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Abstract

In this dissertation, I develop statistical methods to address three important sci-

entific problems. A common theme behind these methods is the stitching together of

multiple data sources to address the scientific questions of interest. In the first paper

(Chapter 2), I propose a novel statistical framework to learn about the association

between a secondary outcome (e.g., obesity) and a genetic risk factor (e.g., ORMDL3

locus on Chromosome 17) from a genetic case-control study based on asthma. The

method involves the use of asthma prevalence information from a relevant sample

survey. In the second paper (Chapter 3), I develop a method to evaluate whether

there are adverse health consequences of kidney donation. To address this ques-

tion, I use data on donors from the Wellness and Health Outcomes in LivE Donors

(WHOLE-DONOR) Study and on healthy non-donors from the Atherosclerosis Risk

in Communities (ARIC) and Coronary Artery Risk Development in Young Adults

(CARDIA) studies. In the third paper (Chapter 4), I propose a covariate-adjusted

method for testing the difference between two treatment groups where the measured

outcome is a function. The proposed method utilizes information from repeated mea-
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sures of daily oxygen consumption function and scalar body composition measures

(e.g., lean mass, fat mass) on two groups of mice, one with and one without a specific

gene.

Primary Readers: Daniel O. Scharfstein, Ciprian M. Crainiceanu, Allan Massie

and Eliseo Guallar

Secondary Readers: Michael Rosenblum and Ramin Mojtabai.
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Chapter 1

Introduction

Multiple data sources are often required to address important scientific questions.

A single data source is often insufficient to estimate a target parameter of interest. A

classic example is in genetic epidemiology where interest focuses on the causal effect

of a biomarker (e.g. Vitamin D) on a disease endpoint (e.g. Multiple Sclerosis) using

the genes predictive of the biomarker as instrumental variables. A single dataset

does not usually contain information on the outcome, biomarker and genes and even

when it does the sample size is usually too low to yield precise inferences. Typically

one learns about the instrument-biomarker association from one data source and

instrument-gene association from another data source and these data sources are

married to estimate the causal effect of interest (Mokry and others , 2015; Burgess

and others , 2015). The environmental epidemiology literature also contain examples

where interest focuses on the association between an environmental exposure and

1
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health outcomes. Typically, the exposure and health information are obtained from

distinct data sources; confounding factors may even be obtained from a third data

source. For example, Dominici and others (2006) studied the association between fine

particulate air pollution and hospital admission for cardiovascular and respiratory

diseases. Health information was obtained from billing claims of Medicare enrollees,

pollution data were obtained from EPA’s Aerometric Information Retrieval Service

and weather information (confounders) were obtained from the National Climatic

Data Center on the Earth-Info CD database. Social scientists also use multiple data

sources in their research. For example, Corvalan and others (2015) discusses how to

construct bounds on the causal effect of a change in a Chilean electoral law on voter

turnout using two separate data sources: aggregate level data of voter counts and

individual level demographic data.

This dissertation is devoted to the development of statistical methods to address

three important scientific problems. The methods involve combining information from

multiple data sources to address the scientific questions of interest. The following

three sections provide a gentle introduction to these problems.

2
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1.1 Enhancing Genetic Case-Control Stud-

ies Using Sample Surveys

In a typical case-control study, individuals are ascertained on the basis of their

disease status, i.e. whether they are a case or a control. The study design is ret-

rospective in the sense that exposure information is collected retrospectively. This

design is useful for characterizing the association of an exposure of interest and the

case-control status. In a genetic case-control study, the exposure of interest is usually

a genetic variant. The disease status that determines whether an individual is a case

or a control is often called a primary phenotype. In these studies, it is common of in-

vestigators to collect a battery of additional health outcomes referred to as secondary

phenotypes. An investigator may often be interested in exploring the relationship

between a genetic variant of interest and a secondary phenotype. For example, one

may want to learn about the relationship between a gene of interest and obesity from

an asthma case-control study that also collects obesity information for each individ-

ual. Since case-control data are not a random sample from the target population, the

observed association between a genetic risk factor and a secondary phenotype may be

biased. In order to correct for this bias it is necessary to utilize external information

or assumptions. In contrast to the case-control study design, a sample survey pro-

vides representative information on the target population of interest. While existing

methods make additional assumptions which may not be plausible in a given scien-

3
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tific setting, we propose an inferential framework that combines information from a

case-control study and a sample survey from the target population to learn about the

association between a secondary phenotype and a genetic risk factor. In particular,

the sample survey helps us obtain point estimates and uncertainty of the conditional

(on covariates) prevalence of disease that determines the case-control status. We can

learn about the conditional distribution of the secondary phenotype and genetic risk

factor given the primary phenotype and covariates from the case-control study. Using

both data sources, the conditional distribution of the secondary phenotype and the

gene given covariates becomes estimable.

By way of illustration, we study the relationship between a candidate gene (i.e.,

IKZF3-ZPBP2-GSDMB-ORMDL3 locus on chromosome 17q21) and obesity and how

this relationship differs by ethnicity (i.e., Puerto Ricans vs Mexicans). We use data

from the GALA (Genes-Environments and Admixture in Latino Americans) II asthma

case-control study and the NHIS (National Health Interview Survey). Our results

show that a naive analysis using the case-control data alone does not indicate a

gene-obesity association, while the combined analysis indicates a significant reces-

sive association. Moreover, there is no statistically significant evidence in favor of a

differential association across ethnicities.
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1.2 Causal Effect Among The Exposed:

Multiple Data Sources and Censored

Outcomes

We develop an inferential framework for estimating the causal effect among “ex-

posed” subjects on a time-to-event outcome, based on multiple data sources and

censored outcome information. Our major contribution is to conceptualize a hypo-

thetical point exposure study where subjects are enrolled and allowed to select their

own exposure. Using information from two data sources (one from exposed subjects

and one from non-exposed subjects with multiple examination times), we describe a

process of manufacturing a dataset that closely mimics this hypothetical study. The

identification of the causal effect relies on a no unmeasured confounding assumption

based on covariates available at exposure selection and a non-informative censoring

assumption. Estimation proceeds by fitting separate proportional hazards regression

models for exposed and non-exposed subjects using the manufactured dataset and

using G-computation to estimate, for exposed subjects, the distributions of time-

to-event under exposure and non-exposure. Using these estimated distributions, we

compute a parsimonious measure of the causal effect of interest.

We illustrate our methodology by addressing the question of whether kidney

donors are putting themselves at increased risk of adverse health consequences. We

5
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use information available on live kidney donors derived from hospital records at the

Johns Hopkins Hospital and follow-up interviews and healthy non-donors from two

prospective cohort studies (i.e., Atherosclerosis Risk in Communities (ARIC) and

Coronary Artery Risk Development in Young Adults (CARDIA) studies). We con-

sider two separate endpoints: hypertension-free survival and diabetes-free survival.

Our analysis does not provide any significant evidence that kidney donors are putting

themselves at an increased risk for these diseases. We also perform a realistic simu-

lation study to evaluate the performance of our proposed methodology.

1.3 Testing Equality of Curves After Co-

variate Adjustment

We develop simple methodological approaches for global and local tests of the

difference between the mean of treatment and control groups when the measured

outcome is a function. Our approach utilizes information from two data sources: one

coming from subjects in the treatment group and the other coming from the subjects

in the control group. The added complexity is that for every subject we have repeated

samples for the same curve and additional covariates of interest. A key feature of our

proposed methodology is that we are working with covariate adjusted curves which

is of critical importance in many applications where the distribution of the covariates

differ between groups. We propose a permutation based approach to test for equality

6
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of the averages of two functional processes after covariate adjustment. The within

group averages are estimated by modeling the relationship of the functional outcome

on the covariate using functional regression methods and then averaging with respect

to the covariate distribution in each group. The test statistic is the L2 area under

the squared difference curve. We also test for the localized differences between the

two average curves using a nonparametric bootstrap of subjects to obtain the 95%

pointwise and joint confidence intervals for the difference (Crainiceanu and others ,

2012).

We illustrate our method by studying the differences in time varying oxygen con-

sumption between Interleukin 10tm1Cgn (IL10tm) mice and wildtype mice after ad-

justing for body composition measures. While the body weight normalized oxygen

consumption is significantly altered in the 10tm1Cgn (IL10tm) mice compared to the

wildtype mice; the difference is not significant after adjusting for the ratio of fat and

lean mass measured at baseline. This is true for both the global differences and the

localized differences. Extensive simulation studies illustrate that the proposed tests

preserve the type one errors and are highly sensitive to detecting departures from the

null assumption.

7
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1.4 Overview of Dissertation

The dissertation is organized as follows. Chapters 2-4 discuss the details of the

projects described in Sections 1.1 - 1.3 above. In each chapter, we present (i) an

overview of the scientific problem, the shortcomings of the existing statistical method-

ology to address that problem and the relevance of our contribution; (ii) a description

of the theoretical details of the development of our statistical methods; (iii) an ex-

planation of the scientific findings; and (iv) a general discussion on the scope and

limitations of the method and its applicability to problems of similar nature. Chap-

ter 5 is devoted to concluding remarks.
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Chapter 2

Enhancing Genetic Case-Control

Studies Using Sample Surveys

2.1 Introduction

Consider an unmatched case-control study in which diseased (cases) and non-

diseased (controls) individuals are each randomly sampled from a target population.

The disease of interest is considered the primary phenotype. Further, suppose the

main purpose of the study is to discover whether there is an association between

genetic factors and the primary phenotype. Towards this end, genetic information

is collected on each participant. Investigators often collect a battery of additional

clinically relevant phenotypes, referred to as secondary phenotypes. Such data are

often used to study genetic associations with secondary phenotypes.
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While disease-genotype associations (on an odds ratio scale) can be estimated

from case-control data (Prentice and Pyke, 1979), estimating the association between

a secondary phenotype and a genotype can only be done with additional information

or assumptions. In fact, nominal measures of association between the secondary

phenotype and genotypes can be biased (Lee and others , 1997). One may observe an

association between the secondary phenotype and the genotype in the case-control

sample, even if none exists in the population. On the other hand, one may observe

no association in the case-control sample, even if one exists in the population.

This issue has received attention in the literature, and several solutions have been

proposed. Nagelkerke and others (1995) and Kraft (2007) assume that either (a)

disease status is conditionally independent of the genotype given the secondary phe-

notype or (b) disease status is conditionally independent of the secondary phenotype

given the genotype. Unfortunately, these assumptions may not hold in the popula-

tion of interest. A number of methods are available when the sampling fractions for

cases and controls are known (Lee and others , 1997; Reilly and others , 2005; Jiang

and others , 2006; Richardson and others , 2007; Monsees and others , 2009; Tchet-

gen, 2014). Wang and Shete (2011), Chen and others (2013), He and others (2011),

Ghosh and others (2013) and Wei and others (2013) assume the disease prevalence is

known. One needs to be careful when assuming the prevalence is known. Specifically,

the prevalence needs to be computed from a population where the conditional distri-

bution of key risk factors given primary phenotype matches that in the case-control

10
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study. These methods also neglect the uncertainty in knowledge of prevalence. Li and

others (2010) and Wei and others (2013) considered the case where the disease is rare.

Unless the disease is rare, the likelihood-based approach of Lin and Zeng (2009) may

be unstable without additional information about prevalence. In short, unless the

disease is rare, current methods for analyzing secondary phenotype associations use

assumptions that may be false (e.g., conditional independence) or known imprecisely

(e.g., prevalence).

We address the problem by obtaining external information from a sample survey

of the target population of interest that also measures the primary phenotype. Our

inferential framework uses the point estimate and uncertainty of the disease prevalence

conditional on covariates from the sample survey. To illustrate our approach, we study

the relationship between a candidate gene (associated with asthma) and obesity, and

how this relationship differs by ethnicity. We use data from the Genes-Environments

& Admixture in Latino Asthmatics (GALA) II study, an asthma case-control study

in Latino American children, and the National Health Interview Survey (NHIS) 2010,

a national sample survey of households. The GALA II study provides information

about the conditional distribution of the genotype, obesity, and key confounders

given asthma status and ethnicity; the NHIS study provides information about the

probability of asthma given ethnicity and the key confounders. Information from

these two distinct data sources are combined to estimate standardized associations

between the gene and obesity within ethnicity strata; these are then compared across

11
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ethnicities.

2.2 Motivating Example and Data Sources

The GALA II study is the largest pediatric asthma genetic study in US Latinos.

The study enrolled approximately equal numbers of cases (children aged 8-21 years

with asthma) and controls from five urban cities in the US and Puerto Rico. The

two predominant ethnicities of US Latinos are Mexican (63%) and Puerto Rican

(9%), who have very different rates of asthma. Approximately 30% of Puerto Rican

and 12% of Mexican youth suffer from asthma (http://www.cdc.gov/asthma/nhis/

2011/table2-1.htm). These prevalences represent two extremes among major ethnic

groups in the US. The causes underlying this disparity have puzzled researchers; it is

likely that social, cultural, and genetic factors contribute (Thakur and others , 2013).

Given the disparity in asthma prevalence between Latino subgroups, GALA II was

designed to study environmental and genetic factors affecting asthma in Latinos. In

addition to genetic data, GALA II collected information on obesity, age, gender and

ethnicity.

Another growing public health concern in pediatric populations is obesity whose

incidence has been increasing steadily. Many studies have indicated that obesity in-

creases the prevalence and incidence of asthma. Both diseases may arise in childhood,

and there are reasons to believe that there are shared etiologic factors that contribute
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to both diseases (e.g., inflammation). It is also possible that one condition may ad-

versely affect the other (e.g., lung volume is reduced by obesity which leads to reduced

lung function). It is, therefore, of interest to examine to what extent common genetic

factors contribute to both diseases.

The most prominent genetic region that has been repeatedly implicated in asthma

is the IKZF3-ZPBP2-GSDMB-ORMDL3 locus on chromosome 17q21. The associa-

tion has been replicated in diverse populations from Europe, North America and Asia.

Due to strong linkage disequilibrium across the 17q21 locus, separating the contribu-

tions of the genes underlying this locus has been challenging. Nonetheless, because

of the co-occurrence of asthma and obesity, this locus is a prime candidate for being

associated with obesity susceptibility as well.

We focus on one SNP, rs12232497, which has the highest odds ratio for asthma sus-

ceptibility in the GALA II population. We examine its association with obesity, being

open to the possibility that the association may differ in different ethnic groups (i.e.,

Mexicans and Puerto Ricans). Our goal is to estimate the association between this

SNP and obesity, separately for Mexicans and Puerto Ricans, and evaluate whether

there is a differential association.

To realize this goal, we obtain external information from the NHIS-2010 (NCHS,

2011). The NHIS is conducted annually by the National Center for Health Statistics

and Centers for Disease Control and Prevention. The NHIS administers face-to-face

interviews in a nationally representative sample of households. Within each sampled
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household with children under the age of 18 years, a detailed survey was conducted on

one randomly selected child. A knowledgable adult provided proxy responses for the

selected child. Information collected included health measures such as asthma and

obesity and demographic factors such as age, gender and ethnicity. Survey weights

are included in the NHIS data files to allow for population-level inference.

2.3 Methods

Let A denote asthma status (primary phenotype of interest), for which the case-

control sample was assembled. We wish to study the association between genotype (G;

coded as 0, 1, 2 based on the number of copies of the minor allele) and the secondary

phenotype, obesity (O) within ethnicity strata (E). It is important to control for

demographic factors (X), such as age and gender. If the association between G and

O is modified by X and the distribution of X is different across E, then we may

see a differential association between G and O across strata that results solely from

differences in the distribution of X. To address this problem, we seek to estimate the

association between the genotype and obesity in a “world” in which the distribution

of age and gender is common across strata and is fixed. This is akin to the idea of

standardization in epidemiology. We assume the reference population to have uniform

age distribution between ages 8-18 years and a 1:1 gender ratio. This is a reasonable

approximation to a stable population with low levels of child mortality.

14



CHAPTER 2. ENHANCING GENETIC CASE-CONTROL STUDIES USING
SAMPLE SURVEYS

Our goal is the measure the ethnicity-specific association between O and G. In

particular, we want the ethnicity-specific joint distribution of O and G, which can be

expressed as:

Pe[O = o,G = g] =

∫
Pe[O = o,G = g|X = x]dF (x)

where Pe denotes a probability distribution conditional on E = e and F (x) denotes

the distribution of demographic factors (age and gender) in the reference population.

Note that, Pe[O = o,G = g|X = x] is not estimable from the case-control data

alone or the survey data alone. This is because the survey does not contain genotype

information, and the case-control study only allows us to learn about ethnicity-specific

joint distributions conditional on asthma and covariates i.e., Pe[O = o,G = g|A =

a,X = x] for a = 0, 1. However, we can express Pe[O = o,G = g|X = x] as:

Pe[O = o,G = g|X = x]

=
1∑

a=0

Pe[O = o,G = g|A = a,X = x]Pe[A = a|X = x]

=
1∑

a=0

Pe[O = o|G = g, A = a,X = x]Pe[G = g|A = a,X = x]︸ ︷︷ ︸
Estimable from Case-Control Study

Pe[A = a|X = x]︸ ︷︷ ︸
Estimable from Survey

Thus, by using both data sources, Pe[O = o,G = g|X = x] becomes estimable.

For inference, we posit parametric models for Pe[O = o|G = g, A = a,X = x],

Pe[G = g|A = a,X = x] and Pe[A = a|X = x]. Specifically, we posit a logistic
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regression model for obesity given genotype, asthma and covariates:

logit{Pe[O = 1|G = g, A = a,X = x]} = h(e, g, a, x; γ); (2.1)

a proportional odds model for genotype given asthma and covariates:

logit{Pe[G ≤ g|A = a,X = x]} = β0,g + β1,e + β2,ea g = 0, 1 (2.2)

and a logistic regression model for asthma given demographic factors:

logit{Pe[A = 1|X = x]} = l(e, x; δ) (2.3)

where h(e, g, a, x; γ) is a specified function of e, g, a, x and parameter vector γ, there

exists one level of e for which β1,e = 0 and l(e, x; δ) is a specified function of e,

x and parameter vector δ. In model 2.2, we assume that genotype is independent

of demographic factors (X) given asthma status; the data do not provide evidence

against this assumption. In our analysis, X is age and gender, and we set, after

model fitting,

h(e, g, a, x; γ) = γ0,e + γ1a+ γ2I(g = 1) + γ3I(g = 2) + γ4age + γ5gender +

γ6I(g = 1) · a+ γ7I(g = 2) · a+ γ8age · a+ γ9gender · a

16



CHAPTER 2. ENHANCING GENETIC CASE-CONTROL STUDIES USING
SAMPLE SURVEYS

l(e, x; δ) = δ0,e + δ2gender + δ3ns(age; 5, 11) + δ4gender · ns(age; 5, 11)

where ns(age; 5, 11) is a B-spline basis for a natural cubic spline with knots at ages

5 years and 11 years. The spline functions were used to model the non-linear depen-

dence of prevalence of asthma with age. The parameters from models 2.1, 2.2 and

2.3 can be estimated using the R functions glm, polr and survglm, respectively. In

estimating the parameters of model 2.3, survey weights (obtained from the sample

survey) are utilized. The R functions output parameter estimates γ̂, β̂ and δ̂ and

associated estimated variance-covariance matrices denoted by Σ̂γ̂, Σ̂β̂, and Σ̂δ̂, re-

spectively. The parameter estimators from these models are asymptotically normal

and asymptotically uncorrelated.

We estimate Pe[O = o,G = g] by Monte Carlo integration using

P̂e[O = o,G = g] =
1

M

M∑
m=1

P̂e[O = o,G = g|X = xm]

where M is a large number; x1, . . . , xM are independent draws from distribution F (x),

P̂e[O = o,G = g|X = x]

=
1∑

a=0

P̂e[O = o|G = g, A = a,X = x]P̂e[G = g|A = a,X = x]P̂e[A = a|X = x]

P̂e[O = o|G = g, A = a,X = x] =
exp(o× h(e, g, a, x; γ̂))

1 + exp(h(e, g, a, x; γ̂))
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P̂e[G = g|A = a,X = x] =



exp(β̂0,0+β̂1,e+β̂2,ea)

1+exp(β̂0,0+β̂1,e+β̂2,ea)
g = 0

exp(β̂0,1+β̂1,e+β̂2,ea)

1+exp(β̂0,1+β̂1,e+β̂2,ea)
− exp(β̂0,0+β̂1,e+β̂2,ea)

1+exp(β̂0,0+β̂1,e+β̂2,ea)
g = 1

1

1+exp(β̂0,1+β̂1,e+β̂2,ea)
g = 2

P̂e[A = a|X = x] =
exp(a× l(e, x; δ̂))

1 + exp(l(e, x; δ̂))

Given the categorical nature of the genotype and phenotype data, there are differ-

ent ways of expressing their association. One way is to consider ethnicity-specific odds

ratios. The three odds ratios we consider are the recessive, dominance and additive

odds ratios. The recessive and dominance odds ratios are estimated by

̂Recessive Odds Ratio =
P̂e[O = 1, G = 2]P̂e[O = 0, G = 0, 1]

P̂e[O = 1, G = 0, 1]P̂e[O = 0, G = 2]

̂Dominance Odds Ratio =
P̂e[O = 1, G = 1, 2]P̂e[O = 0, G = 0]

P̂e[O = 1, G = 0]P̂e[O = 0, G = 1, 2]

We can also estimate the ethnicity-specific additive odds ratio (exp(ηe)) from the

following model:

logitPe[O = 1|G = g] = η0,e + ηeg

by minimizing (with respect to η0,e and ηe)

L(η0,e, ηe) =
2∑
g=0

P̂e[G = g]

[
P̂e[O = 1|G = g]− eη0,e+ηeg

1 + eη0,e+ηeg

]2
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where

P̂e[G = g] =
1∑
o=0

P̂e[O = o,G = g]

P̂e[O = 1|G = g] =
P̂e[O = 1, G = g]

P̂e[G = g]

This latter estimation procedure is called weighted minimum distance estimation

(Klugman and Parsa, 1994).

Since these odds ratio estimators are smooth functions of γ̂, β̂ and δ̂, they will

also be asymptotically normal. In the Appendix (2.6.1), we present estimates of the

standard errors of these estimators. In our analysis, we construct normality-based

confidence intervals on the log scale and then exponentiate.

2.4 Results

GALA II study

There were 3757 individuals in the GALA II dataset; 1786, 1245, 105 and 621 were

classified as Puerto Rican, Mexican, Mixed Latino and Other Latino, respectively.

The age range was 8-21 years. The SNP of interest, rs12232497, has major allele T

and minor allele C. Among Puerto Ricans, 9 had missing information on the SNP of

interest and 618 had missing information on body mass index (BMI), derived from

height and weight and used to determine obesity status. Among Mexicans, these
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numbers were 1 and 171, respectively. There was no missing SNP information among

Mixed and Other Latinos. BMI was missing on 9 and 178 among Mixed Latinos and

Other Latinos, respectively. The majority of the missing obesity information was

among controls. This is because controls were not originally scheduled to be given

spirometry tests and these tests require the collection of information on height and

weight. There was differential missingness of BMI by ethnicity. This was due to the

multi-site nature of the study. Each site had different recruitment goals and ethnic

profiles. When the policy to collect height and weight among controls was instituted,

sites who recruited more Puerto Ricans and Other Latinos were further along in their

recruitment goals than sites who recruited more Mexicans and Mixed Latinos. Our

analysis uses data on patients who have completely recorded SNP and BMI, which

is 1163 Puerto Ricans (886 cases, 277 controls), 1073 Mexicans (585 cases and 488

controls), 96 Mixed Latinos (61 cases, 35 controls) and 443 Other Latinos (337 cases,

106 controls). The validity of our analysis hinges on the additional, untestable, albeit

plausible assumption, that missingness of BMI and SNP data is unrelated to obesity

status and the gene given case/control status, ethnicity, age and gender.

Table 2.1 displays various measures of the adjusted (for age and gender) associ-

ation between asthma and the genotype based on the case-control data for Puerto

Ricans and Mexicans. These results suggest that the minor allele C is associated

with a decreased risk of asthma in Puerto Ricans (additive odds ratio = 0.66 [95%

CI: 0.54, 0.82]) and Mexicans (additive odds ratio = 0.70 [95% CI: 0.57, 0.85]). The
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Table 2.1: Measures of marginal association between asthma and genotype adjusted
for age and gender based on the GALA II study.

Measure of Puerto Ricans Mexicans Interaction
G-A association Estimate (95% CI) Estimate (95% CI) Estimate (95% CI)

Dominance odds ratio 0.60 (0.45,0.79) 0.68 (0.53,0.87) 0.88 (0.61,1.28)

Recessive odds ratio 0.59 (0.37,0.95) 0.52 (0.33,0.82) 1.12 (0.59,2.16)

Additive odds ratio 0.66 (0.54,0.82) 0.70 (0.57,0.85) 0.94 (0.71,1.26)

association is not significantly different between these ethnic subgroups.

Tables 2.2 and 2.3 present the observed frequency distribution of obesity and

genotype from the case-control data for Puerto Ricans and Mexicans, respectively.

Table 2.4 presents adjusted (for age, gender and asthma status) measures of associ-

ation between obesity and the genotype for Puerto Ricans and Mexicans, based on

the case-control data. Based on this naive analysis, there is no significant association

between obesity and genotype (all confidence intervals cover 1).

Tables 2.5 and 2.6 present the results of fitting Models 2.1 and 2.2 based on the

case-control data.

NHIS study

The NHIS dataset contains information on 11,277 children in the age range 0-17

years; 167, 311, 2285, 102, 111, 489, 13, 40, 7759 were classified as Multiple Hispanic,

Puerto Rican, Mexican, Cuban/Cuban American, Dominican (Republic), Central

or South American, Other Latin American (type not specified), Other Spanish, Not
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Table 2.2: Observed frequency distribution of obesity and genotype in Puerto Ricans
from the GALA II study (percentages shown in parenthesis separately for cases and
controls).

Cases Controls
Genotype

Non-obese Obese Total Non-obese Obese Total

0 325(36.68) 123(13.88) 448(50.56) 84(30.33) 23(8.30) 107(38.63)

1 264(29.80) 111(12.53) 375(42.33) 107(38.63) 33(11.91) 140(50.54)

2 42(4.74) 21(2.37) 63(7.11) 29(10.47) 1(0.36) 30(10.83)

Total 631(71.22) 255(28.78) 886(100) 220(79.43) 57(20.57) 277(100)

Table 2.3: Observed frequency distribution of obesity and genotype in Mexicans
from the GALA II study (percentages shown in paranthesis separately for cases and
controls).

Cases Controls
Genotype

Non-obese Obese Total Non-obese Obese Total

0 175(29.91) 139(23.76) 314(53.67) 163(33.40) 58(11.89) 221(45.29)

1 152(25.98) 84(14.36) 236(40.34) 136(27.87) 79(16.19) 215(44.06)

2 17(2.91) 18(3.08) 35(5.99) 39(7.99) 13(2.66) 52(10.65)

Total 344(58.80) 241(41.20) 585(100) 338(69.26) 150(30.74) 488(100)
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Table 2.4: Measures of marginal association between obesity and genotype in the
naive analysis adjusted for age, gender and asthma based on GALA II study.

Puerto Ricans Mexicans Interaction
Measure of

G-O association
Estimate (95% CI) Estimate (95% CI) Estimate (95% CI)

Dominance odds ratio 1.05 (0.81,1.37) 0.96 (0.75,1.23) 1.10 (0.76,1.57)

Recessive odds ratio 0.82 (0.49,1.33) 0.96 (0.60,1.50) 0.85 (0.43,1.66)

Additive odds ratio 0.99 (0.81,1.22) 0.97 (0.79,1.17) 1.03 (0.77,1.37)

Table 2.5: Results from obesity model (2.1) based on GALA II study.

Covariate Estimate Std. error Z-value P
Mexican -0.77 0.33 -2.31 0.021

Mixed Latino -0.84 0.40 -2.12 0.034
Other Latino -0.81 0.35 -2.33 0.020
Puerto Rican -1.35 0.34 -4.00 < 0.0001

Asthma 0.65 0.39 1.67 0.096
Gender -0.28 0.15 -1.81 0.070

Age 0.0037 0.022 0.17 0.86
One Copy 0.18 0.16 1.11 0.270

Two Copies -0.60 0.30 -2.00 0.045
Asthma*Gender 0.013 0.18 0.07 0.95

Asthma*Age -0.0072 0.027 -0.27 0.79
Asthma*One Copy -0.31 0.19 -1.65 0.099

Asthma*Two Copies 0.78 0.36 2.17 0.030
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Table 2.6: Results from genotype model (2.2) based on GALA II study (Mexican is
reference ethnicity).

Covariate Estimate Std. Error Z-value P
Zero Copies -0.22 0.09 -2.49 0.013
One Copy 2.27 0.10 21.64 < 0.0001

Mixed Latino 0.10 0.32 0.32 0.748
Other Latino 0.20 0.21 0.98 0.328
Puerto Rican 0.22 0.14 1.55 0.121

Asthma (Mexicans) -0.38 0.12 -3.19 0.001
Asthma (Mixed Latino) -0.55 0.40 1.37 0.172
Asthma (Other Latino) -0.63 0.22 2.92 0.004
Asthma(Puerto Ricans) -0.47 0.13 3.59 0.0003

Hispanic/Spanish origin respectively. 21 children have missing information on asthma

status; 3 of them were Mexican, 1 Central or South American and 17 were not of

Hispanic/Spanish origin. Of the 21 children with missing asthma status, 4 refused

response and 17 did not know their asthma status information. Estimation of Model

2.3 made use of data on 11,256 children (1569 with asthma and 9687 without asthma)

who have complete information on asthma status. Table 2.7 presents the results of

fitting Model 2.3 using the survey weights.

Figure 2.1 shows the variation of prevalence of asthma with age for different gen-

ders in Puerto Ricans and Mexicans as explained by Model 2.3. We observe a steep

increase in the prevalence of asthma with age in the range 0-7 years; Puerto Ricans

have a greater rate of this increase compared to Mexicans. The relationship gets flat-

ter for older males in both ethnic groups. The younger females have a lower prevalence

of asthma compared to younger males. After a steep increase in the age range 0-7
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Table 2.7: Results from asthma model (2.3) based on NHIS 2010.

Covariate Estimate Std. Error t-value P
Multiple Hispanic -2.9496 0.3408 -8.66 < 0.0001

Puerto Rican -1.9454 0.2495 -7.80 < 0.0001
Mexican -3.0946 0.2191 -14.12 < 0.0001

Cuban/Cuban American -2.9441 0.5053 -5.83 < 0.0001
Dominican (Republic) -2.6618 0.3690 -7.21 < 0.0001

Central or South American -3.1891 0.2527 -12.62 < 0.0001
Other Latin American, type not specified -3.9114 1.0683 -3.66 0.0003

Other Spanish -3.6461 0.6467 -5.64 < 0.0001
Not Hispanic/Spanish origin -2.8233 0.2053 -13.75 < 0.0001

Gender -0.4815 0.3197 -1.51 0.1332
ns(age; 5,11)1 0.9582 0.1895 5.06 < 0.0001
ns(age; 5,11)2 2.5305 0.4590 5.51 < 0.0001
ns(age; 5,11)3 0.5179 0.1399 3.70 0.0003

Gender × ns(age; 5,11)1 0.0926 0.2993 0.31 0.7572
Gender × ns(age; 5,11)3 0.3806 0.7110 0.54 0.5929
Gender × ns(age; 5,11)3 0.4418 0.1928 2.29 0.0227

Table 2.8: Measures of marginal association between obesity and genotype from the
combined analysis based on GALA II Study and NHIS 2010.

Puerto Ricans Mexicans Interaction
Measure of

G-O association
Estimate 95% CI Estimate 95% CI Estimate 95% CI

Dominance odds ratio 0.95 0.78, 1.17 1.01 0.79, 1.30 0.94 0.86, 1.03

Recessive odds ratio 0.65 0.44, 0.95 0.56 0.36, 0.89 1.15 0.94, 1.41

Additive odds ratio 0.90 0.78, 1.04 0.91 0.77, 1.09 0.98 0.92, 1.05
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Figure 2.1: Variation of asthma prevalence with age (in years), gender and ethnicity
as explained by Model (2.3). Note that we used B-spline basis for a natural cubic
spline to smooth over age.
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years, the prevalence of asthma for females keeps increasing but at a slower rate. In

the older age-groups, the differences in the prevalence of asthma between males and

females decreases. Thus, there is evidence of interaction between age and gender.

Combined analysis

In our combined analysis we worked with a reference population of size M = 2000.

Table 2.8 presents our results. The recessive odds ratio between obesity and genotype

is significantly less than 1 in both Puerto Ricans and Mexicans, i.e. the individuals

with 2 copies of the minor allele are at a lower risk of obesity compared to 0 or 1

copy.

Figure 2.2 shows the point estimates and 95% confidence intervals for log-odds

of Pe[O = 1|G = g] for g = 0, 1, 2 for both Puerto Ricans and Mexicans. The plots

show evidence in favor of a recessive inheritance model. For each ethnic group, the

points in Figure 2.2 are not on a straight line; a strong indication that the additivity

assumption may not hold. We computed point estimates and 95% confidence intervals

for τe = logit(Pe[O = 1|G = 2]) − 2logit(Pe[O = 1|G = 1]) + logit(Pe[O = 1|G = 0])

for both Puerto Ricans and Mexicans. When the additivity assumption holds τe = 0.

For Mexicans, the evidence against additivity assumption is statistically significant

[τ̂e = −0.73, 95% CI: −1.34,−0.13]; for Puerto Ricans it is of borderline significance

[τ̂e = −0.46, 95% CI: −0.98, 0.05].
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Figure 2.2: Variation of log-odds of obesity with genotype in Puerto Ricans and
Mexicans obtained from our methodology. We show the point estimates and 95%
confidence intervals (vertical bars) for the log-odds of obesity at the different levels
of the gene (i.e. logit(Pe[O = 1|G = g]) for g = 0, 1, 2) for both Puerto Ricans and
Mexicans.
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2.5 Discussion

The analysis of secondary phenotypes in genetic case-control studies are subject to

bias. We presented an approach to mitigate this bias by integrating information from

representative sample surveys. In the combined analysis we found that individuals

with 2 copies of the minor allele are at a lower risk of obesity compared to 0 or 1

copy. The naive analysis of the GALA II dataset that ignores the selective sampling of

cases and controls results in null findings. This illustrates the drawbacks of the naive

analysis of case-control data. Our statistical framework for estimating uncertainty

includes sampling uncertainty from both the sample survey and the case-control study.

More generally, our framework allows one to obtain population-level estimates of

genetic effects on clinical quantities (e.g., serum glucose level, concentration of a

metabolite etc) that would be hard to measure in a large scale sample survey.

The conditional independence assumptions of Nagelkerke and others (1995) and

Kraft (2007) do not hold in our case. In particular, there is statistical evidence that

asthma status is not conditionally independent of the genotype given obesity status

for Puerto Ricans (Cochran-Mantel-Haenszel P = 0.001) and Mexicans (Cochran-

Mantel-Haenszel P = 0.003); and asthma status is not conditionally independent of

obesity status given genotype for Puerto Ricans (Mantel-Haenszel P = 0.008) and

Mexicans (Mantel-Haenszel P = 0.0005).

In our setting, the sampling fractions of cases and controls are not known. Using

an approach that requires specification of the prevalence of asthma is difficult because
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it is essential that it be computed from a population where the conditional distribu-

tion of key risk factors given asthma status matches that in the case-control study.

Furthermore, it is important to reflect the uncertainty associated with the estimate of

prevalence. It is possible to show theoretically that when we do not control for demo-

graphic factors (e.g. age and gender) the 95% confidence intervals for P [O = o,G = g]

will be wider when prevalence of asthma is estimated with uncertainty from an ex-

ternal data source (e.g. sample survey) relative to when it is assumed known (details

in Appendix (2.6.2)). In our example this increase in width is small but consistent

with theory (data not shown).

Since asthma is a common disease, the rare disease assumption by Li and others

(2010) is not justified. The profile likelihood method of Lin and Zeng (2009) pro-

files out the distribution of the genetic risk factor when the disease is common and

prevalence of disease is unknown. We implemented their method for our case-control

dataset, but the model parameters (including the prevalence of asthma) are not iden-

tifiable in the sense that multiple maximizers of their profile likelihood were found.

Our proposed methodology does not make the above assumptions and also provides

a framework for control of key demographic factors.

In our framework, the analyst has to choose the structure of the reference popu-

lation. We chose a population with equal sex ratios and a uniform age distribution.

In general, there may be disagreement on the appropriate reference population, but

sensitivity to such disagreement is easily examined by considering a range of reference
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population characteristics.

The use of our method assumes the existence of a sample survey where the primary

phenotype of the case-control study is also measured. There may be differences in

how the phenotype is measured in the two data sources. This can lead to additional

biases. For example, in GALA II, measurement of asthma was based upon physi-

cian diagnosis. In contrast, the NHIS survey used self-report from an adult in the

household about whether the child had a physician diagnosis of asthma. Moreover,

in the case-control study, the individuals within asthma-age-gender-ethnicity strata

may not be representative. This can also lead to some bias.

In general, the covariates such as age and gender should be independent of geno-

type in the population. Adding this constraint can lead to efficiency improvement.

Similarly, it may be reasonable to assume the genotypes are in Hardy-Weinberg equi-

librium in the population. This constraint could also lead to improvements in effi-

ciency. These arguments for improving efficiency rely on the modeling assumptions

being correctly specified and if not, they might introduce bias. Thus the analyst has

to make careful choices in trading off bias and variance.

Genetic case-control studies typically characterize subjects in great clinical detail,

making it difficult to conduct on a large scale. Moreover, these studies are biased by

design. Sample surveys are designed to be representative, but do not allow detailed

clinical characterization. Our method provides a statistical framework to leverage

the strengths of sample surveys with case-control studies to provide unbiased genetic
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association estimates of clinical phenotypes that are hard to measure in large scale

surveys.

2.6 Appendix

2.6.1 Computation of standard errors

In Section 2.3 we saw that for a particular ethnicity stratum e, the 6 × 1 vec-

tor of probabilities {Pe[O = o,G = g] : o = 0, 1; g = 0, 1, 2} can be expressed as

a 6-variate smooth function f(γ∗, β∗, δ∗), where γ∗, β∗, δ∗ are the true values of the

parameters γ, β, δ respectively. The parameter estimates γ̂, β̂ and δ̂ and their esti-

mated variance-covariance matrices Σ̂γ̂, Σ̂β̂ and Σ̂δ̂ are obtained by fitting the models

2.1, 2.2 and 2.3 in Section 2.3. The parameter estimates are asymptotically normal

and asymptotically uncorrelated. A simple application of Multivariate Delta The-

orem shows that the distribution of the centered and scaled vector of probabilities

P̂e[O = o,G = g] is asymptotically normal with variance covariance matrix given by

DΣD′ where D is the appropriate matrix of derivatives and Σ is the block diagonal

matrix with the blocks given by Σγ̂, Σβ̂ and Σδ̂ respectively. The ethnicity specific

dominance odds ratio and recessive odds ratio defined in Section 2.3 are smooth func-

tions of {Pe[O = o,G = g] : o = 0, 1; g = 0, 1, 2} and hence another application of

Delta Theorem gives us the asymptotic distribution of the point estimates of these

association measures.
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Note that the ethnicity specific additive odds ratio (exp(ηe)) is obtained from the

following model:

logitPe[O = 1|G = g] = η0,e + ηeg

by minimizing (with respect to η0,e and ηe)

L(η0,e, ηe) =
2∑
g=0

P̂e[G = g]

[
P̂e[O = 1|G = g]− eη0,e+ηeg

1 + eη0,e+ηeg

]2

where

P̂e[G = g] =
1∑
o=0

P̂e[O = o,G = g]

P̂e[O = 1|G = g] =
P̂e[O = 1, G = g]

P̂e[G = g]

This latter estimation procedure is called weighted minimum distance estimation.

In what follows we discuss how to compute standard errors of the ethnicity specific

additive odds ratio. Note that minimization of L(η0,e, ηe) is equivalent to solving the

system of equations:

∂L
∂η0,e

=
2∑
g=0

P̂e[G = g]
eη0,e+ηeg

(1 + eη0,e+ηeg)2

[
P̂e[O = 1|G = g]− eη0,e+ηeg

1 + eη0,e+ηeg

]
= 0

(2.4)

∂L
∂ηe

=
2∑
g=0

gP̂e[G = g]
eη0,e+ηeg

(1 + eη0,e+ηeg)2

[
P̂e[O = 1|G = g]− eη0,e+ηeg

1 + eη0,e+ηeg

]
= 0

(2.5)
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Denote the solution by (η̂0,e,η̂e). A first order Taylor series expansion around (η0,e,ηe)

of 2.4 is given by:

0 =
2∑
g=0

P̂e[G = g]
eη̂0,e+η̂eg

(1 + eη̂0,e+η̂eg)2

[
P̂e[O = 1|G = g]− eη̂0,e+η̂eg

1 + eη̂0,e+η̂eg

]

=
2∑
g=0

P̂e[G = g]
eη0,e+ηeg

(1 + eη0,e+ηeg)2

[
P̂e[O = 1|G = g]− eη0,e+ηeg

1 + eη0,e+ηeg

]

+

(
∂2L
∂η20,e

(η
(1)
0,e , η

(1)
e ) ∂2L

∂ηe∂η0,e
(η

(1)
0,e , η

(1)
e )

) η̂0,e − η0,e

η̂e − ηe

 (2.6)

where ||(η(1)0,e , η
(1)
e ) − (η0,e, ηe)|| < ||(η̂0,e, η̂e) − (η0,e, ηe)||. A similar expansion of 2.5

gives us:

0 =
2∑
g=0

gP̂e[G = g]
eη̂0,e+η̂eg

(1 + eη̂0,e+η̂eg)2

[
P̂e[O = 1|G = g]− eη̂0,e+η̂eg

1 + eη̂0,e+η̂eg

]

=
2∑
g=0

gP̂e[G = g]
eη0,e+ηeg

(1 + eη0,e+ηeg)2

[
P̂e[O = 1|G = g]− eη0,e+ηeg

1 + eη0,e+ηeg

]

+

(
∂2L

∂ηe∂η0,e
(η

(2)
0,e , η

(2)
e ) ∂2L

∂η2e
(η

(2)
0,e , η

(2)
e )

) η̂0,e − η0,e

η̂e − ηe

 (2.7)

where ||(η(2)0,e , η
(2)
e )−(η0,e, ηe)|| < ||(η̂0,e, η̂e)−(η0,e, ηe)||. The expressions for the double
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partial derivatives of L(., .) in 2.6 and 2.7 are given by:

∂2L
∂η20,e

(η
(1)
0,e , η

(1)
e ) =

2∑
g=0

P̂e[G = g]

[
eη

(1)
0,e+η

(1)
e g(

1 + eη
(1)
0,e+η

(1)
e g
)4{(1− e2η

(1)
0,e+2η

(1)
e g)

×
(
P̂e[O = 1|G = g]− eη

(1)
0,e+η

(1)
e g

1 + eη
(1)
0,e+η

(1)
e g

)
− eη

(1)
0,e+η

(1)
e g

}]

∂2L
∂ηe∂η0,e

(η
(1)
0,e , η

(1)
e ) =

2∑
g=0

gP̂e[G = g]

[
eη

(1)
0,e+η

(1)
e g(

1 + eη
(1)
0,e+η

(1)
e g
)4{(1− e2η

(1)
0,e+2η

(1)
e g)

×
(
P̂e[O = 1|G = g]− eη

(1)
0,e+η

(1)
e g

1 + eη
(1)
0,e+η

(1)
e g

)
− eη

(1)
0,e+η

(1)
e g

}]

∂2L
∂ηe∂η0,e

(η
(2)
0,e , η

(2)
e ) =

2∑
g=0

gP̂e[G = g]

[
eη

(2)
0,e+η

(2)
e g(

1 + eη
(2)
0,e+η

(2)
e g
)4{(1− e2η

(2)
0,e+2η

(2)
e g)

×
(
P̂e[O = 1|G = g]− eη

(2)
0,e+η

(2)
e g

1 + eη
(2)
0,e+η

(2)
e g

)
− eη

(2)
0,e+η

(2)
e g

}]

∂2L
∂η2e

(η
(2)
0,e , η

(2)
e ) =

2∑
g=0

g2P̂e[G = g]

[
eη

(2)
0,e+η

(2)
e g(

1 + eη
(2)
0,e+η

(2)
e g
)4{(1− e2η

(2)
0,e+2η

(2)
e g)

×
(
P̂e[O = 1|G = g]− eη

(2)
0,e+η

(2)
e g

1 + eη
(2)
0,e+η

(2)
e g

)
− eη

(2)
0,e+η

(2)
e g

}]

Let J =

 ∂2L
∂η20,e

(η
(1)
0,e , η

(1)
e ) ∂2L

∂ηe∂η0,e
(η

(1)
0,e , η

(1)
e )

∂2L
∂ηe∂η0,e

(η
(2)
0,e , η

(2)
e ) ∂2L

∂η2e
(η

(2)
0,e , η

(2)
e )

 and
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b =


2∑
g=0

P̂e[G = g]
eη0,e+ηeg

(1 + eη0,e+ηeg)2

[
P̂e[O = 1|G = g]− eη0,e+ηeg

1 + eη0,e+ηeg

]
2∑
g=0

gP̂e[G = g]
eη0,e+ηeg

(1 + eη0,e+ηeg)2

[
P̂e[O = 1|G = g]− eη0,e+ηeg

1 + eη0,e+ηeg

]


Solving 2.6 and 2.7, we have:

 η̂0,e − η0,e

η̂e − ηe

 = −J−1b (2.8)

From the asympotic distribution of {P̂e[O = o,G = g] : o = 0, 1; g = 0, 1, 2} we

derive the asymptotic distributiom of {P̂e[G = g], P̂e[O = 1|G = g] : g = 0, 1, 2}

by an application of Multivariate Delta Theorem. Similarly from the asymptotic

distribution of {P̂e[G = g], P̂e[O = 1|G = g] : g = 0, 1, 2}, we compute the asymptotic

distribution of b. Note that J−1 will converge in probability to the inverse of a

matrix whose entries are the double partial derivatives of L evaluated at the true

values of the arguments. An application of Slutsky’s Theorem in 2.8 gives us the

asymptotic distribution of LHS of 2.8 (appropriately scaled) and hence the asymptotic

distribution of the additive odds ratio.

2.6.2 Related Asymptotics

Focus on a particular ethnicity stratum E = e. Consider the case when we do

not control for demographic factors (e.g., age and gender). We want to compare
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the asymptotic standard errors of {P̂e[O = o,G = g] : o = 0, 1; g = 0, 1, 2} when

Pe[A = 1] is known versus when it is estimated with uncertainty from some external

data source. First consider the case when it is estimated from an external data source.

Note that:

Pe[O = o,G = g] =
1∑

a=0

Pe[O = o,G = g|A = a]Pe[A = a]

Note that {P̂e[O = o,G = g|A = 1] : o = 0, 1; g = 0, 1, 2}, {P̂e[O = o,G = g|A =

0] : o = 0, 1; g = 0, 1, 2} and P̂e[A = 1] are asymptotically uncorrelated; denote

the asymptotic variances by ΣA=1, ΣA=0 and σ2
A respectively. The combined vari-

ance covariance matrix Σ is block diagonal with ΣA=1, ΣA=0 and σ2
A as the diagonal

blocks. By Multivariate Delta Theorem, the asymptotic variance-covariance matrix

for {P̂e[O = o,G = g] : o = 0, 1; g = 0, 1, 2} is given by (Pe[A = 1])2ΣA=1+(1−Pe[A =

1])2ΣA=0 + σ2
Avv

T , where v is the vector of the differences {P [O = o,G = g|A =

1]−P [O = o,G = g|A = 0] : o = 0, 1; g = 0, 1, 2}. Note that σ2
Avv

T is a non-negative

definite matrix. When the prevalence of asthma is assumed known, the last term in

the variance expression is not there. This implies, the difference in the variance of

{P̂e[O = o,G = g] : o = 0, 1; g = 0, 1, 2} when Pe[A = 1] is estimated with uncer-

tainty versus when it is treated as a known constant is non-negative definite. Hence

we have wider 95% confidence intervals for {Pe[O = o,G = g] : o = 0, 1; g = 0, 1, 2}

when Pe[A = 1] is estimated versus when it is known.
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Chapter 3

Causal Effect Among The

Exposed: Multiple Data Sources

and Censored Outcomes

3.1 Introduction

Consider a setting where a group of autonomous individuals choose to expose

themselves to an intervention with potentially adverse consequences. To understand

the risk associated with their choice, researchers may be interested in contrasting the

distribution of their outcomes under exposure to the intervention to the distribution

of their corresponding outcomes had they, contrary to fact, not exposed themselves to

the intervention. That is, researchers would like to draw inference about the causal
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effect among the exposed. Geneletti and Dawid (2011) refer to this estimand as

the “effect of treatment on the treated”. Our interest in this estimand is motivated

by the question of whether individuals who choose to donate kidneys are putting

themselves at increased risk for adverse health outcomes such as diabetes and hyper-

tension. Specifically, we would like to learn whether kidney donation accelerates the

development of these outcomes.

Since it is not possible to observe the counterfactual outcomes among the ex-

posed individuals, it is necessary to (1) utilize data from non-exposed individuals

and (2) posit untestable assumptions in order to learn about the causal effect of

interest. In addressing the kidney donation question, we use information available

on live kidney donors derived from hospital records and follow-up interviews and on

healthy non-donors from two prospective cohort studies. We consider the endpoints

of hypertension-free and diabetes-free survival. Our analysis is complicated by the

fact that, in the data sources, the endpoint is censored in the broadest sense (i.e., a

combination of interval-censored, right censored and exact observations).

In Section 3.2, we develop a method for drawing inference about the causal effect

among the exposed based on censored survival outcome data obtained for exposed and

non-exposed individuals from different data sources. Section 3.3 applies this method

to address our motivating question. Section 3.4 presents a detailed simulation study

to evaluate the performance of our methodology. The final section 3.5 is devoted to

a discussion.
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3.2 Methods

Consider a hypothetical study design in which eligible patients are enrolled and

given the option to select “exposure” (e.g., kidney donation) or “non-exposure”. Fur-

ther, assume that the mechanism of exposure selection only depends on observed

covariates at the time of enrollment. The patients are then followed from enroll-

ment to the minimum of death or some disease of interest (e.g., hypertension or

diabetes). Let Z denote the indicator that the patient opts for “exposure” and W

denote the covariates measured at enrollment. Let T1 and T0 denote the time from

enrollment to death or disease (whichever occurs earlier) for a patient under “expo-

sure” and “non-exposure” respectively. Our goal is to learn about the causal effect

among exposed subjects. That is, we want to compare S1(t)
def
= P [T1 > t|Z = 1]

and S0(t)
def
= P [T0 > t|Z = 1], for all t. The study design is assumed to provide

information about the joint distribution of (W,Z, T ), where T = ZT1 + (1− Z)T0.

3.2.1 Identification of Causal Parameters

In this hypothetical study design we assume

Z ⊥ (T1, T0)|W (3.1)
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i.e. exposure selection depends only on the measured covariates at enrollment. Under

Assumption (3.1),

S1(t) = P [T > t|Z = 1] (3.2)

and

S0(t) =

∫
w

P [T > t|W = w,Z = 0]dF (w|Z = 1) (3.3)

Under Assumption (3.1), Equations (3.2) and (3.3) provide identification formulae

for S1(t) and S0(t). From these equations, it follows that in order to estimate S1(t)

and S0(t), we need to be able to estimate (1) the distribution of T given Z = 1, (2)

the distribution of W given Z = 1, and (3) the distribution of T given W and Z = 0.

3.2.2 Manufactured Dataset

Unfortunately, in our setting, it is not possible to conduct the hypothetical study.

Rather, we have access to multiple data sources, which we will use to construct a

dataset D∗ that mimics what might arise from our hypothetical study. To illustrate

this construction we will use minimum of hypertension or death as the event of inter-

est. Assume, for the moment, that our data sources provide access to exact times of

the event of interest.

Our first data source, D1, includes patients who donated kidneys. For these

patients, the time of enrollment is the time of kidney donation. Figure 3.1(a) displays

three patients, numbered 1, 2, 3 in green, from this data source. Patient 1 donates a
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kidney in 1975, develops hypertension in 1990 (black cross) and dies in 2000 (black

asterisk). His time to event is time since kidney donation to the development of

hypertenstion (i.e., 15 years). Patient 2 donates a kidney in 1990 and dies without

developing hypertension in 2010. His time to event is time since kidney donation to

death (i.e., 20 years). Patient 3 donates a kidney in 1980 and dies without developing

hypertension in 1995. His time to event is time since kidney donation to death (i.e.,

15 years). In contrast to the next data source, all of these patients have a single

enrollment visit, denoted by v1 in the figure.

Our second data source, D0, includes patients who have not donated kidneys.

Each patient has possibly multiple examination times (i.e., multiple visits v1, v2, . . .

marked with blue dots). Figure 3.1(c) shows three patients, numbered 1, 2, 3 in blue,

from this data source. Patient 1 enters the study in 1985 (marked with label v1), has

a follow-up examination in 1988 (marked with label v2) and eventually dies without

developing hypertension in 1998. Patient 2 enters the study in 1988 and has three

follow-up examinations in 1991, 1995 and 2009. He develops hypertension in 2005

(between the third and fourth follow-up examinations) and eventually dies in 2012.

Patient 3 enters the study in 1991, develops hypertension in 2001 and dies in 2005.

Figure 3.1(b) is the manufactured dataset D∗ that represents (on a study time

scale) our hypothetical study described above. This dataset is created by patching

together D1 and D0 as follows. Each patient in D1 contributes one enrollment to the

hypothetical dataset, i.e. patients 1, 2 and 3 in Figure 3.1(a) contributes the first
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three enrollments in Figure 3.1(b). Each patient in the data source D0 (cf Figure

3.1(c)) contributes an “enrollment” at each examination time that occurs before the

event the of interest. That is, time of each “enrollment” is considered as a potential

time at which the patient could have been eligible to donate a kidney. Patient 1

contributes two “enrollments” to the hypothetical dataset (i.e. the fourth and fifth

“enrollments” in Figure 3.1(b)). Patient 2 contributes three “enrollments” to the

hypothetical dataset (i.e. sixth, seventh and eighth “enrollments” in Figure 3.1(b)).

The fourth visit of Patient 2 is not considered an “enrollment” since it occurs after

the event. Patient 3 contributes the last “enrollment” in Figure 3.1(b). Note that

in both the data sources we have measured covariates W (age, gender, race, BMI)

on the patients at each “enrollment”. The idea of multiple enrollments for individual

patients was employed by Hernán and others (2005) to estimate the causal effect of

a time varying exposure on a possibly right censored survival outcome.

If we can think of this manufactured dataset as representing our hypothetical

study design, then we are able to identify the causal parameters via equations (3.2)

and (3.3). This includes making the working assumption that all entries into the

manufactured dataset are independent. We relax this assumption when characterizing

the uncertainty of our estimation procedure.

In reality, we do not observe exact times to event in D1 and D0. Instead what we

observe is censored survival data, which is a combination of interval-censored, right

censored and exact observations. Figure 3.2 illustrates different censoring scenarios.

43



CHAPTER 3. CAUSAL EFFECT AMONG THE EXPOSED: MULTIPLE DATA
SOURCES AND CENSORED OUTCOMES

Figure 3.1: Illustration of the process of manufacturing a dataset having the same
features as the hypothetical study by patching together two data sources: D1 from
the patients (numbered in green color) who have donated kidneys; and D0 from the
patients (numbered in blue color) who are “eligible” donors but have not donated
kidneys. (a) schematic representation of the patients in D1 with solid green dots
denoting “enrollment” (i.e., kidney donation) and green line denoting time from en-
rollment to either hypertension (black cross) or death (black asterisk); (b) schematic
representation of the manufactured hypothetical dataset, (c) schematic representa-
tion of the patients in D0 with solid blue dots denoting multiple “enrollments” and
blue line denoting time from an enrollment to either hypertension or death.
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Figure 3.2: Illustration of the process of manufacturing a dataset having the same
features as the hypothetical study by patching together two data sources: D1 from
the patients (numbered in green color) who have donated kidneys; and D0 from the
patients (numbered in blue color) who are “eligible” donors but have not donated
kidneys. The outcome could be censored (combination of interval-censored, right
censored and exact observations); the solid lines become dotted eventually to illus-
trate the idea of censoring i.e., the exact time of event is not known. (a) schematic
representation of the patients in D1 with solid green dots denoting “enrollment” (i.e.,
kidney donation) and green line (first solid and then dotted) denoting time from en-
rollment to either hypertension (black cross) or death (black asterisk); (b) schematic
representation of the manufactured hypothetical dataset, (c) schematic representa-
tion of the patients in D0 with solid blue dots denoting multiple “enrollments” and
blue line (first solid and then dotted) denoting time from an enrollment to either
hypertension or death.
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Figure 3.2(a) shows the same three patients as in Figure 3.1(a). Patients 1 and 2 have

their times to event interval censored. Patient 3, however, has an exact time of death

recorded. Figure 3.2(c) shows the same three patients as in Figure 3.1(c). Patients 1

and 2 have interval censored observations. The outcome for Patient 3 is right-censored

(marked by a black vertical bar). Figure 3.2(b) shows the manufactured hypothetical

dataset D∗ with censored observations.

In the presence of coarsening, additional assumptions are required to identify

P [T > t|Z = 1] and the distribution of P [T > t|W,Z = 0]. We will assume non-

informative censoring conditional Z and W (Gómez and others , 2004; Oller and oth-

ers , 2004).

3.2.3 Inference

Our inferential framework aims to contrast S1(t) and S0(t), under assumptions,

by using Equations (3.2) and (3.3) applied to the manufactured dataset D∗. The key

idea is to estimate P [T > t|Z = 1] and F (w|Z = 1) from the donors in D∗ and P [T >

t|W = w,Z = 0] from the non-donors in D∗. Let S1(t|w)
def
= P [T > t|W = w,Z = 1]

and S0(t|w)
def
= P [T > t|W = w,Z = 0]. Let n be the number of “enrollments” in

D∗. The observed data for each “enrollment” i in D∗ is [Ei, {Ti : Ei = 1}, {(Li, Ri] :

Ei = 0}, Zi,Wi], where Ei denotes the indicator of exactly observing the failure time,

Ti denotes the failure time observed when Ei = 1, and Li and Ri denote the left

and right endpoints of the interval in which the time to event is known to lie when

46



CHAPTER 3. CAUSAL EFFECT AMONG THE EXPOSED: MULTIPLE DATA
SOURCES AND CENSORED OUTCOMES

Ei = 0. For right censored observations, Li < ∞, Ri = ∞ and for interval-censored

observations Li < Ri <∞.

Under non-informative censoring and independence of “enrollments” in D∗, the

simplified likelihood for the observed data (Gómez and others , 2004) can be approx-

imated by:

L =
n∏
i=1

[{S1(Li|Wi)− S1(Ri|Wi)}1−Ei{(S1(Ti|Wi)− S1(Ti + ε|Wi))/ε}Ei ]Zi

[{S0(Li|Wi)− S0(Ri|Wi)}1−Ei{(S0(Ti|Wi)− S0(Ti + ε|Wi))/ε}Ei ]1−Zi

(3.4)

where ε is a specified constant. Note that the “enrollments” with exact observa-

tions contribute to the likelihood using a numerical approximation to the conditional

densities of T given W and Z = 1 and of T given W and Z = 0. The numerical

approximation is based on the negative of the numerical derivative of the respective

survival functions. The numerical derivatives involve the perturbation parameter ε

which we recommend setting to a small value relative to range of the survival times.

We assume a proportional hazards model (Cox, 1972) for S1(t|W ) and S0(t|W ).

Specifically, we assume (for z = 0, 1)

Sz(t|W ) = exp{−Λ0,z(t) exp(W ′βz)} (3.5)

where βz is the vector of regression parameters corresponding to the vector of co-
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variates W and Λ0,z(t) is the cumulative baseline hazard function. The cumulative

baseline hazard function Λ0,z(t) is modeled as a finite linear combination of inte-

grated spline basis functions (non-decreasing from 0 to 1) with non-negative coeffi-

cients (Wang and others , 2015). The advantage of this specification relative to one

that is nonparametric is a significant reduction in the dimension of the parameter

space while allowing for flexibility. The unknown parameters Λ0,z(t) and βz are esti-

mated by maximizing the likelihood in (3.4) subject to (3.5). Following the method

in Wang and others (2015), we obtain the maximum likelihood estimates Λ̂0,z(t) and

β̂z by a EM algorithm that involves a two-stage data augmentation with latent Pois-

son random variables. This method exploits the connection between the proportional

hazards model and a non-homogeneous Poisson process.

Plugging Λ̂0,z(t) and β̂z into Equation (3.5) we obtain an estimator of Sz(t|W )

denoted as Ŝz(t|W ). We estimate F (w|Z = 1) by its empirical distribution, denoted

as F̂ (w|Z = 1), based on the covariate information for patients with Z = 1 in D∗.

Since P [T > t|Z = 1] can be expressed as

P [T > t|Z = 1] =

∫
w

P [T > t|W = w,Z = 1]dF (w|Z = 1) (3.6)

we estimate P [T > t|Z = 1] by plugging Ŝ1(t|W ) and F̂ (w|Z = 1) into Equation

(3.6). We denote this latter estimator as P̂ [T > t|Z = 1] (Note: P [T > t|Z = 1]

can be alternatively estimated by the non-parametric Turnbull estimator (Turnbull,
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1976) that uses only the outcome information for patients with Z = 1.)

Plugging P̂ [T > t|Z = 1] into Equation (3.2) we obtain Ŝ1(t). We obtain Ŝ0(t)

from Equation (3.3) by plugging in Ŝ0(t|W ) and F̂ (w|Z = 1).

3.2.4 Measure of Treatment Effect

We measure the treatment effect by parsimoniously modeling the relationship

between the quantiles of S1(·) and S0(·). Specifically, we assume that S−11 (p) =

exp(δ)S−10 (p) for all 0 < p < 1. This model is equivalent to assuming, for patients

with Z = 1, an accelerated failure time (AFT) model (Wei, 1992) of the form:

log(T1) = log(T0) + δ (3.7)

Note that δ = 0 implies that S1(t) = S0(t) for all t, i.e. the donors have the same

distribution of time to event had they not donated.

We estimate δ using the following simulation procedure. Suppose that we are

interested in follow up through time τ . We obtain estimates Ŝ1(t) and Ŝ0(t) by the

method described in Section 3.2.3. We generate K observations T1,k ∼ Ŝ1(t) and

another K observations T0,k ∼ Ŝ0(t), k = 1, . . . , K. Let Uz,k = min(Tz,k, τ) and

∆z,k = I(Tz,k < τ) for z = 0, 1, k = 1, . . . , K. We then fit model (3.7) using these

data. Denote the resulting estimator of δ by δ̂. We use the R package aftgee (Chiou

and others , 2014) to fit this model and compute δ̂.
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3.2.5 Computation of Standard Errors and Confi-

dence Intervals

We compute estimates of standard error of δ̂ using nonparametric bootstrap of

individuals from the original datasets. In our analysis and simulations, we used 95%

Wald-based confidence intervals with the bootstrapped standard error estimator.

3.3 Data Analysis

We apply the methods developed in Section 3.2 to estimate the causal effect of

kidney donation on hypertension-free survival and diabetes-free survival among those

who chose to donate.

The donors were drawn from the Wellness and Health Outcomes in LivE Donors

(WHOLE-DONOR) Study. The earliest of the donations occurred in 1970 and the

latest in 2013. Age, gender, race, BMI were measured for each donor at the time of

donation. The donors included in the final analytic sample were free of the corre-

sponding disease endpoint at the time of donation. The non-donors were identified

from Atherosclerosis Risk in Communities (ARIC) (Visits 1-4; 1987-1998) and Coro-

nary Artery Risk Development in Young Adults (CARDIA) (Visits 1-8; 1985-2011)

studies. The non-donors included in the final analytic sample were free of the disease

endpoint at the first visit. The last available visit with non-missing disease ascer-

tainment was considered the “end visit”. The preceding visits where the subject is
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free of the disease endpoint of interest and other co-morbidities (e.g., cardiovascular

disease, cancer) were considered valid “enrollments”. Age, gender, race and BMI are

measured for each subject at each “enrollment”. Table 3.1 gives the demographic

information of the final analytic samples corresponding to each endpoint. Donors

tend to be older, more female, less black and have higher BMI than non-donors.

In the analyses, the cumulative baseline hazard functions were modeled using inte-

grated spline basis functions with five interior knots. The proportional hazards model

estimates were not sensitive to selection of the number of interior knots. Further, we

set τ = 20 years and K = 1000.

3.3.1 Hypertension-free analysis

In the final analytic sample, there are 1,077 live donors and 10,832 eligible non-

donors. The non-donors contribute multiple “enrollments” during follow-up. Among

the non-donors, 21%, 22%, 45% and 12% contributed 1, 2, 3 and 4 “enrollments”

respectively. Among the donors, 12.26% had interval censored observations, 76.42%

had right censored observations and 11.32% had exact observations. The percentages

of interval censored and right censored observations among the non-donor records

were 27.58% and 72.41% respectively.

Figure 3.3a shows the estimated cumulative baseline hazard function correspond-

ing to the reference cohort (age 42 years, female, black, BMI 25). Table 3.2 shows the
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(a) Endpoint: Hypertension or death (b) Endpoint: Diabetes or death

Figure 3.3: Estimates of cumulative baseline hazard function in the reference cohort
(age 42 years, female, black, BMI 25) for donors and non-donors for the endpoints
(a) hypertension or death, and (b) diabetes or death.

(a) Endpoint: Hypertension or death (b) Endpoint: Diabetes or death

Figure 3.4: Estimates of the donor survival curve, the counterfactual survival curve
and the Turnbull estimator among donors for the endpoints (a) hypertension or death,
and (b) diabetes or death.
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Table 3.1: Demographic information of the subjects in the final analytic sample
corresponding to each endpoint.

Endpoint

Hypertension Diabetes
or death or death

Donors Non-donors Donors Non-donors

Number of 1077 10,832 1192 9056
subjects

Number of 1077 26,597 1192 15,970
“enrollments”

Age
mean 44.32 42.54 44.56 41.17
(sd) (11.24) (14.58) (11.40) (15.03)

Female (%) 63 55 63 58
Black (%) 13 30 13 31
BMI

mean 26.43 25.89 26.55 25.10
(sd) (4.04) (4.76) (4.10) (4.45)

estimated regression coefficients from the PH Model. For donors and non-donors, age,

race and BMI were positively and significantly associated with the risk of developing

hypertension or dying; gender was not a significant risk factor. Figure 3.4a shows

the estimated donor and counterfactual survival curves. For comparative purposes,

the Turnbull estimator for donors is also presented. The treatment effect under the

AFT model is estimated to be 0.005 [95% CI: -0.10,0.12]. This result may be hard to
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Table 3.2: Point estimates and 95% confidence intervals for the regression coeffi-
cients obtained from separate PH models for each endpoint.

Hypertension Diabetes
or death or death

Covariate Donors Non-donors Donors Non-donors

Age
Point estimate 0.054 0.044 0.032 0.043
(95% CI) (0.041,0.066) (0.041,0.047) (0.009,0.056) (0.035,0.051)

Female
Point estimate -0.142 -0.070 -0.006 -0.292
(95% CI) (-0.392,0.109) (-0.14,0.0001) (-0.436,0.425) (-0.425,-0.158)

Black
Point estimate 0.509 0.581 0.470 0.687
(95% CI) (0.194,0.826) (0.503,0.659) (-0.164,1.105) (0.547,0.827)

BMI
Point estimate 0.067 0.057 0.073 0.067
(95% CI) (0.037,0.097) (0.05,0.063) (0.017,0.128) (0.055,0.079)

interpret due to the crossing of the estimated survival curves. Table 3.3 reports the

estimated differences (and associated 95% confidence intervals) between the donor

and counterfactual survival curves at 5, 10, 15 and 20 years. These analyses show

that there is no significant evidence to suggest that donors are putting themselves at

increased risk for hypertension or death.

3.3.2 Diabetes-free analysis

In the final analytic sample, there are 1,192 live donors 9,056 eligible non-donors.

The non-donors contribute multiple “enrollments” during follow-up. Among the non-

54



CHAPTER 3. CAUSAL EFFECT AMONG THE EXPOSED: MULTIPLE DATA
SOURCES AND CENSORED OUTCOMES

Table 3.3: Point estimates and 95% confidence intervals for the difference in the
donor and counterfactual survival curves at particular time points for each endpoint.

Hypertension Diabetes
or death or death

Time(in years) Estimate (95% CI) Estimate (95% CI)

5 0.019 (-0.003,0.04) 0.011 (0.004,0.017)
10 0.016 (-0.02,0.053) 0.019 (0.001,0.036)
15 -0.019 (-0.07,0.032) -0.004 (-0.042,0.033)
20 -0.044 (-0.114,0.027) 0.002 (-0.078,0.081)

donors, 49%, 26% and 25% contributed 1, 2 and 3 “enrollments” respectively. Among

the donors, 3.10% had interval censored observations, 92.79% had right censored

observations and 4.11% had exact observations. The percentages of interval censored

and right censored observations among the non-donor records were 8.32% and 91.68%

respectively.

Figure 3.3b shows the estimated cumulative baseline hazard function correspond-

ing to the reference cohort (age 42 years, female, black, BMI 25). Table 3.2 shows the

estimated regression coefficients from the PH Model . For non-donors, age, race and

BMI were positively and significantly associated with the risk of developing diabetes

or dying; gender had a significant negative association. For donors, age and BMI were

positively and significantly associated with the risk of developing diabetes or dying;

gender and race were not significant risk factors. Figure 3.4b shows the estimated

donor survival and counterfactual survival curves; the Turnbull estimator for donors
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is also presented. The treatment effect under the AFT model is estimated to be -0.004

[95% CI: -0.15,0.14]. Like the hypertension analysis, the estimated survival curves

cross. Table 3.3 reports the estimated differences (and associated 95% confidence

intervals) between the donor and counterfactual survival curves at 5, 10, 15 and 20

years. At 5 and 10 years, there are statistically significant differences between the

donor and counterfactual survival curves, with donation appearing to be protective

for the occurrence of diabetes at these time points. At 15 and 20 years, the differences

are no longer statistically significant. Donation may be protective for diabetes/death

in the early years due possibly to better health care or healthy behavior. Such benefits

appear to dissipate in the long term.

3.4 Simulation Results

We conducted a simulation study to evaluate the performance of the proposed

methodology. We simulated 500 datasets that closely resembled the data structure

for the hypertension-free analysis discussed above. For each dataset, the number of

donors was 1,077 and the number of non-donors was 10,832.

3.4.1 Simulation of Donor Data

We generated independent covariates to mimic age, gender (1 = female, 0 =

male), race (1 = black, 0 = white) and BMI - age and BMI were simulated as normal
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random variables with means 44.32 and 26.43 and standard deviations 11.24 and

4.04, respectively, gender and race were simulated as Bernoulli random variables with

probabilities 0.63 and 0.13, respectively. Using the 4-dimensional covariate vector W ,

we generated, for each donor, an exact time-to-event from an exponential regression

model with rate λ exp(βTW ), λ = 0.01 and βT = (0.04,−0.15, 0.42, 0.06).

We introduced a censoring mechanism by independently generating four exam-

ination times, with the inter-examination times distributed according a truncated

exponential distribution with rate 0.25 and truncation at 6 years. When the time-

to-event was contained between two examination times, we, with probability 0.8,

interval-censored the outcome using the examination times as the end-points and,

with probability 0.2, considered the outcome to be exactly observed. If the time-

to-event was larger than the time to last examination time, we right-censored the

outcome at the last examination time.

3.4.2 Simulation of Non-Donor Data

For non-donors, we generate multiple visit data which will translate into multiple

“enrollments”. To start, we generated independent covariates to mimic age (at first

visit), gender(1 = female, 0 = male) and race (1 = black, 0 = white). Age was

simulated as a normal random variable with mean 42.54 and standard deviation 14.58.

Gender and race were simulated as Bernoulli random variables with probabilities

0.55 and 0.30, respectively. For each non-donor, we generated a random variable V ,
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denoting the number of clinic visits (assumed to range from 1 to 4). The probability

distribution of V was specified as follows: P [V = 1] = 0.21, P [V = 2] = 0.22, P [V =

3] = 0.45, P [V = 4] = 0.12. The duration of time between visits was generated

according to a truncated exponential distribution with rate 0.1 and truncation at 20

years. We also generated a (V + 1)th clinic visit using this inter-visit distribution.

Since age is time-varying, we set the age at a given visit to be the age at the first

visit plus the time that has elapsed between the given visit and the first visit. We

generated BMI at each visit according to a linear mixed effects model with gender,

race and visit-specific age as fixed covariates, a fixed intercept, a subject-specific

normally-distributed, mean zero random effect and normally-distributed, mean zero

random noise. The intercept was set to 17.62, the coefficients for gender, race and

age were set to -0.26, 3.04 and 0.17, respectively, and the standard deviations of the

random effect and random noise were set to 4.61 and 1.53, respectively.

Our censored outcome data generation process proceeds sequentially by clinic

visit. At each visit v = 1, . . . , V (let tv be the time of this visit), we generated,

using the 4-dimensional covariate vector W (i.e., age, gender, race, BMI) available

at this visit, an exact time-to-event from an exponential regression model with rate

λ exp(δ) exp(βTW ), where λ and βT are the same as specified for the donors and δ

is a parameter that differentiates the conditional risk of the event between donors

and non-donors. It is important to note that our specification of the exponential

regression models for the donors and non-donors implies that (3.7) holds. In our
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simulation study, we considered δ = −0.5, 0, 0.5. If the exact time-to-event is less

than the time to the next visit (let tv+1 be the time of this visit), we (1) interval

censored the outcome with zero as the left endpoint and the time between visit v

and visit v + 1 (i.e., tv+1 − tv) as the right endpoint, (2) stopped the data generation

process, and (3) for each previous visit p = 1, . . . , v − 1 (let tp be the time of this

visit), we produced an additional enrollment, where the censored outcome has left

endpoint tv − tp and right endpoint tv+1 − tp; otherwise we continued to the next

clinic visit. If visit V is reached and the exact time-to-event is not less than the time

of visit V + 1, then we created for each visit v = 1, . . . , V , right censored enrollments

with right censoring time tV+1 − tv.

3.4.3 Simulation Results

Table 3.4 shows the results of the simulation study, based on 500 simulated

datasets. We considered three choices of δ = −0.5, 0, 0.5. For all choices, the bias

in estimation of δ is very small and the confidence intervals (constructed using 1000

bootstrap samples) achieve the nominal 95% level. The average of the bootstrapped

standard errors of δ̂ across simulated datasets is approximately equal to the standard

deviation of δ̂’s across these datasets. Overall, the results indicate that the proposed

methods perform well in this simulation study.
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Table 3.4: Simulation results.

δ Bias Standard Average Empirical
deviation standard error coverage

-0.5 0.008 0.07 0.07 0.96
0 0.005 0.07 0.07 0.95

0.5 0.002 0.07 0.07 0.95

3.5 Discussion

In this paper, we developed an inferential framework for estimating the causal

effect among “exposed” subjects on a time-to-event outcome, based on multiple data

sources and censored outcome information. This was achieved by conceptualizing and

manufacturing a point exposure study that allowed us to identify the causal parameter

of interest under certain set of assumptions (i.e., no unmeasured confounders, non-

informative censoring).

In our motivating example, the time-to-event outcome was censored in the broad-

est sense. That is, it was a mix of interval-censored, right-censored and exact obser-

vations. With the exception of two working papers (Vandebosch and Goetghebeur,

2005; Valappil and others , 2015), we were not able to identify any published causal in-

ference papers with interval-censored outcomes. Our approach relied on specification

of a proportional hazards regression model (Cox, 1972). For this model, inference in

the presence of interval censoring has been well-studied (see, e.g., Finkelstein, 1986;
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Satten, 1996; Goggins and others , 1998; Satten and others , 1998; Pan, 1999, 2000;

Goeteghebeur and Ryan, 2000; Betensky and others , 2002; Cai and Betensky, 2003;

Zhang and others , 2010; Wang and others , 2015 for frequentist approaches and Sinha

and others , 1999; Yavuz and Lambert, 2011; Wang and others , 2013; Lin and others ,

2015 for Bayesian approaches). In our setting (large number of subjects, some with

exact observations), the majority of these approaches are too computationally ex-

pensive or too technically complicated to practically implement. Before adapting the

approach of Wang and others (2015), we experimented with the R packages intcox

and coxinterval. The package intcox adopts the iterative convex minorant ap-

proach of Pan (1999) but it also produces biased parameter estimates as pointed out

by Wang and others (2015). The package coxinterval developed based on Boruvka

and Cook (2015) could not be easily adapted to handle exact observation times.

Our analysis can be prone to bias if the underlying assumptions (i.e., no unmea-

sured confounding, non-informative censoring) are violated. In terms of assumptions,

we are most concerned about the no unmeasured confounding assumption. Our abil-

ity to adjust for measured confounding factors is limited by the fact that we require

that all data sources record data on the same set of factors. In our analysis, we ad-

justed for gender, race, age and BMI which were well recorded in live donor database

and the ARIC and CARDIA studies. However, it is likely that there are additional

confounding factors at play, e.g., blood pressure and glomerular filtration rate. While

these factors were to be recorded in the multiple datasets, they have missing data
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rates of the order of 15%. In future work, we plan to extend our methods to handle

this issue.

Another limitation of our methodology is model specification. Specifically, our

analysis relies on correct specification of proportional hazards regression models for

the time-to-event for donors and non-donors. This may lead to some bias in the

estimate of the target causal parameter. In a future work, we plan to explore meth-

ods that are more robust to such misspecification. Our proposed estimator of the

treatment effect relies on an accelerated failure time model that connects the donor

and counterfactual survival times. This assumption may not hold, especially in set-

tings whether the associated survival curves cross. Nonetheless, the estimator can

be thought of as the best fitting accelerated failure time model that is consistent

with the estimated survival curves. Future work will explore alternative methods for

contrasting the survival curves.

In evaluating exposure effects, it is not uncommon for information on exposed

and non-exposed subjects to be obtained from different data sources. The methods

developed in this paper should be useful for evaluating such effects, provided that

(1) one can conceptualize a hypothetical point exposure study and (2) the underlying

data sources collect a common set of confounding factors.
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Chapter 4

Testing Equality of Curves After

Covariate Adjustment

4.1 Introduction

We propose simple methodological approaches for global and local tests of the

difference between the mean of treatment and control groups when the measured

outcome is a function. Several papers in the functional data analysis literature have

focussed on comparing the averages of two functional processes. For example, Benko

and others (2009) developed bootstrap-based tests of equality of means, eigenval-

ues and eigenfunctions of the covariance function in the two sample problem. Hall

and Keilegom (2007) used bootstrap-based tests for equality of distributions of two

independent samples of curves. Zhang and others (2010) proposed L2-based and
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bootstrap-based statistics for testing equality of two average curves when the subject

specific curves are independent and observed without noise. Crainiceanu and others

(2012) proposed a bootstrap-based inference procedure for the difference in means

of two correlated functional processes. However, none of these approaches consid-

ered covariate-adjusted testing, which is essential in cases when covariates may differ

across groups. Several authors have developed Bayesian approaches for this problem

in settings with complex correlation structures (Behseta and Kass, 2005; Behseta and

others , 2007; Morris and others , 2003; Morris and Carroll, 2006; Morris and others ,

2006, 2011).

The scientific problem that motivated our study is whether targeted deletion of

interleukin 10 gene (IL-10tm1Cgn) in mice leads to decrease in oxygen consumption

of the animal. We have repeated measures of oxygen consumption in a group of 10

mice where the gene has been knocked out and a control group of 10 mice where

the gene is present. The measurements were taken at regularly spaced time points

over four days. We want to explore if the average oxygen consumption through the

day (midnight-midnight) differ significantly between the groups and if the genotype-

outcome association is altered by the body composition of the animal. The novelty of

our approach is that it addresses the problem that each animal has repeated functional

measurements over multiple days (oxygen consumption measure at every 30 minutes

for 4 days) and additional covariates of interest (i.e., body composition measures).

We develop a permutation based approach to test for a global difference between
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the averages of two functional processes after covariate adjustment using the estimated

L2 area under the squared difference curve as the test statistic. We also test for lo-

calized differences between the two covariate adjusted average curves using the 95%

pointwise and joint confidence intervals obtained using a nonparametric bootstrap

of subjects. The main novelty of our paper is that we are using the covariate ad-

justed curves to develop the test procedures and take into account the within-subject

sampling functional correlation. The proposed approach is easy-to-implement, com-

putationally fast and scalable and adaptable to more complex settings. In Section 4.2

we develop the statistical framework for our method. Section 4.3 provides the results

of the real data analysis and the simulation study. We conclude with a discussion in

Section 4.4.

4.2 Methods

Our method utilizes information from two data sources having similar structure:

the first one comes from “treated” animals (e.g., IL10tm group) and the second one

comes from animals who are “not treated” (e.g., control group). Both data sources

have information on a functional outcome [e.g., oxygen consumption measured at reg-

ular intervals (∼30 minutes) over a period of time (4 days)] and baseline covariates

(e.g., body composition measures). Figure 4.1 displays the scatter plots for oxygen

consumption of the animals in each group in a 24 hour period (midnight-midnight)
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Figure 4.1: Plot of oxygen consumption during the 24 hours over multiple days;
the panels in the left correspond to animals in the control group and panels on the
right correspond to animals in the IL-10tm1Cgn group. Each panel shows the oxygen
consumption of an animal over 4 days: Day 1 (black line), Day 2 (red line), Day 3
(blue line) and Day 4 (green line).
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over 4 days. Figure 4.2 displays the average oxygen consumption (over every observa-

tion within days and all four days) as a function of body mass composition as well as

the body mass composition distribution within treatment group. Let ni denote the

number of animals in the ith group, i = 0 for “treated” animals and i = 1 for “not

treated” animals. We observe {(Yijl(t), Xij) : t = t1, . . . , tk; i = 0, 1; j = 1, . . . , ni; l =

1, 2, 3, 4}, where Yijl(t) denotes the functional outcome observed at the time points

t1, . . . , tk in the range [0, T ] during the lth day and Xij denotes the vector of baseline

covariates for the jth animal in the ith group. Denote by Yij.(t) =
1

4

4∑
l=1

Yijl(t). We

are interested in a model of the type:

Yij.(t) = βi0(t) +Xijβi1(t) + εij(t) (4.1)

where εij(t) is a mean zero process with unspecified correlation structure. We want

to test the hypothesis: µ1(t) = µ0(t), where µi(t) = E[Yij.(t)] for i = 0, 1. Note that

µi(t) = E[Yij.(t)] = E[E[Yij.(t)|Xij]] = βi0(t) + βi1(t)E[Xij]. We model the functional

regression parameters in equation 4.1 using P-splines that combine a B-spline basis

with a discrete penalty on the basis coefficients (Eilers and Marks, 1996). The re-

gression functions are estimated using restricted maximum likelihood estimation of

the associated penalized least squares objective function in the framework of general-

ized additive models (Chambers and Hastie, 1991; Hastie and Tibshirani, 1990). For

i = 0, 1 we estimate µi(t) by µ̂i(t) = β̂i0(t) + β̂i1(t)Ê[Xij], where Ê[Xij] is the sample
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average of the covariates in the ith group. We are making the working assumption

that εij(t) are independent. This assumption substantially simplifies the estimation

procedure, though for inference we will take the within-subject correlation into ac-

count. Estimating parameters under independence and then correcting the confidence

intervals has a long and successful history in statistics.

4.2.1 Test for Global Difference

Define δ(t) = µ1(t) − µ0(t) and denote by I =

∫ T

0

δ2(t)dt. Note that δ(t) = 0

for every t if and only if I = 0. Thus I is a measure of global difference between

the means of the two groups. Denote the estimates of the within group averages by

µ̂i(t), i = 0, 1 and let δ̂(t) = µ̂1(t)−µ̂0(t) be an estimator of δ(t). We estimate I by the

Riemann sum approximation: Î =
T

K + 1

K∑
i=0

δ̂2(wi), where w0 = 0, w1, . . . , wK = T

is a fine grid of equally spaced points on [0, T ] and K is a large number. We consider

the null hypothesis: H0 : I = 0 versus the alternative hypothesis Ha : I > 0. Our

permutation based test procedure involves the following steps:

(i) Consider the joint dataset with n = n1 + n0 animals, where for i = 0, 1, ni

animals come from ith group. Consider a random permutation p of the labels

of “treatment” (i.e. “treated” or “not treated”).

(ii) For the permuted dataset, estimate the averages of the two groups: µ
(p)
1 (t),

µ
(p)
0 (t) by the model fitting and estimation procedure described earlier. Denote
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the difference function δ(p)(t) = µ
(p)
1 (t)− µ(p)

0 (t) and the integral of the squared

difference function by Ip. Compute Îp by the method described earlier.

(iii) Repeat step (i) with P permuted datasets.

(iv) Compute the permutation test p-value to be the proportion of permutations

with Îp ≥ Î.

The key idea of the permutation test is as follows: under the null hypothesis there is

no difference in the average outcome between the two groups. Hence the treatment

labels are exchangeable under the null hypothesis. The empirical distribution of Îp

estimates the distribution of the global difference between the two groups under the

null hypothesis. This provides the rationale for the computation of the test p-value

in step (iv).

4.2.2 Test for Localized Differences

We also propose a test for localized differences between groups, (i.e., the difference

in average outcome at particular time points) using a nonparametric bootstrap-based

inferential procedure (Crainiceanu and others , 2012). The main difference from the

procedure in Crainiceanu and others (2012) is that we are working with covariate

adjusted curves, which is important in many applications.

One question of interest is whether there is a difference in the average outcomes

between the groups at a fixed time point t. The corresponding null and alternative
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hypotheses can be stated as:

H0,t : µ1(t) = µ0(t) versus Ha,t : µ1(t) 6= µ0(t) for a fixed t (4.2)

We compute the 95% pointwise confidence intervals to address this question.

Another question of interest is whether there is a difference between the average

curves at all time points. The corresponding null and alternative hypotheses are as

follows:

H0,m : µ1(t) = µ0(t) ∀t versus Ha,m : µ1(t) 6= µ0(t) for at least one t (4.3)

This question can be addressed using the 95% joint confidence intervals to account

for multiple hypotheses testing.

The key steps in the computation of the different kind of confidence intervals are

as follows:

(i) Generate B simple random samples with replacement separately from each

group.

(ii) For each bootstrap dataset, define δb(t) = µ1b(t)−µ0b(t), b = 1, . . . , B. Estimate

µ1b(t), µ0b(t), and δb(t) by the procedure described earlier.

(iii) Compute 95% pointwise and joint confidence intervals.

The 95% pointwise confidence intervals in step (iii) are constructed based on the
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bootstrap distribution of δb(t) for a fixed t. More specifically, we estimate the standard

error of the difference of means based on the bootstrap samples and use the z-score

cutoff. They can be interpreted as follows: at each time point t in repeated samples

the true difference will be covered by the interval 95% of the time. The 95% joint

confidence intervals are computed by the algorithm given in Section 3 of Crainiceanu

and others (2012). The interpretation is as follows: at all time points in repeated

samples the true difference will be covered by the interval 95% of the time.

4.3 Results

A mouse with targeted deletion in the interleukin 10 gene (IL-10tm1Cgn) has been

proposed as a mouse model for frailty and low-grade inflammation. The older frail

IL-10tm mice show many similarities with older frail human beings. This provides the

rationale for using it as a scientific model for studying frailty. It has been hypothesized

that older, frail mice have decreased oxygen consumption compared to the normal

wildtype mice. We use the methods developed in the Section 4.2 to explore the validity

of this hypothesis and to investigate whether the statistical association between the

genotype and decreased oxygen consumption is altered by the body composition of

the animal.
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4.3.1 Description of study design and data

We have experimental data on n0 = 10 mice with the interleukin 10 gene knocked

out (IL-10tm group) and n1 = 10 additional mice where the gene is present (con-

trol group). For the animals in each group we have repeated measures of oxygen

consumption per gram body weight (every 30 mins over 4 consecutive days; 116 re-

peated observations for each animal, cf Figure 4.1). We also have information on

body composition measures (body weight, lean mass, fat mass, fluid mass) for each

animal obtained through Nuclear Magnetic Resonance (NMR) experiments. We want

to compare the average daily oxygen consumption curves between the groups after

adjusting for body composition measures.

4.3.2 Exploratory Analysis, Outlier Identification

and Covariate Adjustment

Figure 4.2 displays the bivariate distributions of oxygen consumption and the lean

mass and fat mass in the two genotype groups. The upper panel includes observa-

tions at all time points as the dependent variable. The lower panel uses the average

oxygen consumption over time as the dependent variable. For illustrative purposes

we used thin plate regression spline smoothing with four basis functions. The oxygen

consumption vs fat mass relationship is similar in two genotype groups. However,

there is a difference in the oxygen consumption vs lean mass relationship between the
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two genotype groups.

Figure 4.3 displays the relationship between lean mass and fat mass for both

groups of animals using a thin plate regression spline smoother with four basis func-

tions. We identified one outlying animal in the IL-10tm group with lean mass 22.4

grams and fat mass 1.7 grams. The striking difference in the nature of the red curve

in the upper and lower panel of Figure 4.3 supports this fact. In addition to the

main analysis (Analysis I) that includes all the animals, we also perform a sensitivity

analysis excluding this outlying animal (Analysis II).

Figure 4.4 displays the bivariate distribution of oxygen consumption and the ratio

of fat mass and lean mass in the two genotype groups for both Analyses I and II.

The upper panel includes observations at all time points as the dependent variable.

The lower panel uses the average oxygen consumption over time as the dependent

variable. We use thin plate regression splines with four basis functions to smooth the

data. The animals in the IL-10tm group have lower values of the ratio of fat mass and

lean mass compared to the animals in the control group. These plots also indicate

that one animal may be an outlier.

The exploratory analyses indicate that the ratio of fat mass and lean mass is a

key body composition measure that could potentially mediate the association between

genotype and oxygen consumption. For the rest of the analysis, we use the empirical

average of the oxygen consumption at a particular time over the four days as our

functional outcome and the ratio of fat mass and lean mass as the scalar covariate
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Figure 4.2: Bivariate relationship of oxygen consumption with lean mass and fat
mass in the two genotype groups (black color for control group and red color for
IL-10tm group): in the upper panel the dependent variable is observed oxygen con-
sumption at all time points; in the lower panel the dependent variable is average
oxygen consumption over time.
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Figure 4.3: Relationship between lean mass and fat mass in the two genotype
groups (black color for control group and red color for IL-10tm group): upper panel
corresponds to Analysis I (n = 20, n0 = 10, n1 = 10) with the outlier, lower panel
corresponds to Analysis II (n = 19, n0 = 9, n1 = 10) without the outlier.
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Figure 4.4: Bivariate relationship of oxygen consumption with ratio of fat mass and
lean mass in the two genotype groups (black color for control group and red color
for IL-10tm group) for both Analysis I (n = 20, n0 = 10, n1 = 10) and Analysis II
(n = 19, n0 = 9, n1 = 10): in the upper panel the dependent variable is observed
oxygen consumption at all time points; in the lower panel the dependent variable is
average oxygen consumption over time.
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of interest. The covariate adjusted curves are computed by the methods described in

Section 4.2. To investigate the potential mediation hypothesis, we compare results

with the approach that normalizes the outcome by per gram body weight. The latter

approach is routinely applied in studies of mouse metabolism (Speakman, 2013).

4.3.3 Global Genotype Effect

We follow the permutation based approach outlined in Section 4.2.1 to test for

global genotype effect. We estimate the global difference over a fine grid on the

range [0,24 hours] (i.e., midnight-midnight) where the time points are 0.01 hours

apart. We compute the p-value based on 1000 permutations. Note that when we use

the body weight normalized outcome the permutation test results provide evidence

for significant global genotype effect (p-value = 0.01). However, after adjusting the

outcome with the ratio between fat mass and lean mass, there is no such evidence

(p-value = 0.19).

4.3.4 Localized Genotype Effect

Figure 4.5 displays the point estimates and the 95% pointwise and joint confidence

intervals for the difference in average oxygen consumption between the control mice

and the IL-10tm mice. The results are based on B = 1000 bootstrap samples. When

the oxygen consumption is normalized per gram of body weight (left panel) we observe
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a significant decrease in average oxygen consumption at different times during the

day for the IL-10tm mice compared to the control mice. However, when oxygen

consumption is adjusted for the ratio of fat mass and lean mass of the animal, the

difference is no longer statistically significant.

Both Analyses I and II resulted in similar findings, indicating that results are

not strongly influenced by the one outlier identified in the exploratory process. The

results in Sections 4.3.3 and 4.3.4 provide evidence that supports the hypothesis that

the association of interleukin 10 gene deletion on the average oxygen consumption is

mediated by the ratio of fat mass and lean mass of the animal. The total computation

time for performing the tests for global genotype effect and localized genotype effect

was around 10 mins (Quad Core Processor 2.2 GHz, 8 GB RAM Macbook Pro)

4.3.5 Simulation Results

We investigate the performance of the proposed methods in a simulation study.

For different settings we generate 500 datasets from Model 4.1 with a single covariate,

for different choices of βi0(t) and βi1(t). We consider a time grid of 100 equally spaced

points in the interval [0,1]. We generate εij(t) in Model 4.1 from a Gaussian Process

distribution characterized by the equation ε(t) =
4∑

k=1

ξkφk(t) where ξk are mutually

independent N(0, λk) for k = 1, 2, 3, 4 and λk and φk(t) represent the kth eigenvalue

and eigenfunction respectively of the functional principal component decomposition

of a centered and scaled version of outcome data. We consider different settings that
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Figure 4.5: Plots showing 95% pointwise and joint confidence intervals for the
difference in mean oxygen consumption between control mice and IL-10tm mice: in
the left panel the oxygen consumption is normalized by body weight (BW) and in
the right panel the oxygen consumption is adjusted for the ratio of fat mass and lean
mass (FM/LM) of the animal.
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Table 4.1: Simulation results: Scenario 1 corresponds to β00(t) = β10(t) = 5
and β01(t) = β11(t) = 0.2 and covariate distribution in both the groups same as
in the control group of the motivating example; Scenario 2 corresponds to β00(t) =
β10(t) = sinπt, β01(t) = β11(t) = 0.2 and covariate distribution in both the groups
same as in the control group of the motivating example; Scenario 3 corresponds to
β00(t) = 5, β10(t) = 5.4 and β01(t) = β11(t) = 0.2 and covariate distribution in
both the groups same as in the control group of the motivating example; Scenario
4 corresponds to β00(t) = 0.1(1 + t)2, β10(t) = 0.5(1 − t)2 and β01(t) = β11(t) = 0.2
and covariate distribution in both the groups same as in the control group of the
motivating example.

Global Test Local Test

1 - α Scenario n P̂ ÎACP ÎACJ

0.95 1 10 0.05 0.89 0.87
20 0.04 0.92 0.92
50 0.05 0.94 0.94
100 0.05 0.95 0.95

2 10 0.05 0.88 0.85
20 0.04 0.92 0.9
50 0.05 0.94 0.93
100 0.05 0.95 0.95

3 10 0.79 0.89 0.87
20 0.99 0.92 0.92
50 1 0.94 0.94
100 1 0.95 0.95

4 10 0.65 0.89 0.87
20 0.99 0.92 0.91
50 1 0.94 0.94
100 1 0.95 0.95
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combine the choices of the following parameters:

1. Number of subjects: consider n1 = n0 with n = n1 + n0 and take n =

10, 20, 50, 100.

2. For the regression functions consider two scenarios for data generated under the

null hypothesis i.e., δ(t) = 0: (i) β00(t) = β10(t) = 5 and β01(t) = β11(t) = 0.2

and generate covariate from the same distribution for each group (e.g., we use

empirical distribution of the covariate values in the control group); (ii) β00(t) =

β10(t) = sin πt, β01(t) = β11(t) = 0.2 and generate covariate from the same

distribution for each group (e.g., we use empirical distribution of the covariate

values in the control group); two additional scenarios for data generated under

the alternative hypothesis i.e., δ(t) 6= 0: (iii) β00(t) = 5, β10(t) = 5.4, β01(t) =

β11(t) = 0.2 and generate covariate from the same distribution for each group

(e.g., we use empirical distribution of the covariate values in the control group);

(iv) β00(t) = 0.1(1 + t)2, β10(t) = 0.5(1− t)2, β01(t) = β11(t) = 0.2 and generate

covariate from the same distribution for each group (e.g., we use empirical

distribution of the covariate values in the control group).

For the test of global differences, let P be the conditional probability that the null

hypothesis is rejected given the true data generating mechanism. When data are

generated under the null hypothesis, P is the probability of type I error. When

data are generated under an alternative hypothesis, P is the power of the test under
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that particular alternative. We estimate P by P̂ , the proportion of the simulated

datasets for which the test procedure rejects the null hypothesis (i.e., permutation

test p-value < 0.05). For the test of localized differences we estimate the integrated

actual coverage for pointwise confidence intervals (IACP ) and the integrated actual

coverage for joint confidence intervals (IACJ) as described in Crainiceanu and others

(2012).

The global test produces the right Type I error for a sample size as little as n = 10

as shown in the scenarios 1 and 2 in Table 4.1 where data are generated under δ(t) = 0.

In scenarios 3, 4 data are generated under δ(t) 6= 0. For scenario 3, the global test

rejects the global null hypothesis 79% of the 500 tests when the sample size is n = 10.

This improves with increasing sample size; for n = 20 the global null hypothesis is

rejected 99% of the tests and for larger sample sizes (i.e., n = 50, 100) it is rejected

in all cases. For scenario 4, the global null hypothesis is rejected in only 65% of the

cases for n = 10. For higher sample sizes (n = 20, 50, 100) the characteristics are

similar to Scenario 3. The 95% pointwise and joint confidence intervals suffer from

under-coverage for the case n = 10 but coverages improve with increasing sample

size.
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4.4 Discussion

In this paper, we provide simple and fast methods for testing if and where two

covariate adjusted average curves are different.

One question we wanted to explore was whether there is an overall difference

between the covariate adjusted curves. We develop a simple easy-to-implement and

novel test procedure by adapting the permutation test idea to functional outcomes.

To the best of our knowledge, this is the first time such an approach is being proposed

in the context of testing equality of two curves after covariate adjustment. We also

propose a test for localized difference between the genotype groups (i.e., difference

in average outcome at particular time points) using a non-parametric bootstrap of

subjects (Crainiceanu and others , 2012). The methods in Crainiceanu and others

(2012) were developed for a matched case-control study. The major difference between

our approach and the one presented in Crainiceanu and others (2012) is that we are

working with covariate adjusted curves.

The issue of covariate adjustment is of great importance in most of the scientific

problems for reducing the variability and adjusting for baseline imbalances. For in-

stance, Figure 4.4 shows that the two genotype groups differ significantly with respect

to the ratio of fat mass and lean mass. One of the strengths of our approach is that

the we perform the covariate adjustment in a statistically principled way: we first

model the relationship of the oxygen consumption function and the ratio of fat mass

and lean mass using restricted maximum likelihood based functional regression meth-
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ods; and then use the estimated regression functions and the within group sample

averages of the covariate to estimate the within group average oxygen consumption.

One issue of concern is that the empirical distribution of the ratio of fat mass and

lean mass has limited overlap between the genotype groups.

The global test shows good performance in the simulation studies in terms of Type

I error and power. However, the 95% point-wise and joint confidence intervals suffer

from under-coverage for low sample sizes (e.g., n = 10); but the coverage improves

with increase in sample size. For the 95% point-wise confidence intervals, if we use

the cutoff based on t distribution with (n/2 − 1) degrees of freedom as opposed to

the regular z-score cutoff, we get substantial improvement in coverage for the case

n = 10 and n = 20 under all scenarios. For higher sample sizes (i.e. n = 50, 100) the

coverages with t distribution cutoff and z−score cutoff assume similar values and this

finding is also consistent across all scenarios. The algorithm in Crainiceanu and others

(2012) for producing joint confidence intervals assumes multivariate normality of the

difference function. We tried other options, e.g., using a multivariate t distribution

with (n/2 − 1) df or the empirical distribution based on bootstrap as suggested by

Crainiceanu and others (2012). However, both these approaches result in marginal

improvement in coverage of the joint confidence intervals for low sample sizes (e.g.,

n = 10). In a future work, we plan to develop methods to handle this issue.

We also explored the sensitivity of the developed methods to outliers. The ex-

ploratory analyses have identified one outlying animal in the IL-10tm1Cgn group. We
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performed a sensitivity analysis by excluding this animal. However, the results were

very similar to the main analysis. Thus outlying animal does not strongly impact the

findings.

In summary, the key advantages of this method are its ease of implementation,

efficiency and scalability. Although it is targeted to address the scientific question

posed by the specific application, it can be adapted to a wide variety of biomedical

and public health settings with similar design and data structure.
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Conclusion

In this dissertation, we followed the scientific discovery process (Langley, 1987).

First, we identified, via collaborations, important scientific questions and the data

sources available. The questions included:

1. Do asthma and obesity have a common genetic risk factor (i.e., ORMDL3 locus

on Chromosome 17)? (Chapter 2)

2. Are kidney donors at risk for adverse health consequences (e.g., hypertension

or diabetes)? (Chapter 3)

3. Do mice with targeted deletion of interleukin 10 gene (IL-10tm1Cgn) have de-

creased oxygen consumption compared to normal wildtype mice? (Chapter 4)

Our approach to answering these questions was affected by the available data. In

fact, a common feature in addressing each of these questions was that information
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was required from multiple data sources.

Second, we translated each scientific question into an inferential problem involv-

ing an appropriate statistical parameter. Third, we investigated what can be learned

about the parameter of interest from information available from the observed data.

Often this information was not sufficient to learn about the true value of the pa-

rameter and additional untestable “identification” assumptions were required. It is

important that these assumptions be developed in close collaboration with subject

matter experts in order to judge their plausibility. While these assumptions are suf-

ficient to learn about the true value of the parameter in an infinite data setting, we

also needed to make additional testable assumptions to ensure that inferences in the

finite data setting are reasonably precise.

Fourth, we developed strategies for estimation of the parameters and characteriz-

ing their uncertainties. This step involved development of novel inferential methods

that combine information from multiple data sources in a statistically principled way.

The parameter estimates and associated uncertainties are then used to statistically

answer the scientific questions. In particular, the data (plus assumptions) may or

may not provide an affirmative answer to the questions. Either way, the result may

lead to new questions or theories, which will ideally lead to new discoveries.

In summary, statistical inference procedures using multiple data sources have enor-

mous potential within the scientific discovery process. We believe that the ideas de-

veloped in this thesis have broad applicability to other biomedical and public health

87



CHAPTER 5. CONCLUSION

investigations.

88



Bibliography

Behseta, S. and Kass, R. E. (2005). Testing equality of two functions using bars.

Statistics in Medicine 24(22), 3523–3534.

Behseta, S., Kass, R. E., Moorman, D. E. and Olson, C. R. (2007). Test-

ing equality of several functions: Analysis of single-unit firing-rate curves across

multiple experimental conditions. Statistics in Medicine 26(21), 3958–3975.
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