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 Abstract 

The aim of this dissertation research is to develop, implement and evaluate methods to extract useful 

information about cardiac motion and myocardial contractility from 4D cardiac PET images with much 

improved image quality.  

First, to reduce the influence of respiratory motion and improve the quality of cardiac PET images used in 

motion estimation, data-driven respiratory gating methods are proposed to allow accurate extraction of 

respiratory motion signal from the list-mode data. Time-of-flight PET information is incorporated into 

respiratory signal extraction, and background correction method is developed to improve the quality and 

accuracy of the extracted respiratory signal. The methods were applied and evaluated using clinical list-

mode cardiac PET data. 

With improved image quality, anatomical feature such as papillary muscles and the interventricular sulcus 

become increasingly detectable in gated cardiac PET images. For more accurate cardiac motion estimation, 

these anatomical features in human heart were extracted and used in combination with a priori knowledge 

of cardiac function to guide the cardiac motion estimation process. Initial estimates of the cardiac motion 

vector field were obtained based on the motion of the features for the traditional optical-flow algorithm. For 

further improvement, motion of the anatomical feature was used as additional constraint in the motion 

estimation algorithm to reduce the effect of the classical aperture problem. Different from previous cardiac 

motion extraction and estimation studies that only provide qualitative evaluation of the motion estimation 

results due to unavailability of ground truth for clinical cardiac datasets, this study employed simulation 

data from a realistic digital phantom with known cardiac motion for both qualitative and quantitative 

evaluation. Motion estimation results from simulation data indicate the feature-based cardiac motion 

estimation method is able to improve the accuracy of the cardiac motion field estimates, especially for 

motion components parallel to edges and therefore difficult to estimate using the conventional optical-flow 

based method. 

The proposed research will allow PET imaging to provide unprecedented cardiac motion information in 

addition to its functional information thus improving diagnosis of cardiac diseases including perfusion and 
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motion abnormalities, and patient care with reduced cost. Also, more accurate estimation of cardiac motion 

will help to further improve the quality of 4D cardiac PET imaging with cardiac motion compensation. 

Advisor: Dr. Benjamin M.W. Tsui (first reader) 

Second reader: Dr. Jingyan Xu 



iv 

 

 Preface 

Having been a PhD candidate in JHU since 2011, I am happy as well as reluctant to say goodbye. During 

my five years in DMIP, I have been working on several interesting research projects, from which I benefit a 

lot. 

I would like to express my deepest gratitude to my advisor, Dr. Benjamin Tsui, for his profound knowledge 

of medical imaging, excellent teaching skills, and patience. I have learnt a lot from him more than I could 

elaborate. I would like to thank Dr. Xu and Dr. Fung for the support and guidance for my research. They 

have been very kind to me especially when I encounter problems. DMIP has provided an active and 

friendly research environment for me, and I am very grateful for this opportunity. Many thanks to all the 

members who have provide very good suggestions and discussions on my research topics. 

I would also like to thank my parents who are supportive even though they are on the other side of the 

ocean. It is a shame that I cannot spend more time with them during my PhD years. Moreover, I am very 

lucky to meet my husband Tao Feng in DMIP. It is nice to have company on this difficult journey. 

  



v 

 

CONTENTS 

Contents v 

List of Figures ....................................................................................................................................... viii 

List of Tables ....................................................................................................................................... xviii 

Chapter 1. Introduction ............................................................................................................................. 1 

1. Overview .................................................................................................................................. 1 

2. PET Systems ............................................................................................................................. 2 

Instrumentation .................................................................................................................. 2 

PET Data Format ................................................................................................................ 3 

Multimodality Imaging sytem ............................................................................................. 4 

3. Physics in PET Imaging............................................................................................................. 5 

Radiation Physics ............................................................................................................... 5 

Image Degrading Factors and Their Correction ................................................................... 7 

4. Image Reconstruction .............................................................................................................. 12 

Filtered Back Projection ................................................................................................... 12 

Statistical Iterative Methods .............................................................................................. 15 

5. Cardiac PET Imaging .............................................................................................................. 18 

6.  Respiratory Motion in Cardiac PET ......................................................................................... 20 

Respiratory gating ............................................................................................................ 20 

Respiratory Motion compensation ..................................................................................... 22 

7.  Cardiac Motion in Cardiac PET ............................................................................................... 22 

Cardiac Motion Estimation ............................................................................................... 23 



vi 

 

8.  Aim and Significance of this thesis .......................................................................................... 26 

Chapter 2. Advanced data-driven respiratory gating for list-mode cardiac pet data ................................... 29 

1. Methods and Materials .............................................................................................................. 29 

Data-driven respiratory motion signal extraction methods ................................................. 29 

Evaluation of extracted respiratory motion signal .............................................................. 38 

Materials .......................................................................................................................... 40 

2. Results ..................................................................................................................................... 40 

3. Discussion ................................................................................................................................ 47 

4. Conclusion ............................................................................................................................... 47 

Chapter 3. Feature-Based Cardiac motion estimation............................................................................... 50 

Preliminary study ......................................................................................................................... 50 

Methods ........................................................................................................................... 50 

Materials and Experiment Design ..................................................................................... 57 

Results ............................................................................................................................. 60 

Discussion ........................................................................................................................ 67 

Motion Estimation for Patient Data ................................................................................... 69 

Further improvement .................................................................................................................... 71 

Improvemnt of Methods ................................................................................................... 71 

Material and experiment design ........................................................................................ 75 

Results ............................................................................................................................. 84 

Discussion ...................................................................................................................... 132 

Conclusion ................................................................................................................................. 137 



vii 

 

Chapter 4. Summary and future work .................................................................................................... 140 

Reference 143 

 

  



viii 

 

LIST OF FIGURES 

Figure 1-1 Illustration of a PET imaging system ........................................................................................ 3 

Figure 1-2 Illustration of 3D sinogram ...................................................................................................... 4 

Figure 1-3 Compton scattering .................................................................................................................. 6 

Figure 1-4 Positron range and non-collinearity .......................................................................................... 8 

Figure 1-5 The attenuation of a pair of gamma photons in patient body ...................................................... 9 

Figure 1-6 Three types of coincidence ..................................................................................................... 10 

Figure 1-7 Gamma photon detection in the detector of PET scanner ......................................................... 12 

Figure 1-8 Relationship between activity distribution and projection ........................................................ 13 

Figure 1-9 Demonstration of central slice theorem in 2D scenario ............................................................ 14 

Figure 1-10 Heart Anatomy and Corresponding PET images ................................................................... 19 

Figure 1-11 8-frame cardiac gated images of an 18FDG study in short-axis view ...................................... 20 

Figure 2-1 Schematic diagram of the data acquisition configuration of a typical PET scanner. The 

annihilation location is indicated by the red dot. ...................................................................................... 30 

Figure 2-2 The definition of cardiac ROI, C-ROI, and background ROI, B-ROI, in a transaxial plane. The 

blue region represents the C-ROI and the red region the B-ROI. .............................................................. 31 

Figure 2-3. The projections of the C-VOI and B-VOI on the coronal or sagittal plane with the pair of 

annihilation photons detected by detector bins of the (a) same detector ring, and (b) different detector rings. 

The blue and red area represents the projection of the C-VOI and B-VOI on the plane defined by z axis and 

any straight line on x-y plane respectively. .............................................................................................. 32 



ix 

 

Figure 2-4. The estimated C-VOI and B-VOI used in the centroid of the heart calculation without TOF. The 

blue region represents the C-VOI while the red region represents the B-VOI............................................ 33 

Figure 2-5. Schematic diagram of the RM motion estimation based on calculations of centroid locations of 

the C-ROI. “a” and “b” represents counts from the myocardium and from the background. ...................... 36 

Figure 2-6. RM signal extraction and processing.  (a) An example of estimated C-ROI centroid location 

sequence from the list-mode data and sampled at 200 msec. (b) Frequency spectrum of the centroid location 

sequence in (a) obtained from its Fourier transform revealing a RM peak corresponding to a period of 4.15 

sec. (c) A smoothed RM signal curve obtained from the inverse Fourier transform of the extracting the RM 

motion peak within the two red vertical bars in (b). ................................................................................. 38 

Figure 2-7. The definitions of signal, N, and noise, N, in the SNR measurements. .................................... 39 

Figure 2-8 (a) respiratory motion amplitude estimation from respiratory motion signal. (b) Verticle profiles 

through the center of the projection images of the heart at six respiratory gated frames. The RM magnitude 

is determined from the edges of the myocardium in the gated images with the largest difference. ............. 40 

Figure 2-9. The frequency spectra or the Fourier transform of the C-ROI centroid location sequences 

obtained from list-mode data of Patient #1 using the six RM signal extraction and estimation methods in 

Table I. From the left to right column, the results are obtained with no background correction and with the 

D-BC and S-BC methods. The upper and lower rows show results without and with TOF correction. The 

green arrows point to the extracted RM peaks, while the red arrows point to the CM peaks. ..................... 41 

Figure 2-10. Similar frequency spectra as those in Figure 2-9 but obtained from Patient #2.  They show the 

D-BC method gives overly high noise magnitude that obscures the RM signal. The S-BC suppresses the 

noise magnitude and reveals RM signal with higher magnitude. The green arrows point to the extracted RM 

peaks, while the red arrows point to the CM peaks................................................................................... 42 

Figure 2-11. Similar frequency spectra as those in Figure 2-9 but obtained from Patient #5 . Results in the 

bottom row show the TOF correction method provide better visualization of the RM and CM peaks. Also, 

the RM peak is more visible when the D-BC and S-BC methods are applied as compared to that with no 



x 

 

background correction. The green arrows point to the extracted RM peaks, while the red arrows point to the 

CM peaks. .............................................................................................................................................. 43 

Figure 2-12 SNR of respiratory motion signal for 12 patients with six different methods .......................... 44 

Figure 2-13. RM amplitude of the RM signal extracted from the frequency spectra of the 12 patient using 

the six background subtraction and TOF correction methods in Table I. The corresponding movement of 

the myocardial wall measured from the respiratory gated images of the heart is also shown as references. 45 

Figure 2-14. SNR of CM signal obtained from applying the six different background subtraction and TOF 

correction methods in Table I to the twelve patient studies. ...................................................................... 47 

Figure 3-1 Anatomical features of human heart demonstrated using the 4D XCAT phantom. The 

internventricular sulcus is highlighted by the yellow curve. The papillary muscles are the small pieces of 

muscles that locate inside the left ventricle. ............................................................................................. 51 

Figure 3-2 (a) Extraction of the “footprint” of the papillary muscle in short axis view of the phantom image. 

Blue curve: outline of the blood pool. Red line: convex hull of the blood pool. (b) The centroid shown in 

the short-axis and long-axis view of the XCAT phantom images of end-diastolic phase and end-systolic 

phase. ..................................................................................................................................................... 51 

Figure 3-3 (a) Extraction of the IS from frame 1 of the phantom image. The blue dot indicates the anteior IS 

while the red triangle indicate posterior IS. (b) The extracted IS from frame 1 of the phantom image. Blue 

circles indicates the anterior IS while the red stars indicate the posterior IS. ............................................. 52 

Figure 3-4 (a) Three cardiac motion components shown using the 4D XCAT phantom. (b)The magnitude of 

three motion components along the longitudinal direction. Data collected from the 4D XCAT phantom. .. 53 

Figure 3-5 Initialization of the cardiac MVF on short-axis cross section. .................................................. 55 

Figure 3-6 Three motion components of the anterior interventricular sulcus extracted from the phantom 

image frame 1. Fitted (broken lines) curves were used build the S-initial estimation of the cardiac motion.

 ............................................................................................................................................................... 56 



xi 

 

Figure 3-7(a) Surface renderings of the cardiac model of the XCAT. (b) True MVF of the XCAT phantom 

at four sample slices of the left ventricle are plotted as blue arrows. ......................................................... 58 

Figure 3-8 (a) The simulated noise-free sinogram of the center slice of the heart model of the XCAT 

phantom. (b) Reconstructed PET image of the noisy projection data. (c) Reconstructed PET image after 

application of the Butterworth filter. ........................................................................................................ 60 

Figure 3-9 Average magnitude of the true MVF in eight frames of phantom images. ................................ 60 

Figure 3-10 The “true” and estimated cardiac MVF obtained with four initial MVF from the phantom 

image at frame 1. The true MVF of the myocardium is shown in (a) short-axis and (b) vertical long-axis 

views. Regions surrounded by the yellow squares in (b) are zoomed in to provide a closer look at the 

details. MVFs estimated using the 0-initial, the P-initial, the S-initial and the T-initial in the squared region 

are displayed in (c), (d), (e) and (f), respectively, and the true MVF of this region is shown as reference. 

Similar results for simulated PET images are shown in (g)-(i). ................................................................. 62 

Figure 3-11 The “true” and estimated cardiac MVF obtained with four initial MVF from the phantom 

image at frame 5. The true MVF of the myocardium is shown in (a) short-axis and (b) vertical long-axis 

views. Regions surrounded by the yellow squares in (b) are zoomed in to provide a closer look at the 

details. MVFs estimated using the 0-initial, the P-initial, the S-initial and the T-initial in the squared region 

are displayed in (c), (d), (e) and (f), respectively, and the true MVF of this region is shown as reference. 

Similar results for simulated PET images are shown in (g)-(i). ................................................................. 63 

Figure 3-12 Polar map of motion estimation error in simulated PET images of Frame 1. The first row shows 

the error of radial motion in the myocardium, the second row shows the error in circumferential motion, 

and the third row shows the error in longitudinal motion. The four rows represent the results of 0-initial, P-

initial, S-initial and T-initial respectively. The error of radial and longitudinal motion is in unit of 

millimeter, while the error of circumferential motion is in unit of degree. ................................................ 65 

Figure 3-13 RMSE of the estimated MVFs of four initials in simulated low-noise PET images of 8 time 

frames with frame 1 as ED. In frames of significant cardiac motion, feature-guided initial MVFs can 

improve the accuracy of motion estimation.............................................................................................. 66 



xii 

 

Figure 3-14 The RMSE of three motion components of the MVFs estimated from simulated noisy PET 

image of frame 1 (ED) using 4 different initial estimates. The RMSE of the radial and longitudinal motion 

components are in the unit of millimeter, while that of circumferential motion is in degree....................... 67 

Figure 3-15 Sample PET images from a 13NH3 4D GMP PET study of an abnormal patient at ED (left) and 

ES (right). ............................................................................................................................................... 70 

Figure 3-16 Extracted IS from the patient data. ........................................................................................ 70 

Figure 3-17 Radial (left), Circumferential (middle) and longitudinal (right) motion of the extracted sulcus.

 ............................................................................................................................................................... 70 

Figure 3-18. MVF estimated from patient data in basal short-axis (a), mid-cavity short-axis (b) and vertical 

long axis (c) slice. ................................................................................................................................... 71 

Figure 3-19 Extraction of left and right ventricle boundary. (a) A short-axis slice of the XCAT phantom 

with activity in myocardium and liver. (b) Blood pool inside the right ventricle segmented using 3D region 

growing method. (c) Residual shape after subtracting the blood pool from its convex hull, from which the 

septal boundary is identified. (d) Separated septal boundary and lateral boundary shown in pink and blue 

respectively. (e) Septal boundary with added points from left ventricle boundary and lateral boundary 

shown in pink and blue respectively. ....................................................................................................... 73 

Figure 3-20 (a) 3D display of the extracted two curves from each short-axis slice. Septal boundary and 

lateral boundary are shown in purple and green respectively. (b) B-spline curve fitting of septal boundary 

and extrapolation of lateral boundary on one short-axis slice. The intersection is marked by the yellow 

points. (c) 3D display of extracted IS for all slices, true location of the sulcus is shown for comparison. ... 73 

Figure 3-21 Heart curve .......................................................................................................................... 78 

Figure 3-22 Adding attenuation effect to the analytical simulated projection data ..................................... 79 

Figure 3-23 Illustration of the simulation for FDG tracer uptake from individual organ uptakes................ 80 



xiii 

 

Figure 3-24 Effects of detector non-uniformity and uniformity correction. a) Monte-Carlo simulated 

sinogram of the digital cylinder phantom, b) uniformity map. .................................................................. 81 

Figure 3-25 Interpolation from noisy scatter to noise-free scatter. (a) One sinogram of summed projection 

of scattered events from all gates MC simulated gates. (b) noise-free sinogram of scatter after B-spline 

surface fitting.......................................................................................................................................... 82 

Figure 3-26 Scatter projection from MC simulation and resulting scatter projection for high-resolution 

scanner ................................................................................................................................................... 83 

Figure 3-27 Reconstructed images from the noise-free hybrid simulation data of frame #1 for different 

resolution ............................................................................................................................................... 84 

Figure 3-28 Circumferential motion of PIS from frame 1 to frame 2 calculated from phantom images. The 

true circumferential motion is shown in darker green as reference. ........................................................... 89 

Figure 3-29 Radial motion of PIS from frame 1 to frame 2 calculated from phantom images. The true radial 

motion is shown in darker red as reference. ............................................................................................. 89 

Figure 3-30 Longitudinal motion of PIS from frame 1 to frame 2 calculated from phantom images. The true 

longitudinalmotion is shown in darker blue as reference. ......................................................................... 90 

Figure 3-31 Radial (left) and circumferential (right) motion of PIS from frame 1 to 2 extracted from noise-

free simulation data of 0.6mm system resolution. The true radial and circumferential motion are shown by 

darker red and darker green curves respectively. ...................................................................................... 91 

Figure 3-32 Radial (left) and circumferential (right) motion of PIS from frame 1 to 2 extracted from noise-

free simulation data of 1.5 mm system resolution. The true radial and circumferential motion are shown by 

darker red and darker green curves respectively. ...................................................................................... 92 

Figure 3-33 Radial (left) and circumferential (right) motion of PIS from frame 1 to 2 extracted from noise-

free simulation data of 3.0 mm system resolution. The true radial and circumferential motion are shown by 

darker red and darker green curves respectively. ...................................................................................... 92 



xiv 

 

Figure 3-34 Radial (left) and circumferential (right) motion of PIS from frame 1 to 2 extracted from noise-

free simulation data of 4.5 mm system resolution. The true radial and circumferential motion are shown by 

darker red and darker green curves respectively. ...................................................................................... 92 

Figure 3-35 Radial (left) and circumferential (right) motion of PIS from frame 1 to 2 extracted from noise-

free simulation data of 0.6mm system resolution. The true radial and circumferential motion are shown by 

darker red and darker green curves respectively. This figure is the same as Figure 3-31, and it is shown 

again for comparison with results from other noise-levels. ....................................................................... 93 

Figure 3-36 Radial (left) and circumferential (right) motion of PIS from frame 1 to 2 extracted from 

simulation data of 0.6mm system resolution at noise-level 8N .The true radial and circumferential motion 

are shown by darker red and darker green curves respectively. ................................................................. 93 

Figure 3-37 Radial (left) and circumferential (right) motion of PIS from frame 1 to 2 extracted from 

simulation data of 0.6mm system resolution at noise-level 2N.The true radial and circumferential motion 

are shown by darker red and darker green curves respectively. ................................................................. 94 

Figure 3-38 Radial (left) and circumferential (right) motion of PIS from frame 1 to 2 extracted from 

simulation data of 0.6mm system resolution at noise-level 0.5N.The true radial and circumferential motion 

are shown by darker red and darker green curves respectively. ................................................................. 94 

Figure 3-39  Average magnitude of the true MVF in four frames of phantom images. .............................. 95 

Figure 3-40  Motion estimation error RMSE for phantom images using four different methods. ............... 96 

Figure 3-41 Cardiac motion estimation results using four methods for phantom image frame 1 at a basal SA 

slice. The true MVF is plotted in blue arrows for comparison. ................................................................. 98 

Figure 3-42 Cardiac motion estimation results using four methods for phantom image frame 1 at the non-

twisting SA slice. The true MVF is plotted in blue arrows for comparison................................................ 99 

Figure 3-43 Cardiac motion estimation results using four methods for phantom image frame 1 at one apical 

SA slice. The true MVF is plotted in blue arrows for comparison. .......................................................... 100 



xv 

 

Figure 3-44 Cardiac motion estimation results using four methods for phantom image frame 1 at one HLA 

slice. The true MVF is plotted in blue arrows for comparison. ............................................................... 101 

Figure 3-45 Error map of circumferential motion in basal SA slice by four methods............................... 102 

Figure 3-46 Motion estimation error RMSE for noise-free simulation data of 0.6mm resolution using four 

different methods. ................................................................................................................................. 104 

Figure 3-47 Motion estimation error RMSE for noise-free simulation data of 1.5mm resolution using four 

different methods. ................................................................................................................................. 104 

Figure 3-48 Motion estimation error RMSE for noise-free simulation data of 3mm resolution using four 

different methods. ................................................................................................................................. 105 

Figure 3-49 Motion estimation error RMSE for noise-free simulation data of 4.5 mm resolution using four 

different methods. ................................................................................................................................. 105 

Figure 3-50 Cardiac motion estimation results using four methods for noise-free 4.5 mm resolution 

simulation data of frame 1 at a basal SA slice. The true MVF is plotted in blue arrows for comparison. .. 109 

Figure 3-51 Cardiac motion estimation results using four methods for noise-free 4.5 mm resolution 

simulation data of frame 1 at the non-twisting SA slice. The true MVF is plotted in blue arrows for 

comparison. .......................................................................................................................................... 110 

Figure 3-52 Cardiac motion estimation results using four methods for noise-free 4.5 mm resolution 

simulation data of frame 1 at an apical SA slice. The true MVF is plotted in blue arrows for comparison.

 ............................................................................................................................................................. 111 

Figure 3-53 Motion estimation error RMSE for phantom images using four different methods. .............. 114 

Figure 3-54 Motion estimation error RMSE for noise-free simulation data of 0.6mm resolution using four 

different methods. ................................................................................................................................. 114 



xvi 

 

Figure 3-55 Motion estimation error RMSE for simulation data of 0.6mm resolution at noise level 8N using 

four different methods. .......................................................................................................................... 114 

Figure 3-56 Motion estimation error RMSE for simulation data of 0.6mm resolution at noise level 2N using 

four different methods. .......................................................................................................................... 115 

Figure 3-57 Motion estimation error RMSE for simulation data of 0.6mm resolution at noise level 0.5N 

using four different methods. ................................................................................................................ 115 

Figure 3-58 Cardiac motion estimation results using four methods for 0.6 mm resolution noise-level 0.5N 

simulation data of frame 1 at a basal SA slice. The true MVF is plotted in blue arrows for comparison. .. 118 

Figure 3-59 Cardiac motion estimation results using four methods for 0.6 mm resolution noise- level 0.5N 

simulation data of frame 1 at the non-twisting SA slice. The true MVF is plotted in blue arrows for 

comparison. .......................................................................................................................................... 119 

Figure 3-60 Cardiac motion estimation results using four methods for 0.6 mm resolution noise- level 0.5N 

simulation data of frame 1 at an apical SA slice. The true MVF is plotted in blue arrows for comparison.

 ............................................................................................................................................................. 120 

Figure 3-61 Cardiac motion estimation results using four methods for noise-free 0.6 mm resolution 

simulation data of frame 1 at an apical SA slice. The true MVF is plotted in blue arrows for comparison.

 ............................................................................................................................................................. 121 

Figure 3-62 Radial (left) and circumferential (right) motion of PIS from frame 1 to 2 extracted from 3.0mm 

simulation data at noise level 2N. The true radial and circumferential motion are shown by darker red and 

darker green curves respectively............................................................................................................ 124 

Figure 3-63 Cardiac motion estimation results using four methods for 3.0 mm resolution noise-level 2N 

simulation data of frame 1 at a basal SA slice. The true MVF is plotted in blue arrows for comparison. .. 125 



xvii 

 

Figure 3-64 Cardiac motion estimation results using four methods for 3.0 mm resolution noise- level 2N 

simulation data of frame 1 at the non-twisting SA slice. The true MVF is plotted in blue arrows for 

comparison. .......................................................................................................................................... 126 

Figure 3-65 Cardiac motion estimation results using four methods for 3.0 mm resolution noise- level 2N 

simulation data of frame 1 at the sample apical SA slice. The true MVF is plotted in blue arrows for 

comparison. .......................................................................................................................................... 127 

Figure 3-66  Circumferential motion of PIS from frame 1 to frame 2 calculated from 3.0mm resolution 

simulation data at noise-free (NF) and noise level 2N. The true circumferential motion is shown in green as 

reference. The linear regression line for the circumferential motion estimated at NF is shown in dark blue 

and that for noise level 2N is shown in dark red. .................................................................................... 130 

Figure 3-67 Radius of the epicardium at the sulcus points in frame 1 ..................................................... 133 

Figure 3-68 Tangential motion of the sulcus points in frame 1 ............................................................... 133 

Figure 3-69 Cardiac motion estimation results at a basal SA slice using four methods for 4.5 mm resolution 

simulation data of frame 1at noise level 0.5N. The true MVF is plotted in blue arrows for comparison. .. 135 

Figure 3-70 Cardiac motion estimation results at the non-rotating SA slice using four methods for 4.5 mm 

resolution simulation data of frame 1at noise level 0.5N. The true MVF is plotted in blue arrows for 

comparison. .......................................................................................................................................... 136 

Figure 3-71 Cardiac motion estimation results at an apical SA slice using four methods for 4.5 mm 

resolution simulation data of frame 1at noise level 0.5N. The true MVF is plotted in blue arrows for 

comparison. .......................................................................................................................................... 137 

Figure 4-1 Tagged MR images of a short-axis slice of a patient’s heart .................................................. 141 

  



xviii 

 

LIST OF TABLES 

Table 2-1 Six RM motion estimation methods based on different combination of TOF and background 

correction approaches ............................................................................................................................. 37 

Table 3-1 Parameters of the customized scanner ...................................................................................... 59 

Table 3-2 Parameters of the customized scanner ...................................................................................... 78 

Table 3-3  Parameters of the GE discovery RX scanner ........................................................................... 79 

Table 3-4 Footprint centroid extraction results from phantom images of four cardiac frames .................... 84 

Table 3-5 Footprint centroid extraction results for three system resolutions .............................................. 85 

Table 3-6  IS extraction error (mm) using the improved method and the previous method under four system 

resolutions .............................................................................................................................................. 87 

Table 3-7 Global error RMSE for three cardiac motion components in frame 1 ........................................ 96 

Table 3-8 Motion estimation error of four methods at three SA slices from results for phantom image of 

frame #1 ............................................................................................................................................... 102 

Table 3-9 Global error RMSE of three cardiac motion components in frame 1 from noise-free simulation 

data of different system resolutions ....................................................................................................... 106 

Table 3-10 Motion estimation error of four methods at three SA slices for noise-free simulation data of 

frame 1at 4.5 mm resolution .................................................................................................................. 112 

Table 3-11 Global error RMSE of three cardiac motion components in 0.6mm simulation data of frame 1 at 

different noise levels. ............................................................................................................................ 116 

Table 3-12 Motion estimation error of four methods at three SA slices for 0.6mm resolution noise-free 

simulation data of frame 1 ..................................................................................................................... 122 



xix 

 

Table 3-13 Motion estimation error of four methods at three SA slices for 0.6mm resolution simulation data 

of frame 1 at noise level 0.5N................................................................................................................ 122 

Table 3-14 Global error RMSE for three cardiac motion components in frame 1 for 3.0 mm resolution 

simulation data at noise level 2N ........................................................................................................... 128 

Table 3-15 Motion estimation error of four methods at three SA slices for 3.0 mm resolution noise-level 2N 

simulation data of frame 1 ..................................................................................................................... 128 

Table 3-16 Motion estimation error of four methods at three SA slices for 3.0 mm resolution noise-free 

simulation data of frame 1 ..................................................................................................................... 130 

Table 3-17 Global error RMSE for three cardiac motion components in frame 1 for 4.5 mm resolution 

simulation data at noise level 0.5N ........................................................................................................ 134



1 

 

CHAPTER 1.   INTRODUCTION 

1. OVERVIEW 

As an important functional imaging technique, positron emission tomography (PET) produces three-

dimensional information of the functional processes in the body. PET has been widely used in medical 

practices and for research purpose. Its application in medical area includes clinical oncology, clinical 

diagnosis of brain diseases, as well as heart function. Besides, it also helps the development and evaluation 

of new drugs and radioactive tracers. 

In PET imaging procedure, certain amount of biologically active molecule labeled with positron-emitting 

radionuclide, also called radioactive tracer, is introduced into the body. The chemical compound 

participates in certain biochemical reactions such as those involved in metabolic processes of the cells. 

Therefore, its distribution in different organs and tissues reveals the functional condition of the body. The 

radioisotope undergoes positron emission decay, also known as positive beta decay, during which a 

positron is emitted. Two photons, each with 511 KeV energy, are generated when the positron annihilates 

with an electron, and travel in the opposite direction until being detected by the scanner simultaneously as 

one coincidence, which identifies a line-of-response (LOR). The LORs from all the coincidence events will 

form the projection data for image reconstruction. The PET data is often acquired in list-mode format, 

which is event-by-event data acquisition that contains both spatial and timing information. It can also be 

stored in sinograms or projections by binning the events in the same LOR. 

Image reconstruction is required to calculate the distribution of the radioactive tracer from list-mode or 

sinogram data. Analytical image reconstruction methods such as filtered back projection (FBP) use the 

analytical model of the scanner to recover the activity distribution. Although being fast and simple to 

implement, analytical methods have difficulty handling the noise and other image quality degrading factors 

as scatter and detector response. On the other hand, statistical image reconstruction methods, which often 

require iterative calculation such as maximum likelihood expectation maximization (ML-EM) and ordered 

subset expectation maximization (OS-EM), are based on the statistical model of the imaging process. This 
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group of methods provides more accurate modeling of resolution degradation factors and has stronger noise 

handling ability.  

With the development of high resolution PET imaging systems and advance in image reconstruction 

algorithms, PET images of higher resolution are becoming available, which lays the foundation for this 

research. 

2. PET SYSTEMS 

INSTRUMENTATION 

The common configuration followed by most human PET imaging systems for research and clinical 

purpose consists of gamma photon detector rings, electronics for pulse processing and coincidence 

detection, and image reconstruction module, as demonstrated in Figure 1-1.  The detector rings are an 

annulus of scintillation detectors surrounding the patient body in order to detect pairs of 511 KeV gamma 

photons in coincidence. The rings typically have an inner diameter of 85-90 cm, and an axial coverage of 

15-25 cm. The rings are comprised by several blocks of detectors each containing a segmented block of 

scintillating crystals coupled to an array of photomultiplier tubes (PMTs) which together generate electrical 

signal for incoming gamma photons. The gamma photons excite free electrons in the crystal through 

Compton scattering and photoelectric effect. Scintilator materials commonly used in PET scanners include 

Luterium Oxyorthosilicate (LSO), Bismuth germinate (BGO) and Sodium Iodide (NaI). When the excited 

electrons return to lower energy state, visible light photons are generated and then collected by the PMTs 

coupled to the end of the crystal. Light signals are transformed to electrical signal and amplified by the 

PMTs. Signals from the PMTs provide information about the position, energy and time of a gamma ray 

interaction in the scintillator.  
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Figure 1-1 Illustration of a PET imaging system 

Current improvement in the hardware of PET imaging systems includes development of better crystals with 

desirable properties such as strong stopping power, high light output, good energy resolution, and short 

decay time. There is also a trend towards excellent time resolution by introducing the “time-of-flight” 

(TOF) technique, which allows accurate measurement of the time difference between the arrival of the 

photon pair. With this information, the location of annihilation can be identified with higher accuracy, 

leading to higher system resolution. A typical TOF resolution of 500 ps can be achieved by current TOF 

PET scanners. The acquisition time for the whole body using clinical PET scanner is usually less than 20 

min, while a cardiac scan takes around 5-10 min. 

PET DATA FORMAT 

There are two data formats to store the information of detected coincidences. One is the list-mode 

acquisition, in which the information of the event including energy, ring number, detector bin, etc., are all 

recorded one event by one event sequentially. Time stamps and Electrocardiography (ECG) signal used for 

cardiac gating are also recorded in the list-mode data. Therefore, the list-mode PET data require large 

storage size. On the other hand, the sinogram format stores the PET data by summing all the events in the 

same LOR. A typical sinogram of 3D PET is shown in Figure 1-2, in which each voxel represents the 

summation of all events with the same specific detector bin number, angle, and detector ring number. List-
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mode format contains more information such as time and energy than the sinogram format. Therefore, 

transforming the list-mode data into sinogram format is feasible but the not the reverse. TOF information 

can be preserved from list-mode to sinogram format with specially designed rebinning algorithms. 

 

Figure 1-2 Illustration of 3D sinogram 

MULTIMODALITY IMAGING SYTEM 

A rapidly growing field of research in medical imaging is the development of multimodality imaging 

systems. PET/CT and PET/MR systems were designed and became clinically available in the 20 years. The 

integration of PET and CT in one system is relatively simple. In current commercial PET/CT scanners, 

essentially unmodified standalone PET and CT scanners are mounted in-line in a common gantry, which 

allows sequential acquisition of spatially registered PET and CT data. Attenuation map can be derived from 

the CT image for attenuation correction for PET data, which obviate the need for lengthy transmission 

scans. Since the CT scan takes negligible time compared with the PET acquisition, PET/CT scanners have 

similar or even better patient throughput. 

Unlike simple the PET/CT integration, the system integration of PET and MRI is more challenging, 

especially for simultaneous PET/MRI system. The major challenge is to redesign a compact and MRI-

compatible PET scanner so that its performance is not significantly degraded by the magnetic field from the 

MRI scanner. Solid-state photodetectors have been introduced to substitute PMT, which can severely 

influenced in even a weak magnetic field. Conversely, the introduction of PET detectors inside the gradient 

coil and magnet of the MRI scanner also introduce undesirable influences to the MRI acquisition.  
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Shielding and use of MRI compatible scintillators are possible solutions, but there is still no method to 

cancel the interference between two systems completely.  

Compared with PET/CT, PET/MR is more advantageous in that the both spatially and temporally co-

registered MR image to improve the quality of PET data, while the snap-shot CT and blurred PET result in 

attenuation activity mismatch. However, in applications such as staging lung cancer, PET/CT is a better 

choice since MRI performs poorly in the lungs. 

3. PHYSICS IN PET IMAGING 

RADIATION PHYSICS 

POSITRON DECAY AND POSITRON-ELECTRON ANNIHILATION 

Radioisotope 𝑋𝑍
𝐴  used in PET imaging releases positron 𝑒+ during the beta decay: 

𝑋𝑍
𝐴 → 𝑋′𝑍−1

𝐴 + 𝑒+ + 𝑣𝑒                    

1-1 

The positron is the antimatter counterpart of the electron with an positive charge of  +1 𝑒 and the same 

mass as an electron. Annihilation occurs when the positron collides with an electron from the surrounding 

material, producing two (most case) or more gamma ray photons: 

𝑒− + 𝑒+ → 𝛾 + 𝛾 

1-2 

This process obeys conservation of momentum and total energy. Therefore, the two gamma ray photons 

travel in the opposite direction and each has energy of 511 KeV. 

INTERACTION OF GAMMA PHOTONS WITH MATERIAL 

While traveling through the patient body and the detector crystals, the gamma photons interact with the 

material mainly in three ways. The first type of interaction happens between the gamma photon and the 

bounded orbital electrons of an atom in the absorbing material. During this interaction, the gamma photon 

deposits all its energy to the bounded electron so that the electron gains enough energy to break the binding 
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from the nuclide of the atom. The kinetic energy of the ejected electron is equal to the energy of the gamma 

photon, in PET 511 KeV, minus its binding energy. The possibility of photoelectric absorption is 

characterized by the following equation: 

𝑝 ∝
𝑍𝑒𝑓𝑓
4

𝐸𝑟
3 , 

1-3 

where 𝐸𝑟  is the photon energy, and 𝑍𝑒𝑓𝑓 is the effective atom number of the material. 

The last two types of interaction happen between the gamma photon and the free electron in the material. 

One is Compton scattering in which the incident gamma photon transfers part of its energy to the electron 

and change motion direction. It is demonstrated in Figure 1-3. This process also obeys the conservation of 

energy and momentum. The relationship between the energy of the gamma photon after and before the 

Compton scattering is characterized by the following equation: 

𝐸𝛾′

𝐸𝛾
=

1

1+
𝐸𝛾

𝑚𝑒𝑐
2(1−𝑐𝑜𝑠𝜃)

. 

1-4 

In which 𝑚𝑒 is the rest mass of an electron and 𝜃 is the scattering angle with respect to the incident 

direction. The probability of Compton scattering is approximately proportional to the density of free 

electron. 

 

Figure 1-3 Compton scattering 
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Gamma photon can also interact with free electron through coherent scattering. It can be seen as a coherent 

collision in which the gamma photon changes travelling direction but does not loss energy.  

All three types of interaction contribute to the attenuation of the gamma photon in the patient body. 

Compton scattering is the most prominent factor among three interaction types. However, photoelectric 

absorption becomes dominant after the energy of gamma photon reduces to around 20 KeV after multiple 

Compton scattering.  

IMAGE DEGRADING FACTORS AND THEIR CORRECTION 

POSITRON RANGE 

The position emitted from beta decay has a small amount of momentum. It travels in the material and 

decelerates to nearly stationary before annihilate with an electron. As a result, there is a small distance in 

the range of 1~4mm [1], depending on the radioisotope, between the annihilation location and the beta 

decay location. Therefore, the reconstructed image is not exactly the distribution of the radiotracer, but the 

distribution of annihilation events. This intrinsically limits the spatial resolution of the PET scanner. The 

positron range can be reduced by applying a strong magnetic field [2]. Another approach is to correct for 

positron range and improve image resolution by modeling it in the reconstruction process [3, 4]. 

NON-COLLINEARITY 

When the annihilation happens, the positron may not be stationary. The momentum left after traveling 

through the positron range is preserved by the two gamma photons. As a result, they do not travel in exactly 

180 degree opposite. A study by K. Shibuya [5] showed the distribution of the difference angle was 

approximately a Gaussian distribution with FWHM of 0.54 degree centered at 180 degree, resulting in 

~2.1mm for a system with scanner diameter being 80 cm. Positron range and non-collinearity are 

demonstrated by the following figure. 
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Figure 1-4 Positron range and non-collinearity 

ATTENUATION 

The interaction of the gamma photon with the patient body reduces the possibility of this photon being able 

to escape the body and arrive at the detector.  The reduction in this probability is called attenuation. The 

ability of the material to absorb the passing photon is characterized by the attenuation coefficient. The 

attenuation of a pair of gamma photon is demonstrated by Figure 1-5. Using the narrow beam mono-

energetic photon model, the attenuation of the gamma photon pair in the patient body can be calculated by 

the following equation: 

𝑃 = 𝑃1 ∙ 𝑃2 = 𝑒
−∫ 𝜇(𝑙)𝑑𝑙

𝑙1
0 ∙ 𝑒−∫ 𝜇(𝑙)𝑑𝑙

𝑙2
0 = 𝑒

−∫ 𝜇(𝑙)𝑑𝑙
𝑙2
−𝑙1  

1-5 

In which 𝑃1 and 𝑃2are the probabilities that photon 1 and 2 escape the patient body without being absorbed, 

𝜇(𝑙) is the attenuation coefficient at location 𝑙, 𝑙 is the line defined by the LOR. Therefore, for a fixed 

LOR, the attenuation effects does not depend on the exact location of annihilation, in this case, the 

attenuation effects can be compensated on the LOR prior to image reconstruction. 
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Figure 1-5 The attenuation of a pair of gamma photons in patient body 

 The attenuation of the gamma photon by patient body leads to underestimation of the radiotracer 

distribution. The essential idea of attenuation correction is to remove the attenuation factor in the equation 

using knowledge about the attenuation coefficient of the patient body. For 2D PET developed in early days, 

information of the attenuation is obtained by transmission emission scan. A rod source is rotated around the 

patient body inside the PET scanner, and the attenuation factors are measured from projection data to 

directly recover the original intensity for each LOR [6]. However, noise in the detected counts and the 

additional radiation dose from the rod source limits the application of this method. It is also inconvenient to 

use for 3D PET. Attenuation factor of the patient body required in attenuation correction of PET data can 

be obtained from other imaging modalities such as CT and MRI. Attenuation map for 511 KeV gamma 

photon can be directly derived from CT images[7], while it requires specially designed algorithm to 

calculate it from the anatomical information provided by MRI image [8, 9] since MRI does not measure the 

attenuation coefficient. Recent development of multimodality scanners such as PET/CT and PET/MR 

enables accurate co-registration of attenuation map and PET image, leading to more convenient attenuation 

correction and higher image quality. 

RANDOM AND SCATTERED COINCIDENCE 

PET imaging relies on the identification of photon path of the gamma photon pair. The coincidence 

detection circuits are designed specifically for this purpose. Two photons received by two detector bins 
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within the same timing window are regarded as one coincidence event. If they do come from the same 

annihilation and their paths are not changed by interaction with the body, this is called true coincidence. 

However, although the two gamma photons from one annihilation event do arrive at the detector rings 

almost simultaneously if not absorbed by the patient body, one or two of them may change direction and/or 

lose energy during their trip in the body. This situation is called scattered coincidence. Scatter coincidences 

are unable to provide correct information about the annihilation location. In another undesirable situation, 

the two or even more gamma photons that arrived at the detector within the same timing window may not 

come from the same positron-electron annihilation. This is called random coincidence. The rate of random 

coincidence along theLOR connecting detector  𝑖 and 𝑗 is mathematically modeled using the following 

equation: 

𝑅 = 2𝜏𝑅𝑖𝑅𝑗  

1-6 

Where 𝝉 is the coincidence timing window, 𝑹𝒊 and 𝑹𝒋 are the rates of detecting single gamma photons at 

detector 𝒊 and 𝒋. This relation stands as long as the single rates are much larger than the coincidence rate, 

and small compared to the reciprocal of the timing window. Figure 1-6 demonstrates three types of 

coincidence.  

 

Figure 1-6 Three types of coincidence 
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Scattered coincidence and random coincidence degrades image quality by reducing image contrast and 

increase image noise. Theoretically, subtracting scattered and random coincidence from the total detected 

events should recover the count of true coincidence. However, the number of scattered coincidence and 

random coincidence is unknown. Methods have been developed to obtain accurate estimation of the two 

coincidence types from the PET data itself. 1-6 provides one method to approximately calculate the random 

coincidence rate for any two detector bins. Another method called the delayed coincidence channel method 

[10] uses the number of coincidences acquired with a delayed time window to approximate the number of 

random coincidences. The delayed coincidence channel collects gamma photon pairs detected by the 

scanner with one photon delayed by 3~5 times of the width of coincidence timing window, therefore 

contains no true coincidence.  

Scatter correction for 3D PET is an active research topic. There are generally there groups of methods:  The 

model-based approach, Monte-Carlo-based approach, and measurement-based approach. Proposed methods 

include but not limited to: model-based scatter correction algorithms [11], the “Gaussian fit” approach [12], 

convolution-subtraction method [13], Monte-Carlo modelling methods [14], multiple energy window 

method [15], and direct measurement method [16]. Based on the emission data, the attenuation map as well 

as model of the imaging system, the model-based approach uses the Klein-Nishina formula to calculate the 

scatter coincidence rate. One example is the single scatter simulation method [17] which calculates the 

counts of single scattered coincidences along each LOR based on the assumptions that only one of the two 

detected gamma photons is scattered once. The convolution of the single scatterd coincidence counts and 

proper kernel can be used to model multiple-scattered coincidence rates. Compared with model based 

methods, Monte-Carlo based methods are generally more accurate but at higher computationally cost.  

DETECTOR RESPONSE AND DETECTOR NON-UNIFORMITY 

The resolution of PET scanner is also limited by the interaction between the gamma photon and the 

detector as shown in Figure 1-7.  
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Figure 1-7 Gamma photon detection in the detector of PET scanner 

PATIENT MOTION 

There are two types of patient motion: the voluntary motion and involuntary motion. Voluntary motion is 

the motion initiated or can be easily controlled by the patient’s brain. For example, the patient may cough 

or suddenly jerk during the scan. This kind of motion can be removed through patient training and simple 

motion correction to the data [18]. Involuntary motion means the natural biological motion of the patient’s 

organ and body parts. Respiratory motion and cardiac motion are the two major types of involuntary 

motion. Since PET scan time is essentially longer than the period of both respiratory motion and cardiac 

motion, PET images are inevitably blurred by the two motion types. Specifically, the influence of 

respiratory and cardiac motion in cardiac PET, and methods to handle them is discussed later. 

4. IMAGE RECONSTRUCTION 

FILTERED BACK PROJECTION 

Filtered back projection (FBP) is a well-established analytical imaging reconstruction method. It is based 

on the mathematical relationship between the activity distribution and the projection. The FBP algorithm 

will be demonstrated for the simplified 2D scenario shown in Figure 1-8. Accordingly, the projection data 

𝑝(𝑠, 𝜃) is the integration of the radiotracer distribution 𝑓(𝑥, 𝑦) along the LOR: 
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𝑝(𝑠, 𝜃) = ∬𝑓(𝑥, 𝑦)𝛿(𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃 − 𝑠)𝑑𝑥𝑑𝑦

 

𝑅×𝑅

 

1-7 

 

 

Figure 1-8 Relationship between activity distribution 

and projection 

The transform from the activity map to the 

projection is called the Radon transform. It is 

easy to realize that the 1D Fourier of the 

projection is equivalent to the 2D 

Fourier transform of the intensity map along the 

projection direction, as demonstrated by Figure 

1-9. This is called the central slice theorem. The 

following equation is its mathematical format. 

𝑃(𝑤, 𝜃) = 𝐹(𝑢, 𝑣)|𝑢=𝑤𝑐𝑜𝑠𝜃,𝑣=𝑤𝑠𝑖𝑛𝜃 

1-8 



14 

 

 

Figure 1-9 Demonstration of central slice theorem in 2D scenario 

Activity distribution 𝑓(𝑥, 𝑦) is equal to the inverse 2D Fourier transform of  𝐹(𝑢, 𝑣). Using the central slice 

theorem, it is calculated by the following equation: 

∫ ∫ 𝑃(𝑆, 𝜃)𝑒2𝜋𝑖𝑆𝑙|𝑆|𝑑𝑆|𝑙=𝑥𝑐𝑜𝑠𝜃+𝑦𝑠𝑖𝑛𝜃𝑑𝜃
∞

−∞

𝜋

0
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Essentially, the solution is a back projection of the 1D Fourier transform of the projection data filtered by 

the ramp function |𝑆|. To reduce noise and avoid aliasing problem, a low-pass window function is usually 

applied to the ramp filter. 

The discrete form of the imaging process is given by: 

𝒈 = 𝑯𝒇 

1-10 

Where 𝑔 is the projection, 𝑓is a vector that represents the image space, and 𝐻 is the system matrix. The 

filtered back projection method can be regarded as an inverse of the projection process. Considering noise 

in the projection data 𝒈 = 𝑯𝑅𝑎𝑑𝑜𝑛𝒇𝒕𝒓𝒖𝒆 + 𝒏, the solution by FBP method becomes: 
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�̂� = 𝑩𝐹𝐵𝑃𝒈 = 𝑩𝐹𝐵𝑃(𝑯𝑅𝑎𝑑𝑜𝑛𝒇𝒕𝒓𝒖𝒆 +𝒏) = 𝒇𝒕𝒓𝒖𝒆 +𝑩𝑭𝑩𝑷𝒏 

1-11 

The noise is amplified by the ramp filter in the 𝑩𝑭𝑩𝑷, resulting in bad image quality. Besides image noise, 

the FBP method does not allows for accurate correction of image degrading factors such as scatter. 

Therefore, it has limited use in clinical PET scan. Other analytical image reconstruction methods such as 

the iterative algebraic reconstruction techniques (ART) [19, 20] also suffer from the same problem as FBP 

and therefore not widely used. 

STATISTICAL ITERATIVE METHODS 

Unlike analytical reconstruction methods, statistical iterative algorithms incorporate modeling of the 

statistical distribution of photon counts and other factors possibly involved in the data acquisition into the 

reconstruction process. This allows better noise handling ability and more accurate modeling of system 

geometry and image degrading factors such as scatters. Comparing with analytical algorithms, statistical 

methods tend to achieve higher image quality in terms of noise level and resolution. Another advantage of 

statistical iterative method is that it can easily handle list-mode data without the need of conversion to 

sinogram. This not only avoids reducing resolution, but also allows for event-by-event motion 

compensation and full usage of time-of-flight information. The most widely used image reconstruction 

methods based on statistical model are the maximum likelihood expectation maximization (ML-EM) [21, 

22], and its accelerated version the ordered subset expectation maximization (OS-ES) [23].  Both ML-EM 

and OS-EM have been adapted to list-mode data and have demonstrated improvement in image quality and 

reconstruction speed [24, 25].  

Since radioactive decay is a Poisson process, the projection data can be modeled by a Poisson distribution 

with mean value determined by intensity distribution and system matrix. The probability of getting the 

projection data 𝒑is described by the following equation, assuming no interference between any detector 

bins. 

𝑃𝑟𝑜𝑏[𝒑|𝒙;𝑲] =∏

(

 (∑𝐾𝑖𝑗𝑥𝑗
𝑗

)

𝑝𝑖

(𝑝𝑖!)
−1exp (−∑𝐾𝑖𝑗𝑥𝑗

𝑗

)

)

 

𝑖
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1-12 

In the above equation, 𝑥𝑗is the activity intensity at pixel or voxel 𝑗, 𝑝𝑖 is the photon counts at detector bin 𝑖, 

and 𝐾𝑖𝑗 is the system parameter that determines the contribution of voxel 𝑗 to detector 𝑖, or in other words, 

the probability of photon originating from voxel 𝑗 being detected by detector 𝑖. The activity distribution 

estimate 𝒙 that maximizes the probability function or functions derived from it, is regarded as the solution 

of image reconstruction by all the algorithms built on this model. 

ML-EM 

This method seeks to find the activity distribution 𝒙 by finding the estimate that maximizes the conditional 

expectation of the log of Error! Reference source not found. which is described by the following e

quation. This is called expectation maximization (EM) algorithm. 

𝐸{log 𝑃𝑟𝑜𝑏[𝑞|𝑝, 𝑥; 𝐾} =∑∑−𝐾𝑖𝑗 �̂�𝑗 +
𝐾𝑖𝑗 �̂�𝑗

 

∑ 𝐾𝑖𝑘 �̂�𝑘
 

𝑘

𝑝𝑖 log(𝐾𝑖𝑗 �̂�𝑗
 ) + 𝑅

𝑗𝑖
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Hence the update formula for (𝑙 + 1)th iteration is given by: 

𝑥𝑗
𝑙+1 =

𝑥𝑗
𝑙

∑ 𝐾𝑖𝑗𝑖

∑𝐾𝑖𝑗
𝑝𝑖

∑ 𝐾𝑖𝑗′�̂�𝑗′
𝑙

𝑗′𝑖
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This equation indicates the update consists of two steps. The projection step is represented by ∑ 𝐾𝑖𝑗′�̂�𝑗′
𝑙

𝑗′  

which means the expectation of the projection based on the current estimate �̂�. The back-projection step is 

realized by the ∑ 𝐾𝑖𝑗
𝑝𝑖

∑ 𝐾𝑖𝑗′�̂�𝑗′
𝑙

𝑗′
𝑖  term, which transforms the difference between expected projection 

∑ 𝐾𝑖𝑗′�̂�𝑗′
𝑙

𝑗′  and the actual projection 𝑝𝑖 to the image domain. The term ∑ 𝐾𝑖𝑗𝑖  is called sensitivity, as it 

represents the chance of a decay at voxel j is detected by any possible detector bins. Since the update is 

multiplicative, it is easy to impose non-negative constraint on the voxel intensities required by the PET 

imaging situation.  

OS-EM 
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To reduce the computational cost of updating the intensity estimate of all the voxels using all the projection 

data during each iteration as experienced by the ML-EM algorithm, the OS-EM algorithm updates the 

image estimates using one subset of the projection data at a time. The projection bins are grouped into 𝑀 

ordered subsets 𝑆𝑚 (𝑚 = 0,1, . . . , 𝑀 − 1) to make sure only one subset contains each certain LOR. The 

update formula for iteration 𝑙 is described as below: 

For 𝑚 = 0,1,… ,𝑀 − 1 

𝑥𝑗
𝑙𝑀+𝑚+1 =

𝑥𝑗
𝑙𝑀+𝑚

∑ 𝐾𝑖𝑗𝑖∈𝑆𝑚

∑ 𝐾𝑖𝑗
𝑝𝑖

∑ 𝐾𝑖𝑗′𝑥𝑗′
𝑙𝑀+𝑚

𝑗′𝑖∈𝑆𝑚

 

 End 
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For an OS-EM algorithm with iteration number n and subset number m, the image estimate is updated n*m 

times in total. The OS-EM algorithm using 𝑀 subsets is generally 𝑀 times faster than the ML-EM. Since 

only a subset of the projection data is used in each update, the number of subsets 𝑀 needs to be chosen 

carefully to balance the efficiency and accuracy of the algorithm.  

MLAA 

Quantitative reconstruction of tracer distribution for PET imaging requires accurate attenuation correction. 

Attenuation map can be obtained from transmission data such as co-registered CT image or PET data 

acquired with external rotation sources, or MR images. However, such data may not be available or 

reliable. Great efforts have been made to estimate the attenuation coefficients from the emission data only. 

The challenge of attenuation estimation in PET is to solve the severe and persistent “cross-talk” between 

the estimated activity and attenuation distributions. J. Nuyts provided such an algorithm referred to as 

maximum-likelihood reconstruction of attenuation and activity (MLAA) [26]. The TOF-MLAA algorithm 

developed by ReZaei incorporates TOF information into the likelihood function [27]. However, even with 

TOF information, the activity map and attenuation sinogram can only be determined up to a constant [28]. 

Both algorithms update the activity and attenuation alternately; in other words, the activity is updated using 
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the attenuation coefficients updated from the last iteration as constant, and then vice versa. The update 

formula for activity 𝒙 and attenuation 𝝁 at (ℎ + 1)th iteration in TOF-MLAA are given below: 

𝑎𝑖
ℎ = 𝑒−

∑ 𝑙𝑖𝑗�̂�𝑗
ℎ

𝑗  
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𝑥𝑗
ℎ+1 =

𝑥𝑗
ℎ

∑ 𝑎𝑖
ℎ𝑐𝑖𝑗𝑡𝑖𝑡

∑𝑎𝑖
ℎ𝑐𝑖𝑗𝑡  

𝑖𝑡

×
𝑝𝑖𝑡

∑ 𝑎𝑖
ℎ𝑐𝑖𝑗𝑡�̂�𝑗

ℎ
𝜉 + 𝑠𝑖𝑡
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𝜓𝑖
ℎ = 𝑎𝑖

ℎ∑𝑐𝑖𝑗𝑡�̂�𝑗
ℎ+1

𝑗𝑡
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�̂�𝑗
ℎ+1 = �̂�𝑗

ℎ +

∑ 𝑙𝑖𝑗
𝜓𝑖
ℎ

𝜓𝑖
ℎ + 𝑠𝑖

(𝜓𝑖
ℎ

𝑖 + 𝑠𝑖 − 𝑝𝑖)

∑ 𝑙𝑖𝑗
(𝜓𝑖

ℎ)2

𝜓𝑖
ℎ + 𝑠𝑖

𝑖 ∑ 𝑙𝑖𝜉𝜉
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In which 𝑐𝑖𝑗𝑡 is the sensitivity of the detector at (𝑖, 𝑡) for activity in 𝑗 ignoring attenuation, 𝑙𝑖𝑗  is the 

intersection length of LOR 𝑖 with voxel 𝑗, and 𝑠𝑖𝑡  is the expected contribution of scatter and/or randoms. 𝑐𝑖𝑗  

and 𝑠𝑖  are the summation of 𝑐𝑖𝑗𝑡 and 𝑠𝑖𝑡  over the TOF index 𝑡. 𝑎𝑖
ℎ is the non-TOF sinogram based on 

current estimate of attenuation, while 𝜓𝑖
ℎ is the non-TOF sinogram integrated with TOF count. 

 5. CARDIAC PET IMAGING 

As one of the most important organ in human body, the condition of heart significantly influences the 

health and quality of life. Intensive medical research and clinical practice has been dedicated to the 

diagnosis and evaluation of cardiac diseases such as cardiovascular abnormalities and conditions that affect 

muscle, valves or rhythm of the heart. PET imaging techniques dedicated for this purpose provides crucial 

information necessary to discover and study functional abnormalities of the heart such as cardiac vascular 

diseases (CAD) [29]. For example, cardiac PET can provide information about perfusion defects [30], 

ejection fraction [31], plaque [32], and motion abnormalities [33], etc. Although photon emission computed 

tomography (SPECT) can also provide similar information of the heart at lower price, cardiac PET is more 

advantageous with higher image resolution and system sensitivity. 
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According to the biochemical property of the tracer, there are mainly two types of radioactive tracer used in 

cardiac PET imaging. One group is called perfusion agent, blood flow markers whose uptake in the 

myocardium directly indicates its blood supply. When a blood vessel of the heart is narrowed or blocked, 

the reduced blood flow leads to lack of perfusion in the region for which it supplies blood. This will be 

reflected by a “cold” region in the myocardium perfusion PET images. Commonly used perfusion agent 

includes Rubidium-82, Nitrogen-13 ammonia and Oxyggen-15 water [34]. Another type of tracer provides 

information about the metabolism or viability of the myocardium. Glucose participates in the metabolic 

process of the cells. Therefore, fluoro-2- deoxyglucose (F-18 FDG) can be used to diagnose diseases such 

as cardiac sarcoidosis [35]. Figure 1-10 shows the anatomy of the human heart and the corresponding 

cardiac PET image [36] with Nitrogen-13 ammonia in three axis, short axis (SA), vertical long axis (VLA), 

and horizontal long axis (HLA). A perfusion defect pointed by the arrow can be observed from the image. 

 

Figure 1-10 Heart Anatomy and Corresponding PET images 

Not only the tracer intensity in the myocardium provides useful information, the change of the shape of 

myocardium revealed in cardiac PET images also helps detecting motion abnormalities. Cardiac-gated PET 

images capture the moving heart at several cardiac phases as shown in Figure 1-11. In cardiac PET 

imaging, the widely used number of gates is eight. Experienced physicians are able to spot regional or 

global motion defects by observing the beating heart in the cardiac gated images. 



20 

 

 

Figure 1-11 8-frame cardiac gated images of an 18FDG study in short-axis view 

6.  RESPIRATORY MOTION IN CARDIAC PET 

The resolution of currently available commercial PET systems has reached 4~5mm [37]. However, several 

factors during the PET scan significantly degrade the image quality and make it impossible to achieve this 

nominal spatial resolution. One of these factors is the respiratory motion, which has been reported [38] to 

be 10-20 mm in head-to-toe direction for heart. A routine PET scan in the clinics can last from 5 to 20 

minutes. Although it is possible to reduce respiratory motion effects through approaches such as instructing 

the patient for shallow breathing, it is impossible to be eliminated [39]. The respiratory motion degrades 

image quality through two mechanisms. One is the blurring of the tissues and organs since the activity does 

not stay in the same location. As the heart moves up and down during the respiratory cycle, the image of 

the heart reconstructed from the acquired PET data is a blurred version of the true intensity map. The other 

issue is related to the integration of PET and CT in current multimodality imaging trend. The CT scanner 

provides anatomical information of the patient body, which helps improve spatial co-registration and 

diagnostic accuracy. Meanwhile, the fast and high-resolution CT scan can provide the attenuation map for 

use in the attenuation correction of the PET data. The CT scan is usually acquired within a few seconds 

during which breath holding is possible, while the PET scan can cover quite a few breathing cycles. As a 

result, the attenuation coefficient image from CT scan is unlikely to match the activity map in PET scan. 

The attenuation map mismatch can result in artifacts especially in the boundaries of organs such as lung 

and liver [40]. Both mechanisms can lead to inaccurate quantitation and diagnostic error of lesion 

localization [41].  

RESPIRATORY GATING  

RM leads to a reported range of 10-20 mm motion of the heart in the cranial-caudal direction [38], 

significantly degrading the image quality of cardiac PET data.  Due to the relatively long duration of a PET 

scan which is on the order of 10 minutes compared to a typical RM cycle of about 5 second, it is difficult to 
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completely eliminate the effects of RM [39], which degrades PET image quality through two mechanisms. 

One is resolution loss due to motion blur. The other is generation of image artifacts by introducing mis-

match of the activity distribution and attenuation map for attenuation correction (AC) especially when a 

“snap shot” CT scan is used in CT-based AC methods [42]. The image degrading effects lead to lower 

lesion detectability due to loss of image resolution and contrast, inaccurate quantitation, and image artifacts 

that affect clinical diagnosis [41].  

To reduce the effects of RM in PET imaging, respiratory gating [43-45] and RM correction techniques [46, 

47] have been developed and applied to patient studies. In respiratory gating, PET data are divided into 

different time frames or gates. Each respiratory gate (RG) covers a specific phase of the respiratory cycle 

with negligible RM. To reduce activity-attenuation mismatch and image artifact, the ‘snap-shot’ CT scan 

will need to be transformed and accurately registered [48] to the activity distribution at each RG for 

accurate attenuation correction.  

The RM signals used for respiratory gating can be obtained through two groups of methods. The first group 

of methods employs external RM monitoring devices. An example is a respiratory bellows that straps 

around the patient’s chest and detects the pressure on the bellows to track the RM [43, 49]. Another method 

is to use a video camera to measure the displacement of the patient’s chest and convert the information to 

RM[44]. Other approaches include using a temperature sensor to measure changes of temperature in the air 

flow during breathing [50], piezoelectric crystals to sense pressure changes [51], or the MRI navigator 

techniques that track motion of the diaphragm  [52]. All these methods rely on additional equipment to 

obtain a surrogate for respiratory motion, and require extra time and effort during setup and measurements. 

The accuracy and reliability of the measured signal depends on the monitoring equipment and users’ 

experience and skills. In addition, a disadvantage of these methods is that the measured signal is often not 

directly related to the affected organ of interest, e.g., the heart. For example, poor correlation has been 

observed between measurements of the external RM devices and the motion of the heart due to hysteretic 

behavior between inspiration and expiration [53].  

The second group of methods overcomes the above disadvantages of the first group. Known as data-driven 

RM signal extraction methods, they extract the RM signal directly from the acquired PET data. A 

respiratory motion signal can be obtained by processing the count variations from the manually chosen 
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regions of interest (ROIs) covering moving organ boundaries on reconstructed dynamic frames[54], or 

from regions subject to RM identified by Fourier analysis of a cine PET sinogram[55]. Another approach 

relies on frequency analysis of the center-of-mass (COM) movement of a ROI containing the moving organ 

which can be the lung tumor in oncologic PET images[56], or the heart in cardiac PET images[45]. The 

advantages of the data-driven methods are that the extracted RM signal is a direct indication of the motion 

of the target organ, and the RM signal is obtained with no extra cost, time or effort. However, the 

effectiveness and accuracy of the data-driven methods rely on the quality of the acquired data, and 

appropriate data and image processing techniques, and the RM signal extraction method used. Moreover, 

some of these approaches require sinogram rebinning or image reconstruction for consecutive time 

intervals each at 100~500ms, which is very time-consuming and computationally expensive. 

RESPIRATORY MOTION COMPENSATION 

Respiratory motion is relatively homogeneous for the heart region and therefore easy to correct. There have 

been lots of studies on respiratory motion correction to the PET data. One of the methods is MR-based 

respiratory motion correction. With hybrid PET/MR scanners available, respiratory motion can be obtained 

from MR signals and applied to respiratory gated PET data for improved image quality [57]. Respiratory 

motion can also be obtained from gated PET images. Rigid and non-rigid motion models have been 

proposed to describe respiratory motion and correct respiratory-gated data [58] through image registration. 

Besides motion correction on reconstructed images, the respiratory motion derived from MR or PET 

images can also be incorporated into image reconstruction process for motion compensation [59, 60].  

7.  CARDIAC MOTION IN CARDIAC PET 

CARDIAC GATING  

For the purpose of reducing motion blurring and visualizing the cardiac motion, cardiac gating divides PET 

data into several (typically 8) time frames based on information of the cardiac motion during the scan.  The 

widely used electrocardiogram (ECG or EKG) signal provides temporal information of each cardiac beat of 

the patient vie recording the electrical impulses generated by the polarization and depolarization of cardiac 

tissue. Currently most list-mode PET scanners incorporate ECG monitors, and the ECG trigger is recorded 
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within the list-mode data. Data-driven cardiac gating that relies on cardiac signal derived from the data is 

also proposed but with much fewer application due to low success rate [45]. 

CARDIAC MOTION ESTIMATION 

Cardiac motion estimation for PET images is essentially an image registration task, which seeks to 

establish spatial correspondence between two or more images. The registration transformation 𝑻 that maps 

a position 𝒙 in image A to a point 𝒙′ in image B, i.e., 

𝑻: 𝒙 ↦ 𝒙′ . 
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The cardiac motion vector field (MVF) 𝑴 is an alternative representation of this transformation: 

𝑴(𝒙) = 𝒙′ − 𝒙 , 
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where 𝒙 and 𝒙′are usually the 3D coordinates of each voxel. 

Although many methods have been developed for image registration purpose, no all of them are applicable 

in cardiac motion estimation scenario. There are mainly two groups of image registration methods. The first 

group uses corresponding point/line/surface landmarks to find transformation between images.  This group 

of method is not very suitable for cardiac motion estimation purpose. Some use markers attached to the 

skin[61] or teeth[62], or inserted into the bone[63] that are visible under corresponding imaging modalities, 

and then use point-based registration to find transformation map. These methods provide straightforward 

solution for rigid transformation, and can also be used to define simple non-rigid transformation[64]. 

However, they are not practical in cardiac motion estimation. On one hand, it is incapable of capturing the 

complex 3D motion of the heart with limited numbers of markers; on the other hand, the invasive planting 

of the seeds into the human heart is very likely to cause damage to the cardiac function and disturb cardiac 

motion. Some rely on automatic or interactive image segmentation to extract features such as boundaries or 

surfaces of organs and then find the transformation that matches the features. One example is the head-and-

hat algorithm which was originally used to align images of the head between different modalities of 

different resolutions[65]. Another example is the Iterative Closet Point (ICP) algorithm[66] that iteratively 

identifies the closest point in the target image surface for the points in source image surface. Local 



24 

 

geometry such as crest lines can also be used as feature alternative to pre-segmented surfaces[67], but 

require high-resolution images and are sensitive to noise. These methods are applicable to cardiac motion 

estimation specifically, but given the low-resolution and noisy cardiac PET images, their application is 

limited. 

The second group computes image transformation directly from the voxel intensities and is shown to 

outperform feature-based methods [63]. For intra-modality image registration, the solution is the image 

transformation that minimize the mean sum of squares of difference (SSD) [68], or the correlation 

coefficient(CC) between the image intensities [69]: 

𝑆𝑆𝐷 =
1

𝑁
∑|(𝐴(𝒙) − 𝑻(𝐵(𝒙))|2, 
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𝐶𝐶 =
∑(𝐴(𝑥)−�̅�)(𝑇(𝐵(𝑥))−�̅�)

{∑(𝐴(𝑥)−�̅�)2∑(𝑇(𝐵(𝑥))−�̅�)2}
1/2. 
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For multi-modality registration purpose, mutual information in ()can be used as the registration metric[70], 

which may also be applicable to intra-modality scenario[71]. 

𝐼(𝐴, 𝐵) = 𝐻(𝐴) + 𝐻(𝐵) − 𝐻(𝐴, 𝐵). 
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𝐻(𝐴)is the Shannon-Weiner entropy of image A, and 𝐻(𝐴,𝐵) is the joint entropy of image A and B. 

Besides the metric of image similarity, most of the algorithms enforce smoothness of the resulting 

transformation map by adding a penalty term calculated based on spatial differentiation of the 

transformation field, or by using B-spline function to represent the transformation function[68, 71-73]. 

Methods with B-spline modeling of transformation function are referred to as B-spline registration.  

All registration algorithms in this group rely on a process of optimization to compute the transformation 

that aligns the two images in the best way evaluated by certain metric. A major limitation of these methods 

is that the optimization process is likely to arrive at local optimizer instead of global optimizer. Multi-

resolution methods are often used[74] to address this problem, but cannot solve it completely.  
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In medical imaging field, most of the methods mentioned about are mainly used to align images of organs 

or body regions that do not move as periodically and intensively as heart. In those cases, B-spline is 

sufficient to model the non-rigid displacement between two images. None of the methods is dedicated to 

cardiac motion estimation in PET imaging, and does not take the complexity of the cardiac motion into 

consideration. They are purely image-based methods.  

The optical-flow approach belongs to the second group of methods, and our method is developed based on 

this approach. 

CURRENT OPTICAL-FLOW BASED MOTION ESTIMATION METHOD 

First proposed by Horn and Schunck [75], the optical flow determination method lays the foundation for 

many cardiac motion estimation methods designed for CT and ECT images. Optical flow, defined in Horn 

and Schunck’s paper as “the distribution of apparent velocities of movement of brightness patterns in an 

image”, is an approximation to the real image motion. MVF calculated using the optical-flow based 

approach does not contain motion parallel to edges of intensity patterns, that is, movement in the direction 

of the iso-brightness contours. The MVF is calculated from 2D images by iteratively optimizing brightness 

constraint and smoothness constraint. Song and Leahy [76] introduced the incompressibility constraint and 

divergence-free constraint into the cost function for 3D implementation of the optical flow method. 

Pointing out that it is difficult to find proper weight of the two constraints in Song and Leahy’s method, 

Klein and Huesman [77] proposed to estimate the MVF by minimizing the intensity mismatching error 

between deformed volume and the reference volume, and the strain energy of the cardiac muscle as a 

linearly elastic uniform isotropic material. They later extended this method into 4D by adding a new term 

to the cost function to guarantee the consistence of the motion during the cardiac cycle [78]. Applying the 

proposed 4D cardiac motion estimation method in paired gated PET/ MRI image datasets from normal 

human subjects, Klein [79] found it difficult to extract motion tangential to the myocardial boundaries in 

the PET images and even in high-resolution cine MR datasets, especially for homogeneous mid-wall 

sections; while in tagged MR images, the detection of cardiac twist is much more successful because of the 

useful image features contained. The study suggests the possibility of extracting accurate cardiac MVF in 

images of rich features. These features could be unique anatomical structures like the papillary muscles, 
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and the RV insertion point that has been used to track cardiac torsion [80, 81]; it could also be uptake non-

uniformities such as perfusion defects in gated cardiac PET images. Besides developments of algorithms 

for motion estimation only, there are also researches seeking simultaneous image reconstruction and 

motion estimation. A penalty function containing the log likelihood of projection data, intensity mismatch 

and strain energy, can be iteratively minimized to generate estimation of the image and the MVF [82-84]. 

LIMITATIONS OF THE CONVENTIONAL METHOD 

The first limitation of optical-flow based cardiac motion estimation is that the optimization of the cost 

function requires an initial estimate of cardiac MVF, and the result is highly dependent on the initial. The 

zero-valued MVF is usually used as the initial, which is likely to lead the optimization to a local minimum. 

Moreover, the aperture problem is intrinsic to the optical flow algorithm. Only motion that is perpendicular 

to the edges can be detected, and motion parallel to the edges is not detectable since it does not cause 

change in intensity yet increases strain energy. Unfortunately, cardiac motion contains important 

components that are parallel to the edge of the myocardium --- the heart twists during the cardiac cycle to 

squeeze blood out of the ventricles.  

Although many researches that apply optical flow based motion estimation algorithms in cardiac images of 

various imaging modalities have been carried out previously, most of them only provide qualitative 

evaluation of the motion estimation results based on visual observation, since ground truth is not available 

for clinical cardiac datasets. In addition, analysis of the estimated cardiac MVF in previous studies rarely 

take the complexity of cardiac motion into consideration. The anatomy of the heart, characteristics of 

cardiac motion, and mechanics of cardiac muscle fibers are rarely taken into consideration. Cardiac motion 

consists of three components: the radial motion, the circumferential motion, and the longitudinal motion. 

The performance of the motion estimation approach is rarely systematically analyzed in terms of all three 

cardiac motion components.  

8.  AIM AND SIGNIFICANCE OF THIS THESIS 

This thesis will cover two research topics: data-driven respiratory gating for list-mode cardiac PET data, 

and feature-based cardiac motion estimation for gated-cardiac PET images. Study on the first topic employs 
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clinical patient data, and will be presented in Chapter 2. The second topic will be studied mainly with 

simulation data, and the results will be shown in Chapter 3. Both topics are significant for cardiac PET 

imaging in both research and clinical area.  

The goal of the first study is to improve the performance and robustness of data-driven RM extraction, 

estimation and gating techniques. The traditional COM based data-driven respiratory gating techniques are 

not sufficiently robust to handle patient data with high noise level and low target organ-to-background 

uptake ratio. From the projection data, they often take the counts within the entire field of view without 

discriminating between the stationary and the moving target organ. As a result, the RM signal derived from 

the COM of the moving target organ is affected by counts from the stationary region, which leads to 

reduced accuracy. The data-driven techniques will simplify the RM gating process for use in routine 

clinical cardiac PET studies without the extract cost, time and effort involve in using an external RM 

monitoring device. We proposed three approaches including heart-dedicated volume-of-interest (VOI) 

selection, the use of time-of-flight information[85], and background correction. Six data-driven methods for 

list-mode cardiac PET data that mix-match the three approaches are developed. Finally, we evaluated the 

effectiveness and robustness of six approaches using clinical cardiac PET data. 

Data-driven respiratory gating has become an active research topic driven by the high requirement of 

cardiac image quality as well as by the improvement in cardiac PET imaging techniques such as the 

introduction of TOF and the increase of system resolution. Its application is not limited to cardiac PET 

imaging. Respiratory motion leads to image blurring, motion artifacts, and activity-attenuation mismatch, 

all of which degrades the image quality for the whole thorax region. Lung nodules and lesions in the liver 

can be easily missed or misplaced in ungated images. External devices are not always available for clinical 

use. Even when they are available, it takes proper training and experience for technicians to master the 

skills to use them correctly. The inconvenience, extra cost in money and human labor, as well as limited 

availability of external devices makes data-driven methods more appealing in practical use.  

The proposed data-driven respiratory gating method extracts respiratory motion signal directly from the 

list-mode data without the need of sinogram re-binning. It can be used as a prototype and incorporated into 

the software of clinical PET scanner for convenient data processing right after acquisition.  
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The second study is the major part of this thesis. Cardiac PET imaging is currently not the go-to imaging 

method due to its relatively low system resolution and long acquisition time. However, it is an important 

imaging technique for collecting cardiac functional information and has extensive application in 

myocardium viability studies. Although cardiac-gated CT and tagged MR can provide images of higher 

resolution and track cardiac motion, they either imposes extra radiation dose to the patient, or requires 

sophisticated pulse-sequence designing and has limited availability in clinical application. The problem we 

are trying to solve is to extract cardiac motion information directly from gated cardiac PET images. With 

this technique, we will be able to obtain not only functional information such as perfusion and viability, but 

also evaluation of cardiac motion condition within a cardiac PET scan.  

The goal of our study on cardiac motion estimation is to overcome or reduce the limitations of optical-flow 

based motion estimation method− the initial dependency and the aperture problem. Many studies have been 

carried out on cardiac motion estimation but none of them has systematically analyzed cardiac motion 

components or quantitative evaluated the motion estimation results. With simulated cardiac PET data using 

realistic digital phantom and advanced analytical as well as statistical simulation tools, we will evaluate the 

cardiac motion estimation results both quantitatively and qualitatively. The improvement in cardiac PET 

imaging technique has been providing images of higher and higher quality in terms of resolution. Although 

the simulation data is still not available in clinical use, we are confident that the resolution of the next-

generation PET scanner will keep improving. This in time will make our method more practical in clinical 

use.  

The MVF estimated using the cardiac motion estimation algorithm provides important information for 

diagnosis of global and regional cardiac motion abnormalities. Especially, with cardiac motion component 

analysis of the MVF, we will be able to tell which component is not functioning well. Moreover, the MVF 

can be used for motion compensation of cardiac gated images to improve image quality and reduce motion 

artifacts. Small regional perfusion defects or viability lesions that may be blurred out by cardiac motion can 

be recovered with accurate cardiac motion compensation. The motion components parallel to edges are 

difficult to estimate with conventional methods. The method proposed in this study will try to recover these 

components. As a result, cardiac motion compensation will be able to reveal small defects that are difficult 

to identify using MVF estimated by conventional methods.  
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CHAPTER 2.  ADVANCED DATA-DRIVEN RESPIRATORY GATING FOR LIST-

MODE CARDIAC PET DATA  

Accurate respiratory gating is a prerequisite of generating cardiac PET images of improved image quality 

by dual respiratory and cardiac motion compensation. The goal of this study is to improve the performance 

and robustness of data-driven RM signal extraction, estimation and gating techniques. The traditional COM 

based data-driven respiratory gating techniques are not sufficiently robust to handle patient data with high 

noise level and low target organ-to-background uptake ratio. Moreover, not all counts within the field of 

view come from the moving target organ. By identifying separate background and target regions, the RM 

signal derived from the COM of the moving target organ is less affected by the stationary background, 

which can lead to improved accuracy.  

We propose three approaches including heart-specific volume-of-interest (VOI) selection, the use of time-

of-flight information[85], and background correction. The performance and robustness of six data-driven 

methods that mix-match these three approaches are evaluated using clinical cardiac PET data. 

METHODS AND MATERIALS 

DATA-DRIVEN RESPIRATORY MOTION SIGNAL EXTRACTION METHODS 

SYSTEM GEOMETRY AND NOTATIONS 

A schematic diagram of the data acquisition configuration of a typical time-of-flight (TOF) PET 

scanner is shown in Error! Reference source not found.. The coordinates of the object space is r

epresented by the x-, y-, and z-axes, where the z-axis lies along the axial direction of the PET scanner. The 

inner radius of the detector ring of the PET scanner is given by 𝑅. A pair of two 511 keV annihilation 

photons detected within a coincidence timing window and an energy window by the detector bins 𝑏1 and 𝑏2 

at the detector ring numbers 𝑧1 and 𝑧2, respectively, is registered as a coincidence event. The line 

connecting 𝑏1 and 𝑏2 is defined as a line-of-response (LOR). The information about the recorded 

coincidence event, including the detector bins, detector ring numbers, energy of the detected photons, and 

the TOF bin 𝑡 are recorded in the list-mode format. The azimuth and polar angles, 𝜃 and 𝜙, are the angles 

between the LOR and the transaxial plane, and between the line perpendicular to the projection of LOR on 
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the transaxial plane and the 𝒙-axis, respectively. A new coordinate system based on each coincident event 

is defined by three unit basis vectors 𝒖, 𝒗, and 𝒘, where 𝒗 is oriented along the direction of the LOR, 𝒖  is 

the vector orthogonal to the LOR and lies on the transaxial plane, and 𝒘 is orthogonal to both 𝒖 and 𝒗. In 

the object space coordinates, these three unit basis vectors are given by  

{
𝒖 = (𝒄𝒐𝒔𝝓, 𝒔𝒊𝒏𝝓, 𝟎)                            
𝒗 = (−𝒔𝒊𝒏𝝓𝒄𝒐𝒔𝜽, 𝒄𝒐𝒔𝝓𝒄𝒐𝒔𝜽, 𝒔𝒊𝒏𝜽)
𝒘 = (𝒔𝒊𝒏𝝓𝒔𝒊𝒏𝜽,−𝒄𝒐𝒔𝝓𝒔𝒊𝒏𝜽, 𝒄𝒐𝒔𝜽)

. 
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Figure 2-1 Schematic diagram of the data acquisition configuration of a typical PET scanner. The annihilation location is 

indicated by the red dot. 

VOLUME-OF-INTEREST (VOI) SELECTION 

Respiratory motion (RM) causes movement of the heart resulting in blurring in the heart in the cardiac 

PET images. Tracking the movement of the heart in 4D cardiac PET images allows estimation of RM at the 

location of the heart and can be used in RM compensation for improved image quality of cardiac PET 

images. In this work, the heart was identified from a preliminary image reconstruction using the ungated 

list-mode data and its center was determined to be at (𝑐𝑥 , 𝑐𝑦 , 𝑐𝑧) in the object space of the summed 3D 

static image. The width of the heart in the transaxial plane and its length in the axial direction was 

determined as 𝑟𝑡  and 𝑟𝑧, respectively. Radii that are slightly larger than 𝑟𝑡  and 𝑟𝑧 were chosen to be the radii 

of the 3D volume-of-interest (VOI) that encompasses the entire heart. The extracted VOI and its 
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projections was used to determine the 2D region-of-interest (ROI) containing the heart, or C-ROI, and a 

background ROI, or B-ROI, in a uniform background region next to the C-ROI. The location of the center 

of the heart in the (𝒖, 𝒗,𝒘) coordinates is given by 

{

𝒄𝒖 = 𝒄𝒙𝒄𝒐𝒔𝝓 + 𝒄𝒚𝒔𝒊𝒏𝝓                                       

𝒄𝒗 = −𝒔𝒊𝒏𝝓𝒄𝒐𝒔𝜽𝒄𝒙 + 𝒄𝒐𝒔𝝓𝒄𝒐𝒔𝜽𝒄𝒚 + 𝒔𝒊𝒏𝜽𝒄𝒛
𝒄𝒘 = 𝒔𝒊𝒏𝝓𝒔𝒊𝒏𝜽𝒄𝒙 − 𝒄𝒐𝒔𝝓𝒔𝒊𝒏𝜽𝒄𝒚 + 𝒄𝒐𝒔𝜽𝒄𝒛 

.                       
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A transaxial or cross-section cut (𝑥, 𝑦) plane of the 3D C-VOI in the object space is shown in Error! R

eference source not found.. It is represented by the blue circle centered at (𝑐𝑥 , 𝑐𝑦) with radius 𝑟𝑡 . In the 

image analysis, the circular shape was approximated by a square with a side length of 2𝑟𝑡 . Two B-ROIs 

were chosen adjacent to the square C-ROI along the LOR projection. The areas of the cardiac ROI and 

background ROI are the same. 

 

Figure 2-2 The definition of cardiac ROI, C-ROI, and background ROI, B-ROI, in a transaxial plane. The blue region 

represents the C-ROI and the red region the B-ROI. 

In the coronal, sagittal or cross-sectional cut planes (x, z) or (y, z) that is parallel to the z-axis, the 

selection of C-ROI and B-ROI has to take tilted events into consideration. The shapes of the sectional cut 

through C-VOI and B-VOI are shown in Fig. 3.For coincidence events where the two annihilation photons 
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are detected by the same detector ring as shown in Fig. 3 (a), the projection of C-VOI and B-VOI 

satisfies|𝑧 − 𝑐𝑧| < 𝑟𝑧, in which 𝑧 is the detector ring number. For events where the photons are detected by 

different detector rings, the projections of the C-VOI and B-VOI depend on the tilted angle 𝜃. Hence the 

range of the detector ring number of one photon 𝑧1 becomes 

 |𝑧1 − 𝑐𝑧′| <
𝑟𝑧

𝑐𝑜𝑠𝜃
,       

2-3 

where 

𝑐𝑧′ = 𝑐𝑧 + (𝑅 − (−𝑐𝑥  𝑠𝑖𝑛𝜙 + 𝑐𝑦 𝑐𝑜𝑠𝜙)) 𝑡𝑎𝑛𝜃. 

2-4 

 

Figure 2-3. The projections of the C-VOI and B-VOI on the coronal or sagittal plane with the pair of annihilation photons 

detected by detector bins of the (a) same detector ring, and (b) different detector rings. The blue and red area represents the 

projection of the C-VOI and B-VOI on the plane defined by z axis and any straight line on x-y plane respectively.  

CENTROID LOCATION CALCULATION WITHOUT AND WITH TOF 

Without TOF information, the 3D C-VOI and B-VOI containing the heart and background regions in 

image and data analyses are referred to by the C-ROI and B-ROI defined in the projections. Photons 

detected by detector bin 𝑠 that satisfies  |𝑠 − 𝑠00| < 𝑟𝑡  are not guaranteed to come from the C-VOI 

inError! Reference source not found.. Therefore, the estimated C-VOI used in calculating the centroid l
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ocation of the heart without TOF information as show in Figure 2-4 is larger than those shown in Error! 

Reference source not found..  

 

Figure 2-4. The estimated C-VOI and B-VOI used in the centroid of the heart calculation without TOF. The blue region 

represents the C-VOI while the red region represents the B-VOI. 

Hence without TOF information, the location of the centroid of the heart is calculated from 

𝑧𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 =
∑ 𝑧𝑖∙𝑐𝑖𝑖∈𝑅𝑂𝐼

∑ 𝑐𝑖𝑖∈𝑅𝑂𝐼
,      

2-5 

where 𝑧𝑖 =
𝑧1+𝑧2

2
 and 𝑐𝑖 is the count of voxel 𝑖 in the VOI. With TOF, the annihilation location can be 

identified more accurately to exclude photons that do not come from the heart VOI. The most likely 

annihilation (MLA) point of a detected coincidence event, (x*, y*, z*), is defined at the maximum of the 

TOF profile along the LOR [86]. The coordinate of the MLA point is given by [86] 

{
 
 

 
 𝒙

∗ = 𝒔 𝒄𝒐𝒔𝝓 −
𝒍 𝒔𝒊𝒏𝝓

√𝟏+𝜹𝟐

𝒚∗ = 𝒔 𝒔𝒊𝒏𝝓 +
𝒍 𝒄𝒐𝒔𝝓

√𝟏+𝜹𝟐

𝒛∗ = 𝒛+
𝒍 𝜹

√𝟏+𝜹𝟐
          

  ,                            

2-6 
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where 

{
𝜹 = 𝒕𝒂𝒏𝜽

𝒛 =
𝒛𝟏+𝒛𝟐

𝟐

  .      

2-7 

In (6), 𝑠 is the projection of the LOR on 𝒖 axis; 𝑙 is the TOF parameter that corresponds to the TOF 

profile ℎ(𝑙 − 𝑟) centered at position 𝑟 = 𝑙 along the LOR direction. In other words, 𝑙 is the difference 

between the arrival times of the two annihilation photons, Δ𝜏, at the corresponding detectors and is given 

by 𝑙 = 𝑐Δ𝜏/2, where 𝑐 is the speed of light. Its projection on the 𝒗-axis is given by 

𝒕 = 𝒛 𝒔𝒊𝒏𝜽− 𝒍.       

2-8 

The uncertainty of the MLA is taken into consideration by assigning location of each annihilation event a 

weight calculated based on the TOF profile. The weight is calculated by 

𝒘 = 𝒇(𝒕 − 𝒍𝟎𝟎) = 𝒎(𝒍)⨂𝒉(𝒍).      

2-9 

where ⨂ is the convolution operation and the mask, 𝑚(𝑙), and the TOF profile, ℎ(𝑙), are given by 

{
𝑚(𝑙) = {

1,        𝑓𝑜𝑟 |𝑙| ≤ 𝑟𝑡
0,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

ℎ(𝑙) =
1

√2𝜋𝜎
𝑒
−
𝑙2

2𝜎2             

, 

2-10 

where 𝜎 = 7.5 𝑐𝑚 is determined by the temporal TOF resolution of the PET scanner and is a fixed 

parameter. The TOF profile ℎ(𝑙) represents the uncertainty of the annihilation location along the LOR. 

Thus, the centroid location on the axial direction is calculated using 

𝒛𝒄𝒆𝒏𝒕𝒓𝒐𝒊𝒅−𝒕𝒐𝒇 =
∑ 𝒛𝒊∙𝒘𝒊𝒊∈𝑽𝑶𝑰

∑ 𝒄𝒊∙𝒘𝒊𝒊∈𝑽𝑶𝑰
, 

2-11 
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where 𝑤𝑖 is the weight used in the MLA calculation, zi is the z coordinate of the MLA point for each of the 

TOF coincidence event i originated in the C-VOI. 

RANDOM CORRECTION AND SENSITIVITY NORMALIZATION 

The random coincidence was corrected using the standard subtraction of delayed coincidences 

method[87] by subtracting the events in a delayed time window from the prompt event as shown by the 

following equation. 

𝒛𝒄𝒆𝒏𝒕𝒓𝒐𝒊𝒅−𝒕𝒐𝒇 =
∑ 𝒛𝒊∙𝒄𝒊∙𝒘𝒊𝒊∈𝑽𝑶𝑰,𝒑𝒓𝒐𝒎𝒑𝒕 −∑ 𝒛𝒊∙𝒄𝒊∙𝒘𝒊𝒊∈𝑽𝑶𝑰,𝒅𝒆𝒍𝒂𝒚

∑ 𝒄𝒊∙𝒘𝒊𝒊∈𝑽𝑶𝑰,𝒑𝒓𝒐𝒎𝒑𝒕 −∑ 𝒄𝒊∙𝒘𝒊𝒊∈𝑽𝑶𝑰,𝒅𝒆𝒍𝒂𝒚
.    

2-12 

In addition, since different detector bins have different sensitivity, the non-uniformity of the PET detectors 

was corrected by multiplying the acquired data with uniformity correction map that consists of correction 

factors, si, for each detector bin i. With the additional non-uniformity correction Eq. (12) becomes  

𝒛𝒄𝒆𝒏𝒕𝒓𝒐𝒊𝒅−𝒕𝒐𝒇 =
∑ 𝒛𝒊∙𝒄𝒊∙𝒘𝒊∙𝒔𝒊𝒊∈𝑽𝑶𝑰,𝒑𝒓𝒐𝒎𝒑𝒕 −∑ 𝒛𝒊∙𝒄𝒊∙𝒘𝒊∙𝒔𝒊𝒊∈𝑽𝑶𝑰,𝒅𝒆𝒍𝒂𝒚

∑ 𝒄𝒊∙𝒘𝒊∙𝒔𝒊𝒊∈𝑽𝑶𝑰,𝒑𝒓𝒐𝒎𝒑𝒕 −∑ 𝒄𝒊∙𝒘𝒊𝒊∈𝑽𝑶𝑰,𝒅𝒆𝒍𝒂𝒚 ∙𝒔𝒊
. 

2-13 

BACKGROUND CORRECTION 

NECESSITY OF BACKGROUND CORRECTION 

The 2D C-ROI selected from the sinogram in section 2 contains not only the myocardium, but also 

some background region such as the blood pool, and portions of the lung and liver. Assuming the 

background is stationary, the estimated motion magnitude of the heart due to RM based on the centroid 

location, by summing all the detected counts that are included in C-ROI, is an underestimation of the true 

motion magnitude.  

Figure 2-5 provides a schematic demonstration of centroid location calculation, in which the region 

inside the red square represents the C-ROI of heart used in centroid location calculation in the RM 

estimation. The two circles with their centroid locations c1 and c2 represent the locations of the heart at two 

respiratory phases, and the rest of the C-ROI region within the red square is the stationary background. Let 
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the detected counts that originate from the heart and are detected in the heart region be 𝑎 and in the 

background region be 𝑏, and the centroid location of the background be cb. Then, the estimated centroid 

locations of the entire C-ROI at the two respiratory phases are 
𝑎𝑐1+𝑏𝑐𝑏

𝑎+𝑏
 and 

𝑎𝑐2+𝑏𝑐𝑏

𝑎+𝑏
, and the respiratory 

motion amplitude will be 

𝒍 =
𝒂𝒄𝟏+𝒃𝒄𝒃

𝒂+𝒃
−

𝒂𝒄𝟐+𝒃𝒄𝒃

𝒂+𝒃
=

𝒂

𝒂+𝒃
(𝒄𝟏 − 𝒄𝟐),     

2-14 

which indicates that the estimated RM amplitude 𝑙 is smaller than the true RM amplitude( 𝑐1 − 𝑐2).  

 

Figure 2-5. Schematic diagram of the RM motion estimation based on calculations of centroid locations of the C-ROI. “a” and 

“b” represents counts from the myocardium and from the background. 

To correct this underestimation, we proposed a background subtraction approach. The basic idea is to 

identify the contribution from the background counts and subtract it from the centroid calculation equation. 

Since it is impossible to distinguish between the contributions of detected counts from the background and 

from the heart in the C-ROI, we can only seek an estimated background counts that is closest to the truth. 

The detected counts in B-ROI are used as an estimation of the true background counts. With background 

correction, the estimated centroid locations of the heart at the two respiratory phases become 
𝑎𝑐1+𝑏𝑐𝑏−𝑏′𝑐′𝑏

𝑎+𝑏−𝑏′
 

and 
𝑎𝑐2+𝑏𝑐𝑏−𝑏′𝑐′𝑏

𝑎+𝑏−𝑏′
, where b’ and c’b are the estimated background counts and the centroid location of the 

background region, respectively. The closer the background estimation 𝑏′𝑐′𝑏 is to the true background 

contribution 𝑏𝑐𝑏, the closer the estimated RM amplitude, l, will be to the true RM amplitude, (𝑐1 − 𝑐2). 

DIRECT AND SMOOTHED BACKGROUND CORRECTION 
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We proposed and evaluated a direct and a smoothed background correction method for more accurate 

estimation of the RM magnitude from the C-ROI data. In the direct background correction method, the 

detected counts from the B-ROI were subtracted from the counts in the C-ROI as shown by the following 

equation. 

𝒛𝒄𝒆𝒏𝒕𝒓𝒐𝒊𝒅 =
∑ 𝒛𝒊𝒄𝒊𝒊∈𝑹𝑶𝑰 −∑ 𝒛𝒋𝒄𝒋𝒋∈𝑩𝒂𝒄𝒌𝒈𝒓𝒐𝒖𝒏𝒅

∑ 𝒄𝒊𝒊∈𝑹𝑶𝑰 −∑ 𝒄𝒋𝒋∈𝑩𝒂𝒄𝒌𝒈𝒓𝒐𝒖𝒏𝒅
. 

2-15 

After background subtraction, the centroid location sequence after subtracting the background become 

noisier. In the smoothed background correction method, the counts from B-ROI were smoothed with a low-

pass filter before subtraction from the C-ROI to reduce the noise. The estimated centroid location of the C-

ROI become  

𝒛𝒄𝒆𝒏𝒕𝒓𝒐𝒊𝒅 =
∑ 𝒛𝒊𝒄𝒊𝒊∈𝑹𝑶𝑰 −𝑭(∑ 𝒛𝒋𝒄𝒋)𝒋∈𝑩𝒂𝒄𝒌𝒈𝒓𝒐𝒖𝒏𝒅

∑ 𝒄𝒊𝒊∈𝑹𝑶𝑰 −𝑭(∑ 𝒄𝒋)𝒋∈𝑩𝒂𝒄𝒌𝒈𝒓𝒐𝒖𝒏𝒅
, 

2-16 

where 𝐹()represents the smoothing function of the low-pass filter. 

By combining TOF and background corrections, we have a total of six RM motion estimation methods 

to track the centroid locations of the C-ROI during the scan. Table I shows the six methods with different 

combination of TOF and background correction methods. 

Table 2-1 Six RM motion estimation methods based on different combination of TOF and background correction approaches  

 without TOF with TOF 

no background correction (N-BC) Method 1 Method 4 

direct background correction (D-BC) Method 2 Method 5 

smoothed background correction (S-BC) Method 3 Method 6 

 

With each method, the motion of the heart along the z-axis was tracked by estimating the C-ROI centroid 

location from the list-mode data at every 200ms of the list-mode data. The 200ms sampling rate was chosen 
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to provide sufficiently high Nyquist frequency to show the respiratory frequency of human, which ranges 

from 2 to 6 second, in the respiratory signal extraction and estimation described below. 

POST-PROCESSING OF CENTROID MOTION SIGNAL 

An example of the estimated C-ROI centroid location sequence from a sample list-mode data obtained 

from the previous section was shown in Figure 2-6 (a). Its Fourier Transform is shown in Figure 2-6 (b) 

which reveals a strong peak corresponding to a RM cycle of 4.15 sec. A smooth version of the RM curve 

shown in Figure 2-6 (c) was obtained by extracting the RM motion peak within the two red vertical bars in 

Figure 2-6 (b), thereby removing the low frequency variation and high frequency noise in C-ROI centroid 

location sequence shown in Figure 2-6 (a). Finally, an inverse Fourier transform was applied to the extracted 

frequency spectrum to obtained a smoothed RM signal shown in Figure 2-6 (c). 

 

Figure 2-6. RM signal extraction and processing.  (a) An example of estimated C-ROI centroid location sequence from the list-

mode data and sampled at 200 msec. (b) Frequency spectrum of the centroid location sequence in (a) obtained from its Fourier 

transform revealing a RM peak corresponding to a period of 4.15 sec. (c) A smoothed RM signal curve obtained from the 

inverse Fourier transform of the extracting the RM motion peak within the two red vertical bars in (b).  

EVALUATION OF EXTRACTED RESPIRATORY MOTION SIGNAL 

To quantitatively evaluate the performance of the proposed RM signal extraction methods, we applied 

two quality assessment methods. 

1. SNR of respiratory motion spectrum 

The signal-to-noise ratio (SNR) of the centroid location sequence calculated from the list-mode 

simulation was defined by 
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𝑺𝑵𝑹 =
𝑺

𝑵
, 

2-17 

where 𝑆 and 𝑁 are measured from the frequency spectrum of the signal as shown in Figure 2-7. The 𝑆 is the 

amplitude of the RM peak, while 𝑁 is the average amplitude of the high-frequency noise. A high SNR value 

indicates more successful detection of RM from the C-ROI centroid location sequence. It can be used as an 

index of confidence of the respiratory gating signal. 

 

Figure 2-7. The definitions of signal, N, and noise, N, in the SNR measurements.  

2. RM amplitude measurement from respiratory gating signal 

The RM amplitude was estimated from the RM signal curve obtained from the proposed extraction and 

post-processing method shown in Figure 2-6. As shown in Figure 2-8(a), the RM amplitude is defined as 

the range of centroid locations that contains 95% of the total counts. The estimated movement of the 

myocardium from the respiratory gated images was determined by drawing a profile across the heart along 

the axial direction and measuring the distance between the myocardium location between different frame as 

shown in Figure 2-8(b). Since the true RM of the patient is not available, the estimated motion from the 

reconstructed images is used as the true RM magnitude in the quantitative evaluation.  
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Figure 2-8 (a) respiratory motion amplitude estimation from respiratory motion signal. (b) Verticle profiles through the center 

of the projection images of the heart at six respiratory gated frames. The RM magnitude is determined from the edges of the 

myocardium in the gated images with the largest difference.  

MATERIALS 

Twelve clinical cardiac PET datasets were used in evaluating the proposed RM signal extraction and 

estimation method. The patient datasets were anonymized before used in the study. The patients were 

injected with a clinical dose of 18FDG, 13NH3 or 82RbCl, and were scanned for 5 to 15 minutes with a 

Philips Ingenuity TOF PET/CT scanner. Data sets #1 to #3 are 18FDG studies; data sets #4 to #6 are 13NH3 

studies; data sets #7 to #12 are 82RbCl studies. The acquired PET data with TOF information was stored in 

list-mode format. The proposed RM extraction and estimation methods were applied to the list-mode data 

of each patient and the ungated and gated list-mode data were reconstructed using the image reconstruction 

toolbox provided by Philips.  

RESULTS 

1. Extraction of RM signal from C-ROI centroid location sequence 

Examples of the Fourier transforms or frequency spectra of the extracted C-ROI centroid location 

sequences from the list-mode data of Patient #1 in Section C and from using the six RM signal extraction 

methods in Table I are shown in Figure 2-9. Both the RM and CM peaks are visible in all the frequency 

spectra. Two distinct peaks are identified as the RM peak at 0.35 Hz (or cycles/sec) and as the CM peak at 

0.78 Hz. Their magnitudes and the noise of the frequency spectra are lowest with no TOF and background 

   
(a)                       (b) 
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correction. The S-BC method provides reduced noise in the frequency spectra as compared to that of the D-

BC method. With additional TOF information, the frequency spectra show higher RM and CM peak 

magnitudes and lower noise than those without TOF information. Similar results for the RM peak are found 

in Patient #3, and Patients #6 to #12. For Patient #6 to #11, the CM peak is not detectable. 

 No BC D-BC S-BC 

w
/o

 T
O

F
 

   

w
 T

O
F

 

   

Figure 2-9. The frequency spectra or the Fourier transform of the C-ROI centroid location sequences obtained from list-mode 

data of Patient #1 using the six RM signal extraction and estimation methods in Table I. From the left to right column, the 

results are obtained with no background correction and with the D-BC and S-BC methods. The upper and lower rows show 

results without and with TOF correction. The green arrows point to the extracted RM peaks, while the red arrows point to the 

CM peaks.  

Similar results for Patient #2 are shown in Figure 2-10. For this patient, the RM peak is visible with no 

background correction and with and without TOF information. When the D-BC method is applied, the 

noise in the frequency spectrum signal is increased dramatically and obscures the RM signal. The S-BC 

method lowers the noise in the frequency spectrum to provide a higher RM signal. 

 No BC D-BC S-BC 
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Figure 2-10. Similar frequency spectra as those in Figure 2-9 but obtained from Patient #2.  They show the D-BC method gives 

overly high noise magnitude that obscures the RM signal. The S-BC suppresses the noise magnitude and reveals RM signal 

with higher magnitude. The green arrows point to the extracted RM peaks, while the red arrows point to the CM peaks. 

Similar results from Patient #5 are shown in Figure 2-11. They demonstrate the effect of the 

background and TOF correction methods in extracting the RM signals. The frequency spectra in the upper 

row shows that without TOF information, the RM peak is not visible without background correction and is 

visible with the D-BC and S-BC methods. The frequency spectra in the bottom row show that with TOF 

information, the RM peak is visible with and without background correction, indicating that TOF 

information is helpful in extracting the RM signal. Both D-BC and S-BC methods improve the visibility of 

the RM and CM peaks, while the S-BC method provides lower noise magnitude. Similar results are found 

in Patient #4. 

 No BC D-BC S-BC 
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Figure 2-11. Similar frequency spectra as those in Figure 2-9 but obtained from Patient #5 . Results in the bottom row show 

the TOF correction method provide better visualization of the RM and CM peaks. Also, the RM peak is more visible when the 

D-BC and S-BC methods are applied as compared to that with no background correction. The green arrows point to the 

extracted RM peaks, while the red arrows point to the CM peaks. 

2. SNR of RM signal 

To provide quantitative assessment of the RM signal extraction methods, we computed the signal-to-

noise ratio (SNR), defined in 2-17 and Figure 2-8, of the RM signal in the frequency spectra obtained from 

the 12 patient studies using the different background and TOF correction methods shown in Error! R

eference source not found.. The results are plotted in Figure 2-12. In cases where the RM signals were 

obscured by the noise in the frequency spectra shown in the previous section, no SNR measurement was 

available.   
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Figure 2-12 SNR of respiratory motion signal for 12 patients with six different methods 

In all 12 patients, the introduction of TOF information improves the SNR compared with non TOF 

information methods, with or without D-BC and S-BC methods. In most cases, the removal of background 

counts achieved by TOF information provides higher RM signal strength than the concurrent increase in 

noise in the frequency spectra, resulting in improvement of SNR value. In cases such as Patient #4 to #6, 

the SNR obtained with Method 4 in Error! Reference source not found. is able to extract the RM peak t

hat is not available by Method 1. The exception is the case of no background correction for Patient #3. For 

this patient, the reconstructed image obtained from the ungated data shows higher myocardium-to-

background contrast and lower activity in background region as compared to that of the other patients. As a 

result, the contributions of background counts to the C-ROI are quite small. Meanwhile, the inclusion of 

TOF information provides improved RM signal strength by reducing the contribution of background counts 

into the C-ROI. However, in the case, the increased RM signal strength is overpowered by an increase of 

signal noise, leading to reduced SNR.   

The D-BC and S-BC methods have different effect on the frequency spectra. For Patient #1 to #2 and 

Patient #7 to #12, the SNR is reduced with the D-BC method. For example, in Patient #2, the RM peak is 

overwhelmed by noise with the D-BC method and becomes invisible. On the other hand, the S-BC method 

brings up the SNR by reducing the signal noise, resulting in improved SNR than the D-BC method. For 

Patient #3 to #6, both D-BC and S-BC approaches perform better than without background correction. 
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Furthermore, the S-BC approach yields higher SNR than the D-BC approach. The main differences 

between the two groups can be attributed to two factors. First, background subtraction results in increase in 

noise in the frequency spectra and may lead to loss in the visibility of the RM peak. Second, the 

background counts often include contributions from the liver part of which may move in and out of the C-

ROI during the RM cycle and can affect the background contribution and SNR when it has high tracer 

uptake. Although background-subtracting increase the RM signal amplitude, it can also lead to increased 

noise and reduced SNR.  

3. RM amplitude estimation 

Another quantitative assessment criterion of the six correction methods in Table 2-1 Six RM motion 

estimation methods based on different combination of TOF and background correction approaches is the 

estimated RM amplitude calculated from the RM signal extracted from the frequency spectra shown in 

Figure 2-6. The movement of the myocardial wall measured from the respiratory-gated images of the heart 

shown in Figure 2-8 was used as the reference for comparison. The results obtained from the 12 patient 

studies are shown in Figure 2-13. For all the patients, except those with no visible RM signal peak, both D-

BC and S-BC methods significantly increase the estimated RM amplitude and bring it closer to the 

reference RM amplitude estimated from the RM gated images.  

 

Figure 2-13. RM amplitude of the RM signal extracted from the frequency spectra of the 12 patient using the six background 

subtraction and TOF correction methods in Table I. The corresponding movement of the myocardial wall measured from the 

respiratory gated images of the heart is also shown as references. 
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Increasing the amplitude and accuracy of the RM signal has other useful applications. The higher 

amplitude allows more accurate determination and it helps distinguish between different respiratory frames, 

since respiratory gating is essentially amplitude-based. This information is also important if the researcher 

is interested in respiratory motion correction. It provides first-impression about how much influence of the 

patient’s respiratory motion is on the data. When the respiratory motion of the patient is too small, it may 

not be necessary to preform respiratory motion correction or respiratory gating.  

A noteworthy phenomenon found in Figure 2-9, Figure 2-10 and Figure 2-11 shows an additional 

benefit of the proposed data-driven RM extraction and estimation method beyond respiratory gating 

purpose. For some patients, the data-driven method is able to reveal the cardiac motion (CM) peak signal in 

the frequency spectra of the centroid location sequences of the C-ROI. Using the same data analysis 

methods for the RM signal extraction, we calculated the SNR of the CM signal from the frequency spectra.  

Results from patients with visible CM peak signal are shown in Figure 2-14.  They show TOF correction 

provides increased SNR of the CM signal for most patients. In particular, for Patient #6, the frequency 

spectra with TOF correction brings out CM signal that is unavailable without TOF information even 

without background correction. Besides factors such as heart to background signal contrast and noise level, 

there is another factor that can influence the detectability of CM signal extraction. Different from RM 

signal extraction, the CM signal extraction is not mainly in inferior-superior direction. As a result, the CM 

signal extracted from the respiratory gated C-ROI sequence only reveal the component of the CM along the 

inferior-superior direction. However, the extracted CM signal can by useful for cardiac gating purposes in 

cases when ECG signal is not available. 
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Figure 2-14. SNR of CM signal obtained from applying the six different background subtraction and TOF correction methods 

in Table I to the twelve patient studies. 

DISCUSSION 

In our proposed approaches, the extracted RM signal from the cardiac ROI (C-ROI) contains 

contributions from the heart, liver, and other organs in the chest region. In cardiac PET using 18F-FDG or 

13N-NH3, the activity uptakes in the heart and liver and their contributions to the counts in the C-ROI tend 

to be higher than that from the other organs. While the motions of the heart and liver contribute to the RM 

signal extraction, the stationary background reduces the RM magnitude estimation. We sought to improve 

the accuracy of the RM signal by reducing the contribution from the stationary background, by subtracting 

the background counts directly or after proper smoothing through background correction, or by reducing 

counts from the background using the TOF information. For the centroid-tracking based respiratory signal 

extraction methods, the main factors that affect the RM peak of the extracted motion signal are the 

respiratory motion amplitude of the heart, the ratio of the uptakes between the heart and the background, 

and the noise level of the list-mode data. The larger distance the heart moves in axial direction during 

respiratory cycle, the higher the RM peak in frequency spectrum of the respiratory motion signal. 

Meanwhile, higher heart activity compared to that of the stationary background and higher count level in 

the PET data which gives lower noise in the extracted RM signal, also lead to more distinguishable RM 

peak.  
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The TOF information is related to the location of annihilation points. By identifying and excluding 

counts originated from the stationary background, we were able to reduce their effect and improved RM 

signal estimation in all patient studies with or without background correction.  

The performance of the three proposed background correction approaches is different among the 12 

patient studies. There are two main factors that influence the contributions from the background counts. 

First, subtracting noisy background counts from the C-ROI results in higher noise of the extracted centroid 

location sequence. Smoothing the estimated background counts before subtraction in the S-BC method 

provides reduced noise and increased SNR of the RM signal as compared to the D-BC method. Second, the 

background region often contains the liver whose movement contributes to the RM signal. Its subtraction 

results in reduction of the RM signal strength. Since the liver is close to the heart, it is difficult to 

completely exclude the liver in the background count extraction. The background correction methods are 

more likely to improve RM signal extraction in patients with low liver uptake. Since the uptakes in the 

heart and liver are patient and tracer dependent, analysis of the patient data is necessary before choosing 

which best background subtraction method to use. In our study, we evaluated only one background count 

estimation and extraction method. For patients with high liver uptake, an improved background estimation 

method that excludes contribution from the liver is topic for future study.  

An additional CM signal was found in the frequency spectra for some patients. This additional 

capability was reported previously in analysis of PET data [7]. The proposed RM signal extraction methods 

can also be used for CM signal extraction, which can serve as an alternative to ECG based cardiac gating.  

The number of patients involved in this study was small and may not include all the possible data 

variations in a large patient population for cardiac PET studies.  However, our study can guide further 

development of data-driven RM and CM signal extraction and estimation methods for use in RM and CM 

gating and in RM and CM correction for improved PET image quality and quantitative accuracy. 

CONCLUSION 

Using combinations of TOF information and two background correction approaches, we evaluated six 

data-driven methods for the extraction and estimation of RM signals from list-mode cardiac PET data. A 
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cardiac VOI (C-VOI) was selected from the preliminary reconstructed images and its corresponding C-ROI 

in the sinogram was identified. In TOF-PET studies, the TOF information was used to identify the location 

of annihilation events originated from within the C-VOI. The C-VOI centroid was calculated in 200ms 

intervals by down weighting the contributions from outside the C-VOI. Random coincidence and detector 

sensitivity were corrected by delay-event subtraction and normalization using experimentally measured 

detector sensitivity coefficients, respectively. Detected counts from the stationary background within the C-

ROI lowered the amplitude of the RM peak signals and made the signal extraction difficult. Reduction of 

the contributions of stationary background from the C-ROI enhanced the RM peak signal amplitude but 

could often lead to increased noise in the frequency spectra. The six RM signal extraction and estimation 

methods listed in Table I represented different trade-offs between RM signal enhancement and noise 

reduction. These methods were evaluated using data from 12 clinical cardiac PET studies. 

Among the six RM signal extraction methods, the background subtraction correction methods with or 

without smoothing increased the amplitude of the processed RM signal, compared with no background 

correction. However, the effects of background subtraction on the frequency spectra of the centroid 

location sequence were data-dependent. For patient data with high statistical noise fluctuations and high 

liver uptake, the background signal could be noisy and contain RM information. Its subtraction could lead 

to increased noise and reduced RM signal amplitude, resulting in decreased SNR of the RM peak signal in 

the frequency spectra. In some extreme cases of high data noise, the frequency spectra obtained with 

background subtraction did not reveal any visible RM signal peak. In cases where the patients had low liver 

uptake and high detected counts or low data noise, background subtraction provided enhanced RM peak 

signal that allowed more reliable RM signal extraction. With smoothing of background counts before 

subtraction, the SNR of the RM peak signal could be further improved by reducing the noise amplification 

in data subtraction. Meanwhile, the TOF information demonstrates significant advantage in RM signal 

extraction. Method 4 and Method 6 in Table 2-1, both utilizing the TOF information, successfully extracted 

the RM signal for all twelve patient data sets.  

Since the characteristics of different patient datasets can be quite different, the selection of the optimal 

RM signal extraction method is important to provide the best SNR of the RM signals. 
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CHAPTER 3.  FEATURE-BASED CARDIAC MOTION ESTIMATION  

PRELIMINARY STUDY 

The main purpose of the preliminary study is to test the idea of incorporating feature in to cardiac motion 

estimation. In this study, we proposed a feature-guided motion estimation approach to improve the 

accuracy in cardiac motion estimation for cardiac PET images. The basic idea is to create an initial MVF 

estimate closer to the true cardiac motion than the traditional zero-valued MVF. Using realistic digital 

phantom and analytical simulation tool, we extracted the anatomical features from simulated cardiac PET 

images and used the motion of the features to guide the cardiac motion process. The motion estimation 

results were evaluated quantitatively. 

METHODS 

FEATURE EXTRACTION 

There are two major anatomical features in human heart—the papillary muscles and the interventricular 

sulcus. With advanced medical imaging techniques, these small structures of the heart become increasingly 

visible, which brings prospect of feature based motion estimation. Located in the ventricles of the heart, the 

papillary muscles control the motion of tricuspid and bicuspid valves through a bundle of connecting muscles. 

The “footprint” of the papillary muscle is where the root of the papillary muscle connects the endocardium. 

The interventricular sulcus is the connection between the left ventricle and the right ventricle. Figure 3-1 

shows both features of the human heart using the 4D XCAT phantom. These features contain useful 

information about the motion of the myocardium, especially motion that is difficult to detect using traditional 

method. 
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Figure 3-1 Anatomical features of human heart demonstrated using the 4D XCAT phantom. The internventricular sulcus is 

highlighted by the yellow curve. The papillary muscles are the small pieces of muscles that locate inside the left ventricle.  

To extract the “footprint”, first the seeded 3D region growing method[88] was used to segment out the 

blood pool inside the left ventricle in short-axis cardiac images based on the intensity difference between the 

blood pool and the myocardium. In each short-axis slice, we find the shape of the blood pool is concave due 

to the intruding papillary muscle. Hence we extracted the papillary muscle by subtracting the convex hull[89] 

of the blood pool with the blood pool itself, and then found the root of the papillary muscle. The centroid of 

the “footprint” of the papillary muscle is calculated from the extracted area, and its motion is tracked during 

the cardiac cycle by repeating the extraction in every time frame. The extraction process is demonstrated in 

Figure 3-2(a), and the extracted centroid is shown in Figure 3-2 (b). 

 

Figure 3-2 (a) Extraction of the “footprint” of the papillary muscle in short axis view of the phantom image. Blue curve: 

outline of the blood pool. Red line: convex hull of the blood pool. (b) The centroid shown in the short-axis and long-axis view of 

the XCAT phantom images of end-diastolic phase and end-systolic phase. 

For the interventricular sulcus, first, we used the 3D region growing method to segment out the whole 

myocardium from the background. Noticing that the thickness of the right ventricle is distinctively smaller 

than that of the left ventricle, we applied 3D erosion to the extracted myocardium followed by 3D dilation to 
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remove the right ventricle and keep only the left ventricle. After successfully separating the right ventricle 

and the left ventricle, we identified the pixels that connect these two parts on each short-axis slice as the 

sulcus points. Figure 3-3(a) shows the extraction process on one slice of the phantom image. After extracted 

the interventricular sulcus points on each slice, the entire sulcus curve as in Figure 3-3(b) can be obtained by 

connecting these points and smoothing the curve. 

 

Figure 3-3 (a) Extraction of the IS from frame 1 of the phantom image. The blue dot indicates the anteior IS while the red 

triangle indicate posterior IS. (b) The extracted IS from frame 1 of the phantom image. Blue circles indicates the anterior IS 

while the red stars indicate the posterior IS. 

FEATURE GUIDED MOTION VECTOR FIELD INITIALIZATION 

Information contained in the extracted motion of the above-mentioned features is regional, but the 

motion of the feature is extended to the whole myocardium based on knowledge about human cardiac 

motion. The optical flow based motion estimation algorithm generally requires an initial MVF to start the 

optimization process. Zero-valued MVF is usually used as the initial, but without the prior knowledge of 

the cardiac motion, it tends to converge to a local minimum, which is not the true MVF. A cardiac MVF 

initialized using the motion information contained in the features reduced the null space and could be closer 

to the true MVF. 

Based on the anatomy of human heart, cardiac motion is divided into three components as shown in 

Figure 3-4 (a). Clinical studies have found relationships between each motion component and the location 

in myocardium. In other words, the motion of a certain voxel of the myocardium is related to its location in 

the whole heart. Based on clinical studies of normal patients, we have two sets of assumptions about the 
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three cardiac motion components. Along the longitudinal direction: 1) the radial motion is approximately 

proportional to the radius of the left ventricle on short-axis plane; 2) the circumferential motion is linearly 

related to the distance to the apex, and there is a non-twisting plane at the 2/3 of long axis length from the 

apex [90, 91]; 3) the longitudinal motion is also linearly related to the distance to the apex, and the apex 

shows nearly zero longitudinal motion [90-92]. Along the transmural direction on each short-axis slice, 

radial and circumferential linearly decrease by half from endocardium to epicardium, while the longitudinal 

motion is uniform [90]. The linear relationships in these assumptions are approximations based on previous 

clinical study results. The magnitude of three motion components on each short-axis slice in the 4D XCAT 

phantom is plotted in Figure 3-4(b), which is consistent with clinical data and proves our assumptions are 

reasonable. 

 

Figure 3-4 (a) Three cardiac motion components shown using the 4D XCAT phantom. (b)The magnitude of three motion 

components along the longitudinal direction. Data collected from the 4D XCAT phantom. 

1. PAPILLARY MUSCLE GUIDED MVF INITIALIZATION 

 An initial estimation of the cardiac MVF was created using the extracted papillary muscle in two 

steps. First, the values of three motion components at the endocardium on each short-axis cross-section 

were extrapolated from the motion of the centroid using  

𝑉�̂�(𝑠) = 𝑘𝑙 ∙ 𝑠 + 𝑏𝑙, 

3-1 

𝑉�̂�(𝑠) = 𝑟(𝑠) ∗ 𝑝𝑟 , 

        

 

 

   

   

   

     

     

(a)                                                                                              (b) 
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3-2 

𝑉�̂�(𝑠) = 𝑉�̂�(𝑠𝑝), ∀𝑠, 

3-3 

in which 𝑉�̂�(𝑠), 𝑉�̂�(𝑠), 𝑉�̂�(𝑠) represents the longitudinal, radial, and circumferential motion at the 

endocardium of short-axis slice 𝑠 respectively, 𝑠𝑝 is the short-axis slice number of the papillary muscle 

centroid. In 3-1, the slope and intersect are determined from the longitudinal motion of the centroid using 

𝑘𝑙 = 𝑉𝑙(𝑠𝑝)/(𝑠𝑝 − 𝑠𝑎), 

 3-4 

and 

𝑏𝑙 = −𝑘𝑙 ∙ 𝑠𝑎, 

3-5 

in which 𝑠𝑝 and 𝑠𝑎 are the short-axis slice number of the papillary muscle and the apex respectively. In (2), 

𝑟(𝑠) is the radius of the endocardium at short-axis slice 𝑠, and the scalar is calculated using the radial 

motion and the radius of the footprint centroid by 

𝑝𝑟 = 𝑉�̂�(𝑠𝑝)/𝑟(𝑠𝑝). 

3-6 

In 3-3, with no information about the circumferential motion of the heart except at the papillary muscle 

footprint, the circumferential motion of every slice is initialized using the same value as the circumferential 

motion of the papillary muscle footprint.  

With the motion at the endocardium determined, the second step is to initialize the MVF on each short-

axis slice from the endocardium to the epicardium. Radial motion and the circumferential motion can be 

calculated using  

𝑉�̂�(𝑅) =
𝑅 + 𝑅𝑎 − 2𝑅𝑏
𝑅𝑎 −𝑅𝑏

1

2
𝑉�̂�(𝑅𝑎) 

3-7 
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𝑉�̂�(𝑅) =
𝑅 + 𝑅𝑎 − 2𝑅𝑏
𝑅𝑎 −𝑅𝑏

1

2
𝑉�̂�(𝑅𝑎) 

3-8                             

As demonstrated by Figure 3-5, 𝑅 is the radius of the transmural ring, 𝑅𝑎 and 𝑅𝑏 are the radius of the 

endocardium and epicardium respectively. The longitudinal motion is initialized uniformly on each slice. 

The three motion components of the whole left ventricle extrapolated in the above two steps are then 

transformed into the laboratory coordinate system for use in motion estimation process. Thus, the MVF of 

the whole myocardium has been initialized using the information from the papillary muscle. 

 

Figure 3-5 Initialization of the cardiac MVF on short-axis cross section. 

2. INTERVENTRICULAR SULCUS GUIDED MVF INITIALIZATION 

Using the extracted motion of the interventricular sulcus, we created an initial MVF for the left 

ventricle based on the same sets of assumptions. After extracting the sulcus, the motion of the sulcus 

between two time frames was calculated and decomposed into three components. Based on the change of 

the longitudinal length of the sulcus, the longitudinal motion on each short-axis slice of the left ventricle is 

initialized linearly. The circumferential motion at the epicardium of each slice is determined by linear 

regression analysis of the circumferential motion of the sulcus. The radial motion on the epicardium of each 

slice is initialized by smoothing the radial motion curve of the sulcus. The extracted motion components 

and fitted curve of the interventricular sulcus in frame 1 is shown in Figure 3-6.Then the radial motion and 

circumferential motion are initialized transmurally using 

𝑉�̂�(𝑅) =
𝑅+𝑅𝑎−2𝑅𝑏

𝑅𝑎−𝑅𝑏
𝑉�̂�(𝑅𝑏), 

3-9 

𝑅 

𝑅𝑏  

𝑅𝑎  
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and 

𝑉�̂�(𝑅) =
𝑅+𝑅𝑎−2𝑅𝑏

𝑅𝑎−𝑅𝑏
𝑉�̂�(𝑅𝑏). 

3-10 

By transforming the three initialized motion components into the laboratory coordinate, an interventricular 

sulcus guided initial MVF was created for the left ventricle and named as S-initial. 

 

Figure 3-6 Three motion components of the anterior interventricular sulcus extracted from the phantom image frame 1. Fitted 

(broken lines) curves were used build the S-initial estimation of the cardiac motion. 

OPTICAL FLOW BASED MOTION ESTIMATION ALGORITHM 

The estimation of the 4-D MVF is through a previously proposed  [76] and implemented [93] optical 

flow based motion estimation algorithm in which the cost function consists of an intensity mismatching term 

𝐸𝐼(𝒎)and a weighted elastic energy term 𝛼𝐸𝑆(𝒎). These two terms are defined in the following equations. 

𝑬𝑰(𝒎) ≜ ∑ [𝒇𝟏(𝒓) − 𝒇𝟐(𝒓+𝒎(𝒓))]
𝟐

𝒓 , 

3-11 

𝐸𝑆(𝒎) ≜
1

2
∑ (𝜆(𝑢𝑥 + 𝑣𝑦 +𝑤𝑧)

2) + ∑ (𝜇(𝑢𝑥
2 + 𝑣𝑦

2 +𝑤𝑧
2))𝒓𝒓 +

1

2
∑ (𝜇 [(𝑢𝑦 + 𝑣𝑥)

2
+ (𝑢𝑧 + 𝑤𝑥)

2 +𝑟

(𝑣𝑧 +𝑤𝑦)
2
]) ,                                 

3-12 

where 𝒎 is MVF estimate, 𝑢, 𝑣 and 𝑤 are the components of 𝒎 in the 𝑥, 𝑦 and 𝑧 directions, 𝒓 is the 3D 

spatial coordinate of a voxel, 𝑓1  and 𝑓2  the reconstructed image at two adjacent time frames. The first term 

y = -0.077x + 3.0201

y = -0.0471x + 5.46
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𝐸𝐼(𝒎) is approximated by its first order Taylor series. The weight 𝛼 was set to 0.005 and the Lame constants 

were chosen according to Mair [82]. The cost function is optimized using an iterative conjugate gradient 

algorithm, and the MVF is obtained as the minimizer after 30 iterations with guaranteed convergence.  

For comparison and evaluation, four initial MVF estimates were used in phantom study: (1) the 0-initial 

which is a zero valued MVF, which contains no motion information; (2) the P-initial which is the initial MVF 

extrapolated from the extracted motion of a papillary muscle; (3) the S-initial which is the initial MVF 

extrapolated from the extracted motion of the interventricular sulcus; (4) the T-initial which is the true MVF 

of the heart model of the XCAT phantom. Among these four initials, the 0-initial is the typical initial used in 

motion estimation; the P-initial and the S-initial are MVF initialized using our proposed feature based method; 

and the T-initial is included here for comparison, but it is not available in realistic situations. 

MATERIALS AND EXPERIMENT DESIGN 

INTRODUCTION TO SIMULATION TOOLS 

This study mainly relied on simulated cardiac PET data to implement and evaluate the proposed methods. 

The 4D XCAT phantom provides anatomy and motion of human body. In preliminary study, we used 

analytical simulation tool STIR to generate projection data and reconstruct cardiac images.  

The 4D NURBS-based Cardiac-Torso (XCAT) phantom [94] developed in our group is a digital 

anthropomorphic phantom widely used in nuclear medical imaging study. It provides highly realistic 

anatomy of human body derived from CT images and modeled with non-uniform rational b-splines 

(NURBS) surfaces. Moreover, it also provides realistic 4-D respiratory and cardiac motion which was 

determined from set of 4-D tagged MR cardiac images, and the respiratory motion came from a 4-D high 

resolution respiratory-gated CT dataset respectively. In this study, the XCAT phantom was used to generate 

activity map and attenuation map for simulation of cardiac PET scan. 

In this study, a newly updated 4-D XCAT phantom featuring a 4-D beating heart model with known 

cardiac MVF was employed to simulate myocardial perfusion (MP) PET images for implementation and 

evaluation of the proposed motion estimation method. As a realistic anthropomorphic phantom widely used 

in medical imaging, the 4-D XCAT phantom provides both activity and attenuation maps of the human 
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body and allows for simulation of medical image data with known medical imaging processes. The update 

of the phantom includes the addition of two papillary muscles that are attached to the endocardium of the 

left ventricle of the heart model. The locations and shapes of the papillary muscles were determined from a 

4-D cardiac-gated CT image dataset with 10 time frames over one cardiac cycle. The 4-D MVF of the 

original XCAT phantom was determined from a set of 4-D tagged MR cardiac images. The 4-D XCAT 

phantom also provides realistic MVF, which serves as a reference to evaluate the performance of the 

proposed cardiac motion estimation method.  

Figure 3-7 (a) shows the heart model in the 4-D XCAT phantom, and the MVF of four sample slices of the 

left ventricle is plotted in (b).  

 

Figure 3-7(a) Surface renderings of the cardiac model of the XCAT. (b) True MVF of the XCAT phantom at four sample slices 

of the left ventricle are plotted as blue arrows. 

STIR (Software for Tomographic Image Reconstruction) is an open source software mainly for 3D PET 

image reconstruction [95]. It provides several image reconstruction methods such as FBP and OSEM-One 

Step Late algorithm, as well as functions such as scatter correction and motion correction. In this study, we 

used its forward projection function to generate analytical projection data for the heart region, in order to 

speed up our simulation.  

HIGH-RESOLUTION ANALYTICAL SIMULATION 

The 4-D XCAT phantom data set consists of a series of 3-D images representing 8 time frames which 

uniformly distribute over a one-second cardiac cycle starting from the end-diastolic (ED) phase. Each of 

the 3-D phantom images was digitized into a 128×128×128 matrix with a voxel size of (0.078 cm)3. The 

end-systolic (ES) phase was set at 0.4 second while the mid-diastolic (MD) phase was at 0.7 second from 
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the R-wave. Activity concentration was set to the myocardium only to simulate the activity distribution of 

an ideal perfusion tracer in human body. The known MVF of the beating heart of the 4-D XCAT phantom 

was used as the ground truth. Noise-free cardiac-gated MP PET projection datasets were generated from 3-

D XCAT phantom at each time frame using the STIR simulation software [95] modeling the imaging 

characteristics of a modified GE Discovery RX PET scanner with improved resolution. Parameters of the 

customized 3-D PET scanner are provided in Table 3-1. Image degrading factors such as detector response, 

position range, nonlinearity, and scatter were not included in the simulation of projection, so the system 

resolution is equal to the bin size. The purpose of simulating this non-existing PET imaging system is to 

generate high quality images for preliminary implementation and evaluation of the proposed method, since 

extraction of the features demands high resolution. Poisson noise was added to the projection data after 

normalizing the total counts in the sinogram of the center slice to 6000, which is 8 times of typical clinical 

counts of a 40-minute PET scan. The projection data were processed using the OS-EM image 

reconstruction method provided by the STIR software to obtain reconstructed images. Butterworth filter 

with a cutoff frequency of 0.1 cycle/voxel and order 6 was applied to the noisy reconstructed images to 

mimic standard clinical process. One sinogram of the center slice of the XCAT heart phantom at ED before 

adding noise was shown in Figure 3-8 (a), while (b) and (c) show one middle slice of the reconstructed 

image before and after filtering. 

Table 3-1 Parameters of the customized scanner 

Number of rings 65 

Number of detectors per ring 1600 

Inner ring diameter (cm) 88.62 

Average depth of interaction (cm) 0.94 

Distance between rings (cm) 0.156 

Default bin size (cm) 0.078 
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Figure 3-8 (a) The simulated noise-free sinogram of the center slice of the heart model of the XCAT phantom. (b) 

Reconstructed PET image of the noisy projection data. (c) Reconstructed PET image after application of the Butterworth 

filter. 

Using the proposed method, features were extracted from each time frame of phantom image and simulated 

PET image. Then all cardiac images were down-sampled by 2, and initial cardiac MVFs between each two 

time frames of down-sampled image were created using the motion information contained in the features. 

The initial MVFs were combined with the optical-flow based motion estimation method to estimate the 

cardiac MVF in the down-sampled images.  

RESULTS 

The motion of the myocardium between neighboring frames of the 8 frames in total has different 

magnitudes. The heart starts to contract from the first frame and reaches end-systolic phase shortly after 

frame 3, and then start to relax since frame 4 until the last frame. The average magnitude of the cardiac 

MVF in 8 frames of phantom images are provided in Figure 3-9, in which we can find that frame 1, 2, 5, 

and 6 have relatively larger cardiac motion than the other four frames. Among the 8-frame cardiac images, 

frame 1 has the largest contracting motion during the systolic phase while frame 5 has the largest relaxing 

motion during the diastolic phase.  

 

Figure 3-9 Average magnitude of the true MVF in eight frames of phantom images. 
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For IS, using the proposed feature extraction method, we were able to identify the sulcus location and 

calculate the three motion components of the sulcus curve from the phantom images and simulated high-

resolution PET images. However, for the papillary muscle, although we were able to obtain the centroid 

location of the footprint in each cardiac frame, we found that the motion of the centroid was inconsistent 

with the cardiac MVF. The inconsistency will be studied in next section. At this stage, as the main purpose 

is to preliminarily test the idea of feature-based cardiac motion estimation, we decided to use the true 

motion of the calculated centroid point in the first frame for MVF initialization.  

The motion estimation results using the 0-initial, P-initial, S-initial and T-initial in frame 1 and frame 5 

of phantom image and simulated PET images are shown in Figure 3-10and Figure 3-11 with the true MVF 

as reference. In Figure 3-10, the heart is contracting. In the highlighted basal region in, the true motion 

vectors represented by the blue arrows show both radial motion and longitudinal motion, both of which 

contribute to the contraction of the myocardium. The MVF estimated using the 0-initial in Figure 3-10 (c) 

are mainly pointing toward the center of the heart, showing the radial motion and negligible longitudinal 

motion. As a result, the longitudinal motion is significantly underestimated with the 0-initial. The motion 

vectors estimated using other three initial MVF are closer to the true MVF, showing more accurate 

estimation of the longitudinal motion. Results from simulation data are similar to those from the phantom 

images. In Figure 3-11, the heart is relaxing. The highlighted short-axis region is experiencing outward 

radial motion and counter-clockwise circumferential motion. The motion estimated with 0-initial shows 

mainly radial motion, while results of the other three initials show both motion components. The results of 

S-initial provide more accurate approximation of circumferential motion, which is difficult to detect using 

the conventional method due to aperture problem. Results of the P-initial shows overestimated Vc because 

the circumferential motion of every short-axis is initialized with the same value as the papillary muscle 

centroid. T-initial achieves most accurate results in both phantom images and simulated cardiac PET 

images. This indicates accurate initial estimate is crucial to obtain accurate estimation of the true MVF, 

even for the circumferential motion. 
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Figure 3-10 The “true” and estimated cardiac MVF obtained with four initial MVF from the phantom image at frame 1. The 

true MVF of the myocardium is shown in (a) short-axis and (b) vertical long-axis views. Regions surrounded by the yellow 

squares in (b) are zoomed in to provide a closer look at the details. MVFs estimated using the 0-initial, the P-initial, the S-

initial and the T-initial in the squared region are displayed in (c), (d), (e) and (f), respectively, and the true MVF of this region 

is shown as reference. Similar results for simulated PET images are shown in (g)-(i). 
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Figure 3-11 The “true” and estimated cardiac MVF obtained with four initial MVF from the phantom image at frame 5. The 

true MVF of the myocardium is shown in (a) short-axis and (b) vertical long-axis views. Regions surrounded by the yellow 

squares in (b) are zoomed in to provide a closer look at the details. MVFs estimated using the 0-initial, the P-initial, the S-

initial and the T-initial in the squared region are displayed in (c), (d), (e) and (f), respectively, and the true MVF of this region 

is shown as reference. Similar results for simulated PET images are shown in (g)-(i). 

 

(a)                                              (b)                                                 (c) 

(d)                                                 (e)                                                 (f) 

(g)                                                 (h)                                                 (i) 

(j)                                                  (k)                                                 (l) 
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The estimated 4-D cardiac MVFs for each time frame were compared with the true cardiac MVF of 4-

D XCAT phantom to determine their quantitative accuracy. We calculated the absolute error in three 

motion components at each voxel and showed the motion estimation error in the form of a polar map. Figure 

3-12is the polar map for the error in three motion components of simulated PET image at frame 1. Errors in 

three motion components show similar distribution in the myocardium. The basal region tends to have 

larger motion estimation error than the apical region. This is consistent with the fact that the cardiac motion 

at the basal region is larger than other region. For the longitudinal motion, its larger error at the basal region 

is also cause by the fact that its direction gets tangential to the edge of the myocardium at the basal region. 

The longitudinal motion has larger error than the other two components, and the improvement in the 

motion estimation accuracy mainly lies in this component. Since the longitudinal motion is the largest 

motion component in magnitude and the most underestimated, initializing this component properly could 

significantly improve the motion estimation accuracy. The error in radial motion is small even with the 0-

initial, because its direction is perpendicular to the edge of the heart. Error in the circumferential motion is 

large at the apex, because when the short-axis radius gets very small, the estimation of circumferential 

motion will get very difficult. Both P-initial and S-initial achieve more accurate estimation of radial and 

longitudinal motion than the 0-intial. However, due to inaccurate initialization of circumferential motion, 

the P-initial yields larger error for circumferential motion at the basal region. 
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Figure 3-12 Polar map of motion estimation error in simulated PET images of Frame 1. The first row shows the error of radial 

motion in the myocardium, the second row shows the error in circumferential motion, and the third row shows the error in 

longitudinal motion. The four rows represent the results of 0-initial, P-initial, S-initial and T-initial respectively. The error of 

radial and longitudinal motion is in unit of millimeter, while the error of circumferential motion is in unit of degree. 

For global quantitative evaluation of the cardiac motion estimation accuracy of the whole myocardium, 

we used the error of estimated MVF measured by in terms of the root mean-square-error (RMSE) over the 

entire myocardium of the left ventricle by 

𝑹𝑴𝑺𝑬 = √
𝟏

𝑵
∑ ‖𝑴𝑽𝑭𝒆𝒔𝒕(𝒖, 𝒗,𝒘; 𝒊) −𝑴𝑽𝑭𝒕𝒓(𝒖, 𝒗, 𝒘; 𝒊)‖𝟐

𝟐𝑵
𝒊=𝟏 , 

3-13 

where 𝑁 is the total number of voxels over the entire myocardium; 𝑴𝑽𝑭𝑒𝑠𝑡(𝑢, 𝑣, 𝑤; 𝑖) and 𝑴𝑽𝑭𝑡𝑟(𝑢, 𝑣,𝑤; 𝑖) 

are the estimated  MVF and the true MVF of voxel 𝑖, respectively; 𝑢, 𝑣,𝑤 represent motion in the 𝑥, 𝑦, 𝑧  

directions; and ‖𝑽‖2 is the 𝑙2 norm of vector 𝑽.  

The motion estimation error using four initial MVFs in 8 time frames of simulated PET images is 

provided in Figure 3-13. In frame 1, 2, and 5, the P-initial achieves lower global error than the 0-initial. S-

initial achieves even better performance than the P-initial and comparable motion estimation accuracy as 
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the T-initial in both phantom images and simulated PET images. This is reasonable since the 

interventricular sulcus can provide more information of the cardiac motion than the papillary muscle, 

leading to more accurately initialized cardiac MVF. The motion estimation error of S-initial is even slightly 

lower than that of the T-initial in frame 1 and 5 of simulated PET images, but not so in phantom images.  

This may be caused by the noise, since there is only one noise realization in the simulated PET study. 

Another explanation is that in phantom images the intensity is uniform in the myocardium, which provides 

little help for the optical flow algorithm to find the motion that causes intensity change, while in simulated 

PET images, blurring by system resolution and smoothing introduces intensity changes near the boundaries 

of the myocardium. Even among the four large-motion frames, it is noticed that in frame 1, 2 and 5, the 

feature-guided initials provide better performance than in frame 6, which has smaller motion than others 

do. For frames with very small motion (frame 3, 4, 7, 8), the four initial estimations provide similar results 

in terms of accuracy. Meanwhile, the RMSE for these four frames are comparable with the average 

amplitude of the true MVF, indicating that motion estimation for small-motion frames is inaccurate. Since 

the voxel size is (1.56mm)3, the accuracy of motion estimation is approaching the limitation of the image 

resolution.  

 

Figure 3-13 RMSE of the estimated MVFs of four initials in simulated low-noise PET images of 8 time frames with frame 1 as 

ED. In frames of significant cardiac motion, feature-guided initial MVFs can improve the accuracy of motion estimation. 

To have a comprehensive understanding of the motion estimation error, we compared the three motion 

components of the estimated MVF with the true MVF and calculated the error of each component 
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individually. The motion estimation errors in three components using the four initial MVFs in frame 1 of 

simulated PET images are shown in Figure 3-14. Among three components, the radial motion is the easiest 

to estimate, since it is perpendicular to edges of myocardium. The circumferential motion is the most difficult 

due to the aperture problem. The bar for the error in the circumferential motion may look higher than the 

other two components in the figure. This is because the circumferential motion is measured in degree, while 

radial and longitudinal motion are measured in millimeter. In fact the circumferential motion contributes the 

least to the total motion estimation error. Moreover, the errors in both radial and longitudinal motion are 

smaller than the magnitude of the true motion components, while the error in circumferential motion is higher 

than the magnitude of the true circumferential motion. This indicates that radial and longitudinal motion can 

be estimated much more accurately than the circumferential motion. Longitudinal motion is improved the 

most because its magnitude is the largest. All three components were more accurately estimated using the S- 

initial MVF than using the 0-initial. The improvement in the accuracy by the P-initial and S-initial lies mainly 

in longitudinal motion component in terms of magnitude. Since the P-initial was created using the 

circumferential motion of one point, it achieves less accurate estimation of the circumferential motion 

globally than all the other methods. 

 

Figure 3-14 The RMSE of three motion components of the MVFs estimated from simulated noisy PET image of frame 1 (ED) 

using 4 different initial estimates. The RMSE of the radial and longitudinal motion components are in the unit of millimeter, 

while that of circumferential motion is in degree.  
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In this preliminary study, based on the information provided by the motion of the footprint of a papillary 

muscle and the interventricular sulcus, a feature guided cardiac MVF approach was developed and tested on 

the 4-D XCAT phantom heart model with known MVF and simulated MP PET image data generated from 

the phantom with realistic simulation tools. Four initial estimates including the zero-valued initial, two 

feature-guided initials, and the true MVF were used in combination with an existing MVF estimation 

algorithm to estimate the MVF of cardiac images. We have found the feature-guided initials provide 

significant improvement in the accuracy of MVF estimation over zero initialization. In frames of significant 

cardiac motions, the P-initial improves motion estimation accuracy than the 0-initial. The S-initial achieves 

even better performance than the P-initial and comparable with the T-initial. Since the S-initial is created 

with information about the circumferential motion along the long-axis the heart, while the P-initial is based 

on motion of a single point at the endocardium, the former achieves more accurate estimation of the 

circumferential motion for the whole myocardium. We conclude the motion information provided by the 

anatomical features allows improved MVF estimation of the left ventricular motion from simulated MP PET 

images. In this study, the proposed method was tested on simulated MP PET images that were generated 

from the 4-D XCAT phantom, but this method is equally applicable to other imaging modalities such as CT, 

as long as the papillary muscle can be robustly and accurately extracted from the images. Although the 

imaging system we simulated in this study is still under development, the success of application our method 

on simulated data and the clinical patient data indicates it is feasible and promising.  

While we have shown improvement in motion estimation accuracy obtained by the utilization of the features, 

we also realize that this improvement is highly dependent on accurate extraction of the anatomical feature. 

Noise, resolution, and any other factors that can reduce the image quality will make it more difficult to extract 

the features accurately. In low-resolution images, the apparent attachment between the papillary muscles and 

the endocardium may increase, especially during the systolic phase. The connection between the left ventricle 

and the right ventricle will also become less resolvable. The proposed method requires the image resolution 

to be high enough to expose the target feature. In simulation data for which the method shows improvement 

in motion estimation accuracy, the projection data from the high-resolution phantom image was generated 

with customized high-resolution detector. Currently, the state-of-art PET scanner has spatial resolution of 

about 4mm, so it is not guaranteed the feature extraction will work on clinical data. With development of 
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new hardware and improvement in image reconstruction techniques, the resolution the PET imaging system 

has seen improvement in recent years, providing good prospect for our methods. We should expect more 

valuable application of our methods with improved PET imaging techniques. 

Besides system resolution, the noise level also has significant influence on the performance of our methods. 

Noise in the image makes it more difficult to extract the features and reduces the reliability of feature tracking 

results. Extra smoothing filter is necessary to reduce the image noise, but at the expense of reducing resolution. 

This phenomenon will increase the difficulty of feature extraction. Since the motion estimation result can be 

significantly influenced by the initial estimation, a P-initial or S-initial based on inaccurate tracking of the 

papillary muscle or sulcus may lead to increased error in the MVF estimation. Similarly, using an inaccurate 

motion of the feature as prior information will lead to mistakes in motion estimation results. Images with 

higher noise level also see more error in the motion estimation results, since noise changes the intensity, 

which the algorithm is trying to register.  

The proposed method does not completely solve the aperture problem of the optical flow based motion 

estimation algorithm; instead, it suggests the possibility of utilizing anatomical feature and cardiac motion 

model to guide the motion estimation process for more accurate results. In this study, the proposed method 

was tested on simulated MP PET images that were generated from the 4-D XCAT phantom, but this method 

is equally applicable to other imaging modalities such as CT, as long as the papillary muscle can be robustly 

and accurately extracted from the images.  

This study can be extended mainly from two aspects. First, more robust feature extraction methods are 

required to obtain accurate feature information, especially for noisy cardiac PET data. Second, cardiac motion 

estimation algorithm may be improved by using the motion of the feature as a prior information.  

MOTION ESTIMATION FOR PATIENT DATA 

A clinical 13NH3 4D GMP PET study of an abnormal patient was also employed to implement the feature-

guided motion estimation method. The patient was injected with standard clinical dose of 13NH3 and 

scanned in GE DVCT PET/CT scanner for 10 minutes. The list-mode data was gated into 8 cardiac gates 

based on ECG signal and was reconstructed and post-processed onsite. Figure 3-15 shows reconstructed 

short-axis images at ED and ES. Limited by the resolution of the PET scanner and quality of the image, we 
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were unable to extract the papillary muscles. Instead, the IS was extracted manually from images at ED and 

ES, as shown in Figure 3-16. Three motion components were calculated and plot in Figure 3-17. The 

“twisting” motion of the heart was observed in the middle plot of Figure 3-17, in which the slices above 

#75 and below #75 rotates in the opposite direction, proving our hypothesis about cardiac motion. Sulcus-

based initial MVF was created using the averaged motion of the anterior and posterior sulcus to estimate 

the cardiac motion from ED to ES. 

 

Figure 3-15 Sample PET images from a 13NH3 4D GMP PET study of an abnormal patient at ED (left) and ES (right). 

 

Figure 3-16 Extracted IS from the patient data. 

 

Figure 3-17 Radial (left), Circumferential (middle) and longitudinal (right) motion of the extracted sulcus. 
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MVF estimated using the sulcus-guided initial and zero valued initial for the patient images was shown in 

Figure 3-18, in which (a) shows a sample slice at basal region, (b) shows a sample slice at mid-cavity, and 

(c) a vertical long axis slice. Bull’s eye plots of the three motion components from the estimated MVF 

using S-initial were shown in Figure 3-18. Since motion in the apex is small and can cause large error in 

circumferential motion, it was omitted in the bull’s eye plots. It is noticed that the basal region and mid-

cavity region have contradictory circumferential motion. True MVF of the myocardium is not available for 

this clinical case; therefore, we were not able to evaluate the accuracy of the motion estimation result. 

However, this case shows the potential of the proposed motion estimation method in clinical study. The 

motion estimation result is highly dependent on the accuracy of feature extraction, which is determined by 

both image quality and feature tracking method. With the improvement in PET imaging techniques, the 

application of the proposed method may become easier and more reliable. 

 

Figure 3-18. MVF estimated from patient data in basal short-axis (a), mid-cavity short-axis (b) and vertical long axis (c) slice. 

FURTHER IMPROVEMENT 

IMPROVEMNT OF METHODS 

A NEW B-SPLINE BASED FEATURE EXTRACTION METHOD 

The challenge of extracting IS from cardiac PET images is the blurring of the image due to the low system 

resolution and image noise. The sulcus extraction method used in preliminary study relies on high-

resolution low-noise images. It uses image erosion and image dilation to separate left ventricle and right 

ventricle. Image erosion and dilation essentially damages the image resolution, and the shape of the 

separated two parts is no longer the same as the original shape of the left and right ventricle. Furthermore, 
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although in the simulation data, the right ventricle is assumed to have the same intensity as the left ventricle 

in the phantom image, its intensity will be reduced in low-resolution images due to partial volume effect. 

As a result, region growing is not able to accurately segment out both left and right ventricle 

simultaneously.  The extraction of right ventricle will be much more challenging in real clinical cases, the 

tracer uptake of the right ventricle may not be as high as the left ventricle, which is determined by both the 

tracer type and the patient. 

Instead of identifying the IS directly from the blurred intersection of the LV and RV from the PET images, 

we developed an extraction method for the IS by the intersection of the estimated boundaries of the LV and 

LV using B-spline fitting. This method avoids extracting the myocardium and separating the left and right 

ventricle. The first step of the IS extraction method was to identify and separate the boundary of the LV 

and the RV from the short-axis slice images of the 3D cardiac PET image at each cardiac-gated frame. An 

estimate of the inner boundary of the RV was obtained by segmenting the blood pool (BP) within the RV 

using the 3D region growing method. The shape of the extracted BP was concave at the septal wall side and 

convex at the lateral side. By subtracting the BP from its convex hull, the septal side of the BP boundary 

was identified as a segment of the useful outer LV boundary within the RV. We then identified the central 

segment of the LV boundary outside and on the anterior and posterior sides of the RV from the LV 

segmented from the original image using 3D region growing. Meanwhile, the segment of the BP boundary 

on the lateral side of the RV minus the area adjacent to the IS intersection points was identified by 

subtracting the central segment of the LV boundary from the whole boundary of the BP in the RV. With 

reduced image resolution, the sulcus point where the left and right ventricle boundary meet is blurred out 

and becomes less sharp and therefore unreliable. In this situation, the unreliable points near the sulcus point 

were removed. This process is shown in Figure 3-19. 
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Figure 3-19 Extraction of left and right ventricle boundary. (a) A short-axis slice of the XCAT phantom with activity in 

myocardium and liver. (b) Blood pool inside the right ventricle segmented using 3D region growing method. (c) Residual shape 

after subtracting the blood pool from its convex hull, from which the septal boundary is identified. (d) Separated septal 

boundary and lateral boundary shown in pink and blue respectively. (e) Septal boundary with added points from left ventricle 

boundary and lateral boundary shown in pink and blue respectively.  

The three extracted outer LV segments were fitted with a B-spline curve that passed through the IS 

intersection points of the short-axis image slice, while the lateral boundary of BP was extrapolated using B-

spline curve fitting. The two crossings of the extended BP boundary with the fitted outer LV boundary 

were determined as the anterior and posterior IS intersection points. The procedures were repeated for all 

short-axis image slices of the 3D cardiac PET image at each cardiac-gated frame to obtained the anterior 

and posterior segments of the IS over the entire heart. The process is shown in Figure 3-20. 

 

Figure 3-20 (a) 3D display of the extracted two curves from each short-axis slice. Septal boundary and lateral boundary are 

shown in purple and green respectively. (b) B-spline curve fitting of septal boundary and extrapolation of lateral boundary on 

one short-axis slice. The intersection is marked by the yellow points. (c) 3D display of extracted IS for all slices, true location of 

the sulcus is shown for comparison. 

MOTION ESTIMATION WITH FEATURE INFORMATION AS CONSTRAINT 

The extracted motion of the feature only gives the optical flow algorithm a starting point when used as an 

initial; in other words, it does not control which direction the optimization of the cost function will go. In 

order to make full use of the feature information during the motion estimation process instead of only using 

it as initial, we propose to include the feature into the cost function of the optical flow algorithm. The idea 
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is to use the motion of the features to guide the motion estimation process. A feature-based constraint is 

added to the cost function: 

𝐸𝑓(𝒎) = 𝑔(𝒓; 𝒓𝒇, 𝜎)‖𝒎(𝒓) −𝒎𝒇(𝒓)‖
2
. 

3-14 

Hence the cost function becomes 

𝐸(𝒎) = 𝐸𝐼(𝒎) + 𝛼𝐸𝑆(𝒎) +  𝛽𝐸𝐹(𝒎), 

3-15 

where 𝛾 is the weight, 𝑔(𝒓; 𝒓𝒇, 𝜎) is the weight for voxel 𝒓, and ‖𝒎(𝒓) −𝒎𝒇(𝒓)‖
2
 is a measurement of the 

difference between estimated MVF and the prior MVF for the voxel based on extracted MVF of the 

feature. Here we use 𝑙2 norm as ‖ ‖2 function, which essentially assumes Gaussian noise in the MVF. The 

weighting factors will be determined empirically. The purpose is to use the motion of the feature to regulate 

the path of the optimization of the cost function. To simplify calculation and optimization of the cost 

function, we use all the points of the feature to determine the value 𝑔(𝒓; 𝒓𝒇, 𝜎) and 𝒎𝒇(𝒓) before motion 

estimation. For the 𝑔(𝒓; 𝒓𝒇, 𝜎), a mask of the same size as the cardiac image is created by setting value 1 to 

the sulcus points and value 0 to everywhere else, and then blurred a with a Gaussian filter with standard 

deviation 𝜎. 𝒎𝒇(𝒓) is created using the same method as creating the initial MVF for the myocardium. 

Thus, each voxel 𝒓 has a fixed weight factor determined by its distance from the feature, as well as a pre-

determined prior MVF based on the extracted motion of the feature. 

Similar idea has been proposed by several studies for brain imaging. [96] and [97]use local, nonparametric 

deformation models with landmark constraints, which need to be first interpolated everywhere to serve as a 

pirori deformation field.  The landmarks are determined from an automatic process and are not regarded as 

definitive. [98] proposed to incorporate the landmark information with a spring term: 

𝐸𝑠 =∑𝛼𝑖‖𝒈(𝑥𝑖) − 𝑧𝑖‖
2

𝑆

𝑖=1

 

3-16 
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Where 𝑆 is the number of springs, 𝛼𝑖are weighting factors, 𝒈() is the deformation function, and 𝑥𝑖 and 𝑧𝑖 

are the landmark positions in the reference and test images. Different from the first two studies, [98] 

imposed the landmark information only at landmark points where it is really known. The landmarks are 

assumed to come from professional human intervention and therefore are accepted as trustworthy and 

definitive. These methods are developed for image registration tasks in brain MRI imaging, and have not 

been applied to cardiac motion estimation area. Moreover, the landmarks used are anatomical structures of 

human brain such as the sulcal bottom lines or sulci, which are not available for heart which has much 

fewer distinctive features. 

Our method is based on the same ideology that the motion of features or landmarks provides useful priori 

knowledge of the motion of the whole. Different from previous studies mentioned above, this method 

assign weight to each voxel based on its distance to the feature and the weight is adjustable by changing 𝜎. 

A large 𝜎 means points farther to the feature are also under the influence of the motion of the feature. This 

allows flexible control of how much the motion of the feature can influence the motion estimation process 

spatially. More importantly, the cardiac motion model was used in creating the prior MVF, which has never 

been proposed before. In addition, the weight for the feature-based constraint 𝛽 is also adjustable. The 

more reliable the estimation motion of the feature is, the higher the weight should be. Theoretically, 

assuming the feature based motion estimation of the whole myocardium 𝒎𝒇(𝒓) is the true cardiac motion, 

the 𝜎 value that determines voxel-wise weight and the coefficient 𝛽, which is the total weight of feature 

constraint term, should both be infinitely large, so that the final motion estimation result will be exactly the 

truth. In this experiment, both values are chosen empirically. We used  𝜎 = 15 𝑝𝑖𝑥𝑒𝑙 and 𝛽 = 8. Notice 

that both values are quite large, in order to give large weight to the feature-guided constraint term. 

The method was implemented on both phantom images and hybrid cardiac PET data to test its performance 

in different system resolution and noise level.  This will be the first motion estimation method that 

incorporates anatomical features. Although this method uses anatomical features of the heart and is 

dedicated to cardiac motion estimation, it may be applicable to estimation motion of other moving organs. 

MATERIAL AND EXPERIMENT DESIGN 

 HYBRID (MONTE-CARLO AND ANALYTICAL) SIMULATION DATA  
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In preliminary study, we tested the feature-based cardiac motion estimation method with a single set of 

analytical simulation to prove its feasibility. The next step of our research is to apply the improved methods 

to more realistically simulated cardiac PET data of different resolution and noise level in order to fully 

understand its performance in different situations. Besides XCAT and STIR introduced in preliminary 

study, Monte-Carlo simulation tools SIMSET and GATE were employed in generation of new simulation 

data. 

INTRODUCTION TO MONTE-CARLO SIMULATION TOOLS 

The validated integration of the SimSET and GATE in PET simulation with 4D XCAT phantom proves 

capable of speedup the generation of noise-free data [99]. 

The SimSET (short for Simulation System for Emission Tomography) package [100] is a Monte-Carlo 

simulation tool that models the physical processes in emission imaging.  The package consists of several 

modules, each handle a specific physical factor. The core module is the Photon History Generator (PHG) 

that simulates the radioactive decay and the resulting photon paths through the phantom one by one. The 

random coincidences generation module simulates random coincidences. It also provides simulation of 

collimator and detector, but in this study, we only use it to simulate physical processes that happen within 

the phantom.  

GATE is acronym of Geant4 Application for Tomographic Emission [101]. Developed based on Monte-

Carlo techniques, it provides modeling of time-dependent processes such as radioactive decay as well as 

complex system geometry in nuclear medicine. Although it is relatively slow in simulating photon 

interactions and transmissions in voxelized phantom, its strength in conveniently implementing complex 

system configurations and simulating collimator/detector responses makes it a useful tool. In this study, we 

only used it to simulate the physical processes in the PET scanner. 

GENERATION OF HYBRID SIMULATION DATA 

Although it is desirable to use completely Monte-Carlo simulated data, we found it infeasible and 

impractical to do so. There are two reasons. First, the high-resolution PET imaging system required for our 

method is still not available. The resolution of a PET imaging system is limited by the many factors such as 
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the physical property of the crystals. To achieve the required resolution, we have to cut the crystals in the 

detector into super small pieces. Moreover, the stopping power of the crystal material has to be much 

higher than current available materials such as CZT to reduce the depth-of-interaction effects. The Monte-

Carlo simulation code we used in this study can only simulate a system that is physically feasible. Second, 

even if such a system exists and can be modeled by the Monte-Carlo simulation code, it will be extremely 

time-consuming to run the whole simulation. The highest resolution we tried to achieve in the simulation 

data is 1mm, much higher than the 6mm resolution of current available system. Six times increase in 

resolution means that to achieve simulation data of the same noise level will require 63 times of the total 

count, not to mention that it already took 3 months to obtain noise-free data for the 6mm resolution system.  

Therefore, instead of spending years generating the Monte-Carlo simulation data, we combined analytical 

and Monte-Carlo simulation methods to obtain high-resolution simulation data with reasonable 

computation time and realistic modeling of the imaging physics. 

PHANTOM IMAGE 

To begin with, the 4D XCAT phantom was digitized into 0.5325mm × 0.5325mm × 0.40875mm voxel 

sized images. This ultra-fine digitization guaranteed that the features such as papillary muscles and IS were 

detectable with sufficient accuracy. Activity concentration was set according to the FDG tracer uptake 

measured from the clinical PET scan of a normal patient.  Different from the data set used in preliminary 

study, the end-systolic (ES) phase was set at 0.5 second with 1 second as cardiac period. The corresponding 

heart curve is shown in Figure 3-21. Four frames of images were generated at equal time interval over the 

cardiac cycle, with frame 1 corresponding to ED, i.e., the beginning of the cardiac cycle.  We learned from 

preliminary study that if the cardiac cycle is divided into 8 frames, many frames such as frame #3, #4, #6, 

#7, and #8 do not contain much cardiac motion for detection. This new setting will make sure the 

movement of heart between each two consecutive frames is large enough to detect. 
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Figure 3-21 Heart curve 

GENERATION OF ANALYTICAL SIMULATION PART 

The function of analytical simulation part is to generate high-resolution noise-free projection of the primary 

events. The system we are trying to simulate is not technically available, and cannot be simulated with the 

current MC simulation tool.  

We still use the STIR simulation software to generate noise-free cardiac-gated MP PET projection datasets 

from the phantom images. The PET scanner simulated here has finer crystal and more rings than the one 

simulated in preliminary study for higher resolution. The parameters of the customized 3-D PET scanner 

are provided in Table 3-2. Image degrading factors such as detector response, position range, nonlinearity, 

and scatter were not included in the simulation of projection, so the system resolution is equal to the bin 

size.  

Table 3-2 Parameters of the customized scanner 

Number of rings 188 

Number of detectors per ring 2520 

Inner ring diameter (cm) 88.62 
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Average depth of interaction (cm) 0.94 

Distance between rings (cm) 0.08175 

Default bin size (cm) 0.0599 

 

Under such parameter settings of the simulated scanner, the resulting projection data is a 630×630×188 

matrix for each frame of phantom. Attenuation effect was added to the projection data by dividing the 

projection image with attenuation coefficient sinogram calculated from an attenuation map of the XCAT 

phantom, which is shown in Figure 3-22. 

 

Figure 3-22 Adding attenuation effect to the analytical simulated projection data 

GENERATION OF MONTE-CARLO SIMULATION PART 

We generated a full-set of noise-free Monte-Carlo simulation data modeling the GE discovery RX scanner 

by combining GATE and SIMSET software, which was shown to yield faster speed [102102]. The 4D 

XCAT phantom was digitized into 2.396mm by 2.396mm by 3.27mm voxel sized images for simulation of 

cardiac PET scan.  The GE discovery RX scanner has a system resolution of 6mm and its parameters of are 

shown in Table 3-3.  

Table 3-3  Parameters of the GE discovery RX scanner 

Number of rings 24 

Number of detectors per ring 620 

Inner ring diameter (cm) 88.62 
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Average depth of interaction (cm) 0.94 

Distance between rings (cm) 0.654 

Default bin size (cm) 0.2396 

Organs including myocardium, blood pool in the heart, spleen, lung, stomach, liver, and the rest of the body 

were simulated individually. The simulation of separate organs allows creation of any tracer uptake by 

summing organ projections with different weight, as shown in Figure 3-23. In this study a typical FDG 

tracer uptake was simulated. The projection data in Figure 3-23 is scaled to isotropic voxel resolution from 

the original simulation (2.13mm/pixel in horizontal axis and 6.54mm/pixel in vertical axis) for illustration 

purpose. A combination of 24 equal-time respiratory gates and 48 equal-time cardiac gates with total of 

1152 gates were generated. To save simulation time, projections of 1152 dual R&C gates were simulated 

only for the myocardium and blood pool shown in Figure 3-23. For the rest organs, projections of only 24 

respiratory gates were simulated as we assume that the cardiac motion did not affect organs other than the 

heart. In this case, a total of 2424 (1152*2+24*5) noise free projections were simulated.  

 

Figure 3-23 Illustration of the simulation for FDG tracer uptake from individual organ uptakes. 

Notice that there are dark strips in Figure 3-23. They were caused by non-uniformity in the detectors and 

detector gaps based on realistic configuration of the GE RX PET scanner. To correct for non-uniformity, 
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we also generated a noise-free simulation for a uniform cylindrical phantom to obtain  a detector coefficient 

map ( 

Figure 3-24a).The uniformity map ( 

Figure 3-24b) was then calculated by dividing the theoretically calculated sinogram of the cylindrical 

phantom considering only attenuation effect with the Monte-Carlo simulated sinogram of the cylindrical 

phantom. In the end, Monte-Carlo simulated sinogram from the cardiac PET scan was multiplied by the 

uniformity map to get uniformity corrected sinogram. 

 

Figure 3-24 Effects of detector non-uniformity and uniformity correction. a) Monte-Carlo simulated sinogram of the digital 

cylinder phantom, b) uniformity map. 

The Monte-Carlo simulation code generates sinogram from primary events and sinogram from scattered 

events separately. The total number of events and number of scattered events were measured separately 

from the summed sinogram of all organs and all gates. The scatter-to-all ratio was 34.4334%, which would 

be used when adding scatter to the analytical simulated sinogram of primary events.  

The simulated sinogram of scattered events cannot be used directly in generating hybrid simulation data.  

There are two problems to solve before simply adding it to the analytically simulated primary events. First, 

even though the summed sinogram of primary events for all organs and all gates is almost noise-free, the 

sinogram of the scattered events is not since scatter is only 34.4334% of the total events. Sinogram of 

scattered events for single cardiac frame is even noisier since each gate only contains a small portion of the 

total count. We do not want to introduce noise to the projection data through adding scatter. Second, the 

imaging system used in analytical simulation has much higher resolution than the GE scanner simulated in 

Monte-Carlo code. Even the dimension of projection data is different. 
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To solve these two problems, we used three combined approaches. First is to use scattered events from all 

simulated gates to approximate scattered events in each single cardiac gate. Thus, the summed projection of 

scattered events will have much lower noise. Second is to use B-spline interpolation to obtain a “noise-

free” sinogram of the scattered events from the high-count yet still not noise-free simulated scatter 

sinogram. Figure 3-25 shows the effect of this approach. Third is to use B-spline interpolation to generate 

sinogram under high-resolution system setting from “noise-free” sinogram from low-resolution simulation. 

All three approaches are based on the knowledge that scatter is a slow spatially varying component. The 

influence of resolution is negligible considering that scatter effects have wide spatial spread. Figure 3-26 

shows the comparison between scatter projection before and after all three steps.  

 

Figure 3-25 Interpolation from noisy scatter to noise-free scatter. (a) One sinogram of summed projection of scattered events 

from all gates MC simulated gates. (b) noise-free sinogram of scatter after B-spline surface fitting. 
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Figure 3-26 Scatter projection from MC simulation and resulting scatter projection for high-resolution scanner 

COMBINATION OF ANALYTICAL AND MONTE-CARLO SIMULATION 

The projection of scattered events interpolated from MC simulation data was added to the projection of 

primary events from analytical simulation after being scaled according to the scatter-to-primary ratio 

measured from MC simulation. Thus, we obtained high-resolution noise-free projection data with 

attenuation and scatter effect.  

There are two factors we want to include in the simulation data: resolution and noise. We tested five 

resolution levels: 0.6mm, 1.5 mm, 3mm, and 4.5mm. The first one is the highest resolution achieved by the 

analytical simulation setting. Both 0.6mm and 1.5mm resolution systems are still not available, while 3mm 

is recently achieved by the most advanced PET system developed by United Imaging. 4.5mm the system 

resolution of the Philips Vereos Digital PET/CT scanner. To obtain data with the last three resolution 

levels, corresponding Gaussian filter was applied to the 0.599mm resolution projection data. We simulated 

four different noise levels: noise-free, 8 times, 2 times and 0.5 times of “clinical counts”; they are named as 

NF, 8N, 2N and 0.5N, respectively. The photon counts in the central slice of the projection data for a 

routine clinical cardiac PET scan is 6000, and this is based on a patient data acquired on a GE discovery 

RX scanner. The slice thickness for the patient data is 3.27mm, which is eight times of the slice thickness 

for the high-resolution simulation data. The detector bin size of the GE system is 4 times of the simulated 

high-resolution scanner according to Table 3-2 and Table 3-3. To achieve the same noise level for each pixel 

in projection data, the “clinical counts” mentioned above for the simulated PET data was in fact 128 times 

of the real clinical counts. The noise was added to the projection data by first scaling the data to 

corresponding total count, then adding Poisson noise.  

In the end, the projection data was reconstructed using OS-EM algorithm by the STIR software. We used 

21 subsets and 3 iterations to obtain the final reconstructed images. The attenuation map was used as 

another input in addition to the projection data, assuming perfect attenuation correction. Scatter was not 

corrected in this study to add extra difficulty to the feature extraction task. The reconstructed images are in 

pixel size 0.6mm by 0.6mm by 0.6mm, and are reoriented into short-axis view for feature extraction and 

motion estimation. The image matrix size is 256 by 256 by 256. After feature extraction, the images were 
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collapsed by 2 in three directions and the matrix size became 128 by 128 by 128 for motion estimation. 

Figure 3-27 shows noise-free reconstructed images in short-axis view for frame #1 with different system 

resolution. The proposed methods were applied to the reconstructed cardiac images, and the results were 

shown in the next section. 

 

Figure 3-27 Reconstructed images from the noise-free hybrid simulation data of frame #1 for different resolution 

RESULTS 

INVESTIGATION ON PAPILLARY MUSCLE EXTRACTION 

In preliminary study, we have found that the change in the location of the centroid of the papillary muscle 

footprint is inconsistent with its true motion. Using the new data set, we carefully investigated this 

phenomenon and demonstrated why the papillary muscle may not be a reliable feature to use in cardiac 

motion estimation.  

The true centroid location of the papillary muscle footprint was determined from the phantom images of 

four cardiac frames. Since we have reoriented the cardiac images into short-axis view, the 𝑧 axis is the 

longitudinal direction. The true longitudinal movement of the centroid was calculated from the true MVF 

of the XCAT phantom. The results are shown in Error! Not a valid bookmark self-reference.. 

Table 3-4 Footprint centroid extraction results from phantom images of four cardiac frames 

 x y z area of footprint (pixels) true Vl (pixel) 

frame 1 70.9076 156.1261 113.1176 119 -6.7 

frame 2 85.0635 155.5159 109.1905 126 -3 

frame 3 91.354 156.354 109.8137 161 7.7 

0.6mm resolution                 1.5mm resolution                 3.0mm resolution                 4.5mm resolution 
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frame 4 75.8448 155.6207 111.7155 116 2.4 

 

The footprint centroid in frame 1 should move to z=106.4176 according to the true MVF. In addition, from 

frame 2 to frame 3, the centroid is supposed to move towards lower z value, but does not do so in the 

extraction result. From the table, it is clear that the inconsistency is inherent for the XCAT phantom. This 

does not mean that the phantom is wrong. On the contrary, this indicates the phantom models the 

morphology of human heart realistically. Physiologically, the area where the papillary muscle and the 

endocardium contact is changing during the cardiac cycle. Note that “contact” is not equivalent to “attach”. 

By “contact”, we mean the papillary muscle appears to be touching the endocardium, but the connection is 

only visual and not physiological. The contacting region is extract from the cardiac images as the footprint. 

By “attach”, we mean the region where papillary muscle and the endocardium are inseparably connected, 

and its area does not change during the cardiac cycle. The real attachment is contained in the contacting 

region. The shape and location of the papillary muscle footprint changes as the muscle contracts or relaxes 

to control the mitral valve. At diastolic phase, the mitral valve opens and the papillary muscle relaxes, the 

contacting region between papillary muscle and the endocardium is close to the true attaching region. At 

systolic phase when the papillary muscle contracts, not only its shape gets shorter and thicker, but it also 

moves towards the apex and presses more into the endocardium. As a result, the contacting region, i.e. the 

footprint, includes not only the true attaching region but also more apparent connection. This can be 

observed by the area of footprint in four cardiac frames in The results are shown in Error! Not a valid 

bookmark self-reference.. 

. The centroid of the increased contacting area is no longer the true centroid of the papillary muscle root. 

We also used the feature extraction method proposed in preliminary study to extract the centroid location 

from simulated noise-free cardiac PET images of 0.6mm, 1.5mm, 3.0mm system resolution. The x, y, z 

coordinates of the footprint centroid, as well as the area of the footprint measured in number of pixels, are 

shown in Table 3-5. 

Table 3-5 Footprint centroid extraction results for three system resolutions 
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 0.6 mm resolution 1.5mm resolution 3.0mm resolution 

 x y z Area x y z Area x y z Area 

frame 1 69.9 154.7 115.3 142 68.4 154.7 122.3 220 67.8 153.9 128.2 375 

frame 2 84.6 155.2 112.1 166 83.4 155.5 119.4 304 83.1 155.0 124.1 467 

frame 3 90.5 156.1 115.6 273 90.3 155.9 119.3 410 90.2 156.0 122.0 565 

frame 4 75.4 154.8 112.8 140 74.1 155.5 120.3 221 73.1 154.2 126.7 392 

 

As the resolution degrades, the gap between the papillary muscle and the myocardial wall is further blurred, 

making it more and more difficult to determine the accurate location of the footprint. The extracted centroid 

location shifts towards the basal direction (larger z value) and the footprint size increases dramatically, 

especially for the end-systolic phase (frame 3). The poorer the resolution gets, the more prominent this 

effect is.  

In summary, both the physiological property of the papillary muscle and the blurring by system resolution 

make the papillary muscle unreliable in terms of indicating accurate cardiac motion. For the rest part of the 

research, we only used the IS as reliable cardiac feature for motion estimation. 

RESULTS ON IMPROVED FEATURE EXTRACTION METHOD FOR IS 

The improved IS extraction method was implemented and applied to hybrid simulation data, and the results 

were compared with the IS extraction method proposed in preliminary study. For quantitative evaluation, 

we defined the error of estimated sulcus location as: 

𝑬 =
𝟏

𝑵
∑ ‖𝑳𝒆𝒔𝒕(𝒊) − 𝑳𝒕𝒓(𝒊)‖𝟐
𝑵
𝒊=𝟏 . 

3-17 

where 𝑖 is the short-axis slice number, N is the total number of short-axis slices along the IS, 𝑳𝑒𝑠𝑡(𝑖) and 

𝑳𝑡𝑟(𝑖) are the estimated 2D location of sulcus point and the true location of sulcus point on short-axis slice 

i, respectively; ‖ ‖2 is the l2 norm. The true location of the sulcus points was obtained from the XCAT 

phantom image by both methods for consistency. In other words, for each IS extraction method, when 
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calculating the error in the location of the extracted IS from simulated cardiac PET images, the extracted IS 

location from phantom image obtained with this specific method was used as the truth.  

The IS extraction error in noise-free simulation data of different system resolution using the improved 

method and the previous method is shown in Table 3-6. The errors for AIS and PIS were calculated 

separately. As expected, the IS extraction error increases as the system resolution degrades with both 

methods.  Under the four simulated system resolution, the improved method generally has higher accuracy 

than the previous method.  Especially, for the 4.5mm resolution cardiac images, the previous method was 

unable to extract the sulcus location. Another distinctive phenomenon  is that the accuracy of PIS is almost 

always higher than that of AIS under four system resolutions and in four cardiac frames, and the 

degradation of its accuracy under poor resolution is much less severe than that of the AIS. This is due to the 

difference in the shape of the two corners of the bloodpool in the right ventricle. The anterior corner is an 

acute angle, making it easier to be blurred out under poor system resolution. The posterior corner is an 

obtuse angle, less susceptible to resolution degradation.  

Table 3-6  IS extraction error (mm) using the improved method and the previous method under four 

system resolutions 

 interpolation method previous method 

 0.6mm resolution simulation noise free 

 AIS PIS AIS PIS 

Frame 1 1.04 0.85 0.91 0.91 

Frame 2 1.06 0.49 1.28 1.59 

Frame 3 1.13 0.49 0.86 0.70 

Frame 4 1.02 0.49 0.84 0.63 

 1.5 mm resolution simulation noise free 

 AIS PIS AIS PIS 

Frame 1 1.52 0.83 1.60 1.64 

Frame 2 1.78 0.66 1.49 1.02 
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Frame 3 1.81 0.72 1.54 1.66 

Frame 4 1.80 0.69 1.66 1.53 

 3 mm resolution simulation noise free 

 AIS PIS AIS PIS 

Frame 1 2.39 1.01 4.69 2.55 

Frame 2 2.90 0.96 2.45 1.97 

Frame 3 3.13 1.12 2.61 3.18 

Frame 4 2.54 0.85 3.77 2.65 

 4.5 mm resolution simulation noise free 

 AIS PIS AIS PIS 

Frame 1 3.53 1.02 fail fail 

Frame 2 4.27 1.39 fail fail 

Frame 3 4.30 1.64 fail fail 

Frame 4 3.70 1.10 fail fail 

It is important to accurately extract the sulcus location in all cardiac frames since the error in IS extraction 

will be propagated to the calculated sulcus motion. In cardiac motion estimation, the motion of the PIS was 

used to create S-initial and S-guided constrain, as the PIS extraction was more accurate than AIS. 

MOTION ANALYSIS OF PIS 

The motion of the sulcus between each two frames was calculated from the estimated location of the sulcus 

based on the linear assumption of the longitudinal motion, using the method in preliminary study. The two 

basal end-points of the sulcus in each two frames were matched, and then other points were matched 

proportionally.  Three motion components were calculated based on the point-to-point correspondence and 

the shape of the heart.  

The following figures show the three motion components from frame 1 to frame 2 of the PIS calculated 

from phantom images.  On the curves, each data point represents an extracted sulcus point. The long-axis 
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slice number from small value to large value represents sulcus point location along cardiac long-axis from 

apex to base. Notice that the circumferential motion is measured in degree, while the radial and 

longitudinal motion are measured in pixel. Here we show the radial and longitudinal motion in pixels 

instead of mile-meter, because feature extraction is carried out in pixelated cardiac images with 0.6mm 

pixel size.  

 

Figure 3-28 Circumferential motion of PIS from frame 1 to frame 2 calculated from phantom images. The true 

circumferential motion is shown in darker green as reference. 

 

Figure 3-29 Radial motion of PIS from frame 1 to frame 2 calculated from phantom images. The true radial motion is shown 

in darker red as reference. 
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Figure 3-30 Longitudinal motion of PIS from frame 1 to frame 2 calculated from phantom images. The true 

longitudinalmotion is shown in darker blue as reference. 

As Figure 3-28, Figure 3-29and Figure 3-30 show, the three motion components of the PIS calculated from 

the phantom images are reasonably accurate. Especially, the longitudinal motion from estimation matches 

very well with the truth. This is essential as the calculation of the other two components relies on finding 

the corresponding long-axis slice for the sulcus point in the second frame. The phantom images provide 

sharp boundaries of the myocardium, but even with this unrealistically high image quality, there is still 

error in radial and circumferential motion. The error in radial motion is within 2 pixels, which is reasonable 

as feature extraction is pixel-based.  

Although the motion of PIS extracted from phantom images is reasonably accurate, it is not the case in 

simulated cardiac PET images, especially when the system resolution gets worse. The following figures 

show the radial and circumferential motion of PIS from frame 1 to frame 2 extracted from noise-free 

simulation images of different system resolution. As the longitudinal motion is always determined based on 

visual observation of the basal end of the sulcus, it is always the same as the result from phantom images. 

From Figure 3-31 to Figure 3-34, the radial motion is overestimated for images of all resolution levels, and 

the overestimation increases from high-resolution to low-resolution except for 4.5mm system resolution. 

Meanwhile, the radial motion curve becomes less smooth as the resolution degrades. For circumferential 

motion, there is also a visible trend from high resolution to low resolution. In Figure 3-31, when the system 
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resolution is very high and same as the pixel size of the phantom image, the circumferential motion is close 

to the truth. However, as system resolution becomes lower, the slope of the circumferential motion 

decreases. At 4.5 mm resolution, the linear regression line of circumferential motion is almost flat. In other 

words, the “twisting” of the heart becomes less and less distinguishable as the resolution degrades. Besides 

the changes in motion estimation accuracy, the curves for the PIS motion also become shorter at the apical 

end from results of 0.6mm resolution to that of 4.5mm resolution. It gets more difficult to extract the sulcus 

points near the apex with lower resolution, because the right ventricle is much smaller at the apical region 

and hence is more susceptible to the blurring of lower system resolution. 

 

Figure 3-31 Radial (left) and circumferential (right) motion of PIS from frame 1 to 2 extracted from noise-free simulation data 

of 0.6mm system resolution. The true radial and circumferential motion are shown by darker red and darker green curves 

respectively. 
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Figure 3-32 Radial (left) and circumferential (right) motion of PIS from frame 1 to 2 extracted from noise-free simulation data 

of 1.5 mm system resolution. The true radial and circumferential motion are shown by darker red and darker green curves 

respectively. 

 

Figure 3-33 Radial (left) and circumferential (right) motion of PIS from frame 1 to 2 extracted from noise-free simulation data 

of 3.0 mm system resolution. The true radial and circumferential motion are shown by darker red and darker green curves 

respectively. 

 

Figure 3-34 Radial (left) and circumferential (right) motion of PIS from frame 1 to 2 extracted from noise-free simulation data 

of 4.5 mm system resolution. The true radial and circumferential motion are shown by darker red and darker green curves 

respectively. 
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from low noise to high noise except that it is higher at noise-level 8N. However, with increased noise, the 

radial motion curve becomes less smooth, similar to the observation when the system resolution degrades, 

especially for 4.5mm system resolution. Accuracy of the circumferential motion decreases with higher 

noise, and linear regression line becomes more flat when the noise is increased. The similarity in the 

influence of resolution and noise level is reasonable, as the increasing noise requires smoothing filter 

during feature extraction, which essentially degrades the image resolution. 

 

Figure 3-35 Radial (left) and circumferential (right) motion of PIS from frame 1 to 2 extracted from noise-free simulation data 

of 0.6mm system resolution. The true radial and circumferential motion are shown by darker red and darker green curves 

respectively. This figure is the same as Figure 3-31, and it is shown again for comparison with results from other noise-levels. 

 

Figure 3-36 Radial (left) and circumferential (right) motion of PIS from frame 1 to 2 extracted from simulation data of 0.6mm 

system resolution at noise-level 8N .The true radial and circumferential motion are shown by darker red and darker green 

curves respectively. 
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Figure 3-37 Radial (left) and circumferential (right) motion of PIS from frame 1 to 2 extracted from simulation data of 0.6mm 

system resolution at noise-level 2N.The true radial and circumferential motion are shown by darker red and darker green 

curves respectively. 

 

Figure 3-38 Radial (left) and circumferential (right) motion of PIS from frame 1 to 2 extracted from simulation data of 0.6mm 

system resolution at noise-level 0.5N.The true radial and circumferential motion are shown by darker red and darker green 

curves respectively. 
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frame 1and 3 have relatively larger cardiac motion than the other two frames. Among the 4-frame cardiac 

images, frame 1 has the largest contracting motion during the systolic phase while frame 3 has the largest 

relaxing motion during the diastolic phase.  

 

Figure 3-39  Average magnitude of the true MVF in four frames of phantom images. 

Cardiac motion between each two neighboring frames was estimated using four methods: (1) 0-initial with 

conventional optical flow, (2) S-initial with conventional optical flow, (3) T-initial with conventional 

optical flow, and (4) S-initial with sulcus motion as additional constraint, named as S-constrain + S-initial. 

RESULTS FOR PHANTOM IMAGES 

The global cardiac motion estimation error defined by RMSE was calculated using 3-13 for the four 

methods and was shown in Figure 3-40. For phantom images, the S-initial achieves more accurate motion 

estimation result than 0-initial for all cardiac frames. The T-initial is always the best among the four 

methods. With the new feature-based optical flow approach, i.e. the S-constraint + S-initial, the motion 

estimation error is further reduced and is comparable with the result of T-initial. Even in frames with small 

cardiac motion, the information of IS is able to improve motion estimation accuracy. In frames with large 

motion, the improvement by S-initial and feature-based method is more distinctive than in frames with 
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Figure 3-40  Motion estimation error RMSE for phantom images using four different methods. 

To understand how well the four methods estimate three cardiac motion components, we calculated the 

motion estimation error for each component separately. The global RMSEs for three motion components as 

well as the whole MVF are shown in Table 3-7, and the average magnitude of each component and the MVF 

is shown as reference. The longitudinal motion is the largest among all three components in amplitude. 

Although the value of average circumferential motion amplitude is similar to longitudinal motion, its 

contribution to the total MVF is small because it is measured in degree. All four methods have relatively 

small error in radial motion, as it is perpendicular to the boundary of myocardium. Both circumferential 

and longitudinal motion are parallel to edges, and therefore difficult to estimate without help from the 

feature. The error in longitudinal motion is the largest among all three components due to its direction and 

amplitude. 0-initial has the largest error in all three components while the S-constraint + S-initial and T-

initial perform the best. S-initial performs slightly better in circumferential and longitudinal motion 

estimation, but the improvement is not as large as that when combined with S-constraint. Moreover, the S-

constraint + S-initial method yields most accurate estimation of the circumferential motion, which is not 

available even with true MVF as initial estimate. Even though the feature-guided motion estimation method 

is slightly worse in radial and longitudinal motion estimation, its improvement in circumferential motion is 

more significant and the total error is comparable as T-initial. 

Table 3-7 Global error RMSE for three cardiac motion components in frame 1 
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Average 

amplitude 
 0-initial S-initial T-initial 

S-constraint 

+ S-initial 

Vr(mm) 3.33 RMSE_Vr(mm) 0.81 0.63 0.52 0.76 

Vc(degree) 3.80 RMSE_Vc(degree) 5.37 4.63 4.41 3.17 

Vl(mm) 3.77 RMSE_Vl(mm) 3.35 2.23 0.91 1.02 

MVF(mm) 5.94 RMSE_MVF(mm) 3.88 2.74 1.57 1.52 

 

To have a close observation of the cardiac motion estimation results of four methods, we plotted the MVF 

in frame 1 estimated by the methods for three representative SA slices and one HLA slice. As shown in 

Figure 3-41, the basal SA slice of the heart is contracting and rotating in the counter-clockwise direction in 

frame 1. The 0-initial is able to identify the radial motion, but it fails to detect the circumferential motion. 

The MVFs estimated with S-initial and T-initial are comparable and both are closer to the true MVF. 

However, in the posterior region, they are still not able to estimate the circumferential motion accurately 

due to aperture problem. The MVF estimated by the feature-guided method, i.e. S-constrain + S-initial 

method, matches the true MVF very well generally, even for the posterior region.  

In the non-twisting SA slice, which is plane where the circumferential motion is the minimum. As show in 

Figure 3-42, the difference between the motion estimation results of four methods is negligible. All the four 

methods provide reliable estimation of the radial motion. At the posterior region near the PIS, the S-

constrain + S-initial method performs better than the other three methods, although the difference is small 

in magnitude. At the anterior region, there are discrepancy between the estimated motion vectors of all the 

four methods and the truth. 

At apical region shown in Figure 3-43, the heart is contracting as well as rotating clockwise in contrary to 

the basal region.  Similar to the result in the basal SA slice, the 0-initial failed to identify the 

circumferential motion, as it is tangential to the boundary of the myocardium. Even using the true MVF as 

initial estimate, the result is still not much better, since the strain energy term in the cost function of 

conventional optical flow algorithm penalizes this motion component. The S-constrain + S-initial method 

yields the best estimation of the MVF among the four methods, especially for the circumferential motion. 
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Figure 3-41 Cardiac motion estimation results using four methods for phantom image frame 1 at a basal SA slice. The true 

MVF is plotted in blue arrows for comparison. 
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Figure 3-42 Cardiac motion estimation results using four methods for phantom image frame 1 at the non-twisting SA slice. 

The true MVF is plotted in blue arrows for comparison. 
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Figure 3-43 Cardiac motion estimation results using four methods for phantom image frame 1 at one apical SA slice. The true 

MVF is plotted in blue arrows for comparison. 

Figure 3-44 shows the motion estimation result for phantom image at frame 1 in HLA view. Overall, the 

heart is contracting towards the apex. From apex to base, the longitudinal motion increases linearlly. The 0-

initial underestimates the longitudinal motion especially for the basal region. The other three methods 

perform comparably well in estimating the longitudinal motion in most region of the myocardium. 
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Figure 3-44 Cardiac motion estimation results using four methods for phantom image frame 1 at one HLA slice. The true 

MVF is plotted in blue arrows for comparison. 

For the basal short-axis slice, we plot the error map of circumferential motion in Figure 3-45. It is obvious 

that the S-constraint + S-initial has the lowest error for most region. We also noticed that the error at the 

region near the posterior sulcus is smaller than the posterior region for all three initials, but without 

constraint, the advantage cannot be extended to other regions as the result achieved by S-constraint + S-

initial method. 
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Figure 3-45 Error map of circumferential motion in basal SA slice by four methods. 

Motion estimation error for the three sample slices were calculated and shown in Table 3-8, which confirms 

the observation in the figures above quantitatively. The average amplitude is the average absolute value of 

the three motion components and whole motion vector, therefore does not tell direction. The apical SA 

slice has the largest circumferential motion, and the smallest radial and longitudinal motion. The S-

constrain + S-initial method significantly reduces the error in circumferential motion than other methods. 

The middle SA slice has medium radial motion and longitudinal motion, but the circumferential motion is 

too small to be estimated accurately. The basal SA slice has large radial and longitudinal motion, and 

medium circumferential motion. The circumferential motion is in the opposite direction to that in the apical 

SA slice. The S-constraint + S-initial method performs the best in circumferential motion estimation among 

four methods for both apical and basal SA slices. It also has superior accuracy in longitudinal motion 

estimation for all three slices. Overall, the T-initial and S-constraint + S-initial method are comparable in 

radial and longitudinal motion, but the later achieves more accurate estimation for the circumferential 

motion when it is large enough to estimate. 

Table 3-8 Motion estimation error of four methods at three SA slices from results for phantom image of frame #1 

Apical SA slice 

 
average 

amplitude 
 0-initial S-initial T-initial 

S-constraint 

+ S-initial 

Vr(mm) 2.25 RMSE_Vr(mm) 0.61 0.50 0.53 0.72 

Vc(degree) 7.95 RMSE_Vc(degree) 8.32 7.61 6.53 2.87 

Vl(mm) 1.01 RMSE_Vl(mm) 1.41 0.96 0.51 1.11 

MVF(mm) 4.10 RMSE_MVF(mm) 2.91 2.44 1.94 1.58 
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Non-twisting SA slice 

 
average 

amplitude 
 0-initial S-initial T-initial 

S-constraint 

+ S-initial 

Vr(mm) 3.89 RMSE_Vr(mm) 1.14 0.91 0.51 0.74 

Vc(degree) 0.88 RMSE_Vc(degree) 1.96 1.68 1.30 1.61 

Vl(mm) 4.84 RMSE_Vl(mm) 3.72 2.36 1.08 1.02 

MVF(mm) 6.69 RMSE_MVF(mm) 4.01 2.68 1.33 1.51 

Basal SA slice 

 
average 

amplitude 
 0-initial S-initial T-initial 

S-constraint 

+ S-initial 

Vr(mm) 4.03 RMSE_Vr(mm) 1.05 0.66 0.51 0.78 

Vc(degree) 2.82 RMSE_Vc(degree) 4.31 3.02 2.12 0.86 

Vl(mm) 6.64 RMSE_Vl(mm) 5.08 3.26 1.09 1.02 

MVF(mm) 8.34 RMSE_MVF(mm) 5.65 3.65 1.61 1.37 

 

RESULTS FOR DIFFERENT SYSTEM RESOLUTIONS 

GLOBAL MOTION ESTIMATION ERROR 

The RMSEs obtained by four methods for noise-free simulation data of four system resolutions are plotted 

in Figure 3-46 to Figure 3-49. 

For large-motion cardiac frames, the S-initial and S-constraint + S-initial methods are both able to achieve 

lower motion estimation error at the four simulated system resolutions. For small-motion cardiac frames, 

the improvement in motion estimation accuracy by using the feature motion is lost even for noise-free 

simulation of 0.6mm resolution.   

It is observed that with decreased resolution, the RMSE of 0-initial tends to decrease while that of T-initial 

tends to increase. This phenomenon is especially prominent for frame 3, which has the largest cardiac 

motion in amplitude among four frames.  As a result, the distinction between the best method T-initial and 

the worst method 0-initial becomes smaller for images of poorer resolution. Especially, at 4.5 mm 
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resolution, the difference in RMSE between T-initial and 0-initial is smaller than 1mm.  This indicates that 

when the system resolution is very low, the initial estimate has limited influence on the motion estimation 

accuracy. 

 

Figure 3-46 Motion estimation error RMSE for noise-free simulation data of 0.6mm resolution using four different methods. 

 

Figure 3-47 Motion estimation error RMSE for noise-free simulation data of 1.5mm resolution using four different methods. 
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Figure 3-48 Motion estimation error RMSE for noise-free simulation data of 3mm resolution using four different methods. 

 

Figure 3-49 Motion estimation error RMSE for noise-free simulation data of 4.5 mm resolution using four different methods. 

CARDIAC MOTION COMPONENT ANALYSIS 

The global RMSEs for three motion components as well as the complete MVF by four methods in noise-

free simulation data for frame 1 of different system resolutions are calculated and shown in Table 3-9. 

Different from the results in phantom image, the estimation of radial motion by S-constraint + S-initial 

method is even worse than the 0-initial for noise-free simulation data of 0.6mm resolution. This is caused 
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through cardiac motion model based initialization. Fortunately, with relatively accurate estimation of 

circumferential motion and longitudinal motion, the total error of S-constraint+ S-initial method is still 

comparable as the T-initial at 0.6mm resolution. Starting from 1.5mm resolution, the advantage of S-

constraint + S-initial method in circumferential motion estimation reduces. Due to less accurate estimation 

of circumferential motion at lower system resolution, the error in circumferential motion by the S-

constraint + S-initial method increases. Moreover, the error of radial motion by the S-constraint + S-initial 

method is consistently the largest for all resolutions. Although the total error is still smaller than the 0-

initial, the improvement is mainly achieved by the accurate estimation of the longitudinal motion. 

We also notice that the error of all three motion components by T-initial increases as the resolution 

degrades. This indicates that resolution has negative effect on the motion estimation accuracy even when 

the optical flow algorithm start with the true cardiac motion. The error in radial motion and circumferential 

motion by S-initial and S-constraint + S-initial also have a similar trend. However, the results for 0-initial 

does not follow the same trend as the other three methods except the radial motion is estimated with lower 

accuracy as resolution degrades from 1.5mm to 4.5 mm. 

Table 3-9 Global error RMSE of three cardiac motion components in frame 1 from noise-free simulation data of 

different system resolutions 

0.6mm resolution 

   0-initial S-initial T-initial 

S-constraint 

+ S-initial 

Vr(mm) 3.33 RMSE_Vr(mm) 1.23 0.65 0.56 1.57 

Vc(degree) 3.8 RMSE_Vc(degree) 4.92 4.82 4.64 3.01 

Vl(mm) 3.77 RMSE_Vl(mm) 3.58 2.60 1.15 1.06 

MVF(mm) 5.94 RMSE_MVF(mm) 3.39 2.55 1.57 1.73 

1.5 mm resolution 

   0-initial S-initial T-initial 

S-constraint 

+ S-initial 

Vr(mm) 3.33 RMSE_Vr(mm) 1.04 0.66 0.58 1.95 
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Vc(degree) 3.8 RMSE_Vc(degree) 4.72 5.00 4.92 4.92 

Vl(mm) 3.77 RMSE_Vl(mm) 3.64 2.57 1.23 1.09 

MVF(mm) 5.94 RMSE_MVF(mm) 4.06 3.04 1.98 2.53 

3.0 mm resolution 

   0-initial S-initial T-initial 

S-constraint 

+ S-initial 

Vr(mm) 3.33 RMSE_Vr(mm) 1.00 0.70 0.64 1.93 

Vc(degree) 3.8 RMSE_Vc(degree) 5.51 5.70 5.11 5.30 

Vl(mm) 3.77 RMSE_Vl(mm) 3.28 2.19 1.26 1.00 

MVF(mm) 5.94 RMSE_MVF(mm) 3.79 2.81 2.10 2.58 

4.5 mm resolution 

   0-initial S-initial T-initial 

S-constraint 

+ S-initial 

Vr(mm) 3.33 RMSE_Vr(mm) 1.37 0.73 1.13 1.53 

Vc(degree) 3.8 RMSE_Vc(degree) 5.89 6.10 5.18 5.88 

Vl(mm) 3.77 RMSE_Vl(mm) 3.29 1.88 1.50 0.96 

MVF(mm) 5.94 RMSE_MVF(mm) 3.91 2.62 2.40 2.47 

 

To look into more details on the motion estimation results other than a global evaluation, we plotted the 

MVF estimated using the four methods along with the truth. The following figures show the results in three 

representatively SA slices for noise-free 4.5mm resolution simulation data at frame 1. 

Figure 3-50 shows that at the basal SA slice, the heart is contracting as well as rotating in the 

counterclockwise direction. The S-constraint + S-initial method performed the best among all the methods. 

The MVF estimated with this method matches very well with the truth. The 0-initial has difficulty detecting 

the circumferential motion for most regions on this slice, and at the anterior-septal region, the estimated 

MVF point to the wrong direction. Similar situation is observed for S-initial and T-initial.  Without extra 

constraint in the algorithm, the circumferential motion is penalized during the optimization of the cost 

function. 
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At the non-rotating plane shown in Figure 3-51, the heart is contracting but has minimal circumferential 

motion. Therefore, the performance of four methods is comparable. The 0-initial has large error in both 

anterior-septal and posterior region. The S-initial and T-initial are slightly better in these two regions. The 

S-constraint + S-initial method performs better than 0-initial in the posterior region, especially the region 

near the PIS where even the T-initial has difficulty estimating the accurate MVF. However, in the anterior 

region, it fails to detect the circumferential motion, which is similar to other three methods.  

On the apical slice, which has significant circumferential motion, the four methods all have difficulty 

estimating the MVF, and no method shows obvious advantage over the rest. The feature-based method does 

no better than the other methods, because the extracted circumferential motion of IS is inaccurate especially 

at the apical region. 
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Figure 3-50 Cardiac motion estimation results using four methods for noise-free 4.5 mm resolution simulation data of frame 1 

at a basal SA slice. The true MVF is plotted in blue arrows for comparison. 
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Figure 3-51 Cardiac motion estimation results using four methods for noise-free 4.5 mm resolution simulation data of frame 1 

at the non-twisting SA slice. The true MVF is plotted in blue arrows for comparison. 
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Figure 3-52 Cardiac motion estimation results using four methods for noise-free 4.5 mm resolution simulation data of frame 1 

at an apical SA slice. The true MVF is plotted in blue arrows for comparison. 

Although it seems that the S-constraint + S-initial method does not perform well in circumferential motion 

when evaluated using the global motion estimation error, its result for different regions of the heart is quite 

different as observed from the figures above. For quantitatively evaluation, we calculated motion 

estimation error for three SA slices of the 4.5mm resolution noise-free simulation data at frame 1and 

showed the results in Table 3-10. In the apical slice where the circumferential motion is the largest, the four 

methods all have difficulty estimating the circumferential motion. For the zero-rotating slice, the errors in 

circumferential motion by four methods are much larger than the average amplitude of the truth, with S-
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constraint + S-initial yielding the largest error. However, at the basal slice, the S-constraint + S-initial 

method achieves the most accurate estimation of circumferential motion among all the methods.  Therefore, 

although the global errors in circumferential motion for all the methods are similar, the feature-based 

method is able to achieve more accurate estimation of this component at the basal slice, which is more 

meaningful considering the large radius of myocardial wall at the base. 

Table 3-10 Motion estimation error of four methods at three SA slices for noise-free simulation data of frame 1at 

4.5 mm resolution 

Apical SA slice 

   0-initial S-initial T-initial 

S-

constraint 

+ S-initial 

Vr(mm) 2.25 RMSE_Vr(mm) 0.74 0.67 1.90 1.40 

Vc(degree) 7.95 RMSE_Vc(degree) 7.58 9.06 8.12 7.55 

Vl(mm) 1.01 RMSE_Vl(mm) 1.34 1.13 1.37 1.10 

MVF(mm) 4.10 RMSE_MVF(mm) 2.73 2.98 3.31 2.80 

Non-rotating SA slice 

   0-initial S-initial T-initial 

S-

constraint 

+ S-initial 

Vr(mm) 3.89 RMSE_Vr(mm) 1.05 0.62 0.64 1.57 

Vc(degree) 0.88 RMSE_Vc(degree) 1.88 1.78 1.86 2.88 

Vl(mm) 4.84 RMSE_Vl(mm) 2.94 1.94 1.54 0.92 

MVF(mm) 6.69 RMSE_MVF(mm) 3.25 2.20 1.89 2.31 

Basal SA slice 

   0-initial S-initial T-initial 

S-

constraint 

+ S-initial 

Vr(mm) 4.03 RMSE_Vr(mm) 1.16 0.67 0.66 1.57 
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Vc(degree) 2.82 RMSE_Vc(degree) 3.72 3.65 3.30 0.96 

Vl(mm) 6.64 RMSE_Vl(mm) 6.20 2.77 1.51 0.82 

MVF(mm) 8.34 RMSE_MVF(mm) 6.57 3.41 2.36 1.85 

 

RESULTS FOR DIFFERENT NOISE LEVELS 

GLOBAL MOTION ESTIMATION ERROR 

The RMSEs obtained by four methods for simulation data of 0.6mm system resolution at four noise levels 

(NF, 8N, 2N and 0.5N) are plotted in Figure 3-46 Figure 3-54 to Figure 3-57. The results for phantom 

image are shown in Figure 3-53 again for comparison. For large-motion cardiac frames, the S-initial and S-

constraint + S-initial methods are both able to achieve lower motion estimation error at the four simulated 

noise levels. The improvement in motion estimation accuracy by using the feature motion is lost for small-

motion cardiac frames even with noise-free simulation.  This is because the IS motion in small-motion 

frames is very small and cannot be estimated accurately. Notice that at higher noise level, the error by S-

constraint + S-initial method is much larger than the other methods, due to inaccurate feature extraction. 

A similar phenomenon is observed from the change of RMSEs as noise increases: the RMSE of 0-initial 

tends to decrease while that of T-initial tends to increase. Again, this phenomenon is most prominent for 

frame 3, which has the largest cardiac motion among four frames.  The distinction between the best method 

T-initial and the worst method 0-initial becomes smaller for images of higher noise level. Since noisy 

images were smoothed before feature extraction and motion estimation, the increase of noise is translated 

to the decrease of image resolution. Therefore, the influence of noise is analogous to the influence of 

system resolution as observed in Figure 3-46 to Figure 3-49. 
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Figure 3-53 Motion estimation error RMSE for phantom images using four different methods. 

 

Figure 3-54 Motion estimation error RMSE for noise-free simulation data of 0.6mm resolution using four different methods. 

 

Figure 3-55 Motion estimation error RMSE for simulation data of 0.6mm resolution at noise level 8N using four different 

methods. 
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Figure 3-56 Motion estimation error RMSE for simulation data of 0.6mm resolution at noise level 2N using four different 

methods. 

 

Figure 3-57 Motion estimation error RMSE for simulation data of 0.6mm resolution at noise level 0.5N using four different 

methods. 

CARDIAC MOTION COMPONENT ANALYSIS 
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method is superior to the 0-initial, and comparable as the T-initial. For all the four methods, the error in 

circumferential motion shows obvious increase when the noise increases with an exception at noise level 

2N.  

Table 3-11 Global error RMSE of three cardiac motion components in 0.6mm simulation data of frame 1 at 

different noise levels. 

noise -free 

   0-initial S-initial T-initial 

S-constraint 

+ S-initial 

Vr(mm) 3.33 RMSE_Vr(mm) 1.23 0.65 0.56 1.57 

Vc(degree) 3.8 RMSE_Vc(degree) 4.92 4.82 4.64 3.01 

Vl(mm) 3.77 RMSE_Vl(mm) 3.58 2.60 1.15 1.06 

MVF(mm) 5.94 RMSE_MVF(mm) 3.39 2.55 1.57 1.73 

noise level 8N 

   0-initial S-initial T-initial 

S-constraint 

+ S-initial 

Vr(mm) 3.33 RMSE_Vr(mm) 0.98 0.78 0.60 2.07 

Vc(degree) 3.8 RMSE_Vc(degree) 5.68 5.63 5.54 4.08 

Vl(mm) 3.77 RMSE_Vl(mm) 3.37 2.45 1.18 1.00 

MVF(mm) 5.94 RMSE_MVF(mm) 3.85 2.98 1.96 2.52 

noise level 2N 

   0-initial S-initial T-initial 

S-constraint 

+ S-initial 

Vr(mm) 3.33 RMSE_Vr(mm) 1.03 0.73 0.68 1.68 

Vc(degree) 3.8 RMSE_Vc(degree) 5.44 5.20 5.09 3.47 

Vl(mm) 3.77 RMSE_Vl(mm) 3.53 2.34 1.18 0.98 

MVF(mm) 5.94 RMSE_MVF(mm) 3.36 2.41 1.66 1.79 

noise level 0.5N 

   0-initial S-initial T-initial 

S-constraint 

+ S-initial 
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Vr(mm) 3.33 RMSE_Vr(mm) 1.14 0.86 0.81 1.21 

Vc(degree) 3.8 RMSE_Vc(degree) 6.51 5.93 5.72 4.36 

Vl(mm) 3.77 RMSE_Vl(mm) 3.39 2.35 1.39 0.95 

MVF(mm) 5.94 RMSE_MVF(mm) 3.98 2.97 2.24 1.90 

 

The following figures show the results in three representatively SA slices of frame 1for 0.6mm resolution 

simulation data at noise level 0.5N. Figure 3-58 shows that at the basal SA slice, the S-constraint + S-initial 

method performs exceedingly well among all the methods. The 0-initial, S-initial and T-initial all fail to 

detect the circumferential motion of the myocardium at the posterior region, meanwhile they also generate 

inaccurate estimation of this component at the anterior septal region. At the non-rotating SA slice, the 

difference among four methods is negligible, except that the S-constraint + S-initial method yields 

overestimated radial motion at the septal region. In Figure 3-60, all of the four methods underestimate the 

circumferential motion on the apical slice, which is different from the results for noise-free simulation data 

of 0.6mm resolution at the apical SA slice. Figure 3-61 shows that although with some extent of 

underestimation, the S-constraint + S-initial method provides better detection of the circumferential motion 

than other three methods, which fail to detect it. This is because that at higher noise level, the 

circumferential motion of IS is underestimated at the apical region. 



118 

 

 

Figure 3-58 Cardiac motion estimation results using four methods for 0.6 mm resolution noise-level 0.5N simulation data of 

frame 1 at a basal SA slice. The true MVF is plotted in blue arrows for comparison. 
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Figure 3-59 Cardiac motion estimation results using four methods for 0.6 mm resolution noise- level 0.5N simulation data of 

frame 1 at the non-twisting SA slice. The true MVF is plotted in blue arrows for comparison. 
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Figure 3-60 Cardiac motion estimation results using four methods for 0.6 mm resolution noise- level 0.5N simulation data of 

frame 1 at an apical SA slice. The true MVF is plotted in blue arrows for comparison. 
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Figure 3-61 Cardiac motion estimation results using four methods for noise-free 0.6 mm resolution simulation data of frame 1 

at an apical SA slice. The true MVF is plotted in blue arrows for comparison. 

Quantitative evaluation of motion estimation accuracy for the three slices in frame 1 from noise-free data 

set and noise-level 0.5N data set is shown in the following tables. At the apical SA slice, which has large 

circumferential motion, the S-constraint + S-initial method achieves significantly more accurate estimation 

of this component than other three methods for noise-free data. However, the corresponding value of 

RMSE of circumferential motion for noise level 0.5N is much larger than for noise-free data, and the 

difference to the results of other methods is much smaller.  
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Table 3-12 Motion estimation error of four methods at three SA slices for 0.6mm resolution noise-free 

simulation data of frame 1 

Apical SA slice 

   0-initial S-initial T-initial 
S-constraint     

+ S-initial 

Vr(mm) 2.25 RMSE_Vr(mm) 0.68 0.53 0.55 1.44 

Vc(degree) 7.95 RMSE_Vc(degree) 7.96 7.70 7.47 2.00 

Vl(mm) 1.01 RMSE_Vl(mm) 1.23 1.02 0.72 1.16 

MVF(mm) 4.10 RMSE_MVF(mm) 2.75 2.53 2.34 1.97 

Non-rotating SA slice 

   0-initial S-initial T-initial 
S-constraint     

+ S-initial 

Vr(mm) 3.89 RMSE_Vr(mm) 1.35 0.52 0.52 1.62 

Vc(degree) 0.88 RMSE_Vc(degree) 1.77 1.56 1.32 1.77 

Vl(mm) 4.84 RMSE_Vl(mm) 3.73 2.75 1.33 1.05 

MVF(mm) 6.69 RMSE_MVF(mm) 4.05 2.91 1.55 2.13 

Basal SA slice 

   0-initial S-initial T-initial 
S-constraint  

+ S-initial 

Vr(mm) 4.03 RMSE_Vr(mm) 1.49 0.99 0.62 1.62 

Vc(degree) 2.82 RMSE_Vc(degree) 3.04 3.32 3.15 1.33 

Vl(mm) 6.64 RMSE_Vl(mm) 6.29 4.35 1.46 1.09 

MVF(mm) 8.34 RMSE_MVF(mm) 6.62 4.76 2.24 2.08 

 

Table 3-13 Motion estimation error of four methods at three SA slices for 0.6mm resolution simulation data of 

frame 1 at noise level 0.5N 
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Apical SA slice 

   0-initial S-initial T-initial 
S-constraint     

+ S-initial 

Vr(mm) 2.25 RMSE_Vr(mm) 0.98 0.86 0.83 1.12 

Vc(degree) 7.95 RMSE_Vc(degree) 8.39 7.76 7.55 5.05 

Vl(mm) 1.01 RMSE_Vl(mm) 1.56 1.23 1.03 1.10 

MVF(mm) 4.10 RMSE_MVF(mm) 3.07 2.70 2.53 2.14 

Non-rotating SA slice 

   0-initial S-initial T-initial 
S-constraint     

+ S-initial 

Vr(mm) 3.89 RMSE_Vr(mm) 1.03 0.81 0.81 1.22 

Vc(degree) 0.88 RMSE_Vc(degree) 1.35 1.15 1.30 1.67 

Vl(mm) 4.84 RMSE_Vl(mm) 3.53 2.60 1.65 0.92 

MVF(mm) 6.69 RMSE_MVF(mm) 3.72 2.78 1.92 1.75 

Basal SA slice 

   0-initial S-initial T-initial 
S-constraint     

+ S-initial 

Vr(mm) 4.03 RMSE_Vr(mm) 1.23 0.97 0.94 1.26 

Vc(degree) 2.82 RMSE_Vc(degree) 4.66 4.14 3.77 0.95 

Vl(mm) 6.64 RMSE_Vl(mm) 5.62 3.64 1.75 0.84 

MVF(mm) 8.34 RMSE_MVF(mm) 6.23 4.31 2.77 1.59 

 

COMBINATION OF RESOLUTION AND NOISE 

As shown in the previous sections, both resolution and noise influence the performance of feature-guided 

cardiac motion estimation method by affecting the accuracy of extracted motion of the feature. At 4.5mm 

system resolution, the feature-based method already lost its advantage in detecting the circumferential 
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motion both globally and regionally. At 1.5mm resolution, the global error in circumferential motion by the 

feature-based method is larger than 0-initial.  

As show in Figure 3-62, at 3.0mm resolution and noise level 2N, the motion of extracted PIS is not very 

accurate for both the circumferential motion and the radial motion. Comparing with the extraction results in 

noise-free case, both motion components are noisier. The radial motion along the sulcus curve is less 

smooth, and the linearity of the circumferential motion is much reduced. The confidence of determination 

𝑅2of the linear regression of circumferential motion curve reduces from 0.86 in noise-free case to 0.44 at 

noise level 2N. S-initial was created based on the linear assumption of the circumferential motion and 

applied to the motion estimation of the images, ignoring its poor linearity for the moment. 

 

Figure 3-62 Radial (left) and circumferential (right) motion of PIS from frame 1 to 2 extracted from 3.0mm simulation data at 

noise level 2N. The true radial and circumferential motion are shown by darker red and darker green curves respectively. 

The following figures show the results in three representatively SA slices of frame 1for 3.0mm resolution 

simulation data at noise level 2N. Figure 3-63 shows that at the basal SA slice, the S-constraint + S-initial 

method performed exceedingly well among all the methods. The 0-intial, S-initial, and even the T-initial 

have difficulty detecting accurate circumferential motion at the anterior and posterior region, while the S-

constraint + S-initial method provides motion vectors very close to the truth. At the non-rotating SA slice 

shown in Figure 3-64, the difference among four methods is negligible, except that the S-constraint + S-

initial method yields overestimated radial motion at the septal region, due to overestimation of the radial 

motion of the PIS. In Figure 3-65, all of the four methods underestimated the circumferential motion, while 
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the S-constraint + S-initial method provides slightly better detection of the circumferential motion than 

other three methods. 

 

Figure 3-63 Cardiac motion estimation results using four methods for 3.0 mm resolution noise-level 2N simulation data of 

frame 1 at a basal SA slice. The true MVF is plotted in blue arrows for comparison. 
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Figure 3-64 Cardiac motion estimation results using four methods for 3.0 mm resolution noise- level 2N simulation data of 

frame 1 at the non-twisting SA slice. The true MVF is plotted in blue arrows for comparison. 
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Figure 3-65 Cardiac motion estimation results using four methods for 3.0 mm resolution noise- level 2N simulation data of 

frame 1 at the sample apical SA slice. The true MVF is plotted in blue arrows for comparison. 

Although the circumferential motion and radial motion of the sulcus are less accurate at noise level 2N than 

at noise-free case, the S-constraint + S-initial method performs better than all the other methods globally 

except for the radial motion as shown in Table 3-14. Table 3-15 shows quantitative evaluation of motion 

estimation accuracy for the three slices in frame 1 of this dataset, indicating that the S-constraint + S-initial 

method yields more accurate estimation of both circumferential and longitudinal motion than other methods 

in all three slices.  
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Table 3-14 Global error RMSE for three cardiac motion components in frame 1 for 3.0 mm resolution 

simulation data at noise level 2N 

 

Average 

amplitude 
 0-initial S-initial T-initial 

S-constraint 

+ S-initial 

Vr(mm) 3.33 RMSE_Vr(mm) 0.96 1.23 0.68 1.40 

Vc(degree) 3.80 RMSE_Vc(degree) 6.11 5.55 5.87 4.60 

Vl(mm) 3.77 RMSE_Vl(mm) 2.65 1.79 1.23 0.95 

MVF(mm) 5.94 RMSE_MVF(mm) 3.27 2.81 2.11 2.03 

 

Table 3-15 Motion estimation error of four methods at three SA slices for 3.0 mm resolution noise-level 2N 

simulation data of frame 1 

Apical SA slice 

   0-initial S-initial T-initial 
S-constraint     

+ S-initial 

Vr(mm) 2.25 RMSE_Vr(mm) 0.66 0.62 0.66 1.29 

Vc(degree) 7.95 RMSE_Vc(degree) 8.66 8.53 8.47 5.49 

Vl(mm) 1.01 RMSE_Vl(mm) 1.15 1.08 0.92 1.10 

MVF(mm) 4.10 RMSE_MVF(mm) 2.86 2.77 2.68 2.31 

Non-rotating SA slice 

   0-initial S-initial T-initial 
S-constraint     

+ S-initial 

Vr(mm) 3.89 RMSE_Vr(mm) 0.72 0.70 0.69 1.42 

Vc(degree) 0.88 RMSE_Vc(degree) 1.72 1.76 1.78 1.44 

Vl(mm) 4.84 RMSE_Vl(mm) 2.64 1.93 1.28 0.91 

MVF(mm) 6.69 RMSE_MVF(mm) 2.87 2.22 1.69 1.85 

Basal SA slice 
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   0-initial S-initial T-initial 
S-constraint   

+ S-initial 

Vr(mm) 4.03 RMSE_Vr(mm) 1.24 0.73 0.70 1.45 

Vc(degree) 2.82 RMSE_Vc(degree) 4.20 4.27 3.69 1.34 

Vl(mm) 6.64 RMSE_Vl(mm) 4.74 2.65 1.60 0.79 

MVF(mm) 8.34 RMSE_MVF(mm) 5.34 3.51 2.57 1.78 

 

The results of 3.0mm resolution at noise-free and noise level 2N in the global error of circumferential 

motion shown in Table 3-9 and Table 3-14 raise an important question: why the method performs better in 

the noisier case than in the noise-free case?  To answer this question, we need to take a closer look at the 

estimated circumferential motion curve at these two noise levels. The equation of the linear regression line 

of the circumferential motion for noise-free data is 𝑦 = −0.0401 𝑥 + 4.5287 with 𝑅2 = 0.8585, while that 

for noise level 2N is 𝑦 = −0.0292 𝑥 + 3.9137 with 𝑅2 = 0.4380. The estimated circumferential motion at 

two noise levels and their linear regression lines are shown in Figure 3-66. Although at noise level 2N, the 

slope of the fitted line is smaller than that in noise-free data, the position of the zero-twisting plane matches 

well with the truth. On the other hand, the line for noise-free data yields circumferential motion in the 

opposite direction for long-axis slice from #108 to #135.  As a result, the final estimation of the 

circumferential motion for the myocardium on these slices severely deviate from the truth, and the direction 

is wrong. 
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Figure 3-66  Circumferential motion of PIS from frame 1 to frame 2 calculated from 3.0mm resolution simulation data at 

noise-free (NF) and noise level 2N. The true circumferential motion is shown in green as reference. The linear regression line 

for the circumferential motion estimated at NF is shown in dark blue and that for noise level 2N is shown in dark red. 

Motion estimation accuracy for the three sample SA slices in frame 1 of 3.0mm resolution noise-free 

simulation data is shown in Table 3-16, which confirms our explanation. Although the S-constraint + S-

initial method achieves improved estimation of circumferential motion apical and basal SA slice, which is 

comparable as the value in Table 3-15, its error in circumferential motion at the non-rotating SA slice is 

significantly larger than other methods. Since the global error in circumferential motion is the summation 

of the error in all the voxels of myocardium, its value for noise-free data is larger than that for noise level 

2N. 

Table 3-16 Motion estimation error of four methods at three SA slices for 3.0 mm resolution noise-free 

simulation data of frame 1 

Apical SA slice 

   0-initial S-initial T-initial 
S-constraint     

+ S-initial 

Vr(mm) 2.25 RMSE_Vr(mm) 0.70 0.62 0.65 1.77 

Vc(degree) 7.95 RMSE_Vc(degree) 8.54 8.67 8.64 5.66 

y = -0.0401x + 4.5287

y = -0.0292x + 3.9137
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Vl(mm) 1.01 RMSE_Vl(mm) 1.21 1.04 0.85 1.11 

MVF(mm) 4.10 RMSE_MVF(mm) 2.90 2.83 2.74 2.63 

Non-rotating SA slice 

   0-initial S-initial T-initial 
S-constraint     

+ S-initial 

Vr(mm) 3.89 RMSE_Vr(mm) 0.95 0.57 0.59 2.02 

Vc(degree) 0.88 RMSE_Vc(degree) 1.43 1.52 1.53 2.53 

Vl(mm) 4.84 RMSE_Vl(mm) 3.13 2.33 1.38 0.97 

MVF(mm) 6.69 RMSE_MVF(mm) 3.35 2.51 1.66 2.56 

Basal SA slice 

   0-initial S-initial T-initial 
S-constraint   

+ S-initial 

Vr(mm) 4.03 RMSE_Vr(mm) 1.07 0.81 0.64 1.98 

Vc(degree) 2.82 RMSE_Vc(degree) 3.86 3.73 3.40 1.14 

Vl(mm) 6.64 RMSE_Vl(mm) 5.99 3.49 1.53 1.01 

MVF(mm) 8.34 RMSE_MVF(mm) 6.38 4.06 2.40 2.32 

 

Our method is able to extract the motion of PIS at lower count level for 3.0mm resolution, or even 4.5mm 

resolution. However, the curves of both radial and circumferential motion become much noisier, and the 

linearity of the circumferential motion curve is further reduced as indicated by lower 𝑅2 value. As a result, 

the performance of S-constraint + S-initial method is better than other methods for slices in which the 

estimated motion of the PIS is closer to the truth, and worse for slices with inaccurate PIS motion. The 

global error depends on how many slices are estimated accurately. 

At higher noise level, the fitted line of the circumferential motion curve becomes less reliable, although it is 

possible that it is closer to the truth for some slices as shown in the example above. It is not guaranteed that 
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lower noise level will generate more accurate cardiac motion estimation result for circumferential motion 

due to the randomness of the image noise and its influence on the feature extraction.  

DISCUSSION 

Recalling Figure 3-28 and Figure 3-29, we can obtain the following information:  The IS is located at the 

epicardium, which does not contract as much as the endocardium. For most long-axis slices, the radial 

motion of the sulcus point is under 4 pixels with 0.6mm pixel size. The error of sulcus location extraction 

can be as large as 2 pixels. Since the motion is calculated based on extracted sulcus location from two 

cardiac images, its error is the summation of the feature extraction error of two points.  This explains why 

radial motion can be overestimated by two pixels even when the feature extraction error for one sulcus 

point is no larger than 1 pixel in phantom images. 

As Figure 3-67 shows, the radius of the epicardium at sulcus point increases from the apical region to the 

base. According to Figure 3-28, the circumferential motion changes linearly from 5 degree at apical side to 

-3 degree at base on the epicardium. The motion of the sulcus in the direction tangential to the boundary of 

the epicardium on each short-axis lice is calculated using 

𝑉𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 =
𝑉𝑐

180°
𝜋𝑅, 

3-18 

where 𝑅 is the radius of epicardium at the sulcus point shown in Figure 3-67. The results are shown in 

Figure 3-68. The largest motion for the sulcus in tangential direction is only 4 pixels with pixel size 0.6mm; 

while for most slices, this value is under 3 pixels. With sulcus extraction error for each frame of cardiac 

image as large as 2 pixels at low system resolution, the estimation of the circumferential motion can 

become very inaccurate. Moreover, the circumferential motion of every point on the sulcus is required to 

find out the slope and intercept of the linear regression of circumferential motion for MVF initialization 

and feature based constraint. The accumulation of error will eventually lead the cardiac motion estimation 

to the wrong direction. 
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Figure 3-67 Radius of the epicardium at the sulcus points in frame 1 

 

Figure 3-68 Tangential motion of the sulcus points in frame 1 

For this method to achieve desirable improvement of cardiac motion estimation accuracy, the three motion 

components of the sulcus have to be accurate. This requires very high-resolution and finely-pixelated 

cardiac PET images. In addition, the cardiac motion between two frames has to be large enough; otherwise, 

the method will not make a difference and the error in feature extraction can overpower the true motion of 

the feature. Moreover, as shown in the previous sections, high image resolution is more important than high 

statistics, as the motion of the feature is very small compared to the pixel size. 

Assuming the feature extraction is accurate, the proposed feature-guided cardiac motion estimation method 

performs very well even for low-resolution low-count images. We used the true motion of the PIS to create 

‘S-initial’ and the ‘S-constraint’, then applied them to the simulated cardiac PET images of 4.5mm system 
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resolution at noise level 0.5N. Table 3-17 shows the motion estimation error in three motion components as 

well as the whole motion vector. The true average amplitude of three components and the MVF is also 

shown for reference. Since the true motion of the PIS is used, the ‘S-initial’ alone achieves comparable 

estimation accuracy as the T-initial, while the feature-based method ‘S-constrain + S-initial’ obtains the 

lowest error in all three motion components.  

Table 3-17 Global error RMSE for three cardiac motion components in frame 1 for 4.5 mm resolution 

simulation data at noise level 0.5N 

 

Average 

amplitude 
 0-initial ‘S-initial’ T-initial 

‘S-constraint 

+ S-initial’ 

Vr(mm) 3.33 RMSE_Vr(mm) 1.46 1.23 1.19 0.81 

Vc(degree) 3.80 RMSE_Vc(degree) 5.84 5.55 5.78 3.17 

Vl(mm) 3.77 RMSE_Vl(mm) 2.32 1.79 1.62 0.88 

MVF(mm) 5.94 RMSE_MVF(mm) 3.24 2.81 2.67 1.38 

 

The motion estimation results of four methods for this data set were plotted in the following figures. With 

accurate sulcus motion, the S-constraint + S-initial method performs superior than all other methods 

including the T-initial. The estimated MVF shown by green arrows in all three sample slices matches very 

well with the truth. Specifically, in slices with significant circumferential motion such as the basal and the 

apical SA slice, the S-constraint + S-initial method achieves accurate estimation of the twisting motion, 

which is missed even by the T-initial. 
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Figure 3-69 Cardiac motion estimation results at a basal SA slice using four methods for 4.5 mm resolution simulation data of 

frame 1at noise level 0.5N. The true MVF is plotted in blue arrows for comparison. 
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Figure 3-70 Cardiac motion estimation results at the non-rotating SA slice using four methods for 4.5 mm resolution 

simulation data of frame 1at noise level 0.5N. The true MVF is plotted in blue arrows for comparison. 
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Figure 3-71 Cardiac motion estimation results at an apical SA slice using four methods for 4.5 mm resolution simulation data 

of frame 1at noise level 0.5N. The true MVF is plotted in blue arrows for comparison. 

As for the parameters in the feature-based motion estimation algorithm, we used  𝜎 = 15 𝑝𝑖𝑥𝑒𝑙 and 𝛽 = 8 

for all simulation data, assuming that the motion estimate from the feature is reliable. Lowering 𝜎 and 𝛽 

will make the cost function more similar to that of the traditional optical-flow, and the error in motion 

estimation results will be larger for the simulation data assuming the motion of feature is accurate.  

CONCLUSION 
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In this project, we proposed the idea of using anatomical features of the human heart to improve the 

accuracy of cardiac motion estimation for PET images. The features include the papillary muscle and the 

interventricular sulcus. In preliminary studies, initial estimate of the cardiac MVF was created based on the 

motion of the extracted features and the linear assumptions of cardiac motion model. The use of feature-

based initial estimates (or initials), such as papillary muscle based initial and interventricular sulcus based 

initial, in combination with the conventional optical flow motion estimate algorithm, achieve more accurate 

cardiac MVF compared with 0-initial, by providing the optical-flow algorithm a starting motion estimate 

closer to the truth. In further improvement study, we proposed more accurate sulcus extraction algorithm 

based on B-spline interpolation and extrapolation techniques. To reduce the effect of the classical aperture 

problem, we developed a new feature-based cardiac motion estimation algorithm with an additional feature 

motion constraint. The feature-based cardiac motion estimation method proves successful for simulated 

cardiac PET data of high system resolution and low noise level. The results from simulation data of 

different resolutions show that with the degradation of system resolution and increase of noise level in the 

acquired data, the extracted motion estimate of the sulcus becomes less accurate, which in turn results in 

decrease in motion estimation accuracy. Starting from 1.5mm resolution, the feature-based method with 

additional constraint is not able to reduce the global error in circumferential motion, but for the basal SA 

slices, the method still performs better than the traditional method. For 0.6mm system resolution, the 

method is consistently superior at all four simulated noise levels in terms of all three cardiac motion 

components. In addition, we also studied the inconsistency between the calculated motion of the papillary 

muscle footprint and the true motion of the centroid, concluding that this is the inherent property of human 

heart and that papillary muscle is not a reliable feature for cardiac motion estimation. 

In addition to developing and verifying feature extraction and cardiac motion estimation methods, we 

studied the influence of resolution and noise on the extracted motion of the interventricular sulcus. We 

found that the errors in radial and circumferential motion deteriorate as the system resolution degrades and 

the noise level increases. We also analyzed cardiac motion estimation error in details. This is the first study 

that quantitatively investigates cardiac motion estimation in three components from cardiac gated 4D 

cardiac PET images. The three cardiac motion components are radial, circumferential and longitudinal 

motion. Among these three cardiac motion components, the radial motion is the easiest to estimate, as it is 
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perpendicular to the edge of myocardium. The circumferential and longitudinal components of the cardiac 

motion vector field are more difficult to detect using conventional optical-flow method. The error in 

longitudinal motion is the largest among all three components. Although the feature-based method does not 

improve the detection of circumferential motion in terms of global accuracy when the resolution degrades, 

the improvement in longitudinal motion estimate leads to a lower total error of the whole cardiac MVF. 

Meanwhile, we discovered that accurate estimation of the feature’s motion is crucial for the feature-based 

cardiac motion estimation method to achieve better result than the traditional method. Therefore, high 

system resolution and low noise is necessary for the feature-based method to improve the cardiac motion 

estimation accuracy. Although currently 0.6mm and 1.5mm resolution is not realistic for current clinical 

PET scanners for routine cardiac PET imaging, 4.0mm resolution is already available and a commercial 

PET scanner with 2.5 mm resolution is entering the US market in the very near future. Experiment results 

from noisy simulated PET images with 3.0mm resolution indicate that the feature-based method is able to 

generate more accurate motion estimation result than traditional optical-flow algorithm.  
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CHAPTER 4.  SUMMARY AND FUTURE WORK 

In this Ph.D. dissertation research, we have investigated two main topics: (1) advanced data-driven 

respiratory gating methods from list-mode cardiac PET data, and (2) feature-based cardiac motion estimation 

method for cardiac-gated cardiac PET images. Both topics are aiming at improving the quality and clinical 

value of cardiac PET data. 

Respiratory gating is a widely used approach to reduce the influence of respiratory motion in PET images. 

The PET data is divided into several frames according to the respiratory status of the patient. For cardiac 

PET data, respiratory motion compensation requires proper gating of the data. In chapter 2, we proposed a 

data-driven method to extract the respiratory motion signal directly from list-mode cardiac PET data by 

calculating the centroid of the heart from grouping the list-mode data in 200ms dynamic frames. When 

available, time-of-flight (TOF) PET information is used to identify photons from a volume-of-interest (VOI) 

that encompassed the heart for more accurate determination of the centroid location of the heart. Moreover, 

a simple background correction method was also proposed to remove the background counts in the centroid 

location sequence, leading to an increase in the SNR of frequency spectrum of the centroid location signal.. 

The methods were applied to and evaluated using clinical cardiac PET data, and the results show that with 

TOF information and background correction, the SNR and respiratory motion amplitude of the respiratory 

signal is improved.  

With improved image quality in terms of resolution and noise level by means of advance in hardware and 

motion compensation process, cardiac motion estimation becomes more and more reliable in PET imaging. 

In Chapter 3, we proposed feature-based cardiac motion estimation method to improve the accuracy of 

estimated cardiac MVF. In our preliminary studies, the motions of the papillary muscles and the 

interventricular sulcus was used to create initial estimation of cardiac MVF based on a linear cardiac motion 

model. In simulation data with eight cardiac-gated frames, the feature-based initials were shown to allow 

more accurate motion estimation results than the 0-intial. The idea was further developed and improved in 

the second half of Chapter 3. An interventricular sulcus extraction method based on B-spline interpolation 

and extrapolation methods was proposed to improve the accuracy of feature extraction. More importantly, a 

sulcus-based constraint was added to the feature-based extraction algorithm to further reduce the effect of 
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the aperture problem. The method was tested using simulated PET data of various resolutions and noise levels. 

The results show that with gated cardiac PET images with higher resolution and lower image noise, the 

extracted sulcus motion become more accurate, leading to more accurate estimate of the cardiac motion as 

compared to that using traditional methods, especially for motion parallel to the edges. It is also found that 

the accuracy of feature extraction is still the bottleneck of the feature-based motion estimation method. Our 

study demonstrated the first method using anatomical features in cardiac motion estimation. In addition, it is 

the first study that analyzes and evaluates cardiac motion estimation result in three motion components. We 

also believe that cardiac motion component analysis is useful in detection and evaluation of cardiac motion 

abnormalities. 

There are two parameters to adjust in the feature-based motion estimation algorithm: the weight factor and 

the effective range of the motion constraint term. In our preliminary study, the values for the two parameters 

were chosen empirically. Optimization of these parameters will potentially provide further improvement of 

the cardiac motion estimation methods and is a topic for future exploration. 

The features that can be employed in cardiac motion estimation are not limited to the anatomical structures 

used in this study. Tagged MR techniques which are regarded as the gold standard in cardiac motion imaging 

also provide detailed information about the cardiac motion as shown in Figure 4-1. Since it is very difficult 

and time-consuming to acquire 3D volume tagged MR images of the heart for the whole cardiac cycle, the 

common practice is to get 2 or 3 slices of 2D tagged images of the heart. The motion information contained 

in the sparsely sampled slices of co-registered tagged MR images can also be used to help 3D cardiac motion 

estimation for cardiac PET data. 

 

Figure 4-1 Tagged MR images of a short-axis slice of a patient’s heart 

Moreover, it is possible to integrate the cardiac motion model with three motion components, and even the 

muscle fiber mechanics in the myocardium, into the cardiac motion estimation algorithm. This requires more 

comprehensive understanding and knowledge about cardiac motion, which requires intensive clinical study. 

In this way, the estimated cardiac motion will become more biologically meaningful.  
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Another future extension of feature-based cardiac motion estimation is to investigate the influence of motion 

defects on feature extraction and motion estimation results. The cardiac motion model used in the simulation 

study is developed based on clinical cardiac-gated tagged MRI data of a normal patient. There are questions 

regarding to models of abnormal cardiac motion. For example, with regional or global motion defects, would 

the linear assumption about three cardiac motion components still stand? And if not, how would inaccurate 

cardiac motion model influence the motion estimation results. 

Although currently cardiac PET images still have poor image resolution and high noise, their quality has 

been improving in recent years. With its ability of providing functional information of the myocardium, the 

additional cardiac motion information that can be extracted from the same list-mode datasets will provide 

additional information that can aid in clinical diagnosis without additional study and cost will have 

significant positive impact in patient care and health care cost.   
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