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Abstract 

Propensity score methods are a popular tool for reducing confounding bias of treatment effect 

estimates in non-experimental studies. Existing studies have demonstrated superior performance 

of nonparametric machine learning over logistic regression for propensity score estimation. 

However, that work has been done with just individual-level data. In many medical, behavioral, 

and educational settings, however, individuals are clustered into groups; it is unclear whether the 

advantages of nonparametric propensity score modeling carry to multilevel data settings. In 

addition, a particular question arises when there might be unmeasured cluster-level confounding, 

which is likely in clustered data settings. In this work, we describe a set of parametric and 

nonparametric propensity score estimation procedures: multilevel logistic regression with fixed or 

random cluster effects, Bayesian additive regression trees (BART) with indicators for clusters or 

random cluster effects, generalized boosted modeling (GBM) with indicators for clusters, as well 

as logistic regression, BART, and GBM models that ignore the clustered structure. We then 

compare the methods’ performance in a two-level clustered data context where treatment is 

administered at the individual level. We simulated data for three hypothetical observational studies 

of varying sample and cluster sizes (20 clusters of size 200 to 500; 100 clusters of size 50; 20 

clusters of size 100), each with six individual-level confounders, two cluster-level confounders, 

and an additional cluster-level confounder that is unobserved in the data analyses. A binary 
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treatment indicator and a continuous outcome are generated based on seven scenarios with 

different relationships between the treatment and confounders (linear and additive, non-linear/non-

additive in the observed confounders, non-additive with the unobserved cluster-level confounder). 

Simulation results suggest that when both the sample and cluster sizes are sufficiently large (e.g., 

20 clusters of size 200 to 500), nonparametric propensity scores tend to outperform parametric 

propensity scores in terms of covariate balance, bias reduction, and 95% confidence interval 

coverage, regardless of the degree of non-linearity or non-additivity in the true propensity score 

model. When the sample or cluster sizes are small, however, nonparametric models may become 

more vulnerable to unmeasured cluster-level confounding and thus may not provide better 

performance compared to their parametric counterparts. 
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1 Introduction 

Propensity score methods are widely used in evaluating the causal effects of interventions in 

nonrandomized (or “observational”) studies. The propensity score, which is the probability of 

receiving an intervention conditional on a set of observed covariates (Rosenbaum and Rubin, 

1983), is especially useful when there is a large number of confounding variables (i.e., variables 

that are associated with both treatment assignment and outcome) that need to be adjusted for. 

Conditional on the propensity score, the distribution of the covariates entered in the propensity 

score model is similar across treatment groups (Rosenbaum and Rubin, 1983). Thus, once 

estimated for each subject, the propensity scores can be used to reduce bias in the treatment effect 

estimate that arises from differences in the distribution of observed confounding variables across 

groups. This bias reduction can be obtained using multiple strategies, including matching subjects 

on propensity scores, grouping subjects into strata with similar propensity scores, adjusting for 

propensity scores in the outcome model, or applying propensity score weights (for more detailed 

discussions see, e.g., D’Agostino, 1998; Hirano and Imbens, 2001). 

Despite the increasing use of propensity score methods in substantive studies over the past 

two decades (Stürmer et al., 2006), work on this topic in the context of clustered or multilevel data 

structures has been relatively limited. However, clustered data is common among many disciplines, 

especially in medical, behavioral, and educational research settings (e.g., students are nested within 
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schools in an educational study or patients nested within hospitals). Consider the simplest case 

where the data is structured in two levels (individual-level and cluster-level) and treatment is 

administered at the individual level. The clustered structure adds another layer of complexity in 

conducting propensity score analyses. For instance, there may be concerns regarding interference 

or dependence among individuals within clusters as well as possible differences in treatment effect 

or implementation across clusters. Moreover, it is often challenging to identify and measure 

cluster-level characteristics that correlate with both treatment assignment and outcome (we call 

these cluster-level confounders). Unmeasured cluster-level confounding would create bias in the 

treatment effect estimate if unaccounted for. Thus, treatment effect estimates obtained without 

consideration of the clustered structure tend to be misleading, and propensity score methods need 

to be adapted for the clustered data structure (Lee et al., 2020). In the present analysis we assume 

the stable unit treatment value assumption (SUTVA; Rubin, 1980), which assumes no interference 

between subjects, including those that belong to the same cluster, and focus mainly on unmeasured 

cluster-level confounding. 

In cases where the treatment administered to individuals is dichotomous, a multilevel logistic 

regression model with either fixed or random cluster effects is typically used to estimate propensity 

scores with two-level clustered data. Fixed effects and random effects models account for 

unobserved cluster heterogeneity by allowing the intercept to differ across clusters (Schuler et al., 

2016).  The difference between the two models is that the intercept is considered fixed for each 

cluster in a fixed effects model, whereas the cluster-specific intercepts are assumed to follow a 

normal distribution in a random effects model. Although the existing literature is limited, so far 

the research indicates that taking account of cluster heterogeneity in either the propensity score 

model or the outcome model can significantly reduce bias in the treatment effect estimate, and 
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incorporating cluster information in both models yields the least biased estimate (Su and Cortina, 

2009; Arpino and Mealli, 2011; Li et al., 2013).   

Compared to traditional regression adjustment, propensity score methods are a less parametric 

alternative for the purpose of confounding control (Li et al., 2013). Nevertheless, when there is a 

large number of covariates, specification of the multilevel propensity score model can become 

extremely complicated, especially when there is potential interaction between covariates. To allow 

more flexibility in the multilevel propensity score model, Leite et al. (2015) suggested adopting 

the parsimony principle in building random effects propensity score models (i.e., adding random 

slopes and cross-level interactions step by step until sufficient covariate balance is attained). This 

approach, though reasonable, is inefficient and still requires a certain level of knowledge on the 

functional form for the relationship between treatment assignment and covariates. Nonparametric 

machine learning methods are one promising solution to overcoming model specification 

challenges of parametric methods based on their general ability to generate flexible models without 

model specification. Furthermore, there has been evidence that nonparametric estimation of 

propensity scores achieves more efficient estimation of the average treatment effect, even when 

the true propensity score model is known to be parametric (Kim, 2019), a result of the same flavor 

as the preference to use estimated propensity scores over known treatment assignment probabilities 

to adjust for chance imbalances (Rubin and Thomas, 1996).  As such, nonparametric methods have 

gained popularity in propensity score estimation with single-level data, one example being 

generalized boosted modeling, which can be used to generate propensity score weights that 

eliminate most group differences in covariate distribution between treatment groups (McCaffrey 

et al., 2004). 
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Some work has been done to compare parametric and nonparametric approaches for 

estimating propensity scores in single-level settings.  Setoguchi et al. (2008) compared machine 

learning techniques such as recursive partitioning and neural networks to logistic regression with 

only main effects with respect to propensity score matching. Their simulation study found that 

neural networks generally yielded the least biased estimates under various scenarios differing by 

non-linear and/or non-additive relationships between treatment assignment and covariates. 

Following Setoguchi et al. (2008), Lee et al. (2009) examined the performance of propensity score 

models based on classification and regression trees (CART) with respect to propensity score 

weighting. Their simulation results supported that of Setoguchi et al. (2008), showing that 

estimating propensity scores using nonparametric methods, especially boosted regression trees, 

may offer advantages in propensity score weighting when the relationship between treatment 

assignment and covariates is non-linear or non-additive (and therefore the logistic regression 

model with main effects only is misspecified). These improvements include better bias reduction 

and more consistent 95% confidence interval coverage. The simulation design of Setoguchi et al. 

(2008) and Lee et al. (2009), however, assume a single-level data structure and no unmeasured 

confounding. 

Motivated by the limited research on nonparametric propensity score estimation with 

clustered data, our goal is to examine whether the advantages of the flexible modeling of 

propensity scores extend to multilevel settings. In this work, we conduct simulation studies to 

examine the performance of nonparametric versus parametric propensity score models, when used 

for propensity score weighting, in a two-level clustered data context where a binary treatment is 

administered at the individual level. The remaining paper is organized as follows: Section 2 

provides a brief introduction of the statistical methods, including propensity score weighting and 
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the parametric and nonparametric methods that are used to estimate propensity scores in this work. 

Section 3 describes the simulation set up and the performance measures for evaluating the 

performance of different propensity score estimation models. Section 4 presents the simulation 

results. In Section 5, we apply the methods on the National Longitudinal Study of Adolescent to 

Adult Health (Add Health) data (Harris and Udry, 2018), evaluating the effect of team sports 

participation during adolescence on depressive symptoms in adulthood. Finally, Section 6 

discusses the implications and limitations of our work, as well as potential directions for future 

research. 
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2 Statistical Methods 

2.1 Propensity score weighting 

We first review the basics of treatment effect estimation using propensity score weighting. 

Our definition of the treatment effect is based on the potential outcomes framework (Rubin, 1974; 

Holland, 1986), including the SUTVA assumption mentioned in the introduction. Simply put, the 

SUTVA assumption has two components: 1) an individual’s outcome is unaffected by the level of 

treatment assigned to another individual; 2) there is only one version of each treatment level. Under 

this assumption, each individual, indexed by subscript 𝑖, has two potential outcomes associated 

with a binary treatment: 𝑌𝑖(1) (potential outcome under treatment) and 𝑌𝑖(0) (potential outcome 

under the control condition). The individual treatment effect is defined as the difference between 

the two potential outcomes, 𝑌𝑖(1) − 𝑌𝑖(0). Our target estimand is the average treatment effect 

(ATE) in the population, which is defined as the expected value of the individual treatment effects, 

𝐴𝑇𝐸 = 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)]＝𝐸[𝑌𝑖(1)] − 𝐸[𝑌𝑖(0)]. 

The present analysis focuses on propensity score weighting for estimation of the ATE. 

Specifically, given the model-estimated propensity score for individual 𝑖 , �̂�𝑖  (we add the hat 

symbol for the estimated propensity score to differentiate it from the true propensity score), we 

assign the inverse probability weight �̂�𝑖 = 1/�̂�𝑖 if the individual is treated and �̂�𝑖 = 1/(1 − �̂�𝑖) if 
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untreated. The ATE can then be estimated by the difference of the weighted means of the outcome 

between the two treatment groups, 

𝐴𝑇�̂� =
∑ 𝑍𝑖𝑌𝑖�̂�𝑖𝑖

∑ 𝑍𝑖�̂�𝑖𝑖
−

∑ (1−𝑍𝑖)𝑌𝑖�̂�𝑖𝑖

∑ (1−𝑍𝑖)�̂�𝑖𝑖
. 

Because of the incorporation of propensity scores, this inverse probability weighted (IPTW) 

estimator is particularly sensitive to misspecification of the propensity score model.  

The fundamental goal of propensity score weighting (and many other propensity score-based 

methods) is to achieve covariate balance, thereby reducing bias in the treatment effect estimate. 

One way to assess covariate balance is to calculate the standardized mean difference between 

treatment groups, given by the following equation: 

𝑆𝑀𝐷 =
�̅�1−�̅�2

𝑠
, 

where �̅�1 and �̅�2 are the (weighted) sample means of a covariate 𝑋 (or prevalence if 𝑋 is a binary 

variable) for the treatment and control groups, respectively; 𝑠  is its standard deviation (SD) 

(usually the pooled SD from the treatment and control groups combined). A lower absolute 

standard mean difference indicates better covariate balance, and for a covariate to be adequately 

balanced, an absolute standard mean difference less than or equal to 0.1 is generally considered 

acceptable (Normand et al., 2001; Mamdani et al., 2005; Austin, 2009). To examine the usefulness 

of a propensity score model, we calculate the standardized mean difference of each covariate after 

the model-estimated propensity score weights are applied.  

To obtain an estimated standard error of the IPTW estimator, one could either use a robust (or 

“sandwich”) standard error estimator or perform bootstrapping (Austin, 2016). The need for a 

robust standard error estimator is to account for the within-subject correlation in replications of 

units caused by the application of propensity score weights, although such estimator tends to 

slightly overestimate the true standard error (Xu et al., 2010). Note that the ideas above apply to 
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both single-level and multilevel settings. In multilevel settings, the clustered structure is also 

needed to be taken into account for robust standard error estimation. 

In practice, a “doubly robust” treatment effect estimator that incorporates the covariates and 

the clustered structure in both the propensity score and outcome models is preferable to the IPTW 

estimator (for more detailed discussions see, e.g., Bang and Robins, 2005; Li, 2013). Because the 

goal of our simulation experiment is to compare different strategies for estimating propensity 

scores, we retain focus on the IPTW estimator in order to isolate the performance with respect to 

propensity score estimation. A weighted linear regression of the outcome on treatment, adjusting 

for the observed covariates and including indicators for clusters, is also performed for the sake of 

completeness, but is not the focus of our analysis.  

 

2.2 Propensity score estimation using parametric and nonparametric methods 

We consider two commonly used parametric approaches that account for the clustered nature 

of the data: logistic regression with cluster-level fixed effects and logistic regression with cluster-

level random effects. Several studies have shown the problems than can arise when the usual 

single-level logistic regression model is used to estimate propensity scores and without 

consideration of clusters in the outcome modeling stage (see, e.g., Arpino and Mealli, 2011; Li et 

al., 2013).  

For nonparametric estimation of the propensity scores, we introduce two approaches: 

generalized boosted modeling (GBM) and Bayesian additive regression trees (BART). The former 

is a popular method for estimating propensity scores, in part because its covariate-balancing ability 

has been studied extensively and computing tools have been developed in this regard. The latter 

has several appealing characteristics with regard to both implementation and predictive ability, but 
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its use in propensity score estimation is less explored. The mathematical detail of these methods 

is outside the scope of this paper; hence we provide only a brief introduction to these two methods 

below. For both, we describe how they can be adapted to the multilevel setting. 

Both methods have decision trees underlying the approach. A decision tree is a nonparametric 

way of partitioning the covariate space into disjoint sets such that each set, which corresponds to 

a node in the tree, is as similar as possible (Breiman et al., 1984). When the outcome is a class 

(e.g., treated or untreated), a decision tree is often referred to as a classification tree, and 

observations falling in the same node of the tree have similar probabilities of class membership. 

An ensemble method (such as GBM) fits a series of decision trees to a random subset of the data, 

and it makes a prediction by averaging the predictions of the different trees. The idea of an 

ensemble method is to combine the predictions of multiple weak classifiers (i.e., trees), each 

constrained by a shrinkage parameter to prevent overfitting, in order to improve prediction 

accuracy. GBM is an ensemble method that, in each iteration of tree fitting, observations that were 

incorrectly classified by previous trees are given a higher weight to be selected in the new tree 

(Elith et al., 2008). Propensity score estimation using GBM was first proposed by McCaffrey et al. 

(2004) and is commonly implemented with the R package twang, which explicitly aims at 

achieving covariate balance (Ridgeway et al., 2020).  

Similar to GBM, BART is also a nonparametric ensemble model, introduced by Chipman et 

al. (2010). As a Bayesian approach, BART incorporates regularization priors for the model’s 

residual standard deviation, the tree structure (including tree depth and splitting rules), and the 

values in the terminal nodes conditional on the corresponding tree. Sampling from the posterior is 

done by a Bayesian backfitting Markov Chain Monte Carlo approach (Chipman et al., 2007, 2010); 

the predicted value can be taken as the average of predictions over many draws from the posterior. 
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The Bayesian framework spares the computational effort of cross-validation in determining model 

hyperparameters such as maximum tree depth and shrinkage parameter, which is commonly done 

with non-Bayesian ensemble methods. Although BART was developed for continuous outcomes, 

it can easily be extended for classification of binary outcomes by the probit or logit transformation, 

and thus can be used to estimate propensity scores (see, e.g., Hill et al., 2011; Dorie et al., 2019). 

Normally, the estimated propensity score is the average of the outcomes over a default number of 

posterior draws set by the specific statistical package. Chipman et al. (2010) have demonstrated 

that BART outperforms several popular machine learning techniques, including GBM, random 

forest, and neural network, in terms of both in- and out-of-sample predictive performance.  

To account for the clustered structure in our nonparametric propensity score models, 

indicators for cluster membership can be included in the GBM and BART, which is analogous to 

fitting a parametric regression model with fixed cluster effects (but note that not all cluster 

indicators may be used by the nonparametric models). Another appealing feature of BART is that 

it allows random intercepts to be easily added to the model and can be implemented with available 

statistical software (Chipman et al., 2010; Dorie, 2020), whereas GBM with random effects has 

not been fully developed. We therefore select BART with additive random intercepts as a 

nonparametric counterpart of the logistic regression model with random cluster effects. 
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3 Simulation Study 

3.1 Setup 

Our simulation experiment is motivated by the setup in Setoguchi et al. (2008) and Lee et al. 

(2009), with extensions to a two-level clustered data structure where a binary treatment is 

administered at the individual level. Given this two-level structure, we use ℎ to index clusters (ℎ =

1,2, . . . , 𝐻, where 𝐻 is the number of clusters in the simulated data set) and 𝑘 to index individuals 

within a cluster (𝑘 = 1,2, . . . , 𝑛ℎ, where 𝑛ℎ is the number of individuals in cluster ℎ). The sample 

size for a given simulated data set is denoted as 𝑁 = ∑ 𝑛ℎ
𝐻
ℎ=1 . We consider three clustering 

scenarios: 1) a small number of large clusters (𝐻 = 20, 200 ≤ 𝑛ℎ ≤ 500 for ℎ = 1,2, . . . ,20); 2) 

a large number of small clusters (𝐻 = 100, 𝑛ℎ = 50 for ℎ = 1,2, . . . ,100); 3) a small number of 

medium-sized clusters  (𝐻 = 20, 𝑛ℎ = 100 for h = 1,2, . . . ,100). 

For each simulated data set under each scenario, six individual-level confounders (𝑋𝑖, 𝑖 =

1,2, . . . ,6 ), two cluster-level confounders ( 𝑉𝑖 , 𝑖 = 1,2 ), and an unmeasured cluster-level 

confounder (𝑈; the confounder is unmeasured in the sense that it is excluded from both the 

propensity score and outcome analyses) are independently generated from a standard normal 

distribution for each individual. Four of the confounders ( 𝑋4 , 𝑋5 , 𝑋6 , 𝑉2 ) are subsequently 

dichotomized by being set to 1 if the original value is greater than or equal to 0, and 0 otherwise. 
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The treatment probability 𝑒ℎ𝑘 i.e., the true propensity score, for individual 𝑘 in cluster ℎ is 

generated from the following logistic regression model, which is a function of the individual’s 

characteristics as well as the characteristics of the cluster in which the individual belongs, 

including 𝑈: 

𝑙𝑜𝑔𝑖𝑡(𝑒ℎ𝑘
∗ ) = 𝑓(𝑋1,ℎ𝑘, 𝑋2,ℎ𝑘, … , 𝑋6,ℎ𝑘, 𝑉1,ℎ, 𝑉2,ℎ, 𝑈ℎ) 

with further adjustment 𝑒ℎ𝑘 = 0.7𝑒ℎ𝑘
∗ + 0.15 to ensure that each cluster has an adequate number 

of individuals assigned to each treatment level. The specification of the function in the true 

propensity score model varies across scenarios that are described below and further detailed in 

Appendix 1. The treatment assignment 𝑍ℎ𝑘 is randomly sampled from a Bernoulli distribution with 

probability 𝑒ℎ𝑘; we denote 𝑍ℎ𝑘 = 1 as being assigned to the treatment group and 𝑍ℎ𝑘 = 0 as being 

assigned to the control group. 

The continuous outcome 𝑌ℎ𝑘  is generated from the following linear regression model (the 

coefficients are provided in Appendix 1): 

𝑌ℎ𝑘 = 𝛼0 + 𝛼1𝑋1,ℎ𝑘 + 𝛼2𝑋2,ℎ𝑘 + ⋯ + 𝛼6𝑋6,ℎ𝑘 + 𝛼7𝑉1,ℎ + 𝛼8𝑉2,ℎ + 

𝛼9𝑈ℎ + 𝜏𝑍ℎ𝑘 + 𝛿𝑍ℎ𝑘𝑈ℎ
2 + 휀ℎ𝑘 , 휀ℎ𝑘~𝑁(0,0.1) 

The interaction term between treatment assignment and the square of 𝑈 in the outcome model 

allows non-linear treatment effects in relation to 𝑈. We set 𝜏 = 2, 𝛿 = 2, and 𝛼9 = 3. The value 

for 𝛼9 is purposefully chosen to be relatively large in order to magnify the issue of unmeasured 

confounding. 

Similar to the setup in Setoguchi et al. (2008) and Lee et al. (2009), we consider seven true 

propensity score models (scenarios A-G) that differ in degrees of non-linearity or non-additivity 

(details in Appendix 1). The functional form of the true propensity score model, which is a logistic 

regression model, in each of the seven scenarios are: 
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• A: Main effects of 𝑋1, … , 𝑋6, 𝑉1, 𝑉2 and 𝑈 

• B: Main effects plus three two-way interaction terms between observed confounders (𝑋1𝑋4, 

𝑋3𝑉2, 𝑋5𝑉2)  

• C: Main effects plus six two-way interaction terms between observed confounders (𝑋1𝑋4, 

𝑋3𝑉2, 𝑋5𝑉2, 𝑋2𝑋5, 𝑋4𝑋6, 𝑋6𝑉2)  

• D: Main effects plus three two-way interaction terms between 𝑈 and observed confounders 

(𝑋1𝑈, 𝑋4𝑈, 𝑋5𝑈) 

• E: Main effects plus six two-way interaction terms between 𝑈 and observed confounders 

(𝑋1𝑈, 𝑋2𝑈, 𝑋4𝑈, 𝑋5𝑈, 𝑋6𝑈, 𝑉2𝑈) 

• F: Main effects plus two cubic terms (𝑋1
3, 𝑉1

3) 

• G: Main effects plus four cubic terms (𝑋1
3, 𝑋2

3, 𝑋3
3, 𝑉1

3) 

In reality, the functional form of the true propensity score model is unknown.  The addition 

of scenarios D and E is to examine the performance of the propensity score estimation models 

when an unobserved cluster-level characteristic interacts with other confounders. A multilevel 

logistic regression model assuming linear and additive associations between the confounders and 

the exposure (i.e., including only main effects) is misspecified in scenarios B to G. Therefore, we 

expect the nonparametric propensity score models in general to produce less biased effect 

estimates compared to the multilevel logistic regression models at least in scenarios B, C, F, and 

G, in which the nonparametric models have more flexibility to detect non-linear or non-additive 

associations between the observed confounders and the exposure. 1000 datasets are generated for 

each of the seven simulation scenarios. All simulations are performed using R (version 4.0.2; R 

Foundation for Statistical Computing, Vienna, Austria). 
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3.2 Methods compared 

As described above in Section 2.2, we use three general modeling tools to estimate propensity 

scores: logistic regression, BART and GBM. With each tool, we consider versions that either 

ignore or incorporate cluster information (in one of two ways). All analysis does not have access 

to the cluster-level confounder 𝑈, which is unobserved. The specific methods are:  

• Logistic regression model (hereafter abbreviated as PARAM): single-level logistic 

regression with a main effect for each observed confounder.  

• Logistic regression model with fixed cluster effects (PARAM-FE): logistic regression with 

a main effect for each observed confounder and a fixed intercept for each cluster.  

• Logistic regression model with random cluster effects (PARAM-RE): logistic regression 

with a main effect for each observed confounder and random cluster intercepts. 

• Probit BART ignoring clusters (BART): BART model with probit link is implemented 

using the pbart function in the R package BART with default settings (McCulloch et al., 

2019). Although the logit version of BART is also available in the BART package, we opt 

for probit BART due to its computational efficiency.  

• Probit BART with cluster indicators (BART-FE): Same as above, except that indicator 

variables for clusters are used as predictors in addition to the observed confounders. 

• Probit BART with random effects (BART-RE): BART model with probit link and additive 

random intercepts is implemented using the rbart function in the R package dbarts with 

default settings (Dorie et al., 2020).  

• GBM ignoring clusters (GBM): Propensity score estimation using GBM is implemented 

using the ps function in the R package twang with default settings (Ridgeway et al., 2020).  
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• GBM with cluster indicators (GBM-FE): Same as above, except that indicator variables 

for clusters are added to the model.  

 

3.3 Performance criteria 

To evaluate the performance of the different propensity score estimation methods, we consider 

the following measures as in Lee et al. (2009): 

• Standardized mean difference (SMD): a measure of covariate balance. In each of the 1000 

simulations, we calculate the post-weighting absolute standardized difference of means 

between the treatment and control groups for each individual-level confounder using the R 

packages survey (Lumley, 2020) to apply the estimated propensity score weights and 

tableone (Yoshida & Bartel, 2020) to calculate the SMD. The average SMD is then taken 

across all individual-level confounders. In the following sections, we refer to this average 

as SMD for simplicity. Similarly, we do this for the observed cluster-level confounders and 

the unobserved cluster-level confounder. The SMD prior to propensity score weighting is 

also calculated to assess the initial covariate balance.  

• Bias: Both the difference between the estimated and true ATEs, 𝐴𝑇�̂� − 𝐴𝑇𝐸 , and the 

absolute percentage difference from the true ATE, |
𝐴𝑇�̂�−𝐴𝑇𝐸

𝐴𝑇𝐸
|, are presented.  

• Standard error: the average standard error of the ATE estimate is calculated using the 

survey package (Lumley, 2020).  

• 95% confidence interval coverage: In each simulation, the estimated 95% confidence 

interval is calculated using the robust standard error estimate. The 95% confidence interval 

coverage is the percentage of the 1000 estimated 95% confidence intervals that cover the 

true ATE.  
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• Weights: distribution of the estimated stabilized propensity score weights for untreated 

individuals, 
𝑃(𝑍=0)

1−�̂�𝑖
. Of particular interest is the proportion of extreme weights (stabilized 

weights≥5), which may result in biased effect estimates and large variance. 
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4 Results 

Simulation results from scenario 1 (𝐻 = 20 and 200 ≤ 𝑛ℎ ≤ 500) 

Table 1 shows the initial covariate balance in each propensity score scenario, with the mean 

SMDs all falling between 0.2 to 0.8, indicating substantial imbalance. After propensity score 

weighting, the overall covariate balancing performance of the nonparametric models is notably 

better than the parametric models across all seven scenarios (Figure 1).  

In terms of the individual-level covariates (𝑋), BART-RE yields the lowest mean SMD under 

most scenarios (top panel of Figure 1). The distributions of the 1000 SMDs are similar among the 

BART-based models except in scenarios F and G, where the distributions of BART and BART-

FE are more skewed to the right (Supplementary Figure 1). GBM-based models produce excellent 

individual-level covariate balance in all scenarios, with no SMD greater than 0.1, though they tend 

to yield slightly larger SMDs in scenarios D and E compared to the BART-based models. The 

mean SMDs of the individual-level covariates obtained from the parametric models are mostly 

acceptable (e.g., the mean SMDs of PARAM-FE range from 0.05 in scenario E to 0.15 in scenario 

G). However, Supplementary Figure 1 shows that the SMDs of the parametric models are skewed 

with large outliers (SMD≥0.15) in several scenarios, especially in scenario G. The single-level 

logistic regression model (i.e., PARAM) yields a particularly wide spread of SMD values and a 
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large number of outliers in each scenario, even though its mean SMD is smaller than that of the 

multilevel logistic regression models (i.e., PARAM-FE and PARAM-RE) in scenarios A to E. 

 

Table 1. Pre-weighting standardized mean difference (SMD) averaged over 1000 simulations in 

scenario 1 (𝐻 = 20, 200 ≤ 𝑛ℎ ≤ 500). 

 Scenario 

 A B C D E F G 

SMD (𝑋)* 0.29 0.31 0.32 0.26 0.23 0.29 0.34 

SMD (𝑉)** 0.24 0.22 0.22 0.24 0.24 0.33 0.24 

SMD (𝑈) 0.47 0.41 0.37 0.58 0.71 0.29 0.21 
* Mean SMD of the six individual-level covariates. 
** Mean SMD of the two observed cluster-level covariates. 

 

 

 
 

Figure 1. Post-weighting standardized mean difference (SMD) averaged over 1000 simulations in 

scenario 1 (𝐻 = 20 and 200 ≤ 𝑛ℎ ≤ 500). SMD (𝑋) is the mean SMD of the six individual-level 

covariates; SMD (𝑉) is the mean SMD of the two observed cluster-level covariates.  
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Similarly, in terms of the observed cluster-level covariates (𝑉), BART-RE yields the lowest 

mean SMD in most scenarios and the GBM-based models provide consistently good balance 

(middle panel of Figure 1). On the contrary, the parametric models produce many SMDs greater 

than 0.1 in several scenarios, with the performance of PARAM being particularly poor 

(Supplementary Figure 2). 

 As to the unmeasured cluster-level covariate (𝑈), BART-FE yields the lowest mean SMD in 

most scenarios, but GBM-FE appears to have the best covariate balancing performance in 

scenarios F and G given the narrow range of small SMD values it produces over 1000 simulations 

(bottom panel of Figure 1; Supplementary Figure 3). A greater amount of overlap is observed 

among the distributions of the 1000 SMDs of 𝑈 for the nonparametric and multilevel logistic 

regression models. The distributions for BART-RE are heavily skewed and contain a large number 

of outliers with SMD greater than 0.1 in scenarios A to E. With the clustered structure ignored, 

GBM on average yields worse balance of 𝑈 than the other nonparametric models in all scenarios, 

and in some cases performs worse than the multilevel logistic regression models as well. The mean 

and the distribution of SMDs with respect to 𝑈 for BART, however, are generally comparable to 

those for nonparametric models that take account of the clustered structure. As expected, PARAM 

fails to balance the unobserved cluster-level covariate as 𝑈 remains substantially imbalanced with 

mean SMDs ranging from 0.14 to 0.57 across the seven scenarios. 

In terms of the ATE estimates, BART-RE yields the least mean absolute bias (percent 

difference) in all scenarios except scenarios D and E, where the unobserved cluster-level covariate 

𝑈 plays a more important role (Figure 2); the performance of BART-RE in this setting may be 

compromised by its relative disadvantage in balancing 𝑈. BART-FE, which provides excellent 

covariate balance of 𝑈, has the least mean absolute bias in scenarios D and E. Among the BART-
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based models, BART-RE appears to be the optimal choice under cubic non-linearity in scenarios 

F and G with consistently small biases and less dispersed distributions of the biases from 1000 

simulations (Supplementary Figures 4 and 5), whereas the mean absolute biases of BART and 

BART-FE increase more than two-fold from mild to moderate non-linearity (BART: 3.3% and 

7.3% in scenarios F and G, respectively; BART-FE: 4.8% and 11.9% in scenarios F and G, 

respectively). ATE estimates obtained from the GBM-based models tend to be more biased than 

those obtained from the BART-based models on average, especially in scenarios D and E. The 

parametric models perform unsatisfactorily with large absolute biases across all seven scenarios. 

Although PARAM has a smaller mean absolute bias than PARAM-FE and PARAM-RE in all 

scenarios except D and E, the spread of the 1000 estimated ATEs obtained from PARAM is larger 

and more extreme estimates are observed. While bias worsens with increasing non-linearity or 

non-additivity in scenarios B, C, F, and G for PARAM-FE and PARAM-RE, we see improvements 

in scenarios D and E with increasing non-additivity involving the unobserved 𝑈, which may be a 

result of 𝑈 being a continuous variable. We check this by repeating the simulation experiment but 

with 𝑈 dichotomized, thus increasing non-smoothness in the response surface; the results show 

increasing absolute bias and decreasing 95% coverage rate with increasing non-additivity 

involving 𝑈 for PARAM-FE and PARAM-RE as expected (results not shown). 

In short, the nonparametric models overall provide excellent covariate balance and less biased 

ATE estimates compared to the parametric models in all scenarios, including scenario A where 

both PARAM-FE and PARAM-RE have a correctly specified functional form. In addition, BART-

based models generally yield less biased estimates than GBM-based models except when higher-

order terms exist in the true propensity score model.  
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Figure 2. Bias (estimated ATE – true ATE; top) and absolute bias (%; bottom) averaged over 1000 

simulations in scenario 1 (𝐻 = 20 and 200 ≤ 𝑛ℎ ≤ 500).  

 

 

The standard error estimates do not differ greatly across methods, except for PARAM yielding 

the widest standard errors (Figure 3). In addition, both PARAM-FE and PARAM-RE produce 

notably larger standard error estimates than the nonparametric models in scenarios F and G.  
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Figure 3. Standard error estimate averaged over 1000 simulations in scenario 1 (𝐻 = 20 and 

200 ≤ 𝑛ℎ ≤ 500).  

 

In terms of coverage rates, the nonparametric models result in a >98% coverage rate in all 

scenarios, whereas PARAM-FE and PARAM-RE have low coverage rates in several scenarios 

(Figure 4). For example, PARAM-FE and PARAM-RE have a 47.8% and 58.8% coverage rate, 

respectively, under mild non-linearity (i.e., scenario F), and only a 25.5% and 34.1% coverage rate, 

respectively, under moderate non-linearity (i.e., scenario G). PARAM, however, has a high 

coverage rate in all scenarios, ranging from 80.9% in scenario E to 99.8% in scenario A, which is 

partly due to its large standard errors of the ATE estimates. 
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Figure 4. 95% confidence interval coverage (percentage of 1000 estimated 95% confidence 

intervals that cover the true ATE) in scenario 1 (𝐻 = 20 and 200 ≤ 𝑛ℎ ≤ 500).  

 

Overall, the parametric models tend to produce a greater number of extreme propensity score 

weights than the nonparametric models (Supplementary Figure 6). For example, in scenario G, the 

parametric models produce many stabilized weights greater than 50; the proportion of stabilized 

weights greater than 5 for untreated subjects from 10 random simulated data sets is approximately 

2.7% for the parametric models and <1.5% for the nonparametric models. Moreover, BART-based 

models appear to produce more extreme weights than GBM-based models. Nevertheless, the 

overall distributions of the stabilized weights are similar for all models in each scenario. For 

instance, Supplementary Table 1 shows the statistics of the control group stabilized weights in 

scenario G from 10 random simulated data sets. 
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Simulation results from scenario 2 (𝐻 = 100 and 𝑛ℎ = 50) 

In a setting with more clusters but each of smaller size, there are fewer benefits of the 

nonparametric methods. In terms of the balance of the individual-level covariates (𝑋), BART and 

BART-RE yield the smallest mean SMDs in most scenarios, and the nonparametric models 

provide considerably better balance than the parametric models in scenarios F and G (top panel of 

Figure 5). However, we observe a great amount of overlap in the distributions of 1000 SMDs of 

the 𝑋s produced by GBM, GBM-FE, BART-FE, and the parametric models in scenarios D and E, 

where 𝑈 interacts with observed covariates in the true propensity score model (Supplementary 

Figure 7). Among the nonparametric models, the performance of GBM-FE is relatively 

undesirable as its mean SMD of the 𝑋s is consistently larger than the other nonparametric models, 

and it does not lead to improved balance compared to the parametric models under scenarios A to 

E. A similar pattern is observed for the balance of the cluster-level covariates (𝑉) (middle panel of 

Figure 5; Supplementary Figure 8). On the contrary, for the unobserved cluster-level covariate (𝑈), 

PARAM-FE, PARAM-RE, and GBM-FE tend to provide better balance, especially in scenarios D 

and E (bottom panel of Figure 5; Supplementary Figure 9). 𝑈 remains largely imbalanced for 

PARAM, BART, BART-RE, and GBM, and slightly imbalanced for BART-FE. For example, the 

mean SMDs of BART range from 0.13 to 0.48 across the seven scenarios.  
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Figure 5. Post-weighting standardized mean difference (SMD) averaged over 1000 simulations in 

scenario 2 (𝐻 = 100  and 𝑛ℎ = 50). SMD (𝑋 ) is the mean SMD of the six individual-level 

covariates; SMD (𝑉) is the mean SMD of the two observed cluster-level covariates.  

 

With regard to bias, the nonparametric models overall outperform the parametric ones in 

scenarios F and G only, with the BART-based models yielding the least biased estimates on 

average under these scenarios (Figure 6; Supplementary Figures 10 and 11). In scenarios D and E, 

PARAM-RE has the smallest mean absolute bias, which may relate to its ability to balance 𝑈. As 

seen in the setting with a small number of large clusters, the means of the standard error estimates 

do not differ greatly across models, with the exception of PARAM yielding substantially larger 

standard errors (Figure 7). The 95% coverage rates   

vary greatly, both across models and across scenarios (Figure 8). The consistently low coverage 
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rates of GBM-FE is likely the result of a larger bias and a smaller standard error combined; 

PARAM may have a higher coverage rate than GBM-FE despite large bias in some scenarios, 

possibly due to its considerably larger standard errors. Supplementary Figure 12 shows that the 

parametric models are more likely to produce extreme weights than the nonparametric models in 

all scenarios. 

 

 
 

Figure 6. Bias (estimated ATE – true ATE; top) and absolute bias (%; bottom) averaged over 1000 

simulations in scenario 2 (𝐻 = 100 and 𝑛ℎ = 50).  
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Figure 7. Standard error estimate averaged over 1000 simulations in scenario 2 (𝐻 = 100 and 

𝑛ℎ = 50).  

 

 
 

Figure 8. 95% confidence interval coverage in scenario 2 (𝐻 = 100 and 𝑛ℎ = 50). 
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In sum, in scenario 2 we observe that BART-based models and GBM yield better balance on 

the observed covariates than the parametric models in general, except when the true propensity 

score model includes cross-level interactions with the unobserved cluster-level covariate. The 

covariate balancing performance of BART-based models and GBM declines dramatically when it 

comes to the unobserved cluster-level covariate, whereas the multilevel logistic regression models 

and GBM-FE possess advantage in capturing unmeasured cluster-level characteristics. Unlike 

scenario 1 where nonparametric models (particularly BART-based models) yield less biased 

estimates on average in all seven propensity score scenarios, in scenario 2 nonparametric models 

show superior performance only when the true propensity score model includes multiple cubic 

terms.  

 

Simulation results from scenario 3 (𝐻 = 20 and 𝑛ℎ = 100) 

Finally, we provide a brief summary of results from the scenario with a small number of 

clusters (as in scenario 1) but where each cluster is smaller. The resulting figures are presented in 

Appendix 2. In terms of the observed individual- and cluster-level covariates, the BART-based 

models provide notably better covariate balance than the GBM-based and parametric models 

across the seven scenarios (Supplementary Figure 13). The GBM-based models produce better 

balance on the observed covariates than the parametric models in general, except in scenarios D 

and E. Similar to the previous setting (𝐻 = 100 and 𝑛ℎ = 50), the multilevel logistic regression 

models, BART-FE, and GBM-FE appear to be more capable of balancing the unobserved cluster-

level covariate 𝑈  than the other models in most scenarios. BART-based models on average 

produce the least biased estimates across the seven scenarios, and PARAM-RE produces 

comparably small biases in scenarios D and E due to its covariate balancing performance on 𝑈 
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(Supplementary Figure 14). As seen in previous settings, the nonparametric models tend to 

outperform the parametric models when the true propensity score model contains cubic terms; they 

also produce fewer extreme weights than the parametric models under all scenarios 

(Supplementary Figure 17).  

 

Doubly robust estimation 

Additionally, we perform a doubly robust approach to estimate the ATE by adjusting for the 

observed covariates and including indicator variables for clusters in the outcome model. Because 

such an approach deviates from our focus on propensity score estimation strategies, part of the 

results based on scenario 1 (𝐻 = 20  and 200 ≤ 𝑛ℎ ≤ 500) are presented in Appendix 2 for 

reference. We note that the mean absolute percent biases decrease greatly compared to those 

obtained via inverse probability weighting and are consistently small (mostly <1.5% for PARAM-

FE and PARAM-RE; <1% for all nonparametric models) for all models in any scenario 

(Supplementary Figure 18), yet the nonparametric models still yield less biased estimates than the 

parametric models across the seven scenarios.    
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5 Application 

As an illustration, we apply the propensity score estimation methods used in the simulation 

study on the public-use data sets of the National Longitudinal Study of Adolescent to Adult Health 

(Add Health). A nationally representative sample of U.S. adolescents who participated in Add 

Health were followed into their adulthood – the first wave was conducted during the 1994-1995 

school year when the respondents were in grades 7 through 12; the fourth and most recent wave 

was conducted in 2008 when the respondents were aged 24-32 (Harris & Udry, 2018).  

Our application is based on the study by Easterlin et al. (2019), which used the Add Health 

data to evaluate the association of team sports participation during adolescence with adult mental 

health outcomes among individuals exposed to adverse childhood experiences. For the purpose of 

demonstration, we use the wave 1 and wave 4 public-use data sets of Add Health to evaluate the 

effect of team sports participation during adolescence on depressive symptoms in adulthood. The 

Add Health public-use data sets contain limited survey data for a subset of the full Add Health 

sample and are available for access by the general public. The wave 1 and wave 4 public-use data 

sets contain data for 6,504 and 5,114 respondents, respectively, from 132 schools. We restrict our 

analysis to the 10 largest schools, resulting in an analytic sample of 617 respondents with the 

school sizes ranging from 51 to 95 students.  
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Same as in Easterlin et al. (2019), the “treatment” is whether respondents participated in at 

least one team sport during adolescence, which was captured by the wave 1 in-school questionnaire. 

Our outcome of interest is respondents’ total scores on the 10-item subscale of the Center for 

Epidemiologic Studies Depression scale (CES-D-10) in the wave 4 in-home survey, ranging from 

0 to 25 in our analytic sample (the maximum possible score is 30).  

We select six individual-level covariates based on components of the propensity score in 

Easterlin et al. (2019): sex (female and male), race (White, Black, Native American/Indian, Asian, 

and other), ethnicity (Hispanic and non-Hispanic), parental education (coded as a number between 

0-8 where higher values indicate higher education attainment of whichever parent has the higher 

education level. Education level of the mother is used if that of the father is missing, and vice 

versa), whether the respondent lived in an urban area, and neighborhood connectedness (0-2, the 

sum of responses to the questions “People in this neighborhood look out for one another” and “Do 

you usually feel safe in your neighborhood?” as defined in Reese and Halpern [2017]. A positive 

response is coded as 1 and negative response as 0). These covariates are obtained from the wave 

1 in-home survey data. We also calculate respondents’ total scores on the Feelings Scale in the 

wave 1 in-home survey, which mostly consists of items from CES-D (range: 0-38; maximum 

possible score: 57). School characteristics such as school size and region were also included in the 

propensity score model in Easterlin et al. (2019). However, school information is not available in 

the Add Health public-use data files. Therefore, only individual-level characteristics are included 

in our propensity score models. 

We estimate the propensity scores using the eight propensity score models listed in section 

3.2 (i.e., PARAM, PARAM-FE, PARAM-RE, BART, BART-FE, BART-RE, GBM, and GBM-

FE). Components of the propensity score models include the aforementioned individual-level 
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covariates, score on the wave 1 Feelings Scale, and school indicators for models with fixed cluster 

effects. We assume that participation in team sports do not affect responses to the Feelings Scale 

during wave 1 but note that this assumption should be carefully validated if the goal is to make 

substantive conclusions. The average treatment effect of team sports participation during wave 1 

on CES-D-10 score during wave 4 is estimated via inverse probability weighting.   

The left plot of Figure 9 shows the covariate balance of each individual-level covariate before 

and after propensity score weighting. All models yield decent balance (standardized mean 

difference<0.1) on the individual-level covariates with a few minor exceptions (e.g., the 

standardized mean difference of parental education from BART-RE is 0.11). Given the small 

sample and relatively moderate cluster sizes in this example, the covariate balancing performance 

of the nonparametric models may be more affected by unmeasured cluster-level confounding and 

potential cross-level interactions compared to the parametric models (similar to scenarios D and E 

in the simulation study). The right plot of Figure 9 shows the balance on school membership before 

and after weighting. Within each method, models that include the school indicators as predictors 

(i.e., PARAM-FE, BART-FE, GBM-FE) tend to produce better balance on the school indicators, 

followed by models with random cluster effects (i.e., PARAM-RE and BART-RE). Similar to our 

simulation results, we expect that models with fixed cluster effects and PARAM-RE would also 

provide better balance on the unobserved cluster-level covariates such as school size.  

All models yield similar estimates of the average treatment effect (0.30-0.67) and suggest that 

team sports participation during adolescence may not have an impact on adulthood depressive 

symptoms among the general U.S. population (Table 2 and Figure 10). We note, however, that the 

main purpose of this application is to demonstrate the use of different propensity score estimation 

strategies on real data instead of drawing substantive conclusions. The unavailability of the 
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complete Add Health sample and survey data as well as unmeasured confounding may hinder us 

from obtaining valid causal effect estimates.  

 

 
 

Figure 9. Covariate balance of the individual-level covariates (left) and school indicators (right) 

before and after propensity score weighting.  

 

 

Table 2. Average treatment effect (ATE) estimates of team sports participation during adolescence 

on CES-D-10 score during adulthood. 

 

 ATE Estimate Robust Standard Error 

PARAM 0.51 0.37 

PARAM-FE 0.67 0.42 

PARAM-RE 0.61 0.40 

BART 0.41 0.33 

BART-FE 0.44 0.38 

BART-RE 0.30 0.31 

GBM 0.49 0.31 

GBM-FE 0.44 0.41 
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Figure 10. Average treatment effect (ATE) estimates (with 95% confidence intervals) of team 

sports participation during adolescence on CES-D-10 score during adulthood. 
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6 Discussion 

Our simulation study extends the findings of Lee et al. (2009) to multilevel data settings, 

supporting the use of nonparametric machine learning techniques in improving propensity score 

weighting. However, we also show that nonparametric propensity scores may lose advantage under 

certain settings, such as when cluster sizes are not considerably larger than the number of clusters 

and a strong degree of unmeasured cluster-level confounding exits.  

The goal of propensity score weighting is to make the treated and control groups as similar as 

possible with respect to pre-treatment confounders in order to reduce bias in the treatment effect 

estimate. However, it is essentially impossible to capture the full set of confounders in reality. Our 

simulation study thus assumes that an unobserved confounder exists at the cluster level, and for 

both parametric and nonparametric approaches, we consider models that either account for or 

ignore the clustered structure. At least for large cluster and sample sizes, our findings are consistent 

with studies that show the need for multilevel propensity score modeling with clustered data: 

within the logistic regression, BART, and GBM methods, the best-performing model in any 

scenario is one that accounts for cluster membership; the choice of either fixed or random effects 

may depend on the specific scenario.  

In our simulation setting with 20 clusters of size 200 to 500 (i.e., scenario 1), we find that 

random effects BART models provide excellent covariate balance on the observed covariates 
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regardless of the extent of interactions or non-linearities in the true propensity score model, while 

BART and GBM models that include cluster indicators may be better at balancing unobserved 

cluster-level covariates. Further, BART provides decent covariate balance for both the observed 

and the unobserved cluster-level covariates even with the clustered structure being ignored, 

whereas GBM without cluster indicators falls short of balancing the unobserved cluster-level 

covariate. Both BART-based models and GBM with cluster indicators provide better balance for 

all types of covariates than the parametric models; this finding applies not only to scenarios where 

the multilevel logistic regression models are misspecified, but also to the scenario where the true 

propensity score model is both linear and additive. Because bias reduction through propensity 

score weighting is dependent on the balance of confounders that have strong influences, our results 

suggest that (in cases of large cluster and sample sizes): 

• when cluster-level characteristics may have a strong effect on the treatment assignment 

and/or the outcome, and a strong degree of unmeasured cluster-level confounding is likely, 

including indicators for clusters in the BART and GBM models is recommended; 

• when there is presumed to be little to no unmeasured cluster-level confounding and the 

balance of observed covariates is to be prioritized, random effects BART models are a 

desirable option; 

• when information about cluster membership for each individual is unavailable, BART 

models including only the observed covariates may be sufficient as a favorable alternative 

to parametric models. 

Note that the above suggestions pertain mostly to cases where the sample and cluster sizes are 

large (e.g., 20 clusters of sizes 200 to 500). When we have a large number of small clusters (e.g., 

100 clusters of size 50), nonparametric models – specifically those without cluster indicators – fail 
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to provide adequate balance of the unobserved cluster-level covariate. A possible explanation is 

that because the nonparametric approaches do not force the cluster structure in the model, the 

unobserved cluster-level covariate is not prioritized when the clusters are small with little 

information for the nonparametric models to detect their importance, while more effort is spent on 

handling the observed covariates. The same issue arises when we have 20 clusters with a decreased 

sample size of 100 units per cluster, though at a smaller extent (e.g., the average SMD of BART-

RE over the seven scenarios is 0.264 and 0.129 in the case of 100 clusters of size 50 and 20 clusters 

of size 100, respectively). However, in terms of the observed covariates, the covariate balancing 

performance of BART-based models are generally better than that of the parametric models when 

there is no interaction with the unobserved cluster-level covariate across all clustering settings, 

suggesting that nonparametric models, particularly BART models, may improve propensity score 

weighting under a variety of settings if the unmeasured cluster-level confounding is minimal.  

In our study, only two nonparametric approaches for estimating propensity scores are 

examined. It is expected that other methods such as random forest and neural networks may offer 

additional insight into nonparametric propensity score modeling in a multilevel context. We note 

that an ensemble machine learning algorithm called Super Learner has been developed as a method 

to automatically select among a “library” of candidate models via cross-validation in order to build 

an optimal model for a given setting; hence, Super Learner has the advantage of combining the 

strengths of a variety of machine learning strategies (van der Laan et al., 2007). It has been shown 

that estimating propensity scores using Super Learner can improve covariate balance and reduce 

bias when the main-effects logistic regression model is severely misspecified (Pirracchio et al., 

2015). Evaluation of the effectiveness of Super Learner for propensity score modeling under 

multilevel contexts could be an avenue for future research. 
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Our simulation design assumes that all covariates entered in the propensity score estimation 

model are related to both the treatment assignment and the outcome. However, in reality 

investigators often do not know the actual set of covariates related to treatment and may include 

redundant covariates in the propensity score estimation model. It has been shown that adding 

irrelevant covariates to GBM may lead to increased covariate imbalance and bias in the treatment 

effect estimates (Griffin et al., 2017). BART appears to be effective at detecting important 

predictors when irrelevant ones are added, but its effectiveness in the context of propensity score 

estimation is unknown (Chipman et al., 2010). Future work may assess the performance of GBM 

and BART compared to parametric propensity score modeling under more realistic scenarios 

where irrelevant covariates are being included in addition to unmeasured cluster-level confounding. 

Lastly, we point out a few properties regarding the implementation of GBM and BART. Note 

that default parameter settings in the R packages for BART (BART and dbarts) and GBM (twang) 

are used in our simulation experiment, but performance of these machine learning algorithms may 

be enhanced from parameter tuning. As mentioned in Section 2.2, BART has an advantage in that 

it only requires minimal assumptions regarding the model parameters by placing prior distributions 

over the tree models. BART is highly robust to small changes in the prior and the choice of the 

number of trees, and the defaults are usually adequate (Chipman et al., 2010). Thoughtful 

specification of the GBM parameters may improve its performance by a greater extent. A 

disadvantage of GBM is that the twang package can be computationally demanding, as evidenced 

by others as well as our experience in implementing the two methods, where the speed of BART 

is markedly faster than GBM (Parast et al., 2016).  

In conclusion, our results suggest that in non-experimental studies with clustered data, flexible 

modeling of the propensity score may offer advantages in terms of covariate balance and bias 
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reduction, at least in studies where the sample size is large and cluster sizes are considerably larger 

than the number of clusters (e.g., 20 clusters of sizes 200 to 500). However, when the cluster sizes 

are small (e.g., 100 clusters of size 50), nonparametric methods may not be optimal for propensity 

score estimation in some cases due to failure of balancing unmeasured cluster-level characteristics. 

A major limitation of our study, and all simulation studies in general, is that we are unable to 

capture all possible propensity score scenarios and cluster sizes that may occur in reality. As seen 

from our three sets of simulation results and real data application, results are likely to vary if the 

setup or data generating mechanisms were specified differently (e.g., different degrees of 

confounding, parameters or functional forms). Thus, it is important to note that the main 

contribution of our findings lies in offering insight into parametric versus nonparametric 

propensity estimation with clustered data. They should not be viewed as definite conclusions and 

the choice of which model works best will largely depend on the specific data at hand.  
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Appendix 1: Data generation models 

True propensity score models 

Scenario A (main effects only):  

𝑙𝑜𝑔𝑖𝑡(𝑒ℎ𝑘
∗ ) = 𝛽0 + 𝛽1𝑋1,ℎ𝑘 + 𝛽2𝑋2,ℎ𝑘 + 𝛽3𝑋3,ℎ𝑘 + 𝛽4𝑋4,ℎ𝑘 + 𝛽5𝑋5,ℎ𝑘 + 𝛽6𝑋6,ℎ𝑘 + 𝛽7𝑉1,ℎ

+ 𝛽8𝑉2,ℎ + 𝛽9𝑈ℎ 

Scenario B (three two-way interaction terms between observed confounders):  

𝑙𝑜𝑔𝑖𝑡(𝑒ℎ𝑘
∗ ) = 𝛽0 + 𝛽1𝑋1,ℎ𝑘 + 𝛽2𝑋2,ℎ𝑘 + 𝛽3𝑋3,ℎ𝑘 + 𝛽4𝑋4,ℎ𝑘 + 𝛽5𝑋5,ℎ𝑘 + 𝛽6𝑋6,ℎ𝑘 + 𝛽7𝑉1,ℎ

+ 𝛽8𝑉2,ℎ + 𝛽9𝑈ℎ + 𝛾1𝑋1,ℎ𝑘𝑋4,ℎ𝑘 + 𝛾3𝑋3,ℎ𝑘𝑉2,ℎ + 𝛾5𝑋5,ℎ𝑘𝑉2,ℎ 

Scenario C (six two-way interaction terms between observed confounders):  

𝑙𝑜𝑔𝑖𝑡(𝑒ℎ𝑘
∗ ) = 𝛽0 + 𝛽1𝑋1,ℎ𝑘 + 𝛽2𝑋2,ℎ𝑘 + 𝛽3𝑋3,ℎ𝑘 + 𝛽4𝑋4,ℎ𝑘 + 𝛽5𝑋5,ℎ𝑘 + 𝛽6𝑋6,ℎ𝑘 + 𝛽7𝑉1,ℎ

+ 𝛽8𝑉2,ℎ + 𝛽9𝑈ℎ + 𝛾1𝑋1,ℎ𝑘𝑋4,ℎ𝑘 + 𝛾2𝑋2,ℎ𝑘𝑋5,ℎ𝑘 + 𝛾3𝑋3,ℎ𝑘𝑉2,ℎ + 𝛾4𝑋4,ℎ𝑘𝑋6,ℎ𝑘

+ 𝛾5𝑋5,ℎ𝑘𝑉2,ℎ + 𝛾6𝑋6,ℎ𝑘𝑉2,ℎ 

Scenario D (three two-way interaction terms between 𝑈 and observed confounders):  

𝑙𝑜𝑔𝑖𝑡(𝑒ℎ𝑘
∗ ) = 𝛽0 + 𝛽1𝑋1,ℎ𝑘 + 𝛽2𝑋2,ℎ𝑘 + 𝛽3𝑋3,ℎ𝑘 + 𝛽4𝑋4,ℎ𝑘 + 𝛽5𝑋5,ℎ𝑘 + 𝛽6𝑋6,ℎ𝑘 + 𝛽7𝑉1,ℎ

+ 𝛽8𝑉2,ℎ + 𝛽9𝑈ℎ + 𝜂1𝑋1,ℎ𝑘𝑈ℎ + 𝜂2𝑋4,ℎ𝑘𝑈ℎ + 𝜂3𝑋5,ℎ𝑘𝑈ℎ 
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Scenario E (six two-way interaction terms between 𝑈 and observed confounders):  

𝑙𝑜𝑔𝑖𝑡(𝑒ℎ𝑘
∗ ) = 𝛽0 + 𝛽1𝑋1,ℎ𝑘 + 𝛽2𝑋2,ℎ𝑘 + 𝛽3𝑋3,ℎ𝑘 + 𝛽4𝑋4,ℎ𝑘 + 𝛽5𝑋5,ℎ𝑘 + 𝛽6𝑋6,ℎ𝑘 + 𝛽7𝑉1,ℎ

+ 𝛽8𝑉2,ℎ + 𝛽9𝑈ℎ + 𝜂1𝑋1,ℎ𝑘𝑈ℎ + 𝜂2𝑋4,ℎ𝑘𝑈ℎ + 𝜂3𝑋5,ℎ𝑘𝑈ℎ + 𝜂4𝑋6,ℎ𝑘𝑈ℎ

+ 𝜂5𝑉2,ℎ𝑈ℎ + 𝜂6𝑋2,ℎ𝑘𝑈ℎ 

Scenario F (two cubic terms):  

𝑙𝑜𝑔𝑖𝑡(𝑒ℎ𝑘
∗ ) = 𝛽0 + 𝛽1𝑋1,ℎ𝑘 + 𝛽2𝑋2,ℎ𝑘 + 𝛽3𝑋3,ℎ𝑘 + 𝛽4𝑋4,ℎ𝑘 + 𝛽5𝑋5,ℎ𝑘 + 𝛽6𝑋6,ℎ𝑘 + 𝛽7𝑉1,ℎ

+ 𝛽8𝑉2,ℎ + 𝛽9𝑈ℎ + 𝛽1𝑋1,ℎ𝑘
3 + 𝛽7𝑉1,ℎ

3  

Scenario G (four cubic terms):  

𝑙𝑜𝑔𝑖𝑡(𝑒ℎ𝑘
∗ ) = 𝛽0 + 𝛽1𝑋1,ℎ𝑘 + 𝛽2𝑋2,ℎ𝑘 + 𝛽3𝑋3,ℎ𝑘 + 𝛽4𝑋4,ℎ𝑘 + 𝛽5𝑋5,ℎ𝑘 + 𝛽6𝑋6,ℎ𝑘 + 𝛽7𝑉1,ℎ

+ 𝛽8𝑉2,ℎ + 𝛽9𝑈ℎ + 𝛽1𝑋1,ℎ𝑘
3 + 𝛽2𝑋2,ℎ𝑘

3 + 𝛽3𝑋3,ℎ𝑘
3 + 𝛽7𝑉1,ℎ

3  

 

𝛽0 = 0.1, 𝛽1 = 1.2, 𝛽2 = 1.4, 𝛽3 = 1.3, 𝛽4 = 1.1, 𝛽5 = 1, 𝛽6 = 1, 𝛽7 = 1.2, 𝛽8 = 1.1, 𝛽9 = 2 

𝛾1 = 1.1, 𝛾2 = 1, 𝛾3 = 1.1, 𝛾4 = 1, 𝛾5 = 1, 𝛾6 = 1 

𝜂1 = 1.2,  𝜂2 = 1.1, 𝜂3 = 1, 𝜂4 = 1, 𝜂5 = 1.1, 𝜂6 = 1.4 

 

Outcome model 

𝑌ℎ𝑘 = 𝛼0 + 𝛼1𝑋1,ℎ𝑘 + 𝛼2𝑋2,ℎ𝑘 + 𝛼3𝑋3,ℎ𝑘 +  𝛼4𝑋4,ℎ𝑘 + 𝛼5𝑋5,ℎ𝑘 + 𝛼6𝑋6,ℎ𝑘 + 𝛼7𝑉1,ℎ + 𝛼8𝑉2,ℎ

+ 𝛼9𝑈ℎ + 𝜏𝑍ℎ𝑘 + 𝛿𝑍ℎ𝑘𝑈ℎ
2 + 𝑁(0,0.1) 

 

𝛼0 = 0.1, 𝛼1 = 1, 𝛼2 = 1.4, 𝛼3 = 1.5, 𝛼4 = 1.1, 𝛼5 = 1.1, 𝛼6 = 1, 𝛼7 = 1.2, 𝛼8 = 1.3, 𝛼9 = 3 

𝜏 = 2, 𝛿 = 2 
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Appendix 2: Supplementary figures and table 

 

 
 

Supplementary Figure 1. Distribution of the average standardized mean difference (SMD) of the 

individual-level covariates (𝑋1, 𝑋2, … , 𝑋6) for 1000 simulated data sets in scenario 1 (𝐻 = 20, 

200 ≤ 𝑛ℎ ≤ 500).  
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Supplementary Figure 2. Distribution of the average standardized mean difference (SMD) of the 

observed cluster-level covariates (𝑉1, 𝑉2) for 1000 simulated data sets in scenario 1 (𝐻 = 20, 

200 ≤ 𝑛ℎ ≤ 500). 
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Supplementary Figure 3. Distribution of the standardized mean difference (SMD) of the 

unobserved cluster-level covariates (𝑈) for 1000 simulated data sets in scenario 1 (𝐻 = 20, 200 ≤
𝑛ℎ ≤ 500). 
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Supplementary Figure 4. Distribution of the bias (estimated ATE - true ATE) for 1000 simulated 

data sets in scenario 1 (𝐻 = 20, 200 ≤ 𝑛ℎ ≤ 500). 
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Supplementary Figure 5. Distribution of the absolute bias (%) for 1000 simulated data sets in 

scenario 1 (𝐻 = 20, 200 ≤ 𝑛ℎ ≤ 500). 
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Supplementary Figure 6. Distribution of the estimated propensity score weights (stabilized) for the 

control group in 10 simulated data sets in scenario 1 (𝐻 = 20, 200 ≤ 𝑛ℎ ≤ 500). 

 

 

Supplementary Table 1. Statistics of control group stabilized weights in scenario G from 10 

simulated data sets in scenario 1 (𝐻 = 20, 200 ≤ 𝑛ℎ ≤ 500). 

 Min Q1 Median Mean Q3 Max 

PARAM 0.4 0.6 0.7 1.2 0.9 259.0 

PARAM-FE 0.4 0.6 0.7 1.2 0.9 74.4 

PARAM-RE 0.4 0.6 0.7 1.2 0.9 81.9 

BART 0.4 0.5 0.7 1.0 0.9 23.8 

BART-FE 0.4 0.6 0.7 1.0 0.9 47.0 

BART-RE 0.4 0.5 0.6 1.0 0.9 18.0 

GBM 0.4 0.5 0.6 0.9 0.9 14.3 

GBM-FE 0.4 0.5 0.6 0.9 0.9 11.8 

 

 



APPENDIX 2: SUPPLEMENTARY FIGURES AND TABLE 

 

 
48 

 
 

Supplementary Figure 7. Distribution of the average standardized mean difference (SMD) of the 

individual-level covariates ( 𝑋1, 𝑋2, … , 𝑋6 ) for 1000 simulated data sets in scenario 2 ( 𝐻 =
100, 𝑛ℎ = 50). 
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Supplementary Figure 8. Distribution of the average standardized mean difference (SMD) of the 

observed cluster-level covariates ( 𝑉1, 𝑉2 ) for 1000 simulated data sets in scenario 2 ( 𝐻 =
100, 𝑛ℎ = 50). 
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Supplementary Figure 9. Distribution of the standardized mean difference (SMD) of the 

unobserved cluster-level covariates (𝑈) for 1000 simulated data sets in scenario 2 (𝐻 = 100, 𝑛ℎ =
50). 
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Supplementary Figure 10. Distribution of the bias (estimated ATE - true ATE) for 1000 simulated 

data sets in scenario 2 (𝐻 = 100, 𝑛ℎ = 50). 
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Supplementary Figure 11. Distribution of the absolute bias (%) for 1000 simulated data sets in 

scenario 2 (𝐻 = 100, 𝑛ℎ = 50). 
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Supplementary Figure 12. Distribution of the estimated propensity score weights (stabilized) for 

the control group in 10 simulated data sets in scenario 2 (𝐻 = 100, 𝑛ℎ = 50). 
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Supplementary Figure 13. Post-weighting standardized mean difference (SMD) averaged over 

1000 simulations in scenario 3 (𝐻 = 20 and 𝑛ℎ = 100). SMD (𝑋) is the mean SMD of the six 

individual-level covariates; SMD (𝑉) is the mean SMD of the two observed cluster-level covariates.  

 

 

 

 

 

 

 

 

 

 



APPENDIX 2: SUPPLEMENTARY FIGURES AND TABLE 

 

 
55 

 
 

Supplementary Figure 14. Bias (estimated ATE – true ATE; top) and absolute bias (%; bottom) 

averaged over 1000 simulations in scenario 3 (𝐻 = 20 and 𝑛ℎ = 100).  
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Supplementary Figure 15. Standard error estimate averaged over 1000 simulations in scenario 3 

(𝐻 = 20 and 𝑛ℎ = 100).  

 

 
 

Supplementary Figure 16. 95% confidence interval coverage in scenario 3 (𝐻 = 20 and 𝑛ℎ =
100). 
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Supplementary Figure 17. Distribution of the estimated propensity score weights (stabilized) for 

the control group in 10 simulated data sets in scenario 3 (𝐻 = 20, 𝑛ℎ = 100). 
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Supplementary Figure 18. Bias (estimated ATE – true ATE; top) and absolute bias (%; bottom) 

from doubly robust estimation averaged over 1000 simulations in scenario 1 (𝐻 = 20, 200 ≤
𝑛ℎ ≤ 500).  
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Supplementary Figure 19. Standard error estimate from doubly robust estimation averaged over 

1000 simulations in scenario 1 (𝐻 = 20, 200 ≤ 𝑛ℎ ≤ 500).  
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