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Abstract

Research on biomarkers of Alzheimer’s disease has been shifting focus toward iden-

tifying changes in the preclinical stage, a stage prior to the emergence of cognitive

deficits. Advances in the field of computational anatomy leverages noisy, longitudi-

nal data for more sensitive and robust detection of shape differences. In particular,

cortical thickness measures have been shown to be a sensitive marker of change. In

this work, we introduce a pipeline for quantifying cortical thickness and develop three

models to study the earliest changes detected from structural MRI. First, we inves-

tigate where grey matter atrophy occurs with great spatial resolution using a new

cortical thickness metric and a mixed effects model of group differences. Next, we

determine when grey matter atrophy begins using a piece-wise linear mixed effects

model of atrophy. Finally, we characterize early progression of the disease in an

individual using a subject-specific model of atrophy spread.
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Chapter 1

Introduction

1.1 Alzheimer’s disease

Alzheimer’s disease (AD) is a progressive neurodegenerative disease that typically

occurs in old age, and is characterized by cognitive impairments such as memory loss.

It is estimated that 5.8 million Americans live with AD today (in 2020), and that with

the growth of the elderly population, this figure will rise to 13.8 million Americans

by 2050.1 Due to this large and increasing healthcare burden, there are now focused

research efforts to understand the disease mechanism and develop effective treatments.

A classic sign of AD dementia is amnesia, or the inability to recall recent events

and conversations. A more expansive list of clinical criteria for probable AD dementia

includes:2

• impairment in one or more cognitive domains (for example, an impairment in

1



CHAPTER 1. INTRODUCTION

memory recall and visuospatial skills)

• a history of worsening cognition

• interference with completing functional tasks (for example, trouble paying their

bills independently)

• a slow onset of symptoms that can span years

• exclusion of other causes of dementia (for example, vascular dementia)

Currently, AD can only be confirmed from a post-mortem identification of amyloid

plaques and neurofibrillary tangles (NFT). Despite advances in neuropsychological

assessments and diagnostic criteria, there remain issues with diagnostic specificity.

Post-mortem analyses have revealed that 15 to 30% of people diagnosed with probable

AD dementia show no evidence of AD histopathology.3–7

The issue is made more apparent earlier in the disease course. Years prior to a

diagnosis of probable AD dementia, patients are often diagnosed with mild cognitive

impairment (MCI). The clinical criteria for this diagnosis includes:8

• impairment in one or more cognitive domains

• concern from the patient or caretaker about a change in the patient’s cognition

• maintainence of independence in completing functional tasks

• exclusion of other causes of cognitive impairment

2



CHAPTER 1. INTRODUCTION

• exclusion of a diagnosis of dementia

Post-mortem analyses have revealed that only 54% to 63% of MCI cases show AD

histopathology.9,10

In addition to these issues with diagnostic specificity, there is accumulating evi-

dence that toxic changes start to occur in the brain years before the onset of clinical

symptoms.11 Turning back to post-mortem histopathological evidence, we see that

AD severity can be staged based on the location and concentration of NFT.12–14

During Braak stage I, NFT are found only in layer II of the transentorhinal cortex

(TEC). NFT accumulates in other layers and spreads medially to the entorhinal cor-

tex (ERC) during Braak stage II. It has been noted in post-mortem analyses that

Braak stages I and II typically show no evidence of any cognitive impairment.12 Initial

clinical symptoms do not typically occur until Braak stages III and IV, though there

is a variable relationship between clinical staging and histopathological staging.15–17

Braak stage III and IV are the limbic stages of the disease, as there is marked accu-

mulation of NFT in limbic regions such as the hippocampus and amygdala.12,18 The

final stages of the disease, referred to as the isocortical stages, are marked by severe

cortical destruction and NFT accumulation in isocortical association areas, such as

the orbitofrontal cortex.12

How can researchers hope to study and treat a disease for which the patient

population is hard to identify? First, a set of more stringent diagnostic criteria for

research purposes have been proposed. For example, the accuracy of MCI diagnosis

3
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is substantially higher in patients who exhibit an amnestic sub-type of MCI; these

are patients who have an impaired ability to recall recent events and conversations.

Researchers have also developed a number of biomarkers to aid in the specificity and

sensitivity of AD diagnosis. This can be roughly divided into biomarkers from cerebral

spinal fluid, and from imaging. One such promising biomarker is the β-amyloid level

found in cerebral spinal fluid.19,20 Unfortunately, abnormal levels of β-amyloid are

also found in a number of other neurodegenerative diseases, including Lewy body

disease, and can sometimes be found in cognitively healthy adults. It is likely that a

combination of biomarkers and clinical criteria are needed to improve the specificity

and sensitivity of identifying AD.

Imaging biomarkers of neuronal injury are well-positioned to 1) increase diagnostic

specificity by determining if etiology is consistent with AD pathology, and 2) increase

sensitivity by identifying populations at risk of converting to a symptomatic stage of

the disease. There are three types of imaging that show promise for the development

of neuronal injury biomarkers. Positron emission tomography (PET) with a glucose

metabolic tracer measure metabolism and have been shown to differentiate between

AD and frontotemporal dementia.21 Single-photon computed emission tomography

(SPECT) measures perfusion, and has also had some early success differentiating

between AD and frontotemporal dementia. Structural magnetic resonance imaging

(MRI) measure neuronal injury and have shown high specificity in identifying AD

from brain tumors, vascular dementia, and non-neurodegenerative diseases. Faster

4
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rates of volume atrophy and regionally-specific atrophy patterns as calculated from

structural MRI have been used to predict conversion to MCI and AD.22

While the exact mechanism is not understood, NFT, particularly in the presence

of amyloid plaques, are associated with spatially-specific decreased neuron counts and

increased grey matter atrophy in AD.23 The link between NFT and neurodegenera-

tion is further strengthened by studies of frontotemporal dementia, which has shown

that hyperphosphorylation of tau, critical for the formation of NFT, is sufficient to

cause neurodegeneration.24 In AD, NFT accumulation and other neuropathological

changes are linked to neuronal injury starting in the rhinal cortex, which can be

measured indirectly using structural MRI.25,26 Cross-sectional studies have confirmed

that entorhinal, hippocampal, and amygdalar atrophy detected from structural MRI

is associated with both clinical disease severity and NFT concentration.25,27–29

More recently, MRI studies have detected atrophy that precedes the onset of

clinical symptoms, often detecting these smaller changes using time-series data anal-

ysis30–33 and survival analysis.34–38 As MRI resolution and contrast have improved,

research has turned to building techniques to identify biomarkers that are sensitive

to grey matter atrophy and robust to brain shape variability. In this thesis we focus

on measuring atrophy in the earliest site of change, the rhinal cortex. Throughout

this work, we will refer to the rhinal cortex when discussing the TEC and ERC.

5



CHAPTER 1. INTRODUCTION

1.2 Computational anatomy

The field of computational anatomy has developed a framework for quantifying

anatomical variability over populations and studying local shape changes. In this

framework, neuroanatomy is represented as a Grenander deformable template, which

is mapped elastically to a target using a non-linear diffeomorphism.39,40 This type

of diffeomorphic model was first applied to neuroanatomy by Beg to compute image

mappings.41

Problem Formulation 1: Image matching with flows of diffeomorphisms

Given volume I in domain Ω ⊂ R3, a Hilbert space V of vector fields on Ω such

that V ⊂ C1
0(Ω,R3), solve the constrained optimization problem:

arg minvt

1∫
0

||vt||2V dt + λ||I0 ◦ φ−1
1 − I1||2L2 subject to vt ∈ V and ∂φt

∂t
= vt ◦ φt

In this formulation, the space of diffeomorphisms is equipped with a distance

metric based on the distance traveled along a velocity field, called a flow. Solving

the constrained optimization problem outlined in Problem Formulation 1, the optimal

diffeomorphism φ that maps template image I0 to target image I1 travels the shortest

path, and is therefore referred to as a geodesic flow. The term
1∫
0

||vt||2V dt is referred

to as the regularization term and enforces some properties of smoothness; the term

||I0 ◦ φ−1 − I1||2L2 is referred to as the data-fidelity term and ensures the deformed

template matches the target.

6
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By equipping the space of diffeomorphisms with an appropriately smooth dis-

tance metric, we can perform large deformations that conserve a few nice properties

for studying anatomy. For example, diffeomorphisms provide a one-to-one correspon-

dence between points, allowing for direct comparisons of a location across subjects.

Diffeomorphisms are also invertible, ensuring that once a mapping from a template

to target is established, the inverse mapping can be used to transform from target

back to the template space. Applied to neuroanatomy, this type of smooth, invert-

ible, one-to-one mapping prevents the creation of undesirable holes and overlapping

regions.

This diffeomorphic model has been further modified for surface matching applica-

tions using currents,42 which are invariant to parametrization, and varifolds,43 which

are invariant to both parametrization and orientation. Surfaces reduce the complexity

of shape representation and has been shown to have more robust mappings to noisy

data than image volume representations.44

Problem Formulation 2: Surface matching with geodesic coordinates

Given surface S in domain Ω ∈ R3, a Hilbert space V of vector fields on Ω such

that V ⊂ C1
0(Ω,R3), solve the constrained optimization problem:

arg minvt

1∫
0

||vt||2V dt + ||S0 ◦ φ−1
1 − S1||2 subject to vt ∈ V and ∂φt

∂t
= vt ◦ φt.

The norm || · ||2 on a surface S depends on the current or varifold method used.

7
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These large deformation diffeomorphic metric mapping (LDDMM) techniques

have been used to automatically map segmentations from a well characterized at-

las to subjects45,46 and to conduct population level studies of local shape changes in

regions of the brain (e.g. hippocampus).47,48 More recently, methods have been de-

veloped to incorporate longitudinal subject data to be more accurately and robustly

map shape changes of an individual over time.49

1.3 Cortical thickness

A number of shape metrics have been used to assess neurodegeneration from

structural MRI. The earliest studies began by correlating whole brain volume or

ventricular volume with clinical disease severity. Later, studies turned to region-

specific volume measures of the hippocampus, ERC, and amygdala. These were

shown to be more sensitive than whole brain volume and ventricular volume.36,50

Volume is a composite measure of surface area and cortical thickness, which are

phenotypically independent measures. While both measures influence volume, it has

been shown that volume is more closely linked to surface area.51 Since the human

cortex is highly folded, it poses a challenge to accurately measure cortical thickness

in regions of high curvature. Historically, volume measures have had the advantage

over cortical thickness measures for being more robust to poor image quality and

poor segmentation quality. However, as image quality and image analysis techniques

8
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have improved, cortical thickness has become a primary candidate for detecting local,

small changes in grey matter atrophy. Simply stated:

“Hippocampal volume is the most widely employed and discussed measure
of this type, and while clearly informative, it is increasingly appearing to
be less sensitive and specific than other measures such as regional cortical
thickness.”52

Two computational paradigms exist for calculating cortical thickness: voxel-based

methods and surface-based methods.53 Voxel-based methods include the use of line

integrals,54 solving the Laplacian,55 and diffeomorphic registration56 (such as the

DiReCT algorithm available through ANTS). While these volume-based methods are

computationally efficient, surface-based methods have been shown to more accurate

and robust to image resolution, field strength and scanner type.57–59

Surface-based methods start by estimating the grey matter-white matter (GM-

WM) surface, the pial surface, or both surfaces. Often, there is a step to correct

surface topology using smoothness constraints or intersection rules. It is intuitive to

define cortical thickness as the distance traveled along an orthogonal projection from

a point on one of these surfaces to the other surface. However, this type of approach

is sensitive to noise and the choice of starting surface, particularly in highly folded

regions.

A popular method made available through FreeSurfer deforms the GM-WM sur-

face to the pial surface, then calculates distance as the average of the distance from

the GM-WM surface to the closest point on the pial surface, and from that point

9
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back to the closest point on the WM surface.57 This simple method is more robust

to noise, but has been shown to sometimes underestimate thickness.60

Another surface-based method is an adaptation of the volume-based Laplace

method.61,62 This method generates a point-to-point correspondence between the

surfaces and has been shown to be more accurate and sensitive to diagnostic differ-

ences.59

Beyond point-to-point correspondence, further efforts have been made to develop

techniques that are more biologically-inspired and anatomically meaningful.63 It has

been suggested that cortical layers are equivolumetric rather than equidistant.64 That

is to say, in areas of high curvature, outer layers are thinner while inner layers are

thicker. One new surface-matching method, called normal geodesic flow, generates

these equivolumetric lamina in addition to maintaining nice properties of anatomy

such as invariance to surface parametrization, point-to-point correspondence, and

intersection rules.65

1.4 Dissertation outline

We have now introduced the need for imaging biomarkers of neurodegeneration

to improve specificity and sensitivity of identifying early AD. We reviewed spatially

and temporally specific histopathology, with the rhinal cortex as the earliest site of

disease-related changes. We then discussed a diffeomorphic framework of methods to

10
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quantitatively compare brains, and in particular, emphasized the advantage of new

cortical thickness methods.

The thesis is organized as follows. We first introduce a new pipeline for study-

ing the cortical thickness of the rhinal cortex. The pipeline is largely based on the

large deformation diffeomorphic metric mapping framework for studying anatomy.

Next, we discuss two types of population-level analysis for studying the disease in

high spatial resolution and high temporal resolution, respectively. We discuss the

statistical framework for testing hypotheses about anatomy. Finally, we introduce a

subject-specific model of disease spread that is based on our current understanding

of atrophy in early AD.

The work discussed in Chapters 2, 3, and 4 have been adapted from the following

publications:

• S. Kulason, D. J. Tward, T. Brown, C. S. Sicat, C. F. Liu, J. T. Ratnanather, L.

Younes, A. Bakker, M. Gallagher, M. Albert, M. I. Miller, “Cortical thickness

atrophy in the transentorhinal cortex in mild cognitive impairment.” NeuroIm-

age: Clinical, vol. 21, p. 101617, 2019.

• S. Kulason, E. Xu, D.J. Tward, A. Bakker, M. S. Albert, L. Younes, M. I. Miller,

“Entorhinal and transentorhinal atrophy in preclinical Alzheimer’s disease,”

Frontiers in Neuroscience, vol. 14, p. 804, 2020.

• S. Kulason, M. I. Miller, A. Trouvé, “Reaction-diffusion model of cortical atro-

11



CHAPTER 1. INTRODUCTION

phy spread during early stages of Alzheimer’s disease.” bioRxiv, 2020.

12



Chapter 2

Pipeline for studying rhinal cortex

morphology

A schematic of the pipeline for studying rhinal cortex morphology is shown in

Figure 2.1. The pipeline has five major steps prior to statistical analyses, which will

be covered in Chapter 3. The first step is to perform accurate manual segmentations

of the rhinal cortex from all subject and atlas MRIs. Next, we estimate a surface av-

eraged across the subjects, which is called a template surface. This step is referred to

as template estimation. We then diffeomorphically map the template to each segmen-

tation, utilizing longitudinal data to smooth variations in boundary definition. This

unbiased longitudinal diffeomorphometry provides a point-to-point correspondence

such that subjects can be quantitatively compared. From these surface mappings, we

calculate cortical thickness using an approach called normal geodesic flow. Finally, we

13
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diffeomorphically map atlases that have structural, functional, and histological subre-

gional labels to the template surface. This allows us localize differences to subregional

labels used in different fields.

2.1 Segmentation

The pipeline starts with a manual segmentation of the rhinal cortex using Seg3D

software.66 The ERC, otherwise known as Brodmann area 28, and TEC, or Brodmann

area 32, are histologically well-defined regions. We approximate these boundaries

using a set of structural markers visible on MRI. The boundaries of the ERC are

defined on MRI as follows:

• Rostral: 4mm rostral to the most rostral tip of the hippocampal head

• Caudal: 2mm caudal to the gyrus intralimbicus

• Medial: as far as visible GM-WM boundary, which occurs lateral to the uncal

notch

• Lateral: before entering the medial bank of the collateral sulcus

Similarly, the boundaries of the TEC are defined on MRI as follows:

• Rostral: 4mm rostral to the most rostral tip of the hippocampal head

• Caudal: 2mm caudal to the gyrus intralimbicus

14
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Figure 2.1: Schematic of the pipeline for studying rhinal cortex morphology

15
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• Medial: the most medial extent of the collateral sulcus

• Lateral: deepest extent of the collateral sulcus

In histology, the anterior and posterior boundaries of Brodmann area 35 extend

past and enclose Brodmann area 28. The boundaries of the TEC defined on MRI

exclude these most anterior and posterior regions due to a lack of consistent visible

landmarks. In particular, delineation of the ERC and TEC boundaries anterior to the

hippocampal head is more complicated, even in histology. Originally, Insausti and

colleagues designated this region to be a mix of ERC and perirhinal cortex (PRC),67

whereas Krimer and colleagues defined this region as part of the primary olfactory

cortex.68 More recent work from Van Hoesen and colleagues suggests that this area

is actually ERC.69 Some of these discrepancies in reports may be due to the vari-

able folding pattern in this anterior extent of the rhinal cortex. There are at least

three folding variants of the rhinal sulcus, and the boundaries of the ERC are not

well-defined based on folding patterns visible on MRI.67 Given these difficulties, the

roughly 5 mm region of cortex that is more than 4 mm rostral to the tip of the hip-

pocampal head and typically anterior to the amygdala is excluded in our procedure.

The delineation of the ERC also excludes a small dorsal medial aspect of the ERC

that rests against the amygdala. This corresponds to a portion of the intermediate

superior subregion of ERC, as shown in Figure 2.2. Since this region of the ERC is

indistinguishable from the amygdala on T1 MRI scans, the exclusion of this region is

standard in MRI ERC delineation.71,72

16
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Figure 2.2: Overlay of histological definition of ERC with structural definition of
rhinal cortex. Figure reproduced with permission.70

The lateral extent of the ERC that meets the medial extent of the TEC was defined

based on histology of deep continuous collateral sulci (CoS).67 Similarly, the lateral

extent of the TEC was defined based on the histology of deep continuous collateral

sulci.69 This is important because the extent of the ERC and TEC depend on the

variant of CoS,67 and there are several anatomical variants to consider.69,73 Figure

2.3 illustrates the three major anatomical variants of CoS. The following is an excerpt

that describes these variants:70

“The first variant is a deep, continuous sulcus where the rhinal sulcus
shares a sulcal bed with the collateral sulcus proper. This variant has
been referred to as Type I CoS69 and Type II/Type III rhinal sulcus.73

The second variant is a discontinuous CoS where the collateral sulcus
proper begins posterior to the GI. This variant has been referred to as a
Type IIa CoS69 and Type I rhinal sulcus.73 Finally, there is a variant with
a discontinuous CoS where the collateral sulcus proper begins anterior to
the [gyrus intralimbicus]. This variant has been referred to as a Type IIb
CoS69 and also falls into the category for Type I rhinal sulcus.73”

Type I and Type IIa CoS are of regular (between 1 and 1.5 cm) to deep (> 1.5cm)

CoS length. In a deep CoS, the ERC extends up to the medial bank and the TEC

17
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Figure 2.3: A coronal MRI section and corresponding surface of each CoS variant
Type I (left), Type IIa (middle), and Type IIb (right). The surfaces are oriented such
that left is medial, right is lateral, top is posterior, and bottom is anterior. Figure
reproduced with permission.70

extends to the deepest extent of the CoS. In a CoS of regular length, the ERC extends

to the midpoint of the medial bank of the CoS, and the TEC stops short of the deepest

extent. In a shallow CoS (< 1cm), as typically seen in Type IIb CoS variants, the

ERC extends to the deepest extent of the CoS. The TEC is then on the lateral bank

of the CoS. In order to study disease-related changes, we chose to reduce variability

in anatomical differences by excluding Type IIb CoS.
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2.2 Population surface template estima-

tion

Once accurate segmentations of the rhinal cortex are generated for each subject

and their multiple scans, the next step is to generate a population average, called

the template surface. Here, we use an approach that was developed on the large

deformation diffeomorphic metric mapping framework to calculate a Fréchet mean

diffeomorphism for a population.74

We start by rigidly registering the segmentations to a hypertemplate. Previous

works have selected a segmentation from the population to serve as the hypertemplate

segmentation, which may bias the final template toward the selected subject. Instead,

we rigidly register the segmentations and take their Euclidean average to generate

a hypertemplate segmentation. For each segmentation and the hypertemplate, a

smooth surface is generated in the following way: 1) apply Gaussian blur with a

kernel size of 1 mm to the segmentation image 2) upsample the image using linear

interpolation 3) generate an isosurface using marching cubes 4) remove undesirably

narrow and small faces using Delaunay triangulation.75

A randomly selected subset of surfaces, including all time points, are then used

to generate the template. While all surfaces can be used in this step, the task is

computationally intensive with little added benefit for each additional surface. Ran-

dom selection is important so that the template surface reflects the population. The
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Figure 2.4: Example rhinal cortex surfaces in red. The resulting population surface
template in grey. The surfaces are oriented such that left is medial, right is lateral,
top is posterior, and bottom is anterior. Figure reproduced with permission.70

hypertemplate surface is used as a prior to calculate the template surface.

We solve the Bayes problem of parametric surface-matching to estimate an initial

momentum and associated diffeomorphism used to deform the hypertemplate. Note

that the resulting deformed hypertemplate is the template surface. We estimate the

diffeomorphism that follows a geodesic flow from the hypertemplate to template, and

also minimizes the sum of geodesic flows from the template to each of the individual

subject surfaces. This can be interpreted as a Fréchet mean diffeomorphism of the

population. Details on the numerical implementation, which uses a mode approxi-
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mation expectation-maximization algorithm is described by Ma et al.76 This mode

approximation is also the maximum a posteriori solution of the Bayes problem. Fig-

ure 2.4 shows a sample of rhinal cortices and the resulting template surface using this

approach.

2.3 Subject mappings via unbiased longi-

tudinal diffeomorphometry

At this point, we have a template surface and a set of segmentations of the rhinal

cortex. For each subject’s set of segmentations, we use a method called unbiased

longitudinal diffeomorphometry to calculate surface mappings with points that corre-

spond to each point on the template surface. This method defines an inexact matching

problem for geodesic positioning, with a matching term between the dense interior

of the transported template and the target segmentation. The problem formulation

is different from the image-matching and surface-matching problems introduced in

Chapter 1 since this method uses images for the data attachment term, but singular

geodesic coordinates for the regularization terms. The new problem formulation is

shown in Problem Formulation 3.
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Problem Formulation 3: Matching with singular geodesic coordinates

Given a template segmentation image I0, a set of target segmentation images I i1

(for index i ∈ 1, 2, 3...) in domain Ω ∈ R3, and a Hilbert space V of vector fields on

Ω such that V ⊂ C1
0(Ω,R3), which has an associated RKHS kernel K ∈ R3 ×R3,

solve the constrained optimization problem:

arg minp00,p
1
0,t

∗||p00||2V ∗ +
N∑
i=1

λ0

(
||p10(ti − t∗)||2V ∗ + λ1||I0 ◦ φ−1

ti − Ic1||2L2

)
subject to

vt ∈ V , ∂φt

∂t
= vt ◦ φt, and v(·) =

∫
U

K(·, f(u))p(u)∂η(u) for geodesic singular

coordinates p : U → R3 with surface representation u ∈ U ⊂ R2.

p0 corresponds to the flow from template to target at time t = t∗, and p1 corre-

sponds to the flow from target at t = 0 to target at t = 1.

The approach deforms the template to a subject-specific average surface following

a geodesic flow, and then follows a second geodesic trajectory to deform from this

subject-specific average through all the segmentations of this subject. See Figure 2.5

for an illustrative example. The numerical solution for the maximum a posteriori is

achieved by gradient descent using an adjoint method. The subject-specific average

surface, mapped surfaces, and time t∗ at which the subject-specific average surface is

inserted into the second trajectory, are updated iteratively. Because this is a solution

to a Bayes problem of parametric mapping, we have the advantage of filtering noisy

boundaries introduced from manual segmentations over a series of scans. Details on

this implementation are described by Tward et al.49,78
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Figure 2.5: Schematic for performing unbiased longitudinal diffeomorphometry
given a set of subject segmentations (red), a population surface template (grey) re-
sulting in diffeomorphic mapping (blue). Figure reproduced with permission.77

2.4 Cortical thickness via normal geodesic

flow

To calculate vertex-wise cortical thickness, we start by cutting the rhinal cortex

template surface into two surfaces: one pial surface and one GM-WM boundary

surface. Since the surface mappings from unbiased longitudinal diffeomophometry

have a one-to-one vertex correspondence with the template surface, we can transfer

this cut to all surfaces.

The pial surface, or outer surface, is then deformed to the GM-WM boundary sur-

face, or inner surface, using an approach called normal geodesic flow.65 The resulting

mapping is constrained such that the flow remains normal to the evolving surface,
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Figure 2.6: Schematic for calculating cortical thickness. Cut the surface (left),
perform normal geodesic flow (middle), calculate distance traveled along trajectories
(right). Figure reproduced with permission from.77

as shown in Problem Formulation 4. Details on how the data attachment term is

invariant to surface parametrization is described by Ratnanather et al.65

Problem Formulation 4: Surface-matching normal to evolving surface

Given template surface S0, target surface S1 in domain Ω ⊂ R3, a Hilbert space V

of vector fields on Ω such that V ⊂ C1
0(Ω,R3), solve the constrained optimization

problem:

argminv||vt||2V +
∫
S

λ|Dv|2FdσS + ||S0 ◦ φ−1
1 − S1||2 subject to vt ∈ V , ∂φ

∂t
= vt ◦ ϕt,

and ∂tS(t) = v(t, S(t)) remains perpendicular to the evolving surface.

σS is the volume of S, Dv is the differential of v, and norm ||S||2 is chosen to be

invariant to parametrization.

Finally, cortical thickness is calculated as the distance traveled along these trajec-

tories. An illustration normal geodesic flow on a template surface is shown in Figure
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2.6. Here, the color represents cortical thickness at each vertex on the pial surface.

2.5 Atlasing

Studying the rhinal cortex is complicated by inconsistent nomenclature of the

region. The transentorhinal cortex on the medial bank of the CoS is often grouped

together with the ectorhinal cortex on the lateral bank of the CoS, and together

referred to as the perirhinal cortex (PRC).67,72 Notably, this definition of PRC is

different than the PRC of mouse brain atlases, where the label PRC refers specifically

to the TEC and no surrounding regions,79.80 The Desikan-Killiany human brain atlas,

available through FreeSurfer, refers to the ERC and TEC together as the ERC, and a

caudal portion of the ERC as the parahippocampal gyrus.71 In other atlases, the ERC,

TEC, ectorhinal cortex, and parahippocampal cortex (PHC) together are referred to

as the parahippocampal gyrus,81.82 While efforts are under way to standardize the

naming scheme for the regions of the hippocampal formation, work on standardizing

the nomenclature and borders of the rhinal cortex have not yet been approached.83

To address this, the final step in this rhinal cortex pipeline is to map several

commonly used atlases to the template surface. Each atlas is manually segmented

following the segmentation protocol described in Sectoin 2.1. A smooth surface is

generated, and each vertex is assigned a subregional label using linear interpolation.

The template surface is then mapped to each atlas surface by solving the standard
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surface-matching problem.

We now show a particular use case that compares four different subregional sets

of labels : 1) manual labels of ERC and TEC based on cortical folding seen in

structural MRI78 described in Section 2.1, 2) automated labels of ERC and parahip-

pocampal gyrus (PHG) based on cortical folding seen in structural MRI71 generated

from FreeSurfer, 3) labels of posterior medial ERC (pmERC), anterior lateral ERC

(alERC), and perirhinal cortex (PRC) based on connectivity patterns seen in func-

tional MRI after manual segmentation of ERC in structural 7T MRI,72 and 4) histo-

logical labels of intermediate superior ERC, intermediate rostral ERC, intermediate

caudal ERC, prorhinal ERC, medial rostral ERC, medial caudal ERC, lateral ERC,

sulcal ERC and TEC as identified in an 11T ex vivo MRI.68,84

The manual segmentation of ERC and TEC were performed on a scan with a

Type IIa CoS variant of regular depth (1.30 cm). FreeSurfer 6.0 run with the Desikan-

Killiany atlas was used to generate automatic labels on this same scan. The functional

MRI atlas was also on a subject with Type IIa CoS variant of regular depth (1.20

cm).72 Finally, the ex vivo MRI atlas was on a subject with a Type IIb CoS variant

of shallow depth (0.75 cm).

In this ex vivo case, since the CoS was shallow, we extended the TEC to the lateral

bank of the CoS, as seen in histology.67,69 Atlas labels were mapped to the manually-

defined rhinal cortex surface by linear interpolation. Finally, we diffeomorphically

mapped the surfaces and their labels to the template surface in the large deformation
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diffeomorphic metric mapping framework.41 The result are four sets of labels– one

from each atlas–at each vertex of the template surface.

We now provide some commentary on differences between the atlases. Regarding

the anterior boundary of the ERC, the Desikan-Killiany atlas defined it at the rostral

end of the CoS; this is approximately 6 mm anterior to the boundary defined in our

own protocol. It includes the region with rhinal sulcus variants that are anterior to

the amygdala, which was previously discussed in Section 2.1. On the other hand, the

functional MRI atlas defined the anterior boundary at the rostral end of the amygdala,

which coincided with the boundary of our protocol. The anterior boundary on the ex

vivo MRI atlas was 0.5 mm posterior to the boundary from our protocol.

The posterior boundary of the Desikan-Killiany atlas was also dissimilar to the

other atlases. The Desikan-Killiany atlas defined the posterior boundary at the caudal

end of the amygdala. From histology, the ERC continues further posterior, running

under and lateral to the hippocampal formation.67–69 The functional MRI atlas de-

fined the posterior boundary at the caudal extent of the CoS. Since this atlas is a Type

IIa CoS variant, the caudal extent of the CoS coincided with 1.2 mm posterior to the

GI, or one 0.6 mm slice anterior to the boundary described in our protocol. Similarly,

the posterior boundary of the ex vivo atlas was 1.0 mm anterior to the boundary from

our protocol. Again, we see somewhat similar boundaries in the functional MRI, ex

vivo MRI, and our own protocol.

The atlases typically were in agreement about the medial boundary of the ERC.
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The Desikan-Killiany atlas, functional MRI atlas, and our protocol had the medial

boundary extended to where gray/white boundary was visible in the MRI. The ex

vivo atlas, on the otherhand, also included the dorsal medial aspect of the ERC that

lies medial to the amygdala. While visible on this high-field strength, this is a border

that is not consistently visible on 3T T1 MRI.

Finally, the lateral extent of the ERC was somewhat variable between atlases. The

Desikan-Killiany atlas extended to the most lateral extent of the CoS. This boundary

definition closely follows the histological boundary of subjects with a shallow CoS

variant,67 often seen in Type IIb CoS. The functional MRI atlas, on the other hand,

extended to the shoulder of the CoS. This is a definition that most closely resembles

the histological boundary for a deep CoS variant.67 Our protocol also follows a delin-

eation that matches a deep CoS variant. Since the atlas had a regular CoS depth, it

is likely that the ERC histologically ends somewhere between the should of the CoS

and its deepest extent. In the following chapters, we analyze subjects that range from

regular CoS depth to deep CoS depth and exclude subjects with a shallow CoS.

2.6 Experimental results

We now show a set of results produced using the rhinal cortex pipeline. We

examined a set of preclinical subjects who were enrolled with normal cognition, and

then converted to a diagnosis of MCI a year or more after their initial scan. A
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description of the stringent diagnostic criteria used to identify these subjects is taken

from an excerpt of our recent publication:70

“Subjects were selected from the ADNI database (adni.loni.usc.edu). The
criteria for stable NC included the absence of a diagnosis of MCI or AD
on all baseline and follow-up visits, a CDR score of 0 on all baseline and
follow-up visits, evidence of performance within the normal range on the
Logical Memory Subtest of the Wechsler Memory Scale on all baseline
and follow-up visits (based on education adjusted norms), and negative
results for elevated amyloid β levels on the baseline visit (greater than a
cut off of 192 pg/mL from CSF as established by the ADNI Biospecimen
Core).

The criteria for NC to MCI converters included evidence of performance
within the normal range on the Logical Memory Subtest of the Wechsler
Memory Scale at baseline (based on education adjusted norms), a CDR
score of 0 on the baseline exam, a diagnosis of NC at baseline, and a
diagnosis of MCI or dementia at a subsequent follow-up visit. Estimated
MCI age-of-onset was established based on annual assessment of diagnosis.
Note that subjects missing a diagnostic evaluation more than a year prior
to MCI diagnosis were excluded, and one subject with an MCI diagnosis
was also excluded due to a stable, high score on the Logical Memory
Subtest of the Weschler Memory Scale five years after diagnosis.

In addition, subjects had to have a minimum of three 3T MRI scans over
two or more years. Out of the 30 subjects that met all criteria for NC
to MCI converters, all subjects were examined and 17 had a continuous
collateral sulcus (CoS) and were included in this study. We examined
a subset of available stable NC subjects to reach a total sample size of
50. Out of the 84 subjects that met all criteria for stable NC, 68 were
examined and 33 had a continuous collateral sulcus and were included in
this study.”

In addition to controls with NC and NC to MCI converters, we examined a group

of subjects enrolled with MCI that later converted to a diagnosis of dementia (DEM).

The criteria for MCI to AD converters included evidence of impaired performance on

the Logical Memory Subtest of the Wechsler Memory Scale (based on age and educa-

tion adjusted norms), a score of CDR ≥ 0.5, amyloid β positive, a diagnosis of MCI
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Figure 2.7: Manual structural labels (top left), automated structural labels (top
right), functional labels (bottom left), histological labels (bottom right) mapped onto
the population template. Figure reproduced with permission.70

at baseline, and a diagnosis of dementia during a follow up assessment. Estimated

age-of-onset of Alzheimer’s dementia was established based on annual assessment of

diagnosis, and subjects missing a diagnostic evaluation more than a year prior to

DEM diagnosis were excluded. Out of the 81 subjects that met all criteria for MCI to

DEM converters, 50 were examined, and 19 had a continuous CoS and were included

in this analysis. In total, 69 subjects and 303 3T MRI scans were analyzed.
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To discuss the rhinal cortex morphology, we start by introducing subregional labels

from the four atlas mappings, shown in Figure 2.7. Note how Desikian-Killiany’s

ERC extends further laterally than the other atlases, and that the posterior medial

entorhinal cortex is a small functional subregion of the ERC. Average ERC and

average TEC cortical thickness metrics were calculated based on the labels shown

in the manual structural labels. These averages are plotted by age and diagnostic

grouping in Figure 2.8.

The TEC is slightly thicker than the ERC, which is in agreement with our previous

work.85 In both the average TEC and average ERC, organization by MCI diagnosis

date show cortical thickness measures decrease with progression of the disease, and

that the rate of cortical thinning is noticeably steeper in NC to MCI converters than

in stable NC subjects, and in MCI to DEM converters than NC to MCI converters.

Many past studies have focused on volumetric measures of Alzheimer’s disease.

For comparison, we calucate volume measures from the smoothed surfaces output

from longitudinal diffeomorphometry, prior to surface cutting. Figure 2.9 shows the

rhinal cortex volume measured for the set of subjects cortical thickness was shown in

Figure 2.8. As with cortical thickness, volume measures decrease with progression of

the disease, and the rate of thinning is steeper in NC to MCI converters compared

to stable NC subjects, and steeper in MCI to DEM converters than NC to MCI

converters. However, the average rate of change in stable NC subjects is steeper for

volume (−1.6% per year) than for ERC or TEC thickness (−0.9% per year, −1.3% per
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year respectively). In addition, the range of natural variation in volume in stable NC

subjects was 600 mm3 to 1800 mm3 (a factor of 3), compared to a cortical thickness

range of 2.1 mm to 3.1 mm (a factor of 1.5) including both ERC and TEC. Given

the milder effects aging and subject-to-subject variation, as well as the additional

local information cortical thickness can provide, this type of thickness biomarker has

potential to be more sensitive to disease progression than a volume biomarker.

2.7 Summary

Here, we have introduced a new pipeline for studying the morphology of the rhi-

nal cortex. We started with manual segmentations based on anatomical landmarks

visible in T1 MRI. This is because manual segmentations remain the gold standard

and are preferred to automatic segmentations when the sample size is feasible. We

then built smooth surface representations and estimated a template surface using a

Bayesian surface-matching approach to construct an average diffeomorphism of the

population. Building an accurate representation of the shape of a population is im-

portant to reduce bias. We mapped the template surface to longitudinal segmentation

data for each subject, using an approach involving singular geodesic coordinates and

image-matching. This approach allowed us to map each subject to the template co-

ordinate space, and reduce variability in rhinal cortex boundaries within a subject.

Cortical thickness was calculated by cutting the surface into an inner and outer sur-

34



CHAPTER 2. PIPELINE FOR STUDYING RHINAL CORTEX MORPHOLOGY

face, which correspond to the GM-WM boundary surface and pial surface. Using

a surface-matching approach with velocity constrained such that the surface evolves

normal to the evolving surface, we estimate thickness as the distance traveled along

trajectories from the outer to inner surface. Finally, a set of labeled atlases were

manually segmented and mapped to the template surface to put various nomencla-

ture from structural MRI, functional MRI, and histology into the context of our rhinal

cortex morphological measures.

Beyond the experimental results shown for early AD, this pipeline has potential

applications for studying other neurodegenerative diseases (i.e. Huntington’s disease,

frontotemporal dementia) and cortical changes that result from visual and hearing

impairment. Statistical methods for quantifying differences in cortical thickness are

covered in Chapter 3.
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Chapter 3

Population-level analysis

We now develop a statistical framework for estimating where disease-related changes

occur, and when these changes start to occur. We start by introducing a general

framework of bootstrap resampling that can be used to test hypotheses and build

confidence intervals. Next, we discuss specific use cases called group-wise difference

analysis and change-point analysis. These analyses test where changes occur with

high spatial resolution, and when these changes occur with high temporal resolution,

respectively. This chapter has been modified, in part, from a publication related to

this work.70
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3.1 Bootstrap resampling approach

Let us consider a set of data where we are interested in studying whether variable

x explains outcome y. Outcome y is known to be influenced by a second variable, z.

For a concrete example, we can assign x as disease status, z as age, and y as cortical

thickness. To test whether x explains y, we must build two models. One model

represents the null hypothesis and is a function of z. The second model represents

the alternative hypothesis and is a function of both x and z. We then test whether

the fit of the alternative model is significantly better than the fit of the null model,

which can be done using a likelihood ratio as the test statistic.

However, testing is complicated when outcome y is high dimensional. We deal

with high dimensional data when examining vertex-wise cortical thickness measures.

The introduction of such a large number of comparisons require careful statistical

construction for controlling the probability of one or more false positives, called the

family-wise error rate.

The most conservative approach is to correct statistics using a Bonferroni correc-

tion, which sets the threshold for significance based on the desired α level, and divides

this by the number of comparisons made. However, this approach can be overly con-

servative in cases with a large number of positively correlated tests are performed, as

seen in spatially-dependent metrics of cortical thickness.

On the other hand, non-parametric resampling-based methods can preserve spatial

dependence and obtain an empirical estimate of the maximum test statistic distribu-
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tion. This type of method makes no assumptions about the distribution and accounts

for multiple comparisons by taking the maximum test statistic over the set. Spatial

dependence is preserved by resampling across the surface. One neuroimaging review

of statistical methods compared Bonferroni-related methods and resampling methods

(as well as other methods) and found that:86

“Non-parametric permutation and bootstrap methods provide estimation
of the maximum distribution without strong assumptions, and without
inequalities that loosen with increasing dependence. Only their computa-
tional intensity and lack of generality preclude their widespread use...with
our real data studies the permutation method was found to be more sen-
sitive [than Bonferroni or Random Field Theory] in all 11 data sets.”

The difference between permutation methods and bootstrap methods is that per-

mutation involves resampling under the null hypothesis without replacement, whereas

bootstrapping involves resampling under the null hypothesis with replacement. Boot-

strapping approximates the sampling distribution for exchangeability, where as per-

mutation tests directly use the observed sampling distribution. As a result, boot-

strapping makes fewer assumptions about the data and is a more general method

that is applicable to a wider set of problems. However, bootstrapping is only valid

asymptotically, whereas permutation testing, when justified, is exact for finite sam-

ples. Permutation tests have typically been structured by permuting the diagnostic

labels. Instead, we choose residual boostrapping under the null hypothesis. Before

resampling, we decorrelate the residuals from random effects using a whitening trans-

formation. An example of a random effect is subject-specific differences, which is

heterogeneous and cannot be explained by other variables. The underlying assump-
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tion for bootstrapping is that the residuals being resampled are independent and

identically distributed. Therefore, it is important to decorrelate the residuals. This

procedure for hypothesis testing and building confidence intervals has been previously

used with surface-based metrics.87,88

To conduct a hypothesis test, we bootstrap resample under the null hypothesis.

For each bootstrap sample, the maximum test statistic over all the vertices is found

and added to a distribution of maximum test statistics. The p-value associated with

the hypothesis test is then the fraction of times the true likelihood ratio is smaller

than a likelihood ratio obtained on the bootstrap samples.

We can calculate a confidence interval using a similar approach. Instead of using

the null model to construct new samples, we now bootstrap resample under the

alternative hypothesis. We then construct a distribution for each of the coefficients

of interest and calculate the 90% confidence interval.

3.2 Group-wise difference analysis

In this section, we outline the construction of group-wise difference analysis using

cortical thickness data and three diagnostic groups. The approach can be modified to

use other shape metrics, and any number of groups larger than or equal to two. The

diagnostic groups considered here are stable NC subjects, NC to MCI converters, and

MCI to DEM converters. Note that the groups do not have to follow stages of one
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particular disease, and can include separate disease etiologies.

Given a subject i, scan j, and vertex k, a log-linear mixed effects model under the

null hypothesis can be written as Eqn (3.1). Note that in addition to age, the sex of

a subject is known to influence cortical thickness:

log(thickness)i,j,k = ak + bk agei,j + ck sexi + ei,k + ϵi,j,k. (3.1)

The vertex-wise coefficients a, b, and c, as well as the variance of e and ϵ are

estimated by maximum likelihood. e is a subject-specific zero-mean Gaussian random

effect. Age and the binary indicator variable for sex are fixed effects. ϵ is a zero-mean

Gaussian that models noise.

The log-linear mixed effects model under the alternative hypothesis can be written

as Eqn (3.2):

log(thickness)i,j,k =ak + bkagei,j

+
(
a′k + b′k(agei,j − age MCIonseti)

)
isPREi

+
(
a′′k + b′′k(agei,j − age DEMonseti)

)
isMCIi

+ c sexi + ei,k + ϵi,j,k.

(3.2)

Here, a′ is the mean difference in log cortical thickness at the time of MCI diagnosis

in subjects that convert from NC to MCI. More specifically, this is the difference in

thickness compared to subjects with stable NC. Similarly, a′′ is the mean difference
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in log cortical thickness at the time of DEM diagnosis for subjects that convert from

MCI to DEM. Again, this difference is with respect to subjects with stable NC. b′

and b′′ corresponds to the disease-related rate of change in NC to MCI converters and

MCI to DEM converters, respectively. These coefficients are all vertex-wise measures.

Now we introduce a short note on the notation used in these equations: isPRE is

a binary indicator variable for whether a subject belongs to the group that converts

from NC to MCI, and age MCIonset is the age of MCI diagnosis. Similarly, isMCI is

a binary indicator variable for whether a subject belongs to the group that converts

from MCI to DEM, and age DEMonset is the age of DEM diagnosis.

To discuss the likelihood function associated with these models, let us consider a

more general form of the model, shown in Eqn 3.3:

Y = Xα+Bη + ϵ. (3.3)

Given a set of data X (i.e. age, sex, and grouping) to explain Y (i.e. cortical

thickness), and covariance matrix B (i.e. a mapping from scans to subjects), we

estimate α, ρ2 and σ2. η and ϵ are independent, identically distributed zero-mean

Gaussian random effects with a variance of ρ2 and σ2, respectively. Given I subjects

and N scans in total, the likelihood function for this problem can be written as Eqn
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3.4:

L(η, α, ρ2, σ2|X, Y ) =p(X, Y | η, α, ρ2, σ2)

=
N∏

n=1

1

(2πσ2)2
exp

(
ϵT

1

2σ2
ϵ

) I∏
i=1

1

(2πρ2)2
exp

(
ηT

1

2ρ2
η

)
.

(3.4)

The likelihood function for our models can be simplified and written as a function

of one variable, θ, defined as the ratio between σ2 and ρ2. We can then use Mat-

lab’s 1D minimizer fminbnd (or fminsearch) to minimize the negative log likelihood

function for each model, at each vertex. The negative log-likelihood function for this

type of mixed effects model has been derived in detail by Tward et al.89 Below we

summarize the equations to solve for α, σ2, ρ2, and log-likelihood l(θ) given θ (Eqn

3.5, 3.6, and 3.7). Note that |·| denotes a matrix determinant, IN is an N×N identity

matrix, and constants independent of θ have been removed from the log-likelihood

function:

α =

(
XT (IN −B(BTB +

1

θ
)−1BT )X

)−1(
XT (IN −B(BTB +

1

θ
)−1BT )Y

)
, (3.5)

σ2 =
1

N
(Y −Xα)T (IN −B(BTB +

1

θ
)−1BT )(Y −Xα),

ρ2 = θσ2,

(3.6)
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l(θ) =− N

2
log

(
(Y −Xα)T (IN −B(BTB +

1

θ
)−1BT )(Y −Xα)

)
+

1

2
log|IN −B(BTB +

1

θ
)−1BT |.

(3.7)

We can then conduct a hypothesis test using 10, 000 bootstrap samples. We then

follow up with a pairwise post-hoc testing between groups and a Bonferroni correction

for the number of group pairs tested. The distributions of maximum test statistics

used in pair-wise tests are calculated using the entire set of vertices. The vertices

tested in the post-hoc test are limited to vertices significant in the original test.

Let us now step through pairwise post-hoc testing in our specific example. We

modify the null hypothesis to test whether there is a difference between stable NC

and NC to MCI converters. Eqn 3.8 corresponds to the null hypothesis and Eqn 3.2

corresponds to the alternate hypothesis:

log(thickness)i,j,k =ak + bk agei,j

+
(
a′′k + b′′k(agei,j − age DEMonseti)

)
isMCIi

+ ck sexi + ei,k + ϵi,j,k.

(3.8)

Next, we modify the null hypothesis to test for a difference in cortical thickness

between stable NC and MCI to DEM converters. Eqn 3.9 corresponds to the null
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hypothesis and Eqn 3.2 corresponds to the alternate hypothesis:

log(thickness)i,j,k =ak + bk agei,j

+
(
a′k + b′k(agei,j − age MCIonseti)

)
isPREi

+ ck sexi + ei,k + ϵi,j,k.

(3.9)

Finally, we modify the null hypothesis to test for a difference in cortical thickness

between NC to MCI converters and MCI to DEM converters. Eqn 3.10 corresponds

to the null hypothesis and Eqn 3.2 corresponds to the alternate hypothesis:

log(thickness)i,j,k =ak + bk agei,j

+
(
a′k + b′k(agei,j − age MCIonseti)

)
isPREi

+
(
a′k + b′k(agei,j − age DEMonseti)

)
isMCIi

+ ck sexi + ei,k + ϵi,j,k.

(3.10)

At vertex locations where the alternative model significantly outperformed the null

model, we can then calculate the difference in atrophy and atrophy rate. Atrophy

rate (% per year) can be approximated as 100 ∗ b. This approximation holds true for

relatively small values.
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3.3 Experimental results

Using the method described in Section 3.2, we examined 69 subjects. The demo-

graphics of these subjects are shown in Table 3.1. There were no significant differences

in age, sex, number of scans, or scan period stratified by diagnostic group. Note that

the clinical follow-up period is longer than the scan period because scans that were

introduced with a new scan protocol in ADNI3 were excluded from this analysis.

Differences in scan protocol can introduce a source of bias, and while strategies have

been developed for harmonizing cortical thickness across scanners, time-dependent

harmonization is still an exploratory field.90

Diagnostic group stable NC NC to MCI MCI to DEM
Sample size (n) 33 17 19

Baseline Age (years) 72.3± 5.5 74.9± 5.3 72.7± 6.4
Sex (% Female) 45.5 70.6 63.2

# of scans (years) 4.5± 0.6 4.6± 1.1 4.1± 0.8
Scan period (years) 3.4± 1.1 2.9± 1.0 2.0± 0.8

Clinical evaluation period (years) 5.3± 2.4 6.4± 3.7 4.1± 1.7

Table 3.1: Demographics (mean ± standard deviation where applicable)

We rejected the null hypothesis with a global p < 0.0001 and concluded that

there was a difference in cortical thickness by diagnostic group. More specifically, we

rejected the null hypothesis at 90% of vertices. Figure 3.1 shows the location and

magnitude of disease-related atrophy compared to subjects with stable NC.

Using pairwise post-hoc testing, we rejected the null hypothesis for all three pairs

of diagnostic groups (global p < .0001 for stable NC versus NC to MCI converters,
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Figure 3.2: Results of pairwise post-hoc testing between NC to MCI converters
and MCI to DEM converters. Top is the thickness difference from MCI diagnosis
to DEM diagnosis, and bottom is the atrophy rate difference between these groups.
Pair-wise results for the diagnostic groups compared to stable NC are not shown
because all vertices tested rejected the null hypothesis, rendering regions identical to
that displayed in Figure 3.1.

global p < .0001 for stable NC versus MCI to DEM converters, and global p = .0002

for NC to MCI converters versus MCI to DEM converters). We rejected the null

hypothesis for all 90% of vertices in comparisons to stable NC. Between NC to MCI

converters and MCI to DEM converters, we rejected the null hypothesis for 16% of

vertices. These vertices are localized to the anterior lateral ERC and anterior TEC

as shown in Figure 3.2.

A summary of average and maximum atrophy/atrophy rates over the rhinal cortex

47



CHAPTER 3. POPULATION-LEVEL ANALYSIS

is shown in Table 3.2. Note that the average atrophy and atrophy rates shown in

Table 3.2 are the averages across vertices where the null hypothesis was rejected

in pairwise post-hoc tests. The maximum atrophy detected over the rhinal cortex

was in the anterior TEC with 0.54mm at the time of MCI diagnosis in NC to MCI

converters, and 0.76mm at the time of DEM diagnosis in MCI to DEM converters

when compared to stable NC subjects. Averaged across vertices, the TEC (ERC)

was 0.22mm (0.27mm) thinner at the time of MCI diagnosis. The TEC (ERC) was

0.42mm (0.41mm) thinner at the time of DEM diagnosis.

The additional disease-related atrophy rate in participants who progressed from

NC to MCI was 2.45% (3.07%) per year averaged across the TEC (ERC). This is a

notable increase from age-related atrophy, which, on average, was 0.68% (0.76%) per

year in the TEC (ERC). In other words, the average atrophy rate for NC to MCI

converters was 5 (5) times greater than stable NC subjects. The average additional

disease-related atrophy rate in the participants who progressed from MCI to DEM

was 3.71% (4.81%) per year in the TEC (ERC). The average atrophy rate for MCI

to DEM converters was approximately 6 (7) times greater than stable NC subjects.

In the anterior region, where a difference was detected between NC to MCI con-

verters and MCI to DEM converters, there was an average additional atrophy of

3.55% (3.26%) per year in the TEC (ERC). At the time of DEM diagnosis, there was

up to 0.34mm (0.40mm) of additional thinning in the TEC (ERC).

The evidence suggests that a significant amount of atrophy occurs prior to a
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diagnosis of MCI throughout the rhinal cortex, and that the largest changes are

detected in the anterior region between the border of the TEC and ERC. There is

also evidence that the rate of atrophy increases over the progression of this disease.

3.4 Change-point analysis

In this section, we outline the construction of change-point analysis using cortical

thickness data and two diagnostic groups. The approach can be modified to use other

shape metrics and to model diseases other than AD. Unlike group-wise difference

analysis, where we modeled subjects as members of separate diagnostic groups, here

we use change-point analysis to model subjects as being part of one disease continuum.

This type of analysis cannot be used to compare multiple disease etiologies.

We are interested in determining when the earliest signs of atrophy related to AD

begin using a piece-wise linear model. Following the example from Section 3.2, MCI

to DEM converters are not included in this analysis since the atrophy rate in this later

stage of AD is substantially larger than the atrophy rate in NC to MCI converters.

This was shown in the experimental results of group-wise difference analysis in Section

3.3.

We can test for when a change-point occurs with respect to the age of MCI diag-

nosis. Given a subject i, scan j, and region k, the null hypothesis can be written as
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Eqn (3.11):

log(thickness)i,j,k = ak + bk agei,j + ck sexi + dk age MCIonseti + ei,k + ϵi,j,k. (3.11)

The constants a, b, c, and d, as well as the variance of zero-mean Gaussians e

and ϵ are estimated by maximum likelihood. e represents a subject-specific random

effect. Age and the binary indicator variable for sex are fixed effects. For this model,

we examine the cortical thickness of only two locations, which reduces computational

complexity. Specifically, we examine average ERC thickness, and average TEC thick-

ness.

The model under the alternative hypothesis can be written as Eqn (3.12):

log(thickness)i,j,k =ak + bkagei,j + b′k(agei,j − (age MCIonseti +∆))+

+ cksexi + dkage MCIonseti + ei,k + ϵi,j,k.

(3.12)

Again, the constants a, b, c, d, and the variance of zero-mean Gaussians e and ϵ are

estimated by maximum likelihood. However, we introduce a new variable ∆, which

represents the number of years between a diagnosis of MCI to a change in atrophy

rate. Then, (agei,j − (age MCIonseti +∆))+ = max(agei,j − (age MCIonseti +∆), 0)

is the number of years a specific observation is past the change point. We perform

maximum likelihood estimation for a fixed ∆, and increment ∆ yearly between −50

and 50 to find the best change point candidate. The best candidate, ∆, is calculated
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from the posterior mean.

For stable NC subjects, we estimate the age of MCI diagnosis from a conditional

probability distribution. The age of onset is constrained to be after the last diagnostic

evaluation, and is drawn from a Gaussian distribution with a mean of µ1 = 93 years

old and a standard deviation of σ1 = 14.5 years. This distribution of MCI diagnosis

age was estimated by Tang et al87 using a set of 1, 000 subjects enrolled with normal

cognition and a family history of Alzheimer’s disease. These diagnostic criteria are

similar to the conditions under which subjects with stable NC were enrolled in the

ADNI study. The bootstrapped samples are then constructed by sampling from

whitened residuals under the null hypothesis, with imputed values of age MCIonset

for stable NC subjects.

One underlying assumption of this analysis is that the sample of subjects are se-

lected from the disease continuum at random, and therefore represent the distribution

of the disease course. This criteria is met when subjects are enrolled without any se-

lection based on disease stage, or when relatively younger subjects are selected with

NC at the time of enrollment and followed for an extensive period of time. However,

it is often the case that data sets are acquired with a selection process dependent on

the disease stage, as with the ADNI study. In order to address this added complexity,

we used the following approach.

We can re-weight the likelihood function using a distribution of stable NC and

NC to MCI converters expected if the subjects had been selected blind to their di-
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agnostic stage. We examined the BIOCARD database, where subjects were enrolled

cognitively normal and followed for up to 22 years at time examined (biocard-se.org).

The distribution is calculated from a subset of subjects over the age of 65 at their

most recent diagnostic follow-up.

The log-likelihood function associated with these models have been derived in

detail by Younes et al.88 By iterating over fixed change-points ∆ instead of incorpo-

rating ∆ as a variable to perform maximum likelihood estimation over, we simplify

the model to a linear mixed effects model (recall that the effect of ∆ as a variable is

non-linear). We perform gradient descent with Matlab’s function fmincon by sup-

plying the gradient with respect a, b, b′, c, d, ρ, and σ. Supplying the gradient speeds

up the computation time, which is important for computationally-heavy resampling

procedures.

In the case that the null hypothesis is rejected, we can follow up by calculating

confidence intervals for the variables of interest. These variables are: −∆, the change

point with respect to MCI diagnosis time; −b, the age-related atrophy rate; −b′, the

disease-related additional atrophy rate after the change point. Note, again, that the

samples are constructed with imputed values of age MCIonset for stable NC subjects.

In the case that the null hypothesis is rejected for both ERC and TEC, we can

pose a follow-up hypothesis. This hypothesis is based on the histological changes,

which occurs in the TEC prior to the ERC. We can calculate the probability that the

change point occurred in the TEC prior to the ERC based on the change point ∆ of
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Change point Age-related rate Disease-related rate

(years before MCI) (%/year atrophy) (%/year atrophy)

ERC thickness (7.63, 11.31) (0.07, 0.65) (3.03, 4.41)

TEC thickness (8.92, 13.80) (0.10, 0.56) (2.11, 3.08)

Table 3.3: 95% confidence interval (min, max). Change point, age-related rate,
and disease-related rate correspond to the variables −∆, −b, and −b′ respectively.
The disease-related rate is the additional rate seen post change point. this table is
reproduced with permission.70

each pair of bootstrapped samples under the alternative hypothesis.

3.5 Experimental results

Using the method described in Section 3.4, we examined 50 subjects. These

demographics of these subjects were previously described in Table 3.1. Figure 3.3

shows the input into the model, which is average cortical thickness over the TEC and

ERC, respectively. Qualitatively, it is clear from this figure that the atrophy rate

for stable NC is smaller in magnitude than NC to MCI converters in both regions of

interest.

We rejected the null hypothesis and conclude that there was a change point 10.69

years prior to an MCI diagnosis in the TEC (p < 0.001), and 9.02 years prior to an

MCI diagnosis in the ERC (p < 0.001). The age-related atrophy rate (or atrophy rate

prior to the change-point) was 0.34% per year (0.35% per year) in the TEC (ERC).
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After the change point, the additional disease-related atrophy introduced was 2.58%

per year in the TEC and 3.75% per year in the ERC. On average, the ERC was

slightly thinner and the percentage atrophy rates are slightly larger than in the TEC.

We next calculated a confidence interval for the atrophy rates and change-points.

The 95% confidence interval for the parameters of interest are shown in Table 3.3.

The change-point is estimated with a confidence interval of approximately 4 years.

The ERC change point occurred at or before the TEC change point only in 3.75%

of bootstrapped samples. Therefore, we conclude that the change-point for the TEC

precedes the ERC. This statement agrees with the pattern of early AD-related NFT

accumulation in the rhinal cortex. These findings suggest that irreversible neuron

death is detected in the rhinal cortex at least 9 years prior to an official diagnosis

of cognitive impairment. By increasing the sensitivity of AD detection during this

preclinical stage, there will be a larger window of opportunity for disease-modifying

treatments.

3.6 Summary

In this chapter, we have introduced a statistical framework that can be used in

conjunction with the morphological pipeline introduced in Chapter 2. These methods

can be used to determine where and when disease-related atrophy occurs, which is

important for improving the sensitivity and specificity of early AD detection. Boot-
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strap resampling the maximum test statistic over a set of vertices allows us to conduct

hypothesis tests and build confidence intervals while controlling the family-wise error

rate. The experimental results for early AD data show several biologically significant

results. The major results are summarized below.

Using group-wise difference analysis, we showed that the anterior regions of the

TEC and ERC were 0.58mm thinner at the time of MCI diagnosis and 0.83mm thinner

at the time of DEM diagnosis. Given that the anterior rhinal cortex is between 3 and

4mm thick, this suggests a substantial amount of grey matter has atrophied prior to

any clinical diagnosis.

Age-related atrophy was less than 1% per year. By comparison, NC to MCI

converters experienced an additional 2 to 3% disease-related atrophy per year; MCI

to DEM converters experienced an additional 4 to 5% disease-related atrophy per

year. There was a significant difference in atrophy rate between the NC to MCI

converters and MCI to DEM converters, suggesting that the rate of atrophy increases

over the progression of this disease.

Using change-point analysis, we showed that disease-related atrophy begins in the

TEC prior to the ERC, mimicking the pattern of neurofibrillary tau accumulation

seen in autopsy reports.91 The change-point occurred 9 to 14 years prior to MCI

diagnosis in the TEC, and 8 to 11 years prior to MCI diagnosis in the ERC. This

suggests there is a long window of opportunity to stage the disease and intervene

prior to the onset of symptoms.
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Subject-specific analysis

We now develop a subject-specific mechanistic model of atrophy spread in the rhi-

nal cortex. We start by introducing the biological motivation for a reaction-diffusion

model. We propose a continuous model concept, then discuss the details of a dis-

crete numerical implementation. Next, we derive an approach to estimate model

parameters using an adjoint state method for gradient descent. We test the model

accuracy on a simulation of AD progression, and then show results on real subject

data. The overarching aim is to locate the initial source of disease, the speed of disease

spread, and other disease parameters that are estimated from an individual’s MRIs

over time. This type of patient-specific modeling is still in its infancy and, as seen

in other patient-specific models, we focus on model feasibility and proof-of-concept

with a small number of subjects.92,93 This chapter has been modified in part from a

relevant publication.77
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4.1 Biological Motivation for Model

There is an established body of evidence that NFT accumulation is spatially-

temporally ordered. Accumulation begins in the TEC and progresses to the ERC

and CA1 region of the hippocampus, then to the rest of the hippocampus and parts

of the amygdala, and finally spreads into the neocortex.12–14,16,18,23,91 Change-point

analysis of atrophy as measured from structural MRI also support spatial-temporal

ordering. 9 - 14 years prior to cognitive impairment, the first changes are seen in

the TEC, quickly followed by the ERC, and then later in the hippocampus and

amygdala.70,88

NFT accumulation and atrophy patterns are also in line with what is understood

about the structural and functional connectivity of this region. Specifically, the TEC

is a major contributor of input to the anterior lateral ERC,72,81 a secondary con-

tributor of input to the anterior proximal subiculum bordering CA1,72,94 and also a

contributor to the basolateral and basomedial nuclei of the amygdala.95

Recently, a prion-like propagation hypothesis of neurodegenerative disease spread

has gained traction.96–101 There is evidence that misfolded tau proteins aggregate and

further seed conversion of normal tau to misfolded tau.24,98,102 Then, it is believed

that these misfolded tau aggregates propagate by cell release, diffusion, and cell up-

take along axonal pathways.98 Recent PET studies show a strong regional association

of tau tracer retention that progresses in a Braak-stage like pattern.103–105

Multipolar reelin-positive neurons found in Layer II of the TEC and ERC, also
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referred to as pre-α neurons, are the primary target of NFT accumulation during

Braak stages I to III.12,106 In rodents and primates, it has been shown that these

neurons are connected by a microcircuit of interneurons that are confined within the

layer.106,107 In particular, Layer II grid cells of the medial ERC have been studied

extensively, and it has been shown that interneurons connect and inhibit neighboring

principal neurons.106 We hypothesize that connectivity within the rhinal cortex can be

modeled as a function of distance. The spatio-temporal pattern of atrophy, prion-like

propagation hypothesis, and regional connectivity motivate modeling cortical atrophy

across the rhinal cortex as a reaction-diffusion process.

4.2 Continuous formulation

The goal is to model cortical thickness atrophy as a function of disease. Let us

consider a model where cortical thickness is a sigmoidal function of disease stage,

as shown in Figure 4.1. There is some age-related atrophy, and so total atrophy

intensifies as the disease stage increases and introduces disease-related atrophy over

time. The disease stage, in turn, progresses as a reaction-diffusion function of local

activity, which is loosely based on NFT accumulation.

We now specify the model in more concrete terms. We start by introducing

variable s to represent a location in the spatial domain Ω, and t represent a time in

the temporal domain [t0, t1]. Cortical thickness, ρ(s, t), is defined to be a sigmoidal
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Figure 4.1: Cortical thickness as a function of time (left), disease stage as a function
of time (middle), and local activity as a function of time (right). This figure has been
reproduced with permission.77

function of the stage of the disease, b(s, t), and aging, λ0t. This is shown in Eqn 4.1.

The disease stage, b(s, t) ∈ (−∞,∞), grows larger as the disease progresses and is

closely linked to disease-related atrophy. Note that the smaller b0 is, the longer it

takes a subject to display disease-related cortical thinning, with all other variables

held constant. In this sense, b0 can also be thought of as a susceptibility measure to

the disease.

The rate of disease progression, ∂tb(s, t), is controlled by the disease intensity,

λ1 > 0, and local activity rate, a(s, t), as shown in Eqn 4.2. This local activity rate,

a(s, t) ∈ [0, 1], is loosely based on the environmental conditions needed to support

disease progression, such as the concentration of NFT. We model a(s, t) as a Fisher-

KPP equation with a diffusion rate of D and a reaction rate of κ, as shown in Eqn

4.3. To understand how a functions, we examine its fixed points. There is an unstable

fixed point a(s, t0) = 0 for all s, from which the disease cannot progress. However,

when a(s0, t0) is seeded with a non-zero value at any location, we end up at a stable

fixed point of a(s, t1) = 1 for all s. As a final note, we impose a Neumann boundary
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condition on the local activity rate a(s, t) since the surface is open:

ρ(s, t) = ρmax(s)
e−λ0(s)t

1 + eb(s,t)
, (4.1)

∂tb(s, t) = λ1a(s, t), (4.2)

∂ta(s, t) = D∆a(s, t) + κa(s, t)(1− a(s, t)). (4.3)

4.3 Discrete implementation

In order to find a numerical solution to the problem, we derive a discrete imple-

mentation of the model. Let us first introduce a new piece-wise continuous function,

ϕ(s), and introduce a variational formulation of Eqn 4.3, as shown in Eqn 4.4:

∫
Ω

∂ta(s, t)ϕ(s)ds − D

∫
Ω

⟨∇a(s, t),∇ϕ(s)⟩ds

− κ

∫
Ω

a(s, t)(1− a(s, t))ϕ(s)ds = 0.

(4.4)

Now we let k ∈ 0, 1, . . . , K be indices of the discretized space, and more specifically,

the indices of a triangulated mesh. Let ϕk(s) be a tent function with a constant

gradient ∇ϕk(s) = ∇ϕk, defined for all s on a triangular face of the mesh. Using
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a Galerkin approximation, we can represent local activity rate a(s, t) as a sum of

spatially discrete, temporally continuous ak(t), as shown in Eqn 4.5:

a(s, t) =
K∑
k=1

ak(t)ϕk(s). (4.5)

We are now ready to introduce some notation commonly used in finite element

methods: the mass matrix M , stiffness matrix S, and, in this model, a nonlinear

reaction term F . Using Eqn 4.4 and Eqn 4.5, we write a set of equations as shown in

4.6:

M∂ta(t) +DSa(t)− κF (a(t)) = 0,

a(t) =

⎡⎢⎢⎢⎢⎢⎢⎣
a1(t)

...

aK(t)

⎤⎥⎥⎥⎥⎥⎥⎦ ,

M(k, k′) =

∫
Ω

ϕk(s)ϕk′(s)ds,

S(k, k′) =

∫
Ω

⟨∇ϕk(s),∇ϕk′(s)⟩ds,

F (k) =

∫
Ω

(
K∑

k′=1

ak′(t)ϕk′(s)

)(
1−

K∑
k′=1

ak′(t)ϕk′(s)

)
ϕk(s)ds. (4.6)

The following excerpt describes details on the implementation of M , S, and F :77

“Computing M , S, and F as shown in [Eqn 4.6] is computationally in-
tensive. Instead, we calculate an approximation using the properties of ϕ.
Let R = {ru, rv, rw} be the set of 2-D vertices of a triangle. Let ruv be the
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midpoint of vertex ru and rv, and ruvw be the barycenter of the triangle.
The area of the triangle is then [Eqn 4.7]:

area(R) = abs

(
1

2
det

⏐⏐⏐⏐ 1 1 1
ru rv rw

⏐⏐⏐⏐) . (4.7)

We now can introduce 1st , 2nd and 3rd order approximations of ϕ(s) over
a triangle in [Eqn 4.8], [Eqn 4.9], and [Eqn 4.10] respectively:

∫
R

ϕ(s)ds ≈ area(R)ϕ(ruvw), (4.8)

∫
R

ϕ(s)ds ≈ area(R)

3

∑
ru,rv∈R

ϕ(ruv), (4.9)

∫
R

ϕ(s)ds ≈ area(R)

60
(3
∑
ru∈R

ϕ(ru) + 8
∑

ru,rv∈R

ϕ(ruv) + 27ϕ(ruvw)). (4.10)

ϕ is a 1st order piece-wise linear function. Specifically, note that ϕk(rk) =
1, ϕk(rkv) = 1

2
and ϕk(rkvw) = 1

3
. M can be represented as a 2nd order

function, S can be represented as a 1st order function, and F can be
represented as a 3rd order function summed over all the triangles R as
shown in [Eqn 4.11], [Eqn 4.12], and [Eqn 4.13] respectively:

M(k, k′) =
∑

rk,rk′∈R

area(R)

12
(1 + Ik=k′), (4.11)

S(k, k′) =
∑

rk,rk′∈R

area(R)⟨∇ϕk(ruvw),∇ϕk′(ruvw)⟩, (4.12)

F (k) =
∑
rk∈R

area(R)

60

(
10ark + 5arv + 5arw − 6(ark)

2 − 2(arv)
2

− 2(arw)
2 − 4arkarv − 4arkarw − 2arvarw

)
.” (4.13)

This completes the approach for discretizing Eqn 4.6 with respect to space. We

now turn our attention to discretizing the equation with respect to time and introduce

indices n ∈ 0, 1, . . . , N of discretized time tn. We fix the step size to be ∆t and
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introduce notation an = a(tn). We discretize Eqn 4.6 using a semi-implicit scheme,

which results in Eqn 4.14. While the semi-implicit scheme is more complicated to

implement than an explicit scheme, the semi-implicit scheme is preferred because it

provides error bounds and a numerically stable solution. The final set of equations

discretized in space and time are shown in Eqn 4.15, with M , S and F defined from

Eqn 4.11, 4.12 and 4.13, respectively:

M(an+1 − an) + ∆tDSan+1 −∆tκF (an) = 0, (4.14)

an+1 = (M +∆tDS)−1(Man +∆tκF (an))

bn+1 = bn + λ1∆tan

ρ̂n+1 = ρmax ◦
eλ0∆t(n+1)

1 + ebn+1 .

(4.15)

4.4 Model simplifications

We now modify the model in order to reduce the number of dimensions to represent

the parameter space. This is to make the parameter estimation problem tractable.

We constrain the initial local activity rate, a0, to be a Gaussian distribution centered

about c0, with fixed variance σ2 = 1 in all directions. This simplification is shown in

Eqn 4.16 with d equal to the number of dimensions of c0. Next, the initial disease
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stage, b0, is constrained to be constant b̄0 throughout the surface:

a0(x) =
1

(2πσ2)d/2
exp

(
−(x− c0)T

1

2σ2
(x− c0)

)
. (4.16)

Age-related atrophy rate, λ0, and cortical thickness prior to any changes, ρmax,

cannot be simplified to a constant; there is variation in thickness and atrophy rate

over the surface that is necessary to capture. Instead, we use a model beforehand with

a separate data set to estimate variation in thickness over space, h, and age-related

atrophy rate, λ0.

Specifically, we use the mixed effects model shown in Eqn 4.17 to estimate the

spatial variation in thickness, the effects of age and sex, and the variance of Gaussian

noise ϵ. This is a model of cortical thickness (thk) for a healthy subject i, at scan j,

and at vertex k:

log(thk)i,j,k = µi + shape(k)− λ0(k) ti,j + δ(k) sexi + ϵi,j,k,

h(k) = eshape(k).

(4.17)

λ0 and h are estimated per vertex from the model and then held fixed in the

atrophy spread model. The resulting ρmax is then a function of a 1-dimensional
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average cortical thickness ρ̄max, as shown in Eqn 4.18:

ρmax(k) = ρ̄max h(k). (4.18)

The simplified model parameters, θ, are shown in Equation 4.19. We have reduced

the number of dimensions from 4K +3 to 7, where K is the total number of vertices:

θT =

[
κ D λ1 ρ̄max c0 b̄0

]
. (4.19)

To wrap up this section, we introduce some new notation, shown in Eqn 4.20, and

write the atrophy spread model in simplified terms, as shown in Eqn 4.21:

x =

⎡⎢⎢⎢⎢⎢⎢⎣
x1

...

xN

⎤⎥⎥⎥⎥⎥⎥⎦ , xn =

⎡⎢⎢⎢⎢⎢⎢⎣
xn
1

...

xn
K

⎤⎥⎥⎥⎥⎥⎥⎦ , xn
k =

⎡⎢⎢⎣ ank

bnk

⎤⎥⎥⎦ , (4.20)

fn(x
n, θ) =

⎡⎢⎢⎣ (M +∆tDS)−1(Man +∆tκF (an))

bn + λ1∆tan

⎤⎥⎥⎦− xn+1,

f(x, θ) =

⎡⎢⎢⎢⎢⎢⎢⎣
fn(x

0, θ)

...

fn(x
N−1, θ)

⎤⎥⎥⎥⎥⎥⎥⎦ = 02MN×1. (4.21)
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Figure 4.2: On the left is orientation across the surface, in the middle is vertex-wise
difference in shape, and on the right is age-related change over time. This figure has
been modified and reproduced with permission.77

4.5 Simulation generation

We generate a simulation of AD-related atrophy using the atrophy spread model

with model simplifications. First, a set of 15 subjects with stable NC were fed into

the mixed effects a priori model to estimate λ0, h, and ρ̄max. Figure 4.2 shows the

estimated shape and age-related change over time, or −λ0.

As with the experimental results shown for population level analysis, the criteria

for stable NC was a clinical dementia rating equal to 0 on all annual evaluations,

evidence of performance within the normal range on the Logical Memory Subtest

of the Wechsler Memory Scale on all annual evaluations, and a negative result for

elevated amyloid β levels on the baseline evaluation (as established by the ADNI

Biospecimen Core). Subjects were also scanned on a consistent type of 3T MRI for

2 or more years. As shown in Table 4.1, half the subjects were female, and had an

average age of 71 at the time of the baseline scan. All subjects were between 60 and

90 years old.
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Number of Subjects 15
Age (years) 71.44± 7.17

Number of Scans 4.53± 0.52
Scan Period (years) 3.36± 1.14

Follow-up Period (years) 5.67± 3.22
Sex (% Female) 46.67%

Table 4.1: Demographic data for stable NC subjects used to generate a priori esti-
mates (mean ± standard). Note that the scan period is shorter than the follow-up
period because accelerated 3T scans introduced in ADNI3 were excluded from anal-
ysis.

The rhinal cortex pipeline described in Chapter 2 was implemented to calculate

vertex-wise measures of cortical thickness. The pial cut of the template surface is the

surface used to generate the simulation of atrophy spread. The top row of Figure 4.3

shows the progression of age-related atrophy using the a priori model with this set of

data.

To select the remaining parameters, (namely disease-related parameters c0, b0, λ1,

κ, and D), we incorporated what is currently understood about AD from literature.

We initialize local activity, c0, to begin in the anterior lateral region. Histological

studies have shown neurofibrillary tangles first form in the lateral rhinal cortex,12

and disease-related atrophy measured from MRI data further suggests that the initial

location is anterior lateral rhinal cortex,85.70 We initialize disease stage, b0, to −5

such that disease-related atrophy is less than 1% at age 50, when the model initializes.

Subjects are typically diagnosed with cognitive impairments or probable AD dementia

after the age of 65; in these cases, very little or no atrophy is expected at age 50.

The disease intensity, λ1, is set to 0.09. This estimate is chosen based on a set
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of probable AD dementia data that was previously introduced in Section 2.6 and

Section 3.3. The set of 19 dementia subjects showed 15.1% atrophy at the time of

diagnosis compared to the set of 33 stable NC subjects. Additionally, these subjects

experienced 4.05% disease-related atrophy per year. We then considered a simplified

model where b is constant across the surface, with a time step dt = 1 year. We

approximated λ1 = 0.09 in the following way:

1

1 + eb
= 1− 0.151,

1

1 + eb+λ1
= (1− 0.151)(1− 0.0405),

b = log(
0.151

1− 0.151
) = −1.73,

λ1 = log(
1− (1− 0.151)(1− 0.0405)

(1− 0.151)(1− 0.0405)eb
) = 0.09.

Finally, we selected κ = 1 and D = 1. There is little data to estimate these

parameters from. Note that
√
κD is the speed of spread across the surface, and

√
κ
D

is the slope of local activity rate a at the wave front. κ and D were chosen such that

local activity rate a traverses the surface in 10 years with a slope of 1 1
mm

.

In summary, the construction of AD simulation with the atrophy spread model
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used the following parameters:

κ = 1.00, c0x = −6.00,

D = 1.00, c0y = −4.00,

λ1 = 0.09, b0 = −5.00,

ρ̄max = 3.38.

Figure 4.4 and 4.5 shows the local activity a, disease stage b, and cortical thickness ρ

over the rhinal cortex from age 50 to 90 in this simulation. Notice that the disease is

seeded to begin at age 50, and that the disease-related atrophy is very small compared

to the natural variation in thickness across the surface of the rhinal cortex. This

highlights the importance of capturing cortical thickness prior to age-related and

disease-related effects accurately.

4.6 Parameter estimation

Given a set of cortical thickness observations over time, we solve for the optimal

parameters θ that minimize the squared distance between observed and modeled corti-

cal thickness. This is a constrained optimization problem with constraints f(x, θ) = 0,

as shown in Eqn 4.21 (reproduced below), and cost function g(x, θ), as shown in Eqn

4.22. ρ̂ is the modeled cortical thickness that implicitly depends on x and θ, and ρ is
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observed cortical thickness:

fn(x
n, θ) =

⎡⎢⎢⎣ (M +∆tDS)−1(Man +∆tκF (an))

bn + λ1∆tan

⎤⎥⎥⎦− xn+1,

f(x, θ) =

⎡⎢⎢⎢⎢⎢⎢⎣
fn(x

0, θ)

...

fn(x
N−1, θ)

⎤⎥⎥⎥⎥⎥⎥⎦ = 02MN×1. (4.21)

g(x, θ) =
N∑

n=1

In||ρ̂n − ρn||2 (4.22)

with indicator function:

In =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if ρn was measured

0 otherwise.

The following excerpt is reproduced from the methods section in the publication

of this model:77

“We reformulate and numerically solve the optimization problem in its
dual form, using the adjoint state method. To derive the differential
change δx, we use f(x, θ) = 0, implying that ∂θf(x, θ)δθ+∂xf(x, θ)δx = 0.
The result takes the form:

δx = − (∂xf(x, θ))
−1∂θf(x, θ)δθ. (4.23)

Next, we define our energy function J(θ) = g(x, θ). Recall that x is a
column vector of xn at time n, and that it is a function of θ. J is a
function explicitly in terms of θ. To derive the gradient of the energy
function, ∇J(θ), we take the total derivative of g(x, θ):

∂θJ(θ)δθ = ∂θg(x, θ)δθ + ∂xg(x, θ)δx.
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Next, we substitute δx with [Eqn (4.23)]:

∂θJ(θ)δθ = ∂θg(x, θ)δθ + ∂xg(x, θ)(−(∂xf(x, θ))
−1∂θf(x, θ)δθ).

Finally, divide both sides by δθ and take the transpose to see the result,
shown in [Eqn (4.24)]:

∇J(θ) = [∂θg(x, θ) + ∂xg(x, θ)(−(∂xf(x, θ))
−1∂θf(x, θ)]

⊺. (4.24)

Based on this result, we introduce the adjoint state vector, p, shown below
in [Eqn 4.25]:

p = −∂xg(x, θ)(∂xf(x, θ))
−1. (4.25)

The explicit notation for this column vector p is the following:

p =

⎡⎢⎣ p1

...
pN

⎤⎥⎦ , pn =

⎡⎢⎣ pn1
...
pnK

⎤⎥⎦ , pnk =

[
pna,k
pnb,k

]
.

We are now ready to perform gradient descent. Given an initial guess
for θ, calculate x iteratively from the initial time to the last observation
time using the relationship f(x, θ) = 0. Next, calculate the adjoint state
vector p recursively starting from the last observation time back to the
initial time, using the relationship below:

pN = [∂xNg(x, θ)]⊺,

pn = [∂xng(x, θ) + (pn+1)⊺ ∂xnfn(x
n, θ)]⊺. (4.26)

Finally, calculate the gradient ∇J(θ) and update θ iteratively via gradient
descent:

∇J(θ) = [∂θg(x, θ) + p⊺ ∂θf(x, θ)]
⊺. (4.27)

The solution for ∇J in terms of variables a, b, p, θ; matrices M , S, F , dF ;
and constants λ0, ∆t, h is shown in [Equation 4.28]. As a reminder, mass
matrix M of size K ×K, stiffness matrix S of size K ×K, and nonlinear
reaction term F of size K×1 for K number of vertices have been explicitly
defined in [Eqn 4.11], [Eqn 4.12], and [Eqn 4.13], respectively:

∇J =
[
∂κJ ∂DJ ∂λ1J ∂ρ̄maxJ ∂c0J ∂b̄0J

]⊺
.

This gives us the system of equations for each discrete partial derivative:
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∂κJ =
N−1∑
n=0

(pan+1)⊺(M +∆tDS)−1(∆tF (an)),

∂DJ =
N−1∑
n=1

(pan+1)⊺(M +∆tDS)−1(∆tS)(M +∆tDS)−1(Man +∆tκF (an)),

∂λ1J =
N−1∑
n=0

(pbn+1)⊺(∆tan),

∂ρ̄maxJ = ∂ρ̄maxg

=
N−1∑
n=0

2In(ρ̄maxh ◦ e−λ0∆tn

1 + ebn
− ρn)(h ◦ e−λ0∆tn

1 + ebn
),

∂c0J = ∂a0J ∂c0a
0

=
(
(pa1)⊺(M +∆tDS)−1(M +∆tκdF (a0)) + (pb1)⊺(λ1∆t)

) rk − c0

σ2
a0k,

∂b̄0 =
K∑
k=1

pb1k.

(4.28)

where rk =
[
rk,x rk,y

]
for the location of a vertex k, and a0k is a Gaussian

distribution about center c0 and fixed variance σ2 = 1 evaluated at vertex
k. The model implementation is available for download from https:

//www.github.com/sue-kulason/FKPP.”

This concludes the derivation of the numerical optimization method that uses

measures of cortical thickness over time to estimate the following parameters: reaction

rate κ, diffusion rate D, disease intensity λ1, average cortical thickness ρ̄max, initial

center of local activity c0, and initial disease stage b̄0. Gradient descent is performed

using Matlab’s fmincon function, supplied with the gradient calculated using the

adjoint state method.
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4.7 Parameter estimation:

simulation analysis

The goal of this section is to determine how accurately parameters can be esti-

mated on a simulation of AD generated from our atrophy spread model. The sim-

ulation from Section 4.5 generates cortical thickness measures from age 50 to 90.

However, observing cortical thickness annually over 40 years is an unrealistic expec-

tation for real data sets. Instead, we investigate how accurately parameters can be

estimated under small windows of observation, and at different stages of the disease.

First, we examine what fraction of randomly initialized runs accurately estimate all

parameters. Then, we estimate a confidence interval of each parameter for a few

specific cases.

We calculate the fraction of 100 randomly initialized runs that correctly estimate

all parameters (up to two decimal places) when supplied with annual observations

from a sliding window of 2, 5, and 10 years. We start each run from a randomly
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selected set of parameters from the following ranges:

κ ∈ [0.01, 10],

D ∈ [0.01, 10],

λ1 ∈ [0.1, 1],

b0 ∈ [−10,−1],

ρ̄max ∈ [2.64, 4.13].

For c0, we selected points such that 95% of the volume under Gaussian a0 over-

lapped with the rhinal cortex surface. This is a non-linear function that excludes

points close to the surface boundary. Note that these are the same boundary con-

straints used in the numerical optimization problem.

Figure 4.6 shows the fraction of runs that correctly estimated all parameters under

each condition. Early in the disease, prior to age 60, there is very little disease-related

atrophy. The parameter estimation approach fails to accurately estimate parameters

for short windows of observation in this early stage. As the window of observation

slides toward the middle of the disease, we achieve a maximum accuracy of 91%,

which is seen at age 70. In the late stage of the disease, this accuracy drops as it

becomes more difficult to estimate initial cortical thickness, ρ̄max, since observations

begin after a substantial amount of atrophy has already occurred.

Next, we performed an analysis on the effect of disease stage on the confidence
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Figure 4.6: Fraction of 100 runs that succeeded in estimating the correct parameters
over varying duration and observation start times. This figure has been reproduced
with permission.77
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intervals of parameters. We examine three cases: early stage, mid stage, and late

stage. The early stage has a window of observation from age 55 to 60; the middle

stage has a window of observation from age 70 to 75; and the late stage has a window

of observation from age 85 to 90. The 90% confidence intervals of parameters and the

radius that circumscribes 90% of c0 can be calculated by first estimating the posterior

distribution of the parameters. However, it is computationally intensive to sample

directly from this distribution in this high-dimensional parameter space. Instead, we

employ a Metropolis-Hastings algorithm to approximate the posterior distribution,

p(θ | ρobserved), when given a set of observed cortical thicknesses, ρobserved.

The following excerpt derives the method for calculating confidence intervals:77

“We begin with the probability of observing ρobserved given a set of param-
eters, as shown in [Eqn 4.29]. Note that ρ(θ) is shorthand for the model
of atrophy spread with input parameters θ and output cortical thickness
ρ:

p(ρobserved | θ, η2) = 1

(2πη2)K/2
exp

(
−|ρ(θ)− ρobserved|2

2η2

)
. (4.29)

We have introduced a nuisance parameter, η2, which represents the noise
associated with observations. We can approximate the distribution of η2

as an inverse Wishart distribution with mean and variance 1, as shown in
[Eqn 4.30]:

p(η2 | α = 3, β = 2) =
βα

Γ(α)
(η2)−α−1exp(− β

η2
). (4.30)

The values for β and α associated with an inverse Wishart distribution
with mean and variance equal to 1 were derived by in the following way:

81



CHAPTER 4. SUBJECT-SPECIFIC ANALYSIS

∫
p(η2)dη2 =

∫
1

βΓ(α)

(
β

η2

)α+1

exp(− β

η2
)dη2 = 1,

E[η2] =

∫
η2p(η2)dη2 =

∫
1

Γ(α)

(
β

η2

)α

exp(− β

η2
)dη2

=
βΓ(α− 1)

Γ(α)
=

β

α− 1
,

E[(η2)2] =

∫ (
η2
)2

p(η2)dη2 =

∫
β

Γ(α)

(
β

η2

)α−1

exp(− β

η2
)dη2

=
β2Γ(α− 2)

Γ(α)
=

β2

(α− 1)(α− 2)
.

Setting the mean E[η2] β
α−1

equal to 1, we see that β = α−1. The variance

var(η2) = E[(η2)2] − (E[η2])2 is equal to β2

(α−1)(α−2)
− β2

(α−1)2
. Setting the

variance to 1 and substituting β = α−1, we see that the variance is equal
to β2

(α−1)2(α−2)
= 1

α−2
= 1, resulting in α = 3, β = 2.

This approximation allows us to integrate for an explicit expression of a
value proportional to the prior distribution p(θ | ρobserved) over K vertices,
as derived below. We start by defining the joint probability p(ρobserved, θ).
Here, p(ρobserved | θ, η2) follows a Gaussian distribution, p(θ) is uniform
across the parameter space, and p(η2) is approximated to be an inverse
Wishart distribution with α = 3, β = 2. Next, we see that the posterior
distribution p(θ | ρobserved) is proportional to p(ρobserved, θ):

p(ρobserved, θ, η
2) = p(ρobserved | θ, η2)p(θ)p(η2),

p(ρobserved, θ) =

∫
p(ρobserved | θ, η2)p(θ)p(η2)dη2,

p(θ | ρobserved) =
p(ρobserved, θ)∫
p(ρobserved, θ′)dθ′

∝ p(ρobserved, θ).

By substituting the expressions for p(θ | ρobserved, η2), p(θ), and p(η2),
we can express the posterior distribution of θ in terms of α, β, K, and
ρobserved, as shown in [Eqn 4.31]:
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p(θ | ρobserved) ∝
∫

βα

Γ(α)
(η2)−α−1exp(− β

η2
)

1

(2πη2)K/2

exp

(
−|ρ(θ)− ρobserved|2

2η2

)
p(θ)dη2,

p(θ | ρobserved) ∝
∫

βα

(2π)K/2Γ(α)
(η2)−(α+K/2+1)

exp

(
−β + |ρ(θ)− ρobserved|/2

η2

)
p(θ)dη2,

p(θ | ρobserved) ∝
1

(2π)K/2

βα

Γ(α)

Γ(α +K/2)

(β + |ρ(θ)− ρobserved|/2)(α+K/2)
,

p(θ | ρobserved) ∝
1

(β + |ρ(θ)− ρobserved|/2)(α+K/2)
,

p̂(θ | ρobserved) ∝
1

(β + |ρ(θ)− ρobserved|/2)(α+K/2)
. (4.31)

We start from a random initial guess θ0 in the parameter space. For each
of 10, 000 iterations, we select a candidate θ̂ by updating the current θ with
Gaussian noise of fixed variance. The variances were selected empirically
to be: 0.01 for κ, 0.01 for D, 0.001 for λ1, 0.01 for c0 in the x and y
direction, .05 for b̄0, and .005 for ρ̄max. As shown in [Eqn 4.32], we update
θ to θ̂ with a probability that is the ratio of the prior distribution at θ
and θ̂, given α = 3, β = 2, and observations ρobserved for K vertices:

ptransition(θ, θ̂, ρobserved) = min(

(
β + |ρobserved − ρ(θ)|2/2
β + |ρobserved − ρ(θ̂)|2/2

)(α+K/2)

, 1).

(4.32)
The 20,000 samples of θ are then used to calculate the 90% confidence
intervals, and the radius of a circle that circumscribes 90% of c0 values. ”

The radius that circumscribed 90% of c0, as calculated from the posterior distri-

bution of c0, was 0.48 mm for early stage, 0.58 mm for middle stage, and 0.36 mm for

late stage. These radii are relatively precise, small regions localized to the anterior

lateral region of the rhinal cortex. For context, the rhinal cortex size is approximately
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Parameter Early Stage Middle Stage Late Stage
speed (mm/year) (0.70, 1.38) (0.77, 1.17) (0.92, 1.05)
slope (1/mm) (0.86, 1.78) (0.88, 1.67) (0.79, 1.12)

disease intensity (0.06, 0.13) (0.08, 0.11) (0.07, 0.09)
disease stage (-4.91, -5.41) (-4.98, -5.66) (-4.27, -4.95)

thickness (mm) (3.37, 3.38) (3.36, 3.38) (3.37, 3.46)

Table 4.2: 90% confidence interval for 5-year annual windows of observation in
the early, middle and late stage of the disease. Table has been reproduced with
permission.77

20 mm wide (medial to lateral) and 25 mm long (anterior to posterior).

The 90% confidence intervals for each parameter are shown in Table 4.2. Speed,

√
κD, had the widest confidence interval in the early stage before a substantial spread

of atrophy could be observed, and the narrowest confidence interval in the late stage.

Slope,
√

κ
D
, also had the widest confidence interval in the early stage and narrowest

confidence interval in the late stage. In addition, the confidence interval for speed

was consistently narrower than for slope, suggesting that slope is a more difficult

parameter to estimate accurately, regardless of the disease stage.

Similarly, the disease intensity, λ1, had the widest confidence interval in the early

stage and narrowest interval in the late stage. This makes intuitive sense because

the confidence interval is the narrowest when the peak atrophy rate, and therefore

disease intensity, is captured during the observation window. The confidence intervals

are relatively narrow compared to speed and slope, as small changes in the disease

intensity have a large effect on the outcome measure, cortical thickness.

Initial disease stage, b̄0, had the narrowest confidence interval in the early stage
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and widest confidence interval in the late stage. The initial disease stage is more

accurately estimated when the window of observation is closer to initialization age.

Similarly, average cortical thickness prior to disease-related atrophy, ρ̄max, had the

smallest confidence interval in the early stage and the largest confidence interval in

late stage. For both these parameters, the confidence interval is wider the further the

observation window is from model initialization.

These results suggest that there is a trade-off between the accuracy of speed,

slope, disease intensity (late stage is most accurate) versus disease stage and average

cortical thickness prior to atrophy (early stage is most accurate). More generally, the

parameters can be estimated accurately from the majority of random initial guesses

when supplied with five or more years of annual observations. The wider confidence

intervals for slope and disease stage suggest that these parameters are harder to

estimate accurately.

4.8 Experimental results

We now apply parameter estimation and build confidence intervals of the param-

eters for three subjects. These three subjects were screened from the ADNI database

to meet the following criteria:

• labeled a control at baseline

• remained a control for at least 8 years
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• were scanned on 3T MRI for at least 5 years

• showed evidence of risk for MCI conversion

– converted to MCI after 8 or more years

– subjective memory complaint and amyloid positive

– subjective memory complaint and impaired delayed recall when no amyloid

data available

In addition, the MRIs included were required to have a consistent scan protocol

across scans. This is to reduce concerns about difference in cortical thickness intro-

duced by scan protocol changes. Table 4.3 shows the age, sex, and scan information

of the subjects. Subject 1 was followed for 12 years and converted to MCI at year 9

or 10 (note that no diagnostic evaluation was performed at year 9). Subject 2 was

followed for 9 years and did not convert to MCI during this period of observation,

but show some evidence of AD. The subject was amyloid positive at baseline (as

established by the ADNI Biospecimen Core) with an increasing subjective memory

complaint (as measured by the Everyday Cognition Questionnaire). Subject 3 was

followed for 11 years and did not convert to MCI during this period of observation,

but also shows some evidence of AD. The subject had no CSF sample analyzed, so

amyloid data was not be obtained. The subject had an increasing subjective memory

complaint (as measured by the Everyday Cognition Questionnaire) and a delayed re-

call score significantly below the normal range on both the Logical Memory Subtest of
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Subject 1* Subject 2 Subject 3
Age (years) 71.3 72.4 70.1

Number of Scans 10 8 9
Scan Period (years) 8.3 8.9 9.1

Follow-up Period (years) 12.1 8.9 10.6
Sex F F M

Table 4.3: Demographic data (mean ± standard). *converted to MCI 9 or 10 years
after the first scan. Note that the scan period is shorter than the follow-up period
because accelerated 3T scans introduced in ADNI3 were excluded from analysis. Table
has been reproduced with permission.77

the Wechsler Memory Scale (with a score as low as 7), and the Rey Auditory Verbal

Learning Test (with a score as low as 2).

Figure 4.7, 4.8, and 4.9 show the cortical thickness measures over time calculated

using the rhinal cortex pipeline described in Chapter 2. The bottom row of these

figures show the change in cortical thickness over time for each subject. Subject 1

had a generally thinner cortex, but still showed the characteristic pattern of a thinner

posterior region typically seen in the entorhinal cortex.68 There is noticeable thinning

over time in the anterior region of the rhinal cortex. Subject 2 starts with a thickness

profile similar to the average stable NC. There is noticeable thinning over time in

the lateral anterior region of the rhinal cortex, with particularly severe atrophy at

the last scan time. Similarly, Subject 3 shows progressive thinning in the anterior

lateral region of the rhinal cortex. While there is variation in the thickness profile

from subject to subject, qualitatively, a consistent pattern of atrophy can be seen

among these three subjects.

Unlike the NC average variation in thickness that was used to generate the disease
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Parameter Subject 1 Subject 2 Subject 3
speed (mm/year) 0.41 0.81 0.77
slope (1/mm) 0.56 2.06 5.36

disease intensity 0.38 0.26 0.32
atrophy origin [-1.35, -2.29] [-6.11, -1.58] [-3.17, -0.49]
disease stage -5.66 -8.23 -9.96

thickness (mm) 2.72 3.66 3.01

Table 4.4: MAP estimate of parameters for Subjects 1, 2, and 3. This figure has
been reproduced with permission.77

simulation, we estimated variation in cortical thickness for the subjects based on the

cortical thickness profile of their first scan. The 3 subjects were individuals who did

not convert to MCI within 8 years of the first scan. Since disease-related atrophy is

thought to begin 8 to 10 years prior to symptom onset, the shape of the cortex at

the first scan is a reasonable approximation of the cortical thickness prior to disease-

related atrophy.70,88

The best (maximum a priori) estimator of parameters from 100 randomly initial-

ized runs are shown in Table 4.4. All three subjects had an atrophy origin, c0, in the

anterior lateral quadrant of the rhinal cortex. The speed of spread was somewhat

consistent between subjects, varying from 0.41 mm/year and 0.81 mm/year. The

disease intensity also seemed to be relatively consistent between subjects, varying

from 0.26 to 0.38. The slope and disease stage varied more widely, as did the ini-

tial average cortical thickness, ρ̄max. This variation in cortical thickness and disease

stage is expected based on the results from analyzing the simulation. The window of

observation begins around age 70 for these subjects.
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Parameter Subject 1 Subject 2 Subject 3
speed (mm/year) (0.38, 0.47) (0.78, 0.95) (0.67, 0.97)
slope (1/mm) (0.47, 0.65) (1.56, 2.76) (4.09, 6.34)

disease intensity (0.30, 0.43) (0.25, 0.27) (0.31, 0.32)
disease stage (-5.36, -5.88) (-7.82, -8.62) (-9.52, -9.99)

thickness (mm) (2.70, 2.75) (3.64, 3.69) (2.99, 3.03)

Table 4.5: 90% confidence interval for Subjects 1, 2, and 3. This figure has been
reproduced with permission.77

90% confidence intervals and radius circumscribing 90% of c0 were calculated using

the Metropolis-Hastings algorithm that was described in detail in Section 4.7. The

radius that circumscribed 90% of the atrophy origin, c0, was 0.61 mm for Subject 1,

0.59 mm for Subject 2, and 0.61 mm for Subject 3.

Table 4.5 shows the 90% confidence intervals. The radius for atrophy origin and

the confidence interval for speed, disease intensity, and average cortical thickness were

relatively narrow in all three subjects. Slope and initial disease stage had somewhat

larger confidence intervals. In particular, the estimates for slope varied quite a lot

between the subjects.

The initial disease stage is largest in Subject 1 and smallest for Subject 3. While

the value of b̄0 has a wider confidence interval, the ordering of disease stage among

the three subjects corresponds to the available diagnostic data. These subjects are

separated only by a year in age, and Subject 1 converted to MCI 9 or 10 years after

the baseline scan. Subject 3 has yet to convert after 11 years.

These findings suggest that the model may have some utility estimating parame-

ters such as the origin of atrophy, speed, and the disease stage. While three subjects
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is too small a set to draw rigorous conclusions, the evidence suggests that the initial

site of atrophy is consistently in the anterior lateral region of the rhinal cortex, and

spreads at a speed less than 1 mm per year. The disease stage may be particularly

useful for identifying a subject’s current stage in the disease, and rectify the vari-

ability seen in staging based on histopathological evidence versus staging based on

clinical evidence.

4.9 Summary

In this chapter we have introduced a new, biologically-inspired model of atrophy

spread for individual subjects. We used the model to generate a simulation of AD-

related atrophy across the rhinal cortex. We then introduced a technique to estimate

model parameters and their confidence intervals based on observed cortical thicknesses

over a period of time. Finally, we examined a few subjects that were followed for 8

or more years during the preclinical phase of AD.

Parameter estimation results on the disease simulation suggest that we can obtain

accurate estimates of parameters when given a window of 5 or more years of annual

observations. The accuracy falls when supplied 2 years of annual observations, but

only in the very early and very late stages of the disease.

In the three case studies of subject data, the origin of atrophy was detected in

the anterior lateral region of the rhinal cortex. This finding is consistent with our
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previous population analyses of preclinical AD, discussed in Chapter 3.

This is the first model, to our knowledge, that examines the speed of atrophy

over the progression of a neurodegenerative diseases. The speed of spread averaged

0.66 mm per year across the three subjects, and had a relatively narrow confidence

interval that had an upper bound less than 1 mm per year.

There are a few other considerations for future work on this atrophy spread model.

As currently written, the model assumes uniform spread of atrophy. However, it is not

known whether atrophy spreads uniformly or whether there is some bias. For example,

atrophy may spread faster medial to lateral than it does anterior to posterior. Adding

this type of flexibility to the model may make parameter estimation a more difficult

problem, but with the potential for more accurate results.

Another area of focus is the estimation of the cortical thickness profile prior to

disease-related atrophy. In the subjects examined in Section 4.8, the cortical thickness

was estimated based on the first scan. This is not a strategy that can be employed on

subjects with a shorter duration of observation, since it will not be known whether

disease-related atrophy has already occurred by the time of the first scan. Developing

a subject-specific prior of cortical thickness is a topic of interest since collateral sulcus

location and cortical thickness vary greatly, even among healthy subjects.
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General discussion

5.1 Contributions

In this thesis, we developed a set of methods to 1) examine where grey matter

atrophy occurs, 2) when atrophy begins, and 3) how fast atrophy spreads, based on

time-series MRI data. We used these methods to characterize Alzheimer’s disease

in the rhinal cortex during the preclinical stage, prior to onset of mild cognitive

impairment.

Analyzing preclinical subjects, whose disease trajectories are unknown at the time

of data acquisition, has been made possible through the collection of big data sets.

By carefully selecting subjects based on a strict set of diagnostic inclusion criteria,

accounting for anatomical variations in folding patterns, and leveraging longitudi-

nal MRI data, we can characterize the pattern of atrophy in the earliest stages of

95



CHAPTER 5. GENERAL DISCUSSION

Alzheimer’s disease.

This work builds on the foundations of computational anatomy, which allow us

to localize and quantify shape changes across subjects. Our analyses of preclinical

Alzheimer’s disease subjects show evidence of atrophy that begins in the anterior

transentorhinal cortex at least 9 years prior to diagnosis of mild cognitive impairment.

Atrophy is then detected later in the entorhinal cortex. In addition, the rate of

atrophy in subjects after diagnosis of mild cognitive impairment is significantly faster,

which suggests that the speed of atrophy increases as the disease progresses. It

is therefore important to identify patients in this period of slow atrophy prior to

symptom onset, and prior to increased rate of atrophy. Finally, our subject-specific

work suggests that the spread of atrophy spread may be less than 1 mm per year,

beginning in the anterior transentorhinal cortex, during this preclinical stage. This

type of personalized, patient-specific modeling is a budding field with potential for

increased sensitivity to disease-related changes and individualized care.

Recently, there has also been a trend toward standardizing subregional boundaries

of the brain. Extensive efforts have focused on the hippocampal formation, but have

not yet addressed the rhinal cortex. Since researchers use many different boundary

definitions for the rhinal cortex, we harmonized several atlases so that the results are

accessible to several disciplines within the neuroscience community. Specifically, the

pipeline in this work mapped results to atlases using macro-structural landmarks,

functional connectivity landmarks, and histological landmarks. The goal was for the
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results to be interpreted by a wider audience.

5.2 Limitations

The findings presented in this thesis are based on relatively small sample sizes.

Creating accurate manual segmentations of the rhinal cortex is a time consuming

process. As such, it is difficult to scale up this method to larger sample sizes. While

automatic methods scale well, segmentation accuracy is often sacrificed. In particular,

the entorhinal cortex is difficult to segment automatically due to its proximity to the

meninges and oculomotor nerve, which are of a similar intensity to gray matter voxels

in T1 scans. Furthermore, the transentorhinal cortex is a region with highly variant

folding patterns that may not be captured in the atlas, leading to systematic bias in

automatic segmentation. This may explain, in part, why many neuroimaging studies

have focused on the hippocampus rather than the rhinal cortex. The hippocampus can

more reliably be segmented using automated approaches, making large-scale studies

easier to conduct.

Another limitation is introduced in the change-point analysis utilizing data from

ADNI. In this database, the samples were collected to meet a fixed sample size for each

diagnostic group, which biases the distribution of diagnostic grouping. In addition,

the follow-up period varied from two years to thirteen years. This issue is mitigated

by the use of distribution estimates calculated from the BIOCARD database, where
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samples were not collected to meet fixed samples sizes based on diagnostic criteria.

Finally, there are very few subjects that are followed and imaged 8 or more years

prior to a diagnosis of mild cognitive impairment. This limits the sample size available

for subject-specific modeling, and may also bias toward subjects that show symptoms

later in their disease course. As methods to develop a prior on subject-specific cortical

thickness improve, it may be possible to examine subjects followed over a shorter

duration.

5.3 Future directions

It is of interest to develop metrics of disease progression that are robust to natural

variation in folding in the transentorhinal cortex. Therefore, one future direction will

be to extend the analyses presented here to a set of subjects with shallow, discontin-

uous variants of the collateral sulcus. Autopsy studies have shown that subjects with

a shallow, discontinuous CoS have a TEC that begins at the deepest extent of the

CoS and extends out laterally, whereas deep, continuous CoS have a TEC that begins

at the shoulder of the CoS and extends only to the deepest extent of the CoS,67.69 It

may be possible to incorporate this type of information in a multi-atlas segmentation

or classification approach with CoS variant-specific atlases to delineate for the rhinal

cortex.

In addition, some recent work has been done to address the entorhinal proximity to
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meninges using a multi-atlas approach, where atlases have T1 and T2 scans manually

segmented.108 It remains to be seen whether this type of automated approach affects

entorhinal and transentorhinal metrics that were produced in this dissertation.

In the next 5 years, as more high-resolution T2 data becomes available, it will be

possible to extend these analyses to the subregions of the hippocampal formation. Of

particular interest is when atrophy can be detected in the CA1 subregion compared

to the rhinal cortex, and whether this pattern of atrophy can be used to stage the

progression of the disease.

Finally, the accuracy of subject-specific modeling stands to improve with an ac-

curate prior of cortical thickness before age-related and disease-related atrophy. This

type of prior would allow us to examine subjects that have disease-related atrophy

at the time of scanning, greatly increasing the sample size. Separating natural varia-

tion in thickness from disease-related changes will be essential for monitoring disease

progression accurately.

5.4 Conclusions

This thesis provides a framework for analyzing time-series MRI data in neurode-

generative diseases, with a focus on Alzheimer’s disease. We show strong evidence

that significant disease-related atrophy occurs in the anterior transentorhinal cortex

and entorhinal cortex prior to a change in cognitive status. Disease-related atrophy
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begins at least 9 years prior to a clinical diagnosis of mild cognitive impairment,

and begins in the transentorhinal cortex before spreading to the entorhinal cortex.

Subject-specific modeling work located the origin of atrophy and speed of atrophy

consistently among subjects, which was demonstrated to be under 1 mm per year in

the anterior transentorhinal cortex. Both the population-level analyses and subject-

specific modeling may prove useful for staging early progression of Alzheimer’s and

characterizing disease spread.
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subregions of the human entorhinal cortex,” Elife, vol. 4, p. e06426, 2015.

[73] S. C. Huntgeburth and M. Petrides, “Morphological patterns of the collateral

sulcus in the human brain,” European Journal of Neuroscience, vol. 35, no. 8,

pp. 1295–1311, 2012.
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