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Abstract 

The integrity of the genetic code is preserved by maintenance of DNA by 

glycosylases. These remarkable proteins efficiently repair infrequent lesions amongst a sea 

of nonspecific target sites. It is well accepted that glycosylases utilize DNA to accelerate 

their search through DNA chain translocation or “facilitated diffusion”, which reduces 

dimensionality of the search process. Although DNA translocation has been studied for 

over 50 years, little attention has been given to how the environment of the cell nucleus 

affects DNA translocation. It is therefore the goal of my thesis to determine the impact of 

physiological ions, macromolecular crowding and high concentrations of bystander DNA 

chains on this important aspect of DNA damage recognition in cells. It is essential to 

undertand the effects of these variables to interpret future in vivo experiments of damage 

recognition in cells. 

I began by investigating the effects of high ionic strength on the interactions of 

human uracil DNA glycosylase (hUNG) with DNA. One salient finding was that shielding 

of non-specific electrostatic interactions by physiological concentration of salt enhanced 

the specificity of hUNG for damaged DNA. Nevertheless, the fundamental aspects of DNA 

translocation by hUNG did not change in the presence of a physiological concentration of 

salt. I then explored the same question with another paradigm enzyme, human 8-

oxoguanine DNA glycosylase (hOGG1). In contrast to hUNG, hOGG1’s non-specific 

itneractions with DNA were not electrostatic in nature, and accordingly, salt had no effect 

on its specificity for 8-oxoguainine lesions in DNA. These findings revealed that different 

DNA glycosylases can use entirely distinct non-specific DNA interactions during a damage 

search process that involves facilitated diffusion.  
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 I then moved to a comprehensive study of the effects of molecular crowding on the 

DNA interactions of both hUNG and hOGG1 using crowding conditions similar to that 

found in the cell nucleus. Although crowded solutions have high macroscopic viscosity, 

which is expected to slow translational diffusion, crowding had no effect on the rate of 

protein-DNA association. This is attributed to the caging effect of large crowders, which 

increases the efficiency of macromolecule association once both molecules enter the same 

caged environment. In addition, the cage provided by macromolecular crowders 

significantly increases the DNA chain translocation efficiency of both enzymes. Overall, 

the cage provided by crowders plays an important role in increasing DNA chain 

translocation under physiological conditions of high salt by introducing a barrier to escape 

of the enzyme to bulk solution.  

 Finally, I probed the combined effects of salt, crowding, and high concentrations 

of bulk DNA chains in damage recognition and translocation. In the presence of excess 

DNA chains, the rate of repair by hOGG1 was insensitive to solution ionic strength, while 

the activity of hUNG was greatly stimulated by high salt. These opposite effects are directly 

related to the different contributions of electrostatics to the binding of non-specific DNA 

by both enzymes. The general effect of crowding was to promote chain translocation just 

as observed in the absence of bulk DNA.  Overall these studies show that cellular crowding 

and ion concentrations have important effects on the rate and mechanism of DNA damage 

search and repair.  

Thesis Advisor: James Stivers  

Thesis Committee: Scott Bailey, Jungsan Sohn, Albert Lau, Dominique Frueh   
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Chapter 1: Introduction 
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1.1 The Biological Context of DNA Repair 

DNA is under constant assault by errors in replication and a variety of chemical 

insults that result in a plethora of base lesions including alkylation, oxidation, deamination, 

and numerous other modifications1, 2. While the frequency of these damaged bases is 

minimal within the vast background of billions of base pairs that make up cellular DNA, 

the persistence of these modifications poses an intolerable threat to the stability and 

preservation of the genomic DNA code. It is therefore of utmost importance that the 

information content of DNA be protected from persistent damage. 

The central mechanism by which the genomic DNA sequence is maintained is 

through a cellular processes called base excision repair (BER)1, 2, 3. The first step in this 

pathway is an exhaustive search of DNA by specialized enzymes known as DNA 

glycosylases that are responsible for scanning genomic DNA for infrequent lesion sites. 

Upon recognition of their target lesion, these enzymes catalyze cleavage of the glycosidic 

bond. The resultant abasic sites within the DNA trigger a cascade of additional enzymes 

that repair the nucleic acid in a step-wise fashion. Endonucleases incise the phosphate 

backbone at the abasic site, polymerases fill in the correct nucleotide, and ligases finish the 

job by resealing the break in the DNA strand (Figure 1.1). 

Uracil, which is a standard RNA base, is a commonly observed form of damage 

when found within a DNA sequence4, 5. Misincorporation of dUTP instead of dTTP by 

DNA polymerases and the spontaneous deamination of cytosine can result in steady-state 

levels of 103 – 106 uracils per genome depending on the cell type, though the higher levels 

detected originate from studies conducted using perturbations such as thymidylate synthase 

inhibitors and inactive dUTPase mutants to elevate dUTP levels and increase the likelihood 
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of uracil misincorportation5, 6, 7, 8. Uracil that persists within DNA due to misincorporation 

typically results in U:A pairs, while deamination of cytosine generates U:G mispairs4, 5. 

The persistence of U:G pairs eventually leads to C:G  T:A transition mutation as 

polymerases efficiently incorporate an adenine across from uracil bases encountered in the 

template strand during replication. In order to prevent the possibility of this mechanism of 

mutagenesis, efficient repair of uracil damage is necessary. The more prevalent form of 

uracil damage within DNA is in the context of U:A base pairs, which is primarily dictated 

by the ratio of dUTP:dTTP pool levels since DNA polymerases cannot distinguish between 

these two deoxynucleotides. While not mutagenic in nature, U:A pairs still require efficient 

repair due to the fact that they directly lead to genomic instability from strand breaks 

produced during BER9, 10, 11, 12. 

The removal of uracil from genomic DNA is handled by the UDG superfamily of 

glycosylases. In mammals, four enzymes are responsible: UNG, SMUG1, TDG, and 

MBD4. Each enzyme is tailored to primarily recognize uracil within specific sequence 

contexts. UNG and SMUG1 preferentially cleave uracil within single-stranded DNA, but 

do have efficient reactivity within the context of a DNA duplex. In contrast, TDG and 

MBD4 only recognize uracil within double-stranded DNA (dsDNA). UNG also displays 

preferential activity on the more prevalent form of uracil damage, the U:A pair, caused by 

errant processing of dUTP by polymerases. It has been proposed that SMUG1 primarily 

repairs uracil damage arising from spontaneous deamination. The activity of TDG and 

MBD4 is potentially relegated to repair of mistmatches involving uracil, thymine, and other 

damaged pyrimidines within dsDNA13. UNG is considered to be the primary uracil-acting 
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glycosylase given that it is the most active and most heavily conserved across the vast 

majority of living organisms14, 15. 

Oxidation of DNA is another common form of damage that results from reaction 

with reactive oxygen species (ROS)16. In living cells, ROS arise from both metabolic 

reactions and external factors, generating a vast array of oxidative modifications to DNA 

bases (including uracil) and single- and double-strand breaks. Of the many potential 

oxidative adducts, 8-oxoguanine (8-oxoG or oxoG) is the most abundant in the cell with a 

steady-state level ranging from 0.07 – 147 adducts per 106 nucleotides in human cells17. 

During DNA replication, 8-oxoG has been found to preferentially pair with adenine, 

resulting in G:C  T:A transversion mutations if the damaged base persists within the 

template strand16.  

Much like uracil, 8-oxoG is recognized by a variety of glycosylases that 

preferentially excise the damaged base depending on its sequence context. In humans, 

repair of 8-oxoG is carried out by hOGG1, MYH, hOGG2, and NEIL118, 19, 20. With the 

exception of hOGG1, 8-oxoG-recognizing glycosylases primarily target the oxidized base 

when mispaired with either adenine or guanine. hOGG1 is considered to be the major repair 

enzyme for 8-oxoG:C pairs, has no activity toward 8-oxoG:A or G:C pairs, and works 

primarily on non-transcribed sequences. Unlike hUNG, hOGG1 has been deemed a 

bifunctional glycosylase due to its apparent AP-lyase activity and is constitutively 

expressed18, 19, 20. Glycosylases that recognize oxidized DNA damage are conserved across 

all kingdoms of life, much like the uracil repair machinery. 

The importance of DNA repair is made clear by the dire consequences of persistent 

damage and the presence of glycosylases in all species. It is therefore of great interest to 
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understand the fundamental principles of the search-and-repair mechanism used by these 

essential enzymes. In order to devise a comprehensive model of glycosylase functionality, 

I have developed a comparative study of hUNG and hOGG1. These enzymes were chosen 

in particular as they are the most well studied human representatives of the two largest 

glycosylase superfamilies – the UDG superfamily (hUNG) and Helix-hairpin-Helix GPD 

(HhH-GPD) superfamily (hOGG1). These enzymes are structurally very distinct and have 

independently evolved to perform the same daunting task of perusing the genome for 

infrequent, but lethal DNA lesions21. 

The “DNA search problem” is encountered by all enzymes that must localize to 

specific, low-frequency target sites within the high background of genomic DNA. 

Additional complexity is added to the search embarked on by glycosylases due to the fact 

that these enzymes are not targeting a consensus sequence, but rather a single base that can 

exist within any sequence context. It has been historically accepted that glycosylases 

enhance their searching capabilities by reducing the dimensionality of the search through 

a process known as “facilitated diffusion.” The two primary mechanisms of this process 

are “associative transfer” (historically called sliding) and “dissociative transfer” 

(historically called hopping) steps along the DNA chain (Figure 1.2)22. The associative 

transfer pathway refers to a state in which the enzyme remains associated with the DNA 

chain as it processes in a random walk. The dissociative transfer pathway involves 

dissociation of the enzyme from the DNA chain and diffusion outside of the DNA ion cloud 

before reassociation.  The terms “associative” and “dissociative” transfer are used 

throughout this thesis in place of the historical “slidding” and “hopping”, respectively to 

account for recent discoveries involving intramolecular translocation by DNA glycosylases 
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that deviates from the criteria established by the older terminology23, 24, 25. While facilitated 

diffusion was first observed nearly 50 years ago, our knowledge of the microscopic details 

of these pathways and the effects of macroscopic solution properties on the search-and-

repair mechanism is limited. 

The majority of studies conducted on DNA glycosylases utilize low ionic strength, 

dilute buffer conditions that are easy to work with, but fail to model the environment 

encountered within the cell26, 27, 28, 29. It is not beyond reason to believe that the significant 

concentration of monovalent cations and macromolecules within the cell nucleus could 

have a dramatic effect on both the thermodynamic and kinetic aspects of the DNA search-

and-repair pathway. The goal of my thesis is to build off of the fundamental knowledge of 

uracil and 8-oxoG repair developed in the Stivers’ lab by systematically investigating the 

influence of ionic strength, macromolecular crowding, solution viscosity, and undamaged 

DNA density on the search and repair pathways of hUNG and hOGG1. The detailed 

comparison between these two distinct glycosylases will serve as a means to develop a 

model of how the cellular environment modulates DNA repair.  

1.2 A Historical Perspective on Facilitated Diffusion 

The magnitude of the search problem encountered by glycosylases can be 

quantified by considering the number of DNA glycosylase molecules in the cell and the 

frequency of their target lesions. Both hUNG and hOGG1 exist in a relatively high copy 

number (~105) and the average steady-state levels of uracil and 8-oxoG are ~104 per 

genome. Given that the human genome size is on the order of 109 base pairs, each 

glycosylase molecule is charged with searching ~10,000 bases within which one lesion site 
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might be encountered. While copy number alone already reduces the size of the search, the 

scanning of those 10,000 bases must be done within the timeframe of the cell cycle. 

The rate of a biomolecular reaction is in principle limited by the rate at which two 

species will diffuse freely in solution and encounter one another. The encounter probability 

of two species, A and B, can be quantified from the relationship between the size of the 

interacting species, represented as spheres, and the fractional reactive surface area. This 

relationship is summarized by the Smoluchowski equation (eq. 1.1)30, 31, 32 

𝑘𝐴+𝐵→𝐴𝐵 =  
𝑁𝑜4𝜋(𝐷𝐴+𝐷𝐵)(𝑟𝐴+𝑟𝐵)

1000
            (1.1) 

where Da and Db are the diffusion constants of A and B in cm2 s-1, ra and rb are the 

hydrodynamic radii of the spherical models in cm, No is Avagadro’s number, and the factor 

of 1000 normalizes the rate constant to units of M-1 s-1. The diffusion constants for each 

species can be theoretically calculated based on size, temperature, and solution viscosity 

(η) using the Stokes-Einstein relation (eq 1.2). 

𝐷 =
𝑘𝑇

6𝜋𝑟𝜂
                                     (1.2) 

 The Smoluchowski equation is a simplified model that does not fully characterize 

the nature of diffusion for biological macromolecules. Modifications to the equation are 

required in order to include consequences of i) non-uniform reactive surface area, ii) the 

non-spherical nature of biological particles, iii) electrostatic attractive and repulsive forces 

between molecules, and iv) that the interaction distance may not be simply the sum of the 

hydrodynamic radii of A and B. With these correction factors in place, theoretical target 

searching rates by DNA-binding proteins utilizing only 3D diffusion can be estimated. This 
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was done previously for the lac repressor, which resulted in a diffusion-controlled reaction 

rate of ~108 M-1 s-122. 

 In 1968, Riggs et al experimentally measured an association rate of lac repressor 

with its target operator DNA sequence on the order of 1010 M-1 s-1. The large, reproducible 

discrepancy between the theoretical association rate and the experimentally derived value 

indicated an additional mechanism to the search process not accounted for by 3D diffusion. 

The fact that the experiments with lac repressor were carried out using DNA in which the 

operator site was buried within 50,000 base pairs of non-cognate DNA created initial 

suspicion that the enzyme was utilizing the excess DNA to accelerate its search process. 

Riggs and others proposed that lac repressor was able to translocate along the non-cognate 

DNA it initially encountered in a 1-dimensional search, rather than relying solely on 3D 

diffusion33, 34, 35. 

 The process of utilizing non-target DNA sites as a guiding conduit to reduce the 

dimensionality of the search process and enhance the association rate is known as 

“facilitated diffusion.” Since its proposal nearly 50 years ago, a large body of work has 

been generated by numerous labs to describe a variety of searching mechanisms, including 

the sliding and hopping translocation pathways22. Sliding was the first proposed by Adam 

and Delbruck36, mathematically formulated by Richter and Eigen34, and experimentally 

characterized by Berg and von Hippel22, 37. The sliding process is best described as a one-

dimensional search carried out by a loosely associated enzyme molecule diffusing along 

the DNA chain. The sliding process is facilitated by the use of thermal energy to overcome 

the relatively small activation barrier of translocation. Hopping was defined by Berg as a 

microscopic dissociation event of a protein from DNA in which the protein molecule 
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remains near the original site and, though it is free to diffuse in any direction, reassociates 

with a nearby site with a high probability. This process allows a protein molecule to explore 

longer stretches of DNA within its macroscopic bound lifetime. These two mechanisms 

are not viewed as mutually exclusive as Berg and others proposed that the most efficient 

search process would involve a combination of sliding and hopping22, 31, 37, 38. The 1D 

sliding mechanism allows for close inspection of short, DNA fragments that leads to 

eventual recognition while the 3D hopping pathway limits the potential redundancy of the 

sliding model by promoting search over longer stretches of DNA (Figure 1.2). 

 Our understanding of facilitated diffusion is rooted in decades of theoretical and 

experimental dissection for a number of DNA-binding proteins, including glycosylases; 

however, our knowledge is limited primarily to ideal solution conditions. Dilute, low ionic 

strength buffers promote favorable interactions between proteins and DNA and are easy to 

work with given their low solution viscosity, but they fail to mimic the environment 

encountered by these enzymes within the cell nucleus. It is, therefore, of great interest to 

investigate how components of the cellular environment might modulate both the kinetic 

and thermodynamic aspects of the search-and-repair process individually and 

cooperatively. In the following sections, I describe our current fundamental understanding 

of various facilitated transfer mechanisms and provide the theoretical basis for how I will 

test if our current model of facilitated diffusion can persist within the complex solution 

conditions encountered in the cell. 

1.3 Theoretical and Experimental Basis for Associative ‘Sliding’ Transfer 

Associative transfer involves a one-dimensional search in which an enzyme 

molecule ‘slides’ along the contour length of a DNA helix. In this mechanism, an enzyme 
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will sample linearly contiguous binding sites with no preferential bias to step left or right 

from its initial position. This random walk is then interrupted either by a conformational 

change in the enzyme upon recognition of a target site or the dissociation of the enzyme 

molecule. The probability of an enzyme associatively transferring (Passoc) along the DNA 

is therefore a kinetic interplay between the rate of 1D translocation (kassoc) and the rate at 

which it falls off the DNA chain (koff) (eq 1.3). 

𝑃assoc =  
𝑘assoc

𝑘off+𝑘assoc
               (1.3) 

In order for rapid sliding to be possible, the transition from one site on the DNA 

chain to the next must have a negligible energetic barrier (~1-2 kbT)30, 39. An unbiased 

random walk would also require the energy landscape of the DNA surface to be relatively 

flat. This is an unlikely scenario given that charged phosphate groups distributed along the 

DNA chain create a non-uniform interaction surface. To overcome this caveat, von Hippel 

proposed that “out of register” charged moieties along the enzyme binding surface would 

generate an isopotential interaction surface that would allow the enzyme to slide without 

friction regardless of its position on the DNA22. 

According to Schurr in 1979, a theoretical upper limit of the 1D diffusion rate of 

an enzyme sliding along DNA can be calculated simply from hydrodynamic 

considerations. Associative translocation requires that the enzyme rotate 360o around the 

helical pitch of the duplex every 10 basepairs in order for the interacting face of the enzyme 

to remain in contact with the phosphate backbone. This spiraling motion impacts a 

hydrodynamic drag on the enzyme molecule and has been shown to have a substantial 

effect on the diffusion rate. Indeed, the theoretical maximal ‘rotation-coupled’ diffusion 
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rate of an enzyme was calculated to be ~107 bp2 s-1 which is slower than the typical free 

translational diffusion rate by two orders of magnitude40, 41. 

 In the case of DNA glycosylases, an upper limit of the associative diffusion rate 

can be calculated form the bound lifetime of the enzyme (τbind) and the average length it 

slides (Lslide) along the chain before dissociating (eq 1.4).  

𝐷1 =  
𝐿slide

2

𝜏bind
                       (1.4) 

For hUNG, the bound lifetime on undamaged DNA (τbind = 3 ms) and mean sliding 

length (Lslide = 4.2 bp) results in a 1D diffusion rate of 6 x 103 bp2 s-1, which is lower than 

the theoretical limit proposed by Schurr 42. In the case of hOGG1, single molecule studies 

have reported a diffusion rate of 2-5 x 106 bp2 s-1 26. Translocation by hOGG1 has been 

assumed to be frictionless due to the fact that the 1D diffusion rate approaches the maximal 

value proposed by Schurr. It must be noted that the limited spatial resolution of single 

molecule imaging results in a rate estimation that also includes cycles of 3D dissociative 

transfer events that are “blurred” together with the 1D associative transfer steps. The 

inclusion of indistinguishable 3D diffusion events in the 1D diffusion rate causes D1
 to be 

estimated as faster than reality given the more rapid nature of 3D diffusion relative to 1D 

diffusion. 

 It is not entirely surprising that experimentally derived associative transfer rates 

deviate substantially from the theoretical upper limit. The assumption that DNA behaves 

as an isoenergetic, frictionless surface is not easily reconcilable with the fact that the 

energetics of non-specific DNA-protein binding interactions are on the order of 10-15 kbT 

and that numerous hydrogen bonding donors and acceptors are found throughout a DNA 
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molecule30, 39. The formation of even a single hydrogen bond, which contributes to the 

large interaction potential with undamaged DNA, would produce a significant energetic 

barrier to rapid translocation. It is therefore necessary to hypothesize an additional state of 

the protein that deviates substantially from its bound form. It has previously been proposed 

that an enzyme molecule undergoing associative sliding events occupies two potential 

conformations: a loosely bound ‘search’ mode and a ‘recognition’ mode consistent with 

the tightly bound crystallographic models30, 39, 43.  Previous work in the Stivers lab by 

Friedman et al showed by NMR that free hUNG in solution has no instrinsic dynamics 

(nanosecond – millisecond time scales); however, binding to nonspecific DNA induces 

dynamic motions on the millisecond timescale. These motions have been attributed to the 

transition of the enzyme between a closed conformation and a loosely bound, open 

conformation44. It has also been shown that the introduction of methyl phosphonate 

linkages to reduce the phosphate backbone charge density between damage sites did not 

affect the ability of hUNG to translocate, which is consistent with the mobile form of the 

enzyme being loosely associated with the DNA23. Associative transfers are therefore best 

defined as free diffusion along the DNA chain during the transition state for dissociation. 

The completion of an associative transfer event occurs when the open enzyme molecule 

closes on the DNA chain rather than diffusing into bulk solution. 

 The discussion of the nature of a sliding enzyme molecule up to this point does not 

take into consideration the possible effects of the cellular environment. Given that 

nonspecific interactions between proteins and DNA are largely electrostatic in nature, the 

counterion cloud that surrounds the polyanionic DNA chain could mediate the ability of a 

glycosylase to productively translocate. In principle, ions needing to be displaced from the 
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DNA by the loosely associated ‘search’ state of a DNA glycosylase could render the 

enzyme sensitive to local fluctuations in the counterion content surrounding the DNA. 

These ions would technically re-condense behind the enzyme as it continues traversing 

along the DNA chain, resulting in a zero net ion displacement, which could in fact render 

the associative transfer pathway impervious to changes in ionic strength22. Additional 

nuclear solution features that must also be considered are molecular crowding and excluded 

volume. The presence of significant concentrations of other species that limit the volume 

available to the DNA and glycosylase could potentially favor the associative transfer 

mechanism due to the compact nature of sliding search states. It is thus of great relevance 

to investigate how this transient search mode responds to changes in the ionic strength and 

the crowded state of its solution environment in order to better understand translocation in 

a relevant context. 

1.4 Theoretical and Experimental Basis for Dissociative ‘Hopping’ Transfers 

 While associative translocation along DNA is rather complex, a rather simple 

model is sufficient to characterize the nature of three-dimensional dissociative ‘hopping’ 

transfers. Short-range dissociation and re-association events are largely governed by 

diffusion as the probability of productively executing a dissociative transfer (Pdiss) is 

defined by the likelihood that a dissociated enzyme molecule will re-bind the DNA chain 

rather than diffuse into bulk solution. The kinetic description of this model is captured in 

eq 1.542  

𝑃diss =  (
𝑘off

𝑘assoc+𝑘off
) (

𝑘return

𝑘bulk+ 𝑘return
)              (1.5) 
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where kbulk is the translational diffusion rate of the enzyme in bulk solution and kreturn is the 

association rate of the enzyme with the initial DNA strand. The first term representents the 

likelihood that the enzyme will dissociate from the DNA chain, rather than undergoing an 

associative transfer step, and the second term represents the likelihood of the enzyme 

returning to the DNA strand. 

 Theoretical calculations supported by Monte Carlo simulations have been used in 

the Stivers lab to predict the length scales that best characterize dissociative transfer events 

of both hUNG and hOGG125. In the case of hUNG, the maximal distance of a hopping 

event (rdiss) was calculated based on the experimentally derived lifetime of a hop (τdiss) and 

the 3D diffusion rate (D3) using eq 1.6. 

< 𝑟diss > =  √6D3𝜏𝑑𝑖𝑠𝑠                                   (1.6)                                      

hUNG was determined to hop a maximum distance of 7 nm from the DNA, which 

requires that the enzyme molecule fully remove itself from the condensed ion environment 

surrounding the nucleic acid prior to reassociating42. This same calculation predicted a ~3 

nm distance for hOGG1, which was substantiated by simulations predicting hOGG1 would 

move ~5 nm on average during a dissociative transfer event25. Should an enzyme molecule 

move beyond 10-20 nm, it is unlikely that it will return to its initial DNA target and will 

instead continue to freely diffuse through bulk solution. The finite lifetime of the free 

enzyme prior to reassociation (nanoseconds to microseconds) also indicates that hopping 

distances along the DNA chain are only on the order of a few nanometers. Dissociative 

transfers are best described as rapid, short-range movements in three dimensions along a 

DNA chain. 
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 Unlike associative transfer, dissociative transfers require an enzyme molecule to 

move away from its initial target strand and sample both the highly condensed ionic 

environment of the DNA periphery and the surrounding bulk solution. A potentially 

significant net ion displacement upon reassociation with the DNA chain could render 

searching enzyme molecules very sensitive to the surrounding counterion concentrations. 

It is also possible that the large volume occupied by the dissociated state of the enzyme 

molecule would be inhibited by the introduction of volume excluding crowding agents. It 

is likely that this transient search state would be sensitive to both ionic strength and 

molecular crowding conditions encountered inside the nucleus, though this avenue has yet 

to be explored with any degree of detail.   

1.5 Ensemble Biochemical Assays Developed to Probe Facilitated Diffusion 

 While the historic observation of a rapid target localization and slower than 

predicted diffusion rate of lac repressor was suggestive of facilitated diffusion, recent 

decades have led to the development of biochemical assays to characterize translocation in 

detail. I will limit my discussion to just the origin of a vital assay utilized in my thesis. 

 In 1985, Paul Modrich published a study on EcoRI that provided strong evidence 

of this DNA-modifying enzyme’s ability to processively track along a DNA chain45. The 

assay developed utilized a DNA substrate with two target sites. The very early encounters 

of EcoRI with the two-site substrate revealed a preferential generation of DNA fragments 

consistent with EcoRI cutting both sites. Significantly low concentrations of enzyme used 

in the study ruled out the possibility that the two-site reaction was due to two separate 

enzyme molecules acting on the DNA and suggested a more likely model where a single 

enzyme processively moves to the second site after the first cleavage event. This ‘site 
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transfer’ assay has been used to identify and characterize facilitated diffusion of numerous 

DNA-binding proteins. 

 A variation of the site transfer assay was used by Stanford and co-authors to provide 

more explicit experimental evidence for the presence of associative slides and dissociative 

hops by EcoRV along DNA46. This was accomplished by simply using multiple DNA 

substrates in which the two specific sites were placed further and further apart. Theoretical 

calculations based on a 1-D Brownian search can then be used to predict the probability of 

an enzyme sliding the number of base pairs between the two sites by using a modification 

of equation 1.3 (eq 1.7), which states that an enzyme translocating linearly along DNA 

with no directional bias will have a probability of sliding N base pairs that is proportional 

to N2. 

𝑃𝑁 = (
𝑘assoc

𝑘off+𝑘assoc
)𝑁2

                              (1.7) 

 A protein that can only undergo associative transfer (kassoc >> koff) is expected to 

display intermolecular transfer probabilities between two target sites that scale with N2 

(Figure 1.3). This is due to the simple fact that the significantly faster rate of associative 

transfer over dissociation would lead to very few enzyme molecules falling off the DNA 

chain before reaching the second site. A second trend can be envisioned from eq 1.7 in 

which the kassoc
 is still faster than koff, but only by a small margin (Figure 1.3). This would 

result in a significant number of enzyme molecules dissociating at least once prior to 

reaching the next target site (dissociative transfer) and the probability of transfer would 

follow an a/r dependence where a is the maximum length of DNA the enzyme can slide (a 

= 1 for enzyme’s that only hop) and r is the mean distance between the target sites in 3-D 
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space. What Stanford et al observed for EcoRV was an intermediate dependence of the 

transfer probability on site spacing length, which indicated a combination of both ~50 bp 

associative slides and numerous dissociative hops giving rise to productive intermolecular 

translocation. Similar observations have been made for other DNA-searching proteins28, 29, 

38, 47, including the E. coli form of UNG (eUNG) by Porecha et al who found the eUNG 

slides ~10bp before undergoing dissociative transfer28. 

 While the use of theoretical models to discriminate between translocation 

mechanisms is a useful tool, it is limited in its relevance due to the fact that it is an indirect 

method for discriminating against associative and dissociative transfer events. Efforts have 

been made to provide more direct evidence of each transfer pathway, which have 

culminated in the assay heavily utilized in this thesis. In 2012, Schonhoft et al designed a 

modification to Modrich’s site transfer assay, which involved the addition of a molecular 

clock42 (Figure 1.4). ‘Molecular clocks’ are small molecules that have a known lifetime 

that can be used to ‘clock’ the lifetime of transient reaction intermediates. The design of 

the ‘clock’ molecule follows 3 major principles: (1) it binds weakly to the enzyme such 

that not all enzyme molecules are sequestered in the bound state, (2) it is soluble enough 

to be present in high enough concentrations to densely populate the solution and rapidly 

diffuse to the enzyme active site during the lifetime of a hopping event, (3) it must not 

perturb the ability of an enzyme to undergo associative transfers along the DNA chain. 

Satisfying these requirements allows the ‘clock’ molecule to effectively trap any enzyme 

molecules attempting to undergo the dissociative transfer pathway and provides a way by 

which associative and dissociative translocation events can be distinguished 

experimentally. The site transfer assay is carried out in the absence of the trapping molecule 
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to determine the overall transfer probability (Ptrans) and conducted again in the presence of 

the trap. Transfer events that persist are all associative in nature (Passoc) and the probability 

of the enzyme undergoing dissociative transfer is determined through a simple calculation: 

Ptrans
 = Passoc + Pdiss. 

 In the Stivers lab, extensive work preceding this thesis was done to characterize the 

mechanistic details of facilitated diffusion for hUNG and hOGG1 under ideal solution 

conditions using the ‘molecular clock’ site transfer assay23, 24, 25, 42(Figure 1.5). Uracil and 

2-amino-6-chloropurine were found to be sufficient trapping molecules for hUNG and 

hOGG1, respectively. A summary of the most salient findings follows. (i) hUNG and 

hOGG1 both utilize a combination of associative and dissociative transfers until damage 

sites are beyond 10 bp and 40 bp, respectively25, 42 and (ii) the associatively translocating 

intermediate of both enzymes is only loosely associated with the DNA and is therefore 

capable of bypassing roadblocks along the backbone25, 42. The experiments provide a 

fundamental framework for how glycosylases localize to target lesions, though little is 

known with regards to how these pathways respond to non-ideal solution conditions 

encountered in the cell. 

 In the following sections, I will introduce the two key features of the cellular 

environment investigated in this thesis: high ionic strength and macromolecular crowding. 

A detailing of the physiological significance of these solution components and the 

theoretical models used to interpret the effects of each on the glycosylase search-and-repair 

pathway will be presented. 

1.6 Counter-ion Condensation Theory 
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The ion content of the intercellular environment is heavily regulated by movement 

of ions across the plasma membrane and organelle membranes through transport proteins 

such as symporters, antiporters, and ion channels48. Differing concentrations of individual 

ions between the intercellular and extracellular fluid produces a gradient of electrochemical 

potential along which an ion will naturally diffuse in or out of the cell through passive 

transport. The potential energy stored by ion gradients can be converted to other forms of 

energy required to power numerous biological processes.  

One major source of electrochemical potential originates from the disparity in 

potassium ion concentrations across the plasma membrane. Within the cell, potassium is 

the most prevalent monovalent cation at a concentration of ~150 mM, which is 30 times 

that of its extracellular concentration48. Potassium ions thus have a tendency to flow out of 

the cell along their concentration gradient; however, the negative potential of the plasma 

membrane (-70 to -90 mV) produces an electrical counteracting force that drags potassium 

back. The end result is an essentially fixed concentration of intercellular potassium due to 

no net movement of potassium ions across the membrane.  

High concentrations of monovalent ions are known to effect the stability of nucleic 

acid helices (DNA only for our purposes) and their complexes with proteins in solution49, 

50, 51, 52, 53, 54, 55. The origin of this effect arises from the structural properties of DNA, which 

can be simplified to a uniform rod with a large number of negative like charges from the 

phosphate backbone and a high helical charge density. Many historical theoretical models 

and experiments have predicted and proven that cations will condense to form a 

concentrated layer surrounding a polyion rod in solution52, 53, 54, 56, 57. This “ion cloud” 

surrounding the DNA maintains a constant local concentration that is insensitive to changes 
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in the ion content of the surrounding bulk solution51, 56. G.S. Manning first proposed that 

the effect of this condensed ion layer on the thermodynamic activity of the DNA would 

have a logarithmic dependence on the bulk solution salt concentration and would be heavily 

dependent on the helical charge density54, 58. Interactions with DNA that perturb the charge 

density (i.e. conformational changes, protein binding, etc.) could thus be facilitated or 

inhibited by small changes in the surrounding salt concentration. 

This “counter-ion condensation” theory (CC theory) was experimentally 

implemented by T.M. Record to more quantitatively describe the nature of the physical 

forces acting between proteins and DNA52, 54, 55. With respect to a protein binding to a DNA 

molecule, CC theory assumes the electrostatic component of the binding free energy 

derives solely from the cratic entropy of mixing gained by the displacement of condensed 

ions from the ion cloud into the more dilute bulk solution. Upon binding, cationic side 

chains along a protein surface replace monovalent cations tethered to the DNA phosphate 

backbone. This process is inhibited by increases in the bulk salt concentration. High bulk 

salt reduces the ion gradient between the DNA ion cloud and bulk solution, which results 

in a smaller entropic gain upon protein binding. In accordance with CC theory, the expected 

logarithimic salt dependence of the binding affinity can be described by the following 

linear relationship (eq 1.8) 

log (Ka) = log (Ka
non) – N log [salt]        (1.8) 

                                 N = Z +  

where Ka
non

  represents the non-electrostatic (or salt independent) component to the 

binding free energy and N is the total number of counterions displaced during binding. N 

is a summation of the ions displaced from the DNA (Z) and anions () that are displaced 
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from cationic side chains of the protein. The number of DNA-associated ions that are 

displaced can be estimated from the number of DNA phosphate groups in contact with the 

bound protein (Z) and the fraction of a cation bound per phosphate group according to 

polyelectrolyte theory ( ~ 0.64 for short DNA oligos)49. A useful feature of this formalism 

is that the salt-dependent component drops to zero when extrapolated to 1 M salt. It is 

assumed that all electrostatic interactions are completely shielded at such a high salt 

concentration and the only contributions to the binding free energy that remain are non-

electrostatic in nature.  

 The validity of using such a simplified model to delineate between electrostatic and 

nonelectrostatic interactions in a protein-DNA complex was recently evaluated in detail by 

Privalov49. The components of the theory he addressed included (i) if N truly represents 

the number of ions displaced upon binding, (ii) what log Ka represents at 1 M salt, and (iii) 

if the electrostatic component to the binding free energy (ΔGelect) is solely entropic. To 

address the first point, Privalov compared the number of observable DNA phosphate 

groups interacting with several proteins from atomic structures with the corresponding 

slope of their salt-dependent binding affinity. A plot of this data established two 

populations: those whose linear relationship went through the origin and those that did not. 

The former represents proteins that only displace DNA-bound ions and the latter are those 

that release anions associated with their cationic sidechains. Privalov showed that anion 

release from a protein can be experimentally determined simply by changing the anionic 

counterion of the salt in solution to one that is heavily hydrated and unlikely to interact 

with the protein. N has thus been established to be proportional to the number of ions 

displaced during a binding event. The second point was addressed by analysis of the salt-
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dependent binding of different truncations of the HMG box from mLEF-1. The truncated 

proteins differed only in the number of residues crystallographically shown to 

electrostatically interact with the DNA. Their respective log-log plots differed only in slope 

and not in the 1 M salt extrapolated y-intercept, which lends credence to the notion that the 

y-intercept does not inform on any electrostatic interactions. The third point with regards 

to the entropic or enthalpic origin of ΔGelect was addressed by simply evaluating the 

temperature sensitivity of salt-dependent binding. Privalov showed that the slope of the 

salt-dependent binding of the bZIP fragment of yeast GNC4 to its target sequence was 

insensitive to temperature while the y-intercept became increasingly larger as temperature 

rose. The temperature independence of N is consistent with a purely entropically driven 

displacement of ions. Privalov’s comprehensive analysis demonstrates that the theoretical 

predictions of CC theory are validated by experimental observations. 

 Though simplistic in nature, CC theory provides a model by which experimentally 

derived interaction potentials between proteins and DNAs can be dissected in terms of their 

electrostatic and nonelectrostatic character. In chapters 2, 3, and 5 of this thesis, I will use 

this theory in a broader application to characterize the driving forces behind numerous 

steps in the hUNG and hOGG1 search-and-repair pathway beyond just binding to the DNA. 

This detailed analysis of how salt impacts various stages of protein-DNA interactions that 

lead to productive translocation will allow me to develop a cohesive model for how the 

intercellular salt concentration modulates our current understanding of facilitated diffusion.  

1.7 Macromolecular Crowding: Excluded Volume and Solution Viscosity Effects 

 Experimental studies of proteins translocating along DNA are primarily carried out 

in vitro utilizing relatively low concentrations of macromolecular species. While this 
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provides simplicity in experimental design and interpretation, it ultimately ignores an 

essential component of the physiological environment of DNA repair: the cell is crowded. 

In mammalian cells, concentrations of macromolecular species range from 200-300 g/L for 

proteins and 50-250 g/L for nucleic acids; therefore, an astounding 10-40% of the cell 

volume is occupied by macromolecules and unavailable to the interacting species of 

interest59. This reduction in available solution volume has profound consequences for 

biological processes. 

 The most intuitive effects of high concentrations of large species in solution revolve 

around excluded volume and viscosity. Reduced available volume to a protein and DNA 

pair would promote compact species that occupy as small a volume as possible. This favors 

the formation of protein-DNA complexes and disfavors free DNA and protein forms. 

Increased viscosity by the introduction of inert macromolecular species would also be 

expected to hinder diffusion driven processes in a manner described by the Stokes-Einstein 

equation. 

 Discussion of the more complex consequences of a crowded solution environment 

is best done using a simplified model in which intracellular macromolecules are 

represented as inert polymer chains. This simplification allows for theoretical prediction of 

solution effects at various crowding levels and also provides an experimental approach for 

mimicking the crowding environment of the cell using commercially available inert 

polymers such as dextran, ficoll, and polyethelene glycol (PEG). For the purpose of this 

thesis, the discussion of molecular crowding will be limited to the use of PEG as a model 

system. The correct size of PEG to use as an intercellular mimic is dependent on the size 

of the test molecule due to a unique property of some inert polymers. First noted by 
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Asakura and Oosawa in 195460, preferential interaction between PEG and water rather than 

a test protein leads to the formation of a “depletion layer” in which PEG is excluded from 

the protein surface. This hydration barrier between PEG and the test molecule is due to the 

polymer experiencing entropic repulsion as it approaches the protein. The consequences of 

this depletion layer change as a function of PEG concentration (Figure 1.6)61. At low 

concentrations, the solution is considered dilute and the crowding agent can be viewed as 

an extended sphere (coil) with a radius of gyration (Rg
PEG) determined by the molecular 

weight (Mw) of the polymer using the following relationship derived from light scattering 

data62, 63. 

Rg
PEG = 0.0215∙Mw

0.583 

Under these solution conditions, the depletion layer thickness scales with Rg, 

though the low probability of diffusive encounter between the test molecules and PEG 

limits any significance of the depletion layer size. As the concentration of PEG is increased 

beyond a defined crossover threshold (c*)64, the solution becomes semi-dilute, 

characterized by polymer molecules overlapping and caging the protein and DNA together 

in a noncovalent polymeric network with a certain average mesh size (ξ) that continues to 

decrease as the polymer concentration increases. The depletion layer in this scenario scales 

with ξ which is a function of Rg
PEG. In this regime, the depletion layer provides a significant 

benefit to the protein and DNA by enhancing attraction between the two molecules induced 

by the exclusion of PEG from the space between them when their separation reduces to the 

less than Rg
PEG 61. At high concentrations, the solution enters the concentrated regime in 

which polymers form a dense mesh that invades the space between the protein and DNA 

and inhibits their diffusive encounter. For the purpose of studying macromolecular 
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crowding, it is ideal to use a PEG polymer that is slightly larger than the test protein so that 

the depletion layer it induces is significant and at a high enough concentration to be in the 

semi-dilute regime where the depletion layer is most effective61, 65. 

 The depletion layer generated by the exclusion of PEG from regions of solution 

influences not only the solution volume available to test molecules, but also has a unique 

consequence for viscosity. While the introduction of large PEG molecules can drastically 

increase the overall solution viscosity (referred to as microviscosity), the viscosity within 

the depletion layer (nanoviscosity) is expected to be equivalent to dilute solution in which 

no PEG is present59. Therefore, a crowded solution is imbued with heterogenous viscosity 

and the severity of this effect is dictated by the relative size of the test molecules and PEG. 

Holyst rationalized this effect in the following manners: (i) when the test molecule is 

significantly larger than the crowding agent, the size of the depleted volume containing 

dilute solution is negligible and the protein experiences microviscosity only. (ii) When the 

test molecule is significantly smaller than the crowding agent, it is always encased in the 

depletion layer and experiences nanoviscosity equivalent to dilute solution. (iii) When the 

test molecular and crowding agent are of comparable size, the length scale of a particular 

interaction between test molecules will dictate the viscosity they encounter66. Short-range 

motions on the order of nanometers (corresponding to rotational diffusion) experience 

nanoviscosity while longer-range movements (corresponding to translational diffusion) are 

influenced by microviscosity67.  

 In chapters 4 and 5, I develop a comprehensive model for how the crowded and 

viscous environment of the cell nucleus can affect the individual steps of the hUNG and 

hOGG1 search-and-repair pathway. I show that the excluded volume effect negates the 
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deleterious effects of high solution viscosity and provides and environment in which 

facilitated diffusion can persist. Our theoretical understanding of how PEG behaves in 

solution as a function of size and concentration is used as the basis of our analytical 

interpretations.  

1.8 General Summary of Thesis Chapters 

My thesis work revolves around the individual and synergistic effects of ionic 

strength and molecular crowding on the search-and-repair pathways of both hUNG and 

hOGG1. In chapter 2, I present a thorough analysis of how the ionic strength of bulk 

solution alters the ability of hUNG to efficiently interact with both undamaged and 

damaged DNA molecules. This includes equilibrium binding measurements, 

association/dissociation kinetics, Michaelis-menten kinetics, and site transfer interpreted 

using CC theory. In chapter 3, I describe a complimentary study performed on the enzyme 

hOGG1, which reveals how structural and mechanistic differences between these enzymes 

results in similar damage search outcomes. In chapter 4, I present a combined study of 

hUNG and hOGG1 search-and-repair in the presence of a rich diversity of molecular 

crowding agents that probe both excluded volume and viscosity effects. Finally, in chapter 

5, I detail an analysis of the combinatorial effects of salt, crowding, and bulk DNA density 

on the translocation probabilities of both hUNG and hOGG1 to evaluate the validity of 

facilitated diffusion as a search mechanism for glycosylases in vivo. 
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Figure 1.1. The Base Excision Repair Pathway. After DNA is damaged by any one of a 

variety of mechanisms, lesions (X) are recognized by specific DNA glycosylases. These 

enzymes catalyze cleavage of the glycosidic bond of the damage site, resulting in the free 

damaged base and an abasic site remaining in the DNA. This abasic site is then recognized 

by a cascade of enzymes responsible for correct nucleotide incorporation. 
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Figure 1.2. Facilitated Diffusion: Associative and Dissociative Translocation. 

Increasing the rate at which glycosylase molecules can efficiently scan DNA is 

accomplished by two major transfer mechanisms: a 1D associative slide, in which the 

protein remains closely localized to the DNA, and a 3D dissociative hop which requires 

the enzyme to dissociate and reassociate with the DNA chain. 
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Figure 1.3. Mathematical representation of associative transfers. Modeling of 

associative transfer steps involves an enzyme molecule that has an equal probability of 

stepping to the right (+1) or to the left (-1) from its point of origin (0). The figure on the 

right shows simulated data representing the expecting differences in the fraction of enzyme 

molecules occupying sites distant from the point of origin. This fraction is heavily 

dependent on the rates of dissociation (koff) and associative translocation (kassoc). The values 

of kassoc/(koff + kassoc) plotted are 0.900 (blue), 0.990 (orange), and 0.999 (red). As koff 

increases, the enzyme has a lower probability of occupying distant sites on the DNA.  
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Figure 1.4. Schematic of the Molecular Clock assay. The probability of undergoing an 

associative transfer steps is described as an interplay between the rate of sliding (kassoc) and 

the dissociation rate (koff). Dissociated enzyme molecules can either reassociate with the 

same DNA (kreturn) to complete a hopping event or become lost in bulk solution. To 

delineate between associate and dissociative transfer pathways, a small molecule trap is 

introduced in solution (T). This molecule rapidly diffuses (ktrap[T]) to the exposed active 

site of any dissociating enzyme molecules, which eliminates hopping steps. All transfers 

impenetrable to the trap are associative in nature. 
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Figure 1.5. The Site Transfer assay. In order to quantify processivity of DNA 

glycosylases (Ptrans), DNA containing two damage sites (X) is radiolabeled on both the 3’ 

and 5’ ends (*) and reacted with enzyme. The DNA fragments are then separated by 

denaturing polyacrylamide gel electrophoresis. Facilitate diffusion between sites is 

indicated by the excess of double cleaved fragments (A and C) over single cleaved 

fragments (AB and BC). If both damage sites are equivalent and the enzyme does not 

display translocation bias, the rates of formation should be as follows: A = C, AB = BC. 

Ptrans can be calculated using the rates of formation of each fragment. 
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Figure 1.6. Representations of molecular crowding agents in solution. The solution 

characteristics of inert polymers (i.e. PEG, Dextran, Ficoll) is dependent on concentation. 

In the dilute regime (low concentrations), the polymer is globular and isolated. As the 

concentration increases, a crossover point is reach upon which the polymers will begin to 

interact with one another. Beyond the crossover point is thes semi-dilute regime where the 

crowding agent has formed a mesh that cages the macromolecules (A and B) together. At 

high concentrations, this mesh becomes extremely dense and penetrates the space between 

species A and B, hindering their interactions. Exclusion of inter polymers from the surface 

of proteins due to entropic depletion effects generates a depletion layer (nm in diameter) 

of dilute solution. These pockets of dilute buffer produce heterogeneity in the viscosity of 

the solution that is experienced by the protein depending on the length scale of its motion. 

Long range motions encounter microviscosity equivalent to the bulk solution and short 

range motions occur in the nanoviscosity of the dilute depletion layer.  
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2.1. INTRODUCTION 

DNA glycosylases initiate the base excision repair pathway by localizing to a 

specific lesion site and catalytically cleaving the glycosidic bond of a damaged base.  

Different glycosylases can be highly specialized for the removal of specific lesions that in 

some cases vary only subtly from native bases [5,6].  Achievement of high enzymatic 

specificity for damaged sites as well as rapid searching of abundant undamaged DNA 

sequences requires highly optimized thermodynamic and kinetic interactions with both 

specific and non-specific sequences.  The basis for this statement is straightforward:  if the 

enzyme binds too tightly to non-specific DNA sequences, the residence time will be too 

long to efficiently scan the entire genome before the next replication event, while if 

interactions are too weak, insufficient time will be spent inspecting individual DNA base 

pairs, leading to overlooked base lesions [7,8].  Determining the factors that contribute to 

the molecular recognition of both specific and non-specific DNA sequences can shed light 

on how these enzymes have optimized their scan-and-repair mechanisms under solution 

conditions found in human cells. 

It is generally accepted that the DNA glycosylase damage search process involves 

two major modes: an associative1 mode that involves tracking along the DNA using a 

loosely associated enzyme state (often called “sliding”) and a dissociative mode that 

involves intermittent dissociation and re-association of the enzyme with the DNA chain 

                                                      
1 We use the term dissociative to refer to a facilitated diffusion pathway that involves dissociation of the 

enzyme from the DNA chain and diffusion outside of the DNA ion cloud before reassociation.  The term 

associative refers to a distinct pathway where the enzyme remains associated with the DNA within the ion 

cloud.  Historically, the terms “hopping” and “sliding” have been used to describe these two pathways for 

facilitated diffusion.  However, recent studies with hUNG and 8-oxoguanine DNA glycosylase (hOGG1) 

have established aspects of the intramolecular site transfer mechanisms by these enzymes that are not 

consistent with the older terminology [1-3] 
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(“hopping”) [4,9-21].  Since most studies of the damage search mechanism have used 

dilute, low-salt solutions [11,12,22,23], a key unknown is how the individual non-specific 

and specific complexes respond to the high salt concentrations encountered in the cell 

nucleus.  A general understanding of such electrostatic effects is important given the 

generally large impact salt concentration has on the kinetic and thermodynamic properties 

of many enzyme-DNA complexes [5,6,24-27].  

Counterion condensation (CC) theory attributes the electrostatic component of the 

protein-DNA binding free energy to the cratic entropy of mixing.  In this view, during 

binding to the phosphate backbone the cationic side chains of the protein displace cations 

from the DNA ion cloud into bulk solution [7,8,27-29].  As the bulk salt concentration is 

increased, the cratic entropy of mixing becomes less favorable because the ion gradient 

between the DNA ion cloud and bulk solution is reduced.  These effects are described by 

eq 2.1 [7,8,27-29], where the term log Ka
non

  accounts  

log (Ka) = log (Ka
non) – N log [salt]        (2.1) 

                                 N = Z +  

for the non-electrostatic contribution to the free energy of binding, and the second term 

reflects the electrostatic component, where N is the total number of counterions displaced 

during binding.  These counterions may be cations released from the DNA (Z) or tightly 

bound anions () that are displaced from cationic side chains of the protein.  In this 

formalism, Z is equal to the number of DNA phosphate groups in contact with the bound 

protein and  is the fraction of a cation bound per phosphate group according to 

polyelectrolyte theory ( ~ 0.64 for short DNA oligos) [30-32].  A feature of this model is 

that extrapolation of the binding energy to 1 M salt makes the electrostatic term equal to 
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zero, allowing the non-electrostatic free energy component to be estimated.  This approach, 

though simplistic in terms of its dissection of the non-electrostatic and electrostatic terms 

[28,33,34], provides useful parameters that describe the driving forces governing the 

stability of various protein-DNA complexes on the damage recognition pathways of DNA 

glycosylases.  It should be noted that CC theory focuses solely on effects derived from ion 

displacement and does not explicitly take into account the effect of ion concentration 

dependent changes in protein and DNA hydration. However, it has previously been 

established that changes in water activity do not occur with increasing concentrations of 

typical monovalent salts, and consequently, that electrostatic effects can be probed 

independently from changes in hydration [35].   

In this study, we use CC theory to understand how each transient complex on the 

damage search pathway of human uracil DNA glycosylase (hUNG)1 responds to changes 

in salt concentration (Fig. 2.1).  We measured the salt concentration dependences of the 

thermodynamic and kinetic parameters for formation of both non-specific and specific 

DNA complexes and the effect of salt on steady-state catalysis by hUNG.  Finally, we 

make the first measurements of how the electrostatic environment of DNA impacts 

intramolecular DNA translocation by hUNG between uracil sites separated by 20 bp.  The 

results show that an ionic environment approximating that of the cell nucleus enhances the 

specificity of hUNG, but significantly diminishes the efficiency of facilitated diffusion by 

the dissociative (“hopping”) pathway, but not the associative (“sliding”) pathway.  The 

implications of these findings to the damage search process in human cells are discussed. 
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Figure 2.1. The hUNG DNA search and repair pathway. It is composed of four transient 

states: stationary states where the enzyme is engaged with non-specific (DN) or specific 

uracilated sequences (DS), and two mobile states where the enzyme can translocate along 

DNA via associative or dissociative pathways of facilitated diffusion.  Non-specific and 

specific complexes must have distinct interactions that facilitate efficient recognition and 

repair (see text).  The DN complex is characterized primarily by contacts with the phosphate 

backbone, while the DS complex involves additional nonpolar and hydrogen bonding 

interactions with the uracil base (see Figs 2A, 3A).  The overall transfer probability 

between two uracil lesions is defined as the sum of two pathways: Ptrans = Passoc + Pdiss, 

where Passoc and Pdiss are the probabilities of transfer via the associative and dissociative 

pathways, respectively.  When uracils are spaced far enough apart such that all successful 

transfers occur via at least one dissociation event, this equation reduces to Ptrans = Pdiss.  

Kinetically, Pdiss is defined as the product of two probabilities: 𝑃diss =

 (
𝑘off

𝑘assoc+𝑘off
) (

𝑘return

𝑘bulk+ 𝑘return
).  The first term describes the probability that hUNG will 

dissociate from a non-specific DNA site as opposed to making an associative step along 

the DNA, and the second term gives the likelihood that the enzyme, once dissociated, 

escapes to the bulk solvent (kbulk) rather than re-associating with the DNA chain (kreturn) to 

complete transfer by the dissociative pathway.  
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2.2. RESULTS 

2.2.1. Ion Effects on Non-specific DNA Binding.   

The DNA binding interface of hUNG consists of a well-conserved 27 Å groove 

with positive electrostatic potential [38].  Despite this substantial cleft, close contact (≤ 3.3 

Å) between cationic groups of hUNG and the phosphate backbone are localized to only a 

few sites shared in both the non-specific and specific DNA complexes (Fig. 2.2A) [38-40].  

The relatively sparse ionic contacts between hUNG and DNA leads to the question of the 

nature of the thermodynamic interactions that stabilize the non-specific hUNG-DNA 

complex.  To determine if interactions between hUNG and non-specific DNA were 

predominantly electrostatic or non-electrostatic in nature, the salt dependence of the non-

specific equilibrium association constant (Ka
N) was measured at concentrations of 

potassium ions in the range 36 to 170 mM using three different counterions (Cl-, F-, and 

Glu-).  Different anions were used to determine whether there was a contribution from 

anion release from hUNG during formation of the non-specific complex [32].  Plots of the 

log [salt] against log Ka
N were used to determine the electrostatic (∆Gelect) and non-

electrostatic (∆Gnon) contributions to the binding free energy, and the number of ions (N) 

displaced upon hUNG-DNA association according to eq 2.1.  

Fluorescence anisotropy measurements revealed a strong KCl dependence of 

hUNG binding to non-specific DNA (N = -3.8, Table 2.1).  The binding affinity was 300-

fold weaker when using 170 mM potassium chloride (1/Ka
N = 360 ± 50 μM) as compared 

to the 36 mM potassium phosphate reference state (1/Ka
N = 1.3 ± 0.3 μM).  The presence 

of small anion effects was indicated by the observation that the slope of the salt dependence 

reduced to -3.2 and -3.0 for KGlu and KF (Table 2.1).  For comparison, the binding 
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affinities in the presence of 170 mM of either salt were 3-fold lower than when the same 

concentration of KCl was used (1/Ka
N = 118 ± 5 μM) (Fig. 2.2B, Fig. 2.3, and Table 2.2).  

The complete binding curves at high salt (81 – 170 mM K+) are shown in Supplementary 

Figure S1. 

We also evaluated whether the non-specific DNA binding affinity was affected by 

the addition of 500 μM MgCl2 to the standard buffer containing 150 mM KGlu (This 

approximates the concentrations of free potassium and magnesium ions in eukaryotic 

cells.).[41,42]  The binding affinity was only slightly weakened with the addition of 

magnesium [1/Ka
N (MgCl2) = 97 ± 6 μM, versus 1/Ka

N = 80 ± 5 μM (no MgCl2)], indicating 

that monovalent cations dominate over divalent cations under physiological conditions.  

Accordingly, we performed the remainder of the experiments using monovalent salts.  

As expected from CC theory, a linear dependence between log Ka
N and log [KCl] 

was observed (eq 2.1, Figure 2.2C).  The absolute value of the slope (N ~ -4) reflects the 

total number of ions displaced from the DNA (Z) and hUNG () upon binding (N = Z 

+ ).  This number of displaced ions is slightly greater than the number of cations that are 

expected to be released based on the theoretical value of  = 0.64 cations/per DNA 

phosphate,[27,32] and the observation that hUNG makes ionic contacts with 5 phosphate 

groups within the backbone of non-specific DNA [Z = (5)(0.64) ~ 3 cations] [1].  This 

result suggested that one anion might also be displaced from hUNG during binding.  

Consistent with this suggestion, the slope decreased to N ~ -3 when KGlu and KF were 

used (Fig. 2.2C, Table 2.1).  Thus, one chloride ion and three potassium ions are likely 

released from hUNG and non-specific DNA when KCl is used as the salt [32].  
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The above behavior of KCl, KF and KGlu salts is consistent with the fact that small 

ions of high charge density (such as fluoride and the carboxylate anion) interact more 

strongly with water than with the ammonium and guanidinium side chain atoms of hUNG.  

In contrast, the large weakly hydrated chloride anion forms weak interactions with water 

and binds tightly to these protein side chains [43,44].  Thus, the KCl data reflect the 

additional displacement of a chloride anion from hUNG to allow DNA phosphate binding.  

To focus our study on cation effects at the hUNG-DNA interface, we chose to perform all 

subsequent experiments using KGlu or KF. 

Extrapolating the log linear data to a 1M standard state for KGlu simplifies eq 2.1 

such that only the non-electrostatic binding component remains (log Ka
non) (Table 2.1).  

From this simplification, the non-electrostatic free energy contribution to the total binding 

free energy is ∆Gnon = -2.0 ± 0.2 kcal mol-1 (Table 2.3).  If ∆Gnon is subtracted from the 

observed binding free energy at physiological salt (∆Gbind), the electrostatic contribution 

can be estimated (i.e. ∆Gelec = ∆Gbind - ∆Gnon = -3.5 ± 0.5 kcal mol-1).  This analysis shows 

that the formation of the non-specific complex at physiological salt concentration is 

primarily driven by electrostatic interactions resulting in ion release. 
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Figure 2.2.  Salt dependence of the non-specific DNA (DN) equilibrium binding 

affinity.  (A) Schematic of electrostatic interactions implicated in ion release (dashed 

arrows) and the non-electrostatic (solid arrows) interactions between hUNG and non-

specific DNA (Protein Data Bank entry 2OXM [40], 4MF = 4-methylindole).   Using 

mutagenesis and NMR imino exchange methods, the partially extruded thymine residue 

and its interactions with the enzyme have been substantiated in solution using an hUNG-

nonspecific DNA complex with central T/A base pair [73,74]. These studies showed that 

normal T/A base pairs (not G/C) undergo enhanced imino proton exchange when bound to 

hUNG and involve the residues depicted in the graphic.  Electrostatic interactions are 

defined by nitrogen and oxygen atoms < 3.3 Å apart from DNA phosphate oxygens, while 

non-electrostatic interactions are all carbon-carbon pairs < 3.9 Å apart.  An additional 

hydrogen bond between hUNG and the O2 of the partially extruded thymine across from 

4MF was omitted in the diagram for clarity [40].  (B) Changes in fluorescence anisotropy 

of DN (100 nM) as a function of hUNG concentration at varying potassium ion 

concentrations (36 mM – 170 mM). Full binding curves for 81 – 170 mM K+ are provided 

in Figure 2.3.  (C) Dependence of Ka on the concentrations of KGlu (triangles), KCl 

(circles), KF (squares).  Inclusion of 500 μM MgCl2 at physiological K+ (150 mM) had a 

negligible effect on the observed Ka (red triangle, see text). 
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Figure 2.3. Salt dependence of the non-specific DNA (DN) equilibrium binding affinity 

at high salt concentrations. Changes in fluorescence anisotropy of DN (100 nM) are 

plotted as a function of hUNG concentration at varying potassium ion concentrations (81 

mM – 170 mM). Data presented here is an extension of the corresponding binding curves 

presented in Figure 2B. 
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Table 2.1.  Analysis of the salt dependences of the thermodynamic 

and kinetic parameters using eq 2.1a  

                          Slope (N)b    Xnon c 

Ka
N 

-3.2 ± 0.1 

-3.0 ± 0.1d 

-3.8 ± 0.1e 

29 ± 3 M-1 

38 ± 1 M-1 d 

3.2 ± 0.7 M-1 e 

Ka
S 

-2.1 ± 0.1f
 

-2.2 ± 0.3d
 

2.29 ± 0.05 x 105 M-1 f 

8.9 ± 0.5 x 104 M-1 d 

kon
N, g -1.5 ± 0.2 6 ± 2 x 106 M-1 s-1 

kon
S -1.5 ± 0.2 6 ± 2 x 106 M-1 s-1 

koff
N, h 1.4 ± 0.1 9.5 ± 0.2 x 104 s-1 

koff
S 0.5 ± 0.1 24 ± 2 s-1 

kcat 0.9 ± 0.2 83 ± 12 s-1 

1/Km
 -2.2 ± 0.2 1.4 ± 0.1 x 10-4 Md 

kcat/Km -1.3 ± 0.2 5.9 ± 0.2 x 105 M-1 s-1 

Ptrans
i -1.5 ± 0.3 0.00 ± 0.05 

a All experiments were conducted using KGlu unless otherwise noted. 
b The slope (N) obtained from nonlinear regression fitting to eq 2.1. 
c Xnon is the extrapolated value of the indicated parameter to the 

condition of 1 M [K+].   

d Determined from equilibrium binding measurements using KF. 
e Determined from equilibrium binding measurements using KCl. 
f Calculated from the ratio of the kinetic constants kon

S/koff
S. 

g kon
N is assumed equal to kon

S. 
h Calculated from the ratio of kon

N/Ka
N

. 

iPtrans is defined in terms of the ratio of kinetic constants detailed in 

the legend to Figure 2.1. 
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Table 2.2.  Binding affinities of hUNG and non-specific DNA 

(1/Ka
N) at variable salt concentration. 

 1/Ka
N (μM) 

[K+] (mM) KCl      KGlu        KF 

36 1.3 ± 0.3 1.3 ±0.3 1.3 ± 0.3 

46 3.4 ± 0.3 1.2 ± 0.1 --a 

56 5 ± 3 2.8 ± 0.7 4.3 ± 0.9 

66 11.1 ± 0.9 5.7 ± 0.1 -- 

81 27.7 ± 0.7 7.6 ± 0.5 -- 

110 95 ± 5 28.1 ± 0.9 -- 

130 143 ± 9 50 ± 3 -- 

150 216 ± 8 80 ± 5 80 ± 2 

170 360 ± 50 118 ± 5 -- 
a Data not collected at given salt concentration. 
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Table 2.3. Electrostatic (∆Gelec) and non-electrostatic (∆Gnon) contributions to 

the binding free energy (∆Gbind) for non-specific (DN) and specific (DS) hUNG 

complexes in the presence of 150 mM K+. a 

        DN
      DS, b 

∆Gbind
c
 (kcal mol-1) -5.5 ± 0.3 -9.4 ± 0.1 

∆Gelec
d (kcal mol-1) -3.5 ± 0.5 -2.3 ± 0.2 

∆Gnon
e (kcal mol-1) -2.0 ± 0.2 -7.2 ± 0.1 

 a All values are derived from experiments using KGlu. 

b Ka
 
 calculated from the ratio kon/koff obtained from stopped-flow 

fluorescence measurements 

c Calculated ∆Gbind = -RT ln Ka, using Ka at 150 mM [K+]. 
d ∆Gelec = ∆Gbind  - ∆Gnon.  ∆Gelec pertains to the condition of 150 mM K+. 
e ∆Gnon = -RT ln Ka, using the measured Ka at 1M K+. 
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2.2.2. Ion Effects on the Binding Equilibrium for Specific DNA. 

The electrostatic and non-electrostatic interactions predicted from the crystal 

structure of a specific complex between hUNG and DNA are depicted in Figure 2.4A [45].  

In general, this complex appears to retain the electrostatic contributions that were observed 

in the non-specific complex (Fig. 2.2A), but gains substantial non-electrostatic interactions 

arising from flipping of the uracil base into the active site and the intercalation of a leucine 

side chain into the base stack.  In addition, the DNA is severely bent in this structure leading 

to compression and expansion of the inter-phosphate distances typically seen in B DNA.  

To evaluate the relative importance of these specific interactions, the salt 

dependence of the binding affinity for the specific substrate (DS) was measured by 

monitoring the increase in 2-AP fluorescence as a function of hUNG concentration using 

various concentrations of potassium fluoride.  These experiments used a 19 base pair 

duplex (DS) that contained the fluorescent base 2-AP adjacent to Uβ.  This 2-fluorinated 

uracil nucleotide prevents glycosidic bond cleavage during the time frame of the 

measurements (the fluorine is in the  anomeric configuration in this substrate analogue) 

[36].  Upon binding of hUNG, the uracil base is flipped into the active site, unstacking 2-

AP and leading to an increase in its fluorescence intensity [36].  In these experiments KF 

was used because high concentrations of KGlu introduced spectral interferences that 

prevented reproducible fluorescence measurements.  This substitution is justified because 

the salt dependences of non-specific DNA binding are identical in the presence of both of 

these salts (Fig. 2.2C).   

For the specific substrate, a linear dependence between log Ka
S and the log [KF] 

was observed (Fig. 2.4B, Fig. 2.5), but a shallower slope was observed than for the non-
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specific complex (N = -2.1, Table 2.1).  Although the reduced slope may indicate that 

fewer ions are displaced, this conclusion is not consistent with the number of ionic contacts 

observed in the crystal structure (Fig. 2.4A).  This apparent discrepancy may arise from 

the severe bending observed in the specific complex, which is not accounted for by simple 

polyelectrolyte theory where DNA is considered as a rod with identical phosphate-

phosphate distances.[28,29,33]  Regardless, Table 2.3 shows that the specific complex is 

primarily stabilized by non-electrostatic interactions at a physiological salt concentration 

(∆Gnon = -7.2 ± 0.1 kcal mol-1, ∆Gelec = -2.2 ± 0.2 kcal mol-1).  This is consistent with the 

structural findings described above where hUNG interacts extensively with the extruded 

uracil base and Leu272 inserts into the DNA duplex.  None of these non-electrostatic 

interactions are observed in the non-specific complex (Fig. 2.2A). 
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Figure 2.4. Salt dependences of the specific DNA (D
S
) association and dissociation 

constants and equilibrium binding affinity determined by stopped-flow fluorescence. 

(A) Electrostatic (dashed arrows) and the non-electrostatic (solid arrows) interactions 

between hUNG and specific DNA (Protein Data Bank entry 1EMH[45]). (B) Dependence 

on KGlu concentration of kon
S (circles), koff

S (triangles), the calculated Ka
S obtained from 

the ratio koff
S/kon

S (solid squares), and the measured Ka
S from equilibrium fluorescence 

titrations using KF (open squares).  Log koff
S is plotted on the left y-axis and the remaining 

parameters are plotted on the right y-axis [X = Ka
S (M-1) and kon (M

-1 s-1)]. (C) Linearized 

kinetic trace of the second-order association of D
S
 (600 nM) with hUNG (600nM) at 150 

mM K
+
. Time dependent increase in 2-AP fluorescence was followed (λex= 310nm).  The 

line is the best-fit to a second-order rate equation.  (D) Kinetic trace of the dissociation of 

hUNG from D
S
 at 150mM K

+
. Abasic site-containing DNA (aDNA, 5 M) was mixed with 

an equal volume solution containing 0.8 M hUNG and 0.2 M D
S
 and the time dependent 

decrease in 2-AP fluorescence was followed. The line is the best-fit to a single exponential 

decay. Controls established that the observed rate was zero-order with respect to DNA trap. 
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Figure 2.5.  Binding affinity (KD) of the specific substrate determined by fluorescence 

titration at varying salt concentrations. Comparison to the values determined by 

stopped-flow (dashed lines, koff
S/kon

S ratios are reported Table 2.4) is included.  

Fluorescence intensities at 370 nm as a function of hUNG concentration (solid line) 

compared to the theoretical curves derived from the ratios koff
S/kon

S (dashed lines) in the 

presence of (A) and (B) 36 mM KF, (C) and (D) 66 mM KF, (E) and (F) 150 mM KF.  

Panels B, D, and F are background corrected fluorescence emission scans.  The residual 

peak at ~330 nm is due to imperfect subtraction of the intense water Raman scattering peak 

when using very low DNA concentrations. 
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2.2.3. Salt Effects on the Kinetics for Binding and Dissociation from Specific DNA. 
Association and dissociation kinetics of the specific DNA complex (DS) were measured 

by following the changes in 2-AP fluorescence using a stopped–flow rapid kinetic device 

(Fig. 2.4C, D).  To determine the salt sensitivity of kon, we monitored the increase in 2-AP 

fluorescence under irreversible second-order conditions, in which both the enzyme and 

DNA were mixed in equal molar amounts (400 or 600 nM) using increasing concentrations 

of KGlu (36mM – 150mM).  The large signal-to-noise ratio at these high DNA 

concentrations significantly decreased the spectral interference from KGlu that was 

observed in the equilibrium binding assay, where the DNA concentration was 20-fold 

lower.  To ensure that association was essentially irreversible for these measurements, the 

hUNG and DNA concentrations were kept well above the value for the equilibrium 

dissociation constant (1/Ka
S) at all salt concentrations. The irreversible conditions at high 

salt were confirmed by measuring kon
 using 400 and 600 nM concentrations of both DNA 

and enzyme (110 mM KGlu). These conditions resulted in kon values that were the same 

within the errors of these measurements (1.0 ± 0.7 x 108 M-1s-1 and 1.8 ± 0.1 x 108 M-1s-1). 

The irreversible nature of these association reactions was further substantiated by the fact 

that the same change in voltage was observed at all salt concentrations tested, indicating 

that the same degree of saturation was reached (Figure 2.6A).  A linearized kinetic trace 

at 150 mM K+ is shown in Figure 2.4C, which was fitted to eq 2.5 to obtain the association 

rate constant [kon = (9.6 ± 0.4) x 107 M-1 s-1].  All additional kinetic traces are shown in 

Figure 2.6. This association rate increased by an order of magnitude as the salt 

concentration was decreased to 36 mM [kon
S = (8.5 ± 0.1) x 108

 M-1 s-1] (Table 2.4).  We 

note that this represents one of the most rapid macromolecule binding reactions, 
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approaching the extreme of previously reported electrostatically enhanced association 

rates.[46]   

The dissociation rates for specific DNA complexes (koff
S) were also determined at 

increasing concentrations of potassium ions (36 mM – 150 mM) by monitoring the 

decrease in 2-AP fluorescence upon dissociation of hUNG from the DNA (Fig. 2.4D, 

2.6B).  To ensure that all enzyme molecules dissociated irreversibly, the dissociated 

enzyme was trapped with an excess of DNA containing an abasic site (aDNA).  In contrast 

with the association rate, the first-order dissociation rate was found to increase only 

modestly (~2-fold) when the salt concentration was raised from 36 to 150 mM K+
 (3.8 ± 

0.3 s-1 to 8.7 ± 0.7 s-1) (Table 2.4).  Based on comprehensive kinetic measurements with 

the similarly behaved E. coli enzyme [36,47,48], it is long-known that the single-

exponential dissociation reflects rate-limiting exit of the uracil base from the enzyme active 

site [36,47,48]. The dissociation of the DNA from the enzyme occurs in an extremely rapid 

step after the slower internal steps and is not detected in the fluorescence measurements.  

Thus, the relative salt insensitivity of koff is fully consistent with a slow internal step being 

overall rate limiting for dissociation of the specific DNA, while association is influenced 

by a different salt sensitive step. 

The salt dependence of the binding kinetics to non-specific DNA was not directly 

addressable due to weak binding and the fast association and dissociation rates.  Since non- 

specific binding precedes formation of the specific complex, it is reasonable to conclude 

that the association rates for the non-specific complex are similarly affected by salt as the 

specific complex (i.e. kon
N = kon

S).  Using these assumed values for kon
N, the dissociation 
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rates for non-specific DNA at each [K+] were calculated from the relationship koff
N = k-

on
N/Ka

N using the measured equilibrium association constants at each salt concentration.  

The approach indicated a 7-fold increase in koff
N over the salt range tested [koff

N (calculated, 

36 mM salt) = 1100 ± 300 s-1, koff
N (calculated, 150 mM salt) = 7700 ± 500 s-1], which is 

similar to the effect on kon
N and kon

S.  This analysis suggests the same rate-limiting 

transition state is being followed in the forward and reverse directions for binding and 

dissociation of nonspecific DNA (i.e. two-state behavior). 
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Figure 2.6. Salt dependence of the association (kon) and dissociation (koff) kinetics of 

hUNG binding to specific DNA (DS). (A) Raw fluorescence traces of the increase in 2-

AP fluorescence upon binding of hUNG under salt concentrations of 36 – 150 mM K+. 

Equal volume solutions of DS and hUNG of equal concentration (400-600 nM) were mixed 

and the time dependent increase in 2-AP fluorescence was followed (λex= 310 nm). Traces 

are displaced along the y-axis for ease of visualization. (B) Kinetic trace of the dissociation 

of hUNG from DS at 36 mM K+ (pink) and 150mM K+(red). Data for 150 mM K+ is the 

same trace presented in Figure 4D. Abasic site-containing DNA (aDNA, 5 M) was mixed 

with an equal volume solution containing 0.8 M hUNG and 0.2 M DS and the time 

dependent decrease in 2-AP fluorescence was followed (λex= 310 nm). The lines are the 

best-fits to a single exponential decay. Traces are displaced along the y-axis for ease of 

visualization.  

  



59 

 

Table 2.4.  Specific DNA binding affinities (1/Ka
S) and association (kon) and 

dissociation (koff
S) rate constants for hUNG as a function of [K+]. a 

[K+] 

(mM) 

kon
S  

(M-1 s-1) 

koff
S  

(s-1) 

1/Ka
S  

(nM)b 

koff
S/kon

S  

(nM)c 

36 8.5 ± 0.1 x 108 3.8 ± 0.3 10 ± 3 4.5 ± 0.4 

66 4.6 ± 0.3 x 108 6.4 ± 0.1 26 ± 8 14 ± 1 

81 3.5 ± 0.3 x 108 -- -- -- 

110 1.8 ± 0.1 x 108 6.9 ± 0.5 -- 40 ± 5 

150 9.6 ± 0.4 x 107 8.7 ± 0.7 260 ± 77 91 ± 11 

a All experiments were conducted using KGlu as the salt unless otherwise noted.  

b Ka measured by fluorescence titration in the presence of KF. 

c The ratio koff
S/kon

S was obtained from stopped-flow fluorescence 

measurements. 
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2.2.4. Salt Effects on Steady-State Kinetics of hUNG Catalyzed Uracil Excision.   

Steady-state kinetic measurements used a continuous fluorescence assay and a 30 

base pair oligo (PUA-30) that contained a 2-AP base adjacent to a U-A base pair [37].  The 

initial rate of reaction was determined by monitoring the time dependent increase in 2-AP 

fluorescence, which reports on hUNG catalyzed excision of the adjacent uracil base. 

Nonlinear regression fitting of the data to the Michaelis-Menten equation is shown in 

Figure 2.7A-D, from which kcat, Km, and kcat/Km values were determined (Table 2.5).   As 

shown in Figure S3, we were able to attain greater than >85% saturation of the enzyme 

with substrate at salt concentrations between 36 and 110 mM.  However, at the highest 

concentration of 150 mM only 63% saturation was achieved, resulting in a larger 

uncertainty in kcat.  Nevertheless, even at this salt concentration kcat/Km was well-

determined because this second-order rate constant is also given by the initial slope of the 

saturation curve when [S] << Km (Figure 2.7D).  We attempted to attain greater saturation 

of the enzyme at 150 mM concentration of salt, but the DNA concentration could not be 

increased beyond 4 µM due to apparent substrate inhibition or aggregation as the 

concentration was increased further. 

Plots of log kcat, log 1/Km, and log kcat/Km against log [K+] were all linear (Fig. 8A, 

B, C).  The kcat value increased 4-fold as the salt concentration was increased from 36 to 

150 mM K+ (3.5 ± 0.3 s-1 and 15 ± 2 s-1) (Fig. 8A), which is a similar response as koff.   The 

slopes of the log-log plots for kcat and koff were slightly positive, implying ion uptake, with 

Nkcat = 0.9 ± 0.2 and Nkoff = 0.5 ± 0.1 (Table 2.1).  Since kcat is limited by product release 

and not chemistry [49,50], and the product complex is structurally and thermodynamically 

similar to the substrate complex [50], it would appear that the rate-limiting transition states 
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for both substrate and product dissociation do not involve significant ion uptake.  In 

contrast, the 1/Km and kcat/Km values had stronger dependences on the salt concentration, 

with slopes resembling that of Ka
S and kon, respectively (N1/Km = -2.2 and Nkcat/Km = -1.3, 

compare values in Table 1).  The approximately ten-fold greater values of kon as compared 

to kcat/Km at each salt concentration may arise from the different sequences of these specific 

substrates, or the presence of additional partially rate-limiting transition states that 

comprise kcat/Km (for instance, uracil excision occurs at a single-turnover rate kex = 240 s-

1) [3]. Regardless, these results indicate that diffusion-controlled (or near diffusion-

controlled) processes like kon and kcat/Km involve transition-states that necessitate ion 

release. 
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Figure 2.7.  Michaelis-Menten curves of the initial rates of reaction with PUA-30 as 

a function of DNA concentration. The various salt concentrations are indicated in each 

plot (A-D). For panel (D) we attempted to attain greater saturation of the enzyme but the 

DNA concentration could not be increased beyond 4 µM due to apparent substrate 

inhibition or aggregation at higher concentrations. 
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Figure 2.8. Salt dependences of kcat, Km, and kcat/Km.  (A) The value for kcat (circles) is 

limited by product release and is minimally dependent on KGlu concentration. This is 

similar to the behavior observed for koff (dashed line).  (B) The dependence of 1/Km (circles) 

on KGlu concentration is very similar to that observed for specific DNA binding Ka
s 

(dashed line).  (C) The dependence of kcat/Km (circles) on KGlu concentration is identical 

to the dependence observed for kon (dashed line). 
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Table 2.5.  Steady-state kinetic parameters of hUNG and specific DNA 

at various salt concentrations. a 

[K+]  

(mM) 

kcat
  

(s-1) 

Km  

(M) 

kcat/Km  

(M-1 s-1) 

36 3.5 ± 0.3 9 ± 3 x 10-8 4 ± 2 x107 

66 9.1 ± 0.6 3.5 ± 0.7 x 10-7 2.6 ± 0.7 x107 

110 9.1 ± 0.4 7.8 ± 0.8 x 10-7 1.2 ± 0.1 x107 

150 15 ± 2 2.5 ± 0.5 x 10-6 6 ± 2 x 106 

a All experiments were conducted using KGlu as the salt. 
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2.2.5. Increased Salt Concentrations Reduce Probability of Intramolecular Site 

Transfer. 

To characterize the salt dependence of the transition state for intramolecular 

translocation of hUNG between two uracil sites spaced 20 base pairs apart on the same 

strand in duplex DNA (S20), we used our previously developed facilitated diffusion assay 

[12,51].  This site spacing was chosen because all transfer events result from hUNG 

dissociating and re-associating with the DNA at least once (only the dissociative pathway 

is operational, Pdiss) [4].  After post-reaction sample processing, the electrophoretically 

separated DNA fragments produced from uracil from single and double uracil excision 

events were quantified using phosphorimaging analysis.  Intramolecular site transfer 

results in the production of excess A and C fragments that result from double-excision 

events, while single site excision produces exactly equal amounts of the A, C, AB and BC 

product bands (Fig. 2.9A, B) [21,51].  The time independent dissociative site transfer 

probability (Pdiss) can be calculated precisely using eq 2.2 by linear extrapolation of the 

observed transfer probabilities (Pdiss
obs) to zero time2.  

𝑃diss =  
[A]0 + [C]0 − [AB]0 − [BC]0

[A]0 + [C]0 + [AB]0 + [BC]0
              (2.2) 

We measured Pdiss in the presence of 13 to 63 mM K+ ion, beyond which site 

transfer by the dissociative pathway was no longer detectable.  As shown in Figure 5C, 

Pdiss showed a strong dependence on salt concentration, decreasing 4-fold between 13 mM 

                                                      
2 The uracil excision efficiency is not expected to greatly influence the salt sensitivity of the transfer 

probabilities (i.e. the uracil excision efficiency is the probability that once hUNG has located a uracil site it 

falls off the site before base excision occurs) [4].  This expectation is strongly supported by the largely salt 

insensitive specific substrate dissociation rates (koff
S) over the salt range used in the measurements of Pdiss 
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and 63 mM K+ (Table 2.6).  A log linear dependence was observed between 22 mM and 

63 mM K+ (Fig. 2.9D), which provided a slope value N = -1.5 ± 0.33.  This slope value is 

identical to the salt dependence of the association rate kon, which suggests that hUNG 

molecules undergoing dissociative translocation move outside of the ion cloud, and their 

reassociation is influenced in the same way by the presence of bulk salt ions. 

  

                                                      
3Pdiss reached a plateau at salt concentrations below 22 mM (Figure 2.9).  The basis for this effect has not 

been explored, but it likely arises from the kinetic definition of Pdiss, which includes a term for kon (see legend 

to Figure 2.1, where kon = kreturn).  We speculate that when salt is reduced below 22 mM the probability of 

returning to the DNA could be constant and limited by the local electrostatic environment rather than the 

bulk salt concentration.     
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Figure 2.9.  Salt dependence of the intramolecular dissociative transfer probability of 

hUNG between two uracil sites spaced 20 bp apart (Pdiss).  (A) Schematic of the 

substrate (S20) used.  The asterisk denotes the location of the 32P end labels.  (B) 

Phosphorimages of the gel-resolved site transfer products derived from S20 in the presence 

of 13 mM and 63 mM K+.  (C) Determination of Pdiss at varying K+ levels in the range 13 

– 63 mM.  The observed site transfer probability (Pdiss
obs, Equation 2.2) is calculated at 

each time point and then linearly extrapolated to time zero to determine the true value 

(Pdiss).  (D) Comparison of the dependences of Pdiss (circles) and kon (dashed line) on K+ 

concentration. The Pdiss value at 13 mM (red circle) deviated negatively from the linear 

correlation and was omitted from the linear regression analysis (see text). 
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Table 2.6.  Probability of site transfer (Ptrans) between two 

uracils with 20 base pair spacing at varying salt 

concentrations.a 

[K+] 

(mM) 
Ptrans 

13 0.36 ± 0.03 

22 0.37 ± 0.02 

35 0.27 ± 0.07 

52 0.12 ± 0.02 

63 0.09 ± 0.01 

a All experiments were conducted using KGlu as the salt. 

 

 

  



69 

 

2.3 DISCUSSION 

2.3.1. Electrostatic Contribution to Non-specific DNA Binding is Entropy Driven.   

The disparate effects of salt ions on the binding of hUNG to undamaged and 

damaged DNA indicates that distinct thermodynamic interactions are involved in 

stabilizing these complexes.  According to CC theory, weaker binding induced by high salt 

concentrations originates from a reduction in the entropy of mixing associated with 

expelling ions from the DNA ion cloud into bulk solution.  Therefore, the electrostatic 

component of the binding energy is purely entropic. We confirmed this entropic 

expectation for the non-specific DNA complex by measuring the logarithmic salt 

dependence of the binding affinities at four temperatures, where the slopes of the log Ka 

vs. log [KGlu] plots were indistinguishable at each of the temperatures (Fig. 2.10) [27]. 

The corresponding analyses for the specific complex could not be performed because of 

experimental difficulties in making reliable 2-AP fluorescence measurements of 

equilibrium binding at low DNA concentrations at multiple temperatures.  

Previous studies have shown that the complex between hUNG and non-specific 

DNA is held together by a handful of enzyme contacts with the phosphate backbone, with 

minimal distortion of the double helix (Fig. 2.2A) [40].  The structural view is in agreement 

with the present thermodynamic findings, where approximately three monovalent cations 

are released from the DNA upon binding, and only a small non-electrostatic contribution 

to the binding free energy is indicated, suggesting minimal duplex distortion (Fig. 2.11).  

These data characterize the non-specific DNA complex as a loosely associated state that is 

formed by virtue of the entropic effects of cation displacement from the DNA.  The weak 

electrostatic character of the non-specific complex provides a binding mode for hUNG that 
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is consistent with rapid facilitated diffusion by the previously described dissociative and 

associative pathways (Fig. 2.1).  A binding lifetime on non-specific DNA in the 

millisecond to sub-millisecond time regime has the virtue of minimizing the time spent 

bound to undamaged DNA sequences and provides frequent opportunities for repeated 

cycles of enzyme dissociation, rapid 3D diffusion and local rebinding of the DNA chain.  

This type of mechanism, combined with short-range associative transfers where the 

enzyme remains in contact with the DNA (<10 bp) [4], provides excellent search coverage 

at a maximum possible rate that is only bounded by the limits of diffusion. 
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Figure 2.10.  Salt dependence of the nonspecific DNA binding affinity at various 

temperatures. The salt effect is identical at 10, 15, 20, and 25˚C (36 mM and 150 mM 

KGlu). This behavior is expected from entropically driven ion displacement.  
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Figure 2.11.  Summary of the salt dependences of each measured thermodynamic and 

kinetic parameter (X) (see section 2.3).  The dependences are represented as the slopes of 

the respective log [salt] vs. log X plots. Positive slopes indicate dissociation processes 

resulting in ion condensation, which are facilitated by high ionic strength (kcat, koff).  

Negative slopes result from processes that involve ion displacement and are hindered by 

high salt concentrations. 
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2.3.2. Specific DNA Binding is Driven by Non-electrostatic Interactions.   

In contrast with non-specific DNA, the formation of the specific complex with 

uracilated DNA was driven primarily by non-electrostatic forces depicted in Figure 2.4A.  

Despite the crystallographic evidence that all the ionic interactions present in the non-

specific complex are preserved in the specific complex [40,52], the stability of the specific 

hUNG-DNA complex was less dependent on salt (Table 2.1).  Such behavior of a specific 

and non-specific protein-DNA complex has been observed in studies of lac Repressor and 

attributed to structural differences between the two complexes that lead to changes in ion 

displacement stoichiometry [53-58].  For the case of hUNG, the most striking difference 

between the non-specific and specific complexes is the severe distortion of the helical 

parameters of the DNA in the latter, suggesting that similar effects of duplex deformation 

may be operative.  In general, it is not clear how distortions of the DNA helix that are 

induced upon protein binding alter the surrounding ion cloud and the observed 

stoichiometry of ion displacement.  If an increase in charge density of the phosphate 

backbone upon DNA bending promotes the condensation of additional cations, then the net 

number of ions displaced upon binding would be reduced.  This potential contribution to 

the interpretation of ∆Gelect for the specific complex does not impact the primary finding 

that a large non-electrostatic component to the binding free energy is introduced upon 

formation of this complex. 

Another implication of the different contributions of electrostatic and non-

electrostatic binding energy terms for the non-specific and specific complexes is that 

binding specificity is enhanced at higher salt concentrations (defined as the ratio Ka
S/Ka

N) 

[35].  While this calculation is best performed for sequences of identical length and nearly 
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identical sequence (which is not the case for the specific and non-specific duplexes used in 

this study), the relative change in specificity as a function of salt is still informative.  At 

low salt (36 mM), the specificity of hUNG for the specific DNA is 290 ± 90 while at 

physiological salt (150 mM), the specificity increases approximately 4-fold (1300 ± 200).  

The greater salt sensitivity of non-specific DNA binding and the large non-electrostatic 

component of the binding energy for the specific complex have the combined effect of 

minimizing sequestration of the enzyme on bulk undamaged DNA, while allowing the 

specific complex to persist long enough for efficient catalysis to take place. 

2.3.3. Association of hUNG with DNA is Accelerated by Electrostatics.   

Long-range electrostatic interactions are known to play a significant role in 

accelerating the association of proteins with various targets, and the polyanionic nature of 

DNA makes this effect especially significant in the case of protein-DNA association 

[59,60].  The acceleration provided by the electrostatic interaction will supply a biasing 

force that increases the basal rate of association in the absence of such a force (kon
non) [46].  

For modest sized enzymes such as hUNG that exhibit diffusion-controlled binding, an 

upper limit for kon
non ~106 M-1 s-1 has been estimated from theoretical considerations [61-

64].  This theoretical upper limit has been achieved in some highly efficient systems (the 

association of barnase with its inhibitor barstar is one well-characterized example) [65].  

For hUNG we estimate kon
non = 6 ± 2 x 106 M-1 s-1 from extrapolating the salt dependent 

association rates to 1 M salt (Table 2.1).  Extrapolation from the 1 M standard state used 

to estimate kon
non to a physiologically relevant salt concentration of 150 mM reveals that 

the association rate is increased by one order of magnitude.  The electrostatic contribution 
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towards lowering the free energy barrier for association at physiological salt may be 

calculated using eq 2.3 (Gelec
҂ = -1.6 ± 0.3 kcal mol-1). 

Gelec
҂ = −RT ln (

𝑘on

𝑘on
non)                              (2.3) 

An electrostatic enhancement of the same magnitude is also indicated from the salt 

dependence of kcat/Km (Table 2.1).  This correspondence indicates that the rate-limiting 

transition state for enzyme-DNA association and steady-state turnover under limiting 

substrate conditions share similar electrostatic characteristics.  It should be noted that Gelec
҂ 

comprises all net effects arising from electrostatic interactions.  This includes an increased 

contribution from facilitated diffusion as the salt concentration is decreased from 1 M to 

0.15 M.  However, a large contribution from facilitated diffusion would not be expected 

for the relatively small duplexes used in this study. 

2.3.4. Dissociation of the Specific Complex is a Multi-step Process.   

Although dissociation of the non-specific complex (koff
N) was enhanced by 

increasing salt concentrations, the salt effect was reduced for dissociation of both the 

specific (koff
S) and abasic product DNA complexes (using kcat as a surrogate for the product 

koff) (Table 2.1 and Figure 2.11).  These different salt effects on the non-specific and two 

specific complexes can be rationalized by the crystallographic finding that extensive non-

electrostatic contacts are formed in the specific complexes, which must be broken prior to 

dissociation (Fig. 2.4A) [40,45,50].  Breaking of these specific contacts must occur in a 

relatively salt-insensitive rate-limiting transition state that precedes dissociation.  This 

view is consistent with previous rapid kinetic studies with UNG that have elucidated a two-

step binding mechanism for formation of specific complexes [48].  In contrast, the non-
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specific complex apparently forms in a salt sensitive single-step reaction, with association 

and dissociation occurring in the same rate-limiting transition-state.  Thus, equal numbers 

of counter ions should be released in the forward binding direction and taken up in the 

reverse dissociation reaction, which is supported by the similar slopes for the salt 

dependences of kon
N and koff

N in Table 2.1 and Figure 2.11.  

2.3.5. The Dissociative Facilitated Diffusion Pathway Involves Escape of hUNG from 

the DNA Ion Cloud.   

We previously reported that the associative pathway for intramolecular site transfer 

was salt insensitive, but that the dissociative pathway was salt sensitive over the range that 

was studied [4].  The insensitivity of associative pathway was explained by the relatively 

constant nature of the ion cloud around the DNA over a wide range of salt concentrations 

[66-68],  and the supposition that associative transfers do not lead to net ion displacement.  

The salt dependence of the dissociative pathway was interpreted to result from enzyme 

molecules diffusing beyond the ion cloud during short-range dissociation and reassociation 

events.  

The data presented here provide further support for the conclusion that the 

fundamental distinction between the associative and dissociative pathways is that during 

dissociative transfers hUNG escapes the ion cloud prior to reassociating at a nearby 

position on the DNA chain.  We utilized a substrate containing a uracil site spacing of 20 

base pairs such that all transfers required at least one dissociation event (the associative 

transfer length of hUNG is only about ~5 bp) [4].  The finding that Pdiss and kon have 

indistinguishable dependences on salt (Fig. 2.11), demonstrates that the overall 

dissociative transfer process involves a salt sensitive step resembling that of enzyme-DNA 
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association from bulk solution.  This interpretation is supported by the kinetic definition of 

the probability of dissociative transfers: 𝑃diss =  (
𝑘off

𝑘assoc+𝑘off
) (

𝑘return

𝑘bulk+ 𝑘return
).  The first 

term describes the probability that hUNG will dissociate from nonspecific DNA (koff) as 

opposed to making an associative step along the DNA (kassoc), and the second term gives 

the likelihood that the enzyme, once dissociated, escapes to the bulk solvent (kbulk) rather 

than re-associating with the DNA chain to complete transfer (kreturn
 = kon).  We have shown 

here that koff
 is salt insensitive and we have previously shown that kassoc is salt insensitive 

[4]. Thus, to a first approximation, the first term remains the same at all salt concentrations.  

In contrast, the second term contains the constant kreturn
 = kon, which is salt sensitive based 

on our measurements, while escape to bulk is reasonably assumed to be salt independent.  

Taking kreturn
 = kon and dividing the numerator and denominator in the second term by kon, 

gives Pdiss = 1/(kbulk/kon + 1) at each salt concentration.  This equation predicts that Pdiss will 

decrease to zero in a manner that depends on the salt concentration dependence of kon, 

which is the basis of our assertion and interpretation.  

The above result sheds light on the nature of the transition state of enzyme 

molecules undergoing dissociative transfer. Since the DNA ion cloud extends only a few 

nanometers from the DNA chain, enzyme molecules that undergo dissociative transfers 

must diffuse at least this distance.  We have made estimates in the range 3-7 nm for the 

mean distance that hUNG diffuses from the DNA chain during dissociative transfers using 

simple Stoke-Einstein diffusion equations [4].  More recently, we developed a Monte-Carlo 

simulation program for the glycosylase hOGG1 that can be used to further elaborate 

microscopic aspects of the site transfer mechanism [4, 69-71].   
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The implication of the salt sensitivity of the dissociative pathway is that hUNG 

molecules undergoing dissociative transfers at physiological salt will suffer a decrease in 

productive association events.  Nevertheless, the dissociated enzyme will still be 

positionally correlated with the departed DNA chain in both high and low salt conditions.  

The reduced efficiency at high salt is overcome by multiple rebinding attempts, which may 

result in productive binding occurring at a position along the DNA chain that is more 

distant from the initial position of dissociation than at low salt concentrations.  When 

productive binding finally occurs, the salt insensitive associative search begins in the same 

manner as at low salt.  Thus, the fundamental aspects of the transfer mechanism do not 

change between low and physiological concentrations of salt.  What remains to be taken 

into consideration is the effect of other environmental factors within the nucleus, such as 

the macromolecular crowding, that could modulate the effects of high ion concentrations 

and favor the formation of compact hUNG-DNA search complexes as compared to dilute 

solution [46,72].  Thus, future studies will focus on increasingly realistic experimental 

models to understand search and repair mechanisms in physiologically relevant contexts 

and eventually human cells. 

 

2.4. METHODS 

2.4.1. Characterization of 1-[2-Deoxy-5-O-(4,4‘-dimethoxytrityl)-2-fluoro-1-β- 

arabinofuranosyl]uracil.   

The identity and purity of the previously synthesized modified uracil 

phosphoramidite was verified by NMR and ESI mass spectrometry.  All chemical shifts, 
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splitting patterns, and relevant J-couplings were found to be consistent with what has been 

previously reported.36  

1H NMR (500 MHz, CDCl3):  1.02 – 1.61 [m, 12H, 2 x (CH3)2CH]. 2.53 (two t, 2H, 

CH2CH2CN), 3.35 – 3.70 (m, 6H, H5’, 5’’, CH2CH2CN, 2 x (CH3)2CH], 4.11 – 4.19 (m, 

1H, H4’), 4.49 – 4.68 (m, 1H, H3’), 5.12 and 5.25 (two m, 1H, H2’, J2’,F = 52.00 Hz), 5.59 

(d, 1H, H5), 6.35 (m, 1H, H1’, J1’F = 18.00 Hz), 6.80 – 7.50 (m, 14H, trityl), 7.59 (dd, 1H, 

H6, J6,F = 1.90 Hz), 8.55 (bs, 1H, NH). 

31P NMR (CDCl3, internal standard – TPPO in C6D6):  148.7 (s) and 149.3 (s), slower 

and faster migrating isomers, respectively. 

ESI mass spectrometry: Mass determination was performed in the presence of LiCl, using 

methods previously described.75,76  One prominent peak was observed with m/z = 755.12, 

which is consistent with the expected [M+Li](+) ion (m/z = 755.72). 

2.4.2. Oligonucleotide Reagents 

All DNA substrates listed below (except DS) were purchased from either Integrated DNA 

Technologies (www.idtdna.com) or Eurofins MWG Operon (www.operon.com).  Long 

oligos (>20 base pairs) were purified by denaturing gel electrophoresis.  For all uracil 

containing duplex substrates the base placed opposite the uracil is specified below. All 

DNAs used in this study were in the duplex form and the sequences are listed below (the 

sequences of the complimentary strands are not indicated). 

15mer-Fluorescein labeled non-specific DNA (DN) 

5ʹ-FAM-AGG CGC ATA GTC GCA-3ʹ 

http://www.idtdna.com/
http://www.operon.com/
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19mer-Specific DNA (DS), Uβ-G pair 

5ʹ-GCG GCC AA PUβA AAA AGC GC-3ʹ 

(P - 2-aminopurine) 

19mer-Abasic DNA (aDNA), ɸ-A pair 

5ʹ-GCG GCC AAA ɸ AA AAA GCG C-3ʹ 

(ɸ - tetrahydrofuran abasic site mimic) 

30mer-Single uracil lesion (PUA-30), U-A pair 

5ʹ-CGT AGC CAC TGC AAP UAA ACA GAG CAT AGG-3ʹ 

(P - 2-aminopurine) 

90mer-20 bp U separation (S20), U-A pairs 

5ʹ-GGT ATC CGC TCA CAA TTC CAC ACA ATG CTG AGG AAT CGA U AG CTA  

AGT AGG ATG AAT CGA U AG CTA AGC TGA GGC ATA CAG TGT CGA GCC-3ʹ 

2.4.3. Expression and Purification of hUNG.   

The catalytic domain of wild-type, N-terminal truncated hUNG (residues 82–304) 

was cloned into a pET-21a vector and expressed in Bl21-DE3 pLysS E. coli cells.  Cells 

containing the hUNG encoding vector were grown in 2 liters of LB medium at 37 °C to an 

optical density (D600) of 0.5, then hUNG expression was induced at 25 °C by the addition 

of 0.25 mM IPTG and the cells were grown at 25 °C overnight.  The cells were harvested 

by centrifugation and frozen at -80 °C overnight.  Cells were resuspended in lysis buffer 

(50 mM Tris-Acetate pH 7.0, 10 mM NaCl, 5% glycerol, 0.1% Triton-X-100, 1 mM 

EDTA, 1 mM DTT) followed by addition of lysozyme, 5 mM MgCl2, and DNase1.  The 
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supernatant was then clarified by centrifugation at 40,000g for 60 min at 4 °C and directly 

loaded onto an anion exchange column (UNO-Q12, BioRad) that had been preequilibrated 

with Buffer A (50 mM Tris-Acetate pH 7.0, 10 mM NaCl, 1 mM DTT).  The flow through 

containing hUNG was loaded onto a Mono-S cation exchange column (GE Healthcare) 

preequlibrated with Buffer A.  hUNG was then purified by gradient elution with Buffer A 

containing 800 mM NaCl.  Fractions containing hUNG were dialyzed and concentrated 

into 10 mM sodium phosphate pH 7.5, 300 mM NaCl, 1mM EDTA, 1 mM DTT, 25% 

glycerol and passed through a gel filtration column using BioRad P-100 resin and eluted 

in 10 mM sodium phosphate pH 7.5, 150 mM NaCl.  The purified protein was then diluted 

to final buffer conditions of 10 mM sodium phosphate, 110 mM NaCl, 20% glycerol and 

stored at −80 °C.  The concentrations of hUNG stock solutions were determined using the 

absorbance at 280 nm and an extinction coefficient of 33.68 mM−1 cm−1. 

 

2.4.4 Oligonucleotide Preparation.   

1-[2-Deoxy-5-O-(4,4‘-dimethoxytrityl)-2-fluoro-1-β-arabinofuranosyl]uracil was 

previously synthesized [4,9-21,36].  The specific substrate (DS) was synthesized using 

standard phosphoramidite chemistry on an Applied Biosystems 390; however, the coupling 

time for the addition of the fluorinated uracil nucleoside phosphoramidite was increased to 

10 min.  The size, purity, and nucleotide composition of DS were assessed by denaturing 

polyacrylamide gel electrophoresis with visualization by crystal violet staining and 

MALDI mass spectrometry.  All other oligonucleotides sequences were purchased from 

either Integrated DNA technologies (http://www.idtdna.com) or Eurofin 

(http://www.operon.com) and purified in house by denaturing polyacrylamide gel 
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electrophoresis (PAGE).  Concentrations of solutions were determined by the absorbance 

at 260 nm using nearest neighbor extinction coefficients. 

2.4.5. Experimental Conditions.  

 Most experiments were conducted at 20 °C in Buffer B (20 mM potassium 

phosphate (pH 7.5), 0.002% Brij 35 detergent (Sigma-Aldrich), 1 mM DTT) unless 

otherwise stated.  The potassium phosphate stock was brought to pH 7.5 using concentrated 

KOH; this resulted in a final potassium concentration of 36 mM.  Site transfer experiments 

were conducted at 20 °C in Buffer C (20 mM HEPES (pH 7.5), 0.002% Brij 35 detergent 

(Sigma-Aldrich), 3 mM EDTA (added from a 0.5 M stock at pH 8.0), 1 mM DTT).  HEPES 

stock was brought to pH 7.5 using concentrated KOH; this resulted in a final potassium 

concentration of 12 mM.  Higher potassium concentrations for both buffers were achieved 

by addition of either KCl, KGlu, or KF.  

2.4.6. Dissociation Constants for DNA Binding using Fluorescence Measurements. 

Binding of hUNG to non-specific DNA (DN) was measured by fluorescence 

anisotropy with a SPEX Fluoromax 3 spectrofluorometer at 20 °C (excitation wavelength 

of 494 nm, emission wavelength of 518 nm).  Concentrated hUNG in Buffer B was titrated 

into a cuvette containing 100 nM of fluorescein labeled DNA in Buffer B.  After each 

addition, the solution was allowed to equilibrate for 4 min inside the fluorometer and three 

measurements were averaged.  For dissociation constants (1/Ka) of > 6 μM, values were 

determined by diluting a solution of concentrated hUNG and 100 nM labeled DNA in 

Buffer B with a solution of 100 nM labeled DNA only.  Potassium concentrations were 

adjusted by addition of KCl, KGlu, or KF to Buffer B to sample a range of 36 – 170 mM.  
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Temperature dependence of the non-specific binding affinity was measured using the same 

experimental procedure at additional temperatures of 10, 15, and 25˚C in the presence of 

36 mM and 150 mM K+ using KGlu.  All data were then fitted using eq 2.4, where A0
 and 

Af are the minimal and maximal anisotropy values, respectively. 

 

A =  − {
(A0 − Af)

2
 ×  [DNA]tot} × (b − √b2 − 4[hUNG]tot[DNA]tot) + A0   (2.4) 

b = (1/Ka) + [hUNG]tot + [DNA]tot 

Binding of hUNG to specific DNA (DS) was followed by an increase in the fluorescence 

of 2-aminopurine (2-AP).  Emission was recorded over the wavelength range of 330 – 500 

nm using an excitation wavelength of 310 nm, 0.25 second integration time, and averaging 

of three scans.  Background corrected fluorescence intensity at 370 nm was plotted against 

hUNG concentration and fitted using equation (2.4).  Similar results were obtained by 

integrating the entire emission spectrum. 

2.4.7. Stopped-Flow Kinetic Measurements.   

Stopped-flow fluorescence experiments were performed at 20 °C in Buffer B using 

an Applied Photophysics device in two-syringe mode (dead time = 2 ms).  The dissociation 

and association kinetics for specific DNA (DS) were followed using 2-AP fluorescence 

changes using an excitation wavelength of 310 nm and a 360-nm cut-on filter. Ten−fifteen 

kinetic traces were averaged to produce an acceptable signal-to-noise ratio. All bimolecular 

association reactions were performed under second-order conditions with equivalent 

concentrations (400 nM or 600 nM) of both the enzyme and DNA well above the 1/Ka to 

ensure irreversibility of the binding event. Higher specific DNA concentrations were used 
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at higher salt due to increased background fluorescence of KGlu. Data were linearized as 

a function of unbound DNA concentration and fitted using the 2nd order rate equation (eq 

2.5), where A0
 and At are the initial and final unbound DNA concentrations, respectively. 

1

𝐴𝑡
= 𝑘𝑜𝑛𝑡 +  

1

𝐴0
       (2.5) 

Dissociation kinetics were measured by mixing a solution containing both DS and 

saturating amounts of hUNG with an equal volume of a concentrated solution of duplex 

DNA containing an abasic site (aDNA) to ensure irreversible trapping of dissociated 

enzyme molecules.  Data were fitted using a single exponential decay expression Ft = ∆F 

exp(-koff t) + C, where Ft is the voltage at time t, ∆F is the amplitude of the voltage change, 

and C is a constant offset.  All other relevant specifications for the individual experiments 

are described in the figure legends and text. 

2.4.8. Steady-State Kinetic Measurements.   

Time-dependent increase in the steady-state fluorescence of DNA containing a 

uracil lesion adjacent to 2-AP (PUA-30) was followed using a SPEX Fluoromax 3 

spectrofluorometer in the time base mode as previously described [37].  Emission was 

observed at 370 nm using an excitation wavelength of 315 nm and a sampling interval of 

10s.  Michaelis-Menten parameters were determined from hyperbolic fits of the initial rates 

as a function of DNA substrate concentration. 

2.4.9. Intramolecular Site Transfer Assay.   

The methods of Schonhoft and Stivers [4] were followed using a substrate with two 

uracil sties spaced by 20 bp such that all intramolecular site transfers occurred by the 
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dissociative pathway [4]. Stock solutions of DNA containing either a 5’ or 3’ 32P end label 

were generated by incubation of a DNA strand with [γ32P]ATP (Perkin-Elmer) and T4 

polynucleotide kinase (New England Biolabs) or [α32P]ATP (Perkin-Elmer) and terminal 

transferase (New England Biolabs), respectively. The 5′ and 3’-labeled strands were 

hybridized by heating to 95 °C in a heating block for 20 min and allowing the block to cool 

to room temperature. Unincorporated [γ32P] and [α32P]ATP were removed by gel filtration. 

Each reaction contained 40 nM 32P-labeled duplex DNA substrate, composed of 

mixing equal amounts of 5’ and 3’-labeled DNA, in Buffer C. Site transfer experiments 

were conducted in Buffer C due to the reduced intramolecular site transfer (Ptrans) observed 

when phosphate buffer was used (Buffer B). We attribute this affect to competitive 

inhibition by phosphate dianion.  The reaction was then initiated by the addition of hUNG 

to a final concentration of 5 pM and incubated at 20 °C.  At each time point, an aliquot of 

the reaction mix was quenched with uracil DNA glycosylase inhibitor (UGI) at a final 

concentration of 0.1 U (New England Biolabs), which rapidly and efficiently quenched 

hUNG activity.  Following reaction quenching, abasic sites were cleaved by heating each 

aliquot at 95 °C for 10 min in the presence of 165 mM EDA pH 8.0.  Fragments were then 

separated on a 12% nondenaturing polyacrylamide gel. The gel was dried, exposed 

overnight to a storage phosphor screen and imaged with a Typhoon 8600 phosphorimager 

(GE Healthcare).  All gel images were quantified using QuantityOne (Bio-Rad) by the box 

method.  
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3.1 INTRODUCTION 

Numerous crystal structures of different DNA glycosylases have been solved in the 

presence and absence of DNA targets, which allows for a classification of these enzymes 

based on the architecture of their fold1, 2, 3, 4, 5, 6. The three most common families have been 

designated as helix-hairpin-helix (HhH), helix-two turn-helix, and uracil DNA glycosylase 

(UDG). While structure does not provide mechanistic details of how enzymes from 

different classifications perform a uniform function, it can illuminate differences between 

the enzyme families that have potentially profound consequences for steps of the DNA 

search-and-repair pathway. In order to evaluate how structural differences between 

glyscosylase families impact DNA repair, we have chosen to study human uracil DNA 

glycosylase (hUNG) and human 8-oxoguanine DNA glycosylase (hOGG1), which hail 

from the UDG and HhH superfamilies, respectively. 

The structure of hUNG is best characterized as a single domain, classic α/β fold 

with a central 4-stranded parallel β sheet surrounded by eight α helices1, 3. The multilayered 

structure produces regions of buried hydrophobic aromatic clusters between the α helices 

and β strands. Along one end of the β sheet is a ridge 27 Å long and 21 Å in diameter, 

which is approximately equal to the diameter of a DNA double helix. This groove is rich 

in basic amino acids that imbue the area with a positive electrostatic potential fit for binding 

DNA1. As shown in Chapter 2, hUNG binds to DNA using three loops known as the 5’-

side backbone compression loop (res. 165-PPPPS-169), the uracil recognition region (res. 

199-GVLLLN-204), and the 3’side backbone compression loop (res. 246-GS-247). 

Numerous contacts with the phosphate backbone stabilize the DNA helix in the binding 

ridge. The loops compress the backbone and bend the DNA at a 45o angle upon 
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intercalation of the minor groove by an additional loop (res. 268-HPSPLS-273). The 

insertion of Leu-272 stabilizes the displacement of uracil into the hUNG active site where 

it is recognized by specific hydrogen bonding partners. 

The structure of hOGG1 is far more complex and consists of multiple domains with 

unique folds2, 6. As with all members of the HhH family, hOGG1 contains a unique helix-

hairpin-helix motif, followed by a Gly/Pro-rich loop. The overall fold of the enzyme 

contains two α-helix domains and an additional antiparallel β-sheet that is only shared with 

the alkyl DNA glycosylase AlkA7. hOGG1 binds to 8-oxoguanine containing DNA much 

like hUNG with uracil sites. The 8-oxoguanine is flipped out into the active site and 

recognized with a single hydrogen bond (Gly-42), backbone is bent at a severe 70o angle, 

and Asn-149 wedges through the minor groove to stabilize the displaced base 

conformation6. Unlike hUNG and most other DNA-binding proteins, hOGG1’s DNA-

binding interface is lacking in positive electrostatic potential. Amino acid groups in close 

proximity to the DNA backbone are essentially all uncharged with the exception of a single 

basic reside His-270. Stabilization of the charged DNA is believed to originate from dipole 

electrostatic contact by orientation of the N-termini of the many α-helicies in hOGG1’s 

structure toward the DNA7.  

Though hUNG and hOGG1 both distort damaged DNA in similar ways, it is 

arguable that the more relevant binding partner for both of these enzymes is undamaged 

DNA. DNA lesions are infrequent and occur on the order of every million base pairs; 

therefore, it is more likely that hOGG1 and hUNG will spend the majority of their time 

bound to nonspecific DNA while on the hunt for a damage site. Understanding how their 
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unique structures provide a binding platform for undamaged DNA is essential to fully 

comprehend how these enzymes translocate along DNA and rapidly discriminate between 

nontarget and target sequences. Previously published crystal structures of both enzymes 

bound to undamaged DNA paints a rather stunning difference between them2, 3. As detailed 

in Chapter 2, hUNG makes primarily electrostatic contact with the phosphate backbone 

and does not deform the over B-form structure of the DNA, which distinguishes it from the 

distorted specific complex and imbues it with a rather dramatic salt sensitivity. In contrast, 

the nonspecific complex of hOGG1 is very similar to its specific complex. Undamaged 

guanine is extruded from the DNA helix into an ‘exo site’ neighboring the active site. This 

is accomplished by inducing an 80o bend in the helix and a rotation over the helical axis by 

20o. The heavy distorition of the DNA actually makes some of the phosphate groups 

inaccessible to hydrogen bonds that are present in the specific complex (His-270 and Asn-

150). AlkA has also been observed to interact with nonspecific DNA in this rather 

interrogative manner that distinguishes the HhH superfamily from UDG4. The relatively 

sparse ionic contacts between hOGG1 and DNA leads to the question of the nature of the 

thermodynamic interactions that stabilize the non-specific hOGG1-DNA complex. 

Differences in the electrostatic and nonelectrostatic character of hOGG1-DNA complexes 

from those of hUNG could have a dramatic difference in the response of hOGG1’s search-

and-repair mechanism to the cellular environment.  

As was detailed in Chapter 2, we have carried out a thorough investigation of how 

the nonspecific interactions between hUNG and DNA can influence its ability to target 

uracil damage. A similar study has yet to be conducted with hOGG1. Due to experimental 

limitations with hOGG1, we have restricted our investigation to the most poignant steps in 
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the search-and-repair pathway that could be influenced by hOGG1’s unique DNA-binding 

interface: nonspecific and specific DNA binding. We provide a quantified delineation of 

the thermodynamic driving forces that stabilize both complexes utilizing counter-ion 

condensation (CC) theory8, 9, 10. Our analysis of how hOGG1 interacts with multiple DNA 

binding partners under physiological salt will inform later experiments presented in 

Chapter 5, which involve the consideration of combinatorial effects of salt, crowder, and 

bulk DNA density. 

3.2. RESULTS 

3.2.1. Structural Aspects of Non-specific and Specific hOGG1-DNA Complexes. 

 Crystal structures of complexes of hOGG1 with undamaged and damaged DNA 

have provided a detailed model of the binding interface, which provides a useful starting 

place for understanding the effects of solution ions on binding of non-specific and specific 

DNA (PDB entries 1YQR and 1EBM, respectively; Figure 3.1A, 3.1B). The binding 

interfaces in these structures encompass over 2,200 Å2 of surface area and include a 

peripheral ‘exo’ binding site that can accommodate an undamaged guanine base in the non-

specific complex (Figure 3.1A) and the catalytic active site, which is specific for 8-oxoG 

(Figure 3.1B)2, 6. Unlike most DNA-binding proteins, the DNA binding site of hOGG1 is 

lacking in charged residues with the possible exception of a single basic residue, H270, 

which is implicated in the discrimination between guanine and 8-oxoguanine6, 11. Upon 

binding to an undamaged DNA segment (Figure 3.1A), hOGG1 induces a pronounced 

bend (~ 80o) and rotation of the DNA (~20o about the helix axis), which apparently 

precludes the formation of potential ionic interactions between protein residues and the 



96 

 

phosphate backbone of the DNA. This structure also suggests that non-electrostatic binding 

energy might be gained by displacement of an undamaged guanine residue from the base 

stack into the ‘exo’ guanine binding site. The distorted DNA helix is apparently stabilized 

by insertion of an asparagine into the space vacated by the guanine base.  

When hOGG1 binds to 8-oxoG-containing DNA, all of the contacts in the non-

specific complex are maintained (Figure 3.1B). However, the reduced bend angle of the 

DNA helix positions the phosphate backbone in close proximity to two side chains that 

form unique hydrogen bonds with the phosphate backbone (His270 and Asn150) and also 

allows positioning of the 8-oxoG base deep into the active site with the formation of 

additional non-ionic interactions. We note that the severely bent non-specific DNA 

complex of hOGG1 and DNA differs considerably from the relatively unperturbed B 

duplex structure of non-specific DNA bound to hUNG, even though hUNG partially 

extrudes normal thymine bases into a similar exo-site bound conformation during its search 

for uracils in the context of U/A base pairs2, 3.  In contrast, the specific complex of hUNG 

with damaged DNA shows significant bending similar to that of hOGG112.  

3.2.2. Ion Effects on Binding of hOGG1 to Undamaged DNA.   

We were interested in whether the structural differences between hOGG1 and 

hUNG led to distinct electrostatic and non-electrostatic contributions to their binding 

energies for damaged and undamaged DNA.  As in a previous study with hUNG,13 we used 

fluorescence anisotropy to measure the equilibrium association constants between hOGG1 

and non-specific DNA (Ka
N) under a range of potassium ion concentrations (30 mM – 300 

mM) using acetate as the counterion. We also explored several DNA sequences to probe 

whether the G-C content of the DNA affected the binding energetics of hOGG1. The 
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different DNA sequences were designed to contain a random distribution of A-T and G-C 

base pairs (DN), no G-C base pairs (DTATA), a single G-C base pair (DGC), or entirely G-C 

base pairs (DGCGC) (Figure 3.1A). A fluorescein label was attached to the 5 end of one 

DNA strand to follow the increase in fluorescence anisotropy that accompanied hOGG1 

binding (Figure 3.2A). The logarithm of the binding affinities of hOGG1 for each duplex 

was plotted against the logarithm of the salt concentration present in the binding reaction 

(Figure 3.2C). The slopes (N) and intercepts of these plots were then used to determine 

the electrostatic (ΔGelect) and non-electrostatic (ΔGnon) contributions to the binding free 

energies as previously described10, 13. Binding affinities at all salt concentrations for DN are 

listed in Table 3.1. 

 Regardless of the DNA sequence, the salt dependence of the association constants 

for hOGG1-DNA complexes was small compared to analogous studies with hUNG, 

indicating a smaller electrostatic component to binding of hOGG1 [NhOGG1 = -0.9 to -2.0; 

NhUNG = -3.8) (Table 3.2)13. Within this series of DNA sequences, the binding of DN (35% 

G/C content) was about three to ten times less sensitive to a ten-fold increase in salt 

concentration than the other DNA sequences (Figure 3.3 and Table 3.3). The different 

slopes for the various duplex sequences (Table 3.2) suggests subtle differences in the 

electrostatic components of the binding free energies that may in turn stem from differences 

in the structures of these complexes. Sequence dependent salt effects on binding may arise 

from differences in the heterogeneous ion density around the free duplexes and/or 

differential reorganization of the ion cloud arising from structural differences between 

hOGG1 and these non-specific DNA sequences. It is therefore unwarranted to use simple 
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polyelectrolyte theory to calculate numbers of ions that are released to bulk solution upon 

complex formation as we did previously with hUNG binding to non-specific DNA8, 10, 13.  

 The non-electrostatic contributions to the binding free energies for these duplexes 

(ΔGnon) may be obtained from extrapolation of the linear salt dependences to a standard 

state of 1M salt8, 10, 13, 14. Under these conditions the equation reduces to log Ka = log Ka
non 

(with ΔGnon = -RT ln Ka
non) (Tables 3.2 and 3.4). Using this formalism, DNA sequences 

with G/C content in the range 35 to 100% had non-electrostatic contributions to their 

binding free energies that were about -0.8 to -1.7 kcal/mol more favorable as compared to 

sequences containing a single G/C or no G/C base pairs (Table 3.4).  

The electrostatic contribution to the binding free energy of hOGG1 with non-

specific DNA (ΔGelect) at a physiological salt concentration of 150 mM was obtained by 

subtracting ΔGnon from the observed binding free energy. As detailed in Table 3.4, the 

values for the various sequences fell in the range ΔGelect = -1 to -2.5 kcal/mol. The enhanced 

electrostatic terms for the low or no-G/C sequences allows these sequences to bind hOGG1 

with nearly the same affinity as the two G/C-rich sequences under physiological salt 

concentrations, despite the more favorable Gnon binding terms for the G/C-rich sequences. 

Thus even though the energetic basis for the binding of these duplex sequences differs, the 

observed affinity with hOGG1 is very similar under physiological conditions (see Gbind 

in Table 3.4).   

The major conclusions from the above data are that binding of hOGG1 to non-

specific DNA is (i) less driven by electrostatic effects than for hUNG, (ii) subject to 

sequence dependent differences in the non-electrostatic and electrostatic binding terms, 

and (iii) largely independent of sequence context at physiological salt concentrations.  
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Figure 3.1. Schematics of undamaged and damaged DNA bound to hOGG1. (A) 

Depiction of electrostatic (dashed lines) and non-electrostatic (solid lines) contacts 

between undamaged DNA and WT hOGG1(Protein Data Bank entry 1YQK2). The top 

strands of all undamaged DNA sequences used in this studied are listed. A fluorescein label 

(not shown) is attached to the 5’ end of each strand. Full sequences are listed in Methods, 

Section 3.4. (B) Schematic of electrostatic (dashed arrows) and the non-electrostatic (solid 

arrows) interactions between hOGG1 and specific DNA (Protein Data Bank entry 1EMB6). 

The top strand of the specific DNA sequence used in this study is shown. A 5’ fluorescein 

label was attached to the complimentary strand (not shown, see Methods, Section 3.4). 

Electrostatic interactions are defined by nitrogen and oxygen atoms of the enzyme within 

3.3 Å of DNA phosphate oxygens or heteroatoms on the bases, while non-electrostatic 

interactions are defined as any enzyme carbon atom within 3.9 Å of a DNA carbon.  

Hydrogen bonds with the cytosine on the complementary strand are not expected to result 

in ion displacement. 
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Figure 3.2. Salt dependence of the non-specific and specific DNA binding affinity 

determined by fluorescence anisotropy measurements at 20˚C. (A) Changes in 

fluorescence anisotropy of the non-specific DNA (DN = 25 nM) as a function of hOGG1 

concentration at varying potassium ion concentrations (30 mM – 300 mM). Binding curves 

for the additional non-specific DNA oligos are provided in Fig. 3.3.  (B) Changes in 

fluorescence anisotropy of the specific DNA (DS = 10 nM) as a function of K249Q 

concentration at various potassium ion concentrations (30 mM – 200 mM). (C) 

Dependence of non-specific association constant (Ka
N) on the concentration of potassium 

acetate for DN (black), DTATA (blue), DGC (purple), and DGCGC (red). (D) Salt dependence 

of the non-specific (Ka
N) (black, left y-axis) and specific association constants (Ka

S) (red, 

right y-axis) for K249Q binding to DN and DS. For comparison, black and grey dashed lines 

in C and D show the published salt dependences for non-specific and specific DNA binding 

by hUNG13. 

 



101 

 

Figure 3.3. Salt dependence of the non-specific DNA binding affinity of hOGG1 at 

various salt concentrations using the indicated DNA sequences. Increases in 

fluorescence anisotropy of (A)DTATA , (B) DGC  and (C) DGCGC  are plotted as a function of 

hOGG1 concentration at each potassium ion concentrations (50 mM – 300 mM). Data 

presented here correspond to the linear plot presented in Figure 3.2C. 
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Table 3.1.  Binding affinities (KD = 1/Ka) of hOGG1 for nonspecific DNA 

and specific DNA sequences at various concentrations of potassium ions.  

                        1/Ka (µM) 

[K+] (mM) DN                  DS a 

30 
0.29 ± 0.03 

0.48 ± 0.15a 0.12 ± 0.05 

50 
0.38 ± 0.17 

0.31 ± 0.02a 
0.22 ± 0.04 

75 
0.41 ± 0.03 

0.69 ± 0.05a 
0.38 ± 0.02 

100 
0.9 ± 0.4 

1.8 ± 0.6a 
0.78 ± 0.03 

150 
1.01 ± 0.06 

2.6 ± 0.4a 
3.2 ± 0.1 

200 
1.6 ± 1 

3.5 ± 0.4a 
6.3 ± 0.3 

300 1.9 ± 0.4 --b 

a These values were determined using K249Q hOGG1. 
b
 Not determined. 

 

 

Table 3.2. Analysis of the salt dependences of non-specific and specific binding of 

hOGG1.a  

       Slope (N)b                       Ka
non (M-1)c  

Ka
N -0.9 ± 0.1 

-1.3 ± 0.3d 

1.8 ± 0.1 x 105 

2.5 ± 0.2 x 105 d 

Ka
TATA -2.0 ± 0.5 8.4 ± 0.9 x 103 

Ka
GC -2.0 ± 0.6 1.3 ± 0.2 x 104 

Ka
GCGC -1.7 ± 0.4 3.4 ± 0.3 x104 

Ka
S -2.2 ± 0.2d 1.6 ± 0.1 x 104 d 

a All experiments were conducted using WT hOGG1 unless otherwise noted. 
b The slope (N) obtained from nonlinear regression fitting to eq 1. 
c Ka

non is the extrapolated value of the Ka to the condition of 1 M [K+].   
d These values were determined using K249Q hOGG1. 
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Table 3.3.  Binding affinities (KD = 1/Ka) of hOGG1 for multiple 

nonspecific DNA sequences at various concentrations of potassium ions.  

1/Ka (µM) 

[K+] (mM) DTATA DGC DGCGC 

30 -- c -- -- 

50 0.38 ± 0.06 0.28 ± 0.03 0.20 ± 0.02 

       75 -- -- -- 

100 -- -- -- 

150 1.8 ± 0.7  1.1 ± 0.2 0.7 ± 0.2 

200 -- -- -- 

300 12 ± 2 10.8 ± 0.8 4.0 ± 0.9 
a
 Not determined. 

  

Table 3.4.  Electrostatic (∆Gelec and non-electrostatic (∆Gnon) contributions to the binding 
free energy (∆Gbind) for non-specific (DN, DTATA, DGC, DGCGC) and specific (DS) hOGG1 
complexes in the presence of 150 mM K+. a 
        DN

     DTATA     DSGC    DGCGC       DS 

∆Gbind
b
 (kcal mol-1) -8.0 ± 0.1 

-7.5 ± 0.3e -7.7 ± 0.2 -8.0 ± 0.1 -8.2 ± 0.2 -7.4 ± 0.4e 

∆Gelec
c (kcal mol-1) -1.0 ± 0.2 

-1.3 ± 0.7e -2.4 ± 0.3 -2.5 ± 0.2 -2.1 ± 0.4 -2.3 ± 0.8 

∆Gnon
d (kcal mol-1) -7.0 ± 0.1 

-6.2 ± 0.4e 
-5.3 ± 0.1 -5.5 ± 0.1 -6.1 ± 0.2 -5.1 ± 0.4 

 a All values are derived from experiments using KOAc. 

b Calculated ∆Gbind = -RT ln Ka, using Ka at 150 mM [K+]. 
c ∆Gelec = ∆Gbind  - ∆Gnon.  ∆Gelec pertains to the condition of 150 mM [K+]. 
d ∆Gnon = -RT ln Ka, using the measured Ka at 1M [K+]. 
e These values were determined using K249Q 
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3.2.3. Ion Effects on Binding of hOGG1 to DNA containing 8-oxoguanine.  

A quantitative evaluation of the energetic contributions of these additional 

backbone interactions in the specific complex was performed by measuring the binding 

affinity for 8-oxoG-containing DNA (DS) at a range of salt concentrations (30 mM - 200 

mM K+) (Figure 3.2B). These experiments required the use of a catalytically inactive form 

of hOGG1 containing a K249Q mutation (Figure 3.4)6, 15, 16. To ensure that this active site 

mutation did not disrupt the ability of hOGG1 to bind to DNA, we confirmed that the salt 

dependence of non-specific binding for K249Q was similar to that of WT hOGG1 (Figure 

3.4B, Table 3.3). While the salt sensitivity of K249Q and WT hOGG1 were essentially 

identical, K249Q was found to bind slightly more weakly to nonspecific DNA.  

Accordingly, the binding affinity K249Q for undamaged DNA is used as the basis for 

comparison with the specific complex to avoid small differences arising from the mutation. 

The salt dependence of the binding affinity for specific DNA (N = -2.2 ± 0.2) was 

similar to what was observed for undamaged DNA (N = -1.3 ± 0.3).  The slightly steeper 

salt dependence for the specific complex may arise from two additional contacts made with 

a phosphate group neighboring the 8-oxoG site (Figure 3.2C, 3.2D), which could result in 

the displacement of an additional ion. The apparent lack of thermodynamic discrimination 

between undamaged and 8-oxoguanine-containing DNA at physiological salt is consistent 

with the structural similarities between the non-specific and specific complexes (see 

Discussion). All of the binding affinities determined using K249Q are reported in Table 

3.1. 
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Figure 3.4. Salt dependence of the non-specific DNA binding affinity of K249Q at 

various salt concentrations. (A) Changes in fluorescence anisotropy of DN as a function 

of K249Q concentration using potassium ion concentrations in the range 30 mM to 300 

mM. (B) Dependence of Ka of K249Q for non-specific DNA (DN) on the concentration of 

KOAc. For comparison, the dashed line shows the salt dependence of Ka of hOGG1 for DN 

from the data shown in Figure 1D. (C) Phosphorimages of gels corresponding to an 8-

oxoG excision assay performed using K249Q.  Twenty-five nanomolar of a 31mer 

containing a single oxoG site (S0oxoG) was incubated with 1 M K249Q for 2 hours at 25oC. 

Time points were quenched and heated at 95oC for 15 min in formamide with and without 

100 mM NaOH to probe potential lyase and glycosylase activity, respectively. No reaction 

was observed under either condition, verifying that K249Q is an inactive mutant of 

hOGG1.  
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3.3. DISCUSSION 

3.3.1. Salt Effects on DNA Binding in the Absence of Crowding or Bulk DNA.  

One of the significant differences between hOGG1 and hUNG is their response to 

physiological concentrations of monovalent ions, which can be attributed to their different 

structural modes of interacting with undamaged DNA sequences (Figure 3.1 and 

references 25 and 32). The binding of uracil DNA glycosylase to undamaged DNA has a 

large salt effect, leading to weak binding at 150 mM K+ (Gbind
150 = -5.5 kcal/mol).  In 

contrast, binding of hOGG1 is comparatively salt resistant (Gbind
150 = -8 kcal/mol). Thus, 

hOGG1 binds to nonspecific DNA about -2.5 kcal/mol more tightly than hUNG at 150 mM 

K+. The energetic basis for these differences has been assigned to the greater electrostatic 

term in the binding free energy of hUNG and the larger non-electrostatic term for hOGG1 

(Table 3.4). Structurally, these energetic differences can be attributed to the greater number 

of electrostatic interactions in the hUNG-DNA complex and the nonpolar interactions in 

the hOGG1 complex that arise from the DNA distortion and docking of guanine into the 

exo-site (Figure 3.1).   

 

3.3.2. Relating Salt Effects to the Efficiency of Damage Recognition.  

The respective weak and stronger interactions hUNG and hOGG1 with non-specific 

DNA and their different electrostatic attributes are suited to the catalytic properties of these 

two enzymes and the nature of the DNA damage that these enzymes must recognize.  Uracil 

DNA glycosylase is a highly active enzyme capable of flipping and excising uracil from 

the DNA duplex on a millisecond timescale3, 17, 18. Thus, if the lifetime of hUNG on non-
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specific DNA sites were significantly longer than milliseconds, its search and repair 

efficiency would be diminished. The millisecond timescale for hUNG binding and catalysis 

are also consistent with the rapid sub-millisecond intrinsic breathing dynamics of base pairs 

containing uracil or thymidine3, 19. These motions allow the enzyme to inspect T/A and 

U/G base pairs by taking advantage of their frequent excursions from the base stack without 

severely distorting the DNA3, 19, 20. Distortion of an undamaged DNA duplex by hUNG 

would likely lead to greater non-electrostatic interactions (as observed with hOGG1) and 

a non-productive increase in hUNG’s bound lifetime. Thus, a physiological salt 

concentration facilitates the hUNG reaction by decreasing its lifetime on non-specific DNA 

and intrinsic base pair breathing precludes the requirement for DNA distortion until a uracil 

base is detected and flipped into the enzyme active site20. Consistent with the above 

proposal, the hUNG specific DNA complex is severely distorted and displays a +1 kcal/mol 

smaller electrostatic binding term and a -5 kcal/mol more favorable non-electrostatic 

binding term than the non-specific complex13.  

In contrast, hOGG1 excises 8-oxoG on a time scale of seconds21, 22, 23, which 

requires a greater lifetime on non-specific DNA to allow damage recognition to occur 

efficiently. The lower rates of base pair breathing for of G/C and 8-oxoG/C pairs as 

compared to those of uracil and thymidine19, 24, 25, and the requirement for a longer 

extrahelical lifetime to allow excision, may have driven the evolution of an active base 

flipping mechanism for hOGG1. This requirement for damage recognition would give rise 

to hOGG1’s primarily non-electrostatic DNA binding mode for both undamaged and 

damaged DNA. Thus unlike hUNG, hOGG1 is not imbued with salt dependent DNA 

binding specificity. It is important to point out that most specificity for damaged bases 
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occurs in the transition state for base excision by both hUNG and hOGG122, 26. For instance, 

the transition state specificity for uracil as opposed to thymine or cytosine has been 

estimated to be at least 105-fold for hUNG20, 26. 

 The implication of the difference in the salt sensitivities of hUNG and hOGG1 with 

regards to undamaged DNA binding could be profound in the context of translocation. The 

ability of a glycosylase to diffuse along a DNA chain is heavily dictated by its interaction 

the noncognant sequences flanking the lesion sites. These enzymes have evolved wildly 

different sensitivities to the high ionic strength encountered in the cell, which could 

manifest as difference in their mechanistic approach to DNA repair under physiologically 

relevant conditions. Chapter 5 will explore how these differing salt effects influence 

productive repair by hUNG in hOGG1. 

3.4. METHODS 

3.4.1. Experimental Conditions. All experiments with hOGG1 were performed in buffer 

containing 15 mM potassium phosphate pH 7.5, 1 mM EDTA, and 0.1 mg/mL BSA. This 

buffer contained a total of 30 mM K+ originating from pH adjustment of potassium 

phosphate and EDTA. Increasing ionic strength measurements were made by 

supplementing the buffer with potassium acetate (KOAc). All experiments with hUNG 

were performed in a buffer consisting of 20 mM HEPES pH 7.5, 3 mM EDTA, 1 mM DTT, 

0.002% Brij 35. This buffer contained a total of 22 mM K+ originating from pH adjustment 

of the HEPES and EDTA stock solutions.  The catalytic domain of recombinant hUNG, 

WT hOGG1 and the K249Q mutant hOGG1 were purified as previously described27. All 

oligonucleotides were purchased from either Integrated DNA Technologies or Eurofin and 
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purified in-house by denaturing PAGE. PEG 8K was purchased from Sigma Chemical and 

was purified by overnight treatment with activated carbon (0.1g/mL) and filtered to remove 

UV absorbing impurities. Salmon sperm DNA (salDNA) was purchased from 

ThermoFisher Scientific. 

3.4.2. Oligonucleotide Reagents 

All DNA substrates listed below were purchased from either Integrated DNA 

Technologies (www.idtdna.com) or Eurofins MWG Operon (www.operon.com).  Long 

oligos (>20 base pairs) were purified by denaturing gel electrophoresis.  For all DNA 

duplex substrates, uracil bases were paired with adenine and 8-oxoguanine bases were 

paired with cytosine. All DNAs used in this study were in the duplex form and the 

sequences are listed below (the sequences of the complimentary strands for the two-site 

substrates are not shown). 

20mer DNA substrates 

DN: Randomized nonspecific sequence 

5’-FAM-ATA TCT CTA GCC TTC CTA TA-3’ 

3’-    TAT AGA GAT CGG AAG GAT AT-5’ 

 
DTATA: Nonspecific sequence with no GC base pairs 

5’-FAM-ATA TAT ATA AAA TTA ATA TA-3’ 

3’-    TAT ATA TAT TTT AAT TAT AT-5’ 

 
DGC: Same nonspecific sequence as DTATA with a central GC pair 

5’-FAM-ATA TAT ATA GAA TTA ATA TA-3’ 

3’-    TAT ATA TAT CTT AAT TAT AT-5’ 

 
 

http://www.idtdna.com/
http://www.operon.com/
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DGCGC: Nonspecific sequence with no TA base pairs 

5’-FAM-CCG CCC GCC GCC CGC CCG CC-3’ 

3’-    GGC GGG CGG CGG GCG GGC GG-5’   

 
DS: Specific DNA containing 2-aminopurine (P) paired with T 

5’-ATA TCT CTP oG CCT TCC TAT A-3’ 

3’-TAT AGA GAT  C GGA AGG ATA T-FAM-5’ 

 

hOGG1 Activity Test substrate 

S0oxoG: 31mer with single 8-oxoguanine 

5′-ATG CTG AGG AAT TTC oG CTC CTT GTA GGA TGA-3′ 

3’-TAC GAC TCC TTA AAG  C GAG GAA CAT CCT ACT-5’ 

 

3.4.3. hOGG1 Equilibrium DNA Binding Measurements.  

Binding of WT and K249Q hOGG1 to a non-specific 5’ fluorescein-labeled 20mer 

DNA duplexes was measured by fluorescence anisotropy using a SPEX Fluoromax-3 

spectrofluorometer at 20 °C (excitation wavelength of 494 nm, emission wavelength of 

518 nm).  All anisotropy values were corrected for the spectral G factors.  Experiments 

were performed in a back-titration mode by diluting a solution of concentrated hOGG1 

containing 25 nM labeled DNA with increasing volumes of a solution containing 25 nM 

labeled DNA only.  After each addition, the solution was allowed to equilibrate for 4 min 

inside the fluorometer and three anisotropy measurements were averaged.  All data were 

fitted to eq 2.2 (Chapter 2) using the software Prism. While the full final anisotropy 

change was not attainable for the higher salt titrations due to limits of protein solubility, 

we achieved 75% or greater saturation for all experiments. Further, all of the binding curves 
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extrapolated to the same final anisotropy when this parameter was used as a floating 

variable in the curve fitting process. 

The binding affinity of hOGG1 for specific, 8-oxoguanine-containing DNA (KD
S) 

was determined via a fluorescence anisotropy following the same back titration procedure 

described above and all data was fit using eq 1. A 10 nM solution of specific DNA (DS) 

containing a single 8-oxoguanine and a 5’-FAM label on the complimentary strand was 

mixed with catalytically inactive K249Q hOGG1. 

3.4.4. Salt Dependence of DNA Binding. 

An evaluation of the electrostatic and non-electrostatic contributions to the binding 

free energy of both nonspecific and specific complexes formed by hOGG1 was carried out 

utilizing counter-ion condensation theory8. The log of the binding affinity was plotted 

against the log of the corresponding salt concentration and the data were fit using linear 

regression (eq 3.1) 

                                          log (Ka) = log (Ka
non) – N log [salt]              (3.1) 

                                               N = αΨ + β 

where the slope N may be interpreted as the number of ions displaced from the DNA upon 

protein binding, α is the number of phosphate groups in contact with the protein, Ψ 

represents the average number of monovalent counterions around each phosphate (0.64 for 

a short oligo10), and β is the number of ions displaced from the protein upon binding10. The 

second term in eq 3.1 becomes zero when [salt] = 1 M; and accordingly, the first term 

reports on the binding affinity at a 1 M standard state of salt (i.e. when the electrostatic 

contribution to binding energy is removed).  Thus, the free energy of non-electrostatic 
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interactions that do not involve ion displacement are obtained from the equation ΔGnon (1 

M) = -RTlnKa
non. The electrostatic contribution to the observed binding free energy at 

physiological salt concentration (taken as 150 mM K+) may be obtained from eq 3.2. 

          ΔGelect = ΔGbind - ΔGnon                       (3.2) 

3.4.5. K249Q Activity Assay.  

To ensure that the K249Q mutation rendered hOGG1 catalytically inactive, a 25 

nM solution of a 5 32P-labeled 31mer duplex containing a single 8-oxoG site (S0oxoG) was 

incubated with 3 µM enzyme for 2 hours at 20oC in buffer containing 150 mM K+. These 

conditions were chosen to ensure that no appreciable amount of DNA was cleaved within 

the 2 hours it took to complete the specific DNA binding experiments. Samples were 

quenched with formamide and heated at 95oC for 30 min the presence and absence of 100 

mM NaOH. DNA fragments were separated using a denaturing 10% polyacrylamide gel 

and the gels were dried and exposed overnight to a storage phosphor screen and imaged 

with a Typhoon 8600 phosphorimager (GE Healthcare). All gel images were quantified by 

box method using QuantityOne (Bio-Rad). Background correction was made by 

subtracting the intensity of the gel directly below each band from the intensity of the 

corresponding band. 
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4.1 INTRODUCTION 

A significant triumph in biochemistry over the last twenty years was the ability to 

isolate human DNA repair enzymes and study their in vitro properties using defined DNA 

substrates containing damaged sites. Typically, these studies have been performed using 

dilute conditions, where the concentration of the enzyme, DNA and buffer components 

were low compared to the concentration of water.  Although a wealth of insights into the 

thermodynamic, kinetic and structural properties of enzymes have resulted from such 

approaches (1-7), DNA repair enzymes act in a crowded cellular environment with quite 

different physical properties (8, 9).  Thus, an open question is how the complex intracellular 

milieu affects the ability of enzymes to locate and repair damage sites embedded in a large 

polymeric DNA substrate.  

The human intracellular environment has numerous physical properties that could 

dramatically affect enzyme activity. These include high inorganic ion and metabolite 

concentrations (10, 11), lower dielectric properties (12-14), higher bulk viscosity (15, 16), 

and the presence of high concentrations of macromolecules which consume available 

volume (“molecular crowding”) (17, 18). Indeed, the concentration of macromolecules in 

human cells is an astounding ~100 to 300 mg/mL (9, 19), which means that 10 to 40% of 

the total cellular volume is consumed by large molecules (often called the excluded 

volume).  Taken together, these parameters could affect association of an enzyme with its 

target in complex ways.  For instance, high ion concentrations are expected to shield 

electrostatic interactions between an enzyme and its highly charged DNA substrate (10, 

20, 21), while a lower dielectric constant could have an opposite effect. Increases in 

macroscopic viscosity will slow the translational movement of macromolecules and due to 
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entropic effects, crowded environments will push macromolecular association when the 

complex consumes a smaller volume than the free component species (9, 22, 23). 

Although volume exclusion largely explains the effects of crowded environments 

on binding equilibria, crowding has been reported to have a surprisingly small effect on 

the diffusion-controlled association kinetics of macromolecules (24).  Indeed, it has been 

observed that some diffusion-controlled association reactions occur at nearly the same rates 

in crowded solutions and in cells as they do in dilute solution (24, 25).  These kinetic effects 

are counterintuitive, but can be understood by considering that macromolecular crowders 

alter the macroscopic viscosity and available volume in crowded solutions, but do not 

change the microscopic viscosity (26, 27).  Thus, over short nanometer distances, the 

rotational and translational diffusion of proteins is not greatly affected by crowding 

because the protein only feels the microscopic viscosity of the solvent that is present in the 

spaces between the larger crowding molecules (28).  Over larger distances, hard sphere 

repulsion between the protein and crowding molecules increases the effective viscosity and 

slows translational diffusion (8, 28, 29).  When two binding partners approach one another, 

they are captured within a low viscosity (high mobility) cage created by the larger crowding 

molecules, which increases the probability for a productive encounter event.  Surprisingly, 

the capture of two binding partners within a high mobility cage can in some cases offset all 

of the negative effects of high viscosity on the overall association rate (29).   

The above considerations raise the interesting question of what effect molecular 

crowding has on enzyme association with DNA, and in particular, the property of 

facilitated diffusion along a DNA chain? Facilitated diffusion on the DNA chain 



118 

 

(“translocation”) is a distinct process that involves transient states of an enzyme and DNA 

that are not directly observable in equilibrium binding, steady-state or rapid kinetic 

measurements (1-4, 30).  Here we measure the effect of inert crowding agents on the 

probability that the DNA repair enzymes uracil and 8-oxguanine DNA repair glycosylase 

will successfully translocate between two damaged sites in a DNA chain. We find that 

crowding increases the likelihood that each enzyme will successfully translocate between 

their respective target sites without dissociation to bulk solution and also increases the 

average translocation distance.  For both enzymes, crowding biases the damage search 

process towards a chain tracking search mode rather than a 3D search mode. Such a 

crowder-induced transition in the search mode could significantly impact the effectiveness 

of the damage search in a crowded nuclear environment. These enzymes represent two of 

the largest superfamilies of glycosylases and their similar behavior in these studies suggests 

that the findings will be general for other related glycosylases.   

4.2. RESULTS 

4.2.1. Crowding Effects on DNA Translocation.   

We first probed the effects of solution viscosity and excluded volume on 

translocation of hUNG between its target uracil sites in DNA, using our previously 

described site transfer assay (3, 30).  Translocation between two uracil sites embedded in 

a single DNA chain can occur by an associative pathway that involves movement of a 

loosely associated enzyme molecule on the surface of the DNA chain, or a dissociative 

pathway that involves reversible short-range excursions from the DNA surface (Figure 

4.1A).  The overall probability of transferring between uracil sites (Ptrans) is the sum of the 
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probabilities of transferring by each individual pathway (i.e. Ptrans = Passoc + Pdiss) and those 

enzyme molecules that fail to transfer are lost to bulk solution after reacting at only a single 

site.  The contribution of the associative pathway in isolation can be determined by adding 

a small molecule active site trap to the transfer reaction (T, Figure 4.1A).  High 

concentrations of trap serve to capture all enzyme molecules undergoing dissociative 

excursions, which selectively blocks this transfer pathway, while leaving the associative 

pathway intact (30, 31). Ptrans is calculated from the relative amounts of DNA product 

fragments that result from uracil excision at only a single site (fragments AB and BC), and 

the double site cleavage events that reflect successful intra-site transfer (resulting in 

fragments A and C). These 5´ and 3´ 32P end-labeled DNA fragments are 

electrophoretically separated on a denaturing polyacrylamide gel and quantified by 

phosphorimaging as shown in Figure 4.1B (see Methods and eq 4.1 for further details). It 

is useful to note that intramolecular site transfer gives rise to more A and C transfer 

products relative to the AB and BC single site excision products, which can be discerned 

by simple visual inspection of the band intensities at low extents of reaction (Figure 4.1B).  

 We initially explored how Ptrans was affected by 0 – 30% (w/v) ethylene glycol 

(EG), PEG 600, 1500, 3350, and 8K using a DNA substrate that contained two uracil sites 

spaced 20 bp apart (Figure 4.1B).  Varying the polymer size and concentration allowed us 

to probe both viscosity and crowding effects, with the latter effect expected to become 

more significant with larger polymers (29, 35).  Representative data in the presence of 20% 

PEG 8K are shown in Figure 4.1B, where a large increase in Ptrans is apparent in the 

presence and absence of the uracil trap (compare A and C bands in the buffer only and PEG 

8K lanes in Figure 4.1B). Ptrans was found to increase and then plateau as the concentration 
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reached about 15% (w/v), regardless of the PEG polymer that was used (Figure 4.2A). In 

contrast, the small molecule viscogen EG showed no effect on Ptrans over the concentration 

range 0 – 30% (w/v) (Figure 4.2B).  It is important to point out that the large increases in 

Ptrans for PEG polymers excludes the possibility of strong interactions of these polymers 

with either the DNA or the enzyme (36). 

Given that both transfer pathways involve diffusional processes, which should be 

slowed in a linear fashion by increases in bulk solution viscosity (Figure 4.1A), we 

explored whether the transfer probability changed linearly with respect to the relative 

viscosity of the polymer solutions (ηrel = ηcrowd/ηbuffer) (Figure 4.1C).  In this analysis, the 

relative viscosity values (Table 4.1) were obtained from the literature (29).  While Ptrans 

did initially increase with viscosity in the range ηrel < 4, it eventually showed downward 

curvature and reached a plateau level of Ptrans ~ 0.8.  In the presence of 20% PEG 8K, 

nearly every enzyme molecule that reacted at one site made it to the second site 20 bp 

away, as compared to only 1 in 3 molecules in dilute buffer (Table 4.2).  In contrast, Ptrans 

was unchanged when the concentration of the small EG viscogen was increased to 30% 

(w/v) (ηrel = 2.2) (Figure 4.2B). These findings indicate that viscosity changes alone cannot 

account for the increases in Ptrans, and that the enhancement of Ptrans requires high molecular 

weight polymers (i.e. crowding). 

Control experiments were performed to explore other possible effects of PEG 

polymers that were unrelated to viscosity and crowding effects. First, we confirmed that 

other structurally distinct crowding agents (Dextran 25K and Ficoll 70) also increased Ptrans 

in a concentration dependent fashion and approached the same plateau value at high 

concentrations and viscosity observed with PEG polymers (Figures 4.2C and 4.2D). Thus, 
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the general observations are independent of the chemical structure and size of large 

crowders.  We also investigated whether the results might arise from large changes in the 

Na+ ion activity by PEG polymers.  However, using a sodium ion-selective electrode, we 

found that the activity of Na+ decreased only minimally upon addition of 20% PEG 8K (49 

± 1 mV∙M-1 in buffer and 41 ± 3 mV∙M-1 in 20% PEG 8K) (Methods and Table 4.3).  

Based on our previous studies on the salt dependence of Ptrans (10), a small ~15% reduction 

in the sodium ion activity would not have any significant effect on Ptrans and would have 

no effect on Passoc, which is resistant to changes in salt concentration (30).  

We point out that the reported Ptrans
 values are not corrected for the kinetic 

efficiency (E) at which hUNG excises uracil once a site is encountered (30).  Thus, the 

observed Ptrans = E × Ptrans
true reports on the combined effects of crowding arising from 

viscosity, molecular crowding, as well as any changes in the excision efficiency once the 

site is reached. In the context of this work, corrections for the excision efficiency changes 

are superfluous because the excision efficiency in dilute buffer is already large (E = 0.81 ± 

0.16) (30) and the excision efficiency in the presence of 20% PEG 8K is even larger based 

on the maximum Ptrans values reported in Table S3 (E  0.92). The maximal change in 

excision efficiency is therefore only 10-11%, which is within experimental error of 

excision efficiency measurements.  Furthermore, the following site spacing studies are 

performed with a single concentration of PEG 8K, which makes the data entirely 

independent of any changes in the excision efficiency.  

Given the representative behavior of PEG polymers and the large body of useful 

polymer theory that has focused on PEG (35, 37-40), we performed all additional 

experiments using 20% PEG 8K. The use of 20% PEG 8K as the standard crowding 
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condition allowed us to further probe both viscosity and molecular crowding effects on the 

site spacing dependence of site transfer. Importantly, the relative viscosity of 20% PEG 8K 

is nearly 13-fold greater than water (29) and its larger radius of gyration as compared to 

hUNG would be expected to produce significant volume exclusion effects (29, 35). 
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Figure 4.1. Approach for measuring site transfer probabilities of hUNG and hOGG1.  

A) The search and repair pathway used by DNA glycosylases. The site transfer method has 

been modified to include a “molecular clock” where a small molecule trap [T = U for 

hUNG, or I for hOGG1] is used to block the dissociative pathway. B) Phosphorimages of 

the products derived from reaction of hUNG with a 90mer substrate (S20U) with two uracils 

20bp apart in dilute buffer and +20% PEG 8K (+/-U denotes the presence and absence of 

uracil trap). The increased transfers in the presence of 20% PEG 8K are indicated by the 

increased levels of the A and C bands (double excision fragments) as compared to AB and 

BC bands (single excision fragments). c) The transfer probabilities between uracil sites 

spaced 20 bp apart (measured at 37 C) as a function of relative viscosity (rel = 

crowder/buffer) for a series of PEG polymers. Relative viscosities of these cosolutes were 

obtained from reference (29). The Ptrans value for buffer alone is indicated by the black 

open circle. 
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Figure 4.2. Effect of molecular crowding agents on the site transfer probability (Ptrans) 

of hUNG between uracil lesions spaced 20 bp apart. (A) Overall site transfer 

probabilities (Ptrans) plotted as a function of % mass for ethylene glycol (EG) and other high 

MW PEG polymers. (B) Expansion of Figure 1c to highlight the minimal changes in Ptrans 

at low relative solution viscosities (ηrel = ηcrowd/ηbuffer). (C) Ptrans as a function of increasing 

amounts of Dextran 25K and Ficoll 70. (D) Ptrans
 for Dextran 25K, Ficoll 70 (Figure 4.3C), 

and PEG 8K (Figure 4.3A) plotted as a function of relative solution viscosity. Relative 

viscosities for were taken from the literature ((59) for Dextran 25K and (60) for Ficoll 70). 

Only the data corresponding to solution conditions equivalent to those from the literature 

sources were used. 
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Table 4.1. Solution viscosities at 25 ˚C for varying amounts of EG, 

PEG 600, PEG 3350, and PEG 8K (literature values) (29). 

 ηcrowd/ηbuffer 

% mass 

(w/v) 
EG PEG 600 PEG 3350 PEG 8K 

5 1.12 1.15 1.57 2.04 

10 1.32 1.55 2.54 3.79 

15 1.48 2.11 4.12 6.83 

20 1.68 2.77 6.60 12.37 

25 1.88 3.69 --a -- 

30 2.18 4.98 -- -- 

40 2.93 -- -- -- 

aValue could not be determined from literature source. 

 

 

  



126 

 

 Table 4.2. Ptrans, Passoc, and Pdiss for hUNG in the presence and absence of 20% PEG 8K 

 Ptrans Passoc
a Pdiss

b
 

Site 

Spacing 

(bp) 

Buffer 
20%  

PEG 8K 
Buffer 

20%  

PEG 8K 
Buffer 

20%  

PEG 8K 

5 0.60 ± 0.04 0.92 ± 0.06 0.37 ± 0.06 0.61 ± 0.09 0.23 ± 0.07 0.3 ± 0.1 

10 0.45 ± 0.04 0.91 ± 0.06 0.03 ± 0.04 0.44 ± 0.08 0.46 ± 0.04 0.5 ± 0.1 

20 0.33 ± 0.09 0.71 ± 0.06 0.02 ± 0.07 0.26 ± 0.03 0.33 ± 0.09 0.45 ± 0.07 

55 0.21 ± 0.06 0.50 ± 0.08 -0.08 ± 0.07 0.14 ± 0.06 0.21 ± 0.06 0.4 ± 0.1 

a Passoc
 was determined by performing the site transfer experiment in the presence of 10 mM 

uracil and was independent of uracil concentration in the range 10 to 20 mM.   
b Calculated from Pdiss = Ptrans - Passoc 

 

 

Table 4.3. Sodium ion activity in the 

presence and absence of 20% PEG 8K 

 
Na+ Activity  

(mV∙M-1) 

Buffer 49 ± 1 

20% PEG 8K 41 ± 3 
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4.2.2. Crowding Primarily Enhances the Associative Transfer Pathway.  

To investigate the fundamental basis for the observed polymer induced 

enhancements of Ptrans, we made site transfer measurements using substrates with site 

spacings in the range 5 to 55 bp in the presence and absence of the uracil trap so that the 

relative contributions of the associative and dissociative pathways could be determined. 

Controls established that the observed transfer probabilities in the presence of the uracil 

trap (10 or 20 mM) were independent of trap concentration even in the presence of 20% 

PEG 8K (Figure 4.2). 

In the absence of the uracil trap, the overall site transfer probabilities for all site 

spacings increased significantly in the presence of 20% PEG 8K (Figure 4.4A, compare 

red and black data, see also Table 4.2). The dramatic increases in the transfer probabilities 

also persisted in the presence of the uracil trap (Figure 4.4B), indicating that the overall 

effect was dominated by an increase in associative transfers. Strikingly, introduction of 

20% PEG 8K resulted in the persistence of associative transfers for uracils site spacings as 

large as 55 bp, whereas in dilute buffer solution the associative pathway was abolished for 

site spacings ≥10 bp (Figure 4.4B). This indicates that hUNG can traverse a larger linear 

distance on the DNA chain in the presence of crowding. In contrast, only a small increase 

in Pdiss was observed in the presence of 20% PEG 8K (Figure 4.4C).  
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Figure 4.3. Molecular trap concentration control. The amount of associative transfers 

between lesions spaced 20 bp apart measured in the presence of PEG 8K are independent 

of the trap concentration for both hUNG and hOGG1.  Both uracil and the hOGG1 inhibitor 

(I) precipitate when higher concentrations are used (30, 31).  
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Figure 4.4. Effect of 20% PEG 8K on the intramolecular site transfer probability 

between uracil sites of variable spacing. All data obtained from dilute buffer conditions 

(black) have been previously reported and are displayed here for comparison (30). a) 

Overall site transfer probabilities (Ptrans) as a function of spacing length between uracil sites 

in the presence (red) and absence (black) of PEG 8K. b) The increased contribution of the 

associative transfer pathway (Passoc) and the longer associative transfer distances in the 

presence of PEG 8K were determined using high concentrations of uracil trap (10 and 20 

mM). c) A smaller increase in the probability of dissociative transfers (Pdiss =  Ptrans - Passoc) 

was observed for all site spacings in the presence of PEG 8K. 
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4.2.3. Crowding Effects on Translocation of hOGG1. 

We were interested in whether the above effects of crowding agents on DNA 

translocation were specific to hUNG, or alternatively, might reflect a more general property 

that extended to other DNA glycosylases.  Thus we explored the general effects of 

crowding agents on the site transfer mechanism of hOGG1, a representative enzyme from 

the large HhH superfamily of DNA glycosylases that removes the oxidized base 8-

oxoguanine from DNA (41).  We previously determined the site transfer properties of 

hOGG1 using the same approach as used with hUNG, except that an 8-oxoG analogue (2-

amino-6-chloropurine) was used as the small molecule trap (Figure 4.1A) (31).  In initial 

kinetic experiments using a 31mer DNA duplex containing a single 8-oxoguanine site, we 

found that 20% PEG 8K reduced the steady-state turnover rate of hOGG1 by approximately 

8-fold as compared to buffer (Figure 4.5).  An inhibitory effect of 20% PEG 8K on the 

uracil excision rate was also observed with hUNG under kcat conditions. Similar to hUNG, 

the overall site transfer probability (Ptrans) of hOGG1 over a site spacing of 20 bp increased 

in the presence of 20% PEG 8K  (Ptrans
buffer = 0.34 ± 0.09, Ptrans

PEG8K = 0.50 ± 0.03).  

We were curious if the origin of the effect on the overall Ptrans for hOGG1 arose 

from enhanced probability of transfer by the associative pathway as seen with hUNG 

(Figure 4.6). This indeed turned out to be the case as associative transfers of hOGG1 

increased by ~3-fold in the presence of 20% PEG 8K, while change in the probability of 

dissociative transfers was negligible (Figure 4.6, Table 4.4). In control experiments we 

established that the level of associative transfers in the presence of PEG 8K was 

independent of the trap concentration (Figure 4.3). The fact that the magnitude of the 

effects on Ptrans and Passoc are not as pronounced for hOGG1 as they are for hUNG is 



131 

 

consistent with an excluded volume effect. The significance of volume exclusion can be 

estimated by the size differential between the proteins of interest and the crowding agent 

(29). Since hOGG1 is larger than hUNG we would predict reduced impact from the 

crowding agent on hOGG1 translocation. 
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Figure 4.5. Reaction rates in dilute buffer, 20% (w/v) PEG 8K, and 5% (w/v) 

hemoglobin.  A) Rates determined by quantifying the amount of product formed as a 

function upon mixing 1 nM of hOGG1 with 20 nM 32P labeled S0oG 31mer substrate 

(Buffer: 0.07 ± 0.02 min-1, 20% PEG 8K: 0.010 ± 0.008 min-1, 5% Hemoglobin: 0.16 ± 

0.06 min-1). B) Reaction rates estimated by determining the rate of total product formation 

when hUNG was reacted with 40 nM of 32P labeled S20U 90mer substrate in the site transfer 

assay (Figures 4.1 and 4.11) (Buffer: 4.7 ± 0.3 s-1, 20% PEG 8K: 0.2 ± 0.1 s-1, 5% 

Hemoglobin: 0.003 ± 0.001 s-1). Linear reaction rates were measured for both enzymes 

under conditions of less than 30% product formation. 
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Figure 4.6. Effect of 20% PEG 8K and 5% hemoglobin on the site transfer probability 

of hOGG1 over a 20 bp spacing (Ptrans). A) Phosphorimages of polyacrylamide gels 

showing the separation of the reaction products generated from excision of 8-oxoG. The 

presence or absence of the molecular trap (Figure 1) is indicated by +/- I. B) Partitioning 

of the total transfers between the associative (Passoc) and dissociative (Pdiss) pathways. Error 

bars show the SD of three replicate determinations of Ptrans. Overall Ptrans was found to 

increase when PEG 8K was added, primarily due to an increase in the relative contribution 

of the associative pathway. A similar increase in Ptrans
 was observed upon addition of 

hemoglobin, though the contributions of Passoc and Pdiss could not be discerned due to 

precipitation upon addition of the trap. 
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 Table 4.4. Effect of 20% PEG 8K on Ptrans, Passoc, and Pdiss for hOGG1 (S20oG). 

 Ptrans Passoc
a Pdiss

b
 

Site 

Spacing 

(bp) 

Buffer 
20%  

PEG 8K 
Buffer 

20%  

PEG 8K 
Buffer 

20%  

PEG 8K 

20 0.34 ± 0.09 0.50 ± 0.03 0.14 ± 0.05 0.37 ± 0.03 0.20 ± 0.11 0.13 ± 0.02 

a Passoc
 was determined by performing the site transfer experiment in the presence of 3 mM trap.   

b Calculated from Pdiss = Ptrans - Passoc 

cData has been previously published and is presented here for comparison (12). 
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4.2.4. Effects of a Protein Crowder on Translocation.  

The interesting consequences of inert polymer crowders on the translocation of both 

glycosylases begged the question if the effect can be extended to protein crowders.  After 

a survey of possible protein crowding agents, we chose hemoglobin because it is large 

enough to exclude significant volume, and it has a favorably low number of ionic groups 

that helped minimize changes in ionic strength upon addition of high hemoglobin 

concentrations. In our buffer conditions, hemoglobin was soluble up to 50 mg/ml [5% 

(w/v)] and this concentration was used in these experiments. Much like 20% PEG 8K, Ptrans 

for hOGG1 was found to increase in the presence of hemoglobin (Figure 4.6). The larger 

increase in Ptrans observed in 5% hemoglobin as compared to 20% PEG 8K bolsters our 

conclusion that the effect is not due simply to viscosity since the hemoglobin solution is 

significantly less viscous (42).  We could not partition this effect into contributions from 

associative and dissociative transfers because addition of the trap caused gross 

precipitation.  

Similar experiments using hUNG produced more complex results than with 

hOGG1. First, 50 mg/ml hemoglobin inhibited the steady-state rate of hUNG by ~1,000-

fold, while having only a negligible effect on hOGG1 (Figure 4.5). This significant effect 

on the reaction rate precluded any definitive conclusions on translocation (Figure 4.11). 

We have provided a reasonable analysis of this data in the Methods Section 4.4.11, but do 

not include it in our global conclusions about the effect of crowding on translocation due 

to the specific inhibition by hemoglobin.  The disparities in the effects of hemoglobin on 

Ptrans and the reaction rates for hUNG and hOGG1 indicate the limitations of using protein 

crowding agents, which are clearly not inert in every context and have the potential to mask 
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viscosity and molecular crowding effects by interacting with the macromolecules of 

interest.  

4.2.5. Crowding Decreases Turnover of hUNG with Large DNA Substrates.   

The similar effects of molecular crowding agents on DNA translocation by hUNG 

and hOGG1 suggests that it is a general mechanism that facilitates DNA chain surveillance 

by DNA glycosylases. Since the mechanism of facilitated diffusion depends on the 

thermodynamic and kinetic stability of intermediate states along the search and repair 

pathway (Figure 4.1), we sought to dissect the effects of PEG polymers on each 

microscopic step of the hUNG reaction as described below.  

We first investigated the effect of increased associative transfers on the steady-state 

kinetic parameters for uracil excision from short and long DNA substrates (Fig. 4.7 A-D).  

In these studies we used (i) a molecular beacon hairpin DNA construct (6U11) that 

contained six closely spaced uracils within an 11 bp stem, allowing continuous 

fluorescence measurement of the steady-state rates, (ii) a 30mer with a single central uracil 

(1U30), and (iii) a 90mer duplex with a single central uracil (1U90).  Taking advantage of 

the convenient fluorescence assay available with 6U11 (see Methods), the kcat, Km and 

kcat/Km values were determined in the presence of dilute buffer, 5 – 20% PEG 8K, and 20 

– 40% EG.  For 1U30 and 1U90, the same parameters were measured in discontinuous assays 

using 5´-32P labeled DNA using dilute buffer and a single concentration of 20% PEG 8K. 

The kinetic parameters for these substrates under the various conditions are summarized in 

Table 4.5.  
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The use of EG as a small molecule viscogen resulted in apparent inhibition of 

hUNG. This effect was manifested most prominently in a 7-fold increase in Km and an 

order-of-magnitude reduction in kcat/Km (Figure 4.7B, Table 4.5). Such inhibition by EG 

is not entirely unexpected because the related molecule glycerol has been shown to bind to 

the UNG active site in the position occupied by the uracil base and inhibit the reaction (43).  

In addition, inhibitory effects of EG have been observed previously in the context of 

protein-protein association and have been attributed to preferential hydration of proteins in 

EG solutions, resulting in slowed association rates due to increased difficulty of stripping 

away additional water molecules (24).  

The most salient findings from the kinetic studies utilizing 20% PEG 8K were that 

(i) kcat and Km values for both 6U11 and 1U30 were decreased by ~4-fold, such that the 

kcat/Km values were only slightly lower than dilute buffer, and (ii) 1U90 exhibited a much 

larger 20-fold decrease in kcat and a 10-fold decrease in kcat/Km (Figure 4.7E, Table 4.5). 

We note that the origin of the apparent inhibitory effect of PEG for the 1U90 substrate is 

almost entirely on kcat, requiring that it arises from a step involving the ES complex, but 

not the free enzyme (this is distinct from the inhibition by EG, which primarily binds to 

free E).  Further, the step must occur before or after glycosidic bond cleavage, because the 

chemical step is very rapid for all of these substrates (kcl = 240 s-1) (30).  Thus, the only 

fundamental difference between the ES complex for 1U90 and the shorter substrates is the 

presence of additional non-specific flanking DNA.   

This viewpoint led us to hypothesize that the slow turnover of 1U90 was due to 

increased time spent by hUNG in repetitive associative and dissociative transfers on non-

specific DNA prior to reaching the target site for protein molecules that associate far from 
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the uracil site, in additional to transfers along the flanking DNA after uracil excision.  We 

tested this proposal by measuring the effect of 20% PEG 8K on the kcat values for the 1U30 

and 1U90 substrates in the presence of a higher salt concentration that is known to disrupt 

non-specific DNA binding (10).  The expectation was that the kcat effect would be equalized 

under such conditions if turnover was indeed limited by the time spent in associative 

transfers on the non-specific DNA sequences within 1U90.  This expectation was confirmed 

because the effect of PEG 8K on the kcat value of 1U90 was reduced to 2-fold, which is 

indistinguishable from the 2-fold effect seen with 1U30 at high-salt (Figure 4.7F). We 

conclude that crowding increases the time spent in associative transfers on DNA and that 

these transfers can greatly reduce steady-state turnover when the DNA chains are long.  
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Figure 4.7. The effect of molecular crowding agents on the steady-state kinetics of 

hUNG acting on short and long duplex DNA substrates. (A) Effect of 5 – 20% PEG 8K 

on the initial rates of reaction of hUNG with a DNA hairpin containing an 11 bp stem 

(6U11). B) Effect of 20 – 40% EG on the initial reaction rates of hUNG with 6U11. The 

dashed blue line is the curve for dilute buffer shown in panel A. C) Effect of 20% PEG 8K 

(black) on the initial reaction rates of hUNG with a 30 mer duplex (1U30) in comparison to 

dilute buffer (blue). D) Initial rates of uracil excision from the 90 mer duplex (1U90) in the 

presence of 20% PEG 8K. E) The relative effect of 20% PEG 8K on the steady-state kinetic 

parameters (Xrel) for hUNG acting on short (6U11 and 1U30) and long (1U90) duplex DNA 

substrates. Xrel is defined as the kinetic parameter obtained in the presence of PEG 8K 

divided by that obtained in buffer alone (see Table 4.5). F) The salt-dependent change in 

kcat for 30 bp (1U30) and 90 bp (1U90) DNA substrates in the presence of molecular 

crowding agents. The effect of 20% PEG 8K on kcat for both substrates was determined in 

presence of high salt (75 mM total cation concentration, grey bars). For comparison, the 

black bars show the kcat values determined at low salt (22 mM cation concentration, see 

Figure 4.8).  The parameter kcat
rel is defined as the kcat value determined in the presence of 

20% PEG 8K divided by the value obtained using buffer alone. The kcat values for both 

1U30 and 1U90 dropped ~2-fold upon addition of 20% PEG 8K (1U30):  kcat decreased from 

2.1 ± 0.9 s-1 to 1.2 ± 0.5 s-1; 1U90 kcat decreased from 10.5 ± 0.4 s-1 to 5 ± 2 s-1.  The similar 

effect of PEG 8K for both substrates at high, but not low salt, supports the proposal that 

rate-limiting associative transfers limit turnover of the large substrate at low salt.  The 

differences in the absolute kcat values for each substrate are due to sequence dependent 

differences in the steady-state turnover rate (5, 49). 
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Figure 4.7.  
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Table 4.5. Effects of EG and PEG 8K on the steady-state kinetic parameters of hUNG 

with short and long DNA substrates.a  

DNA 

Substrate 

 kcat  

(s-1) 

Km  

(M) 

kcat/Km  

(M-1 s-1) 

6U11 

(11mer)b 

Buffer 3.0 ± 0.1 11 ± 1 x 10-9 2.8 ± 0.3 x 108 

20% EG 1.6 ± 0.1 23 ± 6 x 10-9 7 ± 2 x 107 

40% EG 1.4 ± 0.2 70 ± 30 x 10-9   2 ± 1 x 107 

5% PEG 8K 1.7 ± 0.2 4 ± 1 x 10-9 5 ± 2 x 108 

10% PEG 8K 1.39 ± 0.05 5.2 ± 0.7 x 10-9 3.2 ± 0.5 x 108 

20% PEG 8K 0.76 ± 0.06 3 ± 1 x 10-9 1.9 ± 0.8 x 108 

1U30 

(30mer) 

Bufferc 1.70 ± 0.04 120 ± 10 x 10-9 1.4 ± 0.2 x 107 

20% PEG 8K 0.39 ± 0.06 50 ± 20 x 10-9 8 ± 3 x 106 

1U90 

(90mer) 

Bufferc 4.7 ± 0.3 c 13 ± 3 x 10-9 c 4 ± 1 x 108 c 

20% PEG 8K 0.20 ± 0.02 4 ± 2 x 10-9 5 ± 3 x 107 

aThe substrates  used for the kinetic measurements have different sequences 

surrounding the uracil sites, which gives rise to modest differences in the kinetic 

parameters arising from sequence (5, 49).  Thus, the fold changes in the kinetic 

parameters resulting from the addition of PEG are the most relevant parameters to 

compare.  
bThe kinetic parameters for this substrate reflect the excision of multiple uracils in a 

single encounter event that then result in a fluorescence increase due to hairpin 

destabilization.  Thus, the rate units are oligonucleotide reacted per second rather than 

sites excised per unit time.   
cData has been previously published and is presented here for comparison (30). 
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4.2.6. Crowding has Little Effect on Non-specific DNA Binding.   

To understand the basis for the effects of crowding on Ptrans, it is useful to 

interrogate the equilibrium effects on non-specific DNA binding because translocation 

involves non-specific DNA interactions.  To explore this property, binding measurements 

were made by following the increases in fluorescence anisotropy that accompanied hUNG 

binding to a 5-fluorescein end-labeled non-specific 15mer duplex DNA (DN) (Figure 4.8).  

In contrast with the large increase in the associative transfer distances in the presence of 

20% PEG 8K (Figure 4.4B), we measured only a 2-fold increase in the non-specific 

equilibrium dissociation constant (KD
N = 1.3 ± 0.5 μM in buffer; KD

N = 2.3 ± 0.5 μM in 

20% PEG 8K).  Thus, the presence of 20% PEG 8K slightly disfavors equilibrium binding.   

The different effects of crowding on binding and site transfer indicates that the 

major ground states involved in equilibrium binding measurements do not share the same 

DNA interactions as the transient enzyme states involved in site transfer (Figure 4.1A).  

This result and interpretation is consistent with previous findings where 

methylphosphonate backbone substitutions and high salt concentrations produced large 

increases in KD
N, but did not alter Passoc (44).  Nevertheless, the KD places an important 

thermodynamic constraint on the system that must be compatible with the kinetic and Ptrans 

measurements.  
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Figure 4.8. Binding affinity (KD) of hUNG for nonspecific DNA (DN, 100 nM) in the 

presence and absence of 20% PEG 8K. The binding affinity was measured by changes 

in fluorescence anisotropy as a function of hUNG concentration. Inclusion of 20% PEG 

8K moderately increases the KD from 1.3  0.5 M to 2.3  0.5 M. 
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4.2.7. Crowding Effects on the Association Rate with a Specific Site.   

In order to determine the origin of the minimal effect of crowding agents on DNA 

binding, we first investigated how the presence 20% PEG 8K alters the association rate 

(kon) of hUNG using a specific substrate analog by stopped-flow fluorescence methods 

(Figure 4.9A). These experiments used a 19mer duplex (DS) that contained a fluorescent 

2-aminopurine (2-AP) base adjacent to a 2-fluorinated deoxyuridine nucleotide (Uβ).  The 

Uβ nucleotide is resistant to glycosidic bond cleavage during the time frame of the 

measurements (45).  Upon binding of hUNG, the uracil base of Uβ is flipped into the active 

site, unstacking the 2-AP base and leading to an increase in its fluorescence intensity at 

370 nm. Association rates were determined using second-order irreversible binding 

conditions in which equal molar amounts of hUNG and DNA (200 nM) were rapidly mixed 

in the presence of increasing amounts of PEG 8K (0 – 20%) and the kinetic traces were fit 

to eq 4.2 (see Methods).  As shown in Figure 4.9A and reported in Table 4.6, kon decreased 

markedly from 2.7 x 109 M-1s-1 to 3 x 108 M-1s-1 as the PEG 8K concentration was increased 

from 0 to 20%. The irreversibility of the association reactions was substantiated by the 

similar kon values obtained using 100 nM concentrations of enzyme and DNA using dilute 

buffer or 20% PEG 8K conditions (kon = 3.5 ± 0.7 x 109 M-1s-1 for dilute buffer; kon = 2.9 

± 0.5 x 108 M-1s-1 for 20% PEG 8K). The association rate measured in dilute buffer 

approaches the fastest known rate constants for protein-DNA association (46) and requires 

that the steps subsequent to association leading to the 2-AP fluorescence increase are 

extremely rapid (i.e. base flipping and DNA/enzyme conformational changes) (5, 45, 47).  

Thus, binding of hUNG to this DNA in the absence of crowding is essentially encounter 

controlled.  
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We were curious as to whether the association rate attenuations observed with 

various concentrations of PEG 8K could be explained solely by the increases in relative 

viscosity (ηrel) as the PEG 8K concentration was increased.  To address this question we 

plotted the relative association times at each concentration of PEG 8K (rel = crowd/buffer) 

against the relative viscosities (ηrel) (29). We also performed the same plots using 20 – 40% 

EG and 5 – 30% PEG 600 to ascertain whether polymer size played a role (Figure 4.9B).  

These plots were compared with the expected linear correlation between rel and ηrel 

predicted from the Stokes-Einstein (SE) equation (i.e. rel = ηrel, black line, Figure 4.9B).  

For EG (black squares), rel increased in a steep parabolic fashion that deviated positively 

from the SE line at concentrations higher than 20% (positive deviations indicated slower 

association than expected from viscosity alone).  This suggested inhibitory interactions of 

EG with hUNG when its concentration exceeds 20% (Figure 4.9B), which is consistent 

with what was observed in the steady-state kinetic measurements. In contrast, rel for 

increasing concentrations of PEG 600 (purple circles), showed no significant deviation 

from SE behavior, indicating ideal viscogen behavior for this moderately small PEG 

polymer.  Finally, rel for increasing concentrations of PEG 8K (green diamonds) traced a 

concave curve that deviated negatively from the SE line (faster association than would be 

expected from viscosity alone).  
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Figure 4.9. Influence of PEG 8K on association kinetics of hUNG from specific DNA 

(DS) determined by stopped-flow 2-aminopurine fluorescence measurements at 20 C. 

a) Kinetic traces for the second-order association of hUNG (200nM) with DS (200nM) in 

dilute buffer (blue) and in the presence of 5 – 20% PEG 8K. Traces are displaced along the 

y-axis for clarity. The second-order rate constants (kon) are reported in Table 4.5. b) Effect 

of relative viscosity (rel = crowder/buffer) on the relative association times (rel = 

crowder/buffer, where  = 1/kon) for hUNG and specific DNA (DS). The data points 

correspond to dilute buffer (blue) and increasing concentrations of EG (black), PEG 600 

(purple), and PEG 8K (green). Relative viscosities of these cosolutes were obtained from 

reference (29). The theoretical line shows the expected dependence of the association times 

based solely on the increases in the relative viscosity of the solutions as expected from 

Stokes-Einstein behavior. c) Effect of PEG 8K on the dissociation rate of hUNG from a 

specific site (DS).  Kinetic traces are shown in a semi-log format.  The dissociation kinetics 

follow a single exponential in buffer alone (blue), and a double exponential in the presence 

of 15% (light green) and 20% PEG 8K (dark green).  The second slower exponential that 

appears in the presence of PEG 8K is deemed a fluorescence artifact as detailed in the 

Supplemental Methods.  The kinetic parameters are reported in Table 4.6.  
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Figure 4.9.



 

 

 

 

Table 4.6. Specific DNA association rates (kon) for hUNG in the presence of a variety of molecular crowding agents compared to the predicted 

rate from the Stokes-Einstein relation (kon
SE). 

  5% 10% 15% 20% 30% 40% 

 kon
a kon

 kon
SE,b kon kon

SE kon kon
SE kon kon

SE kon kon
rel kon kon

SE 

Buffer 27 ± 7 --c -- -- -- -- -- -- -- -- -- -- -- 

EG -- -- -- -- -- -- -- 20 ± 1 18 ± 5 -- -- 4.8 ± 0.4 11 ± 3 

PEG 600 -- 25 ± 8 23 ± 6 21 ± 1 17 ± 5 -- -- 12.6 ± 0.4 10 ± 3 5.0 ± 0.4 7 ± 2 -- -- 

PEG 8K -- 31 ± 1 13 ± 3 20 ± 9 7 ± 2 8 ± 3 4 ± 1 3 ± 1 2.2 ± 0.6 -- -- -- -- 

akon has units of 108 M-1s-1.   

bkon
SE = kon

buffer/ηrel 

cNot determined. 



 

 

4.2.8. Crowding Effects on the Dissociation Rate from a Specific Site (Ds).  

The effects of 5 to 20% PEG 8K on the dissociation rate from a specific site were 

determined by following the decrease in 2-AP fluorescence that accompanies hUNG 

dissociation from DS (Figure 4.9C).  In these experiments, an excess amount of DNA 

containing a high affinity abasic site (ϕDNA) was rapidly mixed with a pre-incubated 

solution of hUNG and DS to ensure that all dissociated enzyme molecules were rapidly and 

irreversibly trapped (two ϕDNA concentrations were used to confirm this requirement). 

Although the dissociation rate in buffer alone was well fit to a single exponential decay 

with a rate constant koff = 1.01 ± 0.05 s-1 (Figure 4.9C, Table 4.7), the presence of PEG 

8K resulted in double-exponential decays of the fluorescence (Figure 4.9C).  Both the rate 

and amplitude of the first rapid phase decreased with increasing PEG 8K concentrations 

(Table 4.7).  At the final concentration of 20% PEG 8K, the rate of the fast transient (koff
PEG 

= 0.35 s-1) was ~3-fold less than the buffer only value and the amplitude was reduced by 

40%.  The rate constant for the slower phase (kslow = 0.024 s-1) was 50-fold smaller than 

the value for koff in buffer only, and the amplitude of the slower kinetic phase increased 

with PEG 8K concentration to a final value that was 44% of the total fluorescence change 

(Figure 4.9C, Table 4.7).   

We conducted a number of experimental and theoretical evaluations to determine 

if the slower kinetic transient for dissociation of Ds in the presence of PEG 8K reflected an 

important aspect of the dissociation reaction, or alternatively, was an artefactual 2-AP 

fluorescence change resulting from the presence of the PEG polymer. We excluded the 

possibility that 20% PEG 8K produced detectable 2-AP or hUNG tryptophan fluorescence 

changes by mixing the enzyme or DS DNA alone with the ΦDNA trap in the stopped flow 
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device and following the fluorescence emission at 370 nm over time.  Although this control 

did not reveal any detectable fluorescence changes, as observed when enzyme and DS were 

mixed, the 50-fold slower kinetic transient in the traces shown in Figure 4.9C is not 

compatible with many other measurements contained in this study.  One inconsistency is 

that an exceedingly slow transient in the presence of 20% PEG 8K should reduce the net 

rate of substrate dissociation and also reduce Km, yet only a 4-fold decrease in Km was 

observed for a substrate of similar length as DS (1U30).  Also, we have previously found 

that the kinetic process and conformational changes for UNG dissociation from a substrate 

analogue site and a product site are very similar, which suggests that kcat is a good surrogate 

for the product dissociation rate (6, 10, 57, 58).  Accordingly, the ~4-fold decreases in kcat 

that were observed for the short substrates 1U30 and 6U11, more closely resemble the 3-fold 

reduction in the fast kinetic phase for dissociation of DS in Figure 4.9C, and not the 50-

fold slower kinetic phase.  Finally, if the dissociation rate of DS is assumed to be equivalent 

to the fast kinetic phase, the calculated KD
S in the presence of 20% PEG 8K is koff

PEG/kon
PEG 

= 1.2 ± 0.5 x 10-9 M, which is about 3-fold greater than KD
S in the absence of PEG 8K 

(Table 4.6).  This effect of PEG 8K on specific binding is similar to the ~2-fold increase 

in KD observed for non-specific binding and the modest ~3-fold increases in the substrate 

Km values. We thus conclude that the significantly slower phase observed in the presence 

of PEG 8K does not reflect on the dissociation rate of hUNG from a specific site on DNA.  

Given that the slow kinetic transient can only reasonably be attributed to a 

fluorescence artifact unrelated to the dissociation rate of hUNG from DS,  we only consider 

the koff
PEG = 0.35 s-1 in our analyses of the effects of 20% PEG 8K on DNA binding and 

translocation.  
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Table 4.7. Rate constants and amplitudes for slow and fast kinetic phases for the biphasic 

dissociation of hUNG from specific DNA in the presence of various amounts of PEG 8K. 

 koff
buffer

 
a
 

(s-1) 

koff
PEG 

(s-1) 

kslow
 b 

(s-1) 
APEG, c Aslow, c 

KD
S d 

(nM) 

Buffer 1.01 ± 0.05 -- e -- -- -- 0.4 ± 0.1 

5% -- 0.97 ± 0.05 0.048 ± 0.009  0.84 0.16 0.31 ± 0.02 

10% -- 0.48 ± 0.01 0.022 ± 0.001 0.78 0.22 0.2 ± 0.1 

15% -- 0.57 ± 0.02 0.035 ± 0.003 0.81 0.19 0.7 ± 0.3 

20% -- 0.35 ± 0.02 0.024 ± 0.004 0.56 0.44 1.2 ± 0.5 
a koff is a single exponential in the absence of PEG 8K. 
b kslow is attributed to an artifact resulting from 2-AP fluorescence interference by PEG 8K. 
c Fractional amplitudes of each kinetic phase. 
d Calculated based on KD = koff

PEG/kon. 

e Not applicable 
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4.3. DISCUSSION 

In this study, we have developed an in vitro model that approximates some aspects 

of the crowded environment of the cell nucleus in order to explore how molecular crowding 

affects the DNA damage search and repair pathway of two human DNA glycosylases.  The 

extensive results can be largely explained by considering both the macroscopic and 

microscopic effects of large polymers on solution viscosity and excluded volume. These 

effects are depicted in Figure 4.10 for the search coordinate of hUNG, which will be the 

focus of the following discussion given that the bulk of the experiments were performed 

on this enzyme. While we have not explicitly determined the effects for each step of the 

search coordinate of hOGG1, the generality of the conclusions are inferred based on the 

similarities of the effects of molecular crowding on facilitated diffusion of both enzymes.  

Below, we interpret the results based on the sequential steps shown in Figure 4.10 (left to 

right), beginning with bulk diffusion of the enzyme to the DNA chain and ending with its 

departure to bulk solution after encountering the specific site.  For hUNG, the forward steps 

leading to excision of the uracil base are much faster than dissociation from the specific 

site (45); these steps are not shown in Figure 4.10 for clarity.   

4.3.1 Translational Diffusion from Bulk Solution to DNA.   

Addition of PEG 8K resulted in the attenuation of the bimolecular encounter rates 

compared to buffer (kon, kcat/Km), but to a lesser extent than expected from viscosity changes 

alone (Figure 4.9B). Association of hUNG with a large DNA chain requires long-range 

translation through solution, which will be slowed by macroscopic viscosity according to 

the Stokes-Einstein (SE) relation Dt = kBT/6πηR, where η is the solution viscosity and R is 

the hydrodynamic radius of the diffusing species.  However, the diffusion limit imposed 
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by viscosity can be substantially reduced when the cosolute is a crowder that occupies a 

solution volume larger than the diffusing species (8). This effect arises from the preferential 

interaction of water with the protein (and DNA) resulting in a hydration layer in which the 

crowder is excluded (termed the “depletion layer”). For PEG and other random coil 

polymers, the depletion layer scales as a function of the radius of gyration of the polymer 

(Rg) (35).  (The basis for the depletion layer sizes that we use in our qualitative analysis is 

found in Methods, Section 4.4.10.)  Accordingly, the depletion layer for PEG 8K (~4.1 

nm) is calculated as approximately 4.5-fold larger than PEG 600 (~0.9 nm) (29, 48).  The 

comparatively large depletion layer for PEG 8K indicates that when the centers of mass of 

hUNG and the DNA approach within ~11 nm of each other (see Methods, Section 4.4.10), 

binding will efficiently ensue, partially ameliorating the effects of bulk viscosity on 

translational diffusion. The significantly thinner depletion layer of PEG 600 (Figure 4.9B) 

accounts for its adherence to SE behavior because hUNG and the DNA must come in much 

closer proximity before the low viscosity depletion zone is formed.  We conclude that the 

kinetic effects of PEG 600 and PEG 8K on bimolecular encounter are accounted for by 

viscosity alone (PEG 600), or antagonistic viscosity and caging effects derived from the 

large depletion layer of PEG 8K.  

4.3.2. Associative Transfer Steps.  

A major finding was that crowding agents dramatically increased the probability 

and mean distance for associative transfers on the DNA chain (Figure 4.4B).  We propose 

that this effect derives from two distinct properties (i) the fact that associative transfers 

occur with the enzyme still located within the ion cloud of the DNA (< 2 nm) (30), and 

therefore, also within the low viscosity depletion layer, and (ii) the caging effect of 



154 

 

crowders that would tend to reflect the enzyme back to the DNA chain during dissociation 

attempts.  The increased time spent in associative transfers would allow for more 

comprehensive local damage surveillance, but at the expense of moving frequently to other 

DNA chains.  This comprises the basis for why removal of uracils embedded in a 

population of long 1U90 substrate molecules is slowed significantly in the presence of 

crowding, but smaller DNA substrates do not show the same behavior (Figure 4.7E, Table 

4.5).  Such a local search mechanism is highly appropriate for the human cell nucleus 

because glycosylases are typically abundant enzymes (>100,000 copies per nucleus) (7), 

and each enzyme only needs to scan less than 20,000 base pairs of DNA on average.  Thus, 

there is no great need for individual enzyme molecules to move through a large volume to 

affect repair. 

4.3.3. Dissociative Transfer Steps.  

In contrast with the substantial enhancement of the associative transfer pathway in 

the presence of 20% PEG 8K, only a small effect was observed for the dissociative pathway 

(Pdiss).  This result may be rationalized using the kinetic definition of Pdiss = 

[koff/(koff+kassoc)][(kreturn/(kreturn+kbulk)] (30).  The first term describes the likelihood that an 

enzyme molecule will dissociate from the DNA as opposed to proceeding through an 

associative step (the inverse of the kinetic definition of Passoc).  For the same reasons 

discussed above for associative transfers, this first term would be reduced in the presence 

of crowders. The second term describes the probability that a dissociated enzyme molecule 

will return to the DNA chain (kreturn) or become lost to bulk solution (kbulk). Since the low 

viscosity depletion layer extends to ~10 nm we expect that the majority of the dissociated 

enzyme molecules will return to the DNA chain, and we also surmise that escape to bulk 
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will be impeded in heavily crowded and viscous solutions. Thus, the second term of this 

expression is expected to increase. We propose that opposing changes in the first and 

second terms nearly cancel, resulting in the overall small change in Pdiss that is observed. 

4.3.4. Departure to Bulk Solution.  

The presence of PEG 8K resulted in similar decreases (3 to 4-fold) in the 

dissociation rates from a specific site (koff
PEG) and product sites derived from the 6U11 and 

1U30 substrates (in this comparison we use kcat as a surrogate for the dissociation rate from 

the product site) (Figure 4.9C, Table 4.7).  These common decreases are likely the result 

of increased solution viscosity and/or inefficient escape of the enzyme from the depletion 

layer around the DNA chain due to collision with the polymer cage.  Finally, the 2-3 fold 

increases in KD
NS, KD

S and the substrate Km values in the presence of 20% PEG 8K are 

accounted for by the compensatory changes in the association rate (a decrease of ~10-fold, 

Table 4.6) and dissociation rate (a decrease of ~3-fold, Table 4.7). 

4.3.5. Damage Search and Repair in the Cell Nucleus.   

This study moves us one step closer to understanding how environmental factors 

within the human cell nucleus could modulate the activity of DNA repair enzymes. While 

further in vitro experiments will be designed to even more closely mimic the nuclear 

environment, our clearest understanding of DNA search and repair will ultimately require 

measurements in human cells.  Nevertheless, the systematically studied in vitro behaviors 

will be essential for useful interpretation of the behaviors observed in the context of a 

complex nuclear milieu.    
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Figure 4.10. General schematic of how the introduction of molecular crowders can 

influence individual steps in the DNA glycosylase damage search pathway. These steps 

including the rate of diffusion to the DNA chain (kon), the lifetime of nonspecific (1/koff
N) 

and specific (1/koff
S) DNA complexes, the probability of associative and dissociative 

transfers between damage sites, and changes in the rate of product release (rate-limiting for 

kcat). Dashed lines represent the sizes of the depletion layers surrounding the protein and 

DNA where the PEG 8K polymer (orange lines), but not solvent, is excluded. For large 

DNA molecules, association is limited by translation of the protein through the crowded 

solution (kon
bulk) until their depletion layers overlap and association proceeds within a low 

viscosity environment. Also depicted are highly dynamic closed-to-open conformational 

changes in hUNG and hOGG1 that accompany nonspecific DNA binding (50, 51); only 

the open state is viewed competent for translocation (50). Release of each enzyme from the 

product requires an even larger closed-to-open transition that has been shown to be at least 

partly rate-limiting for turnover of hUNG (kopen) (45). Image is drawn to scale using a 

DNA duplex of 2 nm as a scale reference. The depletion layer size in the dilute regime for 

PEG 8K is shown (equivalent to Rg
PEG, see Methods, Section 4.4.10). 
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Figure 4.10.  
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4.4. METHODS 

4.4.1. Experimental Conditions.  

All experiments with hUNG were performed in a buffer consisting of 20 mM 

HEPES pH 7.5, 3 mM EDTA, 1 mM DTT, 0.002% Brij 35. This buffer contained a total 

of 22 mM Na+ originating from pH adjustment of the HEPES and EDTA stock solutions. 

All experiments with hOGG1 were performed in buffer containing 20 mM TrisCl pH 8.0, 

1 mM EDTA, and 1 mM DTT, 17 mM NaCl, and 0.1 mg/mL BSA. The catalytic domain 

of recombinant hUNG was purified as previously described (10) and a detailed description 

of recombinant hOGG1 purification can be found below. The specific DNA (DS) 

containing a non-hydrolyzable deoxyuridine analogue (2’-β-fluoro-2-deoxyuridine) was 

synthesized in-house as the phosphoramidite form and incorporated during solid phase 

DNA synthesis as previously described (10). All other oligonucleotides were purchased 

from either Integrated DNA Technologies or Eurofin and purified in-house by denaturing 

PAGE. All DNA sequences are listed in below. Ethylene glycol, PEG 600, PEG 1500, PEG 

3350, and PEG 8K were purchased from Sigma Chemical. To remove UV absorbing 

impurities, these reagents were purified by overnight treatment with activated carbon 

(0.1g/mL) and filtered. Dextran 25K and Ficoll 70 were purchased from GE Healthcare. 

4.4.2. hOGG1 Expression and Purification.  

E. coli BL21(DE3) Trigger Factor cells were transformed with pET30a(+) 

(Novagen) plasmid encoding wild type hOGG1 (residues 1-345) with an N-terminal His6 

tag. Expressions used 2 liters of LB containing 40 g/mL kanamycin and 34 g/mL 

chloramphenicol. Culture broth was inoculated with the transformed cells and then 
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incubated at 37 °C until OD600 = 0.6. hOGG1 expression was induced by the addition of 

0.5 mM IPTG and the culture was further incubated at 16 °C overnight.  Cells were then 

harvested by centrifugation and frozen at -80 °C overnight. Cells were resuspended in lysis 

buffer (50 mM Tris pH 7.5, 300 mM NaCl, 5% glycerol, 0.1% Triton-X 100, 1 mM EDTA, 

1 mM DTT, 0.25 mg/mL lysozyme). The supernatant was clarified by centrifugation at 

40,000g for 40 min at 4 °C) and then batch bound to 3 mL of Ni-NTA agarose (Qiagen) by 

rocking the lysate (supplemented with 5 mM imidazole) and column resin for 1 hour at 

4 °C. The resin was pelleted by centrifugation at 4,000x rpm for 10 min and the supernatant 

was discarded. The column was rocked for 10 min at 4 °C with buffer A (20 mM Tris-Cl, 

pH 7.5, 1 mM DTT, 10% glycerol) containing 5 mM imidazole to remove any 

nonspecifically bound protein. After pelleting the resin and discarding the supernatant, the 

resin was rocked for 10 min at 4 °C with buffer A containing 500 mM imidazole to remove 

all specifically bound protein. The resin was pelleted and the supernatant was diluted 3-

fold and poured directly onto a Mono-S cation exchange column (GE Healthcare) 

preequlibrated in buffer A. hOGG1 was then purified by gradient elution with buffer A 

containing 1 M NaCl. Fractions containing hOGG1 were pooled and diluted to final buffer 

conditions of 20 mM Tris-Cl pH 7.5, 300 mM NaCl, 1 mM DTT, 20% glycerol and stored 

at -80 °C. The N-terminal His6 tag was not removed given previous reporting in the 

literature that removal of the His6 tag resulted in no difference in single-turnover rate 

constants (52). Purification yielded protein that was 30−50% active, determined by single-

turnover active site titrations. All hOGG1 protein concentrations reported correspond to 

active enzyme concentrations. 
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4.4.3 Measurement of hOGG1 Reaction Rates.  

Stock solutions of hOGG1 must be diluted carefully to obtain reproducible kinetic 

measurements. Empirically we have found that the following procedure provides 

reproducible results. hOGG1 stock (6 µM) can be stored at -80 oC for at least several 

months without any observed decrease in activity. 2 L of a 6 µM hOGG1 stock in storage 

buffer (20mM Tris-HCl pH 7.5, 300mM NaCl, 20% glycerol) was diluted to 20 µL using 

buffer B (20 mM Tris-HCl pH7.5, 500 mM NaCl, 20% glycerol, and 150 µg/mL BSA).  

The resulting enzyme solution was incubated at room temperature for 5 min before 12-fold 

dilution in buffer B to give a final concentration of 50 nM.  One-microliter of this diluted 

enzyme solution was used to initiate each 50 µL reaction (final [hOGG1] = 1 nM).  hOGG1 

(1 nM) was reacted with 20 nM 32P-labeled substrate (S0oG) in buffer A at 37 ˚C.  As 

needed, the buffer contained 20% (w/v) PEG 8K or 5% (w/v) of Hemoglobin in a total 

volume of 50 µl.  At 2, 4, 6, 8, and 10 min, 6 L portions of the reaction mixtures were 

quenched with 20 L of formamide loading buffer and heated for 10 min at 95 ˚C to 

generate a 15mer cleavage product that could be visualized after electrophoretic separation 

using a 10% polyacrylamide gel containing urea. The fractional extent of reaction at each 

time was quantified by phosphorimaging of the gels and the reaction rates were determined 

from the linear slopes of plots of product concentration against time using Prism and 

averaging over three trials.  

4.4.4 Site Transfer Assay.  

Site transfer assays were performed as previously reported (30) and the general 

procedure is recapitulated here. To initiate the reactions, hUNG (20-900 pM) was mixed 
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with a dual uracil 32P labeled DNA substrate (40 nM) at 37 ˚C in the presence and absence 

of varying amounts of PEG 8K, 3350, 1500, 600, ethylene glycol, and hemoglobin. At the 

indicated times, aliquots of the reaction mixture were quenched with Uracil DNA 

Glycosylase Inhibitor protein (UGI, New England Biolabs) and the abasic sites were 

cleaved by heating in the presence of ethylene diamine. For hUNG experiments using 

hemoglobin, the same procedure was followed with the following exceptions: 1) aliquots 

were quenched in 28 uL of formamide buffer and 2) abasic sites were cleaved by heating 

at 95 ˚C for 90 minutes. For experiments using hOGG1, 1 nM of enzyme was added to 20 

nM 32P-labeled S20oG in the presence and absence of 20% PEG 8K and 5% hemoglobin. 

At the denoted times, aliquots of the reaction were quenched with 20 L formamide loading 

buffer and heated for 10 min at 95 ˚C. For both enzymes, the discrete DNA fragments 

generate by heating were resolved by electrophoresis on a denaturing 10% PAGE gel 

containing 7 M urea. All gels were dried, exposed overnight to a storage phosphor screen 

and imaged with a Typhoon 8600 phosphorimager (GE Healthcare).  All gel images were 

quantified using QuantityOne (Bio-Rad) by the box method. The time independent overall 

site transfer probability (Ptrans) was calculated using eq 4.1 by linear extrapolation of the 

observed transfer probabilities (Ptrans
obs) to zero time. For experiments involving the use of 

uracil trap for hUNG, an aliquot of a 10 mM uracil stock solution in water was dried and 

then reconstituted in reaction buffer such that the final reaction concentration was 10 mM. 

For experiments involving the use of the 2-amino-6-chloropurine trap (Sigma-Aldrich) trap 

for hOGG1, a final concentration of 3 mM was added to each reaction from a stock solution 

prepared in DMSO. Reactions were carried out in 15% DMSO to ensure solubility of the 

trap. We have shown previously that DMSO does not alter translocation of hOGG1 on 
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DNA (31). Controls established that transfer probabilities in the presence of the hUNG trap 

(10 and 20 mM) and hOGG1 trap (1 and 3 mM) were independent of trap concentration in 

the presence and absence of 20% PEG 8K. The intramolecular transfer assay was then 

performed as described above. 

𝑃trans =  
[A]0 + [C]0 − [AB]0 − [BC]0

[A]0 + [C]0 + [AB]0 + [BC]0
              (4.1) 

4.4.5. hUNG Equilibrium DNA Binding Measurements. 

Binding of hUNG to a nonspecific 5’ fluorescein-labeled 15mer DNA duplex (DN) 

was measured by fluorescence anisotropy using a SPEX Fluoromax-3 spectrofluorometer 

at 20 °C (excitation wavelength of 494 nm, emission wavelength of 518 nm).  All 

anisotropy values were corrected for the spectral G factors.  Experiments were performed 

in a back-titration mode by mixing a solution of concentrated hUNG containing 100 nM 

labeled DNA with increasing volumes of a solution containing 100 nM labeled DNA only.  

Experiments were performed with the above buffer in the absence and presence of 20% 

(w/v) PEG 8K.  After each addition, the solution was allowed to equilibrate for 4 min inside 

the fluorometer and three anisotropy measurements were averaged.  All data were fitted to 

eq 2.2 (Chapter 2) using the software Prism. 

4.4.6. hUNG Stopped Flow Measurements.  

To measure the association and dissociation rates of a specific site, a 19mer duplex 

DNA substrate (DS) was used that contained a non-hydrolyzable analog of uracil (Uβ = 2’-

β-fluoro-2-deoxyuridine) adjacent to the environmentally sensitive reporter base 2-

aminopurine (2-AP) (32).  Association rates were measured under second-order conditions 
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by mixing 400 nM DS with 400 nM of hUNG in equal volumes using an Applied 

Photophysics 720 stopped-flow device in two-syringe mode. The 2-AP fluorescent signal 

was recorded using a 360 nm long-pass emission filter and a 310 nm excitation wavelength 

at a temperature of 20 °C. Higher temperatures could not be used because the association 

rates exceeded the time resolution of the instrument. These experiments were conducted in 

the presence and absence of varying amounts (w/v) of PEG 8K (5%, 10%, 15%, 20%), 

PEG 600 (5%, 10%, 20%, 30%), and ethylene glycol (20%, 40%). 

Since the concentrations of each species were equal ([DNA]0 = [hUNG]0) and much 

greater than the KD for the interaction at a specific site (KD = 0.3 nM), the rate of association 

(kon) was determined by fitting the fluorescent traces to eq 4.2, where Y0 is the initial 

fluorescence intensity (33). 

Y(t) = Y𝑓 − Y0 (1 −
1

𝑘on[P] + 1
  ) 𝑡        (4.2) 

To measure dissociation rates, equal volumes of a pre-incubated solution of hUNG 

and DS (800 nM and 200 nM final concentrations) were rapid mixed with a trap solution 

containing 5 M of a 19mer DNA with a high affinity tetrahydrofuran abasic site mimic 

(ɸDNA).  This trap ensures irreversible trapping of the dissociated enzyme molecules.  The 

kinetic constants were the same when either 5 or 10 M of the trap was used, establishing 

that trapping was not rate-limiting. These experiments were conducted in the presence and 

absence of varying amounts (w/v) of PEG 8K (5%, 10%, 15%, 20%).  The resultant curves 

were fit to either a single or a double exponential decay equation as required (see Results, 

Section 4.2.8.). 
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4.4.7. hUNG Steady-State Kinetic Measurements.  

Equal volumes of hUNG (30 pM final concentration) and a 5’ 32P-labeled 90mer 

DNA substrate containing a single uracil (1U90) (1 nM – 32 nM final concentration) were 

mixed in the standard buffer at 37° C.  At various times, 4 L portions were removed and 

quenched with 4 L UGI (0.2 units/L). Sample treatment and gel procedures were 

identical to what is described above for the site transfer assay. The same procedure was 

used to determine the steady-state kinetic parameters of the 5 32P-labeled 30mer DNA 

substrate containing a single uracil (1U30) (10 nM – 400 nM final concentration) at 25 °C. 

Initial rates for both substrates were determined by linear regression using plots of product 

concentration against time and the software program Prism (Graphpad Software, Inc.). The 

experiments were performed in the presence and absence of 20% (w/v) PEG 8K.   

The kcat values for 1U90 and 1U30 at 75 mM total cation concentration in the 

presence and absence of 20% PEG 8K were measured essentially as described above for 

1U90.  The 75 mM total cation concentration was established by adding 53 mM KGlu to 

the standard reaction buffer and gels for separating the products derived from 5´ FAM-

labeled 1U30 were imaged with a Typhoon 8600 phosphorimager (GE Healthcare) without 

drying.  Bands were quantified by histogram volume analysis using QuantityOne (Bio-

Rad). The values for kcat were obtained by using high substrate concentrations such that the 

rate was independent of concentration. This condition was confirmed by measuring 

identical rates at two substrate concentrations in the range 0.4 to 3 M. The reported kcat 

values are an average of the rates determined at the two substrate concentrations.   
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Kinetic measurements on a short hairpin substrate containing 6 U/A pairs within 

the 11 bp stem region (6U11) were performed using a continuous fluorescence assay (34). 

Fluorescein emission (ex = 494 nm, em = 518 nm) was monitored at 10 s time intervals 

using a SPEX Fluoromax-3 spectrofluorometer at 25 °C using excitation and emission slit 

widths of 1 nm and 2 nm, respectively. The experiment was performed in the presence and 

absence of PEG 8K [5%, 10% and 20% (w/v)] and ethylene glycol [20% and 40% (w/v)]. 

4.4.8. Ion Activity Measurements.  

The sodium ion activity in the presence of 20% (w/v) PEG 8K was determined 

using a Cole-Parmer Sodium Ion Selective Electrode (ISE). Standard sodium solutions 

were made over the range of 2 – 1000 ppm in the presence and absence of 20% PEG 8K.  

An ionic strength adjuster (ISA, 4M NH4Cl / 4M NaOH) was added to each standard in a 

1:50 dilution and a magnetic stirrer was used to ensure a constant stirring rate during ion 

potential readings.  The potential was recorded for each solution using an Accument AR25 

Dual Channel pH/Ion Meter (Fischer Scientific) in mV mode.  The electrode was 

thoroughly rinsed with a 1:50 solution of ISA in distilled water and dried between readings.  

The slopes of a semi-log plot of the mV reading (linear axis) against the sodium 

concentration (log axis) were used to determine the sodium ion activity coefficients in 

aqueous solution and 20% PEG 8K. 

4.4.9. DNA Sequences.  

All DNA’s are double stranded with the exception of the hairpin 6U11. The 

complimentary strand sequences are implied based on normal Watson-Crick pairing but 

not shown below. All uracils and tetrahydrofuran residues are paired with A on the opposite 
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strand, except where indicated, and 2-aminopurine is paired with T.  8-oxoG is always 

paired with C on the complimentary strand. 

hUNG 

 DN:   5’-FAM-AGG CGC ATA GTC GCA-3’ 

DS:    5ʹ-GCG GCC AA PUβA AAA AGC GC-3ʹ   

(Uβ/G mismatch; P - 2-aminopurine) 

ɸDNA:  5ʹ-GCG GCC AAA ɸ AA AAA GCG C-3ʹ (ɸ - tetrahydrofuran; ɸ-A pair) 

Substrates for Steady-State Kinetics 

6U11 (hairpin):  5’-FAM-GCA UUA AGA AGA AG-(PEG)6-CUU CUU AAT TGC-BHQ-

3’ 

1U90 (90mer):  5ʹ - GTT ATC CGC TCA CAA TTC CAC ACA ATG CTG AGG AAT 

CGA UAG CTA AGT AGG ATG TTA GCT ATC GAT TCA TCC TCA GCA CAG TGT 

CGA GCC - 3ʹ 

1U30 (30mer): 5ʹ - CGT AGC CAC TGC AAP UAA ACA GAG CAT AGG – 3’ 

Two-Site Substrates 

S10U (90mer):  5ʹ - GGT ATC CGCT AGT CAC AAT TCC ACA CAATGC TGA GGA 

ATC GA U AG CTA AT CGA U AGC TAA GCT GAG GCATAC AGG ATC AAT TGT 

CGA GCC-3ʹ 
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S20U (90mer):  5ʹ-GGT ATC CGC TCA CAA TTC CAC ACA ATG CTG AGG AAT 

CGA U AG CTA AGT AGG ATG AAT CGA U AG CTA AGC TGA GGC ATA CAG 

TGT CGA GCC - 3ʹ  

S55U (125mer):  5’-GGT ATC CGC TCA CAA TTC CAC ACA ATG CTG AGG AAT 

CGA U AGC TAA GTG AAT CTC TCA CGT CAC ATC GTC CGC ACT AGC ACA 

TGG AAT GAA TCG A U AGC TAA GCT GAG GCA TAC AGT GTC GAG CC - 3’ 

hOGG1  

S0oG (31mer): 5′-ATG CTG AGG AAT TTC oGCT CCT TGT AGG ATG A-3′ 

S20oG (90mer):  5´-GGT ATC CGC TCA CAA TTC CAC ACA ATG CTG AGG AAT 

TTC oGCT CCT TGT AG G ATG A AT TTC oGCT CCT TGC TGA GGC ATA CAG 

TGT CGA GCC-3´ 

4.4.10 Calculation of Depletion Layer Sizes.  

In the dilute regime, polymers can be considered as non-interactive random coils 

with a defined radius of gyration (Rg
PEG) that is dependent on the molecular weight (Mw) 

of the polymer (Rg
PEG = 0.0215∙Mw

0.583) (53, 54). The depletion layer surrounding the 

protein and DNA in this regime is considered equivalent to Rg
PEG (29, 35).  As the 

concentration of polymer is increased beyond a defined crossover threshold (c*) (35), the 

solution enters the semi-dilute regime, where polymer molecules overlap and the protein 

and DNA are embedded in a noncovalent polymeric network with a certain average mesh 

size (ξ) that continues to decrease as the polymer concentration increases. The depletion 

layer around the protein and DNA also decreases with the mesh size, which is a complex 



168 

 

function of Rg
PEG (35). For simplicity, we chose to calculate the relative sizes of the 

depletion layers generated by semi-dilute solutions of PEG using the simple 

approximations for the dilute regime (4.1 nm for PEG 8K and 0.9 nm for PEG 600). Using 

this model, the depletion layers surrounding the protein and DNA would overlap when 

centers of mass of both species reach a distance equal to the combined radii of the two 

depletion layers (2 x Rg
PEG) plus the sum of the Stokes radii for the protein and DNA 

(RStokes
hUNG + RDNA, where RStokes

hUNG = 2.3 nm (55) and RDNA
 ~ 1 nm for B-form DNA).  

While it is true that the depletion layer would begin to decrease in the semi-dilute regime 

as concentration of PEG was increased, the depletion layer for PEG 8K would still be larger 

than PEG 600 in this regime. Our qualitative analysis is not dependent on whether the 

depletion layer sizes for PEG solutions are precisely known. 

4.4.11. Effect of Hemoglobin on Translocation of hUNG.  

Site transfer experiments conducted with hUNG were complicated by a dramatic 

reduction in the reaction rate of uracil excision in the presence of 5% (w/v) hemoglobin 

(see Results (Section 4.3), Figure 4.11). Despite this non-ideality, the data revealed an 

apparent directional bias for transfer of hUNG along the DNA, which can be discerned by 

the enhanced production of the double cleavage product band C relative to A (see analysis 

below and Figure 4.11).  We ensured this result was not due to hemoglobin altering the 

electrophoretic migration of the DNA through the gel by control experiments that verified 

equivalent amounts of intact, single, and double cleaved DNA fragments were observed on 

a gel when loaded in the presence and absence of hemoglobin.  

Analysis of the reaction velocities for each product band revealed a burst phase 

followed by a slower linear rate (Figure 4.11B). The amplitude of the burst phase was 
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independent of [hUNG] in the range 100 to 500 pM hUNG, indicating that it does not arise 

from slow ES turnover in the presence of hemoglobin.  The burst phase likely results from 

slow onset inhibition of hUNG upon its addition to the solution containing hemoglobin, 

resulting in a steady-state level of free E that is maintained over the remaining course of 

the reaction.  In contrast, the linear steady-state rates were about 10 times slower when 100 

pM hUNG was used as compared to 500 pM.   

We analyzed the site excision data in the presence of hemoglobin using the model 

shown in Scheme 1.  

Scheme 4.1. Site transfer mechanism consistent with hUNG behavior in the presence of 

hemoglobin.  kex is the initial rate of primary excision events at either uracil site, which 

may then result in dissociation of the enzyme before encounter of the second site, or 

alternatively, transfer to that site (ktrans).  The biased directionality of site transfers is 

indicated by arrows. Thick, green arrows indicate steps favored in the presence of 

hemoglobin and the color-coding of DNA fragments coincides with Figure 4.11.  The 

major C product fragment is boxed for clarity. 
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Although we have previously established that it is not possible to distinguish 

whether apparent directional bias in site transfer arises from differences in the excision 

rates at each site (kex) or true directionality to site transfer (56), we believe the current 

results are most reasonably interpreted in terms of transfer effects.  Our reasoning is that it 

seems highly unlikely that hemoglobin would give rise to different effects on site excision 

because both sites are identical.  Using the reasonable assumption that kex is the same for 

both sites, then the high levels of fragment C in Figure 4.11A (derived from pathways 1 

and 2 in Scheme 1) may be explained using eq 4.1, where the fragment concentrations are 

obtained by extrapolation to zero time (Fig. 4.11C).  This equation  

  Ptrans
12 = [A]o – [BC]o

[A]0
                         (4.3) 

isolates how much fragment C was generated via pathway 1 by consumption of 

fragment BC after translocation of the enzyme from site 12 (Scheme 4.1).  Although 

fragment A can also be made by secondary excision via pathway 2, this cannot be a 

significant occurrence because fragment AB is always present at a much higher level than 

BC.  The observed Ptrans
12 value of 0.56 ± 0.05 is higher than Ptrans determined in buffer 

(0.33 ± 0.09) and was unchanged in the presence of 20 mM uracil trap (Ptrans = 0.64 ± 0.02), 

suggesting that the biased transfers are associative in nature (Figure 4.11C).  Although 

these data can be interpreted in terms of biased transfer in the presence of hemoglobin, we 

concede that the data could arise from unknown complications and are therefore unable to 

definitely conclude that a protein crowder increases hUNG translocation. 
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Figure 4.11 Effect of hemoglobin on the site transfer probability (Ptrans) of hUNG 

between uracil lesions spaced 20 bp apart. A) Phosphorimages of reactions of hUNG 

with 40 nM of S20U in buffer containing 5% hemoglobin in the presence and absence of 

20 mM uracil trap. Concentrations of hUNG of 500 and 900 pM were used in the absence 

and presence of the trap. B) Velocities of formation of individual fragments derived from 

S20U in the absence of uracil trap. Y-intercepts unequal to zero indicate that a burst kinetic 

phase occurs in the presence of hemoglobin followed by a slower steady-state rate. C) 

Observed probability of biased transfers from site 1 to 2 in the presence (red) and absence 

(black) of 20 mM uracil trap. This equation makes the assumption that fragment A is only 

generated by primary excision events. This assumption is supported by the observation that 

fragment AB is always present at a high levels indicating poor transfer from site 21. 
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5.1. INTRODUCTION 

DNA is subjected to an array of chemical modifications (oxidation, deamination, 

alkylation) that result in a diversity of damaged bases. Although these DNA lesions are 

rare in the context of the billions of bases that make up the human genome, they can have 

devastating consequences if allowed to persist into S phase where their deleterious effects 

on the genetic code are made permanent by DNA replication errors1, 2. DNA base excision 

repair glycosylases are charged with the task of searching the genome for damaged bases 

and initiating repair by cleaving the glycosidic bond connecting the base and sugar3, 4. The 

efficiency of the search process relies on the fraction of the total search time that the 

enzyme remains in the vicinity of DNA as opposed to diffusing through regions of the 

nucleus that do not contain potential damage sites. The localization of glycosylases to the 

vicinity of DNA chains involves both intrinsic properties of the enzyme (such as 

electrostatic or non-electrostatic interaction energies)5, 6, 7, 8, as well as properties of the 

nuclear environment (such as molecular crowding) that tend to favor the formation of 

DNA-protein complexes9, 10, 11, 12, 13. An important property that affects the search time is 

the binding lifetime of a DNA glycosylase with undamaged DNA. This lifetime must be 

sufficiently long to permit recognition of damage when it is encountered, yet short enough 

to allow dissociation events that facilitate movement of the enzyme to other DNA chains14, 

15, 16. Thus, two fundamental questions are the nature of the energetic interactions of DNA 

glycosylases with undamaged and damaged DNA and the contribution of the nuclear 

environment to the search time and recognition mechanism. 

We have undertaken a detailed analysis of the effects of key solution parameters 

(i.e. ion concentration and crowding agents) on the specificity of human uracil DNA 
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glycosylase (hUNG) for undamaged and uracil containing DNA8, 9. This work has shown 

that the positively charged DNA binding site of hUNG promotes weak electrostatic 

interactions with undamaged DNA chains. These weak interactions facilitate two general 

types of translocation events along DNA chains: associative translocations where the 

enzyme remains within the DNA ion cloud and moves relatively short <10bp distances and 

dissociative translocations where the enzyme diffuses outside of the local ion environment 

of the DNA, but eventually rebinds to the same DNA chain17, 18, 19, 20, 21. The two 

mechanisms work cooperatively to maximize the search coverage and minimize the search 

time17, 19, 21. Although the specific complex between hUNG and uracil-containing DNA 

retains the non-specific electrostatic binding energy, specific binding is enhanced by an 

additional non-electrostatic free energy component (Gnon = -7.2 kcal/mol; at a 1 M 

standard state of [KCl]), which derives from unique interactions with the extrahelical uracil 

base in the specific complex8, 22. This additional term enhances specificity for uracil sites 

at physiological ion concentrations8.  

In addition to the above intramolecular translocation events, frequent dissociative 

transfers also provide an opportunity for the enzyme to move away from the original DNA 

chain and encounter a new DNA chain (intermolecular transfers).  In dilute aqueous 

solutions where diffusion is not hindered, these events serve to enhance global repair in a 

population of damaged DNA molecules by allowing the enzyme to move rapidly between 

DNA chains8, 17. However, in the presence of molecular crowding (i.e. 20% PEG8000), the 

rate of global repair is decreased because the crowding macromolecule increases the time 

that hUNG spends translocating along individual DNA chains, thereby hindering its rapid 

movement to other damaged DNA chains9. These key observations concerning the effect 
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of crowded environments on the efficiency of global DNA repair suggested that efficient 

repair in the crowded cell nucleus is facilitated by the high hUNG copy number in dividing 

cells (~105 molecules/nucleus)23. Thus on average, individual enzyme molecules can be 

charged with efficient scanning of fairly small 15kb DNA domains, forgoing the 

requirement for global coverage by a limited number of enzyme molecules. A remaining 

question is whether these mechanistic determinants of hUNG transpose to other DNA 

repair glycosylases? 

In humans, oxidative damage to guanine bases is primarily repaired by 8-

oxoguanine DNA glycosylase (hOGG1)24. This glycosylase is a classic member of the 

Helix-hairpin-Helix Gly/Pro/Asp (HhH-GPD) superfamily and differs significantly from 

hUNG in overall structure, charge distribution across its active site, and its propensity to 

deform both damaged and undamaged DNA25, 26. The marked differences between these 

two enzymes raised the distinct possibility that different mechanisms might be used to 

solve the search and recognition problem. To investigate this issue, we now describe a 

comparative study of the factors that govern the activity of hUNG and hOGG1 with 

damaged and undamaged DNA.  In particular, we explore the consequences of three key 

solution variables that are relevant to the cell nucleus: monovalent ions, molecular 

crowding, and high solution densities of undamaged DNA chains. 

 

5.2. RESULTS  

5.2.1. Environmental Effects on DNA Translocation by hOGG1.  

A number of environmental factors in the cell nucleus could modulate the 

efficiency by which hOGG1 uses translocation along a single DNA chain to locate 8-oxoG 
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residues. Three major factors to consider are the physiological salt composition8, molecular 

crowding by nuclear proteins9, and the local density of DNA chains. Although it is not 

possible to completely mimic the nuclear environment in a test tube, the response of 

hOGG1 and hUNG to these variables provides a useful basis set for understanding future 

measurements in cells.  

hOGG1 DNA translocation experiments were carried out with 90mer substrates 

containing two 8-oxoG residues positioned 10bp and 20bp apart on the same DNA strand 

(S10oxoG
 and S20oxoG)27. As previously described, translocation between two damage sites 

within the context of a single DNA chain can occur by either an associative or dissociative 

pathway19, 20, 21, 27, 28. The associative pathway involves movement of a loosely bound 

enzyme along the surface of the DNA and the dissociative pathway involves short-range 

dissociation and diffusion outside of the DNA ion cloud before reassociation with the DNA 

chain (Figure 5.1A). The overall probability of an enzyme molecule transferring between 

damage sites (Ptrans) is the sum of the probabilities of transferring by each pathway. The 

enzyme molecules that do not translocate successfully are lost to bulk solution after 

reacting at only a single site. As described in previous studies28, 29, Ptrans is calculated by 

determining the relative amounts of DNA product fragments that result from base excision 

at a single site only (producing fragments AB or BC), as compared both sites in a single 

encounter event (producing fragments A and C).  

The 32P end-labeled DNA fragments resulting from base excision are separated on 

a denaturing polyacrylamide gel and quantified by phosphorimaging (Figure 5.1B). 

Productive intramolecular site transfer results in more A and C products relative to the AB 

and BC products, which can be discerned by visual comparison of the band intensities at 
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low fractional extents of reaction (Figure 5.1B). We have shown that for both hOGG1 and 

hUNG, associative transfers dominate when damage sites are closely spaced (<10 bp 

separation) and that dissociative transfers dominate for spacings much greater than 20 bp27, 

28.  Therefore, to probe the effects of the cellular environment on the two modes of 

translocation, we used sequences that are primarily repaired through associative transfer 

(S10oxoG) or dissociative transfers (S20oxoG). 

We first investigated the effects of molecular crowding and the presence of bulk 

non-specific DNA using a buffer containing 30 mM K+ (Figure 5.1C, red bars). Crowding 

was introduced with the use of 20% (w/v) polyethylene glycol (PEG) 8K, which we have 

previously used to introduce excluded volume and viscosity effects on DNA translocation9.  

For the first time, we now also include two high concentrations of non-specific DNA that 

bracket the expected density of 30 bp DNA binding sites in the cell nucleus. These 

concentrations are based on an average nuclear volume of 4200 µm3 and the size of the 

human diploid genome (~7 billion bp)29 and were achieved by the addition of salmon sperm 

DNA (salDNA) at 0.10 mM and 1 mM [bp]. The possible effect of chromatinized DNA is 

best explored in the context of experiments performed in human cells.  

At a low 30 mM salt concentration introduction of the crowding agent doubled the 

translocation efficiency of hOGG1 over a site spacing of 20bp (Ptrans
buffer = 0.26 ± 0.04; 

Ptrans
PEG = 0.50 ± 0.03).  Interestingly, the same increase was not observed for a 10 bp 

spacing (Ptrans
buffer = 0.46 ± 0.01; Ptrans

PEG = 0.45 ± 0.01) (Figure 5.1C, red bars). The basis 

for this result is not known but may arise from the possibility that translocation of hOGG1 

over such short distances may be inhibited by the time it takes for the bent DNA to relax 

its normal structure, which may force the enzyme to dissociate and rebind before reaching 
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the second site27. The further addition of 0.1 and 1 mM salDNA to the crowded solution 

containing S20oxoG reduced Ptrans by about 50 and 100%, respectively. The concentration 

dependence of bulk DNA indicates that the local density of exposed DNA chains in a 

heterogeneous nuclear environment could dramatically impact the efficiency of 

translocation on single DNA chains. In contrast, addition of 1 mM salDNA to a crowded 

reaction solution containing S10oxoG only decreased Ptrans by 40% (Figure 5.1C, red bars). 

These effects suggest that crowding agents and bulk DNA chain density have reduced 

effects on short-range translocation where the associative pathway dominates. All low salt 

Ptrans values are reported in Table 5.1. 

As previously reported, increasing the salt concentration to 150 mM completely 

abolished site transfer by hOGG1 for the substrates with 10 and 20 bp site spacings (black 

and red bars in Figure 5.1C)27, but addition of the crowder nearly restored the translocation 

efficiencies to the levels observed in the absence of salt (Figure 5.1C). The beneficial 

effect of the crowder on DNA translocation in the presence of high salt is most likely 

attributed to an increased lifetime of hOGG1 on the DNA chain9. In other words, the 

crowder serves to reflect hOGG1 back to the DNA chain, whereas in its absence, hOGG1 

dissociation is made irreversible by the rapid condensation of salt ions around the enzyme 

and DNA. The addition of salDNA reduced translocation across the 10 and 20bp site 

spacings in a concentration dependent manner like that observed for the low salt conditions. 

However, residual translocation was still observed for the short 10bp spacing even at 1 mM 

salDNA (Ptrans ~ 0.15)(Figure 5.1C, black bar). We conclude that short-range transfers are 

possible under conditions of physiological concentrations of salt, crowding and dense 

concentrations of decoy DNA chains. All high salt Ptrans values are reported in Table 5.2.  
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Figure 5.1. Site transfer probabilities and kinetic activity of hOGG1 in the presence 

of variable cosolutes.  (A) The multistep search and repair pathway of DNA glycosylases 

involves associative and dissociative translocation along the DNA chain (see text). (B) 

Phosphorimages of the products derived from reaction of hOGG1 with two 90mer 

substrates (S20oxoG and S10oxoG) with two oxoG residues positioned 10 and 20bp apart. 

Solution conditions and co-solutes are indicated under each lane of the gel images. (C) The 

transfer probabilities between oxoG sites in S10oxoG and S20oxoG in the presence of variable 

cosolutes using 30 mM (red) and 150 mM salt (black) (T = 37oC). (D) Effects of salt, 20% 

PEG 8K, and salDNA on the observed rate of 8-oxoG excision from S20oxoG. 
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Table 5.1. Effect of 20% PEG 8K, and salmon sperm DNA (salDNA) on the 

site transfer probability (Ptrans) of hOGG1 at 30 mM potassium ions.  

                                                                                    30 mM K+ 

                                                           S20oxoG                                       S10oxoG 

                                                                     Ptrans                                            Ptrans 
 

Buffer 0.26 ± 0.04 0.46 ± 0.01 

100 µM salDNA 0.22 ± 0.04 0.40 ± 0.03 

1 mM salDNA 0.09 ± 0.01 0.29 ± 0.05 

20% PEG 8K 0.50 ± 0.03 0.45 ± 0.01 

20% PEG 8K + 100 µM salDNA 0.27 ± 0.05 0.31 ± 0.02 

20% PEG 8K + 1 mM salDNA 0.03 ± 0.01 0.26 ± 0.04 

 

 

 

 

 

 

Table 5.2. Effect of 20% PEG 8K, and salmon sperm DNA (salDNA) on the 

site transfer probability (Ptrans) of hOGG1 at 150 mM potassium ions. 

                                                                                    150 mM K+ 

                                                                   S20oxoG                                        S10oxoG 

                                                                     Ptrans                                            Ptrans 

Buffer -0.01 ± 0.01 0.07 ± 0.04 

100 µM salDNA 0.07 ± 0.05 0.03 ± 0.06 

1 mM salDNA -0.03 ± 0.02 -0.07 ± 0.04 

20% PEG 8K 0.26 ± 0.04 0.47 ± 0.01 

20% PEG 8K + 100 µM salDNA 0.16 ± 0.01 0.28 ± 0.03 

20% PEG 8K + 1 mM salDNA 0.01 ± 0.03 0.14 ± 0.01 
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5.2.2. Environmental Effects on Steady-State Turnover of hOGG1.  

The effect of the same environmental factors on the steady-state rate of 8-oxoG 

excision from S20oxo-G was investigated (Figure 5.1D). Under low salt conditions, the 

addition of 20% PEG8K reduced the enzyme turnover by about one-order of magnitude, 

and the further addition of salDNA had no appreciable effect on the rate (Figure 5.1D).  

The adverse effect of the crowder on steady-state turnover is attributed to (i) its trapping 

of hOGG1 on abasic product sites, from which the enzyme releases very slowly30, 31, and 

(ii) the increased time spent translocating on DNA chains, rather than cycling through the 

population of DNA molecules by rapid 3D diffusive steps.  This leads to reduced turnover 

of the 8-oxoG sites in the population of DNA molecules (a similar effect has been 

previously reported with hUNG)9.  

The addition of 150 mM salt had little effect on the rate of hOGG1 turnover as 

compared to low salt, regardless of the presence of crowder or bulk DNA (compare red 

and black bars in Figure 5.1D)(Table 5.3, Figure 5.2).  This finding indicates that the rate-

limiting step leading to product release is salt-independent. We hypothesize that the overall 

rate-limiting step for turnover involves resolution of the covalent Schiff base linkage 

between hOGG1 and the abasic sugar product or a slow conformational change prior to 

enzyme release from the product32.  Neither of these steps would be expected to be strongly 

dependent on bulk salt concentration. 
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Figure 5.2. Example gels of hOGG1 reacting with S20oxoG under various solution 

conditions. All experiments contained 20 nM DNA and a hUNG concentration that 

ranged from 1 nM – 40 nM. Gel bands were quantified as a function of time to determine 

Ptrans
 and turnover rate. 
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Table 5.3.  Reaction rates (kobs) with S20oxoG in the presence of salt, 20% PEG 8K, and salmon 

sperm DNA (salDNA) for hOGG1. 

                                                S20oxoG 

                                                                    30mM K+                             150 mM K+ 

                                                                   kobs (min-1)                                              kobs (min-1) 

Buffer 0.020 ± 0.005 0.11 ± 0.03 

1 mM salDNA 0.0014 ± 0.0002 0.0015 ± 0.0008 

20% PEG 8K 0.0012 ± 0.0005 0.0022 ± 0.0007 

20% PEG 8K + 1 mM salDNA 0.0016 ± 0.0008 0.0012 ± 0.0003 
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5.2.3. Environmental Effects on DNA Translocation of hUNG.   

We performed the same experiments with human uracil DNA glycosylase (hUNG) 

to determine if the effects of salt, molecular crowding, and bulk DNA density are common 

between the two enzymes. We have previously characterized hUNG with respect to the 

variables of high salt and molecular crowding8, 9, but the effects of bulk decoy DNA have 

not yet been addressed. This question is interesting because hUNG binds to non-specific 

DNA using primarily electrostatic interactions and uses non-electrostatic interactions to 

enhance its specificity for specific DNA at physiological salt concentrations8.  

The site spacings chosen for measuring DNA translocation by hUNG were five 

(S5U) and twenty base pairs (S20U) in order to satisfy the condition of testing site spacings 

where uracil excision occurred by primarily associative or dissociative transfers (Figure 

5.3A)28. The low salt condition employed 22 mM KOAc to be consistent with previous 

measurements8, 9, 28. Translocation by hUNG at low salt was greatly enhanced by the 

presence of 20% PEG 8K for both site spacings (red bars, Figure 5.3B)(Table 5.4). The 

addition 0.1 and 1 mM salDNA to the crowded solution modestly reduced Ptrans for both 

substrates. Comparing the trends in Ptrans for the 20bp spacing between hOGG1 and hUNG 

reveals similar trends with respect to the effects of the crowding agent and salDNA 

(compare red bars in Figure 5.1C and 5.3B).  

The introduction of 150 mM salt reduced or eliminated DNA translocation over the 

5 and 20bp spacings in the absence of crowding (compare red and black bars in Figure 

5.3B)(Table 5.5)8. As seen with the low salt condition, the addition of crowder to the high 

salt solution increased Ptrans
 by at least 8-fold for the S20U substrate (black bars, in Figure 

5.3B). The further introduction of salDNA to the crowded solution reduced, but did not 
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eliminate transfers over the 20bp spacing. Once again, these effects of crowder and salDNA 

broadly parallel those of hOGG1, even though the enzymes have different driving forces 

for interacting with non-specific DNA.   

Although similar effects of salt, crowding and bulk DNA were observed for the 5bp 

spacing, the translocation events were biased in the direction of site 2  1 in the presence 

of high, but not low salt (Figure 5.3B). Such an effect leads to an atypical product fragment 

distribution as seen in Figure 5.3A and described previously (see also Methods Section 

5.4.5 and Figure 5.4)9, 33.  Although we cannot ascertain the detailed basis for this effect, 

we have speculated that it arises from an asymmetric interaction of the enzyme with the 

DNA that is manifested under select conditions33.  The Ptrans
21 values that we report in 

Figure 5.3B reflect this directional bias.  
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Figure 5.3. Site transfer probabilities and kinetic activity of hUNG in the presence of 

variable cosolutes.  (A) Phosphorimages of the products derived from reaction of hUNG 

with two 90mer substrates (S5U and S20U) with two uracil residues spaced 5 (black) and 

20bp (red) apart. Solution conditions and co-solutes are indicated under each lane of the 

gel images. The Ptrans values for S5U reflect directional bias as indicated by the low 

population of the single excision AB fragment. (B) The transfer probabilities between 

uracil sites in S5U and S20U in the presence of various co-solutes at 22 (red) and 150 mM 

salt (black) (T = 37oC). The Ptrans values for S5U at 150 mM salt represent unidirectional 

site transfer from site 2 to site 1 (Ptrans
21). (C) Effects of salt, 20% PEG 8K, and salDNA 

on the observed rate of 8-oxoG excision from S20U. Ptrans and reaction rate data for 22 mM 

K+ in the presence of 20% PEG 8K has been published and is shown here for comparison9. 
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Figure 5.4. Effect of salt concentration on the site transfer probability of hUNG 

between uracil lesions spaced 5 bp apart. (A) Schematic of proposed site 21 biased 

transfer mechanism. (B) Phosphorimages of products derived from reaction of hUNG with 

40 nM of the 90mer substrate (S5U) in low salt and high salt buffer. At low salt, 

directionally unbiased chain transfer is indicated by equal amounts of single cleaved 

fragments AB and BC and equivalent (but larger) amounts of double cleaved fragments A 

and C. Unequal distribution of band intensities at high salt indicates directional transfer 

bias (see Supplemental Discussion). (C) Velocities of formation of individual fragments 

derived from S5U at high salt. Directionally biased transfers from site 1 to site 2 are 

supported by the observation that fragment BC is always present at a high levels indicating 

poor transfer from site 21. 
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Table 5.4.  Effect of salt, 20% PEG 8K, and salmon sperm DNA (salDNA) on the site 

transfer probability (Ptrans) of hUNG at 22 mM potassium ions. 

                                                                                            22 mM K+ 

                                                                        S20U                                      S5U 

                                                                         Ptrans                                                         Ptrans 

Buffer 0.36 ± 0.08 0.60 ± 0.07 

100 µM salDNA 0.47 ± 0.02 0.68 ± 0.02 

1 mM salDNA 0.41 ± 0.05 0.59 ± 0.06 

20% PEG 8K 0.71 ± 0.06a 0.92 ± 0.06a 

20% PEG 8K + 100 µM salDNA 0.39 ± 0.18 0.67 ± 0.09 

20% PEG 8K + 1 mM salDNA 0.26 ± 0.09 0.49 ± 0.08 

a Data has been previously published and is presented here for comparison. 

 

 

 

Table 5.5.  Effect of salt, 20% PEG 8K, and salmon sperm DNA (salDNA) on the site 

transfer probability (Ptrans) of hUNG at 150 mM potassium ions. 

                                                                                                150 mM K+  

                                                                            S20U                                      S5U 

 Ptrans              Ptrans
21 a 

Buffer 0.02 ± 0.01 0.13 ± 0.02 

100 µM salDNA 0.11 ± 0.03 0.09 ± 0.03 

1 mM salDNA 0.09 ± 0.03 0.07 ± 0.04 

20% PEG 8K 0.21 ± 0.02 0.29 ± 0.05 

20% PEG 8K + 100 µM salDNA 0.17 ± 0.04 0.14 ± 0.03 

20% PEG 8K + 1 mM salDNA 0.10 ± 0.05 0.03 ± 0.03 

a Ptrans
21 represents biased transfer from site 2 to site 1 and is derived from Ptrans

21 = 

([C]o
 – [AB]o)/[C]o

 . 
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5.2.4. Environmental Effects on Steady-State Turnover of hUNG.  

As with hOGG1, the effect of solution environment on the steady-state rate of uracil 

excision was determined. Under low salt conditions, the introduction of 20% PEG 8K 

caused an ~10-fold reduction in turnover of S20U (red bars, Figure 5.3C).  This reduction 

was previously attributed to the crowding agent trapping hUNG on non-specific DNA, 

thereby increasing the amount of time the enzyme spends translocating on DNA chains at 

the expense of diffusing rapidly through bulk solution to new chains9. Addition of 0.1 or 1 

mM salDNA to the crowded low salt solution resulted in turnover rates that were 

suppressed by ~105-fold relative to buffer alone (Figure 5.3C, Table 5.6, and Figure 5.5). 

This rate reduction is attributed to competitive binding of the vast excess of non-specific 

DNA sites, which is driven by electrostatic interactions with hUNG at low salt 

concentration. Remarkably, the slow turnover in the presence of salDNA is restored by a 

factor of 104 to 105 by the addition of high salt (black bars, Figure 5.3C). These substantial 

salutary effects of high salt on the steady-state turnover of hUNG in the presence of 

crowding and decoy DNA are accounted for by reduced electrostatic binding to non-

specific DNA sites and the enhanced uracil site specificity at high salt provided by the non-

electrostatic binding energy for specific sites8. 
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Figure 5.5. Example gels of hUNG reacting with S20U under various solution 

conditions. All experiments contained 40 nM DNA and a hUNG concentration that ranged 

from 20 pM – 190 nM. Gel bands were quantified as a function of time to determine Ptrans
 

and turnover rate. 
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Table 5.6.  Reaction rates (kobs) in the presence of salt, 20% PEG 8K, and salmon sperm DNA 

(salDNA) for hUNG. 

                                                                                                   S20U 

                                                                      22 mM K+                              150 mM K+ 

                                                                       kobs (min-1)                                              kobs (min-1) 

Buffer 115 ± 10 35 ± 6 

100 µM salDNA 9 ± 6 19 ± 5 

1 mM salDNA 1.8 ± 0.1 3 ± 1 

20% PEG 8K 14.9 ± 0.1 240 ± 160 

20% PEG 8K + 100 µM salDNA 2 ± 1 x 105  18 ± 6 

20% PEG 8K + 1 mM salDNA 1.1 ± 0.6 x 105 0.8 ± 0.4 
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5.3. DISCUSSION 

The general question of whether DNA glycosylases from distinct fold families use 

different energetic and kinetic mechanisms to locate rare damaged DNA bases in a densely 

crowded nuclear environment is largely unexplored.  The present study utilizes a simple in 

vitro model that consists of an inert crowding agent, physiological concentrations of 

potassium acetate and high concentrations of bystander DNA chains to mimic the nuclear 

environment. The common and unique aspects of the mechanisms utilized by hUNG and 

hOGG1 are discussed below and summarized in Figure 5.6. In Figure 5.6A, the observed 

“salt effect” (X150/XLS) is indicated for each solution condition we have explored.  The salt 

effect is defined as the value of a given measurement (KD, Ptrans or kobs) at 150 mM salt 

(X150) to the same measurement at low salt (XLS). Figure 5.6A facilitates comparison of 

the salt effect in dilute buffered solution as compared to when 20% PEG8K, 1 mM bulk 

DNA, or both are present.  Figure 5.6B presents a reasonable model for the combined 

effects of salt, crowding and bulk DNA chains on enzyme-DNA binding and chain 

translocation (see below). 

5.3.1. Salt Effects on DNA Translocation in the Absence of Crowding or Bulk DNA. 

Physiological salt concentration also diminishes the translocation efficiency (Ptrans) 

of hUNG and hOGG1 in the absence of crowding and bulk DNA chains (Figures 5.1C, 

5.3B, 5.6A). For both enzymes, Ptrans is reduced to zero for the substrates with a 10 to 20bp 

site spacing. For hUNG, the effects of salt on Ptrans can be rationalized in much the same 

way as the antagonistic effects of salt on non-specific DNA binding. That is, when hUNG 

makes a dissociative step away from the DNA and escapes the DNA ion cloud, the presence 

of high bulk salt takes away the entropic advantage of rebinding the same DNA chain.  
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Thus, more enzyme molecules are lost to bulk solution when attempting to transfer between 

the sites. However, at a shorter five base pair spacing hUNG can still transfer in the 

presence of 150 mM K+, which is attributed to the increased use of the associative pathway 

that is more salt resistant28. The antagonistic effect of salt on Ptrans of hOGG1 may also 

arise from similar entropic effects even though its non-specific DNA binding is far less 

sensitive to salt concentration than hUNG. For hOGG1, the 3 to 5-fold decrease in its non-

specific binding affinity as the salt is increased from 30 to 150 mM is apparentlysufficient 

to ablate effective translocation between sites. In addition, the relative efficiency of transfer 

of hOGG1 and hUNG between sites will be affected by the average number of microscopic 

dissociative steps that are taken by each enzyme during the transfer. In other words, each 

dissociative step introduces a probability where the enzyme may reassociate with the same 

DNA chain or escape to bulk solution. Even a relatively small salt effect on several 

dissociative steps would increase the escape probability multiplicatively, leading to a 

significant reduction in successful site transfers8, 20.   

5.3.2. Salt Effects on Turnover in the Absence of Crowding or Bulk DNA.  

A physiological concentration of salt can also increase or decrease the catalytic 

turnover of an enzyme if there are salt sensitive rate-limiting steps along the reaction 

coordinate8.  If salt sensitive binding steps are involved, an increased salt concentration 

will reduce the entropic driving force for ion release in the transition state for binding6, 8, 

and facilitate the same transition state in the reverse direction (by microscopic 

reversibility). For the turnover studies performed here in the absence of crowding or bulk 

DNA, the kinetic effects of salt are modest and reflect the net effect on the binding steps 
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and product release (see kobs, Figure 5.6A). Below we return to discuss the major effect of 

salt, which becomes profoundly important when crowding and bulk DNA are introduced. 

5.3.3. Impacts of Inert Macromolecule Crowding on the Salt Effect.   

The addition of 20% PEG8K to the aqueous buffer substantially enhances the 

translocation efficiency for both hOGG1 and hUNG (see Ptrans, Figure 5.1C and 5.3B).  

The effect is especially impactful at physiological salt concentration using the longer site 

spacing of 20bp, where Ptrans is increased from essentially zero to around 0.25-0.3 for both 

enzymes. This appears to be a general effect of crowding that derives from increased 

sequestration of the enzymes in the vicinity of the DNA chain by the polymer cage. Thus, 

the partitioning of dissociated enzyme molecules to bulk solution is disfavored, which 

dramatically attenuates the effect of high salt for both enzymes. The other effect of 

crowding is to reduce the observed rate of reaction by about 10-fold for both enzymes when 

low salt conditions are used (Figure 5.1D and 5.3C). For hUNG, we have previously 

attributed the cause of this effect to the increased time spent translocating on long (but not 

short) DNA chains before and after uracil excision9.  The increased time spent translocating 

on DNA chains reduces opportunities for rapid 3D diffusion steps, which is the most 

efficient mechanism for rapid sampling all DNA chains in the population17-21, 28, 34. For 

hUNG, the inhibitory effect of crowding on the rate is strikingly relieved when a 

physiological salt concentration is used (Figure 5.3C, see kobs Figure 5.6A). This effect is 

reasonably attributed to an increase in the dissociation frequency from both non-specific 

DNA and the product complex, which provides more opportunities for escape of the 

enzyme from the polymer cage around the DNA8, 9.  For hOGG1, the same salutary effect 

of increased ions on the rate is not observed (Figure 5.5A), which is reasonably attributed 
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to its weaker electrostatic binding component to non-specific DNA and the very slow 

nature of product release, which likely involves salt independent resolution of the covalent 

Schiff base linkage with the abasic sugar aldehyde32, 35.  

5.3.4. Bulk DNA Effects on Translocation and Turnover.  

In the absence of crowding, the general effect of a high density of bulk DNA chains 

on hOGG1 and hUNG activity is to reduce Ptrans and enzyme turnover regardless of the 

monovalent cation concentration (Figure 5.6A), which is attributed to bulk DNA trapping 

of dissociated enzymes molecules in the process of translocating between two sites and 

equilibrium competitive inhibition, respectively. Trapping of translocating enzymes by 

bulk DNA chains is entirely plausible because at a 1 mM salDNA concentration a single 

bp of salDNA would be located an average of ~10 nm from a substrate DNA molecule. 

This separation is close to the mean distance for diffusion of these enzymes from the 

substrate DNA chain during a single productive dissociative transfer step (~7 nm), 

suggesting a high probability of being captured by the DNA trap (Figure 5.6B)27, 28.  

The antagonistic effect of bulk DNA chains on Ptrans is greatly attenuated in the 

presence of crowding, regardless of the monovalent ion concentration (Figure 5.1C and 

5.3C). This effect of crowding may arise from the individual substrate and bulk DNA 

chains being sequestered in their own polymer cages (Figure 5.6B), which would tend to 

diminish trapping by bulk DNA chains near the site of a translocating enzyme independent 

of salt effects. The data also indicate that Ptrans decreases as the bulk DNA concentration is 

increased when crowding is held constant.  This effect may arise from merging of the bulk 

and substrate DNA polymer cages and the tendency of DNA chains to interact at high DNA 

concentrations and in the presence of Coulombic shielding effects provided by of high salt 
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concentrations (Figure 5.6B)36.  Thus, the combined effects of crowding and high salt may 

allow intermolecular DNA complexes to form between bulk and substrate DNA chains and 

populate the microscopic region where the enzyme is translocating. This would lead to the 

observed reduction in Ptrans (Figure 5.1C and 5.3B)37, 38.   

 The introduction of high salt results in a profound increase in the exceedingly slow 

turnover rate of hUNG under conditions of crowding and high bulk DNA concentration 

(Figure 5.6A).  No such effect of salt was observed with hOGG1 (Figure. 5.1D).  The 

beneficial kinetic effect of 150 mM salt on turnover of hUNG but not hOGG1 under these 

conditions is reasonably attributed to the larger electrostatic contribution to non-specific 

DNA binding by hUNG, the expected enhanced specificity for uracil sites under such 

conditions, and the previously reported accelerating effects of salt on the product release 

step (Chapter 3, Table 3.4). For hOGG1, the same stimulatory effect of high monovalent 

ions would not be expected because of its smaller non-electrostatic binding free energy and 

its rate-limiting product release step is not stimulated by salt ions. In summary, monovalent 

cations are required for hUNG to maintain high turnover in the presence of high 

concentrations of bulk DNA chains, whereas hOGG1 avoids this problem by avoiding 

strong electrostatic interactions with non-specific DNA. 
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Figure 5.6.  Summary of the effects of salt, molecular crowding, and bulk DNA on 

each measured thermodynamic and kinetic parameter. (A) The salt effect (X150/XLS) 

indicated for each solution condition we have explored.  This is defined as the value of a 

measurement (KD, Ptrans or kobs) at 150 mM salt (X150) divided by the value at low salt (XLS). 

This panel compares the salt effect in dilute solution as compared to when 20% PEG8K, 1 

mM bulk DNA, or both are present. Salt effects falling below the dashed line are reduced 

by high ionic strength and those above are enhanced. hUNG and hOGG1 respond 

differently to the introduction of salt with respect to non-specific DNA binding (KD
N) and 

kinetic activity in the presence of crowder and salDNA. (B) General model for the effects 

of molecular crowders (orange lines) and bulk DNA (purple bars) on DNA translocation 

at a physiological salt concentration. The image is drawn to scale using a DNA duplex of 

with a 2 nm diameter as a scale reference. Dashed lines depict the depletion layer where 

the PEG 8K polymer is excluded around the protein and DNA macromolecules (see 

Chapter 4). The depletion layer and polymer cage are very effective at enhancing DNA 

translocation by keeping dissociated enzyme molecules in the vicinity of the substrate 

DNA chain. Two effects of bulk DNA chains (dark gray) are also depicted. In the first 

scenario, the bulk DNA chain is enclosed in its own depletion layer and separated from the 

substrate DNA chain at a distance determined by the bulk DNA chain concentration.  Such 

bulk DNA chains would be hindered from trapping translocating enzyme molecules 

compared to the absence of crowding. In the second scenario, the depletion layers of the 

bulk and substrate DNA have overlapped, which is facilitated by the reduced volume of 

complexation and shielding of the repulsive phosphate charge at high salt36, 38. 
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Figure 5.6. 
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5.3.5. Glycosylase Activity in a Cellular Environment.  

It is abundantly clear that monovalent ions, molecular crowding, and high-densities 

of bulk DNA have profound effects on the activities of hUNG and hOGG1. It is also clear 

that the individual effects of these solution components, which can either enhance or 

antagonize a given activity parameter, can be significantly altered when all three 

components are present simultaneously. Remarkably, we find that the basic features of the 

damage search and repair process that have been previously determined at low salt 

concentrations or in the presence of a crowding agent only9, 27, 28, persist under conditions 

that more closely mimic the nuclear environment. These features include short-range 

associative translocations over ~10bp distances and frequent dissociative transfers that 

allow rapid 3D diffusion to new positions on the same DNA chain or to new DNA chains 

when the chain density is high. A new finding in the current work is that the caging effect 

of macromolecular crowding agents and the electrostatic effects of monovalent cations can 

act cooperatively to retain an efficient search mechanism in the presence of high 

concentrations of bulk DNA chains. Thus, the caging effect of the crowder counteracts the 

antagonistic effect of high monovalent ion concentrations on DNA translocation, and high 

monovalent ion concentrations promote dissociation of enzyme molecules from non-

specific DNA chains providing more opportunities for escape from the polymer cage. For 

hUNG, these effects lead to retention of an efficient search mechanism even in the presence 

of high concentrations of bulk DNA.  Despite the different energetic basis for the 

interaction of hOGG1 with DNA, it also shows the same general trends with respect to 

DNA translocation.  However, the exceptionally slow release of hOGG1 with its reaction 

product is exacerbated in a crowded environment under all conditions studied (Figure 
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5.1D).  This observation must be taken into the context that hOGG1 turnover has been 

shown to be greatly accelerated by the next enzyme in the base excision repair pathway, 

AP endonuclease 1 (APE1)40, 41.  Based on the expectation that crowding agents shift 

binding equilibria towards the formation of lower volume protein complexes as opposed 

to the free species12, 42, 43, we speculate that APE1-facilitated release of hOGG1 from its 

product complex will be promoted in a crowded nuclear environment.   

 

5.4. METHODS 

5.4.1. Experimental Conditions.  

All experiments with hOGG1 were performed in buffer containing 15 mM 

potassium phosphate pH 7.5, 1 mM EDTA, and 0.1 mg/mL BSA. This buffer contained a 

total of 30 mM K+ originating from pH adjustment of potassium phosphate and EDTA. 

Increasing ionic strength measurements were made by supplementing the buffer with 

potassium acetate (KOAc). All experiments with hUNG were performed in a buffer 

consisting of 20 mM HEPES pH 7.5, 3 mM EDTA, 1 mM DTT, 0.002% Brij 35. This 

buffer contained a total of 22 mM K+ originating from pH adjustment of the HEPES and 

EDTA stock solutions.  The catalytic domain of recombinant hUNG, WT hOGG1 and the 

K249Q mutant hOGG1 were purified as previously described9. All oligonucleotides were 

purchased from either Integrated DNA Technologies or Eurofin and purified in-house by 

denaturing PAGE. PEG 8K was purchased from Sigma Chemical and was purified by 

overnight treatment with activated carbon (0.1g/mL) and filtered to remove UV absorbing 

impurities. Salmon sperm DNA (salDNA) was purchased from ThermoFisher Scientific. 
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5.4.2. Oligonucleotide Reagents 

All DNA substrates listed below were purchased from either Integrated DNA 

Technologies (www.idtdna.com) or Eurofins MWG Operon (www.operon.com).  Long 

oligos (>20 base pairs) were purified by denaturing gel electrophoresis.  For all DNA 

duplex substrates, uracil bases were paired with adenine and 8-oxoguanine bases were 

paired with cytosine. All DNAs used in this study were in the duplex form and the 

sequences are listed below (the sequences of the complimentary strands for the two-site 

substrates are not shown). 

Two-site 90mer substrates 

S10oxoG 

5’-GGT ATC TGT AG G ATG CGC TCA CAA TTC CAC ACA ATG CTG AGG 

AAT TTC oG CT CCT AT TTC oxoG CT CCT TGC TGA GGC ATA CAG TGT 

CGA GCCA-3’ 

 

S20oxoG 

5’-GGT ATC CGC TCA CAA TTC CAC ACA ATG CTG AGG AAT TTC oxoG 

CT CCT TGT AG G ATG A AT TTC oG CT CCT TGC TGA GGC ATA CAG 

TGT CGA GCC-3’ 
 

S5U 

5’-GGT ATC CGC TGA AGT AGT CAC AAT TCC ACA CAA TGC TGA GGA 

ATC GA U AGC GA U AGC TAA GCT GAG GCA TAC AGG ATC AAT TGT CGA 

GCC-3’ 

S20U 

5ʹ-GGT ATC CGC TCA CAA TTC CAC ACA ATG CTG AGG AAT CGA U AG 

CTA AGT AGG ATG AAT CGA U AG CTA AGC TGA GGC ATA CAG TGT 

CGA GCC-3ʹ 

 

 

 

http://www.idtdna.com/
http://www.operon.com/


206 

 

5.4.3. Site Transfer Assay.  

Site transfer assays were performed as previously reported and the general 

procedure is recapitulated here27, 28, 29. To initiate the reactions, hUNG (20 pM - 190 nM) 

was mixed with a dual uracil 32P labeled DNA substrate (40 nM) at 37 ˚C using the buffer 

noted above supplemented with all combinations of the following solution components: 22 

mM potassium from buffer pH adjustment, 150 mM potassium by addition of 128 mM 

KOAc, 20% PEG 8K, 100 M salmon sperm DNA (salDNA), and 1 mM salDNA. The 

190 nM concentration of hUNG was only used with buffer containing 22 mM K+, 20% 

PEG 8K, and either 100 M or 1 mM salDNA due to extreme inhibition of the enzyme in 

these solution conditions. In the presence of 0.1 or 1 mM  salDNA, most hUNG is bound 

and the free enzyme concentration is low enough to maintain,  the initial rate, single 

encounter conditions required for site transfer experiments.  At various times, aliquots of 

the reaction mixture were quenched with Uracil DNA Glycosylase Inhibitor protein (UGI, 

New England Biolabs) and the abasic sites were cleaved by heating at 95oC in the presence 

of 100 mM KOH for 30 minutes. For experiments using hOGG1, enzyme (1 to 40 nM) was 

added to 20 nM 32P-labeled S20oxoG in the presence of all solution conditions noted above. 

Concentrations of hOGG1 > 5 nM were only used in experiments containing salDNA for 

the same reasons outlined above for hUNG. Aliquots of the reaction were quenched with 

20 L formamide loading buffer and heated for 15 min at 95 ˚C. For both enzymes, the 

discrete DNA fragments generate by heating were resolved by electrophoresis on a 

denaturing 10% PAGE gel containing 7 M urea. All gels were dried, exposed overnight to 

a storage phosphor screen and imaged with a Typhoon 8600 phosphorimager (GE 

Healthcare).  All gel images were quantified using QuantityOne (Bio-Rad) by the box 
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method and background corrected as described above. The time independent overall site 

transfer probability (Ptrans) was calculated using eq 5.1 by linear extrapolation of the 

observed transfer probabilities (Ptrans
obs) to zero time.  

𝑃trans =  
[A]0 + [C]0 − [AB]0 − [BC]0

[A]0 + [C]0 + [AB]0 + [BC]0
              (5.1) 

The fractional extent of reaction at each time was quantified by phosphorimaging 

of the gels and the reaction rates for both hUNG and hOGG1 under all tested conditions 

were determined from linear slopes of plots of product concentration versus time in Prism. 

5.4.4. Turnover Rate Determination.  

The observed turnover rates of hUNG and hOGG1 under various solution 

conditions were determined using the S20U and S20oxoG substrates, respectively. For 

hUNG, the rate was calculated utilizing the same data that was used to determine Ptrans. 

The fraction reaction at each time point was calculated from the ratio of the summed 

intensities of all product bands to the summed intensity of substrate and product bands. 

The fraction reaction was plotted as a function of time and the rates (slopes) were obtained 

by linear regression fitting (<30% reaction). The slopes were converted to observed rate 

constants by multiplying by the total DNA concentration ([S20U] = 40 nM in all 

experiments) and dividing by the enzyme concentration ([hUNG] = 20 pM to 190 nM 

depending on conditions). Because of day-to-day variability in the activity of hOGG1, we 

compared the turnover rates under various conditions using a single stock of enzyme on 

the same day. The rate data were quantified as described above for hUNG  ([S20oxoG] = 20 

nM; [hOGG1] = 1 nM to 40 nM). 
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5.4.5. hUNG Transfer Bias at High Salt. The atypical distribution of product fragments 

observed for SU5 at high salt suggests biased transfer in the direction site 21 (Figure 

5.4). We previously established that an apparent transfer bias could arise from two possible 

mechanisms9, 33. The first mechanism is true directional bias and the second involves 

different uracil excision rates at each site (kex). We excluded the possibility of different 

excision rates at the two sites in earlier studies, which is the expected result since the DNA 

substrates were originally designed to have identical sequences surrounding the uracil 

sites2. For the above reasons we analyze the data in terms of biased transfer (eq 5.2 and 

Scheme S1). Equation S1 quantifies the fraction of the excision events at site 2 (producing 

fragments C and AB) that result in successful translocation and excision at site 1 (thereby 

generating fragment A by consumption of fragment AB). The zero subscripts in eq 5.2 

indicate that the fragment concentrations are extrapolated to zero time: 

  Ptrans
21 = [C]o – [AB]o

[C]0
                         (5.2) 

Equation 5.2 may be rationalized in the following way. Since [C]o = [AB]o in the 

absence of site 21 translocation, then the difference in the numerator of eq S1 is zero in 

the absence of translocation.  In the presence of translocation, [C]o > [AB]o and the 

difference [C]o - [AB]o calculates how much fragment A was produced from consumption 

of AB. The fundamental requirement in order to use eq S1 is that no fragment C can be 

produced by excision of fragment BC after translocation in the site 12 direction.  In the 

present data this pathway cannot be significant because we observe a persistent level of the 

BC fragment that always greatly exceeds the amount of fragment AB. The persistence of 

the BC fragment excludes significant translocation and excision in the direction site 12. 
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The observed Ptrans
21 values for all solution conditions tested are reported in Table 5.3 

and Figure 5.6.  

 

Scheme 5.1. Directionally biased site transfer mechanism for substrate S5U in the 

presence of 150 mM K+.  kex is the initial rate of first excision event (at either site 1 or 

site 2), which then results in either translocation or dissociation of the enzyme before 

reaching the second site (ktrans). The observed biased directionality of site transfers is 

indicated by the thick blue arrow. 
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The question of whether or not facilitate diffusion persists as a relevant mechanism 

by which glycosylases search DNA in the wake of a complex solution environment has 

been thoroughly addressed. Despite the vast differences between hUNG and hOGG1, both 

enzymes are capable of undergoing measurable amounts of facilitated diffusion in a nuclear 

environment mimicked through the use of high salt, molecular crowding agents, and bulk 

DNA. This suggests that the cell acts as an equalizer in which microscopic disparities in 

how hUNG and hOGG1 interact with damaged and undamaged DNA do not manifest into 

macroscopic changes in their search pathway. A combinatorial effect between salt and 

crowder provides a means by which the most beneficial aspects of ionic strength and 

excluded volume dominate and support a rapid search model. It is clear that the major 

effects of the solution environment are on the overall rate of global damage repair and the 

range over which facilitated diffusion is relevant. A model that involves rapid searching of 

short DNA segments and sequestering of the enzyme to sites nearby the initial target before 

eventual escape would be of great utility in the context of an actual nucleus (Figure 6.1). 

Genomic DNA is compacted in a conglomerate involving histone complexes, which limit 

the amount of exposed DNA to search enzymes. The dynamic nature of sequence exposure 

and the high density of DNA provided by the close proximity of nucleosome core particles 

creates an environment most logically searched through repeated encounter events. 

 In this thesis, I have provided comprehensive evidence detailing the individual and 

combinatorial effects of ionic strength, crowding, and solution DNA density on the ability 

of DNA glycosylases to efficiently interact with their targets. Chapter 2 and 3 provide 

evidence for who differences in the thermodynamic nature of protein-DNA complex 

stability can enhance specificity or promote a sustained lifetime on DNA regardless of the 
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sequence context. These two scenarios aide in the recognition of DNA lesions that have 

disparate behavior in the context of a duplex. The specificity of hUNG is greatly enhanced 

by physiological salt and its lifetime bound to undamaged DNA is greatly ablated. This 

effect would facilitated the rapid search required by an enzyme that recognizes lesions that 

flip out of the DNA helix at an accelerated rate (sub-millisecond) relative to their 

undamaged counterparts. Conversely, for an enzyme like hOGG1 which must distinguish 

a DNA lesion that behaves identically to undamaged DNA, a prolonged lifetime on 

undamaged DNA provides a means by which the glycosylase can interrogate the sequence 

with high fidelity. In Chapter 4, I expand our knowledge of facilitated diffusion to a 

crowded environment and perform the first analysis of molecular crowding on DNA 

glycosylase translocation. Unlike the response to ionic strength, both hUNG and hOGG1 

behave similarly in the presence of molecular crowding agents. Reduced available volume 

favors the formation of a compact complex between these enzymes and DNA, which 

promotes an enhanced bound lifetime. This long-lived state of the enzyme allows for long 

range associative transfers to occur at the expense of global repair. The crowded 

environment promotes the search of relatively small fragments of the genome by each 

glycosylase molecule rather than a large diffusive search, which is entirely plausible given 

the high copy number of these enzymes in the cell. 

 With a final study presented in Chapter 5, I show that, remarkably, the historic 

model of facilitated diffusion withstands the test of a more physiologically relevant 

environment for both hUNG and hOGG1. In fact, the combination of salt, molecular 

crowding agents, and excess DNA provides a path for efficient repair. The reduced lifetime 

of the bound enzyme and inefficient base excision by high salt is rescued with the 
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introduction of crowding agents. These inert polymers sequester the enzyme molecules to 

their initial DNA target, but the degree to which they inhibit global repair is limited by high 

salt. High ionic strength allows the crowding effect to still enhance facilitated diffusion 

without the detrimental effects on turnover. This creates an environment in which hUNG 

and hOGG1 can efficiently sample surrounding DNA sites in close spatial proximity in 

combination with short, interrogative associative slides to reach the target lesion. 

 The work I present in this thesis serves to fill a gap in our understanding of 

facilitated diffusion and builds on the previously established models of associative and 

dissociative transfers by hUNG and hOGG1. With our new knowledge of how individual 

aspects of the cellular environment modulate DNA repair both in isolation and in 

combination, we have an analytical framework for understanding cell based assays. These 

new experiments will either validate this model or provide new insight into how the cellular 

environment finely tunes DNA repair beyond what can be recapitulated in vitro. We are 

now poised to move our investigation of facilitated diffusion from test tube to the human 

cell nucleus. 
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Figure 6.1. Model of the DNA Search-and-Repair Pathways of hUNG and hOGG1 in 

the Cellular Environment. High salt impedes facilitated diffusion through an ablation of 

nonspecific binding affinity (hUNG) or excision efficiency (hOGG1) (Chapters 2 and 3). 

This results in a search mechanism dominated by uncorrelated 3D diffusion. Molecular 

crowding compacts the environment experienced by the enzyme molecules, reduces 

translational diffusion, and facilitates associative translocation along initially encountered 

substrates (Chapter 4). This results in a 1D local searching mechanism and hinders global 

repair. The combined solution environment. Provides a means for a productive local search 

induced by crowding in conjunction with a sufficient turnover rate facilitated by high salt 

to allow for efficient global repair.  



218 

 

 

 

 

  

 

 

Chapter 7: 

 

 
 

Appendix 
 

 

 

 

 

  

  

 

  



219 

 

7.1. Overview of hOGG1+APE1 investigation 

Human 8-oxoguanine DNA glycosylase (hOGG1) recognizes and excises the 

abundant oxidative lesion 8-oxoguanine (8-oxoG) when paired with cytosine in DNA. Due 

to potential mispairing with adenine during replication, efficient repair of 8-oxoG lesions 

is essential to reduce the probability of mutagenesis. Eventual data collected for this project 

will entail pre-steady state, steady state, and single turnover kinetics to show that the 

multiple-turnover excision of 8-oxoG is slowed by detrimental inhibition of hOGG1 by the 

abasic site product formed, which is only mildly alleviated under physiological salt. This 

activity can be rescued in the presence of AP endonuclease (APE1), the primary enzyme 

for processing abasic sites within DNA in human cells, with no effect on single-turnover 

excision. By monitoring the stability of the covalent complex formed between hOGG1 and 

lesioned DNA, we show that the presence of APE1 shifts the equilibrium population of 

hOGG1 toward “free enzyme” that is able to initiate additional catalytic cycles. We provide 

evidence that APE1 facilitates the turnover of hOGG1 without forming a ternary complex 

with the bound glycosylase. Despite the stimulatory effects of APE1, we find that under 

physiological conditions of high salt, crowding, and large DNA density, the presence of 

APE1 does not facilitate the translocation of hOGG1 between lesion sites. These results 

suggest a model in which efficient turnover of hOGG1 is expedited by the binding of APE1 

to the abasic product site during transient displacement of hOGG1 from the DNA, 

preventing inhibitory rebinding of the glycosylase. 

  



220 

 

7.2. Literature Review of hOGG1 interactions with APE1 

 Previous experiments between hOGG1 and APE1 reveal an enhancement of 

hOGG1 activity similar to what is investigated here in greater detail. In the presence of 75 

mM NaCl, APE1 has been shown to increase the multiple turnover rate of hOGG11. This 

is true even when an inactive mutant (D210N) of APE1 is used. An effect on hOGG1’s 

lyase activity was investigated by separating 5’ cleaved and 3’ cleaved abasic site 

fragments. APE1 is known to cleave 5’ to the abasic site, while hOGG1 initiates 3’ 

cleavage. Vidal et al claim that APE1 does not interfere with the lyase function of hOGG1, 

though their data is poorly resolved. The only conclusion I have drawn is that APE1 

efficiently competes out the lyase activity of hOGG1 and is primary source of abasic site 

cleavage when in solution1.  

 Two potential mechanisms for APE1 mediated turnover of hOGG1 have been 

proposed: (i) a kinetic model - product sequestration where APE1 binds to abasic DNA 

upon transient dissociation by hOGG1 or (ii) a structural model - APE1 actively displaces 

hOGG1 by forming a ternary complex with the bound glycosylase. Vidal et al. claim that 

APE1 facilitation of hOGG1 activity is carried out through product sequestration1. This 

was tested by pre-incubating hOGG1 with product DNA and then adding an excess of 

unlabeled substrate to trap any dissociating enzyme. This was done with and without APE1. 

The rate at which the hOGG1:DNA complex decreased was the same, which supports the 

kinetic model. Sidorenko et al. contradicted this result through the observation of a ternary 

complex formed between APE1 and hOGG1 crosslinked to abasic DNA2. This leaves the 

actual mechanism of hOGG1 stimulation by APE1 as an unresolved debate. 
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7.3. Preliminary Data 

 

Figure 7.1. hOGG1 remains tightly bound to product DNA. 20 nM of 5’ 32P-labeled 

31mer DNA (sequence is S0oxoG in Chapter 5) with 1 nM hOGG1. Fragments were 

separated on 10% denaturing PAGE. The introduction of salt minimally raises the steady-

state turnover rate of hOGG1. Fit displayed is not quantitative. 
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Figure 7.2. Reactions containing APE1 require buffer devoid of EDTA and a 

minimum of 1mM MgCl2. 20 nM of S0oxoG reacted with 1 nM hOGG1 in the presence 

and absence of 10 nM APE1 under the listed modifications of the standard reaction buffer 

used in Chapter 5 (EDTA concentration was 1mM if used). Removal of EDTA and addition 

of 1 mM MgCl2 had no effect on the reaction by hOGG1 (compare blue triangles to black 

open circles), but was essential for a maximal effect by APE1 (compare red circles to 

orange squares). Additional of MgCl2 and APE1 does not generate any background 

reaction in the absence of hOGG1 (black diamonds). Experiments without APE1 will use 

the standard reaction buffer and those with APE1 will have no EDTA and 1 mM MgCl2. 
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Figure 7.3. Addition of APE1 rescues hOGG1 regardless of ionic strength. 1 nM 

hOGG1 was spiked into a solution containing 20 nM S0oxoG pre-mixed with 100nM APE1. 

The burst height observed in the absence of APE1 disappears in the presence of APE1, 

indicating that APE1 prevents hOGG1 from remaining bound to its product site. The fits 

here are not quantitative given the large rate of reaction captured in the time course. 
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Figure 7.4. Addition of APE1 has no effect on Ptrans. Addition of 10 nM APE1 had no 

effect on the ability of hOGG1 to translocate along S20oxoG in 150mM K+ buffer containing 

either salDNA alone or in addition to 20% PEG 8K. APE1 enhances the reaction rate, but 

does not actively participate in hOGG1’s facilitated diffusion mechanism. 
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              Buffer alone (150mM K+)  +20% PEG 8K 

Figure 7.5. Example gels of hOGG1 reacting with S20oxoG with and without the 

addition of APE1. hOGG1 was spiked into a solution containing S20oxoG pre-mixed with 

APE1. Time points (min): 5, 10, 20, 30, 40, 60, 120. 
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Figure 7.6. Reaction scheme for hOGG1-DNA covalent complex trapping. Reactions 

are carried out using 5’ 32P-labeled 20 nM S0oxoG and 10 nM hOGG1 and are initiated by 

addition of an equal volume of hOGG1 for instantaneous mixing. Mixtures are incubated 

at 37oC and the covalent complex is reduced by mixing of a 6 uL aliquot with 6 uL of 200 

mM NaBH4 at various time points. Reduction is quenched by addition of an equal volume 

(12 uL) of standard SDS loading dye after 15 minutes. A 10% SDS-PAGE was pre-run at 

150 V for 25 min, samples were loaded without heating, and run on the gel at 150 V for 25 

min. Gels were dried (30 min per gel) and exposed overnight. 
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Figure 7.7. Controls to determine appropriate NaBH4 concentration and timing of 

SDS quench addition. All reactions were performed with 20 nM S0oxoG and 10 nM 

hOGG1 in 30 mM K+ buffer. 100 mM NaBH4 is sufficient for reducing all covalent 

complexes formed in solution as shown by identical amounts captured by 100 mM and 200 

mM NaBH4 on the left. The quench test on the right was performed by initiating 6 separate 

reactions and adding 100 mM NaBH4 after 20 seconds. Reactions were quenched at the 

indicated times with SDS loading dye. Test reveals that the quench should be added at least 

10 seconds after NaBH4 and quenching can be delayed for at least 15 min without an effect 

on the amount of covalent complex trapped. 
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Figure 7.8. Addition of 100 nM APE1 is sufficient for maximal effect on hOGG1. Data 

represents reaction with S0oxoG (20nM) and hOGG1 (1nM) in 30 mM K+ buffer. “100nM” 

and “200 nM” data are from denaturing PAGE and quantification of total product formation 

in the presence of 100 nM and 200 nM APE1, respectively. “100 nM CC” and “200 nM 

CC” are SDS-PAGE covalent complex trapping experiments in which the y-axis represents 

the amount of covalent complex formed at each time point in the presence of 100 nM and 

200 nM APE1, respectively. 
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Figure 7.9 Addition of APE1 reduces the lifetime of the hOGG1 covalent complex. An 

example gel on the left shows the amount of covalent complex (top band) between 10 nM 

hOGG1 and formed in the presence and absence of 100 nM APE1. On the right are the 

quantified amounts of complex. Without APE1, an equilibrium is established between free 

and trapped hOGG1, which appears impervious to salt. The trapped enzyme is rescued by 

addition APE1. 
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Figure 7.10. Effect of active and inactive APE1 on turnover and covalent complex 

lifetime. The top left panel is a recapitulation of the data in Figure 7.1 and the bottom left 

shows that data superimposed with the amount of covalent complex formed without APE1 

(Figure 7.9). There is only a minor benefit to turnover and no effect on the covalent 

complex by addition of salt. The middle panel are the same conditions with the addition of 

100 nM APE1. APE1 stimulates turnover of hOGG1 (top) and significantly reduces the 

lifetime of the covalent complex (bottom) regardless of salt concentration. The right panel 

shows the effect of inactive APE1 (no MgCl2). APE1 can still facilitate turnover, but has a 

more pronounced effect at low salt. This is most likely due to tighter nonspecific binding 

of APE1 to the abasic DNA at low salt, which more efficiently prevents hOGG1 from 

rebinding. The amount of covalent complex sustained in the presence of inactive APE1 is 

lower at low salt. 
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Figure 7.11. Covalent complex trapping using hOGG1 and pre-formed abasic DNA. 

Abasic DNA was generated by using a modified version of S0oxoG containing a U-C pair 

instead of an oxoG-C pair. 20 – 40 nM of the DNA was incubated with 250 pM hUNG at 

37oC for 40 min. This was sufficient for hUNG to cleave all of the uracil from the DNA. 

The DNA was then mixed with an equal volume of hOGG1 to generate mixed solutions 

with the final concentrations noted above. Covalent complex trapping was quenched by 

addition of SDS buffer after 15 min. Multiple trapped band are detectable, which could 

indicate lyase activity by hOGG1, but this has yet to be confirmed. 
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7.4. Generation of inducible hOGG1 cell line 

For the purpose of future in vivo investigations into facilitated diffusion of hOGG1, an 

inducible cell line was generate. The purpose of this cell line was to allow for control of 

expression of hOGG1 both in terms of when it is expressed and how much of it is 

expressed. The cell line was generated using a knock-out HAP1 cell line purchased from 

Haplogen. 

1. hOGG1 gene was ligated into the pENTR4 entry vector (SalI and BamHI sites). 

2. hOGG1 gene was transferred to the pCW57.1 destination vector using a 

homologous recombination kit. 

3. Vector was digested to confirm the presence of the hOGG1 gene. (Figure 7.12) 

Insert removed from pCW57.1 is the same size as the hOGG1 gene, so a triple 

digest was done. 

4. Lenti-virus was generated using the pCW57.1-hOGG1 vector. 

5. 7 serial dilutions of virus were used to spin infect cells. 

6. Selection was carried out for ~1 week in the presence of 1 µg/mL puromycin. The 

cells infected with the 4 highest concentrations of virus survived. 

7. Inducible expression test was successfully carried out using doxycycline (Figure 

7.13).  
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Figure 7.12. Digestion of pCW57.1 before and after homologous recombination step. 

Sequential triple digest was performed to verify presence of the hOGG1 gene. Digestion 

was performed on pCW57.1 after recombination with pENTR4-hOGG1 and before. Pst1 

was used to cleave the hOGG1 gene at two sites in order to distinguish it from the pCW57.1 

fragment that is removed by BamHI and SalI. Lanes: (1-3 are pENTR4-hOGG1) 1: +SalI, 

2: +SalI and BamHI, 3: +SalI, BamHI, and Pst1; (4-6 are pENTR4) 4: +SalI, 5: +SalI and 

BamHI, 6: +SalI, BamHI, and Pst1; 7: empty lane; 8: ladder. 
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Figure 7.13. Test induction of hOGG1 expression using doxycycline. Three cell lines 

generated from the 2nd, 3rd, and 4th highest concentrations of virus (102, 103
, 104) were 

grown up in Tet-free media. Cells were split into two flasks with and without 1 µg/mL 

doxycycline (DOX) was added to one flask. Cells were lysed after 48 hours. 7.8 µg of total 

protein was added to each lane. Samples were run on a 12% SDS-PAGE at 220V for 48 

min. After transfer to a nitrocellulose membrane, membrane was blocked overnight at 4oC. 

1:10,000 of primary antibody Rb OGG1 and 1:2,000 of secondary antibody goat polyclonal 

anti-rabbit were used. The top gel was also mixed with the tubulin primary antibody of the 

same dilution. 
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