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Abstract 

Diverse neuronal subtypes are the building blocks of functional neural circuits that underlie behaviors. The 

generation of correct types of neurons at appropriate times and positions is therefore fundamental to the 

development of the nervous system. Specification of neuronal subtypes is a multistep process that extends 

beyond the initial specification of neural progenitors and continues as postmitotic neurons differentiate 

further. The postmitotic aspect of neuronal subtype specification, although important for generation of 

neuronal subtype diversity, remains understudied. Here, using nociceptors, a class of primary sensory 

neurons in the dorsal root ganglion (DRG) that detect painful stimuli, as a model system and a combination 

of in vivo and in vitro approaches, we uncover a novel mechanism by which NGF, the prototypic 

neurotrophic factor and Runx1, a Runx family transcription factor, coordinate the specification of 

nonpeptidergic nociceptors, a major, well-characterized nociceptor subtype. We show that NGF promotes 

Runx1-dependent transcription that confers molecular and morphological identity of nonpeptidergic 

nociceptors through transcriptional upregulation of Cbfb. The protein product of Cbfb, CBFβ, is an integral 

component of the heterodimeric Runx1/CBFβ complex in DRGs, since conditional deletion of Cbfb in 

DRGs produces the same spectrum of phenotypes in nonpeptidergic nociceptors as observed in Runx1 

mutants. NGF is necessary for Cbfb expression prior to the onset of NGF dependence of Runx1, 

implicating CBFβ as a critical link between NGF signaling and Runx1 function. NGF activates Cbfb 

expression through a MEK/ERK pathway. On the other hand, transcriptional initiation of Runx1 requires 

Islet1, a LIM-homeodomain transcription factor, while Cbfb expression is largely Islet1-independent. These 

findings together reveal a novel NGF/TrkA–MEK/ERK–Runx1/CBFβ axis that promotes gene expression 

and maturation of nonpeptidergic nociceptors and provide a common principle by which a convergence of 

extrinsic and intrinsic signals instructs postmitotic neuronal subtype specification. 
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Chapter 1. Neuronal subtype specification in DRG sensory neurons 

1.1. The question of neural cell-fate determination 

Neuroscientists have been fascinated by the remarkably high degree of cell type diversity in the nervous 

system for over a century (Ramon y Cajal, 1899). Since different types of neurons serve as the building 

blocks of myriad functional neuronal circuits, which underlie all complex behaviors in the animal kingdom, 

studying the process of cell-fate determination during neural development has proven central to 

understanding brain function. Moreover, recent success in directing differentiation of embryonic stem cells 

into neuronal subtypes in vitro demonstrates the translational value of studying normal neuronal 

specification in the development of cell replacement therapies for diseases characterized by a loss of 

specific neuronal types (Robertson et al., 2008).  

Neuronal cell fate specification is a multistep process that can be broadly divided into two stages, early 

specification of neural progenitor cell identity and postmitotic differentiation of neuronal subtypes. 

Vertebrate studies over the past 20 years, primarily in the retina, cerebral cortex and developing spinal cord, 

have provided insights into this process. Most notably, there is general agreement on the importance of the 

interplay between intrinsic determinants and extrinsic signals in controlling neural cell-fate decisions 

(Fishell and Heintz, 2013). Examples of coordinate regulation of cell-fate choice by both extrinsic and 

intrinsic factors are particularly well documented in the context of specification of neural progenitor cells. 

Conceptually, at least two different modes of interaction have been observed for defining progenitor cell 

identity. First, it is widely accepted that as development progresses, neural progenitors pass through a series 

of intrinsically determined competence states, during which they can only produce a subset of cell types. In 

other words, cell-fate choices at a given time are restricted by limitations in progenitor competence, which 

is largely intrinsically defined. Extrinsic factors have the most influence on progenitors within a given 

competence state to alter the relative proportions of each cell type generated within the confines set by the 

intrinsic state of progenitors. In the retina, for instance, it was shown that retinal progenitors obtained from 

the embryonic rat retina and cultured in an environment mimicking the postnatal retina, fail to produce the 

main cell type that postnatal progenitors generate, indicating intrinsic limitations in the competence of 

retinal progenitors at different times. Yet, extrinsic factors characteristic of the postnatal retina alter the 
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relative abundance of each cell type that can be generated within the confines of the intrinsic competence 

state of embryonic progenitors (Belliveau and Cepko, 1999; Livesey and Cepko, 2001). Similarly, during 

cortical neurogenesis, neocortical progenitors become progressively restricted in their competence states, 

such that early progenitors are multipotent and are able to give rise to pyramidal neurons across layers II-VI, 

while late progenitors have very limited fate potential, even when transplanted into the niches of early 

progenitors (Frantz and McConnell, 1996; Reid and Walsh, 2002). Unlike retinal progenitors, under 

appropriate conditions, the competence state of neocortical progenitors can be overridden by extrinsic 

factors, suggesting an even greater contribution of extrinsic factors to cell-fate decisions in the neocortex 

(Fukumitsu et al., 2006; McConnell and Kaznowski, 1991).  

A second paradigm where extensive interaction between extrinsic and intrinsic factors has been intimately 

linked to neuronal identity is in the context of specification of positional identities of progenitor domains. It 

is well known from seminal work in the developing spinal cord that the position that a progenitor cell 

assumes in the neural tube is a critical determinant of the neural fate of its progeny. The steps linking 

spatial patterning of progenitor domains and generation of specific neuronal subtypes in the spinal cord 

have been well defined, especially along the dorsoventral (D-V) axis. There, initially identical progenitors 

are segregated into different domains based on their distinct positions along the D-V axis, where they are 

exposed to different combinations of spatially restricted extrinsic morphogens at different concentrations. 

For instance, the morphogen Sonic hedgehog (Shh) emanating from the notocord and floor plate is critical 

for the patterning of all five ventral progenitor domains that each give rise to one of the five neuronal 

subtypes in the ventral spinal cord (Briscoe and Ericson, 2001; Briscoe and Novitch, 2008; Patten and 

Placzek, 2000). Shh signaling acts in a concentration-dependent manner to specify each ventral progenitor 

domain by regulating the expression profiles of homeodomain HD transcription factors that provide 

positional identity along the D-V axis in the form of a combinatorial transcription factor code (Briscoe and 

Ericson, 2001; Briscoe and Novitch, 2008).  In broader terms, these findings describe a common way in 

which extrinsic signaling factors and intrinsic transcription factors coordinate the specification of neuronal 

progenitors. That is, extrinsic signaling regulates the expression of intrinsic transcription factors. 
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Although it is generally believed that cell identity becomes fixed when cells exit the cell cycle, 

diversification of neuronal subtypes continues in postmitotic neurons (Fishell and Heintz, 2013). Indeed, it 

has been increasingly appreciated that postmitotic differentiation of neuronal subtypes is the major source 

of neuronal subtype diversity. For instance, three broad subtypes of neocortical projection neurons defined 

based on their axonal projection patterns, namely, subcerebral projection neurons, corticothalamic 

projection neurons and callosal projection neurons, are specified postmitotically (Greig et al., 2013). 

Specification of motor neuron columnar identity along the rostrocaudal (R-C) axis and even finer 

segregation of motor neurons into motor pools based on the specific muscle they innervate are all processes 

that take place following the initial generation of motor neurons (Shirasaki and Pfaff, 2002). Studies of 

postmitotic specification of neuronal fate in motor neurons have so far demonstrated dependence of 

subtype identity on both extrinsic and intrinsic regulators much like what was described for specification of 

motor neuron progenitors (Dasen et al., 2003; Liu et al., 2001; Shirasaki and Pfaff, 2002; Sockanathan et al., 

2003). It appears that at least in some cases, similar mechanisms are used. For example, convergent 

activities of extrinsic signals, including FGFs, Gdf11 and retinoid signals, impose motor neuron columnar 

fate by establishing the pattern of Hox gene expression along the R-C axis (Liu et al., 2001). However, in 

most cases, extrinsic and intrinsic requirements have not been defined, preventing a comprehensive 

assessment of the relative roles of extrinsic and intrinsic signals in the late phase of cell-fate determination.  

Further investigation of molecular mechanisms underlying postmitotic specification of neuronal subtypes in 

neural systems is therefore of great importance to close the gap between neurogenesis and neuronal subtype 

specification.  
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1.2. Development of primary sensory neurons in the DRG 

The somatosensory system is the part of the nervous system that generates the conscious perception of 

diverse sensory stimuli from the external environment and internal organs, informing us of painful or 

harmful cues, temperature, itch, touch, limb movement and body position. The ability to detect such diverse 

sensory modalities arises from the existence of functionally specialized primary sensory neurons that are 

the first order neurons of the somatosensory system. Primary sensory neurons that carry most sensory 

information from the trunk and limbs have their cell bodies located in the dorsal root ganglion (DRG), 

hence are termed DRG neurons. DRG neurons are pseudounipolar in that each neuron extends one axon 

that bifurcates to innervate both a peripheral target, for example the skin, and the central target, the dorsal 

spinal cord. Notably, depending on the functional type, DRG neurons not only have unique molecular 

characteristics, but they also establish stereotyped modality-specific contacts with peripheral and central 

targets. DRG neurons are therefore broadly divided into three functionally, molecularly and 

morphologically distinct classes, namely, nociceptors that preferentially respond to painful stimuli, 

mechanoreceptors mediating mechanical sensations, and proprioceptors that sense body position and limb 

movement (Figure 1). Due to this heterogeneity, the DRG has long been an attractive model system for 

studying various developmental processes leading up to the generation of diverse neuronal subtypes. 

DRG neurons together with sympathetic and enteric neurons of the peripheral nervous system (PNS) and 

cells of many other nonneuronal lineages are derived from multipotent trunk neural crest cells (NCCs). The 

neural crest which arises at the border between the nonneural ectoderm and the neural plate is specified as 

early as gastrulation (Basch et al., 2006). Neural crest induction is driven by extrinsic signaling that 

culminates in profound changes in cell-intrinsic properties. BMPs and Wnts are both involved in this 

process. Specifically, Wnt molecules are both necessary and sufficient to induce neural crest cells in avian 

embryos, whereas BMPs are necessary for maintaining Wnt expression (Garcia-Castro et al., 2002). Under 

the influence of these signals, cells of the dorsal neural tube undergo an epithelial-to-mesenchymal 

transition, which involves downregulation of N-cadherin and cadherin 6, to become NCCs that are much 

more motile (Bronner-Fraser et al., 1992; Nakagawa and Takeichi, 1998; Newgreen and Gooday, 1985). 

Between embryonic day E8.5 and E10 in the mouse, and between stage 11 and stage 21 in the chick, NCCs 
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delaminate from the neural tube and migrate along a ventral pathway to produce DRG neurons as well as 

sympathetic and enteric neurons that belong to the autonomic lineage (Bronner-Fraser and Fraser, 1988; 

Frank and Sanes, 1991; Serbedzija et al., 1990). 

Migration of NCCs is largely temporally coupled with sensory neurogenesis which occurs in three 

successive waves. The first two waves are initiated either during or immediately after migration, while the 

third wave, which was recently described, emerges much later (Marmigere and Ernfors, 2007; Maro et al., 

2004). Using clonal analysis with a retroviral approach, the first two waves of neurogenesis were 

characterized in detail and their respective neuronal progeny were also examined (Frank and Sanes, 1991). 

Notably, early migrating NCCs, which contribute to the first wave of neurogenesis, undergo limited rounds 

of cell division, only generating an average of 3.1 neurons each, as opposed to 35.9 neurons each that 

NCCs produce during the second wave. Distinct cellular behaviors can be explained by a combination of 

duration of neurogenesis and the rate of proliferation determined by the balance between proneural genes 

and multipotency genes. Another major distinction between these two waves is the subtype distribution of 

their progeny. The first wave of neurogenesis preferentially generates neurons that in chick populate the 

ventrolateral region of the DRG where large mechanoreceptive and proprioceptive neurons expressing the 

neurotrophin receptors, TrkB and/ or TrkC (TrkB/TrkC) reside. By contrast, the second wave gives rise to 

all principle sensory subtypes, which in chick include both dorsomedially-situated small nociceptive 

neurons that express the neurotrophin receptor TrkA and ventrolateral TrkB/TrkC neurons (Frank and 

Sanes, 1991; Rifkin et al., 2000). Corresponding waves were also observed in the mouse where it was 

shown that the first and second waves are mediated by basic helix-loop-helix (bHLH) transcription factors 

neurogenin 2 (Ngn2) and neurogenin 1 (Ngn1), respectively (Ma et al., 1999).  

For NCCs, neurogenesis and specification of sensory neuron fate are intimately related. In fact, the same 

proneural genes Ngn1 and Ngn2 that are required for neurogenesis also direct NCCs to the sensory lineage 

as opposed to the autonomic lineage which depends on a different bHLH transcription factor, mammalian 

achaete-scute homologue 1 (Mash1) (Bertrand et al., 2002; Lo et al., 2002; Ma et al., 1999). Gain-of-

function studies in vivo in chick and in cultured neuronal progenitor cells in which sensory markers are 

induced by overexpression of Ngns further suggest a sensory-specifying role for Ngns (Lo et al., 2002; 
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Perez et al., 1999). Analysis of knockout mice nicely complements the studies in the chick showing that the 

first, Ngn2-mediated wave of neurogenesis, which occurs largely during migration, produces only 

TrkB/TrkC mechanoreceptive and proprioceptive neurons, while the second Ngn1-mediated wave, which is 

initiated and continues for a long time in the DRG, contributes to both small TrkA+ nociceptive neurons 

and large TrkB/TrkC neurons. Indeed, in Ngn2 mutant animals, Ngn1 can compensate for loss of Ngn2, 

such that large TrkB/TrkC neurons develop normally. Conversely, Ngn1 mutant mice develop with an 

almost complete depletion of TrkA+ neurons (Ma et al., 1999). Neurogenesis is further facilitated by 

gradual extinction of the high-mobility group transcription factor SRY (sex determining region Y) box 10 

(SOX10), which functions in NCCs to maintain multipotency and inhibits neurogenesis (Kim et al., 2003; 

Montelius et al., 2007). In addition to intrinsic transcription factors, extrinsic signals that either promote or 

inhibit sensory neuron fate have also been identified. Interestingly, Wnt and BMP signaling which are 

required for neural crest induction during early development, also play a late instructive role in cell-fate 

decisions between sensory and autonomic lineages. Loss-of-function and gain-of-function studies in the 

mouse or in cultured NCCs that manipulated either the Wnt ligand or β-catenin, the key downstream 

mediator of the canonical Wnt signaling pathway, show bidirectional regulation of sensory neuron fate by 

altered Wnt signaling (Hari et al., 2002; Kleber et al., 2005; Lee et al., 2004). Moreover, in gain-of-function 

paradigms, there is evidence that sensory neuron and autonomic neuron fates represent alternative choices 

in a lineage decision that are regulated in opposite directions by Wnt signaling, further confirming that 

canonical Wnt signaling instructs the sensory neuron fate (Lee et al., 2004). It is at least in part achieved 

through the ability of Wnt to regulate Ngn2 expression (Hari et al., 2002; Lee et al., 2004). The lineage-

specific function of BMP is concentration-dependent  in that at high concentrations, it directs NCCs to the 

autonomic lineage, while low levels of BMP promote the sensory neuron identity instead (Lo et al., 2002; 

Reissmann et al., 1996; Shah et al., 1996). Thus, as in other systems, lineage decisions of progenitor cells 

are controlled by the interplay between extrinsic signals and intrinsic determinants. 

Although the first wave mediated by Ngn2 produces large TrkB/TrkC neurons, Ngn2-expressing NCCs do 

not appear to be restricted in their fate potential, suggesting that neither Ngn1 nor Ngn2 are able to specify 

sensory subtypes (Zirlinger et al., 2002). Therefore, specification of neuronal subtypes in the DRG is a 

stepwise process that takes place immediately after sensory neurogenesis. The initial differentiation of 
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sensory neuron subtypes into distinct principle functional types is characterized by establishment of largely 

non-overlapping patterns of expression of the neurotrophic receptors TrkA, TrkB, TrkC and Ret, the 

receptor for glial-derived neurotrophic factor (GDNF) family ligands (GFLs). Trk receptors are a family of 

receptor tyrosine kinases that mediate the majority of biological effects of neurotrophins in both the central 

nervous system (CNS) and the PNS. In the PNS, in particular, Trk receptors and their cognate 

neurotrophins function to support survival, axonal growth, modality-specific target innervation, phenotypic 

maturation (Harrington and Ginty, 2013). A detailed account of neurotrophins and their intracellular 

signaling pathways will be presented in a separate section. Furthermore, a gain-of-function study where 

TrkC is expressed in place of TrkA from the endogenous TrkA locus suggests that Trk receptors may 

contribute to the specification of principle sensory subtypes in an instructive manner (Moqrich et al., 2004). 

Thus, mechanisms governing expression of Trk receptors and neurotrophin signaling are expected to 

contribute significantly to the process of sensory neuronal subtype specification. For instance, the 

characterization of tissue-specific enhancers in the TrkA promoter has led to the identification of intrinsic 

regulators of TrkA expression, such as Kruppel-Like factor 7 (KLF7) and the POU homeodomain 

transcription factor Brn3a (Lei et al., 2005; Lei et al., 2001; Ma et al., 2003; Ma et al., 2000). Although 

there seems to be incomplete consensus, dynamic regulation of neurotrophin receptors by Runx 

transcription factors has been described (Abdel Samad et al., 2010; Inoue et al., 2007; Kramer et al., 2006; 

Marmigere et al., 2006; Nakamura et al., 2008; Yoshikawa et al., 2007). In at least one such case, the 

regulation is mediated by direct binding of Runx3 to the cis-regulatory element within the TrkB gene 

(Inoue et al., 2007).  Lineage-specific functions of neurotrophin signaling have been most well-established 

for TrkA and TrkC in the context of specification of nociceptors and proprioceptors, respectively. In 

particular, loss-of-function studies of NGF, the preferred ligand for TrkA, or TrkA reveal a failure to 

acquire nociceptor-specific molecular and morphological characteristics which is independent of massive 

death of nociceptors as result of NGF deprivation (Guo et al., 2011; Luo et al., 2007; Patel et al., 2000; 

Wickramasinghe et al., 2008). Likewise, ablating NT3, the preferred ligand for TrkC, selectively disrupts 

specification of proprioceptors, including axonal projections both centrally and peripherally as well as 

expression of proprioceptor molecular markers (Genc et al., 2004; Patel et al., 2003). In some cases, the 

specific intracellular mediators of these lineage-specific effects of neurotrophins have been identified. For 
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instance, serum response factor (SRF), a member of the MADS-box transcription factor family, mediates 

NGF-dependent axonal growth, branching, and target innervation by embryonic TrkA+ DRG sensory 

neurons (Wickramasinghe et al., 2008). Hoxd1, a Hox transcription factor, mediates NGF-dependent 

nociceptive axonal projections in the spinal cord (Guo et al., 2011). The ETS transcription factor ER81 acts 

downstream of NT3 signaling to establish proprioceptive afferent-motor neuron monosynaptic connections 

(Patel et al., 2003). More recently, it was shown that the cytoplasmic Ser/Thr kinases SAD kinases 

transduce NT3 signals to regulate central axonal arborization of NT3-dependent DRG neurons (Lilley et al., 

2013). Interestingly, in all cases, extrinsic signaling regulates the expression of intrinsic mediators. As 

described previously, this strategy appears to be a common mechanism for the specification of neuronal 

subtypes. 

In addition to extrinsic signals exemplified by neurotrophins, intrinsic determinants of specific sensory 

neurons subtypes have been defined. Among them, the Runx family of transcription factors has emerged as 

key intrinsic regulators of specific lineages. In fact, Runx family members, including Runx1, Runx2 and 

Runx3 in mammals, have long been implicated in specification of diverse lineages during hematopoiesis, 

immune function and osteogenesis (Banerjee et al., 1997; de Bruijn and Speck, 2004; Ducy et al., 1997). 

Since Runx transcription factors, particularly Runx1, will be discussed in more detail in the context of 

diversification of nociceptors in a separate section, here only the common principles regarding how Runx 

proteins function in the DRG are described. Consistent with their non-overlapping subtype-specific 

expression patterns, Runx1 and Runx3, the only Runx members expressed in the DRG, act non-redundantly 

to promote specific sensory subtype identity. Runx3 is required for acquisition of the proprioceptive 

identity, whereas Runx1 is important for differentiation of nociceptors into one subclass of mature 

nociceptors, nonpeptidergic nociceptors. Regardless of the specific lineage requirement, in the absence of 

Runx, there is, in addition to a block in normal differentiation into a specific lineage, general expansion of 

alternative cell types, suggesting that part of the lineage-promoting activity of Runx results from 

suppression of alternative cell-fate decisions, a notion further confirmed by gain-of-function studies (Abdel 

Samad et al., 2010; Chen et al., 2006b; Inoue et al., 2007; Kramer et al., 2006). Both activator and repressor 

activities of Runx proteins have been described and they both contribute to Runx functions in sensory 

neuronal subtype specification (Liu et al., 2008; Marmigere et al., 2006; Yarmus et al., 2006).  The 
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endogenous targets of either activator or repressor activity of Runx proteins, however, remain unknown. 

There is also increasing evidence for a general effect of Runx on axonal growth and branching (Chen et al., 

2006a; Kramer et al., 2006; Lallemend et al., 2012; Marmigere et al., 2006). As observed both in vivo and 

in vitro, the length of axons is positively correlated with the level of Runx activity, raising the possibility 

that Runx regulates modality-specific central terminations of DRG neurons, and more generally, axonal 

growth by a cell-intrinsic mechanism, such that differential axonal growth rates are encoded by different 

levels of Runx expression (Lallemend et al., 2012; Marmigere et al., 2006). Thus, Runx transcription 

factors play key roles in the generation of sensory neuron diversity by coordinating subtype-specific gene 

programs and modality-specific central axonal projections. In light of the critical requirement for extrinsic 

signaling during sensory neuron subtype specification, an important question arises: How do extrinsic 

signals, such as neurotrophins, and intrinsic genetic programs, including Runx activities, interact to 

coordinate subtype specification? 
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Figure 1  Diverse types of DRG neurons that subserve different sensory modalities  

A schematic summarizing morphological, physiological and functional characteristics of various subtypes 

of DRG neurons. (Diagram from Lallemend and Ernfors, 2012) (Lallemend and Ernfors, 2012)  
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1.3. Runx transcription factors in diversification of DRG neurons 

The metazoan Runt-related (Runx) gene family encodes evolutionarily conserved sequence-specific DNA 

binding transcription factors that play pivotal roles during development and adult tissue homeostasis. The 

defining feature of this protein family is the presence of a conserved 128-amino acid DNA binding motif, 

termed the Runt domain, which recognizes the consensus sequence, RCCRCA (R=purine) (Levanon and 

Groner, 2004; Otto et al., 2003) . In fact, mammalian Runx proteins were independently identified as the 

DNA binding subunit of heterodimeric transcription factor complexes, polyoma enhancer binding protein 2 

and core-binding factor (PEBP2/CBF), through characterization of proteins that bind to murine viral 

enhancers that confer permissivity for viral infection or tissue specificity of viral replication (Ito, 2008; 

Speck and Terryl, 1995).  It is known from initial purification that PEBP2/CBF has two subunits, the alpha 

subunit which corresponds to Runx proteins, and the beta subunit PEBP2β/CBFβ, a structurally unrelated 

protein that does not have intrinsic DNA-binding ability (Ito, 2008; Speck and Terryl, 1995). In mammals, 

CBFβ acts as a common cofactor for all three Runx proteins, Runx1,Runx2 and Runx3 by enhancing their 

DNA binding affinity and protein stability (Adya et al., 2000). CBFβ is indispensable for Runx protein 

function, as determined by the phenocopy between knockout mice for Cbfb and various Runx genes (Okuda 

et al., 1996; Wang et al., 1996a; Wang et al., 1996b). Like Runx proteins, CBFβ and its functions are 

conserved across species (Adya et al., 2000).  

Runx proteins are known to undergo complex transcriptional regulation and posttranslational modifications 

(Bae and Lee, 2006; Levanon and Groner, 2004). In addition, they are frequently found to interact with a 

variety of transcription factors as well as transcriptional coactivators and corepressors (Durst and Hiebert, 

2004; Miyazono et al., 2004). These features greatly diversify Runx activity, such that Runx proteins 

mediate both transcriptional activation and repression in a context-dependent manner (Durst and Hiebert, 

2004). What is generally true about the function of Runx proteins is that they play key roles in regulating 

the balance between cell proliferation and differentiation in various developing and adult tissues (Coffman, 

2003). This function has been particularly well appreciated in the context of cancer biology, where 

dysregulation of Runx activity is not only correlated with but also causally associated with several forms of 

cancers (Blyth et al., 2005; Ito, 2008). In the mammalian system, for instance, Runx1 is well known for 

both being a critical regulator of fetal and adult hematopoiesis and being responsible for various forms of 
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leukemia (de Bruijn and Speck, 2004; Speck and Gilliland, 2002). Runx2 is a master regulator of bone 

development, and its haploinsufficiency is one of the causes of the hereditary bone disease Cleidcranial 

dysplasia (Komori, 2006; Lian et al., 2004; Mundlos, 1999). Runx3 is essential for the generation of the T-

cell sublineage and gastric system development, and is implicated in a number of human cancers as a tumor 

suppressor (Collins et al., 2009; Ito, 2004; Li et al., 2002; Puig-Kroger and Corbi, 2006). Thus in general, 

Runx proteins promote cell differentiation in a tissue-specific manner by controlling lineage-specific gene 

expression.  

Tissue-specific requirements for various Runx proteins reflect and largely result from distinct tissue-

specific expression patterns of the Runx genes (Levanon and Groner, 2004). Notably, in various tissues, 

where both Runx1 and Runx3 are expressed, they are localized to different cell types resulting in largely 

non-overlapping and complementary expression patterns (Levanon et al., 2001; Levanon and Groner, 2004). 

In the nervous system in particular, Runx1 is expressed in both mitotic neuronal precursors, such as 

immediate neuronal precursors of olfactory sensory neurons, and postmitotic neurons, such as hindbrain 

cholinergic branchiovisceral motor neurons and select spinal cord motor neurons (Levanon et al., 2001; 

Simeone et al., 1995; Theriault et al., 2005; Theriault et al., 2004). Runx3 on the other hand is exclusively 

expressed in postmitotic neurons, such as sensory neurons in DRGs and select cranial ganglia (Levanon et 

al., 2001). In the DRG, the expression of Runx1 and Runx3 is largely confined to separate sensory subtypes, 

marking nociceptors and proprioceptors, respectively (Levanon et al., 2001). 

The subtype-specific expression pattern of Runx1 and Runx3 in the DRG is functionally relevant, because 

it ensures that Runx1 and Runx3 each function in a specific sensory sublineage for finer diversification. 

Consistent with the segregation of Runx3 expression with TrkC+ neurons during early development, Runx3 

is most well-known for its role in the segregation of a transient population that coexpresses TrkB and TrkC, 

the TrkB/C lineage, into the TrkC+ proprioceptive and TrkB+ mechanoreceptive populations (Kramer et al., 

2006). Specifically, Runx3 expression that is initiated at E10.5 is both necessary and sufficient for 

establishing a solitary TrkC phenotype from the TrkB/C lineage by repressing TrkB expression and 

maintaining TrkC expression (Inoue et al., 2007; Kramer et al., 2006). Therefore, in the absence of Runx3, 

there is a loss of TrkC+ proprioceptors and a concomitant increase in the number of TrkB+ neurons due to 
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derepression of TrkB in prospective TrkC+ proprioceptors (Inoue et al., 2007; Kramer et al., 2006). 

Conversely, overexpression of Runx3 after neurogenesis in all DRG neurons increases TrkC expression and 

completely eliminates TrkB expression even in lineages that do not normally express Runx3 (Kramer et al., 

2006). Runx3 acts as a transcriptional repressor for TrkB both directly and indirectly. A cluster of Runx 

binding sites within an evolutionarily conserved intron 7 sequence of the TrkB gene was shown to mediate 

the repressor activity of endogenous Runx3 on the TrkB promoter in cultured DRG neurons (Inoue et al., 

2007). In addition, Runx3 represses the transcription factor short stature homeobox 2 (Shox2), which is 

necessary for TrkB expression, thereby repressing TrkB expression in prospective TrkC+ proprioceptors 

(Abdo et al., 2011). On the other hand, Shox2 expression is maintained primarily in neurons with 

extinguished Runx3 expression, where Shox2 promotes specification of TrkB+ mechanoreceptors by 

repressing TrkC and activating TrkB expression (Abdo et al., 2011; Scott et al., 2011). Since Runx3 

extinction in prospective TrkB+ neurons does not depend on Shox2, it appears that loss of Runx3 expression 

is the signal that initiates the specification of TrkB+ mechanoreceptors (Abdo et al., 2011; Scott et al., 

2011). Therefore, Runx3 acts instructively in the TrkB/C lineage to promote segregation of TrkC+ 

proprioceptors from TrkB+ mechanoreceptors. It is possible that the same mechanisms that control spatial 

and temporal expression of Runx3 in the DRG initiate the diversification of the TrkB/C lineage. 

Analogous functions of Runx1 have been described in the context of diversification of the embryonic TrkA 

lineage. Here, the embryonic TrkA population specifically refers to those TrkA neurons that are born 

during the Ngn1-mediated second wave, since the TrkA population that is born by E10.5 during the first 

wave of neurogenesis appears to have never expressed Runx1 (Bachy et al., 2011; Kramer et al., 2006).  It 

is known that Runx1 expression undergoes dynamic changes, as the embryonic TrkA precursor is 

progressively specified into distinct mature subtypes. Specifically, Runx1 goes from being expressed in the 

majority of TrkA+ neurons at E12.5 in lumbar DRGs to being expressed in a pattern that is almost 

complementary to that of TrkA in adult DRGs (Chen et al., 2006b). This gradual downregulation of Runx1 

in select populations leads to segregation of immature TrkA+/Runx1+ precursors into Runx1-persistent and 

Runx1-transient populations (Abdel Samad et al., 2010). This process is tightly coupled with the well 

characterized divergence of peptidergic and nonpeptidergic populations from the immature TrkA+ 

precursor. These two populations are molecularly, morphologically and functionally distinct (Cavanaugh et 
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al., 2009; Zylka et al., 2005). The most notable difference of all is that the peptidergic population maintains 

TrkA expression into adulthood, while its nonpeptidergic counterpart switches from expressing TrkA to 

expressing Ret, the receptor for GFLs in a stereotyped process involving Ret upregulation starting from 

E15.5 and postnatal TrkA extinction (Bennett et al., 1996a; Luo et al., 2007; Molliver et al., 1997). 

Interestingly, the subdivision of Runx1-persistent and Runx1-transient populations largely aligns with the 

classical nonpeptidergic and peptidergic classification, in that Runx1 expression is preferentially 

maintained in the majority of nonpeptidergic neurons, while its expression in the peptidergic population is 

either transient or weak (Abdel Samad et al., 2010; Chen et al., 2006b; Gascon et al., 2010). 

Consistent with its apparent nonpeptidergic-specific expression pattern, Runx1 is generally considered as a 

master regulator of the nonpeptidergic fate by both promoting the nonpeptidergic phenotype and inhibiting 

the peptidergic phenotype. As a result, in Runx1 knockout animals, the expression of nonpeptidergic-

specific genes including Ret and a wide range of functionally important nociceptive ion channels and 

receptors is severely impaired, along with a concomitant expansion of the peptidergic phenotype, such as 

the expression of genes coding for the neuropeptide calcitonin gene-related peptide (CGRP), and Met, a 

receptor tyrosine kinase for hepatic growth factor (HGF) (Chen et al., 2006b; Gascon et al., 2010; 

Yoshikawa et al., 2007). Conversely, overexpression of Runx1 in all DRG neurons during early or late 

development leads to a selective impairment of Runx1-transient populations, such as suppression of 

classical markers of peptidergic nociceptors, without significantly altering molecular characteristics of 

Runx1-persistent populations, which are mostly nonpeptidergic neurons (Abdel Samad et al., 2010; Kramer 

et al., 2006). Therefore, downregulation of Runx1 in prospective peptidergic nociceptors is necessary for 

emergence of peptidergic phenotypes such as expression of CGRP and Met. Importantly, HGF-Met 

signaling has recently been shown to repress Runx1 expression and consolidate CGRP expression, thereby 

promoting late maturation of a subset of peptidergic nociceptors (Gascon et al., 2010). However, it remains 

unclear whether Met signaling can promote peptidergic maturation independent of regulation of 

Runx1extinction. Thus, as in the case of the diversification of the TrkB/C lineage, cross-repressive 

interactions between lineage regulators of alternative cell fates appear to be a common mechanism for 

consolidating cell-fate decisions. 
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After specifying the generic nonpeptidergic fate, Runx1 continues to be expressed in developing 

nonpeptidergic populations where it further contributes to sensory subtype diversity. For instance, Runx1 

directs the identity of a distinct Ret+ nonpeptidergic population that, based on electrophysiological 

properties, represents C-fiber low threshold receptors (C-LTMRs) (Lou et al., 2013). C-LTMRs normally 

diverge from the rest of the nonpeptidergic population at two weeks postnatally, when they can then be 

reliably identified based on morphological and molecular traits, such as expression of  tyrosine hydroxylase 

(TH) and vesicular glutamate transporter type 3 (Vglut3) (Li et al., 2011; Seal et al., 2009). However, In 

Runx1 mutant mice where Runx1 is conditionally removed from neurons that express Vglut3 sometime in 

their lifetime, C-LTMRs failed to develop as evidenced by the inability to acquire the molecular, 

morphological and electrophysiological identity of C-LTMRs (Lou et al., 2013). Besides C-LTMRs, the 

nonpeptidergic population differentiates into at least three more subtypes, each expressing a unique profile 

of the Mas-related G protein-coupled receptors (Mrg) class of receptors, which contains four main 

subclasses, MrgA-D. They are the MrgD+ polymodal nociceptor and/or pruriceptor, the MrgA3/MrgC11+ 

pruriceptor and the MrgB4+ putative stroking-sensitive neuron (Han et al., 2013; Lewin and Moshourab, 

2004; Liu et al., 2012; Liu et al., 2009; Liu et al., 2007; Rau et al., 2009; Vrontou et al., 2013). It is known 

that the mature compartmentalized expression of MrgA/B/C versus MrgD genes arises from a transient 

population where their expression largely overlaps. Runx1 is initially required for the expression of all Mrg 

genes presumably due to its transcriptional activator activity (Abdel Samad et al., 2010; Chen et al., 2006b; 

Liu et al., 2008). During postnatal development, however, Runx1 appears to switch to a repressor for 

MrgA/B/C but not for MrgD. Furthermore, the repressive activity of Runx1 on MrgA/B/C requires the C-

terminal repression domain which is known to recruit the corepressor Groucho/transducin-like Enhancer-

of-split (TLE). Therefore, persistent Runx1 expression allows the MrgD-only compartment to emerge from 

the intermediate population with mixed Mrg expression by repressing the expression of other Mrg genes 

and maintaining MrgD expression (Liu et al., 2008). Conversely, maintenance of expression of MrgA/B/C 

in the future MrgA/B/C compartment depends on downregulation of Runx1, as constitutive Runx1 

expression was shown to completely eliminate MrgA/B/C expression (Abdel Samad et al., 2010). Thus, 

differential regulation of Runx1 expression, together with distinct responses of Mrg genes to Runx1 

expression, generates additional diversity within the nonpeptidergic lineage.   
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The evidence so far is consistent with the notion that Runx transcription factors are a main drive of 

neuronal subtype diversity in the DRG. However, important details are still missing. For example, although 

dynamic regulation of Runx expression emerges as a common mechanism for initiating segregation of 

different subtypes, its mechanistic detail remains to be elucidated. Moreover, understanding the molecular 

basis of the diverse and dynamic nature of Runx activities and identifying additional molecular 

mechanisms for sensory neuronal subtype specification represent key future directions.  
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1.4. Neurotrophins in neural development and function 

1.4.1. Neurotrophins and their receptors 

Neurotrophins are important regulators of many aspects of neuronal development and function, including 

survival, differentiation, axon growth and synapse formation and synaptic plasticity (Harrington and Ginty, 

2013; Huang and Reichardt, 2003). Neurotrophins, as prototypic target-derived trophic factors, have 

substantial influences on developmental neurobiology. Most notably, the experiments leading to the 

discovery of neurotrophins form the basis of a central tenet in developmental neuroscience, namely the 

neurotrophic factor hypothesis (Oppenheim, 1989).  The neurotrophic factor hypothesis posits that proper 

balance between the size of a target tissue and the amount of innervation it receives is achieved through 

neuronal competition for limiting amounts of target-derived survival factors. In fact, the first neurotrophin, 

nerve growth factor (NGF), was identified in a search for such factors that can support the survival of 

motor and sensory neurons (Levi-Montalcini, 1987). Subsequently three other neurotrophins were found to 

be expressed in mammals: brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and 

neurotrophin-4 (NT-4). These four genes have been proposed to be a product of successive duplication of 

an ancestral genomic segment based on high homology in structure and sequence at both the protein and 

genomic level (Hallbook, 1999). Neurotrophins generally function as non-covalently bound homodimers, 

although some neurotrophins can form heterodimers in vitro. Structural studies of NGF, NT-3, NT-4, NT-

3/BDNF and NT-4/BDNF dimers revealed highly homologous structures with shared features, such as a 

tertiary fold and cystine knot, which can be found in several other growth factors, including platelet-derived 

growth factor (PDGF) and transforming growth factor-β (TGF-β) (Butte et al., 1998; McDonald et al., 1991; 

Robinson et al., 1995). 

Neurotrophins interact with two distinct classes of receptors. The p75 neurotrophin receptor (p75NTR), the 

first receptor to be discovered, is a low affinity receptor for all neurotrophins (Rodriguez-Tebar et al., 1990, 

1991). p75NTR, as a distant member of the tumor necrosis factor receptor family, lacks intrinsic catalytic 

activity and functions by interacting with other proteins (Frade and Barde, 1998). Although it is not the 

main endogenous receptor for mature neurotrophins, it plays important modulatory roles in neurotrophin 

signaling, and more recently, it has received increasing attention as the high affinity receptor for 
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proneurotrophins, the uncleaved proforms of neurotrophins, to be discussed in detail later (Lee et al., 2001). 

The second class of neurotrophin receptors is the tropomyosin-receptor kinase (Trk) subfamily of receptor 

tyrosine kinases (Huang and Reichardt, 2003).  In mammals, there are three Trk receptors, namely TrkA, 

TrkB and TrkC. Each receptor is a single-pass transmembrane receptor with a large extracellular domain 

containing various protein-interaction domains and an intracellular region consisting of a tyrosine kinase 

domain surrounded by several tyrosines that serve as phosphorylation-dependent docking sites for 

cytoplasmic adaptors and enzymes. Neurotrophins activate Trk receptors by inducing receptor dimerization 

and subsequent transphosphorylation of the kinases present in their cytoplasmic domains. Generally 

speaking, the binding between the four neurotrophins and three Trk receptors is specific with NGF 

activating TrkA, BDNF and NT-4 activating TrkB, and NT-3 activating TrkC and, less efficiently, the other 

Trk receptors. Therefore, neuronal responsiveness to neurotrophins is usually dictated by the type of Trk 

receptors expressed. The specificity of neurotrophin responsiveness is however strongly influenced by 

alternative splicing of extracellular exons of the Trk receptor genes (Clary and Reichardt, 1994; Strohmaier 

et al., 1996). The presence of short amino acid sequences encoded by a small exon that is alternatively 

spliced in the juxtamembrane domains of TrkA or TrkB has been shown to promote the interaction between 

the receptor and its non-preferred ligands reducing binding specificity (Clary and Reichardt, 1994; 

Strohmaier et al., 1996). Conversely, the presence of p75NTR promotes the specificity both in vivo and in 

vitro (Benedetti et al., 1993; Bibel et al., 1999; Brennan et al., 1999). Additional mechanisms contribute to 

regulation of neurotrophin binding and actions. For instance, alternative splicing generates TrkB and TrkC 

isoforms that lack tyrosine kinase domains (Kaplan and Miller, 2000). Within neurons, these truncated 

receptors can block normal responses of full-length receptors to neurotrophins by interfering with 

productive dimerization between full-length receptors (Eide et al., 1996). More recent work has also 

demonstrated the ability of these truncated receptors to signal directly, further diversifying cellular 

responses to neurotrophins (Esteban et al., 2006; Rose et al., 2003). Additionally, in some CNS neurons, 

surface expression of Trk receptors, hence accessibility to neurotrophins, can be modulated by neuronal 

activity, second messengers such as cAMP and Ca2+ and most recently, epidermal growth factor (EGF) (Du 

et al., 2000; Meyer-Franke et al., 1998; Puehringer et al., 2013). Thus, there are multiple modes of 

regulation of neurotrophin specificity and responsiveness at the receptor level. 
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On the ligand side, neurotrophins are regulated at both the transcriptional and posttranscriptional level.  

Using sensitive two-site ELISA and mRNA blot assays, pioneering studies of the sites of NGF expression 

in developing and adult tissues have provided direct evidence that neurotrophins are target-derived, a key 

component in the neurotrophic factor hypothesis (Thoenen et al., 1987). For instance, not only is NGF 

expressed in target tissues of NGF-dependent sympathetic and sensory neurons, but also its level of 

expression is positively correlated with the amount of innervation that a target tissue receives (Davies et al., 

1987; Korsching and Thoenen, 1983; Shelton and Reichardt, 1984). This observation implies that 

neurotrophins act on distal axons where they initiate a retrograde signal that promotes neuronal survival a 

distance away. This idea has been validated by a series of seminal studies using compartmentalized culture 

systems that are designed to mimic the endogenous distribution of neurotrophins by fluidic isolation of 

distal axons and cell bodies/proximal axons (Campenot, 1977; Park et al., 2006; Zweifel et al., 2005). In 

these studies, NGF applied exclusively to axon terminals acts both locally to regulate target innervation and 

axon terminal function, and distally in cell bodies by engaging a specialized retrograde transport system, 

the signaling endosome, to promote neuronal survival and differentiation (Campenot, 1977; Harrington and 

Ginty, 2013; Zhang et al., 2005). 

It is important to note that neurotrophins are also expressed outside the final targets of responsive neurons. 

The expression of neurotrophins in regions invaded by axons en route to their final targets is particularly 

interesting, as these sites of expression may be crucial to support neuronal survival before final target 

innervation (Farinas et al., 1998; Farinas et al., 1996). Moreover, after peripheral nerve injury, NGF 

expression is induced in fibroblasts and Schwann cells within the nerve by infiltrating macrophages 

(Heumann et al., 1987). This response may be beneficial for neuronal survival and axon regeneration after 

injury. Interestingly, some neurotrophins, such as BDNF and NT3, have been found to be expressed in 

neurons (de Nooij et al., 2013; Luo et al., 2001; Wetmore and Olson, 1995). For example, sensory-derived 

BDNF can act as a central modulator of pain in various pathological pain states (Mannion et al., 1999; 

Pezet and McMahon, 2006). Although the transcriptional control of neurotrophin expression remains to be 

better characterized, it is clear that cellular interaction and activity play critical roles in determining initial 

sites and levels of expression and fine-tuning expression in response to changing conditions, respectively 

(Patapoutian et al., 1999; Zheng et al., 2012). 
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After protein synthesis, neurotrophins are further modulated during secretion and proteolytic processing. 

Recent evidence suggests that neurotrophins can be sorted into either the regulated or constitutive secretory 

pathway depending on the specific neurotrophin. In hippocampal neurons, for example, BDNF but not 

NGF or NT3 is preferentially sorted into the regulated pathway so that its exocytosis is regulated by 

specific signals (Farhadi et al., 2000; Mowla et al., 1999). This regulated trafficking and secretion of BDNF 

have been linked to normal brain function, as a single nucleotide polymorphism in the BDNF gene that 

disrupts this process leads to impairments in hippocampal function and hippocampal-based memory in 

humans (Egan et al., 2003; Hariri et al., 2003). Since neurotrophins are synthesized as proforms, termed 

proneurotrophins, which were long considered biologically inert, neurotrophin activity is dependent on 

intracellular and extracellular proteases that mediate proteolytic processing (Pang et al., 2004; Seidah et al., 

1996). These proteases and proneurotrophins have recently attracted growing interest, in light of the 

provocative finding that biologically active proneurotrophins are secreted into some tissues and their 

intriguing association with pathological conditions such as neurodegenerative disorders (Fahnestock et al., 

2001; Lee et al., 2001). p75NTR, the high affinity receptor for proneurotrophins, is thought to mediate their 

ability to promote apoptosis in many cells (Lee et al., 2001). Thus, signaling consequences of a specific 

neurotrophin heavily depend on the state of proneurotrophin processing, as proneurotrophin and 

neurotrophin-mediated signaling for the most part have opposite effects, partly due to the type of receptor 

that they preferentially activate (Lu et al., 2005). 

1.4.2. Functions of neurotrophins during nervous system development 

Diverse functions of neurotrophins in both the PNS and the CNS during normal development and 

pathological conditions have been extensively reviewed previously (Chao, 2003; Huang and Reichardt, 

2001; Lu et al., 2005; Pezet and McMahon, 2006). Here the focus will be on roles for neurotrophins as 

exemplified by NGF in the development of the PNS. 

Since the pioneering work of Hamburger, Levi-Montalcini and others demonstrating dependence of 

sympathetic and sensory neurons on NGF for survival in vivo and in vitro, great advances have been made 

towards a complete understanding of neurotrophin requirements for survival of various neuronal 
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populations due to availability of gene knockout animals for all neurotrophins and their receptors (Levi-

Montalcini, 1987; Northcutt, 1989; Snider, 1994). 

In general, the neurotrophin and Trk receptor knockout phenotypes are consistent with in vitro-established 

specificity between neurotrophins and Trk receptors, in that select populations of neurons that express a 

specific Trk receptor generally depend on the neurotrophins that it binds for survival. The simplest scenario 

is a one-to-one relationship between ligand and receptor as exemplified by the specific interaction between 

NGF and TrkA. In the absence of either NGF or TrkA, there is a similar degree of neuronal loss in both 

sympathetic ganglia and sensory ganglia, resulting from increased apoptosis of TrkA-expressing neurons 

(Crowley et al., 1994; Smeyne et al., 1994). There are also cases where survival deficits in receptor-

deficient mice are greater than those in neurotrophin-deficient mice. In one example, it is due to the ability 

of different neurotrophins to activate the same Trk receptor in different populations as observed in the 

nodose-petrosal ganglion. In this ganglion, almost all neurons express TrkB and are eliminated by TrkB 

deletion (Silos-Santiago et al., 1997). By contrast, mice deficient in either BDNF or NT4, the preferred 

ligands for TrkB, exhibit only partial deficits (Brady et al., 1999; Erickson et al., 1996). The phenotypes are 

additive, because removing both ligands results in a full blown phenotype much like that in TrkB mutant 

mice (Conover et al., 1995). This together with the observation that BDNF and NT4 are expressed in 

separate target fields suggests the existence of two populations of TrkB neurons in the nodose-petrosal 

ganglion that depend on BDNF or NT4 alone for survival. The in vivo behavior of NT3 is not as well 

defined as the other neurotrophins. In both DRGs and trigeminal ganglia, NT3 deficiency eliminates many 

more neurons than those lost in TrkC-deficient animals. This NT3-dependent, TrkC-independent population 

includes TrkA- and TrkB-expressing neurons, suggesting that NT3 can directly activate the other Trk 

receptors in vivo (Farinas et al., 1998; Huang et al., 1999). This is consistent with the in vitro promiscuous 

binding of NT3 to Trk receptors (Davies et al., 1995; Ip et al., 1993). Furthermore, when BDNF is 

expressed from the NT3 locus, neuronal loss due to NT3 ablation can be partially rescued (Coppola et al., 

2001). Additionally, NT3 seems to activate TrkA to support the survival of a subset of sympathetic neurons 

that also require NGF for survival (Francis et al., 1999; Wyatt et al., 1997). For neurons that coexpress 

different Trk receptors, their neurotrophin requirement for survival in vivo is determined by the spatial and 

temporal pattern of expression of different neurotrophins that act through the receptors being expressed. In 
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the case of trigeminal mesencephalic neurons that express both TrkB and TrkC, individual neurons require 

either BDNF or NT3 for survival, depending on which neurotrophin is present in the muscle spindles that 

they innervate (Fan et al., 2000). For reasons that are yet unclear, unlike neurons in the PNS, CNS neurons 

that are responsive to neurotrophins both in vivo and in vitro,  such as basal forebrain cholinergic neurons, 

generally survive  in the absence of any single one of neurotrophins in vivo (Chen et al., 1997; Crowley et 

al., 1994; Muller et al., 2012; Smeyne et al., 1994). Thus, unique spatial and temporal patterns of 

expression of neurotrophins and their receptors determine specific neurotrophin requirements of different 

neuronal populations for survival. 

In addition to their classical prosurvival activity, neurotrophins have recently been shown to play an 

increasing number of non-survival functions during later stages of neuronal development. The ability of 

neurotrophins to regulate the differentiation process is particularly well documented. For instance, even 

before the advent of gene targeting technology, NGF was shown to direct the differentiation of 

sympathoadrenal precursors into sympathetic neurons as opposed to chromaffin cells both in vivo and in 

vitro (Anderson, 1993; Levi-Montalcini, 1987). Moreover, in sensory neurons, postnatal non-survival 

functions of neurotrophins were revealed by neurotrophin neutralization with function-blocking antibodies 

after the critical period of neurotrophin-dependent survival (Lewin and Mendell, 1993; Mendell, 1999). 

Postnatal deficiency of NGF results in impairments of molecular properties specific to NGF-dependent 

sensory neurons, which are mainly nociceptors, such as expression of CGRP, specific nociceptive-specific 

sensory receptors and ion channels (Fjell et al., 1999; Tonra and Mendell, 1998). Physiological recordings 

also revealed a dramatic change in the physiological phenotype of nociceptors. Specifically, thinly 

myelinated Aδ fibers that are classified as high threshold mechanoreceptors (HTMRs) undergo a change in 

phenotype to take on the physiological properties of D-hair fibers that are low threshold mechanoreceptors 

(Ritter et al., 1991). Furthermore, either NGF overexpression in skin using a transgenic mouse strategy or 

exogenous administration of NGF to neonatal or adult animals alters the molecular and physiological 

phenotypes of nociceptors in a direction that is generally opposite to that caused by the lack of NGF (Lewin 

and Mendell, 1993; Pezet and McMahon, 2006).  
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More recently, the development of a genetic strategy to assess the non-survival function of neurotrophins 

unmasks additional requirements for neurotrophins during the differentiation of sensory neuronal subtypes.   

In those experiments, Bax, a proapoptotic gene required for trophic factor deprivation-induced neuronal 

death, is codeleted with individual neurotrophins or Trk receptors to keep sympathetic and sensory neurons 

alive in the absence of neurotrophins (Deckwerth et al., 1996). Consistent with a central role of NGF in the 

differentiation of nociceptors, NGF/Bax double animals lack the vast majority of molecular characteristics 

of nociceptors in DRGs.  In fact, the classical process of diversification of nociceptors in nonpeptidergic 

and peptidergic subpopulations is never initiated in these mutant animals (Luo et al., 2007; Patel et al., 

2000). These dramatic effects of the loss of NGF in part reflect the ability of NGF to activate expression of 

nociceptive-specific genes either directly or indirectly. It is known that for a large subset of nonpeptidergic-

specific genes, NGF acts through transcriptional upregulation of Ret, which is critical for late maturation of 

nonpeptidergic nociceptors, to indirectly promote their expression (Luo et al., 2007). However, the identity 

of transcription factors that meditate the profound effect of NGF on gene expression remains largely 

unknown and has recently become a topic of active research. Likewise, analysis of NT3/Bax double 

mutants has revealed a similar subtype-specific role of NT3 signaling in determining the molecular and 

morphological phenotype of proprioceptors, which require NT3 for survival (Genc et al., 2004; Patel et al., 

2003). Conversely, ectopic expression of TrkC in neurons that normally express TrkA confers a 

proprioceptive phenotype on a subset of neurons that would otherwise develop into nociceptors (Moqrich et 

al., 2004). Like neurotrophin-regulated survival, the majority, if not all, of the effects of neurotrophins on 

the differentiation process described thus far, are mediated by their cognate Trk receptors. 

Neurotrophins have also been extensively studied as factors to promote axonal and dendritic growth by 

responsive neurons. Seminal work using compartmentalized cultures provided some of the early evidence 

for a local action of neurotrophins on distal axons to promote axonal extension (Campenot, 1977). 

Specifically, application of NGF to an axonal compartment is necessary and sufficient for axons to extend 

to that compartment. Moreover, the continuous presence of NGF at distal axons is required for maintaining 

axon growth and preventing axon degeneration. The potent effect of neurotrophins on axon growth has also 

been demonstrated by a series of studies that characterized changes in innervation patterns of sensory and 

sympathetic neurons in response to elevation of neurotrophins either systemically or locally (Edwards et al., 
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1989; Guidry et al., 1998; Levi-Montalcini, 1987; Ringstedt et al., 1999; Stucky et al., 1999).  In general, 

elevated expression of neurotrophins in a specific region results in increased innervation by neurons that 

normally innervate that region and sometimes it even leads to ectopic innervation by responsive neurons 

that do not normally project there. These findings were complemented by gene knockout studies, where, as 

described above, survival requirement for neurotrophins is bypassed through codeletion of Bax. Although 

the initial axon extension appears largely intact, NGF/Bax mutant animals display severe deficits in final 

target innervation by sensory and sympathetic neurons in the periphery (Glebova and Ginty, 2004; 

Kuruvilla et al., 2004; Patel et al., 2000; Wickramasinghe et al., 2008). Similarly, in NT3/Bax mutant 

animals, proprioceptive axon projections to both central and peripheral targets are defective (Genc et al., 

2004; Patel et al., 2003). At least three different classes of transcription factors have been identified to 

mediate neurotrophin-dependent axon outgrowth, namely, cyclic AMP responsive element-binding protein 

(CREB), serum response factor (SRF) and nuclear factor of activated T-cells (NFAT) (Graef et al., 2003; 

Lonze et al., 2002; Riccio et al., 1999; Wickramasinghe et al., 2008). The specific transcriptional program 

dependent on each factor and the mechanism by which these factors cooperate to mediate the profound 

effect of neurotrophins on axon outgrowth remain to be elucidated. The role of neurotrophins in regulating 

dendritic growth has also been appreciated. Some of the best examples include NGF-dependent dendritic 

arborization of sympathetic neurons and spatially distinct effects of BDNF on dendritic arborization of 

retinal ganglion cells (Lom et al., 2002; Voyvodic, 1989). Taken together, neurotrophins robustly regulate 

axonal and dendritic behaviors through activation of local signaling at nerve terminals and initiation of 

proper transcriptional responses in the cell soma. 

A large body of evidence has also shown that neurotrophins regulate synapse formation and influence 

synaptic strength and plasticity. In postganglionic sympathetic neurons, for example, retrograde NGF-TrkA 

signaling is required for development of postsynaptic specializations with preganglionic sympathetic 

neurons. Remarkably, in compartmentalized cultures, TrkA endosomes that are formed at distal axons can 

be detected in dendrites, where they may function as specialized machinery essential for NGF-dependent 

assembly of postsynaptic densities, which is readily reversible and largely independent of protein synthesis 

(Sharma et al., 2010). Compared to NGF, NT3 and BDNF appear to regulate synaptic function more 

broadly. At the synapses formed between Ia afferents and motor neurons, endogenous BDNF controls the 
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relative contribution of monosynaptic and polysynaptic input onto motor neurons (Seebach et al., 1999). 

Acute NT3 application during a critical postnatal time window potentiates the monosynaptic strength 

between Ia afferents and motor neurons in a long-lasting fashion (Arvanov et al., 2000). Neurotrophins 

such as BDNF, NT3 and NT4 have also been shown to acutely stimulate neurotransmitter release at the 

CA1 synapse in hippocampal cultures and slices as well as Xenopus neuromuscular synapses (Kang and 

Schuman, 1996; Wang and Poo, 1997).  These in vitro effects are likely specific and physiologically 

relevant, because mice lacking BDNF or NT4 have defects in long-lasting long-term potentiation (LTP) in 

the hippocampus, a form of synaptic plasticity thought to underlie formation of long-term memory (Korte 

et al., 1995; Korte et al., 1998; Patterson et al., 1996; Xie et al., 2000). Further analysis revealed that BDNF 

primarily acts presynaptically through TrkB to facilitate LTP. Consistently, both BDNF and TrkB mutants 

show deficits in memory acquisition and consolidation in many learning paradigms (Gorski et al., 2003; 

Linnarsson et al., 1997; Liu et al., 2004; Minichiello et al., 1999; Mizuno et al., 2000). Interestingly, recent 

data suggest that proBDNF-p75NTR signaling enhances hippocampal long term depression (LTD) (Woo et 

al., 2005). Thus, neurotrophins especially BDNF almost certainly regulate a wide range of higher order 

brain functions which have just begun to be unveiled. 

1.4.3. Neurotrophin-mediated signaling pathways 

Although the intracellular signaling pathway that links receptor activation to a specific neurotrophin- 

induced functional consequence remains incompletely characterized, activation of different downstream 

signaling pathways following ligand engagement of receptors especially the Trk receptor almost certainly 

contributes to diverse neuronal responses to neurotrophins. Trk receptors have historically been the focus of 

mechanistic studies of neurotrophin-regulated singling pathways, since they mediate the majority of 

neurotrophin function in vivo and in vitro. 

Trk receptors, like other receptor tyrosine kinases, are activated by neurotrophin-mediated dimerization and 

transphosphorylation of activation loop tyrosines (Huang and Reichardt, 2003). Subsequent to activation of 

Trk tyrosine kinase activity by phosphorylation of activation loop tyrosines, additional tyrosines outside the 

kinase activation loop in the cytoplasmic domain are phosphorylated to create docking sites for proteins 

containing phosphotyrosine-binding (PTB) or Src-homology-2 (SH2) domains, which differentially engage 
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downstream signaling cascades. The major effector pathways activated by Trk receptors are mitogen-

activated protein (MAP) kinase cascades, phosphatidyl inositol-3 (PI3)-kinase-Akt and phospholipase C γ 

(PLC-γ) pathways (Huang and Reichardt, 2003). These pathways are coupled to phosphorylation of two 

tyrosine sites, Y490 and/or Y785, outside the activation loop, via specific adaptor proteins. Phospho-Y490 

serves as a recruitment site for adaptor proteins such as Shc and Frs2, which provide links to MAP kinases, 

PI3-kinase and other pathways. Phospho-Y785 on the other hand directly recruits the enzyme PLC-γ1 for 

phosphorylation-dependent activation by Trk receptors (Obermeier et al., 1993b).  

MAP kinase cascades, especially the extracellular signal-regulated kinase 1 and 2 (Erk1/2)-mediated 

pathway, are best known for their roles in normal neuronal differentiation and axon growth (Newbern et al., 

2011; Zhong et al., 2007). Broadly speaking, there are two ways to activate these cascades, depending on 

the duration of activated signaling cascades. Transient activation of MAP kinase signaling is predominately 

mediated by a signaling cascade initiated by activation of Ras. One of the best characterized adaptors that 

mediate Ras activation is Shc, which as described earlier, is recruited to phospho-Y490 on Trk receptors 

(Obermeier et al., 1993b). Subsequent phosphorylation of Shc by Trk receptors creates a binding site for 

the adaptor Grb2, which is constitutively associated with the Ras exchange factor son of sevenless (SOS) 

(Grewal et al., 1999). Active Ras then stimulates Erk1/2-mediated signaling through sequential activation 

of a series of protein kinases, Raf, Mek1/Mek2, which ultimately phosphorylate and activate Erk1/Erk2 

(English et al., 1999). Erk5 is activated by Ras through an analogous protein kinase cascade involving 

Wnk1, MEKK2 and Mek5 (Wang et al., 2005; Xu et al., 2004). The MAP kinase cascades negatively 

regulate their own activity through phosphorylation of upstream components and activation of 

phosphatases and are therefore generally transient. Prolonged activation of MAP kinases requires the 

recruitment of a different adaptor, Frs2, to phospho-Y490 on Trk receptors (Meakin et al., 1999). Similar to 

Shc, Frs2 is phosphorylated by Trk receptors and phosphorylated Frs2 subsequently recruits adaptor 

proteins such as Crk and various enzymes (Meakin et al., 1999). These intermediates synergistically 

promote sustained activation of MAP kinases. For example, Crk is known to bind and activate the Rap1 

exchange factor C3G, and hence Rap1 which stimulates B-Raf, an upstream activator of the Erk kinase 

cascade (York et al., 1998). Based on experiments with PC12 cells that show proliferation and 

differentiation responses associated with EGF and NGF respectively, sustained but not transient activation 
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of Erk is associated with and sufficient for a differentiation response suggesting that the duration of Erk 

activation determines cellular responses to growth factors such as neurotrophins that activate the Erk kinase 

cascade (Marshall, 1995). 

The PI3-K-Akt pathway on the other hand mediates the neurotrophin-dependent survival response. PI3-K 

can be activated through Ras-dependent and -independent pathways (Reichardt, 2006; Vaillant et al., 1999). 

For the independent pathway, the recruitment and activation of PI3-K is mediated by Trk receptor-

associated adaptor proteins Shc-Grb2 or insulin receptor substrate-1 (IRS1) (Holgado-Madruga et al., 1997; 

Yamada et al., 1997). In the former case, recruitment of Gab1 by the Shc-Grb2 complex is essential for 

subsequent PI3-K activation (Holgado-Madruga et al., 1997). PI3-K through production of P3- 

phosphorylated phosphoinositides activates the protein kinase Akt, thereby promoting cell survival. Akt 

elicits a survival response by controlling the activity of both prosurvival and proapoptotic proteins through 

phosphorylation (Brunet et al., 2001; Yuan et al., 2003). For instance, BAD, a proapoptotic Bcl-2 family 

member, is inactivated by Akt phosphorylation, since the phosphorylated form is sequestered by 14-3-3 

proteins (Datta et al., 1997). Conversely, Akt phosphorylation of IκB results in disinhibition of the 

transcription factor NF-κB, which is known to activate a prosurvival transcriptional program (Datta et al., 

1999). Interestingly, a recent study of retrograde neurotrophin signaling in compartmentalized sympathetic 

neuronal cultures not only demonstrated a critical dependence of survival supported by retrogradely 

transported NGF on PI3-K, but also identified a novel requirement for PI3-K in distal axons during 

retrograde NGF signaling. Since inhibition of PI3-K activity in distal axons but not in proximal axons 

attenuates retrograde transport of NGF initiated in distal axons, PI3-K activity is necessary for initiation, 

but not propagation, of retrograde transport of NGF in sympathetic neurons (Kuruvilla et al., 2000). A role 

for PI3-K in Trk receptor-mediated endocytosis has recently been proposed, along with the possibility that 

it is mediated by P3-phosphorylated phosphoinositide-dependent regulation of several proteins implicated 

in endocytosis (Harrington and Ginty, 2013).  Further studies are needed to directly address that possibility. 

Thus, both canonical PI3-K-Akt signaling in cell bodies and novel PI3-K signaling in distal axons 

contribute to survival of neurons supported by NGF acting exclusively on distal axons. 
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PLC-γ1, as described earlier, is recruited to phospho-Y785 on Trk receptors via its Src homology domains 

(Obermeier et al., 1993a; Obermeier et al., 1993b). Trk-mediated phosphorylation activates its lipase 

activity, resulting in generation of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) from 

phosphatidylinositol 4,5-bisphosphate (PIP2). IP3 and DAG are important signaling molecules that 

stimulate mobilization of Ca2+ stores and activation of Ca2+ and DAG-regulated isoforms of protein kinase 

C, respectively.  Since Ca2+ and PKC exert widespread effects on many proteins and enzymes, the PLC-γ 

pathway controls expression and/or activity of many proteins, including many intracellular enzymes, ion 

channels and transcription factors (Klein et al., 2005; Minichiello et al., 2002; Toledo-Aral et al., 1995). 

Compared with the other two signaling pathways that are associated with phosphorylation of the Shc site 

on Trk receptors, the relative importance of the PLC-γ and PLC-γ binding sites in neurotrophin-dependent 

neuronal responses is less well defined and deserves further investigation. Interestingly, recent studies of 

mice carrying point mutations on specific docking sites of TrkB receptors suggest a link between the PLC-γ 

site downstream of TrkB and learning-associated synaptic changes and LTP in the hippocampus (Gruart et 

al., 2007; Minichiello et al., 2002).  

As mentioned earlier, p75NTR binds proneurotrophins and mature neurotrophins with differential affinity. 

Proneurotrophins bind with high affinity to a complex of p75NTR and Sortilin, a Vps10-domain containing 

protein, where both constituents directly participate in binding (Nykjaer et al., 2004; Teng et al., 2005). 

Neurotrophins, on the other hand, bind p75NTR with much lower affinity (Rodriguez-Tebar et al., 1990). 

Activation of p75NTR by ligand engagement is known to trigger opposite cellular responses. For example, 

p75NTR has been shown to promote survival or apoptosis following neurotrophin engagement in a context-

dependent manner (Roux and Barker, 2002). p75NTR-induced apoptosis is primarily mediated by the Jun 

kinase-signaling cascade (Aloyz et al., 1998; Casaccia-Bonnefil et al., 1996). Neurotrophin signaling 

through this pathway promotes apoptosis by activation of p53 and induction of the extrinsic apoptotic 

pathway (Aloyz et al., 1998; Le-Niculescu et al., 1999). Several intermediate components of this p75 NTR 

apoptotic pathway have been identified. Neurotrophin receptor-interacting factor (NRIF) is one of the key 

mediators sitting at the convergence of multiple regulatory pathways (Linggi et al., 2005). In particular, its 

nuclear translocation, a prerequisite for p75NTR-mediated apoptosis, is regulated by Traf6-mediated 

ubiquitination and γ-secretase-mediated release of the intracellular domain of p75NTR (Geetha et al., 2005; 
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Kenchappa et al., 2006). Induction of NF-κB-mediated prosurvival signaling is required for the survival 

response as a result of neurotrophin engagement of p75NTR (Hamanoue et al., 1999). NF-κB is effectively 

activated following p75NTR activation due to the formation of a complex of Traf6, interleukin-1 receptor-

associated kinase (IRAK), atypical protein kinase C-ι (aPKC-ι) and the aPKC-interacting protein p62 with 

p75NTR (Wooten et al., 2001). Although the mechanism by which activation of p75NTR exerts these 

dichotomous biological actions remains unclear, the specificity of cellular responses in part results from the 

specific form of neurotrophins and the type of coreceptors that p75NTR associates with.  

Considering that neurotrophin signaling through Trk receptors and p75NTR frequently results in opposing 

biological consequences, a challenging and important question in the field is to understand how these two 

types of receptors convert a specific neurotrophin signal to a unified cellular response that is appropriate for 

the cellular context (Patel et al., 2000; Teng et al., 2005; Woo et al., 2005; Zakharenko et al., 2003). 

Importantly, emerging evidence has supported that the proapoptotic activity of p75NTR is suppressed by 

Trk-mediated signaling in most cases, while in other cases, the presence of p75NTR potentiates the efficacy 

of Trk signaling (Curtis et al., 1995; Esposito et al., 2001; Yoon et al., 1998).  
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Chapter 2. Extrinsic and intrinsic factors coordinate the development of nociceptive 

subtypes by converging on Runx1/CBFβ. 

2.1. Segregation and development of nonpeptidergic and peptidergic nociceptors 

Nociceptors are a heterogeneous neuronal population that can be subdivided by a wide array of 

cytochemical, anatomical and physiological criteria (Gold and Gebhart, 2010). Most commonly, they are 

classified into nonpeptidergic and peptidergic nociceptors primarily based on their neuropeptide profile. 

While peptidergic nociceptors are defined by expression of neuropeptides, such as CGRP and substance P, 

nonpeptidergic nociceptors, at least the majority of them, are conventionally labeled by the lectin IB4 

(Mulderry et al., 1988; Silverman and Kruger, 1990). These two molecularly distinct subtypes are also 

segregated by their central and peripheral projections. Centrally, nonpeptidergic afferents occupy a deeper 

lamina, inner lamina II, than their peptidergic counterparts that terminate in lamina I and outer lamina II 

(Molliver et al., 1995; Zylka et al., 2005). Peripherally, unlike peptidergic nociceptors, which have a 

substantial visceral component, nonpeptidergic nociceptors almost exclusively innervate cutaneous 

structures (Bennett et al., 1996b; Raybould et al., 1992). Even within the same target, such as the epidermis, 

axonal terminals from nonpeptidergic and peptidergic populations are targeted to different stratums (Zylka 

et al., 2005). The existence of these spatially segregated nociceptive endings suggests functional 

distinctions between the nonpeptidergic and peptidergic populations which were unequivocally shown by 

various cell ablation studies (Cavanaugh et al., 2009; McCoy et al., 2013; Mishra and Hoon, 2010; 

Vulchanova et al., 2001). Regardless of the specific strategy for cell ablation, what has emerged from that 

series of analyses is a selective requirement for nonpeptidergic and peptidergic nociceptors during 

mechanical and thermal nociception, respectively (Cavanaugh et al., 2009; McCoy et al., 2013; Mishra and 

Hoon, 2010; Vulchanova et al., 2001). 

Despite their remarkable differences, nonpeptidergic and peptidergic nociceptors derive from the same 

TrkA-expressing precursors, and therefore depend on NGF-TrkA signaling for survival (Ruit et al., 1992; 

Silos-Santiago et al., 1995). In contrast to peptidergic nociceptors that continue expressing TrkA into 

maturity, nonpeptidergic nociceptors gradually extinguish TrkA expression during the first three weeks of 
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postnatal development, and instead express Ret and GFRαs, receptor components for GDNF signaling 

during late embryonic and postnatal development, resulting in a switch from NGF to GDNF for trophic 

support (Bennett et al., 1996a; Bennett et al., 1998; Molliver and Snider, 1997; Molliver et al., 1997). 

Several lines of evidence have convincingly shown that NGF-TrkA and GDNF-Ret signaling are both 

required for normal expression of the nonpeptidergic phenotype (Luo et al., 2007; Patel et al., 2000). Note 

that in order to study survival-independent functions of NGF, nociceptors are kept alive in the absence of 

NGF by codeletion of a proapoptotic gene Bax (Patel et al., 2000). Hereafter NGF/Bax double mutants will 

be referred to as NGF mutants, unless indicated otherwise. Consistent with the sequential expression of 

TrkA and Ret, NGF signaling is required for acquisition of almost all nonpeptidergic-specific features, 

including expression of Ret and GFRαs, while Ret signaling plays a critical role in postnatal maturation of 

nonpeptidergic nociceptors, such as expression of a subset of genes characteristic of a more mature state of 

nonpeptidergic nociceptors (Luo et al., 2007; Patel et al., 2000). However, little is known about the 

mechanisms by which these two growth factor signaling pathways support the characteristic nonpeptidergic 

gene program. 

Runx1, a Runx family transcription factor that is heavily studied as a lineage regulator in the hematopoietic 

system, introduced above, has taken center stage in the field of neuroscience in recent years due to its 

essential role in establishment of the nonpeptidergic identity. Most notably, genetic removal of Runx1 from 

the neural crest lineage or all but the hematopoietic lineage leads to a selective defect in the molecular 

identity and axonal projection of nonpeptidergic nociceptors and a concomitant expansion of peptidergic-

like phenotypes (Chen et al., 2006b; Kramer et al., 2006; Yoshikawa et al., 2007). The effect of Runx1 

deficiency on nonpeptidergic-specific gene expression closely resembles that of NGF deletion, in that 

expression of almost all the nonpeptidergic-specific genes, including those previously defined as Ret-

independent is disrupted in Runx1-deficient DRGs, as seen in NGF mutants (Chen et al., 2006b; Luo et al., 

2007). Therefore, Runx1 normally functions as a master regulator of the nonpeptidergic lineage by directly 

or indirectly driving the nonpeptidergic-specific transcriptional program and suppressing the alternative 

differentiation program, analogous to its well-established actions in the hematopoietic lineage (de Bruijn 

and Speck, 2004). 
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The fact that both Runx1 and NGF are required for specification of nonpeptidergic nociceptors suggests a 

potential interaction between them, a possibility that was first articulated and explored by Luo and 

colleagues. Those authors identified a role for NGF in maintaining Runx1 expression at the mRNA level 

(Luo et al., 2007). Although this regulatory event is undoubtedly functionally relevant, the discrepancy 

between the dramatically disrupted nonpeptidergic development and the relative weak and late Runx1 

mRNA deficit implies the existence of additional modes of interaction between Runx1 and NGF during the 

development of nonpeptidergic nociceptors. Anecdotally, it was recently shown that the ability of 

overexpressed Runx1 to activate a subset of nonpeptidergic-specific genes in a heterologous system 

required the presence of NGF, further supporting the notion that NGF facilitates Runx1 function in ways 

other than transcriptional regulation of Runx1 (Lopes et al., 2012). Since an interplay between NGF and 

Runx1 appears central to normal specification of nonpeptidergic nociceptors, we sought to elucidate the 

mechanism by which NGF and Runx1 intersect in the hope of defining common principles for the general 

process of neuronal subtype specification. 
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2.2. Runx1 mediates NGF-dependent expression of a great majority of nonpeptidergic 

nociceptor-specific genes.  

2.2.1. Nearly all Runx1-dependent genes are also NGF-dependent in vivo. 

To assess the extent of genetic interaction between NGF and Runx1, beyond the phenocopy between NGF 

and Runx1 mutants with respect to nonpeptidergic phenotypes which was based on analysis done at 

different time points and in different labs, we first compared expression patterns of nonpeptidergic-specific 

genes in DRGs between NGF mutants and previously described neural crest derivative-specific Runx1 

conditional knockouts, Wnt1-Cre;Runx1f/f (Runx1 CKO) mice, side by side at the same developmental 

stages by in situ hybridization analysis (Chen et al., 2006b). Since NGF mutants die at birth, our expression 

analysis was conducted earlier and at P0. Nonpeptidergic-specific genes that are Ret-dependent according 

to earlier work, e.g. MrgA1, MrgA3, were excluded from the analysis, for the interpretation of potential 

phenocopy for those genes would be confounded by the Ret expression deficit previously described in both 

NGF and Runx1 mutants (Chen et al., 2006b; Luo et al., 2007; Patel et al., 2000). To determine the extent 

to which nonpeptidergic-specific genes require NGF and/or Runx1, a few genes that were identified 

through a microarray screen for differentially expressed genes in E16.5 control and Runx1CKO DRGs were 

also examined (Table 1). Myo1a, one of the class I myosins, Kif21b, a member of the kinesin superfamily 

and Ptprt, a member of the protein tyrosine phosphatase (PTP) family were selected mainly due to their 

robust dependence on Runx1. Strikingly, although each gene has its own unique expression pattern, the 

nonpeptidergic-specific genes that we examined except Ret (discussed in Chapter 2.3), including canonical 

markers of nonpeptidergic nociceptors, MrgD and GFRα2 and novel Runx1-dependent genes, Ptprt, Myo1a 

and Kif21b, showed marked deficits in expression that were comparable in NGF and Runx1 mutant DRGs 

at P0 (Figure 2.1). In the case of GFRα2, Myo1a and Kif21b, the neurons that retained expression in both 

mutants were not nociceptors (data not shown). Similar results were observed at E16.5 (Figure 2.2), which 

is when the early wave of nonpeptidergic-specific genes, including MrgD, Ptprt, Myo1a and Kif21b 

normally start to be expressed, suggesting that NGF and Runx1 are both required for expression of the 

majority of nonpeptidergic-specific genes prior to their normal onset of expression. 
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2.2.2. NGF activates transcription of nonpeptidergic-specific genes in a Runx1-dependent way in 

vitro. 

To exclude the possibility that the observed expression deficit in vivo was secondary to defects in target 

innervation that had been previously reported for both NGF and Runx1 mutants (Chen et al., 2006b; Patel et 

al., 2000; Yoshikawa et al., 2007), dissociated DRG neurons from P0 control and Runx1 CKO animals were 

cultured in the presence or absence of NGF and the level of expression of select subtype-specific genes was 

measured by real-time PCR analysis. For a subset of nonpeptidergic-specific genes, i.e. MrgD, GFRα2 and 

Ptprt, NGF application robustly induced their expression in wildtype neurons (Figure 2.3 A-C). However, 

the same treatment failed to increase their expression in Runx1-deficient neurons (Figure 2.3 A-C). This 

Runx1 dependence was specific to nonpeptidergic-specific genes, since NGF promoted expression of 

CGRP, a peptidergic marker, irrespective of Runx1 (Figure 2.3 D). Therefore, rather than being generally 

required for NGF signaling, Runx1 most likely acts downstream of NGF to elicit nonpeptidergic-specific 

transcriptional responses.  
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Table 1. Microarray analysis of genes that were differentially expressed in E16.5 DRGs of 

control and Runx1 CKO animals. Only genes with a fold change greater than or equal to 1.5, and a p-

value less than or equal to 0.05 are listed. Genes that exhibited reduced or increased expression in Runx1 

CKO DRGs relative to control are shown in table 1.1 and 1.2, respectively. 

Table 1.1 

Probe Set 

ID 

Gene Symbol Gene Title Fold 

Change 

P-value 

1443392_at Trpv1 transient receptor potential cation channel, 

subfamily V, member 1 

3.855363 0.000364 

1418723_at Lpar3 lysophosphatidic acid receptor 3 3.150196 0.017528 

1424633_at Camk1g calcium/calmodulin-dependent protein 

kinase I gamma 

2.943805 0.003527 

1448459_at Kcnip1 Kv channel-interacting protein 1 2.265259 0.03317 

1443959_at Tmem72 transmembrane protein 72 2.163699 0.003249 

1438112_at 9430021M05Rik RIKEN cDNA 9430021M05 gene 2.14351 0.007824 

1436100_at Sh2d5 SH2 domain containing 5 2.11848 0.03425 

1441363_at Frmpd3 FERM and PDZ domain containing 3 2.078189 0.039236 

1435772_at Kif21b kinesin family member 21B 2.015971 0.000204 

1416456_a_

at 

Chia chitinase, acidic 2.005046 0.028087 

1416785_at Kcnip1 Kv channel-interacting protein 1 1.996721 0.002743 

1419654_at Tle3 transducin-like enhancer of split 3, 

homolog of Drosophila E(spl) 

1.934638 0.049115 

1428074_at Tmem158 transmembrane protein 158 1.902171 0.041199 

1420564_at Insrr insulin receptor-related receptor 1.868479 0.009468 

1452263_at Slc35f4 solute carrier family 35, member F4 1.823904 0.016667 
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1451062_a_

at 

Pex5l peroxisomal biogenesis factor 5-like 1.819641 0.029577 

1434635_at Rph3a rabphilin 3A 1.803495 0.036091 

1455000_at Gpr68 G protein-coupled receptor 68 1.779183 0.033036 

1450224_at Col4a3 collagen, type IV, alpha 3 1.762817 0.021838 

1438160_x_

at 

Slco4a1 solute carrier organic anion transporter 

family, member 4a1 

1.745016 0.043898 

1425483_at LOC100044677 /// 

Tox 

similar to thymus high mobility group box 

protein TOX /// thymocyte selection-as 

1.744519 0.026119 

1419655_at Tle3 transducin-like enhancer of split 3, 

homolog of Drosophila E(spl) 

1.716283 0.026226 

1429805_at Myo1a myosin IA 1.714405 0.000569 

1433988_s_

at 

C230098O21Rik RIKEN cDNA C230098O21 gene 1.707104 0.044154 

1440056_at --- --- 1.672219 0.001931 

1424923_at Serpina3g serine (or cysteine) peptidase inhibitor, 

clade A, member 3G 

1.65806 0.002164 

1421037_at Npas2 neuronal PAS domain protein 2 1.654117 0.027774 

1445941_at --- --- 1.650902 0.02853 

1417542_at Rps6ka2 ribosomal protein S6 kinase, polypeptide 

2 

1.646436 0.020774 

1422710_a_

at 

Cacna1h calcium channel, voltage-dependent, T 

type, alpha 1H subunit 

1.629623 0.024766 

1436013_at Gsg1l GSG1-like 1.602431 0.002997 

1417392_a_

at 

Slc7a7 solute carrier family 7 (cationic amino 

acid transporter, y+ system), member 7 

1.598559 0.048681 

1453801_at Them5 thioesterase superfamily member 5 1.595386 0.021385 
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1431852_at A730035I17Rik RIKEN cDNA A730035I17 gene 1.584555 0.000854 

1441298_at --- --- 1.565934 0.039893 

1450174_at Ptprt protein tyrosine phosphatase, receptor 

type, T 

1.557751 0.027241 

1430159_at 5830408C22Rik RIKEN cDNA 5830408C22 gene 1.520074 0.039318 

1456047_at LOC433466 /// 

Pla2g4b 

phospholipase A2, group IVB (cytosolic) 1.517543 0.049284 

1438055_at Rarres1 retinoic acid receptor responder 

(tazarotene induced) 1 

1.511225 0.02733 

1457128_at AL024213 expressed sequence AL024213 1.508931 0.040555 

 

Table 1.2 

Probe Set 

ID 

Gene Symbol Gene Title Fold 

Change 

P -Value 

1455931_at Chrna3 cholinergic receptor, nicotinic, alpha 

polypeptide 3 

4.589469 0.030475 

1417256_at Mmp13 matrix metallopeptidase 13 3.542615 0.019814 

1433607_at Cbln4 cerebellin 4 precursor protein 3.482604 0.011625 

1435424_x_

at 

--- --- 3.416324 0.001092 

1433551_at Vat1l  vesicle amine transport protein 1 

homolog-like (T. californica) 

3.278425 0.018548 

1440484_at Unc5d unc-5 homolog D (C. elegans) 3.169972 0.002508 

1441329_at Galr1 galanin receptor 1 3.067817 0.000843 

1452010_at Chrna3 cholinergic receptor, nicotinic, alpha 

polypeptide 3 

2.952662 0.000112 
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1451263_a_

at 

Fabp4 fatty acid binding protein 4, adipocyte 2.837796 0.035 

1417023_a_

at 

Fabp4 fatty acid binding protein 4, adipocyte 2.716484 0.034395 

1439272_at Lcorl /// 

LOC100046011 

ligand dependent nuclear receptor 

corepressor-like /// hypothetical protein 

LOC1 

2.610205 0.04198 

1416468_at Aldh1a1 aldehyde dehydrogenase family 1, 

subfamily A1 

2.508498 0.046711 

1437695_at Prokr2 prokineticin receptor 2 2.473296 0.045341 

1443365_at Htr4 5 hydroxytryptamine (serotonin) receptor 

4 

2.377891 0.043301 

1430107_at Acbd7 acyl-Coenzyme A binding domain 

containing 7 

2.213863 0.006569 

1417680_at Kcna5 potassium voltage-gated channel, shaker-

related subfamily, member 5 

2.065996 0.033749 

1439887_at --- --- 2.048765 0.007273 

1449254_at Spp1 secreted phosphoprotein 1 2.038316 0.044844 

1418304_at Pcdh21 protocadherin 21 2.020208 0.011017 

1457008_at Chrnb4 cholinergic receptor, nicotinic, beta 

polypeptide 4 

1.957697 0.016487 

1419756_at Dgkg diacylglycerol kinase, gamma 1.914247 0.039183 

1436761_s_

at 

1200015N20Rik RIKEN cDNA 1200015N20 gene 1.891189 0.01325 

1456233_at --- --- 1.871748 0.026841 

1440531_at Rbm11 RNA binding motif protein 11 1.870702 0.045852 

1456609_at Camk2n1 calcium/calmodulin-dependent protein 1.868836 0.002939 
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kinase II inhibitor 1 

1443322_at --- --- 1.868507 0.018301 

1437883_s_

at 

--- --- 1.84781 0.047311 

1452004_at Calca calcitonin/calcitonin-related polypeptide, 

alpha 

1.846593 0.034994 

1442379_at EG574403 predicted gene, EG574403 1.834135 0.049862 

1436444_at 6030405A18Rik RIKEN cDNA 6030405A18 gene 1.819695 0.01243 

1436493_at BB181834 expressed sequence BB181834 1.814729 0.001058 

1437262_x_

at 

Bcas2 breast carcinoma amplified sequence 2 1.813717 0.043032 

1424679_at Mab21l1 mab-21-like 1 (C. elegans) 1.8063 0.012424 

1438698_at Tmem132c transmembrane protein 132C 1.80257 0.012791 

1426222_s_

at 

Vwa5a von Willebrand factor A domain 

containing 5A 

1.799035 0.008401 

1434150_a_

at 

Higd1c /// 

Mettl7a1 /// 

Mettl7a2 

HIG1 domain family, member 1C /// 

methyltransferase like 7A1 /// 

methyltransferase 

1.793921 0.0031 

1456397_at Cdh4 cadherin 4 1.789226 0.006951 

1437781_at Insm2 insulinoma-associated 2 1.785904 0.043102 

1445247_at C530044C16Rik RIKEN cDNA C530044C16 gene 1.77605 0.008473 

1460244_at Upb1 ureidopropionase, beta 1.764131 0.005432 

1451033_a_

at 

Trpc4 transient receptor potential cation channel, 

subfamily C, member 4 

1.75628 0.038596 

1449251_at Ndp Norrie disease (pseudoglioma) (human) 1.749063 0.020795 

1460033_at C030002C11Rik RIKEN cDNA C030002C11 gene 1.73966 0.035207 

1437800_at Edaradd EDAR (ectodysplasin-A receptor)- 1.738899 0.008914 
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associated death domain 

1423571_at S1pr1 sphingosine-1-phosphate receptor 1 1.718975 0.040307 

1423016_a_

at 

Gypa glycophorin A 1.709037 0.048106 

1429123_at Rab27a RAB27A, member RAS oncogene family 1.70457 0.022827 

1434297_at E130304F04Rik 

/// LOC100040601 

RIKEN cDNA E130304F04 gene /// 

hypothetical protein LOC100040601 

1.69251 0.003604 

1448421_s_

at 

Aspn asporin 1.656201 0.028697 

1419599_s_

at 

Ms4a6d membrane-spanning 4-domains, subfamily 

A, member 6D 

1.654013 0.043855 

1445838_at --- --- 1.646932 0.046888 

1449033_at Tnfrsf11b tumor necrosis factor receptor superfamily, 

member 11b (osteoprotegerin) 

1.644202 0.034106 

1421854_at Fgl2 fibrinogen-like protein 2 1.640142 0.000127 

1427313_at Ptgir prostaglandin I receptor (IP) 1.636612 0.018072 

1437989_at Pde8b phosphodiesterase 8B 1.624623 2.04E-05 

1426937_at 6330406I15Rik RIKEN cDNA 6330406I15 gene 1.601092 0.049248 

1418454_at Mfap5 microfibrillar associated protein 5 1.593589 0.021051 

1442082_at C3ar1 complement component 3a receptor 1 1.57566 0.042136 

1418511_at Dpt dermatopontin 1.573438 0.026282 

1429197_s_

at 

Rabgap1l RAB GTPase activating protein 1-like 1.557097 0.020342 

1419468_at Clec14a C-type lectin domain family 14, member a 1.548326 0.012029 

1417012_at Sdc2 syndecan 2 1.538801 0.032822 

1435616_at Cyp20a1 cytochrome P450, family 20, subfamily A, 

polypeptide 1 

1.534345 0.048825 
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1457137_at --- --- 1.531957 0.04647 

1424229_at Dyrk3 dual-specificity tyrosine-(Y)-

phosphorylation regulated kinase 3 

1.524185 0.037066 

1426514_at 4631426J05Rik RIKEN cDNA 4631426J05 gene 1.50781 0.047725 

1427319_at A230046K03Rik RIKEN cDNA A230046K03 gene 1.506691 0.036402 

1445767_at Ptprd protein tyrosine phosphatase, receptor 

type, D 

1.501627 0.001025 
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Figure 2.1  Nonpeptidergic-specific genes depend on both NGF and Runx1 for expression in 

vivo. 

(A-J) In situ hybridization analysis of expression of MrgD (Control, 12.7%±2.4%; NGF-/-Bax-/-, 0%), 

GFRα2 (Control, 28.7%±2.5%; NGF-/-Bax-/-, 14.3%±1.1%), Ptprt (Control, 19.1%±0.3%; NGF-/-Bax-/-, 

10.3%±2.1%), Myo1a (Control, 26.4%±0.9%; NGF-/-Bax-/-, 5.8%±1.5%), and Kif21b (Control, 

27.2%±2.7%; NGF-/-Bax-/-, 14.05%±1.8%) in DRGs of P0 control and NGF-/-Bax-/- animals. (K-T) In situ 

hybridization analysis of expression of MrgD (Control, 26.3%±1.0%; Runx1 CKO, 0.3%±0.2%), GFRα2 

(Control, 40.0%±3.7%; Runx1 CKO, 9.6%±0.7%), Ptprt (Control, 36.0%±3.3%; Runx1 CKO, 

10.4%±2.3%), Myo1a (Control, 31.1%±2.3%; Runx1 CKO, 5.1%±1.8%), and Kif21b (Control, 

24.8%±1.7%; Runx1 CKO, 10.9%±0.8%) in DRGs of P0 control and Runx1 CKO animals. Note that 

expression of all five genes is severely impaired in DRGs of both NGF and Runx1 mutants. Shown is 

average±SEM for the percentage of DRG neurons expressing indicated genes based on counts from a total 

of at least 9 sections from three independent animals per genotype. The total number of neurons per section 

was counted based on combined NeuN immunostaining, which was not shown. Scale bar, 50μm. 
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Figure 2.2  Nonpeptidergic-specific genes depend on both NGF and Runx1 for initiation of 

expression in vivo. 

(A-H) In situ hybridization analysis of expression of MrgD, Ptprt, Myo1a and Kif21b in DRGs of E16.5 

control and NGF mutant animals. (I-P) In situ hybridization analysis of expression of MrgD, Ptprt, Myo1a 

and Kif21b in DRGs of E16.5 control and Runx1 CKO animals. Note that defects in expression are already 

evident in DRGs of NGF and Runx1 mutants at E16.5, which is when those genes normally start to be 

expressed, suggesting a requirement of both NGF and Runx1for initiation of expression. Shown are results 

representative of at least two independent animals per genotype. Scale bar, 50μm. 
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Figure 2.3  NGF is sufficient to promote expression of nonpeptidergic-specific genes in a 

Runx1-dependent way in vitro. 

(A-D) Real-time PCR analysis of expression of nonpeptidergic-specific genes, including MrgD (A), 

GFRα2 (B) and Ptprt (C) and a peptidergic gene CGRP (D) in dissociated DRG neurons from P0 control 

and Runx1 CKO animals cultured in the presence or absence of NGF. Note that the ability of NGF to 

stimulate expression of nonpeptidergic-specific genes but not the peptidergic gene is abolished in the 

absence of Runx1, suggesting a specific role for Runx1 in regulating expression of nonpeptidergic-specific 

genes downstream of NGF. Statistical analyses were done using two-way ANOVA with a Bonferroni post-

test, N=5 for A, N=7 for the rest. ** p≤0.01, ***p≤0.001, ns non-significant. 
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2.3. Runx1 potentiates activity of TrkA signaling, thereby indirectly maintaining expression 

of Ret. 

As mentioned in Chapter 2.1, the expression of Ret as examined by in situ hybridization analysis did not 

conform to the general rule that defines all the other nonpeptidergic-specific genes, that is, a simultaneous 

requirement of NGF and Runx1 for expression. The observation that at P0, Ret expression was grossly 

intact except for a slightly reduced level per cell in Runx1 CKO DRGs was in stark contrast to the well-

documented Ret deficiency in P0 NGF mutant DRGs (Figure 2.4 A,B,E and F). Expression analysis by in 

situ hybridization and real-time PCR during late embryonic and postnatal development further confirmed 

the perinatal onset of Runx1 dependence for Ret expression (Figure 2.4. C-I). Therefore, NGF and Runx1 

control Ret expression in different ways. While NGF is involved early during the initiation of Ret 

expression, Runx1 is not required until later stages for maintenance of expression.  

The sequential requirement of NGF and Runx1 for Ret expression suggests an intriguing possibility. That is, 

Runx1 is required for establishing a level of NGF signaling that is critical for postnatal Ret expression. To 

directly test this hypothesis, the level of NGF signaling in control and Runx1 CKO DRGs at P0 was 

assessed by immunohistochemistry with phospho-Trk (pTrk) antibodies that only recognize active forms of 

Trk receptors that are phosphorylated at SHC or/and PLCγ sites. Only pTrk signal in neurons that lacked 

neurofilament–H (NFH), a marker for large-diameter neurons, was considered a true reflection of TrkA 

activity and compared between genotypes. The activity of TrkA receptors as defined by the fluorescence 

intensity of pTrk immunoreactivity (IR) per cell was significantly lower in Runx1 CKO DRGs relative to 

control, consistent with a role for Runx1 in maintaining a high level of NGF signaling (Figure 2.5 A-F). It 

is worth emphasizing that Runx1 is not required for the level of receptor activation that supports survival of 

nociceptors and CGRP expression, as the number of neurons as well as CGRP+ neurons was not reduced in 

Runx1 CKO DRGs (Chen et al., 2006b; Yoshikawa et al., 2007). Since TrkA expression in control and 

Runx1 CKO DRGs was almost indistinguishable by immunostaining, Runx1 mostly likely regulates TrkA 

activity without affecting its expression (Figure 2.5 G and H).  

To determine the contribution of this defect in NGF signaling to deficits in expression of Ret and other 

nonpeptidergic-specific genes in Runx1 CKO animals, we asked whether exogenous administration of NGF 
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by intraperitoneal (IP) injection right after birth can rescue nonpeptidergic expression deficits in Runx1 

CKO DRGs. Strikingly, Ret expression underwent a significant increase following two injections of NGF at 

P0 and P1 in Runx1 CKO animals, suggesting that the Ret expression deficit in Runx1 CKO DRGs was at 

least in part an indirect consequence of impaired NGF signaling (Figure 2.6. A-C). By contrast, the same 

treatment regime had no detectable effect on expression of all the other nonpeptidergic-specific genes 

which were shown to require both NGF and Runx1 in a similar manner (Figure 2.6. D-L). Therefore, in 

addition to the majority of genes that require both NGF and Runx1 for expression, these findings reveal a 

second, novel mode of interaction between NGF and Runx1, in which Runx1, through a yet unidentified 

mechanism, supports a high level of TrkA activity, which is in turn essential for postnatal Ret expression.  
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Figure 2.4  Ret that is strongly NGF-dependent requires Runx1 for maintenance of 

expression. 

(A and B) In situ hybridization analysis of expression of Ret in DRGs of P0 control and NGF mutants. (C-

H) In situ hybridization analysis of expression of Ret in DRGs of control and Runx1 CKO animals at E16.5 

(C and D), P0 (E and F) and P10 (G and H). Note that while Ret expression is almost completely eliminated 

in NGF mutant DRGs at P0, its expression in Runx1 CKO DRGs at the same time point is only mildly 

affected, indicating differential temporal requirements of NGF and Runx1 for Ret expression. Only the 

small-diameter Ret+ population is relevant, since the remaining large-diameter Ret+ neurons represent 

mechanoreceptors. Shown are results representative of at least two independent animals per genotype at 

each time point. (I) Real-time PCR analysis of expression of Ret in DRGs of control and Runx1 CKO 

animals at P0 and P14 confirms the progressive nature of Ret deficit in Runx1 CKO DRGs. Statistical 

analyses were done using paired t test, N=3 for each time point, **p≤0.01. Scale bar, 50μm. 
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Figure 2.4 
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Figure 2.5  Runx1 potentiates TrkA activity without regulating TrkA expression. 

(A-D) Double staining of NFH and pTrk-SHC (A and B) or NFH and pTrk-PLCγ (C and D) in DRGs of P0 

control and Runx1 CKO animals shows greatly attenuated pTrk IR in NFH-negative neurons on a single 

cell level in Runx1 CKO DRGs compared to control, suggesting a deficit in NGF signaling. (E and F) 

Quantification of NGF signaling deficit based on average fluorescence intensity of pTrk-SHC or pTrk-

PLCγ IR per cell further confirms reduced TrkA activity in Runx1 CKO DRGs. Unpaired t test was 

performed on data from three independent pairs of control and mutant animals, ** p≤0.01, ***p≤0.001. (G 

and H) TrkA immunostaining in DRGs of P0 control and Runx1 CKO animals shows comparable 

expression in both genotypes. Shown are results representative of two independent animals per genotype. 

Scale bar, 50μm. 
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Figure 2.5 
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Figure 2.6  Diminished NGF signaling contributes to the postnatal Ret expression deficit in 

Runx1 CKO mice. 

(A-C) In situ hybridization analysis of expression of Ret in DRGs of P2 control animals that received BSA 

injections, Runx1CKO animals that received BSA injections and Runx1 CKO animals that received NGF 

injections. Note that overall level of Ret expression per cell is considerably higher in Runx1 CKO animals 

that received NGF than mutant littermates that received BSA instead, suggesting Ret requires a relatively 

high level of NGF signaling for normal postnatal expression. (D-L) In situ hybridization analysis of 

expression of MrgD (D-F), GFRα2 (G-I) and Ptprt (J-L) in DRGs of P2 control animals that received BSA 

injections, Runx1CKO animals that received BSA injections and Runx1 CKO animals that received NGF 

injections. Importantly, exogenous NGF administration fails to activate expression of those genes in the 

absence of Runx1, suggesting that Runx1 plays a more direct role in regulating their expression. Shown are 

results representative of at least three independent injection experiments. Scale bar, 50μm. 
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2.4. Runx1 and CBFβ are both required for the development of nonpeptidergic populations 

by forming a heterodimeric transcription factor complex. 

2.4.1. Runx1 and CBFβ form a complex in the DRG. 

As described above, for the large majority of nonpeptidergic-specific genes, NGF and Runx1 are required 

simultaneously as opposed to sequentially, suggesting a linear model in which NGF acts upstream of 

Runx1 to promote Runx1-dependent transcription of nonpeptidergic-specific genes. In order to elucidate 

the mechanism by which NGF facilitates Runx1 function, we sought to better understand how Runx1 

activity is normally regulated in the DRG. 

Outside the nervous system, the Runx family transcription factors are thought to function as heterodimers 

composed of a DNA-binding subunit, which in mammals can be Runx1, Runx2 or Runx3, and a common 

non-DNA-binding subunit CBFβ. CBFβ is indispensable for Runx activity in cells of the hematopoietic 

lineage due to its ability to enhance the DNA-binding ability and protein stability of associated Runx 

proteins (Adya et al., 2000). The functional importance of both components is best illustrated by the fact 

that  Runx1 and Cbfb knockout animals both die of massive CNS hemorrhage due to a block in definitive 

hematopoiesis (Okuda et al., 1996; Wang et al., 1996a; Wang et al., 1996b). Considering the requirement 

for CBFβ during Runx1 function in the hematopoietic system, we next asked whether CBFβ plays a similar 

role in the DRG. 

First, the expression pattern of Cbfb both at the mRNA level and the protein level was characterized during 

development. In situ hybridization analysis revealed that Cbfb is expressed very broadly in DRG neurons 

over the entire time course of our analysis, E13.5, E16.5 and P14 (Figure 2.7 D-F). The level of Cbfb 

expression varied considerably among DRG neurons. To visualize endogenous CBFβ proteins, we 

generated a CbfbFlag knockin mouse line in which N-terminally Flag-tagged CBFβ protein is produced from 

the endogenous Cbfb locus (Figure 2.7 A). In animals harboring this allele, a custom-made Flag antibody 

specifically detects endogenous Flag-CBFβ (Figure. 2.7 B and C). Double labeling of Flag and Runx1 

showed extensive overlap between Runx1 and CBFβ even at the subcellular level throughout development 

suggesting a potential for interaction (Figure2.7 B, C, G-I). Note that while virtually all Runx1+ neurons 
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expressed CBFβ, there were a considerable number of CBFβ+ neurons that did not express Runx1, many of 

which represented Runx3+ proprioceptors (discussed in Chapter2.8). 

To test for a direct physical interaction between Runx1 and CBFβ in the DRG, co-immunoprecipitation 

(co-IP) experiments were performed using a Flag antibody from DRG homogenates of P0 CbfbFlag/Flag 

animals. Co-IPs from wildtype DRG lysates served as a negative control.  Runx1 was enriched together 

with Flag-CBFβ in the IP fraction from CbfbFlag/Flag animals but not wildtype animals, providing strong 

evidence for existence of a Runx1/CBFβ complex in DRG neurons (Figure 2.7 J). 

2.4.2. CBFβ is required for the development of Runx1-dependent nonpeptidergic populations. 

To assess the function of CBFβ in DRG development, we generated a conditional Cbfb allele by targeting 

the putative promoter sequence and the first two exons of this gene (Figure 2.8 A). Gene ablation in the 

DRG was achieved by crossing mice harboring the conditional Cbfb allele to a Wnt1-Cre line that drives 

recombination specifically in the dorsal neural tube and neural crest, the same Cre line that was used to 

generate the Runx1 CKO animal (Figure 2.8 B and C)(Danielian et al., 1998). Therefore, the contribution of 

CBFβ if any to DRG development can be directly compared with that of Runx1. 

As described before, Runx1 is integral to acquisition of the molecular identity of nonpeptidergic 

nociceptors as assayed by expression of a select panel of nonpeptidergic-specific genes (Figure 2.1 and 

Figure 2.2). Strikingly, CBFβ is required for expression of the same set of genes in a manner essentially 

identical to Runx1 (Figure 2.8 D-M). Furthermore, in both Runx1 CKO and Wnt1-Cre; Cbfbf/f (Cbfb CKO) 

animals, there was clear evidence of impaired peripheral innervation by nonpeptidergic nociceptors. In 

particular, sensory fibers in the epidermis, which are known to primarily originate from nonpeptidergic 

nociceptors, were dramatically decreased in number in both Runx1 and Cbfb mutant animals at P0 (Figure 

2.8 N-S). This occurred independent of any change in the subepidermal plexus indicating a developmental 

defect in the final stage of peripheral target innervation, epidermal penetration. Therefore, morphological 

characteristics of nonpeptidergic nociceptors as part of the differentiation program critically depend on both 

Runx1 and CBFβ. 
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To study CBFβ function in postnatal development, which was precluded by perinatal lethality of Cbfb CKO 

animals due to craniofacial deficits, Cbfb was deleted postnatally with the use of a Runx1CreER knockin 

allele (Samokhvalov et al., 2007). A similar strategy was employed to generate a Runx1 conditional 

knockout mouse model with postnatal onset of excision for direct comparison. To identify neurons with 

functional Cre protein which, depending on genotype, represented either knockout or control cells, TaumGFP, 

a previously described neuronal specific Cre-dependent GFP reporter, was also incorporated (Hippenmeyer 

et al., 2005). This postnatal gene ablation system was particularly well suited for the study of TH+ C-low 

threshold mechanoreceptors (C-LTMRs), a unique population of nonpeptidergic small-diameter neurons 

that is implicated in the pleasurable, affective component of touch and injury-induced mechanical 

hypersensitivity, because of their late emergence after the second postnatal week (Li et al., 2011; Olausson 

et al., 2010; Seal et al., 2009). Remarkably, postnatal deletion of either Runx1 or Cbfb disrupted both 

molecular and morphological characteristics of C-LTMRs. Specifically, within the GFP+ population which 

is largely devoid of Runx1 and CBFβ, there are fewer TH+ neurons in DRGs and far fewer longitudinal 

lanceolate endings that are typical of C-LTMRs in the periphery compared to control, although phenotypes 

following Cbfb deletion were typically less dramatic and more variable than those following Runx1 

deletion, which mostly likely resulted from less efficient depletion of CBFβ protein compared to Runx1 

(Figure 2.9 A-H). Importantly, the phenotypes described here closely resemble those observed in a different 

Runx1 conditional mutant (Lou et al., 2013). This set of analysis therefore demonstrates a postnatal 

requirement for both Runx1 and CBFβ during development of C-LTMRs. 

Mechanistically, the apparent phenocopy between Runx1 and Cbfb mutants may be in part explained by a 

dramatic defect in Runx1 protein expression in Cbfb CKO DRGs as shown by immunostaining and western 

blot analysis (Figure 2.10 A-C). The fact that Runx1 mRNA expression based on in situ hybridization and 

real-time PCR analysis remained unchanged, if not increased, in Cbfb CKO DRGs, suggested a specific 

role for CBFβ in posttranscriptional regulation of Runx1 expression, which is in line with earlier work 

describing a critical CBFβ dependence of Runx1 protein stability (Figure 2.10 D-F)(Huang et al., 2001). 

Together, these findings strongly argue that CBFβ is as important as Runx1 for the development of various 

nonpeptidergic populations, in part due to its ability to regulate Runx1 expression at a posttranscriptional 

level. 
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Figure 2.7  Runx1 and CBFβ form a complex in the DRG. 

(A) Schematic showing the targeting strategy for the CbfbFlag allele. Following germ-line transmission, the 

Neo selection cassette was removed by crossing the carrier to an animal expressing the FlpE recombinase 

in germ line. A Bstz171 restriction site was introduced immediately downstream of the Flag sequence to 

facilitate southern screening of embryonic stem (ES) cells. Flag tags, LoxP and FRT sites are shown as red 

filled triangles, open and filled triangles respectively. (B and C) Double staining of Runx1 and Flag in 

DRGs of P0 Cbfb+/+ and CbfbFlag/+ animals shows extensive colocalization between Runx1 and Flag/CBFβ 

even at the subcellular level in DRG neurons. Note that CBFβ is expressed in more than just Runx1+ 

neurons in the DRG. (D-F) In situ hybridization analysis of expression of Cbfb in wildtype DRGs at E13.5, 

E16.5 and P14 shows a broad expression pattern throughout development. Cbfb+ neurons can be either low 

or high expressors. (G-I) Double staining of Runx1 and Flag in DRGs of CbfbFlag/+ animals at E13.5, E16.5 

and P14 shows a pattern of CBFβ protein similar to its mRNA distribution. (J) Co-immunoprecipitation 

experiments by Flag immunoprecipitation using DRGs lysates from P0 CbfbFlag/Flag animals and wildtype 

controls show Runx1 co-immunoprecipitate with Flag-CBFβ from DRGs of CbfbFlag/Flag animals, indicating 

the formation of a Runx1/CBFβ complex in the DRG. Scale bar, 50μm. 
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Figure 2.7 
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Figure 2.8  CBFβ is required for acquisition of Runx1-dependent molecular and 

morphological features of nonpeptidergic nociceptors. 

(A) Schematic showing the targeting strategy for generation of the Cbfb conditional allele. Following germ-

line transmission, the Neo selection cassette was removed by crossing the carrier to an animal expressing 

FlpE recombinase in the germ line. A Bstz171 restriction site was introduced immediately downstream of 

the 3’ loxP site to facilitate southern screening of ES cells. LoxP and FRT sites are shown as open and filled 

triangles respectively. (B and C) In situ hybridization analysis of expression of Cbfb in DRGs of P0 control 

and Cbfb CKO animals verifies the knockout strategy. (D-M) In situ hybridization analysis of expression of 

MrgD (Control, 26.9%±2.8%; Cbfb CKO, 0%), GFRα2 (Control, 38.8%±2.8%; Cbfb CKO, 11.7%±1.9%), 

Ptprt, (Control, 31.9%±3.2%; Cbfb CKO, 7.1%±2.8%), Myo1a (Control, 26.9%±3.2%; Cbfb CKO, 

5.6%±0.6%), Kif21b (Control, 20.2%±0.1%; Cbfb CKO, 2.4%±0.5%) in DRGs of P0 Control and Cbfb 

CKO animals. Note that all those genes exhibit severe deficits in expression which is reminiscent of the 

phenotype in Runx1 CKO animals. The discrepancy between CBFβ dependence and Runx1 dependence of 

Kif21b expression reflects Kif21b expression in proprioceptors that depends on Runx3 and CBFβ. Shown is 

average±SEM for the percentage of neurons expressing indicated genes based on counts from a total of at 

least 9 sections from three independent animals per genotype. The total number of neurons per section was 

counted based on combined NeuN immunostaining, which was not shown. (N-Q) GFP immunostaining of 

P0 hairy skin to visualize sensory innervation of the epidermis in control and Runx1 CKO animals (N and 

O) or control and Cbfb CKO animals (P and Q) in which all the sensory neurons are labeled by GFP. Note 

that there is a dramatic reduction in the fiber density specifically in the epidermis in both Runx1 CKO and 

Cbfb CKO animals relative to their littermate controls. The yellow dotted line denotes the epidermal-dermal 

junction. (R and S) Quantification of sensory innervation of the epidermis in P0 control and Runx1 CKO 

animals (R) or P0 control and Cbfb CKO animals (S) shows remarkably similar reduction in the innervation 

density in both mutants. The innervation density is defined as the fraction of area occupied by GFP+ fibers 

in the epidermis. Unpaired t test was performed on data from three independent animals per genotype. 

***p≤0.001. Scale bar, 50μm. 
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Figure 2.8 

 

  



60 
 

Figure 2.9  Runx1 and CBFβ are both required postnatally for acquisition of molecular and 

morphological features of C-LTMRs. 

(A-D) Double staining of TH and GFP in DRGs of P21 Runx1CreER/+; TaumGFP/+ and Runx1CreER/f; TaumGFP/+ 

animals (A and B)(Control, 23.2%±1.6%; Runx1 mutant, 3.8%±2.7%) or Runx1CreER/+;Cbfbf/+; TaumGFP/+ 

and Runx1CreER/+; Cbfbf/f; TaumGFP/+ animals (C and D)(Control, 21.4%±1.9%; Cbfb mutant, 8.9%±2.0%) 

that received IP injections of tamoxifen at P2. Note that there is a substantial reduction in the number of 

GFP, TH double positive neurons due to a selective loss of TH expression in the GFP+ population in both 

Runx1 and Cbfb mutant DRGs. Shown is average±SEM for the percentage of GFP+ neurons that express 

TH based on counts from a total of at least 9 sections from three independent animals per genotype. (E-H) 

Double staining of CGRP and GFP in back hairy skin of P21 Runx1CreER/+; TaumGFP/+ and Runx1CreER/f; 

TaumGFP/+ animals (E and F) or Runx1CreER/+;Cbfbf/+; TaumGFP/+ and Runx1CreER/+; Cbfbf/f; TaumGFP/+ animals 

(G and H) that received IP injections of tamoxifen at P2. Note that in both mutant animals, there is a 

marked decrease in the number of GFP+ longitudinal lanceolate endings characteristic of C-LTMRs, which 

is accompanied by an increased frequency of GFP+ endings that assume more peptidergic-like morphology.  

Shown are representative images from more than 3 independent experiments. Scale bar, 50μm. 
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Figure 2.9 
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Figure 2.10  CBFβ promotes Runx1 expression at a posttranscriptional level. 

(A and B) Runx1 immunostaining in DRGs of P0 control and Cbfb CKO animals shows almost complete 

loss of Runx1 proteins in the absence of CBFβ. Shown are representative images from at least three 

independent experiments. (C) Immunoblot analysis of expression of Runx1 and Cbfb in DRGs of P0 

control and Cbfb CKO animals shows a dramatic loss of Runx1 proteins as a result of CBFβ depletion. βIII-

Tubulin serves as a loading control. Shown are results from three independent experiments. (D and E) In 

situ hybridization analysis of Runx1 expression in DRGs of P0 control and Cbfb CKO animals shows 

comparable levels of Runx1 transcripts in control and mutant animals. (F) Real-time PCR analysis of 

Runx1 expression in DRGs of P0 control and Cbfb CKO animals shows increased Runx1 mRNA expression 

in Cbfb CKO DRGs compared to control, which partly reflects an increased ratio of nociceptors to 

proprioceptors. *p≤0.05. Scale bar, 50μm. 
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2.5. NGF regulates Cbfb expression at the transcriptional level, thereby facilitating the 

function of the Runx1/CBFβ complex. 

Having established that Runx1 and CBFβ are both required for Runx1 function in the development of 

nonpeptidergic populations, we explored the possibility that NGF regulates expression of Runx1 and/or 

Cbfb, thereby promoting Runx1-dependent nonpeptidergic neuron fate. To this end, expression of both 

Runx1 and Cbfb was examined in DRGs of control and NGF mutant animals by in situ hybridization 

analysis both before and during the onset of deficits in nonpeptidergic-specific gene expression. Consistent 

with our previous findings, at E14.5, before the differentiation of nonpeptidergic nociceptors, Runx1 

expression was relatively normal in NGF mutant DRGs (Figure 2.11 A and B). Cbfb expression, on the 

other hand, was significantly impaired at the same time point in NGF mutant DRGs relative to control, 

specifically in small-diameter neurons that correspond to nociceptors (Figure 2.11 C and D). At later time 

stages, such as E16.5, Runx1 expression began to be affected, while the Cbfb expression deficit became 

much more pronounced in NGF mutant DRGs (Figure 2.11 E-H). The differential temporal requirement for 

NGF for expression of Runx1 and Cbfb was corroborated by real-time PCR analysis (Figure 2.11 I and J). 

Consequently, the level of Runx1 proteins was significantly attenuated at E16.5, which coincided with the 

earliest deficits in nonpeptidergic nociceptors in NGF mutant DRGs (Figure 2.11 K-P). The early onset of 

NGF dependence of Cbfb expression suggested that Cbfb expression is directly activated by NGF. Indeed, 

incubation of DRG cultures with NGF led to a robust increase in CBFβ protein expression as examined by 

Flag immunostaining in CbfbFlag/+ neurons (Figure 2.11 Q and S). Thus, CBFβ represents a crucial nexus 

for NGF regulation of Runx1 function. 

 

 

 

 

 



64 
 

Figure 2.11  NGF activates Cbfb expression at the transcriptional level, before it regulates 

Runx1 expression. 

(A and B) In situ hybridization analysis of Runx1 expression in DRGs of E14.5 control and NGF mutant 

animals shows comparable levels of transcripts in control and mutant DRGs. Average±SEM for the relative 

intensity of in situ signals after normalization to the level in control DRGs is as follows: control, 1.00±0.16; 

NGF mutant, 0.73±0.12. p=0.3007, based on paired t test. (C and D) In situ hybridization analysis of Cbfb 

expression in DRGs of E14.5 control and NGF mutant animals shows a significant reduction in the level of 

transcripts in small diameter neurons that correspond to prospective nociceptors in NGF mutants compared 

to control. Note that Cbfb in situ hybridization was combined with Runx3 immunostaining to exclude the 

Runx3+ Cbfb population from the analysis. Average±SEM for relative intensity of in situ signal after 

normalization to the level in control DRGs is as follows: control, 1.00±0.20; NGF mutant, 0.60±0.18. 

p=0.0125, based on paired t test. (E and F) In situ hybridization analysis of Runx1 expression in DRGs of 

E16.5 control and NGF mutant animals shows a reduction in the level of signal per cell in NGF mutant 

DRGs compared to control. Control, 1.00±0.07; NGF mutant, 0.49±0.06. p=0.0016, based on paired t test. 

(G and H) In situ hybridization analysis of Cbfb expression in DRGs of E16.5 control and NGF mutant 

animals shows more pronounced Cbfb mRNA deficit in NGF mutant DRGs. Control, 1.00±0.19, NGF 

mutant, 0.49±0.11. p=0.0403, based on paired t test. (I and J) Real-time PCR analysis of expression of 

Runx1 and Cbfb in DRGs of control and NGF mutant animals at E14.5 and P0 reveals differential temporal 

requirements for NGF during expression of Runx1 and Cbfb. Pair t test was performed on data collected 

from three independent animals per genotype. *p≤0.05, ns non-significant. (K-N) Runx1 immunostaining 

in DRGs of control and NGF mutant animals at E14.5 (K and L) and E16.5 (M and N) shows a Runx1 

protein deficit at E16.5, which coincides with the onset of nonpeptidergic deficits in NGF mutant DRGs. 

(O and P) Quantification of Runx1 protein expression in DRGs of control and NGF mutant animals at 

E14.5 and E16.5 based on the percentage of Runx1+ neurons and the fluorescence intensity of Runx1 IR. 

Note that the Runx1 protein deficit becomes evident in NGF mutant DRGs at E16.5, when the level of 

expression is diminished without any change in the number of Runx1+ neurons. Pair t test was performed 

on data collected from three independent animals per genotype. *p≤0.05, ns non-significant. (Q and R) 

Double staining of βIII-Tubulin and Flag in dissociated DRG neurons from P0 CbfbFlag/+ animals that were 
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cultured without or with NGF. Note that NGF application robustly stimulates CBFβ protein expression as 

indicated by increased Flag IR. Average±SEM for average fluorescence intensity of Flag IR per cell 

normalized to the –NGF condition is as follows: –NGF, 1.00±0.07; +NGF, 2.72±0.11. p< 0.0001, based on 

unpaired t test. Scale bar, 50μm. 
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Figure 2.11 
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2.6. NGF activates Cbfb expression in a MAPK-dependent manner. 

To better understand the process of NGF-dependent Cbfb expression, which appears to be a crucial step 

during the specification of nonpeptidergic nociceptors, we sought to identify the downstream signaling 

cascades that mediate NGF-dependent Cbfb expression. We decided to focus on canonical ERK1/2-

mediated MAPK signaling, as animals deficient in various components of this signaling pathway exhibited 

among many other phenotypes, defects in nonpeptidergic nociceptors, such as reduced Ret expression and 

impaired innervation of the epidermis (Newbern et al., 2011; Zhong et al., 2007). In one case, a link to 

CBFβ was suggested based on a severe deficit in CBFβ protein expression shown by western blot analysis 

at P30 (Zhong et al., 2007). Nevertheless, a direct test of the involvement of ERK1/2-mediated MAPK 

signaling in Cbfb expression, especially NGF-dependent Cbfb expression is lacking. We therefore directly 

addressed the necessity of MAPK signaling for NGF dependence of Cbfb expression in two ways. First, we 

found in vitro that pharmacological inactivation of MEK1/2, the direct activators of ERK1/2, significantly 

attenuated the ability of NGF to promote CBFβ protein expression (Figure 2.12 A-E). Second, using a 

conditional loss of function mouse model where the activity of MAPK signaling in the nervous system was 

expected to be effectively eliminated due to simultaneous deletion of Erk1/2 and Mek1/2, we found a strong 

dependence of Cbfb expression on MAPK signaling in vivo, as in 4 out of 5 P0 Nes-Cre; Mek1 f/f ; Mek2 -/-

; Erk1 -/-;  Erk2 f/f  mutants (Quadruple), Cbfb mRNA expression was severely disrupted (Figure 2.12 F and 

G). The noted phenotypic variation most likely reflected incomplete excision of all four flox alleles. We 

next asked whether MAPK signaling is sufficient to promote Cbfb expression, in the absence of NGF or 

activation of other NGF signaling pathways. To do this in vivo, a constitutively active form of B-raf, an 

upstream activator of ERK1/2, here referred to as V600E, was expressed specifically in the nervous system 

in an animal that was also null for both TrkA and Bax. While Cbfb expression in TrkA-/-; Bax-/- DRGs was 

almost completely abolished, as seen in NGF mutant DRGs, constitutive activation of MAPK signaling 

restored Cbfb expression to a near normal level (Figure 2.12 H-J). Real-time PCR analysis was carried out 

as an independent measure of Cbfb expression to further demonstrate the necessity and sufficiency of 

MAPK signaling for Cbfb expression in vivo (Figure 2.12 K). Thus, NGF regulates Cbfb expression 

through activation of the MAPK signaling pathway.   
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Figure 2.12  NGF activates Cbfb expression through activation of the MAPK signaling 

pathway. 

(A-D) Double staining of Flag (green) and βIII-Tubulin (blue) in DMSO or U0126-treated dissociated 

DRG neurons from P0 CbfbFlag/+ animals that were cultured without or with NGF. U0126 is a selective 

inhibitor for MEK1/2, the direct activators of ERK1/2. Note that CBFβ protein expression as defined by 

Flag IR is greatly diminished in neurons treated with U0126 compared to control-treated neurons in the 

presence of NGF. (E) Quantification of the effect of U0126 treatment on CBFβ protein levels in dissociated 

DRGs neurons from P0 CbfbFlag/+ animals that were cultured without or with NGF. CBFβ protein 

abundance was quantified as average fluorescence intensity of Flag IR per cell. Statistical analysis was 

done using two-way ANOVA with a Bonferroni post-test, based on data from four independent 

experiments. ***p≤0.001, ns non-significant. (F and G) In situ hybridization analysis of Cbfb expression 

in DRGs of P0 control and quadruple mutant animals reveals a severe deficit in Cbfb mRNA expression in 

DRGs when MAPK signaling is disrupted in the nervous system. The same phenotype of varied severity 

was observed in 4 out of 5 mutant animals. (H-J) In situ hybridization analysis of Cbfb expression in DRGs 

of E18.5 TrkA+/-; Bax-/-, TrkA-/-; Bax-/- and TrkA-/-; Bax-/-; Nes-Cre; V600E shows that constitutive 

activation of MAPK signaling leads to a dramatic increase in Cbfb expression in TrkA-deficient animals. 

Shown are representative images from two independent experiments. (K) Real-time PCR analysis of Cbfb 

expression in the same set of loss-of-function and gain-of-function mouse models as described above 

further demonstrates necessity and sufficiency of MAPK signaling in Cbfb expression in vivo. Shown are 

averages from two independent experiments after normalization to littermate control. Scale bar, 50μm. 
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Figure 2.12 

 

  



70 
 

2.7. Islet1, a LIM-homeodomain transcription factor, is specifically required for induction 

of Runx1 expression. 

The apparent NGF-independent Runx1 expression during early development left the question of 

transcriptional regulation of Runx1 expression unanswered, especially the initiation of expression. To 

explore the possibility that some intrinsic factors control initiation of Runx1 expression, we tested the 

involvement of Islet1, a LIM-homeodomain transcription factor, because in a neural crest derivative-

specific Islet1 mutant (Isl1 CKO), Runx1 protein deficit was observed as early as E12.5, which is when 

Runx1 proteins can be first detected in lumbar DRGs (Sun et al., 2008). To directly address at what level 

Runx1 expression is regulated by Islet1, Runx1 expression was assessed by in situ hybridization analysis in 

DRGs of E12.5 control and Isl1 CKO animals. Consistent with a central role for Islet in activating Runx1 

expression at the transcriptional level, Runx1 transcripts were nearly undetectable in Isl1 CKO DRGs 

(Figure 2.13 A and B). In contrast, Cbfb expression was only minimally affected by the same genetic 

ablation (Figure 2.13 C and D). The differential dependence of Runx1 and Cbfb expression on Islet1was 

further confirmed by microarray analysis of control and Isl1 CKO DRGs at E12.5 (Figure 2.13 E). Thus, 

Runx1 and CBFβ, obligatory components of a transcription factor complex, appear to be regulated at the 

expression level by different mechanisms. While Runx1 expression relies more on intrinsic factors, such as 

Islet1, Cbfb expression depends heavily on extrinsic cues, such as NGF. The significance and general 

implications of this finding will be discussed in Chapter 3. 
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Figure 2.13  Islet1 is required for initiation of Runx1 expression, however, less so for Cbfb 

expression. 

(A-D) In situ hybridization analysis of expression of Runx1 (A and B) and Cbfb (C and D) in DRGs of 

E12.5 control and Isl1 CKO animals shows that Islet1 deficiency abolishes expression of Runx1 but not 

Cbfb at an early time stage when Runx1 expression is normally initiated. Shown are representative images 

from two independent experiments. (E) Microarray analysis of E12.5 control and Isl1 CKO DRGs further 

confirms differential dependence of expression of Runx1 and Cbfb on Islet1. Shown are average expression 

levels from two independent experiments that are further normalized to the control level for each gene. 

Expression levels have been normalized using globe scaling. Scale bar, 50μm. 
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2.8. The importance and regulation of the Runx3/CBFβ complex during development of 

proprioceptors is fundamentally similar to that of Runx1/ CBFβ, with important differences. 

It is well established that an analogous role for Runx proteins in the development of proprioceptors is 

played by Runx3, another member of the Runx protein family. In fact, various Runx3 knockout animals that 

were independently generated and analyzed all exhibit the same set of phenotypes indicative of disrupted 

specification of TrkC+ proprioceptors, such as complete loss of TrkC+ neurons during early embryonic 

stages, which was attributed to cell death or/and downregulation of TrkC protein expression, derepression 

of TrkB expression in presumptive TrkC+ neurons, and lack of molecular marker and axonal projections 

characteristic of proprioceptors (Inoue et al., 2007; Inoue et al., 2003; Inoue et al., 2002; Kramer et al., 

2006; Levanon et al., 2002; Nakamura et al., 2008). Since it is generally believed that the transcriptional 

activity of all three Runx proteins is dependent on CBFβ outside the nervous system, we asked what role if 

any, CBFβ plays in the development of proprioceptors that are Runx3-dependent. 

As expected, Cbfb was expressed at varying degrees in all Runx3+ neurons during the time window when 

proprioceptors are being specified, e.g. at E14.5 (Figure 2.14 A-C). As described in Runx3 knockout 

animals, in Cbfb CKO mice there was an almost complete loss of TrkC protein expression at E13 and a 

severe reduction in expression of Parvalbumin (PV), a marker of proprioceptors, at P0 and also throughout 

embryonic development (data not shown) (Figure 2.14 D-G). Furthermore, both PV and DiI labeling 

revealed a selective loss of proprioceptive projections to the intermediate and ventral spinal cord in Cbfb 

CKO animals (Figure 2.14 H-K). Proprioceptive innervation of muscle spindles was also completely 

eliminated in Cbfb CKO animal, as visualized by immunostaining for PV or PGP9.5, a panneuronal marker 

(Figure 2.14 L-O). Thus, similar to its function in nonpeptidergic nociceptors, CBFβ is an essential 

component of the Runx3 transcription factor complex in proprioceptors. 

Mechanistically, however, CBFβ appears to regulate Runx3 function in a way different from what was 

shown for Runx1. Unlike Runx1, whose mRNA level was CBFβ-independent, Runx3 mRNA expression 

was defective in Cbfb CKO DRGs as early as E13 (Figure 2.14 P-S). Furthermore, a similar Runx3 

expression deficit was observed independent of cell death in Cbfb/Bax double mutant DRGs at P0, strongly 

arguing for a requirement for CBFβ during transcriptional regulation of Runx3 (Figure 2.15 A-D). However, 
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whether this represents a requirement for initiation or maintenance of expression remains unclear. In any 

event, this novel role of CBFβ suggests autoregulation of Runx3 expression or crossregulation between 

Runx genes, which has long been proposed due to the identification of Runx-binding sites in promoter 

regions of all three Runx genes (Levanon and Groner, 2004). Consistent with this idea, Runx2 can 

positively regulate its own promoter activity in osteoblasts (Ducy et al., 1999). It is, however, important to 

note that our data did not distinguish between autoregulation and crossregulation, since ablation of Cbfb 

presumably inactivated all three Runx proteins. A previous finding seemed to favor the crossregulation 

model, as the promoter activity of Runx3 indicated by a knockin LacZ reporter did not differ between E13.5 

control and Runx3 mutant animals (Lallemend et al., 2012).  

Since NT3-TrkC signaling in proprioceptors is equivalent to NGF-TrkA signaling in nociceptors in many 

respects, we sought to ask whether there is a NT3-CBFβ connection that is analogous to what we described 

for NGF-CBFβ signaling in nonpeptidergic nociceptors. To our surprise, in situ hybridization analysis 

revealed little change in Cbfb expression in NT3-/-; Bax-/- DRGs at P0 (data not shown). This lack of effect 

however can be explained by the relatively low abundance of Runx3-expressing Cbfb+ neurons. To assess 

Cbfb expression more reliably and definitively, we examined Runx3 expression instead, as its expression 

was CBFβ-dependent at both mRNA and protein levels in DRGs (Figure 2.15 A-D). Although Runx3+ 

neurons appeared atrophic as a result of NT3 deficiency at P0, Runx3 expression, as shown by both in situ 

hybridization and immunostaining, remained grossly intact, further suggesting that NT3 is not required for 

Cbfb expression in the proprioceptive lineage (Figure 2.15 E-H). One plausible explanation for the 

difference in the nociceptor and proprioceptor populations is that other trophic factors, such as BDNF, can 

act either redundantly or compensate for the loss of NT3 to support Cbfb expression. In fact, during the 

time when Runx3-dependent processes are underway, there is large overlap in expression among various 

Trk receptors, especially between TrkB and TrkC (Kramer et al., 2006). Thus, NT3-TrkC signaling, at least 

in terms of regulation of Cbfb expression, diverges from NGF-TrkA signaling, and the extrinsic cue(s) that 

are responsible for activating Cbfb expression in developing proprioceptors still remain elusive.  

Therefore, on one hand, the Runx3/CBFβ complex acts as a master regulator of proprioceptors, similar to 

the function of the Runx1/CBFβ complex in nonpeptidergic nociceptors. On the other hand, there are 



74 
 

fundamental differences in the way the complexes are controlled by NGF-TrkA and NT3-TrkC signaling, 

which are required for analogous Runx1-dependent or Runx3-dependent processes, respectively. While the 

Runx1/CBFβ complex acts as a key mediator of NGF-TrkA signaling for the specification of the 

nonpeptidergic fate, the Runx3/CBFβ complex and NT3-TrkC signaling most likely function in parallel 

pathways. 
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Figure 2.14  CBFβ is indispensable for the specification of proprioceptors in part by 

regulating Runx3 mRNA expression. 

(A-C) Combined Cbfb in situ hybridization and Runx3 immunostaining in E14.5 DRGs shows that all 

Runx3+ neurons express Cbfb mRNA, although at varying levels. Examples of Runx3+ neurons expressing 

a low or high level of Cbfb mRNA are marked by arrows. (D and E) TrkC immunostaining in DRGs of 

E13 control and Cbfb CKO animals shows complete loss of TrkC+ neurons in mutant DRGs. Shown are 

representative images from two independent experiments. (F and G) In situ hybridization analysis of PV 

expression in DRGs of P0 control and Cbfb CKO animals shows almost complete abolition of PV 

expression in mutant DRGs. Shown are representative images from at least three independent experiments. 

(H-K) Proprioceptive afferents to the spinal cord as shown by PV immunostaining (H and I) and DiI 

labeling (J and K) in P0 control and Cbfb CKO animals. Note that proprioceptive axons fail to innervate 

their proper targets in the spinal cord which include intermediate laminae and the ventral horn. Shown are 

results representative of three independent experiments. (L-O) Proprioceptive innervation of muscle 

spindles in hindlimbs of P0 control and Cbfb CKO animals as examined by PV immunostaining (L and M) 

and PGP9.5 staining (N and O). Note that stereotypical terminal structures of Ia afferents, a major type of 

proprioceptors, marked by arrows, are readily identified in control muscles, but are absent in muscles of 

mutant animals. PGP9.5+ nerve terminals closely apposed to α-BTX-labeled AChR represent the motor 

innervation. Shown are results representative of two independent experiments. (P-S) In situ hybridization 

analysis of expression of Runx3 in DRGs of control and Cbfb CKO animals at E13 (P and Q) and P0 (R and 

S) shows a profound defect in Runx3 mRNA expression in Cbfb CKO DRGs as early as E13 which persists 

throughout development. Shown are representative images from at least two independent experiments for 

each time point. Scale bar, 50μm. 
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Figure 2.14  
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Figure 2.15  NT3 is not required for Cbfb expression in proprioceptors. 

(A-D) Analysis of expression of Runx3 mRNA (A and B) and Runx3 protein (C and D) in DRGs of P0 

control and Cbfb CKO; Bax-/- animals shows a severe deficit in Runx3 expression independent of cell death 

as a result of Cbfb ablation. (E-H) Analysis of expression of Runx3 mRNA (E and F) and Runx3 protein (G 

and H) in DRGs of P0 control and NT3-/-; Bax-/- animals shows grossly intact Runx3 expression in atrophic 

presumptive proprioceptors in NT3 mutant DRGs, arguing against severely impaired Cbfb expression in the 

absence of NT3. Shown are representative images from two independent experiments. Scale bar, 50μm. 
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2.9. The site(s) of NGF synthesis required for the specification of nonpeptidergic 

nociceptors 

2.9.1. The spatio-temporal patterns of NGF expression  

Not only does this newly ascribed role of NGF in regulating Cbfb expression add to the growing list of 

NGF functions, it also illustrates a fundamental problem that the remarkable functional versatility of NGF 

poses. That is, how the same extrinsic factor NGF elicits physiological responses as diverse as survival, 

target innervation and subtype specification, in the same population of sensory neurons within a relatively 

short time window (Harrington and Ginty, 2013; Pezet and McMahon, 2006). Studies of downstream 

mediators of various NGF effects on sensory neurons indicate engagement of different signaling cascades 

for different cellular responses (Luo et al., 2007; Riccio et al., 1999; Wickramasinghe et al., 2008). 

However, it is not known whether or not these distinct biological responses have different activation 

requirements, such as the threshold level of NGF for activation and the spatial distribution of NGF. 

Interestingly, there was already in vitro evidence showing distinct cellular responses to NGF, depending on 

the location of NGF application (Campenot, 1977). 

A systematic study of the spatial requirement of NGF for its various biological functions relies on extensive 

information on NGF expression which has not been characterized at high resolution due to technical 

limitations in detection methods. Nonetheless, it is generally believed that NGF is expressed in a wide 

variety of tissues in both developing and adult animals (Thoenen et al., 1987). Importantly, expression of 

NGF in developing or adult target tissues is correlated with the amount of innervation that they receive 

from NGF-dependent neuronal populations, including sensory neurons, sympathetic neurons and basal 

forebrain cholinergic neurons (Davies et al., 1987; Korsching et al., 1985; Korsching and Thoenen, 1983; 

Shelton and Reichardt, 1984, 1986). This classical view that target-derived NGF is target-derived was 

however challenged by a series of observations made in rat iris suggesting that Schwann cells rather than 

smooth muscle cells were a source of NGF for incoming sympathetic and sensory nerves (Finn et al., 1986; 

Rush, 1984). Therefore, there is a real need for a systematic survey of the temporal and spatial pattern of 

NGF expression at a single cell resolution. 
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To this end, the endogenous promoter activity of NGF was monitored by two different reporters knocked 

into the NGF locus. An NGFlacz reporter was generated for optimal detection sensitivity, whereas an 

NGFflox-IRES-GFP reporter, a variant of a previously characterized NGFlx allele, which also acts as an NGFflox 

allele, was particularly useful for defining the cellular identity of NGF+ cells (Muller et al., 2012). These 

two lines were characterized with special focus on the trunk region of the animal, which primarily depends 

on DRG neurons to transmit somatosensory information. Whole-mount X-gal staining revealed a steady 

increase in NGF expression in terms of the level of expression as well as the spatial expanse of NGF+ cells 

from E12.5 to E15.5, which is when an adult-like pattern was mostly established (Figure 2.16 A). Sagittal 

sections through NGFflox-IRES-GFP embryos that were one day apart showed that NGF expression in the 

epidermis lagged behind that in the mesoderm by approximately a day (Figure 2.16 B and C). Notably, the 

onset of expression in developing epidermis, a major target of nociceptors, coincided with the arrival of 

TrkA+ fibers underneath the developing epidermis, which paralleled earlier observations in the trigeminal 

system (Davies et al., 1987). It is however important to note that although the general pattern of NGF 

expression was comparable in NGFLacz/+ and NGFflox-IRES-GFP/+ animals, expression was always detected in 

NGFlacz/+  earlier than in NGFflox-IRES-GFP/+ animals. Since the developing skin represents the best 

characterized target of nonpeptidergic nociceptors, we further characterized the cell types that produce 

NGF in the skin of the hindlimb of both reporter mice at P0. In addition to being expressed relatively 

diffusely and broadly in what seemed to be dermal fibroblasts, NGF was most prominently expressed in 

three discrete domains: the  basal keratinocytes of the epidermis, cells associated with a subset of blood 

vessels, and cells along nerve bundles (Figure 2.16 D and E). Colabeling with cell type-specific markers 

established blood vessel-associated cells as pericytes (Figure 2.16 F and G). Furthermore, it nicely 

illustrated the close association between nerve fibers and GFP+ cells, which can be either Schwann cells or 

perineural fibroblasts based on the tight coupling with the nerve (Figure 2.16 F and G). Although data were 

not shown here, those three discrete domains of NGF expression were already established at E14.5, 

suggesting important developmental roles. In particular, the expression of NGF in pericytes only along a 

subset of blood vessels that did not appear to belong to a certain type may be physiologically relevant, 

considering well-documented variations in vascular sympathetic innervation (Birch et al., 2008; Fleming et 

al., 1989; Grasby et al., 1999; Ruffolo et al., 1991; Tan et al., 2007). Since skin blood vessels were shown 
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to be simultaneously innervated by both sensory and sympathetic neurons, it is conceivable that vascular-

derived NGF in the skin acts to coordinate innervation of skin blood vessels by sensory and sympathetic 

neurons (Ruocco et al., 2002). The expression of NGF along developing nerves is most provocative, in that 

if biologically active NGF is indeed produced from these transcriptionally active cells, the classic view of 

NGF as a target-derived trophic factor will have to be modified. However, since this analysis did not 

distinguish between NGF and proNGF, the functionally distinct precursor form of NGF, the biological 

function of this expression domain of NGF, if it is indeed actively translating, may be difficult to predict. 

Thus, while this set of expression analyses represents the first attempt at generating a high resolution 

spatio-temporal map of the promoter activity of NGF, it does not address the functional significance of any 

of the identified sources, which requires phenotypic analysis of tissue-specific NGF conditional mutants. 

2.9.2. Lineage-specific requirement of NGF for development of nociceptors, in particular, NGF-

dependent Cbfb expression 

Due to the early onset and the wide distribution of NGF expression, which inevitably hampered our ability 

to dissect the functional role of individual sources of NGF defined based on cell type, the spatial 

requirement for NGF was instead studied by removing NGF from specific lineages from which NGF+ cell 

types are derived. That includes the neural crest lineage, the epidermal lineage, and the mesodermal lineage, 

for specifically targeting the expression in Schwann cells, keratinocytes and fibroblasts, respectively. 

The validity of the NGFflox allele was previously demonstrated and further confirmed here with the use of a 

T-Cre line, which drives recombination predominately but not exclusively in a pan-mesodermal pattern 

(Perantoni et al., 2005). Careful analysis of the pattern of Cre activity using a Cre-dependent tdTomato 

reporter at both E11.5 and P0 revealed extensive labeling throughout, as well as outside mesodermal 

lineages (data not shown). Overall, Cre activity was detected in all the previously defined NGF expression 

domains at the time when NGF expression was barely detectable. Therefore, as expected, T-Cre; NGFf/- 

conditional mutants (NGFT-Cre) exhibited marked loss of DRG neurons as a result of selective depletion of 

TrkA+ nociceptors, reminiscent of NGF straight knockouts (Figure 2.17 A-D). The remaining nociceptors, 

although reduced in number, appeared to undergo subtype specification normally, resulting in a normal 

complement of CGRP+ peptidergic and MrgD+ nonpeptidergic nociceptors (Figure 2.17 E-H). Quantitative 
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differences in deficits in nociceptors between NGFT-Cre and straight knockouts likely reflected incomplete 

or late NGF ablation in NGFT-Cre. 

In light of the possibility that nerve-associated cells represent Schwann cells, which are of neural crest 

origin, we examined the biological consequence of NGF deletion in the neural crest lineage mediated by 

Wnt1-Cre. 

At first glance, Wnt1-Cre; NGFf/- mutants (NGFWnt1-Cre) did not display gross abnormalities in nociceptors 

with respect to the total neuronal number, or expression of generic and subtype-specific markers of 

nociceptors, or epidermal innervation, suggesting NGF expression in Schwann cell is not an important 

source of NGF (Figure 2.18 A-J). Interestingly, there was a trend towards increased total neuronal number 

in NGFWnt1-Cre animals (Figure 2.18 A), which most likely resulted from increase in all different classes of 

DRG neurons, since the relative proportions of TrkA, TrkB and TrkC neurons remained unchanged (data 

not shown). This paradoxical observation, if later verified, may suggest a specific role for Schwann cell-

derived NGF, most likely in the form of proNGF, in fine-tuning the number of DRG neurons. 

About three-quarters of epidermal fibers arise from MrgD+ neurons which exclusively terminate in the 

epidermis, making an epidermal-specific NGF conditional mutant a particularly attractive model to 

rigorously test the neurotrophic hypothesis at least for a major population of nonpeptidergic nociceptors. 

Epidermal-specific Cre expression was achieved through the use of a well-characterized K5-Cre line 

(Ramirez et al., 2004). So far, deleting NGF specifically in the epidermis has resulted in modest but 

consistent defects in nociceptors, including a small reduction in the number of total DRG neurons, TrkA+, 

CGRP+, MrgD+ neurons and a relatively bigger reduction in epidermal innervation density (Figure 2.18 K-

T). Given that the epidermis is the preferred target of nonpeptidergic but not peptidergic nociceptors, 

MrgD+ nonpeptidergic nociceptors were, as expected, affected more than CGRP+ peptidergic nociceptors 

(Figure 2.18 N-Q). Therefore, for the most part, our analysis of the K5-Cre; NGFf/- mutant (NGFK5-Cre) 

demonstrates that MrgD+ nonpeptidergic nociceptors depend on target-derived NGF for survival. 

Interestingly, reduced sensitivity to mechanical stimulation at a behavioral level was reported in a different 

epidermal-specific NGF deficient line, which could be explained by the reduction in the number of MrgD+ 

neurons and their epidermal endings described here (Davis et al., 1993). However, the apparent 
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heterogeneous requirement for target-derived NGF, among many other possibilities, some of which might 

be attributed to the late onset of the K5-Cre relative to NGF expression in the epidermis (data not shown), 

seems to suggest a substantial contribution of NGF produced in cells other than the final target, such as 

numerous fibroblasts that nerve fibers encounter en route to the final target. 

Therefore, it is crucial to directly assess the mesoderm-specific requirement of NGF for the development of 

nociceptors, especially nonpeptidergic nociceptors. Preliminary analysis of Twist2Cre/+; NGFf/-, a 

mesoderm-specific NGF conditional mutant, so far, has shown only limited deficits in nociceptors, which 

appeared to preferentially affect peptidergic nociceptors (Sosic et al., 2003). Since it was difficult to 

determine to what extent and how early NGF in mesodermal lineages was removed by Twist2Cre/+, an 

alternative mesoderm-specific conditional strategy based on Mesp1Cre/+ is currently being developed to 

better dissect the function of mesoderm-derived NGF (Saga et al., 1999).  

Since none of the lineage-specific NGF conditional mutants we have analyzed so far exhibit dramatic 

phenotypes, the possibility that different sources of NGF act redundantly and significantly compensate for 

each other is worth exploring. Moreover, we have yet to find the source(s) of NGF responsible for Cbfb 

expression, because none of those conditional mutants showed altered Cbfb expression in DRGs (data not 

shown). It is possible that the nonpeptidergic nociceptors require the same source(s) of NGF for both 

survival and maturation. In that case, a defect in Cbfb expression can only be revealed by Bax codeletion. 
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Figure 2.16  The spatial and temporal pattern of NGF expression during development 

(A) Whole-mount X-gal staining of NGFLacz/+ embryos from E12.5 to E15.5 shows widespread NGF 

expression that gradually increases until an adult-like pattern is established at E15.5. (B and C) Double 

staining of TrkA and GFP on sagittal sections of NGFflox-IRES-GFP/+ embryos at E12.5 and E13.5 shows that 

NGF starts to be expressed in the epidermis, when TrkA+ fibers reach the base of epidermis. Shown are 

representative images from at least two independent experiments for each timepoint. (D and E) X-gal 

staining on sections through the hindlimb (D) and the back hair skin (E) of P0 NGFLacz/+ animals. Three 

prominent domains of NGF expression are noted, namely, basal keratinocytes in the epidermis (thin 

arrows), blood vessel-associated cells (arrowheads) and nerve bundle-associated cells (thick arrows). 

Shown are representative images from at least two independent experiments. (F and G) Immunostaining of 

βIII-Tubulin, GFP and PECAM1 (F) or TrkA and GFP (G) on sections through the hindlimb of P0 NGFflox-

IRES-GFP/+ animals. Note that GFP IR encircling PECAM-1+ endothelial cells in (F) reflects expression in 

pericytes. Examples of NGF expression in pericytes and nerve-associated cells are marked by arrowheads 

and arrows respectively. Shown are representative images from more than three experiments. Scale bar, 

50μm. 
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Figure 2.16 
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Figure 2.17  Confirmation of the validity of the NGFflox allele 

(A and B) Cresyl violet staining of total DRG neurons in T12 DRGs of P0 control and NGFT-Cre animals 

reveals substantial loss of neuronal profiles in mutant DRGs relative to control. (C and D) Double staining 

of TrkA and TrkC in DRGs of P0 control and NGFT-Cre animals shows a selective loss of TrkA+ neurons in 

mutant DRGs relative to control. (E and F) CGRP staining in DRGs of P0 control and NGFT-Cre animals 

shows a dramatic reduction in the number of CGRP+ neurons in mutant DRGs relative to control. (G and H) 

In situ hybridization analysis of MrgD expression in DRGs of P0 control and NGFT-Cre animals reveals a 

similarly dramatic reduction in the number of MrgD+ neurons in mutant DRGs relative to control. Shown 

from A-H are representative images from two independent experiments. Scale bar, 50μm.  
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Figure 2.18  Lineage-specific contributions of NGF to survival and subtype specification of 

nociceptors 

(A) Total neuronal counts in T12 DRGs of P0 control and NGFWnt1-Cre animals by cresyl violet staining 

shows a paradoxical increase in total neuronal number in mutant DRGs relative to control. Data from three 

independent experiments are compiled and shown as mean with SEM. (B and C) Double staining of TrkA 

and TrkC in DRGs of P0 control and NGFWnt1-Cre animals. (D and E) CGRP staining in DRGs of P0 control 

and NGFWnt1-Cre animals. (F and G) In situ hybridization analysis of MrgD expression in DRGs of P0 

control and NGFWnt1-Cre animals. (H-J) Sensory innervation of the epidermis of P0 control and NGFWnt1-Cre 

animals as shown by βIII-Tubulin immunostaining. The extent of sensory innervation is quantified based 

on the fraction of the epidermis that is occupied by βIII-Tubulin+ fibers. Yellow doted lines demarcate the 

epidermal-dermal junctions. From B to J, there are no noticeable differences between control and mutants 

which is consistent across three independent experiments. (K) Total neuronal counts in T12 DRGs of P0 

control and NGFK5-Cre animals by cresyl violet staining shows a modest but consistent decrease in total 

neuronal number in mutant DRGs relative to control. Data from three independent experiments are 

compiled and shown as mean with SEM. (L and M) Double staining of TrkA and TrkC in DRGs of P0 

control and NGFK5-Cre animals shows a slight reduction in the number of TrkA+ neurons in mutant DRGs 

compared to control. (N and O) CGRP staining in DRGs of P0 control and NGFK5-Cre animals shows a 

comparable number of CGRP+ neurons per section. (P and Q) In situ hybridization analysis of MrgD 

expression in DRGs of P0 control and NGFK5-Cre animals shows a noticeable reduction in the number of 

MrgD+ neurons in mutant DRGs relative to control. (R-T) Sensory innervation of the epidermis of P0 

control and NGFK5-Cre animals as shown by βIII-Tubulin immunostaining reveals reduced innervation 

density in the epidermis in the mutant relative to control. The extent of sensory innervation is quantified 

based on the fraction of the epidermis that is occupied by βIII-Tubulin+ fibers. Yellow doted lines 

demarcate the epidermal-dermal junctions. Unpaired t test was performed on data collected from three 

independent experiments. * p≤0.05. Scale bar, 50μm. 
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Figure 2.18 
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2.10. Discussion 

This study uncovers a gene regulatory mechanism underlying the specification of nonpeptidergic 

nociceptors. At the core of this process is the formation of the Runx1/CBFβ complex that depends on both 

components for directing the nonpeptidergic-specific transcriptional program. Importantly, the expression 

of each component is to a large degree independently regulated at the transcriptional level. On one hand, 

Cbfb expression is strongly activated by NGF, a functionally important extrinsic signal. This transcriptional 

regulation is mediated by the MAPK signaling pathway. On the other hand, initiation of Runx1 expression 

is critically dependent on Islet1, a central intrinsic factor during early development of sensory neurons. 

Furthermore, the Runx1/CBFβ complex, through an unknown mechanism, maintains a high level of NGF-

TrkA signaling, which is central to an important characteristic of nonpeptidergic nociceptors, namely 

postnatal upregulation of Ret. Thus, the initiation of a lineage-specific differentiation program is tightly 

controlled by a convergence of extrinsic and intrinsic factors at the level of a heterodimeric lineage-specific 

transcription factor complex. The bidirectional regulation between growth factor signaling and a lineage- 

specific transcription factor complex in the form of a positive feedback loop confers robustness on that 

particular lineage identity (Figure 2.19).  

The Runx1/CBFβ complex, a coincidence detector for permissive extrinsic and intrinsic cues for 

specification of nociceptor subtypes 

In this study, we found that the activity of the Runx1/CBFβ complex is regulated at the level of expression 

of Runx1 and Cbfb by Islet1 and NGF, respectively. The Runx1/CBFβ complex therefore acts as a 

coincidence detector for extrinsic and intrinsic conditions that are conducive to the specification of 

nonpeptidergic nociceptors. The requirement for NGF as an example of such extrinsic conditions ensures 

that only nociceptors that survive the competition for NGF during naturally occurring cell death undergo 

further differentiation. Consistent with this idea, Cbfb expression exhibits NGF dependence at E14.5, 

immediately after the onset of the developmental cell death. The identification of putative cAMP-response 

element (CRE) sites in an evolutionally conserved 458 bp enhancer-like element upstream of the Cbfb gene 

(data not shown) suggests an interesting possibility that CREB family members coordinate these two NGF 

dependent processes by mediating the upregulation of both pro-survival genes, such as Bcl-2, and Cbfb 
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sequentially (Liu et al., 1999; Riccio et al., 1999). In broader terms, this model we propose represents one 

way in which the same growth factor can be reused in different developmental processes. Thus, activation 

of the same transcription factor effector mediates expression of different target genes depending on 

developmental stages. Therefore, it is important to directly test this model by addressing the requirement of 

CREB family members for Cbfb expression. Islet1 dependence of Runx1 expression on the other hand 

ensures that the specification of nonpeptidergic nociceptors takes places after sensory neurogenesis, 

because Islet1was previously shown to coordinate the orderly transition from pan-sensory neurogenesis to 

subtype specification (Sun et al., 2008). In fact, in the absence of Islet1, there was in addition to a profound 

defect in Runx1 expression, abnormal persistence of expression of genes that are key regulators of sensory 

neurogenesis, such as Neurog1 (Sun et al., 2008). Therefore, the fact that induction of Runx1 expression, 

and hence the activation of the Runx1/CBFβ complex, is temporally coupled to sensory neurogenesis at 

least in part reflects their common dependence on Islet1.  

Overall, both NGF and Islet1 impose important constraints on the timing of activation of the Runx1/CBFβ 

complex. The importance of precisely timed activation of the Runx1/CBFβ complex remains largely 

unaddressed. Nonetheless, a detrimental effect of precocious Runx1 expression was described in one 

extreme case, where ectopic expression of Runx1 in neural crest cells (NCCs) prior to sensory neurogenesis 

suppressed the multipotency of NCCs (Marmigere et al., 2006). 

Given that NGF-dependent Islet1+ sympathetic neurons do not express Runx1 (data not shown), we expect 

to identify additional regulatory mechanisms of expression of Runx1 and Cbfb, resulting in a better 

understanding of intrinsic and extrinsic environments essential for the generation of nociceptors subtypes. 

Sufficiency of the Runx1/CBFβ complex for the specification of nonpeptidergic nociceptors 

Although in the present study we provide evidence that the Runx1/CBFβ complex mediates NGF-

dependent development of nonpeptidergic nociceptors, it is not known to what extent this NGF effect is 

mediated by a Runx1/CBFβ-independent mechanism.  In other words, we have yet to address the 

sufficiency of the Runx1/CBFβ complex for the specification of nonpeptidergic nociceptors in a 

heterologous system in order to determine whether a lineage-specific transcription factor plays an 
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instructive role or a permissive role in lineage commitment. Two lines of evidence from previous studies 

argue against an instructive role for Runx1 in promoting the nonpeptidergic nociceptor lineage. First, 

constitutive expression of Runx1 in most nociceptors using Nav1.8Cre selectively impaired the molecular 

features characteristic of Runx1-transient populations such as peptidergic nociceptors, but failed to promote 

expression of nonpeptidergic-specific genes that define Runx1-persistent nonpeptidergic nociceptors 

(Abdel Samad et al., 2010). This apparent inability to redirect peptidergic nociceptors to nonpeptidergic 

nociceptors together with the dramatic effect on nonpeptidergic nociceptors in Runx1 CKO animals seems 

to suggest a permissive role for Runx1 in specifying the nonpeptidergic lineage by suppressing the 

alternative peptidergic fate. The basic principle of this proposed mechanism was previously observed in 

other developing tissues, most notably in the ventral spinal cord for progenitor domain specification (Muhr 

et al., 2001). It is important to note however that this argument suffers from at least two caveats. First, the 

potential instructive role of Runx1 might be stage-dependent. Considering that forced Runx1 expression 

driven by Nav1.8Cre is considerably late compared to normal onset of Runx1 expression, an instructive role, 

if there is one, might only be revealed by constitutively expressing Runx1from an early time point. Second, 

since we showed that both CBFβ and Runx1 are required for Runx1activity by forming a heterodimeric 

complex, the amount of complexes and therefore Runx1 activity would be expected to be influenced by the 

expression level of each component. Therefore, the lack of effect on nonpeptidergic-specific gene 

expression might be attributed to ineffective activation of overexpressed Runx1 in spite of an apparent 

increase in Runx1 expression due to an imbalance between Runx1 and CBFβ. The second piece of evidence 

came from the observation that overexpression of Runx1 in the ventricular zone of E12.5 spinal cord failed 

to bypass the NGF requirement for induction of nonpeptidergic-specific genes (Lopes et al., 2012). This 

finding, among many other possibilities, suggests Runx1 per se is not a primary mediator of NGF-

dependent nonpeptidergic-specific gene expression, which is consistent with a permissive role for Runx1 in 

specification of the nonpeptidergic fate. For the reason that was stated before, it would be premature to rule 

out an instructive role for Runx1, before a similar experiment is performed where both Runx1 and CBFβ 

are expressed in the presence or absence of NGF. However, considering the prolonged delay between the 

onset of Runx1 expression and that of expression of most of the Runx1-dependent nonpeptidergic-specific 

genes in vivo, it is more than likely that at least for some of these nonpeptidergic-specific genes, their 
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expression requires a yet-unidentified mediator of NGF for expression. Thus, whether or not Runx1 plays 

an instructive or permissive role in promoting commitment of the nonpeptidergic fate remains an open 

question. In fact, work outside the nervous system has provided support for both roles of Runx proteins 

suggesting that Runx functions are highly context-dependent (Kappes, 2010; Zhao et al., 2005). 

The mechanism underlying diversification of nociceptors 

As alluded to previously, the extrinsic and intrinsic events that we describe in the study are permissive 

conditions for the nonpeptidergic cell fate. In other words, they themselves do not instruct lineage choice, 

as neither of the requirements, be it cell-intrinsic or cell-extrinsic, distinguish between nonpeptidergic and 

peptidergic nociceptors. Specifically, NGF-TrkA signaling is required for survival, target innervation and 

normal phenotypic development of both peptidergic and non-peptidergic nociceptors (Harrington and Ginty, 

2013). Due to persistent TrkA expression in peptidergic nociceptors in adulthood, peptidergic nociceptors 

continue to respond to NGF and contribute to hyperalgesia induced by NGF or inflammation (Lewin and 

Mendell, 1993; Pezet and McMahon, 2006). As for Islet1, its widespread expression during development, 

and the dramatic loss of virtually all nociceptors in its absence, indicate a general requirement for Islet1 

during nociceptor development (Sun et al., 2008). Therefore, the specific cues governing divergence of the 

two main nociceptive lineages remain to be elucidated.  

Considering that Runx1is the only lineage-specific transcription factor known to be important for 

differentiation of nociceptive lineages, and the expression level of Runx1 represents the earliest known 

property of nociceptors that distinguishes future nonpeptidergic and peptidergic lineages, differential 

regulation of the level of Runx1 expression seems to be an attractive mechanism to drive the segregation of 

nonpeptidergic and peptidergic nociceptors. In fact, in the hematopoietic system, there is compelling 

evidence that expression levels of transcriptional regulators of specific lineages represent a crucial 

determinant of cell-fate decisions (Rosenbauer and Tenen, 2007). Since differential expression of Runx1 at 

both mRNA and protein levels, which were correlated, was observed by us and others as early as E14.5, 

and in a most recent study even at E12.5, the mechanism underlying differential levels of Runx1 expression 

seems to operate at the transcriptional level prior to that time (Chen et al., 2006b; Hadjab et al., 2013). The 

regulation of Runx1 expression by islet1 is unlikely to directly contribute to differences in the level of 
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Runx1 expression, since there was little correlation between the level of expression of Islet1 and that of 

Runx1 at the single cell level (data not shown). The late dependence of Runx1 expression on NGF-TrkA 

signaling also fails to explain the difference in Runx1 expression at E14.5, since at that time Runx1 

expression is still NGF-independent. Despite exhibiting varying levels of expression itself, CBFβ is 

unlikely to contribute to differential expression levels of Runx1significantly, considering the lack of effect 

of Cbfb ablation on Runx1 mRNA level. Varying levels of Cbfb expression may instead reflect differences 

in Runx1 activity as a result of different levels of Runx1 expression, since based on genetic evidence, Cbfb 

expression is normally suppressed by Runx1(data not shown).  

During the search of additional regulators of Runx1mRNA expression in particular those that can confer 

graded expression levels of Runx1, a few signaling pathways including fibroblast growth factor (FGF), 

transforming growth factor-beta (TGF-beta)/bone morphogenic protein (BMP) signaling stand out as 

possible candidates based on evidence from non-neural systems (Levanon and Groner, 2004). Most 

relevant of all is FGF signaling. In light of overlapping expression patterns of Runx1 and TrkA in the DRG, 

it seems particular interesting that basic FGF-induced Runx1 expression was associated with TrkA 

induction in an olfactory neuroblastoma cell line (Nibu et al., 2000). Indeed, a role for a local source of 

FGF in initiating Runx1 expression was recently identified (Hadjab et al., 2013). Further study is needed to 

explore the possibility that graded activities of FGF signaling generate the initial difference in level of 

Runx1 expression, thereby initiating the process of nociceptor diversification.  

A common mechanism of integrating intrinsic and extrinsic signals for postmitotic differentiation of 

neuronal subtypes 

In broader terms, the mechanism that we uncovered in this study illustrates the importance of the interplay 

between extrinsic and intrinsic factors in postmitotic specification of neuronal subtypes. It is important to 

make a clear distinction between this relatively late process and the specification of progenitor domains 

which takes place before cell cycle exit. While it has been well established in vertebrate systems, based on 

work in the developing spinal cord, cerebral cortex and retina, that specification of progenitor domains is 

coordinately regulated by both the intrinsically defined competence state and a combination of spatially and 

temporally controlled extrinsic signals, much less is known about the relative roles of extrinsic cues, 
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intrinsic factors and their interaction in postmitotic specification of a given neuronal subtype, despite 

increasing knowledge about specific molecular players essential for specification of various neuronal 

subtypes(Briscoe and Novitch, 2008; Livesey and Cepko, 2001; Molyneaux et al., 2007) . Thus, our study 

represents one of a few examples where the interaction between extrinsic and intrinsic regulators is shown 

to be crucial for postmitotic differentiation of a functionally important neuronal population. Furthermore, 

the gene regulatory mechanism described in this research allows us to propose a simple model for 

coordinate control of a lineage-specific differentiation program by a convergence of extrinsic and intrinsic 

signals. That is, to subject expression of the two subunits of a lineage-specific heterodimeric transcription 

factor complex to transcriptional control of extrinsic and intrinsic factors, respectively. Considering its 

simplicity and adaptability, this model may prove relevant for a broad range of neuronal subtypes. 
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Figure 2.19  Schematics illustrating the molecular mechanism underlying specification of 

nonpeptidergic nociceptors and its general implication in the context of subtype 

specification 

Runx1 and CBFβ, which function as a heterodimeric transcription factor complex, are both required for 

expression of Runx1-dependent genes that defines nonpeptidergic features. Importantly, the transcriptional 

regulation of expression of Cbfb and Runx1 involves fundamentally different mechanisms. While Cbfb 

expression is strongly activated by NGF, an extrinsic cue, in a MAPK-dependent manner, the induction of 

Runx1 expression critically depends on Islet1, an intrinsically determined transcription factor. Furthermore, 

the Runx1/CBFβ complex, through an unknown mechanism, enhances the level of NGF-TrkA signaling, 

resulting in a positive feedback loop between NGF-TrkA signaling and the Runx1/CBFβ complex. In 

broader terms, this gene regulatory mechanism not only underscores the importance of the interplay 

between extrinsic and intrinsic factors during multilineage differentiation, but also illustrates how such 

interplay controls a cell-fate decision- through a convergence of extrinsic and intrinsic signals at the level 

of a lineage-specific heterodimeric transcription factor complex. 
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Materials and methods 

Embryo stages 

Noon of the day when a vaginal plug was observed in mated females was designated as E0.5. The stages of 

embryos were further confirmed based on their external features after dissection. 

Mouse lines 

The mouse lines including NGF-, Bax-, Runx1f, Runx1CreER, TaumGFP, Wnt1-Cre, T-Cre, K5-Cre, Twist2Cre, 

Mesp1Cre, NGFflox-IRES-GFP, Nes-Cre, Mek1f, Mek2-, Erk1-, Erk2f, TrkALacz, BrafV600E and NT3Lacz have been 

described before (Belanger et al., 2003; Bissonauth et al., 2006; Chen et al., 2006b; Crowley et al., 1994; 

Danielian et al., 1998; Farinas et al., 1994; Hippenmeyer et al., 2005; Knudson et al., 1995; Mercer et al., 

2005; Moqrich et al., 2004; Muller et al., 2012; Nekrasova et al., 2005; Perantoni et al., 2005; Ramirez et 

al., 2004; Saga et al., 1999; Samokhvalov et al., 2007; Samuels et al., 2008; Sosic et al., 2003; Tronche et 

al., 1999). The NGFLacz mouse line was generated from a targeting vector (PG00138_X_3_C11) that was 

designed with a conditional potential obtained through EUCOMM. The linearized vector was 

electroporated into mouse 129S6SvEvTac ES cells. ES clones were screened by PCR and correctly targeted 

ES clones were confirmed by southern blot hybridization using both 5’ and internal probes following SpeI 

digestion. After germ-line transmission, animals heterozygous for the mutant allele were crossed with 

female Sox2-Cre mice that express Cre in germ cells to remove the Neo cassette (Hayashi et al., 2002). For 

the Cbfbf allele, a 2 kb sequence containing a1 kb sequence immediately upstream of the transcriptional 

start site as well as exon 1 and exon 2 of the Cbfb locus was flanked by two loxP sites. A two-step 

recombineering protocol was used to generate the targeting vector (Copeland et al., 2001; Liu et al., 2003). 

Briefly, a 129/SvJ BAC clone containing the targeted region of the Cbfb gene was obtained from 

Geneservice. An 11.5 kb region with homology arms that were 1.5 kb and 8 kb long each was inserted into 

a PBS-DTA plasmid, the backbone for the final targeting vector, via the first recombineering step. The 3’ 

loxP site and the FRT-Neo-FRT-5’ loxP cassette were then introduced sequentially during subsequent 

recombineering steps. A Bstz171 restriction site was engineered 3’ to the 3’ loxP site to facilitate southern 

screening of ES cells. The targeting construct was linearized with KpnI, electroporated into mouse 
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129S6SvEvTac ES cells. ES clones were screened by PCR and correctly targeted ES clones were 

confirmed by southern blot hybridization using both 5’ and internal probes following Bstz171 digestion 

(WT 9.8 kb and Mutant 6.8 kb, data not shown). Chimeric Cbfbf  mice were produced by injection of the 

positive ES cells into C57Bl/6 blastocysts. Mice carrying the Cbfbf allele were subsequently generated by 

mating chimeric mice to germ-line FlpE mice to remove the Neo cassette (Rodriguez et al., 2000). Cbfbf 

mice were genotyped using a 2-primer PCR reaction with the following primers: 5’-

GCGCGCCAGTCACTTGTT-3’ and 5’- AAACCATCCCACGAACCGAACCAT-3’. The sizes of PCR 

products from wildtype and mutant alleles are 219 bp and 324 bp, respectively. For the CbfbFlag allele, the 

targeting vector which was almost identical to that for the Cbfbf allele was built using a combination of 

recombineering and traditional cloning strategies. The same targeted genomic region was engineered to 

include the FRT-Neo-FRT-loxP cassette at the position identical to that in the Cbfbf allele using 

recombineering technology. The sequence coding for one Flag epitope was introduced into the vector 

immediately upstream of the translational start site of the Cbfb gene by replacing a 1.1 kb NotI/AvrII 

fragment containing the translational start site with the fragment carrying the insertion using standard 

cloning techniques. A Bstz171 restriction site was inserted immediately downstream of the Flag sequence 

for the purpose of southern screening. Subsequent steps till the generation of Cbfbflag mice were exactly the 

same as described for the Cbfbf allele. Cbfbflag mice were genotyped using a 2-primer PCR reaction with the 

following primers: 5’-TGAGAGCTGTCTATGGCAAAC-3’ and 5’-TCAGTTCAAGGATGGCAGGTA-

3’. The sizes of PCR products from wildtype and mutant alleles are 232 bp and 336 bp, respectively. 

In situ hybridization 

Digoxigenin (DIG)-labeled cRNA probes were used for in situ hybridization. Target sequences for in situ 

hybridization probes for Ptprt, Myo1a, Kif21b and Runx3 were amplified with gene specific sets of PCR 

primers from either cDNA templates prepared from P0 mouse DRGs or genomic DNA from wildtype ES 

cells to generate corresponding plasmids for in situ hybridization. Primer sequences are available upon 

request. In situ hybridization probes for MrgD, GFRα2, Ret and Runx1 were previously described (Luo et 

al., 2007). The in situ hybridization probe for Cbfb was directly produced from a commercially available 

cDNA clone (GenBank: BC026749.1). The in situ hybridization probe for PV was kindly provided by Ling 
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Bai (unpublished, Harvard Medical School). In situ hybridization was carried out on 14 μm fresh frozen 

DRG sections as described previously (Luo et al., 2007). For combined in situ hybridization and 

immunostaining, regular BCIP/NBT-based in situ hybridization was performed prior to the standard 

immunostaining procedure. Bright field and fluorescence images were taken under the same setting. The 

bright field image was later pseudocolored and merged with the fluorescence image.  

Immunohistochemistry 

Protocols for immunohistochemistry were described previously (Li et al., 2011). Briefly, all embryonic and 

neonatal tissues except for the hindlimb and back hairy skin from neonates were processed for 

cryosectioning without fixation. The skin specimens from neonates were fixed with 4% paraformaldehyde 

(PFA) in PBS (pH 7.4, 4°C) for 2.5-4 hrs depending on the age of the animal. Fixed tissues were required 

for PV immunostaining. For adult animals, mice (P14-P21) were anesthetized by CO2 inhalation and 

transcardially perfused with PBS (pH 7.4, 4°C) followed by 4% PFA in PBS (pH 7.4, 4°C). Vertebral 

columns and hairy skin were dissected from the perfused mice, post-fixed at 4°C for 2 hr and overnight, 

respectively. Tissues were cryoprotected in 30% sucrose in PBS at 4°C overnight, embedded in OCT 

(Tissue Tek). For immunostaining of pTrk-SHC, pTrk-PLCγ and Flag, fresh frozen tissues were used. 

Immunostaining on tissue sections was performed using the following protocol, which was shown to be 

compatible with all the tissues and antibodies that have been tested. 14-20 μm sections were dried on slides 

at room temperature overnight, and fixed with 4% PFA in PBS for 10 min (fixed sections) or 15 min (fresh 

frozen sections). The slides were washed with PBS containing 0.1% Triton X-100 (0.1% PBST) and 

blocked with 5% normal serum (goat or donkey) in PBS containing 0.3% Triton X-100 (0.3% PBST) at 

room temperature for 1 hr. Tissue sections were incubated with primary antibodies diluted in 0.3%PBST 

containing 1% normal serum at 4°C overnight. The next day, sections were washed extensively with 0.1% 

PBST, and incubated with secondary antibodies diluted in blocking solution at room temperature for 1 hr, 

washed again with 0.1% PBST, and mounted with Fluoromount-G (Southern Biotech). The primary 

antibodies used for this study were: rabbit anti-Runx1 (a gift from Dr. Thomas Jessell, Columbia University, 

1:10000), rabbit anti-Runx3 (a gift from Dr. Thomas Jessell, Columbia University, 1:50000), guinea pig 

anti-Flag (an affinity purified antibody raised against a C-terminally KLH-conjugated peptide that 
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corresponds to the N terminal tag of Flag-CBFβ encoded by the Cbfbflag allele, 1:500), rabbit anti-CGRP 

(Immunostar, 24112, 1:1000), chicken anti-GFP (Aves Labs, GFP-1020, 1:500), rabbit anti-GFP 

(Invitrogen, A11122, 1:1000), chicken anti-NF200 (Aves Labs, NFH, 1:500), rabbit anti-parvalbumin 

(Swant, PV25, 1:1000), rabbit anti-Tyrosine Hydroxylase (Millipore, AB152, 1:1000), rabbit anti-TrkA 

(Millipore, AB1577, 1:1000), goat anti-TrkC (R & D system, AF1404, 1:500), rat anti-PECAM-1 (BD 

biosciences, 557355, 1:500), mouse anti- NeuN (Milllipore, MAB377MI, 1:500), rabbit anti-PGP9.5 

(Millipore, AB1761ASR, 1:500), rabbit anti-βIII-Tubulin (Covance, PRB-435P, 1:1000). 

The secondary antibodies used were: Alexa 488 or 546 conjugated goat anti-chicken antibody, Alexa 488, 

546 or 647 conjugated goat anti-rabbit antibodies, Alexa 647 conjugated goat anti-rat antibodies, Alexa 546 

conjugated donkey anti-goat antibody, Alexa 488 conjugated goat anti-guinea pig antibody, Alexa 488 or 

546 conjugated goat anti-mouse antibody. All secondary antibodies were purchased from Invitrogen. 

Alpha-Bungarotoxin, Alexa Fluor 555 conjugate from Invitrogen was used together with secondary 

antibodies at 1:1000. 

Dissociated DRG neuronal cultures and immunocytochemistry 

Dissociated DRG cultures from neonatal mice were performed using a method that was adapted from a 

previously described protocol for sympathetic neuronal cultures (Deckwerth et al., 1996). Briefly, neurons 

were obtained by sequential steps of enzymatic digestion and mechanical dissociation of DRGs of P0 

animals. These neurons were plated on Poly-D-lysine and laminin coated coverslips at a density of ~50000 

neurons per 24 well and cultured for 2 days in DMEM supplemented with 10% FBS, 

penicillin/streptomycin (1 U/ml) and 100 ng/ml of NGF(purified from mouse salivary glands or purchased 

through Millipore), or an NGF antibody (Sigma) at 1:2000. In addition, Ara-C (Sigma) at 5 μm and Boc-

aspartyl (OMe)-fluoromethylketone (BAF) (MP Biomedicals) at 50 μg/ml were added to culture media for 

the entire culture period to inhibit proliferation of mitotic cells and NGF-deprivation induced apoptosis, 

respectively.  For the set of experiments that addressed the in vitro requirement of MAPK signaling, 

cultures were treated with U0126 (Calbiochem) at 50 μm or an equal amount of DMSO the morning after 

plating. At the end of culture, neurons were fixed with 4% PFA for 5 min and subsequently stained in the 

http://www.lifetechnologies.com/order/catalog/en/US/adirect/lt?cmd=catProductDetail&showAddButton=true&productID=B35451&_bcs_=H4sIAAAAAAAAAM2T30vDMBDH%2F5q8WBz5wep83FYm4piDqq8jttc2kjYjTTf733tpVx3MiT4Ig5DL%0AXY677%2BfaXDNCJ2tr0iZxdUB4GMRgdyqB%2Bod44dyWiCnhC1z7%2FX6kVQYOkqIy2uQK6lFiSrxqatyg%0Awq0wJaAxNgU7KlypsQrhwi86cbYB79MbioZRhpkhv6XsCt2lfAWtqtxrkCW2nQWR7%2BWUqYJB4K81%0AiemEDjrQJtJJvB1UPse4yVRZLI8n7YhYJGVKRHT%2FcrfC5EjVWy3buXSQG9uiJAw%2BQIsZneBjqkzq%0A%2BnssbwXt8WbKzE311uRY8iIwvLC%2FYXSW9Tj4QRyoKrgwJnaWycczt2Fhx5Ft%2BAFkquFdBgvdGBQT%0AWsjxx%2Ft3lC%2BM2LUaH0zo3f4sohhfgYYl7ECfp%2BTh4xqdTGnne4f9wZdZydJX6cAInx3Qxj0cHyPe%0AkP3Ubn0m%2Bwz4gsOMxsdTOpnoB9agWl5PBAAA&returnURL=http%3A%2F%2Fwww.lifetechnologies.com%3A80%2Forder%2Fcatalog%2Fen%2FUS%2Fadirect%2Flt%3Fcmd%3DcatDisplayStyle%26catKey%3D63101%26filterType%3D1%26OP%3Dfilter%26filter%3Dft_1601%252Ff_2101*
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same way as described before for immunohistochemistry. For Flag immunostaining, the IgG fraction of a 

home-made guinea pig anti-Flag antiserum was used at 1 to 1000. 

Real-time PCR 

RNA was extracted from acutely isolated DRGs using the RNeasy micro kit (Qiagen) according to the 

manufacturer’s instructions. First strand cDNA was synthesized using the oligo dT primer and the 

SuperScript III system (Invitrogen). Real-time PCR was performed with the QuantiTect SYBR Green PCR 

kit (Qiagen) using 7300 Real-Time PCR System (Applied Biosystems). The abundance of individual 

transcripts was normalized to that of PGP9.5, a panneuronal marker, unless the comparison was between 

control and NGF mutants. In that case, GAPDH served as a better internal control. Primers that were used 

are as follows: 

Cbfb F-TCGAGAACGAGGAGTTCTTCAGGA R-AGGCGTTCTGGAAGCGTGTCT 

Runx1 F-GCAGGCAACGATGAAAACTACT R-GCAACTTGTGGCGGATTTGTA 

MrgD F-TGCTGCTGGAAACACTTCTAGGGA R-GCTGCTGTCAAGAGTGGAGTTCAT 

GFRα2 F-TCGTACAGACCACTTGTGCC R-ATCAAACCCAATCATGCCAG 

Ptprt F-ACCTGCTTCAACACATCACCCAGA R-TTCATCTTCCTTGGCTGTGTCCCA 

Myo1a F-ACAGGTGCTTCAACACAGCCAATC R-GCCCTTAAACAGTTCACTGGCACA 

Ret F-TCAACCTTCTGAAGACAGGCCACA R-ATGTCAGCAAACACTGGCCTCTTG 

CGRP F-AAGAGTCACCGCTTCGCA R-GAGCAAGATGCTGACAACCA 

PGP9.5 F-CAGACCATCGGAAACTCCTG R-CACTTGGCTCTATCTTCGGG 

GAPDH F-ATGCCTGCTTCACCACCTTCTT R-ATGTGTCCGTCGTGGATCTGA 

 

Immunoblotting 

Acutely dissected DRGs were lysed in ice-old FA-M2 Lysis Buffer (50 mM Tris HCl, 150 mM NaCl, 1 

mM EDTA, 1% Triton X-100, PH 7.5) supplemented with a protease inhibitor cocktail at 1:100 (Sigma) by 

sonication on ice. After clarifying lysates by centrifugation at 4°C for 20 min, boiling 5x SDS- Laemmli 

buffer was added to a final concentration of 1x SDS-Laemmli buffer. Lysates were boiled for another 5 min 
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before they were ready for immunoblot analysis. Immunoblotting was performed using antibodies against 

Runx1 (Abcam, 1:5000), CBFβ (1:1000, Santa Cruz), and βIII-Tubulin (1:1000, Covance) as described 

(Kuruvilla et al., 2000). When quantifying band intensity, optical density for βIII-Tubulin was used for 

normalization. 

Co-Immunoprecipitation 

Immunoprecipitation for Flag was performed using the anti-Flag M2 affinity gel (Sigma) according to the 

manufacturer’s instructions. Briefly, lysates were made from acutely dissected DRGs of P0-P1 animals by 

gentle sonication in FA-M2 lysis buffer supplemented with protease inhibitor and phosphatase inhibitor 

cocktails (Sigma) that was described in the previous section for immunoblotting. Clarified lysates were 

precleared by incubation with protein A/G resin (Pierce) at 4°C for 1 hr. 5% of precleared lysates were 

saved as input for estimating the efficiency of IP and co-IP. The remainder of lysates was incubated with 

Flag-M2 resin at 4°C for 1.5 hr. 5% of the unbound fraction was saved for immunoblot analysis. The resin 

was extensively washed twice with FA-M2 buffer, twice with high salt FA-M2 buffer (500mM NaCl). 

Proteins were eluded from the resin with boiling for 3 min in equal volume of 2x SDS-Laemmli buffer with 

no reducing agent. Samples were then subjected to SDS-PAGE and immunoblot for Runx1 and CBFβ. 

Nissl Staining and Cell Counts 

Thoracic segments of vertebral columns of P0 animals were fixed in 4% PFA at 4°C for 1-2.5 hr. 10 μm 

cryosections were stained with 0.5% cresyl violet and cell counting was performed as described previously 

(Sakai et al., 2000), except that sections were taken every 50 μm through T12 DRGs, and total neuronal 

profiles were determined by counting the number of cells with visible nuclei on all sections and multiplying 

it by five. Percentages of neurons expressing various molecular markers were calculated by dividing the 

number of neurons expressing a particular marker by the total number of neurons on the same section 

which was determined by NeuN immunostaining. 
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NGF administration via intraperitoneal injections 

Mouse pups of desired genotype were given a single intraperitoneal injection of either NGF (2 μg 

reconstituted at 100 μg/ml in 1% BSA in PBS) or equal volume of 1% BSA in PBS at both P0 and P1. 

Animals were sacrificed at P2 and vertebral columns were dissected and processed for in situ hybridization 

analysis. 

DiI labeling 

Vertebral columns of P0 pups were isolated and fixed with 4% PFA at 4°C overnight. DiI (Molecular 

Probes) crystals were inserted into T9 DRGs, and preparations were incubated in 4% PFA at 37°C for 10 

days. 20 μm cryosections through the entire span of T9 spinal cord were collected and mounted with 

Fluoromount-G (Southern Biotech) for confocol imaging with a rhodamine filter. 

Tamoxifen Injections 

Tamoxifen (Toronto Research Chemicals) was dissolved in ethanol (20 mg/ml). 50 μl (∼1 mg) of 

tamoxifen in ethanol was mixed with 50 μl of sunflower seed oil (Sigma), vortexed for 20 min and 

centrifuged under vacuum for 45 min to remove the ethanol. The tamoxifen solution was delivered once at 

P2 via intraperitoneal injection to animals harboring the Runx1CreER allele. 

X-gal staining 

Embryos and hindlimbs of neonatal animals were fixed with a glutaraldehyde solution (0.2% 

glutaraldehyde, 2 mM MgCl2 in PBS) overnight at 4°C. For whole-mount staining, fixed embryos were 

washed with detergent rinse buffer (0.01% sodium deoxycholate, 0.02% NP40, 2 mM MgCl2 in phosphate 

buffer, pH 7.4), and stained with staining buffer (0.01% sodium deoxycholate, 0.02% NP40, 2 mM MgCl2, 

5 mM potassium ferricyanide, 5 mM potassium ferrocyanide, 1 mg/ml 5-bromo-4-chloro-indolyl-β-D-

galactopyranosidein phosphate buffer, pH 7.4) at room temperature until the signal intensity was desirable. 

After staining, embryos were post-fixed with 4% PFA at 4°C for 2 hr and rinsed extensively with PBS. If 

needed, stained embryos were further processed for cryosectioning by following the standard procedure of 

tissue processing for immunostaining. For staining on sections, 20 μm cryosections were collected from 



102 
 

fixed tissues or embryos and dried on slides at room temperature overnight. Tissue sections were post-fixed 

with the same glutaraldehyde solution as described above at room temperature for 10 min. The rest of the 

staining protocol was exactly the same as that for whole-mount preparation. 

Microarray analysis 

A total of 6 RNA samples (~1 μg each) were prepared using Trizol and the RNeasy micro kit from DRGs 

of three pairs of E16.5 control and Runx1 CKO animals from different litters. Samples were labeled and 

hybridized to Affymetrix mouse 430 2.0 chips and microarray data were analyzed with Spotfire software. 

Only genes with a fold change greater than or equal to 1.5, a p-value less than or equal to 0.05 were 

considered differentially expressed in control and Runx1 CKO DRGs and were reported. 

Antibody production and purification 

A guinea pig polyclonal antiserum was raised against a MDYKDDDDKLVY peptide that corresponds to 

the N terminus of Flag-CBFβ encoded by the CbfbFlag allele as a service provided by Covance. The peptide 

was synthesized and conjugated at its C-terminus to KLH, so the N-terminus is freely exposed to mimic the 

endogenous state of the Flag tag in Flag-CBFβ. Exsanguination bleeds were enriched for IgG by binding 

with Protein A Agarose. Part of the IgG fraction was further affinity purified with a Flag-conjugated 

column prepared using the Sulfolink immobilization kit for peptides (Pierce). 

Quantification of epidermal innervation and the intensity of fluorescent or colorimetric 

signal 

Three randomly selected regions of the epidermis were imaged for each animal. For each image, the 

epidermal region was outlined and defined as a region of interest. The image was then thresholded based on 

βIII-Tubulin or GFP immunostaining, and the area fraction, i.e. the percentage of pixels above threshold in 

the region of interest was returned by Image J as a measure of epidermal innervation density. Area fraction 

for each image was considered an individual data point for statistical analysis. For quantifying the intensity 

of fluorescence images, images were thresholded and regions of interest were defined either on a cell-by- 

cell basis or as populations of cells depending on the purpose of comparison. The mean or total intensity of 
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pixels above threshold was measured. For quantifying the signal intensity for in situ hybridization, the same 

procedure was performed, except that images were first converted to grayscale. 

Statistical Analysis 

Statistical differences for mean values between two groups and among multiple groups were analyzed 

using GraphPad Prism 5. The type of test used was specified for each statistics analysis in the figure legend. 

The criterion for statistical significance was set at p ≤0.05. 
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