
 

 

HIPPOCAMPAL REPLAY IN A NOVEL ENVIRONMENT: 

INFORMATION CONTENT AND INTERACTION WITH 

PREFRONTAL NEURONAL ACTIVITIES 

by 

Xiaojing Wu 

A dissertation submitted to Johns Hopkins University in conformity with the 

requirements for the degree of Doctor of Philosophy 

Baltimore, Maryland 

March, 2014 

 

 

 

 

 

 

 

 
© Xiaojing Wu 

All Rights Reserved 



ii 

 

Abstract 

Hippocampal place-cell replay has been proposed as a fundamental mechanism of 

learning and memory, which might support navigational learning and planning. An 

important hypothesis of relevance to these proposed functions is that the information 

encoded in replay should reflect the topological structure of experienced environments, 

that is, which places in the environment are connected with which others. Here we report 

several attributes of replay observed in rats exploring a novel forked environment that 

support the hypothesis. First, we observed that spatially overlapping replays depicting 

divergent trajectories through the fork recruited the same population of cells with the 

same firing rates to represent the common portion of the trajectories. Second, replay 

tended to be directional and to flip the represented direction at the fork. Third, replay-

associated sharp-wave-ripple events in the local field potential exhibited substructure that 

mapped onto the maze topology. Thus the spatial complexity of our recording 

environment was accurately captured by replay: the underlying neuronal activities 

reflected the bifurcating shape, and both directionality and associated ripple structure 

reflected the segmentation of the maze. Moreover, we observed that replays occurred 

rapidly after small numbers of experiences. To further investigate the potential role of 

sequence replay in cross-structural network functions, we addressed the question of 

whether and how hippocampal replay interacts with prefrontal processes. We found 

strong modulations of simultaneously recorded medial prefrontal neuronal activities by 

running direction on track arms as well as reward conditions at arm ends, indicating their 

active involvement in task performance. Importantly, prefrontal neurons exhibited 
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substantial firing-rate changes consistently at the occurrences of hippocampal replay, 

with a subset of neurons showing significantly different response patterns to replays 

representing different arms of the maze. Our results suggest that hippocampal replay 

rapidly captures learned information about environmental topology to support a role in 

navigation, possibly through informing prefrontal activities in spatial decision making 

processes.  
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Chapter 1        Background 

Learning and memory are among the most fundamental neural processes that play 

significant roles in a wide array of behaviors. As many other nervous system functions, 

learning and memory take many forms in many different organisms. The simplest form 

may be habituation in invertebrate animals, such as reduction in defensive withdrawal 

reflexes of Aplysia’s gill and siphon to repeated stimuli. Its mechanism has been traced to 

activation of signaling cascades in both the presynaptic sensory neurons and postsynaptic 

motor neurons, regulated by modulatory inputs from serotonergic interneurons, resulting 

in changes in sensorimotor synaptic strength (Owen & Brenner, 2012). Such ‘cellular 

learning’, although simple, is important for understanding how cellular activities induce 

actual changes in behavior. For humans and other vertebrate animals, learning and 

memory are described as ‘cognitive processes’ because they involve processing of 

(sometimes abstract) information. The high level of complexity of human memory is 

reflected in frameworks proposed by, e.g. (Rugg et al., 2008) which suggested 

mechanisms of how memories composed of different types of information may be stored 

in distinct brain areas, and how partial cues may elicit reactivation of involved brain 

structures and successful retrieval of complete memories. Meanwhile, new properties of 

human learning are still being discovered. For example, (Yoo et al., 2012) found that 

learning during brain states corresponding to low level of activity in the parahippocampal 

cortex improved recall of previously viewed novel scenes. Mainly employing 

noninvasive methods such as functional magnetic resonance imaging, transcranial 

magnetic stimulation, and experimental psychology, human studies aim to understand 
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learning and memory at the behavioral and brain-structure level, representing the other 

end of the spectrum. In this thesis, we focus on an ‘in between’ level of research in an ‘in 

between’ animal model, with the goal of understanding at the neuronal ensemble level, 

how novel information is encoded and utilized to guide behavior. Uncovering 

representations and functional consequences of coordinated firing activities across 

individual neurons within and between brain areas is essential for understanding 

mechanisms of information processing in the brain, and for bridging knowledge gained at 

the synaptic level to the broad-scale brain-structure level to achieve a complete 

understanding of learning and memory.  

1.1 The hippocampus is important for episodic memory formation 

and long-term storage 

Previous studies have generated a large body of knowledge about the brain structures 

responsible for learning and memory, and physiological properties of the neurons and 

their synaptic connections within these structures. Initially discovered from examining 

amnesic and schizophrenic patients (Scoville & Milner, 1957; Corkin et al., 1997), it has 

been strongly suggested that the hippocampal formation and surrounding cortical 

structures in the medial temporal lobe support a distinct memory function – the 

establishment of initial and long-term storage of information as associated with specific 

contexts such as events taking place at particular times and places (Squire, 1992; 

Eichenbaum, 2013). This episodic memory is distinct in information content from other 

classes of memory, namely semantic memory concerning facts independent of context, 

and procedural memory mainly involving motor skill learning. Having distinguished 
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between different types of memory, the significance of episodic memory becomes clear: 

organisms are constantly interacting with the outside world and adjusting their behaviors 

according to previous successes and failures to enhance the chance of survival; the ability 

to learn through personal experiences and the brain capacity of episodic memory 

formation are thus useful means for acquiring knowledge and guiding behavior. From 

this point of view, when studying the mechanism of episodic memory questions should 

be asked about how ‘raw’ inputs streaming into the brain from experiences are encoded, 

manipulated, and eventually integrated and utilized to guide or alter behavior.  

 

Several properties of the hippocampus have been revealed which support its role in 

learning and memory. Anatomically, the hippocampus is at the highest level of a 

hierarchy of brain structures and receives ‘end‐stage’ information from various sensory 

and associative cortices, as well as inputs from the subcortical neuromodulatory nuclei, 

further processed by the perirhinal, parahippocampal and entorhinal cortices (Mishkin et 

al., 1998; Andersen et al., 2006). Receiving such highly processed and converged 

information, it is at an ideal position to orchestrate the formation of episodic memory 

which is characterized by its high-dimensional sensory modalities. Synaptic plasticity is 

another major property of the hippocampus where the significant discovery of long-term 

potentiation (LTP) was first made, in both anesthetized and awake rabbits (Bliss & 

Gardner-Medwin, 1973; Bliss & Lomo, 1973). It is a phenomenon whereby excitatory 

postsynaptic potentials elicited by single-pulse stimuli to the presynaptic axons are 

enhanced after delivery of a train of high-frequency stimuli to the same axons, which 

lasts from several minutes to months (Abraham, 2003). LTP, together with the later 
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discovered opposite phenomenon long-term depression (LTD) (Lynch et al., 1977), 

demonstrate that the strengths of synaptic connections among neurons can be up- or 

down-regulated according to their firing activities. Intensively studied for their potential 

roles in cellular mechanisms of information storage, both phenomena have been found at 

virtually every synapse in the hippocampus: synapses between the perforant path and 

granule cells in the dentate gyrus, the Schaffer collateral to CA1 pyramidal cell synapses, 

recurrent connections among CA3 cells, etc., reinforcing the idea that the hippocampus is 

an important brain area for learning and memory. 

 

Investigating the representations of single neuron activities has been the principal method 

for studying many brain structures. Single units in the human hippocampus were shown 

to be selectively activated by different photographs of the same actress, landmark 

building, etc., and even letter strings of their names, reflecting encoding of explicit 

memories and learned abstract concepts (Quiroga et al., 2005). While this striking finding 

provides direct evidence for hippocampal neurons’ role in memory, this representation 

might be unique to only humans and non-human primates. Experiments conducted in 

freely moving rodents discovered a more universal phenomenon: during continuous 

exploration of a spatial environment, each active neuron in the hippocampus exhibits 

pronounced firing activities only when the animal traverses a specific location in the 

environment, while firing rates outside the location are virtually zero (O'Keefe & 

Dostrovsky, 1971). For rats and mice, such place responses were shown in pyramidal 

cells in the CA1 and CA3 subfields, and in granule cells in the dentate gyrus, which were 

consequently termed place cells with their firing fields termed place fields (Moser et al., 
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2008). Place and place-related responses have been further reported in monkeys 

(Matsumura et al., 1999), humans (Ekstrom et al., 2003), and flying bats (Yartsev & 

Ulanovsky, 2013).  

 

Since spatial selectivity is such a prominent neurophysiological property of the 

hippocampal neurons, the function of the hippocampus cannot be understood without 

clear interpretation of place responses. On one hand, place fields may be viewed as 

spatial representations of locations resulting from direct sensory inputs into the 

hippocampus that characterize ‘space’, thus analogous to the receptive fields of visual 

neurons. On the other hand, place responses may be interpreted as a neuronal basis of 

spatial learning and memory (Olton & Samuelson, 1976; O'Keefe & Nadel, 1978): the 

cognitive map theory outlines the construction of an allocentric mental map of the 

environment by acquisition and accumulation of spatial information gained through 

egocentric experience within the environment. All sensory inputs (vision, audition, 

olfaction, proprioception, directional cues, etc.) are integrated to derive navigationally 

useful information such as relative locations among landmarks and their attributes, which 

can be recalled to create novel routes and to guide navigation. The role of place cells in 

map generation is still unclear. They have been suggested to receive positional and 

directional information computed through path integration mechanisms in the entorhinal 

cortex, to provide better interpreted information about the environment by signaling 

current location with respect to the environment, or by encoding distal or local landmarks 

or both (Jacobs & Schenk, 2003; McNaughton et al., 2006). From this point of view, 

place cells may be hypothesized to encode the memory of a location instead of the 
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perception of it, which might require specific intrinsic hippocampal mechanisms to 

transform the direct sensory inputs into conceptualized representations of locations. In 

support of this view, it was found in open field environments that place cell activities 

were invariant to rats’ orientation within the place fields despite the different sensory 

stimuli they were facing at different orientations (O'Keefe & Dostrovsky, 1971; O'Keefe, 

1976; Bird & Burgess, 2008); furthermore, some place cells were found to maintain their 

place fields in complete darkness (Quirk et al., 1990). 

 

In general, however, it is hard to definitively conclude whether place responses require 

any learning because the encoding stimulus – place – must be present at the time of 

retrieval. It has been shown that many place cells began to fire within their steady-state 

place fields upon the animal’s very first entry into the place field locations (Hill, 1978), 

while (Wilson & McNaughton, 1993) indicated that the stabilization of place fields took 

about 10 min of experience in the novel environment. A more recent and more 

sophisticated analysis showed that although most CA1 cells were active during the first 

passage of a novel arm, place fields exhibited rapid changes during the initial moments of 

exposure and required at least 5-6 min of experience to stabilize (Frank et al., 2004). 

Albeit a good indicator for learning requirements, it is difficult to estimate the time 

course of development of place fields since place field calculation requires the 

accumulation of spike and position data. Interestingly, (Frank et al., 2004) also showed 

that even though place fields had become stabilized on the third day of exposure to the 

novel arms, the rats continued to run at a slower speed on those arms on day three than 

they did on the familiar arms, indicating that they did not treat the novel arms as familiar 
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even when place fields were already stable. They suggested that ‘although the 

hippocampus may form new memories quickly, using those memories to guide behavior 

also requires changes in other brain regions’. Thus, it is still unknown how much 

navigation relies on hippocampal spatial representation at the earliest stage of spatial 

learning. It should be noted that in spite of the controversies in interpretations of place 

responses, all views recognize the possibility that the hippocampus may function as an 

information integrator. Major theories, such as the Relational Theory (Cohen, 1993), 

Marr’s pattern completion theory (Marr, 1971), and the Byrne, Becker and Burgess 

model (the BBB model, (Byrne et al., 2007)) all point to a role of the hippocampus in the 

convergence and flexible association of incoming information from different neocortices, 

emphasizing the spatial aspect of the integration: the geometry of the environment, the 

features and locations of the objects within, the environmental boundaries, etc. (Bird & 

Burgess, 2008). 

1.2 Place-cell replay may serve as fundamental mechanism of 

hippocampal functions 

The discoveries of LTP and LTD, and subsequently spike-timing-dependent plasticity, 

provided strong support to the Hebbian theory that when a certain firing pattern across an 

assembly of neurons occurs repeatedly, synaptic connections among the participating 

neurons will be selectively strengthened or weakened depending on the temporal order in 

which pre- and postsynaptic spikes were fired (Hebb, 1949; Allport, 1985; Dan & Poo, 

1992). Although the precise synaptic mechanisms may be different for different brain 

systems, model organisms, or different forms of learning, the general idea that learned 
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information may be stored as modified synaptic connections has prevailed. (Wilson & 

McNaughton, 1994) first discovered that place cell pairs showing high spike-train cross-

correlations during spatial foraging tasks due to their overlapping place fields also 

exhibited high levels of coactivity during the sleep periods after waking behaviors, which 

were significantly enhanced from the sleep periods prior to behavior; place cell pairs with 

non-overlapping place fields were not coactive during either waking behavior or either of 

the sleep sessions. This reoccurrence of cell pair-wise correlations during post-behavioral 

sleep was found to mainly occur during sharp-wave ripple (SWR) events detected in the 

local field potential (LFP) signals and believed to reflect synchronous synaptic inputs 

from the CA3 to CA1 as well as population firing activities in both subareas (Csicsvari et 

al., 2000), and was interpreted as reactivation of stored activity patterns in an ‘auto-

associative’ neuronal network formed during behavior through synaptic modifications 

within the hippocampus. The authors further suggested that the ‘play back’ of waking 

neuronal patterns during subsequent sleep may contribute to memory consolidation, a 

process in which information initially stored in the hippocampus is gradually transferred 

to the neocortices for long-term storage, an idea first introduced by the noted Roman 

teacher of rhetoric, Quintillian (Muller & Pilzecker, 1900; Dudai, 2004). This finding of 

ripple-associated reactivation primarily during slow-wave sleep and its proposed role in 

memory consolidation have been repeated and supported by numerous studies (Skaggs & 

McNaughton, 1996; Kudrimoti et al., 1999; O'Neill et al., 2006; O'Neill et al., 2008; 

Nakashiba et al., 2009). 
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Many subsequent studies extended this discovery by demonstrating that the sequential 

order in which place cells become active during running experiences due to the orderly 

traversal across their place fields, was reactivated during not only post-behavioral sleep 

but also awake immobile periods when rats eat, drink, groom, rest, or briefly pause 

between episodes of exploratory behaviors, producing extended spiking sequences across 

place cell ensembles that match sequences from previous behavioral episodes, often in a 

temporally condensed form during 100-200 ms sharp-wave ripple events (Louie & 

Wilson, 2001; Lee & Wilson, 2002; Foster & Wilson, 2006; Csicsvari et al., 2007; Diba 

& Buzsaki, 2007; Ji & Wilson, 2007; Davidson et al., 2009; Karlsson & Frank, 2009; 

Gupta et al., 2010). The observation of sequence replay is consistent with that of the 

reactivation of pair-wise correlations, which demonstrate the same fine time-scale firing 

orders exhibited by cell pairs drawn from complete sequences that are ultimately 

determined by the spatial relationship of their place fields – both can in fact provide 

statistics for the measurement of how much reactivation activities match waking 

experiences (Karlsson & Frank, 2009). On the other hand, extended sequences contain 

more information than pair-wise correlations, such as whole trajectories and heading 

directions (see below) represented in the reactivation event, the speed of trajectory replay, 

etc. An effective Bayesian decoding algorithm has been developed to greatly improve 

visualization and detection of replay events, and has been used to accurately characterize 

replay sequences representing almost the entire length of a ten-meter long track 

(Davidson et al., 2009). 
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The establishment of sequence replay has also been suggested to rely on synaptic 

plasticity, which has been explored by several computation modeling studies (Jensen & 

Lisman, 1996; Levy, 1996; Leibold & Kempter, 2006; Molter et al., 2007; Koene & 

Hasselmo, 2008). For example, a model developed by (Molter et al., 2007) was 

structured in a two-stage manner first proposed by (Buzsaki, 1989), whereby sequence 

memory first becomes (weakly) encoded in the hippocampal circuits through synaptic 

modifications induced during running when the hippocampus engages in prominent theta 

oscillations (4-12 Hz), and is later manifested in a different brain state during 

hippocampal SWRs which may allow further potentiation of established synaptic 

connections. More specifically, the phase precession property, that in the course of place 

field traversal the phase of place cell firing in relation to the ongoing theta rhythm 

progressively shifts to earlier phases in each successive theta cycle, could confine spikes 

from place cells with overlapping place fields to always occur in the same order within a 

small time window; based on the time asymmetric Hebbian learning rule (Levy & 

Steward, 1983; Dan & Poo, 1992), recurrent synaptic connections from a given CA3 

place cell to the CA3 cells with the next place field can be consequently strengthened. In 

the subsequent immobile state, CA3 units receive irregular and either nonspecific or 

biased inputs such that either all units have the same probability of getting activated or 

units with place fields covering the current location have increased probability of 

becoming activated. The first-active unit then initiates a train of firing activities across 

those units connected via potentiated recurrent synapses which become sequentially 

activated, in the form of sequence replay. Essential for this class of theoretical analyses is 

the hypothesis that rapid plastic changes in the CA3 recurrent network is a fundamental 
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mechanism of hippocampal replay, which has been supported by (Nakazawa et al., 2003) 

showing that NMDA receptors in the CA3 pyramidal neurons were required for both one-

time fast learning of spatial behavioral tasks and normal place cell encoding of novel 

environments. 

 

While SWR-associated place-cell sequences, just as the reactivation of place-cell pair-

wise correlations, have been interpreted as a mechanism for “replaying” neuronal 

representations of previous experiences for the purpose of memory consolidation, 

particularly during sleep (Girardeau et al., 2009; Ego-Stengel & Wilson, 2010; O'Neill et 

al., 2010; Carr et al., 2011), there is growing evidence that they also contribute to 

navigational learning and planning (Diba & Buzsaki, 2007; Buckner, 2010; Foster & 

Knierim, 2012), the difference being faithful engram of a novel spatial experience ‘as it 

is’, versus further information processing by the brain and flexible use of the derived 

‘secondary information’ for guiding behavior. Place-cell sequences occur during the 

awake state during pauses in behavior at reward sites, in which the previously 

experienced behavioral sequence is replayed in not only the same (forward) order, but 

also surprisingly the opposite (reverse) order (Foster & Wilson, 2006; Diba & Buzsaki, 

2007; Davidson et al., 2009; Karlsson & Frank, 2009), and in a manner likely to be 

modulated by reward outcomes such that receipt of reward may enhance replays of paths 

leading to reward (Singer & Frank, 2009), hence providing an ideal representation for 

associating locations with graded predictions of expected future reward (Montague et al., 

1996; Foster & Wilson, 2006). More recently, it has been demonstrated that SWR-

associated place-cell sequences occurring immediately prior to movement in a spatial 
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memory task depict the future trajectory that the animal will take to the remembered goal 

location (Pfeiffer & Foster, 2013). Therefore, hippocampal SWR-associated place-cell 

sequences might provide a mechanism by which the brain addresses the learning, 

memory, and planning demands inherent in memory-based navigation (Tolman, 1948; 

O'Keefe & Nadel, 1978). 

 

It should be noted that studies prior to the discovery of reactivation activities had already 

demonstrated learning-related changes in hippocampal neural responses. At the synaptic 

level, it has been shown that one-trial inhibitory avoidance learning enhanced field 

excitatory postsynaptic potential slope in CA1 (Whitlock et al., 2006), and that 

exploration of a novel environment rapidly induced a persistent reversal of high-

frequency stimulation-induced long-term potentiation in CA1 (Xu et al., 1998). On the 

level of single place cell activities, (Mehta et al., 2000) reported a backward skewing of 

place field shape and an increase in place field size during repeated traversal on linear 

tracks within the same recording session; (O'Keefe, 1976; Hollup et al., 2001) observed 

that previously silent cells formed new place fields after a sudden change in the 

environment; (Muller & Kubie, 1987) demonstrated changes in place fields in various 

ways following different manipulations of the recording environment; long-term changes 

were shown as place cells started to distinguish between a familiar and a novel cue card 

across recording sessions (Bostock et al., 1991), or a circular environment and a square 

environment across days (Lever et al., 2002). These interesting findings provided strong 

evidence to the general understanding that the hippocampus responds quickly and often 

with persistent changes to experience, or anything novel the animal may encounter in its 
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environment, although their relationships with replay are still unclear. Changes in 

synaptic activities, as discussed earlier, may underlie formation or modification of replay 

which in turn may provide sufficient temporal contingencies for further potentiation of 

specific synapses; changes in place fields most likely alter replay representation which 

can be decoded by using each place cell’s place responses in the entire environment 

(Davidson et al., 2009), while replay may also play a role in the formation and 

stabilization of place fields which might be updated within the same spatial experience 

through mechanisms occurring during awake replays. A further plausible hypothesis may 

be that learning mechanisms within the hippocampus might not be necessary in certain 

situations for acquiring place fields (Hill, 1978), but might always be necessary for 

configuring rapidly the relationships between place fields as expressed in replay. It 

should be recognized that sequence replay is the only form of hippocampal activity that 

reflects learning-induced changes at the level of coordinated neuronal ensemble activities 

and clearly depicts spatial relationships among single neuron representations as well as 

extended episodes of experiences, while research at all levels need to be continued to 

achieve a complete understanding of hippocampal processes. 

 

Finally, many important studies contributing to the discovery and characterization of 

place-cell sequence replay have used linear tracks (Foster & Wilson, 2006; Diba & 

Buzsaki, 2007; Davidson et al., 2009), which however oversimplify real-world situations. 

Complex environments, in particular those composed of branching structures, together 

with more complex spatial behavioral tasks, have been used to study replay. These 

experimental paradigms have yielded novel properties and significant insights about 
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replay. For example, (Karlsson & Frank, 2009) discovered prevalently occurred remote 

replays of the previous environment when rats were exploring the current environment, 

using W-shaped mazes; (Gupta et al., 2010) used a two-choice T maze and found that the 

frequency of a trajectory being replayed did not simply follow the recency or frequency 

of  the experiences of that trajectory. As research is progressing to attempt to address 

more complicated questions about replay, complex environments may become 

increasingly desirable for providing sufficient spatial complexities and behavioral 

contingencies, depending on the specific questions of interest. 

1.3 A functional hippocampal-prefrontal network 

The roles of the hippocampus in important behaviors such as spatial navigation can be 

summarized as learning and encoding detailed spatial information, plus possibly other 

associated features such as reward information, about the navigational environment, and 

displaying such information in a manner suitable for action planning. To accomplish the 

navigation behavior, involvement from other brain areas is required for reaching the final 

decision for the next destination or desired route. It is crucial to understand what and how 

hippocampal output is utilized by these brain regions, which however remains largely 

unknown. One brain area responsible for carrying out complex ‘executive functions’ that 

involve planning, problem solving, outcome prediction, etc., is the prefrontal cortex, 

which has been intensively studied in humans and non-human primates. Rodents have 

also been used as animal models for the study of the prefrontal cortex. Although lacking a 

repertoire of complex behaviors comparable to primates, rodents are certainly able to 

perform tasks that demand rule learning, reversal learning, response inhibition, working 
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memory, and decision making (Kesner & Churchwell, 2011). Importantly, strong 

evidence emerging from rodent studies suggests the existence of a functional 

hippocampal-prefrontal network. Anatomical examinations revealed reciprocal 

connections between the two brain areas, including monosynaptic projections from the 

ventral CA1 to the medial prefrontal cortex (mPFC) (Swanson, 1981; Jay & Witter, 1991; 

Carr & Sesack, 1996; Thierry et al., 2000). The dorsal CA1 area does not have direct 

connections with the mPFC, which have been suggested to interact via indirect pathways 

that involve the ventral CA1, the perirhinal and postrhinal cortices, and the reuniens 

nucleus of the midline thalamus (Fanselow & Dong, 2010). Lesion studies such as 

reported in (Wang & Cai, 2006) observed spatial memory deficits after disconnection of 

the network, e.g. by contralateral muscimol injections which deactivate either brain 

region in both hemispheres. Lesions to the mPFC or the hippocampus alone also impair 

spatial navigation, spatial memory, and goal-directed behaviors (Floresco et al., 1997; De 

Bruin et al., 2000; Brown & Bowman, 2002; Jones, 2002; Vertes, 2006). 

Neurophysiology experiments further demonstrated, at the neuronal network level, 

coordinated activities between the two structures in both important states of hippocampal 

activities (Buzsaki, 1989): during engagement in various spatial navigation tasks, spike 

trains of medial prefrontal single neurons are phase locked to hippocampal theta rhythm 

while correlated with firings of CA1 cells in a pairwise manner; coherence between local 

field potential (LFP) signals also increases and shows significance only in the theta-

frequency range. Interestingly, this synchrony can be altered by behavior, and can display 

significant enhancements during ‘choice epochs’ demanding working memory and 

decision making (Hyman et al., 2005; Jones & Wilson, 2005; Siapas et al., 2005; 
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Benchenane et al., 2010). Similar forms of coactivation were also uncovered during 

slow-wave sleep (SWS), an important brain state for memory consolidation (Wilson & 

McNaughton, 1994; Walker & Stickgold, 2006; Rasch & Born, 2013), during which the 

hippocampus exhibits high-frequency sharp-wave ripple bursts strongly associated with 

reactivation of previous waking experiences (Wilson & McNaughton, 1994; Kudrimoti et 

al., 1999; O'Neill et al., 2008; Nakashiba et al., 2009; O'Neill et al., 2010). (Siapas & 

Wilson, 1998) first reported, during SWS, the co-occurrence of SWRs and mPFC 

spindles – characteristic slow-wave thalamocortical oscillations (Steriade et al., 1993), 

and co-firing of CA1 and mPFC neurons around these LFP events.  

 

These fascinating findings established that neural activity synchronization, as manifested 

by co-occurred cell-pair spikes, entrainment of spikes to LFP rhythms, and coherent or 

coincident brain wave oscillations, is a fundamental mechanism of hippocampal-

prefrontal interaction. Indeed, coactive cell assembly that arise from this synchronization 

exert greater influences on downstream neurons with simultaneously arrived synaptic 

inputs, thereby triggering participation of targeted neurons and selectively strengthening 

synapses according to spike timing-dependent plasticity; such network-wise coordination 

may be facilitated by broad-scale extracellular voltage fluctuations which may help 

maintain constant cross-region spike timing differences.  This mechanism has been 

suggested by previous studies to ultimately control the flow and storage of information 

between brain areas - yet still unclear is the specific information being communicated, 

which becomes the next important question towards an understanding of the 

hippocampal-prefrontal network. Recent advancement in multi-tetrode experimental 
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techniques enabled simultaneous, dual-region recordings of large numbers of neurons, 

and consequently the decoding of representation emerging at neuronal network level 

which could not previously be revealed from single neuron activities. By studying 

ensembles of mPFC neurons, (Peyrache et al., 2009) showed reactivation of coactivation 

firing patterns of specific mPFC cell assemblies, which emerged during task performance 

after rule acquisition, during post-training SWS which coincided with hippocampal 

SWRs. It was suggested that this reactivated pattern represented the newly learned rule, 

or was ‘tagged’ by a reward signal, in either case indicative of the information being 

exchanged in the hippocampal-prefrontal network during SWR epochs. 

 

While the representation of prefrontal neurons always proves difficult to be deciphered, 

that of hippocampal pyramidal cells appears to be, in most studies, straightforwardly 

spatial. Hippocampal place cells collectively represent the animal’s current location 

during running; prolonged firing sequences across place cell ensembles resulting from 

traversals along extended paths up to ten meters in length have been shown in multiple 

studies to replay in a temporally compressed manner, during not only post-running sleep 

but also awake immobile periods when rats were pausing on the track (Louie & Wilson, 

2001; Lee & Wilson, 2002; Foster & Wilson, 2006; Csicsvari et al., 2007; Diba & 

Buzsaki, 2007; Ji & Wilson, 2007; Davidson et al., 2009; Karlsson & Frank, 2009; Gupta 

et al., 2010). Also co-occur with SWRs, place cell replay events have been hypothesized 

to be an important hippocampal mechanism that plays significant roles in memory 

consolidation (Foster & Wilson, 2006; Ji & Wilson, 2007; O'Neill et al., 2010; Carr et al., 

2011) and planning of future actions (Diba & Buzsaki, 2007; Buckner, 2010). Could 
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there be any correlations between prefrontal activities and hippocampal replay, which 

may allow spatial trajectory information important for navigation, now well documented 

to be explicitly represented by replay, to be exchanged within the network? This 

correlation would be much more informative than pair-wise correlations between single 

prefrontal and hippocampal neurons, as the firing of a single hippocampal neuron does 

not differentiate between different trajectories passing the same location the neuron might 

be signaling. It should be noted that place cells might also represent non-locational 

information such as the passage of time or distance travelled (Pastalkova et al., 2008; 

MacDonald et al., 2011; Kraus et al., 2013), licking and taste (Ho et al., 2011), and 

emotional factors such as reward, fear, and stress (Moita et al., 2003; Lee et al., 2006; 

Royer et al., 2010), as revealed in specially designed experiments. As mentioned before, 

these features are likely encoded in relation to spatial locations in the hippocampal 

output, the understanding of which, like trajectory replay, should be achieved at the 

neuronal ensemble level and will also require the use of decoding schemes. Finally, the 

question of whether correlations exist between trajectory replay and prefrontal activities 

is also important for understanding place cell replay itself, as its interaction with neuronal 

processes in other relevant brain areas is indispensable to its proposed roles in complex 

functions known to demand multiple brain areas working in concert.  
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Chapter 2        General Methodology 

To study place-cell sequence replay and its relationship with concurrent prefrontal 

neuronal activities, we employed dual-region multi-tetrode recording techniques in awake 

behaving rats during performance of a spatial navigation task. This chapter describes 

experimental procedures and quantification methods that formed the basis of this thesis. 

2.1 Electrophysiology and behavioral task 

Male Long-Evans rats, 3.5-4.5 months in age, were pre-trained to run back and forth on a 

linear track (~167cm total length) for chocolate milk reward available at both track ends 

under moderate food deprivation (body weights kept no lower than 85% of original 

weights). The liquid reward was delivered by the experimenter remotely through long 

plastic tubings connected to the food wells placed at track ends. The purpose of pre-

training was to accustom rats to the routine of running for food reward on a track, which 

was ended when animals reached the performance criterion of running ~30 laps within 

30-40 minutes, usually after 1-2 weeks. Custom designed micro-drives consisting of 40 

independently adjustable tetrodes (Figure 2.1) were then implanted with half the tetrodes 

targeting the right dorsal CA1 area (-3.6mm, -2.2mm from bregma) and the other half 

targeting the right medial prefrontal cortex (+3.2mm, -0.8mm from bregma). The dura 

mater was retracted in both craniotomies. Tetrodes entered the brain after travelling 

through two cannulae at the bottom of the drive which were placed immediately above 

the exposures and secured with dental cement. During the next 5-12 days post-surgery 
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tetrodes were gradually advanced into the targeted brain structures by small increments 

per day while rats slept under bright light in a walled sleep box. Hippocampal tetrodes 

were moved into the CA1 pyramidal cell layer identified by the appearance of SWRs in 

the LFP and coincident intensive firing activities, with one tetrode left in the white matter 

above the cell layer, where the LFP is relatively flat and firing activities are absent, to 

provide reference signal to other CA1 tetrodes. The rat medial prefrontal cortex can be 

subdivided into the dorsally located precentral and anterior cingulate cortices, and the 

prelimbic, infralimbic, and medial orbital cortices in the ventral region, all with 

specialized functions (Dalley et al., 2004). We specifically targeted the prelimbic 

subregion as it has been most strongly implicated in cognitive processes and executive 

functions, with, although a long-standing debate, suggested homology to the primate 

dorsolateral prefrontal cortex, in addition to well-documented prominent connections 

with the limbic structures (Preuss, 1995; Vertes, 2006). Adjustment of the mPFC tetrodes 

was guided by stereotaxic coordinates roughly calculated for each tetrode based on their 

positioning within the cannula, whereby depth ranges were estimated according to the 

anterior-posterior and medial-lateral locations of the tetrodes, usually within 2mm-3.5mm 

from brain surface. Spiking activities were also relied on to gauge tetrode advancement, 

given that firing activities are very intense in the motor cortex dorsal to most of the 

medial prefrontal structure, which become much more sparse as tetrodes reach the mPFC. 

The prefrontal reference tetrode was kept in an adjacent cortical region without spiking 

activities. During the tetrode adjusting period, rats were initially given free access to food 

for at least 3 days to allow post-surgery recovery. They were then food deprived again, 

and re-trained on the pre-training linear track each day while connected to the recording 
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system. This second phase of pre-training was for the purposes of reacquainting the 

animals to tracking running as well as accustoming them to performing navigation tasks 

while being tethered. 

  

When all tetrodes were in position the first recording day began, on which rats were first 

exposed to a modified Y maze (Figure 2.2). The Y maze was composed of one long arm 

(145 cm run segment) and two short arms (65 cm run segment) all separated by 120
o
. 

Each arm had a wider reward area at the end (16 cm in length), where chocolate milk 

reward was delivered in the same way as described above. One short arm was chosen to 

be the central arm; the other two were termed alternating arms. The rat was placed at the 

baited end of the central arm and was allowed to freely explore the Y maze and rewarded 

according to an alternation rule: the first arrival at an alternating end was rewarded; 

thereafter returns to the central arm were rewarded while visits to the alternating arms 

were only rewarded if the arm identity was different to the last alternating arm rewarded. 

Two additional rules were imposed: only central arm → alternating arm runs were 

rewarded while alternating arm → alternating arm runs were unrewarded; only complete 

laps between reward areas were rewarded, e.g. if the rat runs from the central arm to half 

way of an alternating arm then returns to the central arm it will not be rewarded. This 

spatial alternation task was chosen because: 1) rats naturally exhibit spontaneous 

alternation behaviors (Lalonde, 2002), thus allowing brain activities to be examined in a 

natural behavioral state; 2) recordings can be done without the need of pre-training on the 

Y maze due to faster learning of a reward rule natural to rats, so that learning-related 

processes could be captured during the first exposure to the novel environment; 3) normal 
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performance of this task requires normal functions of both the hippocampus and mPFC as 

lesions to either area, as well as those abolishing communications between the two areas, 

were shown to impair performance (Brito et al., 1982; Deacon & Rawlins, 2006; Wang & 

Cai, 2006; Yoon et al., 2008). 

 

Spiking activities and local field potential signals were recorded (Neuralynx Inc., 

Bozeman, Montana) and online digitally filtered in different frequency bands (600 – 6000 

Hz for spikes and 0.1 – 500 Hz for LFP). Rats’ positions were signaled by a red LED and 

a green LED attached to the drive and were recorded from an overhead camera as X-Y 

coordinates in each frame. Fine adjustment of the tetrodes was made on each recording 

day to maximize cell yield, or to search a new group of mPFC neurons, which was 

completed as least half an hour before recording to ensure stability. Recording sessions 

lasted 1 - 2.5 hours and were ended when rats stopped running. 

 

Recordings lasted 3-8 days with one session run on each day and were terminated when 

cell yield became poor. Rats were sacrificed and lesions were made on selected tetrodes 

(around the boundaries and at the centers of the exposures) by passing current (30 µA for 

~5 seconds) through each tetrode. Animals were then perfused with formalin. Brains 

were removed, sectioned and stained for cresyl violet to verify tetrode recording 

locations. 
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The spike data were manually clustered in the software Xclust2 (M Wilson, MIT) mainly 

based on peak amplitudes. All subsequent data analysis was performed in Matlab 

(Mathworks, Natick, MA).  

2.2 Position linearization and place field computation 

Recorded positions were projected onto three lines (defined by the experimenter) aligned 

with the three arms of the Y maze. The three lines were then concatenated to produce a 

linear axis (see Figure 3.1 in the next chapter). Non-directional place fields were 

computed by using all spike data (1.8-1.9 cm position bins; for each bin, firing rate = 

total # spikes/total occupancy time) and smoothed with a Gaussian filter (SD = 5 bins). 

Note that firing rates on the three arms were separately smoothed to minimize mis-

estimation of place fields around the choice point. Putative interneurons (mean peak-to-

trough spike width < 0.34 ms) and neurons with insignificant place fields (peak firing rate 

on the Y maze <= 1 Hz) were excluded. The rest of the single units were considered 

putative place cells and were used in the following analyses.  

2.3 Candidate events and trajectory-specific subregions 

For each recording session, a smoothed spike density function was computed with all 

spikes from all putative place cells (10 ms time bins; Gaussian filter, SD = 15 ms). 

Candidate events were defined as epochs of spikes during which spike densities were 

above the mean of the function, and contained peaks above two standard deviations over 

the mean. Only candidate events which occurred when rats’ speed was slower than 5 
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cm/s were considered. A Bayesian decoding algorithm (Davidson et al., 2009) was then 

applied to the candidate events which calculated the probability of the ensemble of 

neurons representing each position bin during each time bin. 

 

Single-arm replays representing each individual arm and three types of joint replay 

extended across each pair of arms (C ↔ R, C ↔ L and R ↔ L; Referred to as CR, CL 

and RL) were considered. To maximize the likelihood of detecting all six types of replay 

in an unbiased manner, we segmented the posterior probability matrix of each candidate 

event in both position and time to further define trajectory-specific subregions. Each 

candidate event was first separated along the position axis into three segments 

corresponding to the three arms (Figure 2.3). We defined a maximum a priori probability 

function (MAP) as the largest probability across all positions per time bin, smoothed in 

time with a Gaussian filter (SD = 10 ms; blue curves in Figure 2.3). Each single-arm 

segment was then segmented in time and a trajectory-specific subregion was created 

around the largest peak of MAP to include time bins whose MAP values were above a 

threshold of five times the chance level, namely (1 / # ) 5total position bins  (a fixed 

threshold only dependent on the size of the track and not the quality of neuronal data). 

The trajectory-specific subregions of the single arms were then combined in pairs to 

create those of the joint arms which expanded from the earliest to the latest time bins of 

the two corresponding single-arm subregions and contained all position bins belonging to 

the two corresponding single arms (Figure 2.3, right). It should be noted that all single- 

and joint-arm subregions were continuous in time, i.e. arm segments were not shifted 

across time bins so that they could be pieced together to form a longer sequence, thus this 
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segmentation method does not artificially create coherent coding of one arm and then 

another. 

2.4 Replay identification 

To determine if the posterior probabilities within a trajectory-specific subregion gave rise 

to a replay sequence, the following three variables were calculated:  

1. Length of subregion in time. 

2. Arm coverage: 

A position bin was considered to be represented in the subregion if its largest probability 

across time is above the threshold (1 / # ) 5total position bins . The percentage of 

represented positions out of all positions within the subregion was defined to be the arm 

coverage. 

3. Weighted correlation:  

An adapted form of the Pearson’s correlation, weighted correlation measures the strength 

of correlation between the changes in probability values across time and position and 

utilizes all pixels in the subregion, given by, 

Weighted mean: 
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Weighted covariance: 
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Weighted correlation: ( , ; ) cov( , ; ) / cov( , ; )cov( , ; )corr x y w x y w x x w y y w  

Where ix  is the thi time bin, jy  is the thj  position bin, ijw  is the probability of pixel ( , )i j

, M  and N  are the total numbers of time and position bins of a given subregion.  
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A single-arm subregion was determined to contain the corresponding single-arm replay if 

the following three criteria were met: 

1. Subregion length ≥ 50 ms (5 time bins); 

2. Arm coverage > 50%; 

3. Absolute weighted correlation > 0.5. 

 

A joint-arm subregion was determined to contain the corresponding joint replay if the 

following two criteria were met: 

1. Absolute weighted correlation > 0.5;  

2. Both of the constituent single-arm subregions meet criteria 1 and 2 for single-arm 

replays and have the same signs of weighted correlation as that of the joint-arm 

subregion. 

 

Finally, for a candidate event to be considered to contain a single-arm replay, none of the 

joint-arm subregions should contain any replays; for a candidate event to be considered to 

contain a joint replay, neither of the other joint-arm subregions should contain any 

replays. 
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Figure 2.1  

 

 

 

Figure 2.1 Micro-drive for simultaneous dual-region tetrode recordings with 40 

independently adjustable tetrodes 

(A) Three major structures of the drive, top ring, bottom cannulae, outer shell, were 

designed in Solidworks (Dassault Systèmes, Waltham, MA), a 3D CAD design software. 

(B) Picture of a completed drive. Tetrode wires were connected to the central electric 

board with gold pins.  
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Figure 2.2  

 

 

 

Figure 2.2 Modified Y maze design 

The left alternating arm is twice as long as the central arm and the right alternating arm. 
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Figure 2.3  

 

 

 

Figure 2.3 Illustration of definition of trajectory-specific subregions within a 

candidate event for replay detection 

An example candidate event (left panel) was first segmented in position, into three 

segments each corresponding to an individual arm: center top panel, the L arm; center 

middle panel, the R arm; and center bottom panel, the C arm. Blue curves are MAP 

functions defined as the largest posterior probability across all positions per time bin, 

calculated separately for each segment. Vertical dashed lines indicate the windows within 

which MAPs were above the threshold (1 / # ) 5total position bins marked by red lines, 

thus defining trajectory-specific subregions for the three single-arm segments. In this 

example, only C and R subregions passed all criteria for containing replay structure, 
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which were combined to define the subregion for the joint-arm path CR (right panel). 

This candidate event was finally determined to contain a joint replay of CR. 
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Chapter 3        Hippocampal replay captures the unique topological 

structure of a novel environment 

3.1 Specific aim 

Investigating hippocampal mechanisms important for spatial navigation provides an 

excellent study system for understanding how brain activities give rise to behavior. A key 

aspect of the navigation problem is dealing with the topological structure of the terrain, 

that is, which places are connected to, or accessible from, which other places. This 

structure determines the set of available paths that can be traversed, as well as the barriers 

that must be avoided. Navigational schemes that ignore topological structure, such as 

simple dead-reckoning, can work well in open, unobstructed environments such as those 

encountered by certain species of desert ant (Gallistel, 1990), but in more complex 

environments successful navigation is likely to require modes of planning that 

incorporate topological structure (O'Keefe & Nadel, 1978), to calculate efficient routes to 

distant goals through non-trivial spatial configurations such as branches or barriers. As 

discussed in Chapter 1, place-cell sequence replay appears as an ideal candidate for 

linking discrete locations within the environment in a coherent manner: we hypothesized 

that hippocampal SWR-associated place-cell sequences would capture the spatial 

topology of the environment, rather than capturing only the temporal structure of 

experiences in the environment as independent episodes. The cognitive map theory 

proposes the same idea that hippocampal representation is achieved through 

accumulating and integrating information across experiences to encode the environment 
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‘as a whole’. While spatial environments can be defined by many different properties, we 

focused on hippocampal representation of the topological structure, i.e. segmentation of 

maze-like environments and how different segments are connected and spatially related 

to one another. We suggest that understanding the true representation of place-cell 

sequence replay will provide significant insights for understanding the hippocampus. 

3.2 Quantification methods 

We tested our hypothesis by recording place cell activity while rats explored a novel 

environment with unpredictable structure: a Y shaped maze with asymmetrical arm 

lengths. Data from the very first sessions of Rat 1 and 3 are presented in this chapter. Rat 

2 did not explore all three arms in his first session (he only made one trip to the reward 

area of the right alternating arm, ran back to the central arm reward area and stayed there 

during the rest of the session); data from his second session on the following day is 

presented here. During periods of time when rats’ speed was slower than 5 cm/s, 2514 

candidate population spiking events from Rat 1, 3222 from Rat 2, 2902 from Rat 3 were 

found, within which replay events were identified using methods described in Chapter 2. 

3.2.1 Cumulative replay numbers and place field modular shuffle 

To quantify replay occurrence, we focused on changes in replay number across stopping 

periods - periods of time spent between run at a reward area - where the majority of 

reactivation activities occurred. For each joint replay type, the cumulative number of 

identified replays was counted for each stopping period, starting from the one 

immediately following the first lap of traversal across the corresponding arms.  
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A place field modular shuffle, which circularly shifted each cell’s place field by a random 

number of position bins, was used to determine the stopping period by which the 

cumulative number of a replay first reached a significant level. This method preserved 

each cell’s spike train and local place field structure. The same algorithm described in 

Chapter 2 sections 2.3 & 2.4 was applied to cells’ shuffled place fields and original spike 

trains to create sample distributions of cumulative replay numbers (5000 shuffles), from 

which Monte Carlo p values of the original cumulative numbers were calculated. First 

significant stopping period was defined by p < 0.05 (Figures 3.7B-J). The number of laps 

(running from one arm end to another) of corresponding arm traversals was used to 

quantify the amount of physical experience acquired before the first significant stopping 

period. Total numbers of replays in each session, from original and shuffled data, were 

used for Figure 3.2E. 

3.2.2 Comparison of cell activities in joint replay common segments  

To understand the underlying neuronal firing patterns of joint replays, we compared 

individual neuronal firing activities during the spatially overlapping segments of joint 

replays that represented a common arm, between joint replays depicting diverging paths. 

Take joint CR and CL replays for example: first, we found all the cells that ever fired a 

spike during the C segment of CR (set 1) or CL (set 2) replays. The size of intersection of 

the two sets was compared to that of either set to quantify overlap. Next, firing rates 

during the C segment of each joint replay were calculated for cells belonging to the union 

of the two sets. Each cell’s firing rates in CR and CL replays were compared by using the 

Kolmogorov-Smirnov two-sample test. Lastly, the distribution of the absolute differences 
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between cells’ mean firing rates in CR and CL was compared to shuffles in which the 

types of the joint replays were randomized (group sizes were kept the same), also by 

using the Kolmogorov-Smirnov two-sample test. 

 

Due to the small numbers of joint replays of Rat 2 (see Figure 3.2E) we only used its CR 

and RL replays in the analyses of this section. 

3.2.3 Directionality of replay 

Directional place fields were calculated using spike and position data from only inbound 

or only outbound laps, for each arm. Joint probabilities estimated over both position and 

direction ((Davidson et al., 2009); time bin = 10 ms) were computed for all identified 

replays. Two variables were calculated to quantify directionality by using joint 

probabilities within the corresponding trajectory-specific subregions. 

 

The first variable ‘directional’, defined by 
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where 1ijw and 

2ijw are the joint probabilities of the inbound and outbound directions of pixel ( , )i j , 

measures on average how directional a replay is during each of its time bins. It has a 

range of 0 - 1, with 0 indicating totally not directional and 1 indicating totally directional. 

Replays with values larger than 0.3 were considered directional, otherwise they were 

considered non-directional. The threshold is fixed so that it is independent of the data 

(same below).  
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For a replay determined to be directional, the second variable ‘bias’, defined by 
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, was then used to measure if this replay as a whole was 

consistently biased towards representing either direction. It has a range of -1 to 1, with -1 

indicating pure representation of the outbound direction and 1 indicating pure 

representation of the inbound direction. Replays with values larger than 0.3 were 

considered to have stronger representations of the inbound direction over the outbound 

direction; smaller than -0.3 to have stronger representations of the outbound direction 

over the inbound direction; between -0.3 and 0.3 to have mixed representations of both 

directions.  

 

Finally, replays were determined to be forward if ‘bias’ and motion were in the same 

direction, reverse if ‘bias’ and motion were in opposite directions and mixed if ‘bias’ was 

mixed. For joint replays, directionalities of their two segments were separately 

determined using joint probabilities within the two corresponding subregions. 

3.2.4 Ripple and multi-unit activity analyses 

Ripple amplitude was calculated as in (Davidson et al., 2009) with minor changes. We 

filtered the LFP signal from each selected channel in the ripple band (150-250 Hz), and 

Hilbert-transformed the filtered signal to compute its envelope as the absolute value of 

the transformation. The mean envelope averaged across all selected tetrodes (15, 13, and 

13 out of 19 tetrodes for rat 1, 2, 3) was smoothed with a Gaussian window (SD = 8 ms) 
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to represent a continuous mean ripple amplitude. Individual ripples were also detected as 

local peaks in the ripple amplitude curve over 2.5 standard deviations above the mean, 

which were both calculated across all stopping periods. We defined the time point at 

which replay ‘passes’ the choice point as the mean of inner boundaries of the two 

corresponding single-arm trajectory-specific subregions. Ripple amplitude trace 

associated with each joint replay was aligned to this time point to compare ripple 

amplitude between choice point representation and representations of the preceding and 

following arms across all joint replays. Multi-unit spikes were defined as all recorded 

spikes whose largest amplitudes across tetrode channels were larger than 100 µV. Multi-

unit spike density was smoothed across 10 ms bins (Gaussian filter, SD = 6 ms).  

3.3 Results 

Multi-tetrode recordings in the dorsal CA1 area of the hippocampus were conducted in 

three rats that were exploring the Y maze for the first time. Rats were allowed free 

exploration and were rewarded with chocolate milk at arm ends according to a spatial 

alternation rule (see Chapter 2 section 2.1). Putative CA1 pyramidal single units were 

identified, and their place fields were computed. Only pyramidal cells with peak in-field 

firing rates exceeding 1 Hz (88 from rat 1, 67 from rat 2, 58 from rat 3) were used in the 

following analyses. 
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3.3.1 Abundant joint replays spanning each two connecting arms were 

identified 

To detect hippocampal replay, we first identified candidate events (mean duration 154.6 

ms) as transient increases in spike density across all cells, occurring during stopping 

periods restricted to the three reward areas. A Bayesian decoding algorithm (Davidson et 

al., 2009) was used to estimate posterior probabilities of position during candidate events. 

Based on posterior probabilities, candidate events were segmented in position and time, 

into trajectory-specific subregions (Figure 2.3). Within each subregion, replays were 

defined as events with a high correlation between position and time, using a weighted 

correlation method with posterior probabilities as weights. We found large numbers of 

joint replays in all three animals, which extended across pairs of arms (C ↔ R, C ↔ L 

and R ↔ L, referred to as CR, CL and RL; rat 1: N = 164, rat 2: N = 32, rat 3: N = 66; see 

examples in Figures 3.2B-D). These joint replays were readily identified after just the 

first few running laps across arms and then consistently throughout the recording sessions 

(see timepoints of example replays in Figure 3.2A).  

 

The significance of replay was evaluated by applying the replay-identification method to 

shuffled data in which each cell’s individual spike train and place field structure were 

preserved, but the spatial relationship between different cells was disrupted, by circularly 

shifting the place field of each cell independently by a random number of position bins. 

For each rat, each type of joint replay was highly significant in number as compared to 

shuffles (Monte Carlo p < 0.001, except for CL of rat 2: p = 0.025 and CL of rat 3: p = 

0.002; Figure 3.2E).  
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We also observed large numbers of replays representing single arms (Rat 1: N = 593, Rat 

2: N = 355, Rat 3: N = 203). However, it is possible that many single-arm replays were 

partial joint replays where one of the arms was below detection threshold. In support of 

this, the fraction of spike density events occupied by single-arm replays (ratio of 

trajectory-specific subregion duration to candidate event duration for each replay) was 

significantly lower than for joint replays (Figure 3.2F). We therefore focused on joint 

replays in the following analyses, also for the additional reason that the Y maze structure 

– the joining of three arms – could only be reflected in the joint replays.  

3.3.2 Multiple trajectories were replayed in the same stopping period 

Further analyses of replay content revealed that across all stopping periods of the three 

animals, 90.8 ± 2.4% of the joint replays started from the current arm, confirming the 

initiation bias that has been reported (Foster & Wilson, 2006; Davidson et al., 2009). 

Previous reports of replay on a linear track demonstrated that each stopping period was 

associated with multiple replay events of the same trajectory (Foster & Wilson, 2006). 

This was interpreted as efficient use of experience. Here we likewise found that 

individual stopping periods yielded multiple replay events (2.0 ± 0.3 joint replays, and 

8.9 ± 1.5 single-arm replays). However, in contrast to the linear track, we observed that 

on the Y maze, individual stopping periods were associated with multiple replays 

depicting different trajectories. A large fraction of stopping periods which exhibited joint 

replay contained replay of multiple different trajectories (38.1%). Indeed, for stopping 

periods exhibiting joint replay, on average 1.5 ± 0.1 types of joint-arm trajectory (from a 
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range of 1-3) were represented (see Figure 3.2A). Thus, stopping periods were associated 

with replay of more than one experience.  

3.3.3 Neuronal sequences were bifurcated  

While the use of position estimation allowed the information content (i.e. trajectory) of 

replay sequences to be decoded, we further wished to identify the basis of this 

information content in the responses of individual neurons. In particular, we considered 

two models that might have accounted for the joint replays we observed. Joint replays 

could have been encoded using independent populations of neurons (Figure 3.3A), thus 

the underlying neuronal sequences would be linear, which would in essence be the same 

neuronal sequences encoding independent linear tracks. Alternatively, common arms of 

joint replays could have been encoded by the same cells (Figure 3.3B), thus the 

underlying neuronal sequences would be bifurcated, truly encoding the forked Y maze 

structure.  

 

For each pair of joint replays proceeding from each arm, the cells which fired during the 

common segment were almost identical: on average 93.6 ± 2.2% of the cells which fired 

in one replay also fired in the other. Furthermore, these populations did not differ in 

firing rate between the two replays. For example, Figure 3.3C shows cells from Rat 1 

which participated in firing during the C segments of CR or CL replays. Despite the wide 

range of firing rates among different cells, each individual cell had almost identical firing 

rates between CR and CL replays (the almost complete overlap between blue and 

magenta curves). Across all three rats, an average of 98.0 ± 0.5% of the participating 

cells (which were 94.9 ± 1.7% of all cells) had no significant difference between their 
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firing rates during the common segments (p > 0.05, Kolmogorov-Smirnov two-sample 

test). Finally, the distributions of absolute differences in mean firing rate between the two 

replays were not significantly different from those of shuffles in which replay type was 

randomized (p > 0.10 for all comparisons, Kolmogorov-Smirnov two-sample test; 

Figures 3.3D-F). These results demonstrate that the same ensemble of cells fired during 

the common arm of overlapping joint replays with equal firing rates, as if they did not 

distinguish between the two types of replay, implying that joint replays reflected, at the 

neuronal level, the bifurcating spatial structure of the maze. 

3.3.4 Replays were highly directional 

We next asked whether directionality (Figure 3.4A) was encoded by replay and whether 

it might reflect the structure of the Y maze. Directional place fields were calculated and 

were used to compute joint posterior probabilities over both position and direction 

(Davidson et al., 2009), for the already identified replays. The directionality of a replay 

was quantified using two scores. ‘Directional’ measured the extent to which the replay 

tended to be directional during each time bin regardless of which direction was preferred, 

on a scale of 0 - 1. ‘Bias’ measured the extent to which a ‘directional’ replay as a whole 

favored one direction over the other, on a scale of -1 (outbound) to 1 (inbound). We 

further compared ‘bias’ with the direction of motion of replay to categorize replays as 

either forward (‘bias’ and motion in the same direction) or reverse (‘bias’ and motion in 

opposite directions). Across all three rats, the overwhelming majority of replay sequences 

(97.7%, including single-arm replays and the component segments of joint replays) had a 

‘directional’ score larger than 0.3. This threshold corresponds to a divergence between 

the marginal probabilities in either direction such that the probability in one direction was 



41 

 

almost double that in the other (0.65 to 0.35). In fact the mean ‘directional’ score was 

0.62 ± 0.00, which corresponds to a four-fold difference in marginal probabilities (0.81 to 

0.19). Thus, replays were highly directional. 

 

We then asked whether the components of joint replays exhibited the same ‘bias’. 

Strikingly, while joint replays exhibited various combinations of ‘bias’, only 8.0% were 

either consistently reverse (a reverse sequence of the outbound direction followed by a 

reverse sequence of the inbound direction, 4.6%, see example in Figure 3.4B), or 

consistently forward (a forward sequence of the inbound direction followed by a forward 

sequence of the outbound direction, 3.4%, Figure 3.4C). By contrast, 31.3% of joint 

replays were composed of segments with opposing biases (such as reverse in the 

outbound direction followed by forward in the outbound direction, Figure 3.4D). Thus, a 

large fraction of joint replays switched directionality when ‘passing’ the junctions of the 

two represented arms, implying the encoding of the choice point location in replay 

directionality.  

 

We then asked whether joint replays with opposing biases displayed random 

combinations or whether instead they obeyed an organizing principle. Strikingly, a far 

greater fraction of replays was reverse followed by forward (30.5%) than forward 

followed by reverse (0.8%). Comparing different directionalities for the joint replay 

segments separately, we found that consistently across stopping periods throughout a 

session, the first segment tended to be reverse (Figure 3.4F, upper panel) and the second 

segment tended to be forward (Figure 3.4F, lower panel). This consistency was 
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maintained across replays initiated in different arms (Figure 3.4F, overbar). This pattern 

of organization was consistent across the three animals. That is, for each of the three rats 

it was found that first segments were significantly more reverse than forward (p < 10
-4

 in 

each rat, Figure 3.4G upper panel) whereas second segments were significantly more 

forward than reverse (p < 0.001 in each rat, Figure 3.4G lower panel). Given the bias for 

replay to start from the current location and proceed along multiple trajectories, these 

data suggest replays of the most immediate behavior were mostly reverse, while more 

diversified and distant replays were mostly forward. 

3.3.5 Ripples were specifically associated with arms during joint replays  

In a ten-meter long linear track, (Davidson et al., 2009) observed extended replays 

covering several meters of the track, which were associated with multiple ripple events. 

Their findings suggested that replays in a large environment were not only extended in 

duration but furthermore composed of discrete, shorter sub-events. Considering the Y 

maze as a relatively large environment consisting of spatially distinct segments (the three 

arms), we wondered whether replay sequences would be associated with multiple ripple 

sub-events, and whether these events would exhibit a correspondence with the maze 

structure. Indeed, a majority of joint replays (79.5%) were accompanied by more than 

one ripple event (median = 2, Figure 3.5). Moreover, joint replays representing the longer 

CL and RL trajectories were significantly longer and contained significantly more ripples 

than those representing the shorter CR trajectory (Mean duration: CR = 193.2 ± 3.7 ms, 

as compared to CL = 234.9 ± 13.7 ms, t(200) = -4.1, p < 10
-4

, and RL = 236.8 ± 7.4 ms, 

t(227) = -5.7, p < 10
-7

; Mean ripple number: CR = 2.2 ± 0.1, as compared to CL = 2.6 ± 

0.2, t(200) = -1.8, p = 0.068, and RL = 2.7 ± 0.2, t(227) = -2.9, p = 0.004, two-sided two-



43 

 

sample t tests), although not by 1.5 times as the physical joint-arm lengths were. Each 

type of joint replay also exhibited a positive linear relationship between replay duration 

and associated ripple number (Linear regression: CR: R
2
 = 0.17, 9.0 ripples/s, CL: R

2
 = 

0.22, 7.0 ripples/s, RL: R
2
 = 0.33, 11.9 ripples/s, p < 0.01 for each replay type; compare 

to 9.9 ripples/s in (Davidson et al., 2009)).   

 

We then examined the relationship between ripples and the maze arms depicted in the 

associated replay sequences. Figures 3.6A-C show example joint replays of each type 

along with underlying unit activities and accompanying LFP. It can be seen in the raw 

LFP recordings that 1-2 ripple events occurred during the replay of each individual arm, 

but ripples did not straddle the choice point. We calculated ripple amplitude as in 

(Davidson et al., 2009) as a single trace averaging ripple activities across selected 

tetrodes, and observed similarly 1-2 peaks (corresponding to discrete ripple events) 

during individual arm representations, together with low ripple amplitude at choice point 

representations. We then aligned the ripple amplitude trace of each joint replay to the 

time point when choice point was represented, around which the mean traces across all 

CL or RL replays also showed ‘dips’ in between two broad peaks (Mean ratio of ripple 

amplitude at choice point to averaged amplitude between highest peak on either side of 

choice point: CL = 0.64 ± 0.04, RL = 0.64 ± 0.03; Figures 3.6E,F,H,I, offset of dips from 

0 ms most likely due to inaccuracies in ‘choice point passing time’ calculations). 

Interestingly, the ‘dip’ in the mean CR trace was very small (choice point – to – peak 

average ratio = 0.74 ± 0.02, Figures 3.6D,G), suggesting that the effect was most 

prominent for replays representing longer trajectories, that extend for longer durations 
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and contain more ripples. Furthermore, this effect was not simply due to weaker place-

field representation at the choice point. By computing two-dimensional place fields we 

compared the mean firing rate across all pixels located within choice-point area (≤ 10cm 

along linearized directions to track center), with the mean firing rate across all pixels 

within track arms (>15cm along linearized directions to track center), across all cells. We 

found that place-field representation at the choice point was similar to, or marginally 

stronger than, the representation at arm portions of the Y maze: Rat 1: choice-point = 

1.72 ± 0.22 Hz, track-arms = 1.33 ± 0.14 Hz, t(174) = 1.5, p = 0.14; Rat 2: choice-point = 

1.83 ± 0.34 Hz, track-arms = 1.12 ± 0.13 Hz, t(132) = 1.9, p = 0.055; Rat 3: choice-point 

= 1.67 ± 0.24 Hz, track-arms = 1.34 ± 0.14 Hz, t(114) = 1.2, p = 0.23 (unpaired two-sided 

two-sample t tests ). Thus, in addition to demonstrating that extended joint replays were 

composed of multiple discrete sub-events, we made the observation that these sub-events 

clustered into representations of entire single arms, rather than of random portions of the 

joint-arms. 

3.3.6 Joint replays were detected after little experience 

We further asked, given that joint replays with environment-specific structure occurred 

during the first exposure to the environment, how rapidly within the session can such 

replay be detected? To address this question, we determined the stopping periods by 

which joint replays reached significant numbers, by counting the cumulative number of 

each type of joint replay for each stopping period, in original and shuffled data. We then 

counted the number of experiences of a replay before the first significant stopping period 

for that replay. For example, for Rat 1, all three types of joint replay rapidly outgrew 

shuffles in numbers (Figures 3.7B-D) and reached significant numbers after 2 - 4 



45 

 

experiences of the corresponding joint arms (Figure 3.7A). This pattern was replicated for 

every joint replay type, in each animal independently. Each animal acquired at least one 

of the joint replays after only 2 laps on the track (Figures 3.7B-J). Across all animals, an 

average of 3.3 ± 0.4 laps on corresponding joint-arms were experienced before the first 

significant stopping periods.  

3.4 Discussion 

3.4.1 Y maze structure was captured by individual neuron and 

population activities 

In this study, we asked whether and how hippocampal place-cell sequences would reflect 

the topological structure of an environment of unpredictable shape, with the hypothesis 

that navigationally useful sequences should capture this structure. We found that patterns 

of replay developed during the first exposure to a nonlinear environment that matched the 

sequential structure of the environment. This structure included unique elements such as 

bifurcated paths, and unequal lengths of the track arms. Most importantly, this nonlinear 

structure was captured at the level of the individual neurons. Spatially overlapping 

episodes (i.e. the common part of pairs of joint arm traversals) were not replayed by 

independent populations of neurons, but by the same neurons with the same firing rates. 

Hence, the neuronal activities appear to be effectively “stitched together” in a manner 

reflecting the shape of the maze. Since replay structure may be determined by the 

functional connectivity pattern among recruited neurons, our result implies that different 

experiences of the track were encoded not by drawing random neuronal sequences from 

the network, but rather in such a way that each novel experience activates the 
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participation of a neuronal sequence (with new neurons and new connections) that match 

the spatial relationship between the novel experience and the familiar portion of the 

environment. Because the structure of the maze was unpredictable, these findings suggest 

that the neural network mechanisms responsible for generating these place-cell sequences 

involve learning. 

 

The common coding scheme for spatially overlapping replays may have functional 

implications. Even though the animals traversed one joint-arm trajectory at a time, the 

separate running experiences were integrated in the brain so as to reflect the correct 

connectivity between the three track arms. This observed property of replay implies the 

construction of a map-like hippocampal representation of the navigational environment as 

a whole, which importantly enables the ‘prediction of what leads to what’ (O'Keefe & 

Nadel, 1978) and consequently flexible calculations of efficient routes between any two 

locations within the environment. This form of representation may support the generation 

of novel routes, such as short cuts, as well as appropriate generalization in the face of 

changes to the environment e.g. effective detours to avoid novel obstacles. Such a scheme 

has clear advantages for navigation over the unintegrated representation of separate 

experiences, as would the case if bifurcated paths were encoded by different populations 

of neurons, since this scheme would only support the selection of paths from the limited 

repertoire of encoded paths gained through direct experience. This observation made in 

the relatively simple Y-maze may imply a basic coding scheme for more generalized 

environments, whereby the hippocampus encodes the complete spatial structure as 

opposed to separate running experiences. 



47 

 

 

Additionally, we found that joint replays were accompanied by multiple ripple events, 

confirming a recent finding that extended replays may be composed of discrete sub-

events (Davidson et al., 2009). Moreover, ripple occurrence was confined within the 

boundaries of joint replay segments that represented individual arms, which suggested 

that the precise times at which ripples were generated during replay were not random. 

Instead, one or more sub-events were closely clustered to represent linear components of 

the environment, while longer intervals between clusters accurately signaled the location 

of the arm intersection, again matching the spatial structure of the Y maze. Furthermore, 

the difference in arm lengths was also reflected by replay, in that physically longer 

trajectories (CL and RL) were represented by replays longer in duration, and 

correspondingly larger numbers of ripple events. The ratios of replay duration and ripple 

number between CL/RL replays and CR replays did not exactly match the ratios of track 

lengths (1.2 compared to 1.5), but this might have been due to systematic bias in the 

measurement of longer sequences when recording from  limited numbers of hippocampal 

neurons.  

3.4.2 Implications of joint replay directionality  

The directionality of replay sequences, and the existence of both forward and reverse 

sequences, have been reported previously for linear tracks and linear trajectories (Lee & 

Wilson, 2002; Foster & Wilson, 2006; Csicsvari et al., 2007; Diba & Buzsaki, 2007; 

Davidson et al., 2009). Here, we further show that replays of the linear pieces of a more 

complex environment are also overwhelmingly directional. Previous reports of replay on 

an extended track indicated that replays did not always represent a consistent 
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directionality, but could flip between forward and reverse (Davidson et al., 2009). Here 

we also see direction flipping, which in fact predominated among joint replays, with the 

additional finding that replay tended to flip direction around the choice point, supporting 

the notion that replay captured the unique structure of the environment. We further found 

that rather than the combination of forward and reverse components occurring at random, 

there is a distinct organizational pattern such that first segments of joint replays tended to 

be reverse, and second segments of joint replays tended to be forward. This finding 

combines in a fascinating way with two other findings in this task. First, we find that 

replay tends to start in the current arm. Second, we find that successive replays during 

single stopping periods can proceed along different trajectories. Integrating across these 

results, we can make the observation that joint replays tended to begin on the current arm 

and proceed in reverse order, before switching at the choice point to proceed along either 

of the two other arms in forward order. This organization suggests that reverse and 

forward replays may have different functions, with reverse replay representing a rewind 

of the immediate past, and forward replay representing the exploration of alternative 

futures, perhaps for the purposes of planning future behavioral trajectories. It is important 

to distinguish this classification of forward and reverse based on the directional tuning of 

place fields during bidirectional running (i.e. replays extending from point A to point B, 

or from point B to point A, can both be either reverse or forward), as used in the original 

report of reverse replay (Foster & Wilson, 2006), from an alternative classification that 

has been used, based on whether replay extends along the same unidirectional running 

path imposed by the task, or the opposite, never experienced running direction (i.e. 
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replays extending from point A to point B are defined as forward, replays extending from 

point B to point A are defined as reverse) (Gupta et al., 2010).  

3.4.3 Rapid occurrence of joint replays  

Recurrent networks in the hippocampus have highly modifiable synapses which are likely 

to undergo rapid synaptic plasticity during exploration (Buzsaki, 1989; Wilson & 

McNaughton, 1994; Martin et al., 2000; O'Neill et al., 2010), giving rise to rapidly 

reconfigured hippocampal circuits. Several computational models of the hippocampus 

have established the feasibility of using experience-dependent synaptic plasticity to 

acquire novel sequences (Jensen & Lisman, 1996; Levy, 1996; Leibold & Kempter, 

2006; Molter et al., 2007; Koene & Hasselmo, 2008), in some cases after a single trial of 

behavioral experience. Consistent with these models, we found that joint replays were 

detected in significant numbers after very few trials of experience. For several reasons, 

these numbers of trials before significant replay was detected are likely to be an 

overestimate. First, stopping period durations were at the discretion of the animal, and 

longer stopping periods would have increased the probability of observing replay at 

earlier timepoints. Second, many single-arm replays may have been in fact joint replays 

for which one arm failed to pass detection threshold (Figure 3.2F), because of inherent 

experimental limitations on our ability to measure replay, given that the number of 

neurons recorded represents only a tiny fraction of the total network. Rapid learning is a 

prominent feature of hippocampally dependent learning (Morris, 2001), and so the rapid 

learning of replay sequences may play a fundamental role in hippocampal function.  
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3.4.4 The phenomenon of ‘preplay’  

The standard interpretation of replay is that it represents a form of sequence memory, 

which may require synaptic plasticity to become established (Molter et al., 2007; Koene 

& Hasselmo, 2008; O'Neill et al., 2010). However, it was recently reported that neuronal 

sequences recorded prior to an experience matched the sequential order in which neurons 

responded during that experience (Dragoi & Tonegawa, 2011). These “preplay” 

sequences appeared to be indistinguishable in form from replay sequences, for example, 

they were similarly temporally compressed. The interpretation of this result was that, 

because experience is temporally linear, the hippocampus might utilize preexisting linear 

sequences to schedule the recruitment of place cells during subsequent behavioral 

episodes, in a manner analogous to laying down movies on videotape. However, although 

it is still an open question whether what is found from pre-sleep recordings are directly 

applicable to awake replays, which occur in a very different behavioral state, a 

remarkable corollary of this result is that all replay sequences observed subsequent to 

experience might in fact reflect pre-established sequences. We would like to distinguish 

our study from that of (Dragoi & Tonegawa, 2011) in the following arguments: First, the 

demonstration of preplay was in a task with linear structure, such that a pre-existing 

temporal order might control the subsequent recruitment of place cells. By contrast, we 

used a running maze with a forked structure, in which no linear order can be mapped 

continuously onto the spatial layout. Secondly, although the preplay study was recently 

repeated in rats (Dragoi & Tonegawa, 2013), some previous rat studies failed to observe 

preplay (Lee & Wilson, 2002; Foster & Wilson, 2006) which used similar sequence 

detection methods to (Dragoi & Tonegawa, 2011). To determine whether nonlinear 
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replays observed in complex environments are generated by pre-existing sequences or 

novel neuronal sequences formed from rapid reconfiguration of the hippocampal 

network, future research is required in detailed analyses of data recorded prior to any 

experience in complex environments in rats. Preliminary results from our pre-behavioral 

sleep recordings show that zero joint replay of any kind was detected from pre-sleep 

sessions of three rats, while all three types of joint replay were independently significant 

in numbers for each rat during run sessions (p < 0.03, Rat 2, 3, & additional Rat N); 

single-arm sequences were detected in pre-sleep sessions, which were insignificant in 

numbers as determined by using our place-field modular shuffle method (p > 0.09 for all 

rats) – although this result is confounded by the uncertainties in measuring single-arm 

sequences (Figure 3.2F). When recorded sufficient post-behavioral sleep data (Rat N), we 

found significant joint replays of all types (CR: N = 20, p = 4 x 10
-4

, CL: N = 4, p = 

0.006, RL: N = 5, p = 0.007) in the post-sleep session. It is important to note that pre-

sleep single-arm sequences are visually much lower in quality – much shorter in duration 

and more fragmented, with big jumps between positions represented with high 

probabilities – which are in clear contrast to run and post-sleep single-arm replays 

depicting continuous and extended trajectories with smooth transitions between adjacent 

locations (Figure 3.8). Post-sleep joint replays also exhibited high qualities in close 

approximation to run joint replays (Figure 3.9). Thus, our results question the existence 

of preplays matching trajectories experienced in a complex spatial environment; we also 

demonstrated that pre-existing sequences matching linear components of a complex 

environment, although detectable, or maybe even significant in numbers by using other 

significance-testing methods or experimental paradigms, are drastically different in 
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quality as compared to sequences detected after experience, which may imply weak 

synaptic connections or lower numbers of recruited neurons in the pre-existing place-cell 

sequences. The considerable improvement in quality in run and post-sleep replays, on the 

other hand, suggests that sequences were indeed modified by experience to more 

accurately represent the environment, if not established anew by experience. In general, 

however, it is puzzling whether the space of ‘spatial complexity’ needs to be exhausted in 

order to determine whether pre-existing sequences exist for all possible spatial structures; 

also, the essential question is whether the sequences are already encoded in the 

hippocampal network, not whether they are expressed as preplay events, since it is 

possible that certain sequences are not preplayed but stay latent in the hippocampal 

network at the time of recording. Nonetheless, we acknowledge the fact that the question 

of whether replay is the result of learning still remains unanswered. 

 

Finally, we showed that while sequences can be encoded rapidly, they are also rapidly fit 

into a structure which captures the sequential spatial structure of the environment. Thus, 

while hippocampal replay may be formed out of the experience of individual episodes, its 

adaptive role may rather lie in the construction of predictive representations to guide 

future behavior (Wood et al., 1999; Frank et al., 2000; Schacter & Addis, 2007; Pfeiffer 

& Foster, 2013). Determining the full relationship between hippocampal replay and 

hippocampally dependent learning, memory, and planning is a key future goal. 
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Figure 3.1  

 

 

 

Figure 3.1 Place cell activities in modified Y maze 

(A) Modified Y maze. C: central arm, R: right arm, L: left arm.  

(B) An example epoch of 106 s of recording. Top: Linearized running trajectory of Rat 1. 

Horizontal dashed lines indicate arm boundaries. Colored arrows on right indicate arm 

alignment along linear axis (same below). The rat ran through center → C → center → R 

→ center → L → center. Middle: Simultaneously recorded spike trains from 88 putative 

place cells, ordered by locations of the cells’ peak firing rates on linearized track. 

Position estimation based on these spikes is shown at bottom, where posterior 

probabilities of position representations in each 250 ms window were indicated by hot 

scale. 
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Figure 3.2 Joint replays were detected from neuronal data in significant 
numbers 

(A) Linearized position as a function of time for Rat 1 during first exposure to the 

modified Y maze. Colored ticks mark when and where example replays in panels B,C,D 

occurred.  

(B,C,D) Examples of identified replay events representing CR, RL, and CL trajectories 

from a single rat (Rat 1), in which position is decoded from neuronal spike trains in non-

overlapping 10 ms bins. Horizontal dashed lines mark arm boundaries. Replays in each 

row are ordered by the time of occurrence. The duration of each event in ms is shown 

below each example. 

(E) For each pair of joint-arms, the probability of observing the number of identified joint 

replays by chance is expressed as the distribution of the numbers of replays representing 

the same joint-arms sampled from 5000 shuffles as fractions of the number of joint 

replays actually observed (numbers in inset). Each type of replay from each animal was 

highly significant. 

(F) Histograms of fractions of candidate event time windows occupied by single-arm 

replays and joint replays are plotted for each animal, normalized by the total numbers of 

replays. Single-arm replays (0.6 ± 0.0 across all rats) occupied significantly smaller 

fractions of spike density events than joint replays (0.8 ± 0.0 across all rats; Rat 1: t(755) 

= -14.6, p < 10
-42

; Rat 2: t(385) = -5.8, p < 10
-7

; Rat 3: t(267) = -10.1, p < 0.02). 

  



56 

 

Figure 3.3  

 

 

 

Figure 3.3 The same group of cells fired during common segment of joint replays 

(A,B) Two hypotheses of how joint replays might be encoded. (A) Illustrates three 

independent populations of place cells with three separate sequences of place fields on 

the Y maze. Each pair of joint-arms is encoded by a separate sequence. (B) Joint replays 

were generated by a neuronal network which captures the spatial structure of the Y maze. 

The common segment of each pair of joint replays is generated by two different groups of 

cells in (A) and the same group of cells in (B). 
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(C) Mean firing rates of cells from Rat 1 during the common segment C of joint CR 

(blue) and CL (magenta) replays. The included cells fired at least one spike during the C 

part of at least one CR or CL replay. Note that firing rates for the two replay types are 

highly similar across cells. 

(D,E,F) Solid curves show cumulative distributions of absolute differences between 

cells’ mean firing rates during the common segments of paired joint replays (e.g. the blue 

and magenta curves in panel C). Dashed curves show distributions calculated from 5000 

shuffles in which replay types (e.g. CR and CL) were randomized. 
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Figure 3.4  

 

 

 

Figure 3.4 Joint replay directionality 

(A) The junction of the three arms is the choice point. Running towards choice point is 

‘inbound’, running away ‘outbound’. 

(B-E) Examples of joint replay with different combinations of directionalities from Rat 1. 

Horizontal dashed lines indicate arm boundaries. Black diamond shapes mark location of 

the rat when each replay occurred. Color scale set so that maximally saturated colors 

correspond to the largest position probability of each replay. (B) A consistent reverse 

replay of CR. (C) A consistent forward replay of RL. (D) A CR replay with a reverse C 
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segment followed by a forward R segment. (E) An RL replay with a reverse R segment 

followed by a mixed L segment. 

(F) Each bar shows, for all joint replays with at least one directional segment identified 

during each stopping period, the percentage of the first segments (upper panel) or the 

second segments (lower panel) with each directionality type (see legend). Joint replay 

number and location of each stopping period are shown in the overbar. Data from Rat 1. 

(G) Percentages calculated for all stopping periods combined, for the three rats 

separately. The total number of joint replays (with at least one directional segment) is 

shown in each bar plot for each rat. For each of the three rats it was found that first 

segments were significantly more reverse than forward: Rat 1: reverse = 0.58 ± 0.06, 

forward = 0.13 ± 0.05, t(52)=6.0, p<10
-6

; Rat 2: reverse = 0.67 ± 0.11, forward = 0, 

t(16)=6.1, p<10
-4

 ; Rat 3: reverse = 0.77 ± 0.07, forward = 0.05 ± 0.04, t(52)=9.1, p<10
-

11
. For each of the three rats it was also found that the second segments were significantly 

more forward than reverse: Rat 1: reverse = 0.11 ± 0.03, forward = 0.44 ± 0.06, t(52)=-

5.2, p<10
-5

; Rat 2: reverse = 0.01 ± 0.01, forward = 0.47 ± 0.11, t(16)=-4.3, p<10
-3

 ; Rat 

3: reverse = 0.00 ± 0.00, forward = 0.63 ± 0.08, t(52)=-7.5, p < 10
-9

. 

  



60 

 

Figure 3.5  

 

 

 

Figure 3.5 Joint replays were associated with multiple ripples 

The number of ripples detected during each joint replay (during the joint trajectory-

specific subregion) was plotted against the duration (subregion length) of each replay, 

with each replay type plotted in a different color. For visualization purpose only random 

noise was added to ripple numbers. Horizontal lines on left indicate mean ripple numbers. 

Histograms of replay durations are shown at bottom. Diagonal lines: linear regressions 

based on each replay type.   
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Figure 3.6  

 

 

 

Figure 3.6 Ripples specifically co-occurred with arm representations 

(A,B,C) Examples from Rat 1. Top to bottom: decoded joint replays of CR, CL, and RL; 

place cell spikes during replay with cells ordered by locations of their peak firing rates on 

linearized track; raw LFP recording from one selected tetrode channel; ripple amplitude; 
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multi-unit spike density as a function of time. In all panels vertical dashed lines at center 

indicate the time of choice point representation during replay, which in (B) were moved 

to left by two bins (20 ms) for illustration purpose solely. 

(D,E,F) Ripple amplitude traces (e.g. those shown in A,B,C) of all joint replays, each 

normalized to its own maximum amplitude, were each aligned to the time when choice 

point was represented during replay (0 ms in each panel,  indicated by vertical black 

lines). They were also reoriented to the same joint-arm directions noted in titles, e.g. 

traces of R → C replays were all flipped around 0 ms. Shown for each replay type are 

mean ± s.e.m of the resulting traces across all three rats. 

(G,H,I) Histograms of ratios of ripple amplitude at 0 ms to mean of peak ripple 

amplitudes on either side of 0 ms.    
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Figure 3.7  

 

 

 

Figure 3.7 Joint replays reached significant numbers rapidly 

(A) The first 10 stopping periods of Rat 1 (recorded position). The numbers of candidate 

events found during each stopping period are noted next to the stopping periods. Red 

letters indicate the stopping periods by which the noted types of replay first reached 

significant numbers. 
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(B,C,D) Each panel demonstrates how the number of observed replays outgrows those 

counted from shuffles (data from Rat 1). Dotted black lines: cumulative numbers of 

replays detected from the original data. Gray shadings: mean ± s.d. of cumulative 

numbers of replays of the same type detected from 5000 sets of shuffled data. Colored 

dotted lines: Monte Carlo p values of the original cumulative numbers; blue: p >= 0.05 

(not significant); red: p < 0.05 (significant). The numbers of laps on corresponding joint-

arms run before the first significant stopping periods are noted in titles. 

(E-J) Results for Rats 2 and 3 are shown in (E,F,G) and (H,I,J). 
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Figure 3.8  

 

 

 

Figure 3.8 Place cell sequences representing single arms identified from pre-sleep, 

run, post-sleep sessions 

For each single-arm representation, ten events with the highest absolute weighted 

correlation values, or all events if fewer than ten, are plotted for each recording session 

(pre-sleep: PRE, run: RUN, post-sleep: POST) in the order of high to low absolute 
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weighted correlations. All events are from a new Rat N and are plotted with the same 

color scale (see color bar). Position is decoded in non-overlapping 10 ms bins. Horizontal 

dashed lines mark arm boundaries. The duration of each event in ms is shown below each 

example. 
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Figure 3.9  

 

Figure 3.9 Place cell sequences representing joint arms identified from run and 

post-sleep sessions 

For each joint-arm representation, twenty events with the highest absolute weighted 

correlation values, or all events if fewer than twenty, are plotted for run (RUN) and post-

sleep (POST) sessions (zero joint-arm sequence was detected from the pre-sleep session), 
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in the order of high to low absolute weighted correlations. All events are from a new Rat 

N and are plotted with the same color scale (see color bar). Position is decoded in non-

overlapping 10 ms bins. Horizontal dashed lines mark arm boundaries. The duration of 

each event in ms is shown below each example. 
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Chapter 4        Activity changes of medial prefrontal neurons 

coincident with hippocampal replay events depended on replay 

representation 

The hippocampal replay has been hypothesized to play functional roles in cognitive 

processes important for guiding behavior, yet experimental data suited to lend support to 

this hypothesis is still largely lacking. We aimed to provide evidence from a mechanistic 

point of view, by searching for correlations between hippocampal replay and prefrontal 

neuronal activities, with the working hypothesis that the existence of such correlations 

suggests the involvement of hippocampal replay in brain processes that the prefrontal 

cortex has been well documented to play a major role in. We recorded neuronal activities 

simultaneously in the CA1 area and the medial prefrontal cortex in rats learning an 

alternation reward rule while exploring a Y-shaped maze, following procedures described 

in Chapter 2. 

4.1 Quantification methods 

Methods for processing the hippocampal recordings as well as for the identification of 

replay sequences remained the same as those described in Chapter 2, with the only 

difference that the Bayesian-based position estimates were applied to overlapping 20ms 

time bins advancing in 10ms increments in the current chapter, instead of the 10ms non-

overlapping time bins used in Chapter 3, to increase the accuracy in position estimates 

and replay identification. 
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4.1.1 Selection of mPFC single units  

Well isolated single units recorded in the medial prefrontal cortex were included in the 

subsequent analyses if the following criteria were met: 1) mean peak-to-trough spike 

width > 0.35 ms; 2) fewer than 5% of all spikes occurred within the refractory period 

(interspike interval < 2 ms); 3) average firing rate over the entire recording session is 

higher than 0.2 Hz. These criteria were set to ensure exclusion of noisy clusters, units 

with ultra-low firing activities, and interneurons, selecting a total of 54 putative 

pyramidal units for the following analyses, with 16 units recorded from Rat 1 Day 4, 11 

from R2D2, 13 from R3D1, and 14 from R4D1. 

4.1.2 Running direction modulation of mPFC neuronal activities  

Recorded positions were projected onto three lines (defined by the experimenter) aligned 

with the three arms of the Y maze, as was performed for hippocampal place field 

calculations. For each unidirectional running lap on each arm, occupancy time 

normalized firing rates during that single lap were calculated for each mPFC neuron in 

linearized position bins (7.3 – 7.9 cm for rats 1-4), using data from periods with running 

speed > 5 cm/s. Note that position bins on each arm started from the junction of the three 

axes to avoid crossing between arms. Subsequently, the firing activities of each 

individual neuron during each complete unidirectional running-lap from one arm end to 

another was reconstructed with the firing-rate vectors on the component arms previously 

separately calculated, which were smoothed across both arms with a Gaussian window 

(SD = 1 bin) to ensure accuracy of firing-rate estimates around the choice point. The 

resulting position tuning curve was separated between arms again, such that each 
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neuron’s firing activities during active running, in either the inbound or outbound 

direction on each arm, could be gathered from all laps with the same arm-direction 

combination for visualization and statistical analysis. 

4.1.3 Medial prefrontal neuronal activities at replay occurrence 

To look for consistency in firing patterns of mPFC neurons co-occurring with 

hippocampal replay sequences, we extracted spikes from each mPFC neuron fired within 

± 5 secs of the center time of each replay event (mean over boundaries of the trajectory-

specific subregion of the single or joint replay). Each 10-sec epoch of spikes was 

converted into firing rates in 30-ms bins, which were smoothed with a Gaussian filter 

with SD = 60 ms. The smoothed firing-rate traces of each mPFC neuron were truncated 

to 1) within ± 0.75 secs of replay-event centers for display, 2) within ± 0.6 secs of replay-

event centers for statistical analysis, and 3) two one-sec long time windows one second 

prior to and after replay-event centers for baseline firing-rate calculations; the original 

wider, ± 5 secs time windows were used to eliminate the edge effect of smoothing. 

 

In the initial examination of mPFC activity patterns co-occurred with hippocampal replay 

events, we compared individual mPFC neuron’s firing activities extracted from all single- 

and joint-arm replay windows to those aligned to the center time-points of high 

population firing (candidate) events lacking replay structure as determined by our replay 

identification method. Subsequent comparisons were made between mPFC activities 

centered on single-arm replays representing different track arms, to study whether the 

information content of replay affected the firing patterns of mPFC neurons. 
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4.1.4 Statistical analysis 

We mainly used the permutation test for significance estimates because it is ‘model-free’. 

The permutation test does not require assumptions of stochastic models of neuronal 

firing, or independent firing rates in adjacent time or position bins, or normally 

distributed firing rates across trials (Steinmetz et al., 2000), which do not often 

characterize actual neuronal firing activities. The permutation test also allows the 

freedom of constructing any test statistic that is most relevant to the statistical question, 

which is calculated for the original data and shuffled data in each permutation. The 

comparison between the original value and the permutation distribution (each test 

included 5000 permutations) yields a p value (significance set at p < 0.05 in this study). 

One test statistic we used was the sum of squared differences. For comparisons between 

two conditions, the mean firing-rate vector averaged across all trials belonging to one 

condition was vector-subtracted from that of the other condition, the resulting vector 

squared per bin, and summed across all bins. For comparisons between more than two 

conditions, the sum of squared differences was calculated for each pair of conditions, 

then summed across all pairs. This test statistic was used for testing any significant 

differences in mPFC neuronal firing patterns 1) between opposite running directions on 

each track arm in which case running laps were permutated between inbound and 

outbound directions, 2) between (when centered on) replay and non-replay events in 

which case each hippocampal population firing event was randomly reassigned as replay 

or non-replay, and 3) between (when centered on) single-arm replays representing 

different track arms in which case each single-arm replay was randomly reassigned as 

representing a track arm. For testing a significant effect of the interaction between 
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running direction and position on a track arm, on the firing pattern of each mPFC neuron 

during active running, the test statistic F of a two-way ANOVA on position and direction 

was used as the test statistic of the permutation test, in which firing rates from all position 

bins, all laps, were shuffled across positions and directions. Note that in all permutations 

the trial number in each condition was kept the same as that of the original data. 

4.2 Results 

We conducted multi-tetrode recordings simultaneously in the dorsal CA1 area and the 

medial prefrontal cortex (specifically targeted the prelimbic cortex, tetrode depth 2mm-

3.5mm from brain surface) in four rats. Recordings started since the first time rats were 

exposed to the asymmetric Y-shaped maze. Rats freely explored the maze and were 

rewarded chocolate milk at arm ends according to an alternation rule. One recording 

session was selected from each rat for data analysis (Rat 1 Day 4, R2D2, R3D1, R4D1), 

in which we obtained reasonable numbers of single units from both brain areas and of 

running laps on all arms. During these sessions, novelty of both the environment and task 

likely remained, which might have involved active processes in the hippocampus and 

mPFC for spatial learning and rule acquisition. For CA1, putative pyramidal cells with 

peak in-field firing rates higher than 1 Hz were used to detect replay. In mPFC, putative 

pyramidal cells, defined as single units whose mean peak-to-trough spike widths were 

wider than 0.35 ms, except for noisy and ultra-low firing-rate pyramidal units, entered 

data analysis; interneurons were excluded from analysis. 
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4.2.1 CA1 replays representing different paths were detected in 

abundant numbers 

We estimated position representation by the ensemble of recorded place cells using a 

Bayesian decoding method introduced by (Davidson et al., 2009). During stopping 

periods at arm ends, we identified replay events as epochs with high population firing 

rates during which the posterior probabilities showed high correlations between position 

and time; we also required that the trajectories represented by high-probability pixels 

span sufficient durations and distances. Note that overlapping time bins (20ms bins 

moving in 10ms steps) were used in this study to increase the accuracy of position 

estimation and replay identification. Using the 66, 96, 88, and 58 cells recorded from rats 

1-4, we identified large numbers of replay events from each rat, with a procedure 

specifically designed to identify single-arm replays which represented individual arms 

(R1D4: N = 402, R2D2: N = 799, R3D1: N = 781, R4D1: N = 397; see examples in 

Figures 4.1C,H,F) and joint replays which extended across pairs of arms (R1D4: N = 32, 

R2D2: N = 164, R3D1: N = 195, R4D1: N = 106; Figures 4.1D,E,G).  All six paths, 

namely single C, R, L arms, and joint C ↔ R, C ↔ L and R ↔ L trajectories, were found 

to be represented by replay in each rat. 

4.2.2 Running direction modulated mPFC neuronal activities  

(Jung et al., 1998) demonstrated evidence of running-direction correlates of PFC 

activities in rats performing an eight-arm radial maze, spatial working memory task. They 

found that a small fraction of PFC neurons showed firing-rate differences between inward 

and outward running directions when crossing the middle of maze arms, and that a larger 
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percentage of the neurons showed direction-selective increases or decreases in firing rate 

during either inward or outward running behavior. To analyze this property of PFC 

activities during active maze running, we plotted firing rates of individual neurons 

against position for each lap of running, on the three track arms and in the inbound and 

outbound directions separately (Figure 4.2A). Consistent with previous findings, we 

found that in our experiments mPFC neurons showed highly consistent firing patterns 

over position across laps with the same running direction which were however 

considerably different between opposite running directions on the same arm. For 

example, Figure 4.2B shows an mPFC neuron exhibiting gradually increasing firing rate 

as the rat ran from reward area (left) to choice point (right) on C arm (Top panel: upper 

section and blue curve). The same neuron showed a nonlinear firing pattern against 

position as the rat ran back to the C arm reward area from choice point (Top panel: 

middle section and red curve), with relatively lower firing rates close to the choice point 

and relatively higher firing rates close to the reward area, directly contrasting its firing 

pattern in the opposite, departure direction. Such apparent firing pattern difference 

persisted on all individual arms for this neuron (see its firing activities on R and L arms 

in Figure 4.2B, middle and bottom panels), and for another example neuron from the 

same recording session (Figure 4.2C), while the rat’s running speed pattern over position 

did not show such degree of contrast between opposite directions on any arm (Figure 

4.2D), which could not have accounted for the differences observed in neuronal firing-

rate patterns. Two tests were used to measure significant difference, both utilizing 

permutations which do not require assumptions of independence of firing rates in 

successive position (or time) bins or normality (Steinmetz et al., 2000). The test statistic 
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of the first method is squared differences of mean firing rates, per position bin, between 

the opposite running directions summed across all bins; the second method used the test 

statistic F of a two-way ANOVA with position and direction being the two factors and 

accordingly permuted both position bins and running directions. Among 54 mPFC 

pyramidal neurons recorded from all rats, 80% and 65% in the two statistical tests 

respectively, showed significant differences (p < 0.05) in their firing patterns between 

opposite running directions on at least one arm, while around 20% showed significant 

differences on all three arms in either test (Figures 4.2E,F). Thus, during active running 

behavior on the Y maze, a majority of mPFC neurons’ firing activities were modulated 

by either running direction alone, or an interaction between position and direction. 

4.2.3 Reward conditions affected mPFC activities  

The prefrontal cortex is densely innervated by the midbrain dopaminergic systems, and is 

suggested to play a role in establishing associations between task rules or cues and the 

desired actions or subsequent reward (Miller & Cohen, 2001). To examine the possible 

effects of reward conditions on mPFC neuronal activities in our task, for each arm we 

separated visits to the reward area at arm end into rewarded and unrewarded trials (note 

that visits to the C–arm reward area were always rewarded). The spike train from each 

neuron during each trial was aligned either to the beginning of reward consumption, as 

judged by visual inspection of overhead camera recordings, for rewarded trials; or to the 

time point of crossing reward area edge determined based on position recordings, for 

unrewarded trials. Systematic quantifications were not performed due to the difficulties 

and inaccuracies in determining the start of reward consumption based on overhead 

camera recordings (a more effective method would be using laser beams to detect tongue 
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intrusions into food wells). Nonetheless, the current method still revealed evidence of 

reward-related effects on mPFC single neuron activities. For example, Figures 4.3A-D 

show a neuron with abruptly increased firing rates during reward consumption which 

extended for long time courses (~10 sec); entering reward areas during unrewarded visits, 

on the other hand, did not alter its prior, very low firing activities. Moreover, this neuron 

fired at a higher rate when reward was received at the L–arm end as compared to when 

reward was received at the C– or R–arm end which elicited similar firing activities. A 

different neuron exhibited elevated activities in both rewarded and unrewarded 

conditions, while firing rates were the highest during unrewarded visits to the R–arm end 

(Figures 4.3E-H). These observations suggest that mPFC neuronal activities were 

affected not only by the receipt or omission of reward, but also by the spatial location at 

which these outcomes were revealed to the animal. This spatial dependence may reflect 

the differences in reward values attached to the three arms that were inherent to our task 

design: visits to the C–arm end were always rewarded whereas visits to the R– and L–

arm ends were alternately rewarded; meanwhile reaching the L–arm end required the 

most effort due to the longer length of this arm. 

4.2.4 Change of medial prefrontal activities upon replay occurrence 

To address the main question of whether evidence of interaction between hippocampal 

replay and prefrontal activities exists, for each mPFC neuron we extracted and aligned its 

spikes fired around occurrences of replay to look for consistent changes in firing 

activities. These epochs of spikes can potentially be aligned by the beginning, center, or 

end time points of replay events – without any a priori hypothesis we simply chose to use 

the center of replay for alignment. Figure 4.4 shows example mPFC neurons which 
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exhibited apparent changes in firing rate, either increasing or decreasing, consistently at 

the moments of replay occurrence, with the largest departures from baseline firing rate 

occurring very close to the centers of replay events (0 ms in panels A-D). Note that all 

identified replays from each rat are included in this analysis regardless of the specific 

trajectories they represented. As a control, such alignment method was applied to high 

spike density events (replay candidate events) which were determined not to contain any 

replay structure (Figures 4.4A-D, black curves). This comparison showed that although 

neuronal firing rates also changed in the same directions around non-replay events, the 

changes were much less prominent than those observed around replay events. In fact, 

41% (22/54) of mPFC neurons showed significantly different firing-rate changes from 

baseline activities upon the occurrences of replays than upon the occurrences of non-

replay events (p < 0.05, permutation test on sum of squared differences; Figure 4.4E). 

Therefore, our data showed strong evidence that hippocampal replays and prefrontal 

neuronal responses are tightly coupled brain activities instead of independent processes. 

4.2.5 Replay – mPFC coactivity depended on replay content 

We hypothesized that replay and prefrontal activities interact in an information-

dependent manner which may serve as an essential mechanism supporting important 

functions of the hippocampal-prefrontal network. The next important question is thus 

whether this interaction communicates any relevant information content, such as 

trajectories along the Y maze which we showed were accurately represented by replay in 

Chapter 3. Since the majority of replay events represented individual arms, we compared 

each mPFC neuron’s firing activities centered on single-arm replays representing 

different arms (Figure 4.5). Interestingly, such separation by replay representation 
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revealed drastically different firing patterns in numerous mPFC neurons. Moreover, the 

specific differences were often different from neuron to neuron. For example, one neuron 

(Figure 4.5A) showed firing-rate increases by an average of almost 8 Hz when replays 

representing either the right or left arm occurred while showing minimal changes at 

occurrences of replay representing the central arm; a different neuron  (Figure 4.5B) 

showed decreases in firing rate to C- and L-arm replays, but increases to R-arm replays; a 

third neuron (Figure 4.5C) showed increases in firing rates to all single-arm replays 

although the amount of increase was different between replays representing different 

arms; another neuron (Figure 4.5D) showed similar firing-rate increases around replay 

onsets but different ‘after effects’ toward or after the end of replays. Across mPFC 

neurons of all rats, 24% (13/54) showed significantly different firing patterns between 

replay events representing different arms of the Y maze (p < 0.05, permutation test on 

sum of squared differences). Thus, the temporal correlation between mPFC neuronal 

activity changes and replay events was indeed modulated by, in our experiments, the 

trajectory information contained in replay. This information-content dependence suggests 

active processing and communication of spatial trajectory information in the functional 

hippocampal-prefrontal circuit. 

 

To further investigate the diversity in neuronal firing patterns contingent on replay 

representation, we visually classified each neuron’s responses as excitatory (Ext), no 

change (N/C), or inhibitory (Ihb), at the occurrences of the C–, R–, and L–arm replays 

separately. These classifications were demonstrated as highlighted nodes onto a three-

dimensional grid of response types against replay arm representations such that each 
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individual neuron’s firing pattern was matched to a particular node (Figure 4.5E). The 13 

mPFC neurons which showed significant differences in their firing patterns centered on 

replays depicting different arms largely occupied separate nodes, with only three pairs of 

cells showing the same classification results within the pair. Thus, instead of showing a 

unified pattern of modulation by replay content, these neurons exhibited rather diversified 

activities with each neuron responding to different trajectory representations in a distinct 

manner. 

 

Examining mPFC neuronal activities at the occurrences of joint replays was challenging, 

due to the much smaller numbers of joint-replay events identified. To look for 

consistency in mPFC responses between joint replays and single-arm replays, we oriented 

and aligned joint replays of each trajectory (e.g. joint replays of CR) such that the 

represented trajectory in each event was of the same orientation (e.g. C → R) with the 

representation of one arm end (e.g. C–arm end) temporally aligned across all replay 

events; such procedure was repeated for the opposite orientation and arm-end alignment 

(e.g. R → C trajectory orientation with all events aligned to the R–arm end; see Figures 

4.6A,D,G). The spike train of each mPFC neuron was reshaped in the same way, with 

each brief epoch of spikes occurred around a joint-replay event oriented and aligned in 

the same way as the time frame, i.e. trajectory-specific subregion, of that joint-replay 

event (Figures 4.6B,E,H). The firing pattern of one particular neuron as revealed by this 

analysis showed remarkable consistency in its responses to the spatial representation of 

replay events. This neuron exhibited an increase in firing rate precisely aligned to the 

brief moment when the R–arm end was represented by joint replays of CR, while firing-
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rate changes at the representation of the C–arm end was minimal (Figures 4.6B,C). This 

neuron also exhibited an increase in firing rate aligned to the representation of the L–arm 

end during joint replays of CL, while showing little activity changes at the representation 

of the C–arm end (Figures 4.6E,F). During joint replays of RL, however, this neuron did 

not appear to differentiate between the R–arm and L–arm ends, showing an increase in 

firing rate in between the representations of the two arm ends (Figures 4.6H,I). 

Interestingly, this same neuron showed a considerable increase in its firing rate only at 

the occurrences of the single R– and L–arm replays (Figure 4.5A), matching its activity 

pattern with regard to the spatial representation of joint replays, i.e. large increases in 

firing rate specific to the representations of the R– and L–arm ends. Therefore, evidence 

exists that mPFC activities were indeed tuned to the spatial information content signaled 

by hippocampal replay events in a consistent manner. 

4.3 Discussion 

4.3.1 Medial prefrontal activities were modulated by important task 

components 

We analyzed mPFC single unit activities during active track running as well as how they 

were affected by behavioral outcomes at arm ends. A robust observation was that the 

majority of mPFC neurons were modulated by running direction alone or an interaction 

between position and direction, on some or all of the arms. Some neurons exhibited very 

similar firing patterns in the same running direction on all three track arms, in both the 

inbound and outbound directions (e.g. Figures 4.2B,C). We suggest that these neurons 

may not represent the animal’s head direction as neurons in e.g. the subiculum and 
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thalamus were found to represent, but rather reflect cognitive processes that may have 

taken place when the animal was approaching the choice point facing two potential paths, 

or approaching a reward area after a path was already chosen, such as decision making 

and reward expectation. Furthermore, we found that mPFC activities were affected by 

reward outcomes in an arm-identity dependent manner, which we suggested reflected the 

motivational salience attached to the arm ends as imposed by our task design and not 

spatial location per se. Following this interpretation, we would expect to observe, for 

example, if reward contingencies on the short C– and R–arms were to be switched such 

that visits to the arm located on the right-hand side are now always rewarded whereas 

visits to the centrally-located arm are now alternatively rewarded with visits to the long, 

L–arm, that reward-outcome modulated neuronal responses would also switch patterns 

between the short arms following the new reward contingencies, instead of remaining the 

same following the fixed spatial locations of the arms. Nonetheless, we found strong 

modulations of mPFC neuronal activities by important aspects of the Y-maze task, 

suggesting their active involvement in the brain processes required for task performance.  

4.3.2 The possible role of mPFC – hippocampal replay interaction in 

decision making 

Hippocampal activities have been shown to correlate with neuronal processes in brain 

areas other than the prefrontal cortex at fine time scales. For example, (Ji & Wilson, 

2007) found coincident primary visual cortical and hippocampal replay sequences in 

SWS which reflected the same awake experience (the visual aspect of the experience was 

likely orderly encountered local visual cues that were encoded by a subset of visual 

cortical cells with spatially bounded firing fields), presumably contributing to long-term 
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storage of visual memory in the primary visual cortex. (Lansink et al., 2009) presented 

evidence for correlated firings of hippocampal-ventral striatal cell pairs while rats were 

running for reward,  and for the recurrence of such pairwise correlations during 

postbehavioral  sleep which may serve to consolidate place-reward associations. 

Similarly, the functional consequences of mPFC firing-rate modulation upon 

hippocampal replay occurrences may well lie in the specialized functions of the mPFC, 

notably decision making. In fact, the process of decision making could be decomposed 

into four steps, with the second step being evaluating ‘action candidates (or options) in 

terms of how much reward or punishment each potential choice would bring’ (Doya, 

2008), and the prefrontal cortex has been implicated to be the brain area that performs 

this task – it holds and manipulates in working memory task‐relevant information 

received from other brain areas and computes the option that potentially leads to the best 

outcome (Floresco et al., 1999; Kable & Glimcher, 2009). In a spatial navigation task like 

ours the animal is continuously obliged to choose a path leading to reward, trajectory 

information is crucial for decision making. Hippocampal replay events are well suited to 

convey this information, as have been shown by many to 1) faithfully represent possible 

trajectories in extended environments, and 2) involve synchronized network-wide spiking 

activities powerful enough to exert large postsynaptic impacts on downstream neurons 

hence transmitting coherent pieces of information cross-structurally. Indeed, mPFC 

neurons responded strongly to hippocampal replay in our study; importantly, individual 

neurons in a subpopulation differentiated the information content represented by replay 

exhibiting significantly different firing patterns coincident with replays depicting 

different track arms, each in a distinct manner. We propose the intriguing possibility that 
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the heterogeneous responses among mPFC neurons may constitute decision making 

processes utilizing trajectory information communicated by hippocampal replay, such as 

evaluation and comparison of potential paths. The collective mPFC representation 

coincident with replay may be revealed with the capability of obtaining larger numbers of 

recorded mPFC neurons per recording session, in resemblance to decoding the focused 

spatial representation of a place cell population knowing the heterogeneous responses of 

individual place cells to each spatial location. Such investigation is likely to require a 

better understanding of mPFC neuronal representations during task performance as well. 

4.3.3 Network mechanisms involved in the interaction between 

prefrontal activities and hippocampal replay 

We characterized hippocampal replay and its relationship with mPFC activities during 

intermittent awake immobile periods within the navigational environment. In contrast, 

most previous studies relevant to ours focused on post-task SWS episodes, and have now 

depicted a plausible picture of the interplay between the hippocampus and the neocortex 

during SWS:  prominent sleep spindle and delta oscillations in the neocortex may trigger 

the initiation of hippocampal SWR epochs, by e.g. modulating membrane potential of 

hippocampal interneurons (Hahn et al., 2006) thus influencing hippocampal intrinsic 

rhythms, or driving selective ‘burst initiators’ residing in the CA3 by the specific 

neocortical cell assemblies active during the spindles (Csicsvari et al., 2000; Sirota et al., 

2003). Importantly, this activation process may only target unique groups of hippocampal 

neurons, and their represented information, for replay during the ensuing SWR event, 

which is then sent back to various neocortices to orchestrate replays of different 

modalities in these areas, involving the still active neocortical cells that originally 
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initiated this two-way process (Marr, 1971; Sirota et al., 2003; Isomura et al., 2006; Ji & 

Wilson, 2007). This well documented sleep mechanism provides several insights for 

interpretation of hippocampal-prefrontal interaction in the awake immobile state: first, 

replay might not be spontaneously generated by the hippocampus, but instead specifically 

triggered by mPFC to retrieve selected trajectory information for the ongoing decision 

making process (which could possibly take place during stopping periods at reward areas, 

besides the moments when approaching the choice point); secondly, awake hippocampal 

replay might also evoke replay activities in functionally connected regions, including 

particularly, coordinated reactivation of reward information which is also crucial for 

decision making. Hence, the interaction between prefrontal activities and hippocampal 

replay sequences may share common network mechanisms in different behavioral and 

brain states, yet acting as the fundamental mechanisms in different global brain functions 

serving the ongoing behavioral needs, namely decision making processes during the 

awake, task performance state, and memory consolidation during the offline, SWS state. 
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Figure 4.1  

 

 

 

Figure 4.1 Replays representing single and joint arms of the Y maze 

(A) Linearized position of Rat 3. Horizontal dashed lines indicate arm boundaries. 

Colored arrows on right indicate arm alignment along linear axis, which correspond to 

the arm labeling in inset on left: C: central arm, R: right arm, L: left arm.  

(B) Recorded position of Rat 3 in the entire first recording session (~ 76 min). Shaded 

blue area indicates the period shown in (A).  

(C-F) One example replay event of each path. To demonstrate replay quality in our data, 

positions were decoded in 10-ms non-overlapping bins in this figure. Letters above the 

panels indicate the single- or joint-arm represented by each example event. 
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Figure 4.2  

 

 

 

Figure 4.2 mPFC neuronal firing activities were modulated by running direction 

(A) Running towards reward areas is arrival (Arr, red arrows); running towards choice 

point is departure (Dep, blue arrows).  

(B) A single mPFC cell’s firing rate in each position bin during each lap of running on 

each arm (each row) is color coded in grey scale. Reward areas were always oriented to 

the left side, with vertical dotted lines marking the position bins in which the inner edges 
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of reward areas located, while the choice point was always oriented to the right. Arrival 

laps were separated from departure laps (see color notations on left). Top to bottom: 

running on C arm, R arm, L arm. Red curves: mean ± SD of firing rates across all arrival 

laps on each arm; blue curves: mean ± SD of firing rates across all departure laps on each 

arm. 

(C) Mean firing patterns per running direction, per arm, of a different mPFC neuron 

recorded from the same rat, same recording session. 

(D) Mean running speed patterns per running direction, per arm, of the same rat, same 

recording session. 

(E,F) Percentages of mPFC neurons exhibiting significant direction modulation during 

running on 0, 1, 2, or all three arms, quantified in two permutation methods.  
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Figure 4.3  

 

 

 

Figure 4.3 mPFC neuronal activities were likely affected by reward conditions 

(A) A single mPFC cell’s firing rate in each 200ms time bin during each visit (each row) 

to the C–arm reward area (always rewarded) is plotted in grey scale and aligned to the 

beginning of reward consumption (0 s, indicated by vertical line) estimated from the 

overhead camera video recording. Estimated consumption finishing times, if ≤ 16 s, are 

indicated with ticks.  

(B,C) The same cell’s firing rates during visits to the R– and L–arm reward areas, with 

rewarded and unrewarded trials separated. For unrewarded visits, 0 s corresponds to the 

time when the rat crossed a position threshold marking the edge of the reward area. 
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(D) Mean firing rates averaged across trials for the different reward sites and outcomes 

(see legend on right).  

(E-H) Reward-site firing activities of a different mPFC neuron recorded in the same 

recording session are plotted in the same manner. 
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Figure 4.4  

 

 

 

Figure 4.4 Medial prefrontal neurons exhibited larger activity changes at 

occurrences of replay than at occurrences of non-replay event 

(A-D) Panels A,B left: raster plots of example mPFC cell firing activities aligned to the 

centers (0 ms) of identified hippocampal replay events (all single- and joint-arm replays 

included). (A,B) right & (C,D): mean ± SD of each cell’s firing activities across all replay 

events (red), and all non-replay events (black). Also shown for each neuron are mean 

baseline firing rates separately calculated for replay events and non-replay events, using 

firing rates in the adjacent, -2 sec to -1 sec and 1 sec to 2 sec periods. 
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(E) The largest deviation from baseline firing rate within ± 0.6 secs, in each neuron’s 

mean firing activities centered on replay events, was plotted against that obtained from 

non-replay events. Neurons showing significant differences in baseline-subtracted firing 

activities between replay and non-replay events are shown in black; the rest of the 

neurons in grey.   
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Figure 4.5  

 

 

 

Figure 4.5 Medial prefrontal neurons exhibited different activity patterns at 

occurrences of replays representing different arms 

(A-D) Format similar to Figures 4.4A-D. (A,B) Left panels: raster plots of example 

mPFC cell firing activities aligned to the centers (0 ms) of single-arm replays. Spikes 

occurred around single-arm replays representing each arm are labeled with a different 

color (see legend in (A)). (A,B) Right panels & (C,D): mean ± SD of each cell’s firing 

activities across all single-arm replays representing each arm is plotted in the 

corresponding color.  
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(E) Thirteen cells which showed significance are placed on nodes indicating whether 

their firing rates increased (Ext), did not change (N/C), or decreased (Ihb) at the 

occurrences of single-arm replays representing the C, R, L arm. 
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Figure 4.6  

 

 

 

Figure 4.6 An example mPFC neuron’s firing patterns during joint replays 

(A) Joint CR replays from rat 3, session 1 were reoriented and realigned such that 

representations of the C–arm  end are at 0 ms while representations of the R–arm end 

land at positive times (panel lower half), or the opposite (upper half).  

(B) A single mPFC cell’s spikes occurred around CR replays were aligned in the same 

way as in (A) with row-to-row correspondence.  
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(C) Mean ± SD of the same cell’s firing activities with either alignment is plotted in the 

corresponding color.  

(D-F) The same mPFC cell’s firing activities occurred around joint CL replays were 

aligned to the replay representation of the C–arm end or L–arm end.  

(G-I) The same mPFC cell’s firing activities occurred around joint RL replays were 

aligned to the replay representation of the R–arm end or L–arm end. 
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Chapter 5        General discussion 

The hippocampal place cell system exhibits highly coherent representations during active 

running as well as intermittent SWR epochs in quiet wakefulness and sleep states, 

whereby firing activities across the neuronal population collectively represent a specific 

spatial location at each moment in time. The ability to truthfully decipher such 

representations was crucial to our studies, which has been greatly aided by the Bayesian 

decoding method introduced by (Davidson et al., 2009) that holds major advantages over 

previous analysis methods. The Bayesian method utilizes the entire place tuning curve of 

each neuron in estimating position representations, as opposed to only the peak firing 

locations that correlation methods use to relate run-time representations to SWR-

associated spike patterns, which often results in excessive information reduction as place 

cells tend to fire at different locations in many environments. A related advantage is thus 

that the Bayesian method is not restricted to the shape of the environment, and is 

theoretically applicable to any nonlinear, complex environment that the experimental 

design might require. Thirdly, the Bayesian method captures the form of representation of 

the place cell system, that the contribution of spikes or silence from each neuron is 

counterbalanced by the activities of all the other neurons in achieving a collective 

representation across the population; it also takes into account neuronal firing rates such 

that spikes from low firing-rate neurons carry less weight in the position estimates. 

Consequently, the Bayesian method is very robust to a reasonable level of the inclusion 

of electric noise or incorrectly-assigned spikes often present due to spike-sorting errors, 
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and is beneficial for studies which do not focus on the spatial responses of individual 

neurons. 

 

It is important to note that our replay identification method, which was based on position 

estimates from the Bayesian decoding analysis, was specifically designed to detect 

single- and joint-arm replays which progressed with the same momentum in position 

either between an arm end and the choice point or between two different arm ends. This 

method is therefore not sensitive to other possible forms of trajectory representation such 

as one that travels back and forth on the same path which has been observed in our data, 

although single- and joint-arm replays did appear to be dominant upon visual inspections. 

Moreover, the possibility exists that replay events could simultaneously represent 

different paths within the same environment, which if true, would require new 

explanations about the organization of replay structure and the mechanism of replay 

generation. In our replay identification method, we segmented each high spike-density 

candidate event into six ‘trajectory-specific subregions’ and determined for each 

subregion whether the structure of decoded positions represented a coherent trajectory. 

Across all rats, 1452 events had at least one subregion with identified replay structure, 

among which 1188 (81.8%) events had exactly one subregion with identified replay 

structure. Among the rest of the events, in which the hypothesized condition of different 

arms being replayed at the same time could have occurred, the majority (252 events, 

17.4%) contained one joint replay with one or both of its component single-arm 

sequences also passing criteria, e.g. a CR joint replay whose C, or R, or both C and R 

segments also identified as replays on their own. For these joint-replay events, we found 
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that the temporal overlap between the two component single-arm segments only 

occupied, on average, 4.1 ± 0.3% of the entire joint-replay durations. Thus, there was 

very little overlap in time between the representations of different arms during joint 

replays. The remaining 12 (0.8%) events are displayed in Figure 5.1. It can be seen that 

many of these events contained two non-overlapping single-arm replays which seemed to 

form coherent joint sequences which however did not pass our criteria. Therefore, we did 

not see evidence in our data that different arms were replayed at the same time in a 

significant number of events. 

 

We analyzed the properties of hippocampal replay sequences that occurred during the 

animals’ very first exposure to a novel environment. Although the place responses of 

individual place cells were not the focus of our study, they do determine position 

estimates and hence the likely changes in place responses with experience will directly 

affect the representation of replay events. A few previous studies have attempted to 

determine the speed of development of place fields in novel environments, which have 

reported not-entirely consistent results. It has been shown that many place cells began to 

fire within their steady-state place fields upon the animal’s very first entry into the place 

field locations (Hill, 1978), while (Wilson & McNaughton, 1993) indicated that the 

stabilization of place fields took about 10 min of experience in the novel environment. A 

more recent and more sophisticated analysis showed that although most CA1 cells were 

active during the first passage of a novel arm, place fields exhibited rapid changes during 

the initial moments of exposure and required at least 5-6 min of experience to stabilize 

(Frank et al., 2004). It should be noted that it is generally difficult to estimate the time 
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course of development of place fields since place field calculation requires the 

accumulation of spike and position data. In our analyses, place fields calculated from 

whole-session data, i.e. steady-state place fields, were used to decode replay. 

Consequently, if at the very beginning of exposure certain place cells were silent, or fired 

at a different location or rate (Frank et al., 2004), replays occurring at that time would not 

have been reliably detected using the steady-state place fields. Hence, our estimate of 

how rapidly after experience replay occurs should be considered conservative, since 

replay could in fact have occurred earlier. Nonetheless, even with this analysis method, 

replay can be detected in significant numbers after very little experience in a novel 

environment. Our other results should not have been affected by the initial changes in 

place fields, as the majority of replay events occurred at later times in the recording 

sessions when place responses had already stabilized (recording session durations were 

between 76 min and 130 min). 

 

A related question is whether replay properties changed across days as the spatial 

environment as well as the reward rule became learned. Such changes may be contributed 

to by place-field changes between recording sessions, or/and changes in the organizing 

structure of sequential replay itself.  We have not repeated our analyses for the 

subsequent recording days, mainly due to the fact that either animal behavior or cell yield 

was not consistent across days. Questions such as how the ratio between single-arm and 

joint replay event numbers, the proportion of directional replay, and the composition of 

reverse versus forward progress through learning are certainly very interesting, but will 

require the collection of data with more consistent quality across many consecutive days. 
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Based on our current findings, we propose that hippocampal replay occurs rapidly and 

that replay representation accurately reflects environmental topology. A modified 

experimental design, which separates the animal’s experience of the novel environment 

into restricted segments, may be used to provide more direct evidence for these 

statements: without any previous exposure to the Y maze, the animal is placed at the 

baited C-arm end just as in the original experimental design. However, the animal is 

immediately taken out of the Y maze as soon as he reaches the choice point for the first 

time, ideally after only one unidirectional traversal on the C arm, and is placed in the 

sleep box isolated from the Y maze for a certain period of quite wakefulness/sleep state 

recordings, which will be used to test for significant replay representation of the C arm, 

providing evidence for rapid one-trial spatial learning (Figure 5.2A). The animal is then 

returned to the C-arm end, is expected to wander into a new arm, e.g. the R arm, and is 

immediately taken out of the Y maze once the R-arm end is reached. Replays 

representing the single C and R arms as well as the joint CR trajectory are expected to 

occur during the second sleep-box recording (Figure 5.2B). Placed back at the C-arm end 

again, the animal travels to the third arm, e.g. the L arm, either voluntarily or guided by 

the experimenter or a small barrier at the choice point blocking off the R arm, and is 

immediately taken out of the Y-maze upon reaching the L-arm end. During the following 

sleep-box resting period, replays representing all single- and joint-arm paths are expected 

to be observed (Figure 5.2C), especially the ones that represent the never-experienced 

joint-arm trajectory (e.g. R ↔ L); at the meantime, the common segments of each pair of 

joint replays are expected to be represented by the same population of neurons with the 
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same firing rates, as observed in the current experimental design (Figure 3.3). Findings of 

such nature will provide strong evidence for a rapidly formed hippocampal representation 

of the overall spatial structure of a novel, complex environment, as well as the emergence 

of structurally-correct novel routes reflected in the trajectory representation of replay 

events. Subsequently, the animal will be returned to the Y maze for a long period of 

recording following the original experimental procedure, to collect abundant spike and 

position data during active running for place-field calculations. Place tuning curves may 

also be computed using the initial single-lap experiences with the application of a much 

wider Gaussian window for sufficient smoothing. 

 

Our examinations of hippocampal replay have mainly focused on its spatial 

representation, yet replay has also been shown to possess behavioral correlates. For 

example, (Pfeiffer & Foster, 2013) demonstrated that SWR-associated place-cell 

sequences occurring immediately prior to movement in a spatial memory task depict the 

future trajectory that the animal will take to the remembered goal location. Moreover, 

prefrontal neuronal activities coincident with replay may not only differentiate between 

different trajectory representations (Figure 4.5), but also the same spatial representation 

in different behavioral conditions, e.g. single-arm R replays occurred at the R-arm end 

during rewarded versus unrewarded visits. We have attempted to separate replays 

representing the same path based on 1) the arm ends at which they occurred, 2) rewarded 

versus unrewarded stopping periods, 3) matching to the immediate past or the immediate 

future trajectory taken by the animal, 4) matching to the immediate past trajectory leading 

to reward during rewarded visits or any other trajectory occurred during the same 
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stopping periods, but found that we did not have sufficient data to further subdivide our 

replay events into location, decision, or outcome based categories. It should be noted that 

(Pfeiffer & Foster, 2013) did report heterogeneity in the expression of replay sequences 

with some sequences not going to the goal. We expect that such heterogeneity does mask 

choice-related biases in a task with only two future paths (Gupta et al., 2010). 

 

We also attempted to correlate prefrontal neuronal response patterns coincident with 

replay occurrences to those we quantified during task performance, with the hypothesis 

that, for example, a prefrontal neuron that only fired during running on the C arm may 

exhibit higher firing rates upon occurrences of the single-arm C replays as compared to 

single-arm R and L replays. While evidence for this type of correlation was not found in 

our data, it is possible that the low numbers of medial prefrontal neurons we were able to 

record prevented us from making such observations. Efforts to increase cell yield in the 

prefrontal cortex are also necessary for the purpose of revealing representations at the 

population level – although much heterogeneity was found in all aspects of prefrontal 

responses we analyzed, unified representations such as coherent decision making 

processes (e.g. the evaluation of a specific path) may arise across the total population or 

each subpopulation. Achieving large recorded cell numbers is difficult, as cortical 

neurons are very scattered. One possible way to improve recording is to implant the drive 

at a small angle of 5
o
 instead of vertically, such that tetrodes will travel diagonally to 

reach the deep IV and V layers parallel to the sagittal sinus where the cell bodies of 

medial prefrontal neurons are located (Jung et al., 1998).  
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Finally, the spatial aspect of hippocampal functions has also been shown in humans based 

on patient studies. For example, among hippocampally lesioned human patients getting 

lost and forgetting where objects have been placed are among the most common 

symptoms accompanying memory loss (Bird & Burgess, 2008). Schizophrenic patients 

also show deficits in spatial working memory tasks (Park & Holzman, 1992). These 

observations suggest that what has been learned from rodent hippocampal studies might 

be translated into the understanding of human hippocampal functions and might provide 

inspirations for the study of non‐spatial human memories which might share common 

mechanisms, in turn aiding the development of drugs and therapies for hippocampal‐

related neurological dysfunctions.  
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Figure 5.1  

 

 

 

Figure 5.1 Hippocampal replay events did not represent multiple track arms at the 

same time 

Hippocampal population firing (candidate) events determined to represent multiple track 

arms yet not identified as joint replays are shown (0 events from rat 2). The subregions 

determined to contain replay structure are noted above each example. Candidate event 

durations in ms are noted below each example. 
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Figure 5.2  

 

 

 

Figure 5.2 A modified experimental design 

The first experience of the novel Y maze is divided into three segments of single-lap 

running, each followed by a resting session in an isolated sleep box with replay 

representations expected to be observed noted on right. The animal is immediately taken 

out of the Y maze after a single experience of (A) traversal on the C arm, (B) the joint CR 

trajectory, and (C) the joint CL trajectory which may be enforced by the experimenter or 

a barrier blocking off the R arm. 
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