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Abstract

Observability is a formal property of a system that ensures the ability to esti-

mate the system’s states from output measurements and knowledge of the inputs.

Even when state estimators are not employed, observability is a crucial property in

the design of feedback control systems. Engineering sensors are typically designed to

guarantee observability irrespective of the control input, thereby simplifying control

systems design. Here, we introduce a class of nonlinear sensors that require ‘persis-

tently exciting’ control inputs to maintain observability. This class of sensor models

is motivated by biological sensing systems which ‘adapt’ to constant stimuli, giving

them a very high dynamic range, but leading to a phenomenon known as perceptual

fading.

To prevent perceptual fading, animals employ active sensing behaviors in the

form of time-varying motor commands that continually stimulate sensory receptors.

To capture this phenomenon, we introduce a simplified sensor model that requires

similar ‘active’ control inputs to maintain observability. Under certain assumptions,

the input–output characteristics of the active sensing system is shown to be equiva-
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ABSTRACT

lent to an observable LTI system. Specifically, we apply three steps to the original

(nonlinear) system—(1) modulating via sinusoidal active input, (2) demodulating,

and (3) low-pass filtering. The equivalent system is identified by analyzing the Har-

monic Transfer Function (HTF) of the modulated system and whose output is then

demodulated and low pass filtered. Equivalence of the new observable LTI system

and the active sensing system illustrates the potential effectiveness of this framework

for active sensing and may pave the way for the design of adaptive sensory systems

for engineering applications.

Primary Reader: Noah J. Cowan

Secondary Readers: M. Mert Ankarali, Eric S. Fortune
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Chapter 1

Introduction

The dominant paradigm in feedback control theory is to decouple the problems

of control and state estimation. This is called the separation principle. For example,

for a linear plant corrupted with a Gaussian noise a Kalman filter can be used for

optimal state estimation, which can then be used to drive a linear-quadratic regulator

(LQR). The separation principle allows us to design the Kalman filter and controller

independently of one another; i.e., the Kalman filter does not depend on the LQR

cost function, and the LQR gains do not depend on the sensory and process noise

covariances.

However, for a general nonlinear plant the separation principle does not hold. So,

in order to facilitate the design of independent observers and controllers it may—

or may not—be a good idea to start with linearization. For example, for a simple

nonlinearity (say a sinusoid close to the origin) in the states of the system, it may
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CHAPTER 1. INTRODUCTION

be a good idea to linearize the system around its equilibrium. However, certain

categories of nonlinearities may preclude linear separability even if the system is both

(nonlinearly) controllable and observable.

Indeed, we suspect that this paradigm (linearization as the first step in control

design) does not apply to many biological control systems in animals. Biological

sensory systems often stop responding to persistent (i.e. “DC”) stimuli, a process

known as “adaptation” in the neuroscience literature. Sensory adaptation makes

asymptotically exact set-point control impossible due to the imperceptibility of large,

slow drifts in the signal of interest. Animals often use a strategy known as active

sensing [1–3] in which the organism generates potentially costly movements that do

not necessarily directly serve a motor goal but improve sensory feedback and prevent

perceptual fading [4]. Indeed, any searching behavior is a form of active sensing and

many species of animals perform such behaviors. This thesis focuses on developing

a framework to use such active sensing movements to recover the observability for a

simple biologically inspired nonlinear system.

1.1 Scope of Research

Our central hypothesis is that the movements of an active sensing system can be

used to recover the observability of the system thereby improving task-level control

performance. In Chapter 2, we will develop and describe a simple biologically inspired

2



CHAPTER 1. INTRODUCTION

system which requires active sensing. Once the need for active sensing is established,

we derive a new LTP system by linearizing the system around the “active” movements.

In Chapter 3, we then simplify the LTP system using Harmonic Transfer Function

(HTF) theory. In Chapter 4, we develop a framework to derive an approximately

equivalent LTI system (via demodulation and low-pass filtering). To demonstrate the

potential effectiveness of this approach, we control a simulated nonlinear system via

active sensing in conjunction with a control law designed for the LTI approximation.

Chapter 5, concludes with a summary and suggestions for possible future work than

can extend and improve upon this framework.

3



Chapter 2

Active Sensing

2.1 Active Sensing in Biology

Active sensing can be broadly defined as a feedback controlled system that expends

energy to sense its surroundings [1, 2]. Active sensing is most commonly associated

with species that generate and emit sensing signals, such as echolocation in bats [5,6]

or active electroreception in certain species of fish [7]. However, a more general form

of active sensing involves energy expenditure via the system’s own active movements

[8–17]. Some examples of movement-based active sensing are movements of weakly

electric fish [3,18–21], active sensing in vision [22–24], whisking [25–29], active touch

[30–33], sniffing [34–36] and hydrodynamic imaging [37–39].

During the course of such movement-based active sensing, the animal’s motor

behavior does not linearly relate to its task-level goal and is often routinely changed in
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CHAPTER 2. ACTIVE SENSING

relation to the sensory demands [40–46]. This suggests that animal’s movement might

be stimulating/altering the sensory signals it is receiving in order to better excite its

sensors and downstream neural circuits, thereby improve task-level performance [3].

The fundamental goal of our work is to examine, using simplified models and

mathematical analysis, how active movements of a system, even if not directly re-

lated to the task, can nevertheless be used to improve the task-level performance in

achieving a motor goal.

2.2 The “Simplest” System Requiring Ac-

tive Sensing

In this section we introduce a simple (perhaps the simplest) biologically inspired

sensory system that, when coupled with a mechanical system, requires active sensing

to ensure observability. This model is motivated by ongoing studies of sensorimotor

control in weakly electric knifefish in the LIMBS Laboratory in a simple one-degree-

of-freedom refuge tracking behavior [3, 47–50].

Suppose x1 is the position of the system and x2 “ 9x1 is its velocity as it moves in

one degree of freedom according to the simple dynamics m 9x2 ` bx2 “ u as described

for weakly electric fish [48]. To formalize the notion of sensory adaptation, we assume

a receptor measures only the local rate of change of a stimulus as the system moves

relative to a sensory scene spx1q, i.e., y “ d
dt
spx1q. Defining gpx1q “ s1px1q, we arrive

5
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at the following model:

9x “

»

—

—

–

0 1

0 ´ b
m

fi

ffi

ffi

fl

loooooomoooooon

A

x `

»

—

—

–

0

1
m

fi

ffi

ffi

fl

loomoon

B

u,

y “ gpx1qx2,

(2.1)

where m is the mass and b is the damping.

2.3 Why Active Sensing?

The linearization of (2.1) around any equilibrium, px˚
1 , 0q, is given by pA,B,Cq,

where

A “

»

—

—

–

0 1

0 ´ b
m

fi

ffi

ffi

fl

, B “

»

—

—

–

0

1
m

fi

ffi

ffi

fl

,

C “

„

0 gpx˚
1q

ȷ

.

(2.2)

Clearly, pA,Cq is not observable irrespective of gpxq. The observability matrix of the

system always looses rank due to output being proportional to the velocity of the

sensor, making it impossible to infer its position (since the system is translationally

invariant).1

1Note that if the system had a “spring-like term” in the (2,1) entry of the A matrix, observability
would be recovered [51].
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However, a simple rank condition test [52] on the nonlinear system, as illustrated

below shows that nonlinear observability is guaranteed for nonzero velocities, x2 ‰ 0:

9x “ Ax ` Bu,

y “ gpx1qx2.

The Lie derivatives of the system are given by

h “ gpx1qx2,

Lfh “
Bh

Bx
f

“

„

g1px1qx2 gpx1q

ȷ

Ax

“

„

g1px1qx2 gpx1q

ȷ

»

—

—

–

0 1

0 ´b
m

fi

ffi

ffi

fl

»

—

—

–

x1

x2

fi

ffi

ffi

fl

“

„

0 g1px1qx2 ´ gpx1q
b
m

ȷ

»

—

—

–

x1

x2

fi

ffi

ffi

fl

“ g1
px1qx

2
2 ´ gpx1qx2

b

m
.
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Following [52], we define the matrix G via

G “

»

—

—

–

h

Lfh

fi

ffi

ffi

fl

“

»

—

—

–

gpx1qx2

g1px1qx2
2 ´ gpx1qx2

b
m

fi

ffi

ffi

fl

“

»

—

—

–

g1px1qx2 gpx1q

g1px1qx
2
2 ´ gpx1qx2

b
m

2g1px1qx2 ´ gpx1q
b
m

fi

ffi

ffi

fl

.

For the system to be nonlinearly observable we require that G be full rank, which is

guaranteed for nonzero determinant:

x2
2p2pg1

px1qq
2

´ gpx1qg
2
px1qq ‰ 0. (2.3)

This simple result illustrates that control to a fixed position px2 “ 0q results in

a loss of not just linear observability, but also of nonlinear observability—i.e. it is

a fundamental system property and not an artifact of linearization. And thus, to

maintain observability, one must design a control input that sufficiently excites the

sensory system to enable estimation of the states necessary for control. Similar ideas

have been explored in previous work [53,54].

8



CHAPTER 2. ACTIVE SENSING

2.4 Our System with Active Sensing

In this section, we try to excite the sensory system (“pumping” the system) with

a time-periodic control signal u˚ptq. This is equivalent to linearizing the system

(2.1) around a time varying equilibrium px˚ptq, u˚ptqq which results in the following

approximate LTV system around the equilibrium px˚ptq, u˚ptqq:

9δx “ Aδx ` Bδu,

δy “

„

B

Bx1
gpx1qx2

B

Bx2
gpx1qx2

ȷ

x“x˚

δx,

“

„

g1px˚
1qx˚

2 gpx˚
1q

ȷ

δx.

Choosing x˚
1 “ cospωtq results in the equilibrium state px˚ptq, u˚ptqq given by

x˚
ptq “

»

—

—

–

x˚
1ptq

d
dt
x˚
1ptq

fi

ffi

ffi

fl

“

»

—

—

–

cospωtq

´ω sinpωtq

fi

ffi

ffi

fl

,

u˚
ptq “ ´mω2 cospωtq ´ bω sinpωtq,

where m, b are the mass and damping of the system as specified in (2.1) Thus the

resulting LTP system is

9δx “ Aδx ` Bδu,

δy “ Cptqδx,

(2.4)

9



CHAPTER 2. ACTIVE SENSING

where A, B are given by (2.2) and

Cptq “

„

g1 pcospωtqqω sinpωtq g pcospωtqq

ȷ

.

To simplify notation, we will henceforth be representing δu as u and the total

input to the system as utotal “ u ` u˚. Therefore the LTP system now is,

9δx “ Aδx ` Bu,

δy “ Cptqδx.

(2.5)

This LTP system is now further analyzed and simplified using Harmonic Transfer

Function (HTF) theory summarized in Chapter 3.

10



Chapter 3

Harmonic Transfer Functions for

the “Simplest” Active Sensing

System

Transfer functions are an important tool in the analysis of Linear Time Invariant

(LTI) systems. An analogous tool for the analysis of LTP systems are Harmonic

Transfer Functions (HTFs) [55–58].

The analysis of LTI systems is often simplified by the simple fact that a sinusoidal

input results in a sinusoidal output of the same frequency. However, the frequency

response of an LTP system not only includes the input frequency, but also the in-

put frequency plus multiples of the fundamental frequency of the LTP system. By

using exponentially modulated periodic form of the input and output signals and

11



CHAPTER 3. HTFS FOR “SIMPLEST” ACTIVE SENSING SYSTEM

the principle of harmonic balance, Wereley and Hall [55] showed that input–output

relationship of a LTP system are determined by a possibly infinite parallel series of

frequency shifted LTI sub-systems. The transfer functions of these LTI sub-systems

are called the HTFs of the LTP system. Figure 3.1 illustrates the resulting HTF

structure (original source Möllerstedt [59]).

H´2

H´1

H0

H1

H2

Σ
uptq yptq

ejω0t

e2jω0t

e´jω0t

e´2jω0t

Figure 3.1: The input-output relation of an LTP system visualized via infinitely many
LTI harmonics.
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3.1 State Space Representation of HTF

A generic LTP system can be defined as,

9xptq “ Aptqxptq ` Bptquptq,

yptq “ Cptqxptq ` Dptquptq.

(3.1)

For such a system, Wereley and Hall [55] derived the Harmonic transfer functions

using the state space representation and the principle of Harmonic Balance, which

we review here. This representation is given by

Hpsq “ C
“

sI ´ pA ´ N q
´1

‰

B ` D, (3.2)

where A is the doubly infinite Toeplitz matrix containing the Fourier coefficients of

the the system matrices Aptq:

A “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

. . .
...

...
... . . .

. . . A0 A´1 A´2 . . .

. . . A1 A0 A´1 . . .

. . . A2 A1 A0 . . .

. . .
...

...
... . . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.3)
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and Hpsq is given by

Hpsq “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

. . .
...

...
... . . .

. . . H´1,´1psq H´1,0psq H´1,1psq . . .

. . . H0,´1psq H0,0psq H0,1psq . . .

. . . H1,´1psq H1,0psq H1,1psq . . .

. . .
...

...
... . . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.4)

Wereley and Hall [55] also showed that the elementsHn,mpsq and the transfer functions

of the LTI subsystems are related via Hn,mpsq “ Hn´mps ` jmωq.

The matrices B, C ,D are also represented using doubly infinite Toeplitz matrices

containing the Fourier coefficients of the system matricesBptq, Cptq,Dptq respectively.

3.2 HTF’s for Our Active Sensing System

Equation (3.2), for the simplifying case of time-constant A, B and time-varying

C, reduces to the case of “LTI plant with modulated output” as described in [55],

and has the following form:

Hn,mpsq “ Cn´m psmI ´ Aq
´1B, (3.5)

where Hn,mpsq are the elements of the doubly infinite Hpsq and Ck’s are the Fourier

coefficients of Cptq.

14



CHAPTER 3. HTFS FOR “SIMPLEST” ACTIVE SENSING SYSTEM

To find the analytical expressions for the harmonics, we assume the following form

for the sensory scene being observed by the system:

spx1q “
1

2
d1x

2
1 ` e1x1,

ùñ gpx1q “ s1
px1q “ d1x1 ` e1,

(3.6)

where, d1 and e1 are arbitrary real coefficients.

Now for the system (2.5), the Fourier coefficients of Ck’s of Cptq are given by,

C0 “

„

0 e1

ȷ

, C1 “

„

´ω jd1
2

d1
2

ȷ

, C´1 “

„

ω jd1
2

d1
2

ȷ

. (3.7)

This gives the following form for the HTFs from (3.5):

H0psq “
e1

b ` Ms
, H1psq “

d1ps ` jωq

2spb ` Msq
, H´1psq “

d1ps ´ jωq

2spb ` Msq
. (3.8)

The output of the LTP system (2.5) can now be represented as

δy “ h0 ˚ u ` ph1 ˚ uqejωt ` ph´1 ˚ uqe´jωt, (3.9)

where h0, h1, h´1 are the time-domain representations of H0psq, H1psq, H´1psq respec-

tively and ˚ denotes the convolution operation. Note that the sensory scene chosen

in this work only contains the zeroth and first harmonics. If the sensory scene were to

contain higher harmonics as well, then (3.9) below would only be an approximation

15
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of the original system (2.5) that neglects the higher harmonics. Given our use of

low-pass filtering (Chapter 4) this approximation will nevertheless prove useful for

more general scenes.

Simplifying (3.9) using ejωt “ cospωtq ` j sinpωtq and the fact that h´1 and h1 are

complex conjugates gives the following:

δy “ h0 ˚ u ` ph1 ˚ uqejωt `
“

ph1 ˚ uqejωt
‰˚

“ h0 ˚ u ` 2Re
“

ph1 ˚ uqejωt
‰

“ h0 ˚ u ` 2 rReph1 ˚ uq cospωtq ´ Imph1 ˚ uq sinpωtqs .

(3.10)

Therefore, using HTF theory the output (2.5) can be simplified to

δy “ h0 ˚ u ` 2 rReph1q ˚ us cospωtq ´ 2 rImph1q ˚ us sinpωtq. (3.11)

Note that, from Equation (3.8), we have

ImpH1q “
a

ms2 ` bs
, (3.12)

where a “ pd1{2qω, has no pole-zero cancellations, a fact used in Chapter 4.

An alternate method to obtain the HTF components for our system using impulse

response functions as demonstrated in [59] is shown in Appendix B.

16



Chapter 4

Proposed Framework

After deriving the HTFs for the active sensing under consideration in Chapter 3,

we noted that the imaginary part of first harmonic has no pole-zero cancellations

(resulting in an observable system). So, if we were able to successfully extract it,

we would be able to use it as the output of a equivalent system which is observable.

Indeed, this is the crux of this thesis. This chapter focuses on developing the rest of

our framework in order to extract the imaginary part of first harmonic and develop a

new LTI system which is approximately equivalent to the original nonlinear system.

17



CHAPTER 4. PROPOSED FRAMEWORK

4.1 Extracting the Observable Harmonic

As can be seen from the output Equation (3.11),

δy “ h0 ˚ u ` 2 rReph1q ˚ us cospωtq ´ 2 rImph1q ˚ us sinpωtq, (4.1)

the first harmonic’s imaginary part is modulated by a sinusoidal signal. So, we

demodulate (3.11) with a sinusoidal signal, which results in the following equation:

δymod “ δy sinωt

“ ph0 ˚ uq sinωt ` pReph1q ˚ uq sin 2ωt ` pcos 2ωt ´ 1qImph1q ˚ u

“ ´Imph1q ˚ u ` ph0 ˚ uq sinωt ` pReph1q ˚ uq sin 2ωt ` pImph1q ˚ uq cos 2ωt.

(4.2)

After demodulation, we notice that the output is still corrupted by the remaining

harmonics (modulated by sinusoids at ω and 2ω). If we assume that h0 ˚u, Reph1q˚u,

and Imph1q ˚ u are sufficiently band-limited signals, then it is possible, in principle,

to low-pass filter δymod, thereby extracting the first term Imph1q ˚ u, which is not

modulated. So, we pass the output from (4.2) through a low-pass filter, and assume

that the modulated signals are perfectly suppressed, namely

δyfil “ δymod ˚ hlpf

“ ´hlpf ˚ Imph1q ˚ u,

(4.3)

18



CHAPTER 4. PROPOSED FRAMEWORK

where hlpf represents the low-pass filter. Note that, apart from filtering the output,

the low pass filter must also be included in our model of the dynamics of the system.

4.2 Resulting Equivalent System

The approximate equivalent system is depicted in Figure 4.1b. The transfer func-

tion of the “Simplified System” is given by the imaginary part of the first harmonic

derived in Chapter 3:

a

ms2 ` bs
, (3.12)

where a “ d1ω{2. This new transfer function has no pole zero cancellations, reflecting

the fact that active sensing rendered the system observable.

4.3 Simulation

In order to compare the developed LTI system and the original active sensing

system, we simulate both the systems whilst using an LQG controller to control the

system to a fixed position. MATLAB has been used to simulate both the system and

the controller. The details of the system and sensor parameters, low-pass filter, and

the LQG controller used in the simulation are summarized below.

19



CHAPTER 4. PROPOSED FRAMEWORK

System Low Pass Filter
δy

udemod

´y˚

u˚

δyfilu

utotal y δymod

(a) Actual nonlinear system.

Simplified
System Low Pass Filter

u ysim

δyfil

(b) Approximately equivalent system.

Figure 4.1: Comparing the actual system to approximately equivalent system.

4.3.1 System and Filter Parameters

The sensory scene is given by spxq “ 1
2
d1x

2 ` e1x, introducing two parameters.

Furthermore, the LTP plant model (2.5) in Chapter 2 has three parameters (m, b,

and ω). The parameters used in our simulations are given in Table 4.1.

Parameter Description Value Units
m System mass 1 kg
b System damping 1.7 N ¨ s ¨m´1

ω Pumping frequency 2π˚2 rad ¨ s´1

d1 scene coefficient 3 m´2

e1 scene coefficient 5 m´1

Table 4.1: System and sensory scene parameters.

The system ratio b
m

has been chosen based on the ratios of a weakly electric fish

system [48], which has inspired this work. A 5th-order Butterworth filter [60] with
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CHAPTER 4. PROPOSED FRAMEWORK

0.5 Hz as a cut-off frequency has been used as the low-pass filter in (4.3).

4.3.2 State Estimation and Control

The Kalman filter (KF) [61] is one of the most widely used state estimation

methods for linear systems mainly due to its ease of implementation, optimality

(under certain assumptions), and versatility. As the details of its implementation can

be found in standard estimation literature, we omit those details here.

Since our equivalent LTI system is observable (no pole-zero cancellations), we can

use it as a sensor reading for the Kalman filter so as to estimate the states. The

initial covariance matrices for the Kalman filter are given in Table 4.2.

Covariance Value
system noise 10´4I2ˆ2

measurement noise 0

Table 4.2: Kalman filter parameters.

The estimated state is now fed through an infinite-horizon linear quadratic regu-

lator (LQR) controller to try to control the system to a fixed goal position. The state

and control weights for the LQR controller used are assumed to be as in Table 4.3.

Weights Value
State weights 2I2ˆ2

control weight 1

Table 4.3: LQR parameters.
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4.4 Results

4.4.1 System Identification of Nonlinear System

To show that the developed LTI system and the nonlinear active sensing system

are approximately equivalent, we compare the Bode plots of both systems in Fig. 4.2.

Although these plots match each other at most frequencies, the following caveats

should be noted:

‚ At 1 Hz frequency (which is half the “pumping” frequency) there is a mismatch

between the Bode plots of the approximate LTI system and the nonlinear sys-

tem. This may be due to as yet unexplored harmonic interactions between the

control signal and the system’s own harmonics.

‚ At higher frequencies, the Bode plots do not match due to interactions of the

higher harmonics and the control signal leaking through the low-pass filter.

4.4.2 LQG Control

To further validate our framework, we simulated the LQG system in 4.3. Fig. 4.3a

demonstrates that the Kalman state estimate of position, xδx1ptq, of the approximately

equivalent LTI system closely matches the relative position of the nonlinear active

sensing system about the “Active” movements of the system, i.e. δx1ptq “ x1ptq ´

x˚
1ptq. The velocity state estimate also matches well (Fig. 4.3b). We also compare
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Figure 4.2: Comparison of the Bode-plots of the nonlinear system and the approxi-
mately equivalent linear system developed using parameters in Table 4.1.

the output signal from the equivalent LTI system and to the δyfil from the simulation

of the nonlinear active sensing system in Fig. 4.3c. Fig. 4.3d plots the position of

the system along with it’s active movements. This figure also shows how the sensory

scene being observed by the system varies with time.

4.4.3 Approximation Degrades at High Frequency

We expect that the LTI approximation should degrade at high frequencies. In

Fig. 4.4, to show a few test cases where our developed linear system is no longer

approximately equivalent to the nonlinear system, we compare the output signals of

both systems, when using a sinusoidal control signal with frequencies close to the

system’s pumping frequency (these control signals were simulated as a part of the

Bode plot generation).
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(a) Successful position tracking of the system from
an initial position, δx1 “ ´4.5 to δx1 “ 0.36 us-
ing the Kalman position estimate from the approx-
imately equivalent observable system.

(b) Successful velocity tracking of the system from
an initial position, δx1 “ ´4.5 to δx1 “ 0.36 us-
ing the Kalman position estimate from the approx-
imately equivalent observable system.
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(c) Comparison of the resultant output signal of
the nonlinear system to that of the simulated ap-
proximate equivalent system when the system is
controlled from an initial position, δx1 “ ´4.5 to
δx1 “ 0.36.
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(d) Position of the system w.r.t time when the sys-
tem is controlled x1 “ ´3.5 to x1 “ 1.36. The
color-map attached to x-axis denotes the variation
in the intensity of the sensory scene being observed
at a particular location and the color-map attached
to y-axis denotes the intensity of the sensory scene
at an instant.

Figure 4.3: Simulation and comparison of system states and outputs to validate the
developed framework. Note that for this regime, the linear simulation (panels a-c)
closely matches the nonlinear system.
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(a) control frequency of 0.35 Hz.
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(b) control frequency of 1 Hz.
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(c) control frequency of 1.1 Hz.
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(d) control frequency of 2.6 Hz.

Figure 4.4: Comparison of the output signals for various sinusoidal frequencies for the
input, δu. Note that when the input frequency approaches and exceeds the pump-
ing frequency of u˚ the linear simulation deviates substantially from the nonlinear
simulation, as expected.
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The plots in Fig. 4.4 show the following:

‚ At lower frequencies, the approximation is very good.

‚ As the frequency increases, approaching and exceeding the “pumping” frequency

(2 Hz), the periodic control signal starts to interact significantly with the har-

monics of the LTP system, destroying the equivalence of the nonlinear system

and its LTI simplification.
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Chapter 5

Summary

We developed a framework to recover observability via active sensing using HTF

theory. Our central idea is that the higher harmonics of an active sensing system

render the system observable. To illustrate this, we developed a biologically inspired

active sensing system, where the output is a high-pass-filtered point measurement of

the sensory scene. Controlling this system to a fixed point is shown to render it non-

linearly unobservable. The proposed active sensing framework involves modulation,

demodulation, and low-pass filtering the original system. This process transforms the

system into an equivalent observable system, thereby recovering its observability.

This framework creates higher harmonics with observable states and then demod-

ulates those dynamics to “base band”. To illustrate this framework, we first presented

the “simplest” biologically inspired system that requires active sensing. This system

was chosen as it is easy to model, and thus enabled us to analytically calculate the
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HTF’s of the system. With this system in hand, we applied the framework to extract

the first harmonic and as predicted, the resulting output now rendered the states of

the system observable. Using this observable LTI plant, we demonstrated the effec-

tiveness of the framework by using a standard LQG controller to successfully control

the system.

With the framework now developed, future work can delve deeper into designing

a more appropriate sensor model than the simple differentiator model as used in this

work. Also, the choice of demodulating signal we chose to isolate the observable

harmonic can be chosen such that it optimizes some meaningful metric of the system

such as an observability metric.
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Appendix A

Always Unobservable Sensory

Scene

Equation (2.3) shows the need for active sensing (x2 ‰ 0). But, it also can be

used to derive a non-trivial sensory scene which is always nonlinearly unobservable:

pg1
px1qq

2
´ gpx1qg

2
px1q “ 0

ż

g2

g1
“

ż

2g1

g

log g1
“ 2 log g ` c1

log
g1

2g2
“ c1

g1
“ c2g

2
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APPENDIX A. ALWAYS UNOBSERVABLE SENSORY SCENE

dg

dx
“ c2g

2

dg

g2
“ c2dx

´1

g
“ c2x ` c3

gpxq “
´1

c2x ` c3

ùñ spxq “ ´
1

c2
logpc2x ` c3q.

So, for the system and the derivative sensor chosen in this work, in addition to the

trivial case of a constant sensory scene, a logarithmically varying sensory scene also

seems to render the system always nonlinearly unobservable.
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HTF of the System Using Impulse

Response Functions

Möllerstedt [59] demonstrated that Impulse response functions of an LTP system

can also be used derive its HTF components. We briefly summarize it here and

compare the results to those derived for our active sensing system in Chapter 3.

The output of an LTP system using its impulse response functions can be repre-

sented as:

yptq “

ż t

0

hpt, τqupτqdτ. (B.1)

31



APPENDIX B. HTF VIA IMPULSE RESPONSE FUNCTIONS

For LTP system,

hpt ` T, τ ` T q “ hpt, τq,

ùñ hpt ` T, t ´ r ` T q “ hpt, t ´ rq.

(B.2)

Therefore, hpt, t ´ rq is periodic in T . Now,

hpt, t ´ rq “
ÿ

hkprqejkωot,

ùñ hpt, τq “
ÿ

hkpt ´ τqejkωot.

(B.3)

The output can now be expressed as,

yptq “

ż t

0

hpt, τqupτqdτ

“

ż t

0

ÿ

hkpt ´ τqejkωotupτqdτ

“

ż t

0

ÿ

hkpt ´ τqejkωopt´τqupτqejkωoτdτ

“
ÿ

ż t

0

hkpt ´ τqejkωopt´τqupτqejkωoτdτ

“
ÿ

k

phkptq ˚ uptqq ejkωot,

(B.4)

where hk’s are the Fourier coefficients of hpt, t ´ rq.
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Now, for our active sensing system (2.5), we have

hpt, t ´ rq “ CptqΦpt, t ´ rqB

“ Cptq

»

—

—

–

1 p1 ´ e´br{mqm
b

0 e´br{m

fi

ffi

ffi

fl

»

—

—

–

0

1
m

fi

ffi

ffi

fl

“ Cptq

»

—

—

–

p1 ´ e´br{mq1
b

1
m
e´br{m

fi

ffi

ffi

fl

“ Cptqαprq.

(B.5)

Therefore, hkprq “ Ck.αprq where Ck are the Fourier coefficients of Cptq. For gpxq “

d1x ` e1, it is easy to show that the Fourier coefficients of Cptq are as given in (3.7),

and Hkpsq, the Laplace transform of hk (k “ 0,´1, 1) is given as shown in (3.8),

derived via harmonic balance in Chapter 3.
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