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Abstract

Topology optimization is a powerful free-form design tool that couples finite ele-

ment analysis with mathematical programming to systematically design for any num-

ber of engineering problems. Additive manufacturing (AM), specifically 3D printing,

is a manufacturing process where material is added through deposition or melting

in a layer-by-layer fashion. Additively manufactured parts are ‘built’ from the bot-

tom up, allowing production of intricate designs without extra effort on the part of

the engineer or technician – complexity is often said to be ‘free’. This dissertation

seeks to leverage the full potential of this burgeoning manufacturing technology by

developing several new design algorithms based on topology optimization. These

include multi-material projection methods appropriate for multiphase 3D printers,

an overhang-prevention projection method capable of designing components that do

not need sacrificial anchors in metal AM processes, and models for simultaneously

optimizing topology and objects embedded in process. These algorithms are demon-

strated on several design examples and shown to produce solutions with capabilities

that exceed existing designs and/or that require less post-processing in fabrication.
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ABSTRACT

Targeting the capabilities of the Polyjet Stratasys 3D printers, a topology opti-

mization algorithm is developed for the design of multi-material compliant mecha-

nisms in which the algorithm ultimately designs both the topology of the part and

the placement of each material – one stiff, one more compliant. Results – obtained

through development of a both a new multi-material model and through develop-

ment of a robust topology optimization technique for the elimination of one-node

hinges – show the ability to place both soft and stiff material and lead to dramatic

improvements in performance of compliant mechanisms.

One of the manufacturing challenges in metal powder-based 3D printing tech-

nologies is material curling due to internal stress development from the heating and

cooling cycle during the printing process. To counteract this phenomena, sacrificial

support material is introduced to anchor the part to the build plate, which must then

be removed chemically or mechanically in post-production: a time consuming pro-

cess. Components requiring no post-printing material removal are achieved through

development of a topology optimization algorithm to design components to respect

a designer-prescribed maximum overhang angle, such that the optimized part can

be manufactured without using sacrificial support anchors. Solutions are shown to

satisfy the prescribed overhang constraint, along with minimum feature length scale

constraints as needed.

Finally, an algorithm is developed considering the ability to embed discrete ob-

jects such as stiffeners or actuators within a monolithic printed part. Herein, a hybrid

iii



ABSTRACT

continuum-truss topology optimization algorithm is developed to leverage this poten-

tial capability, where the algorithm designs not only the continuum phase, but also

places discrete truss members within this phase. With an eye towards future AM ca-

pabilities, the algorithm is demonstrated on the more contemporary design problem

of strut-and-tie models in reinforced concrete design. It is shown that the algorithm

is especially useful for designing within complex design domains in which the flow of

forces is not obvious. While an exciting direction, it is noted that further advance-

ments in 3D printing technology are needed to allow for such printed topologies.

Primary Reader: James K. Guest (Advisor)

Secondary Readers: Lori Graham-Brady, Sauleh Siddiqui
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Chapter 1

Introduction

Topology optimization, an extremely powerful free-form rigorous design method,

was introduced in 1988 by the pioneering work of (Bendsøe and Kikuchi, 1988). The

method allows the engineer to define the design problem in terms of the desired

functionality without requiring a priori knowledge of a typical solution. In this way,

innovative solutions are often obtained for even the most straight forward of design

problems. With the research field gaining traction, there is a high rate of adoption in

academia and industry, creating an ever increasing need to develop new algorithms

to design for advanced mechanics and new manufacturing methods. While a powerful

tool, one of the disadvantages has been the complexity of the solution topologies, with

many critiquing that the solutions are theoretically optimal yet typically difficult or

impossible to manufacture.

Additive manufacturing (AM), specifically 3D printing, is a burgeoning technology
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CHAPTER 1. INTRODUCTION

in which parts are manufactured by depositing or melting material a layer-by-layer

manner. Until recently, the technology was primarily known as rapid prototyping,

owing to the fact that it was almost exclusively used to create prototypes for parts

which were ultimately to be manufactured by another manufacturing method. With

the advancement in printing technology and the understanding and development of

new printing materials, there has been a shift towards creating ‘end-use’ parts via

AM. This is especially true with the advancement of metal 3D printing methods such

as selective laser melting (SLM). While it is exciting to see the shift to manufacturing

actual final parts using AM, the parts that are typically manufactured have topologies

determined by the restrictions of older manufacturing methods.

In this dissertation, a new design paradigm is proposed in which topology opti-

mization is harnessed as the design tool for additively manufactured parts, capitalizing

on the design freedoms allowed by additive manufacturing and the rigorous design

methodology of topology optimization. While there has been high interest in using

AM to manufacture parts, the design of the built parts is almost always dictated

by older, more geometrically restrictive manufacturing methods, as these parts were

engineered when AM was not an option. Therefore, there must be a fundamental

shift in approach in order to take full advantage of AM. Every traditional part must

be reimagined/reengineered by use of topology optimization, in which the engineer

defines the part by way of functionality by defining loads and boundary conditions,

and subsequently allows the optimizer to determine the optimal topology. There exist
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exciting directions in which the additive manufacturing process may be incorporated

into the topology optimization formulation to not only eliminate post-processing of

the topology optimization solution to be fed into the printer, but also eliminate the

physical post-processing required on the manufactured part.

Manufacturability has long been an issue of topology-optimized solutions, and has

been a major hurdle in the adoption of this technology in industry. There have been

recent efforts to alter the topology optimization formulation to incorporate manu-

facturing constraints such that the final solution is manufacturable for the specified

method. For example, Guest and Zhu (2012) optimized for the structure assuming a

milling manufacturing process. Others have looked at incorporating manufacturing

uncertainty - both material and geometric - in the optimization process, producing

robust solutions (Asadpoure et al., 2011; Guest and Igusa, 2008; Jalalpour et al.,

2011; Jansen et al., 2013; Schevenels et al., 2011; Sigmund, 2009).

1.1 Topology Optimization Background

Topology Optimization is formulated as a material distribution scheme in which

a problem is defined by a design domain and applied loads and boundary conditions.

The design domain is discretized into a finite elements that each have a material den-

sity, ρe, where e indicates the particular element. The objective of the optimization

is to determine the material distribution to optimize a specified performance perime-

3



CHAPTER 1. INTRODUCTION

ter, driving each element to either zero, a void element, and one, a solid element.

Topology optimization is most commonly formulated as a minimum compliance, or

equivalently, maximum stiffness problem. The optimization formulation is as follows:

min
ρ

f(ρ) = F Td

subject to: K(ρ)d = F∑
e∈1

ρeve ≤ V

0 ≤ ρe ≤ ρemax ∀ e ∈ Ω

(1.1)

where design variable vector ρ is the set of material densities for the structure, ρe is

material concentration in element e, F if the vector of applied nodal loads, d is the

vector of nodal displacements, ve is element volume for unit ρe, V is the available

volume of material, and ρemax is the design variable upper bound. While the ultimate

goal is to drive towards a binary 0-1 solution, the optimization problem is relaxed to

a continuous optimization problem in which ρ may vary between 0 and ρmax (with

ρmax = 1 indicating solid material) so that efficient gradient based optimizers may

be used. There is, however, a penalization applied to intermediate volume fraction

elements so that they are deemed inefficient, ultimately driving the solution towards

0-1 (Bendsøe, 1989; Rozvany et al., 1992).

There are a number of well-known challenges in solving the topology optimization

problem, including manufacturability of designs and numerical instabilities of solution

mesh dependence and checkerboard patterns (Sigmund and Petersson, 1998). An effi-
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cient, and physically meaningful approach to addressing these issues is to prescribing

a minimum length scale below which features may not appear. While several options

exist, such as imposing length scale control through constraints (Poulsen, 2003), a

popular technique for imposing minimum length scale is through the Heaviside Pro-

jection Method (HPM) (Guest et al. 2004) where independent design variables are

projected onto the physical (finite element) space over the prescribed length scale.

The details are not provided here, but the general form is seen in Eq. 1.2. Vari-

ables are often located at the nodes of the finite element mesh, and if a nodal design

variable is “turned on”, it will project material in a specified rmin around the nodal

point. All nodal variables have the ability to be “on” or “off”, giving the algorithm

the capacity to create custom geometries. Figure 1.1 is an image of the Heaviside

Projection Method as seen from the element perspective. All of the φ within the

specified rmin can project material to the element. By way of the Heaviside function

in Eq. 1.2, even if a nodal variable indicates it barely “wants” to project material,

the Heaviside function will project the material fully. This function, Eq. 1.2, helps

create a crisp solid void boundary to the topology.

As seen in Fig. 1.1, the starred element determines whether it is solid or void

based on whether the circular nodal variables within the specified minimum radius,

rmin project material. The continuous approximation to the Heaviside function is seen

in Eq. 1.2 and visually in Fig. 1.2:
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Figure 1.1: The stared element can have material projected onto it by any nodal φ
within the radius rmin

ρe = H(µe(φ)) = 1− e−µe(φ)β + µe(φ)e−β (1.2)
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0

0.2

0.4
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µ ( φ)
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Regularized Heaviside

Figure 1.2: Projection of φ to ρ to achieve minimum length scale control.

where µe is the linearly decaying weighted average of the design variables within the

minimum allowable radius, rmin, and β is the Heaviside exponent. As β approaches

6



CHAPTER 1. INTRODUCTION

infinity, the continuous approximation to the Heaviside function (Eq. 1.2 approaches

the discontinuous true Heaviside function). As such, it is desired to perform the

optimization with as large of β as possible. This will give a solution with minimal

fading on the boundary. However, when the Heaviside parameter, β, becomes very

large, the optimization problem becomes highly nonlinear, creating an optimization

problem which may be hard for the gradient-based optimizer to solve (Guest et al.,

2011).

A typical solution for a simply supported beam is seen in Fig. 1.3c where the

volume fraction is set to 60%. The solution is first obtained for the case of no length

scale control and then for a minimum radius of 2.4. As can be seen by the simple

comparison, the projection scheme for length scale control not only allows for con-

trol over the minimum feature size, but also eliminates such issues as checkerboard

solutions, as seen in Fig. 1.3b.

Other topology optimization researchers use a similar method to achieve a min-

imum length scale, where a projection of elemental design variables onto the physi-

cal space creates the same minimum allowable feature size (Bendsøe and Sigmund,

2003b).
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a Simply Supported Beam Definition

b Simply Supported Beam Solution, no length scale
control

c Simply Supported Beam Solution, rmin = 2.4

Figure 1.3: Simply Supported Beam Definition and Solutions for volume fraction
of 60% on a 320 ∗ 80 mesh

1.2 Additive Manufacturing Background

As stated above, additive manufacturing is a layer-by-layer manufacturing method

which builds parts from the bottom up. The first AM technology, Stereolithography

(SLA), was patented by Chuck Hull and brought to market in 1986 through his newly

formed company, 3D Systems. SLA is a liquid bath 3D printing technique in which

a thin layer of photopolymer is selectively cured by an ultraviolet light. Upon curing

one layer, the base print plate sinks another small amount into the liquid polymer

bath and the selective curing is performed again – this process repeats until the part

is completely formed. To this day, SLA has the best available print resolution of any

8



CHAPTER 1. INTRODUCTION

Figure 1.4: Schematic of stereolithography AM process (Pham and Gault, 1998)

AM technology on the market. Interestingly, recent advancements in 3D printing

have allowed for the use of photopolymer to be placed through a print head instead

of selectively cured in a polymer bath. This allows for the use of multiple material, a

topic which will be explored in depth in Chapter 2.

Probably the most common additive technology currently on the market, Fused

Deposition Modeling (trademark of Stratasys), or more generally Fused Filament

Fabrication (FFF), was commercialized in 1990 by S. Scott Crump, the founder of

Stratasys. In this technology, a plastic filament is heated and extruded through a

print head and subsequently is selectively deposited in a layer-by-layer fashion to

create the final part. There are a number of materials available for this method

including PLA, ABS, polycarbonate, and ULTEM, to name a few.

Of great interest are powder-bed 3D printing methods. This technology creates

physical parts through melting or sintering of powdered material in a layer-by-layer
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Figure 1.5: Schematic of Fused Deposition Modeling AM Process (Pham and Gault,
1998)

fashion. A number of materials may be used in this process, including polymers and

metals. In the case of polymers, the material solidified together by Selective Laser

Sintering (SLS), while in the case of metals, the solid material is formed by Selective

Laser Melting (SLM). Often SLS and SLM are used interchangeably, however sintering

and melting are fundamentally two separate processes. With the advancement of

metal SLM technology, the ability to create ‘end-use’ metallic parts is becoming a

reality, allowing for more complex design and ultimately weight savings in many parts.

This is of particular interest to the automotive and aerospace industries, where weight

reduction equals significant monetary savings.
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Figure 1.6: Schematic of Selective Laser Sintering AM Process (Pham and Gault,
1998)

1.3 Topology Optimization In Additive Man-

ufacturing Overview

Due to the relative infancy of both topology optimization and additive manufac-

turing, there is limited literature on the combined use of these technologies. In the

past few years, however, a few research groups across many disciplines have discovered

this technology and exploited for application to manufacturing and medicine.

In light of the ability of AM to manufacture almost any complex topology, re-

searchers have come to the realization that topology optimization can and should

serve as the design tool for these structures. The ability to simply specify the prob-

lem in terms of loads, boundary conditions, design domain an other necessary design

considerations, in many cases allows for design never realized before. The designs are
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not only manufacturable, but have optimal performance in comparison to traditional

designs. Some have investigated the use of ground structure optimization techniques

– in which a truss ground structure is specified within the design domain and the

cross-sectional areas of the truss are optimized - to exploit the design freedoms of

AM (Smith et al., 2013). In this study, the authors verified the optimality of the so-

lutions by printing and testing the parts. Interestingly, they found some geometrical

discrepancies between the optimized solution and the printed representation. This

reinforces the necessity to properly account for and incorporate the manufacturing

process limitations and variability into the topology optimization formulation so that

there is no disconnect from design to print. Others have investigated the general idea

of combining topology optimization and additive manufacturing to take advantage of

potential weight savings (Emmelmann et al., 2011; Villalpando et al., 2014), and for

product family design, exploiting the customizability enabled by additive manufac-

turing (Lei et al., 2014).

Support material, required for a number of AM technologies, is necessary to ensure

the manufacturability of all topologies. For certain techniques, the material is differ-

ent from that of the structural part and may be dissolved away in a chemical bath,

while in other printing methods, the support material is the same as that of the struc-

tural part and must be removed by grinding or etching in a post print process. It has

been found that the support material is critical in minimizing geometric distortions

and in dissipating energy away from the location of the print-head or laser location in

12
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the case of selective laser melting technology. Interestingly, a number of researchers

have investigated harnessing optimization for the design and minimization of AM sup-

port structure. Brackett proposes, yet does not execute, a method to eliminate the

need for support material all-together by taking advantage of the maximum printable

overhang angle which requires no support (Brackett et al., 2011a). In this way, the

final topologies would be restricted to overhang angles less than this experimentally

determined angle. However, it should be noted that there is a significant disconnect

between the proposed constraint and the desired effect. The lack of solutions leaves

doubt as to whether the algorithm will work at all. Similarly, while not performing a

formal optimization, Cloots manipulated the printing parameters to both maximize

the achievable overhang angle and minimize the need for support material altogether

(Cloots et al., 2013). Krol proposes a method aimed at minimizing the material use

for support material in SLM methods using fractal patterns (Krol et al., 2012). With

a similar end goal, Strano proposes a method to minimize the use of material using

a cellular support structure (Strano et al., 2013). Finally, Paul investigated the part

orientation in relation to support material and found that the best orientation for

part quality also resulted in the greatest use of support material, underscoring some

of the tradeoffs in support material minimization (Paul and Anand, 2014).

Also fairly prevalent in recent literature is the use of topology optimization in

conjunction with additive manufacturing for medical application, notably tissue scaf-

folds. Some have optimized for the multi functionality required by tissue scaffolds
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(Almeida and Brtolo, 2013; Dias et al., 2014). There scaffolds must hold a structural

load while having enough porosity for fluid to flow through the material. This area

has also been explored in the topology optimization community (Challis et al., 2010,

2012; Chen et al., 2011; Guest and Prévost, 2006, 2007). While not using topology

optimization explicitly, Rainer obtained the principal stress trajectories for a particu-

lar part and subsequently oriented the sparse-fill in the direction of these trajectories

as opposed to the default horizontal and vertical grid-like infill pattern (Rainer et al.,

2012).

1.4 Dissertation Scope and Aims

This dissertation aims to create topology optimization algorithms which design for

particular additive manufacturing methods. In terms of scope, manufacturing science

will not be investigated as part of this work. Instead the focus will be on develop-

ing topology optimization algorithms with enough generality to apply to plethora of

additive manufacturing design problems. Also, heuristics are generally avoided, with

the methods instead based on incorporating manufacturing processes and material

properties into the optimization formulation.

Chapter 2 will focus on formulating an algorithm to design for a printer with

multi-material capabilities. The algorithm will be exemplified through the design

of multi-material compliant mechanisms. Chapter 3 will focus on designing parts
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that require no sacrificial support material in the build process. This algorithm

applies to almost all printing technologies, but herein will focus on SLM 3D printers.

Finally, Chapter 4 will present a method for optimizing for the placement of discrete

objects within a 3D printed part. The algorithm not only allows for the placement

of objects, but accounts for the stress-dependent material properties often exhibited

in 3D-printed parts.
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Chapter 2

Multiple-Material Topology

Optimization of Compliant

Mechanisms Created Via PolyJet

3D Printing

2.1 PolyJet 3D Printing

PolyJet 3D printing is one of the only AM processes capable of utilizing stiff and

flexible material phases within a single build, making it uniquely qualified for manu-

facturing complex, multi-material compliant mechanisms. PolyJet 3D printing is an

AM material jetting process, wherein droplets of liquid photopolymer are deposited
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Figure 2.1: Representation of direct 3D PolyJet printing process.

directly onto an elevator substrate via a series of inkjet printheads (Obj, 2009). As the

material is deposited, two ultraviolet (UV) lamps cure the photopolymer in multiple

passes. Each subsequent layer is jetted on top of the previous one. A representation

of this process can be seen in Fig. 2.1.

The PolyJet process offers a high resolution print, with a layer thickness of 16-30

microns and an in-plane resolution of 42 microns. In addition, the PolyJet process

offers one significant and unique advantage among modern additive manufacturing

process: the PolyJet process is capable of depositing two different materials on a

pixel-by-pixel basis. One material is a rigid, white plastic-like material (VeroWhite+),

while the other is an elastomeric, flexible black material (TangoBlack+). The two

materials can be combined in various ratios to create nine gradient material blends

with properties ranging along the continuum of the two extremes.
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2.2 Compliant Mechanisms

Howell defines compliant mechanisms as those which utilize the deformation of

flexible members to successfully transfer motion, force, and energy (Howell, 2013).

This is in direct contrast to traditional mechanisms that rely on movable joints in order

to perform their function. Compliant mechanisms are encountered on a daily basis

in the forms of binder clips, paper clips, and various compliant latches. In addition

to the various man-made examples, nature also makes use of compliant mechanisms,

with many living organisms displaying parts that are both strong and flexible (Vogel,

1995). Advantages of compliant mechanisms include part consolidation, improved

mechanism robustness, and miniaturization as friction dominates at small scales.

However, as the design of compliant mechanisms increases in complexity, traditional

manufacturing methods become infeasible. This drives the authors’ overall goal of

integrating design optimization with additive manufacturing (AM) methods, with a

particular focus herein on the design and fabrication of compliant mechanisms.

While there are many examples of single-material compliant mechanisms present

in everyday life, man-made, multi-material compliant mechanisms are rare. This

is because manufacturing complexity increases significantly with the introduction of

additional material phases. However, there is potential to drastically increase per-

formance by producing multi-material compliant mechanisms. For example, Aguirre

and Frecker make a strong case for the need of multi-material compliant mechanisms

in the medical field (Aguirre and Frecker, 2010). By including both a stiff and flexible
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material phase in the design of contact-aided compliant mechanism forceps for nat-

ural orifice translumenal endoscopic surgery, the authors were able to achieve larger

total jaw openings and blocked forces. This improved mechanism performance has

the potential to directly impact the success rate of the surgery. However, Aguirre and

Frecker’s design was guided by their intuitive understanding of how forceps should

look.

A few example compliant mechanisms are shown in Fig. 2.2. Presented here are

tweezers, pliers and a gripping wrench mechanism. As can be seen, the mechanisms

do not have any explicit hinges, instead attaining motion through bending of the

compliant hinges.

This chapter takes a more systematic design approach based on topology opti-

mization to leverage multi-material AM processes. By including multiple material

phases such as these in the design of compliant mechanisms, the maximum deflec-

tion of the mechanism can potentially be improved, while potentially decreasing the

likelihood of fatigue failure at the structure’s joint-like sections.

2.2.1 Manufacturing of Multi-Material Compliant

Mechanisms

While literature has offered some discussion regarding how to optimize the design

of multiple material compliant mechanisms, there has been little content detailing
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a Tweezers b Pliers

c Gripper

Figure 2.2: Example compliant mechanisms. Motion is attained through deforma-
tion of the hinges. From (BYU, 2014).
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their actual fabrication. The few instances of literature pertaining to the fabrica-

tion of multiple material compliant mechanisms will be discussed herein, but it is

important to note that none of the objects fabricated have been subjected to struc-

tural optimization. Following a review of the literature, it is concluded that there

is no prior work where multiple material compliant mechanisms have been designed,

optimized, and subsequently fabricated.

One of the more prevalent examples of the manufacturing of multiple-material

compliant mechanisms is from Bailey and Rajagopalan. They discuss the design and

manufacturing of a biomimetic leg that operates under the principle of heterogeneous

material compliance (Bailey et al., 1999; Rajagopalan et al., 2001). While the final

design is not driven by the concept of optimization, the authors specifically address the

process of multi-material. They adapt the process of Shape Deposition Manufacturing

(SDM) to allow for the creation of flexible joints while maintaining stiff members for

the rest of the leg shape. SDM involves the deposition of material in layers, followed

by machining in order to form the material layer into the desired shape (in this way

it is like a combination of additive manufacturing and traditional CNC machining).

Because the process offers continuous access to the part interior, specialized sub-

pieces can be embedded during creation. In this case, the authors embedded separate

flexible joints in their biomimetic leg.

Several authors have also investigated the use of multi-material molding (MMM)

for the creation of multiple material compliant mechanisms (Bejgerowski et al., 2010,
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2011; Gouker et al., 2006). MMM is a process whereby the various materials in the

final part are created volumetrically, as opposed to the layer-by-layer methods of both

AM and SDM. While there are several variations on the process, the general MMM

flow involves the creation of a one material phase being molded separately and then

being inserted into a mold for the second stage material phase. Filling this second

stage mold will embed the first material phase within the part.

For the fabrication of small-scale multiple material compliant mechanisms, there

are two examples that are derivations of the MMM process. Rajkowski proposes a

prototyping process that uses a curable rigid polymer as well as a curable, flexible

silicone as the two material phases (Rajkowski et al., 2009). By placing the material

phases down in bulk and using a mask to cure only the desired sections of the part,

the author offers a quick, inexpensive solution for the fabrication of multiple-material

mechanisms on the millimeter scale. Vogtmann proposes a process whereby the neg-

ative space for the flexible material phase is cut from a bulk piece of the rigid phase

(Vogtmann et al., 2011). The flexible material is deposited, cured, and planed, before

the desired mechanism profile is cut from the bulk material.

While the above processes have been shown to successfully create multiple mate-

rial compliant mechanisms, they all also have limitations when considering complexity

and distributed compliance of the final pieces. The examples presented are relatively

geometrically simple when compared to traditional results of multiple-material opti-

mization, and thus were all manufacturable. However, these processes do not scale
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well. As the complexity of topology and multi-material distribution increases, the pro-

cesses will require significantly more user interaction and time investment to create the

necessary mechanisms. In addition, the presented examples all rely on the principle of

lumped compliance, where the flexible material phase is implemented at the location

that would traditionally be represented by a revolute joint. These processes would

be ill-prepared to manufacture mechanisms based on distributed compliance, where

the flexible material phases would be more interspersed among the rigid material.

2.2.2 Potential For Compliant Mechanism Design

Through Topology Optimization

Topology optimization will serve as an excellent design tool for compliant mecha-

nisms. To tackle the design problem, the general compliant mechanism design domain

is defined (with applied forces, supports, and desired responses) and material is sys-

tematically distributed (added or removed) throughout the domain in a manner that

minimizes (or maximizes) the defined objective function within a prescribed set of

design constraints – usually a material volume constraint. This results in the effective

and efficient use of material within the part. The use of the topology optimization

approach as applied to the design of compliant mechanisms can be traced back to

work by Sigmund, as well as by Frecker and coauthors (Frecker et al., 1997; Sigmund,

1997).
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Figure 2.3: Design domain and loading for inverter case study.

In order to demonstrate the utility of the presented optimization and printing

method, the authors consider the well-established example of a force inverter com-

pliant mechanism. This case study was initially demonstrated in Sigmund (1997)

and has become one of the benchmark problems in topology optimization. As seen

in Fig. 2.3 the design domain for the mechanism is square, with the displacements

at the top and bottom points on the left side of the design domain fixed. An input

force is applied to the left hand-side of the space, along with an input spring constant

value. A reaction force and spring constant are also applied to the right hand side of

the space. The objective of the problem is to maximize the work done on the output

spring. If the ratio of kout to kin is larger, greater force transfer to the output location

is targeted. Conversely, the ratio of kout to kin is smaller, greater displacement of the

output location is targeted.
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It should be noted that the analysis used in the topology optimization was limited

to the assumption of small displacements, and thus linear elastic analysis. This can

be achieved by using a small magnitude of the applied load. As load magnitude and

resulting motion increases, literature has shown that the assumption of linear analysis

at best underestimates motion of the final topology and, at worst, may miss a failure

mode (Bruns and Tortorelli, 2001; Buhl et al., 2000). However, the creation of these

optimized pieces should still offer a useful point of comparison between 2-phase and 3-

phase results, even though the experimental deflection values of each specimen under

(relatively) large loads may differ from any predicted theoretical values.

Topology optimization for the design of compliant inverters which may be manu-

factured with AM is well studied. However, as the next section will show, the general

field of topology optimization in AM is incredibly varied, with researchers using dif-

ferent finite element (FE) representations and optimization algorithms according to

the context of the particular problem, as well as personal preference.

2.2.3 Topology Optimization in Additive Manu-

facturing

While little to no work has yet been done regarding the manufacturing of opti-

mized, multi-material compliant mechanisms via AM (to be discussed further in the

Section 2.2.3), several researchers have investigated the use of AM as a means of real-
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izing topology-optimized parts, including small scale material microstructures (e.g.,

(Andreassen et al., 2014; Challis et al., 2010, 2012)). The ‘free complexity’ inherent

in the AM process makes it ideal for the realization of final optimized parts. While

there are several topology optimization groups looking at manufacturing processes,

the following section seeks to elucidate the larger hubs specializing in manufacturing

research that have also pursued design optimization.

At Loughborough University, work has been performed to assist in the design

of optimized artifacts while specifically considering the necessary manufacturing con-

straints provided by AM. Brackett and coauthors recently offered an overview of some

of the largest perceived opportunities in this sector, including the importance of mesh

resolution, support material constraints, and adaptations of the Solid Isotropic Ma-

terial with Penalization (SIMP) material interpolation for lattice-based and multiple-

material structures (Brackett et al., 2011a). On the utilization of multiple-material

topology optimization, they specifically mention the abilities of the PolyJet process

and offer an example of how a designer could map the various blends onto the den-

sities produced by the SIMP. They also acknowledge challenges, however, such as

maintaining a formal sensitivity analysis and the need for experiments to ensure a

reasonable mapping scheme, and that the constitutive relations in SIMP and the

blended material may not be consistent. Brackett also proposed a dithering op-

timization method based on stress analysis for the creation of functionally graded

lattice structures within a part (Brackett et al., 2011b). Aremu and coauthors in-
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vestigated the suitability of Bi-Directional Structural Optimization (BESO) for AM,

and extended the BESO strategy to include adaptive meshing around the boundaries

(Aremu et al., 2011), similar to topology optimization strategies proposed by (Guest

and Smith Genut, 2010a; Maute and Ramm, 1995; Stainko, 2006) for enhancing com-

putational efficiency.

At the Georgia Institute of Technology, emphasis has been placed on the develop-

ment of cellular structure design, optimization, and analysis techniques for application

to AM. Wang and Rosen developed a methodology for the design of conformal cellular

truss structures that could easily be translated to AM parts, and later automated the

design and synthesis of these structures through a truss sizing optimization and ap-

plication to mechanism structures (Wang and Rosen, 2006, 2001; Wang et al., 2005).

Graf developed a Size Matching and Scaling (SMS) approach, which utilizes a unit

cell library consisting of different truss arrangements optimized to support particu-

lar loading conditions. He subsequently offers a comparison of the SMS approach

against the Particle Swarm Optimization method and least-squares minimization op-

timization method (Chu et al., 2010; Graf et al., 2009) and found that the SMS

method could offer performance comparable to the results of these other two algo-

rithms, while significantly decreasing the computation time due to the non-iterative

nature of SMS. Finally, Rosen introduced a formal framework for the concept of De-

sign for Additive Manufacturing, based on the process-structure-property-behavior

framework from material science (Chu et al., 2008; Rosen, 2007). He demonstrated
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the use and applicability of this framework through the design of a size-optimized

lattice structure to support a cover plate.

At the University of Southern California, Chen adapted Rosen’s framework to

assist in the design of cellular structures that offer specific compliant performance.

He developed a CAD tool to design a mesostructure allowing for heterogeneous ma-

terial properties within an AM printed part, in essence creating functionally graded

materials from a single material (Chen and Wang, 2008; Li et al., 2009). Mahesh-

waraa, Bourell, and Seepersad, at the University of Texas at Austin, used truss ground

structure optimization for investigating the use of lattice structures in the creation of

deployable skins manufactured via AM (Maheshwaraa et al., 2007).

Obviously the body of work discussed above is incredibly varied. There are re-

searchers investigating the manufacture of optimized single-material structures in

AM, researchers who are developing manufacturing rules related to single-material

optimization in AM, and researchers who are investigating how multi-material opti-

mization could generally be implemented in AM. However, in the above investigation,

there were no examples of authors attempting to develop a process for the optimiza-

tion and subsequent fabrication and testing of multi-material compliant mechanisms,

while also incorporating the manufacturing constraints and advantages of the PolyJet

printing process. It is this process that we seek to develop in our work, starting with

the initial results presented herein.
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2.2.4 Theoretical Representation of Multiple Ma-

terials in Topology Optimization

In order to apply topology optimization to the PolyJet process, an appropriate

scheme for representing and choosing among the multiple candidate materials decided

upon. While some potential schemes have already been touched upon in the review of

AM optimization (such as optimality criteria, BESO, and genetic algorithms) there

are yet other multi-material representations that might also prove applicable to the

realm of PolyJet printing.

In the typical representation outline in Chapter 1, the design domain is discretized

into a series of elements or pixels (voxels in 3D) and each element is assigned a pseudo-

density, or volume fraction. These pseudo-densities are used to interpolate between

two phases of material: solid and void. The SIMP penalization parameter, η will help

force the pseudo-densities to 0 or 1. Additionally, by introducing a second pseudo-

density term to each pixel, it is possible to further interpolate between three material

phases: one stiff, one flexible, and one void (Bendsøe and Sigmund, 1999). This idea

may be further extended by introducing an additional pseudo-density variable to each

pixel accounting for each additional material phase that is available. This method

has been shown to perform reliably, but relies on a large number of design variables,

as each additional material introduces additional design variables on the order of the

number of pixels in the design space (e.g. four non-zero material options creates four
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times as many design variables).

A few have attempted to design multi-material compliant mechanisms. Notably,

Saxena tackled the multi-material compliant mechanism problem by discretizing the

domain with frame elements and using a genetic algorithm with rounding to assign

available material phase values to the frame members (Saxena, 2002, 2005). As

discussed, however, stochastic search approaches such as genetic algorithms become

intractable for large-scale optimization problems such as continuum-based topology

optimization.

2.2.5 Context

The study presented in this chapter demonstrates a start-to-finish process for the

realization of optimized, multi-material compliant mechanisms. This represents an

important first step in unlocking the design potential of the multi-material PolyJet

process. A SIMP and projection-based optimization method (Section 2.3.2) is ap-

plied to the design of a compliant force inverter, a well-known compliant mechanism

case-study. Results from experimentally testing the printed multi-material optimized

structures are provided in Section 2.6. Additionally, a second test problem is pre-

sented in section 2.5.2 to demonstrate the flexibility of the method to design for other

compliant mechanisms. Concluding remarks are offered in Section 2.7.
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2.3 Process for Design and Manufactur-

ing of 3-Phase Compliant Mechanisms

This section discusses the optimization approach that was implemented to de-

sign optimized compliant mechanisms. Section 2.3.2 discusses the multivariate SIMP

optimization method, and how it is applied to multiple material optimization. In

addition, Section 2.3.1 will discuss the logic behind the selection of this approach.

2.3.1 Determination of Compliant Mechanism De-

sign Process Suitable for PolyJet Printing

As stated above, we chose to use a continuum approach to the compliant mech-

anism design problem. Continuum representation offers the potential for a free-form

representation of topology. It is worth noting that a hybrid representation might be

able to balance the speed of the discrete representation with the resolution of the

continuum method. While such hybrid approaches generally exist in literature, such

as a truss-continuum model simultaneously optimized to place steel and concrete ma-

terials (Amir and Sigmund, 2013; Gaynor et al., 2013; Yang et al., 2014), there do

not appear to be any hybrid representations being used in conjunction with multiple

material AM at this time.

The authors have instead chosen to pursue a continuum representation, due in part
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to the quality of its resolution as well as the way in which a continuum representation

aligns with the PolyJet process’s method of printing. When printing, the PolyJet

process utilizes a series of multi-colored bitmaps that are sent to the printer. Each

bitmap represents a single slice of the printed part, with multiple colors used in each

slice to denote the material to be deposited. While the ability does not currently exist,

the authors hope to eventually be able to use the image outputs from 2D topology

optimization as a direct bitmap slice input to the printer. In this way, translating

the topology optimization output to an Standard Tessellation Language (STL) file

will become unnecessary and the process of manufacturing optimized multi-material

compliant mechanisms will become more streamlined.

It was decided to use a gradient-based optimization algorithm to solve this prob-

lem, due to it’s ability to handle optimization problems with thousands to millions

of design variables while remaining efficient. There have, however, been many people

who chose to use a stochastic search optimization algorithm. Stochastic algorithms,

such as genetic algorithms and particle-swarm optimization, randomly sample the

design space and are thus capable of handling discrete formulations and facilitating

escape from low performance local minima. They have been used in a wide range of

applications, including manufacturing processes to optimize system design and order

policy (Carlo et al., 2012), system identification to obtain model parameters (Deuser

et al., 2013; Pang and Kishawy, 2012), identification of manufacturing process pa-

rameters (Keshavarz Panahi et al., 2013), assembly system reconfiguration planning
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(Bryan et al., 2013), sheet roll forming (Park and Anh, 2012) and folding (Leng et al.,

2013), and shape optimization of orienting devices (Hofmann et al., 2013). Stochas-

tic search algorithms, however, can be computationally expensive and may break

down in high dimension spaces such as those of continuum topology optimization.

Although strategic dimension control algorithms have been proposed for such cases

(e.g., (Guest and Smith Genut, 2010b)), gradient-based optimization methods are

much better suited to handle the many design variables inherent in a continuum rep-

resentation. In this preliminary study, the Method of Moving Asymptotes (MMA)

will be utilized as the optimizer (Svanberg, 1987).

2.3.2 Optimization Approach 1: Multiphase SIMP

Method

Previously, Bendsøe and Sigmund (1999) proposed a multiphase topology opti-

mization method in which three phase solutions were possible. This formulation used

two sets of design variables. The first set of design variables ρ1 are used in determin-

ing the optimal topology of the compliant mechanism, while the second set of design

variables ρ2 are used for selecting the material at each location within the topology.

The resulting material stiffness of an element is then given as

Ee = ρ1(φ1)η
[
ρ2(φ2)ηE1 + [1− ρ2(φ2)η]E2

]
(2.1)
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where E1 and E2 are Young’s modulus of the first and second phases, respectively.

As can be seen in Eq. (2.1), the modulus Ee of each element is a function of both ρ

(and their corresponding independent design variables φ1 and φ2 ). If φ1 = 0 , then

the element takes on a modulus of 0. If φ1 = 1 and φ2 = 0, then Ee = E1, and when

φ1 = 1 and φ2 = 1, Ee = E2.

Embedded in this formulation is the Heaviside Projection Method (HPM) (Guest

et al., 2004). HPM uses independent design variables φ that are projected onto the

ρ space using regularized Heaviside functions in a manner that enables direct control

over the minimum length scale of designed features. This is meant to mimic the

AM manufacturing process as material is computationally ‘deposited’ into the design

domain in a circular shape with radius rmin, the resolution length scale of the liquid

droplets (Guest, 2009b; Guest et al., 2011). Note, however, that the length scale rmin

used in the examples is chosen much larger than the smallest achievable droplet so as

to design simple structures that may better elucidate the benefits of using multiple

materials.

While most work has focused on controlling length scale on solid-void structures,

controlling length scale on each material phase in three-phase (or more) topology

optimization remains a challenge. Using Eq. (2.1), the designer has control over

features sizes but does not have rigorous control on the length scale of the individual

material phases within the feature. While rapid phase variation within the member is

not possible, prescribed length scale may become violated when φ2 variables located
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outside of the member take on non-zero values, allowing thin bands of material to

form on the member edges.

As stated previously, the Method of Moving Asymptotes (MMA) is used as the

optimizer (Svanberg, 1987), and full algorithmic details of coupling HPM and MMA

are available in (Guest et al., 2011). It should also be noted that controlling minimum

length scale circumvents the aforementioned numerical instabilities of solution mesh

dependence and checkerboard patterns.

2.3.3 Optimization Approach 2: Combinatorial SIMP

Method

In this section, we develop an alternative material interpolation scheme to that of

Bendsøe. The difference in material distribution control will be apparent in solutions

presented in Sections 2.5.1 and 2.5.2.

2.3.3.1 Unique Material Model Development

As stated above, Bendsøe developed a topology optimization material model in

which the optimizer chooses both the final topology and the distribution of material

phases. It is desired to develop a slightly different material model in order to obtain

more control over the material distribution within the final topology. As such, a

model was developed by first solving a different problem: obtaining discrete bar sizes
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for truss optimization problems. Traditionally, gradient based truss optimization

yields solutions with truss members of any number of sizes. However, it is highly

desirable to have the final solution pick from only a ‘database’ of prefabricated sizes,

since, when constructing a truss structure, custom size truss member sizes have a cost

premium. This problem is fully explained in the appendix (A). The development is

quite extensive but the details are necessary to establish a proper background to the

proposed multi-material model.

In integer programming, the discrete truss problem has been fully investigated

and explained.This new method which utilizes the advantages of continuous design

variables, but forces the solutions to preselected discrete values, may be adapted

for other problems in which the engineer may need to choose between a number of

candidate materials. As will be seen in a later section (Sec. 2.3.3, instead of having

a combination of ∆A at each point in space, the algorithm is reformulated to have a

∆E at each point in space. This is more appropriate for the multi-material additive

manufacturing method in which different modulus materials may be deposited in the

design domain.

2.3.3.2 Material Model Adaptation to Polyjet

Based on the integer programming discrete truss optimization covered in A, a new

approach proposed here involves a combination of design variables in a SIMP scheme

to produce multi-material topologies. The idea is that each phase contributes to a
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total Young’s modulus for an element. The base modulus is the modulus of the most

compliant phase (typically void), and each phase i has the capability of adding a

discrete magnitude ∆Ei of stiffness. For the case of equal increments ∆E in Young’s

modulus between the phases, this may be written as follows:

E =
n∑
i=1

ρ(φ)ηii ∆E (2.2)

where n is the number of dependent design variables ρ per element. To achieve a three

phase solution containing voids (E = 0), stiff material (E = Estiff), and complaint

phase (e.g., E = 0.5Estiff), two elemental design variables per element are required

and ∆E = 0.5Estiff. An element is then assigned the stiff phase when ρ1 = ρ2 = 1,

compliant phase when ρ1 or ρ2 are equal to 1, and void when ρ1 = ρ2 = 0. Parameter

ηi is the SIMP exponent on design variable i and is needed to drive the design variables

to 0 or 1, and ultimately the modulus of an element, to the allowable magnitudes. It

is generally good practice to make the ηi slightly offset to prevent sensitivities from

being equal during the first iteration.

Again we embed HPM in this formulation, making φi the independent optimiza-

tion variables that are projected onto finite element space. An interesting advan-

tage here is that each design variable simultaneously indicates material existence and

phase selection. This ultimately provides slightly different length scale control over

the phases in the design. Specifically, if stiff phase appears near a member edge,

it can be shown that it will achieve a minimum thickness (diameter) of 2rmin. We
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have also observed this on the interior of thick members (of width larger than 2rmin),

although this cannot be mathematically guaranteed. Disadvantages are that the de-

signer does not have control over the minimum length scale of the compliant phase

within a member (as before), and at present the algorithm requires the materials to

have equal increments in stiffness (∆E). We note the latter may be quite appropriate

for the multi-material Polyjet process.

2.4 Optimization: Compliant mechanism

formulations

In the case of the inverter problem, a common benchmark in topology optimiza-

tion, the goal is to maximize negative displacement (minimize displacement) at an

output port under a given load F at an input port. This is expressed mathematically

in general as follows:

min
φ

LTd

subject to: K(φ)d = F∑
e∈Ω

ρe(φ)ve ≤ V

0 ≤ φe ≤ 1 ∀ i ∈ Ω

(2.3)

where d are the nodal displacements, the unit vector L extracts the output port
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degree-of-freedom, K is the global stiffness matrix, V is the allowable volume of

material, ve is the elemental volume, and φ is the independent design variable vector,

described below. All examples were solved using a uniform distribution of material

as the initial guess.

2.4.1 Robust Topology Optimization Formulation

When using topology optimization to design compliant mechanisms it is well-

known that solutions may contain one-node hinges, a situation where two solid ele-

ments are connected only at a corner node. One node hinges allow for lumped com-

pliance and the performance of such elements is overestimated with low-order finite

elements. Obviously, if a one-node hinge were printed, it would instantaneously fail

due to the stress concentration at a point. While projection methods enable control

of a minimum feature size, it was discussed in the original work (Guest et al., 2004)

that design variables could theoretically deposit two tangent circles, which would

manifest in a one-node hinge. A number of researchers have specifically tackled the

one-node hinge issue in the context of the compliant inverter. Sigmund (2009), for

example, simultaneously optimized an eroded and dilated version of the topology to

mimic over- and under-etching, respectively. This led to a min-max formulation, with

the idea that over-etching would lead to a disconnected structure, and thus zero per-

formance, if one-node hinges were present. While the method successfully eliminates

one-node hinges from designs, an actual ‘blue-print’ design, which is passed to the
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manufacturer, is not clearly identified. A number of other authors have tackled the

issue by using Monte Carlo simulation to represent manufacturing uncertainties in

the context of projection schemes (Jansen et al., 2013; Schevenels et al., 2011) and

level set methods (Luo et al., 2008).

This chapter adopts the same basic idea as Sigmund, employing a min-max formu-

lation that simultaneously optimizes a larger projection and smaller projection of the

same design variables. For this chapter, however, we consider a minimum length scale

rmin set by the user to represent the expected radius of the droplet, and then vary

that droplet size by directly varying the radius r used in projection. This introduces

two additional length scales, defined as:

rminlarge = rmin + ∆r

rminsmall = rmin −∆r

(2.4)

where ∆r is the variation in length scale, and is currently set equal to the height

of a standard element within the domain. However, with more knowledge of the

variability in droplet size for a particular additive manufacturing method, the ∆r

may truly represent the variability in the printing process. The resulting min-max

compliant mechanism optimization formulation then takes on the form:
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min
φ

max {LTd(rminsmall),L
Td(rminlarge)}

subject to: K(ρ(φ)(rminsmall))d(rminsmall) = F

K(ρ(φ)(rminlarge))d(rminlarge) = F∑
e∈Ω

ρ(φ)ermin
ve ≤ V

0 ≤ φi ≤ 1 ∀ i ∈ Ω

(2.5)

While the formulation in Eq. (2.5) is nearly identical to Sigmund (2009), there is a

subtle difference in achieving the geometric perturbation: Sigmund’s dilate and erode

variations actually simulate over-depositing and over-etching, which may represent

different manufacturing processes and lead to different concavities of the material

interface, while Eq. (2.5) simulates only the deposition process and the idea of an

inkjet droplet being larger and smaller than anticipated. Though subtle, we feel

the latter more accurately reflects the AM process. A continuation scheme on the

β Heaviside parameter is used to achieve a quality solution. The β for rminlarge is

started at 0 and increased by 1 each continuation step. Alternatively, the β for the

rminsmall is fixed at a magnitude of 2. The results found in this chapter performed 11

continuation steps with 60 MMA optimization iterations for each continuation step.

As our focus is on the multi-material aspect of these designs, the finer details of this

robust topology optimization formulation and algorithm tuning are not explored here.
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2.5 Compliant Mechanism Topology-Optimized

Solutions

The robust compliant mechanism topology optimization formulation (Eq. 2.5) is

tested on both the aforementioned compliant inverter design problem and the micro

gripper problem (Sec. 2.5.2).

2.5.1 Force Inverter Topology-Optimized Solutions

The compliant inverter is first solved using only two phases, solid and void, as

in traditional topology optimization. Additionally, a non-robust solution is provided

to demonstrate the one-node hinge issue (Fig. 2.4). The robust formulation is used

with a length scale variation of 0.9 units to ensure the existence of reasonable hinges

in the final topology. This, and all following examples, use a 30% total allowable

volume fraction, a 240 x 120 finite element mesh (utilizing symmetry), and begin

with a uniform distribution of material as the initial guess.

The resulting two-phase solution is shown in Fig. 2.5. The topology is near binary

(solid-void), does not exhibit any one-node hinges as those seen in Fig. 2.4, and

satisfies the length scale prescribed by the designer.

We now examine the three-phase solutions, with one material phase being void,

the second being compliant, and the third being stiff, where the stiffness ratio of stiff

to compliant material is 2:1. Figure 2.6 displays the solution using the combinatorial
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Figure 2.4: 2-phase (solid-void) inverter result found using non-robust topology
optimization approach. 240 element by 120 element mesh with rmin = 1.6 elements
widths.
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Figure 2.5: 2-phase (solid-void) inverter result found using the robust SIMP ap-
proach.

SIMP scheme. The result aligns with intuition: the algorithm places the stiff phase

in the bar-like members to enable efficient force transfer and places the compliant

phase in a hinge-like region. Note that all features have a length scale of least 2rmin,

including the hinge-feature, meaning length scale is satisfied and one-node hinges are

eliminated by using the robust formulation. Notice that the solution has compli-

ant hinges at both ends of the inclined members (near the bottom and top domain

boundaries).

The compliant inverter is also solved using the Bendsøe and Sigmund multiphase

approach with the robust formulation Eq. 2.5 to prevent one-node hinges. As can

be seen in Fig. 2.7, the phase distribution is more complex looking than that of
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Figure 2.6: 3-phase inverter result found using the robust combinatorial SIMP
approach (2:1 stiffness ratios).

the multivariate SIMP approach seen in Fig. 2.6. This is due to the fact that the

topology (ρ1) and material (ρ2) projections, are performed separately in this approach,

and are then combined to generate topology. This leads to the tapering of stiff

material in the load transfer members near the output port and, although the entire

structural member satisfies length scale of 2rmin, the individual phases do not. This

is a subtle, but important difference between the two multi-material approaches. As

in the combinatorial SIMP approach, the stiff material is concentrated in the load-

carrying members, while the compliant material is concentrated in the hinge regions.

This solution also uses a small volume of complaint material to create a tapered,

hinge-like feature near the applied load.

45



CHAPTER 2. MULTIPLE-MATERIAL TOPOLOGY OPTIMIZATION OF
COMPLIANT MECHANISMS CREATED VIA POLYJET 3D PRINTING

Figure 2.7: 3-phase inverter result found using the robust, multiphase SIMP ap-
proach.

2.5.2 Micro Gripper

To further exhibit the capabilities of this new compliant mechanism design method,

the presented algorithm is tested on the micro-gripper test problem. The design is

similar to that of the force inverter in that the domain is fixed on the bottom and top

of the lefthand side while a force is applied to the midpoint on the same side. Now,

instead of targeting a force or displacement inversion, a more typical displacement is

targeted. On the righthand side of the domain two solid sections are specified as the

interaction surface of the gripping mechanism. The maximum displacement, dout, is

targeted at the output port locations seen in the following problem definition (Eq. 2.6

and Fig. 2.8):
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Figure 2.8: Micro gripper problem definition

min
φ

max {LTdout(rminsmall),L
Tdout(rminlarge)}

subject to: K(ρ(φ)(rminsmall))dout(rminsmall) = F

K(ρ(φ)(rminlarge))dout(rminlarge) = F∑
e∈Ω

ρ(φ)ermin
ve ≤ V

0 ≤ φi ≤ 1 ∀ i ∈ Ω

(2.6)

Solutions are presented for the micro-gripper for 2-phase (Fig. 2.9) along with

two solutions for the three phase including the Combinatorial SIMP solution seen in

Fig. 2.10 and the multiphase SIMP approach seen in Fig. 2.9. All three of the micro-

gripper solutions use the robust topology optimization formulation seen in Eq. 2.5

with a 30% volume fraction.

Interestingly the two 3-phase solutions do not have the same general shape. It
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Figure 2.9: 2-phase (solid-void) inverter result found using the robust SIMP ap-
proach.

Figure 2.10: 3-phase inverter result found using the robust Combinatorial SIMP
approach.
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Figure 2.11: 3-phase inverter result found using the robust, multiphase SIMP ap-
proach.

is likely that the solutions are due to the relatively high non-linearity of the design

problem are both in fairly good local minima. However, the multiphase SIMP formu-

lation generally allows for more complex final solutions, so it may be that the altered

topologies are dictated by the material models.

2.6 Mechanical Testing

Both the 2-phase and 3-phase inverters were printed on an Objet Connex 350.

The stiff material was VeroWhite+ and the flexible material was RGD8530. Each

inverter was printed to fill a 12 x 12 cm bounding box, with a thickness of 3.175 mm.

An additional structure was added to each compliant mechanism in order to provide

a location for the necessary force to be applied, as well as to ensure a cantilevered
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Figure 2.12: 3-phase inverter result found using the robust, multiphase SIMP ap-
proach.

fixation at the appropriate point on the structure. The final printed specimens can

be seen in Fig. 2.12.

Each inverter was actuated by applying a 9.65 kg load at the “T” shaped attach-

ment at the bottom of mechanism. The output tip location was marked before and

after application of the load. The resulting mechanism motion is shown in Fig. 2.13.

The 2-phase inverter tip deflected 1.33 mm while the 3-phase inverters deflected 1.95

mm and 2.45 mm for the combinatorial SIMP and multiphase SIMP approach respec-

tively. Notably, this is a performance improvement of 84% for the multiphase SIMP

case and an improvement of 46% for the combinatorial SIMP approach. Although

we were expecting the multiphase SIMP approach to outperform the combinatorial,

as it is less restrictive on the length scale of the individual material phases within a

member, the actual magnitude of difference is more than expected, and confirms the

‘details’ of the design are important. This difference could also be amplified by the

fact that the experimental set-up did not exactly match the assumption used in the
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optimization, as there were no springs applied to the output and input ports. Look-

ing at the multiphase SIMP (Fig. 2.7) and combinatorial SIMP ( Fig. 2.6) solutions,

we see a thin compliant, border around all stiff regions. This border is likely not

optimal, but instead an artifact of using small values for the β Heaviside parameter

associated with the projection scheme. This fading effect can be mitigated by simply

using larger values of β (see (Guest et al., 2011) for full discussion), though this was

not done here.

To demonstrate the ultimate potential of the PolyJet process’s array of materials,

an additional optimization was performed using a stiffness ratio of 20:1 between the

two non-void candidate materials. This ratio is intended to more closely resemble

the stiffness difference between the stiff VeroWhite+ material and TangoBlack+, the

most elastomeric material offered by the Objet process. The optimized topology is

shown in Fig. 2.14 using the robust, multiphase SIMP approach.

The TangoBlack+ and VeroWhite+ inverter achieved a deflection of 11.58 mm

with only 2.75 kg of applied load, as shown in Fig. 2.15. This is almost nine times

larger in displacement and more than three times less in load, or an improvement in

efficiency of over 30. It is important to note that modulus of elasticity information

for TangoBlack+ has yet to be published by the manufacturer or by independent

researchers, and so the performance of the printed specimen has the potential to differ

significantly from the performance predicted by the optimization algorithm (since the

stiffness ratio is purely an estimation). However, it nevertheless demonstrates the
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a

b

c

Figure 2.13: Deflection of a) 2-phase inverter (Fig. 2.5), b) 3-phase combinatorial
SIMP inverter (Fig. 2.6), and (c) 3-phase multiphase SIMP inverter (Fig. 2.7) (all
under 9.65 kg applied load)
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Figure 2.14: 3-phase inverter topology found using the robust, multiphase SIMP
approach (20:1 stiffness ratio).

dramatic displacement improvements that might be achieved when using the most

elastomeric material for the PolyJet process.

It is also interesting to note the double curvature present in the deformation seen

in Fig. 2.15. This is forced through the robust topology optimization method. In

the process of eliminating the one-node hinge design normally found for compliant

inverter domains, the algorithm produces a structure with distributed compliance.

While the lumped compliance present in the solution of a non-robust formulation will

have better theoretical performance than the distributed compliance of the robust

solution, the actual lumped compliance inverter would fail instantly due to the stress

concentration at the one node hinge. Furthermore, achieving distributed compliance
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Figure 2.15: Deflection of 3-phase inverter with TangoBlack+ material (under 2.75
kg of applied load).

is fundamental to the original assumption of compliant mechanisms - compliance

through material deformation of the structure.

2.7 Conclusions and Recommendations for

Future Work

In this chapter, the authors have presented a preliminary study into the develop-

ment of a start-to-finish process for the design and manufacture of optimized, multi-

material compliant mechanisms. The previous literature was reviewed in order to

determine an appropriate compliant mechanism design and optimization approach,

taking care to consider the unique opportunities afforded by multi-material PolyJet
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printing. A robust topology optimization algorithm, modified from Sigmund (2009),

was used in combination with a combinatorial SIMP approach and multiphase SIMP

approach to design manufacturable, multi-material topologies. Experimental results

of the compliant force inverter problem show that the addition of a second non-zero

candidate material with stiffness of approximately one-half the base phase increases

the deflection (and efficiency) of the compliant inverter by as much as 84%, and by

nearly a factor of 30 when the second non-zero phase is TangoBlack+.

From a manufacturing point of view, future work will first focus on independently

quantifying the material properties of all the PolyJet materials (with a focus on

TangoBlack+) in order to provide a more accurate comparison between the numerical

and experimental results. Second, additional candidate materials will be introduced

into the optimization routine to create optimized inverters with more material phases.

The effect of smoothing the boundaries of each material phase, so as to remove any

undesirable stress concentrations that may be present because of the pixelated nature

of the final printed specimen, will also be examined. Finally, efforts will be placed

on quantifying the printing limitations of the PolyJet process, so that manufacturing

limitations might be included in the topology optimization algorithm.

From a topology optimization point of view, it is desired to extend the combinato-

rial SIMP approach such that the formulation works for non-uniform ∆E. Also, work

must be done to develop better continuation methods such that fewer continuation

steps are necessary - currently the algorithm must take many such steps, which results
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in high computational cost. Additionally, a more physically based method should be

developed for the over and under deposition of material. This should be based on the

actual statistics of the manufacturing process. However, it should be noted that the

current robust topology optimization scheme works extremely well.
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Chapter 3

Topology Optimization for

Additive Manufacturing:

Considering Maximum Overhang

Constraints

3.1 Introduction

Additive manufacturing, while seemingly a free-form manufacturing technique,

does have a few design limitations. These include the exclusion of internal voids

and the need for sacrificial support material in many situations. With respect to the

internal voids: they cannot be manufactured since the support material in the voids
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must be dissolved away in the case of Fused Deposition Modeling (FDM) (FDM, 2014)

and the powder must be able to be removed in the case of Selective Laser Melting

(SLM). When enclosed in a void, the material simply cannot be removed. This chapter

will focus on designing AM components to eliminate the need for support material.

Both polymer based processes such as FDM and powder metal based processes such

as SLM require support material in order to manufacture certain parts. In the case

of FDM, there is often a soluble support material which can easily be removed in

a post-print liquid bath. As for metal support material, the process is a bit more

complicated, as the support metal must be chipped or ground off the part after the

printing process. Often if this material is in an internal location of the part, it may be

difficult, if not impossible to remove, therefore not allowing for the expected further

weight reduction from removal of sacrificial material.

3.1.1 Selective Laser Melting (SLM)

Metal support material is essential for many reasons identified by Hussein et al.

(2013). These include ease of part removal, anchorage to platform during build pro-

cess, preventing the toppling of thin-walled sections during the powder wiper process,

and preventing the curling and distortion from melting and solidifying process. Van-

denbroucke and Kruth (2007) goes into depth on the curling and distortion topic.

Mercelis and Kruth (2006) details the consequences of residual stresses due to the

heating and cooling phenomenon, particularly pointing to issues of warpage and cracks
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.

Figure 3.1: Selective Laser Melting Schematic.

Taking into consideration the warpage, toppling, cracking and other such issues,

several researchers have identified the maximum printable overhang angle at which a

part may be printed without requiring sacrificial support material. Notably, Thomas

identified 45◦ as the typical maximum achievable overhang angle (Thomas, 2009) for

SLM methods. Xu et al. (2012) identified the issue in bioprinting applications, where

going past the max angle resulted in failure due to moment imbalance and droplet

impact-induced crash, and proposed a scaffold free printing process which limited the

overhang angle. Recently, Brackett et al. (2011a) identified the overhang problem and

suggested using topology optimization with a heuristic penalization scheme imposed

to make angles greater than the maximum allowable very expensive (Brackett et al.,

2011a). It should be noted that the proposed algorithm was not implemented, so the

success is untested. Alternatively, Hussein et al. proposed using low volume lattices

as support material in order to reduce the volume of material used in the print process
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(Hussein et al., 2013). Others have also suggested strategies to minimize and eliminate

support material (Cloots et al., 2013; Mumtaz et al., 2011).

3.1.2 Geometry control in topology optimization

The objective is to develop a topology optimization algorithm that yields solu-

tions which do not violate the maximum overhang angle constraint. Obviously, when

the maximum overhang angle constraint is imposed, the compliance values will be

as good or worse than those of typical minimum compliance topology optimization

(almost always worse). As far as can be seen, no authors have successfully tackled

this problem. As stated above, Brackett suggested a penalty function method, but

never produced results with the proposed scheme. There has, however, been work

in the area of geometry control. To date, geometry control in topology optimization

is primarily limited to minimum feature size (minimum lengthscale), however there

have been several attempts at maximum length scale (Carstensen and Guest, 2014;

Guest, 2009a). Additionally, Guest and Zhu optimized for topologies manufacturable

by a milling process (Guest and Zhu, 2012). Others have looked at discrete object

placement in topologies (Guest, 2011; Ha and Guest, 2014). Gaynor et. al optimized

considering the capabilities of a multi-material 3D printer to produce multi-material

compliant mechanisms (Gaynor et al., 2014).
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3.2 Optimization Formulation

As previously stated, within the realm of topology optimization, the minimum

compliance (maximum stiffness) optimization problem is the most common. The

component stiffness is a function of the material distribution within a design domain.

Each design domain is discritized into a number of finite elements and each element

density, ρ, is chosen to be either a void (ρ = 0) or solid material (ρ = 1). To allow the

use of gradient based optimizers, the binary 0/1 density is relaxed to allow intermedi-

ate densities to vary from 0 to 1. While the ρ are allowed to continuously vary between

0 and 1, the end goal is still to drive to a binary 0/1 solution. This is usually achieved

though the SIMP penalization (Bendsøe, 1989; Rozvany et al., 1992). In this scheme

the problem remains continuous, however intermediate densities are penalized with

an exponent therefore deeming them as artificially inefficient and driving towards a

0/1 solution. This chapter uses an alternate to the SIMP penalization: the RAMP

interpolation scheme (Stolpe and Svanberg, 2001). Switching to RAMP is seen to

improve convergence as it has non-zero sensitivities when design variables equal zero.

The minimum compliance (maximum stiffness) optimization formulation takes on

the following form, seen in Eq. (3.1).
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min
ψ

f(ψ) = F Td

subject to: K(ψ)d = F∑
e∈1

ρ(ψ)eve ≤ V

0 ≤ ψe ≤ ψemax = 1 ∀ e ∈ Ω

(3.1)

where ψ is the vector of nodal design variables, ve is the elemental volume, V is the

total allowable volume, and Ω is the design domain.

Here, there is only one explicit constraint, the volume constraint. The minimum

length scale and overhang constraint are imposed through projection routines. Essen-

tially, the variables are passed through a continuous projection function that imposes

a constraint through its non-linearity. By imposing the constraints through a projec-

tion instead of an explicit constraint, the solution to the defined optimization problem

automatically satisfies the desired constraints. Alternatively, the overhang constraint

could be imposed as a penalty function. As mentioned before, this was proposed

by(Brackett et al., 2011a), in which he proposed a heuristic penalization scheme on

overhangs which violate the maximum allowable angle. Yet another potential way –

and likely better way – to impose the overhang constraint is through modeling the

actual printing process and subsequently limiting the curling or deformation. While it

is desirable to do this, the authors are still formulating potential optimization schemes

to incorporate the physical phenomena of the printing process into the optimization

formulation.

62



CHAPTER 3. TOPOLOGY OPTIMIZATION FOR ADDITIVE
MANUFACTURING: CONSIDERING MAXIMUM OVERHANG CONSTRAINTS

3.2.1 Maximum Overhang Control

As stated above, the engineer would like to eliminate the need for sacrificial sup-

port material during the additive manufacturing build process. By stipulating that

the built part must not possess an overhang angle greater than the maximum observed

achievable overhang, the need for support material is completely eliminated, thus en-

suring that all material used is for an efficient structural purpose. By producing these

new solutions, post processing costs can be cut significantly by eliminating the need

to machine out the support material post build - in the case of SLM, support material

may not be accessible for a post build removal process, therefore adding unnecessary

weight to the structure. According to work done by Thomas (2009), the usual max-

imum achievable overhang for SLM printed parts is approximately 45 degrees. It is

therefore the focus of this chapter to develop an algorithm to design AM parts to have

a maximum overhang of 45 degrees. However, while 45◦ may be the “rule of thumb,”

the following framework is general enough to optimize for a number of angles. Fig-

ure 3.2 illustrates different allowable overhang angles, including allowable overhang

angles of 26◦, 45◦, and 63◦ in Fig. 3.2a, Fig. 3.2b, and Fig. 3.2b, respectively. The

blue region indicates a feature already printed, while the green region indicates the

maximum printable overhang angle without requiring sacrificial support material in

the build process.

As in the case of imposing the minimum lengthscale constraint, the maximum

overhang constraint is imposed through a projection of design variables to another
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a 26 degrees

b 45 degrees

c 63 degrees

Figure 3.2: Overhang constraints: Allowable overhang angles from elemental (phys-
ical) perspective. The blue region is imagined to be built already while the green re-
gion indicates the maximum angle at which features may be created without requiring
support material.
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set of variables. Therefore, instead of the usual φ→ ρ, we now have a ψ → φ→ ρ,

where the maximum overhang constraint is imposed in the projection of ψ to φ and

the minimum length scale is imposed, as usual, in the projection of φ to the physical

space, ρ.

In the usual minimum compliance with HPM for lengthscale control, the design

variables are φ. It is important to note that the design variables are now ψ, and not

the usual φ. The design variables, ψ, first have to be projected to φ before the φ can

be projected to form the physical space ρ. At each point, the φ must check whether

its existence is “allowed.” If the φ is adequately supported, it is allowed to exist.

Conversely, if it is not adequately supported, it is not allowed to exist. This strict

rule is achieved through a multiplication scheme in which the local design variable, ψ

is multiplied by an average of the below supporting φ passed through a thresholding

Heaviside filter to obtain φS. This is seen in Eq. (3.2). In this scheme, the ψ turn

into φ in a looping scheme starting from the first row on the build place and moving

up row by row.

φi = ψiφiS (3.2)

The following table (Table 3.2.1) helps clarify how this rule works for all of the

possible combinations of ψ and φS. As can be seen, φ will only exist when it is

supported (φS = 1) and the local design variable (ψ) indicates the desire to project

material at this location in the design domain (ψ = 1). In this case φ = ψφS = 1∗1 =
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1. All other cases will result in no projected material.

ψ φS φ

0 0 0

0 1 0

1 0 0

1 1 1

To determine the φS for each ψ, the algorithm scans below each ψ location at an

angle of ± the maximum achievable overhang. This is seen in Figs. 3.3. Here, there

are three different overhang angles. It is noted that there are discrete jumps in the

allowable overhang angle due to the discrete location of and number of nodes within

the wedges. However, with an adequate number of φ within the within the 1.5rmin

wedge, a great number of maximum overhang angles can be achieved. It should also

be noted that the 1.5rmin is used as a general rule of thumb, however any value less

than 2rmin will work in this framework.

To determine whether φS = 1 (indicating it is fully supporting the above ψ), the

minimally fully supported condition must be defined. This occurs when the φ along

one of the two straight edges of the wedge all equal 1. When these φ = 1, they will

project material to create a feature exhibiting the maximum allowable angle. For

example, for the 45◦ case in Fig. 3.3b, the maximum overhang case would be for

material projected along either of the two angles sides. A side has four φ while the

entire “wedge” has 38 φ. Therefore, in order for the green ψ to be supported, the
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average of the below φ must be at least 4
38

= 0.105. This simple calculation is shown

in Equation 3.3. We will call this the threshold support value, T.

T = φedge/φwedge (3.3)

To enforce that a certain fraction indicates full support, the average of the φ in the

wedge are passed through a thresholding Heaviside function such that any fraction

above the calculated threshold will be projected to around one, indicating full support,

and any fraction below will be projected to around zero, indicating an unsupported

case. The thresholding Heaviside function, borrowed from Jansen’s robust topology

optimization paper (Jansen et al., 2013), serves as a way of mapping the average of

the supporting φ to a variable φS. The averaging operator is designated as µav and

is simply the arithmetic mean of the supporting φ. This average is mapped to φS

through Eq. (3.4):

φS = HT (φin support wedge) =
tanh (β2T ) + tanh (β2(µav(φin support wedge)− T ))

tanh (β2T ) + tanh (β2(1− T ))
(3.4)

where β2 is the Heaviside exponent and T is the threshold value. As β2 approaches

infinity, the smooth Heaviside approximation approaches the true discontinuous Heav-

iside function. It is clearly seen in the plot when φS will be a “supporting” or “un-

supporting” case. When the average of supporting φ is below the threshold, then
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a 26 degrees

b 45 degrees

c 63 degrees

Figure 3.3: Overhang constraint: scanning range below φ for various overhang
angles
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φS ≈ 0. Conversely, when the average of supporting φ is above the threshold, then

φS ≈ 1, allowing the φ above to equal 1. The thresholding Heaviside function is seen

in Fig. 3.4.
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Figure 3.4: Thresholding Heaviside with threshold, T = 0.15.

3.2.2 Derivatives and Implementation

While the optimization formulation is now more complicated looking than the

typical minimum compliance with HPM for lengthscale control, it still possesses a

differentiable objective and constraint function. This problem is implemented us-

ing the gradient based Method of Moving Asymptotes (MMA) optimizer (Svanberg,

1987). Many other gradient based optimization methods may work fine, however

MMA is the established industry standard.
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3.2.2.1 Derivatives

As in the case of minimum compliance topology optimization with only the Heav-

iside projection method, the derivatives are straightforward. The usual derivatives

when using HPM are seen in Eq. (3.5), where the derivative are a simple differentia-

tion of the objective function, f with respect to φ.

∂f

∂φ
=
∂f

∂ρ

∂ρ

∂φ

=
∂f

∂ρ

(
βe−βµ

e(φ) + e−β
) ∂µe(φ)

∂φ

(3.5)

With the addition of the maximum overhang constraint, the derivatives require

just one additional term, ∂φ
∂ψ

. This is due to the double layer of projections. The

derivatives take on the form seen in Eq. (3.6)

∂f

∂ψ
=
∂f

∂ρ

∂ρ

∂φ

∂φ

∂ψ

=
∂f

∂ρ

∂ρ

∂φ
(
∂ψ

∂ψ
φS + ψ

∂φS
∂ψ

)

=
∂f

∂ρ

∂ρ

∂φ
(φS + ψ

∂φS
∂ψ

)

(3.6)

While the derivatives may look complicated, implementation is relatively simple

and all constraints will be efficiently imposed through projection methods such that

any solution will naturally satisfy the desired design constraints (no need for penalty

methods).
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3.2.2.2 Implementation

With the addition of the extra Heaviside function and the strict φi = ψiφiS rule, the

optimization problem becomes highly nonlinear. Adding to this nonlinearity, it is seen

through implementation that β = 35 and β2 = 20 are required to accurately impose

the overhang constraint. To help account for this extreme nonlinearity and to stabilize

the optimization convergence a continuation scheme is implemented. The continua-

tion is applied to the RAMP exponent, η. As η increases, the intermediate volume

fraction material becomes less and less efficient, helping the algorithm converge to

a 0-1 solution. As with many topology optimization algorithms, the continuation

schemes are necessary to help guide the optimization closer to the global minimum.

If the RAMP penalty parameter is set too high from the onset, the optimization

problem would be highly nonlinear and extremely susceptible to local minima.

3.3 Solutions

The algorithm is tested on two typical topology optimization problems, the simply

supported beam seen in Fig. 3.5 and the cantilever beam seen in Fig. 3.6 where the

grey region indicates the design domain. All problems are run for a volume constraint

of 60◦, a minimum radius of 2.4 on a mesh size of 160x80. The solutions for the simply

supported beam case are run using this 160x80 mesh but take advantage of symmetry

to obtain 320x80 solutions.
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Figure 3.5: Simply supported beam definition.
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Figure 3.6: Cantilever beam definition.

First, solutions for the usual minimum compliance subject to only the minimum

lengthscale control are presented (Fig. 3.7 and Fig. 3.8). These solutions are widely

known and are shown for comparison purposes. Red indicates solid while blue indi-

cates void.

If it is imagined that the structures must be build from the bottom up, then

these conventional solutions violate the 45◦ maximum allowable overhang and would

require support structures during the build process. This violation is highlighted in

Fig. 3.7b and Fig. 3.8b, where the green lines indicate an overhang angle of less than

45◦ while the yellow lines indicate a violation of the overhang constraint, with an

overhang angle of greater than 45◦.

Now, the same MBB beam and cantilever beam problems are optimized using the

maximum overhang optimization formulation. This algorithm will not allow material
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a Simply supported beam solution: no maximum angle constraint.

b Green indicates allowable overhang while yellow indicates a violation
of the overhang rule.

Figure 3.7: Minimum compliance solution to MBB beam problem with no overhang
constraint.

to exist unless it is adequately supported at an angle of 45◦ or less from vertical. The

first test case will be for a part built from bottom up as seen in the following image,

where the build plate designates the location of the first layer of material and the

arrow indicates the direction of the build.

As can be seen in the solution for the MBB beam subject to the overhang con-

straint (Fig. 3.10b), every part of the topology is supported by material at an angle

of ±45◦. There are no yellow lines in Fig 3.10b, indicating a great agreement with

the imposed constraint.

The cantilever problem was also solved subject to the 45◦ maximum overhang

constraint. Again, the part will be built from bottom up, as indicated in Fig. 3.11.

As can be seen in Fig 3.12b, all of the overhangs in the solution adhere to the

imposed overhang constraint. There was, however a small issue with the solution
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a Cantilever beam solution: no maximum angle
constraint.

b Green indicates allowable overhang while yellow
indicates a violation of the overhang rule.

Figure 3.8: Minimum compliance solution to cantilever beam problem with no
overhang constraint.

convergence as there are a number of intermediate volume fraction regions. These

can likely be fixed through further iteration or by imposing a higher η penalty in the

RAMP material penalization method. To help solve this issue, a smarter continuation

scheme should be developed. It is necessary to increase the β2 parameter as much as

possible without simultaneously making the optimization problem too nonlinear to

solve for a feasible solution.

Also of concern is the choosing of the threshold parameter, T . As stated before, the

value must be adjusted such that when there are an adequate number of supporting

φ, the algorithm will allow the φS to be one. The algorithm is fairly sensitive to this

74



CHAPTER 3. TOPOLOGY OPTIMIZATION FOR ADDITIVE
MANUFACTURING: CONSIDERING MAXIMUM OVERHANG CONSTRAINTS

L

L

2

H =
L

4

F

Build Plate

B
u

il
d

 D
ir

e
c

ti
o

n

Figure 3.9: Upward build direction

a Simply supported beam solution: 45 deg maximum angle constraint.

b Green indicates allowable overhang while yellow indicates a violation
of the overhang rule.

Figure 3.10: Minimum compliance solution to MBB beam problem with 45 deg
overhang constraint.

value T , as changing the value by too much can impose an inaccurate angle constraint.

3.3.1 Solutions Built From Different Direction

When producing a part, the engineer must choose the best orientation to obtain

the best performing part. It will be seen what the optimal geometry of the part varied

significantly when the part is built in a different orientation. As shown in Fig. 3.13,
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Figure 3.11: Upward build direction

a Cantilever beam solution: 45 deg. maximum an-
gle constraint.

b Green indicates allowable overhang while yellow
indicates a violation of the overhang rule.

Figure 3.12: Minimum compliance solution to cantilever beam problem with 45 deg
overhang constraint.

the simply support beam will now be built in a downward fashion.

The solution adheres to the overhang constraint very well. It can be seen that the

‘holes’ are inserted into the domain with 45◦ overhangs when viewing the part from
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Figure 3.13: Downward build direction

an upside-down point of view. Likewise, the nearly horizontal overhangs present in

the minimum compliance with no overhang constraint (Fig. 3.7) are now allowed, as

the part is built from the opposite direction as the part in Fig. 3.10.

a MBB beam build down.

b Green indicates allowable overhang while yellow indicates a violation
of the overhang rule.

Figure 3.14: Minimum compliance solution to MBB beam problem with 45 deg
overhang constraint for downward build.

Of particular interest in this solution, Fig. 3.14, is the small truss-like structure

on the top right and left of the domain. The algorithm determines how to build this

small truss structure to create a much larger feature in the typical stress trajectory
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location. Hence, the algorithm is trying to match the traditional minimum compliance

with no overhang constraint solution as close as possible while still following the new

overhang rule.

3.3.2 Solutions for various allowable overhang an-

gles

To further exhibit the flexibility of this algorithm, it is now tested on angles

greater than and less than 45◦. Certain printing methods, especially FDM and pho-

topolymer type techniques will not be able to achieve as large of an overhang angle

without requiring support material. Of course it depends on each particular printer.

For example, the Stratasys UPrint cannot achieve much overhang at all while the

Stratasys Fortus 400MC is seen to be able to achieve an overhang angle of the typical

45◦ without requiring support material (For, 2015; UPr, 2015).

First, the simply supported beam problem will be solved for a maximum allowable

overhang angle of 26◦. As is expected and see in the solution in Fig. 3.15, this alters

the final solution drastically.

Figure 3.15: Upward built simply supported beam for 26 degree overhang.
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Next, the algorithm is tested on overhang angles greater than the typical 45◦.

There are not many printers or printing technologies capable of this overhang angle,

however it is prudent to test the algorithm on a number of angles to verify its robust-

ness. Unfortunately, the solution for the simply supported beam with an allowable

overhang angle of 63◦ does not fully follow the overhang rule and contains regions

of fading material where the optimization algorithm has determined a solution that

technically satisfies the projection-imposed constraint. While not a desirable solution,

it highlights the need for fairly significant parameter tuning to impose the constraint

accurately. It is likely that a better solution can be produced by increasing β from

35 to around 50+. This change, as always, comes with an increased nonlinearity in

the optimization problem.

Figure 3.16: Upward built simply supported beam for 63 degree overhang.

Finally, the algorithm is tested with combination of a non-standard angle com-

bined with a different build direction. To exemplify this, the algorithm is tested on

the simply supported beam problem with an allowable overhang angle of 26◦ built

from bottom down.

As seen in Fig. 3.17, the solution follows the overhang rule very well, although

there are some regions of intermediate volume fraction material. This material can
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Figure 3.17: Downward built simply supported beam for 26 degree overhang.

likely be eliminated with a few more iterations of the optimization algorithm and are

not of deep concern.

The solution is extremely interesting, as the topology is so altered by the imposi-

tion of the overhang angle constraint that material does not exist on the bottom of

the domain, as is typical for the simply supported beam problem. However, the force

flow does appear to follow the main stress trajectories.

3.4 Other details

3.4.1 Initial distribution of material, ρ

The initial guess for all problems solved in this chapter is an even distribution of ψ.

Due to the thresholding Heaviside function, this did not yield an even distribution of

material, ρ, as the initial guess. While this is non-standard for topology optimization

problem, we believe it to be acceptable and suitable for this problem. With the

initial guess, the material is biased towards the location the build plate. The initial

distribution is essentially accounting for the fact that material must “grow” from the
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build plate out to for any feature at the opposite side of the domain to exist.

Figure 3.18: Initial Distribution of Material for 60% Volume Fraction

3.4.2 MMA parameter manipulation for conver-

gence improvement

To help convergence, the move limits of the MMA optimizer were manipulated

such that they were scaled by the magnitude of ∂ρ
∂φ

. The asymptote increase parameter

was inversely scaled with ∂ρ
∂φ

. Likewise when there was fluctuation of a design variable,

the asymptote decrease parameter was scaled such that higher values of ∂ρ
∂φ

resulted

in greater tightening of the asymptotes.
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3.5 Conclusion

This chapter proposes using topology optimization for the design of additively

manufactured components which contain overhangs only up to the maximum achiev-

able overhang. By limiting the overhangs to achievable angles, sacrificial support

material is eliminated from the design process, saving time and money. The proposed

method borrows ideas from previous projection methods by adding the constraint

through use of an additional projection. In this way, the overhang constraint is im-

posed without adding an explicit constraint to the optimization problem.

Examples cases are shown for both the MBB beam problem and the cantilever

beam problem. Traditional topology optimization solutions to these problems possess

many violations of the overhang constraint. When the overhang constraint is imposed,

the solutions are seen to possessed little or no violations, verifying that the constraint

was properly imposed through the aforementioned projection scheme. To further

verify the algorithm’s robustness, it is applied to variations on the design problem

including differing the build direction and the overhang angle. These solutions are

drastically different from both the typical minimum compliance with no overhang

solutions and the solutions for the 45◦ overhang with a bottom-up build direction.

One pitfall of the proposed algorithm is the extreme nonlinearity. As the overhang

constraint may alter the optimal topology fairly drastically, it is not surprising that

the optimization problem must be highly nonlinear. While more difficult to solve,

when care is taken to adopt smart continuation schemes, the optimizer can drive
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towards converged solutions. Another issue is the great increase in computational

effort required to produce this solutions. Despite being coded in an efficient manner,

the calculation of sensitivities proved to be extremely expensive – much more so than

the solving of the finite element problem. Potential computational time savings may

be possible by coding the algorithm in a more powerful language such as Fortran –

MATLAB proved to be sluggish.

In the future, it would be great to have the ability for the optimizer to not only

produce manufacturable solutions adhering to the overhang constraint, but have the

optimizer chose the build direction. As seen in the solutions, the build direction

has a drastic impact on the final optimal topology for particular design problems.

Another direction which may be explored in the future is the use of more physics based

methodologies to impose the constraint. Obviously it is seen that 45◦ is the typical

achievable overhang angle, but this is through experience. If an algorithm could be

developed which incorporates the material properties and the printing process into

the optimization, the algorithm would be able to determine the actual achievable

overhang angle based on such things as curling and cracking of the part during the

build process. Currently, none of these phenomenons are incorporated into the model.

Still, the algorithms prove promising, with excellent solutions produced despite

some issues identifying the best continuation method. Future tuning of topology opti-

mization parameters and MMA parameters is bound to produce even better solutions.
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Chapter 4

Hybrid Truss-Continuum Meshes

and Bilinear material models

4.1 Introduction

In development, but not yet mainstream, are additive manufacturing methods

that may print both a material but also place discrete prefabricated objects during

the build process to produce unique composite parts. These new parts may have an

stiffener, or actuator placed to improve performance or give the ability of actuated

motion in printed parts. In this section, an algorithm is developed to design for

composite material which contain discrete objects within a material matrix. The

material is assumed to be stress dependent, where it may possess properties such

that it has a much greater elastic modulus in compression than in tension. Likewise,
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the discrete objects may also have stress-dependent material properties.

4.1.1 Discrete Object Placement Additive Manu-

facturing Processes

The DREAMS Lab (Design, Research, and Education for Additive Manufacturing

Systems Lab) at Virginia Tech is developing techniques for embedding discrete objects

within the printing process (Meisel et al., 2014). By not only printing solid parts,

but integrating prefabbed components, the printed part becomes more complex but

potentially offers capabilities not possible with purely printed features. When consid-

ering such a system, it will be desirable to optimize both the location of these discrete

actuation objects and the overall topology of the printed part (Meisel et al., 2014).

A schematic of the placement of a discrete object within the printing process is seen

in Fig. 4.1.

As a first step towards this complex design problem, a hybrid truss-continuum

approach is developed. As will be seen types. As the 3D printing process is still

in development at DREAMS, we turn instead to reinforced concrete design in civil

engineering structures. Reinforced concrete design shares similar aspects to the em-

bedded object idea in that the concrete phase is monolithic and the steel rebar is a

discrete object, typically coming in straight sections, that is embedded in the con-

crete phase. Potential extension of the proposed approach to embedded objects in
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Figure 4.1: Embedding process for a general shape (triangle shown here) (Meisel
et al., 2014)

additive manufacturing would be straightforward, as will be discussed. Additionally,

the proposed topology optimization approach herein is capable of handling stress-

dependent, anisotropic constitutive relations. Although targeted towards the stress-

dependent behavior of concrete, the algorithm may likewise be useful for addressing

the anisotropies exhibited by 3D printed materials, where the orientation of the prop-

erties are dictated by the build direction of the part (Riddick et al., 2012).
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4.1.2 Introduction and Background to Strut and

Tie Concrete Design

We begin with a brief review of reinforced concrete design by strut-and-tie mod-

eling, before developing the hybrid topology optimization algorithm and results. Re-

inforced concrete is a complex composite material that continues to challenge those

researchers attempting to describe its behavior with mechanics-based models. In the

late 1800s, Wilhem Ritter and Emil Mörsch developed a rational engineering ap-

proach to circumvent these analysis complexities. The idea was to assume a cracked

reinforced concrete beam behaves like a truss. This truss analogy, known today as

a strut-and-tie model, provides a convenient visualization of force flow and identifies

required reinforcing steel locations that can be used to design and detail a concrete

member.

A drawback of early concrete truss models was the arbitrary nature with which

they could be formulated, and the lack of scientific theory to support the practically-

minded idea developed by Ritter and Mörsch. The scientific support for cracked

reinforced concrete truss models came several decades later with research by Marti,

who established a technical foundation for the truss model concept by relating truss

behavior to a lower bound plasticity theory (Marti, 1980). Marti and others concluded

that an optimum concrete truss model could be achieved by locating the compressive

struts and tension ties coincident with the elastic stress trajectories in a member,

87



CHAPTER 4. HYBRID TRUSS-CONTINUUM MESHES AND BILINEAR
MATERIAL MODELS

and that higher ductility and improved structural performance at an ultimate limit

state could be achieved with a stiffer truss. The engineering judgment required to

obtain an accurate truss model was viewed as a drawback of the design approach,

and Marti recommended future research on computational tools that could automate

the identification of viable strut-and-tie geometries.

The momentum from Marti’s work, in combination with experimental and ana-

lytical work by Collins and Mitchell on truss models for shear and torsion (Collins

and Mitchell, 1980), led to a groundbreaking set of design guidelines for truss models

proposed by Jörg Schlaich and his colleagues at the University of Stuttgart (Schlaich

et al., 1987). Schlaich states that the stiffest truss model is the one that will produce

the safest load-deformation response because limiting truss deflection prevents large

plastic deformations in the concrete. Maximizing stiffness correlates mathematically

to minimizing reinforcing steel’s elastic strain energy. However, Schlaich admits that

selecting the optimum truss model may be difficult with the energy criterion, requiring

“engineering intuition” that has contributed to past structural failures.

Reinforced concrete design guidelines employing strut-and-tie models were intro-

duced into the Canadian Concrete Design Code in 1984 (CSA, 1984), followed by Eu-

ropean practice (Eur, 1993), the American Association of State Highway and Trans-

portation Officials (AASHTO) Load and Resistance Factor Design (LRFD) bridge

code (Ame, 1994), and finally the American Concrete Institute (ACI) building code

(ACI, 2002). The method’s widespread use is currently stymied though by a lack of
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mechanics-based tools for identifying the force flow and visualizing the truss shape

needed in design.

It is the goal of the research described in this manuscript to create a new auto-

mated tool for visualizing the flow of forces in reinforced concrete and prestressed

concrete structural members. The approach couples truss and continuum topology

optimization methodologies to create a hybrid routine that leads to strut-and-tie so-

lutions consistent with Schlaich’s hypothesis that placing reinforcing steel consistent

with the stiffest truss results in superior structural performance over traditional de-

signs, i.e., reduced crack widths and improved capacity. Force paths (topologies) can

be identified and studied for any general concrete domain and with any loading and

boundary conditions, and the tensile forces in the reinforcing steel are readily avail-

able to a designer for sizing. With the force paths defined, a designer may then apply

existing code-based strut-and-tie design provisions to evaluate ductility and ultimate

strength. An introduction to truss and continuum topology optimization from the

perspective of reinforced concrete design is provided in the next section, followed by

step-by-step implementation of the hybrid truss-continuum topology optimization ap-

proach, the first such hybrid algorithm to our knowledge. The manuscript concludes

with examples of force flow topologies for a concrete beam, a hammerhead pier, a

deep beam with a cutout, and a prestressed concrete block.
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(a) Truss elements (b) Four-node quadrilateral elements

Figure 4.2: Example of a topology optimization design domain with hole discretized
using (a) truss elements and (b) four-node quadrilateral elements.

4.2 Topology optimization background and

formulation

Recent advances in optimization algorithms, and specifically growth in the field of

topology optimization, have led to a new family of methods for identifying reinforced

concrete truss models consistent with the rules outlined by Schlaich for optimal per-

formance in service and at an ultimate limit state. In topology optimization, the de-

sign domain (structural component) is discretized with structural elements, typically

truss or continuum (solid) elements, with the goal of identifying the “concentration”

of material in each element (Fig. 4.2). Elements receiving little or no material by

the optimizer at convergence are deemed structurally insignificant and removed from

the structural domain in post-processing (Bendsøe and Sigmund, 2003a; Ohsaki and

Swan, 2002).

Following the guidelines of Schlaich, the objective is to design a truss topology with

maximal stiffness. This may be equivalently formulated as a minimum compliance
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problem where the goal is to minimize the external work done by the applied loads

(and strain energy stored in the structure) for a limited volume of material, expressed

in general as follows:

min
ρ

f(ρ) = F Td

subject to: K(ρ)d = F∑
e∈1

ρeve ≤ V

0 ≤ ρe ≤ ρemax ∀ e ∈ Ω

(4.1)

where design variable vector ρ is the encoding of the material concentration (the

structural design), ρe is material concentration in element e (e.g., the cross-sectional

area of truss element e), F are the applied nodal loads, d are the nodal displacements,

ve is element volume for unit ρe (element length for truss structures), V is the available

volume of material, and ρemax is the design variable upper bound. The global stiffness

matrix K is assembled (Ae) from element stiffness matrices Ke as follows:

K(ρ) = A
e∈Ω
Ke(ρe) , Ke(ρe) =

(
(ρe)η + ρemin

)
Ke

0 (4.2)

where Ke
0 is the element stiffness matrix for unit ρe, ρemin is a small positive number

to maintain positive definiteness of the global stiffness matrix, and the exponent

parameter η ≥ 1 is an optional penalty term that may be used to drive solutions to

the design variable bounds (Bendsøe, 1989). This penalization approach is known as
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the Solid Isotropic Material with Penalization (SIMP) method and is widely used in

the topology optimization community.

The optimization problem in Eq. 4.1 is solved using gradient-based optimizers,

chosen as the Method of Moving Asymptotes (MMA) (Svanberg, 1987) in this work.

Such optimizers are guided by design sensitivities, or derivatives with respect to the

design variables. Minimum compliance sensitivities may be found using the adjoint

method or direct differentiation, and take the well-known form of the elemental strain

energies:

∂f

∂ρe
= −η(ρe)η−1deTKe

0d
e (4.3)

where de is the elemental displacement vector of element e. The reader is referred to

Arora (1997) and Bendsøe and Sigmund (2003a) for sensitivity analysis background.

4.2.1 Truss topology optimization

Truss topology optimization begins with a densely meshed domain, referred to as a

ground structure (Fig. 4.2a), and cross-sectional areas are then optimized. Following

convergence, members having (near-)zero area are removed to identify the final opti-

mal topology and corresponding distribution of cross-sectional areas (e.g., (Bendsøe

et al., 1994)). Following this approach, Biondini et al. (1999) and Ali and White

(2001) solved minimum compliance formulations using mathematical programming
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to develop concrete truss models consistent with the elastic stress trajectories in a

general concrete domain. Ali demonstrated with nonlinear finite element modeling

to collapse of short reinforced concrete cantilevers that ultimate strength increases

as truss stiffness increases, an important result supporting Schlaich’s hypothesis that

was later confirmed with experimental results by Kuchma et al. (2008).

In typical truss topology optimization, the cross-sectional areas ρe are consid-

ered un-penalized continuous variables (η = 1) with relaxed upper bound ρemax. Un-

der these conditions, it can be shown that minimum compliance optimization yields

a topology of uniform strain energy density and thus a uniformly stressed design

(Bendsøe et al., 1994). This means the target volume V specified by the designer is

arbitrary and cross-sectional areas may be uniformly scaled to satisfy a stress con-

straint, such as the reinforcing steel yield stress. This may be extended to the case

where truss members have different properties in tension and compression (Achtziger,

1996; Rozvany, 1996).

The minimum compliance topology optimization truss is illustrated for a rein-

forced concrete deep beam shown in Fig. 4.3. The topologies are overlaid on ex-

perimental testing data indicating crack paths, and therefore principal tension tra-

jectories, for this beam. The traditional truss model and reinforcing layout places

steel near the bottom of the deep beam (Fig. 4.3a), which is an optimal location

at midspan but is less efficient at providing resistance to principal tension near the

supports where wide diagonal cracks may develop under load as shown. The mini-
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(a) Traditional concrete 

truss model
(b) Minimum compliance 

truss model

Figure 4.3: Compare (a) traditional concrete truss model and (b) minimum com-
pliance truss model derived with topology optimization. Black dashed lines represent
compression carried by the concrete, red solid lines represent tension carried by the re-
inforcing steel. Experimental results provided in the background are from Nagarajan
and Pillai (2008).

mum compliance truss model (Fig. 4.3b) helps the designer understand where the

cracks will form, in this case showing that inclined steel reinforcement (red tension

ties in Fig. 4.3b) should be provided to bridge and therefore better resist the principal

tension cracks.

One of the drawbacks of truss topology optimization is that solutions are depen-

dent on the ground structure chosen by the designer. This includes nodal locations

and element connectivity, as the designer has essentially restricted potential force

paths a priori. Using a very fine mesh with small nodal spacing and extensive element

connectivity (e.g., connecting every node together as shown in Fig. 4.2a) offers the

most design freedom and allows topologies to approximate curved trajectories (Fig.

4.3b). By using a coarser mesh and/or simpler connectivity, the designer restricts

the design space and subsequently global optima will underperform those found with
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more refined ground structures- i.e., they will have higher compliance and hence lower

stiffness. The advantage of using coarse meshes, however, is that optimal topologies

are typically less complex and thus easier to construct. This tradeoff between stiffness

and constructability will be revisited in the examples section.

4.2.2 Continuum topology optimization

Continuum topology optimization offers an alternative free-form approach to vi-

sual force flow. The domain is discretized with finite elements (four node quadrilateral

elements in Fig. 4.2b) and the goal is to determine whether or not an element contains

material, i.e., is a solid (ρe = ρemax = 1) or a void (ρe = 0). The resulting connectivity

of the solid elements defines the optimized structure. In the application to reinforced

concrete force visualization, the solid phase represents load-carrying material (con-

crete or steel), while the void phase in the continuum model indicates locations of

“background” concrete that is not part of the force model.

To enable use with gradient-based optimizers, the binary (solid-void) condition

on ρe in is relaxed and solutions are steered towards 0-1 distributions using the SIMP

penalty term η > 1 in Eq. 4.2 (e.g., η = 3). It is well known that this approach leads

to numerical instabilities of checkerboard patterns and solution mesh dependency if

the design space is not restricted to prevent them (see Sigmund and Peterson 1998 for

review). These issues are circumvented herein by imposing a minimum length scale

(minimum thickness) on load-carrying members. This not only numerically stabilizes
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the formulation, but has the added benefit of providing the designer a tool for in-

fluencing constructability as requiring larger features tends to produce more simpler

topologies. Minimum length scales can be imposed on a topology using an efficient

projection-based algorithm (Guest, 2009a,b; Guest et al., 2004) where an auxiliary

variable field φ serves as the independent optimization variable and is mapped onto

the finite element space to determine the topology, meaning finite element variables

ρ are a function of φ. This mapping is rigorously constructed such that the mini-

mum length scale of designed topological features is naturally controlled at negligible

added computational cost. The reader is referred to Guest et al. (2011) for details on

numerical implementation of the algorithm.

Several researchers have explored the use of continuum topology optimization as

a tool for reinforced concrete analysis and design. Liang et al. (2000) implemented

a heuristic plane stress topology optimization approach, commonly referred to as

Evolutionary Structural Optimization (ESO), to derive concrete truss model shapes

for common cases including a deep beam and a corbel. Kwak and Noh (2006) and Leu

et al. (2006) employ similar ESO-based algorithms. Bruggi (2009) solves 2D and 3D

strut-and-tie design problems using a gradient-based topology optimization algorithm

with heuristic sensitivity filtering to improve solution efficiency, while Victoria et al.

(2011) use a heuristic optimality criterion updating scheme allowing different moduli

for tension and compression phases. More recently, Amir and Bogomolny (2011)

use material-specific elasto-plastic models to specifically enhance reinforced concrete
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performance at an ultimate limit state.

The primary advantage of the continuum approach is the free-form design evolu-

tion that identifies high-performance topologies consistent with the force path in a

structural component. Unlike truss topology optimization, where the designer selects

node locations and element orientations of the force flow model a priori, it is the

optimizer itself that identifies these locations and orientations in continuum topology

optimization. Disadvantages are that the tension regions are not defined as discrete

bars, requiring post-processing of the continuum results to produce truss represen-

tations in order to size concrete reinforcement. Continuum topologies, as they are

generated in a free-form manner, are also typically more complex and therefore may

be more difficult to construct than those found directly using truss topology optimiza-

tion. As will be shown, the geometric restriction methods (minimum length scale)

discussed previously provide a means for controlling this complexity.

4.2.3 Examples of topology optimization force vi-

sualization for reinforced concrete

A traditional linear elastic topology optimization approach is demonstrated for

several reinforced concrete design examples. These examples will provide baseline

solutions that can be compared to the hybrid model results discussed later in the

manuscript. For the truss topologies, solid red lines represent tension (steel) ties and
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dashed black lines represent the compressive struts (as in Fig. 4.3). Line thickness is

proportional to axial force and therefore the required cross-sectional area for the steel

tension ties. In the continuum representations, the solid black features represent the

force flow topology, i.e., the load-carrying concrete and steel ties. A single isotropic,

linear elastic material model is assumed for both the concrete and the steel. Contin-

uum examples use four-node quadrilateral plane stress elements. Domain dimensions

and loads are given in relative (unitless) measures.

4.2.3.1 Simply-supported beam

The design domain for a reinforced concrete beam with a point load is shown

in Fig. 4.4a, along with a typical strut-and-tie model in Fig. 4.4b. The topology

optimized truss and continuum models are shown in Fig. 4.4c and 4.4d respectively,

with the truss solution achieving a uniformly stressed state as expected. These so-

lutions illustrate that the maximum elastic stiffness (minimum compliance) can be

achieved by placing the reinforcing steel orthogonal to the compressive stress trajec-

tories. This design philosophy is similar to the practice of providing inclined shear

stirrups to bridge diagonal cracks (G., 1992).

As previously mentioned, one of the disadvantages of the truss approach is that

solutions are mesh dependent. In selecting a ground structure, the designer limits the

potential force flow paths a priori. Fig. 4.5, for example, shows three different ground

structures containing a number of nodes ranging from 10 (coarse) to 85 (fine) in a
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(a) Design domain (b) Traditional strut-and-tie model

(c) Optimized truss model (d) Optimized continuum model
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Figure 4.4: Force visualization for a reinforced concrete simply-supported beam
with topology optimization. In the truss models, the solid red lines indicate tension
(steel) members and black dashed lines compression members, with line thickness
indicating relative axial force.

lattice format. The optimized topology found using the fine ground structure closely

resembles the principal stress trajectories and consequently offers a compliance that

is 22% lower and estimated volume of required steel that is 14% lower than solution

found using the coarse mesh. The tradeoff, however, is constructability, as the simpler

topology is likely easier to construct. Ultimately, the decision is left to the designer

to balance the cost of material and labor, while topology optimization offers a tool

for exploring the design space.

4.2.3.2 Deep beam with a cutout

Reinforced concrete designs can be readily obtained with topology optimization for

complex domains such as the deep beam with openings example shown in Fig. 4.6a.
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(b) 9 by 3 mesh

(c) 17 by 5 mesh

(a) 5 by 2 mesh

Figure 4.5: Truss solutions using different ground structures having normalized
compliances of (a) 1.000, (b) 0.792, and (c) 0.779. Although truss solutions are
mesh dependent, topology optimization allows the designer to explore the tradeoffs
between constructability and truss stiffness. The number of nodes in the lattice mesh
are shown under each image.
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(a) Design domain (b) Traditional strut-and-tie model

(c) Optimized truss model (d) Optimized continuum model
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Figure 4.6: Design of deep beam with cutout via topology optimization

The minimum compliance design in this case results in a reinforcing layout that does

not require stirrups in the confined space under the hole, simplifying construction.

Also, Fig. 4.6c and 4.6d show that there is tension in the lower left corner of the beam,

below the cutout, which could result in splitting cracks from the corner of the hole

to the edge of the beam. A designer might miss this potentially detrimental behavior

with a traditional strut-and-tie solution (Fig. 4.6b). A drawback of the truss solution

(Fig. 4.6c) is the lack of reinforcement over the left support where tensile stresses

may develop due to bearing this will be revisited with the hybrid model.
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Figure 4.7: Design of hammerhead pier supporting four girder lines with topology
optimization

4.2.3.3 Hammerhead bridge pier

A hammerhead bridge pier is typically designed with the truss model shown in

Fig. 4.7b. Vertical shear stirrups are spaced evenly across the pier cap with a top mat

of reinforcing steel to controlling cracking at the girder bearing line. The minimum

compliance truss and continuum models in Fig. 4.7c and Fig. 4.7d demonstrate that

for the loading case considered the shear stirrups do not coincide with the internal

tensile force trajectories and instead draped reinforcing steel or post-tensioning would

be a more appropriate design solution.

Fig. 4.8 illustrates the potential benefits of imposing minimum length scale on

the continuum structural members. Increasing the required minimum strut-and-tie
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(b) dmin = 0.015L(a) dmin = 0.007L (c) dmin = 0.030L

Figure 4.8: Hammerhead pier example solved using continuum topology optimiza-
tion with different minimum prescribed length scales (diameter dmin). Larger length
scales reduce efficiency but also complexity.

thicknesses simplifies the topology and reduces the number of designed steel ties from

four draped (Fig. 4.8a) to three (nearly) straight (Fig. 4.8b) to two straight (Fig.

4.8c) ties in each half of the pier. With direct control over the length scale, a designer

may generate a suite of solutions where structural performance and constructability

are balanced.

4.3 Motivation for a hybrid truss-continuum

topology model

The results presented in the previous section are consistent with those reported

in the literature. Optimized topologies largely follow the principal stress trajectories

even for complex domains treated in Biondini et al. (1999), Ali and White (2001),

and Bruggi (2009). While solutions found using truss and continuum topology opti-

mization follow these general trends, there are distinct differences in terms of solution
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stiffness, as quantified by the objective function, and constructability between the two

approaches.

The free-form nature of continuum topology optimization is evident as the pre-

sented force trajectories may take any shape, have varying thickness, and/or connect

with other members at any angle. In this sense, the optimizer selects both the lo-

cations of the ‘nodes’ of the force transfer topology and also the corresponding flow

paths. This design freedom enhances solution efficiency but may produce solutions

that are less practical from a construction point of view (even with length scale con-

trol), potentially negating any cost saving from solution efficiency. This is in contrast

to the truss approach, which restricts the design space by requiring loads to flow in

straight paths along predefined candidate orientations. Truss models therefore under-

perform continuum solutions, but likely improve constructability as steel rebar and

strands may be placed in straight segments.

A key limitation of both topology optimization approaches as presented is the as-

sumption of isotropic, linear elastic constitutive models. This assumption means that

traditional topology optimization approaches to reinforced concrete design may miss

transverse tensile stresses that develop in the concrete phase due to load spreading,

an outcome that is observed even when algorithms are implemented that use different

moduli for the tension and compressive materials (Victoria et al., 2011). In some de-

sign settings, for example prestressed concrete, this missing treatment of orthotropy

may lead to invalid strut-only solutions that falsely indicate that steel reinforcement
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(a) Design domain (b) Optimized truss 

model

(c) Optimized continuum 

model

(d) Principal stress 

contour
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Figure 4.9: Compression block example illustrating strut-only solutions: (a) load
and boundary conditions, (b) truss optimization producing three vertical struts, and
(c) continuum optimization producing a single large strut. Strut-only solutions fail
to capture tensile stresses due to force spreading, which is clearly seen in (d) the
maximum principal stress plot for solution (c).

is not needed. Fig. 4.9 illustrates this shortcoming for a concrete block subjected to a

compressive load solved with truss (Fig. 4.9b) and continuum topology optimization

(Fig. 4.9c) for minimum compliance. The topologies indicate a strictly compressive

load path, failing to capture load spreading that will create transverse tensile stresses

in the concrete phase as shown by the principal stress plot in Fig. 4.9d (only ma-

jor stresses shown, as all minor stresses are compressive). A similar instance is seen

over the left support in the topology optimized truss solution for the deep beam with

cut-out (Fig. 4.6c).

Overcoming this limitation requires breaking from traditional linear elastic topol-

ogy optimization methodologies. We propose herein a bilinear hybrid approach. The

idea is that tension members are implemented as truss elements in the optimization
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formulation, resulting in reinforcing steel design that is straight, simply placed, and

easily sized. Continuum elements form force paths consistent with the elastic stress

trajectories and couple with the tensile truss members to carry compression in the

concrete. This separation of the compressive and tensile load carrying elements allows

different moduli to be used for the different materials, and more importantly, is shown

to capture force-spreading that results in tensile stresses orthogonal to compression

struts, i.e., splitting stresses near a prestressing steel anchorage. The details of this

hybrid approach are presented in the next section.

4.4 Hybrid Truss-Continuum Strut-and-

Tie Models

A new force visualization approach is proposed that utilizes a hybrid truss-continuum

design domain to address the identified shortcomings in the prevision section, specif-

ically the inability of the topology solutions to simulate force spreading and the

cumbersome post-processing required to size reinforcing steel with continuum solu-

tions. In the hybrid approach, first postulated in Guest et al. (2011), the steel phase is

modeled using truss elements with high tensile stiffness and zero compressive stiffness,

while the concrete phase is modeled using continuum elements with high compressive

stiffness and low tensile stiffness. The hybrid formulation therefore requires tension

load paths to be carried with steel truss members and compressive load paths to be
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carried with continuum concrete members. This not only captures force-spreading as

will be shown, but also leverages the desirable properties of both topology optimiza-

tion approaches: load-carrying concrete continuum may take any shape, as it need

not be constructed, while steel reinforcement is placed in straight segments. To our

knowledge, this is the first truss-continuum hybrid approach in topology optimization.

4.4.1 Hybrid mesh

The hybrid mesh is achieved by embedding a truss ground structure into a con-

tinuum finite element mesh. The design domain Ω is discretized with a lattice mesh

of nodes and the continuum mesh Ωt uses every node, while the truss mesh t is more

sparse with members connected at every few nodes in order to reduce complexity of

the final steel configuration. This is seen below in Fig. 4.10 where there are 12 con-

tinuum elements in each direction, but the truss elements are connected every four

nodes (grey continuum elements, black truss elements). Force transfer between the

meshes occurs at the shared nodes, and a nonslip condition for the steel reinforcement

is assumed. This relative node spacing of four to one was selected to approximately

match the truss and continuum ground structures in the preceding examples. As pre-

viously discussed, using a denser truss ground structure (skipping fewer continuum

nodes) would likely lead to more complex reinforcement patterns, while coarser truss

ground structures would likely produce simpler patterns. It is not recommended,

however, that the truss node spacing be less than the continuum node spacing as this
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Figure 4.10: Interaction between continuum (four node quadrilaterals) and truss
domains

would require compression truss elements to have nonzero stiffness.

4.4.2 Material models

The bilinear stress-strain relations for the steel and concrete are shown in Fig.

4.11. Young’s moduli for the steel are assumed 200 GPa (29,000 ksi) in tension and

zero in compression, while moduli for the concrete are assumed 24.9 GPa (3,600 ksi)

in compression and 2.0 GPa (290 ksi) in tension. A nonzero tensile stiffness is used for

the concrete to prevent singularities in the global stiffness matrix. Such singularities

would otherwise arise at nodes that are not connected to truss elements and that are

located in regions achieving a state of tensile stress.

As truss members carry only axial forces, the bilinear constitutive steel model is

straightforward to implement. Denoting the truss elemental design variables (cross-

sectional areas) as ρt, the element stiffness matrix of a truss element Ke
t is now stated

as follows:
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Figure 4.11: Stress-strain relationships for the continuum concrete and truss steel
models.

Ke
t

(
ρet ,σ

e
t

)
=
(
ρet
)ηt
Ke

0,t

(
Et(σ

e
t )
)

(4.4)

where Et is the Young’s modulus of truss element and dependent on the sign of

the elemental (axial) stress σet (Fig. 4.11), and Ke
0,t is the truss element stiffness

matrix for unit ρet .

For the concrete continuum elements, an orthotropic constitutive model is adapted

from the bilinear elastic portion of a model proposed by Darwin and Pecknold (1977).

The model combines the different Young’s moduli as a function of the principal normal

stresses and orientation of the principal stress plane. This rotational dependence is

key to capturing force spreading and gives preference over existing isotropic stress-

dependent stiffness tensors proposed in literature (e.g., (Cai, 2011)).

Denoting the continuum elemental design variables (volume fractions) as ρc, the

element stiffness matrix of a continuum element Ke
t is now stated as
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Ke
c

(
ρec,σ

e
c

)
=
((
ρec
)ηt

+ ρemin

)
Ke

0,c

(
D(σec)

)
=
((
ρec
)ηt

+ ρemin

)∫
BeTD(σec)B

e dV

(4.5)

where D is the (stress-dependent) constitutive stiffness tensor relating continuum

stresses σc and strains ε, and Be is the elemental component of the standard strain

displacement tensor (ε = Bd). Note the constitutive stiffness tensor D is defined as

follows for an isotropic material with Young’s modulus E and Poisson’s ratio ν:

Diso =
E

1− ν2


1 ν 0

ν 1 0

0 0 1−ν
2

 (4.6)

The orthotropic material model of Darwin and Pecknold is stress-dependent and

uses the following approximation for the stiffness tensor, denoted as Dp with the

subscript ‘p’ indicating it is defined in the principal stress coordinate system:

Dp =


D11 νeffD11D22 0

νeffD11D22 D22 0

0 0

(
D11+D22−νeff

√
D11D22

)
4

 (4.7)

where νeff is the effective, or smeared, Poisson’s ratio, and Dij terms are dependent

on the principal normal stresses σci, for i = 1, 2 as follows:
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Dii = Ect, νi = νct for σci > 0

Dii = Ecc, νi = νcc for σci < 0

D12 = D21 = νeff

√
D11D22

νeff =
√
ν1ν2

(4.8)

where Ecc and Ect are the Young’s modulus of the concrete in compression and tension,

respectively, and νcc and νct are the Poisson’s ratio of the concrete in compression and

tension, respectively. The compression Poisson’s ratio of νcc = 0.2 is used to compute

the tensile Poisson’s ratio from the following equation which is required to achieve

symmetry of Dp (Darwin and Pecknold, 1977):

νct = νccEct/Ecc (4.9)

This relation is deemed acceptable as the stiffness, and therefore load-carrying

potential, of the concrete continuum system in tension is negligible.

The principal stresses σi in Eq. 4.8 and the orientation θ of the principal plane

are computed in the standard manner

σ1,2 =
σx + σy

2
±
√(σx + σy

2

)2

+ τ 2
xy

θ =
1

2
tan−1

(σx − σy
2τxy

) (4.10)

where normal stresses σx and σy and shear stress τxy are all defined in the global

111



CHAPTER 4. HYBRID TRUSS-CONTINUUM MESHES AND BILINEAR
MATERIAL MODELS

coordinate system.

The constitutive stiffness tensor in Eq. 4.7 defined in the principal coordinate

system is then transformed to the global coordinate system using:

D = QDpQ
T (4.11)

where the transformation tensor Q is defined as

Q =


cos2(θ) sin2(θ) 2 cos(θ)sin(θ)

sin2(θ) cos2(θ) −2 cos(θ)sin(θ)

− cos(θ)sin(θ) cos(θ)sin(θ) cos2(θ)− sin2(θ)

 (4.12)

4.4.3 Optimization formulation and solution algo-

rithm

The hybrid minimum compliance problem can now be expressed as

min
ρt,ρc

f(ρt, ρc) = F Td

subject to: K(ρt,ρc,σt,σc)d = F∑
e∈Ωt

ρetv
e
t +

∑
e∈Ωc

ρecv
e
c ≤ V

0 ≤ ρet ∀ e ∈ Ωt

0 ≤ ρec ≤ 1 ∀ e ∈ Ωc

(4.13)
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where νet and νec are the truss element lengths and continuum element volumes, re-

spectively (as before), and the global stiffness matrix is assembled in the standard

manner:

K(ρt,ρc,σt,σc) = A
e∈Ωt

Ke
t (ρ

e
t ,σ

e
t ) + A

e∈Ωc

Ke
c(ρ

e
c,σ

e
c) (4.14)

It should be noted that the standard projection scheme (Guest et al., 2011) is

again used for the continuum elements and thus ρc remain a closed-form function of

φ as before. This detail is omitted for brevity.

One of the key aspects of this hybrid technique is that the concrete and steel “pull”

from the same prescribed volume of material. Using this approach, if a structure sees

only tension forces, the optimization process will yield a truss (steel) only structure.

Likewise, if only compressive forces are present, a continuum (concrete) only structure

will result, although this is unlikely due to the force spreading effect.

The equilibrium conditions are now governed by a nonlinear material model and

thus require iterative numerical solution. However, they are bilinear elastic, meaning

they are not load magnitude dependent and do not require load-stepping as in topol-

ogy optimization for fully nonlinear material models such as in Swan and Kosaka

(1997), Maute et al. (1998), and Amir and Bogomolny (2011). The approach taken

here is to initialize the analysis iterative process with all elements being active and

isotropic (no stress dependency) and updating the stiffnesses using the material mod-

els described above.
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1. Initialize truss and continuum design variable fields ρt and ρc with uniform

distribution of material (or random or educated guess).

2. Finite element analysis:

(a) Solve linear elastic (stress-independent) problem K(ρt,ρc)d = F with

truss elements having Et = 200 GPa and all continuum elements being

isotropic with Ec = 24.9 GPa (i.e., all elements at full stiffness).

(b) Update truss element stiffness matrices according to Eq. 4.4

(c) Update continuum element stiffness matrices according to Eq. (4.5, 4.7,

4.8, 4.9, 4.10, 4.11, 4.12).

(d) Solve K(ρt,ρc,σt,σc)d = F with updated element stiffnesses.

(e) If analysis converged, go to step 3; Else, go to step 2b.

3. Compute sensitivities using Eq. 4.3 and converged displacements and element

stiffnesses from step (2).

4. Update the independent design variables using a gradient-based optimizer.

5. Check optimization convergence; if converged, stop; else go to step (2);

Convergence of the finite element analysis (Step 2e) is herein defined as less than

0.1% of truss elements changing between tension and compression states and the aver-

age change in orientation of the principal plane θ in non-void elements is less than 0.01

degree. Convergence was typically achieved in less than ten finite element iterations
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in the presented examples. It should also be noted that the Young’s moduli shown

in Fig. 4.11 for each phase are piecewise linear and thus exhibit C0, but not C1, con-

tinuity. In gradient-based optimization, this typically requires interpolation between

the piecewise states to achieve C1 continuity. Interestingly, oscillatory behavior was

not observed in either the analysis or optimization steps. This may be due to the

fact that the design sensitivities (Eq. 4.3) are always negative, indicating that adding

material always improves stiffness. Interpolation of Young’s moduli, however, may

be required for more challenging design problems where sensitivities may be positive

or negative.

4.4.4 Hybrid strut-and-tie model results

The same examples presented above are solved using the new hybrid truss-continuum

topology optimization approach using the embedded mesh scheme shown in Fig. 4.10.

The compression block example (Fig. 4.9) highlights the capability of the model to

capture force spreading. The optimal solution found using the hybrid topology opti-

mization approach is shown in Fig. 4.12, where the white regions indicate non-load

carrying concrete, the black region indicates (compression) load-carrying concrete,

and lines indicate the steel ties. Under the compressive load (Fig. 4.12a), a single

(large) compression strut is designed as before, however it is now reinforced with hor-

izontal steel truss elements to capture principal tensile stresses that develop due to

force spreading. This resembles splitting reinforcement that would be detailed in the
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(a) Compressive column (b) Tensile column

Figure 4.12: (a) Compression block solution found using the new hybrid topology
optimization algorithm. The horizontal truss (steel) elements carry the tensile stresses
due to force spreading seen in Fig. 4.9d. (b) Under a tensile applied load the algorithm
produces a tie-only solution, illustrating that the hybrid scheme allocates material to
tension (steel) and compression (concrete) constituents as needed.

local anchorage zone of a prestressing strand anchorage. It is also worth emphasizing

that the volume constraint V is shared between the truss and continuum topologies in

Problem (14). Fig. 4.12b highlights this idea: when the same structure is subjected

to a tensile load the optimizer concentrates all available material in vertical steel ties,

as the concrete does not play a role in force transfer.

Fig. 4.13 contains solutions to the previously explored examples found using the

hybrid topology optimization algorithm. The compressive and tensile load paths

are indicated by the continuum and truss topologies. The compressive load paths

may take any angle, vary in thickness, and connect at any location, leveraging the

free-form nature of continuum topology and the idea that these members are not

explicitly constructed, but rather represent an idealized load path. The tension load
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(a) Simply supported beam

(b) Deep beam with cutout (c) Hammerhead pier

Figure 4.13: Optimized topologies found using the new hybrid optimization algo-
rithm.

paths are straight and thus more accurately represent rebar and its placement. As

truss members, they also allow for direct extraction of axial force and calculation of

required cross-sectional areas in design.

The simply-supported beam (Fig. 4.13a) and hammerhead pier (Fig. 4.13c)

solutions resemble a combination of the previously presented continuum-only and

truss-only topology optimized solutions. The tension and compression load paths are

orthogonal, with load transfer occurring at the end of the truss members, typically

occurring in the interior of compressive struts. An interesting highlight of the deep

beam with cutout solution (Fig. 4.13b) is the use of steel near the supports. In the

truss-only topology optimization solution (Fig. 4.6c), unbraced compressive struts

transfer load to the supports. In the hybrid model, lateral truss members are present
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in the region of the support to pick up the tensile stresses that will develop due to

force spreading at bearing. This more closely resembles the continuum solution (Fig.

4.6b), although an extra tie has been added to the lower right of the domain to pick

up tensile stresses developing due to a change in thickness of the compression strut

in this region

4.5 Strut-and-Tie Concluding Remarks

Topology optimization provides an effective and convenient methodology for ob-

taining a minimum compliance concrete truss model, i.e., a truss model where the

strain energy is minimized, a generally agreed upon design guideline which is in-

tended to minimize plastic deformation at an ultimate limit state. Experiments and

nonlinear finite element modeling have confirmed that a minimum compliance con-

crete truss model can increase peak load and improve the load-deformation response

of reinforced concrete members over traditional strut-and-tie designs. However, as

only elastic stiffness is considered rigorously in the optimization formulation, a de-

signer must still check ductility and strength requirements of the selected strut-and-

tie model with existing code provisions. The minimum compliance design problem

is efficiently solved using gradient-based optimizers with adjoint sensitivity analysis,

enabling identification of models for complex domains, including members with holes.

Results are shown to produce steel reinforcement patterns that are in line with the
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principal tension elastic stress trajectories.

The advantages of truss topology optimization are that steel ties are discrete

and straight, yielding realistic and constructible reinforcement patterns, and that

axial force demand and therefore required steel cross-sectional areas come directly

out of the analysis. The disadvantages are that the optimality is limited by the

initial choice of ground structure, with simpler ground structures yielding simpler,

but less efficient, topologies. Conversely, the free-form nature of continuum topology

optimization typically enables discovery of solutions with higher efficiency. These

solutions, however, tend to be more complex, potentially requiring curved rebar or

rebar with varying thickness. The number of required ties, however, may be indirectly

limited through the use of projection schemes for controlling minimum length scale

as shown in the hammerhead pier design problem. Continuum solutions must also be

post-processed to determine required steel areas. Neither truss or continuum topology

optimization is capable of accounting for transverse tensile stresses that may develop

in compression members due to force spreading.

The key contribution of this work is the development of a hybrid truss-continuum

topology optimization methodology that can help designers understand the flow of

forces in a reinforced concrete member and provide demand forces that can be used

to size reinforcing steel. Bilinear material models are used to find tensile load paths

represented by truss (steel) elements and compressive load paths by continuum (load-

carrying concrete) elements. Rebar is therefore kept discrete and placed in straight
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segments, with axial force demand directly output by the model, while the concrete

load path is free to take any shape. An orthotropic bilinear material model is assumed

for the concrete, requiring tensile principal stresses to be carried by the steel truss

members. This is shown to capture force spreading phenomena that traditional topol-

ogy optimization approaches miss, particularly at locations of concentrated forces,

such as applied loads, bearing at supports, and prestressing anchorages.

With the ability to algorithmically focus natural tension and compression force

flow in separate structural elements comes the potential to increase complexity of

the design objectives beyond elastic stiffness and directly optimize for serviceabil-

ity and strength in reinforced concrete. Very recently, Amir and Bogomolny (2011)

have provided an excellent first step in this direction by optimizing for strength with

elastoplastic continuum damage models. As shown, the proposed hybrid approach

allows different constitutive models to be used for the steel and concrete, which could

include different yield and hardening behaviors, and potentially be extended to design

for ductility. The proposed approach may also be extended to other composite mate-

rial systems with constituents having different properties in tension and compression.
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4.6 Future Directions: Potential for Ap-

plication to Additive Manufacturing

As can be seen from this algorithm, it can design for material which performs very

well in either tension or compression. It also demonstrates great ability to design

not only a continuous phase but a more discrete truss phase, which may mimic the

placement of stiffeners or actuators in the printing process. This algorithm may be

adapted in the future to design for additive manufacturing methods in which the

material has an anisotropic grain-like structure. These types of built structures are

especially prevalent in parts manufactured by Fused Deposition Modeling. Also, in

the case of ceramic additive manufacturing, the stress-dependent concrete model -

high modulus in compression and low modulus in tension - may be a good fit.

While 3D printers with the ability of placing discrete objects are not yet com-

mercially available, it is prudent to develop design methods so that the technology

may be fully exploited when it matures. There exists a great potential to create such

objects as actuated prosthetics in a single build process allowing the for manufacture

of a custom hand, foot, etc. This customizability is essential for such objects and is

a perfect fit for additive manufacturing technology.
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Conclusions and Future Work

In the past chapters, a number of additive manufacturing design problems were

presented and solved using topology optimization as the design engine. Contrary to

popular belief, there are, in fact, limits on what can and cannot be printed. Each

chapter considered one identified limitation or ability of a particular additive manu-

facturing technology or additive manufacturing in general. In the case of the multi-

material 3D printer, a compliant mechanism was designed and printed and was found

to perform much better than the typical single material compliant mechanism. In the

second chapter, we explore the possibility of eliminating support material from ad-

ditively manufactured parts by incorporating a maximum achievable non-supported

overhang angle into the optimization formulation. The optimized topologies in some

cases differed fairly drastically from the traditional topology optimization solutions,

but showed good agreement with the imposed angle constraint. Finally, a method
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was developed for an additive manufacturing technique that has yet become fully de-

veloped - the insertion of discrete objects during the printing process such that they

are encapsulated in the 3D printed material matrix.

Looking forward, there are a number design considerations which have yet to be

explored. When using topology optimization in 3D, It is common to obtain solutions

that contain internal voids. Unfortunately, for many additive manufacturing methods

such as FDM and SLM, internal voids are not ideal and can result in poor perfor-

mance. In both cases, support material for FDM and non-melted metal powder for

SLM in this internal void cannot be accessible post-print, therefore adding additional

weight to the final built part. Therefore, future work should focus on producing

topology optimization solutions which contain no internal pores, essentially always

creating a way for the support material and metal powder to ‘escape’ the part.

Aside from the overhang constraint and the internal void constraint, additive man-

ufacturing methods do possess many more obvious geometric constraints. It is for

this precise reason that additive manufacturing and topology optimization pair so

well. The primary unresolved issues with additively manufactured parts focus on the

material characteristics. Since it is a relatively new technology, precise material prop-

erties are relatively unknown for parts manufactured in this layer-by-layer manner.

It is highly unlikely that a part manufactured by both AM and by a more traditional

method will have the same performance. Once these material properties are quan-

tified, they can be incorporated into the topology optimization design formulation -
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whether it’s material anisotropy or stochasticity of the constitutive properties.

Related to the anisotropic nature of most material in additively manufactured

parts, an area of interest is optimizing the part orientation during the build process.

It may be the case that a part will have significantly better performance if built in a

particular orientation, stemming from the almost wood-like grain apparent in many

FDM manufactured parts. For example, if a tension test coupon is created via 3D

printing, it is likely that if the strands of the part are oriented along the length of the

coupon in the direction of the applied load as opposed to perpendicular, much greater

performance metrics may be achieved. Some researchers have looked at picking the

best orientation, however no rigorous optimization was applied to choose the best

orientation.

Finally, attributing to the slow nature of additive manufacturing, it is proposed

to use 3D printing to manufacture the mold for a cast part. In this way, many of

the new design freedoms still exist, but the slow additive process will only have to be

performed once. After making the mold, parts will be able to be manufactured in a

small fraction of the AM required time. This design paradigm will require topology

optimization formulations to essentially design the ‘negative’ of the designed part.

By tackling this problem, the previous specialty part and high-tech only limitation

of additive manufacturing will become a thing of the past, opening up the possibility

of additive technologies to move towards mainstream consumer level parts.
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Appendix A

A Gradient-based Approach to

Truss Topology Optimization with

Integer Design Variable

Constraints

A.1 Introduction

Truss optimization has been around for more than twenty years and thus has been

approached by a plethora of methods. As mentioned in an early work by Achtziger

et al. (1992), truss optimization problems are typically formulated as a sizing opti-

mization with the design domain “discretized” into an initial ground structure given
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certain boundary conditions and loads. The optimization is formulated as a contin-

uous optimization in which the design variables are the cross sectional areas of the

truss members. Evenly distributing the material as the initial guess, the optimiza-

tion then runs allowing the cross sectional areas to continuously vary from zero to

some upper bound, yielding the optimal cross sectional area for each truss members.

Bendsøe’s review paper (Bendsøe et al., 1994) identifies some of the early methods

used to optimize these continuous design variable ground structure problems.

Still, other methods did not operate on a fixed ground structure, but instead

included the nodal location as design variables in addition to the cross sectional areas

(Kirsch, 1989). Sigmund optimized truss structures to tailor for prescribed elastic

properties (Sigmund, 1995). In this paper, the microstructures were optimized to

match the theoretical limits of Poisson’s Ratio (-1 and 0.5).

While continuous design variable optimization of truss structures is computation-

ally inexpensive – due to the existence of gradient information – the solutions often

require significant post-processing to produce the final built design. When design-

ing a building such as a truss bridge or sky scraper, the designer must choose from

a “library” of allowable standardized truss members. Since intermediate truss sizes

are not allowed (or are prohibitively expensive), the optimization problem turns into

a discrete optimization problem. With that transformation from continuous to dis-

crete optimization, the computational cost increases drastically, as gradient based

optimizers are no longer an option.
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A.1.1 Current state of discrete truss opt

Discrete optimization is known to be a difficult problem and, as such, can be

computationally expensive. Globally optimal results are only obtainable for relatively

small-sized problems. A few globally convergent enumeration algorithms include the

Branch-and-Bound optimization algorithm (Achtziger and Stolpe, 2007) and the Cut-

and-Branch algorithm (Rasmussen and Stolpe, 2008). While globally convergent,

(Achtziger and Stolpe, 2007) showed that a problem size of 632 design variables takes

on the order of three days to solve using a typical computer, making the optimization

expensive. Furthermore, there may exist situations when the engineer is interested in

performing optimizations on many thousands of design variables. In this situation,

globally convergent algorithms are prohibitively expensive.

While these methods are proven, the most popular of the available discrete meth-

ods are the stochastic search algorithms. There are a plethora of these heuristic

optimization methods – so many that they cannot all be named – from genetic algo-

rithms, which mimic the process of natural selection (Deb and Gulati, 2001; Ghasemi

et al., 1999; Hajela and Lee, 1995; Rajan, 1995; Rajeev and Krishnamoorthy, 1997),

to Ant Colony optimization (Camp and Bichon, 2004), to shape annealing, a method

which mimics a physical process (Reddy and Cagan, 1995). Another method, neural

networks optimization, was inspired by the central nervous system and uses machine

learning to recognize patterns to obtain the optimal truss structure (Adeli and Park,

1995). While the majority of these methods yield decent results, they do not guar-
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antee a globally optimal result. The methods are, however, easy to implement and

are conceptually logical and interesting. Another approach sometimes used is the

rounding technique, as found in (Groenwold et al., 1996). While this method will

produce decent solutions, the algorithm uses heuristics, making it less desirable.

There exist some methods which span the gap between stochastic search algo-

rithms, globally convergent algorithms and continuously differentiable algorithms.

These evolutionary structural optimization (ESO) methods, while heuristic, use phys-

ical properties of the truss (usually strain energy density) in order to progress the

optimization in a desirable direction (Kwak and Noh, 2006; Tanskanen, 2002).

It is seen that the established approaches have advantages and disadvantages. In

general, there is a tradeoff between speed and optimality. The globally convergent

algorithms are guaranteed to produce the global optimum, but are extremely compu-

tationally expensive, while the stochastic search algorithms are both computationally

expensive and do no guarantee any degree of optimality. They stochastic search al-

gorithms are, however, easy to implement and produce decent solutions. As of now,

it appears there is no way to get the best of both worlds – an algorithm which can

produce optimal solutions in an time efficient manner.
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A.1.2 Topology optimization background and for-

mulation

Topology optimization problems are typically formulated as maximizing stiffness,

or equivalently, minimizing compliance, subject to a material volume constraint. This

is represented in the following formulation:

min
ρ

f(ρ) = F Td

subject to: K(ρ)d = F∑
e∈1

ρeve ≤ V

0 ≤ ρe ≤ ρemax ∀ e ∈ Ω

(A.1)

where design variable vector ρ is the set of material densities for the structure, ρe is

material concentration in element e, F are the applied nodal loads, d are the nodal

displacements, ve is element volume for unit ρe (element length for truss structures),

V is the available volume of material, and ρemax is the design variable upper bound.

The global stiffness matrix K is assembled (A) from element stiffness matrices Ke

as follows:

K(ρ) = A
e∈Ω
Ke(ρe)

Ke(ρe) = ρeKe
0

(A.2)

where Ae∈Ω designates an assembly of the elemental stiffness matrices Ke(ρe). The
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elemental stiffness matrixes are formulated as a product of the design variables, ρe,

and unit stiffness of each element, Ke
0. Typically Ke

0 is formulated for an area of

unity and ρe are then equivalent to to the cross sectional area of the element.

Another typical formulation, minimum weight design, is a slight variation on the

previous formulation in which the weight of the structure is minimized subject to some

deflection (compliance) constraint. Essentially, the objective function and constraint

function from Eq. A.1 are interchanged. The minimum weight formulation appears

as follows:

min
ρ

W =
∑
e∈1

ρeve

subject to: K(ρ)d = F

LTd ≤ LTdallowed ∀ 1, N

0 ≤ ρe ≤ ρemax ∀ e ∈ Ω

(A.3)

where the objective function, W , is the weight, dallowed is the allowed displacement, L

is a vector of zeros with ones placed at the degrees of freedom where the displacement

is constrained, and the additional variables are defined above. The formulation seen

in Eq. A.3 is more applicable to the field of structural engineering, as a design engineer

may know the maximum allowable deflection, but will have no intuition as to what

volume fraction should be set (as in Eq. A.1) to get the desired performance.

As formulated above in Eq. A.1 and Eq. A.3, the optimization problem is posed

as a continuous problem. As a result, the solutions will contain member of any cross
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sectional area within the design constraints of 0 ≤ ρe ≤ ρemax. However, when design-

ing a structure using truss members, the designer is almost always required to choose

from a “library” of allowed cross sections. Hence, the problem is, in fact, not a con-

tinuous optimization problem, but a discrete optimization problem. As stated above,

these problems often take days to solve on a typical computer and, additionally, the

size of the problem is severely limited by the both the stochastic search optimization

and global optimization methods. This paper proposes an alternative method which

yields discrete values, yet allows the design variables to vary continuously. The al-

gorithm can therefore take advantage of gradient information, thus producing final

solution in an efficient manner. The method is outlined in coming sections. First,

discrete truss optimization is formulated.

A.1.3 Discrete truss optimization formulation

Although structural engineers would be more interested in a minimum weight

optimization, this paper will focus on minimum compliance so that the results are

more readily comparable to other methods, especially the globally optimal results

identified in Achtziger and Stolpe (2007). Minimum compliance, discrete truss opti-

mization takes on the following form, which differs only slightly from the continuous

optimization case in Eq. A.1:
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min
A

f(A) = LTdallowed

subject to: K(A)d = F∑
e∈1

Aeve ≤ V

Ae = Ai, where Ai = discrete values

(A.4)

Notice that the cross sectional areas must now be chosen from a database of allowable

cross sections, Ai. Intermediate values, those which lie between the specified Ai are

no longer allowed. Established methods are often slow due to the lack of derivative

information to drive the optimization steps. It is for this reason that continuous opti-

mization techniques are so attractive. As mentioned above, the common approaches

to work around this issue is to use stochastic search optimization techniques, which re-

quire no derivatives but often yield excellent results (Adeli and Park, 1995; Camp and

Bichon, 2004; Deb and Gulati, 2001; Ghasemi et al., 1999; Hajela and Lee, 1995; Ra-

jan, 1995; Rajeev and Krishnamoorthy, 1997; Reddy and Cagan, 1995), use rounding

techniques (Groenwold et al., 1996), or to relax the discrete variable to a continuous

variable and somehow force the result to discrete values (Achtziger and Stolpe, 2007;

Rasmussen and Stolpe, 2008).
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A.2 Uniform Discrete Truss Optimization

A new method is proposed which attempts to drive towards discrete valued solu-

tions while taking advantage of gradient information. The method is first applied

to the “uniform discrete” case. “Uniform discrete” implies that the final cross-

sectional areas of each truss member may take on values of uniform increment such as

[0, 1, 2, 3, 4, 5] or [0, 0.2, 0.4, 0.6, 0.8, 1.0]. To produce uniform discrete values of truss

cross-sectional areas in the final design, a small variation of the previous continuous

method is implemented.

The key to attaining discrete results from continuous design variables is to assign

multiple design variables to each truss cross-section. The overall area of each truss

member then becomes a summation over the design variables.

ρe =
n∑
i=1

φei∆A (A.5)

where ρe is the total cross-sectional area of the truss member, which is a summation

of the 0-1 design variables φei multiplied by some constant area increment ∆A. In this

scheme, the areas may take on any increment of ∆A, from (0 ∗∆A) up to (n ∗∆A).

In the above example, ∆A equals 1 and 0.2 respectively.

This method borrows the Solid Isotropic Material with Penalization (SIMP) method

common to continuum topology optimization (Eq. A.6). Each design variable φei is

driven to 0 or 1 using SIMP. This makes design variables of intermediate volume
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fraction inefficient, therefore producing solutions limited to the predefined discrete

increments of ∆A. Eq. A.7 illustrates how the global stiffness matrix, K(ρ), is now

defined.

ρestiffness =
n∑
i=1

(φei )
ηi∆A

ηi = η0 + i∆η

(A.6)

K(ρ) = A
e∈Ω
Ke(ρe)

Ke(ρe) = ρestiffnessK
e
0

(A.7)

where ηi is the SIMP exponent associated with each design variable i. Slightly varying

values of the exponent are needed because if each design variable is forced to 0-

1 using the same exponent penalty, η, and all φei are initialized to the same volume

fraction, there will be no difference in the design variable sensitivities. In this case, the

optimizer used for all solutions, the Method of Moving Asymptotes (Svanberg, 1987),

cannot decipher among the different groups. Therefore, it is proposed to use a slightly

different value of the exponent for each group i. It was found that differing the η by

as small as 0.001 worked well. To clarify, if there are five design variables per element

with η0 = 3 and ∆η = 0.001, the eta’s take the form ηi = [3, 3.001, 3.002, 3.003, 3.004].

Alternatively, all exponents, ηi may be equivalent but instead use slightly different

initial values of φi for each group. Using this approach and an ∆A = 1, the allowable

final truss cross-sectional areas are [0, 1, 2, 3, 4, or 5].
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Figure A.1: varying values of exponent η

Fig. A.1 shows the effect of the proposed SIMP method. The small difference in

the formulation of the stiffness matrix results in different gradient values for each φei

at a particular value of φ. Here, a larger than necessary ∆η = 0.3 is shown so that

the difference between curves is obvious.

The final formulation takes on the following form:

min
φ

LTd

subject to: K(ρ)d = F

ρe(φ,∆Ai)v
e ≤ V

0 ≤ φei ≤ φemax ∀ e ∈ Ω

(A.8)

A.2.1 Simple tension test case

To help illustrate how this method works, take this simple test case. Figure A.2

presents the test case where the optimization starts with an initial ground structure
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P

L

H=L

Figure A.2: Simple tension case. Initial ground structure with 28 bars. H = L = 2.

containing 28 truss members. Here L = H = 2.

Optimized as a minimum compliance problem (as in Eq A.1) and given a total

allowable volume of 7 it would yield 2 bars, each with a cross-sectional area of 3.5.

However, when optimized according to Eq. A.2, non-integer intermediate values are

undesirable due to the SIMP penalty.

Notice that three design variables go to one for the bar 1 and 4 design variables

go to one for bar 2. In Fig. A.3, the areas from Fig. A.3c are summed to get the total

areas seen in Fig. A.3b – bar one has an area of three and bar two has an area of

four. The red lines in Fig. A.3b indicate the “allowable” cross sectional areas.

A.2.2 Test Cases

With a the simple example working well (Fig. A.3) it is now necessary to test

the algorithm on larger problems to test its robustness. As identified in the paper by

Achtziger and Stolpe (Achtziger and Stolpe, 2007), the following benchmark problems

are known to be good test cases.
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Figure A.3: Simple tension example optimization results.

A.2.2.1 Michell Beam

The Michell Beam, as seen in Fig. A.4, is a cantilever beam supported over half

its height along the left side of the domain. A load is applied on the right side at

the halfway point. The ground structure (Fig. A.4b) has 9 nodes in the x direction

(xnodes = 9) and 5 nodes in the y direction (ynodes = 5) with a total of 632 initial bar

members.
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Figure A.4: Michell beam

A.2.2.2 Single-load short bridge

The single-load short bridge, as seen in Fig. A.5 is a short span bridge with 4 evenly

spaced equal magnitude loads. The ground structure (Fig. A.5b) has xnodes = 6 and

ynodes = 4 for a total of 188 initial bar members.
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a Problem definition b Ground Structure

Figure A.5: Single-load short bridge

A.2.2.3 A single-load wheel

The single-load short wheel, as seen in Fig. A.6 is simply supported domain with

one downward load on the bottom center of the span.The ground structure (Fig. A.6b)

has xnodes = 5 and ynodes = 5 for a total of 200 initial bar members.
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Figure A.6: Wheel Problem

A.2.2.4 A single-load cantilever

The single-load cantilever, as seen in Fig. A.7 is pin supported on the left and

center bottom of the domain with one downward load on the bottom right of the

span.The ground structure (Fig. A.7b) has xnodes = 5 and ynodes = 5 for a total of 200

initial bar members.
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Figure A.7: Single load cantilever

A.2.2.5 MBB beam with many design variables

The MBB beam, while not a benchmark problem identified by Stolpe, is always a

good test case for topology optimization, since the user can intuitively evaluate the

quality of result. As seen in Fig. A.8, the MBB beam is simply supported domain with
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one downward load on the top center of the span.The ground structure (Fig. A.8b)

has xnodes = 15 and ynodes = 8 for a total of 4921 initial bar members. The purpose of

solving this example is to illustrate the efficiency inherent in the algorithm. Such an

example would be prohibitively large to solve using heuristic or global optimization

(e.g. Branch and Bound) methods.

L

L

2

H =
L

4

P

a Problem definition

b Ground Structure

Figure A.8: MBB beam

A.2.3 Solutions

Test cases in Figs. (A.4, A.5, A.6, A.7, A.8) were all run with a continuation

method in which the initial optimization was run with an exponent, η, of one for 50

iterations. The result of that optimization was then used as the initial design for a
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second optimization that was run with an exponent of two.

Table A.2.3 summarizes the results in comparison with the globally optimal com-

pliance, C, found by Achtziger and Stolpe.

Test Case η CSIMP Cglobal

Stolpe 1 2 9.39 8.96

Stolpe 2 2 10.67 10.56

Stolpe 3 2 0.28 0.28

Stolpe 4 2 0.98 0.94

In nearly all cases, except for Fig. A.10, a few cross sectional areas are not driven

to discrete values. The intermediate values are present due to the formulation. While

most are driven to discrete values, depending on the specified volume constraint,

there will almost always be one member that contains an intermediate value. This

is because, for minimum compliance case, the algorithm will always add material to

drive down the objective function, even if the addition of material is not very efficient

due to the SIMP penalty. This is a flaw which cannot be eliminated, but is not a huge

problem. The few elements in the intermediate regime can simply be rounded up to

the next cross section size (via post processing), so as to design on the conservative

side. It is argued, that, while not ideal, the extremely fast speed at which these

solutions are obtained greatly outweighs the issue.

The MBB beam, in Fig. A.13 completed the optimization in a surprising short
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Figure A.9: Single load Michell Beam Results
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Figure A.10: Bridge Results

amount of time. The algorithm proposed in this paper solves the problem in 205

seconds yielding a near uniform discrete final topology. The MBB beam in Fig. A.13

has 24605 design variables (4921 truss elements). A problem of this size cannot be

solved in a reasonable amount of time using either Branch and Bound or stochastic

search type algorithms.
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Figure A.11: Wheel Results

P

1

2

3

4 5

6

7

8

9

a Optimized Topology

1 2 3 4 5 6 7 8 9
0

2

4

bar number

A
re

a
 o

f 
b
a
r

b Bar Areas

Figure A.12: Single load cantilever Results

A.3 Test with simple ground structure

Here the algorithm is tested again with the Michell Beam and the single load

bridge structures (see Fig. A.15 and Fig. A.16), but this time run using the most

simple of ground structures (Figs. A.14a and A.14b). These are included to show

that the algorithm succeeds even when it must choose a more complicated load path.

By looking at the results in Fig. A.15 and Fig. A.16, it can be seen that the algorithm

performs exactly as expected. This shows that the proposed method not only works
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Figure A.13: Single load cantilever Results

for very large problems as in see Fig. A.13, but in small test cases as well.

A.4 Non-uniform discrete truss optimiza-

tion

In this section, the integer truss optimization is expanded to general discrete

truss optimization. The new formulation is a slight revision of the formulation in the
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a Simple GS Michell Beam

b Simple GS bridge single load case

Figure A.14: Simple ground structures

previous section. Introduced now are increments of the areas, which we will call ∆Ai.

The increments are ordered in such a way that if each design variable i is forced to 1

in a certain order, then the desired allowable areas will result. The desired allowable

areas are a cumulative summation of the A. For example, if the allowable areas are

[1, 1.5, 3, 5, 9], then ∆A = [1, 0.5, 1.5, 2, 4].

Obviously, this approach requires the design variables, i, to “turn on” in a certain

order. To accomplish this, a simple rule on the initial starting point is enforced.

Assuming the sensitivities remain negative (no inverter problem), the MMA will force

the design variables with higher magnitude to 1 before those of lower magnitude. It

is seen below, in which ρi is now a function of the design variable φi.
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Figure A.15: Simple GS Cantilever Beam Result

ρestiffness =
n∑
i=1

(φei )
η∆A

φi = φ0 + i∆φ

(A.9)

ρestiffness =
n∑
i=1

(φei )
η∆Ai

φi = φ0 + ∆φi

(A.10)

This is seen in Fig. A.17. Having a higher starting value on the SIMP curve results
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Figure A.16: Simple GS Cantilever Beam Result

in that corresponding design variable turning on before others.

To demonstrate turning on the design variables in the correct order, we again

examine the simple tension case as seen in Fig. A.2. Here, we want the design variable

φe1 to become one before φe2, before φe3, etc. It can be seen in Fig. A.18 that the same

solution is obtained as in Fig. A.2, however, design variables 1-3 and 1-4 for bar

members 1 and 2 respectively are driven to one. This is in contrast to the 3-5 and

2-5 as seen in Fig. A.2.

While the order makes no difference for the uniform ∆A, it is required when the
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Figure A.17: No heaviside required

∆A are not uniform. Investigating some more complicated examples, the algorithm is

seen to behave quite nicely for fairly arbitrary ∆A. In Fig. A.19, the bridge problem

is solved using a relatively arbitrary assortment of ∆A. The red bars indicate truss

member which contain a design variable that was not driven all the way to one. As

explained above, this is due to the volume constraint. The design variables do, in

fact, turn on in the desired order, even for these members.

A.5 Conclusions

There are some limitations to the method. Most notably, the non-uniform discrete

method will almost always fail on the force inverter problem. This is due to the sign

of the sensitivities changing from negative to positive. The logic of starting the design

variables at different starting points along the SIMP curve only holds true if the sign

of the sensitivities remains the same. Also, as noted earlier, there is almost no way to
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Figure A.18: Simple tension example optimization results

end up with every bar element at one of the predefined allowable areas. The algorithm

will always end with the volume constraint being active, since adding material will

always decrease the compliance (even if adding material is made inefficient by the

SIMP exponent).
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Figure A.19: Bridge Results with arbitrary ∆A
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