

standard results in partial differential equations as A∩ S is an open region isometric

to a region in some smooth manifold. The third follows easily from the first two parts

of the proposition and the observation of Proposition 2.17. Thus, we focus on the

first part which gives us regularity across the (n − 1)-faces of A ⊂ X. As the result

is local, we may assume with out loss of generality that our open region A ⊂ X is

a small neighborhood, Ω, around a point p contained in an (n− 1)-face F such that

p /∈ X(n−2), Ω∩X(n−2) = ∅ and Ω ⊂ ∪Jj=1Si, where {Si}Jj=1 = Star(n)(F ) is the set of all

n-simplexes whose closure contains the (n−1)-face F . Let us pick normal coordinates

(z1, . . . , zn) about p such that (z1, . . . , zn−1, 0) parameterizes Ω∩F . Hence, xn denotes

the coordinate normal to F on some closed simplex S. Define for each Sj ∈ Star(n)(F ),

define Ωj := Ω ∩ Sj. Also, Let gj be the metric on Sj,and let gF be the metric on F

(induced by the limit of gj for each Sj on F ). Hence, for each Sj ∈ Star(n)(F ) there

exists smooth positive functions φj such that

gj = φj
(
(dxn)2 + gF

)
.
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3.4 Higher Regularity of Solutions to Parabolic Equations

Hence, for a weak solution u as above one can compute that it must satisfy

∆gu =
((

∂
∂xn

)2
+ ∆F +

(
∂
∂xn

ln(φ
n−1

2 )
)

∂
∂xn

)
u

= ∂
∂t
u,

in each Ωj where ∆F is the Laplace-Beltrami operator on F with respect to the metric

gF . Also, it must weakly satisfy

J∑
j=1

∂uj
∂xn

(x1, . . . , xn−1, 0) = 0.

We introduce a change of functions. Let

wi = φ
(n−1)

4
j u|Sj .

Upon substitution, our above equations become

((
∂

∂xn

)2

+ ∆F

)
wj =

(
∂
∂xn

)2
φ

(n−1)/4
j

φ
(n−1)/4
j

wj + φj
∂wj
∂t

, (3.3)

in each Ωj, and on F ∩ Ω,

J∑
j=1

∂wj
∂xn

(x1, . . . , xn−1, 0) =

−
J∑
j=1

1

φ(n−1)/2+1/2

(
∂

∂xn
φ

(n−1)
4

)
∂wj
∂xn

(x1, . . . , xn−1, 0).

We can now use Lemma 3.12 and bootstrap a finite number of times to show the

regularity of each wj and hence u. Without loss of generality (as this is a local result),
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we modify our neighborhood around p, Ω, so that for each n-simplex Sj adjacent to

F , Ωj = (0, L)×U in coordinates, where L is small enough that each Ωj is contained

in Sj. Also, let wj be as above and let

w̃j =

(
∂
∂xn

)2
φ

(n−1)/4
j

φ
(n−1)/4
j

wj + φj
∂wj
∂t

. (3.4)

We note that both wj and ∂
∂t
wj both appear on the right hand side. To apply

Lemma 3.12 repeatedly, we require some regularity on ∂
∂t
wj. We observe that ∂

∂t
wj

is Hölder continuous as we have assumed that u is a solution that is time regular to

order k, so ∂
∂t
u is a solution, too, and we know that it must be Hölder continuous

by the parabolic Harnack inequality (see Proposition 3.7 on page 41). Hence, we can

apply Lemma 3.12 k times to w.

Remark 3.13. We note that Proposition 3.10 can also be proven if the assumption

of time-regularity were removed and simply replaced by an assumption of smoothness

with respect to time; i.e.
(
∂
∂t

)m
u is Hölder continuous. Indeed, the assumption of

time-regularity to order k is only used to acquire the knowledge that a solution must

have time derivatives of order k that are Hölder continuous.

3.5 Higher Regularity of Solutions to Elliptic Equations and

Non-Homogeneous Equations

We provide regularity of solutions to elliptic-type equations.

Proposition 3.14. Let A ⊂ X be open such that d(A,X(n−2)) > 0. If u is a weak

solution to ∆u = f on A, and f ∈ Ck+α(A) then u satisfies the following:
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i. u ∈ Ck+1+α(A), where 0 < α < 1.

ii. For any open n-simplex S with metric g,

∆gu|S = f |S

on A pointwise, where ∆g is the Laplace-Beltrami operator on S. Also, u|S ∈

C∞(A ∩ S).

iii. u is balanced on A ∩X(n−1).

Proof. This is a simplification of Proposition 3.10. We note that equation (3.3) of

Proposition 3.10 can be replaced in the case by

((
∂

∂xn

)2

+ ∆F

)
wj =

(
∂
∂xn

)2
φ

(n−1)/4
j

φ
(n−1)/4
j

wj + f,

and equation (3.4) can be replaced by

w̃j =

(
∂
∂xn

)2
φ

(n−1)/4
j

φ
(n−1)/4
j

wj + f.

and the proof is essentially the same.

By a similar argument, we have the following.

Proposition 3.15. Let (0, T ) ⊂ (0,∞) and let A ⊂ X be open such that d(A,X(n−2)) >

0. If u is a weak solution to ( ∂
∂t
−∆)u = f on (0, T )×A for f such that

(
∂
∂t

)m−1
f(·, t) ∈

Ck−m+α(X), 1 ≤ m ≤ k, and
(
∂
∂t

)m
u(·, t) is Hölder continuous for 0 ≤ m ≤ k, then

u satisfies the following:

53



i.
(
∂
∂t

)m
u(·, t) ∈ Ck−m+α(X) for 0 ≤ m ≤ k.

ii. For any open n-simplex S with metric g,

(
∂

∂t
−∆g

)
u|S = f |S

on (0, T )× A ∩ S pointwise, where ∆g is the Laplace-Beltrami operator on S.

iii. For each m, 0 ≤ m ≤ k,
(
∂
∂t

)m
u is balanced on A ∩ X(n−1). If m = k, then(

∂
∂t

)m
u is weakly balanced.

We remark that this regularity result seems a bit weak as it a priori assumes that

u has a good deal of regularity in time. As we consider the heat flow problem for the

linear case, this will not be a problem, as we shall build our flow from the heat kernel

and we can show that all time derivatives are Hölder continuous directly. However,

the non-linear case requires a bit more care. We give in Proposition 4.28 (see page 80)

a set of equations and solutions that possess some higher regularity with respect to

time derivatives.

4 The Heat Flow on Polyhedra with Target R

Assumptions. Unless otherwise specified, we shall assume in this section that X is

an admissible smooth Riemannian polyhedron that satisfies the conditions of Propo-

sition 2.20 with Dirichlet form E(·, ·) and Laplacian ∆ as in Section 2.2, and energy

E(·) as in Section 2.4.
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4.1 Solutions to the Homogeneous Initial Value Problem

There are a number of initial value-type and Dirichet-type problems we can consider.

We begin with the initial value problem for homogeneous parabolic-type equations,

and then discuss constructive methods for solutions to other problems.

We recall the definition for a weak solution from Definition 3.2:

Definition 4.1. Let I = (a, b) ⊂ R.

i. A function u is a weak solution of the parabolic equation

∂

∂t
u = ∆u,

on I ×X, where I is an interval, if and only if u ∈ F(I ×X) and u satisfies

∫
I

E(u, φ) dt+

∫
I

〈
∂
∂t
u, φ
〉
L2(X)

dt = 0,

for all φ ∈ F(I ×X). u is a weak subsolution (super-) if

∫
I

E(u, φ) dt+

∫
I

〈
∂
∂t
u, φ
〉
L2(X)

dt ≤ (≥)0,

for all φ ∈ F(I ×X).

ii. Let f ∈ L2(X). u is a weak solution to the initial value problem

∂

∂t
u = ∆u, on I ×X

u(·, a) = f, on X
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4.1 Solutions to the Homogeneous Initial Value Problem

if and only if u is a solution as above, and limt→a+ u = f in L2(X).

Proposition 4.2. Let X be as in the assumptions for this section. For all f ∈ L2(X)

there exists a unique weak solution to the initial value problem with initial value f ,

as in Definition 3.2.

Proof. This is nearly a direct application of [St2, Prop. 1.2], where existence is

guaranteed on a space that has a uniform local Poincaré bound and satisfies the

volume doubling properties. The satisfaction is guaranteed by the assumptions on X

(see Proposition 2.20 on page 31).

The assumption on the time derivative can be weakened considerably. Following

the observation of Sturm, we cite the following.

Proposition 4.3 (See [St2, Prop. 1.3]). Let I = (σ, τ) be an open interval on R. A

function u is a weak solution of the parabolic equation, ∂
∂t
u = ∆u, on I × X if and

only if

u ∈ L2(I → W 1,2(X)) ∩ C(I × L2(X)),

and

∫ T

σ

E(u, φ) dt−
∫ T

σ

〈
u, ∂

∂t
φ
〉
L2 dt = −〈u(T, ·), φ(T, ·)〉L2 + 〈u(σ, ·), φ(σ, ·)〉L2 ,

for all T ∈ (σ, τ) and all φ ∈ F((σ, T )×X).

We of course are interested in existence and uniqueness statements of non- homo-

geneous parabolic-type equations, which are covered in Section 4.5 on page 79. To

construct solutions, we require more knowledge about solutions to the homogeneous

problem.
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4.2 The Heat Semigroup and Heat Kernel

From the existence and uniqueness theorems for weak solutions to the heat equation,

we can develop a corresponding semigroup theory.

Proposition 4.4 (See [St2, Section 1.4(C)]). There exists a uniquely determined,

one-parameter set of operators Ht : L
2(X) → L2(X), such that it has the following

properties.

i. for every f ∈ L2(X), the unique weak solution u ∈ F(I×X) of the initial value

problem is given by u := Htf .

ii. Ht is a semigroup

iii. t 7→ Ht is strongly continuous

iv. Ht has the Markov property. That is, for f ∈ L2(X) and all t ≥ 0,

0 ≤ f ≤ 1⇒ 0 ≤ Htf ≤ 1.

Also, this holds for f ∈ Lp(X), p ∈ [1,∞].

v. Ht is a contraction operator on Lp(X), 1 ≤ p ≤ ∞. That is,

‖Htf‖Lp ≤ ‖f‖Lp ,

for f ∈ Lp(X).

The existence of such a set of operators Ht allows for the definition of an integral

kernel as follows. Again, we largely cite the work of Sturm (see [St2]).
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Proposition 4.5 (See [St2, Prop. 2.3]). For Ht as above, there exists a measurable

function h : X ×X × R+ → [0,∞) such that

i. for every f ∈ L1(X) ∪ L∞(X) and t > 0,

Htf(x) =

∫
X

h(z, v, t)f(v) dµ(z),

ii. for all 0 < σ < τ , all y ∈ X, and all m ∈ N

u : (t, x) 7→ ( ∂
∂t

)mh(z, v, t),

is a weak solution of the equation ∂
∂t
u = ∆u on (σ, τ)×X,

iii.
∫
X×X h(z, v, t)2 dµ(x)dµ(y) ≤ 1,

iv. h(z, v, t+ s) =
∫
X
h(z, w, t)h(w, v, s) dµ(w),

v. h is locally bounded on {(z, v, t) | t > 0}

Proof. This is a direct application of [St2, Proposition 2.3], but we give a slightly

stronger version here in item (ii).

Lemma 4.6. X be compact. There exists an operator (−∆)
1
2 : W 1,2(X) → L2(X)

with the following properties.

i. For f ∈ W 1,2(X), ‖(−∆)
1
2f‖L2 = ‖∇f‖L2.

ii. For f ∈ Dom(∆),
(

(−∆)
1
2

)2

f = −∆f .
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4.2 The Heat Semigroup and Heat Kernel

iii. (−∆)
1
2 is self-adjoint; i.e. for f, g ∈ W 1,2(X),

〈
(−∆)

1
2f, g

〉
L2(X)

=
〈
f, (−∆)

1
2 g
〉
L2(X)

.

iv. For the heat kernel associated to ∆, h(z, v, t),

(−∆z)
1
2h(z, v, t) = (−∆v)

1
2h(z, v, t).

Proof. Although it is possible to show this without the use of the spectral theorem,

it is easier to use it here. We note that [CKP, Proposition 3.20] applies here, as our

domain, X, is a compact Dirichlet space with a bound on volume doubling and a

local Poincaré inequality. So, we can show that L2(X) is separable and its basis can

be composed of eigenfunctions corresponding to eigenvalues of ∆. The rest follows

handily by noting that for f ∈ L2(X)

f(z) =
∑
i

〈f, φi〉L2 φi(z);

for f ∈ W 1,2(X),

(−∆)
1
2f(z) =

∑
i

λi 〈f, φi〉L2 φi(z);

and

h(z, v, t) =
∑
i

e−λitφi(z)φi(v),

where {(λi, φi)} are pairs of corresponding eigenvalues and eigenfunctions.

As ∆, (−∆)
1
2 , and the heat operator, Ht, are all operators, we also require some

basic results for operators.
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Definition 4.7. Let A,B be Banach spaces. For an operator Λ: A→ B, we define

‖Λ‖A→B := sup
f∈A

‖Λf‖B
‖f‖A

,

where ‖ · ‖A is the norm associated to A and ‖ · ‖B is the norm associated to B. Note

that if the operator is unbounded, we set the value to be ∞. Also, in the event that

A = Lp(X) and B = Lq(X) for some metric space X and 1 ≤ p, q ≤ ∞, we denote

the norm of the operator ‖Λ‖p→q.

A few lemmas regarding integral operator norms such as the heat operator will

be useful.

Lemma 4.8. For a metric measure space X with volume measure denoted dX, let

Λ: L2(X) → L∞(X) be an operator with symmetric integral kernel k. That is, for

f ∈ L2(X),

Λf(z) =

∫
X

k(z, v)f(v) dX(v).

Then, for every v ∈ X

sup
v∈X
‖k(·, v)‖L2 ≤ ‖Λ‖2→∞.

Proof. By definition, we have

‖Λ‖2→∞ = sup
f∈L2(X)

‖Λf‖L∞
‖f‖L2

= sup
f∈L2(X)

supz∈X
∣∣∫
X
k(z, v)f(v) dX(v)

∣∣(∫
X
f(v)2 dX

) 1
2

.
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4.2 The Heat Semigroup and Heat Kernel

Hence, for arbitrary f ∈ L2(X) and z ∈ X, we have

‖Λ‖2→∞ ≥
supz∈X

∫
X
k(z, v)f(v) dX(v)(∫

X
f(v)2 dX

) 1
2

If we let f(v) = k(z, v) we have

‖Λ‖2→∞ ≥ sup
z∈X

∫
X
k(z, v)2 dX(v)(∫

X
k(z, v)2 dX

) 1
2

= sup
v∈X
‖k(·, v)‖L2 .

Lemma 4.9. Let X be again as it is in the assumptions in the beginning of this

section. Let h(z, v, t) and Ht be the corresponding heat kernel and heat operator.

Then, for every v ∈ X,

‖Ht‖2
2→∞ = sup

z∈X
h(z, z, 2t).

Proof. By definition,

‖Ht‖2→∞ = sup
f∈L2(X)

‖Htf‖L∞
‖f‖L2

= sup
f∈L2(X)

supz∈X
∫
X
h(z, v, t)f(v) dX(v)(∫

X
f(v)2 dX(v)

) 1
2

≤ sup
f∈L2(X)

(
supz∈X

∫
X
h(z, v, t)2 dX(v)

) 1
2
(∫

X
f(v)2 dX(v)

) 1
2(∫

X
f(v)2 dX(v)

) 1
2

=

(
sup
z∈X

∫
X

h(z, v, t)2 dX(v)

) 1
2

=

(
sup
z∈X

h(z, z, 2t)

) 1
2

.
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The last step follows by the semigroup property for the heat kernel. We can show

the inequality

‖Ht‖2→∞ ≥
(

sup
z∈X

h(z, z, 2t)

) 1
2

by an argument similar to that of Lemma 4.8.

4.3 Smoothness and Lp Bounds of the Heat Kernel

We recall a previous result with an addition that relates to the heat kernel from

[PSC, Cor. 3.4] (see also [St3, Prop. 3.1], and Proposition 3.7).

Proposition 4.10. For all R > 0, there exists C, dependent on X and R, and

α ∈ (0, 1) such that for all p ∈ X and T ∈ R and 0 < r < R,

|u(s, x)− u(t, y)| ≤ C sup
Q
|u|

(
|s− t| 12 + |y − z| 12

r

)
,

where u is a weak solution of ∂
∂t
u = ∆u on Q = (t−4r2, t)×B(p, 2r), s, t ∈ (T−r2, T )

and y, z ∈ B(p, r). Also, for t > 0, z, v ∈ X and w ∈ B(v,min
{

1,
√
t
}

), we have for

j ∈ N,

∣∣∣( ∂∂t)j h(z, v, t)−
(
∂
∂t

)j
h(z, w, t)

∣∣∣ ≤ Cj

(
d(z, v)

min
{

1,
√
t
})α

h(z, v, 2t)

min
{

1,
√
t
}j ,

where Cj > 0.

Proposition 4.11. Let X be as it is in the assumptions of this section. Let h(z, v, t)

be the heat kernel on X. For t > 0,

i. h(z0, v0, t) is C∞((0,∞)) with respect to t for z0, v0 ∈ X.
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4.3 Smoothness and Lp Bounds of the Heat Kernel

ii. For any compactly contained open set V ⊂ X bounded away from X(n−2),

h(z0, v, t0) ∈ C∞(V ), for any z0 ∈ X.

iii. For any compactly contained open set V ⊂ X bounded away from X(n−2),

h(z, v0, t0) ∈ C∞(V ), for any v0 ∈ X.

iv. h(z, v, t) is balanced in both z and v.

v. The above hold for
(
∂
∂t

)m
h(z, v, t), m ∈ N.

vi. u(z, t) :=
(
∂
∂t

)m
h(z, v0, t), m ∈ N, is a weak solution of ( ∂

∂t
−∆)u = 0, for any

v0 ∈ X.

vii.
(
∂
∂t

)m
h(z, v, t) = (∆)mh(z, v, t) holds pointwise for z, v, t ∈ X×X×R+, m ∈ N,

where ∆ may apply to either z or w.

Proof. We begin with (i), which follows easily from the Hölder continuity of time

derivatives in Proposition 4.10 for t > 0. By the definition of a weak solution and by

(i), (vi) follows. For (ii) and (iii), we see that by (vi), u(z, t) :=
(
∂
∂t

)m
h(z, v0, t) must

be time regular of order infinity, so we may apply Proposition 3.10, which also gives

us (iv). (v) follows from (vi) and Proposition 3.7. (vii) follows by (vi).

We have one comment about the set on which the equality
(
∂
∂t

)j
h(z, v, t) =

(∆)j h(z, v, t) holds. For j = 1, clearly this must hold weakly on (0,∞), but we

have stronger results which we shall find useful later.

Lemma 4.12. For all j ∈ N, all v ∈ X, and all t ∈ (0,∞),

(
∂
∂t

)j
h(z, v, t) = (∆z)

j h(z, v, t),
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4.3 Smoothness and Lp Bounds of the Heat Kernel

for z ∈ X \ X(n−2), where ∆z denotes the Laplacian applied to the z-slot of h. Ad-

ditionally, for each j there exists a Hölder continuous version of (∆z)
j h(z, v, t) such

that it equals
(
∂
∂t

)j
h(z, v, t) everywhere.

Proof. We begin with the case j = 1. We recall from Proposition 4.4 that for any

v ∈ X, u(z, t) := h(z, v, t) is a weak solution to
(
∂
∂t
−∆

)
u = 0. Hence the regularity

results of Section 3.4 apply here which is summarized in Proposition 4.11. Hence,

∂
∂t
h(z, v, t) = ∆zh(z, v, t) pointwise on X \X(n−1). Again by Proposition 4.11, weak

solutions are smooth on X(n−1) \X(n−2), and they must agree pointwise on X(n−1) \

X(n−2). Equality on X(n−2) is uncertain, but as ∂
∂t
h(z, v, t) is additionally Hölder

continuous by Proposition 4.10 and they agree at all points except X(n−2), then

there exists a Hölder continuous version of ∆zh(z, v, t) that is equal to ∂
∂t
h(z, v, t)

everywhere. For j ≥ 2, this can be proven similarly by realizing that ∂
∂t

, ∆ commute

at points in X \ X(n−1), as both can be considered pointwise-defined differential

operators there.

We are naturally curious about the behavior of constant functions under the heat

flow on an admissible Riemannian polyhedron. In the literature on Markov processes,

if constant functions are constant under the heat flow they are then the heat operator

is conservative. If they decrease, the heat operator is called transitive.

Proposition 4.13 (See [PSC, Cor. 3.2], see also [St1]). For t > 0 and all z ∈ X, the

heat operator is conservative. That is,

∫
X

h(z, v, t) dµ(v) = 1.
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4.4 Gaussian Estimates of the Heat Kernel

4.4 Gaussian Estimates of the Heat Kernel

There are many Gaussian-type estimates for the heat kernel and it derivatives in

both space and time for manifolds. We refer to the work of Saloff-Coste [SC1, SC2]

and Davies [D]. We have the following as a direct consequence of Sturm’s result for

Dirichlet spaces with conditions put on the volume doubling and the existence of a

uniform local Poincaré inequality.

Proposition 4.14 (See [PSC, Cor. 3.4], see also [St3, Corollaries 4.2 & 4.10]). For

all R > 0, there exist {Cj}j∈N , all dependent on X and R, such that for all z, v ∈ X

and t > 0,

h(z, v, t) ≤ C0

min {t, R2}
n
2

e−d
2(z,v)/4t−λ0t

(
1 + d2(z, v)/t

)N
2

h(z, v, t) ≥ 1

C0Vol
(
B(p,

√
min {t, R2})

)e−Cd2(z,v)/4t−Ct/R2

∣∣∣∣ ∂j∂tj h(z, v, t)

∣∣∣∣ ≤ Cj(1 + λ0t)
1+N

2
+j

tj (min {t, R2})
n
2

e−d
2(z,v)/4t−λ0t

(
1 + d2(z, v)/t

)N
2

+j

where N is dependent on the volume doubling constant, and

λ0 = inf
f∈W 1,2(X)

E(f, f)

‖f‖L2(X)

.

We note that for our considerations we have the following corollary.

Corollary 4.15. Let X additionally be compact. Then, for all R > 0, there exist
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4.4 Gaussian Estimates of the Heat Kernel

{Cj}j∈N , all dependent on X and R, such that for all z, v ∈ X and t > 0,

h(z, v, t) ≤ C0

min {t, R2}
n
2

e−d
2(z,v)/(4+ε)t

∣∣∣∣ ∂j∂tj h(z, v, t)

∣∣∣∣ ≤ Cj

min {t, R2}
n
2

t−je−d
2(z,v)/(4+ε)t

∣∣∣(∆z)
j h(z, v, t)

∣∣∣ ≤ Cj

min {t, R2}
n
2

t−je−d
2(z,v)/(4+ε)t

where Ck = C(k,X, ε, R), and ∆z denotes the Laplacian taken in the z slot of

h(z, v, t).

Proof. This follows from Proposition 4.14, by noting that λ0 = 0 for a compact

admissible Riemannian polyhedron (a constant function suffices to show it must be

zero), and that the term (1 + d2(z, v)/t)
N
2

+j
in the statement of Proposition 4.14 can

be absorbed into ε by adjusting C. Also, we note that by Lemma 4.12, we have

(∆z)
j h(z, v, t) =

(
∂

∂t

)j
h(z, v, t),

which shows the equivalence of the last two statements of the corollary.

We ideally would like similar bounds for spacial derivatives. Indeed, since such

Gaussian bounds can be provided for powers of the Laplacian and time derivative,

there is hope that similar results can be achieved. Although the strongest result in

this regard as far as the author is aware is given in [SC2], a slightly older result offers

a suggestion of what one might expect to achieve in our setting:

Proposition 4.16 (See [D]). Let M be smooth n-dimensional Riemannian manifold

with nonnegative Ricci curvature bounded below. Let ∆ denote the Laplace-Beltrami
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4.4 Gaussian Estimates of the Heat Kernel

operator, and Ht and h(z, v, t) the corresponding heat operator and heat kernel. Let

∇z denote the gradient with respect to z. Then there exist {Cj} such that

h(z, v, t) ≤ C0

min {t, R2}
n
2

e−d
2(z,v)/(4+ε)t

∣∣∣∇z

(
∂
∂t

)j
h(z, v, t)

∣∣∣ ≤ Cj

min {t, R2}
n
2

t−j−1/2e−d
2(z,v)/(4+ε)t

where Cj = C(j,X, ε, R) > 0.

Remark 4.17. We note this result has been extended to include the possibility of

M with Ricci curvature bounded below. See [D].

This result is dependent on a logarithmic parabolic Harnack inequality of P. Li

and S.T. Yau in [LY] that assumes either M has no boundary, or that M has a

smooth boundary and the existence of a heat kernel that satisfies Neumann boundary

conditions. These restrictions present difficulty for the case of a Dirichlet space such

as an admissible Riemannian polyhedron considered here, so we attempt to achieve

similar results without the use of the work of [LY]. Instead we refer to the approaches

of Bendikov and Saloff-Coste [BSC], who address Gaussian bounds for heat kernels

in the case of the domain being a (possibly infinite dimensional) group.

Theorem 4.18. Let X be compact and simplex-wise flat. Let {Zi}ni=1 be an orthonor-

mal basis as in Definition 2.5. Let k ∈ N. Then, for any R > 0, there exists positive
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constants B, {Cj} ,
{
C ′j
}

such that for all z, v ∈ X,

h(z, v, t) ≤ C0

min {t, R2}
n
2

e−d
2(z,v)/(4+ε)t

∣∣∣∣ ∂j∂tj h(z, v, t)

∣∣∣∣ ≤ Cj

min {t, R2}
n
2

t−je−d
2(z,v)/(4+ε)t

∣∣∣∣DZ
∂j

∂tj
h(z, v, t)

∣∣∣∣ ≤ C ′j

min {t, R}
n
2

t−j−
1
2 e−

d(z,v)2

Bt

where {Cj} ,
{
C ′j
}

are dependent on j,X, ε and R, and B is only dependent on X and

R

Proof. Clearly, the first two inequalities follow from Corollary 4.15. The last requires

considerably more effort and is the conclusion of Proposition 4.23 on page 73 below.

We require a number of results to prove Theorem 4.18. Some we already have,

but the gradient estimate will consume the bulk of our effort.

Proposition 4.19. Let X be compact and simplex-wise flat. Let {Zi}ni=1 be an or-

thonormal basis as in Definition 2.5. Let f ∈ Dom(∆) ∩ C2
loc(X \X(n−1)) and let f

and ∆f be balanced. Then,

∫
X

f (−∆f) dX =

∫
X

|DZf |2 dX.

Proof. As f ∈ C2(X \ X(n−1)) and {Zi}ni=1 corresponds to orthonormal coordinates

when restricted to an n-simplex, say s, we note that for z ∈ Int(s),

∆f(z) =
n∑
i=1

(Zi)
2f(z).
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Hence,

∫
X

f ((−∆)f) dX =
∑
s∈X[n]

∫
s

f ((−∆)f) dX

=
∑
s∈X[n]

∫
s

f

(
−

n∑
i=1

(Zi)
2f

)
dX

=
∑
s∈X[n]

n∑
i=1

∫
s

(Zif) (Zif) dX

=
∑
s∈X[n]

n∑
i=1

∫
s

(Zif) (Zif) dX

=

∫
X

|DZf |2 dX,

where X [n] is the set of all n-simplexes. This follows by Green’s identity and the

balancing condition assumed on f .

Remark 4.20. We note that the equality of Proposition 4.19,

∫
X

f (−∆f) dX =

∫
X

|DZf |2 dX

implies that this result holds for any choice of orthonormal basis Z = {Zi}ni=1, as we

expect in the case of a manifold. In other words, by Proposition 4.19, for any two

orthonormal bases, Z,Z ′ and a balanced function f , we have

∫
X

|DZf |2 dX =

∫
X

|DZ′f |2 dX

We also require an on-diagonal estimate.

Proposition 4.21. Let X be compact. For any fixed z ∈ X, and fixed R > 0, we
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have for all t ∈ (0, R),

1

Ct
n
2

≤ h(z, z, t) ≤ C

t
n
2

for some C = C(X,R).

Proof. This consequence is immediate from Proposition 4.14, although a more direct

approach without using Gaussian bounds is possible (see [PSC]).

Proposition 4.22. Let X be compact and simplex-wise flat. Let {Zi}ni=1 be an or-

thonormal basis as in Definition 2.5. Let k ∈ N . Then, for any R > 0

‖DZ∆kh(·, v, t)‖2
L2 ≤

C

tk+ 1
2 min {tn/2, R}

,

where C = C(X,R) and v ∈ X.

NB: All spacial derivatives of the heat kernel, h(z, v, t) are assumed to apply to

the first slot in the z variable unless otherwise specified.

For a proof, we follow the approach of [BSC].

Proof. Without loss of generality, we assume that R = 1 and that 0 < t < 1. We

note that h(z, v, t) is balanced and, as ∆kh(z, v, t) is a (weak) solution to the heat

equation, ∆kh(z, v, t) is balanced, too. Hence, by the Proposition 4.19, we have

‖DZ∆kh(·, v, t)‖2
L2 =

∫
X

∣∣DZ∆kh(z, v, t)
∣∣2 dX(z)

=

∫
X

(
(−∆)kh(z, v, t)

) (
(−∆)k+1h(z, v, t)

)
dX(z)

=

∫
X

(
(−∆)k+ 1

2h(z, v, t)
)2

dX(z),
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which finally gives

‖DZ∆kh(·, v, t)‖2
L2 = ‖(−∆)k+ 1

2h(·, v, t)‖2
L2 (4.1)

Let Ht denote the heat operator defined by

(Htf)(z) =

∫
X

h(z, v, t)f(v) dX(v),

for f ∈ Lp(X), p ∈ [1,∞]. Hence, there is an operator (−∆)
k
2Ht with kernel

(−∆)
k
2h(z, v, t) that satisfies

(−∆)
k
2Htf(z) =

∫
X

(−∆)
k
2h(z, v, t)f(v)dX(v).

We note that for any f ∈ L2(X), we have

2‖(−∆)
1
2Htf‖2

L2 = 2

∫
X

(−∆Htf(z)) (Htf(z)) dX(z)

= −2

∫
X

(
∂

∂t
Htf(z)

)
(Htf(z)) dX(z)

= − ∂

∂t
‖Htf‖2

L2 .

We note that, as Htf is a solution to the heat equation, we can show − ∂
∂t
‖Htf‖2

L2 is

a nonnegative, non-increasing function. Hence,

∫ t

0

∫
X

(−∆Hτf(z)) (Hτf(z)) dX(z) dτ ≥ 2t

∫
X

(−∆Hτf(z)) (Hτf(z)) dX(z),
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which, when combined with the fact that

∫ t

0

∫
X

(−∆Hτf(z)) (Hτf(z)) dX(z) dτ = ‖f‖2
L2 − ‖Htf‖2

L2 ,

yields

2t‖(−∆)
1
2Htf‖2

L2 ≤ ‖f‖2
L2 . (4.2)

Considering the norm of the operator, we have

‖(−∆)
1
2Ht‖2→2 ≤

√
1

2t
.

We can iterate as follows to get a bound for ‖(−∆)
k
2Ht‖2→2, for k ∈ N. Firstly, note

that for f ∈ L2(X),

(−∆)
k
2Htf(z) = (−∆)

k
2Ht/2

(
Ht/2f

)
(z)

= (−∆z)
k
2

∫
X

h(z, v, t
2
)Ht/2f(v) dX(v)

=

∫
X

(−∆v)
k
2
− 1

2 (−∆z)
1
2h(z, v, t

2
)Ht/2f(v) dX(v)

=

∫
X

(−∆z)
1
2h(z, v, t

2
)
[
(−∆v)

k
2
− 1

2Ht/2f(v)
]
dX(v)

(by (−∆z)
1
2 being self-adjoint)

=

∫
X

(−∆z)
1
2h(z, v, t

2
)
[
(−∆v)

k
2
− 1

2Ht/2f(v)
]
dX(v)

= (−∆)
1
2Ht/2

[
(−∆)

k
2
− 1

2Ht/2f
]
.
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Hence, by equation (4.2),

t‖(−∆)
k
2Htf‖2

L2 = t‖(−∆)
1
2Ht/2

[
(−∆)

k
2
− 1

2Ht/2f
]
‖2
L2

≤ ‖(−∆)
k
2
− 1

2Ht/2f‖2
L2 .

We can repeat this argument and obtain

‖(−∆)
k
2Ht‖2→2 ≤

(
k

2t

) k
2

.

By our results regarding operator norms in Lemmas 4.8 and 4.9, we have

‖(−∆)
k
2h(·, v, t)‖2

L2 ≤ ‖(−∆)
k
2Ht‖2

2→∞

≤ ‖
(

(−∆)
k
2Ht/2

)
Ht/2‖2

2→∞

= ‖Ht/2

(
(−∆)

k
2Ht/2

)
‖2

2→∞

≤ ‖
(

(−∆)
k
2Ht/2

)
‖2

2→2‖Ht/2‖2
2→∞

≤
(
k

t

)k
·
(

sup
v∈X

h(v, v, t)

)
≤
(
k

t

)k
· C
t
n
2

.

The last step follows from the on-diagonal estimate of Proposition 4.21.

Proposition 4.23. Let X be compact and simplex-wise flat. Let {Zi}ni=1 be an or-

thonormal basis as in Definition 2.5. Let k ∈ N be fixed. Then, for any R > 0, there
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exist constants B,C > 0 only dependent on X and R such that for all z, v ∈ X,

|DZ∆kh(z, v, t)| ≤ C

tk+ 1
2 min

{
t
n
2 , R

}e− d(z,v)2

Bt .

Proof. Lemma 4.24 and Proposition 4.25 below prove the theorem.

Lemma 4.24. Presume the conditions of the preceding theorem (Proposition 4.23).

If for any R > 0, there exist constants B,C > 0 such that for all α > 0 and all

0 < t < R,

‖eαd(·,v)|DZ∆kh(·, v, t)|‖L2 ≤ C

tk+n/2+ 1
2

eBα
2t,

then

|DZ∆kh(z, v, t)| ≤ C

tk+n/2+ 1
2

e−
d(z,v)2

Bt .

Proof. Again, without loss of generality, we assume that R = 1 and that 0 < t < 1.

We begin by noting that if we can prove there exist constants B,C > 0 such that for

all α > 0 and all 0 < t < 1,

‖eαd(·,v)|DZ∆kh(·, v, t)|‖L∞ ≤
C

tk+n/2+ 1
2

eBα
2t, (4.3)

then the proof is complete. Our justification is that, assuming equation (4.3) to be

true, we have for any z ∈ X,

eαd(z,v)|DZ∆kh(z, v, t)| ≤ C

tk+n/2+ 1
2

eBα
2t,

which implies

|DZ∆kh(z, v, t)| ≤ C

tk+n/2+ 1
2

eBα
2t−αd(z,v).

74



4.4 Gaussian Estimates of the Heat Kernel

Letting, α = d(z,v)
2Bt

, we have

|DZ∆kh(z, v, t)| ≤ C

tk+n/2+ 1
2

e−
d(z,v)2

4Bt ,

which gives Proposition 4.23. So, we aim to prove equation (4.3) by showing that the

hypothesis in the statement of this lemma implies equation (4.3). Indeed, suppose

our claim is true: there exist constants B,C > 0 such that for all α > 0 and all

0 < t < 1,

‖eαd(·,v)|DZ∆kh(·, v, t)|‖L2 ≤ C

tk+n/2+ 1
2

eBα
2t. (4.4)

For any w ∈ X, we have by the triangle inequality, d(z, v) ≤ d(z, w) + d(w, v), and

the semigroup property for h(z, v, t) which gives

e2αd(z,v)|DZ∆kh(z, v, t)|2 = e2αd(z,v)

∣∣∣∣DZ∆k

∫
X

h(z, w, t
2
)h(w, v, t

2
) dX(w)

∣∣∣∣2
≤
∑

1≤i≤n

∣∣∣∣eαd(z,w)

∫
X

Zi∆
kh(z, w, t

2
)eαd(w,v)h(w, v, t

2
) dX(w)

∣∣∣∣2
≤ ‖eαd(·,v)|DZ∆kh(·, v, t

2
)|‖2

L2‖eαd(·,v)h(·, v, t
2
)‖2
L2 . (4.5)

By the Gaussian bound on h(z, v, t
2
) given in Corollary 4.15,

h(z, v, t
2
) ≤ C(

t
2

)n
2

e−2d2(z,v)/(4+ε)t

combined with an inequality that follows from the fact that a2 + b2 ≥ 2ab,

αd(z, v)− d(v, z)2

ct
≤ α2ct

4
,
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4.4 Gaussian Estimates of the Heat Kernel

we have

‖eαd(·,v)h(·, v, t
2
)‖L2 ≤ C ′

t
n
2

eα
2t/ 8

4+ε ,

where C ′ = C
√

Vol(X)2n. Hence, if equation (4.4) holds, then by equation (4.5),

equation (4.3) holds for some B,C > 0.

Proposition 4.25. Presume the conditions of the preceding theorem (Proposition 4.23).

For any R > 0, there exist constants B,C > 0 only dependent on X and R such that

for all α > 0 and all t > 0,

‖eαd(·,v)|DZ∆kh(·, v, t)|‖L2 ≤ C

tk+ 1
2 min

{
t
n
2 , R

}eBα2t.

Proof. We assume without loss of generality that R = 1 and that 0 < t < 1. We

begin by noting that

‖eαd(·,v)|DZ∆kh(·, v, t)|‖2
L2 =

∫
X

e2αd(z,v)|DZ∆kh(z, v, t)|2 dX(z)

=
∑

1≤i≤n

∫
X

e2αd(z,v)|Zi∆kh(z, v, t)|2 dX(z)

by an application of the product rule for derivatives,

= −
∑

1≤i≤n

∫
X

(
Zie

2αd(z,v)
) (

∆kh(z, v, t)
) (
Zi∆

kh(z, v, t)
)

+
(
e2αd(z,v)

) (
∆kh(z, v, t)

) (
(Zi)

2∆kh(z, v, t)
)
dX(z)

≤ 2α

∫
X

e2αd(z,v)

( ∑
1≤i≤n

|Zid(z, v)||Zi∆kh(z, v, t)|

)(
∆kh(z, v, t)

)
dX(z)

+

∫
X

e2αd(z,v)|∆kh(z, v, t)||∆k+1h(z, v, t)| dX(z)

= 2αA1 + A2. (4.6)
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4.4 Gaussian Estimates of the Heat Kernel

We obtain estimates on A1 and A2. We note that by [St2,PSC], we have for any v0 ∈ X

that e(d(z, v0)) ≤ 1, where e(d(z, v0)) is the energy density of d(·, v0) evaluated at the

point z. Hence, given the definition of Z,
∑

1≤i≤n |Zid(z, v)|2 ≤ 1. We have

A1 =

∫
X

e2αd(z,v)

( ∑
1≤i≤n

|Zid(z, v)||Zi∆kh(z, v, t)|

)(
∆kh(z, v, t)

)
dX(z)

≤
∫
X

e2αd(z,v)

( ∑
1≤i≤n

|Zi∆kh(z, v, t)|2
) 1

2 (
∆kh(z, v, t)

)
dX(z)

≤

(∫
X

∑
1≤i≤n

|Zi∆kh(z, v, t)|2 dX(z)

) 1
2 (∫

X

e4αd(z,v)
(
∆kh(z, v, t)

)2
dX(z)

) 1
2

= ‖DZ∆kh(·, v, t)‖L2‖e2αd(·,v)∆kh(·, v, t)‖L2 .

For A2, we see immediately that

A2 ≤ ‖eαd(·,v)|∆kh(·, v, t)|‖L2‖eαd(·,v)|∆k+1h(·, v, t)|‖L2 .

We can apply and Proposition 4.22 and Corollary 4.15 to equation (4.6) to obtain

‖eαd(·,v)
∣∣DZ∆kh(·, v, t)

∣∣ ‖2
L2 ≤ 2α‖DZ∆kh(·, v, t)‖L2‖e2αd(·,v)∆kh(·, v, t)‖L2

+ ‖eαd(·,v)∆kh(·, v, t)‖L2‖eαd(·,v)∆k+1h(·, v, t)‖L2

≤
C
(

1 + 2αt
1
2

)
t2k+1+n

eBα
2t

≤ C ′

t2k+1+n
eB
′α2t.

We justify the last step by noting that the term
(

1 + 2αt
1
2

)
can be absorbed into B′

by altering C. By Lemma 4.24, this is sufficient to prove Proposition 4.23.

77



4.4 Gaussian Estimates of the Heat Kernel

There is one consequence of these estimates that will be useful later that we state

and prove here.

Proposition 4.26. Let the top dimension of X be n and let k be a constant such that

2k ∈ N. Let v ∈ X be fixed and let R,B > 0 be fixed. Then there exists a constant

C > 0 dependent only on X, B and R such that for any 0 ≤ t < R,

∫
X

t−k exp

(
−d(z, v)2

Bt

)
dX(z)dτ ≤ Ct

n
2
−k.

Proof. We see that for a fixed v ∈ X it is sufficient to show that this result holds

in a neighborhood of v, as t−k exp
(
−d(z,v)2

Bt

)
is clearly integrable and goes to zero

exponentially for any set outside of a neighborhood of v. Without loss of generality,

we can assume that X is simplex-wise flat. By the assumption of flatness on the

simplexes and the geometry of the polyhedron, we see that it is sufficient to show the

following holds,

∫
[0,1]n

t−k exp

(
−x

2
1 + · · ·+ x2

n

Bt

)
dx1 · · · dxn ≤ Ct

n
2
−k,

where [0, 1]n ⊂ Rn is the unit n-dimensional cube. Iterating the integrals we have

∫
[0,1]n

t−k exp

(
−x

2
1 + · · ·+ x2

n

Bt

)
dx1 · · · dxn
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4.5 Solutions to Non-Homogeneous Parabolic-Type Equations

=

∫
[0,1]n−1

(∫
[0,1]

t−k exp

(
−x

2
1 + · · ·+ x2

n

Bt

)
dx1

)
dx2 · · · dxn

=

∫
[0,1]n−1

√
π

4B
erf
(

(Bt)−
1
2

)
t−k+ 1

2 exp

(
−x

2
2 + · · ·+ x2

n

Bt

)
dx2 · · · dxn

...

=
( π

4B

)n
2

erf
(

(Bt)−
1
2

)n C√
t

≤
( π

4B

)n
2
t
n
2
−k

= Ct
n
2
−k,

where erf : R→ R+ is the error function defined by

erf(a) =
2√
π

∫ a

−∞
e−x

2

dx.

Naturally, erf is monotonically increasing, erf(a) ≤ 1, and

lim
a→∞

erf(a) = 1.

4.5 Solutions to Non-Homogeneous Parabolic-Type Equa-

tions

From the existence of the heat kernel, which provides us a constructive way of finding

solutions to homogenous parabolic type equations, we are able to derive existence

theorems for solutions to non-homogeneous equations. We recall the following from

Definition 3.3.
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4.5 Solutions to Non-Homogeneous Parabolic-Type Equations

Definition 4.27. Let I = (a, b) ⊂ R, and f ∈ C ((a, b) 7→ L2(X)).

i. A function u is a weak solution of the non-homogeneous parabolic equation

(
∂

∂t
−∆

)
u = f,

on I ×X, if and only if u ∈ F(I ×X) and u satisfies

∫
I

E(u, φ) dt+

∫
I

〈
∂
∂t
u, φ
〉
L2(X)

dt =

∫
I

〈f, φ〉L2(X) dt,

for all φ ∈ F(I ×X).

ii. Additionally, let g ∈ L2(X). u is a weak solution to the initial value problem

(
∂

∂t
−∆

)
u(z, t) = f(z, t), for (z, t) ∈ X × (a, b)

u(·, a) = g, on X


if and only if u is a solution as above, and limt→a u = g in L2(X).

Proposition 4.28. Let X be as in the assumptions of this section, and I = (a, b).

Let f ∈ C ((a, b) 7→ L2(X)) be essentially bounded on X× (a, b) and let f be such that

limt→a f(z, t) = g(z), g ∈ L2(X) . Then there exists a unique weak solution to the

initial value problem

(
∂

∂t
−∆

)
u(z, t) = f(z, t), for (z, t) ∈ X × (a, b)

u(·, a) = g, on X.

 (4.7)

There exist α, β > 0 such that u ∈ C1,0(X × (a, b)) ∩ C1+α,1+β
loc (X \ X(n−2) × (a, b)),
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4.5 Solutions to Non-Homogeneous Parabolic-Type Equations

and first-order spacial derivatives of u are in C
α,α/2
loc (X \ X(n−2) × (a, b)). Also,

‖D2
zu‖, ‖ ∂∂tu‖ ∈ L∞loc(X \ X(n−2) × (a, b)), where D2

z denotes any second order spa-

cial derivative. The solution is also balanced for all t > 0, is smooth on the open set

X \X(n−1) and satisfies pointwise Equation (4.7) on X \X(n−1).

Additionally, if for any open A ⊂ X such that d(A,X(n−2)) > 0, there exists k ∈ N

such that
(
∂
∂t

)m
u|A is Hölder continuous for all 0 ≤ m ≤ k and

(
∂
∂t

)m−1
f |A(·, t) ∈

Ck−m+α(A) for each 1 ≤ m ≤ k, then
(
∂
∂t

)m
u|A(·, t) ∈ Ck+1−m+α(A) for each 0 ≤

m ≤ k.

Proof. Assume without loss of generality that (a, b) = (0, T ). We can actually con-

struct a solution with these properties as follows. For t ∈ (0, T ), define

u(z, t) :=

∫ t

0

∫
X

h(z, v, t− τ)f(v, τ) dµ(v) dτ +

∫
X

h(z, v, t)g(v) dµ(v). (4.8)

We can compute that u solves our problem pointwise, is sufficiently regular, and is

balanced. Hence it is certainly a weak solution. We shall draw heavily on the proper-

ties of the heat kernel. We require one auxiliary result before diving in. Specifically,

we require that for each z ∈ X

∫
X

h(z, v, t− τ)f(v, τ) dµ(v)

be continuous with respect to τ ∈ (0, T ). The condition that f ∈ C((0, T ) 7→ L2(X))

will be sufficient to show this. We show that for any τ ∈ (0, T )

lim
δ→0

∫
X

h(z, v, t− τ − δ)f(v, τ + δ) dµ(v) =

∫
X

h(z, v, t− τ)f(v, τ) dµ(v).
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4.5 Solutions to Non-Homogeneous Parabolic-Type Equations

Note that using the heat operator

Ht−τf(z, τ) =

∫
X

h(z, v, t− τ)f(v, τ) dµ(v),

which is handier notation. We have

|Ht−τ−δf(z, τ + δ)−Ht−τf(z, τ)|

=

∣∣∣∣∫
X

h(z, v, t− τ − δ)f(v, τ + δ)− h(z, v, t− τ)f(v, τ) dv

∣∣∣∣
=

∣∣∣∣∫
X

h(z, v, t− τ − δ)f(v, τ + δ)− h(z, v, t− τ − δ)f(v, τ)+

h(z, v, t− τ − δ)f(v, τ)− h(z, v, t− τ)f(v, τ) dv

∣∣∣∣
≤
∣∣∣∣∫
X

h(z, v, t− τ − δ) [f(v, τ + δ)− f(v, τ)] dv

∣∣∣∣
+

∣∣∣∣∫
X

[h(z, v, t− τ − δ)− h(z, v, t− τ)] f(v, τ) dv

∣∣∣∣
= h(z, z, t− τ − δ)‖f(·, τ + δ)− f(·, τ)‖L2(X)

+

∣∣∣∣∫
X

[h(z, v, t− τ − δ)− h(z, v, t− τ)] f(v, τ) dv

∣∣∣∣
.

Letting δ go to zero, we have the first expression going to zero by f ∈ C(I 7→ L2(X)),

and the second expression goes to zero by the Hölder continuity of h in time given by

Proposition 4.10. Hence, for any fixed z,
∫
X
h(z, v, t − τ)f(v, τ) dµ(v) is continuous

with respect to τ on (0, T ). We note that

lim
t→0

u(·, t) = g, in L2(X)

as the first term of (4.8) goes to zero uniformly and, by the property of the heat
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4.5 Solutions to Non-Homogeneous Parabolic-Type Equations

operator, the second must go to g(z) in L2(X).

Now on X × (0, T ) we must verify that almost everywhere

(
∂

∂t
−∆

)
u(z, t) = f(z, t).

As
(
∂
∂t
−∆

) ∫
X
h(z, v, t)g(v) dv = 0, we must verify that

(
∂

∂t
−∆

)∫ t

0

∫
X

h(z, v, t− τ)f(v, τ) dµ(v) dτ
ae
= f(z, t).

We focus on computing the time derivative, which requires some care.

∂

∂t

∫ t

0

∫
X

h(z, v, t− τ)f(v, τ) dµ(v)dτ

= lim
δ→0

1

δ

(∫ t+δ

0

∫
X

h(z, v, t− τ + δ)f(v, τ) dµ(v)dτ

−
∫ t

0

∫
X

h(z, v, t− τ)f(v, τ) dµ(v)dτ

)

= lim
δ→0

(
1

δ

∫ t+δ

t

∫
X

h(z, v, t− τ + δ)f(v, τ) dµ(v)dτ

)
+

∫ t

0

∫
X

lim
δ→0

1

δ

(
h(z, v, t− τ + δ)− h(z, v, t− τ)

)
f(v, τ) dµ(v)dτ

(by the integral mean value theorem and the continuity with respect to τ of
∫
X
h(z, v, t−

τ + δ)f(v, τ) dµ(v))

= lim
ε→0

(∫
X

h(z, v, ε)f(v, t) dµ(v)

)
+

∫ t

0

∫
X

∂

∂t
h(z, v, t− τ)f(v, τ) dµ(v)dτ

ae
= f(z, t) +

∫ t

0

∫
X

∂

∂t
h(z, v, t− τ)f(v, τ) dµ(v)dτ.

The last step follows from the fact that
∫
X
h(·, v, ε)f(v, t) dµ(v) goes to f(·, t) as ε→ 0
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4.5 Solutions to Non-Homogeneous Parabolic-Type Equations

in L2(X). Hence, we have

(
∂

∂t
−∆

)∫ t

a

∫
X

h(z, v, t− τ)f(v, τ) dµ(v) dτ

ae
= f(z, t) +

∫ t

0

(
∂

∂t
−∆

)∫
X

h(z, v, t− τ)f(v, τ) dµ(v) dτ

= f(z, t).

With some regularity on f , this can be shown to be a pointwise equality on certain

open sets. Indeed, we can show that u ∈ C0(X × I) following an argument identical

to Theorem 2 of [F, Chap. 1, Sect 3.]. We may even show that first order derivatives

exist and are bounded on X \X(n−1). By the smoothness of h(z, v, t) given in Proposi-

tion 4.11 and by the Gaussian estimates of Theorem 4.18, we have for z ∈ X \X(n−1)

and t > 0,

|∇u(z, t)| ≤
∫ t

0

∫
X

|∇zh(z, v, t− τ)| |f(v, τ)| dv dτ

+

∫
X

|∇zh(z, v, t)| |g(v)| dv

≤
(∫ t

0

∫
X

C

t
n
2

+ 1
2

e−
d(z,v)2

Bt dv dτ

)
‖f‖L∞(X×I)

+

∫
X

C

t
n
2

+ 1
2

e−
d(z,v)2

Bt |g(v)| dv

≤ C ′
√
t‖f‖L∞(X×I) +

C ′′

tα
‖g‖L2(X),

where C,C ′, C ′′ are dependent on T and X only and α ∈ (0, 1). Since f is essentially

bounded on X × I and g is in L2(X), we see the right side is bounded and not

dependent on the choice of z ∈ X. Hence, u ∈ C1,0(X× (0, T )). Additionally, we can

see from the construction of u that it must be balanced by the balancing condition
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4.5 Solutions to Non-Homogeneous Parabolic-Type Equations

on h(z, v, t). Hence, if we pick φ ∈ F(I ×X), u satisfies weakly

∫
I

E(u, φ) dt+

∫
I

〈
∂
∂t
u, φ
〉
L2(X)

dt =

∫
I

〈f, φ〉L2(X) dt,

and is hence a weak solution to the initial value problem in the statement of this theo-

rem. To show that u ∈ C1+α,1+β
loc (X \X(n−2)× (a, b)), we use a technique from [DM3].

Let p ∈ X(n−1) \ X(n−2). Let {sj}Jj=1 denote all of the n-simplexes adjacent to p

meeting on an (n − 1)-face F . Define uj := u|sj . Also let R > 0 be such that

d(B(p,R), X(n−2)) > 0 and B(p,R) ⊂ ∪Jj=1sj, and pick edge coordinates centered at

p so that for each uj, (x1, . . . , xn−1, 0) denotes points on F and (0, . . . , 0) denotes p.

For each 1 ≤ k ≤ J , we construct uk : B(0, R)× R≥0 → R as

uk
(
(x̄, xn), t

)
:=


uk
(
(x̄, xn), t

)
, xn ≥ 0

−uk
(
(x̄,−xn), t

)
+

2

J

J∑
j=1

uj
(
(x̄,−xn), t

)
, xn < 0

(4.9)

where x̄ = (x1, . . . , xn−1). Also, let fk := f |sk and similarly define for each k,

fk : B(0, R)→ R as

fk
(
(x̄, xn), t

)
:=


fk
(
(x̄, xn), t

)
, xn ≥ 0

−fk
(
(x̄,−xn), t

)
+

2

J

J∑
j=1

fj
(
(x̄,−xn), t

)
, xn < 0

(4.10)

By our solution u being balanced and in C1,0(X × (a, b)), we can see that, for each

k, uk is a weak solution to a set of equations (indexed by k) given as

(
∆− ∂

∂t

)
uk = fk
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4.5 Solutions to Non-Homogeneous Parabolic-Type Equations

defined on B(0, R)× (a, b) (⊂ Rn × R). We can use standard results in parabolic dif-

ferential equations (see in particular [LSU, Theorem 12.1, Chapter III]), to see that

for any 0 < R′ < R, each uk|B(0,R′) is in C1+α,β(B(0, R′)) and ∂uk
∂xi
∈ Cα,α/2(B(0, R′))

for any 1 ≤ i ≤ n by the virtue of f being essentially bounded (we can put weaker

conditions on f to achieve weaker results, but this will suffice for the settings consid-

ered elsewhere in this paper). Additionally, ‖D2
zuk‖, ‖ ∂∂tuk‖ ∈ L

∞(B(0, R′) × (a, b)),

where D2
z denotes any second-order spacial derivative. To derive the Hölder conti-

nuity of ∂
∂t
uk, we appeal to a recent result of [TP] which shows the existence of a

solution of Equation (4.10) that does possess this regularity. However, it does not

suggest uniqueness of such a solution. We find our solution is unique by our argument

later in this proof and apply [TP, Theorem 2.1]. This concludes our initial regularity

results.

For higher regularity, where it is presumed a priori that for some k ∈ N,
(
∂
∂t

)m
u

is Hölder continuous for all 1 ≤ m ≤ k, we can appeal to Proposition 3.15 directly.

To show uniqueness, suppose there is a second distinct ū(z, t) that is a weak

solution of (4.7). We create a new function,

U(z, t) := u(z, t)− ū(z, t).

We note that U(z, 0) = 0 everywhere (in particular ‖U(·, 0)‖L2(X) = 0) and is a weak

solution to the homogeneous equation

(
∂

∂t
−∆

)
U = 0.

From Proposition 4.4, U is the unique solution to the weak initial value problem

86



with initial data that is identically zero. By the contraction property for the heat

semigroup (see Proposition 4.4), for all t > 0, ‖U(·, t)‖L2(X) = 0. Also by regularity

results for the homogeneous problem in Proposition 4.11, and regularity on u noted

above, we have that ū must be continuous, and thus U must be identically zero.

To show convergence in C0 to the initial map, we may use Theorem 4.18 and

Proposition 4.26 to show that the first term of Equation (5.9) goes to 0 uniformly.

We can then use [PSC, Theorem 3.10] to show that, as F0 is continuous and defined

a compact domain,
∫
X
h(z, v, t)F γ(v) dµ(v) goes to F γ uniformly.

5 Heat Flows between Polyhedra and Manifolds

5.1 Harmonic Maps and The Harmonic Map Heat Flow Prob-

lem

The results of [CR] and [C] include defining flows between compact singular domains

(one a manifold with conical singularities and the other an orbifold) and compact,

nonpositively curved manifolds. The approach in both cases is a modification of the

results of [ES]. In particular, they take care to give energy bounds and heat kernel

bounds in these singular cases and then show that the methods of [ES] apply and

give the existence of heat flows that are smooth away from the singularities and that

converge to harmonic maps with good regularity. In the process, they also show

existence of unique harmonic representatives in each homotopy class of smooth maps

between the spaces. The primary difficulties that these papers resolve are defining

appropriate heat kernels and showing good convergence and regularity properties.

However, these methods do not immediately abstract to the case of the domain being
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an admissible smooth Riemannian polyhedron. The results of [St2] and [PSC] may

be modified to allow to the methods of [ES] to apply in the case of maps between

compact admissible Riemannian polyhedron and compact Riemannian manifolds with

nonpositive sectional curvature. We state some results and outline the argument

below.

Assumptions. Unless otherwise specified, we shall assume in this section that X is

an admissible smooth Riemannian polyhedron that satisfies the conditions of Propo-

sition 2.20 with Dirichlet form E(·, ·) and Laplacian ∆ as in Section 2.2, and energy

E(·) as in Section 2.4. We also assume that N is a compact smooth Riemannian

manifold with nonpositive sectional curvature.

Following [EF], we define the following.

Definition 5.1. Let f ∈ W 1,2(X,N) and let E denote the energy from the assump-

tions of this section.

i. f is locally E-minimizing if, for every open cover {Uα} of X such that each Uα is

compactly contained in X, E(f |Uα) ≤ E(g|Uα) for every g ∈ W 1,2(X,N) where

g
ae
= f on X \ Uα.

ii. f is harmonic if it is continuous and bi-locally E-minimizing : for every open

cover {Uα} of X such that each Uα is compactly contained in X, there is an

open set Vα ⊂ N such that E(f |Uα) ≤ E(g|Uα) for every continuous map g ∈

W 1,2(X,N) where g = f on X \ Uα and g(Uα) ⊂ Vα.

Definition 5.2. f ∈ W 1,2(X,N) is weakly harmonic if in any coordinate chart V ⊂
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N , and any open set U ⊂ f−1(V ), it satisfies

∫
U

(
〈∇fγ,∇φ〉 − Γγαβ(f)

〈
∇fα,∇fβ

〉
φ
)
dµ = 0

for all φ ∈ C∞(X) such that supp(φ) is compactly contained in U , and for all γ,

1 ≤ γ ≤ q = dim(N). Here, Γγαβ is the Christoff symbol of N in the chart V .

By [EF, Theorem 12.1], we have the following.

Proposition 5.3. For a continuous map f ∈ W 1,2(X,N), f is harmonic if and only

if it is weakly harmonic.

We note that the definition of a weak harmonic map makes no assumption on the

continuity of the map.

For harmonic maps between polyhedra and manifolds, we have the following result

by [DM3].

Proposition 5.4 (See [DM3]). Let X be a flat compact Riemannian polyhedron of

dimension n (n ≥ 2), and let N be a complete smooth Riemannian manifold. Let

f : X → N be harmonic. Then, f ∈ C1+α
loc (X \X(n−2), N) and is balanced. Addition-

ally, if n = 2, then f ∈ C∞loc(X \X(n−2), N).

Remark 5.5. We note that the result in [DM3] is actually more general than stated

here, as they consider harmonic maps in the context of admissible weights, which we

do not consider here.

We naturally are interested in flows between polyhedra and manifolds, and so we

define the following.
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Definition 5.6. Let X be compact. For an interval (a, b) ⊂ R, f is a strong solution

to the heat flow on X × (a, b) if f is continuous on X × (a, b), f ∈ C2,1
loc (X \X(n−1) ×

(a, b), N), f is balanced for all t ∈ (a, b), and

∂

∂t
f(z, t) = τ(f(z, t)), (z, t) ∈ X \X(n−1) × (a, b),

where τ(f) = Traceg∇df is the torsion operator, with simplex-wise metric tensor g.

Let f0 ∈ C1(X,N). Then f is a strong solution to the heat flow with initial value

f0 on X × [a, b) if f is continuous on X × [a, b), f ∈ C2,1
loc (X \X(n−1) × (a, b), N), f

is balanced for all t ∈ (a, b), and

∂

∂t
f(z, t) = τ(f(z, t)) for (z, t) ∈ X \X(n−1) × (a, b),

lim
t→a

ft = f0 in C0(X,N).


Naturally, to show existence, one typically begins with a weak solution but, as

we shall see later, it is easier to begin with a constructive solution that requires

embedding N into Euclidean space. Embedding the target, however, will have many

benefits and solving an embedded problem is equivalent to solving the problem above,

as we shall see.

5.2 The Embedded Problem

To construct a solution, it is useful to consider isometrically embedding the target

into a higher dimensional Euclidean space. Then one must also verify that a solution

to a flow problem into an embedded target is equivalent to finding one for a non-

embedded target. In [N] and [ES], they provide methods for doing so when the
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domain is a manifold. We adapt their methods to apply here.

We recall from the case where the domain is a compact smooth Riemannian man-

ifold the following:

Definition 5.7. Let (M, g) and (N, h) be a compact smooth Riemannian manifolds

such that N has nonpositive sectional curvature. Let f0 : M → N be a C2 map.

f : M × [0, T ) → N is a solution to the heat flow problem with initial value f0 on

M × [0, T ) if f ∈ C0(M × [0, T ), N) ∩ C2,1(M × (0, T ), N) and

∂f

∂t
= ∆f + Γ(df, df) on M × (0, T )

lim
t→0

f = f0 in C0

 (5.1)

where ∆ is the Laplace-Beltrami operator on M and Γ(df, df) is defined locally as

follows. For a fixed coordinate in the target, yγ, about a point f(p) ∈ N ,

Γγ(df, df)(p) :=
∑
α,β,i,j

Γγαβ(f(p))
∂fα

∂xi
∂fβ

∂xj
gij(p),

where Γγαβ denotes the Christoffel symbol of the Levi-Civita connection on (N, h),

and xi denotes coordinates about p ∈M .

We must reformulate Equation (5.1) so that it satisfies a differential equation

when the target is a submanifold of Rq. We follow the construction of [N].

Let q ∈ N be large enough so that there exists ι : N → Rq as a smooth isometric

embedding. Let Ñ ⊂ Rq be an open, tubular neighborhood of ι(N) so that the

nearest-point projection map π : Ñ → ι(N) is well defined. For y ∈ N with local
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coordinates {yi}n=dim(N)
i=1 we may denote ι locally as

ι : (y1, . . . , yn) 7→ (ι1(y1, . . . , yn), . . . , ιq(y1, . . . , yn))

and for z ∈ Ñ with coordinates inherited from Rq, we denote π as

π : (z1, . . . , zq) 7→ (π1(z1, . . . , zq), . . . , πq(z1, . . . , zq)).

By [N], we have the following.

Proposition 5.8. Let (M, g) and (N, h) be compact smooth Riemannian manifolds

and let N have nonpositive sectional curvature. Also, let π, Ñ and ι be as above, and

let f0 : M → N be a C2 map, and let F0 := ι ◦ f0. If f : M × [0, T )→ N satisfies

∂f

∂t
= ∆f + Γ(df, df) on M × (0, T )

lim
t→0

f = f0 in C0

 (5.2)

where Γγ(df, df)(p) =
∑

α,β,i,j Γγαβ(f(p))∂f
α

∂xi
∂fβ

∂xj
gij(p), then F := ι ◦ f satisfies

∂F

∂t
= ∆F + A(dF, dF ) on M × (0, T )

lim
t→0

F = F0 in C0

 (5.3)

where for a fixed coordinate γ, 1 ≤ γ ≤ q and in a neighborhood of p ∈ M with

coordinates {xi},

Aγ(dF, dF )(p) =
∑
α,β,i,j

Aγαβ(f(p))
∂F α

∂xi
∂F β

∂xj
gij(p),
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and Aγαβ := ∂2πγ

∂zα∂zβ
with {zi} denoting the standard coordinates of Rq.

The converse is also true, where, given F ∈ C2(M×[0, T ), Ñ) and F0 ∈ C2(M, Ñ),

we define f := ι−1 ◦ F and f0 := ι−1 ◦ F0.

In light of this, we define the following.

Definition 5.9. Let X be compact and let ι : N ↪→ Rq be a smooth isometric em-

bedding.

i. Let (a, b) ⊂ R. F is a weak embedded solution to the heat flow on X × (a, b) if

it satisfies for each coordinate 1 ≤ γ ≤ q,

∫
(a,b)

∫
X

( 〈
∂
∂t
F γ, φ

〉
+ 〈dF γ, dφ〉 − 〈Aγ(F )(dF, dF ), φ〉

)
dµ dt = 0, (5.4)

for every φ ∈ C∞c (X,Rq), where Aγ(·, ·) is defined as in Proposition 5.8, given

in local coordinates by

Aγ(F )(dF, dF ) = Aγαβ(F )
∂F α

∂zi
∂F β

∂zj
gij,

and 1 ≤ γ, α, β ≤ q denote coordinates in Rq.

ii. Let F0 ∈ C1(X,Rq) be such that Image(F0) ⊂ ι(N). F is a weak embedded

solution to the heat flow with initial value F0 on X × [a, b) if it satisfies for each

coordinate 1 ≤ γ ≤ q,

∫
(a,b)

∫
X

( 〈
∂
∂t
F γ, φ

〉
+ 〈dF γ, dφ〉 − 〈Aγ(F )(dF, dF ), φ〉

)
dµ dt = 0,

lim
t→a

F = F0 in L2

 (5.5)
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for all φ ∈ C∞c (X,Rq), where Aγ(·, ·) is defined as in Proposition 5.8.

iii. F is a strong embedded solution to the heat flow on X× (a, b) if F is continuous

on X × (a, b), F ∈ C2,1
loc (X \X(n−1) × (a, b),Rq), F is balanced for all t ∈ (a, b),

and it satisfies

(
∂

∂t
−∆g

)
F γ = Aγ(F )(dF, dF ) on (X \X(n−1))× (a, b),

for all γ, 1 ≤ γ ≤ q, where ∆g denotes the Laplace-Beltrami operator on

X \X(n−1) with respect to the simplex-wise smooth metric g.

iv. Let F0 ∈ C1(X,Rq) be balanced and such that Image(F0) ⊂ ι(N). F is a strong

embedded solution to the heat flow with initial value F0 on X × [a, b) if F is

continuous on X × [a, b), F ∈ C2,1
loc (X \X(n−1)× (a, b),Rq), F is balanced for all

t ∈ (a, b), and it satisfies

(
∂

∂t
−∆g

)
F γ = Aγ(F )(dF, dF ) on (X \X(n−1))× (a, b),

lim
t→a

F = F0 in C0

 (5.6)

for all γ, 1 ≤ γ ≤ q.

Remark 5.10. The balancing condition is necessary for a strong solution to the be

a weak solution and for a sufficiently smooth weak solution to be a strong solution.

The above does not specifically address whether or not the image of an embedded

strong solution stays in ι(N) ⊂ Rq for positive time. It is possible that it “floats” off

ι(N) in time even though at time zero it is, by assumption, contained in ι(N). As
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the solution is continuous, we can appeal to a result of [N], which indicates this does

not happen.

Proposition 5.11. Let X be compact and let ι : N ↪→ Rq be a smooth isometric

embedding. Let F0 : X → ι(N) ⊂ Rq be in C1(X), and suppose F is a strong embedded

solution to the heat flow on [0, T ) with initial value F0. Then F (X, t) ⊂ ι(N) for all

0 < t < T .

Proof. Suppose that there exists a t0 ∈ (0, T ) such that F (X, t0) 6⊂ ι(N). As the flow

is continuous and, specifically, F (·, t) is continuous in space for fixed t, if (F (X, t0) 6⊂

ι(N), then there must exist an open set A ⊂ X \ X(n−1) where d(A,X(n−1)) > 0

and F (A, t0) ∩ ι(N) = ∅. As A is isometric to a smooth manifold, we may appeal to

the proof of [N, Proposition 4.6], which proves this statement pointwise in a smooth

manifold.

Remark 5.12. We should note that the nonpositive sectional curvature of N is

crucial to [N, Proposition 4.6]. We have not before indicated the necessity of the

curvature assumptions on N , but it appears here.

Now that the embedded problem is known to keep the image of the solution as

a subset of ι(N), we may also ask about the relationship between the embedded

problem and the non-embedded problem. Ostensibly, given one, we should be able to

retrieve the other. We have again the following as a consequence of [N, Proposition

4.6].

Proposition 5.13. Let f0 ∈ C1(X,N) and let f be balanced, and let F0 := ι◦f0. For

f : X × [0, T ) → N , let F := ι ◦ f . f is a strong (unembedded) solution to the heat
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flow on X × [0, T ) with initial value f0 if and only if F is strong embedded solution

to the heat flow on X × [0, T ) with initial value F0.

We also consider uniqueness. We can use our results in the linear, one-dimensional

case to achieve a uniqueness result for strong embedded solutions.

Proposition 5.14. Let F0 ∈ C1(X,Rq) be balanced and such that Image(F0) ⊂ ι(N),

and let F be a strong embedded solution to the heat flow with initial value F0 on

X× [a, b). If F ′ is also a strong embedded solution with initial value F0, then for each

t ∈ [a, b), F (·, t) = F ′(·, t) almost everywhere on X.

Proof. We show uniqueness by considering each coordinate individually. Let 1 ≤ γ ≤

q be fixed. Then both F γ and F ′γ are balanced for t ∈ (a, b) and solve the differential

equation

(
∂

∂t
−∆g

)
F γ = Aγ(F )(dF, dF ), on (X \X(n−1))× (a, b)

lim
t→a

F γ = F γ
0 in C0

 (5.7)

Consider Gγ := F γ − F ′γ. It must solve(
∂

∂t
−∆g

)
Gγ = 0 on (X \X(n−1))× (a, b),

lim
t→a

Gγ = 0 in C0

 (5.8)

Also, G must be balanced for t ∈ (a, b). Hence, it must be a weak solution to the

heat equation with initial value 0, and by the Markov property of Proposition 4.4,

for each t ∈ (a, b), G = 0 almost everywhere.

We have not yet treated existence of solutions. To this end, we also have another
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proposition that will be our focus subsequently.

Proposition 5.15. Let ι : N → Rq be an isometric embedding. Let F0 ∈ C1(X,Rq)

be such that Image(F0) ⊂ ι(N). If there exists W such that it is continuous on

X × [0, T ), W ∈ C1,0(X × [0, T ),Rq), and it satisfies in each coordinate 1 ≤ γ ≤ q,

W γ(z, t) =

∫ t

0

∫
X

h(z, v, t− τ)Gγ(v, τ) dµ(v)dτ

+

∫
X

h(z, v, t)F0(v) dµ(v), (5.9)

where, in local coordinates,

Gγ(v, τ) := Aγαβ(W )
∂Wα

∂xi
∂W β

∂xj
gij,

then W (z, t) is a strong embedded solution with initial value F0 on X × [0, T ) and,

in particular, solves equation (5.8) pointwise on X \ X(n−1) × (0, T ). Additionally,

W ∈ C1+α,1+β
loc (X \ X(n−2) × [0, T )) for some α, β > 0 and satisfies all of the other

conclusions of Proposition 4.28.

Proof. We shall leave the higher regularity for later, but we shall show that if such a

W satisfies equation (5.9) on [0, T ) for some T > 0, then it must be a strong embedded

solution. We verify that if W satisfies (5.9) and W ∈ C1,0(X × [0, T ),Rq), then W

satisfies weakly (
∂

∂t
−∆g

)
W γ = Aγ(W )(dW, dW ),

in each coordinate γ, 1 ≤ γ ≤ q. Let γ be fixed. From the proof of Proposition 4.28
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on page 80, we see that such a function W γ satisfies almost everywhere

∂

∂t
W γ = Gγ(z, t) +

∫ t

0

∫
X

∂

∂t
h(z, v, t− τ)Gγ(v, τ) dµ(v)dτ.

Hence, we compute

(
∂

∂t
−∆g

)
W γ(z, t) =

(
∂

∂t
−∆g

)∫ t

0

∫
X

h(z, v, t− τ)Gγ(v, τ) dµ(v)dτ,

which follows from the fact that
(
∂
∂t
−∆g

) ∫
X
h(z, v, t)F0(v) dµ(v) = 0, and we have

almost everywhere,

(
∂

∂t
−∆g

)
W γ(z, t) = Gγ(z, t) +

∫ t

0

(
∂

∂t
−∆g

)∫
X

h(z, v, t− τ)Gγ(v, τ) dµ(v)dτ

= Gγ(z, t).

By the regularity assumptions on W , we know that Gγ(·, t) ∈ C(X), and we see that

for each γ, W γ is a weak solution to

(
∂

∂t
−∆g

)
W γ = Gγ

W γ(·, 0) = F γ
0


We note that by Theorem 4.18 and by Proposition 4.26, we can bring first order

spacial derivatives inside both integrals of the first term of equation (5.9). Thus,

we see that by the fact that W satisfies equation (5.9) and by the balancing of

h(z, v, t), W must be balanced. Hence, we can apply Proposition 4.28, which gives

that W ∈ C1+α,1+β
loc (X \X(n−2) × [0, T )) and that W is smooth in the open manifold
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X \X(n−1), which gives pointwise satisfaction of equation (5.8).

To show convergence in C0 to the initial map, we may use Theorem 4.18 and

Proposition 4.26 to show that the first term of Equation (5.9) goes to 0 uniformly.

We can then use [PSC, Theorem 3.10] to show that, as F0 is continuous and defined

a compact domain,
∫
X
h(z, v, t)F γ(v) dµ(v) goes to F γ uniformly.

Naturally, we wish to know if solutions exist on some interval [0, T ) and, if so,

about the maximum T for which this holds. Also, if a solution holds for T →∞, we

ask if W converges to a harmonic map. We break our approach into three parts.

i. (Short-time existence) we show for an initial value f0, there exists a T > 0 such

that a solution exists on [0, T ).

ii. (Long-time existence) we show that if a solution exists on [0, T ), then it must

exist on [0, T ], which implies the solution exists on [0,∞).

iii. (Long-time convergence) we show that the solution converges in energy as t→

∞ to a harmonic map.

5.3 Gradient-of-Energy Flow

It will be useful to show that the harmonic map heat flow defined here coincides

with the heat flow of Mayer, the so-called Gradient-of-Energy flow. The advantage

of Mayer’s method here is the very general, long-time convergence results he obtains

in [Ma]. It also gives results results on the behavior of energy over time.

Definition 5.16. Let (M, d) be a complete length space nonpositively curved in the

sense of Alexandrov and let F : M → R ∪ ∞ be a lower semi-continuous, convex
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functional. We define the norm of the gradient vector at f0 as

|∇−F |(f0) := max

{
lim sup
f→f0,f∈M

F (f0)− F (f)

d(f0, f)
, 0

}
.

f0 ∈M is called stationary if

|∇−F |(f0) = 0.

Proposition 5.17. For a complete NPC space (M, d) and a lower semi-continuous,

convex functional F : M→ R ∪∞, there exists a map

(·)t : M× R≥0 →M

that has the following properties:

i. For f ∈M, limt→0 ft = f

ii. For f ∈M, s, t > 0, ((f)s)t = (f)s+t (the semi-group property)

iii. lim
s→0

dL2(ft+s, fs)

s
= |∇−F |(ft), for all t

iv. sup
s>0

dL2(ft+s, fs)

s
= |∇−F |(ft), for all t

v. − d
dt
F (ft) = |∇−F |2(ft), for almost all t > 0

vi. t 7→ |∇−F |(ft) is right continuous

vii. t 7→ F (ft) is uniformly Lipschitz continuous on [t0, t1] for all 0 < t0 < t1 <∞

viii. |∇−F |(ft) is monotonically non-increasing in t and lim
t→∞
|∇−F |(ft) = 0.

This is the Gradient-of-Energy flow.
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There are additional properties of the flow that we will find useful. From [Ma] we

have the following.

Proposition 5.18. Let (M, d) be a complete length space nonpositively curved in

the sense of Alexandrov and let F : M→ R ∪∞ be a lower semi-continuous, convex

functional. Let ft be the gradient-of-energy flow defined above. Then,

i. t 7→ F (ft) is convex.

ii. limt→∞ F (ft) = infu∈M F (u).

iii. If there exists a convergent subsequence {fti}, then limt→∞ ft exists and is a

minimizer of F .

We shall be particularly interested in convex functionals and their minimizers. We

have again from [Ma] the following.

Proposition 5.19. Let (M, d) be a complete length space nonpositively curved in

the sense of Alexandrov and let F : M→ R ∪∞ be a lower semi-continuous, convex

functional. f0 ∈M is a stationary point as defined above if and only if f0 minimizes

F .

Now that the norm of the gradient and Gradient-of-Energy flow are defined, we

can show that they define a flow for certain maps between polyhedra and manifolds.

We must first show that the setting considered elsewhere in this paper is a special

case of the setting used in [Ma].

Lemma 5.20. Let X be a compact Riemannian polyhedron and N a compact smooth

Riemannian manifold with nonpositive sectional curvature. Let E be the the energy

101



5.3 Gradient-of-Energy Flow

functional on L2(X,N) as in Definition 2.23 (see page 33). Then, E is a lower-

semicontinous, convex functional bounded below by 0, and the space L2(X,N) is a

complete, nonpositively curved length space with respect to the metric

dL2(f, g) :=

(∫
X

dN(f(z), g(z))2 dX

) 1
2

where dN(y0, y1) is the geodesic distance between y0, y1 ∈ N . In particular, for two

homotopic maps f1, f2 ∈ W 1,2(X,N), and ft representing the geodesic homotopy be-

tween them, we have

E(ft) ≤ (1− t)E(f0) + tE(f1)− C(1− t)t
∫
X

|∇dN(f0, f1)|2 dX, (5.10)

where C is a positive dimensional constant dependent on the top dimension of X.

Additionally, W 1,2(X,N) is a complete, nonpositively curved length space with respect

to d2
L(·, ·).

Proof. These are standard results and we refer to [EF, Chapters 9 & 11] for proofs

and a clear exposition. In particular, for the proof of Equation (5.10), see the proof

of [EF, Proposition 11.2]. For the results for W 1,2(X,N), we note that convexity

is given by Equation (5.10). By an extension of the precompactness result of [KS]

described below, we have that W 1,2(X,N) is a closed subset of L2(X,N).

We have a precompactness theorem similar to the one obtained in [KS]. For the

present setting, it is supplied by [EF].

Proposition 5.21. Let X be a compact Riemannian polyhedron and N a com-

pact smooth Riemannian manifold with nonpositive sectional curvature, and let E
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be the the energy functional on L2(X,N) as in Definition 2.23 (see page 33). If

{fα} ⊂ L2(X,N) is a set of maps bounded uniformly in W 1,2(X,N), then there is a

subsequence that converges in L2(X,N) to a map that is in W 1,2(X,N).

We now show that the harmonic map heat flow and the gradient-of-energy flow

are, in fact, the same. We begin with a definition and a lemma.

Definition 5.22. Let X be a Riemannian polyhedron and N a smooth Riemannian

manifold with nonpositive sectional curvature, and let E be the the energy functional

on W 1,2(X,N) as in Definition 2.23 (see page 33). For f0 ∈ W 1,2(X,N) such that

|∇−E|(f0) > 0, a sequence of maps {fα} ⊂ L2(X,N) converging to f0 is a (global)

maximizing realization of the gradient of energy at f0 if

lim
α→∞

E(f0)− E(fα)

dL2(f0, fα)
= lim sup

f→f0,f∈W 1,2(X,N)

E(f0)− E(f)

dL2(f0, f)

:= |∇−E|(f0).

Let Ω ⊂ X be open, connected and compactly contained and f0 be as above. Define

{
fΩ
}

:=
{
f ∈ W 1,2(X,N) | f |X\Ω

ae
= f0|X\Ω

}

A sequence of maps {fα} ⊂ W 1,2(X,N) is a locally maximizing realization of the

gradient of energy at f0 if for every open, connected, compactly contained set Ω ⊂ X,

lim
α→∞

E(f0)− E(fα|Ω)

dL2(f0, fα|Ω)
= lim sup

f→f0,f∈{fΩ}

E(f0)− E(f)

dL2(f0, f)
.

If we make assumptions about the energy and compactness we can easily see these

definitions are equivalent, as we state below.
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Lemma 5.23. Let X be a compact Riemannian polyhedron and N a compact smooth

Riemannian manifold with nonpositive sectional curvature, and let E be the the en-

ergy functional on L2(X,N) as in Definition 2.23. Let f0 ∈ W 1,2(X,N) such that

|∇−E|(f0) > 0. Then a sequence of maps {fα} ⊂ W 1,2(X,N) is a global maximizing

realization of the gradient of energy at f0 if and only if {fα} is a local maximizing

realization of the gradient of energy at f0.

We now begin the process of show that the two flows in question are equivalent.

We begin by showing that the harmonic map heat flow beginning at a suitable map

satisfies the following.

Proposition 5.24. Let X be a compact Riemannian polyhedron and N a compact

smooth Riemannian manifold with nonpositive sectional curvature, and let E be the

the energy functional as in Definition 2.23. Let f0 : X → N be in C1(X) and let f0 be

an initial map with bounded energy density such that it is not a minimizer of E, and

presume that E(ft) does not achieve a minimum on (0, T ). Let ft : X × [0, T ) → N

be a strong solution to the harmonic map heat flow as in Definition 5.9. Then, for

any fixed t0 ∈ (0, T ),

|∇−E|(ft0) = lim
t→t0

E(ft0)− E(ft)

dL2(ft0 , ft)
= ‖τ(ft0)‖L2(X) (5.11)

where τ(ft0) = ∆ft0 + A(ft0)(dft0 , dft0) is the torsion field of ft0.

The same conclusion also holds for the embedded problem.

Proof. We pick t0 > 0 to gain a bit more regularity that will be necessary to make this

result hold. We note that for a strong solution to the heat flow as in Definition 5.9,

we must necessarily have that for positive t, ft is in C1(X)∩C2
loc(X \X(n−1)) and, if
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5.3 Gradient-of-Energy Flow

ι : N → Rq is a smooth isometric embedding, (ι ◦ f0)γ ∈ Dom(∆) for each coordinate

1 ≤ γ ≤ q. In particular, this means that we have that τ(ft0) ∈ L2(X). As ft0 is not

an energy minimizer, Proposition 5.19 gives us that |∇−E|(ft0) > 0. We proceed to

prove our result by showing

‖τ(ft0)‖L2(X) ≤ |∇−E|(ft0) and ‖τ(ft0)‖L2(X) ≥ |∇−E|(ft0).

As an immediate result from the computations, we shall find that

lim
t→t0

E(ft0)− E(ft)

dL2(ft0 , ft)
= ‖τ(ft0)‖L2(X).

Step 1 : ‖τ(ft0)‖L2(X) ≤ |∇−E|(ft0).

We begin by computing (5.11) on open, connected sets compactly contained in an

n-simplex, and then take an exhaustion of sets to reach our conclusion.

Let Ω ⊂ X be an open connected set such that it is compactly contained in an

open n-simplex. Let

{
fΩ
}

:=
{
f ∈ W 1,2(X,N) | f |X\Ω

ae
= ft0 |X\Ω

}
.

Similarly, for the strong solution to the harmonic map heat flow, ft (the subscript

does not denote a time derivative), let

fΩ
t :=


ft on Ω

ft0 on X \ Ω.

105



5.3 Gradient-of-Energy Flow

Hence, we note that, if the limits exist,

lim
t→0

E(ft0)− E(fΩ
t )

dL2(ft0 , f
Ω
t )

= lim
t→0

E(ft0|Ω)− E(ft|Ω)

dL2(ft0|Ω, ft|Ω)
.

We compute the right-hand side. We note that

lim
t→t0

E(ft0 |Ω)− E(ft|Ω)

dL2(ft0|Ω, ft|Ω)
=

(
lim
t→t0

E(ft0|Ω)− E(ft|Ω)

t− t0

)(
lim
t→t0

dL2(ft0|Ω, ft|Ω)

t− t0

)−1

.

As ft|Ω is a map from a manifold to another manifold, we can follow standard argu-

ments (see [J2, Section 8.1]), to find that

lim
t→t0

E(ft0|Ω)− E(ft|Ω)

t− t0
=

∫
Ω

〈
τ(ft0), ∂

∂t
f
〉
dX

=

∫
Ω

〈τ(ft0), τ(ft0)〉 dX (5.12)

= ‖τ(ft0)|Ω‖2
L2(Ω),

as ft is a pointwise solution of ∂
∂t
ft = τ(ft) on the interior of an n-simplex. Also, we

have by similar computations

lim
t→t0

dL2(ft0|Ω, ft|Ω)

t− t0
= ‖τ(ft0)|Ω‖L2(Ω),

which, by ft0 not being an energy minimizer and Ω being large enough, is greater

than zero. Thus, we have

lim
t→t0

E(ft0)− E(fΩ
t )

dL2(ft0 , f
Ω
t )

= ‖τ(ft0)|Ω‖L2(Ω).
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Let {Ωα}α∈N be a sequence of nested, open subsets of X \ X(n−1) such that, for

each α, Ωα is bounded away from X(n−2) and {Ωα} forms an exhaustion of X (i.e.

∪∞α=1Ωα = X). We presume that Ω1 is so large that ‖τ(ft0)|Ω1‖L2(Ω1) > 0. Ob-

viously, ‖τ(ft0)|Ωα‖L2(Ωα) is an increasing sequence as α → ∞, bounded above by

‖τ(ft0)‖L2(X), which is itself bounded. Finally, we can prove

‖τ(ft0)‖L2(X) = lim
α→∞

‖τ(ft0)|Ωα‖L2(Ωα)

≤ lim
α→∞

lim sup
t→t0

E(ft0)− E(fΩα
t )

dL2(ft0 , f
Ωα
t )

(5.13)

≤ lim sup
f→ft0 ,f∈W 1,2(X,N)

F (ft0)− F (f)

dL2(ft0 , f)

= |∇−E|(ft0),

which follows by above work and the definition of |∇−E|(ft0).

Step 2 : ‖τ(ft0)‖L2(X) ≥ |∇−E|(ft0). We follow the proof of [IKN, Proposition 5.2].

By definition of |∇−E|(ft0), we have that for every ε > 0 there exists a g ∈ W 1,2(X,N)

such that

E(ft0)− E(g)

dL2(ft0 , g)
> |∇−E|(ft0)− ε.

We construct a constant speed geodesic homotopy in W 1,2(X,N) between ft0 and g

by setting a curve c : [0, 1] → W 1,2(X,N) such that for z ∈ X, c0(z) = ft0(z) and

c1(z) = g(z). The existence of such a c is guaranteed in [EF, Chapter 11]. We let c′t(z)

denote the directional derivative of c at time t at the point z (i.e. c′t(z) ∈ Tct(z)N),

and by construction we have |c′t(z)| = dN(ft0(z), g(z)). By the convexity of energy
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5.3 Gradient-of-Energy Flow

on geodesic homotopies given in Equation (5.10), we have

E(ft0)− E(ct)

t− t0
≥ E(ft0)− E(g).

We have from [EF, Chapter 11] that a geodesic homotopy is uniformly Lipschitz, so

we may compute as before

lim
t→t0

E(ft0)− E(ct)

t− t0
=

∫
X

〈c′0(z), τ(ft0)(z)〉 dX

=

∫
X

〈
dN(ft0(z), g(z))

c′0(z)

|c′0(z)|
, τ(ft0)(z)

〉
dX

=

∫
X

dN(ft0(z), g(z))

〈
c′0(z)

|c′0(z)|
, τ(ft0)(z)

〉
dX

≤
∫
X

dN(ft0(z), g(z))

〈
τ(ft0)(z)

|τ(ft0)(z)|
, τ(ft0)(z)

〉
dX

=

∫
X

dN(ft0(z), g(z))|τ(ft0)(z)| dX

≤
(∫

X

dN(ft0(z), g(z))2 dX

) 1
2
(∫

X

|τ(ft0)(z)|2 dX
) 1

2

= dL2(ft0 , g)‖τ(ft0)‖L2(X).

Hence, we have

dL2(ft0 , g) (|∇−E|(ft0)− ε) ≤ E(ft0)− E(g)

≤ lim
t→t0

E(ft0)− E(ct)

t− t0
(5.14)

≤ dL2(ft0 , g)‖τ(ft0)‖L2(X).
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This gives that for all ε > 0,

|∇−E|(ft0)− ε ≤ ‖τ(ft0)‖L2(X),

and we have by this and step 1

|∇−E|(ft0) = ‖τ(ft0)‖L2(X).

To show that

lim
t→t0

E(ft0)− E(ft)

dL2(ft0 , ft)
= ‖τ(ft0)‖L2(X)

we refer to the computation of Equation (5.12) (following [J2, Section 8.1]) and we

note that the pointwise limit for z ∈ X \X(n−1) is

lim
t→t0

1

t
(〈∇ft0(z),∇ft0(z)〉 − 〈∇ft(z),∇ft(z)〉) = τ(ft0(z))2.

We recall that τ(ft0) = ∆ft0 + A(ft0)(dft0 , dft0) and that |∆ft0| ∈ L2(X) and

|A(ft0)(dft0 , dft0)| ∈ L∞(X).

Hence, |τ(ft0)| ∈ L2(X) and we have by dominated convergence from Equation (5.13)

that

lim
t→t0

E(ft0)− E(ft)

dL2(ft0 , ft)
= ‖τ(ft0)‖L2(X).

We now require one last result regarding the uniqueness of the Gradient-of-Energy

flow given in [Ma, Theorem 2.16].
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Proposition 5.25. Let X be a compact Riemannian polyhedron and N a compact

smooth Riemannian manifold with nonpositive sectional curvature, and let E be the

the energy functional as in Definition 2.23. Let f0 ∈ W 1,2(X,N) such that 0 <

|∇−E|(f0) < ∞ and let ft denote the Gradient-of-Energy flow starting at f0. Also,

let {gα} ⊂ W 1,2(X,N) be a sequence of maps tending to f0 such that

lim
α→∞

E(f0)− E(gα)

dL2(f0, gα)
= |∇−E|(f0).

Then there exists a sequence tα → 0 such that

lim
α→∞

dL2(ftα , gα)

dL2(f0, gα)
= 0.

We can now show that the Gradient-of-Energy flow and the harmonic map heat

flow are identical as long as the initial map is sufficiently well behaved.

Proposition 5.26. Let X be a compact Riemannian polyhedron and N a compact

smooth Riemannian manifold with nonpositive sectional curvature, and let E be the

the energy functional as in Definition 2.23. For a C1 initial map f0 : X → N with

bounded energy density, let f̃t : X × [0, T )→ N be a strong solution to the harmonic

map heat flow as in Definition 5.9, and let ft : X × [0, T ) → N denote the gradient-

of-energy flow beginning at f0 as above. Then for all 0 < t < T , and almost all

z ∈ X

ft(z) = f̃t(z).

Proof. Our approach is to create a function D(t) := dL2(ft, f̃t), and show that it is

continuous with initial value D(0) = 0 and D′(t) is defined for all t > 0 and D′(t) = 0
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5.3 Gradient-of-Energy Flow

and, hence, D(t) = 0 on all of [0, T ) and ft and f̃t must be equal almost everywhere.

We presume without loss of generality that E(ft) and E(f̃t) do not achieve minimums

on [0, T ) for, if they do, each flow must remain constant after such a time and the

statement becomes trivial.

We note that for a map g ∈ W 1,2(X,N), dL2(ft, g) and dL2(f̃t, g) are both contin-

uous functions of t, so continuity of D(t) is immediate.

We now show that D′(t) is defined for all 0 < t < T and is always zero. We use

Propositions 5.24 and 5.26. Fix t0 ∈ (0, T ). By Proposition 5.24, we have that

lim
t→t0

E(ft0)− E(f̃t)

dL2(ft0 , f̃t)
= |∇−E|(ft0),

so we may apply Proposition 5.26 and have that we have that for any sequence tα → t0

there exists a sequence t′α → t0 such that

lim
α→∞

dL2(ft′α , f̃tα)

dL2(ft0 , f̃tα)
= 0.

From the construction of the sequence {t′α} given {tα} in the proof of [Ma, Theorem

2.16], we see that the sequences must be equal. That is, {t′α} = {tα}. We note that

dL2(ftα , f̃tα)

dL2(ft0 , f̃tα)
=

(
dL2(ftα , f̃tα)

tα − t0

)(
dL2(ft0 , f̃tα)

tα − t0

)−1

.

By ft0 not being an energy minimizer, we have from work in Proposition 5.24

lim
tα→t0

dL2(ft0 , f̃tα)

tα − t0
= ‖τ(ft0)‖L2(X) > 0.
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Hence, we have that

lim
tα→t0

dL2(ftα , f̃tα)

tα − t0
= 0

and, as our choice of sequence was arbitrary, D′(t0) = 0. Although we apply this

argument at t = t0, we can easily reconstruct it for any 0 < t0 < T , and we have for

all 0 < t < T , D′(t) = 0. Also by D(t) continuous and D(0) = 0, D(t) must be zero

everywhere.

We now that we have shown the two flows are identical on intervals on which they

are defined, we now glean some properties of the harmonic map heat flow quite easily.

Proposition 5.27. Let X be a compact Riemannian polyhedron and N a compact

smooth Riemannian manifold with nonpositive sectional curvature, and let E be the

the energy functional as in Definition 2.23. For a C1 initial map ft0 : X → N with

bounded energy density, suppose that ft : X × [0, T ) → N is a strong solution to the

harmonic map heat flow as in Definition 5.9. Then ft has the following properties.

i. ft is a semigroup (i.e. for s, t > 0, (ft)s = ft+s).

ii. ‖ ∂
∂t
ft‖L2(= ‖τ(ft)‖L2) is monotonically non-increasing in t on [0, T ). Also, if

T =∞, lim
t→∞
‖ ∂
∂t
ft‖L2 = 0.

iii. t 7→ E(ft) is monotonically non-increasing and convex on [0, T ).

iv. If T =∞, then limt→∞E(ft) = infu∈W 1,2(X,N)E(u).

v. If T =∞, then limt→∞ ft exists and is harmonic (i.e. is a minimizer of E).

Proof. We begin by noting that Lemma 5.20 and Proposition 5.26 imply that we

can use Propositions 5.17, 5.18 and 5.24. The only statement that does not follow
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directly is the last one. We can see that ft as t → ∞ is a minimizing sequence,

and so we may apply the precompactness result of Proposition 5.21, which shows

the existence of a convergent subsequence. We can then apply the last statement of

Proposition 5.18.

Remark 5.28. We note that the preceding theorem, part of the statement presumes

the existence of a harmonic map heat flow. That is an assumption we have not yet

justified, but is proven in the following sections.

5.4 Short-Time Existence of a Solution for Initial Data with

Bounded Energy Density

Our approach is to show that if one prescribes a C1 map f , one can embed the target

in Euclidean space (say via a smooth embedding ι) and find a solution to the heat flow

equation with initial data ι◦f . This is not as simple as the case where the target is R

(treated in previous sections). Curvature of the target will become an issue. Indeed,

we show that we can find a sequence of maps that converge to a strong solution to

the heat flow. Following the observation of Proposition 5.13, we wish to prove that

for X compact and simplex-wise flat and f0 ∈ C1(X,N), there exists T > 0, such

that a strong solution with initial value F0 := ι ◦ f0 exists on X × [0, T ). We develop

a sequence of maps that will converge to (5.9). Specifically, fix a map f0 : X → N

such that f0 is C1 with bounded energy density. Let F0 = ι ◦ f0, where ι : N ↪→ Rq is

isometric. Also, let

h : X ×X × R+ → R
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denote the heat kernel of Proposition 4.4. We develop a sequence of maps,
{
W l
}∞
l=0

,

such that

W l(z, t) = (W l,1(z, t),W l,2(z, t), . . . ,W l,q(z, t)),

and are defined as follows:

W 0,γ(z, t) =

∫
X

h(z, v, t)F γ
0 dv,

W l,γ(z, t) =

∫ t

0

∫
X

h(z, v, t− τ)Gl−1,γ(v, τ) dv dτ +W 0,γ(z, t),

 (5.15)

where

Gl,γ(v, τ) = Aγαβ(W l)

(
∂W l,α

∂vi

)(
∂W l,β

∂vj

)
gij.

We shall show that these maps converge to a solution of (5.9). We follow the argu-

ments of [ES].

Proposition 5.29. Let X be compact and let ι : N ↪→ Rq be a smooth isometric

embedding. Let F0 : X → ι(N) ⊂ Rq be in C1. Let
{
W l : X → Rq

}∞
l=0

be the maps

described in equation (5.15). Then, there exists T ≥ 0, such that

lim
l→∞

W l(z, t) = W (z, t)

uniformly in C1 on X×[0, T ), where W (z, t) is a strong embedded solution with initial

value F0 on X × [0, T ). Also W (z, t) ∈ C1+α,1+β
loc (X \ X(n−2) × [0, T ), ι(N)), where

ι(N) ⊂ Rq. Additionally, W satisfies all of the conclusions of Proposition 4.28.

Proof. To show convergence, we follow the arguments of [ES, Section 10] nearly ver-

batim. Of particular interest here is that the maps
{
W l(z, t)

}
converge in energy to
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a map, W (z, t), which satisfies in each coordinate 1 ≤ γ ≤ q

W γ(z, t) =

∫ t

0

∫
X

h(z, v, t− τ)Gγ(v, τ) dµ(v)dτ

+

∫
X

h(z, v, t)F0(v) dµ(v), (5.16)

where

Gγ(v, τ) = Aγαβ

(
∂Wα

∂vi

)(
∂W β

∂vj

)
gij.

We recall our approximating maps are defined as follows.

W 0,γ(z, t) =

∫
X

h(z, v, t)F γ
0 (v) dv,

W l,γ(z, t) =

∫ t

0

∫
X

h(z, v, t− τ)Gl−1,γ(v, τ) dv dτ +W 0,γ(z, t).

 (5.17)

For notational simplicity, in local coordinates, let the subscript i denote a derivative

in the ith coordinate and hence let

W l,α
i :=

∂W l,α

∂vi
.

Also, let

el(τ) := sup
z∈X

(
q∑

γ=1

W l,γ
i (z, τ)W l,γ

j (z, τ)gij

) 1
2

.

From Theorem 4.18 we have bounds on the gradient of the heat kernel and so, fol-

lowing Proposition 4.26, in local coordinates we have

W l,γ
i (z, t) =

∫ t

0

∫
X

hi(z, v, t− τ)Gl−1,γ(v, τ) dv dτ +W 0,γ
i (z, t).
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From the bounds on Aγαβ, g, and on
∫
t

∫
X
|hi(z, v, τ)| dµ(v)dτ from Theorem 4.18 and

Proposition 4.26, we again compute

el(t) ≤ C

∫ t

0

(t− τ)−
1
2 (el−1(τ))2 dτ + e0(t),

for t ∈ [0, ε], and C is not dependent on the choice of the initial map. Let

ēl := sup
t∈[0,ε]

el(t).

From the above, we have

ēl ≤ 2C
√
ε(ēl−1)2 + ē0.

If 2C
√
εēl−1 ≤ 1

2
and 2C

√
εē0 ≤ 1

4
, then

2C
√
εēl ≤

(
2C
√
εēl−1

)2
+ 2C

√
εē0 ≤ 1

2
.

Hence, by induction, we have that W l(z, t) ∈ V and ēl ≤ C
√
ε for all t ∈ [0, ε] and

all l ∈ N, as W l(z, 0) ∈ ι(N) ⊂ Ñ and we have a uniform bound on the energy given

that scales as
√
ε for t ∈ [0, ε].

We can now show the convergence of the maps
{
W l
}

to W in energy. Let

K l(t) = sup
z∈X\X(n−1)

1≤γ≤q

∣∣W l,γ(z, t)−W l−1,γ(z, t)
∣∣+

sup
z∈X\X(n−1)

1≤γ≤q

∣∣∣gij (W l,γ
i (z, t)−W l−1,γ

i (z, t)
)(

W l,γ
j (z, t)−W l−1,γ

j (z, t)
)∣∣∣ 1

2

We see that examining the terms in this expression relies on information about Gl,γ−
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Gl−1,γ. We compute

Gl,γ −Gl−1,γ = Aγαβ(W l−1)
(
W l,α
i W l,β

j −W
l−1,α
i W l−1,β

j

)
gij

+
(
Aγαβ(W l)− Aγαβ(W l−1)

)
W l,α
i W l,β

j gij.

By a judicious use of Talyor’s theorem, bounds on Aγαβ and its first-order derivatives,

and the Cauchy-Schwarz inequality for bilinear forms, we have

∣∣Gl,γ −Gl−1,γ
∣∣ ≤ C ′

(
ēl + ēl−1 + (ēl)2

)
K l(t).

By our bounds on ēl above, we have

∣∣Gl,γ −Gl−1,γ
∣∣ ≤ C ′

(
C
√
ε+ C2ε

)
K l(t)

= C ′′K l(t).

By the conservativeness of h(z, v, t) of Proposition 4.13, the Gaussian bounds of

Theorem 4.18 and Proposition 4.26, we can show

K l+1(t) ≤ C ′′′
∫ t

0

(t− τ)−
1
2K l(τ) dτ.

Let

K̄ l(t) sup
τ∈[0,t]

K l(τ).

Then, for all l ∈ N, we have

K̄ l(t) ≤ (2C ′′′
√
t)lK̄0(t),
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and so, for sufficiently small t > 0, which we now let be T , we have convergence of

∞∑
0

K̄ l(t).

Hence, we have our sequence of maps
{
W l
}∞
l=0

converging uniformly in C1 on [0, T ),

T > 0. Thus, the terms Gl,γ = Aγαβ(W l)W l,α
i W l,β

j gij must converge, too. The

limit of
{
W l
}∞

0
must be W as in equation (5.16) with continuous first-order deriva-

tives, and the limit of
{
Gl
}

must be G which, for each coordinate γ, satisfies Gγ =

Aγαβ(W )Wα
i W

β
j g

ij. By the definition of W in equation (5.16) and by the continuity

of h(z, v, t), we have that W must be continuous in space with continuous first-order

spacial derivatives on all X. To see this is a strong solution and achieve higher

regularity we can apply Proposition 5.15 (see also Proposition 4.28).

To show long term existence, we will need to show that the energy density stays

bounded on compact time intervals. We begin this by examining how scaling the

metric on the target affects the embedding, the solution and its energy density. We

have some elementary observations. As we are considering N as embedded in Rq,

we track how scaling the metric of the compact, smooth Riemannian manifold (N, h)

affects the embedding. Indeed, let δ ∈ (0,∞) and define hδ := δh, and, by abuse

of notation, let Nδ := (N, hδ). Given the isometric embedding ι : N → Rq, defined

locally near y ∈ N as

ι(y1, . . . , yn) = (ι1(y1, . . . , yn), . . . , ιq(y1, . . . , yn)),
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we can define an isometric embedding ιδ : Nδ → Rq as

ιδ(y
1, . . . , yn) := (φ(δ)ι1(y1, . . . , yn), . . . , φ(δ)ιq(y1, . . . , yn))

:= (ι1δ(y
1, . . . , yn), . . . , ιqδ(y

1, . . . , yn)),

where φ(δ) =
√
δ. Let Ñ be an open, tubular neighborhood of ι(N) in Rq such that

the nearest-point projection map π : Ñ → ι(N) is well defined. For Nδ we can define

Ñδ and πδ similarly by scaling the (global) coordinates each by a factor of
√
δ. Hence,

we have

πδ(z
1, . . . , zq) := φ(δ)π(z1, . . . , zq)

= (φ(δ)π1(z1, . . . , zq), . . . , φ(δ)πq(z1, . . . , zq))

:= (π1
δ (z

1, . . . , zq), . . . , πqδ(z
1, . . . , zq)).

Thus, Ñδ is a tubular neighborhood of ιδ(Nδ) and πδ is a nearest-point projection

map of Ñδ onto ιδ(Nδ). We have the following.

Lemma 5.30. Let X be a compact, simplexwise flat Riemannian polyhedron, N a

compact Riemannian manifold with Riemannian metric h, ι : N ↪→ Rq a smooth

isometric embedding, F0 : X → ι(N) ⊂ Rq a map in C1 and F : X × [0, T ) → Rq a

strong embedded solution to the heat flow with initial value F0. Notably, F satisfies

(
∂

∂t
−∆

)
F γ =

∑
i,α,β

Aγαβ(F )
∂F α

∂xi

∂F β

∂xi
on X \X(n−1) × (0, T )

lim
t→0

F (·, t) = F0 in C0.


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Additionally, let δ ∈ (0,∞), and let Ñ , π, Ñδ, πδ, and ιδ be as above. If hδ is the

metric h scaled by δ (i.e. hδ = δh), then ιδ is an isometric embedding of Nδ in Rq,

and for the corresponding initial map F0,δ : X → ιδ(N)(⊂ Rq) given by

F0,δ(z) =
√
δF0(z)

the strong embedded solution to the heat flow with initial value F0,δ, denoted Fδ, exists

on X × [0, T ) and satisfies

(
∂

∂t
−∆

)
F γ
δ =

∑
i,α,β

δA
γ
αβ(Fδ)

∂F α
δ

∂xi

∂F β
δ

∂xi
on X \X(n−1) × (0, T )

lim
t→0

Fδ(·, t) = F0,δ in C0,


where

δA
γ
αβ =

√
δAγαβ.

Additionally, for on X \X(n−1) × [0, T )

Fδ(z, t) =
√
δF (z, t)

and

e(Fδ(z, t)) = δe(F (z, t)).

The converse also holds.

Proof. We compare the flows of maps between X and N , and between X and Nδ. We

note that the flow from X to ι(N) beginning at F0, denoted F , satisfies on X \X(n−1)
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in each coordinate 1 ≤ γ ≤ q,

(
∂

∂t
−∆

)
F γ =

∑
i,α,β

Aγαβ(F )
∂F α

∂xi

∂F β

∂xi
, (5.18)

where Aγαβ := ∂2πγ

∂zα∂zβ
with {zi}, denoting the standard coordinates of Rq, and where

π is the nearest-point projection of Ñ to ι(N). Similarly, the flow from X to ιδ(Nδ)

beginning at F0,δ, denoted Fδ, satisfies on X \X(n−1)

(
∂

∂t
−∆

)
F γ
δ =

∑
i,α,β

δA
γ
αβ(Fδ)

∂Fα
δ

∂xi

∂F β
δ

∂xi
, (5.19)

where δA
γ
αβ :=

∂2πγδ
∂zα∂zβ

, where πδ is defined above. We note that the only difference

between the equations are the coefficients δA
γ
αβ and Aγαβ. We note the by the definition

of each coefficient and the definitions of π and πδ, they are related by

δA
γ
αβ :=

∂2πγδ
∂zα∂zβ

=
√
δ
∂2πγ

∂zα∂zβ

=
√
δAγαβ.

From this observation, the rest of statement follows easily.

Proposition 5.31. Let X be simplexwise flat, ι : N ↪→ Rq be a smooth isometric

embedding, and F : X × [0, T ) → Rq be a strong embedded solution to the heat flow

with initial value F0. Also, let F0 have bounded energy density. Then, the energy
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density is essentially bounded on [0, T ), 0 < T <∞. Specifically, we have

ess sup
X×(0,T )

e(F (z, t)) ≤ C

where C is dependent on F0, T,X and N .

Proof. Our approach is to scale the metric of N and use the previous short-time

existence argument of Proposition 5.29 (see page 114), which shows there always

exists ε = ε(sup e(F0)) > 0 such that the essential supremum of the energy of the

flow on [0, ε) is bounded. As N is a smooth, compact Riemannian manifold, for each

k ∈ N, there exists a constant C dependent on N and k such that Aγαβ corresponding

to the embedding of N in Rq and all of its derivatives of order k or less are bounded

by C. Hence, by the preceding Lemma 5.30, for every B > 0 and k ∈ N, there exists

δ ∈ (0, 1) such that if we scale the metric of N by δ, δA
γ
αβ (corresponding to the

embedding of Nδ in Rq) and all of its derivatives of order k or less are bounded by B.

We now reexamine the short-time existence of Proposition 5.29. We recall that in

Proposition 5.29, we show that there exists a time interval (possibly small) such that

a sequence of approximating maps converge in C1 to a solution on this interval. We

also recall some of the definitions. The approximating maps to a strong embedded

solution with initial map F0 are given as

W 0,γ(z, t) =

∫
X

h(z, v, t)F γ
0 (v) dv,

W l,γ(z, t) =

∫ t

0

∫
X

h(z, v, t− τ)Gl−1,γ(v, τ) dv dτ +W 0,γ(z, t).

 (5.20)
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Let the subscript i denote a derivative in the ith coordinate and hence let

W l,α
i :=

∂W l,α

∂vi
.

Also, recall

el(τ) := sup
z∈X

(
q∑

γ=1

W l,γ
i (z, τ)W l,γ

j (z, τ)gij

) 1
2

.

We have from equation (5.17) in local coordinates

W l,γ
i (z, t) =

∫ t

0

∫
X

hi(z, v, t− τ)Gl−1,γ(v, τ) dv dτ +W 0,γ
i (z, t). (5.21)

By Proposition 5.29, we have that there exists ε dependent on the energy density of

the initial map F0 such that a solution exists with bounded energy density on the

time interval [0, ε). Let |Aγαβ| < B, and let C > 0 be such that
∫
X
|hi(z, v, t)| dµ(v) <

Ct−1/2, the existence of which is guaranteed by Theorem 4.18 and Proposition 4.26.

Hence we compute from Equation (5.21),

el(t) ≤ BC

∫ t

0

(t− τ)−
1
2 (el−1(τ))2 dτ + e0(t),

for t ∈ [0, ε]. We note that B,C are not dependent on the choice of the initial map.

Let

ēl := sup
t∈[0,ε1]

el(t).

From the above, we have

ēl ≤ 2BC
√
ε(ēl−1)2 + ē0.
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If 2BC
√
εēl−1 ≤ 1

2
and 2BC

√
εē0 ≤ 1

4
, then

2BC
√
εēl ≤

(
2BC

√
εēl−1

)2
+ 2BC

√
εē0 ≤ 1

2
.

By induction, we have that for all l ∈ N, ēl ≤ (4BC
√
ε)−1 as long as

√
ε ≤ (8BCē0)−1.

Hence, as W l converges to a limit in C1 as l→∞, ēl converges to supX×[0,ε) e(F (z, t)).

We have that
√
ε ≤ (8BCē0)−1 implies that

sup
X×[0,ε)

e(F (z, t)) ≤ 1

4BC
√
ε
.

We can show from the Markov property of Proposition 4.4 and Lemma 4.6 that

ē0 ≤ e0(0) and, as a consequence of Theorem 4.18 and Proposition 4.26, e0(0) =

supX e(F0(z)). Thus,

√
ε ≤ 1

8BC supX e(F0(z))
=⇒ sup

X×[0,ε)

e(F (z, t)) ≤ 1

4BC
√
ε
. (5.22)

We now show that for any T > 0, a solution to the embedded heat flow problem

exists on [0, T ) for an initial map F0 with bounded energy density, and this solution

has bounded energy density on [0, T ). Pick any T > 0. By our previous work, there

exists δ ∈ (0, 1) such that the B satisfying | δA
γ
αβ| < B can be made arbitrarily small.

So, pick δ small so that
√
T ≤ 1

8BC supX e(F0,δ(z))
,

where we note that supX e(F0,δ(z)) is monotonically non-increasing as δ goes to zero.
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By Equation (5.22), we find that

√
T ≤ 1

8BC supX e(F0,δ(z))
=⇒ sup

X×[0,T )

e(Fδ(z, t)) ≤
1

4BC
√
T
.

We note that by scaling the metric of the target,

sup
X×[0,T )

e(Fδ(z, t)) = δ sup
X×[0,T )

e(F (z, t))

Hence,

sup
X×[0,T )

e(F (z, t)) ≤ 1

4δBC
√
T

5.5 Schauder Estimates of Elliptic- and Parabolic-type Equa-

tions

Although we have provided regularity properties in previous sections, we will find

Schauder and Lp estimates of elliptic- and parabolic-type equations useful here and

interrupt our exposition to explore them before returning to our examination of long-

time solutions to the heat flow. We follow and extend a method proposed in [DM3].

For results for elliptic and parabolic differential equations in smooth domains, see

[GT] and [LSU], respectively.

We begin by citing a few fundamental results for elliptic differential equations for

smooth domains from [GT].

Definition 5.32 (Hölder norms). Let Ω ⊂ Rn be open, and let 0 < α < 1. f : Ω→ R
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is uniformly Hölder continuous with exponent α, if

sup
p,q∈Ω,p6=q

|f(p)− f(q)|
|p− q|α

≤ ∞.

We define the following semi-norms and norms for an integer k ≥ 0.

[f ]Cα(Ω) := sup
p,q∈Ω,p6=q

|f(p)− f(q)|
|p− q|α

.

|f |Ck+α(Ω) :=
∑

0≤|γ|≤k

[Dγf ]Cα(Ω),

where γ is a multi-index.

Additionally, for p, q ∈ Ω define dp := dist(p, ∂Ω) and dp,q := min {dp, dq}. For

ρ ∈ R, define

[f ]
(ρ)

Ck(Ω)
:= sup

p∈Ω,|γ|=k
dk+ρ
p |Dγf(p)|

[f ]
(ρ)

Ck+α(Ω)
:= sup

p,q∈Ω,|γ|=k
dk+α+ρ
p,q

|Dγf(p)−Dγf(q)|
|p− q|α

|f |(ρ)

Ck(Ω)
:=

k∑
i=0

[f ]
(ρ)

Ci(Ω)

|f |(ρ)

Ck+α(Ω)
:= |f |(ρ)

Ck(Ω)
+ [f ]

(ρ)

Ck+α(Ω)
.

See [GT, Theorem 6.2] for the following result.

Proposition 5.33 (Interior elliptic Schauder estimate for classical solutions). Let

Ω ⊂ Rn be an open domain. Let u ∈ C2+α(Ω) be a classical solution to the elliptic
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equation Lu = f for some f ∈ Cα(Ω), where L is the elliptic operator defined by

Lu(z) =
n∑

i,j=1

aij(z)Diju(z) + bi(z)Diu(z) + c(z)u(z).

with coefficients such that |aij|(0)
Cα(Ω), |bij|

(1)
Cα(Ω), |c|

(2)
Cα(Ω) ≤ D <∞. Then

|u|(0)

C2+α(Ω) ≤ C
(
|u|C0(Ω) + |f |(2)

Cα(Ω)

)
.

See [GT, Theorem 8.32] for the following result.

Proposition 5.34 (Interior elliptic Schauder estimate for C1+α weak solutions).

Let Ω ⊂ Rn be a bounded open domain. Let u ∈ C1+α(Ω) be a weak solution to the

elliptic equation Lu = g+
∑

iDifi, where L is the strictly elliptic operator defined by

Lu(z) =
n∑

i,j=1

Di (aij(z)Dju(z) + bi(z)u(z)) + ci(z)Diu(z) + d(z)u(z),

and the coefficients of L, fi, and g are locally integrable, and

max
i,j

{
|aij|Cα(Ω), |bi|Cα(Ω), |ci|C0(Ω), |d|C0(Ω)

}
≤ B.

Then for any compactly contained Ω′ ⊂ Ω, we have

|u|C1+α(Ω′) ≤ C

(
|u|C0(Ω) + |g|C0(Ω) +

∑
i

|fi|Cα(Ω)

)

where C = C (n,B,Λ, dist(∂Ω,Ω′)) and Λ is the constant of ellipicity.

Proposition 5.35 (See [GT, Theorem 9.19]). Let Ω ⊂ Rn be an open domain. Let
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u ∈ W 2,2
loc (Ω) satisfy the elliptic equation Lu = f almost everywhere, where L is the

elliptic operator defined by

Lu(z) =
n∑

i,j=1

aij(z)Diju(z) + bi(z)Diu(z) + c(z)u(z).

If aij, bi, c, f ∈ Ck−1+α(Ω) for some k(∈ N) ≥ 1, 0 < α < 1, then u ∈ Ck+1+α(Ω).

Additionally, if Ω ∈ Ck+1+α, L is strictly elliptic in Ω and aij, bi, c, f ∈ Ck−1+α(Ω),

then u ∈ Ck+1+α(Ω).

Proposition 5.36 (Elliptic Lp Estimate, see [GT, Theorem 9.19]). Let Ω ⊂ Rn be an

open domain. Let u ∈ W 2,2
loc (Ω) satisfy the elliptic equation Lu = f almost everywhere,

where L is as above. If all (k−1)-order derivatives of aij, bi, c are Lipschitz on Ω and

f ∈ W k,2
loc (Ω) for some k(∈ N) ≥ 1, then u ∈ W k+2,2

loc (Ω).

We now use a construction of [DM3] to create a solution to a particular differential

equation on a ball in Rn where we can apply these estimates to arrive at a Schauder-

type estimate for harmonic maps in neighborhoods away from X(n−2).

Proposition 5.37. Let u : X → N(⊂ Rq) be a harmonic map. Then for some

0 < α < 1, u ∈ C1+α
loc (X \ X(n−2)) ∩ W 2,2

loc (X \ X(n−2)), and we have the following

estimate. For every open Ω ⊂ X \X(n−2),

|u|C1+α(Ω′) ≤ C
(
|u|C0(Ω) + |∆u|C0(Ω)

)
(5.23)

where C = C (n,B,Λ, dist(∂Ω,Ω′)), Λ is the constant of ellipicity, and Ω′ ⊂ Ω is any

compactly contained open subset.

Proof. Without loss of generality, we proceed locally and prove the estimate in a

128



5.5 Schauder Estimates of Elliptic- and Parabolic-type Equations

ball around a point p. Obviously for any sufficiently small neighborhood of a point

p ∈ X \X(n−1) this follows from established results. Hence, let p ∈ X(n−1) \X(n−2).

Let {sj}Jj=1 denote all of the n-simplexes adjacent to p meeting on an (n− 1)-face F .

Define uj := u|sj . Let 1 ≤ γ ≤ q. Also let R > 0 be such that B(p,R) ∩X(n−2) = ∅

and B(p,R) ⊂ ∪Jj=1sj, and pick edge coordinates centered at p so that for each uj,

(x1, . . . , xn−1, 0) denotes points on F and (0, . . . , 0) denotes p. For each 1 ≤ γ ≤ q

and 1 ≤ k ≤ J , we construct uγk : B(0, R)→ R as

uγk(x̄, xn) :=


uγk(x̄, xn), xn ≥ 0

−uγk(x̄,−xn) +
2

J

J∑
j=1

uγj (x̄,−xn), xn < 0

where x̄ = (x1, . . . , xn−1). Also, let

φγk(x̄, xn) :=
∑
α,β,i

Aγαβ (uk(x̄, xn))
∂uαk
∂xi

(x̄, xn)
∂uβk
∂xi

(x̄, xn),

and similarly define

A
γ

k(x̄, xn) :=


φγk(x̄, xn), xn ≥ 0

−φγk(x̄,−xn) +
2

J

J∑
j=1

φγj (x̄,−xn), xn < 0

Clearly, on B(0, R) \ {xn = 0}, ∆uγk = A
γ

k and uγk is C∞ on this set. We also see

that A
γ

k(x̄, xn) is bounded on B(0, R). By u harmonic, it satisfies the balancing and

matching conditions and we can see that each uγk is a weak solution to

∆uγk = A
γ

k.
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From general results in elliptic partial differential equations (see in particular Propo-

sition 5.34), we can show that each uγk is in W 2,2(B(0, r)) and C1+α(B(0, r)) for any

0 < r < R. Also, as A
γ

k ∈ C0(B(0, R)), we may apply Proposition 5.34 to show

|uγk|C1+α(B(0,r)) ≤ C
(
|uγk|C0(B(0,R)) + |Aγk|C0(B(0,R))

)
,

where C = C(X, |R− r|) for any 1 ≤ γ ≤ q and 1 ≤ k ≤ J . Hence, we conclude that

for r < R,

|u|C1+α(B(p,r)) ≤ C

|u|C0(B(0,R)) +

∣∣∣∣∣∑
α,β,i

Aγαβ
∂uα

∂xi

∂uβ

∂xi

∣∣∣∣∣
C0(B(0,R))

 .

Proposition 5.38. Let u : X×R≥0 → N(⊂ Rq) be a strong solution to the embedded

heat flow with initial value f0. Then for some 0 < α < 1, u ∈ C1+α
loc (X \ X(n−2)) ∩

W 2,2
loc (X \X(n−2)), and we have the following estimate. For every open Ω ⊂ X \X(n−2)

and each t ≥ 0,

|u(·, t)|C1+α(Ω′) ≤ C

(
|u(·, t)|C0(Ω) +

∣∣∣∣∂u∂t (·, t)
∣∣∣∣
C0(Ω)

+

∣∣∣∣∣∑
α,β,i

Aγαβ(u(·, t))∂u
α

∂xi
(·, t)∂u

β

∂xi
(·, t)

∣∣∣∣∣
C0(Ω)

)
, (5.24)

where C = C (n,B,Λ, dist(∂Ω,Ω′)), Λ is the constant of ellipicity, and Ω′ ⊂ Ω is any

compactly contained subset.

Proof. We can follow the preceding argument for the elliptic case almost verbatim.

Indeed, we can treat the parabolic case here by noting that for a parabolic solution,
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it is elliptic in the sense that it satisfies (strongly)

∆uγ =
∂uγ

∂t
+
∑
α,β,i

Aγαβ(u)
∂uα

∂xi

∂uβ

∂xi
,

where we treat the entirety of the right-hand side as the inhomogeneous part. Specif-

ically, let p ∈ X(n−1) \X(n−2). Let {sj}Jj=1 denote all of the n-simplexes adjacent to

p meeting on an (n − 1)-face F . Define uj := u|sj . Let 1 ≤ γ ≤ q. Also let R > 0

be such that B(p,R) ∩X(n−2) = ∅ and B(p,R) ⊂ ∪Jj=1sj, and pick edge coordinates

centered at p so that for each uj, (x1, . . . , xn−1, 0) denotes points on F and (0, . . . , 0)

denotes p. For each 1 ≤ γ ≤ q and 1 ≤ k ≤ J , we construct uγk : B(0, R)× R≥0 → R

as

uγk
(
(x̄, xn), t

)
:=


uγk
(
(x̄, xn), t

)
, xn ≥ 0

−uγk
(
(x̄,−xn), t

)
+

2

J

J∑
j=1

uγj
(
(x̄,−xn), t

)
, xn < 0

(5.25)

where x̄ = (x1, . . . , xn−1). Also, let

φγk
(
(x̄, xn), t

)
:=
∑
α,β,i

Aγαβ
(
uk
(
(x̄, xn), t

)) ∂uαk
∂xi

(
(x̄, xn), t

)∂uβk
∂xi

(
(x̄, xn), t

)
, (5.26)

and similarly define

A
γ

k

(
(x̄, xn), t

)
:=


φγk
(
(x̄, xn), t

)
, xn ≥ 0

−φγk
(
(x̄,−xn), t

)
+

2

J

J∑
j=1

φγj
(
(x̄,−xn), t

)
, xn < 0

(5.27)

From here, we proceed as in the elliptic case (Proposition 5.37) and apply Proposi-
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tion 5.34 as before.

We require a parabolic version of this elliptic result to get Hölder continuity with

respect to time. This will be important to show that the limit map for the heat flow

as time goes to infinity is balanced. We first introduce relevant norms.

Definition 5.39 (Hölder norms with time). Let Ω ⊂ Rn be open, T > 0, and define

QT := Ω× (0, T ). We define the following semi-norms and norms for 0 < α < 1. For

continuous f : QT → R define

[f ]Cαx (QT ) := sup
(p,t),(q,s)∈QT ,p6=q

|f(p)− f(q)|
|p− q|α

[f ]Cαt (QT ) := sup
(p,t),(q,s)∈QT ,t6=s

|f(p)− f(q)|
|t− s|α

|f |Cα(QT ) := [f ]Cαx (QT ) + [f ]
C
α/2
t (QT )

.

We additionally define the norms for j ∈ N

[f ]C0(QT ) := |f |C0(QT ) = sup
(p,t)∈QT

|f(p, t)|

[f ]Cj(QT ) :=
∑

2k+l=j

[(
∂
∂t

)k ( ∂
∂x

)l
f
]
C0(QT )

|f |Cj(QT ) :=

j∑
i=1

[f ]Cj(QT ),

where
(
∂
∂x

)l
= ∂

∂xi1

∂
∂xi2
· · · ∂

∂xil
, and

(
∂
∂t

)k
denotes differentiation with respect to t

applied k times.

Finally, for Hölder norms with exponent j + α, where j ∈ N and 0 < α < 1, we
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have

[f ]Cj+αx (QT ) :=
∑

2k+l=j

[(
∂
∂t

)k ( ∂
∂x

)l
f
]
Cαx (QT )

[f ]Cj+αt (QT ) :=
∑

0<2j+2α−2r−s<2

[(
∂
∂t

)r ( ∂
∂x

)s
f
]
C

2j+2α−2r−s
2

t (QT )

[f ]Cj+α(QT ) := [f ]Cj+αx (QT ) + [f ]
C

(j+α)/2
t (QT )

|f |Cj+α(QT ) := [f ]Cj+α(QT ) +

j∑
i=0

[f ]Ci(QT ).

We can now proceed stating a classical result of [LSU].

Proposition 5.40 (See [LSU, Theorem 1.1, Chapter VI]). Let Ω be an open domain

in Rn, QT := Ω × (0, T ) for fixed T > 0, and let u : QT → R be a weak solution to

the equation (
∂

∂t
−∆

)
u = f(x, t, u,Du),

such that u is continuous in QT , ∂
∂t
u ∈ L2(QT ), and first-order derivatives of u are

bounded in QT . Then, first-order derivatives of u are Hölder continuous on QT and,

for any compactly contained Q′ ⊂ QT , there exists α ∈ (0, 1) and C > 0 such that

[Du]Cα(Q′) ≤ C,

where α is dependent on supQT |Du|, n and supQT |f(x, t, u,Du)|, and C is addition-

ally dependent on dist(Q′, ∂QT ).

Additionally, if |Du(·, 0)|Cβ(Ω) is bounded, then for any compactly contained Ω′ ⊂

Ω (Q′T := Ω′ × (0, T )),

[Du]Cα(Q′T ) ≤ C,
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where C is dependent on supQT |Du|, n, supQT |f(x, t, u,Du)|, |Du(·, 0)|Cβ(Ω), dist(∂Ω,Ω′),

and β(≥ α).

The result cited in [LSU] is more general that what is stated here, but we select

only what we need for subsequent results. We note that if u(·, 0) has Hölder con-

tinuous first-order derivatives and supQT |Du| and supQT |f(x, t, u,Du)| are bounded

uniformly for all time, the constants C and α do not depend on T . This will be a

consideration in Proposition 5.45 later.

From [LSU], we also have the following standard result for solutions with higher

regularity.

Proposition 5.41. Let Ω be an open domain in Rn, QT := Ω×(0, T ) for fixed T > 0,

and let u ∈ C2,1(QT ) be a solution to the equation

(
∂

∂t
−∆

)
u = f,

where f ∈ Cα,α/2(QT ), 0 < α. If u(·, 0) ∈ C2+β(Ω) for some β ≥ α, then for any

compactly contained Ω′ ⊂ Ω (Q′T := Ω′ × (0, T )), there exists C > 0 such that

[u]C2+α(Q′T ) ≤ C
(
[f ]Cα(QT ) + [u]C0(QT )

)
,

where C is dependent only on β(≥ α), n and dist(∂Ω,Ω′).

Again, this result holds in greater generality than what is stated here. In partic-

ular, instead of the heat operator, the operator may be any parabolic operator with

sufficiently smooth coefficients.

Along the lines of Proposition 5.38, we have by the same construction the follow-

ing.
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Proposition 5.42. Let u : X×R≥0 → N(⊂ Rq) be a strong solution to the embedded

heat flow with initial value f0 such that f ∈ C1(X,Rq)∩C1+α
loc (X \X(n−2),Rq). Then

u ∈ C1+α
loc (X \X(n−2),Rq), and we have the following estimate. For every open Ω ⊂

X \X(n−2) and each 0 < T <∞,

|u(·, t)|C1+α(Q′T ,Rq) ≤ C,

where Ω′ ⊂ Ω is compactly contained, QT := Ω× (0, T ), Q′T := Ω′ × (0, T ), and C is

dependent on X,N, f, α, dist(∂Ω,Ω′), |u|C0(QT ), |Du|C0(QT ), |Df0|Cβ(Ω), and β(≥ α).

Proof. The proof is nearly identical to the proof of Proposition 5.38 which, instead,

relies on Proposition 5.40. In particular, we note that the term f(x, t, u,Du) in the

statement of Proposition 5.40 will correspond to the terms A
γ

k(z, t) of the proof of

Proposition 5.38. Hence, we note that C in the statement of this proposition is

dependent on |Du|C0(QT ). By Proposition 5.31, first-order derivatives in space are

bounded on bounded time intervals, so |Du|C0(QT ) is bounded for finite T , as is

|u(·, t)|C1+α(Q′T ,Rq).

We note that the differences between Propositions 5.38 and 5.42 are slight, but the

latter does not require a bound on the time derivative of the solution and additionally

gives a bound on the Hölder continuity of a solution with respect to time. Although

the bound of the first result does not depend on time, we note that the second result

does.
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5.6 Long Term Existence and Convergence to a Harmonic

Map

We have show that, given an initial map f0 that is C1(X,N) with bounded energy

density, there exists some T > 0 dependent on sup e(f0) such that a solution to the

heat flow exists on [0, T ) with good regularity properties. Our goal now is to show

that the solution can be extended to [0, T ]. If f(·, T ) is continuous with bounded

energy density, this gives us that there exists a solution to the initial value problem

on [0,∞), as we can always extend the flow past T .

The simplest place to start is the precompactness theorem of [EF] (see also [KS]):

given a sequence of maps in W 1,2(X,N) with uniformly bounded energy, there exists

a subsequence that converges in L2(X,N) to a map in W 1,2(X,N). Clearly, this

applies here, as Proposition 5.27 implies that any sequence of W (·, tα), tα → T , has

bounded (global) energy. This does not give us a useful limit map, as we want our

limit map to have bounded energy density and some regularity. Also, to use this

precompactness result, we must appeal to subsequences of (0, T ) that converge to T ,

which is undesirable as we wish to have convergence for every subsequence of (0, T )

that converges to T . Formally, we show the following for the embedded problem.

Proposition 5.43. Let X be compact and simplex-wise flat and let ι : N ↪→ Rq be a

smooth isometric embedding. Let F0 : X → ι(N) ⊂ Rq be in C1(X) and have bounded

energy density. Let W be a strong embedded solution with initial value F0 on X×[0, T )

for some T ∈ (0,∞). Then as t → T , W (·, t) converges uniformly to a continuous

map that is in C1(X) with bounded energy density, and for any open set A ⊂ X such

that d(A,X(n−2)) > 0, W (·, t)|A converges in C1 to a limit in C1+α(A).
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Proof. Our main tool is the Arzelà-Ascoli theorem. We note that for a smooth com-

pact Riemannian manifold M , possibly with boundary, we can use the mean value

theorem and Arzelà-Ascoli theorem to show that if there is a sequence of functions

that are uniformly bounded with uniformly bounded derivatives, then there is a sub-

sequence that converges uniformly to a continuous function on M . To apply this

principle to maps from X to N , we can either appeal to local coordinates in N and

prove convergence locally in each coordinate or we may isometrically embed N in Rq

and show convergence in each coordinate. Here, we prefer the latter approach, as it

is set up in the statement of this proposition and, by abuse of notation, use W to

denote the γth coordinate function, W γ, where 1 ≤ γ ≤ q.

We note that by Propositions 5.15 and 5.29, we have for any open A ⊂ X such

that d(A,X(n−2)) > 0, W ∈ C1+α,1+β(A × (0, T ), N), for some α, β > 0. Hence, by

the Arzelà-Ascoli theorem on W and its spacial derivatives, we can say there exists

a subsequence ti → T such that W (·, ti)|A converges to a limit in C1 on A. By the

same proposition, on A × (0, T ), we note that ∂
∂t
W (·, t) must be bounded. Hence,

any sequence of maps W (·, t) indexed by t must converge on A to a unique limit as

t→ T .

Now, for an n-simplex, s, consider W (·, t)|s. As we know that for each t ∈ (0, T ),

W (·, t)|s ∈ C1(s) and that for each t ∈ (0, T ), W (·, t)|s and its first order derivatives

are uniformly bounded (this follows from Proposition 5.31), there exists a sequence

{ti} whose limit is T such that W (·, ti)|s converges uniformly to a continuous map.

We claim that this map is unique. Indeed, assume that for two distinct sequences

{ti} , {t′i} ⊂ (0, T ) that converge to T , W (·, ti)|s and W (·, t′i)|s converge to two distinct

limits, say W (·, T )|s and W ′(·, T )|s respectively (which may possibly be distinct from
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the one in the previous paragraph). By our previous argument, they must agree on

X \X(n−2). Hence they can only be distinct on X(n−2). Let z0 ∈ X(n−2) be such that

W (z0, T )|s 6= W ′(z0, T )|s. Then, as W (·, T )|s and W ′(·, T )|s are continuous, they

must be distinct in an open neighborhood of z0, which is impossible. Hence for any

sequence in (0, T ) converging to T , there exists a subsequence {ti} such that W (·, ti)|s

goes uniformly to a unique continuous limit W (·, T )|s. We can repeat this process

for each n-simplex, s, to build a function from all of X such that for any sequence

in (0, T ) that converges to T there exists a subsequence {ti} where W (·, ti) converges

uniformly to a unique continuous limit W (·, T ) : X → R. We still must show that for

any sequence {ti} going to T , W (·, ti) converges uniformly to a unique continuous

limit with bounded energy density, W (·, T ).

Recall that any bounded sequence of continuous functions on a compact domain

that converges pointwise to a continuous function must converge uniformly. As we

know that W (·, T ) is continuous on X and any sequence of functions W (·, ti) indexed

by i → ∞ is bounded, all we must show is that for any sequence in t going to

T , W (·, ti) converges pointwise. We proceed by contradiction. Suppose there is a

sequence {ti} such that W (·, ti) does not converge pointwise to W (·, T ), defined as

above. Clearly, pointwise convergence must hold on X \X(n−2), so the only possibility

is that pointwise convergence fails on X(n−2). Suppose there is a point z0 such that

either

lim
ti→T

W (z0, ti) 6= W (z0, T )

or this limit does not exist. Either case produces a contradiction. Given our work

above, given a sequence {ti} converging to T , there exists a subsequence {t′i} also

converging to T such that {W (·, ti)} converges uniformly to the unique continuous
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limit map W (·, T ). Hence, if there is a sequence {ti} such that limti→T W (z0, ti) 6=

W (z0, T ), there is a subsequence {t′i} ⊂ {ti} where limt′i→T W (z0, ti) = W (z0, T ),

which is absurd. In the second case, we assume that limti→T W (z0, ti) does not exist.

This is also not possible: we claim that {W (z0, ti)} has a single accumulation point

equal to W (z0, T ), which is sufficient. Obviously, the sequence {W (z0, ti)} is bounded,

so it must have a least one accumulation point. By our work above, one accumulation

point must be W (z0, T ). Suppose that {W (z0, ti)} has another accumulation point

not equal to W (z0, T ), and let {t′i} ⊂ {ti} be the subsequence such that {W (z0, t
′
i)}

converges to it. Again, by the work above, there must be a subsequence {t′′i } ⊂ {t′i}

such that {W (z0, t
′′
i )} converges to W (z0, T ), which is absurd.

By Proposition 5.31, we can also show that our limit map W (·, T ) must have

bounded energy density. Also by W (·, t) being balanced for all t ∈ (0, T ) and by the

regularity shown above, it can be shown that W (·, T ) is balanced.

Proposition 5.44. Let X be compact and simplex-wise flat, and let ι : N ↪→ Rq be a

smooth isometric embedding. Let F0 : X → ι(N) ⊂ Rq be in C1(X) and have bounded

energy density. Then there exists a strong embedded solution W with initial value F0

on X × [0,∞) with energy density bounded on compact time intervals.

Proof. By Proposition 5.29, we have for F0 so defined, the existence of a T > 0 such

that a strong solution to the embedded heat flow problem with initial map F0 exists

on X × [0, T ). Let T be the largest possible real number for which such a solution W

exists on X× [0, T ) By Proposition 5.43, we have that limt→T W exists, is continuous,

has bounded energy density and for every open A ⊂ X such that d(A,X(n−2)) > 0,

W (·, T ) ∈ C1+α(A). Hence we can apply Proposition 5.29 again toW (·, T ) and extend

the flow to X × [0, T ′), T ′ > T . Thus, T = ∞. We can thus apply Proposition 5.31
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to show boundedness of the energy density on compact time intervals.

Proposition 5.45. Let X be compact and simplex-wise flat and let ι : N ↪→ Rq be

a smooth isometric embedding. Let F0 : X → ι(N) ⊂ Rq be in C1(X) and have

bounded energy density. Let W be a strong embedded solution with initial value F0 on

X × [0,∞). Then there exists a sequence {ti} tending to infinity such that W (·, ti)

converges uniformly and in W 1,2 as i goes to infinity to a harmonic map. Additionally,

if for any open set A ⊂ X \ X(n−2) with d(A,X(n−2)) > 0 E(W (·, ti)|A) remains

bounded (where the bound may depend on A), then W (·, ti) converges in C1
loc(X \

X(n−2)) to a limit in C1+α
loc (X \X(n−2)). In particular, if the energy density of W (·, ti)

remains bounded, then W (·, ti) converges in C1
loc(X \X(n−2)) to a limit in C1+α

loc (X \

X(n−2)).

Proof. We break our proof into two cases. In the first case, we presume that the

supremum of the energy density remains bounded as time goes to infinity. In the

second, we presume that the supremum of the energy density could be unbounded;

in this case, we show that the solution remains converges to a limit as time goes to

infinity in C0(X) ∩W 1,2(X).

Case 1: supX×[0,∞) e(F (z, t)) <∞.

We can replicate most of the argument of Proposition 5.43, however we note that

in Proposition 5.43, we only had to show convergence on a set with compact closure.

This was guaranteed by the finiteness of time (i.e. only for T < ∞). Here we must

show convergence for some sequence in [0,∞) going to infinity. For simplicity, we

fix a coordinate 1 ≤ γ ≤ q in the target, and we can apply the same analysis of

Proposition 5.43 to show that for some sequence of {ti} tending to infinity W γ(·, ti)

converges in C0(X) to a continuous limit as i goes to infinity.

140



5.6 Long Term Existence and Convergence to a Harmonic Map

We wish to improve our regularity of this convergence. We now show for some

subsequence of {ti} (which we shall continue to denote {ti}) {W γ(·, ti)} converges

in C1
loc(X \ X(n−2)) to a limit in C1+α

loc (X \ X(n−2)). Let Ω′ ⊂ X \ X(n−2) be a

compactly contained open set. Without loss of generality, we presume that Ω′ is

entirely contained in the union of the closure of a set of n-simplexes with a common

(n− 1)-face. Hence, we can find an open set Ω such that Ω ⊂ X \X(n−2) and Ω′ ⊂ Ω

is compactly contained. We can apply Proposition 5.42, to find that

|W γ(·, t)|C1+α(Q′T ) ≤ C, (5.28)

where QT := Ω × (0, T ), Q′T := Ω′ × (0, T ), and C is dependent on X, N , α,

dist(∂Ω,Ω′), |W γ|C0(QT ), |DW |C0(QT ),N , and |DF0|Cβ(Ω,N). By Proposition 5.31 and

the compactness of N , we know that all of the terms on which C is dependent are

uniformly bounded for all t ∈ [0,∞), so (5.28) holds for T = ∞. Hence, by the

Arzéla-Ascoli theorem, there is a subsequence of {ti} tending to infinity such that

{W γ(·, ti)|Ω′} converges in C1 to a limit in C1+α(Ω′). As the energy density is uni-

formly bounded in for all time as given in Proposition 5.31, we can extend this result

to show for all X there is a limit map in C1(X).

For let us denote the sequence {ti} above as T and let WT denote the limit map in

C1(X,N) ∩C1+α
loc (X \X(n−2), N). We note that this limit has not been proven to be

unique, nor have we proven that any sequence in t tending to infinity must correspond

to a convergent sequence of maps. We now prove that WT must be harmonic. Per

Definition 5.1 and Proposition 5.3, we must show that WT is balanced and weakly

satisfies the harmonic map equation; we already know it is continuous. We begin by

showing that at any point in X \X(n−1), WT satisfies the embedded harmonic map
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equation

∆W γ
T +

∑
α,β,i

Aγαβ(WT )
∂Wα

T
∂xi

∂W β
T

∂xi
= 0

for each coordinate γ. Pick a point p ∈ X \ X(n−1) and let Ω ⊂ X \ X(n−1) be a

connected, compactly contained neighborhood about p. By definition of the flow, we

know that

∆W γ +
∑
α,β,i

Aγαβ(W )
∂Wα

∂xi
∂W β

∂xi
=
∂W γ

∂t

pointwise on X \ X(n−1) × [0,∞). We show that ∂W γ

∂t
must go to zero uniformly

on Ω′ as t goes to infinity, where Ω′ ⊂ Ω is any compactly contained subset. Let

QT := Ω× (0, T ) Q′T := Ω′ × (0, T ), T > 0. By Proposition 5.41, we have

[W ]C2+α(Q′T ) ≤ C

[∑
α,β,i

Aγαβ(W )∂W
α

∂xi
∂Wβ

∂xi

]
Cα(QT )

+ [u]C0(QT )

 ,

where C is dependent only on α, X, N , and dist(∂Ω,Ω′). We note that by (5.28),

the right-hand terms are bounded uniformly in for all t ∈ [0,∞). Hence, for some

sequence {ti} tending to infinity, ∂
∂t
W γ and all second order spacial derivatives must

converge uniformly on Ω′ to a continuous limit. We note that by Proposition 5.27,

∂
∂t
W γ must go to zero almost everywhere, so we have for any p ∈ Ω′

lim
ti→∞

∂W

∂t
(p, ti) = lim

ti→∞
∆W γ(p, ti) +

∑
α,β,i

Aγαβ(W (p, ti))
∂Wα

∂xi
∂W β

∂xi
(p, ti)

=
∂WT
∂t

(p)

= 0.

To show that WT is balanced, we appeal to the method of Proposition 5.38.
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Specifically, we refer to equations (5.25), (5.26) and (5.27) of Proposition 5.38. As

balancing is a local condition, we examine it at a point p ∈ X(n−1)\X(n−2). According

to Proposition 5.38, given a solution to the heat flow W near p, for some 0 < R <

d(p,X(n−2)) we can develop functions uγj : B(0, R)(⊂ Rn)× [0,∞)→ R for each 1 ≤

γ ≤ q and 1 ≤ j ≤ J , and for each is in C1+α(B(0, r)× [0,∞)). By Proposition 5.34

and the bounds on the nonhomogeneous terms, we can show for each function that,

as {ti} goes to infinity, there is a limit in C1+α(B(0, r) × [0,∞)), for some r < R.

denote the limit of each function restricted to B(0, r), uγj,T : B(0, r) → R. As uγj,T

is in C1+α(B(0, r)), then by definition of uγj,T (x̄, xn) from Equation (5.25), we must

have

∂

∂xn

∣∣∣∣
xn=0

(
2

J

J∑
j=1

uγj,T
(
(x̄, xn)

))
= 0,

which means that our limit map WT must be balanced at p and at all points on

X(n−1) \X(n−2) near p.

Hence, there exists a sequence {ti} tending to infinity such that W (·, ti) converges

in C1 to a limit in C1(X,N) ∩C1+α
loc (X,N) that is balanced and solves the harmonic

map equation pointwise at all manifold points. Hence, by Proposition 5.3, the limit

is a harmonic map.

Case 2: supX×[0,∞) e(F(z,t)) is unbounded.

In this case, we appeal to the results of [Ma], we note that by Proposition 5.26,

the harmonic map heat flow defined here is the same as the Gradient-of-Energy flow

defined by Mayer. Thus by Proposition 5.27, as time goes to infinity, F (·, t) converges

in W 1,2(X) to a harmonic map. All of the local regularity results away from X(n−2)

from Case 1 apply here. To see that is must be uniform, we appeal to the proof of

[EF, Theorem 11.1], which shows that the limit of a energy-minimizing sequence of
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continuous maps in the same homotopy class is a Hölder continuous harmonic map

also in the same homotopy class.

We note that we have proven our auxiliary claims during the course of proving

Case 1.

Corollary 5.46. Every map f : X → N in C1(X) is free-homotopic to a harmonic

map.

Proof. This follows immediately from the preceding proposition. If we isometrically

embed N into Rq by ι and begin the heat flow W with initial data F0 := ι ◦ f , there

exists a sequence {ti} tending to infinity such that {W (·, ti)} converges uniformly to

a harmonic map. As the heat flow is continuous with respect to t, each W (·, ti) is

homotopic to each other and also to the limit map, which is harmonic.

We of course wish to address the issue of whether or not every sequence in t

tending to infinity corresponds to a sequence of maps converging to a harmonic map.

Such results exist for maps between manifolds, but the approaches of [ES,N] do not

immediately appear to lend themselves to our present situation. As we have show in

Proposition 5.26 that for certain initial maps the harmonic map heat flow coincides

the the Gradient-of-Energy flow, we instead appeal to [Ma], which gives a very general

result that applies here.

Theorem 5.47. Let X be compact and simplex-wise flat and let ι : N ↪→ Rq be

a smooth isometric embedding. Let F0 : X → ι(N) ⊂ Rq be in C1(X) and have

bounded energy density. Let W be a strong embedded solution with initial value F0 on

X × [0,∞). Then limt→∞W (·, t) exists and it is a harmonic map.

Proof. This follows directly from Propositions 5.26 and 5.27.
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We have as a consequence of our convergence arguments, a confirmation of a result

of [DM3].

Proposition 5.48. Let X be a flat compact Riemannian polyhedron of dimension n

(n ≥ 2), and let N be a complete smooth Riemannian manifold. Let f : X → N be

harmonic. Then, f has the balancing condition and f ∈ C1+α
loc (X \X(n−2), N).

Remark 5.49. We note again that the result in [DM3] is actually more general than

stated here, as they consider harmonic maps in the context of admissible weights,

which we do not consider here. Additionally, they prove that when the dimension of

the domain is 2, then a harmonic maps is in C∞loc(X \X(n−2), N).

5.7 Topology, Energy and Harmonic Maps on 2-Dimensional

Domains

The results of Eells and Sampson in [ES] regard heat flows and harmonic maps be-

tween compact Riemannian manifolds where the domain is without boundary and

the target has nonpositive sectional curvature. In this case, if there exists smooth

maps between these spaces, each can be deformed by a heat flow to a harmonic map

(i.e. a map with a vanishing torsion field) such that first order derivatives converge.

By considering the smoothness of a harmonic map in this setting, the smoothness of

the metrics on the domain and target, and the compactness of the domain, one can

show that such a harmonic map must have bounded pointwise energy.

However, it is easy to see that these arguments do not apply to harmonic maps

between an admissible n-complex, X, and a compact Riemannian manifold, N , with

nonpositive sectional curvature. Although we do have a version of parabolic and
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elliptic maximum principles (see Lemma 3.8 on page 42; note that an elliptic maxi-

mum principle follows easily), it simply states that maximums for subsolutions cannot

occur on X \X(n−2). Indeed, it appears that energy can concentrate near X(n−2) dis-

tributionally. That is, for a harmonic map f , e(f) is in L1(X), but e(f) need not be

bounded, and for any open, bounded region Ω ⊂ X such that d(Ω, X(n−1)) > 0, e(f)

will be bounded on Ω.

In certain cases, whether or not e(f) is bounded on X is dependent on the topology

of X. In [DM3], the case of harmonic maps between an admissible 2-complex with

simplex-wise flat curvature and a Riemannian manifold, N , with nonpositive sectional

curvature is considered. They give criteria dependent on the topology near vertices to

determine for a harmonic maps f when e(f) is bounded, and give some consequence

for when it holds. Specifically, they give the following:

Proposition 5.50 (from [DM3, Theorem 4]). Let X be an admissible 2-complex with

a simplex-wise flat metric, let N be a manifold with nonpositive sectional curvature

and let f : X → N be an energy minimizing map. Let p0 ∈ X. Also, let α(p0) =

Ordf (p0) denote the order of f at p0 ∈ X (see [DM3, Section 4] for definition). Then

there exists σ > 0 such that for all q ∈ B(p0, σ),

e(f(q)) ≤ C · d(q, p0)2α(p0)−2,

where C > 0 depends on only on E(f) and σ.

Proposition 5.51 (See [DM3, Corollary 14]). Let X be an admissible 2-complex with

a simplex-wise flat metric, let N be a Riemannian manifold with nonpositive sectional

curvature. Let f : X → N be energy minimizing, and let α(p) = Ordf (p) denote the
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order of f at p ∈ X (see [DM3, Section 4] for definition). Also, fix p0 ∈ X(0) and let

λ(Lk(0)(p0), Tf(p0)N) denote the discrete eigenvalue as in [DM3, Prop. 13]. Then,

λ(Lk(0)(p0), Tf(p0)N) > (≥)
1

2
⇒ α(p0) > (≥)1.

For balanced, energy minimizing maps, we can also show by slightly modified

arguments of [ES] or [N] that there exists a Bochner-type formula as follows.

Proposition 5.52. Let X be an admissible n-complex (n ≥ 2) with a smooth simplex-

wise metric g, let N be a Riemannian manifold with nonpositive sectional curvature.

Let f be a balanced, energy minimizing map that is in C2
loc(X \Xn−1, N). Then,

∆ge(f) = |Ddf |2 +
∑〈

df
(∑

Ricg(ei, ej)ej

)
, df(ei)

〉
f−1(TN)

−
m∑

i,j=1

〈
RN (df(ei), df(ej)) df(ej), df(ei)

〉
f−1(TN)

.

Remark 5.53. We note that in [DM3], it is proven that energy minimizing maps are

necessarily balanced. So the requirement of the previous proposition is redundant.

Given an assumption of flatness on the domain and nonpositive sectional curvature

on the target, we have that the energy density is subharmonic on X \X(n−1) by the

Bochner formula above. This combined with Proposition 5.50 and an elliptic maxi-

mum principle for balanced functions, analogous to the parabolic one in Lemma 3.8,

gives us the following result.

Proposition 5.54. Let X be an admissible 2-complex with a simplex-wise flat metric,

let N be a Riemannian manifold with nonpositive sectional curvature. Let f : X → N

be energy minimizing. We have the following:
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i. If for all p ∈ X(0), Ordf (p) > 1, then f is trivial.

ii. If for all p ∈ X(0), Ordf (p) ≥ 1, then f is totally geodesic.

iii. If for all p ∈ X(0), Ordf (p) ≥ 1 and additionally N has strictly negative sectional

curvature, then f maps each 2-simplex into a geodesic on N .

By the noted relationship between discrete eigenvalues and the order of energy

minimizing maps at points in X(0), we have the following.

Proposition 5.55. Let X be an admissible 2-complex with a simplex-wise flat metric,

let N be a Riemannian manifold with nonpositive sectional curvature. Let f : X → N

be energy minimizing. We have the following:

i. If for all p ∈ X(0), λ(Lk(0)(p), TqN) > 1
2

for all q ∈ N , then f is trivial.

ii. If for all p ∈ X(0), λ(Lk(0)(p), TqN) ≥ 1
2

for all q ∈ N , then f is totally geodesic.

iii. If for all p ∈ X(0), λ(Lk(0)(p), TqN) ≥ 1
2

for all q ∈ N and, additionally, N

has strictly negative sectional curvature, then f is maps each 2-simplex into a

geodesic on N .

Remark 5.56. We emphasize consideration of the conditions of the preceding the-

orems. They all are dependent on a Bochner formula, the simplex-wise metric on

the domain being flat and the sectional curvature of the target being nonnegative.

If even a single assumption is missing, these results do not generally hold. For our

considerations in this paper, we do not always assume that the simplex-wise metric

is flat—we only that the metric is always smooth—and so the preceding theorems do

not always apply here.

148



5.7 Topology, Energy and Harmonic Maps on 2-Dimensional Domains

Continuing with our examination of energy on a simplex-wise flat domain, we

note with X, N , and f as above that for fixed p0 ∈ X(0) with a small bounded open

neighborhood Ω, and an energy-minimizing map f with order Ordf (p0) < 1, we can

provide some information about in which Lp space the energy density might be on Ω.

Indeed, we can easily verify the following as a consequence of Proposition 5.50.

Proposition 5.57. Let X be an admissible 2-complex with a simplex-wise flat metric,

let N be a Riemannian manifold with nonpositive sectional curvature. Let f : X → N

be energy minimizing. Let α be such that Ordf (p) ≤ α < 1 for all p ∈ X(0). Then for

any β < 1
2
(1− α)−1, e(f) ∈ Lβloc(X).

Corollary 5.58. Let X be a compact admissible 2-complex with a simplex-wise flat

metric, let N be a Riemannian manifold with nonpositive sectional curvature. Let

f ∈ L2(X,N) be energy minimizing. If there exists α > 1
2

such that for all p ∈ X(0),

Ordf (p) ≥ α, then f ∈ W 1,2(X,N). Additionally, in the event that X is not compact,

then e(f) ∈ L1
loc(X).

Remark 5.59. We note that for a map f in L2(X,N), its energy density e(f) being

in L1(X) is equivalent to f being in W 1,2. We note that, in coordinates,

e(f(p)) = ‖df(p)‖2
f−1(TN) = gij

∂fα

∂xi
∂fβ

∂xj
hαβ,

where g is the simplex-wise metric on X and h is the metric on N . Thus, e(f) ∈ L1(X)

is equivalent to stating ‖df‖f−1(TN) ∈ L2(X).

Now that we have examined the possibility of energy densities not being smooth

and bounded as in the cases considered in [ES], we consider two questions: firstly,

do the results of [DM3] regarding discrete eigenvalues and orders of maps abstract
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to dimensions greater than 2 and, secondly, can the heat kernel and flow methods

of [ES] be modified to treat initial maps that are merely in C2
loc(X \X(n−1), N) and

whose energy density is in L1(X) but not bounded?
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